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ABSTRACT 

 

Although researchers have previously investigated the effect of precursor 

differences on the final properties of activated carbon fibers (ACFs), those precursors 

were not well-characterized. In particular, detailed information about their molecular 

composition and anisotropy was not available.  

In this study, seven oligomeric fractions, each of well-defined composition and 

molecular weight (mol wt) distribution, were isolated from a commercially produced 

isotropic petroleum pitch (i.e., Marathon M-50) and used for the production of ACFs. 

Four of these precursors of varying oligomeric composition were fully isotropic and three 

contained different levels of mesophase, so that the effects of molecular composition and 

molecular order were successfully isolated from each other. After the precursors were 

melt-spun into fibers and stabilized, they were processed by so-called “direct activation”, 

whereby carbonization and activation occurred simultaneously. Separate carbonization 

tests were also carried out in order to separate out the effects of carbonization vs. 

activation.  

Carbonization weight loss was found to be higher for fibers prepared from lower 

average mol wt (480-550 Da) precursors. The presence of mesophase per se did not affect 

weight loss during carbonization. On the other hand, activation weight loss (~28%) was 

found to be essentially independent of precursor mol wt for all isotropic fibers. 

(Activation weight loss for mesophase-containing fibers was much lower.) 
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The micropore volume of the ACFs was found to increase with decreasing 

precursor mol wt. However, the ratio of pores smaller than 7 Å (i.e., the desired pore size 

for hydrogen storage) to the total pore volume (3.9-30 Å) was found to be essentially 

constant for all isotropic precursors, suggesting that a similar activation mechanism 

occurred for all of these materials, with both new pore formation and pore widening 

proceeding at similar rates. For mesophase-containing precursors, on the other hand, this 

pore volume ratio significantly decreased with increasing mesophase content, indicating 

that pore widening dominates over new pore formation for this morphology. 

In conclusion, this study showed that the lowest mol wt precursor (i.e., a 99% 

dimer cut with a mol wt of 480 Da) attained the highest narrow micropore (<7 Å) volume 

required for hydrogen storage. 
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1 INTRODUCTION 

1.1 Carbon Materials 

 Carbon is the basic element that constitutes all organic matter and is the fourth 

most abundant element in the solar system (Pierson, 1993). On earth, it is mostly found in 

compounds in bituminous and anthracite coals, hydrocarbons (such as petroleum, asphalt, 

and tar), and gaseous hydrocarbons (such as methane). Also, natural graphite and 

diamond are two allotropes of carbon that are present on earth as minerals (Pierson, 

1993).  

 

1.1.1 The Element Carbon and its Allotropes 

 Carbon has an atomic number of 6, and its electron configuration enables 

carbon to form different types of hybrid bonding, including sp
1
, sp

2
, and sp

3
. Carbon can 

form linear, ring-shaped, and 3-dimensional (tetrahedral like in diamond) molecules (Fig. 

1.1a). Depending on the chemical nature, structure, and arrangements of these molecules, 

a material has different bulk properties. While amorphous carbon, graphite, and diamond 

are among the better-known and more common allotropes of carbon, there are other 

allotropes such as fullerenes (buckyballs, carbon nanotubes, etc.), lonsdaleite, and glassy 

carbon.   

 A single sheet of graphite is called graphene (Rand et al., 1998). The most 

ordered sp
2
 type of carbon is single-crystal graphite. In perfect stacking the distance 

between graphene sheets of graphite is 0.3354 nm (Fig. 1.1b). While graphite is the most  
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Fig. 1.1  The element Carbon: (a) sp
1
, sp

2
, and sp

3
 hybrid bonding and carbon materials 

(Reprinted from Yasuda et al, 2003. Copyright 2003 Elsevier. Permission 

requested); (b) the structure of graphite (Reprinted with permission from Marsh 

and Reinoso, 2006. Copyright 2006 Elsevier). 



3 

 

 
 

Fig. 1.1 (Contonued). 

 

ordered sp
2
-type carbon, amorphous carbons are also composed of sp

2
-type bonded 

molecules without any significant structural order, caused by the existence of crystalline 

defects, curvatures, and heteroatoms, i.e., atoms other than C, such as O, H, N, and S. 

Examples of such amorphous carbons include coal, anthracite, pitch, and lignite.  When 

there is no structural order that can be detected by X-ray diffraction, a carbon material is 

considered to be isotropic. It is important to understand that these materials are not totally 

disorganized, but disordered. To explain this concept better, consider the structural 

models for graphitizable vs. non-graphitizable carbons as proposed by Franklin in 1950 

and 1951 (Marsh and Reinoso, 2006). Fig 1.2 shows the arrangement of the graphene 
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layers based on her model, in which non-graphitizable (isotropic) carbon is composed of 

short graphene layers, with not all being parallel to each other as is the case with 

graphitizable carbons.  

 Although materials close to a perfect graphite structure are achievable, they can 

be obtained only with a heat treatment process above 2000 ˚C, and not all carbon 

materials will graphitize upon high-temperature heat treatment. It is the movement of 

single atoms that causes graphitization, and not the bulk movement.  

 Depending on the chemical nature and structure, carbon materials can be used 

to produce all kinds of different products, such as high thermal conductivity carbons 

(Beauharnois et al., 2001), and activated carbons (Derbyshire et al., 2001). Among these, 

activated carbons are the focus of this dissertation.  

 

 

Fig. 1.2  Franklin’s model for graphitizable (left) and non-graphitizable (right) carbon. 

(Adapted with permission from Franklin, 1951. Copyright 1951 The Royal 

Society.) 
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1.1.2 Preparation of Carbon Materials 

All parent materials for the preparation of carbon come from organic sources; 

thus, each of these precursors needs to be heat-treated in an inert atmosphere in order to 

increase the carbon content of the precursor by removing some of the heteroatoms (S, O, 

N, H, etc.) (Marsh and Reinoso, 2006). This step is called carbonization: Carbonization 

can be carried out in the solid, liquid, or gas phase, with the solid- and liquid-phase 

carbonizations being of interest in this dissertation. 

In solid-phase carbonization, the solid lattice remains rigid throughout the whole 

process during which all the structural changes occur; thus, there is no bulk movement. 

On the other hand, atoms can move short distances in order to move to a more stable 

position or to form a six-membered ring (Marsh and Reinoso, 2006). This type of 

carbonization is utilized for the production of activated carbon fibers, which is the focus 

of this dissertation. During the preparation of activated carbon fibers, as-spun fibers from 

a carbonaceous material such as petroleum pitch are oxidized, or rendered infusible prior 

to the carbonization process. Because all the constituent molecules are cross-linked 

during oxidation, carbonization occurs in the solid state. 

In liquid-phase carbonization, bulk movement can occur. The polycyclic aromatic 

molecules that constitute the carbon material can orient themselves into a liquid 

crystalline phase, and as a result highly organized solids can be formed. The products of 

liquid-phase carbonization are anisotropic carbons and they are graphitizable; in other 

words, by heating to temperatures above 2000 ˚C, they will form 3-dimensional graphene 

layers in a graphite lattice which can be detected by X-ray diffraction (Marsh and 
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Reinoso, 2006). The formation of these organized solids is initiated by the growth of 

aromatic nematic discotic liquid crystals, which are also called mesophase. It is important 

to note that liquid-phase carbonization is used for the preparation of the graphitizable 

(mesophase) precursors themselves. In order to make highly ordered carbon fibers, the 

fibers that are spun from these precursors must first be oxidized and then carbonized in 

the solid phase. 

For carbons, the structure and the arrangement of the carbon atoms in the graphite 

lattice is crucial to their final properties. Activated carbons are produced from non-

graphitizable carbons. They are structurally disordered materials, but they are not 

amorphous.  

 

1.2 Activated Carbon 

 Carbonaceous materials that are prepared by carbonization and activation of 

organic materials are called activated carbons, and their highly porous nature makes them 

attractive for many applications. The first use of activated carbons goes back to about 

1500BC, when ancient Egyptians used them for medicinal purposes and ancient Greeks 

used wood chars to treat a host of ailments. Later, they were used for removing odors 

from gangrene and as decolorizing agent for sugar. The first substantial industrial interest 

in activated carbon was at the beginning of 20
th

 century, when Raphael von Ostrajko 

obtained British and German patents for the use of activated carbon in gas masks to 

remove chlorine gas during World War I (Yehaskel, 1978). Today, activated carbons are 

used in many areas such as filtration, purification, gas adsorption, dry cleaning, alcoholic 
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beverages, and solvent recovery; the different forms of activated carbons include 

granular, powder or fiber forms.  

The functionality of activated carbons (ACs) arises from the fact that the sizes of 

their pores are comparable to the size of molecules. These small holes give rise to intense 

van der Waals forces because of carbon atoms in near proximity; thus, they are suitable 

materials for applications where adsorption and desorption are important (Marsh and 

Reinoso, 2006). Pore sizes in ACs are generally classified into three groups: Pores 

smaller than 2.0 nm are called micropores; those ranging in size from 2.0 nm to 50 nm 

are called mesopores; and pores bigger than 50 nm are called macropores. Controlling the 

pore size of ACs can enable one to tailor such carbons for different specific applications. 

In this sense, activated carbon fibers (ACFs) are more advantageous than other forms of 

AC, as fibers have more uniform size and shape as a precursor to begin with. Also, better 

diffusion between the fibers makes ACFs more suitable for adsorption applications 

(Suzuki, 1994). 

ACs can be produced from non-graphitic and non-graphitizable precursors, such 

as coals, pitches, peat, woods, fruit stones, coconut shells, and lignites. The final 

properties of ACFs depend on the precursor used and the activation treatment to prepare 

them (Menendez-Diaz and Martin-Gullon, 2006). In this study, in order to obtain a better 

understanding of the effect of precursor structure and composition on final pore structure, 

ACFs were produced from controlled molecular weight (mol wt) fractions of a 

commercially available petroleum pitch. 
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1.2.1 Pitch as an Activated Carbon Precursor      

There are two common types of pitch that can be used for AC production: 

petroleum pitch and coal-tar pitch. In brief, petroleum pitch is produced as a residue of 

crude oil distillation, and coal-tar pitch is a liquid product from the production of 

metallurgical coke. In general, coal-tar pitches have more aromatic content than 

petroleum pitches; however, the lower benzene- and quinoline-insoluble content of 

petroleum pitches makes them preferable for fiber applications (Chung and Deborah, 

1994). The insoluble portions of coal-tar pitch cause faster coke formation during 

processing at high temperatures, and as a result more fiber breakage.  

Because of its thermoplastic nature, pitch can be used for the production of all 

forms of ACs, including fibers, powders and granules. To produce ACFs, pitch is first 

melt-spun into small-diameter fibers. The resultant green fibers are then rendered 

infusible via oxidation to prevent them from melting and losing their shape during 

subsequent, higher-temperature, heat treatment steps. This process is called stabilization, 

or infusibilization, and is also used for the production of other forms of ACs. Following 

this stabilization process, the fibers are carbonized under an inert atmosphere at 

temperatures up to 1000 ˚C. After this step the carbon content of the fibers approaches 

100% and the fibers are truly ―carbon‖ fibers. At this point, depending on the 

composition of the pitch precursor, the fibers may be suitable for the production of high-

performance carbon fibers or for the production of ACFs. High-performance carbon 

fibers are produced by further heat treatments above 2000 ˚C in an inert atmosphere, 

whereas ACFs are produced by activating the carbon fibers by either chemical or 
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physical (thermal) means, typically at temperatures between 800 ˚C and 900˚C. Details of 

these processes are given later in this chapter. 

 

1.2.2 Advantages of Activated Carbon Fibers vs. Other Forms of Activated Carbons 

ACs are used in many separation and purification applications. Common forms of 

ACs available are powdered, pelletized, granular and molded forms. The introduction of 

ACFs brought new perspectives to the AC concept in terms of design and applications. 

Carbon fibers were introduced to the market at the beginning of the 1960s and today are 

relatively common. They have been used for the production of high-performance 

composite materials for the transportation industry, primarily for aerospace applications. 

In 1972, ACFs were introduced to the market in both fiber and fabric form by Arons and 

McNair (Suzuki, 1994). The use of viscose textiles and phenol-formaldehyde (Novolak) 

fibers as precursors for AC textiles and high surface area ACFs has been patented 

(Rodgers, 1965; Doying, 1966; Peters, 1966). 

ACFs have important advantages over ACs in powder or granular form. Because 

of their small diameter, ACFs have better intraparticle adsorption kinetics than pelletized 

and granular ACs (Suzuki, 1994). Furthermore, their fiber form is more suitable for many 

applications, for example, for fabrics and filters (Thwaities et al., 1993). It is the opinion 

of the author of this dissertation that because of their uniform size, ACFs can generate a 

more uniform pore structure compared to other forms of ACs. Thus, ACFs are 

advantageous for adsorption applications where the rate of adsorption and desorption are 

critical. 
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1.3 Preparation of Activated Carbon Fibers 

1.3.1 Spinning 

Spinning is the first step of the ACF production process; here the precursor in 

powder or granular form is melted and converted into fibers. The melt-spinning process 

can be broken down into three stages: melting of the precursor, extruding through the die, 

and drawing of the fibers. Successful spinning of the precursor strongly depends on the 

viscosity of the molten material, and the viscosity of the pitch is a strong function of 

temperature. Thus, there is only a limited temperature range over which the precursor can 

be spun. This temperature range is called the spin window and is dependent on the 

properties of the precursor material. If spinning temperatures are too low, even if the 

material is molten, the resultant fibers can be brittle, causing excessive fiber breakage 

during drawdown. If spinning temperatures are too high, both low viscosity and 

degradation of the source material can become a concern, making the production of 

continuous fibers impractical. 

 

1.3.2 Stabilization 

Stabilization is the process that makes the as-spun fibers infusible in preparation 

for subsequent heat treatments (Chung and Deborah, 1994). Once stabilized, the fibers 

will not melt and lose their shape or stick to each other. This oxidative thermosetting step 

is the most time-consuming step in ACF production and can take days to complete. Thus, 

choosing relatively high softening point precursors is important to speed up the 

stabilization reaction to the extent possible. The most common stabilization method is 
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heating fibers under an oxygen (or air) atmosphere; that is why this process is often 

referred to as oxidation. Air-convection ovens are usually employed for this process. The 

stabilization step mainly consists of oxygen uptake (Stevens and Diefendorf, 1986), 

resulting in cross-linking of the molecules in the fibers. The oxidation process is a 

simultaneous combination of diffusion and reaction. Generally fibers are initially heated 

to a temperature ~50-60 ˚C below the softening point of the precursor, and then the 

temperature is gradually increased to the range of 230 ˚C to 280 ˚C.  

The rate of stabilization depends on several parameters, including the 

temperature, the oxygen concentration, and the chemical nature of the precursor 

molecules (Miura et al., 1995; Drbohlav and Stevenson, 1995; Lavin, 1992). Typically, 

fibers gain 6-15% weight when they are fully stabilized (Lin, 1991). The main 

mechanism of oxidation is believed to be dehydrogenation and the attachment of oxygen 

to the aliphatic side chains at the early stages of oxidation process, during which water is 

given off, forming compounds such as carboxylic acids, aldehydes, and ketones (Miura et 

al., 1995; Drbohlav and Stevenson, 1995). During the later stages of the oxidation 

process, the fibers lose weight as CO2 is formed.  

 

1.3.3 Carbonization 

After the fibers have been stabilized, they are then ready for carbonization. During 

this step, the stabilized fibers are heat-treated at temperatures up to 1000 ˚C under an 

inert atmosphere. Above 1000 ˚C, the carbon structure becomes more ordered and starts 

to graphitize.  Thus, for the production of ACFs, temperatures of only 1000 ˚C, at which 
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most of the elimination of the non-carbon elements occur, are preferred. (Incidentally, 

carbonization temperatures as high as 3000 ˚C are used if highly graphitic, high-

performance carbon fibers are being made from mesophase pitch).  

Carbonization is mainly based on growth and polymerization of aromatic molecules, 

and at the beginning of the process, nonaromatic compounds are aromatized first (Lewis, 

1982). Although the overall mechanism of carbonization process is complex, the major 

reactions can be summarized as follows (Lewis, 1982): (1) cleavage of aromatic C-C and 

C-H bonds to form free radicals, (2) molecular rearrangement, (3) thermal 

polymerization, (4) aromatic condensation, and (5) elimination of side chains and 

hydrogen. 

During these reactions, non-carbon elements are volatilized in the form of gases, such 

as hydrogen, carbon dioxide, carbon monoxide, methane, and water (Edie, 1998), 

yielding fibers with 92% or more carbon content. In the literature it has also been shown 

that at temperatures between 300 ˚C and 500 ˚C, hydroxyl, carbonyl, and saturated 

aliphatic hydrocarbons are eliminated, while between 500 ˚C and 800 ˚C hydrogen is 

eliminated and aromatic condensation takes place (Yang and Simms, 1993). At around 

800˚C, the weight of the fibers stabilizes, showing that the carbonization process is 

complete (Wu et al., 2008). The net carbonization yield can vary between 60-85%, 

depending on the nature of the pitch precursor used. After the carbonization process, the 

fibers are cooled down to room temperature, resulting in thermal contraction and 

densification of the fibers.  
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1.3.4 Activation 

Most of the carbonized fibers develop some porosity during the carbonization 

step; however, the pores are too small and the pore volume is too low for most 

applications. Because of this, a formal activation process must be applied to the 

carbonized fibers in order to improve their porous structure and adsorption potential. 

There are two principal types of activation, physical and chemical activation. In physical 

(also called thermal) activation, the fibers are reacted with either CO2 or steam at 

temperatures between 800 and 900 ˚C. In chemical activation, reactants such as 

phosphoric acid, zinc chloride, potassium hydroxide, or potassium carbonate are used as 

activating agents to modify the pore structure of the fibers. In some cases, a combination 

of the two processes is employed. 

The main mechanism of physical activation is the removal of carbon atoms in the 

form of carbon monoxide via gasification reactions using the activating agents steam or 

CO2. The use of steam or CO2 as an activating agent results in different pore structures. 

The main reactions can be shown as follows: 

C + CO2 = 2CO 

C + H2O = CO + H2 

  When CO2 is used as the activating agent, it reacts with the free carbon atoms to 

give off CO molecules. However, during this process, chemisorption of oxygen atoms 

also occurs. That is, during the reaction of CO2 with a carbon atom, an oxygen atom from 

the CO2 molecule is chemisorbed on the carbon surface and forms surface oxygen 

complexes (Harry and Marsh, 2006). These complexes have broad chemical 
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functionalities. They can act as reaction intermediates and go on to form free CO gas, or 

they can act as inhibitors for the activation reaction by blocking the reaction sites. In 

addition, the reaction products CO and H2 can inhibit the gasification reaction by a 

reverse reaction with surface oxygen complexes.  

When steam is used as an activating agent, it reacts with the free carbon atoms to 

give off CO and H2 molecules. Similar to the CO2 gasification reactions, hydrogen can be 

chemisorbed on the carbon surface and block the reaction sites. The inhibition effect of 

chemisorbed hydrogen is more pronounced, because surface carbon–hydrogen complexes 

are much more stable than surface carbon–oxygen complexes.  

During gasification reactions, activating agents do not randomly react with any 

carbon atom that they encounter; instead, they are highly selective, with the reactivity of 

the carbon atoms in the fiber microstructure being strongly dependent on the chemical 

nature of the precursor. Carbon atoms in a precursor are assembled into five, six or 

seven-membered rings (Marsh and Reinoso, 2006). These polycyclic aromatic molecules 

form the defective micro-graphene layers and are bonded to each other. Due to atom 

vacancies and the presence of hydrogen and heteroatoms [e.g., sulphur, nitrogen, oxygen 

and phosphorus], which cause bending and curvature, these graphene layers are not well-

ordered. Instead, they form a 3-dimensional disordered network in which the spaces 

between layers form porosities. Such is the nature of the non-graphitizable carbonaceous 

materials that are used in the production of ACFs. Non-graphitizable materials are 

required because graphitizable carbonaceous materials would form graphene layers 
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similar to 3-dimensional crystalline graphite, and activating agents would not be able to 

access the internal carbon atoms.  

Non-graphitizing carbons also exhibit some degree of molecular order; however, 

it is far from that of perfect graphite. The distance between layers is much larger than that 

found in graphite; furthermore, the layers are not completely parallel to each other. Also, 

the extent of organization among the layers (on the order of nanometers) is much smaller 

than that of graphitizable carbons, where crystallite sizes might be as high as hundreds of 

nanometers and even micrometers. 

 

1.4 Activated Carbon Models 

 In order to understand the activation process better, understanding the carbon 

microstructure and the porosity in ACs is very important. Although none of the proposed 

models for porous, ACs are completely correct, they can be helpful for the insights that 

they provide. Marsh and Reinoso have included a detailed discussion about different 

models and approaches in their book (2006). Some of those models are summarized here. 

 Ideally, in order for a model to be realistic and acceptable, it should address 

several issues about the structure and should also be consistent with experimental results 

such as X-ray diffraction (XRD), small angle X-ray diffraction (SAXD), and adsorption 

isotherms. 

First, the model should relate the microstructure of the parent carbon material to 

the porosity. The walls of the pores should be consistent with the structure of the 

molecules constituting the precursor material. Also, the molecules that form the AC 
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should be interconnected to form a network and to address the hardness of the material. 

The chemical composition and nature of the precursor material should be considered, and 

heteroatoms such as oxygen, nitrogen, and sulfur should be included in the model. 

Second, different aspects of pore structure should be addressed. Pores are not all 

uniform and independent. Therefore, a complete model has to consider the 

interconnectivity of pores, pore size distribution, the simultaneous existence of both 

micropores and mesopores, and the shape of pores. 

Third, the model should address the activation process and relate the carbon 

structure before the activation process to the final carbon structure and the pore network. 

 Finally, it should be consistent with experimental observations such as the ratio of 

carbon atoms to adsorbate atoms, isotropy, and density. A more detailed list of the 

preferences for a model is given by Marsh and Reinoso (2006). In the next two sections, 

first some of the simpler visual models and then some of the more advanced simulation 

models are discussed. 

 

1.4.1 Visual Models 

The first models that attempted to describe porosity in ACs were simple and 

assumed porosity to be similar to macro objects that are easy to visualize.  

Drilled-hole models (Fig. 1.3) are an attempt to illustrate the different sizes and 

shapes (round or slit) of pores, but obviously don’t take the structure of carbon into 

account at all. Another simple model is a branched-tree model, which consists of a high-

contrast image of a branched tree (Fig. 1.4), and in which the tree is considered as the 
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pore network. This model shows the interconnectivity of the porosity as a network. It also 

addresses the size variation of the pores. However, like the previous model it doesn’t 

address the structure of carbon at all, and it limits the distribution of microporosity and 

mesoporosity.  

 

 

Fig. 1.3 Drilled-hole model with (a) round-shaped pores, or (b) oval (slit-like)-

shaped pores. (Reprinted with permission from Marsh and Reinoso, 2006. 

Copyright 2006 Elsevier.) 
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Fig. 1.4 Branched-tree model: high-contrast image of a branched tree. (Reprinted 

in part with permission from Marsh and Reinoso, 2006. Copyright 2006 

Elsevier.) 

 

 

The potato-chip model (Fig. 1.5) is a simple visual model that attempts to explain 

the porosity based on the carbon structure itself. Each potato chip can be considered to be 

a defective micrographene layer, and the spaces between the chips can be thought of as 

the pores. The connectivity of the pores to each other, and the non-planarity of the 

micrographene layers are also taken into account by this model. Note that the use of 

smaller- or larger-sized potato chips would give a different pore structure – an 

observation that is directly related to the main focus of this dissertation. Among the 

weaknesses of the model are that the potato chips are too uniform and that there is no 

interconnectivity between the micrographene layers. 
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Fig. 1.5 Potato-chip model with (a) smaller-sized chips with more curvature, and 

with (b) bigger-sized chips. (Reprinted with permission from Marsh and 

Reinoso, 2006. Copyright 2006 Elsevier.) 

 

 

The Norit model (Fig. 1.6) resembles Franklin’s model (Franklin, 1951) that was 

mentioned before in this chapter. Similarly, this model is composed of planar layers, and 

the distance between these layers is defined as the porosity. As a result of activation, 

some of these layers are removed either partially or as a group to form bigger pores (Fig. 

1.6b). The model has the advantage of defining the pores based on carbon structure and 

in modeling the activation process by the removal of carbon atoms; however, the 

graphene layers introduced are too planar and homogenous, and there is no bonding 

between these layers, which is necessary for explaining the hardness of the material. 
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Fig. 1.6 The Norit model: (a) structure before activation; (b) removal of some of 

the graphene layers (as indicated by the lighter color) either individually 

or in groups as a result of activation. (Reprinted with permission from 

Marsh and Reinoso, 2006. Copyright 2006 Elsevier.) 

 

 

In addition to simpler visual models, Marsh and Reinoso (2006) suggested that 

scanning electron micrographs (SEM) of exfoliated graphite (Fig. 1.7a-d) and of 

montmorillinite (Fig. 1.7e) could serve as useful visual models for the structures of ACs. 

Exfoliated graphite is formed by the rapid heating of graphite intercalation compounds, 

which are formed as a result of the reaction of graphite with oxidizing agents, such as 

SO3. Once the graphite intercalation compound is heated rapidly, the intercalated 

substances vaporize and force the graphene layers to separate. Also, although 

montmorillinite is not a carbon material, it has a similar structure to exfoliated graphite. 

All these figures (Fig. 1.7a-e) can illustrate the carbon network, the interconnectivity of  
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Fig. 1.7 Scanning electron micrographs of surfaces of exfoliated graphite and 

montmorillonite (a clay mineral). ACs are believed to have similar 

structures to these materials. (a-d) SEM micrographs of surface of 

exfoliated graphite at different magnifications; (e) SEM micrographs of 

surface of montmorillonite (grey spheres represents the theoretical 

adsorbate molecules adsorbed in microporosity in ACs). (Reprinted with 

permission from Marsh and Reinoso, 2006. Copyright 2006 Elsevier.) 
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the pores, and the co-existence of micropores and mesopores. They also help us to 

visualize slit-shaped pores. However, in actual microporous carbons, the size (thickness) 

of the pore walls is comparable to the size of the pores.  

In addition, Marsh and Crawford in 1982 and Rouzaud and Clinard in 2002 used 

high resolution transmission electron microscopy (TEM) to investigate the structure 

within porous carbons. Note that the micrographs (Fig. 1.8) consist of cross-sections, so 

they essentially show the 2-dimensional structure of the porous carbons at a given depth. 

Fig. 1.8a-c show TEM pictures of porous carbons produced from polyvinylidene 

chloride, saccharose-based carbon, and soot nanoparticle carbon, respectively. Note that 

all micrographs show non-planar, defective, micro-graphene layers. 

 

1.4.2 Mathematical and Molecular Simulation Models 

Before moving to a discussion of some of the more detailed molecular simulation 

models for activated, porous carbons, it is worth mentioning the studies of Kaneko et al. 

(1992), who related the high surface area of ACs to the geometric area of graphitic 

microcrystallites of polycyclic aromatic hydrocarbon (PAH) molecules. Calculations 

were made on molecules containing from 56 to 212 carbons. Both sides and edges were 

considered, and the available geometric area was also calculated for stacks of three 

microcrystallites. The calculated geometric areas were from 4100 m
2
/g to 6000 m

2
/g for 

single microcrystallites and from 1900 m
2
/g to 3200 m

2
/g for a stack of three 

microcrystallites.  Although area calculations in the latter case were reasonable, the 
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formation of such big structures (i.e., PAH containing 212 C atoms) at relatively low 

carbonization and activation temperatures, which are typically less than 1000 ˚C, 

contradicts XRD results for isotropic precursors. Nevertheless, their approach was 

important as it related the surface area of AC directly to molecular structure.   

 

 

 

Fig. 1.8 TEM micrographs of a cross-section of (a) a heat-treated polyvinylidene 

chloride carbon (Reprinted with permission from Marsh et al., 1982. 

Copyright 1982 Elsevier), (b) an activated saccharose-based carbon, and 

(c) a soot nanoparticle carbon. (Reprinted with permission from Rouzaud 

and Clinard, 2002. Copyright 2002 Elsevier.) 

(a)

(c)

(b)
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Among the molecular simulation models, several of the proposed models are 

based on the assumption that ACs have similarities to glassy carbon. Glassy carbon is a 

disordered carbon material that contains individual cage-like pores, so its porosity is 

―closed‖ to the surface. It is prepared by carbonization in a closed system to prevent the 

escape of volatile materials. Before starting with the molecular simulation models on 

glassy carbon, having a look at the study of Yoshida et al. (1991) will help one imagine 

the structure of glassy carbon. Their study was based on their observations of the surface 

texture of glassy carbon that was heat-treated at 2000-3000 ˚C and then crushed into 2-

3mm particles. Field-emission electron gun type SEM micrographs showed that the 

fracture surfaces of these particles were granular. Yoshida et al. (1991) suggested that the 

microstructure of glassy carbon samples could be similar to the model for the 

microtexture of phenol resin char heat-treated at 2800 ˚C (Fig. 1.9) as proposed by 

Shiraishi et al. (Yoshida et al., 1991), and adopted this model for glassy carbon. The 

model of Yoshida et al. shows the cage-like structure of the pores of ACs where 

adsorption occurs, with the walls of the structure being made of defective micro-graphene 

layers.  
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Fig. 1.9 Granular glassy carbon model. (Reprinted with permission from Yoshida 

et al., 1991. Copyright 1991 Elsevier.) 

 

One of the first molecular simulation models for glassy carbon was proposed by 

O’Malley et al. (1998). They used reverse Monte Carlo (RMC) computer simulation to 

propose molecular structures for glassy carbons heat-treated at 1000 and 2500 ˚C. (With 

the reverse Monte Carlo method, the structure of a material is adjusted until it produces 

results that are most consistent with experimental data.) O’Malley et al. used TEM 

electron diffraction patterns and density values as experimental data, and their proposed 

structures consisted of a non-planar, buckled, defective graphene layer with different-

sized ring systems and vacancies (Fig. 1.10) (O’Malley et al., 1998). As the proposed 

structure is non-planar with defects, true stacking of two similar structures is not possible, 

leaving a molecular space between them. Both sufficiently large ring systems and the 

molecular spaces between such structures can be considered to be adsorption sites, and 

thus the ―source‖ of porosity.  
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Following the work of O’Malley et al., similar studies using RMC were carried 

out by Pikunic et al. (2001) and Petersen et al. (2003) on glassy carbons that were heat-

treated at 2500 ˚C. Petersen et al. used a modified RMC in which they used a neutron 

diffraction pattern in addition to an electron diffraction pattern as experimental data. The 

molecular structures proposed by these two groups are shown in Fig. 1.11 and Fig. 1.12. 

Their studies confirmed the results of O’Malley, that the glassy carbon network is 

composed of bent, multi-sized ring systems. Both the simultaneous existence of 

micropores and mesopores and their interconnectivity were addressed in these two 

models. It should be noted that the glassy carbons investigated were heat-treated at 

2500˚C and did not have an accessible porosity. Thus, although these models are 

important for helping us understand the structure of porous carbons heat-treated at lower 

temperatures, their structures are not completely representative of porous, ACs. 
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Fig. 1.10 A model structure of a glassy carbon heat-treated at 1000 ˚C proposed 

from the study of O’Malley et al.; (a) top view of a proposed basal plane; 

(b) side view of a proposed basal plane. (Reprinted with permission from 

O’Malley et al., 1998. Copyright 1998 American Physical Society.) 
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Fig. 1.11 Glassy carbon structure proposed by Pikunic et al. (2001) (Reprinted from 

Marsh and Reinoso, 2006. Copyright 2006 Elsevier. Permission 

requested). 

 

Another molecular model, ―The Chemically Constrained Model‖, was proposed 

by Acharya et al. (1999). Their model for nanoporous carbon consisted of graphene layer 

fragments having only sp
2
 type bonding and composed only of carbon and hydrogen 

atoms. They used a bond-making algorithm that determines the structures starting from 

small fragments and bonding them together. Structures with the minimum internal energy 

and the right H/C ratio for the desired material to be simulated were chosen. The 

carbonization of poly-furfuryl alcohol at 400-800 ˚C was simulated. Among the proposed 

structures, the ones that matched the known density of poly-furfuryl alcohol heat-treated 

at a specified temperature were chosen. Several copies of one of their proposed structures 

were randomly put together by Marsh and Reinoso (2006) to help us imagine the porosity 
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(Fig. 1.13). This model shows the interconnectivity of pores, the existence of different-

sized pores, and the bending of the layers due to the strain caused by five-membered 

rings. The model of Acharya et al. predicts the existence of fragments that are too 

graphitic for the low heat-treatment temperatures (HTT) carried out experimentally. In 

microporous carbons, these layers are expected to be smaller and contain more defects. 

Nevertheless, the model is still helpful in furthering our understanding of the structure of 

porous carbons. 

 

 

 

Fig. 1.12 Glassy carbon structure proposed by Petersen et al. (Reprinted with 

permission from Petersen et al., 2003. Copyright 2003 Elsevier.) 

.  
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In the above discussion, we have seen that models based on both experimental 

findings and advanced computations have been proposed, but the structures that 

constitute porous carbons have yet to be precisely determined. However, we do have 

enough knowledge of the characteristics of porous carbons to help us to anticipate the 

general structures. For example, we know that the carbon atom network is composed of 

defective micro-graphene layers, instead of graphitic micro-crystallites. These graphene 

layers are composed of non-planar layer fragments with defects, five- to seven-member 

rings, vacancies, and bending. These layers are known to be short fragments, and there is 

no real stacking between these layers. All of these layers are interconnected to give the 

carbon material its hardness. The porosity is also a network where different sizes of pores 

(micropores and mesopores) co-exist interconnected in close proximity. Although these 

micrographene layers are not completely parallel to each other, the micropores are known 

to be mainly made up of basal planes, i.e., they are slit-shaped (Ehrburger et al., 1992). 
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Fig. 1.13 ―The Chemically Constrained Model‖ for modeling carbonized 

nanoporous poly-furfuryl alcohol by Acharya et al. (1999) (Reprinted with 

permission from Marsh and Reinoso, 2006. Copyright 2006 Elsevier.) 

 

 

The cage-like molecular spaces between these defective micro-graphene layers, 

created as a result of the activation process, are the adsorption sites. In a microporous 

carbon that has a surface area of 1000 m
2
/g (assuming single-layer adsorption), it is a 

good approximation that eight carbon atoms are employed for the adsorption of one 

nitrogen molecule (Marsh and Reinoso, 2006). This shows that the walls of the pores 

cannot be more than 2 or 3 layers thick.  

 It is the opinion of the author of this dissertation that among the models discussed 

above, the exfoliated graphite (Fig. 1.7) and the TEM images of non graphitizing carbons 
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(Fig. 1.8) (similar to the Norit model (Fig. 1.6) before activation but with a more 

disordered structure) are the most helpful models to envision the AC structure.  

In the work of this dissertation, the seven precursors that were used to prepare 

ACFs were prepared from the same mother petroleum pitch that had an oligomeric 

character. A comprehensive analytical characterization study by the Thies group (Burgess 

and Thies, 2011) indicates that the dominant molecules present in these precursors are 

dimer and trimer species, with some monomer present in only one of the precursors and 

some tetramer present in several of the precursors (see Fig. 1.14). Furthermore, each 

oligomeric unit is joined by a single, five-membered connectivity ring. Thus, in our case 

the molecules that form the defective micrographene layers are typically composed of at 

least nine rings, including at least one five-membered ring.  

Also, it is important to point out that four of the seven precursors studied in this 

work were isotropic, while three of them had mesophase contents at different levels. This 

enabled us to see the effect of increasing mesophase content (anisotropy) and, more 

importantly, to isolate the effect of molecular composition (i.e., oligomeric content) on 

oxidation, carbonization, and activation behavior, and on the final porosity of the ACFs.   
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Fig. 1.14  Representative molecular structures present in the precursors used in this 

study (Cervo, 2010a, Burgess et al., 2010; Burgess and Thies, 2011). 

(Reprinted with permission from Cervo, 2010a. Copyright 2010 Dr. 

Eduardo Cervo.) 

 

 

The molecules shown in Fig. 1.14 are typical of the basic structural units that cross-link 

during the oxidation process to form extended carbon network. Therefore, changing the 

composition (and thus the molecular weight) of the precursor changed the size of the 

basic structural units, that is, of the defective micrographene layers. 

A key hypothesis of this study was that a knowledge of the molecular structure of 

the pitch precursor, and the ability to control that structure, would help us better 
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understand the activation process, the effect of precursor structure and composition on 

final pore structure, and the effectiveness of the adsorption process itself.  

 In the next part of the ―Introduction‖ section, previous studies on physical and 

chemical activation are presented as background information, and studies on ACs and 

ACFs prepared from different precursors are discussed. 

 

1.5 Literature Review 

1.5.1 Physical Activation: Steam vs. CO2 

The use of the two different activation agents, steam and carbon dioxide, 

generally results in quite different activation rates and pore structures. Several studies 

(Alcaniz-Monge et al., 1994; Walker, 1996; Molin-Sabio et al., 1996) have compared the 

effects of the activating gas on the pore structure of the ACs and ACFs.  

Alcaniz-Monge et al. (1994) used commercially available, isotropic, petroleum-

based pitch as a precursor and prepared ACFs. They carried out the activation processes 

at 887˚C under steam and CO2 flow. Their detailed analysis of pore structure, tensile 

strength, and pore diameter clearly showed that there is a significant difference in 

activation mechanisms. According to their studies, although steam has a higher activation 

rate than carbon dioxide, carbon dioxide creates narrower micropores.  

In their study Alcaniz-Monge et al. (1994) showed that at low burn-off levels (14-

15%), steam activation creates a more narrow microporosity than CO2 activation, 

whereas it is the opposite above 30% burn-off. This change occurs because of the 

difference in activation mechanism with two different agents. In steam activation, the 
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volume of narrow micropores remains almost constant at their value at ~15% burn-off, 

and significant pore widening occurs at higher burn-offs (above 36% in their case), 

resulting in the formation of super micropores and mesopores. On the other hand, during 

CO2 activation the narrow porosity continuously increases with increasing burn-off level, 

showing that the formation of narrow pores continues even at high burn-off levels.  

It is also of interest to look at the effect of the two activation gases on fiber 

diameter. After the initial stages, steam activation causes a continuous decrease in fiber 

diameter, whereas in CO2 activation the fiber diameter remains almost constant after a 

small initial decrease. However, fibers activated with CO2 exhibit larger decreases in 

tensile strength vs. those activated with steam.  

In summary, steam activation creates larger-sized pores, causing a decrease in 

fiber diameter and keeping the tensile strength higher due to more external burn-off, 

while CO2 activation generates a narrower pore distribution by penetrating deeper into the 

fiber core, with a more significant loss in tensile strength.  

Alcaniz-Monge et al. (1994) explained that the more uniform pore formation of 

CO2 activation was a result of CO2 having a higher configurational diffusion (diffusion in 

narrow micropososity) coefficient. However, Walker (1996) disagreed with this 

reasoning. He pointed out that Koresh et al. (1980) showed that steam has a smaller 

critical molecular dimension than CO2 through diffusion in molecular-sieve carbons. 

Thus, steam would be expected to diffuse faster through narrow micropores. Also in 

larger pores, steam would also have a higher Knudsen diffusivity because of its lower 

molecular weight (Wheeler, 1951). Walker (1996) claimed that the more uniform pore 
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formation during CO2 activation is caused by (i) the lower activation rate and (ii) the 

higher product inhibition effect of H2 vs. CO, and thus concluded that the intentional 

addition of the activation reaction products (CO or H2) into the activation process might 

lead to a more uniform gasification reaction and superior microporosity development. 

However, in 1997 Alcaniz-Monge et al. showed that the activation rate does not cause 

any significant change in pore formation, and that the inhibition effects of CO and H2 are 

not so different as to cause the observed differences in porosity using CO2 vs. steam. 

Furthermore, they did some activation experiments in the presence of 5% CO or H2 as 

suggested by Walker (1996), and they did not observe any change in porosity. They thus 

concluded that the difference in porosity most probably was because of the difference in 

configurational diffusivities between CO2 and steam.  

Molin-Sabio et al. (1996) also did a study on carbon activation using steam and 

CO2 as activating agents. They used char made from olive stones as a precursor and did 

not make fibers. However, their findings in terms of pore formation and widening were 

similar to the results of Alcaniz-Monge et al. (1994) on ACFs.  

Lozano-Castello et al. (2002) also conducted a similar study, in which they 

investigated porosity in commercial petroleum pitch-based isotropic carbon fibers 

activated both via CO2 activation and steam activation. They carried out single-fiber tests 

using microbeam small-angle X-ray scattering for the investigation of pore formation 

along the fiber diameter. Their findings supported the previous studies, in which CO2 

activation creates more homogenous porosity throughout the fiber core, whereas steam 

activation creates pores mostly in the external regions of the fibers.   



37 

 

All fibers used in this dissertation were prepared using CO2 as an activating agent; 

thus, the above studies are important because they provide information about the CO2 

activation mechanism and the importance of diffusivity of the activating agent inside the 

pores. 

 

1.5.2 Chemical activation 

 Because the mechanism of physical activation is based on widening of the 

rudimentary pores already existing in the parent precursor (Rodriguez-Reinoso et al., 

1989; Rodriguez-Reinoso and Linares-Solano, 1989), and because variables such as 

temperature, pressure, and heating rate have a limited effect on the micropore structure 

(Gonzales et al., 1997), chemical activation is an alternative for controlling pore size 

distribution. However, only a few of the studies with chemical activation are based on 

ACs in the fiber form. For the chemical activation of precursors with a specific shape 

such as granular or fiber, impregnation of the activating reagent into the precursor is very 

important (Marsh and Reinoso, 2006). This step is usually carried out by dissolving the 

reagent in water, mixing with the precursor, and keeping the mixture at approximately 85 

˚C (Marsh and Reinoso, 2006). This process helps the reagent reach the interior regions 

of the precursor. After the impregnation step, the precursor is carbonized under nitrogen 

flow, during which the activation occurs. Following this step, samples are typically 

washed in order to remove any remaining chemicals. 

Agullo et al. (2004) studied the preparation of pitch-based ACFs using chemical 

activation. They compared the effect of physical activation vs. chemical activation on 
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milled carbon fibers (i.e., carbon fibers that were cut into short pieces) made from coal-

tar pitch, using NaOH and KOH as chemical activating agents. Then, for comparison they 

used CO2 as a physical activating agent. Agullo et al. (2004) concluded that chemically 

ACFs gave higher yields with narrower pore distributions (using KOH as activating 

agent) or similar pores with higher pore volume (using NaOH as activating agent). Also, 

they discovered that the surface of the fibers activated using chemical agents was 

smoother and less damaged.  

In 2004, Kim et al. compared the pore structure of mesophase and isotropic pitch-

based carbon fibers that were subjected to chemical activation using KOH as the 

activating agent. Similar to Agullo et al. (2004), they also milled the fibers prior to the 

impregnation process with KOH. They investigated the effect of increasing 

KOH/precursor ratio on pore development. Results indicated that with increasing ratio, 

the size of the pores of isotropic ACFs increased gradually, whereas the size of the pores 

of mesophase ACFs increased in a stepwise manner. Also, although isotropic ACFs had 

higher specific surface areas and nitrogen uptake, Kim et al. found that mesophase ACFs 

had narrower pore size distributions.  

Lozano-Castello et al. (2006) conducted a similar study, in which they 

investigated pore formation in both pitch-based isotropic carbon fibers and anisotropic 

PAN fibers during chemical activation. However, unlike the above-mentioned studies, 

they did not used milled fibers. Instead, they carried out single-fiber tests using 

microbeam small-angle X-ray scattering. Using this method, they investigated pore 

formation for a single fiber diameter. They found that activating agents reached the center 
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of the anisotropic fibers, as well as the isotropic fibers, and caused the formation of 

porosity. They, also concluded that porosity was developed more homogenously along 

the fiber diameter of the isotropic fibers via chemical (Lozano-Castello et al., 2006) vs. 

physical (with CO2) activation (Lozano-Castello et al., 2002).    

S. J. Park et al. (2003) prepared ACFs using a combination of physical and 

chemical activation. They used nitric acid to improve surface functionality of the ACFs 

initially prepared by steam (physical) activation. Although the specific surface area and 

pore volume of the steam-activated carbon fibers dropped upon nitric acid treatment, they 

observed that carboxyl groups were created on pore surface. Therefore, their results show 

that the chemical nature of the pore surface can be modified via chemical activation. 

In summary, these studies showed that chemical activation can create more 

homogenous and narrower porosity than physical activation, and can also be used for 

activating anisotropic pitches. Therefore, it might be a good alternative for future studies 

that would investigate the porosity formation of fibers produced from precursors similar 

to the ones used in this dissertation.  

 

1.5.3 The Effect of Precursor Type on the Preparation Process and Final Properties 

of Pitch-Based ACFs 

Compared to conventional powder and granular ACs, activated carbon in the fiber 

form exhibits higher adsorption/desorption rates and capacities, which makes it attractive 

for adsorption applications (Vilaplana-Ortego et al., 2008). However, the spinnability 

requirement of ACFs limits the precursors that can be used and also increases production 
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costs. Therefore, there is still a search for better precursors and preparation methods 

(Suzuki, 1994; Vilaplana-Ortego et al., 2003 and 2007; Park et al., 2003). 

Among the different materials that have been evaluated as precursors for ACFs 

(such as rayon (Huidobro et al., 2001), nomex (Blanco-Lopez, 2000), phenolic resin 

(Worasuwannarak et al., 2003), and pitches (Alcaniz-Monge et al., 1994; Uraki et al., 

2001; Derbyshire et al., 2001; Alcaniz-Monge et al., 1997), pitch appears to be the most 

attractive because of its low cost and high carbonization yield (Alcaniz-Monge et al., 

1994 and 1997).  

In 1992, Ehrburger et al. investigated ACs that were prepared from three different 

precursors: mesophase microbeads with a 10-µm mean particle diameter, pre-oxidized 

polyacrylonitrile (PAN) fibers with a mean fiber diameter of 12 µm, and phenolic (PH) 

fibers with a mean fiber diameter of 14 µm. The precursors were investigated by optical 

microscopy prior to the carbonization and activation processes. While the mesophase 

microbeads were found to be highly anisotropic, the PAN fibers had a slightly oriented 

texture and the PH fibers were isotropic. Precursors were activated using CO2 as an 

activating gas. Ehrburger et al. (1992) calculated the narrow micropore volumes of 

activated samples from their CO2 adsorption isotherms measured at 0 ˚C and found that 

activated PH fibers created the highest micropore volume (i.e., 0.49 cm
3
/g at 54% burn-

off), while PAN fibers created 0.18 cm
3
/g at 51% burn-off, and  activated mesophase 

microbeads created 0.07 cm
3
/g at 47% burn-off. Although all precursors were from 

different origins, these results are an indication of the negative effect of anisotropy on 

physical (CO2) activation and pore formation. Ehrburger et al. (1992) not only 
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investigated micropore volume, but they also investigated the change in active surface 

area with increasing extent of activation. The ratio of the active surface area to the 

micropore volume was essentially the same for all three activated samples, and was very 

low (just a few % of the total area). Because active surface area (ASA) is directly related 

to the edge planes, where most of the atom vacancies, dislocations, and stacking faults 

are present, and because this ratio of ASA/micropore volume was very low and was the 

same for all three precursors, Ehrburger et al. (1992) concluded that the micropore walls 

are mainly made up of basal planes (i.e., lateral surfaces of defective micrographene 

layers). They also showed that isotropic (i.e., PH) fibers were the best among the three 

precursors in terms of high micropore volume. 

In 2000, Daguerre et al. prepared ACs from toluene-insoluble fractions of heat-

treated A-240 petroleum pitch, using carbon dioxide as an activating agent. The precursor 

preparation part of their work was conceptually similar to our work at Clemson. In both 

studies, precursors were prepared by fractionation of petroleum pitch using toluene as a 

solvent, although in our study the solvent was employed at dense-gas conditions. Because 

solvent density and temperature can be controlled in addition to solvent/pitch ratio in 

dense-gas extraction, we had better control over the fractionation process in this study. 

Also, Daguerre et al. (2000) analyzed their pitch fractions only for toluene- and 

quinoline-soluble contents, whereas in our study detailed mol wt distributions, and 

softening points of the fractions were determined. Furthermore, they prepared their ACs 

in powder form instead of fiber form.  Because the motivation of their study was the use 
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of ACs for refrigerating machines, they used high-pressure carbon dioxide for the 

adsorption analysis and determined pore structure information from that data.  

In their experiments, Daguerre et al. removed the toluene solubles (TS) via 

mixed-solvent extraction (Riggs and Diefendorf, 1980), using two different solvent/pitch 

ratios to obtain precursor precipitates consisting primarily of toluene insolubles. In 

particular, they obtained two precursors: one with 12% TS and the other with 5% TS. It 

should also be noted that both precursors had a ~20% quinoline-insoluble fraction, which 

was identified as having mesophase domains by polarized-light microscopy (Brooks and 

Taylor, 1968). The 5% TS showed a higher activation rate. Daguerre et al. concluded that 

this was the result of smaller mean particle diameters of the 5% TS precursor (<20µm vs. 

<40µm), induced by the extraction process, and the possible differences in reactivities 

induced by the TS. When the ACs from the two precursors at similar burn-off levels were 

compared, the fibers produced using the precursor with lower TS content had 

significantly higher micropore volumes without a significant increase in mean pore size. 

Although Daguerre et al. (2000) did not determine any mol wt information for the 

two precursors, based on extraction conditions (solvent/pitch ratio) and TS content one 

would expect the 5% TS precursor to have a higher average mol wt than the 12% TS. 

Based on this assumption, their results indicate that the higher mol wt precursor created 

higher micropore volume — which is completely the opposite of our findings in this 

dissertation (see Chapter 3 Results and Discussion).  

In their pioneering work in this area, Derbyshire et al. (2001) showed that the 

precursor used to prepare the ACFs has an important effect on both the preparation 
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process and the final properties of the ACFs. The group investigated carbon fibers from 

isotropic non-conventional precursors, such as coal-tar pitch, coal solutions (i.e., solvent 

extracts of a bituminous and sub-bituminous coal), shale oil, and petroleum pitch. They 

characterized precursors for elemental analysis, mol wt distribution, and aromaticity, and 

studied the effect of precursor composition on the stabilization process, carbonization 

yield, activation rate, and final-fiber properties. To render the precursors more suitable 

for the production of ACFs, they removed the quinoline insolubles (QI) by filtration if the 

precursor had more than 0.5% QI by weight; they also carried out distillation, if needed, 

to increase the softening point of precursors to the range of 230-260 ˚C, temperatures that 

are suitable for melt-spinning fibers.  

Derbyshire et al. (2001) used gel permeation chromatography (GPC) to analyze 

the mol wt distribution of the precursors. Therefore, only the THF-soluble portion of each 

precursor could be analyzed. Since they did not have any calibration standards for the 

analysis of their precursors, they could not obtain absolute mol wt distributions. They 

observed that all the precursors that were analyzed for mol wt distribution had a common 

GPC peak, and this peak was taken as reference. Using this reference peak, they defined 

peaks before this peak as high mol wt and after this peak as low mol wt, and made a 

relative comparison between the mol wt of precursors. They only presented mol wt 

results vs. tensile strength, and not vs. pore volume. 

Derbyshire et al. (2001) found that with increasing carbon content of the 

precursor, both the oxidation weight gain and the carbonization yield increased. The 

activation rate was also found to increase with increasing heteroatom (i.e., H, O, N and S) 
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content, especially O content of the precursor. The activation rate was also found to be 

higher for precursors of higher aliphatic content. They didn’t reach any significant 

conclusions on porosity, as all samples had different burn-off levels, and some of the 

samples were not large enough to obtain reliable surface analysis data. Among the 

analyzed samples, ACFs prepared from coal-tar pitch, with a 57% burn-off and a high 

hetero-atom content, were found to have the highest micropore volume.  

The work of Derbyshire et al. (2001) is important because it compares ACFs 

produced from isotropic precursors from different origins with different compositions. 

Although they provided information about the carbon content, aromaticity, and 

heteroatom content of the precursors, and the effect of these precursor properties on 

processing conditions and final properties of the ACFs, their results did not give 

sufficient information about the pore structure of the ACFs, which is one of the key 

properties of the ACFs. In our study, unlike Derbyshire et al. (2001), we prepared all 

precursors from the same mother pitch M-50 with a known molecular composition 

(Burgess and Thies, 2010, 2011) and focused on the absolute mol wt distributions of the 

precursors and the porosity of the final ACFs. Also, CO2 was used as an activating agent 

in our study, while Derbyshire et al. (2001) used steam. As mentioned before in this 

chapter, steam and CO2 have different activation mechanisms, and this difference may 

result in differences in the effect of precursor composition on final properties.  

Edie and coworkers (Basova et al., 2004) compared two isotropic petroleum 

pitches, one from Chungham National University, Korea, and one from Conoco-Philips 

Inc., Oklahoma. They prepared ACFs from both precursors and from their mixtures with 
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silver nitrate. They used matrix-assisted laser desorption/ionization time of flight 

(MALDI-TOF) and gas chromatography (GC) mass spectroscopy (MS) to determine the 

mol wt distributions of the precursors, and the composition of the lower mol wt (<300 

Da) species, respectively. MALDI showed that the Korean pitch had a broad mol wt 

distribution (~200-1250 Da), with a maximum at ~400 Da, while Conoco pitch had a 

polymer-like oligomeric distribution (~200-1150 Da), with maxima at 250, 500, 750, and 

1000 Da for each oligomeric group. GC-MS showed that the Korean pitch had a higher 

concentration of disc-shaped polycyclic aromatic hydrocarbons (PAH), while the Conoco 

pitch had more (linear) open PAH structures.  

Their study (Basova et al., 2004) showed that the Korean pitch fibers could be 

activated significantly faster than the Conoco pitch fibers. Also silver particles catalyzed 

the activation process for both precursors, increasing both the activation rate and the 

mesopore ratio. Even at similar burn-off levels, silver-containing fibers had a 

significantly higher mesopore ratio. The effect of silver particles on the pore structure 

was less pronounced for the Conoco vs. the Korean fibers. This shows that precursor 

composition plays an important role in determining the final pore structure of the ACFs 

prepared from different pitches. 

Vilaplana-Ortego et al. (2008) conducted a detailed study of the effect of 

precursor on the pore structure of ACFs, using CO2 as the activating gas. They compared 

four isotropic coal-tar pitches to four isotropic petroleum pitches. Each precursor was 

subjected to elemental analysis, and the toluene insolubles, quinoline insolubles, and 

softening point of each precursor were measured. The main differences between coal-tar 
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and petroleum pitches used in their study were that the petroleum pitches had higher H/C 

ratios and slightly higher C content (2-3%), while coal-tar pitches had significant S + O 

content and higher toluene-insoluble content.  

As a result of reactivity experiments conducted with a microbalance, Vilaplana-

Ortego et al. (2008) observed that the CO2 activation rate of coal-tar pitch-based fibers 

was higher. They claimed that the difference in the reactivity could have been caused by 

the carbon microstructure that exists after carbonization.  The carbonization yield of 

petroleum-pitch-based carbon fibers was 60-70%, while that of coal-tar-based carbon 

fibers was around 85%. According to Vilaplana-Ortego et al. (2008), this difference 

could have been caused by the higher content of alkyl groups in the petroleum pitch 

carbon fibers. These alkyl groups would likely generate more radicals during the 

carbonization process and result in subsequent condensation reactions. As a result, better-

packed graphene layers could form (Lewis, 1982) during carbonization, causing less 

reactivity during the activation process. Although Vilaplana-Ortego et al. did not mention 

it in their discussions, the higher activation rate of coal-tar pitches could be attributable to 

their higher hetero-atom content of ~8% vs. the ~5% in petroleum pitches. 

Vilaplana-Ortego (2008) did not focus on the differences among ACFs from the 

same type of pitch (i.e., petroleum pitch or coal-tar pitch), but the differences between 

petroleum and coal-tar pitch. They observed some differences in activation rates as 

mentioned above. Also, they concluded that ACFs prepared from both precursor types 

exhibited comparable micropore volumes based on total weight loss (carbonization + 

activation), whereas petroleum pitches, which had a higher H/C ratio, developed a higher 
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proportion of narrow microporosity. In our studies, on the other hand, we have shown 

that ACFs with similar direct activation (carbonization + activation) weight losses not 

only have differences in their narrow micropore volume, but also in their total micropore 

volume. Details of these studies are given in Chapter 3, Results and Discussion. 

 

1.6 Synopsis and Dissertation Outline  

Although researchers have investigated the effect of the precursor on the final 

properties of ACs, or ACFs, the precursors used and compared in those studies were from 

different origins, for example coal-tar pitch vs. petroleum pitch, and were not well 

characterized. In particular, detailed information about the molecular composition and 

anisotropy of those precursors was not available.  

The objective of this study was to compare ACFs prepared from precursors with a 

well-defined composition coming from the same origin (i.e., mother pitch), in order to 

investigate the effect of molecular composition and molecular order on pore structure 

(i.e., pore size distribution).  

Therefore, seven selected fractions of a commercially produced isotropic 

petroleum pitch (i.e., Marathon M-50), each of relatively well-defined composition and 

mol wt distribution, were prepared and used for the production of ACFs. Four of these 

fractions were chosen as fully isotropic, and three of them were chosen with different 

levels of mesophase; thus, the effects of both molecular composition and molecular order 

(i.e., mesophase content) could be isolated from each other.  
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In Chapter 2, the procedure for the preparation of the precursors is explained. Five 

precursors were prepared using single-column dense-gas extraction (DGE), while other 

two, middle-cut, dimer precursors were prepared via the combination of single-column 

DGE with either low-pressure stripping or vacuum evaporation. Next, the procedures for 

the conversion of these precursors into ACFs via spinning, stabilization, carbonization 

and direct activation are described. Finally, the analytical techniques used to determine 

the properties of the precursors and the fibers, such as molecular weight distribution, 

softening point, molecular order, and pore size distribution, are given.    

In Chapter 3, the properties of all precursors are presented. Their softening points 

and molecular weight distributions are compared. Also, polarized-light photomicrographs 

are presented, and the mesophase area percentage of the mesophase-containing 

precursors is given. The weight gains of the fibers during oxidation, and their weight loss 

during carbonization and direct-activation, are compared, and the effects of molecular 

composition and molecular order on the weight change of the fibers are discussed. 

Nitrogen isotherms at -196 ˚C and pore size distributions (PSD) of the direct-activated 

fibers interpreted from these isotherms using density functional theory assuming slit-

shaped pores are compared. The change in PSD with mol wt distribution and presence of 

mesophase is discussed. Finally, the change in burn-off and PSD with activation time is 

discussed. 

In Chapter 4, conclusions from this study are given, and recommendations for 

future work are made. 
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2 EXPERIMENTAL 

In this study, an isotropic petroleum pitch was fractionated in order to obtain 

seven precursors with different compositions. These fractions were analyzed for Mettler 

softening point (MSP), optical anisotropy, and mol wt distribution. Activated carbon 

fibers (ACF) were prepared from these seven different precursors. During preparation 

(oxidation, carbonization, and direct activation) weight changes were recorded, and 

nitrogen adsorption isotherms of ACFs were obtained for porosity analysis. 

In our early studies in Clemson University in collaboration with Oak Ridge 

National Laboratory (ORNL), we worked on Pd-containing, pitch-based ACFs. The goal 

of that work was to investigate and improve the hydrogen-storage capabilities of ACFs 

by both controlling the pore size distribution and by the addition of Pd metal complexes 

to the precursor prior to the spinning process. It was observed that Pd particles were well-

distributed in green fibers; however, they traveled and agglomerated during the high-

temperature processes of carbonization and activation. In order to minimize this sintering 

problem, we decided to minimize the exposure temperature and time. Therefore, we 

started to direct-activate (i.e., simultaneous carbonization and activation) the stabilized 

fibers, and also decreased the activation temperature from 900˚C down to 840˚C. After 

observing that we obtained ACFs with similar porosity as in the conventional two-step 

carbonization and activation process at 900 ˚C, we adopted the direct-activation method 

at 840 ˚C for the preparation of all ACFs used in this study.  
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2.1 Precursor Preparation  

2.1.1 Materials 

In order to produce ACFs, isotropic petroleum pitch with a reported softening 

point of 104–124 °C (the MSP was measured to be 116 °C in our labs) was obtained from 

Marathon Petroleum Company LLC (CAS 68187-58-6). The pitch, known as M-50, was 

received in pellet form and used without further modification. HPLC-grade toluene (CAS 

108-88-3) with a stated purity of 99.9% was obtained from Fisher Scientific and used for 

the DGE fractionation of M-50 pitch. For MALDI analysis, 7,7,8,8- 

tetracyanoquinodimethane (TCNQ, CAS 1518-16-7) was obtained from TCI America. 

TCNQ was used as a matrix for MALDI samples. For preparation of Pd-containing 

fibers, Pd(acac)2 (Palladium(II) 2,4 – pentanedionate, Pd 34.7%) (CAS 14024-61-4) was 

obtained from Alfa Aesar. Coleman Grade carbon dioxide gas (UN1013, 114041) for 

activation experiments and UHP Helium gas for free space measurement during porosity 

analysis was supplied by National Welders. Nitrogen was also supplied by National 

Welders as liquid nitrogen (99.99% purity) in a central tank, where it was distributed to 

the labs. Nitrogen gas was used for both carbonization experiments and adsorption 

isotherm measurements. 

 

2.1.2 Precursor Production via Single-Column DGE 

Several petroleum-pitch precursors, each with a different molecular weight 

distribution and composition, were used for the preparation of ACF. These precursors 

were produced from the fractionation of M-50 pitch by dense-gas/supercritical extraction 
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(DGE). For production of one of the precursors (Dimer-2), further fractionation was 

carried out using a vacuum oven, as explained later in this chapter. A brief description of 

the DGE process is given here; a detailed description of the apparatus and procedure is 

given elsewhere (Edwards and Thies, 2006, Cervo and Thies, 2010).  

For production of the first five precursors, referred to as 750psig, 760psig, 

780psig, 800psig, and 830psig (the extraction pressures were used to name the 

precursors), a single packed column was used as shown in Fig. 2.1. The extraction 

apparatus consists of a stainless steel column with an i.d. of 1.8 cm and a height of 2.0 m, 

with random stainless steel packing (Cannon Instrument Co., part no. 3947-A20). The 

packed height of the column is 1.5 m. Pitch is fed to the top of the column in molten form 

(at ~300 °C) at a flow rate of ~120 g/h via a single-screw extruder (Alex James and 

Assoc., model no. AJA 58) and a metering pump (Zenith Pumps, Model HPB, 0.160 

ml/rev). An HPLC pump is used to deliver the extraction solvent, in this case toluene (Pc 

= 41.1 bar, Tc = 318.6 °C), to the bottom of the column at ~600 g/h. Pressurized toluene 

is preheated before being fed to the column.  
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Fig. 2.1  Single-column, dense-gas/supercritical extraction (DGE) apparatus for 

continuous fractionation of M-50 petroleum pitch. 750psig, 760psig, 

780psig, 800psig and 830psig precursors were produced using this setup. 

Typical normalized MALDI mass spectra for the feed pitch and outlet 

products are also shown. (Reprinted with permission from Cervo, 2010a. 

Copyright 2010 Dr. Eduardo Cervo.) 

 

During the process, the dense-gas toluene flows upward through the packing and 

the molten pitch downwards due to density differences. During contact, the lower 

molecular weight (mol wt) species are stripped from the pitch into the solvent-rich phase 

according to the extraction temperature and pressure, while some of the solvent is 

absorbed into the pitch-rich phase. The lower mol wt oligomers concentrated in the 

solvent-rich phase (monomer, dimer, and trimer) are taken off as top product, while the 

higher mol wt oligomers (dimer, trimer, tetramer and heavier) that are not extracted are 
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taken off as pitch-rich bottom product. The reflux finger, that is, the bullet-shaped object 

at the top of the column shown in Fig. 2.1, is used to improve product selectivity by 

being kept at a higher temperature than the rest of the column.   

The column temperature was kept at 350 °C throughout the entire column, and the 

column pressure was kept at the desired pressure for each precursor, i.e., 750, 760, 780, 

800, and 830 psig, respectively. The solvent-to-pitch (S/P) ratio was kept constant at 

5.1:1, and the bottom products were collected as the desired precursors. For collection, 

glass jars immersed in an ice bath were used, and 100-150 g of total product were 

collected.  Table 2.1 summarizes the extraction conditions that were used. 

Collected bottom products were dried in order to remove the solvent. First, 

samples were dried under N2 at 150 °C and 2 mbar for 30 min in a vacuum oven (Fisher 

Scientific, model no. 285A). This step evaporated 98 wt% of the toluene.  However, in 

order to spin fibers the remaining solvent had to be removed, or it would volatilize during 

the spinning process, causing fiber breakage. Thus, a second drying of the samples was 

carried out at 20-30 °C above their approximate softening points (see below) under N2 at 

267 mbar (which is the min pressure attainable by the oven) for 30 min using a Vacuum 

Atmospheres Model VTW Vacuum Oven connected to a Model Dri-Lab-08/85 nitrogen 

glove box. (Typical glove box conditions were 0.5 ppm O2 and 1 ppm water content.) 

Because some of the samples had softening points as high as 340   C and had to be dried 

at 360-370  C, the drying time was limited to 30 min in order to prevent any probable 

reaction among precursor molecules. 
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Table 2.1  Summary of the production conditions for all seven precursors. 

 

 

Approximate softening points were measured using a temperature-monitored hot 

plate (i.e., Fisher-Johns Melting Point Apparatus, serial no. 1833) in order to establish the 

second drying temperature. This method was preferred because it was quicker, and easier 

to use than MSP apparatus, and only approximate softening point values were required at 

this point. 

 

2.1.3 Production of Dimer-1: Two-Column Extraction:  

As discussed above, the first five precursors were fractionated isothermally in a 

single-stage, isothermal DGE setup. On the other hand, the precursors Dimer-1 and 

Dimer-2 were generated using a different procedure. Dimer-1 was obtained using two 

packed columns operating in series (Fig. 2.2), with the first column (Col-1) being  

Precursor Column 1 (DGE/SCE Column) Column 2 (High-temperature Stripper)

Name Temperature (˚C) Pressure (psig) S/P Stream Temperature (˚C) Pressure (psig) S/P Stream

750 psig 350 750 5.1/1 Bottom - - - -

760 psig 350 760 5.1/1 Bottom - - - -

780 psig 350 780 5.1/1 Bottom - - - -

800 psig 350 800 5.1/1 Bottom - - - -

830 psig 350 830 5.1/1 Bottom - - - -

Dimer-1 ΔT (330-350-380) 1000 5.1/1 Top 380 22 13.6/1 Bottom

Dimer-2 ΔT (350-380-400) 1000 12.1/1 Top Vacuum Oven, 30 min 350˚C, 0.03 psig - -
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Fig. 2.2 Two-column solvent extraction apparatus for continuous fractionation of 

M-50 petroleum pitch, with Col-1 operated at dense-gas/supercritical 

extraction (DGE) conditions and Col-2 as a low-pressure stripper. Dimer-1 

precursor was produced using this setup. Normalized MALDI mass 

spectra shown in the figure are representative of the actual spectra. 

(Reprinted with permission from Cervo, 2010a. Copyright 2010 Dr. 

Eduardo Cervo.) 
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operated under DGE conditions in order to extract a monomer-dimer mixture, and the 

second column (Col-2) at atmospheric pressure as a high-temperature stripper to remove 

monomeric species. In particular, Col-1 was operated at 1000 psig and a S/P ratio of 5.1/1 

under a positive temperature gradient (ΔT), with the bottom of the column at 330 ˚C, the 

middle at 350 ˚C, and the top at 380 ˚C. Col-2 was operated at 380 ˚C, at atmospheric 

pressure, and a S/P ratio of 13.6/1.  

As shown in the MALDI cartoon for Col-1 in Fig. 2.2, the top product stream 

from Col-1 is composed of monomer and dimer species. This stream is then reduced to 

near atmospheric pressure and preheated to 380 ˚C prior to being fed to Col-2. In Col-2, 

the monomer species are stripped out and a bottom product rich in dimer species is 

obtained. The stripping agent, hot gaseous toluene, is fed to the bottom of Col-2 at a rate 

of 544 g/hr. Dimer-1, which is rich in dimer species, was collected as the bottom product 

of Col-2 at a rate of ~10 g/hr for 5 hr in order to obtain a total of ~50 g of product.  It was 

collected in a glass jar immersed in ice bath, and dried using the same procedure as 

described above for the first five precursors.  

 

2.1.4 Production of Dimer-2: Single-Column DGE and Vacuum Oven Separation  

Dimer-2 was produced by using single-column DGE to obtain a monomer/dimer 

top product, as was done with Dimer-1. The S/P ratio was 12.1/1, and a different 

temperature profile was also used, namely a positive temperature gradient with the 

bottom of the column at 350 ˚C, the middle at 380 ˚C, and the top at 400 ˚C. The dimer-
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rich Dimer-2 product was then produced by evaporating the monomer species in the Col-

1 top product in a vacuum oven, as is described below   

The monomer-dimer mixture from top of Col-1 was first dried in a shallow 

aluminum tray (9”x15”) under N2 at 150 °C and 2 mbar for 30 min in a vacuum oven 

(Fisher Scientific, model no. 285A) in order to remove most of the toluene. Because the 

resultant product was very sticky, a small amount of liquid nitrogen was then poured into 

the tray in order to solidify the pitch. While the product was still solid and brittle, it was 

broken into small pieces using a spatula; the pieces were then divided among several 

aluminum trays into ~30 g increments. Dispensing the pieces into thin layers in this way 

was important for obtaining a thin film of molten pitch, therefore enhancing the diffusion 

of monomer species from the surface of the film. 

 Next, each tray was heated to 350 ˚C under N2 at ~2 mbar for 30 min using a 

Vacuum Atmospheres model VTW vacuum oven connected to a model Dri-Lab-08/85 

nitrogen glove box. Here volatilization of any remaining residual toluene and of the 

monomer fraction of the pitch occurred. The yield was around 10% and the resultant 

product is what we refer to herein as Dimer-2.  

 

2.2 Conversion of Precursors into Activated Carbon Fibers 

 To make ACFs, the precursors described above were first spun into “green” 

fibers. Then these as-spun fibers were stabilized (oxidized) in an air convection oven. 

Finally, the oxidized fibers were directly activated in order to obtain the desired ACFs. A 

detailed procedure of these steps is given below. 
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2.2.1 Fiber Spinning 

For a given run, one of the precursors shown in Table 2.1 was ground with mortar 

and pestle; the resultant powder (~40-60 g) was then loaded into the batch-spinning 

cartridge shown in Fig. 2.3. Before loading the precursor, the spinneret along with a mesh 

filter (Alex and James Inc., part no. RBD3040148.51) that fit perfectly to the spinneret 

was installed. Anti-seize lubricant (Permatex, item no. 80078) was applied to the 

spinneret bolts before attaching to the cartridge.  

Next, a graphite seal was prepared using graphite tape (Teadit, part no. 2550). 

Approximately a 1-m length of graphite tape was rolled around the piston tightly, and 

with the tape wrapped around the piston the piston was placed into the cartridge. As 

shown in Fig. 2.3, the rolled tape fits into space between the piston and cartridge. The 

pressure cap was placed into its cavity, and the 4 bolts that attach the pressure cap to the 

cartridge were tightened in the sequence shown in Fig 2.4. The purpose of this process 

was to press the graphite tape firmly in place and thus create the needed seal.   

Following this process, the pressure cap was removed, and the nitrogen purge 

extender and temperature and pressure probes were screwed into place, and the piston 

was carefully removed in order to load the precursor inside the cartridge. After loading 

the precursor powder, first the piston and then the pressure cap were replaced, and finally 

the bolts attaching the pressure cap to the cartridge were screwed in and re-tightened in 

the appropriate order. Anti-seize lubricant (Permatex, item no. 80078) was applied to the 

bolts before installation.  
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Fig. 2.3 Cross-section of the spinning cartridge used for melt-spinning the 

precursors shown in Table 2.1. 
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Fig. 2.4 Top view of the spinning cartridge. The arrows show the tightening 

sequence of the bolts (1,3,2,4,1,3,2,4,…..) necessary to pack the graphite 

tape  evenly for a good seal before loading the precursor. 

 

 

The loaded cartridge was kept under nitrogen in an antechamber attached to the 

nitrogen glove box (Vacuum Atmosphere Inc., model no. Dri-Lab-08/85) overnight at 

room temperature in order to minimize the oxygen level in the cartridge. The gauge 

attached to the antechamber does not provide a precise pressure reading; however, based 

on the vacuum level reached by the vacuum oven connected to the same glove box and 

the same vacuum pump, we can assume it is around 2 mbar. Before leaving the cartridge 

under vacuum overnight, the antechamber was refilled with nitrogen to atmospheric 

pressure and then evacuated again. This procedure was repeated 2-3 times in order to 

minimize any air left inside the antechamber (This is the general procedure used for 
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transferring any sample or tool into the glove box.) Then the cartridge was attached to the 

batch-spinning instrument (Alex&James Inc.) (Fig. 2.5), and final preparations were 

made for fiber spinning, as described below.  

First the spinning cartridge was placed inside the stationary half of the heating 

jacket, and the moving half of the jacket was then rotated into place around the cartridge. 

Using the attached clamps, the halves of the jacket were tightened around the cartridge. 

Next the temperature and pressure transducers were connected to their respective probes, 

and the nitrogen line was connected to the extender (Fig. 2.3). The nitrogen flow was 

then started at a regulator outlet pressure of 2 psig, and the jacket temperature was set to 

the desired temperature (i.e., MSP + 25 ˚C) for a given precursor. (Prior to spinning, the 

MSP of the precursor was measured; details are given in Section 2.4.2.)  

When the melt temperature (as read from the temperature probe embedded inside 

the cartridge; see Fig. 2.3) reached 2-3 ˚C below the set point and the molten pitch started 

to ooze out of the spinneret, the drive motor was engaged, and the piston was driven by 

the motor at a constant ram speed of 2 cm
3
/min by setting the ram direction to “down” 

using the switch below the ram speed gauge and switch. Once the cartridge pressure 

started to build up and molten pitch started to flow out of the spinneret, the winder was 

set to 400 m/min using the roll speed switch, the filaments were started around the winder 

with the hands, and fiber collection began. Please note that the winder installed on the 

instrument (3-15/16 in. diameter) was smaller than the original winder (8-7/8 in. 

diameter), so the actual winder speed was 177 m/min. 
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Fig. 2.5 Batch-spinning apparatus. Here the apparatus is shown after the spinning 

cartridge has been placed under the motor and the heating jackets are 

enclosed around the cartridge. 
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Based on visual observation, the temperature for the spinning process was adjusted to 

obtain minimal fiber breakage and the optimum amount of fibers. All fibers were spun at 

the same ram and winder speed in order to obtain similar-sized fibers (25-30 µm). After 

the fibers were collected, they were cut from the bottom part of the winder with a brass 

spatula, carefully removed, and placed into a tie box in bunches (Yes, tie boxes were used 

as they were the most suitable boxes for keeping the fibers.) The amount of fibers 

collected was 2-10 g for different precursors.  

 

2.2.2 Stabilization 

Next, the as-spun fibers were stabilized to make them infusible for the subsequent 

high-temperature heat treatments, so that they would not lose their shape or stick 

together. First, 2-3 g of fibers were cut into 1-1.5 in.-long pieces and then spread out onto 

the metal grill in the air convection oven (see Fig. 2.6) to allow good air circulation 

among the fibers. For spreading out the fibers, the bunch was cut and placed onto the 

metal grill using tweezers to spread them out. If more fibers needed to be oxidized at the 

same time, an additional metal grill or metal screen was added to the bottom part of the 

oven. The sides of the metal screen was bent to form 4 in.-long legs so as not to block air 

flow coming from the bottom part of the oven. 

The fibers were then gradually heated up to a final temperature of 264 °C in a 

Fisher Scientific air convection oven (model no. 825F, Fig. 2.6) via a 6-day temperature 

programming schedule (see Fig. 2.7). Because the MSPs of some of the precursors were 

as low as 202 ˚C, the oxidation process had to start at 150 ˚C, at which the oxidation 



64 

 

reactions are very slow, and the temperature was gradually increased. Therefore, the 

oxidation process took 6 days. Throughout the stabilization process, sample weights were 

recorded in order to monitor the weight change that occurred for each temperature level 

of heat treatment. For this purpose, a 4 in. x 5 in. aluminum sheet (simply made by 

folding aluminum foil into 3-4 layers) was used. In particular, approximately 0.4-0.5 g of 

fibers were spread onto this ~2 g aluminum sheet, and the weight of the sheet with the 

fibers on it was measured at the end of each temperature level shown in Fig. 2.7 using an 

Ohaus Corporation AR2140 lab scale. 

 

 

 

Fig. 2.6 Air convection oven for oxidative stabilization of as-spun fibers.  
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Fig. 2.7 Temperature-programming schedule for the oxidative stabilization of as-

spun fibers. The same schedule was used for all seven precursors. 

 

2.2.3. Carbonization 

Following the stabilization process, 2 sets of fibers (70-75 mg each) from each of 

the seven precursors shown in Table 2.1 were carbonized under a nitrogen flow of 1 

L/min in a custom-made Lindberg tubular furnace by General Signal (project no.  

9305198); the furnace has an  inner diameter of 2.5 in. and a length of 61 in. (Fig. 2.8). 

The detailed carbonization procedure is given below.  

The fiber samples were placed in a quartz boat, or sample holder (Sigma-Aldrich, 

model no. Z406627, see Fig. 2.9) which is designed for use at high temperatures and can 

handle sudden temperature changes. As shown in Fig. 2.8, there are three heating zones 
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(Zone 1, Zone 2, and Zone 3), and they are controlled by temperature controllers T1, T2, 

and T3, respectively. The temperature in Zone 2 is also measured by using an Omega K-

type thermocouple (Fig. 2.9). The temperature is set to 875 ˚C in Zone 2 in order to have 

the 840 ˚C gas temperature as measured by the thermocouple, and is set to 600 ˚C in 

Zone 1 and Zone 3. Cooling water run through copper tubing wrapped around the ends of 

the ceramic tube of the tubular furnace was used to keep those (i.e., at points A and B) 

ends at temperatures below 100 ˚C.  

 

 

 

 

Fig. 2.8 Tubular furnace for carbonization and activation experiments. The furnace 

can be operated under N2 or CO2 flow. The ceramic rod is used to push the 

quartz boat (with samples) into Zone 2 inside the furnace. 
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Fig. 2.9 Quartz sample holder (boat) used for high-temperature heat treatments 

(i.e., carbonization and activation). Fibers are placed at the end of the boat 

as shown. 

 

 

Prior to carbonization, the boat with sample is first placed inside the furnace, at 

the “B” end of the tube, and is kept there under 1 L/min nitrogen flow for 1 hr in order to 

remove any air (oxygen) left inside the furnace during sample loading by removing the 

cover. While placing the boat inside the furnace, the boat is attached to a metal hook 

connected to a thin long ceramic rod, which passes through the small opening in the 

cover (Fig. 2.10).  Using the rod, the boat along with the fibers is pushed to the center of 

the furnace (Zone 2).  

After 10 min of exposure at 840 ˚C (where carbonization occurs), the fiber 

samples are taken back to the “B” end of the furnace for cooling down to below 100 ˚C. 

After 15-20 min of cooling, the fibers are removed. The weights of the fibers were 

measured both before and after the carbonization process using an Ohaus Corporation 

analytical lab scale (model no. AR2140). Using these weight measurements of two sets of 

fibers, an average carbonization % weight loss was calculated for each precursor.  
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Fig. 2.10 B-edge of the tubular furnace. The boat and samples are placed at the “B” 

end of the tube during the air-purge process. The figure shows how the 

quartz boat is connected to the ceramic rod via a metal hook. 

 

 

 

 

2.2.4 Direct-Activation 

The conventional method for activating carbon fibers is to activate them after 

carbonization. However, in this work the carbonization step was skipped and the 

stabilized fibers were directly activated; this process is referred to as “direct activation”. 

The carbonization process described in the previous section was carried out in order to 

(1) investigate the effect of precursor composition on the carbonization behavior of the 

fibers separately from direct activation and (2) determine the portion of the fiber weight 

loss attributable to carbonization vs. activation.  
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For our direct-activation work, the same Lindberg Furnace was used as for 

carbonization. As with carbonization, the fibers were first kept at the “B” end of the tube 

for 1 hr to remove any air (oxygen) left in the tube during sample loading. Then a 

ceramic rod was used to push the boat and its fiber contents into the high-temperature 

zone (Zone 2) of the furnace, where the temperature was kept at 840 ˚C. Instead of 

nitrogen, carbon dioxide at a flow rate of 0.5 L/min was used for the direct-activation 

process, and the exposure time was set to 6 hr. In order to keep the gas temperature (as 

measured in Fig. 2.8 by the thermocouple) at 840 ˚C, the temperature of Zone 2 was set 

to 882 ˚C (vs. 875 ˚C for carbonization). Finally, the fibers were moved to the edge of the 

furnace for 15-20 min in order to cool, and were then removed.  

The weights of the fibers were measured both before (initial weight) and after the 

direct-activation process (final weight), using an analytical lab scale (Ohaus Corporation, 

model no. AR2140). Because the measured weight loss for a given fiber sample was the 

combination of carbonization and activation weight losses, in order to calculate the burn-

off value (i.e., the weight loss attributable to activation), the average carbonization weight 

loss value calculated in Section 2.2.3 was used. Carbonization was assumed to be 

completed at the beginning of the activation process before significant activation reaction 

occurred, and the fiber weight at the end of carbonization was calculated using the initial 

weight of the fibers and the average carbonization weight loss. Finally, the burn-off value 

was calculated using the final weight of the fibers and the calculated weight of the fibers 

at the end of carbonization.  
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At least two sets of all seven precursors were direct-activated for 6 hr. In addition 

to those, two sets of stabilized Dimer-1 fibers were direct-activated for 3 hr, 9 hr and 12 

hr, respectively, to observe the effect of activation time on burn-off (i.e., weight loss) and 

the final pore structure of the ACF. For this additional activation experiments Dimer-1 

fibers were chosen because ACFs from Dimer-1 were found to have the highest pore 

volume.  

 

2.3 Analytical Techniques 

2.3.1 MALDI-TOF Analysis of Precursors 

All precursors (see Table 2.1) were analyzed for their molecular weight (mol wt) 

distribution with a Bruker Daltonics Autoflex MALDI-TOF mass spectrometer equipped 

with a 337 nm nitrogen laser. The procedure used is given below.  

Samples for MALDI analysis were prepared by mixing 10 mg of precursor 

analyte and 200 mg of the matrix TCNQ (Tetracyanoquinodimethane) for 5 min in a mini 

ball mill (Thermo Electron Corp., model no. Wig-L-Bug). A thin film of the mixture was 

then deposited onto a cell of a MALDI target plate using a solvent-free, “water-spotting” 

method, which was developed in our laboratories and is explained in detail elsewhere 

(Edwards, 2003). The instrument operating parameters were as follows: reflectron mode, 

target plate charged at +19.0 kV, secondary ion source at 16.5 kV, lens at 7.67 kV, 

reflector at 20.0 kV, pulsed ion extraction at 90 ns, matrix suspension up to 210 Da, 

detector gain at 5.0x, and a resolution of 2.0. The spectra presented herein are a 

summation of 200 laser shots carried out at a rate of 20 Hz (Cervo et al., 2008). To 
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facilitate comparison between different MALDI spectra, many spectra shown in this 

dissertation were formatted as follows: MALDI data files were (1) compressed to reduce 

the amount of data generated and subtract the noise from a given spectrum, (2) smoothed, 

and (3) normalized so that the area under a given spectrum summed to 1 (Edwards, 2005, 

Appendix C). Whenever comparison between spectra needed to be made, all samples 

were analyzed at the same time on a given day. The laser power was adjusted based on 

the initial spectra obtained. For example, as the size of the precursor molecules increases, 

the signal response decreases; therefore, laser power had to be increased in order to detect 

the heavier molecules present. 

 

2.3.2 Mettler Softening-Point Measurements  

 Softening points of all precursors were measured by using a Mettler FP83HT 

Dropping Point Cell instrument. In preparation for a measurement, samples were first 

ground with mortar and pestle, and were then packed into the softening point cups with a 

finger, using a clean weighing paper under the finger to protect the sample. The ground 

sample was added and pressed into the cup until the sample was hard and well-packed.  

The instrument was run inside a chamber under a nitrogen atmosphere and at a 

heating rate of 2 ˚C/min. The starting temperature for the measurement was chosen as 5-

10 ˚C below the approximate softening point as measured with a temperature-monitored 

hot plate (i.e., Fisher-Johns Melting Point Apparatus, serial no. 1833). Once the material 

reaches its MSP, with the pressure of the metal ball placed on the top of the sample the 

molten precursor flows down the softening point cup, forming a drop. Once the drop 
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reaches the optical detector level, a temperature is automatically recorded, and instrument 

starts to cool down. 

 If the difference between the measured MSP and the starting temperature is less 

than 10 ˚C, then repeating the measurement with a lower starting temperature (to keep the 

difference around 20 ˚C) is suggested, because when the starting temperature is too close 

to the MSP of the sample, the measurements tend to give values higher than the correct 

value. Measurements were repeated for second set of samples for each precursor. 

 

2.3.3 Mesophase Analysis 

2.3.3.1 Grinding and Polishing 

The precursors are in granular form after being dried; however, for optical 

microscopy they need to be hard, polished solids. Thus, precursors have to be melted and 

then cooled down in order to prepare samples for polishing. Drops of molten pitch exiting 

the Mettler FP83HT Dropping Point Cell instrument after a given softening point 

measurement was completed were hard solids, and thus were suitable for polishing and 

were used for optical microscopy analysis. The drops were mounted in cylindrical 

mounting cups with an i.d. of 1.25 in. using a mixture of epoxy resin (Buehler, item no. 

20-8120-009) and hardener (Leco Corporation, item no. 811-164). The epoxy resin and 

hardener were mixed together in a 5 g epoxy resin:1 drop hardener ratio in a separate 

beaker and stirred slowly without causing air bubbles until the mixture was 

homogeneous. For a given sample, in order to keep the molten pitch drop vertical inside 

the mounting cup, a piece of small epoxy block is taped to the pitch drop as a support. 
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Then, the sample with the taped block is placed into a mounting cup and a previously 

prepared mixture of epoxy resin and hardener is slowly poured on them. Each cup was 

kept at 70 ˚C for ~12 hr to speed the hardening process in a GCA Precision mechanical 

convection oven (Precision Scientific Inc., model no. STM135).  

The hardened epoxy blocks containing the samples were placed into the sample 

holder of the Ecomet 2 polisher-grinder with the sample side down. The sample holder 

can hold up to 6 samples, and it is important to use at least 3 samples for balanced 

grinding/polishing. [Based on my personal experience, I would recommend filling all 6 

sample holes for best results.] Even if 6 samples are not available at that moment, epoxy 

blocks without embedded samples can be used for this purpose.  

While the polishing and the polarized-light microscopy analyses of the precursors 

used for the ACF production in this study were carried out by Fathollahi and co-workers 

at the University of California, San Diego (UCSD) (details of his procedure can be found 

in Fathollahi and White (1994) and Cervo (2008)), that of the heat-treated 780psig 

samples were carried out at Clemson University using a similar procedure to that was 

proposed by Kundu (2006). As many scratches were observed on the polished sample 

surfaces using the exact same procedure proposed by Kundu (2006), the procedure was 

modified with the addition of the 240- and 400-grit SiC polishing papers to the 

procedure. Also, as it was observed that minimizing the force set point during polishing 

helped minimize the scratches, polishing was always performed at the min force (5 lbs) 

allowed by the instrument instead of the 8 lbs used by Kundu. 
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In the modified procedure, first the sample holder was attached to the power head, 

and the 240-grit grinding (Buehler Carbimet SiC) paper was placed on the wheel of the 

Ecomet 2 polisher-grinder. The force was set to 5 lbs, the cycle time was set to 5 min, 

and the motor speed was set to 120 rpm; by pressing the green buttons located on the 

right- and left-hand sides of the power head, the samples were brought in contact with the 

grinding paper. It is important to run water both before grinding to wet the grinding paper 

and during the grinding process by moving the water distributer attached to instrument. 

The process was repeated using 320-, 400-, and 600-grit SiC papers, respectively, while 

washing the samples under tap water between each run. 

After completing grinding, the samples were polished, using the same procedure 

as described above, with 1200-grit Buehler Carbimet SiC paper for 20 min (The process 

is called grinding when using lower-grit papers, while it is called polishing when using 

finer-grit papers.) After this step, the sample surfaces were visually checked, and if they 

appeared to be well-polished (i.e., reflecting light well), then they were used for optical 

microscopy analysis.  

If further polishing was needed, the samples were first polished for 1 min with 

white label (Allied High Tech Products Inc., part no. 90-150-500) polishing paper. A 1 

μm diamond suspension was sprayed before the process was started, and distilled water 

was applied intermittently every 15-20 s. After samples were washed under distilled 

water, they were then polished in a second step using Chem-Pol Black polishing cloth 

(Allied High Tech Products Inc., part no. 180-10050) for 2 min, with a 0.05 μm alumina 

suspension being applied intermittently during the process. 
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At the end of the polishing process, the samples were washed with distilled water. 

Because some alumina particles could still be on the surface of the samples, the surface 

was gently rubbed using a cotton swab and 10-15 drops of Micro Organic Soap (Allied 

High Tech Products Inc.) mixed with distilled water (~100 ml) in a plastic cup. Then the 

samples were dried using canned compressed air (Miller-Stephenson Allied High Tech 

Products Inc.) and taken for microstructure analysis.  

 

2.3.3.2 Optical Microscopy 

Microstructure analysis was performed using an Olympus BX60 Microscope with 

cross-polarized light and a first-order red plate. Here, only a brief procedure of the 

process is given; details of the instrument configuration and settings are given elsewhere 

(Kundu, 2006).  

The microscope was operated in the reflective light mode. To assure the flatness 

of the investigated surface, a small piece of soft clay was placed on the microscope slide, 

and the epoxy block was placed on top of it, with the sample surface facing up. Then, a 

sample flattener was used to press the block to obtain a horizontal sample surface on the 

top.   

Next, the sample was placed on the rotating microscope stage and brought into 

focus by using focusing knobs. To do the focusing faster, one can externally observe the 

circle of light reflecting on the sample surface, and then using the focusing knobs, adjust 

it when the circle is the smallest. Then, fine focusing can be performed by looking 

through the eye pieces. To take pictures, 20x and 50x lenses were used. 



76 

 

Once focusing was completed, one of the eye pieces was removed and replaced 

with a Sony DSC-S70 digital camera with a camera adaptor (Martin Microscope 

Company, model no. MM3XS). For consistency, the camera was operated at its 

maximum zoom during the taking of all pictures, and the flash was turned off. While 

taking pictures, the light level was adjusted to 8/12 while using the 20x lens, and to 12/12 

while using the 50x lens in order to obtain the clearest pictures using the light-level 

switch on the right-hand side of the microscope. It needs to be noted that every time the 

lens is switched, the sample again needs to be brought in focus. 

In order to improve color contrast and observe yellow, blue, and magenta colors 

more clearly, color enhancement was used on some of the pictures (photomicrographs) 

using Photoshop 6.0 software. The photomicrograph of interest was opened, and by 

clicking through “Image > Adjust > Auto Levels” the photomicrographs was significantly 

enhanced. Details of this procedure can be found elsewhere (Kundu, 2006). Also, the 

mesophase area percentages of the mesophase-containing precursors were measured from 

the photomicrographs using the procedure proposed by Kundu (2006). 

 

2.3.4 
1
H NMR Analysis of Dimer-1 and Dimer-2 Precursors 

 
1
H NMR analyses of the Dimer-1 and Dimer-2 precursors were carried out with 

the help of Ha Nguyen, a PhD candidate in Chemical Engineering at Clemson University. 

The spectra were obtained by using a 300 MHz Bruker Avance System (Chemistry 

Department, Clemson University). The samples were prepared by dissolving 
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approximately 5 mg of material in 0.75 ml of CDCl3 (99.8% atom D, Acros Organics), 

and then filtering through a 0.45 µm filter. 

  

2.3.5 Heat Treatment Tests on 780psig Precursor 

 In order to better understand the effect of exposure to elevated temperatures on 

the possible formation of mesophase in a precursor, a portion of the 780psig precursor 

was heat-treated under inert atmosphere. The same quartz boat and tubular furnace that 

were described above for carbonization and direct-activation experiments were used, 

along with the same procedure under 1 L/min N2 flow. The only difference was that the 

precursor in powder form was placed inside the quartz boat instead of oxidized fibers. 

Approximately 1.0 g of sample was used for each run, and samples were heat treated for 

30 min, 1 hr, 3 hr, and 5 hr, respectively. Samples were weighed using Ohaus 

Corporation AR2140 lab scale both before and after heat treatment, and the % weight 

loss was calculated. MSPs of the collected samples were measured, and they were 

polished and analyzed by optical microscopy as described above. 

 

2.3.6 Wide Angle X-ray Diffraction Analysis on Carbonized Fibers 

As was described above, optical microscopy was used to estimate the percentage 

of mesophase present in our starting precursors. The extent of orientation in the 

carbonized fibers made from each precursor was also determined by wide angle X-ray 

diffraction (WAXD). A PhD candidate in Chemical Engineering at Clemson University, 

Marlon Morales, assisted in this work. An osmic Micromax CuKα X-ray source was used 
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to obtain azimuthal intensity distribution. The collimator pinhole size was 0.5 mm, and 

samples were set 12 cm apart from the detector. Samples were exposed for approximately 

one hr per image, and 2D image plates were used to capture diffracted patterns. The 

image plates were scanned using a Fuji BAS 1800 scanner, and diffractograms were 

Fraser-corrected and analyzed using Polar
®
 2.6.7 software. Measurements were repeated 

for a duplicate set of fibers made from the same precursors that were spun and oxidized 

together with the first set, but were carbonized separately. Details of the WAXD 

measurement procedure can be found at Lee et al. (2005). 

 

2.3.7 Surface Characterization of Activated Carbon Fibers 

Surface characterization of all ACF was carried out using a Micromeritics 

Accelerated Surface and Porosity Analyzer (Micromeritics Instrument Corporation. 

Model no. 2020). Nitrogen was used as an adsorbent at a bath temperature of 77 K. Test 

tubes with a ½ inch in. diameter were used with a seal frit assembly (Micromeritics, part 

no. 260-25890-00),  that is, a top cover with a valve that prevents a sample from 

inadvertently coming out during the evacuation process (see Fig. 2.11).  
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Fig. 2.11 The scale used for weighing the sample test tube for surface 

characterization. A foam block with a spherical hole was used to keep the 

test tube vertical in order to obtain accurate weight measurements. 

 

In order to initiate the procedure, first a clean and dried empty test tube with a 

seal frit assembly was weighed using the Ohaus Corporation AR2140 lab scale. As the 

sample test tubes are taller than the scale, the scale was used while its top window was 

open. To keep the sample tube vertical during measurement, a foam block with a hole 

was used (Fig. 2.11). Because a typical sample weight (~30 mg) was much smaller than 

the weight of the test tube (~37 g), extra care had to be taken. Every measurement was 

Foam Block

Seal Frit 
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Foam Block
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repeated three times, an antistatic gun was applied to the test tube before placing it into 

the foam block on the scale, and an average of these measurements was taken. 

Next, the sample was weighed on weighing paper, and was then placed into the 

test tube by using another weighing paper that had been rolled and inserted into the top of 

the tube. (This sample weighing was made to ensure that consistent results were being 

obtained with the balance for the laboratory conditions present at the time.) The purpose 

of the rolled weighing paper is to prevent fibers from sticking to the walls of the test tube 

close to the top, where they might not be immersed in liquid nitrogen bath during 

micropore analysis.  

After the fibers were loaded into the test tube and the seal frit assembly was 

replaced, the sample was degassed in order to remove any gas or moisture adsorbed by 

the fibers. Before degassing, the test tube with the fiber samples was re-weighed, as was 

done above, to ensure consistent weighing could be made. Then, the test tube was 

attached to one of the degassing ports of the Micromeritics ASAP 2020 instrument as 

shown in Fig.  2.12, and the heating jacket assigned to that port was put on to the bottom 

part of the test tube. Next, the degassing schematic was opened from the Micromeritics 

software in the connected PC, and manual control was enabled from the degassing menu. 

The valves between the pump and the desired degassing port were opened, and the 

temperature of the heating jacket was set to 300 ˚C.  After degassing for 4 hours at 300 

˚C, the heating jacket was removed, and the pressure was brought back to atmospheric 

pressure by nitrogen flow. Once the test tube and fiber sample within had cooled down to 

room temperature, it was removed from the degassing port and weighed as described 
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before. Then, the actual fiber sample weight was calculated by subtracting the initially 

obtained, empty weight of the test tube (with seal frit assembly) from this final weight.  

The fiber sample was then ready for “free-space” (i.e., the space in the tube not 

taken by the sample) analysis. The test tube was attached to the analysis port (Fig 2.12a) 

after it was inserted into an isothermal jacket (Fig 2.12b). To perform the free-space 

analysis, from the “sample analysis” menu “analysis conditions” dialog was chosen, and 

only two relative pressure (p/p
0
) points were entered for data collection; 0.1 and 0.2 in 

order to keep the analysis short, and under the free space dialog box the “measure“ option 

was chosen. After the file was saved, the analysis was started. The purpose of the free 

space analysis was to measure warm and cold free spaces for this test tube with this 

sample in it. This volume information was required for calculation of adsorbed N2 

amounts from measured pressure values during adsorption analysis.  

During free-space analysis, He molecules can be trapped in narrow micropores 

(<7 Å). Therefore, the fiber sample needs to be re-degassed after free-space measurement 

in order to remove any trapped He molecules, and to allow access to these narrow 

micropores during micropore analysis with the adsorbent N2.  

Re-degassing was carried out at the analysis port by placing the test tube and 

sample under vacuum for 3 hr at 300 ˚C. For heating the sample, one of the two available 

heating jackets was used. Following this second degassing process in the analysis port, 

the heating jacket was removed, and the fiber sample was allowed to cool down to 

ambient temperature. Detailed micropore analysis was now ready to be carried out. 
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For micropore analysis, measurements as obtained from free-space analysis were 

entered. Relative pressures from 0.05 to 0.3 at increments of 0.05 were chosen, and the 

incremental dosing option was selected. The use of incremental dosing option is a part of 

standard procedure for detailed micropore analysis. As suggested by the manufacturer, 

the incremental dosing amount was chosen as 1/50 of the N2 adsorbed at a relative  

 

 

Fig. 2.12 Micromeritics ASAP 2020, Surface Analyzer. (a) Shows the instrument 

with one sample at the degassing port and one sample at the analysis port; 

(b) shows a zoomed-in version of the analysis port. 
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Fig. 2.12 Continued. 

 

 

 pressure (p/p
0
) of 0.1 during the free-space analysis. By using this option, data (adsorbed 

N2 amount (cm
3 

(STP)/gram sample)) at relative pressures as low as 10
-7

 was collected. 

Following the analysis, pore size distribution data were obtained using the Micromeritics 

ASAP 2020 instrument software based on Density Functional Theory, assuming slit-

shaped pores.   
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3 RESULTS AND DISCUSSION  

In this research, the effect of precursor composition on the final pore structure of 

activated carbon fibers produced from petroleum pitch was investigated. The pore 

structure of the activated carbon fibers were successfully controlled by manipulating the 

composition and molecular weight distribution of the precursors. All precursors were 

from the same origin; in other words, they were all produced from the same mother 

material. Unlike previous studies, a detailed mol wt distribution and the mesophase 

content (molecular order) of each precursor were determined prior to the fiber production 

process. The final activated carbon fibers were then analyzed for nitrogen adsorption 

isotherms to obtain pore size distribution information. Details of all production processes 

and analysis methods are given in this chapter. 

 

3.1 Production of 750psig, 760psig, 780psig, 800psig, and 830psig Precursors 

 The precursors used to prepare activated carbon fibers (ACFs)  in this study were 

obtained by fractionation of a low softening point, commercial petroleum pitch (M-50, 

Marathon Oil Company LLC.). Details of the dense-gas extraction (DGE) fractionation 

process were given in Chapter 2. Production of all precursors from the same starting 

material gave us the opportunity to isolate the effect of the mol wt distribution of the 

precursor on the final pore structure of ACFs. Furthermore, detailed studies by Burgess 

and Thies (2011) had elucidated the dominant molecular structures present in M-50 pitch. 
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3.1.1 Mettler Softening Points and Bottom Product Yields 

 Five precursors with different molecular compositions were produced from M-50 

pitch using single-column DGE at 350 ˚C. Precursors with softening points above 200 ˚C 

were desired, as the slowest step of ACF production is the temperature-dependent 

oxidation step. The use of precursors with softening points below 200˚C would make the 

oxidation process impractically long. Mettler softening points (MSP) of these five 

fractions of M-50 pitch are given in Table 3.1.  

 

Table 3.1 Mettler Softening Points of five ACF precursors produced using single-

column DGE at 350 ˚C. 

 

 

a 
MSPs are accurate to ±2 ˚C. 

 

The increase in softening points with increasing extraction pressure (at 350 ˚C 

isothermal operation) is an indication of an increase in molecular weight of the 

precursors. Bottom product yields were also found to decrease with increasing operating 

pressure (Fig. 3.1). With isothermal DGE operation, bottom product yields are seen to 

drop if a higher mol wt material is obtained. Cervo and Thies (2007) have previously 

MSP( ˚C )a

750psig 210

760psig 257

780psig 297

800psig 312

830psig 339
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documented this effect, which is due to the increased solvent power of the supercritical 

fluid at high pressures for a given supercritical temperature. On the other hand, we also 

see from Table 3.1 and Fig. 3.1 that much higher bottom yields (and commensurately 

lower softening points) are obtained if the extraction pressure is decreased below 750psig 

(~52 bar), due to a significant decrease in solvent power. As we desired precursors with 

softening points greater than 200 ˚C, 750psig and higher extraction pressures were used 

for the isolation of all five precursors produced via DGE.  

Fig. 3.1 DGE bottom-product yields for the five precursors shown in Table 3.1 

 (error bars = ± 1 std dev). 

 

3.1.2 MALDI Spectra 

The raw MALDI spectra of these five precursors are given in Fig. 3.2. Although 

the detailed operating procedure for MALDI was given in Chapter 2, we remind the  
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Fig. 3.2 Raw MALDI spectra for the five precursors produced using single-column 

DGE at 350 ˚C and the pressures noted above. All spectra were obtained 

on the same day to ensure consistency. 
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reader here that for consistency the laser power was chosen to keep the intensity baseline 

increase below 100 units for each sample. 

MALDI spectra for the different precursors are also compared on a normalized 

intensity basis in Fig. 3.3, so that we are able to better compare the spectra. Per the work 

of Edwards (2005), the spectra from Fig. 3.2 were processed using a smoothing function 

and were then normalized such that the area under each spectra summed to 1.0.  

 

 

Fig. 3.3 Smoothed and normalized MALDI spectra of the five precursors produced 

using single-column DGE at 350 ˚C and the pressures noted above. The 

arrows show the trends with increasing extraction pressure. 
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Here we see a continuous change in the spectra with increasing DGE pressure, the dimer 

peak being dominant in the spectra of the 750psig precursor, and the trimer peak 

dominant in the 830psig precursor. The arrows on the figure show the trend in spectra 

with increasing extraction pressure. 

 

3.1.3 Mesophase Content 

The precursors produced by DGE were also analyzed for mesophase content. 

Although the mother M-50 pitch is isotropic, the removal of lower mol wt species during 

the fractionation process can result in the development of molecular order (anisotropy) 

Larger, higher mol wt molecules are mobile in the liquid state and can orient themselves 

to form nematic discotic liquid crystals, which are also called mesophase (Brooks and 

Taylor, 1965). For this analysis, molten pitch samples collected at the end of MSP 

measurements were mounted in epoxy, polished, and then observed under cross-polarized 

light via optical microscopy (see Chapter 2 for details). Photomicrographs of the polished 

surfaces of the samples are given in Fig. 3.4, along with their mesophase percentages. 

 



90 

 

750psig precursor

Fully Isotropic 

Scratches

 

Mesophase Content : <1 %

760psig precursor

Epoxy 
bubbles

Mesophase 
spherules

 

Fig. 3.4 Photomicrographs of the polished surfaces under polarized-light 

microscopy of the five precursors produced using single-column DGE at 

350 ˚C. The mesophase content of each precursor is given on its 

micrograph in area %. 
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Fig. 3.4 Continued. 
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Fig. 3.4 Continued. 

 

 

As seen from the micrographs (Fig. 3.4), only the 750psig precursor is fully 

isotropic, and the rest of the precursors have mesophase regions in various amounts. 

760psig has few mesophase spherules, while 780psig precursor has many. On the other 

hand, for the 800psig precursor, the mesophase has coalesced into distinct regions, and 

the 830psig precursor consists of 100% mesophase (fully anisotropic).  

 

3.2 Production of Dimer-1 and Dimer-2 Precursors 

In general, activated carbons are non-graphitic (i.e., isotropic) and non-

graphitizable carbons (Menendez-Diaz and Martin-Gullon, 2006), and many of the 

precursors discussed above had some level of anisotropy (i.e., mesophase content). 

Therefore, investigating only these five precursors would not have enabled us to 
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distinguish between the effects of molecular composition (i.e., mol wt distribution) and 

molecular order (anisotropy) with respect to activation rate and porosity formation.  Thus, 

additional precursors that were fully isotropic (albeit with different molecular 

composition) were required. To this this end, two additional precursors, known as Dimer-

1 and Dimer-2, were produced. 

Because a single-column DGE process can only separate a feed into two streams, 

further processing was required in order to produce the middle cut, Dimer-1 and Dimer-2 

products. As we discussed in Chapter 2, Dimer-1 was produced using a setup of two 

packed columns in series, with the first column, operating at DGE conditions, being used 

to extract monomer and dimer, and the second column, operating as a low pressure, high-

temperature stripper, being used to recover the desired, dimer-rich (bottom) product. As 

with Dimer-1, the first step in producing Dimer-2 was the isolation of a monomer/dimer 

mixture from M-50 pitch via single-column DGE. The second step, on the other hand, 

was evaporation of the monomer species in a free-convention vacuum oven in order to 

produce the desired, dimer-rich product. Details of both procedures are given in Chapter 

2.  

The procedure for removal of the monomer from the Dimer-2 precursor was only 

established after some initial, less successful runs. In particular, when we tried to “dry” 

200-g quantities of the monomer/dimer mixture in the vacuum oven at 350 ˚C and 2 

mbar, vacuum had to be maintained for 2 hr in order to reach an acceptable level of 

monomer removal. The experiment was first performed for 30 min, and then an 

additional 30 min and then another 1 hr, while checking the MALDI spectra and yield 
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after each sequence. The product yield (as a percentage of the initial monomer/dimer 

“feed”) with increasing time was 16.8%, 14.6% and 10.5%, respectively. Subsequent 

tests for drying the monomer/dimer mixture in the vacuum oven in 30-g (vs. 200-g) 

quantities for 30 min, using the same-sized tray, temperature, and vacuum, resulted in a 

product with the narrower, higher mol wt distribution shown in Figs. 3.5 and 3.6. We 

then concluded that the larger samples had been diffusion-limited, and subsequently 

limited sample sizes to 30 g. 

 

3.2.1 Mettler Softening Points and Mesophase Content 

 Mettler softening points for all precursors used in the production of ACFs are 

summarized in Table 3.2. Note that MSPs for Dimer-1 and Dimer-2 are close to that of  

 

Fig. 3.5 Raw MALDI spectra for Dimer-1 and Dimer-2 precursors, analyzed on 

the same day as the precursors shown in Fig. 3.2 to ensure consistency.  
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Dimer-1

Dimer-2

 

Fig. 3.6 Smoothed and normalized versions of the MALDI spectra shown above 

for Dimer-1 and Dimer-precursors. 

 

the 750psig precursor, even though the mol wt distributions are quite different from each 

other. Cross-polarized light microscopy analysis of both of these samples indicated that 

they were both fully isotropic (see Fig 3.7). 

 

 

 

 

 

 

 



96 

 

Table 3.2  Mettler Softening Points of all precursors used for ACF production. 

 

a 
MSPs are accurate to ±2 ˚C. 
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Fully Isotropic 
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bubbles

 

Fig. 3.7 Photomicrographs of the polished surfaces under polarized-light 

microscopy of Dimer-1 and Dimer-2 precursors. Both precursors were 

found to be fully isotropic. 

 

MSP( ˚C )a

M-50 116

Dimer-1 202

Dimer-2 212

750psig 210

760psig 257

780psig 297

800psig 312

830psig 339
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Fig. 3.7 Continued. 

 

 

3.3 Normalized MALDI Spectra for all Precursors 

MALDI spectra for all precursors and the M-50 mother pitch are presented 

together as smoothed, normalized spectra to facilitate comparison in Fig. 3.8. Fig. 3.8a 

contains the spectra for all isotropic samples and Fig. 3.8b for all samples that contained 

any amounts of mesophase. As 760psig was “on the border” between the two scenarios, 

its spectra is included in both figures.  
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Fig. 3.8 Smoothed and normalized MALDI spectra of all precursors used for ACF 

production in addition to M-50: (a) 760psig and lower mol wt precursors; 

(b) 760psig and higher mol wt precursors. For consistency, all of the 

above spectra were obtained on the same day. 
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The area percent under each oligomeric peak (monomer, dimer, etc.) for each 

precursor was calculated from the spectra shown in Fig. 3.8 and is given in Table 3.3, 

along with the mesophase content and average molecular weight (number-average (MWn) 

and weight-average (MWw)) of the precursor. As shown by Kulkarni et al. (2011), 

MALDI area percentages have been shown to be approximately equal to mol 

percentages, with monomer being somewhat underrepresented (due to its volatility) along 

with higher oligomers (due to their strong adsorption) (Kulkarni and Thies, 2009). 

 

Table 3.3 Oligomer area percentages, mesophase content, and average molecular 

weight of all precursors used for ACF production in addition to M-50. 

 

 

b
 The following mol wt range were used to define oligomers (Burgess and Thies, 2011): 

monomer 202-388, dimer 388-645, trimer 645-890, tetramer 890-1120, and pentamer 

1120-1500 Da. 

 

3.4 Heat Treatment Tests on the 780psig Precursor: Mesophase Transformation 

Although the smoothed, normalized MALDI spectra for 760psig, 780psig and 

800psig precursors (Fig 3.8b) are quite similar to each other, the difference between their 

MALDI-TOF Area Percentages b
Mesophase Average Mol Wt

Monomer Dimer Trimer Tetramer Pentamer Content (%) MWn MWw

M-50 33.0 59.9 6.7 0.3 0.0 0 430 470

Dimer-1 0.7 99.0 0.2 0.1 0.0 0 482 486

Dimer-2 0.0 99.9 0.0 0.0 0.0 0 500 502

750psig 5.2 78.7 14.0 1.8 0.2 0 521 549

760psig 0.0 52.3 35.2 11.0 1.4 <1 639 687

780psig 0.0 44.5 41.3 12.2 2.0 4 666 714

800psig 0.0 41.6 44.6 12.1 1.7 16 676 720

830psig 0.0 11.1 57.9 25.1 5.9 100 807 844
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softening points (Table 3.2) is significant. Furthermore, a close inspection of the 

photomicrographs in Fig. 3.4 indicates that the 780psig precursor contains a large number 

of small mesophase spherules, indicating that incipient mesophase formation on a bulk 

scale may be possible. Rӓder and co-workers (Cristadoro et al., 2007) have shown that 

pure component PAH species that are prone to stacking in the solid state generate 

significantly less signal response in MALDI vs. those that are more random in their 

arrangement. Thus, the similar MALDI spectra observed for the above three precursors 

may very well be an indication of stacking of molecular species and formation of 

mesophase, with the stacked mesogens exhibiting low signal response and thus not being 

readily visible in the spectra. 

 Because the presence of mesophase (i.e., anisotropy) can have such a significant 

impact on the activation behavior (i.e., activation rate and final porosity) of ACFs 

(Menendez-Diaz and Martin-Gullon, 2006), a study was conducted in order to determine 

how easily our samples containing small amounts of mesophase could convert to bulk 

mesophase under conditions normally encountered during the processing of pitch to form 

ACFs.  360˚C was chosen as the heat treatment temperature, on the high side of that 

which could be encountered in pitch melt-spinning. It is high enough to allow molecules 

to move to orient, but not so high as to cause formation of mesophase pitch via thermal 

polymerization reactions among the oligomers, which starts to occur around 380-440˚C 

(McHenry, 1976).  

Based on the discussion above, the 780psig precursor seemed to be the one most 

suitable candidate for the study. Thus, samples of the 780psig precursor were heat-treated 
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under nitrogen flow for 30 min, 1 hr, 3 hr and 5 hr, respectively. Additional details of the 

experimental procedure are given in Chapter 2. Weight loss (wt loss) and MSP of the 

780psig precursor after heat treatment are summarized in Table 3.4. 

 

 

Table 3.4 Heat Treatment of 780psig precursor at 360 ˚C under N2 flow for 

investigation of mesophase transformation.  

 

 

a 
MSPs are accurate to ±2 ˚C. 

 

The continuous increase in weight loss with time shows that the loss is not simply due to 

the loss of moisture adsorbed in the samples, but also the loss of some dimer species. 

Because the temperature was quite low, reaction between dimer molecules was thought to 

be unlikely. Normalized MALDI spectra of the heat-treated samples (Fig. 3.9) did not 

show significant differences from the initial, untreated 780psig precursor. Although the 

weight loss was only ~5% and the softening point increase was only ~13˚C after even 5 

hr of heat treatment under inert atmosphere, Fig. 3.10 shows that a significant increase in 

mesophase content was observed. That is, we see that the mesophase spherules grew and 

Heat Treatment Time % Wt Loss MSP( ˚C ) a

Before Heat Treatment - 299

30min 1.5 304

1hr 2 304

3hr 4.4 310

5hr 5.4 313
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were converted into bulk mesophase with increasing heat exposure time at a relatively 

low heat-treatment temperature. 

 

 

Fig. 3.9 Smoothed and normalized MALDI spectra of 780psig precursor before 

and after heat treatments at 360 ˚C. All spectra appear to be similar to each 

other, with no trend with increasing heat treatment time being observed. 

For consistency, all of the above spectra were obtained on the same day. 

 

 

These results show that precursors containing small amounts of dispensed 

mesophase can form bulk mesophase, if sufficient time is allowed in the molten form. 

During ACF production, the pitch fibers are exposed to relatively high temperatures 

during spinning, but the spinning process typically takes only about 1 hr. Because the 



103 

 

750psig and 760psig samples were both spun well below 360 ˚C (see Table 3.5), such a 

change in mesophase content would not have been expected to occur.  
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Fig. 3.10 Photomicrographs of polished surfaces under polarized-light microscopy 

of heat-treated 780psig precursors. Transformation of mesophase 

spherules into bulk mesophase and increase in mesophase is shown with 

increasing heat-treatment time.  
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3.5 Activated Carbon Fiber Production 

3.5.1 Spinning 

 After the MSPs and mesophase content of the precursors were determined, they 

were spun into fibers using our batch melt-spinning equipment, as described in Chapter 2. 

In order to determine the appropriate spinning temperatures, MSP measurements were 

used as an initial guide. Based on our experience, the spinning temperature has been 

found to be approximately 20-25˚C above the MSP of a given precursor. The actual 

spinning temperatures were then selected based on observations during the spinning 

process itself, in order to obtain the optimum amount of fibers. When fibers could be 

spun and collected as continuous filaments without breaking too often, the temperature 

was fixed at that point and the pressure reading was recorded. In general, the melt-

spinning of pitch precursors can only be carried out over a limited temperature range. At 

too low a temperature, fibers will break because the precursor is not completely melted; 

at too high a temperature, the precursor will have too low a viscosity, and fibers will 

break as the winder pulls them down.  

Molten pitch is essentially an incompressible fluid; therefore spinning pressure 

only has a negligible effect on the structure of the as-spun fibers. Because spinning is a 

temperature-sensitive process and we had only a limited amount of material, we focused 

on obtaining similar-sized fibers in sufficient amounts for further analysis. Pressure 

differences were as a result of differences in viscosity during spinning. Once continuous 

filaments started to be collected, the temperature was fixed at that point. 
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The spinning conditions that were used for each precursor are given in Table 3.5. 

It is important that all precursors be completely dry and free of any solvent, as any 

solvent left in the pitch will cause bubbling and therefore breakage of fibers during  

 

Table 3.5  Spinning conditions (temperature and pressures) for all precursors used for 

ACF production. All fibers were collected at a ram speed of 2.0 cm
3
/min 

and a winding speed of 177 m/min. 

 

 

 

the spinning process. Fibers from all precursors were collected at the same ram speed (2.0 

cm
3
/min) and winding speed (177 m/min). Diameters of the fibers were between 20 and 

30 µm. 

 

3.5.2 Stabilization 

 Carbonization and activation of as-spun (green) fibers must be carried out at 

temperatures above 800˚C, well above the softening point of even the highest mol wt 

precursor that can be spun. Thus, as-spun fibers must be first stabilized in order to keep 

their fiber form. This process is also referred as “oxidation”, or “oxidative stabilization”, 

because during stabilization the fibers react with oxygen molecules in the gas phase. 

Temp ( ˚ C ) Press (psig)

Dimer-1 222 1050

Dimer-2 234 600

750psig 231 700

760psig 285 950

780psig 328 1150

800psig 341 1400

830psig 362 900
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For consistency, we desired to apply the same stabilization procedure to all 

precursors. As shown in Table 3.2, some of our precursors had low softening points, so 

the lowest stabilization temperature had to be applied to them all. Oxidation is a slow 

process at temperatures below 250 ˚C, so our stabilization process took about 6 days (the 

detailed procedure was given in Chapter 2).  

As can be seen in Fig. 3.11, during the stabilization process fibers from all 

precursors followed a similar trend in terms of weight change, with all fibers gaining 

weight until some point and then starting to lose it thereafter. Weight change during this 

process results from several simultaneous mechanisms, including the uptake of oxygen, 

the loss of water, and the loss of some carbon in the form of carbon dioxide and carbon 

monoxide (Miura et al., 1995). All fibers had a weight gain of about 15-18% by weight, 

indicating that they were fully stabilized (Lin et al., 1991). Note that the samples started 

to lose weight near the end of the oxidative stabilization process, probably because of the 

completion of oxygen uptake and the continued loss of aromatic carbons as carbon 

dioxide and carbon monoxide. In a study of the stabilization of a naphthalene-derived, 

synthetic mesophase pitch, Drbohlav and Stevenson (1995) concluded that during the 

weight-gain period of oxidation, the aliphatic content of the pitch decreased while the 

oxygen content increased, with the oxygen forming mostly ester and anhydride groups. 

During the weight-loss period of the oxidation process, the aromatic carbon content 

decreased, being released as carbon monoxide and dioxide. Also, at low temperatures 

weight gain was more favored, while at higher temperatures weight loss dominated. 
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Fig. 3.11 Weight increase vs. stabilization time for as-spun fibers from each of our 

seven precursors during the oxidative-stabilization process. 

 

 

Among the precursors studied, Dimer-2 was notable in gaining more weight 

compared to the others (see Fig. 3.11). Thus, based on the above study, one might assume 

that Dimer-2 has a higher alkyl content than the other precursors. However, Dimer-1 has 

a similar mol wt distribution to Dimer-2 (see Fig. 3.8a), so it is difficult to conclude from 

the molecular structures present in dimers (see Fig. 3.12) that Dimer-2, which is 

concentrated in higher mol wt dimer species, has a higher alkyl content than Dimer-1. In 

addition, no noticeable difference in the ratio of alkylated to aromatic protons for Dimer-

1 vs. Dimer-2 was observed by solution 
1
H-NMR (see Fig. 3.13). However, the ratio of 
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the 0.0-2.0 ppm peak to the 2.0-3.5 ppm peak (see Fig. 3.13) is higher for Dimer-1 than 

for Dimer-2, indicating that the alkyl groups in Dimer-1 are longer (i.e., more ethyl and 

propyl than methyl groups). These longer alkyl groups might be responsible for the less 

net oxidation gain of Dimer-1 compared to Dimer-2.  

 

 

Fig. 3.12 MALDI spectra of M-50 pitch and proposed structures for monomer and 

dimer molecules. (Reprinted with permission from Burgess and Thies, 

2011. Copyright 2011 Elsevier.) 

 

MALDI analyses of the Dimer-1 and Dimer-2 precursors were also repeated using 

a solvent-based preparation method (see Fig. 3.14a and b), as this method elucidates 

higher mol wt species better than solid-based preparation method. As shown in Fig. 3.14a 
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and b, the Dimer-1 precursor does have more tetramer species than the Dimer-2 

precursor, and this difference might have caused the difference in oxidation weight gain 

as we expect tetramer species to have relatively fewer alkyl groups than dimer species. In 

the next section, it is shown that carbonization results also support this possibility. 

Because the solvent-based preparation method might result in variations in signal 

response, the results can only be interpreted qualitatively. Nevertheless, The MALDI 

analyses were repeated at two different target spots for each precursor, and the results 

were consistent. 

Finally, we caution the reader that in the above discussions, we have proposed 

several explanations for the oxidation weight gain differences between Dimer-1 and 

Dimer-2. However, the differences observed were not large, so it is possible that we are 

seeing nothing more than the effects of differences in fiber diameter.  
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Dimer-1

Dimer-2

 

 

 

Fig. 3.13 
1
H-NMR spectra of Dimer-1 and Dimer-2 precursors. Normalized peak 

areas appear below the respective spectra and provide information about 

the relative abundance of aromatic (7.3-10.0 ppm), benzylic (2.0-3.5 

ppm), and aliphatic (0.5-2.0 ppm) protons in the sample. Deuterated 

chloroform was used as the solvent. 
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Fig. 3.14 (a) Raw, and (b) smoothed and normalized solvent-based MALDI spectra 

comparison of Dimer-1 and Dimer-2 precursors. Solvent-based method 

elucidates higher mol wt species better than solid-based preparation 

method. 

a

Dimer-1 Dimer-2

tetramer

b

Dimer-1 Dimer-2
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3.5.3 Carbonization 

Because our stabilized fibers were directly activated in a CO2 environment, the 

separate contributions of carbonization and activation to the weight losses of our fibers 

had to be established by a separate set of carbonization experiments. Thus, a small 

portion (~100 mg) of the fibers stabilized above was treated to a “carbonization-only” 

step. This procedure is described in detail in Chapter 2. 

The results of these carbonization experiments are given in Figs 3.15. Mol wt 

values referred to in Fig. 3.15 and in the rest of the dissertation are MWn and were 

calculated from MALDI spectra for each precursor using a Fortran code as explained 

elsewhere (Edwards, 2005, p191). The weight loss was found to be higher for precursors 

with a lower average molecular weight, that is, those consisting primarily of monomer 

and dimer species (Dimer-1, Dimer-2 and the 750psig precursors, see Fig. 3.2 and Table 

3.3). Because elimination of side chains is among the basic reactions that occur during 

carbonization (Lewis I.C., 1982), the higher alkyl and side chain (H) content of the 

smaller monomer and dimer molecules, as compared to the bigger trimer and tetramer 

molecules, could be the reason for the higher carbonization weight loss. Referring to Fig. 

3.12, Burgess’ MALDI results do not definitely establish that there are more alkyl 

groups/carbon atom for monomer and dimer vs. trimer and tetramer species. However, 

MALDI peak heights are not a reliable enough indicator of the amount of a given species 

present to make any definite statements in this regard.   



113 

 

Another trend of interest in Fig. 3.15 is the fact that, for the 760psig precursor, 

carbonization % weight loss reaches a steady value with increasing average molecular 

weight.  

 

 

 

Fig. 3.15 Weight losses of stabilized fibers as a result of carbonization only are 

plotted vs. average molecular weight (error bars = ± 1 std dev). 

 

 

Further increase in molecular weight has no further impact on carbonization % weight 

loss, even for the mesophase-containing precursors at 760psig and above.  Thus we see 

that carbonization wt loss depends on the molecular weight of the precursor, with the 

presence of mesophase itself not being the determining factor.  
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3.5.3.1 Wide-Angle X-Ray Diffraction Analysis of Carbonized Fibers 

 

Wide-angle x-ray diffraction (WAXD) analyses were carried out on carbonized 

fibers prepared from all seven precursors in order to determine the significance of the 

mesophase amount present in mesophase-containing fibers. Carbonized fibers were 

chosen for X-ray diffraction analyses, as fibers reach their final microstructure during the 

carbonization process, when they are exposed to the highest temperatures (up to 1000 ˚C) 

prior to the activation process.  

WAXD analysis 2θ intensity profiles of all carbonized fiber samples are given in 

Fig. 3.16. Although the spectra are broad and the exact 002 peak locations are hard to 

determine, the difference between the locations of the 002 peaks for the isotropic vs. the 

mesophase-containing fibers can be clearly observed. The azimuthal intensity distribution 

for the approximate 002 peak location for each precursor is given in Fig. 3.17.  This 

comparison clearly shows that the spectra for the 760psig sample is similar to those for 

isotropic precursors, and do not show any peak, whereas the spectra for 780psig and other 

two mesophase-containing fibers show clear peaks. Thus, the small amounts of 

mesophase detected in the 760psig precursor by polarized-light microscopy are seen to 

have a negligible impact on the extend of molecular order in this precursor, and it can be 

considered to be a fully isotropic precursor. Fig. 3.17 also shows that the azimuthal 

intensity peak for 830psig fibers is narrower than 800psig and 780psig fibers, showing a 

higher degree of orientation with increasing mesophase percentage. 

The tests were carried out on 2 sets of fiber samples prepared from each precursor 

to ensure reproducibility and similar results were obtained. WAXD analysis 2θ intensity 
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profiles and the azimuthal intensity distributions for the second set of samples are given 

in Appendix C.   

 

 

002 Peaks

 

Fig. 3.16 WAXD analysis 2θ intensity profiles of the carbonized fibers prepared 

from all seven precursors. Note that the 002 peaks of the 780, 800, and 

830psig (dotted curves) fibers are located at higher 2θ values than the 002 

peaks of the 760psig and lower average mol wt precursors (solid curves).  
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Fig. 3.17 WAXD analysis azimuthal intensity distributions at approximate 002 peak 

locations for carbonized fibers prepared from all seven precursors. Note 

that the azimuthal intensity distributions of the mesophase-containing 

fibers (780psig, 800psig and 800psig) are in the form of peaks, while those 

of the 760psig and other isotropic fibers are not.    

 

 

 

 

3.5.4 Direct Activation 

Following the above “carbonization-only” experiments, the remaining portion 

(~150 mg) of the stabilized fibers were subjected to direct activation for 6 hr at 840 ˚C 

using the procedure described in Chapter 2.  

Initially during direct-activation experiments, industrial-grade CO2 (National 

Welders Inc., item no. CD50) was used; however, after observing fluctuations in weight 

loss during the experiments, Coleman Grade CO2 (National Welders Inc., item no. 
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114041) was used. Although the exact problem was not determined, water as an impurity 

in the industrial grade CO2, or even as a separate phase present in the cylinder, was 

thought to be one of the most likely reasons, because water vapor is a much more 

aggressive activating agent than CO2. After these initial problems, we also subsequently 

made sure that there was no dip tube inside the CO2 cylinder being used. Direct-

activation experiments using a CO2 cylinder with a dip tube resulted in much higher 

weight losses; in some cases all of the fibers were degasified, leaving no samples at the 

end! Thus, all of the results shown herein are for direct-activation experiments using 

Coleman Grade CO2 cylinders without a dip tube, repeated at least twice for consistency. 

Comparison of total % wt loss and % burn-off (i.e., weight loss corresponding to 

activation only) of all precursors during direct-activation experiments are given in Fig. 

3.18. The average weight losses measured for carbonization only for each precursor (see 

Fig. 3.15) were used to calculate by difference the % burn-off (weight loss corresponding 

to activation only) (see Appendix B). As seen in Fig. 3.18, both total % wt loss and % 

burn-off values were essentially constant for all isotropic samples, but were noticeably 

lower for mesophase-containing precursors, taking a significant drop even with a 

mesophase content of only 4%.  

Because all fibers were direct-activated for the same amount of time (i.e., 6 hr), 

the % burn-off values can also be considered as a measure of activation rate. Unlike 

carbonization, there is a big drop off in the % burn-off as we move from isotropic to 

anisotropic   (i.e., 780psig and higher) fibers, and the activation rate continues to decrease 

as the mesophase content increases (Fig. 3.18). Based on these results, we conclude that 
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(1) all isotropic fibers undergo the same activation mechanism because they all have the 

same activation rate, and (2) the presence of structural anisotropy, as caused by the 

presence of mesophase, interrupts the activation process.  

Finally, we consider the cumulative % yield of the ACFs produced from each 

precursor, which is the net % yield of the direct-activated carbon fibers starting from the 

as-spun fibers (i.e., oxidation + carbonization + activation). Higher yields will lower the 

cost of ACFs and will be preferred, as long as the desired porosity is obtained. The 

cumulative % yield is essentially constant for the isotropic (760psig and below) precursor 

fibers, but then increases significantly for the anisotropic 780psig and higher mol wt 

precursor fibers (Fig. 3.19). Of course, we already know that the anisotropic fractions 

have a higher product yield because of their lower activation rate, which we expect will 

negatively affect pore structure formation. 
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Fig. 3.18 Total % weight loss and % burn-off of stabilized fibers as a result of 6-hr, 

direct activation based on average molecular weight of each precursor 

(error bars = ± 1 std dev). The lines connecting the data are to guide the 

reader’s eye only. 
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Fig. 3.19 Cumulative % yield of production of ACFs from as-spun fibers based on 

average molecular weight of each precursor. 

 

3.6 Surface Characterization of Activated Carbon Fibers 

In order to see the effect of the activation process and determine the final pore 

characteristics of the fibers, surface analyses were carried out on 6-hr, direct-activated 

fibers made from each precursor. The detailed procedure was described in Chapter 2. Fig. 

3.20 shows the nitrogen adsorption isotherms of the ACFs from 10
-7

 to 0.3 relative 

pressures. Adsorption measurements at such low relative pressures are required in order 

to obtain information about the ultramicropores (<7 Å). All isotherms are IUPAC Type I 

(Sing et al., 1985), and show microporous adsorption behavior. The results clearly show 

the differences among the nitrogen uptakes of the different fractions.  
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Fig. 3.20 Nitrogen isotherms of 6-hr, direct-activated carbon fibers from all seven 

precursors, showing the volume of N2 adsorbed (cm
3
 at standard 

temperature and pressure (STP)) per gram of ACFs at different relative 

pressures (p/p
0
) from 10

-7
 to 0.3. (p

0
: saturation pressure of the adsorbent 

at liquid nitrogen bath temperature (77 K)). 

 

 

In order to see the significance of the differences in nitrogen adsorption behavior 

among the different precursors, total nitrogen-uptake values of all fractions at a constant 

relative pressure of 0.3 were compared; these results are given in Fig. 3.21. Although the 

values at a relative pressure of 0.3 were chosen because they had the highest uptake 

values, Fig. 3.20 shows that all isotherms are essentially parallel to each other. Therefore, 

choosing another relative pressure would have given the same results. Fig. 3.21 shows 

that even for the fully isotropic (Dimer-1, Dimer-2, 750psig, 760psig) ACFs, the nitrogen 

uptake decreases with increasing molecular weight. Thus, even if there is no molecular 
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order (brought about by mesophase content), the precursors that are composed of smaller 

(i.e., lower mol wt) molecules have a higher pore volume. Also of interest is the dramatic 

drop-off in nitrogen uptake that occurs when we undergo the transition from isotropic 

(760psig) to anisotropic (780psig) behavior, even though the increase in molecular 

weight (see Fig. 3.21) is quite modest. Note how this behavior corresponds well with the 

drop in % burn-off observed in Fig. 3.18, when we move from isotropic (760psig) to 

anisotropic (780psig) fibers.  According to Marsh and Reinoso (2006), this phenomenon 

occurs because of stacking of the long micrographene layers forming the mesophase  

 

Fig. 3.21 Nitrogen-uptake values of 6-hr, direct-activated fibers at a relative 

pressure of 0.3 (from Fig. 3.20) based on average molecular weight (error 

bars = ± 1 std dev). The lines connecting the data are to guide the reader’s 

eye only. 
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regions, so that the activating gas (i.e., carbon dioxide) cannot gain access to the inner 

carbon atoms of the mesophase regions of the fibers during activation, preventing the 

formation of micropores.  

Density Functional Theory (DFT) was used through preinstalled software 

(Micromeritics Inc., DFT Plus) to interpret the adsorption isotherm data and to obtain 

pore size distributions. To briefly explain (Webb and Orr, 1997), DFT predicts the 

distribution of adsorbate molecules from the wall of the pores for a specific, assumed 

pore geometry (slit-shaped in our case) and pore size at a specific temperature and 

pressure by minimizing the free energy of the system. For each pore size, the distribution 

is predicted over a range of pressures at a specific temperature, and an adsorption 

isotherm specific to that pore size is obtained. Then, the experimental adsorption 

isotherm is fitted using a deconvolution method, assuming the isotherm is the sum of 

individual contributions of each pore of a different size.  

Figs 3.22 and 3.23 show the cumulative and incremental pore size distributions of 

the direct-activated, precursor carbon fibers, respectively. All pore volume values are 

specific pore volumes, i.e., volume per gram of ACF sample. As shown by comparing 

Fig. 3.23a to Fig. 3.23b, the higher nitrogen uptake of the fibers made from lower mol wt 

isotropic precursors  is not because they have larger pores, but because they have more 

pores, both ultramicropores (<7 Å) and larger-sized ones. We believe the reason for this 

is that the smaller molecules form shorter, defective-micrographene layers, which allow 

easier access of the gasifying agent (CO2) to the inner carbon atoms, and thus their easier 

removal from the microstructure. In other words, because the micrographene layers are 
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shorter, it is easier for the activating gas cut a pore (channel) from one micrographene 

layer to the next. A similar trend was observed for those ACFs containing partial amounts 

of mesophase (780psig and 800psig) (see Fig. 3.23b); however, for 830psig (100% 

mesophase) ACFs almost no pores smaller than 13 Å were observed, showing that CO2 

activation is insufficient for the activation of mesophase fibers. 

 

 

 

Fig. 3.22  Cumulative pore size distributions of 6-hr, direct-activated carbon fibers 

prepared from all seven precursors. Data was obtained using the 

preinstalled software (DFT Plus, Micromeritics Inc.) based on 

interpretation of nitrogen adsorption data via Density Functional Theory, 

assuming slit-shaped pores.  
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Fig. 3.23 Incremental Pore size distribution of 6-hr, direct-activated carbon fibers 

prepared from all seven precursors. Data was obtained using the 

preinstalled software (DFT Plus, Micromeritics Inc.) based on 

interpretation of nitrogen adsorption data via Density Functional Theory, 

assuming slit-shaped pores. For clarity, (a) isotropic and (b) mesophase-

containing fibers were plotted in separate graphs.  
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Both preliminary molecular modeling studies conducted at Oak Ridge National 

Laboratory (ORNL) and the study of Cabria et al. (2007) have shown that the optimum 

pore size for hydrogen storage would be 6-7 Å. Therefore, the volume of the 1
st
 peak 

(representing ultramicropores) in the incremental pore distribution graphs (Fig. 3.23) is 

the one of primary interest for hydrogen-storage purposes. 

In Fig. 3.24, we have plotted both the total pore volume and the volume of the 

major peak of interest in Fig. 3.23a (i.e., the ultramicropores, or 1
st
 peak) vs. precursor 

type and precursor molecular weight. “1st peak” volumes were taken from cumulative 

pore volume data (i.e., Fig. 3.22) at a pore width of 6.8 Å, while total pore volumes were 

taken at a cumulative pore volume of 30 Å. Analogous to the N2 uptake plots in Fig. 

3.21, we see a steady drop in both 1
st
 peak and total pore volume with increasing 

molecular weight for the isotropic precursors, and then a transition to an even steeper 

drop off in pore volume with the onset of molecular order and anisotropy.  

Additional insights are obtained by plotting the ratio of the 1
st
 peak volume to the 

total pore volume (Fig. 3.25). Thus, we see that this ratio is virtually constant for the 

isotropic fibers, starts to decrease with increasing mesophase content, and then plummets 

as the mesophase content approaches 100%. 
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Fig. 3.24 Pore volume of 6-hr direct-activated fibers. Pore volumes were taken from 

cumulative pore volume data (Fig. 3.22) and plotted based on average 

molecular weight (error bars = ± 1 std dev). The lines connecting the data 

are to guide the reader’s eye only. 
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Fig. 3.25 Ratio of the volume of the pores smaller than 7 Å to the total pore volume 

(<30Å) of the 6-hr, direct-activated fibers based on average molecular 

weight (error bars = ± 1 std dev). The lines connecting the data are to 

guide the reader’s eye only. 
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the mesophase-containing fibers (i.e., the 780psig and 800psig fibers) were assumed to be 

the same as the specific pore volumes of the 100% mesophase 830psig precursor. (The 

830psig fibers were chosen because, being 100% mesophase, their specific pore volumes 

are entirely those of the mesophase region.) As the pore volumes of the mesophase 

regions are significantly less than those of the isotropic regions, assuming that the 

specific pore volumes of all mesophase regions are the same should be a reasonable 

approximation.  

Using the above approximation and knowing the mesophase percentages of the 

780psig and 800psig precursors, the specific pore volumes in these precursors 

corresponding to their isotropic regions were then calculated. In a similar manner, the 

activation rates of all mesophase regions were assumed to be the same, and based on this 

assumption % burn-off values corresponding to the isotropic regions were calculated. 

Then, the isotropic-phase specific pore volumes of 780psig and 800psig ACFs calculated 

above were divided by the isotropic-phase % burn-off and multiplied by 100 in order to 

eliminate the differences between the burn-off levels (see Appendices B for details).  

Results are shown in Fig. 3.26 and indicate that the trend of decreasing pore 

volume with increasing molecular weight is better-behaved when the mesophase regions 

are factored out. However, the higher slope of the curve above the 760psig precursor 

shows that to some extent, the mesophase regions are probably limiting the access of 

activating gas (CO2) molecules to the isotropic regions closer to the center of the fibers.  
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Fig. 3.26 Specific pore volumes per burn-off of the isotropic phase of the ACFs 

based on average molecular weight. For mesophase-containing fibers 

(780psig and 800psig) an approximate specific pore volume for isotropic 

phase was calculated using their mesophase area % and the pore volume 

of 100% mesophase (830psig) fibers. Details can be found in Appendix B. 

The lines connecting the data are to guide the reader’s eye only. 

 

 

 

3.7 The Effect of Direct-Activation Time on Burn-off and Final Porosity of Dimer-1 

Activated Carbon Fibers 

In the work discussed above, all precursor fibers were direct-activated at the same 

set of conditions, that is, for 6 hr at 840 ˚C. Thus, in order to determine how pore 
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burn-off vs. direct-activation time results for Dimer-1 samples are given in Fig. 3.27. The 

higher initial slope (see Fig. 3.27) shows that the activation rate was higher at the initial 

stages of the activation process, while it was essentially constant at the latter stages of the 

activation process.  

While Fig. 3.28a shows the nitrogen adsorption isotherms at relative pressures 

(p/p
0
) of 10

-7
 to 0.3 for all Dimer-1 samples, Fig. 3.28b shows the nitrogen-uptake values 

only at the highest relative pressure (0.3) measured (for an easier comparison). As 

expected, as the degree of burn-off increased, the total nitrogen uptake also increased. 

The linear relationship between the nitrogen uptake and burn-off level was maintained, 

indicating a similar pore formation mechanism in all Dimer-1 fibers. Also, the 

incremental pore distribution plot (Fig. 3.29) shows that there is a significant increase in 

the 1
st
-peak volume (3.9 - 6.8 Å pores) as we increase from 3 hr to 6 hr of direct 

activation, but the increases in 1
st
-peak volumes for  9 and 12 hrs are somewhat smaller.  

In order to investigate the pore formation mechanism more closely, formation 

rates of different sizes of pores (i.e., the increase in volume of a specified size of pores 

per hour) were plotted in Fig. 3.30. As shown there, the rate of formation of 3.9 - 6.8 Å 

pores was initially almost an order of magnitude higher than the rate of formation of 

larger pores (i.e., 6.8 - 30 Å pores). However, the rate of formation of 3.9 - 6.8 Å pores 

decreased dramatically, while that of larger pores (i.e., 6.8 - 30 Å pores) slowly increased 

with increasing activation time (thus, burn-off). Until about 6 hr of direct activation time, 

the rate of formation of 3.9 - 6.8 Å pores was still higher than for the larger pores. Thus, 
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these results show that as part of the initial activation mechanism, new pore formation is 

much more dominant than pore enlargement.  

Recall the non-graphitizable (i.e., isotropic) carbon model of Franklin (Fig. 1.2) to 

help us understand the activation mechanism. Based on her model, non-graphitizable 

carbon material is composed of groups of short graphene layers. Within each group, the 

graphene layers are unidirectional; however, each group has different, random directions. 

Although her model is conceptually correct, one must note that the graphene layers 

forming the groups are not perfectly planar or well-ordered, instead they are defective, 

bent, and not perfectly parallel to each other. 

Therefore, based on our results and our basic understanding of isotropic 

precursors and activated carbon structure, new pore formation can be expressed as the 

selective removal of one of the defective micrographene layers within a group of several 

micrographene layers, and pore enlargement can be expressed as the removal of 

additional defective micrographene layers from the same group that are adjacent to the 

first removed layer. These micrographene layers are most probably the PAH molecules 

that constitute the pitch precursor, that is, the dimer molecules in our case.  As all 

micrographene layers forming a group are not identical and will also be in different 

positions, they will have different reactivities at the edge plane of the group. Once the 

activating agent (i.e., CO2) reaches and reacts with a carbon atom (with a relatively 

higher reactivity than the other carbon atoms on the same group edge plane) from a given 

defective micrographene layer and extracts that carbon atom, that micrographene layer 

(i.e., molecule) now becomes more reactive. Therefore, the gasification reaction is 



133 

 

expected to continue until this molecule (i.e., layer) is completely gasified and removed. 

Therefore, based on the pore formation rate results (Fig. 3.30) and discussions in the 

above paragraphs, we may conclude that the activation mechanism is governed first by 

the removal of a single defective micrographene layer from a group of defective 

micrographene layers, and at latter stages of activation second or further layers are also 

removed. The peaks in the incremental pore size distribution graph of Dimer-1 ACFs (see 

Fig. 3.29) can be used to further elucidate their structure. The fact that the first two peaks 

are completely isolated and that the peaks overlap beginning with the third peak may be 

interpreted as each micrographene group being composed of at least four dimer 

molecules (i.e., layers). 

 

Fig. 3.27 % Burn-off (direct-activation weight loss excluding carbonization) of 

Dimer-1 fibers as a result of direct-activation experiments over time 

intervals of 3, 6, 9, and 12 hr (error bars = ± 1 std dev). 
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12hr

6hr

9hr
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Fig. 3.28 Nitrogen-uptake values of Dimer-1 fibers as a result of direct-activation 

experiments over time intervals of 3, 6, 9, and 12 hr. (a) Nitrogen isotherm 

at p/p
0
 of 10

-7
 to 0.3, and (b) nitrogen-uptake values at p/p

0
 of 0.3 vs. % 

burn-off (error bars = ± 1 std dev). 
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Referring to Fig. 3.30, it is also important to note that the volume of pores larger 

than 6.8 Å increases relative to the pores smaller than 6.8 Å after 6 hr of direct-activation 

time. Thus, these results support the use of 6-hr direct activation, both for the 

development of pores smaller than 6.8 Å and for optimum yield. 

 

 

12hr, 44.6% Burn-off

6hr, 28.4% Burn-off

9hr, 36.1% Burn-off

3hr, 13.8% Burn-off

 

Fig. 3.29 Incremental pore size distributions of direct-activated Dimer-1 fibers for 

direct-activation times ranging from 3 to 12 hrs. Data was obtained using 

the preinstalled software (DFT Plus, Micromeritics Inc.) based on 

interpretation of nitrogen adsorption data via Density Functional Theory, 

assuming slit-shaped pores. 

 

 

 Finally, we note that the increase obtained in the 1
st
-peak volume of 6-hr direct-

activated fibers when comparing 760psig precursor to Dimer-1 precursor (see Fig. 3.23a) 

is essentially the same as the increase obtained when comparing 6-hr, direct-activated 
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Dimer-1 fibers to those activated for 12 hours (Fig. 3.29). This shows how much of a 

difference the composition of the precursor can make in the volume of the 

ultramicropores available in ACFs. 

 

 

Fig. 3.30 Pore formation rate of direct-activated Dimer-1 fibers for direct-activation 

times ranging from 3 to 12 hrs. Pore size ranges are taken from the 

incremental pore size distribution peaks given in Fig. 3.29.  
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4. CONCLUSIONS AND RECOMMENDATIONS 

4.1 Conclusions 

Although researchers have previously investigated the effect of precursor 

composition on the final pore structure of activated carbon fibers (ACFs), the precursors 

compared in those studies were from different origins (e.g. coal-tar pitch vs. petroleum 

pitch), and the constituents of the precursors were not well-defined. In this study, the pore 

structure of ACFs was successfully controlled by manipulating the molecular weight 

distribution of precursor pitch fractions prepared from the same mother pitch. Results 

were used to obtain a better understanding of the effect of precursor composition on the 

properties and performance of ACFs. Conclusions of this study are given below. 

 

4.1.1 Precursor Production 

Seven precursors with different mol wt distributions were produced by 

fractionation of the mother pitch M-50. For the production of these precursors, dense-

gas/supercritical extraction, low-pressure/high-temperature stripping, and vacuum 

evaporation processes were all used.  

By means of a single, dense-gas extraction (DGE) column operating at 350 ˚C and 

at various pressures (i.e., 750-830 psig, or 51.7-57.2 bar), five precursors were produced 

as bottom products. The average mol wt of the pitch cuts increased with increasing 

operating pressure. In addition, two additional precursors representing middle cuts of the 

mother pitch M-50 were produced via combinations of DGE with low-pressure/high-

temperature stripping (Dimer-1) and vacuum evaporation (Dimer-2). In both cases a 
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monomer/dimer mixture was collected as the top product of a DGE process operating 

under a positive temperature gradient from column bottom to top (330-380 ˚C for the 

production of Dimer-1; 350-400 ˚C for the production of Dimer-2) and at a pressure of 

1000 psig, or 68.9 bar. Each mixture was then further processed to obtain the desired 

dimer-rich fraction. In particular, Dimer-1 was collected as the bottom product of a 

second packed column operating as a stripper at atmospheric pressure and high-

temperature (380 ˚C), while Dimer-2 was produced in a vacuum oven, evaporating away 

all of the monomer and some of the low mol wt dimer molecules from the 

monomer/dimer mixture at 350 ˚C and 2 mbar.  

 

4.1.2 Mesophase Analysis 

Because the presence of mesophase is known to interrupt the activation process, 

three precursors with varying amounts of mesophase were produced in addition to four 

fully isotropic precursors, in order to isolate the effects of molecular weight from the 

effects of molecular order. Mesophase analyses of all precursors were carried out using 

polarized-light microscopy, and their photomicrographs were taken using a digital 

camera. The mesophase analyses of the precursors via polarized-light microscopy were 

carried out at UCSD by Dr. Fathollahi and co-workers, because the photomicrographs 

initially obtained at Clemson University were not clear. However, the procedure for 

obtaining micrographs was subsequently modified, and clear photomicrographs were 

obtained during our heat-treatment study of the 780psig samples (see below). 



139 
 

Furthermore, the color enhancement obtained using the “Auto-level” function in 

“Photoshop 6.0” has improved the quality of the photomicrographs significantly.  

In addition to polarized-light microscopy, the carbonized fibers prepared from all 

precursors were analyzed via wide-angle X-ray diffraction (WAXD) as an independent, 

alternative analysis of molecular order. Azimuthal intensity spectra obtained at the 002 

peak clearly distinguish between the isotropic and the anisotropic (i.e., mesophase-

containing) fibers. The spectra of all mesophase-containing fibers formed a peak, while 

the spectra of the isotropic fibers were randomly scattered. These WAXD results were a 

significant help to our study, as they definitely established that the amount of the 

mesophase present in the 760psig precursor (<1% by polarized-light microscopy) had no 

effect on molecular order, and that the precursor could be considered as essentially 

isotropic in our analysis.  

 

4.1.3 Heat Treatment of 780psig Precursor 

In order to determine how easily the mesophase spherules present in a given 

precursor could be converted into bulk mesophase during processing, heat-treatment tests 

at a relatively low temperature (360 ˚C) were carried out on the 780psig precursor, which 

contained a significant percentage (4%) of mesophase in the form of spherules. These 

heat treatments, ranging from 30 min to 5 hr, resulted in a significant increase in the size 

of the mesophase spherules and the formation of mosaic/bulk mesophase. Interestingly, 

the mol wt distribution as measured by MALDI remained practically the same; 

furthermore, the Mettler softening point (MSP) of the precursor only increased from 299 
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˚C to 313 ˚C as a result of the 5-hr heat treatment. Additional evidence suggests that 

minimal change in the molecular composition of the pitch occurred as a result of the heat 

treatment conditions as follows: (1) The heat treatment temperature (360 ˚C) was below 

that suggested by McHenry (1976) for the formation of mesophase pitch via thermal 

polymerization (380-440 ˚C); (2) in our laboratory, the reaction of dimer species to form 

tetramer molecules was not observed to be significant until around 400 ˚C; (3) Cervo et 

al. (2008) reported a similar increase in the mesophase content of an extracted petroleum 

pitch with a mild heat treatment at 330 ˚C to what we observed; and (4)  Diefendorf and 

Riggs (1980) reported that a solvent-extracted isotropic pitch can be converted into a 

mesophase pitch by heating to a temperature between 230 and 400 ˚C. In summary, the 

body of these results indicates that pitch precursors can require a nontrivial time in the 

molten state in order for the necessary molecular motion to occur such that they can reach 

their potential level of mesophase formation. 

 

4.1.4 Fiber Spinning and Stabilization 

One of the most critical steps of the ACF production in this study was the 

conversion of the pitch precursor into fibers. Because each spinning trial requires at least 

45-50 g of precursor, a failure to obtain fibers during this trial results in the loss of all 

precursor, and additional material must be produced, which is a time-consuming task. 

Thus, proper estimation of the approximate spinning temperature was crucial for the 

success of the spinning process. Fortunately, a good correlation between the MSPs and 
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the spinning temperatures of the precursors (i.e., spinning temperatures were 20-25 ˚C 

above the MSPs) was observed. 

 

4.1.5 Direct Activation 

The initial motivation of this dissertation was to study the storage of hydrogen in 

pitch-based ACFs. In order to enhance the hydrogen storage capability of the ACFs, a 

Pd(acac)2 metal complex was added to the precursor prior to the spinning process, and 

ACFs were prepared. It was observed that Pd particles migrated and agglomerated at the 

elevated temperatures of the carbonization and activation processes. Therefore, in order 

to minimize the agglomeration of the Pd particles, the separate carbonization process was 

omitted and the stabilized fibers were directly activated under CO2 flow. Furthermore, the 

activation temperature was lowered from 900 ˚C to 840 ˚C for the same reason. Although 

Pd-containing ACFs were not part of the focus of this dissertation (but were the focus of 

an associated project with ORNL), the direct activation procedure at 840 ˚C was 

nonetheless adopted. All fiber used in this study were prepared using the direct-activation 

procedure, and ACFs with narrow, high-volume porosity were obtained as in the 

traditional activation process, where a separate carbonization process is used. 

 

4.1.6 The Impact of Precursor Molecular Weight Distribution and Molecular 

Composition  

 Mol wt distributions (i.e., MALDI spectra) and MSPs of all precursors were 

determined. As a main focus of this dissertation, ACFs were prepared from all seven 
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precursors, and the effect of the mol wt and composition differences among the 

precursors on the overall activation process (including oxidation, carbonization, direct 

activation, and porosity) was investigated.   

The differences between the MSPs of the 760psig and the 780psig precursors 

were found to be significant, considering the fact that their mol wt distributions (as 

observed by MALDI) were so close to each other. Rӓder  and co-workers (Cristadoro et 

al., 2007) have reported that the MALDI signal response of pure component PAH species 

which are prone to stacking in the solid state is significantly less than that of PAH species 

that are in more random arrangement. Thus, the similarity between the MALDI spectra of 

these two precursors is likely due to the fact that the higher mol wt molecules present in 

the 780psig precursor are prone to stacking, and thus their MALDI signal response is 

significantly less than that of the lower mol wt molecules present in 780psig precursor. 

The results of the mild heat-treatment tests on the 780psig precursor also showed that 

some of the molecules present in the 780psig precursor are highly prone to the formation 

of bulk mesophase.  

As-spun fibers prepared from all precursors were oxidized in an air convection 

oven, and the weight change of the fibers during the process was recorded at each 

temperature set point. Also, in order to determine the carbonization yield, all stabilized 

fibers were separately carbonized under nitrogen flow, and the carbonization weight 

losses were measured for each precursor. As a result of oxidative stabilization, all fibers 

gained 15-16% of their initial weight, except Dimer-2 fibers, which gained slightly higher 

weight (~18%) than the rest of the fibers. Also, weight losses during carbonization were 
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found to be slightly higher (36-37%) for the lower mol wt precursors (Dimer-1, Dimer-2, 

and 750psig), while they were almost the same for the rest of the precursors (~35%). 

Because of these results, we have suggested that the lower average mol wt fibers, 

especially the Dimer-2 fibers, have higher alkyl (aliphatic) content than the other fibers, 

even though there is inadequate evidence to support this conclusion. For example, 
1
H-

NMR runs have shown no significant difference between the ratio of aliphatic to aromatic 

protons for Dimer-1 and Dimer-2 precursors, although Dimer-2 fibers gained more 

weight during oxidation and lost more weight during carbonization than Dimer-1 fibers. 

However, it should be noted that the differences in oxidation weight gains and the 

carbonization weight losses were only 1-2 wt %. Also, solvent-based MALDI results 

showed that Dimer-1 precursor contains more tetramer species than Dimer-2 precursor, 

and this difference might help us explain the differences between the oxidation and 

carbonization weight changes of Dimer-1 and Dimer-2 fibers, assuming that the above 

conclusion about the lower mol wt species having higher alkyl content is true. 

Stabilized fibers produced from all precursors were direct-activated for 6 hr, and 

% burn-off values were calculated for each sample using the difference between the total 

weight loss and the average carbonization weight loss measured during carbonization 

tests. Because all fibers were activated for the same amount of time (i.e., 6 hr), the burn-

off levels were also considered as a measure of the activation rate. The burn-off values 

(i.e., ~28% burn-off), and therefore the activation rates, of all isotropic fibers were found 

to be essentially constant, while the presence of the mesophase spherules and the bulk 

mesophase caused a significant drop in activation rate (i.e., ~20% burn-off for 780psig 
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and 800psig precursors, and ~9% burn-off for 830psig precursor). These results show that 

a similar activation mechanism occurred for all isotropic fibers, and that the activating 

gas gained access to the inner regions of the fibers. On the other hand, the mesophase 

spherules and the bulk mesophase regions did not activate and probably limited the 

access of the activating gas to the inner isotropic regions. 

The specific pore volume of ACFs direct-activated for 6 hrs was found to increase 

as the average mol wt of their precursor decreases. Also, the mesophase content of the 

precursor was found to cause a further decrease in specific pore volume and interrupt the 

formation of micropores. The ratio of the pores smaller than 7 Å (i.e., the desired pore 

size) to the total pore volume (3.9-30 Å) was found to be the same for all isotropic 

precursors, whereas it significantly dropped for mesophase-containing precursors. These 

results support the conclusions in the previous paragraph, and show that in the case of 

isotropic fibers the formation of ultramicropores continues as the activating gas reaches 

to the inner regions of the fiber at higher burn-off levels, while widening of the 

previously formed narrow pores also continues. In the case of fibers containing 

mesophase and thus having a significant degree of anisotropy, at higher burn-off levels 

pore widening dominates over the formation of new pores, as the activating gas cannot 

gain access to inner, unreacted regions of the fiber core.  

In addition to the 6-hr direct activation performed on all seven precursors, the 

effect of direct-activation time on fiber properties was also studied, albeit only with the 

Dimer-1 precursor. Results indicated that the % burn-off increased essentially linearly 

with activation time up to the maximum measured activation time of 12 hr with 45% 
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burn-off. In other words, the activation rate was constant up to 45% burn-off.  Also, the 

nitrogen uptake of all Dimer-1 ACFs at the same conditions also increased linearly with 

% burn-off, showing that a similar activation mechanism was in force throughout the 

activation process. 

 

4.2 Recommendations 

4.2.1 Heat Treatment 

Heat-treatment tests were carried out on the 780psig precursor in order to observe 

the change in mesophase content and the mesophase development. Although the results 

were not presented in this dissertation (see Appendix C), heat-treatment tests were also 

carried out on fractions of mother M-50 pitch other than those used in this study. During 

these tests, the dimer peak of the smoothed, normalized MALDI spectra of some of the 

samples was observed to increase as a result of 1-hr heat treatment at 360 ˚C under 

nitrogen flow. Because none of the fractions tested contained any monomer molecules 

that could react to form dimer molecules, and the heat-treatment temperature was too low 

to cause a decomposition of any higher mol wt species, the observed incident was likely 

to be artificial. One possible explanation is that the stacking of the higher mol wt species 

to form mesophase makes the desorption of those species harder during MALDI analysis 

and causes a decrease in their MALDI signal response relative to the MALDI signal 

response of the dimer species. Because the samples were possibly inhomogeneous after 

heat treatment, the MALDI spectra for different samples were not consistent. 
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In order to eliminate the possible inhomogeneity issue, a mini-ball mill (Thermo 

Electron Corp., model Wig-L-Bug) can be used to homogenize the sample after heat 

treatment and prior to MALDI sample preparation. Therefore, it is recommended that the 

heat-treatment tests should be repeated using a mini-ball mill, using an organized set of 

experiments in order to see how mesophase formation/development affects the MALDI 

signal response of the precursor. The above work should be considered as a first step into 

the development of MALDI as a more effective tool for analyzing fractions containing 

mesophase, which should be a long-term goal in the Thies research group. Finally, 

application of heat-treatment tests on various additional fractions of M-50 mother pitch 

with different mol wt distributions is recommended, as they can help us better understand 

the effect of mol wt distribution on mesophase development. 

 

4.2.2 Alternative M-50 Fractions 

Although the primary focus in this study was to obtain pores with a size of 6-7 Å 

for hydrogen storage, different pore size distributions might be preferred for other 

applications. Furthermore, as shown in Chapter 3, in order to maximize the number of 

pores with a size of 6-7 Å, lower mol wt (and therefore lower MSP) precursors are 

preferred. Thus, a longer oxidative stabilization procedure at lower temperatures has to be 

applied. Unfortunately, this would slow down the whole ACF production. Therefore, we 

recommend that isotropic precursors of different molecular compositions with higher 

MSPs be used to prepare ACFs in order to further investigate the effect of composition 

on pore formation. Other precursors that are recommended are ( a) a high-MSP, isotropic, 
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trimer-rich M-50 fraction (our colleague David Esguerra obtained an isotropic trimer-rich 

fraction with a MSP of ~300 ˚C); (b) an M-50 fraction with a bimodal mol wt 

distribution, such as dimer/tetramer, which can be produced by the reaction of dimer 

species. As these fractions will have relatively higher MSPs than the isotropic precursors 

used in the study of this dissertation, a much faster oxidative stabilization procedure can 

be employed in order to see if the oxidation rate affects the activation behavior of the 

fibers and the final pore structure. 

 

4.2.3 Alternative Activation Methods 

As mentioned in Chapter 1, there are alternative activation methods, such as 

steam activation and chemical activation, that can be used to produce ACFs. Depending 

on the activation method, different porosity profiles can be achieved. Also, these 

alternative methods may have other advantages. For example, steam activation creates 

larger pores compared to CO2 activation; however, the tensile strength of the fibers is 

preserved in steam activation, while it significantly decreases in CO2 activation. Also, via 

chemical activation, better activation of the mesophase precursors can be achieved than 

via physical activation with CO2 or steam. Furthermore, some researchers have reported 

that ACFs with narrower microporosity can be obtained via chemical activation than by 

CO2 activation. As mentioned earlier in this chapter, different specific pore sizes could 

also be of interest for different applications. Therefore, an evaluation of these two 

alternative activation methods is recommended with precursors of well-defined molecular 
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weight and composition, analogous to the work done herein. In particular, chemical 

activation might be preferred as it can also activate the mesophase regions.  

 

4.2.4 Alternative Mother Pitch 

The precursors used in this study were fractions of the same mother petroleum 

pitch, M-50. Although all these precursors had different mol wt distributions than M-50 

itself, they still had relatively broad mol wt distributions, and they were all composed of a 

range of PAH backbone structures and their alkylated derivatives. Therefore, the use of 

another well-defined pitch of known chemical composition and a different chemical 

nature as a mother pitch, and using its fractions to prepare ACFs, could help us further 

understand the effect of the precursor composition on the activation mechanism and the 

porosity of ACFs. Choosing a mother pitch with a narrow mol wt distribution should 

make it easier to define its constituents, as there will be fewer species.  As an example of 

such a pitch, anthracene pitch has far fewer species than the M-50 petroleum pitch used 

in this study (Burgess, 2010, p149).  

  Burgess and Thies (2011) have shown that oligomeric species that constitute the 

M-50 pitch are formed by the combination of the monomeric species via the formation of 

five-membered rings. These five-membered rings cause a strain on the molecules, and 

thus a bending of the molecules. Although this bending is relatively small, it could affect 

the arrangement of the precursor molecules. Therefore, conducting a similar study on a 

mother pitch that has been prepared using M-50 monomeric molecules similar to M-50, 

but with the molecules combined via six-membered rings to form oligomers, might help 
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us better understand the effect of precursor composition on the properties of final 

product. Six-membered ring connections might cause an increase in molecular order and 

stacking of the molecules, which is a disadvantage in terms of CO2 activation; however, 

the study would still be useful for understanding the effect of composition on mesophase 

formation. Fractionation of such a mother pitch might result in pitch fractions with higher 

mesophase content at a lower average mol wt than M-50 fractions, and thus with lower 

softening points, as softening point would be expected to be lower for lower average mol 

wt fractions. Therefore, we may recommend the production of M-50-like pitch with six-

membered ring connections from M-50 monomeric molecules, and use it as a mother 

pitch to fractionate and make ACFs. Catalytic polymerization is recommended, as it 

results in formation of six-membered ring connections. 

 

4.2.5 Additional Recommendations 

 Anisotropy of the precursors was determined using polarized-light microscopy. In 

order to obtain clear photomicrographs, it is important that the sample surface is well 

polished. In order to improve the polishing, Kundu’s procedure (2006) was modified by 

adding grinding steps and minimizing the force applied to the sample surface. However, 

if the sample is soft and deep scratches cannot be avoided, then it is recommended to 

slightly oxidize the sample surface after the grinding step with 400-grit SiC paper. 200 ˚C 

can be used as an oxidation temperature, as suggested by Fathollahi and White (1994). 

This process will help to harden the surface and improve the scratch resistance of the 

sample surface.  
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MALDI analysis is one of the most important characterization methods used by 

Thies and co-workers. Samples to be analyzed are mixed with matrix material at a 

predefined proportion using a mini-ball mill (Thermo Electron Corp., model Wig-L-

Bug). The homogeneity of this mixture is important for consistency, as the matrix/sample 

ratio also has an effect on the spectra obtained. In this regard, our group had problems 

during MALDI sample preparation of monomer-rich M-50 fraction, because the material 

was sticky. An attempt towards the solution of this problem was the solidification of the 

material prior to being put into the mini-ball mill by pouring liquid nitrogen on it; 

however, during mixing/shaking the material melts down and becomes sticky again, 

preventing homogenous mixing. To improve this process and to prevent the melting of 

the material during mixing, use of a cryogun (Brymill Corp., model no. BRY-B-700), 

which is a type of liquid nitrogen spray, is recommended. Spraying liquid nitrogen during 

mixing/shaking to the mini-ball mill intermittently will help to keep the material solid 

during the entire process. 

As a final comment, it is recommended that extra attention be paid to the 

residence time of a pitch during the DGE processes, especially when higher temperatures 

(i.e., approaching 400 ˚C) are employed. At these temperatures, higher residence times 

could result in a more ordered product. Therefore, fluctuations in the residence time 

during the DGE process could result in products with different mesophase content even at 

the same extraction conditions (i.e., the same temperature, pressure and solvent/pitch 

ratio). 
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Appendix A: 

Instruments and Materials 

A.1 Instruments for Activated Carbon Fiber Production 

Precursor production 

 DGE apparatus (Earle 222) 

o Stainless steel column with an i.d. of 1.8 cm and a height of 2.0 m 

o Stainless steel packing, Cannon Instrument Co., part no. 3947-A20 

o  Single-screw extruder, Alex James and Assoc., model no. AJA 58 

o Metering pump, Zenith Pumps, Model HPB, 0.160 ml/rev 

o HPLC pump, 

 

 Vacuum oven evaporation 

o Vacuum Atmospheres Model VTW Vacuum Oven, connected to a Model 

Dri-Lab-08/85 nitrogen glove box (Earle 31)  

 

 Precursor drying 

o Vacuum oven, Fisher Scientific, model no. 285A  (Earle 116) 

 

ACF preparation 

 Spinning (Earle B15) 
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o Batch-spinning cartridge, piston, spinneret, nitrogen purge extender, 

temperature and pressure probes, pressure cap, bolts; Alex James and 

Assoc. 

o Batch spinning instrument, Alex and James Inc.  

o Spinning Mesh filter, Alex and James Inc., part no. RBD3040148.51 

o Graphite tape, Teadit Inc., part no. 2550  

o Anti-seize lubricant, Permatex, item no. 80078  

 

 Antechamber attached to the nitrogen glove box (Vacuum Atmosphere Inc., 

model no. Dri-Lab-08/85) (Earle 31) 

 

 Oxidation (Earle 202) 

o Fisher Scientific air convection oven, model: 825F 

o Ohaus Corporation lab scale, model no. AR2140  

 

 Carbonization and direct activation (Earle 202) 

o Custom-made Lindberg tubular furnace, General Signal, project no. 

9305198 

o Quartz boat, or sample holder, Sigma-Aldrich, model no. Z406627 

 

A.2 Analytical Instruments 

 Molecular weight (mol wt) analysis  
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o Bruker Daltonics Autoflex MALDI-TOF mass spectrometer equipped 

with a 337 nm nitrogen laser (Earle 116) 

o Mini-ball mill, Thermo Electron Corp., model no. Wig-L-Bug (Earle 222) 

 

 Softening point measurement 

o Temperature-monitored hot plate (Melting Point Apparatus), Fisher-Johns, 

serial no.1833 (Earle 222) 

o Mettler Dropping Point Cell instrument, model no. FP83HT (Earle B17) 

 

 Sample polishing (Earle B15) 

o Mounting cup with an i.d. of 1.25”, Allied High Tech Products Inc., part 

no. 197-10005  

o GCA Precision mechanical convection oven, Precision Scientific Inc., 

model no. STM135 

o Buehler AutoMet sample holder (holds 6 samples), part no. 60-2483 

o Buehler AutoMet 2000 powerhead / EcoMet 3000 variable speed grinder-

polisher 

o 240-grit SiC grinding paper, Buehler Carbimet, part no. 50-10015  

o 320-grit SiC grinding paper, Buehler Carbimet, part no. 30-5108-320-100 

o 400-grit SiC grinding paper, Buehler Carbimet, part no. 30-5108-400-100 

o 600-grit SiC grinding paper, Buehler Carbimet, part no. 50-10030 

o 1200-grit SiC grinding paper, Buehler Carbimet, part no. 50-10077 
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o White label polishing paper, Allied High Tech Products Inc., part no. 90-

150-500  

o Chem-Pol Black polishing cloth, Allied High Tech Products Inc., part no. 

180-10050 

o Canned compressed air, Miller-Stephenson Allied High Tech Products 

Inc. 

 

 Polarized-light microscopy (Earle 212) 

o Olympus BX60 Microscope with cross-polarized light and a first-order red 

plate 

o soft clay, microscope slide, sample flattener 

o Sony DSC-S70 digital camera with a camera adaptor, Martin Microscope 

Company, model no. MM3XS  

 

 1
H –NMR analysis (Hunter Hall 225, Clemson University) 

o 300 MHz Bruker Avance System, 
1
H-NMR spectrometer 

 

 Wide angle x-ray diffraction (WAXD) (Rhodes Hall 305, Clemson University) 

o An osmic Micromax CuKα X-Ray source 

o Collimator with a pinhole size of 0.5mm, 

o 2D image plates 

o Fuji BAS 1800 scanner 
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 Surface Characterization (Earle 220) 

o Micromeritics Accelerated Surface and Porosity Analyzer, Micromeritics 

Instrument Corporation, model no. 2020  

o Test tube with a ½ inch i.d., Micromeritics Inc., part no. 240-61003-00 

o Seal frit assembly, Micromeritics Inc., part no. 260-25890-00 

o Antistatic gun, Bellex International Corp., model no. Milty Zerostat 3 

o Isothermal jacket, Micromeritics Inc., part no. 202-25903-00 

 

A.3 Materials 

 Isotropic petroleum pitch, M-50, Marathon Petroleum Company LLC, CAS 

68187-58-6 (Earle 222) 

 HPLC-grade toluene, Fisher Scientific, CAS 108-88-3 (Earle 222) 

 7,7,8,8- tetracyanoquinodimethane (TCNQ), TCI America, CAS 1518-16-7 

(Earle 222) 

 Pd(acac)2 (Palladium(II) 2,4 – pentanedionate, Pd 34.7%), Alfa Aesar, CAS 

14024-61-4 (Earle 202) 

 Coleman Grade carbon dioxide gas, National Welders, UN1013, 114041 (Earle 

202) 

 UHP Helium gas, National Welders  (Earle 220) 

 Liquid nitrogen (99.99% purity) in a central unit, National Welders (Earle Hall) 

 Epoxy resin, Buehler, item number: 20-8120-009 (Earle B15) 
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 Epoxy hardener, Leco Corporation, item no. 811-164  (Earle B15) 

 1μm diamond suspension, Allied High Tech Products Inc., part no. 90-33015 

(Earle B15) 

 0.05 μm alumina suspension, High Tech Products Inc., part no. 90-187505 (Earle 

B15) 

 Micro Organic Soap, Allied High Tech Products Inc., part no. 148-10000 (Earle 

B15) 

 CDCl3 (99.8% atom D), Acros Organics (Earle 220) 
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Appendix B: 

B. Weight Loss, Burn-off and Isotropic Specific Pore Volume Calculations 

B.1 Direct Activation total % Weight Loss and % Burn-off Calculation 

 

TWL = (1 – wf / wi) * 100     (B.1) 

wi’ = wi * (1 – Closs / 100)      (B.2) 

and 

BO = (1 – wf / wi’) * 100      (B.3) 

 

Where 

wi : weight of fibers before direct activation 

wf : weight of fibers after direct activation 

wi
’
 : weight of fibers after approximate carbonization weight loss is subtracted 

Closs : Average % carbonization weight loss of fibers measured by previous carbonization 

tests 

TWL: Total % weight loss 

BO : % Burn-off 
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Sample Calculation 

Direct activation total % weight loss and % burn-off calculation for Dimer-1 

fibers is given below. 

 

wi : 731 g 

wf : 330 g 

Closs : 35.8 % 

TWL = (1 – 330 / 731) * 100 = 54.9 % 

wi’ = 731 * (1 – 35.8 / 100) = 469.3 

and 

BO = (1 – 330/ 469.3) * 100 = 29.7 % 

 

 

B.2 Isotropic Phase Specific Pore Volume Calculation for Mesophase-Containing 

Fibers 

Specific pore volume of the mesophase containing fibers is equal to the 

summation of the partial specific pore volume of the mesophase portion of the fibers and 

the partial specific pore volume of the isotropic portion of the fibers. 

 

Ṽ = m * Ṽm + (1 – m) * Ṽiso      (B.4) 
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Equation B.4 was rearranged to give equation B.5 as follows 

 

Ṽiso = (Ṽ – m * Ṽm) / (1 – m)      (B.5) 

 

Where 

Ṽiso : specific pore volume of isotropic phase of the mesophase-containing fibers 

Ṽ : specific pore volume of the mesophase-containing fibers 

m : mesophase %  

Ṽm : specific pore volume of 100 % mesophase fibers (830psig)  

 

Note that all mesophase regions were assumed to have the same specific pore volume as 

830psig fibers 

 

BOiso = (BO – m * BOm) / (1 – m)     (B.6) 

 

Where 

BOiso : % burn-off of isotropic phase of the mesophase-containing fibers 

BO : % burn-off of the mesophase-containing fibers 

m : mesophase fraction 
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BOm : % burn-off of 100 % mesophase fibers (830psig)  

Note that all mesophase regions were assumed to activate at the same rate as 830psig 

fibers 

 

In order to eliminate the differences in activation rate, isotropic specific pore 

volumes of the fibers were compared after being divided by the isotropic % burn-off 

(Ṽiso / BOiso) for each precursor. Note that the isotropic specific pore volume for 830psig 

fibers is unidentified as it is 100% mesophase, and the isotropic specific pore volume for 

isotropic fibers is equal to their specific pore volume as they are 100% isotropic. 

 

Sample Calculation 

 Isotropic phase specific pore volume calculation for 780psig fibers is given 

below. The sample calculation is given here for only the total pore volume of the 780psig 

fibers. The same calculation was repeated for the 1
st
 peak volume of the fibers, too.  

 

Ṽ : 0.184 cm
3
/g 

m : 0.04  

Ṽm : 0.023 cm
3
/g 

 

Ṽiso = (0.184 – 0.04 * 0.023) / (1 – 0.04) = 0.191 cm
3
/g 

 



163 

 

BO : 20.5 % 

m : 0.04 

BOm : 9.3 % 

 

BOiso = (20.5 – 0.04 * 9.3) / (1 – 0.04) = 21.0 % 
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Appendix C: 

C. Additional WAXD Results on Carbonized Fibers  

 As mentioned in Chapter 3, wide-angle X-ray tests were carried out on a second 

set of carbonized fibers prepared from all seven precursors for reproducibility; as can be 

seen below, similar results were obtained (see Figs C.1 and C.2).  

 

002 Peaks

 

Figure C.1 WAXD analysis 2θ intensity profiles of the carbonized fibers prepared 

from all seven precursors. Note that the 002 peaks of the 780, 800, and 

830psig (dotted curves) fibers are located at higher 2θ values than the 002 

peaks of the 760psig and lower average mol wt precursors (solid curves). 
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830psig

800psig

780psig

Dimer-1
Dimer-2
750psig
760psig

 

Figure C.2 WAXD analysis azimuthal intensity distributions at approximate 002 peak 

locations for carbonized fibers prepared from all seven precursors. Note 

that the azimuthal intensity distributions of the mesophase-containing 

fibers (780psig, 800psig and 800psig) are in the form of peaks, while those 

of the 760psig and other isotropic fibers are not.    
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Appendix D: 

D. Additional Heat-Treatment Tests 

 Heat-treatment tests similar to the ones performed on 780psig samples 

were carried out on four other samples that were readily available for further observation 

of mesophase formation. First three of these samples were prepared by David Esguerra, a 

PhD candidate in Chemical Engineering at Clemson University, using two-column DGE 

operation, in which the top stream from the first column was fed to the second column. In 

particular, first column was operated at 1000 psig and a S/P ratio of 8.0/1 under a positive 

temperature gradient (ΔT), with the bottom of the column at 330 ˚C, the middle at 350 

˚C, and the top at 380 ˚C. The second column was operated at a S/P ratio of 17.8/1 under 

a positive temperature gradient (ΔT), with the bottom of the column at 350 ˚C, and the 

top at 400 ˚C and at 875psig, 900psig, and 925psig in order to produce-190 D2C2B, E-

190 D2C3B, and E-190 D2C4B, respectively. The last sample for heat-treatment tests 

was produced using single-column DGE. In particular, the column was operated at 1000 

psig and a S/P ratio of 5.1/1 under a positive temperature gradient (ΔT), with the bottom 

of the column at 330 ˚C, the middle at 350 ˚C, and the top at 380 ˚C, and bottom product 

was collected as E-136 D1C3B. 

 

During these heat-treatment tests, some interesting results were observed. As a 

result of 1-hr heat treatments at 360   C and under 1 L/min nitrogen flow, dimer peaks of 

the heat-treated samples at normalized MALDI spectra were found to increase (see Figs 

D.1a, D.2a, D.3a, and D.4a), while there was no consistent trend in MALDI peak 
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intensity spectra (see Figs D.1b, D.2b, D.3b, and D.4b). Because the amounts of samples 

were not sufficient, softening-point measurements could not be done for each sample. 

However, in general, as a result of 1-hr heat treatment the weight loss was only few 

percent, and the increase in softening point was less than 2  C. Also, Fig. D.5a and b show 

that the molecular weight distribution of the Dimer-1 precursor does not change at all as a 

result of the 1-hr heat treatment. If there was any significant loss of dimer species, we 

would have expected it to happen from the lower mol wt dimer species, so that the 

MALDI spectra of Dimer-1 precursor would have gotten narrower from the left-hand 

side. These results indicate that the observed changes in normalized MALDI spectra are 

artificial, and that the compositions of the samples actually do not change as a result of 

heat treatment.  

There can be two possible explanations that might cause these changes in MALDI 

spectra: One is the inhomogeneity of the heat-treated samples, and the other one is the 

decreased relative MALDI signal response of mesophase-forming species as a result of 

heat treatment. Since these tests were only preliminary tests, for a better understanding 

these tests need to be carried out on new samples with a controlled set of experiments, 

using the Wig-l Bug as recommended in Chapter 4, in order to eliminate the possibility of 

inhomogeneity. In all figures, photomicrographs of the samples before and after heat 

treatment are also given in order to show the change in mesophase content. 
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Figure D.1 E-1 0 D2C2  before and after 1-hr heat treatment at 360  C under nitrogen 

flow (a) Smoothed and normalized MALDI spectra, (b) maximum peak 

outline MALDI spectra, and (c) Photomicrographs showing change in 

mesophase content.  

a
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Tetramer

b

Dimer

Trimer

Tetramer
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Figure D.1 Continued.  

 

 

 
 

Figure D.2 E-1 0 D2C3  before and after 1-hr heat treatment at 360  C under nitrogen 

flow (a) Smoothed and normalized MALDI spectra, (b) maximum peak 

outline MALDI spectra, and (c) Photomicrographs showing change in 

mesophase content.  
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Figure D.2 Continued. 
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Figure D.3 E-1 0 D2C4  before and after 1-hr heat treatment at 360  C under nitrogen 

flow (a) Smoothed and normalized MALDI spectra, (b) maximum peak 

outline MALDI spectra, and (c) Photomicrographs showing change in 

mesophase content.  
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Figure D.3 Continued.  

 

 

 

 

 
 

Figure D.4 E-136 D1C3  before and after 1-hr heat treatment at 360  C under nitrogen 

flow (a) Smoothed and normalized MALDI spectra, (b) maximum peak 

outline MALDI spectra, and (c) Photomicrographs showing change in 

mesophase content.  

a
Dimer Trimer
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Figure D.4 Continued.  
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Figure D.5 Dimer-1 precursor before and after 1-hr heat treatment at 360  C under 

nitrogen flow (a) Smoothed and normalized MALDI spectra, (b) peak 

MALDI spectra, (c) Photomicrographs showing change in mesophase 

content.  
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Figure D.5 Continued 
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