
Clemson University
TigerPrints

All Dissertations Dissertations

5-2010

DEVELOPMENT OF A SPATIALY EXPLICIT
HABITAT PATCH MODEL (C-PAN) AND
COMPARATIVE ANALYSIS OF PATCH
MODELING TECHNIQUES: THE
CRAFTING OF A NEW TOOL FOR
CONSERVATION PLANNERS
Ryan Perkl
Clemson University, rperkl@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Natural Resources and Conservation Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Perkl, Ryan, "DEVELOPMENT OF A SPATIALY EXPLICIT HABITAT PATCH MODEL (C-PAN) AND COMPARATIVE
ANALYSIS OF PATCH MODELING TECHNIQUES: THE CRAFTING OF A NEW TOOL FOR CONSERVATION
PLANNERS" (2010). All Dissertations. 556.
https://tigerprints.clemson.edu/all_dissertations/556

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/168?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/556?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 

 

 

 

 

 

 

 

 

DEVELOPMENT OF A SPATIALY EXPLICIT HABITAT PATCH MODEL (C-PAN) 

AND COMPARATIVE ANALYSIS OF PATCH MODELING TECHNIQUES:  

 

THE CRAFTING OF A NEW TOOL FOR CONSERVATION PLANNERS 

 

 

A Dissertation 

Presented to 

the Graduate School of 

Clemson University 

 

 

In Partial Fulfillment 

of the Requirements for the Degree 

Doctor of Philosophy 

Environmental Design and Planning  

 

 

by 

Ryan Mitchel Perkl 

May 2010 

 

 

Accepted by: 

Victoria Chanse, Ph.D., Committee Chair 

Robert Baldwin, Ph.D. 

David Tonkyn, Ph.D. 

Mickey Lauria, Ph.D. 

 

  



ii 

 

ABSTRACT 

 

Ecological theories including island biogeography, intermediate disturbance, 

metapopulation and metacommunity all suggest that habitat patches of larger size and those 

comprised of substantial configurations of interior or core habitat possess the greatest 

potential for long-term species viability. As a direct means of mitigating edge encroachment 

and fragmentation‟s other adverse effects, there is a growing consensus among conservation 

planners that assembling larger, more cohesive tracts with substantial core area is of 

ecological value in conservation planning. Larger and more cohesive patches are believed to 

sustain larger and more viable local populations, enhance overall biodiversity, incorporate a 

wider array of natural disturbance regimes, and maintain more vulnerable, specialist species 

for the long term. Therefore, it is important that size and cohesion metrics be incorporated in 

patch and reserve modeling and design.  

This research developed a spatially explicit patch modeling approach designed to 

incorporate these metrics. This new modeling tool is entitled the Cohesive-Patch Aggregation 

and Network (C-PAN) model. It was created using ArcMap 9.3 and the Spatial Modeler 

extension. The model was first tested at a pilot scale (the State of South Carolina) and then 

up-scaled to evaluate a much larger area (the Northern Appalachian/Acadian Ecoregion). The 

C-PAN approach is most appropriate for use on species requiring substantial core area 

and those sensitive to edge characteristics. It is also intended to serve as an alternative 

approach to heavily parameterized patch modeling methods when species-specific 

parameterization data are not available.  
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There exist a number of potential benefits associated with C-PAN usage. The C-

PAN model searches landscapes for highly cohesive patches with substantial core area 

within an existing GIS framework. The aggregation and overlay processes used by the 

model also appeared to be an improvement over highly parameterized approaches which 

utilize region-growing components for generating patches. Additionally, the Landscape 

Cohesion Index (LCI) that is generated as part of the patch generation process proved 

beneficial for measuring fragmentation metrics across multiple sites and landscapes. This 

may be the first patch modeling approach to use landscape cohesion scores as a means of 

seeding patches based on their core area composition from the onset of the modeling 

process. The LCI allows users to delineate patches based on the statistical uniqueness of 

their core composition. This frees the user from selecting potentially unknown parameter 

settings when using other more complex approaches. Instead, it allows patches to be 

delineated and ranked based on how cohesive they are within the landscape.  Both of 

these features may prove attractive to users as they ultimately make the tool more readily 

accessible to less technical practitioners. 

The C-PAN model was then used to generate a unique set of patches in the 

Northern Appalachian/Acadian Ecoregion. C-PAN was then compared to two ArcGIS 

(v9.3) based commonly used patch generation tools. The tools, Corridor Designer (v1) 

and FunConn (v1) were used for this analysis because they represent two highly utilized 

approaches which are most similar to the C-PAN model in both modeling mechanics and 

process. The patch outputs from the three tools were then compared and evaluated. This 

analysis was aimed at addressing a void within the literature of comparing the results of 
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multiple patch modeling approaches. This analysis also served as a means of validating 

the C-PAN approach by comparing patch outputs of the three approaches.  

C-PAN performed well when compared to the existing patch modeling tools of 

Corridor Design and FunConn. For all of the spatial and target capture metrics measured, 

C-PAN ranked first or second among all approaches. The results indicated that the C-

PAN patch modeling approach performed as well, and better, in the patch metrics 

evaluated here (patch area, edge/area ratios, average nearest neighbor, average Human 

Footprint (HF)
1
 score, Last of the Wild (LOW) capture, and patch commission. At 

relatively high patch selectiveness, the outputs of C-PAN and Corridor design were the 

most similar in size and distribution across the ecoregion-scale study area.  

Furthermore, of the three patch delineation tools, C-PAN appears to provide users 

with greater site discrimination capabilities than Corridor Design or FunConn. This 

resulted in providing users with a more selective set of discrete patches than the FunConn 

approach. Both C-PAN and Corridor Design were effective in delineating highly 

homogenous patches. These results indicate that the C-PAN patch modeling approach 

outperforms Corridor Designer and FunConn when measures of patch cohesion and core 

area are of importance. 

A graph theory based connectivity analysis was then conducted in order to 

identify and compare linkages between patches from the three patch modeling scenarios. 

The landscape networks modeled for each of the three scenarios indicated that while local 

                                                 
1
 The Human Footprint dataset (Woolmer et al., 2008) was used as the input dataset for patch generation. 

Cells with low HF values are largely natural and were used to generate patches. Cells with high HF values 

are largely built and not suitable for generating natural patches. Averaging the HF score of each patch 

provided a measure of naturalness upon which patches could be compared further. 
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connectivity in portions of the ecoregion may exist, widespread connectivity across the 

ecoregion as a whole was less likely. This was apparent in the C-PAN and Corridor 

Design patch scenarios, as multiple connections were delineated across the majority of 

the study area. Alternatively, no connections were delineated linking portions of the large 

graphs located within the central portion of the ecoregion with smaller and more linear 

graphs located in the periphery of the region. This was attributable to natural bottlenecks 

and relatively high Human Footprint (HF)
2
 values in those potential linkage areas. The 

landscape network derived as part of the FunConn patch scenario indicated even further 

diminished connectivity within portions of the ecoregion. 

The C-PAN patch network scenario was comprised of the greatest number of 

patches. This ultimately resulted in the delineation of multiple and potentially functional 

redundancies in the landscape network. Increasing the number of patches also improved 

distance metrics within the minimum spanning tree for this scenario. More patches served 

as intermediate stepping stones which resulted in shorter linkage and edge lengths and 

smaller average area corridor requirements. The FunConn patch landscape network 

however connected significantly fewer patches. This resulted in the longest linkage and 

edge distances and the largest average corridors within the ecoregion. This represents an 

apparent tradeoff between the number of potentially beneficial redundant connections and 

total landscape network corridor area. While more connections may contribute to 

increased landscape connectivity and landscape function, the increased area requirement 

                                                 
2
 The HF dataset was also used as the permeability surface for modeling structural linkages among the 

already modeled patches of the three modeling approaches. Areas with low HF scores are largely natural 

and thus desirable for modeling connectivity. 
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make it more costly to implement. On the other hand, fewer connections may be less 

costly from an implementation standpoint, but may also reduce landscape connectivity 

and ecological function. 

The landscape networks were then used to test a simplifying assumption often 

used in conservation planning: that coarse-scale corridors may provide overlapping or 

“umbrella” effects for other scenarios. This was accomplished by conducting an analysis 

of corridor overlap among these three scenarios. This work is among the first corridor 

gap analyses to be conducted at the ecoregion-scale. The corridor gap analysis indicated 

that 5% of the corridor area for all 3 scenarios was spatially coincident, 34% was 

coincident over 2 scenarios, while the majority of corridor area (59%) was non-

redundant. These results are intriguing for two reasons. First, this gap analysis proved to 

be a useful tool in identifying potential priority conservation areas. Areas held in 

common may prove to be no-regret areas for conservation action as they provide 

overlapping coverage across multiple conservation scenarios. Second, the significant 

coverage gaps among corridors from these three scenarios indicated that selecting “what” 

to connect at the ecoregion-scale has significant implications for selected corridors. As 

there was so little modeled corridor area in common among scenarios, there is little 

reason to believe alternate corridors would be functionally equivalent. This indicates that 

connecting any one set of habitat nodes would not likely serve as a corridor umbrella for 

all other scenarios. 

The ecoregion-scale connectivity analysis conducted here was also useful in 

flagging areas for conservation prioritization based on their connectivity role within an 
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ecoregion-scale context. Connectivity analysis at this scale may also prove useful for 

evaluating connectivity at local scales. Any one of the subgraphs found within these 

modeled landscape networks could help inform local scale conservation efforts. 

Similarly, local scale connectivity and conservation actions could be added to the 

ecoregion-scale landscape network. As with many things, a successful landscape network 

is made up of the sum of its locally implemented parts.  

Of additional interest, the large size and area requirements of ecoregion-scale 

corridors may prove to be potential mechanisms by which landscape scale gradients and 

processes can be included within present day networks of protected lands.  While this 

research did not explore this explicitly, ecoregion-scale corridors may prove to be a 

provocative means by which natural disturbance regimes, environmental gradients, and 

shifting species ranges may be captured in conservation networks by virtue of their large 

size. As such, it may be worth considering ecoregion-scale corridors as implementable 

conservation components that may facilitate planning for persistence in the face of global 

climate change. 
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CHAPTER ONE: 

RESEARCH OVERVIEW 

 

Accelerated rates of human-induced land-use change are producing potentially 

irreversible negative effects on the natural landscape. Chief among these, habitat loss and 

fragmentation are directly responsible for reducing species‟ populations and increasing 

species extinction among those sensitive to these changes (Sorrell 1997, Theobald 2001, 

Weber et al. 2005). A number of ecological theories however state that non-fragmented 

assemblages of habitat are necessary to ensure species survival; island biogeography, 

intermediate disturbance, metapopulation and metacommunity theories. These theories 

dictate that habitat patches of larger size and more interior or core habitat possess the 

most characteristics for ensuring the long term survival of species (Hilty et al., 2006).  

A consensus is growing among conservation planners that assembling larger, 

more contiguous tracts of habitat, with substantial core area, is of ecological value in 

conservation planning. Larger patches have been linked to sustaining larger and more 

viable local populations, enhanced overall biodiversity, incorporating a wider array of 

natural disturbance regimes, and a heightened likelihood of maintaining greater numbers 

of more vulnerable specialist species (Simberloff 1992, Matter 1997, Haddad 1999, 

Conner et al. 2000, Beier et al. 2002, Weber et al. 2005, Falcy et al. 2007). 

In an effort to address habitat fragmentation and the loss of species, much of the 

present day discussion associated with conservation management focuses on reserve 

selection and design. Numerous approaches have been developed aimed at providing 
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resource managers with reserve selection and design alternatives (Carroll et al. 1999 and 

2001, Margules and Pressey 2000, Possingham et al. 2000, Noss et al. 2002, McDonnell 

et al. 2002, Church 2003, Leslie et al. 2003, Cadenasso et al. 2003, Lawler and 

Schumaker 2004, Fisher and Church 2005, Onal and Briers 2005, Williams et al. 2005, 

Noss et al. 2006, Theobald 2006, Copeland et al. 2007, Grand et al. 2007, Girvets and 

Greco 2007, McRae and Schumaker 2008 Game and Grantham 2009). Most notably, 

spatially explicit habitat modeling has made use of significant strides in computing 

technology and detailed data availability within the field of conservation biology. This is 

particularly relevant because it has led to the development of models that better describe 

and simulate the complex natural environments which they intend to emulate. Many of 

these approaches have focused on spatial parameter optimization in order to address the 

lack of spatial cohesion produced by earlier modeling efforts (McDonnell et al. 2002, 

Williams et al. 2005, Girvetz and Greco, 2007). Furthermore, state of the art reserve 

design and selection approaches are now combining aspects of spatial cohesion with 

Spatially Explicit Population Models (SEPMs)
3
 to increase the likelihood of sustaining 

viable populations within the smallest or optimized amount of space.  

These advanced approaches are not without shortcomings however. Some 

approaches designed to optimize spatial metrics tend to require detailed species-specific 

data regarding movement, foraging activities, and dispersal characteristics. Issues arise 

with these approaches when the data are questionable or unknown for the focal species in 

                                                 
3
 SEPMs link survival and fecundity of individual species to mortality and habitat quality within individual 

patches. They typically track the demographics of species populations through time as individuals are born, 

disperse, reproduce, and die all while simultaneously predicting population size, time to extinction, and 

migration/recolonization rates within patches and across the landscape (Carroll et al., 2003). 
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question (Wilson et al. 2005, Copeland et al. 2007, Grand et al. 2007). Unfortunately, this 

is often the case. The added complexity of coupling spatial measures with SEPMs 

requires even greater knowledge of species-specific life history data. Such data include 

population birth and mortality rates, fecundity rates, and life history dispersal rates. 

Unfortunately these data are often not well known because of lack of species knowledge, 

complexities associated with large scale data collection, and issues with field data 

accuracy.  

Furthermore, some of these approaches often use highly specialized software with 

significant barriers of entry to many with only basic technical skills and to practitioners in 

other fields. Several such approaches include:  heuristic and metaheuristic reserve design 

models which employ greedy adding, simulated annealing, tabu searches, and genetic 

algorithms (Sessions 1992, Williams and ReVelle 1996, Clemens et al.1999, Rothley 

1999, Possingham et al. 2000, Fischer and Church 2003). Excessive model complexity is 

of paramount concern because even the best models are of little value if only a handful of 

advanced technicians know how to use them. 

In the absence of the technical knowhow to operate many of these programs, 

detailed species-specific data, and the necessary knowledge of how the potential error 

that is propagated by “guessing” to provide the inputs for needed modeling parameters, 

many practitioners may feel a sense of conservation modeling paralysis. For these 

reasons, this work stepped back to reevaluate and better incorporate several of the 

ecological and spatial fundamentals that are potentially being overlooked by many highly 

specific and overtly detailed approaches. Returning to the roots of the reserve selection 
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and design process may prove useful in making modeling tools more accessible to a 

wider group of researchers and practitioners. This may potentially be achieved by 

modeling patches based on these overarching theoretical themes instead of modeling 

patches based on detailed species-specific parameters.  

As summarized by Diamond (1976), a handful of overarching spatial design 

guidelines for nature reserves exist: larger reserves are better than smaller ones, a single 

large reserve is better than several smaller ones of the same total area, reserves with close 

proximity to one another are better than those that are farther apart, reserves linked by 

corridors are better than unlinked reserves, and compact or circular reserves are better 

than stretched reserves.  

There has been much backlash against a generalizable set of guidelines for 

representing inherently complex interspecies and geophysical processes. Most of this 

debate however has focused on the Single Large or Several Small (SLOSS), the Few 

Large or Many Small (FLOMS) reserves debate, and the discussion of corridors 

(Margules et al. 1982, Williams et al. 2005). As such, the discourses with Diamond‟s 

recommendations tended to deal with the spatial relationship amongst and between 

reserves rather than the spatial metrics of any single reserve itself. It seemed reasonable 

then to revisit the concepts of a single reserve‟s size and core cohesion in a more elegant 

or simplistic model than complex and data hungry approaches currently allow. 

Addressing this need, this research developed a new and unique spatially explicit 

approach entitled the Cohesive-Patch Aggregation and Network (C-PAN) model. This 

model is discussed in Chapter Two and was developed to directly address and better 
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incorporate the fundamentals of patch size, core area, and cohesion into the modeling 

process. Development of this model was based on empirically supported ecological 

theory
4
 as opposed to detailed parameterization of species-specific variables (Appendix 

A).  Founding this model on ecological fundamentals rather than complex interactions 

potentially provides utility to a wide spectrum of practitioners within the conservation 

and planning related disciplines. This is achieved by providing significantly lower 

barriers of entry to potential users through employing widely understood and easily 

accessible geoprocessing tools already found within standard GIS platforms. This was 

done purposefully in an effort to provide a substantive alternative to complicated 

technical programs, modeling scripts, and unwieldy add-ons. 

The C-PAN approach produces output datasets and patch metrics that are unique 

to other approaches (Landscape Cohesion Index, core area delineation, effective 

buffering of the patch core, and C-PAN value, quotient, and rank comparative metrics). 

These datasets are necessary if a solid argument is to be made for ranking and selecting 

potential sites based on optimal core area metrics and patch cohesion. Additionally, the 

simple aggregate, overlay, and extract process of patch generation used by C-PAN allows 

users to derive patches based on their statistical rareness in the landscape being evaluated. 

This researcher believes that this serves as a significant advantage of this approach over 

others as it does not require detailed and species-specific model parameterization.  

                                                 
4
 Appendix A provides a collection of work which summarizes the ecological theories which C-PAN is 

designed to incorporate in its patch modeling outputs. Additionally, Appendix A also provides a collection 

of empirical evidence which supports establishing patches and/or reserves which are large, cohesive, and 

core rich. C-PAN was designed to model patches which exhibit high levels of these spatial metrics. 
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This research served dual purposes however. Producing a new modeling 

approach, while potentially beneficial, does little to untangle and discern the inherent 

strengths, weaknesses, and assumptions associated with the complex set of already 

existing approaches. In an effort to both evaluate currently existing modeling tools and 

validate the C-PAN approach, this research compared the patch outputs from the C-PAN 

approach to those generated from two currently highly utilized reserve selection and 

design tools, Corridor Design (Beier et al., 2007) and FunConn (Theobald et al., 2006). 

Taken together, these approaches comprise a significant proportion of the reserve 

selection and design work taking place today. Interestingly however, little inquiry has 

been initiated to compare and contrast their modeling outputs.  

In addition to outlining the rationale for selecting these tools and describing their 

inner workings, the comparative analysis outlined in Chapter Three of this effort aids in 

bridging the relative modeling gap in patch modeling literature. For the first time, a 

systematic and categorical comparison of the patch outputs from these three tools has 

taken place. This was accomplished by evaluating the spatial metrics of the patch outputs 

and measuring how well each captured a set of pre-existing conservation targets. This 

knowledge is critical to users who find themselves choosing between varying approaches.  

In summary, as conservation planning has evolved, so too have the approaches 

and technical tools being used within the discipline. While the benefits of these advances 

are significant, they have led to significant barriers of entry for many practitioners when 

attempting to employ these tools. Furthermore, many of the advanced approaches today 

require highly detailed species-specific data to be input as part the modeling process; in 



7 

 

many cases these data are simply not available. This in turn propagates potentially 

substantial error in the modeling process when „best guessing‟ is used in the absence of 

known data.  As such, the C-PAN habitat patch modeling approach developed here 

proved to be a useful tool for practitioners who currently find themselves paralyzed by 

the technical skill necessary and detailed data requirements needed to run many of the 

recently developed reserve selection and design tools.  

The C-PAN approach was designed to use commonly understood tools within an 

existing GIS
5
 as a means of reducing barriers of entry to the modeling process. 

Furthermore, as the results in Chapters Two and Three indicate, C-PAN has contributed 

significantly to the modeling of habitat patches. Specifically, C-PAN has demonstrated 

the ability to generate patch outputs with strong core area and spatial cohesion metrics 

without requiring additionally complex species-specific data. 

Finally, the comparative phase of the analysis served two primary purposes. First, 

it addressed the lack of comparisons between each tool‟s respective outputs in the 

literature. This has shed light on each approach‟s potential strengths and weaknesses 

when attempting to reach certain conservation related goals and better understand spatial 

metrics of their respective patch outputs. Second, the success of C-PAN in this 

comparison has justified its use as a valid tool. This was accomplished in large part by 

comparing C-PAN derived patch outputs with those derived by its present day modeling 

peers.  

                                                 
5
 ArcMap 9.3 
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Research Objectives and Rationale 

 

The primary objective was to develop a new and innovative habitat patch 

modeling approach that focuses on the spatial metrics of reserve cohesion and core area. 

There existed a tiered rationale for developing this approach: 

 

1) Rapid acceleration of land use change and natural land fragmentation is 

causing declines in species populations around the world and is potentially 

the greatest contributing factor to species‟ extinction.  

2) There is substantial theoretical and empirical evidence that large expanses of 

core habitat and heightened patch cohesion are necessary for the conservation 

of a wide number of species (Appendix A). 

3) Advances within spatially explicit reserve selection and design programs have 

become increasingly dependent on detailed species-specific data that is 

potentially inaccurate and not widely available.  

4) Advances within these modeling programs have been increasingly technically 

demanding, leading to substantial barriers of entry for practitioners.  

 

The C-PAN model is intended to delineate highly homogeneous patches which 

are core rich and largely cohesive. The C-PAN approach contributes to patch modeling 

by utilizing an aggregation, overlay, and extraction method for patch generation; to this 

author‟s knowledge, this is a new mechanism for patch generation. Through the 
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generation of its Landscape Cohesion Index (LCI)
6
, the C-PAN model also provides a 

statistical means by which landscape fragmentation and patch selection can be evaluated. 

As a descriptive, structural based model, C-PAN aids in identifying those tracts of habitat 

that remain intact and pose potentially the greatest biodiversity related benefits for 

including in some sort of conservation scheme. Based in theory and empirical evidence, 

the aggregation process within the C-PAN model produces new spatial outputs for 

delineating core habitat areas, provides metrics for comparing core area between 

patches
7
, and emphasizes patch cohesion through its iterative processing. Additionally, 

the C-PAN model is founded on ecological fundamentals rather than sparsely available 

detailed data (Appendix A). Finally, the C-PAN model poses potentially smaller barriers 

of entry to practitioners because it does not require complex model parameterization. It 

operates entirely within an existing GIS and uses commonly used tools which can be 

understood and communicated more effectively to practitioners (ArcMap 9.3 & Spatial 

Modeler Extensions). 

 The secondary objective was to provide rigorous validation of the C-PAN 

approach. This objective includes evaluating the C-PAN modeling approach and two 

additional reserve selection and design tools, Corridor Design (Beier et al., 2007) and 

FunConn (Theobald et al., 2006). As part of this objective, a more-detailed discussion of 

patch modeling techniques is included and the patch modeling portion of each approach 

                                                 
6
 The LCI is a dataset generated by C-PAN which is used to measure landscape fragmentation and measure 

cohesion within and amongst patches. 
7
 C-PAN patch metrics are discussed in greater detail in Chapter 2. For introductory purposes however, 

several metrics include: the Landscape Cohesion Index (LCI) score (a measure of patch cohesion 

characteristics in the landscape, C-PAN rank (a measure of ranking patches based on their core area and 

cohesion characteristics, and the C-PAN quotient (a measure of ranking individual patches when compared 

to the largest and most cohesive patch).  
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has been run independently within the specified study area. Patch outputs for each 

approach have been compared and contrasted. The patch outputs were evaluated based on 

two substantive categories: a) patch spatial metrics/cohesion and b) how well each 

approach captured several conservation targets. 

The comparative phase of the analysis served two primary purposes. First, the 

comparative analysis outlined here served potential benefit in addressing the lack of 

relative comparison between each tool‟s respective outputs. This has shed light on each 

approach‟s potential strengths and weaknesses when attempting to reach certain 

conservation goals and better understand spatial metrics of their respective patch outputs. 

Secondly, the modeling success of C-PAN in this comparison has justified its usage as a 

valid and useful tool. This was accomplished in large part by comparing C-PAN derived 

patch outputs with those derived by its present day modeling peers.  

The third objective was to apply and compare these three patch modeling 

techniques at the ecoregion-scale. A connectivity assessment for each was then 

conducted. Modeling connectivity between the patch outputs of these varying approaches 

aids in revealing the potential subtle differences of each approach‟s patch metrics and 

spatial dispersion at large scales. Furthermore, modeling connectivity at this scale is a 

critically important step in assessing the overall conservation planning implications of 

each approach. This resulted in identifying areas of conservation importance based on 

their connectivity role within the region.  
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Research Question Development 

 

Resource managers are faced with the substantial task of planning, managing, and 

protecting a vast array of natural resources. Chief among them, the long term persistence 

of biodiversity and the natural systems required to support it. The first objective of this 

research aims to develop a new modeling approach that pulls upon substantially 

accumulated theoretical and empirically supported evidence. As such, an approach 

designed specifically to focus on assembling cohesive core habitat was sought. Similarly, 

this approach was developed to be sensitive to the fact that spatially explicit reserve 

selection and design programs have become increasingly technically demanding and 

dependent on detailed data. The C-PAN approach has been designed to avoid the pitfalls 

of heavy model parameterization. 

Conceptually, the evolution and development of various reserve modeling 

approaches have potentially been confined to the following mold. Advances in ecological 

theory or technical capabilities have contributed to continual refinement of past 

approaches and the development of new modeling tools. In most cases, these new 

approaches are tested on specific species with unique spatial requirements. In other 

instances new approaches are simply tested at regional scales to help solve some reserve 

selection problem as part of management plan. In many cases, as with the Corridor 

Design and FunConn toolsets, these methods are picked up and used in many modeling 

and resource management efforts. Also common place within this mold is the desire to 

use new tools to provide stakeholders with multiple management scenarios. What has not 
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been the focus however, is an assessment that uses varying modeling approaches and 

multiple modeling platforms to evaluate several scenarios. 

The second objective of this research effort aimed to help bridge this gap. 

Producing a new modeling approach, while potentially beneficial, does little to untangle 

and discern the inherent strengths, weaknesses, and assumptions associated with the 

complex set of already existing approaches. In fact, it falls into the potentially deficient 

mold that was just identified, as it has been developed to mitigate some of the potential 

shortcomings of the alternate approaches. In an effort to both validate the C-PAN 

approach and evaluate currently existing approaches within the context of each other, the 

patch outputs from the C-PAN approach were compared to those generated from Corridor 

Design and FunConn. Taken together, these approaches comprise a significant portion of 

the reserve selection and design work taking place today, conversely however, little to 

nothing has been done evaluate or compare their modeling outputs. This comparative 

analysis has aided in bridging a clear gap through outlining the spatial metrics, modeling 

efficiency, and relative success of each approach in capturing conservation-related targets 

such as patch core area and cohesion. Knowing the strengths, weaknesses, and 

differences in the patch metrics of each approach‟s outputs is essential for users who find 

themselves choosing between varying approaches. 

Finally, the third research objective of modeling connectivity at the ecoregion-

scale evaluated what effects the patch modeling method had on modeled connectivity. By 

modeling connectivity between the derived patches of each approach, an assessment was 
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made regarding the overarching effectiveness of each approach‟s patches to serve as 

possible reserves as part of a conservation management plan.  

 

Specific Research Questions 

 

Research Objective 1: Develop the new C-PAN modeling approach. 

 The development of C-PAN required the following questions to be explored: 

 

Research Question 1.1: Can ArcMap (v. 9.3) and its ModelBuilder work 

environment serve as a platform for developing, building, and packaging a 

set of tools designed to classify landscape fragmentation and identify highly 

cohesive patches of habitat?  

 

Research Question 1.2: Does the resulting C-PAN modeling approach provide 

useful metrics for classifying landscape fragmentation and generate spatially 

explicit outputs regarding highly cohesive habitat patches? 

 

It was hypothesized that assembling the C-PAN approach and subsequent patch 

modeling tools within ModelBuilder would be successful. The outputs of the C-PAN 

tools provide a unique means of evaluating the landscape matrix, quantifying landscape 

fragmentation, and identifying cohesive habitat patches. 
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Research Objective 2: Comparative analysis of additional habitat patch modeling 

techniques and C-PAN Model validation. 

 

The goal here was to run the C-PAN model and the patch modeling components 

of Corridor Design (Beier et al., 2007) and FunConn (Theobald et al., 2006). Suitable 

habitat patches were generated from each approach utilizing the same input data and the 

same model parameters whenever possible within the Northern Appalachian/Acadian 

Ecoregion. Comparing the outputs of these modeling approaches to those generated from 

the C-PAN model allowed for the following question to be answered: 

 

Research Question 2.1: What differences exist among each modeling technique‟s 

spatial metrics and respective ability to capture the desired conservation 

targets? 

 

Conservation targets that were evaluated for coverage within the patches included
8
: 

1) Spatial metrics and cohesion of each patch. 

2) Human Footprint (HF) scores 

3) Last of the Wild (LOW) areas 

 

                                                 
8
 HF scores are used for measuring the naturalness of each patches composition. LOW areas are have been 

previously established using highly natural HF scores (Woolmer et al., 2008). LOW areas  represent the 

most natural areas within the ecoregion. As the patches modeled here are intended to be highly natural, it is 

useful to evaluate their average HF scores and LOW capture as a means of comparing the approaches. 
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 Capture was defined as the percent coverage of each conservation target 

distribution contained within the boundaries of each approach‟s patch outputs. In other 

words, what percentage of the conservation target‟s spatial distribution was found within 

each approach‟s patch boundaries? 

 It was expected that there would be differences in each approach‟s patch outputs. 

It was hypothesized that these differences would be attributable to the varying levels of 

spatial contiguity or cohesion built into each modeling approach. What was unclear was 

how variations in the spatial metrics of each patch will influence each approach‟s overall 

ability to capture conservation targets. For that reason, this researcher assumed 

differences in conservation target capture would exist. 

 

  Significant differences were measured in two ways: 

1) The percentage of each conservation target‟s distribution that was found 

within each approach‟s patch boundaries. 

2) The percentage of patch area that did not capture a conservation target 

area. This can be thought of as “wasted space” within the patch and has 

been reported as patch commission. This essentially renders the output 

less optimal because it captured area that did not contribute to a 

conservation related goal. 

 

 Patch outputs from each approach were compared quantitatively based on the 

spatial metrics of each patch and the ability to capture areas that contain the specified 
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conservation targets within their boundaries. By evaluating the modeled outputs of C-

PAN and those of Corridor Design and FunConn, a determination was made as to the 

potential validity, strengths, weaknesses, and application of the C-PAN approach. 

 As the C-PAN approach differs from others in that it focuses on first identifying core 

and interior habitat with desired cohesion characteristics through the use of a new process, it 

was hypothesized that the C-PAN approach would perform at or above the levels of the 

Corridor Design and FunConn based patch generation tools
9
. It was also predicted that 

the habitat patches derived from the C-PAN modeling approach would reflect measures 

of spatial cohesion equal to, or better than, those exhibited by the Corridor Design and 

FunConn patch generation tools because it was designed to explicitly address this metric. 

 

Research Objective 3: Connectivity assessment and modeling at the ecoregion-scale. 

 Modeling connectivity for the C-PAN, Corridor Design, and FunConn patch 

conservation scenarios has provided additional insight on: 

 

Research Question 3.1: Does the patch generation approach result in varying 

levels of connectivity at the ecoregion-scale? 

 

Research Question 3.2: What are the planning and conservation implications of 

each patch generation scenario on their resulting landscape networks? More 

specifically what coverage overlaps, if any, exist among scenarios? 

                                                 
9
 The mechanisms by which each approach generates patches are discussed in Chapter 3. 
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 A gap analysis of varying patch connectivity scenarios and resulting landscape 

networks for the same ecoregion indicated varying degrees of connectivity and minimal 

patch or corridor overlap (Perkl and Baldwin, in prep). As such, it was hypothesized that 

ecoregion-scale connectivity would vary between the three patch modeling scenarios that 

were evaluated here as well. Even subtle changes in patch configuration may lead to 

substantial connectivity alterations. It was expected that the resulting linkages and 

corridors for each scenario would provide little overlap and result in significant coverage 

gaps when compared to each other.  Furthermore, it was anticipated that the resulting 

landscape networks and connectivity results of this analysis would aid in further 

evaluation of the strengths, weaknesses, and possible utility of each patch modeling 

approach within conservation planning. 

 

Thesis Organization 

 

 Chapter Two assess the first two research questions: the effectiveness of 

ArcMap‟s ModelBuilder as a new tool development platform and the capability of the C-

PAN approach to provide managers with meaningful outputs evaluating the landscape 

matrix, landscape fragmentation, and habitat patches. As the development and assessment 

of no new tool occurs within a vacuum, an introduction of existing patch modeling 

approaches is also discussed. Within this chapter, C-PAN development is discussed, 

tested, and calibrated on a pilot scale (state level) and its data requirements, processing, 

and outputs are discussed and evaluated. A full accounting of C-PANs strengths, 

weaknesses, assumptions, limitations, and possible applications is also discussed. 
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 Chapter Three addresses the third research question: which habitat patch 

modeling approach best captured conservation targets and how did the resulting spatial 

metrics of each patch output compare to one another? This chapter serves as the primary 

means for validating the C-PAN approach through quantitatively evaluating its outputs 

with those of its peers. The patch modeling analysis conducted in this chapter also 

increased the scale upon which C-PAN was applied (ecoregion-scale). This chapter also 

provides a new and unique assessment of landscape fragmentation and core habitat areas 

within a large scale landscape. 

 In Chapter Four, the final two research questions are evaluated: does selecting one 

patch generation approach over another influence ecoregion-scale connectivity and, if so, 

what are the planning and conservation implications of the resulting landscape networks 

and how they overlap? This chapter provides commentary on ecoregion-scale 

connectivity modeling and resulted in the derivation of multiple large scale conservation 

planning scenarios. Additionally, the ground covered in this chapter also sheds additional 

light on the strengths, weaknesses, and possible utility of each patch modeling approach 

within ecoregion-scale conservation planning. The structural connectivity between 

individual patches is also evaluated in this chapter. 
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CHAPTER TWO: 

DEVELOPMENT OF THE COHESIVE-PATCH AGGREGATION AND NETWORK 

 (C-PAN) MODEL 

 

Patch Modeling and Reserve Selection Overview 

 

The main objective of this chapter was to provide a new method of generating 

patches. Patches can be thought of as biologically viable planning units from which to 

choose when designing, selecting, and creating linkages that could be used as part of a 

comprehensive conservation plan. As such, a habitat patch modeling approach which 

focuses on emphasizing the spatial metrics of reserve cohesion and core area with 

minimal user parameterization was developed. The C-PAN approach discussed in this 

chapter quantifies landscape pattern and emphasizes structural connectivity with the 

habitat patches it generates. 

The chapter starts with an overview of modeling approaches that have historically 

been used and built upon for generating reserves and designing modeled habitat patches. 

These approaches are ordered based on their modeling complexity. This overview 

ultimately concludes that current patch modeling approaches have become overly 

technically demanding, data and parameter hungry and unwieldy for many practitioners. 

The C-PAN modeling approach was designed to specifically address these issues. 
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An overview of the C-PAN patch model is then presented and it is tested on a 

pilot scale landscape (South Carolina) with a randomly selected species distribution 

dataset (Pseudacris crucifer, Spring Peeper, frog). The specific habitat requirements of 

the Spring Peeper are ancillary to this work as the dataset was only used for calibrating 

and testing the model, not developing species specific habitat patches for conservation 

action. Intermediate steps and graphics of the modeling process are provided in order to 

better explain the automated and behind the scenes mechanics of the model. Patch 

outputs are provided and patch classification metrics unique to the C-PAN approach are 

also discussed. 

This chapter finishes with discussion regarding possible usage of the C-PAN 

model as a decision support tool. Additionally, the strengths, weaknesses, assumptions, 

and limitations of the C-PAN approach are also discussed. A comparative analysis which 

discusses the patch modeling mechanics of C-PAN and other patch modeling tools can be 

found in Chapter Three which follows. 

 

 

 Reserve Selection Approaches 

 

The advent of computing technology coupled with large remotely-sensed datasets 

has drastically improved the means by which resource managers inventory, measure, and 

analyze landscape patterns and processes. This improvement has contributed directly to 

the goal of better maintaining species diversity through the implementation of better 

reserves. Early heuristic reserve selection models served as a catalyst for ensuring that 

species distributions were captured in networks of protected lands. Adoption of these 
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modeling techniques ultimately became known as the “minimum reserve set” problem in 

which the smallest set of reserve sites was identified while still capturing desired species 

distributions (Kirkpatrick 1983, Margules et al. 1988, Cabeza and Moilanen 2001). In 

these modeling algorithms, no consideration was given to patch metrics such as shape, 

edge, number of patches, or their relative connectivity or proximity to each other 

(Williams et al. 2005). C-PAN was developed in part to address these shortcomings. 

The respective outputs of these early approaches are often assemblages of 

disjunctive sites that lack spatial cohesion both within and between patches. While this 

has proven useful in ensuring short-term species coverage, the long term persistence of 

species within spatially incoherent patches is problematic. Studies by Margules et al. 

(1994), Virolainen et al. (1999), Rodrigues et al. (2000), and Cabeza and Moilanen 

(2003) have all documented species decline in implemented cases of the “minimum 

reserve set” modeling approach (Williams et al., 2005). This is attributable to the lack of 

reserve design components such as size and cohesion within reserve selection 

approaches. C-PAN adds these measures of reserve design into the modeling process. 

 

Reserve Design Approaches 

 

In an effort to better incorporate natural ecological processes and species 

persistence, reserve selection models have been largely improved upon by reserve design 

models. A reserve design model explicitly incorporates spatial attributes of patches such 

as their size, shape, and connectivity. Spatially coherent patches are likely to be important 

to species population persistence because they exhibit the spatial attributes (adequate 
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size, proximity, connectivity, shape, and core area) that are believed to support larger 

populations while in the face of environmental variations (Williams et al. 2005). Such 

spatial attributes are generally addressed in two ways within reserve design models: 

through establishing maximization/minimization objectives for achieving as much or as 

little of the spatial metric as desired, or with structural constraints that ensure that a 

specified level of an attribute is achieved (Williams, et al. 2005).  

These inclusions enable the modeled reserve systems to be comprised of patches 

that exhibit the spatial metrics needed for spatial coherence. Heuristic and metaheuristic 

reserve design models such as those that employ greedy adding, simulated annealing, 

tabu searches, and genetic algorithms, have been used to varying effect for identifying 

approximate reserve solutions or global optimums by Sessions (1992), Hof and Flather 

(1996), Williams and ReVelle (1996), Andelman et al (1999), Clemens et al. (1999), 

Rothley (1999), Possingham et al. (2000), McDonnell et al. (2002), Nalle et al. (2002), 

Fischer and Church (2003), Leslie et al. (2003), and Williams et al. (2003).  

Still, inherent in all of these adaptations, is their fixed temporal nature. Each of 

the above reserve selection and design approaches represent site-selection decisions that 

are but single snapshots in time. As such, the next generation of reserve selection and 

design modeling includes metrics designed to also model species population fluctuations 

over time. 
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Spatially Explicit Population Approaches 

 

Spatially Explicit Population Models or (SEPMs) have been designed to project 

species population dynamics in patches across a given landscape (Schumaker, 1998). 

SEPMs link survival and fecundity of individual animals to mortality and habitat quality 

within individual patches. They typically track the demographics of populations through 

time as individuals are born, disperse, reproduce, and die all while simultaneously 

predicting population size, time to extinction, and migration/recolonization rates within 

patches and across the landscape (Carroll et al., 2003). Williams et al. (2005) has further 

classified SEPMs into three modeling paradigms: diffusion approaches (Okubo and 

Levin, 2001), metapopulation approaches (Levins 1969, Levin 1976), and individual-

based approaches (DeAngelis and Gross 1992, and Pacala et al. 1996). As the level of 

detail implicit in these approaches suggests, they are typically complex, data hungry, and 

require heavily parameterized calibration for each species being modeled. 

   

Patch Modeling Mechanics 

 

Basic Patch Generation 

 

Landscapes are comprised of a number of building blocks, none potentially more 

fundamental for species survival than the patch. Patches can be thought of as areas in the 

landscape that are comprised of characteristics suitable for the persistence of a species. 

Wiens (2006) adds that these areas will exhibit high levels of connectivity for an 

organism of focus. So central to landscape composition and the management of species 
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populations, virtually every form of reserve selection, design, and optimization model 

formulated to date is dependent on the delineation, attributes, and distribution of patches 

as a central component of their function. As such, methods of patch generation become 

one of the essential components central to modeling any landscape.  

Put simply, modeled habitat patches are generally derived from “extracting” grid 

cells or polygons from a dataset which exhibits some desired landscape characteristic. 

Landscape characteristics of interest for patch generation may include habitat suitability 

scores, land cover types, species presence or absence, or geophysical features to name a 

few. Eastman et al. (1995) utilized this basic extraction technique for identifying sites for 

specific uses. In their work, cells with suitability values greater than a predefined 

threshold were identified. Suitability values were tightened or relaxed to reflect the 

desired total land area being sought. While this process is particularly straight forward, it 

does not include mechanisms to ensure that the selected cells were clustered or connected 

in any way. In the absence of these mechanisms, sites or patches of a specified size could 

not be identified, sites were not subject to meet shape or compactness requirements, and 

sites or patches could contain holes or be highly fragmented (Brookes, 1997).  

 

Rules of Contiguity in Patch Generation 

 

In order to address the issues of disjunctive cells and sites, others have applied 

rules of contiguity to ensure that those cells being identified share some level of spatial 

adjacency to one another. By applying rules of contiguity, sets of suitable contiguous 

cells which touch neighboring cells can be identified and selected, thus ensuring some 
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level of connectedness in the sites being generated. Contiguity approaches vary in their 

neighborhood sizes and can range from cell neighborhoods which require suitable 

adjacent cells to touch on at least one side in any of the cardinal directions (4 cells), 

expand to search for adjacent cells that touch on the sides and/or corners (8 cells), and 

can even expand further to include larger groupings of cells (With 1997, Gardner 1999, 

Turner et al. 2001, McGargal et al. 2002).  

As outlined by Girvetz and Greco (2007) however, there are several drawbacks to 

using rules of contiguity alone in patch generation. First, these rules are somewhat 

limited by the minimum mapping unit or cell size of the input dataset (coarse scale 

datasets will not be appropriate for fine scale applications and fine scale datasets result in 

the excessive delineation of many small sites). Second, they have demonstrated that rules 

of contiguity do not adequately characterize patches for a particular focal species they 

studied. In their work they determined that small gaps in habitat should be considered 

part of the patch, and sections of narrow edge that extend outwards from the larger patch 

should be excluded. Finally, rules of contiguity alone do not account for density or 

quality of habitat in a given area. 

 

Region-Growing Patch Generation 

 

Addressing a number of the drawbacks associated with applying rules of 

contiguity, Brookes (1997) developed a parameterized region-growing algorithm (PRG) 

which included basic region-growing and parameterized shape-growing components. In 

this approach, the region-growing component initiates with a single “seed cell” and then 
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adjacent suitable cells are then iteratively added until the region has grown to a desired 

size. Regions are not grown if adding a neighboring cell would create a hole in the final 

region. Similarly, the parameterized shape-growing component starts by calculating the 

shape suitability score based on edge and core area for each of the neighboring cells and 

finishes each iteration by including the cell with the best shape suitability score (Brookes, 

1997).  

Similarly, Church et al. (2003) developed a patch-growing process (PGP) that was 

based on the adaptations of Brookes (1997). In his approach a seed cell is first identified 

and then neighboring cells of the highest habitat suitability are added for expanding the 

boundary. The PGP uses a patch connectivity multiplier to help keep total edge relatively 

low, is independent of any pre-specified shape, and generates patches that meet 

predefined criteria (Church et al. 2003). The limitations of this approach are in its 

restricted accessibility since it was constructed outside of a commercial GIS. As such, the 

tool remains largely inaccessible to practitioners and its use is hindered by potentially 

significant barriers of entry. It is worth pointing out here that rules of contiguity provide 

the basic foundation for any region-growing patch modeling approach within or outside 

of a GIS.  

 

Hybrid Patch Generation 

 

Three additional patch modeling approaches are discussed in greater detail here in 

order to illustrate the relatively detailed level of parameterization, species-specific data, 

and technical expertise that is required for their utilization. First, PatchMorph (Girvetz 
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and Greco, 2007) provides useful advances to both rules of contiguity and region-

growing approaches. It starts with a moving window which applies a habitat quality 

threshold for seeding the patch. Next, thin breaks or areas that are not suitable are added 

to the patch based on a user-defined threshold thickness. Third, areas of suitable habitat 

that are thinner than a user-defined threshold thickness are removed. Finally, patches are 

removed that do not meet a user-defined minimum threshold size.  

While PatchMorph has the benefit of adding a measure of habitat quality to patch 

delineation, it requires heavy user-defined parameterization in the remaining steps of its 

approach. User-defined minimum patch break distances vary largely with the species 

being modeled, may not be documented or known for many of those species, and may 

even prove inappropriate for edge-sensitive or core-dwelling species. Additionally, 

parameterization of minimum “spur” thicknesses and patch size thresholds will also vary 

greatly based on the species in question and may not be known.  

 

Specific Patch Generation Tools: Corridor Designer 

 

Finally, the Patch Generation tool within Corridor Designer (Beier et al., 2007) 

requires user-defined input parameters which include: the moving window neighborhood 

size, habitat suitability scores, and minimum patch areas for supporting a population and 

breeding occurrence. Each of these parameters can be thought of as a selection criterion 

that continually culls all available patches leaving only those that meet all of the required 

functional characteristics. The habitat suitability score establishes the minimum habitat 

quality value that will be considered for region-grouping or assembling the first cut of 
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habitat patches. Higher suitability scores result in more restrictive patch selection. The 

minimum patch size parameter is also used to eliminate patches that are not large enough 

to sustain the species. Unique to Corridor Designer, the moving window size setting 

allows the user to define the size of the area being averaged for inclusion in the patch, the 

larger the moving window, the more restrictive the patch becomes to less suitable values, 

eliminating them from the patch.  

As the level of detail in these inputs suggests, they are largely species-specific, 

vary greatly among species, and require substantial user parameterization. Additional 

discussion and evaluation of the Corridor Designer Patch Generation tool is provided in 

Chapter Three. 

 

Specific Patch Generation Tools: FunConn 

 

The Define Functional Patches tool within FunConn (Theobald et al., 2006) 

represents an additional patch generation tool which uses a number of the modeling 

techniques outlined above. Tool parameters include a resource quality threshold, the 

minimum patch size, the maximum foraging radius for an animal, and the core habitat 

percentage. From a modeling perspective, the foraging radius aims to identify patches 

that meet certain minimum size requirements necessary for sustaining the species. 

Finally, the core habitat percentage parameter refines again which patches are 

functionally suitable by aiming to add a measure of the species interior versus edge 
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habitat requirements (Theobald et al. 2006). This parameter is similar to a boundary 

length modifier (BLM)
10

 used by Leslie et al. (2003).  

Again, these input parameters are largely species-specific, vary greatly, and 

require substantial user parameterization. Additional discussion of the Define Functional 

Patches tool within FunConn is provided in Chapter Three as this tool is one of those 

evaluated in the comparative analysis. 

 

Specific Patch Generation Tools: C-PAN 

 

The C-PAN modeling approach developed here purposely varies in several key 

ways from the patch modeling approaches discussed thus far. First, C-PAN uses tools and 

modeling components found within ArcGIS commercial GIS software, drastically 

reducing technical barriers of entry. Second, while it is based on rules of contiguity as 

part of the patch design, it does not rely on any region-growing algorithms for expanding 

and delineating patches. This is a significant departure from other approaches as it 

eliminates issues of patch spurs, drastically elongated or highly irregular shaped patches, 

holes, and excessive edge that require heavy user parameterization in order to be 

removed. Instead, the aggregation and overlay process that C-PAN model uses provides a 

more streamlined alternative. To this author‟s knowledge, this is the first patch modeling 

approach to use these processes as the primary means of patch delineation.  

                                                 
10

 The BLM is a model parameter which can be used to specify the desired level of edge/area ratios 

exhibited by the modeled patches. 
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Additionally, the Landscape Cohesion Index (LCI) that is generated as a result of 

the C-PAN model allows for patches to be generated based on the statistical distribution 

of landscape characteristics. This allows the user to determine at what point patches of a 

certain size and core area composition become statistically unique in a landscape. This 

frees the user from having to choose parameters such as foraging distances, spur 

thicknesses, and moving window sizes which are required in the previously discussed 

approaches. The LCI is unique to this approach alone and may additionally be a valuable 

means by which connectivity can be evaluated and compared within and across 

landscapes. Development of the LCI is potentially a significant improvement over other 

patch modeling approaches as it focuses on delineating the most spatially optimum 

patches (i.e., top 10% most cohesive) as opposed to less optimally shaped and highly 

parameterized patches that require detailed knowledge of a specific species and advanced 

technical skills. 

 

C-PAN Model Development Overview 

 

A less technical introduction to the C-PAN modeling method is provided here. It 

is intended for those readers less interested in the technical aspects and process of model 

development and more curious in the overarching concept. The section that follows 

however discusses in great detail the C-PAN modeling process. This is necessary because 

the technical inner workings of the C-PAN model must be transparent if it is to be 

entirely understood and evaluated. The technical discussion and figures that follow are 
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intended to show how the C-PAN model works and provide the reader with snapshots of 

intermediate modeling data in order to discuss the overall process of this approach.  

The C-PAN model was developed to identify habitat patches that exhibit spatial 

characteristics known to support core dependent species and promote overall 

biodiversity. Using only common geoprocessing tools found within ArcMap‟s 

ArcToolbox, a model was constructed in order to identify habitat patches of progressively 

larger size with high core area and highly cohesive characteristics.  

Data requirements for this model are non-demanding as it only requires an input 

dataset that reflects the environmental parameter from which the patches will be 

generated (i.e., a land cover dataset, suitable habitat type, or species range dataset). Once 

the input dataset is established, the vast majority of the remaining process is automated. 

Once the C-PAN modeling process is initiated (by simply providing the input 

dataset and clicking “start”), the GIS begins to search the input dataset for clusters of 

adjacent cells that exhibit the same data value (i.e., a specific land cover type, suitable 

habitat, or range presence). If a 2 by 2 block of adjacent and similar cells is encountered, 

those 4 grid cells are aggregated together to form one larger grid cell. The output that 

results from this process is a dataset that depicts only aggregated grid cells which 

represents patches of the data that meet or exceed the 4 cell requirement. This process 

automatically restarts to again re-search the original input dataset for clusters of adjacent 

grid cells that exhibit the same data value. This time however, during the second run, the 

GIS is searching for a 3 by 3 block of adjacent cells. If a 3 by 3 block of cells is 

encountered, those 9 cells are aggregated together forming a new dataset that depicts all 
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of the patches that meet or exceed this size requirement. This process continues over and 

over again where each time the GIS is searching for only those patches that meet or 

exceed the next size requirement. Eventually, no more adjacent cells that meet the 

required size remain. After a specified number of these encounters, the aggregation 

portion of the C-PAN model terminates itself. 

Next, the model automatically layers the subsequent datasets that depict these 

progressively larger patches. Using an overlay technique, each time a cell on the surface 

encounters a new layer placed on top of it, the total is tallied as a sum. This dataset 

represents the total number of times that each of the original grid cells was included in a 

larger patch aggregate. Individual cells that were part of very large patches are in-turn 

reflected by higher cell values. The higher the value, the more valuable that cell is in 

terms of core area and patch cohesion in the larger landscape. This step results in 

developing the LCI for every cell within the study area. Once the LCI values are assigned 

to the cells their distribution is quantified in a graph. The user then chooses an LCI score 

(which corresponds to the desired level of “uniqueness” that the user desires, top 10% 

etc.) to delineate patches. The user then selects another less restrictive LCI value (top 

20% etc.) to grow the patch to include adjacent suitable cells. These are the only two 

parameters that the model requires and they are selected from the modeled LCI. The 

results of this process are a series of individual patches that are identified and ranked 

based on their respective cohesion and heightened core area characteristics. Furthermore, 

these two parameters are easily adjusted for exploratory purposes in a way that is 

completely transparent and more easily understood to more practitioners. 
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A simplified accounting of the C-PAN patch modeling process can be 

summarized as: 

 

1) Landscape Aggregation  Identifies patches of different sizes (user provides  

  input dataset) 

2) Patch Combination   Overlays patches for generating the Landscape                  

        Cohesion Index (LCI) (automated) 

3) Patch Classification   Delineates patch core area metrics (user selects two  

  LCI values for patch delineation) 

4) Spatial Joining    Grows the patch to the desired cohesion parameter  

(automated) 

 

These outputs offer a new perspective on modeling habitat patches as they are 

defined based on spatial cohesion metrics and contiguous core area. It may prove 

advantageous to model patches in this way in order to incorporate many of the known 

ecological benefits associated with patch size, cohesion, and higher core area that were 

discussed earlier. 

 

Detailed C-PAN Model Development Methods 

 

A spatially explicit patch modeling approach entitled the Cohesive-Patch 

Aggregation and Network (C-PAN) model was developed utilizing ArcMap 9.3 with the 

Spatial Modeler extension. A USGS derived GAP Analysis species distribution dataset 
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for the State of South Carolina served as the input for the piloting stage of this modeling 

approach (SC GAP, 2001). Range datasets consisted of a raster based binary 

classification schema depicting values of “1” (predicting a species to be present in a 

given cell) and “0” (predicting a species to be absent from a given cell). For the state of 

South Carolina, some 455 different vertebrate species have been mapped using this 

approach. Range datasets were evaluated to identify those species which had statewide 

distributions (335). One randomly selected distribution was then chosen from this group 

and utilized in refining the Cohesive-Patch Aggregation and Network (C-PAN) modeling 

process as a “proof of principal” or “proof of concept” in this pilot work. The species 

range dataset that was used here represented the potential distribution of a frog, Spring 

Peeper (Pseudacris crucifer)
11

. The range distribution is found in Figure 2.1 (left). 

The original range distribution data used as the input to the C-PAN model 

consisted of 90 x 90 meter cells depicting suitable habitat (see SC GAP 2001 for 

classification and categorization rules). Suitable habitat cells were aggregated to identify 

homogeneous habitat patches of progressively larger size, this concept is diagrammed in 

Figure 2.1 (right).  

 

 

 

                                                 
11

 The use of this dataset is not intended to imply that this analysis is specific to this species. The patches 

generated using this dataset have intentionally not been parameterized to meet any spatial or habitat 

requirements of this particular species. Instead, this species distribution dataset is simply used as an 

example of a dataset that could be used as an input for C-PAN patch generation. Additional input datasets 

could include habitat suitability values, specific land cover types, and measures of landscape naturalness 

among others. Chapter Three of this work for example uses Human Footprint (HF) scores for generating 

highly natural patches. 
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Figure 2.1 – Species Distribution and Patch Aggregation Concept

Figure 2.1 (Left): Represents SC GAP range distribution for Pseudacris crucifer. This served as input 

data for the C-PAN modeling process. Individual cells are classified as “Present” for those that are 

suitable habitat and “Absent” for those cells that are not suitable to support this species. The C-PAN 

Model will be “searching” for clusters of suitable cells. 

 

Figure 2.1 (Right): Depicts suitable habitat aggregation into progressively larger patches. Small, 

highly fragmented patches are indicated in red while larger, less fragmented patches are indicated in 

green. This represents the backbone of the C-PAN modeling process because it systematically 

identifies progressively larger clusters of suitable habitat cells. Ecologically speaking, this is directly 

related to the patch size and core area argument. Thinking in this way, those patches in red, while 

suitable, are not likely sufficient to support a core-dwelling species because they are small and 

fragmented. Those in green however are of larger size and contain greater core area and pose a better 

chance for the persistence of edge-sensitive species. 
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The data presented in Figure 2.2 represents an intermediate iteration that derived 

990 x 990 meter habitat aggregates. Each 990 x 990 meter patch was comprised of 121 

90 x 90 meter cells. These aggregates were assigned values depicting the total number of 

contiguous suitable habitat cells within the 990 x 990 meter aggregate. The model carries 

this process out for a total of 121 iterations at 90 meter increments until a final size of 

10,980 x 10,980 meters was achieved. This is the foundation from which patches are 

generated later on in the modeling process. 

Figure 2.2 – C-PAN Modeling Process: Initial Landscape Cohesion Classification 

 

 

Figure 2.2: Represents the total number of 90 x 90 meter cells within a 990 x 990 meter aggregate. 

Areas in red represent regions in which small fragmented patches dominate. Those depicted in 

green represent largely contiguous and cohesive tracts of suitable habitat. This figure represents a 

snapshot from an intermediate output of the C-PAN modeling process. It is included here because 

it depicts how the model begins to categorize and classify the landscape based on patch size and 

cohesion. From a management standpoint, those areas in green represent portions of the natural 

landscape that are largely intact and thus suitable for this species. They may prove to be prime 

areas for conservation.  
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An aggregate of 1,800 x 1,800 for example, has an aggregate value (the sum of all 

“present” binary coded cells within the aggregate) ranging from 0 to 441. These values 

represent the total number of 90 x 90 meter cells within that aggregate that are suitable 

habitat. Each C-PAN model iteration eliminates patches of smaller sizes from any further 

analysis and identifies only those that meet or exceed the minimum patch size for that 

respective iteration (Figure 2.3). 

Figure 2.3 – C-PAN Modeling Process: Patch Size Sieving 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.3: Depicts the first 20 iterations or runs of the C-PAN model. Each run produces a new set of 

habitat patches that meet or exceed the minimum size requirements for that run. Starting in the 

upper left, you can see that there is a significant number of patches that meet this relatively small 

patch size requirement (180 meters by 180 meters). Continuing on with additional runs and 

increasing the minimum size however, identifies fewer and fewer patches of the required size. As the 

patch size requirement increases, fewer and fewer sites are identified. After 20 runs, the lower right 

box indicates that there are significantly fewer patches that are 1,890 meters by 1,890 meters or 

greater. Again, identifying larger patches is of ecological importance because they include the 

characteristics (low edge/area ratio and high cohesion) necessary for sustaining core dwelling species. 
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Each aggregate is reclassified to represent a patch that is comprised solely of 

contiguous and cohesive cells. This is achieved by setting the highest value observed 

within that respective aggregate (441 in the case of the example) to a binary value of 1 

and all other values to 0. This results in the derivation of aggregated grid cells that are 

comprised solely of contiguous and cohesive habitat cells. The total value depicted in 

Figure 2.4 represents the number of progressively larger patch overlaps that are present 

on a cell by cell basis for the first C-PAN model combination. This combination 

consisted of 20 progressively larger patches ranging from 180 x 180 meters to 3,600 x 

3,600 meters. This process continues for a total of 6 times until a final combine function 

within the model is executed. 

Figure 2.4 – C-PAN Modeling Process: Patch Aggregate Overlays 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.4: Depicts the results of the first 20 patch size combinations. Areas in yellow have very few 

patch overlaps, representing areas comprised of high fragmentation and relatively small patch sizes. 

Those areas depicted in green however represent regions in which progressively larger patches 

overlap, representing largely cohesive regions of suitable habitat. These areas are comprised of cells 

that are largely buffered from edge effects associated with the fringe of small patches. Conceptually, 

they represent areas of suitable habitat that are on the interior or near the core of the patch. These 

areas represent possible candidate sites for core area conservation. This however represents an 

intermediate step within the overall C-PAN Modeling process. This process continues in order to 

further refine and rank the remaining core areas of larger patches. 
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Data layers depicting the range of patch sizes are combined in batches of 20 (the 

maximum number of layers allowed by the tool at any one time). Once combined, a new 

dataset is created that indicates all of the possible unique combinations of cell values for 

the varying patch size inputs (Figure 2.4 and upper left of Figure 2.5). Totaling the value 

of each row identifies those patches that meet the patch size requirements for all 20 input 

layers. A value of 18 for example indicates that the requirements were met for 18 of the 

groups patch sizes but not the larger 2. A value of 20 indicates those areas that meet all 

patch size requirements in that grouping for each respective patch size. The total fields 

from the 6 combination groupings are then combined one final time. A final total field is 

added and calculated based on the sum of the 6 input layers (top Figure 2.5), this value 

represents the C-PAN value or Landscape Cohesion Index (LCI) score. The C-PAN value 

represents the total sum of all overlapping patches. A C-PAN value of 120 for example 

represents a cell that was part of all progressively larger patch sizes (180 x 180 - 10,980 x 

10,980). This however would require a cohesive patch of 11 sq km. The largest C-PAN 

value observed here was 98 overlaps (Figure 2.5). 

The cells exhibiting the highest C-PAN values were then identified and extracted 

by their value attributes. The highest C-PAN values represent the most patch overlaps 

and are depicted on the left in Figure 2.6. Those cells with the highest values represent 

the respective center of the Largest Contiguous and Most Cohesive (LCMC) patch
12

. The 

cells identified as the center of LCMC patch are then reclassified to a binary value of 1 to 

                                                 
12

 The Largest Contiguous and Most Cohesive (LCMC) patch represents the biggest and most clustered 

assemblage of suitable patch cells within the landscape being evaluated. Taken together these cells 

delineate the patch with the most enhanced size, cohesion, and core characteristics of any in the landscape.  
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indicate their presence; all other values are set to No Data. The binary cells are then 

converted to a vector data format. All other habitat areas (Figure 2.6, right) are also 

converted to a vector data format so that they can be spatially joined to the center of the 

patch (Figure 2.7). 

Figure 2.5 – C-PAN Modeling Process: Continued Landscape Overlays 

 

 

  

Figure 2.5: As the patch core refinement process continues, areas previously identified as core within 

relatively small patches become less apparent. While the resulting output depicts all areas of core that 

have been delineated, it emphasizes the core area that is identified as part of the largest and most 

cohesive patches. This is evident in the bottom graphic. 
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Figure 2.6 – C-PAN Modeling Process: Landscape Cohesion Index (LCI) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6 (Left): This is potentially the most useful output generated by the C-PAN model as it 

represents a ranking of the core area associated with every patch within the landscape as a measure of 

cohesion. From the Landscape Cohesion Index (LCI), a selection query can be initiated in order to select 

only those patches that contain the desired level of core habitat cohesion. Areas in green for example 

represent the core area associated with the largest patch within the State, it is depicted here as an 

example. When compared to the land cover for the region on the right, this process becomes more 

apparent as the large, contiguous, un-fragmented yellow patch contains the largest amount of interior 

or core habitat.  

Figure 2.6 (Right): Depicts land cover of the largest contiguous patch and its surrounding network. 

Land cover types that are deemed suitable habitat are determined by the SC GAP. The suitable habitat 

adjacent to the largest contiguous patch represents the network of suitable habitat adjacent to that site. 

Comparing the land cover to the core area output on the left, it is apparent that fragmented land cover 

types results in relatively little core area. Conversely however, larger and more contiguous tracts are 

depicted by increased areas of core and interior habitat. The patches that represent the desired level of 

core and interior habitat then become prime candidate sites for conservation; this is the unique aspect 

of the C-PAN modeling approach. 
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Once the center of the LCMC patch has been spatially joined to all statewide 

suitable habitats, a selection query is initiated to identify the suitable habitat surrounding 

the center of the largest patch. The selection query identifies the suitable habitat feature 

that contains the center of the largest patch. Once this patch has been identified and 

selected, its boundary grows to include the adjacent network of contiguous suitable 

habitat. The output of this analysis identifies the LCMC patch of habitat (which using 

raster format data, the optimal shape of this patch is square) and grows that region to 

include its adjacent habitat network (Figure 2.7).  

It is worth pointing out that for the development purposes outlined here, the C-

PAN model was used to identify the LCMC patch as a means of calibrating the model. In 

practice however, it would be used to identify any number of smaller user-defined 

patches to initiate the reserve selection process (Chapter Three).  It is also worth pointing 

out, that while a SC GAP species distribution dataset was used here for model 

development, this modeling approach is not constrained to the use of GAP data or this 

region. By design, the C-PAN approach would use the most readily available and 

accurate habitat suitability data as an input for any user-defined study area. 
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Figure 2.7: Represents a final output of the C-PAN modeling effort. In this case, the model was used to 

identify and depict the Largest Contiguous and Most Cohesive (LCMC) patch (apx. 6,556 ha). The 

patch center is represented by the highest LCI value while the core of the patch is represented by largest 

contiguous and most cohesive patch aggregate from the analysis. An example surrounding habitat 

network (which may be less optimal as it is impacted by edge effects) is also depicted and utilized here to 

grow the patch (apx. 34,196 ha). A more restrictive patch grow LCI value could be selected to address 

this.  From a reserve design and selection standpoint, this output delineates the most cohesive habitat 

patch for this species and thus could serve as a candidate site for conservation. This site for example is 

of ecological importance because it exhibits the best core area and patch cohesion of all patches across 

the landscape.   

 

Figure 2.7 - C-PAN Modeling Process: Largest Contiguous & Most Cohesive Patch 
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C-PAN Model Development Results 

 

A number of potentially useful outputs were derived throughout the C-PAN 

modeling process. They included spatially explicit graphics and tabular data associated 

with cohesion value
13

 and area. Each model iteration resulted in the identification of 

continuously larger cohesive habitat patches. Those outputs alone could prove useful for 

identifying areas that meet minimum size and range requirements for a particular species 

of interest. While the results depicted in Figure 2.7 illustrate the largest patch, the model 

can be calibrated to identify patches of any user-defined cohesion value and space 

requirement by selecting a lower LCI value. This is an important aspect of any reserve 

selection and design program because it allows users to make choices on which patches 

to include within the overall reserve system. Specific and unique to the C-PAN approach, 

patches can be evaluated and selected based on their core cohesion requirements, a 

known factor of ecological importance. 

Although the exercise of identifying the largest patch of Spring Peeper habitat 

may not be of the utmost importance (because range requirements for this species are 

mostly small), the range and distribution of this species was particularly appropriate for 

calibrating this model. Most landscapes in the southeastern U.S. are fragmented to the 

extent that one would not expect to find a contiguous tract of entirely suitable habitat as 

large as 11 km on a side (the calibrated end patch size of the pilot model, this was 

increased to 20 km upon pilot completion for evaluation in larger landscapes). It just so 

                                                 
13

 The cohesion value (LCI score) represents a value which counts how many times an individual cell 

participates in patches of increased size. Higher values indicated high cohesion among adjacent cells and 

represent core areas within derived patches. 
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happens however that the largest contiguous tracts of any one land cover class within 

South Carolina included open water, a land cover class tied to distributions of the Spring 

Peeper. This connection allowed for the model to be tested at much larger scales than one 

would normally encounter for any other land cover type in the region. The results 

effectively identified the largest cohesive patch aggregate to be approximately 8,100 x 

8,100 meters in size. This represented a cell of cohesive habitat that is approximately 

6,556 hectares in size (16,200 acres). When the contiguous adjacent habitat network that 

surrounds this cell is included, the total habitat area swells to approximately 34,196 

hectares (84,500 acres). This output delineates the LCMC patch, the patch with the 

greatest core or interior habitat, and the patch with relatively little edge effects compared 

to other suitable patches.  

While there is utility in identifying the C-PAN derived Largest Contiguous and 

Most Cohesive (LCMC) patch (which was simply included here because it is an 

interesting example), there are potentially greater benefits to be derived from ranking 

sites of smaller scales. The C-PAN approach of ranking candidate patches based on core 

area cohesion is potentially useful as it provides yet another means to inform the reserve 

selection process. Such an evaluation would allow for priority conservation areas to be 

delineated based on the relative valuation of interior habitat within the smaller patches 

when compared to that of the LCMC patch. For this site ranking/prioritization method, 

the C-PAN value is particularly useful as it can be easily converted into a C-PAN 

quotient that can aid in prioritizing smaller sites. The largest C-PAN value observed in 

this analysis was 98 (which corresponded with the Largest Contiguous and Most 
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Contiguous patch of suitable habitat). The C-PAN value of 98 represents a C-PAN 

quotient of 1 (C-Pan value / largest C-PAN value). Other sites may then be ranked based 

on the quantity of interior habitat relative to the largest patch using the C-PAN quotient.  

Consider this example: habitat patch A consists of 1,000 hectares while habitat 

patch B also consists of 1,000 acres. All else being equal, this would indicate that both 

sites are of equal conservation value. What is less known however is that habitat patch B 

contains less interior or core habitat because it is more linear in nature than is habitat 

patch A. Using the C-PAN values and quotient however, one could easily determine this 

and come to an arguably more selective alternative conservation conclusion that accounts 

for the quantity of interior or core habitat. Habitat patch A has a C-PAN value of 56 and a 

C-PAN quotient of 0.57 (56 / 98) and Habitat patch B has a C-PAN value of 24 and a C-

PAN quotient of 0.24 (24 / 98). Based on the quantity of interior habitat, habitat patch A 

is more valuable than habitat patch B.  

Similarly, the C-PAN quotient can be used to compare and rank sites of varying 

sizes. Consider this example: Habitat patch A is 1,000 hectares while habitat patch B is 

1,250 hectares in size. All else being equal, size alone would indicate that there is 

potentially greater ecological value in conserving or preserving habitat patch B. Again 

however, when taking the cohesive nature of the patch and the quantity of interior habitat 

into account an alternative conclusion can be drawn. Habitat patch A has a C-PAN 

quotient of 0.67 while habitat patch B has a C-PAN quotient of 0.41. When taken 

together, the C-PAN quotient and the area of the patch can be used to derive the C-PAN 

rank. The C-PAN rank is derived by multiplying the C-PAN quotient for the patch with 
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the patch area. For habitat patch A, the C-PAN rank is 670 (0.67 x 1,000) while the C-

PAN rank for habitat patch B is 513 (0.41 x 1,250) thus reversing the initial conservation 

decision by taking the cohesive nature of interior habitat into account. An additional 

graphic example of this is provided in Figure 2.8. 

Additionally, the binary file structure of C-PAN modeling outputs also allows for 

possible future coupling with population viability models. This has potential utility 

because such models require a spatial component that can be tied to real-world 

geographic space. This is achievable because the outputs of this modeling method are 

recorded on a cell by cell basis that ranks their relative importance based on the number 

of times each cell participates in a progressively larger patch size.  

 

C-PAN Model Development Discussion 

 

The C-PAN modeling method differs from others in that it is centered on 

identifying habitat areas of a highly cohesive nature. This ultimately leads to the design 

of patches that are more suitable for sustaining edge-sensitive or core-dwelling species. 

The planning implications of this are important because modeled patches are often a 

starting point for implementing conservation or protection action. 

Other spatial tools such as Region Group
14

, and simple area calculations 

associated with vector based data files do not take aspects such as edge-to-area ratio into 

account when identifying the largest patches without additional selection processing. The 

                                                 
14

 This tool is ArcGIS equivalent to the region-grouping process used by the models discussed earlier in 

this chapter. 
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Region Group tool for example is effective in identifying connected suitable habitat but 

does not provide a ranking of the patches for conservation prioritization based on their 

respective edge spatial pattern, quantity of interior habitat, or contribution to spatial 

cohesion of the patch (this is discussed in greater detail in Chapter 3 when alternate 

approaches are compared). Furthermore, additional measures of spatial cohesion, or the 

relative pattern of adjacent habitat cells, are not easily taken into account. The C-PAN 

method however is driven by first categorizing and ranking patches based on the level of 

spatial cohesion within their core habitat, a fundamental difference from other 

approaches.  

Size and cohesion do matter; patches of greater size and cohesion exhibit reduced 

microclimate extremes, lower susceptibility to catastrophic disturbances, decreased 

abundance of common disturbance-tolerating species, and reduced effects from 

exploitation of human land uses (Anderson and Jenkins, 2006). The size of internal or 

core habitat matters most however. Two habitat patches of equal area are not necessarily 

equal. One may be concentric in shape, boasting large expanses of interior habitat 

(cohesive). The other while being contiguous, may be linear, narrow, and resemble a 

corridor more than a cohesive habitat patch. Edge encroachment on the second patch will 

have much greater effects on its inhabitants as the edge-to-area ratio is vastly greater and 

the effective patch size for edge-intolerant species is much lower. Thus there is utility in 

identifying, and subsequently enrolling, patches with heightened levels of core habitat in 

conservation management. Furthermore, there may be utility in identifying these patches 
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so that surrounding land uses may be targeted for restoration and thus become part of the 

core habitat network. 

Take the example illustrated in Figure 2.8 using C-PAN quotients as a measure of 

interior habitat. This example uses actual C-PAN modeling outputs for evaluating two 

suitable patches for Red Fox (Vulpes vulpes)
15

. Patch A is of larger total size 

(approximately 988 hectares), has a larger perimeter (approximately 40.3 km), exhibits a 

C-PAN quotient of 0.59 (10/17), and a C-PAN rank of 583 (0.59 x 988). Patch B 

however is smaller (approximately 975 hectares), has a slightly smaller perimeter 

(approximately 38.2 km), but exhibits a larger C-PAN quotient of 0.82 (14/17), and a 

larger C-PAN rank of 800 (0.82 x 975). All else being equal, patch A may very well be 

identified as prime for conservation because it is larger. When interior habitat is taken 

into account however, patch B presents itself as a more favorable alternative as both the 

C-PAN quotient and rank (which are measures of core area and patch cohesion) are 

higher. This is of particular importance in conservation planning as resource managers 

are often faced with finding the optimal conservation solutions or reserve locations with 

very limited resources (i.e., funds to purchase land).  

 

 

 

                                                 
15

 This was also a SC GAP Analysis species distribution dataset (SC GAP, 2001). It was comprised of cells 

which were capable of supporting Red Fox and cells which were not. Using this dataset as an input for C-

PAN resulted identifying clusters of these cells for patch generation. This dataset was simply selected for 

demonstrative purposes. 
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Figure 2.8: Patch A (left) is larger, has greater perimeter, and has a C-PAN quotient and rank of 0.59 

and 583 respectively. Patch size alone would dictate it is more favorable over patch B (right) because 

it is larger. When C-PAN modeling is conducted and interior habitat is accounted for, it becomes less 

favorable to patch B.  Figure 8 (Right): Patch B is smaller, has a shorter perimeter, but exhibits a 

higher C-PAN quotient and rank of 0.82 and 800 respectively when compared to patch A.  In ranking 

the two suitable habitat patches, patch B becomes a more optimal alternative because it exhibits 

greater interior habitat yet is potentially more feasible to enroll in some form of conservation effort 

because it is smaller in size. 

 

A. B. 

In this example (Figure 2.8), the C-PAN modeling approach actually optimizes 

this decision making process by determining which patch is more cohesive and exhibits 

the greatest quantity of interior habitat per total area. Using this example, the smaller of 

the two patches is actually more optimal because it not only exhibits higher core area 

characteristics, but would likely be more cost effective to acquire because it is smaller in 

total size. 

Figure 2.8 – C-PAN Quotient & Rank Metric Comparisons 

 

 

 

 

 

 

 

 

 

 

In addition to the empirical and theoretical underpinnings and benefits from 

identifying cohesive habitat patches of the largest size, there is perhaps greater utility in 

ranking sites of intermediate size using this modeling method. Such ranking may allow 

users to determine optimal scales for conserving particular species and also identify 

thresholds at which patches of a certain size become statistically unique on a given 

landscape using the LCI. The C-PAN value and C-PAN quotient may also prove to be 
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useful metrics for ranking sites based on core habitat requirements and priority. The C-

PAN quotient could also be coupled with a wide variety of additional evaluative 

landscape matrices. Leitao et al. (2006) outlines numerous measures
16

 which could prove 

useful in helping resource managers select and prioritize amongst sites/patches for 

conservation action. Habitat patches of any user-defined size derived from this modeling 

method could easily be evaluated using the C-PAN quotient and any combination of 

these measuring techniques. Moreover, the data structure and file type of this methods 

outputs would not require the use of additionally complicated programs such as 

FRAGSTATS; each of these landscape matrices could be evaluated locally within the 

GIS.  

 

C-PAN as a Decision Support Tool 

 

This modeling method also has the potential to be used as a decision support tool 

by any number of users. The C-PAN patch model provides users with the ability to rank 

candidate sites based spatial metrics of core area and patch cohesion. Such ranking could 

be used for identifying optimal conservation reserves or provide anchor patches as part of 

a conservation network. Outputs from this modeling method that identify candidate 

patches could easily be layered using widely accepted suitability techniques. Such an 

analysis may prove useful in identifying optimal areas for protecting multiple species 

                                                 
16

 Some of which include: patch richness (PR), class area proportion (CAP), patch number / patch density 

(PN / PD), mean patch size (AREA_MN / AREA_AM, shape (SHAPE), radius of gyration (GYRATE), 

contagion (CONTAG), edge contrast (ECON), euclidean nearest neighbor (ENN), and proximity (PROX). 

These are metrics which can be used to rank and select among sites. 
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with particular patch size or range requirements; this would be analogous to processes 

used in reserve selection optimization models
17

.  

Ranking sites based on the C-PAN quotient also ensures that the characteristics of 

core interior habitat are accounted for and included in the conservation area design 

process. The C-PAN approach could also be employed for other applications in 

conservation planning. Several such applications could include deriving conservation 

schemes associated with land tenure and pinpointing candidate sites for habitat 

restoration or triage. Additionally, C-PAN could even be used to aid planners in 

identifying habitat areas that may be at risk to further habitat fragmentation, threatened 

by pollution, or diminished by encroachment of competing land uses. 

Finally, the C-PAN modeling pilot work that has been presented here represents 

yet another unique application and use of GAP related data. Using species range 

distributions as input datasets is potentially useful for this modeling method because they 

often incorporate all suitable land cover types for the species in question. That being said 

however, virtually any dataset could serve as the input for the C-PAN methodology. 

Simple land cover may well be inserted to identify the largest and most cohesive patch of 

any one class or combination of classes. Similarly, possible applications exist outside of 

the resource conservation discipline. One could easily use datasets such as impervious 

surface or vacant land as inputs. The results of such a modeling effort could aid users of 

                                                 
17

 C-PAN patches are by design, highly cohesive and core rich. These are known characteristics in 

ecological theory and empirically supported research critical to sustaining viable populations of edge-

sensitive species. Coupling these modeled boundaries with additional characteristics such as habitat quality, 

species distributions etc. could be potentially beneficial in further ranking sites based on their ability to 

optimize these characteristics within a conservation network. 



53 

 

other disciplines in identifying cohesive regions of a particular size that exhibit a wide 

range of user-defined attributes. 

Based on these concepts, the C-PAN modeling approach may add utility to 

conservation reserve design through the prioritization of candidate sites by centering 

patch modeling on core/interior habitat. Once identified, the C-PAN modeling approach 

expands from the concentric core to include the contiguous network of suitable habitat 

associated with the patch. The C-PAN quotient and rank metrics then make it possible to 

grade habitat patches based on the respective proportion of cohesive interior habitat and 

total area. The C-PAN modeling approach of assessing habitat patches from the core 

outward using an overlay technique represents a fundamentally different alternative for 

modeling patches. As the remainder of this work indicates, it has the definite potential to 

aid resource managers in discerning which patches are the most optimal based on interior 

core habitat, patch cohesion, and size. 

 

C-PAN Model Strengths, Weaknesses, Assumptions and Limitations 

 

By design, the C-PAN approach is most appropriate for use on species requiring 

substantial core area and those sensitive to edge characteristics. This model searches the 

landscape for highly cohesive patches with substantial core area within an existing GIS 

framework. The elegant aggregation and overlay process used by the model allows for 

patches core rich and cohesive patches to be derived. This appears to be an improvement 

over highly parameterized approaches which utilize region-growing components for 

generating patches (discussed in detail in Chapter 3).  
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The C-PAN approach is also intended to serve as an alternative approach to 

heavily parameterized patch modeling methods when species-specific parameterization 

data are little or not known. Additionally the Landscape Cohesion Index (LCI) that is 

generated as part of the patch generation proves potentially beneficial for those also 

attempting to measure fragmentation metrics across multiple sites or landscapes and 

delineate patches based on the “statistical uniqueness” of their core composition. This 

frees the user from selecting potentially unknown parameter settings when using other 

approaches and allows for a choice to be made based on a measure of patch uniqueness in 

the landscape. 

As the C-PAN approach is highly iterative and computationally intense, 

processing time is worth discussing here. Using a 90 x 90 meter habitat dataset spanning 

a study area over 330,000 square kilometers, the C-PAN model took approximately 7 

hours of processing time on a 2 gigahertz dual core Windows based lab machine (512 mb 

ram). The majority of this processing time however is devoted to generating the LCI 

dataset from which patches are generated. Once this dataset is created, patches with any 

desired core composition can be generated in a matter of seconds. Also worth pointing 

out here, the C-PAN approach was fed into a cloud computing program (CONDOR, 

http://www.cs.wisc.edu/condor/) which parsed out the parallel iterative sequences of the 

model; this reduced the total processing time from 7 hours to 7 minutes
18

.  

                                                 
18

 CONDOR is a cloud computing program which allows for parallel processing of large problems. The C-

PAN model is highly iterative in its aggregation process which establishes LCI scores. Providing 

CONDOR with the underlying C-PAN modeling script allows for the parallel process of the model to be 

computed simultaneously. This improves processing time by orders of magnitude. 
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The moving window used during the aggregation and searching processes of the 

C-PAN model is potentially sensitive to the starting position of the search and the 

boundary of the study area being evaluated. This means that habitat cohesion is 

potentially underrepresented at the immediate fringe of the study area being evaluated. 

The extent of this potential impact is a function of the input dataset scale or cell size. In 

fine scale datasets this potential underrepresentation will be only a few meters while in 

coarse scale datasets underrepresentation of patches may persist at greater distances from 

the study area boundary. It is worth pointing out however that this issue persists in any 

analysis which uses a moving window and is not a limitation unique to this approach. 

Here it can be addressed by relaxing the LCI patch growing parameter, which will 

expand the patch to include areas with lower continuity values that resulted from their 

study area edge proximity. 

The C-PAN approach quantifies landscape pattern and emphasizes structural 

connectivity within the habitat patches. As a structurally based modeling approach, it is 

not intended to model landscape processes beyond the theoretical and empirically 

supported evidence that many landscape processes are captured in large and cohesive 

reserves. This approach is not intended to be used as substitute for PVA or SEPM 

analysis which evaluates processes such as species populations within patches and 

dispersal of individuals between them. Finally, like any other patch generation tool, the 

C-PAN approach cannot create a potentially viable biological reserve network on its own, 

only the reserve‟s fundamental component parts, the patch. Thus this author‟s main 

objective was to provide a more elegant means of generating biologically viable planning 
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units from which to choose when designing, selecting, and connecting patches that could 

be used as part of a comprehensive conservation plan. 

 

C-PAN Model Conclusions 

 

The primary goal of this objective was to develop a habitat patch modeling 

approach that focuses on maximizing the spatial metrics of reserve cohesion and core 

area with minimal user parameterization. While continual refinement of any model is 

necessary, this goal has largely been met. As a descriptive and structural based model, it 

will aid in identifying those tracts of habitat that remain intact and pose potentially the 

greatest biodiversity related benefits for including in some sort of conservation scheme. 

Based in theory and empirical evidence, the aggregation process within C-PAN produces 

new spatial outputs for delineating core habitat areas, provides metrics for comparing 

core area between patches, and maximizes patch cohesion through its iterative 

processing. Additionally, the C-PAN model is founded on ecological fundamentals rather 

than sparsely available detailed data. Finally, the C-PAN model presents potentially 

smaller barriers of entry to practitioners because it does not require complex model 

parameterization and operates entirely within existing GISs with commonly used tools 

(ArcMap 9.3 & Spatial Modeler Extensions); conservation planners need only provide an 

input dataset and select two LCI values (which the model generates) for delineating 

patches. 

In order further evaluate the C-PAN approach, the work that follows tested C-

PAN within the context of its modeling peers. The comparative analysis that follows in 
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Chapter Three served two primary purposes: 1) it addressed a gap within the patch 

modeling literature comparing currently utilized approaches and 2) it validated C-PAN 

by evaluating how its patch outputs compared to those of currently used tools.  
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CHAPTER THREE: 

COMPARATIVE ANALYSIS OF PATCH MODELING APPROACHES 

AND C-PAN VALIDATION 

 

Comparative Analysis Overview 

 

Chapter Three first outlines a number of patch modeling approaches, each 

increasing in their level of complexity
19

. From these approaches, two patch modeling 

tools were chosen to compare with the C-PAN approach. Patches were generated using 

each approach within the Northern Appalachian/Acadian Ecoregion and the modeling 

outputs compared. 

The comparative phase of the analysis served two primary purposes. First, it 

addressed the lack of relative comparison between each tool‟s respective outputs within 

the literature. As it currently stands, no such evaluation exists. Having evaluated the 

metrics of each approach‟s outputs has shed light on their potential strengths and 

weaknesses. Second, the analysis conducted aided in the validation of the C-PAN 

modeling approach as a potentially valid and useful tool. This is accomplished in large 

part by comparing C-PAN derived patch outputs with those derived by its present day 

modeling peers.  

Patch metrics of area, edge/area ratio, average nearest neighbor, and a measure of 

patch naturalness were evaluated. The comparative analysis also evaluated how well each 

                                                 
19

 Model complexity ranges both in terms of the technical knowhow and the data requirements required for 

parameterization  and use of a particular model. 
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approach‟s patches captured the last remaining wild places within the ecoregion. These 

metrics are discussed and the Chapter concludes with an assessment of C-PANs 

performance when compared to the other two approaches. 

 

Introduction to Patch Modeling Approaches 

 

Modeling approaches often substitute potential usefulness with complexity and 

vice versa. Sisk et al. (2002) observed that when simpler modeling alternatives 

adequately rank and discriminate among alternative outcomes they are more likely to be 

used to help solve actual problems. Basic patch/reserve design approaches focus 

primarily on the spatial attributes of the patch such as size, quantity, proximity, 

connectivity, shape, and core area that are believed to support natural population 

dynamics and maintain the resiliency of populations to environmental variations 

(Williams et al. 2005). In these approaches (Brookes 1997, With 1997, Gardner 1999, 

Turner et al. 2001, McGargal et al. 2002, Church et al. 2003, Theobald 2006, Beier 2007, 

and Girvetz and Greco, 2007), parameterization of patch occupancy or population 

viability components are not present. Instead, these studies rely to varying degrees on a 

simplifying assumption: that metrics such as size, shape, and core, in suitable form, can 

support the viability of certain populations. In other cases however, greater complexity 

may be sought.  
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Patch Occupancy, PVA, and SEPM Models 

 

Patch occupancy models provide the next level of complexity and can be used to 

provide crude assessments of population viability (Akcakaya and Brook, 2009). These 

approaches (Levins 1969, Hanski et al. 1996, Lindenmayer et al. 1999) evaluate the 

presence or absence of a species within a patch. Some applications (Grimm et al. 2004, 

Moilanen 2004) added patch design parameters for spatial optimization (Akcakaya and 

Brook, 2009). Population Viability Models (PVAs) and/or Spatially Explicit Population 

Models (SEPMs) provide the highest level of modeling complexity to date. 

Demographically structured metapopulation models (Breininger et al. 2004, Kindvall and 

Bergman 2004, Ruckelshaus et al. 2004, Brook and Whitehead 2005, Wintle et al. 2005, 

Bowman et al. 2006, Haines et al. 2006, Maschinski and Duquesnel 2006) are most 

commonly used for modeling declining populations, locally abundant organisms, large 

dynamic landscapes, and require significant demographic data (Akcakaya and Brook, 

2009).  

 

Individual Based Models (IBMs) 

 

Individual-based models (IBMs) further incorporate environmental stochasticity, 

habitat quality, and density dependencies for modeling the providence of each individual 

in a population. IBMs are typically utilized for analyzing very small populations, large-

bodied territorial species, genetic threats, or emerging behaviors (Akcakaya and Brook, 

2009). Again, however, while these complex models can provide perhaps the most 

detailed level of analysis within conservation planning, they are potentially limited in 
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application because they are reliant upon detailed demographic and behavioral data and 

are computationally intense for larger populations.  

 

Patch Modeling, Comparative Analysis and C-PAN Validation Overview 

 

The C-PAN model and the patch modeling components of Corridor Design and 

FunConn have been run independently as part of this work within the newly defined and 

scaled study area. Patch outputs for each approach have been compared and contrasted. 

The patch outputs have been evaluated based on two substantive categories: a) patch 

spatial metrics/cohesion and b) the respective ability of each approach to capture 

conservation targets; these are discussed in greater detail in the methods section.  

 

Approach Selection 

 

These approaches were chosen based on a number of factors. First, the C-PAN 

method was created in order to overcome potential barriers of entry found by many 

practitioners to spatially explicit habitat modeling and to address issues of modeling core 

area and spatial cohesion found in other approaches. The C-PAN approach is included 

here so that it can be tested at the ecoregion-scale and be validated as a potentially useful 

tool. The other two approaches (Corridor Design and FunConn)
20

 however are widely 

used in present day conservation planning and have been embraced as valid patch design 

tools. It is believed that these approaches represent a satisfactory sampling of the current 

tools being used today because each employs different patch modeling techniques and 

parameters and each is based on varying theoretical underpinnings for addressing 
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 Corridor Design in the Arizona Wildlands Project. FunConn in (Baldwin et al., In Press). 
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connectivity. Additionally, they have varying levels of modeling complexity, and they 

incorporate spatial metrics of patch design in their delineation of patches without 

incorporating parameters such as occupancy or population viability found in more 

complex approaches. 

A conscious decision was made to compare spatial metric approaches only as C-

PAN does not have any presence/absence or explicitly modeled population components. 

Having compared spatial metric approaches only, inferences should not be drawn 

regarding the occupancy or population viability potential of the patches defined by any of 

these approaches beyond the general theoretical assumptions that bigger, spatially 

coherent, and core rich patches may better support populations of edge-sensitive/core-

dependent species. 

 

Ecoregion-scale Study Area 

 

The project study area is the Northern Appalachian/Acadian Ecoregion (Figure 

3.1). This region includes significant portions of New York, Vermont, New Hampshire, 

and Maine within the U.S. and portions of Quebec, New Brunswick, Prince Edward 

Island, and Nova Scotia in Canada. Elevation within the region ranges from sea-level to 

over 1,500 meters. Additionally, this region is uniquely situated along a significant 

latitudinal gradient which separates the boreal forests of the north from the deciduous 

forests of the south (Trombulak, et al., 2008). Taken together, the region includes an 

estimated 3, 844 species of plants and animals, some 148 rare endemics, and is one of the 

continents top 20 ecoregions for vertebrate diversity (Trombulak et al., 2008).  
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Figure 3.1 – Ecoregion Study Area 

 

 

This region was selected for a number of reasons. First, and perhaps most 

appropriately for any spatial analysis, the region has been widely studied and includes a 

vast library of digital datasets that can be used within a GIS. Many of these datasets have 

been used for past and ongoing research endeavors and have been widely evaluated to 

satisfactory levels within a number of peer reviewed settings (Foster et al. 2002, Baldwin 

et al. 2007, Carroll 2007, Baldwin et al. 2008, Woolmer et al. 2008, and Trombulak et al 

2008). Several high quality datasets unique to this region and held by the Nature 

Conservancy and cooperative researchers include, human footprint data, high resolution 
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land cover, geophysical characteristics, and empirically supported habitat suitability 

analysis for a number of high profile vertebrate species including the Canada lynx. This 

region also posses unique land use characteristics that include highly urban centers, vast 

assemblages of virtually untouched wilderness, and intensely managed blocks of multi-

use land enrolled in agricultural and timber production. Additionally, consensus that 

conservation efforts at the ecoregion level, as opposed to smaller scales, are most 

appropriately sized to ensure the long term persistence of the greatest number of species 

and ecosystems is growing (Hoctor et al. 2000, Phua and Minowa, 2005, Rouget et al. 

2006, Knight et al. 2007, Trombulak et al. 2008). 

 

Patch Modeling Methods 

 

Each modeling approach uses different methodologies and tools for generating 

modeled patch outputs. In order for a comparative analysis of these tools to take place, all 

data, model parameters, and inputs must be controlled. This was accomplished by using 

the same data as inputs and normalizing model parameters whenever possible. These 

details are discussed more thoroughly in the methods section of each approach. 

 

C-PAN 

 

In addition to identifying patches of any user-defined size, the C-PAN output 

delineates the LCMC patch, the patches with the greatest expanse of core or interior 

habitat, and the patches with relatively little edge effects and the metrics for comparing 

all other potential patches. This approach differs from other modeling approaches in that 

it first identifies core and interior habitat and then extends the patch boundary outward to 
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encompass the surrounding habitat network. It provides the metrics of the C-PAN value, 

quotient, and rank for comparing habitat patches of any size with each other and the 

largest patch so that decision makers may optimize the inclusion of core and interior 

habitat into reserve design. Utilizing the C-PAN derived LCI, users can determine 

optimal scales for conserving specified species and ultimately thresholds at which 

patches of certain sizes become statistically unique on a given landscape. Based on these 

concepts, the C-PAN modeling approach may add utility to conservation reserve design 

and the prioritization of candidate sites by centering patch modeling on concentric core 

interior habitat and heightened patch cohesion.  

The C-PAN model results represent the first set of unique patch outputs to be 

evaluated. Taken individually, the outputs from these 3 approaches could serve as 

possible candidate sites in the reserve design, selection, and/or the derivation of patches 

from which a more detailed population viability analysis could take place. Taken together 

however, they can be compared and their differences surmised. This ultimately aids in 

assessing the relative performance of each approach. 

 

C-PAN Parameterization 

 

A raster human footprint dataset (Woolmer et al. 2008) for the ecoregion was 

used as the input dataset for patch generation. The human footprint dataset serves as a 

measure of landscape “naturalness” and has been used by others in the identification of 

“last of the wild” areas, or those areas within the ecoregion with minimal human impact 

(Sanderson et al. 2002, Woolmer et al. 2008). Using this dataset for patch generation has 

several benefits. First, it implies that the patches being modeled may be appropriate for 
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those species sensitive to landscape fragmentation (core-dwelling), this is closely aligned 

with the recommended use of the C-PAN approach. Secondly, utilizing an index of 

“naturalness” for defining patches removes species-specific data and patch 

parameterization assumptions found in typical focal species analysis. Third, the dataset 

has been peer reviewed, provides ecoregion-scale coverage, and is fine resolution (90 x 

90 meters) for modeling at this scale (Sanderson et al. 2002, Woolmer et al. 2008). 

Finally, as “last of the wild” (LOW) patches have been generated from the results of past 

research, they can provide yet another set of modeled patches for comparison here. 

Human footprint scores ranged from 100 (high human impact) to 0 (mostly wild). Scores 

of 10 or less were selected as suitable cells from which patches could be generated; this is 

the same cutoff value that was used by Woolmer et al. (2008) for establishing the 

ecoregions LOW patches. Suitable cells were then reclassified to a value of 1 and all 

other cells converted to 0. This binary “suitable/unsuitable” dataset served as the input to 

the C-PAN model. 

 Starting the C-PAN model initiates the Landscape Cohesion Indexing (LCI) of the 

study area. LCI scores range from 0 (cells are not found in patches) to 200 (cells which 

participate in many highly cohesive patches). Upon completion, the user evaluates a 

histogram which illustrates scores depicting how many times a particular grid cell 

participates in patches of progressively larger sizes. Lower scores indicate that the cell 

and its neighbors are relatively fragmented and are found in smaller patches with minimal 

interior habitat. Conversely, higher LCI scores illustrate cells and their neighbors which 

are largely cohesive in their landscape distribution. Evaluating the LCI histogram allows 

the user to identify at what score cells become statistically unique in the landscape. This 



67 

 

score is then chosen as a starting point for generating highly cohesive patches. For 

proposes here, the top 10% of the ecoregions LCI scores (LCI = 29) were used for 

delineating the core seeds of each patch. This selection generates the top 10% most 

cohesive patch core areas in the ecoregion.  

Additionally, the C-PAN model allows for the user to establish a second cohesion 

parameter which constrains or expands how adjacent cells are treated when growing the 

patch core seeds. Cells with the top 20% LCI scores (LCI = 20) were selected for 

expanding the core of the patch to its full size. Scaling this parameter up or down will 

tighten or expand the resulting patches. Setting these two parameters results in an output 

that consists of patches with a LCI score of 29 (top 10%) for the core and 20 (top 20%) 

for adjacent cells to expand the patch. C-PAN parameters are displayed in Table 3.1. 

 

Corridor Design 

 

Created by Beier et al. (2007) at the University of Northern Arizona, Corridor 

Design has been widely used as part of the Arizona “Wildlands Project” throughout the 

American southwest. Designed primarily to promote connectivity conservation, Corridor 

Designer developed a set of spatial modeling tools. The workflow of this approach 

involves defining an analysis area, identifying focal species, choosing GIS factors, 

estimating suitability, combining factors, modeling habitat patches, modifying habitat 

maps, defining corridor endpoints, generating a cost surface, and evaluating corridors. 

This approach uses “least cost path” methods for generating the likely path an organism 

might take based on the cost or impedance of moving through the landscape matrix 

(Beier, et al., 2007). 
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For purposes here, only the patch modeling component of Corridor Design has 

been used. Input parameters required for this process include the moving window 

neighborhood size, habitat suitability scores, and minimum patch areas for supporting a 

population and breeding occurrence. The patch delineation process used by Corridor 

Designer is relatively straightforward. The habitat suitability dataset serves as the input 

from which patches are derived. The moving window then averages suitability scores 

based on a user-defined size and threshold value. Cells with average scores above the 

user-defined quality threshold are used to delineate patches. Clusters of those cells that 

exceed the user-defined minimum size threshold are then assembled into patches. The 

output of this analysis provides the second unique set of patches within the study area.  

 

Corridor Designer Parameterization 

 

The corridor design patch modeling tool was parameterized to mirror the settings 

of the C-PAN tool as closely as possible. Coincidentally, this resulted in the tool being 

set to be as edge-sensitive (most discriminatory) as the tool recommends when 

delineating patches. First, the input HF dataset was the same as that used in the C-PAN 

approach. Second, the moving window was set to 27 x 27 cells (the maximum size 

recommended by the tool) which parameterizes the tool to be edge-sensitive. The habitat 

quality threshold was set to 1, which ensured that patches are comprised entirely of 

suitable habitat. Finally, the minimum breeding and population patch sizes were set to 

661 hectares, the smallest size patch that was delineated by the C-PAN model. 

Parameterization of this approach is provided in Table 3.1. 
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FunConn 

 

Developed by Theobald et al. (2006) at Colorado State University, FunConn aims 

to delineate functional patches based on organism-specific parameters. This method 

identifies functional patches based on an organism‟s foraging habits and its ability to 

move between patches (Girvetz and Greco, 2007). The workflow for FunConn begins 

with creating a habitat quality surface, defining functional patches, building a landscape 

network, delineating a points, lines, and polygons network, developing the minimum 

spanning tree, calculating edge, neighborhood and node calculations, shortest path 

derivation, and generating a node-edge-node / node-path-node distance matrix. FunConn 

utilizes graph theory as its basis for addressing issues of connectivity between individual 

patches (Theobald, et al., 2006). 

Again, only the patch modeling components of this approach was used for this 

comparative analysis. The input parameters required for this process include the 

maximum foraging radius, minimum patch size, core habitat percentage, and a resource 

quality threshold. The outputs of this approach‟s patch modeling component provides the 

third set of unique patches to be evaluated. 

The Define Functional Patches tool within FunConn aims to delineate functional 

patches based on organism-specific parameters. This tool relies on several user-defined 

parameters to be input which includes a resource quality threshold, the minimum patch 

size, the maximum foraging radius, and the core habitat percentage. Each of these 

parameters can be thought of as a selection criterion that continually culls all available 

patches leaving only those that meet all of the required structural characteristics.  
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FunConn Parameterization 

 

To the extent possible, each parameter value was set to mimic those of the C-PAN 

and Corridor Design approaches. The resource quality threshold establishes the minimum 

habitat quality to be considered for region-grouping or assembling the first cut of habitat 

patches. The higher the threshold value (necessary for species that are more restrictive in 

their habitat requirements) the more restrictive the patch selection process will become; 

this was set to 1 as in the other approaches.  

The minimum patch size parameter is also used as a measure for eliminating 

patches that are not large enough to sustain the focal species; this was set to 661 hectares 

just as in the other approaches. Similarly, the maximum foraging radius parameter 

attempts to incorporate a measure of how far an animal travels during foraging, to aid in 

identifying patches that meet minimum size requirements. The minimum foraging radius 

was set to 1,215 meters to match half the approximate width of 27 x 27 window utilized 

in the Corridor Design approach.  

Finally, the core habitat percentage parameter refines again which patches are 

functionally suitable by aiming to add a measure of the species interior versus edge 

habitat requirements. Those species negatively affected by edge (edge negative species: 

lynx) would require a higher value to be entered, while those species that are indifferent 

to edge (edge neutral: bobcat) and positively affected by edge (edge positive: mountain 

lion) would require lower values to be entered as the patches for these species need not be 

as restrictive (Theobald et al. 2006). A value of 100 was selected to maximize this 

measure. Parameterization of this approach is provided in Table 3.1. 
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Table 3.1 – Patch Modeling Parameterization 

Patch Modeling Parameterization       

  
  

  

  
C-

PAN 
Corridor 
Design FunConn 

LCI Core Value 29 NA NA 

LCI Grow Value 20 NA NA 

Habitat Quality Threshold 1 1 1 

Min Patch Size 661 661 661 

Moving Window Size NA 27 x 27 1,215 

Core Habitat Requirement NA NA 100 

 

 

 

 

 

 

 

 

Comparative Analysis and C-PAN Validation Methods 

 

The comparative, quantitative analysis highlighted some of the inherent strengths, 

weaknesses, and assumptions associated with each of these modeling approaches. This 

was accomplished by evaluating two primary components of each approach‟s patch 

outputs: 1) patch spatial metrics/cohesion and 2) how well each approach captured 

conservation targets. 

 

Spatial Metrics and Cohesion 

 

The spatial metrics analysis included an evaluation of the physical attributes and 

dimensions associated with each individual patch. Spatial statistics were generated for 

each individual patch and for the average of all patches from each approach. These 

metrics were used to discern which approach provides patch outputs that are optimally 

Efforts were taken to parameterize all three patch modeling approaches as closely as possible. The 

habitat quality threshold of (1) was utilized for all three approaches. The minimum patch size (661 

hectares) was also set to be equal across approaches; this represented the smallest patch size 

delineated from the C-PAN model. The maximum recommended moving window from Corridor 

Designer (27 x 27) was scaled to a value of 1,215 meters for the FunConn approach; this represents 

the minimum foraging radius that the model requires. All other parameters that were unique to one 

approach and not the others are represented as NA. 
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orientated from a spatial perspective. This work evaluated patch area, edge/area ratios, 

and average nearest neighbor metrics. These metrics are reported in the following 

summary section that discusses and evaluates each model‟s patch cohesion performance.  

 

Ability to Capture Conservation Targets 

 

The conservation targets evaluated here were derived from preexisting datasets 

that have been widely accepted in a number of peer reviewed and conservation planning 

initiatives for the Northern Appalachian/Acadian Ecoregion (Woolmer et al. 2008, 

Trombulak et al. 2008). They include average human footprint scores within the patch, 

LOW capture, and omission/commission values for capturing LOW areas. These 

preexisting targets were all derived from the Human Footprint (HF) dataset; the HF 

dataset was used in this research as the input for patch derivation in each scenario. This 

common link led to an analysis of conservation target capture. The target capture analysis 

determined what proportions of these distributions were captured within the boundaries 

of the modeled patch outputs. This analysis determined which approach best met the 

goals of protecting these resources within this region. 

Conservation targets were reported in three ways: first, as the total percentage 

captured by each patch output; second, the amount of conservation target related land not 

captured by the patch (omission); third, the amount of non-conservation target related 

land within each patch (commission). These output values were evaluated within a matrix 

depicting the reported results of each approach. From the evaluation conducted as part of 

this work, a conclusion was drawn regarding each approach‟s ability to meet and include 
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specific conservation-related goals and compared the relative effectiveness and efficiency 

of each model. 

 

Conservation Target Distributions 

 

Wild areas within the ecoregion were delineated by Woolmer et al. (2008) 

through extracting HF scores of ≤ 10. While these areas ranged in size from < 1 to 1,930 

km
2
, most of them (80.7%) are ≤ 1 km

2
 in size and are highly fragmented. Last of the 

Wild (LOW) areas were then delineated by extracting the top 10% largest blocks of wild 

areas for each sub-region within the ecoregion. These areas are delineated in Figure 3.2.  

 

Figure 3.2 – Last of the Wild (LOW) Areas 

 

 

 

LOW areas represent the top 10% largest areas of HF scores ≤10 within each subregion. There are 

120 LOW areas delineated ranging in size from 237 to 193,108 ha. The average size of LOW areas is 

17,111 ha. 
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Patch Modeling Results 

 

Patch modeling results for each approach have been provided here separately. 

Spatial metric and conservation target capture comparisons have been provided in the 

following section. This was done as part of this work because no such comparison 

currently exists among these approaches. 

 

C-PAN 

 

The C-PAN derived LCI indicated that scores ≥ 29 were among the top 10% for the 

ecoregion while scores ≥ 20 were in the top 20%. The highest LCI score observed in the 

ecoregion was 176, which represents cells in regions that were highly cohesive and 

largely unfragmented. LCI Scores are depicted in tabular form (Figures 3.3) and graphic 

form (Figure 3.4). C-PAN patches are depicted in Figure 3.5 followed by Corridor 

Designer patches (Figure 3.6) and FunConn patches (Figure 3.7). 

 

 

 

 

 

 

 

 

 

 



75 

 

Figure 3.3 – Landscape Cohesion Index (LCI) Distribution 
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Landscape Cohesion Index (LCI):
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Represents the Landscape Cohesion Index scores for the ecoregion. Small values to the left represent 

numerous grid cells that are part of small and fragmented patches. Large values to the right represent 

relatively few grid cells that are part of largely contiguous and cohesive patches with substantial core 

area. These LCI scores allow the user to evaluate landscape fragmentation and determine potentially 

useful statistical thresholds (top 10% etc) for determining patch delineation parameters. Establishing 

patch delineation measures this way allows for patches to be delineated based on how “unique” their 

characteristics are throughout the landscape as opposed to species-specific parameterization. 

 

 

LCI = 29 

(Top10 %) 

 

 

LCI = 20 

(Top20 %) 
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Figure 3.4 – Landscape Contiguity Index (LCI) Spatial Distribution 

 

 
 

 

 

0 125 25062.5 Miles ¸

Top: LCI scores range from 0 to 176 for the ecoregion. Areas with low scores are comprised of 

relatively small and fragmented patches. Areas with high scores are comprised of larger more 

contiguous patches. Areas in gray are highly fragmented and are not part of any patch. 

Bottom: Inset of landscape fragmentation and LCI scores. 
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Figure 3.5 – C-PAN Patches 

 

 

 

 

C-PAN derived patches for the ecoregion (N = 225). Patches range in size from 661 to 178,212 ha with 

an average size of 5,883 ha. 
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Corridor Design 

 

Figure 3.6 – Corridor Design Patches 

 

 

 

Corridor Design derived patches for the ecoregion (N = 209). Patches range in size from 664 to 

156,799 ha with an average size of 4,502 ha. 
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FunConn 

 

Figure 3.7 – FunConn Patches 

 

 

 

C-PAN derived patches for the ecoregion (N = 31). Patches range in size from 1,444 to 4,609,512 ha 

with an average size of 148,693 ha. 
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Comparative Analysis: C-PAN, Corridor Design, and FunConn 

 

The spatial results of the C-PAN patch modeling approach were compared to 

those of Corridor Design and FunConn. Spatial metrics associated with patch area 

included the minimum, maximum, and average patch size, total patch area, and patch 

area standard deviation. Edge/area ratio metrics of minimum, maximum, and average 

edge/area ratios were also compared
21

. An average nearest neighbor analysis of patch 

distributions was also conducted. The results of this comparative analysis are discussed 

below. 

 

Spatial Metrics and Cohesion: Patch Area 

 

 The minimum patch area observed for C-PAN (N = 225) was 661 ha, Corridor 

Design (N = 209) was 66 ha, and FunConn (N = 31) was 1,444 ha. As the C-PAN 

approach was run first, the observed patch size of 661 ha was set as the minimum patch 

size for the other approaches. Corridor design delineated a nearly identical patch size 

(664 ha) while the minimum patch size delineated by FunConn was more than twice as 

large (1,444 ha). Corridor Design exhibited the smallest maximum patch size (156,799 

ha) followed closely by C-PAN (178,212 ha). The maximum patch size for FunConn 

however was over three times greater (561,099 ha). Corridor Design also reported the 

smallest total patch area (940,950 ha) followed by C-PAN (1,323,755 ha) and FunConn 

(4,609,512 ha). Similarly, Corridor design exhibited the smallest average patch area 

(4,502 ha) and standard deviation (14,331 ha), followed by C-PAN (5,883 ha, std dev 

                                                 
21

 These metrics are appropriate for measuring the cohesive nature of patches. More cohesive patches will 

exhibit lower edge/area rations and vice versa.  



81 

 

16,787) and FunConn (148, 693 ha and std dev 119,459). These values are provided in 

Table 3.2 and further compared in Figure 3.8. 

 

Table 3.2 - Patch Metrics: Patch Area Comparison 

 

Patch 
Metrics:       

Patch Area 
  

  

  
  

  

  C-PAN 
Corridor 
Design FunConn 

N 225 209 31 

Min 661 664 1,444 

Max 178,212 156,799 561,099 

Sum 1,323,755 940,950 4,609,512 

Mean 5,883 4,502 148,693 

Std Dev 16,787 14,331 119,459 

 

 

 

 

 

 

 

 

 

 

 

 

 

While C-PAN produced the greatest number of patches, tighter parameterization would result in 

additional patch discrimination. Corridor Design however was parameterized as tightly as the tool 

recommends indicating that honing in on a more select group of patches may be limited. Similarly, 

FunConn was also very tightly parameterized, this resulted in very few, and very large patches being 

delineated. While FunConn delineated fewer patches, their large size may pose difficulties for 

selecting priority sites for implementation.  
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Figure 3.8 - Patch Metrics: Patch Area Comparison 
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Spatial Metrics and Cohesion: Edge/Area Ratio 

 

Edge/Area (EA) ratio comparisons indicate that the C-PAN approach exhibits the 

best minimum (0.000238) compared to FunConn (0.000254) and Corridor Design 

(0.000286). FunConn reported the best maximum EA ratio for any one patch (0.001695) 

followed by C-PAN (0.001912) and Corridor Design (0.003805). The average EA ratio 

for C-PAN was 0.00117 (std dev. 0.000348), 0.00177 (std dev. 0.000695) for Corridor 

Design and 0.00068 (0.000303) for FunConn. FunConn reported the best average EA 

ration when compared to C-PAN and Corridor Design. This is attributable to the very 

large average patch size (148, 693 ha) compared to 5,883 ha for C-PAN and 4,502 ha for 

Corridor Design. For patches of similar size derived by Corridor Design, C-PAN 

produced patches with better EA ratios. These values are provided in Table 3.3 and 

further compared in Figure 3.9. 

Table 3.3 – Patch Metrics: Edge/Area Ratio Comparison 

Patch Metrics:       

Edge/Area Ratio 
  

  

        

  C-PAN 
Corridor 
Design FunConn 

N 225 209 31 

Min 0.000238 0.000286 0.000254 

Max 0.001912 0.003805 0.001695 

Sum 0.263201 0.36985 0.021066 

Mean 0.00117 0.00177 0.00068 

Std Dev 0.000348 0.000695 0.000303 

 

 

 

 

 

Smaller values indicate potentially less edge effects within a patch. At high discrimination, C-PAN 

reported the patch with the best EA ratio from all approaches. While FunConn performed best 

followed by C-PAN and Corridor Design in other metrics of EA ratio, this is attributable to the very 

large size of the FunConn patches. Parameterized this way, FunConn was not able to derive patches 

of small size like the other approaches. Relaxing the parameterization of C-PAN and Corridor Design 

however would lead to EA results more similar to FunConn.  
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Figure 3.9 – Patch Metrics: Edge/Area Ration Comparison 
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Spatial Metrics and Cohesion: Average Nearest Neighbor 

 

The average nearest neighbor analysis indicated that the C-PAN and Corridor 

Design patches were highly clustered with Z-scores of -11.68 and -12.29 respectively. C-

PAN and Corridor design patch distributions each exhibited a significance level of 0.01 

and a critical value of -2.58 (highly clustered).  The patch distribution for FunConn 

exhibited a Z-score of -0.1, indicating a random distribution across the landscape. This 

data is presented in Table 3.4. 

 

Table 3.4 – Patch Metrics: Average Nearest Neighbor Analysis 

Patch Metrics:         

Average Nearest Neighbor 
  

  

  
   

  

  Observed Mean Distance /   Significance Critical 

  Expected Mean Distance Z Score Level Value 

C-PAN 0.59 -11.68 0.01 -2.58 

Corridor Design 0.56 -12.29 0.01 -2.58 

FunConn 0.99 -0.1 x X 

 

 

 

Conservation Target Capture: Average Human Footprint Score 

 

The average HF score is a measure of patch naturalness. As HF scores of ≤ 10 

were used for patch generation in all three approaches, the average HF score of the 

resulting patches should be, by design, low. C-PAN and Corridor Design patches had the 

lowest average HF scores (1.76 and 1.51 respectively). FunConn patches exhibited a 

slightly higher average HF score (5.10). This indicated that C-PAN and Corridor design 

Patch distributions for C-PAN and Corridor Design were highly clustered. There is less than a 1% 

likelihood that this clustered pattern could be the result of random chance. The FunConn patch 

distribution was randomly distributed across the landscape.  
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patches were “more natural” and less impacted by anthropocentric activities than were 

FunConn patches. HF metrics can be found in Table 3.5 and Figure 3.10. 

 

Table 3.5 – Conservation Target Capture: Average Human Footprint Score 

Conservation Target Capture:     

Average Human Footprint Score 
 

  

  
   

  

  Min Max Mean Std Dev 

C-PAN 0 10 1.76 2.17 

Corridor Design 0 10 1.51 1.95 

FunConn 0 99 5.10 6.04 

 

 

 

Figure 3.10 – Conservation Target Capture: Average Human Footprint Score 
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C-PAN and Corridor Design patches exhibited the most “natural” characteristics. FunConn patches 

exhibited higher HF scores within them. This is attributable to the less selective region growing 

process that is unique to the FunConn approach. 
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Conservation Target Capture: Last of the Wild 

 

Under highly selective patch edge parameterization, FunConn captured 72.07% of 

the last of LOW areas followed by C-PAN at 40.46% and Corridor Design at 37.24%. As 

with the patch area and EA ratios reported earlier, the higher capture rate achieved by 

FunConn is attributable to the large, less discriminatory patches; whereas C-PAN and 

Corridor design achieve less LOW capture because their respective patches tended to be 

smaller and more selective. This is also directly analogous to target omission across the 

three approaches. FunConn exhibits the smallest LOW omission followed by C-PAN and 

Corridor Design at 59.54% and 68.80% respectively. Conversely however, the large 

patches delineated by FunConn contributed to the greatest commission area among the 

three approaches. Commission area (patch area that does not contribute to capturing the 

conservation target) for FunConn (67.90%) was nearly twice that of C-PAN and Corridor 

Design at 37.24% and 31.91% respectively.  

Figure 3.11 on the following page provides a conceptual diagram of patch target 

capture, omission, and commission. Additionally, a measure of model efficiency was 

developed by dividing the total target captured area with the total commission area for 

each approach. The “capture to commission ratio” (CC) indicates hectares of target 

capture for every hectare of commission area. Corridor Design reported the best CC ratio 

at 2.13 followed by C-PAN at 1.68 and FunConn at 0.68. A measure of overall modeling 

effectiveness was also developed by dividing total target captured area with the total 

omission area for each approach. The “capture to omission ratio” (CO) indicates hectares 

of target capture for every hectare of omission area. FunConn reported the best CO ratio 



88 

 

of 2.58 compared to 0.68 for C-PAN and 0.45 for Corridor Design. These comparisons 

are outlined in Table 3.6. 

 

Figure 3.11 – Patch & Target Capture Concept 

 

 

 

 

 

 

 

 

 

 

 

Target capture, patch commission, and patch omission is derived via performing a union with the 

patch outputs of each approach and the LOW target areas. Areas in green represent portions of the 

LOW that were captured within the boundaries of a patch modeling approach. Areas in tan indicate 

areas delineated by the patch modeling approach that do not capture a LOW area (commission). 

Areas in red indicate LOW areas that were not captured by the modeling approaches patch output 

(omission).  
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Table 3.6 – Conservation Target Capture: Commission & Omission  

Conservation Target Capture:     

Last of the Wild (LOW) 
 

  

        

  Target Captured Commission Target Omission 

C-PAN  830,728 493,026 122,2636 

 
40.46% 37.24% 59.54% 

Corridor Design 640,707 300,242 1,412,657 

  31.20% 31.91% 68.80% 

FunConn 1,479,807 3,129,704 573,557 

  72.07% 67.90% 27.93% 

  (Patch and LOW) (Patch Only) (LOW Only) 

    
  

Capture to 
Commission Ratio   

Capture to Omission 
Ratio 

  
(Capture / 

Commission)   (Capture / Omission) 

C-PAN (High) 1.68 
 

0.68 

Corridor Design 2.13 
 

0.45 

FunConn 0.47 
 

2.58 

 

 

 

 

Patch Modeling Discussion 

 

 The three patch delineation tools evaluated here incorporate parameters that place 

selective criteria on the spatial metrics of the patch. More complex approaches which 

evaluate patch occupancy and PVA include additional parameterization that the C-PAN 

model is not intended to evaluate. As such, the C-PAN approach was evaluated with two 

of its most closely related patch modeling peers, Corridor Design and FunConn. The 

parameterization of each approach proved critical in comparing their modeled patch 

outputs. Each approach uses varying algorithms and spatial mechanics for delineating 

At high selectivity, C-PAN and Corridor Design captured less conservation target area but also 

reported smaller patch commission. Higher CC values indicate better model efficiency; value 

represents hectares captured per 1 hectare with no contribution.  Higher CO values indicate better 

model effectiveness; value represents hectares captured per 1 hectare un-captured. C-PAN performed 

at intermediate levels when measuring these metrics, never last. C-PAN outperformed or performed 

as well as FunConn when parameters were relaxed to more closely mimic those patches (Table 3.7) 
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patches. Corridor Design primary mechanism for patch generation relies on a moving 

window which averages habitat quality at a user-defined scale. This allows the user to 

determine how edge-sensitive the patch delineation process becomes; an increase in the 

moving window size for example parameterizes the model to be more selective in patch 

generation. The Corridor Design patch modeling tool was tightly parameterized for 

comparison with C-PAN and FunConn.  

The FunConn patch modeling tool relies on a region-growing processes coupled 

with core habitat requirements and a minimum foraging radios. The region-growing 

process within the FunConn approach is a common means of selecting contiguous 

suitable cells. The core habitat requirement and minimum foraging radius are parameters 

that place selection criteria on the region-grouped cells. The FunConn approach was also 

tightly parameterized for patch modeling comparisons.  

Similar to other patch modeling approaches, C-PAN uses a moving window in the 

early stages of landscape sampling for generating LCI scores. C-PAN varies from others 

however in that it does not use the moving window or a region growing process in its 

delineation of patches. Instead, C-PAN uses an iterative aggregation, overly, and 

extraction process to generate patches. To this author‟s knowledge, this process is unique 

to this approach alone. Additionally, the C-PAN approach provides LCI scores for 

evaluating fragmentation within the landscape and provides a statistically means for 

determining patch selection criteria. Together, the mechanically unique methods, 

utilization of LCI scores, and ease of model parameterization, make C-PAN a distinctive 

and potentially beneficial alternative means of patch generation. 
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Comparative Analysis and C-PAN Validation Discussion 

 

 C-PAN performs markedly well when compared to the patch modeling tools of 

Corridor Design and FunConn. C-PAN ranked first or second among all spatial and target 

capture metrics measured. Furthermore, C-PAN appears to provide users with greater site 

discrimination capabilities than Corridor Design or FunConn. At high patch 

selectiveness, the outputs of C-PAN and Corridor design were the most similar in size 

and distribution across the study area and provided users with a more selective set of 

discrete patches than the FunConn approach (Figure 3.12). The C-PAN approach could 

be parameterized to be even more selective by selecting a higher LCI value from which 

to derive patches
22

. Tighter parameterization of Corridor Design however may be more 

difficult as it was already parameterized as selective as the tool recommends. Increasing 

site selectivity is particularly beneficial from a conservation management perspective as 

it allows users to identify discrete locations as opposed to wide areas upon which to 

direct efforts.  

 The FunConn approach delineated very few patches when compared to the others 

(N = 31) but the average patch size was orders of magnitude higher (average area 

148,693 ha vs. 5,883 ha for C-PAN and 4,502 for Corridor Design). This resulted in 

FunConn performing fairly well in capturing LOW wild areas (72.07%) within the study 

area when compared to the other two approaches. When model parameters were relaxed 

in the C-PAN approach (to derive fewer patches of larger size) the results resembled that 

of FunConn more closely. In order to achieve this, the C-PAN LCI core value was 

increased to identify patches within the top 5% of LCI scores (reducing the number of 

                                                 
22

 Example: the top 5% LCI values could be selected instead of the 10% as was modeled here. 
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patches identified) and the LCI grow value was decreased to a value of 1 (increasing the 

size of those patches). Parameterization of C-PAN in this way resulted in fewer, larger, 

patches that more closely resembled the output of FunConn. C-PAN conservation target 

capture was increased to 69.13% to nearly the same as FunConn (72.07%). While patch 

commission also increased to 56.60%, it was considerably less than that observed by 

FunConn 67.90%. While the CC efficiency ratio decreased markedly from the results of 

the more tightly parameterization run (1.68), it remained slightly better than the 

efficiency ratio reported by FunConn (0.77 to 0.47 respectively). The CO ratio of C-PAN 

increased to nearly the same value reported by FunConn (2.24 and 2.58 respectively).  

 These results demonstrate that relaxing the patch selection requirements of C-

PAN resulted in patches that are comparable to those delineated by FunConn. 

Parameterizing C-PAN in this way derived patches that outperformed or mimicked 

closely FunConn patches on measures of conservation target capture, target omission, 

commission, and model effectiveness and efficiency.  These values are reported in Table 

3.7. 
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Table 3.7 – Conservation Target Capture (FunConn): Commission & Omission 

Conservation Target Capture:     

Last of the Wild (LOW) 
 

  

        

  Target Captured Commission Target Omission 

C-PAN 1,419,551 1,851,762 633,813 

  69.13% 56.60% 30.87% 

FunConn 1,479,807 3,129,704 573,557 

  72.07% 67.90% 27.93% 

  (Patch and LOW) (Patch Only) (LOW Only) 

        

  
Capture to Commission 

Ratio   
Capture to Omission 

Ratio 

  (Capture / Commission)   (Captured / Omission) 

C-PAN  0.77   2.24 

FunConn 0.47 
 

2.58 

     

 

 

  

 

 

 

 

 

 

 

 

 

 

 

Relaxing C-PAN parameters resulted in decreased patch modeling efficiency (increasing commission) 

and increased conservation target capture effectiveness (reducing target omission). This was done for 

comparative purposes to derive patches of similar metrics to those delineated by FunConn. Doing so 

resulted in C-PAN outperforming or performing as well as FunConn on these metrics. 
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Figure 3.12 – Modeled Patch Comparisons 

 

C-PAN patches tended to 

delineate discrete locations with 

high core area characteristics. 

C-PAN patches exhibited better 

EA ratios than Corridor Design 

patches. The C-PAN approach 

also appears to have higher 

patch discrimination 

capabilities when compared to 

the others. 

 

 

Corridor Design patches also 

delineated discrete locations with 

high core area characteristics. 

Additional patch discrimination 

may be difficult however as it was 

parameterized as tightly as the 

tool recommends. Increasing the 

moving window size is the 

primary means of addressing 

patch edge. 

 

 

FunConn patches were generally 

large, heterogeneous, and 

comprised of less suitable HF 

scores. When C-PAN parameters 

were relaxed, the patch outputs 

closely resembled that of 

FunConn (below). FunConn 

could not be parameterized to 

achieve the same site 

discrimination of C-PAN or 

Corridor Design however. 
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Evaluation Conclusions 

 

The comparative phase of the analysis served two primary purposes. First, the 

comparative analysis outlined here served potential benefit in addressing the lack of 

relative comparison between each tool‟s respective outputs. This has shed light on each 

approach‟s potential patch modeling strengths and weaknesses when attempting to reach 

particular conservation related goals associated with patch cohesion and conservation 

target capture.  

Of the three approaches, C-PAN achieved the highest level of discrimination 

amongst sites. Both C-PAN and Corridor Design were effective in delineating highly 

homogenous patches. Corridor Design was also effective in delineating relatively acute 

patch locations. Additional patch discrimination may prove difficult however as the tool 

was set to maximum discrimination for this analysis. Increasing the size of the moving 

window and the core area percentage parameters were key to delineating patches that 

were sensitive to edge characteristics. The FunConn approach delineated much larger and 

heterogeneous patches even at high discrimination. Relaxing C-PAN parameterization 

resulted in patches that were comparable to those of FunConn. FunConn however could 

not be parameterized to generate patches that resembled the highly selective nature of C-

PAN and Corridor Design. 

Secondly, this analysis validated the C-PAN modeling approach as a potentially 

compelling and useful patch modeling tool. This was accomplished in large part by 

comparing C-PAN derived patch outputs with those derived by its present day modeling 

peers. C-PAN patches closely resembled those derived by Corridor Design in the number 



96 

 

of patches generated and metrics of size. C-PAN also delineated the patch with the best 

EA ratio and reports better average EA ratios than Corridor Design derived patches.  

Comparing the average HF scores within the patches of each approach indicated 

that Corridor Design and C-PAN approaches exhibited higher levels of “naturalness” 

than did FunConn patches. While the large FunConn patches captured LOW areas rather 

effectively, it also exhibited the highest patch commission of the approaches. C-PAN 

captured more LOW area than did Corridor Design and was able to capture nearly as 

much LOW area as FunConn, with less commission area, when its patch modeling 

parameters were relaxed.  

These results indicate that C-PAN patch modeling approach performs as well, and 

better, in the patch metrics evaluated here (patch area, EA ratios, average nearest 

neighbor, average HF score, LOW capture, and patch commission). Additionally, the use 

of the statistical distribution of LCI scores for tool parameterization (i.e., top 10% etc.) 

represents a significant and potentially beneficial departure from other approaches. Using 

LCI scores allows users to parameterize patches in the landscape based on their statistical 

uniqueness in the landscape as opposed to species-specific parameterization. 

In summary, the C-PAN patch modeling approach exhibits the ability to delineate 

discrete patches with higher discrimination capabilities than the other tools evaluated 

here. It has proven successful in delineating highly homogenous patches with significant 

core area, at high resolution, and at a large scale. Resource managers may find the use of 

this tool useful when species-specific parameterization of other approaches is lacking, 

there is a desire to identify patches that are the most unique in the landscape being 

evaluated, and when attention to core area and patch cohesion is of particular importance.  
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CHAPTER FOUR: 

PATCH AND CONNECTIVITY MODELING  

AT THE ECOREGION-SCALE 

 

Landscape Connectivity Overview 

 

The goal for the remaining portion of this work is to develop a system of 

ecoregion-scale corridors for the provision of connectivity between the patches that were 

delineated earlier in this work. In order to achieve this, an overview of large-scale 

landscape connectivity was provided. Additionally, an overview which outlines the role 

that corridors can play in facilitating connectedness and the persistence of species has 

also been provided.  

Specific aspects of landscape connectivity were then discussed. This involved an 

overview of graph theory and the landscape modeling tool (FunConn) that was used for 

generating corridors. An in-depth discussion of the FunConn modeling process and 

ecoregion-scale modeling methods has been provided. Landscape networks for each of 

the three patch modeling scenarios were then generated and their respective spatial 

metrics evaluated.  

The landscape networks were then used to test a simplifying assumption often 

used in conservation planning: that coarse-scale corridors may provide overlapping or 

“umbrella” effects for other scenarios. To examine this assumption a gap analysis of the 

three modeled landscape networks was conducted. Stemming from this analysis, a 

discussion focused on connectivity modeling and ecoregion-scale implications has been 
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provided. This chapter concludes with the derivation of four priority connection and 

linkage areas within the ecoregion. 

 

Introduction to Landscape Connectivity 

 

As the consensus around assembling larger more cohesive patches or reserves has 

coalesced, a parallel debate focusing on how they function together at large scales has 

also been taking place. Central to this debate is the role that connectivity among patches 

plays in facilitating species persistence at these scales. While multiple definitions of 

connectivity have been formulated and refined (Merriam 1984, Taylor et al. 1993, With 

et al. 1997, Singleton et al. 2002), Hilty et al. (2006) provides a useful definition for use 

here: a measure of the ability of organisms to move among separated patches of suitable 

habitat, it is related to differences in vagility between species, and is dependent on a 

species‟ perception of the landscape.  

It is largely believed that as landscape fragmentation increases and connectivity is 

decreased, patches that weather the initial storm of land transformation become 

increasingly isolated from one another causing additional species‟ decline (Schumaker, 

1996). This concept is largely discussed within the context of a binary landscape made up 

of habitat patches and the landscape matrix (non suitable habitat surrounding the patches 

of interest) (MacArthur and Wilson 1966, Ehrlich and Murphy 1987, Harrison et al. 

1988, Soule‟ et al. 1992, Hanski 1998). The matrix which surrounds habitat patches is 

often composed of a complex mosaic of other land cover and land use types, which may 

vary greatly in their permeability to individual species moving between patches (Ricketts, 
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2001). In this way, the matrix can significantly influence the effective isolation of habitat 

patches, rendering some more or less isolated based on their surrounding matrix.  

As such, a good deal of effort was directed early on with the fusion of 

conservation biology and landscape ecology by developing better methods of predicting 

species persistence following habitat fragmentation (O‟Neill et al. 1988, Turner 1989, 

Ripple et al. 1991, Pulliam et al. 1992, McKelvey et al. 1993). Additionally, Schumaker 

(1996) points out that numerous indices of landscape pattern have been linked to 

ecological function (Merriam 1984, Frankin and Forman 1987, Burel 1989, Miller et al. 

1989, Turner et al. 1989, Keller 1990, Noss 1990, Shaw and Atkinson 1990, Ripple et al. 

1991, Hansen and Urban 1992, Johnson et al. 1992, Taylor et al. 1993, Tischendorf and 

Fahrig 2000, Moilanen and Hanski 2001, Moilanen and Nieminen 2002). Calabrese and 

Fagan (2004) explain that it is therefore desirable to quantify connectivity and integrate 

its measures into reserve design. This integration has been used in several reserve design 

applications to date and has been useful in further refining the patch selection process 

(Siitonen et al. 2002, Singleton et al. 2002, Cabeza 2003).  

In general, there exist three classes of connectivity metrics for focal species in a 

landscape: structural, potential, and actual, each of which increases in complexity 

(Calabrese and Fagan, 2004). As part of this research, a synergistic accounting of 

connectivity metric approaches categorized by Calabrese and Fagan (2004) and Singleton 

(2002) has been compiled and adapted and is provided here. This is intended to serve as a 

brief overview of major connectivity approaches and some key aspects of them. Each 

approach has been classified based on the type of connectivity being modeled (structural, 

potential, actual), the level of landscape analysis performed by the approach (minimal vs. 
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maximum), data input requirements (few of low detail vs. many of high detail), the level 

of modeling assumption found within each approach (fewer: implicit vs. more: explicit) 

the relative key limitations associated with each approach (fewer vs. greater) and key 

points regarding the approaches utility in practice (lower vs. greater). A compilation of 

this information is provided in Table 4.1. 
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Table 4.1 – Summary of Connectivity Metric Approaches 

 

Summary of Connectivity Metric Approaches

Connectivity Type of Landscape Data Key Model Key Model Key Model Examples

Approach Connectivity Analysis Requirements Assumptions Limitations Utility

(Structural) Provision (Few, Low Detail) (Fewer : Implicit) (Greater) (Lower)

(Minimal)

Nearest 

Neighbor 

Distance

Structural Patch isolation 

measure

Patch distribution Matrix quality is 

homogenous

Poor predictor of 

connectivity

Exceptionally 

simplistic and has 

minimal data 

requirements

Moilanen and 

Neman 2002, 

Bender et al. 

2003

Spatial 

Landscape 

Metrics

Structural Quantifies 

landscape 

pattern

Patch characteristics 

(e.g., number, size, 

core, area, 

edge/area ratio)

Spatial pattern 

indices show 

potential 

predictable 

relationships with 

actual connectivity

Lacks  expected 

movement patterns 

and dispersal 

success varies (poor 

to good 

predictability) 

across metrics, 

species and 

landscapes

Can describe 

landscape 

variability over 

time, change 

monitoring, and is 

useful for 

comparing 

landscapes

Haines-Young 

and Chopping 

1996, 

Schumaker 

1996, 

Tischendorf 

2001, McGarigal 

et al. 2002

Scale-Area 

Slope

Structural Fragmentation 

measure of an 

individual focal 

species 

distribution

species occurrence, 

presence/ absence

Proximity is the 

major determinate 

of connectivity 

among occurrences

Relationships 

between this 

approach and actual 

connectivity have 

yet to be 

Provides potential 

means of 

quantifying risk of 

local extinction 

across a landscape.

Kunin 1998, 

Fagen et al. 2002

Graph 

Theoretic

Potential Quantifies 

relationships 

between 

patches and 

their attributes

Spatially explicit 

habitat data and 

species dispersal 

data

Utilizes a functional 

relationship 

between dispersal 

distance and a 

species/ probability 

of dispersal

Species specific 

parameterization of 

dispersal ability 

typically includes a 

fixed critical 

dispersal distance 

to be established

Allows for 

comparing 

connectivity across 

landscapes by 

evaluating 

individual graphs 

and aids in patch 

connectivity ranking

Cantwell and 

Forman 1993, 

keitt et al. 1997, 

Bunn et al. 2000, 

Urban and Keitt 

2001, Theobald 

2006

Cost-Distance Potential Provides 

evaluation of 

inter-patch 

matrix and 

provides routes 

of movement 

cost

Patches, spatially 

explicit habitat 

data, and 

cost/permeability 

surfaces

Relationships 

between habitat 

quality and 

permeability, 

variations in species 

vagility and 

perception 

influence path

Generally focuses 

on single Least-Cost 

Pathway (LCP), 

expansion of the 

LCP into a larger 

landscape unit (e.g., 

corridor) requires 

consideration of 

parameterization 

Provides potential 

routes of 

movement, can 

quantify isolation 

between patches, 

can be joined with 

other approaches 

such as graph theory 

(e.g., FunConn)

Lindenmayer et 

al. 1993, Bentley 

and Catteral 

1997, Singleton 

et al. 2002, 

Theobald 2006, 

Beier 1995, 2002 

and 2006

Circuit Theory Potential Generates a 

measure of 

flow through 

each cell in a 

landscape

Patches, spatially 

explicit habitat 

data, conversion to 

a resistance/ 

impedance surface

Similar to those of 

the cost-distance 

approach, 

integrates all 

possible pathways 

regardless of 

distance

Landscape pinch 

points are not 

always priority 

areas for 

connectivity and 

cost distance 

measures may need 

Corresponds well 

with random walk 

models and depicts 

graphically pinch 

points and 

bottlenecks in the 

landscape

McRae et al. 

2008

Buffer Radius, 

IFM

Potential Generates an 

assessment of 

potential patch 

contribution to 

population 

viability

Patch occupancy, 

population size, and 

dispersal 

probabilities and 

distances

Implies connectivity 

is quantified by 

metapopulation 

capacity and 

persistence

Model performance 

is sensitive to the 

chosen buffer radii, 

these are often 

arbitrarily selected

Provides a potential 

quantification of a 

landscapes ability to 

maintain a viable 

metapopulation 

over time

Hanski 1994, 

Hanski et al. 

1996, 

Ovaskainen and 

Hanski 2001, 

Nieminen 2002 

IBM/SEPMs Actual Simulate actual 

paths of 

individuals, 

and provide 

population 

viability 

assessments

Highly 

parameterized and 

species-specific 

foraging, life 

history, and 

dispersal data, 

telemetry, and mass 

capture/release 

data

Parameterization is 

equal across large 

heterogeneous 

landscapes and 

observed 

Immigration and 

colonization rates 

are adequate for 

basing projections

The data-intensive 

nature of direct 

measurement 

methods generally 

limits the utilization 

and spatial scales to 

which these 

approaches can be 

applied

Provides the best 

detailed estimates 

of how well 

particular patches 

are connected in 

the landscape and 

provides measures 

of population 

viability

Sutherland 

1996, Gillis and 

Krebs 1999, 

Meegan and 

Maehr 2002, 

Carroll 2005, 

Schumaker 2008

Connectivity Type of Landscape Data Key Model Key Model Key Model Examples

Approach Connectivity Analysis Inputs Assumptions Limitations Utility

(Functional) Provision (Many, High Detail) (More: Explicit) (Fewer) (Greater)

(Maximum)
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The Role of Corridors in Landscape Connectivity 

 

 When the matrix fails to facilitate historical patterns of movement and dispersal, 

threats to species‟ population viability may ensue. Restoring landscape connectivity 

through rehabilitating historical landscape connections or newly delineated corridors 

between isolated patches is one way to counter the negative effects of landscape 

fragmentation (Williams and Snyder, 2005). Among the most widely utilized definitions 

of a corridor, the Ninth U.S. Circuit Court of Appeals defined corridors as “avenues 

along which wide-ranging animals can travel, plants can propagate, genetic interchange 

can occur, populations can move in response to environmental changes and natural 

disasters, and threatened species can be replenished from other areas” (Walker and 

Craighead, 1997). 

The inclusion of corridors in fragmented landscapes has been shown to have 

numerous positive effects (Hilty et al. 2006). Corridors have been documented to serve as 

habitat (Hess 1994, Machtans et al. 1996, Perault and Lomolino 2000). They have also 

been shown to facilitate movement among species of otherwise separate populations 

enabling recolinization after a local extinction (Laurance 1991, Beier and Loe 1992, 

Brosset et al. 1996). Others have confirmed that the increased connectivity provided by 

corridors also promoted dispersal. This allowed for an increase in genetic exchange to 

take place, thus reducing the risk of population decline via inbreeding and increasing 

resiliency to environmental change (Beier and Loe 1992, Rosenberg et al. 1997, Bennett 

1999, Banks et al. 2005). Corridors may also aid dispersing individuals circumvent 

predation (Noss, 1987) and avoid human-related mortality (Noss 1987, Haddad 1999). 

 Still however, there remain critics of corridors as they may also facilitate the 
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spread of disease, exotic invasives, and function as avenues to be exploited by predators 

(Simberloff and Cox 1987, Hobbs 1992, Simberloff et al. 1992, Dobson et al. 1999). In 

the face of these criticisms, Beier and Noss (1998) reviewed some 32 published corridor 

studies and concluded that “evidence from well-designed studies generally supports the 

utility of corridors as a conservation tool…almost all studies on corridors suggest that 

they provide benefits to or are used by animals in real landscapes”. Additionally they 

conclude that 10 studies “offer persuasive evidence that corridors provide sufficient 

connectivity to improve the viability of populations in habitat connected by corridors. No 

study has yet demonstrated negative impacts from corridors”.  

 

Implications of Large Scale Corridors 

 

 To date, reserve identification has focused largely on locating irreplaceable sites 

based on habitat surrogates and species range data (Noss 1987, Scott and Csuti 1997, 

Noss et al 2002, Cowling et al. 2003, Lombard et al 2003, Higgins et al. 2004, Knight et 

al. 2006, Knight et al. 2007). While the adoption of this site selection methodology has 

resulted in numerous successes in biodiversity protection and the delineation of many 

conservation areas, it has tended to focus on individual species, or a suite of them, in 

more localized efforts and smaller scale applications. The main issue with such an 

approach is that it potentially fails to consider areas that are important to connectivity and 

contain smaller but equally viable populations (Knight et al. 2007). Additionally, such an 

approach for reserve parameterization may also fall short when incorporating biological 

and environmental patterns as well as landscape processes and persistence under the 

protection umbrella of any one reserve. As Knight et al. (2007) point out, this generally 
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results in an implicit tradeoff between species representation and the persistence of 

ecologic functionality as a goal within any one reserve. Ecoregion-scale corridors may 

provide a useful alternative to dealing with this tradeoff. 

 Ecoregion-scale corridors may prove useful in helping to achieve “planning for 

persistence” as outlined by Cowling (1999). Planning for persistence generally includes 

the mapping of species representation targets and spatial surrogates for incorporating 

environmental processes at larger scales (Knight et al. 2007). Additionally, it aims to 

include both representation and persistence of biodiversity (Cowling et al. 1999, 

Margules and Pressey 2000) and thus may be achievable in ecoregion-scale corridors by 

virtue of their large land area.  

Ecoregion-scale corridors may also prove to be useful mechanisms for capturing 

environmental processes (Rouget et al. 2006). Species movement (Laurance and 

Laurance, 1999) and geographic speciation (Cowling and Pressey 2001, Moritz 2002) are 

both large-scale processes which may be accommodated by large-scale corridors (Rouget 

et al. 2006). Including additional environmental processes such as source-sink population 

dynamics, disturbance regimes, and environmental succession also require large tracts of 

land (Noss et al. 2002, Cowling et al. 2003). It is believed that these and other 

environmental processes are best captured and incorporated at the landscape scale 

(Balmford et al. 1998, Terborgh and Soule` 1999, Noss 2003). Again, the relatively large 

size of ecoregion-scale corridors provides an enticing means by which these aspects of 

environmental persistence may be incorporated.  

Large scale corridors may also prove critical to species persistence in the face of 

climate change by facilitating movements along gradients as ranges shift (Bennett 1990, 
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Beier 1995, Harris et al. 1996, Rouget et al. 2003, Hilty et al. 2006). As such, ecoregion-

scale corridors may prove beneficial in incorporating planning for persistence, large-scale 

environmental processes and species resiliency from climate change because they 

encompass such vast assemblages of land.  

Large-scale conservation assessments which either incorporate or evaluate the use 

of far reaching corridors are becoming more numerous (Jongman, 1995, Soule` and 

Terborgh 1999, Dinerstein et al. 2000, Carroll et al. 2001, Sanderson et al. 2002, Muruthi 

2004, Rouget et al. 2006). Coarse scale conservation approaches such as these may 

combat fragmentation and promoting biodiversity by connecting smaller patches or 

reserves into a system that functions more like larger ones. This, in turn, may have 

positive effects on regional biodiversity by increasing functional island size.  

 

Towards Modeling Corridors 

 

The landscape evaluation and corridor development tool used here (FunConn) 

employed two of the landscape connectivity metrics that were discussed earlier in this 

chapter (graph theory and cost-distance in Table 4.1). A more detailed discussion of these 

components has been provided in the sections that follow. 

 

Introduction to a Graph Theory Approach 

 

Widely utilized and rigorously developed in other disciplines, the graph theoretic 

approach is being integrated with success in conservation planning. Originally discussed 

by Harary (1969), Urban and Keitt (2001) have made a meaningful translation of the 

graph theoretic approach into one applicable in conservation planning. While 
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terminology abound, an abridged accounting of the vocabulary most essential for 

understanding the links between graph theory and GIS based conservation planning is 

provided here (Figure 4.1). A dictionary of additional terms specific to landscape 

networks and FunConn is provided in Appendices B. 

 

Figure 4.1 – Graph Theory & Landscape Network Terminology 

 

 

 

 

 

 

 

 

 

 

An example of key landscape network terms in a simulated landscape. Nodes represent the weighted 

center of each patch, they are connected by edges. Linkages originate at patch boundaries and 

correspond with each edge. Corridors are delineated between patches based on the parameterization 

of the landscape links Qn value. 
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Application of the Graph Theoretic Approach in Connectivity Modeling 

 

The application of graph theory in ecoregion-scale conservation planning is 

particularly useful for a number of reasons. First, graph theory advances the conceptual 

development of spatial modeling by shifting perspective away from one of categorizing 

the landscape into discrete patches. It does so by focusing the lens on thinking about a 

series of environmental gradients that must be traversed in order to achieve functional 

connectivity (Hobbs & Theobald, 2001).  

This thinking lends itself quite well to coarse scale conservation approaches 

because it aids resource managers in targeting conservation efforts in subregions that play 

a critical role in maintaining connectivity in the ecoregion as a whole. This is something 

that may be overlooked in local level connectivity work. Second, graphs can prove to be 

an elegant means by which landscape connectivity can be analyzed (Theobald 2006). The 

very nature of the graph theoretic approach is that it helps to evaluate landscape 

connectivity once potential connections between patches have been established (Fagan & 

Calabrese 2006). Additionally, various operations such as adding or deleting potential 

nodes and edges (patches or reserves, and their corresponding corridors) can allow for 

landscape level assessments to be made that prioritize nodes and edges based on their 

contributions to overall landscape connectivity (Urban & Keitt 2001). By identifying 

those patches, reserves, and corridors that play the most significant role in maintaining 

overall landscape connectivity, the graph theoretic approach may aid resource managers 

in focusing their conservation efforts on a select set of zones that will have the greatest 

conservation impact. These represent several reasons why graphs may provide a 
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substantially more comprehensive perspective than patch-to-patch approaches for 

examining ecoregion-scale measures of connectivity. 

 

Landscape Networks 

 

Theobald (2006) makes several substantive advances in adapting the graph 

theoretic approach to model landscape connectivity. They can be categorized into two 

classes; additions to the LCP methods for modeling effective distance between patches, 

and the establishment of landscape networks as a construct for better representing the 

landscape context of graph theory. The first category addresses known issues with LCP 

analysis already outlined in this chapter, namely the variability introduced when deriving 

a focal organism‟s likely path.  

Traditionally speaking, the graph theoretic approach within GIS uses the LCP 

method for establishing edges or linkages between patches; Theobald‟s contributions here 

are twofold and focus on the derivation of possible “multiple pathways” between patches. 

First, in order to address concern over quantifying the probability that an organism can 

successfully navigate between patches, Theobald proposes providing an output that 

provides the full distribution of cost-distance values along the allocation boundary 

formed by two patches. This differs from simply reporting the raster grid cell that 

demarks the lowest cost-distance along the allocation boundary, as is done in traditional 

LCP analysis, and is potentially more useful.  

Broadening the LCP lowest cost-distance to include the full distribution of values 

has several benefits. It addresses variability amongst an organism‟s choice of multiple 

pathways because there is some possibility that the organism may choose a path other 



109 

 

than that demarked by the lowest cost-distance alone. Reporting all cost-distance values 

allows for multiple pathways to be identified and delineated. This is an important 

adaptation in the approach because it aids in addressing an often unrealistic assumption 

that the single least cost-pathway will be used. Second, the derivation of multiple 

pathways also can be thought of as a cost-weighted approach for identifying the “Nth-

optimal corridor” (Berry, 1993). Thinking of multiple paths in this way, a modeling run 

will identify the least-cost pathway (most optimal) and additional corridors that 

correspond to a specified threshold that contains the next most optimal route or routes 

(Theobald 2006). Ecologically speaking, this modeling improvement also aids in building 

in functional redundancy in overall landscape connectivity. 

Theobald‟s construct of likening the graph to a landscape network is also 

potentially useful for evaluating connectivity at the ecoregion-scale. Loosely defined, the 

landscape network is distinguished by four critical characteristics. First, the landscape 

network equates to that of the topologically related graph and its graph geometry. This is 

critically important in conservation planning because metrics such as patch size 

(associated with the graph nodes) and corridor orientation, length, and width (associated 

with edge angles and effective distance) are important to understanding how ecological 

systems function.  

Second, nodes are used to represent patches of habitat or reserves. Again, there is 

utility assigning attributes to these nodes that reflect various spatial metrics of the patch 

or reserve that they are intending to represent. Adding metrics such as patch shape, area, 

edge ratio, and habitat quality help to better describe how the patch may function or 

contribute to connectivity at larger scales.  
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Third, straight line distances can be appended to include the effective distance 

along an edge linking two nodes. Aside from providing a more accurate accounting of 

permeability along the edge and identifying the optimal least cost-path, additional edges 

can be generated that represent multiple pathways or the next optimal 

connection/connections between multiple nodes. Finally, the landscape network construct 

implies a potentially more realistic movement assumption for mobile organisms. The 

assumption built in to the graph theoretic approach is that organisms move across a 

landscape in a stepping stone fashion (Theobald 2006). In this view, each patch 

(represented by a node) serves as a possible stopping point for carrying out life functions 

prior to potentially moving onward to another patch (via an edge or multiple path). 

 

A Graph Theoretic and Landscape Network Modeling Approach: FunConn 

 

Here an overview is provided intended to illustrate both the application of 

FunConn at the ecoregion-scale and outline variations of its possible use. This 

encompasses an exploration of a number of methodological adaptations and attempts to 

provide possible users with some general insight pertaining to the pros and cons, 

appropriate uses, and general assumptions that may be useful to consider when 

embarking on connectivity modeling of your own. For purposes here, it is useful to 

discuss the major modeling steps and their associated tools in the sequence they would 

likely be applied, although as you will see, there is room for alteration within each step. 

Developed by Theobald et al. (2006), FunConn aims to provide significant 

advances to traditional least cost path approaches of modeling landscape connectivity.  

FunConn applies graph theory as a basis for modeling and the evaluation of connectivity 
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between individual patches. Loosely defined for a user starting from scratch, the 

workflow for FunConn begins with creating a habitat quality surface, defining functional 

patches, and building a landscape network. The FunConn modeling toolbox for ArcGIS 

v9.2 also includes a number of tools for processing existing datasets into landscape 

networks and the means for analyzing the resulting landscape network through evaluating 

various connectivity scenarios.  

 

Creating a Habitat Quality Dataset 

 

The first step within the FunConn approach for modeling landscape networks is 

the development of a habitat quality dataset. While the habitat quality dataset‟s primary 

purpose within FunConn is the delineation of patches, it can also be used in refining the 

permeability cost surface when building the landscape network later in the process. Using 

the habitat quality dataset in cost surface refinement however assumes that the more 

suitable the habitat, the less costly it is to traverse, which may not always be the case.  

The creation of the habitat quality dataset within FunConn is based on the factors 

of resource quality, patch structure, and distance from disturbances (Theobald et al. 

2006). The resource quality component is intended to reflect the surrogacy between a 

species‟ habitat requirements and site specific conditions such as land cover. This dataset 

is reclassified to represent resource quality scores in which higher values represent more 

suitable land cover types. The patch structure component attempts to insert measures of 

spatial contiguity by evaluating the proximity to a patch‟s edge. This is a measure by 

which possible edge effects may be integrated into modeling habitat quality. Finally, the 

distance to disturbance variable attempts to place a measure of potential habitat quality 
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degradation based on proximity to some negative land use disturbance. For this 

component, the habitat quality dataset is again reclassified based on proximity to some 

negative disturbance, essentially diminishing habitat quality within some specified 

distance. The resulting output of this tool is a habitat quality raster that demarks a range 

of high (100) to low (0) habitat suitability values.  

As discussed in the early portions of Chapters Two and Three, these tools can be 

data and knowledge intensive. The use of this tool for example requires the user to 

establish both minimum resource quality thresholds and minimum patch sizes in order to 

delineate primary habitat areas as precursors to defining functional patches. There is 

always the possibility that these values may be little known and that variations in these 

values could ultimately lead to significantly different habitat quality outputs, functional 

patches, and connectivity schemes. These concerns however are not necessarily specific 

to this approach and the user must always be mindful of the potential cascading effects 

that early parameterization may have in the final outputs of any analysis.  

Moreover, the Create Habitat Quality Tool being evaluated here is not the only 

game in town; there exist multiple alternative methods for accomplishing similar results. 

Perhaps most accessible, is ArcMap‟s Model Builder. Within Model Builder, a user could 

easily construct a workflow that encompasses the major components evaluated here 

through linking tools such as reclassify, euclidean distance, and neighborhood functions. 

Such an exercise would essentially result in a habitat suitability analysis for the organism 

in question. Additional environmental parameters could also be integrated thus allowing 

for a more detailed habitat analysis to result. 
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 Defining Functional Patches 

 

The Define Functional Patches tool within FunConn aims to delineate functional 

patches based on organism-specific parameters. This method identifies functional patches 

based on user-defined inputs such as an organism‟s foraging habits and its ability to move 

between patches (Girvetz & Greco 2007). This tool requires several user-defined 

parameters including a resource quality threshold, the minimum patch size, the maximum 

foraging radius, and the core habitat percentage. Each of these parameters can be thought 

of as a selection criterion that continually culls all available patches leaving only those 

that meet all of the required functional characteristics.  

The resource quality threshold establishes the minimum habitat quality that will 

be considered for region-grouping or assembling the first cut of habitat patches. The 

higher the threshold value (necessary for species that are more restrictive in their habitat 

requirements) the more restrictive the patch selection process will become. The minimum 

patch size parameter is also used as a measure for eliminating patches that are not large 

enough to sustain the focal species. Similarly, the maximum foraging radius parameter 

attempts to incorporate a measure of how far an animal travels during foraging, to aid in 

identifying patches that meet minimum size requirements. Finally, the core habitat 

percentage parameter refines again which patches are functionally suitable by aiming to 

add a measure of the species interior versus edge habitat requirements. Those species that 

are negatively affected by edge (edge negative species: lynx) would require a higher 

value to be entered, while those species that are indifferent to edge (edge neutral: bobcat) 

and positively affected by edge (edge positive: mountain lion) would require lower values 
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to be entered as the patches for these species need not be as restrictive (Theobald et al. 

2006).  

The derivation of functional patches is necessary if a user intends to model 

connectivity from the ground up when no existing data are present, intends to evaluate 

how patches outside of already protected areas contribute to landscape connectivity, or 

are interested in identifying possible candidate sites for additional conservation 

enrolment.  

 

Building the Landscape Network 

 

The third major component within this process is the generation of a landscape 

network which represents habitat patch connectivity. The inputs required for constructing 

the landscape network include a raster dataset of the patches to be used (either those 

derived from the Functional Patch Tool above or those from a preexisting dataset such as 

existing protected lands), a raster dataset (such as land cover) that will serve in the 

generation of a cost surface upon which landscape permeability will be based, and a table 

that serves as the link for converting the cost surface into landscape permeability.  

The first subprocess within the generation of the landscape network tool is the 

most fundamental to understanding how it works. In this step, a raster surface such as 

land cover is reclassified according to user-defined permeability values, these values are 

then inverted to generate a cost surface upon which the LCP process will begin linking 

patches. Take this example of an edge-sensitive species for instance, land cover between 

two patches may consist of two types, deciduous forest and row-cropped agriculture. In 

this case, permeability of the deciduous forest is greater than that of the agricultural land. 
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The inverse of this is a cost surface in which the agricultural land is more costly to 

traverse than the forested land.  

Allocation zones are then grown from the source patches across this cost surface 

until they meet, forming an allocation boundary. Based on a user-defined threshold, 

certain cost-distance values are retained and extracted, these cells serve as the midpoints 

for the first set of initial linkages. Within each allocation zone, cells exhibiting values less 

than the user-defined threshold are removed to form the resulting corridor (Theobald et 

al., 2006). 

 

Model Error Propagation 

 

It is important to understand how error is potentially propagated at each step of 

the modeling process. Every modeling approach contains assumptions that are both 

implicitly hidden and explicitly stated which have the ability to influence the modeled 

products in potentially negative ways.  Take the resource quality threshold parameter 

discussed earlier for example; if this parameter is set lower than a species actually 

requires, the resulting functional patch output will include patches that provide no habitat 

contributions to the species in question. This in turn, can result in the derivation of 

erroneous patches and linkages. These represent features that while delineated on the 

computer screen and appear to contribute to the conservation of the species, do little to 

actually conserve the species.  

This is to serve as a word of caution during this and any other modeling 

procedure. There may be significant disconnects between patches that are structurally 

identified in a model and those that are functionally used in the real world. Assuming a 
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patch is used for the persistence of a species or for contributing to landscape connectivity 

in a modeled plan, when in the real world it is not, could have potentially damaging 

conservation outcomes. 

 

Ecoregion-scale Connectivity Modeling Methods 

 

 FunConn V1 software (Theobald et al., 2006) was used in conjunction with 

ArcGIS v9.2 for modeling landscape networks within the Northern Appalachian/Acadian 

Ecoregion (330,000 km
2
).  Three landscape connectivity scenarios were developed using 

a 90m ecoregional human footprint dataset as a generalized resistance layer (Woolmer et 

al. 2008). The first scenario used C-PAN derived patches from the previous chapter as 

reserve nodes (N = 225). Under the second scenario, Corridor Design derived patches 

were used as reserve nodes (N = 209). The third scenario was comprised of FunConn 

derived habitat patches as the input set of reserve nodes (N = 31). Under each of these 

scenarios, it is assumed that connectivity is being evaluated for core-dwelling species and 

those most sensitive to human landscape transformations. 

The workflow for FunConn is typical of all habitat modeling approaches in that it 

involves 1) creating a habitat quality surface and 2) defining functional patches, and 

diverges by 3) building and evaluating landscape networks. As these modeling scenarios 

used an existing habitat quality surface (human footprint) and predefined source patches 

(C-PAN, Corridor Design, FunConn), only the landscape network tool was used for 

modeling connectivity.  

Each run used the human footprint dataset as the permeability raster. Since the 

human footprint dataset is scaled from 0 (most wild, least influenced by human activity) 
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to 100 (least wild, most impacted by human activity) a simple conversion was undertaken 

in order to convert these values into the scale range accepted by the tool (0-1). In this 

conversion for example, values of 100 for the human footprint data became 0 for the 

permeability value associated with the cost surface. No aggregation factor (1) was 

assigned so that the original resolution of the human footprint data (90 x 90 meters) 

would be maintained in the resulting corridors
23

. Additionally, the default links Qn value 

(10) was used for corridor parameterization, this was chosen in an effort to not be overly 

restrictive or liberal in the selection of potential linkages
24

.  

Upon completion of each landscape network, several resulting corridors were 

removed in order to better reflect real-world barriers that were not present in the original 

human footprint dataset. These were corridors that local experts deemed structurally 

unfeasible due to crossing long distances of ice-free saltwater with significant tidal 

fluctuations.    

 

Ecoregion-scale Connectivity Modeling Results 

 

 The landscape network generated for connecting C-PAN patches (N = 225) 

consisted of 1,062 linkages and edges and 1,058 corridors spanning across the ecoregion. 

The landscape network consisted of two graphs, one largely connected graph for the 

majority of the ecoregion and one smaller more linear graph spanning Nova Scotia. This 

indicated that while the majority of the study area has the potential for redundant 

                                                 
23

 The aggregation factor is a modeling parameter which specifies the resolution of the output datasets. This 

value was set to be as detailed as the input dataset (90 x 90 m). 
24

 The links Qn value is a modeling parameter which specifies the selectiveness of the modeled corridors. It 

represents the threshold value for the cost surface upon which corridors are delineated. Cells with values 

below the established threshold are used to construct the corridor. 
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connections, no connections were delineated between this graph and the Nova Scotia. 

Additionally, the linear nature of the graph located in Nova Scotia has less redundancy 

and potentially lower connectivity. The minimum spanning tree
25

 required to connect 

each of the C-PAN patches within the ecoregion consisted of 223 corridors. The C-PAN 

scenario landscape network is depicted in Figure 4.2. 

  The landscape network generated for connecting Corridor Design patches (N = 

209) consisted of 944 linkages, edges, and corridors across the ecoregion. The landscape 

network consisted of two graphs. The graph generated for the majority of the ecoregion 

while still largely connected, consisted of fewer redundant connections between the 

southwest and central portions of the region. Again, no connections were delineated 

connecting Nova Scotia with the rest of the ecoregion. This indicates that while local 

connectivity is potentially present in these two separate regions, widespread ecoregional 

connectivity is less likely. The minimum spanning tree required to connect each of the 

Corridor Design generated patches consisted of 207 corridors. The Corridor Design 

scenario landscape network is depicted in Figure 4.3. 

 The landscape network generated for connecting FunConn patches (N = 31) 

consisted of 224 linkages and edges and 216 corridors across the ecoregion. The 

landscape network consisted of two graphs, one large graph for the majority of the 

ecoregion and one small unconnected graph in southern Nova Scotia. Just as in the other 

two scenarios, no connections were delineated connecting Nova Scotia with the rest of 

the ecoregion. Additionally however, no linkages were identified connecting southern 

Nova Scotia with patches located in the north. This indicates that these locations are 

                                                 
25

 The minimum spanning tree represents the most efficient set of linkages required to link all nodes in a 

graph. 
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potentially isolated from the rest of the ecoregion. The minimum spanning tree for 

connecting FunConn patches consisted of 27 corridors. The FunConn scenario landscape 

network is depicted in Figure 4.4. 
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The C-PAN Landscape Network 

 

Figure 4.2 – C-PAN Landscape Network 

 

 

 

The landscape network generated for connecting C-PAN patches (N = 225) consisted of 1,062 linkages 

and edges and 1,058 corridors across the ecoregion. The landscape network consisted of two graphs, 

one largely connected graph for the majority of the ecoregion and one smaller, more linear graph 

spanning Nova Scotia. The minimum spanning tree for the ecoregion consisted of 223 corridors. 
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The Corridor Design Landscape Network 

 

Figure 4.3 – Corridor Design Landscape Network 

 

 

 

The landscape network generated for connecting Corridor Design patches (N = 225) consisted of 944 

linkages, edges, and corridors across the ecoregion. The landscape network consisted of two graphs, 

one largely connected graph for the majority of the ecoregion and one smaller, more linear graph 

spanning Nova Scotia. The minimum spanning tree for the ecoregion consisted of 207 corridors. 
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The FunConn Landscape Network 

 

Figure 4.4 – FunConn Landscape Network 

 

 

 

The landscape network generated for connecting FunConn patches (N = 31) consisted of 224 linkages 

and edges and 216 corridors across the ecoregion. The landscape network consisted of two graphs, 

one largely connected graph for the majority of the ecoregion and one small unconnected graph in 

southern Nova Scotia. The minimum spanning tree for the ecoregion consisted of 27 corridors. 
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Landscape Network Comparisons 

 

The C-PAN landscape network scenario was comprised of the greatest number of 

habitat patches (nodes). As such, it reported the highest number of potential edges, 

linkages, and corridors among the three scenarios. This indicates potentially greater 

redundancy between patch connections. When compared to the other the scenarios, it 

reported the smallest minimum edge length (distance from adjacent patch center to 

adjacent patch center) and had intermediate maximum and average lengths for both edges 

and linkages. The C-PAN landscape network also had intermediate area requirements for 

measures of corridor area when compared to the others.  

The Corridor Design landscape network scenario was comprised of slightly fewer 

patches (16) than the C-PAN scenario. This translated into 118 fewer edges and linkages 

when compared to the C-PAN scenario indicating a slightly less connected network with 

fewer structural and potentially beneficial connections. It reported the shortest distances 

for maximum and average edge and linkage length. Additionally the corridor area 

requirements for the Corridor Design landscape network scenario were the smallest 

among all approaches.   

The FunConn landscape network scenario was comprised of the fewest number of 

patches (N = 31). This resulted in the fewest number of edges and linkages to be 

delineated among the three scenarios. This resulted in markedly longer min, max, and 

average edge and linkage lengths as connections were made between fewer far flung 

patches. As such, the corridor area requirements for this scenario were also significantly 

higher, over twice that of the average C-PAN corridor and approximately three times that 

of the average Corridor Design corridor. It is worth noting however because so few 
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corridors were delineated as part of this scenario, the total corridor area was nearly half 

that of the C-PAN network and slightly less than that of the Corridor Design network. 

This information is provided in Table 4.2.  

 

Table 4.2 – Landscape Network Comparisons 

Landscape Network Components 

Scenario A:            
C-PAN      

Patches 

Scenario B:       
Corridor Design 

Patches 

Scenario C:       
FunConn 
Patches 

Nodes   225 209 31 

Edges   1,062 944 224 

  Min Edge Length (meters) 4,830 6,123 20,131 

  Max Edge Length 225,153 155,551 242,137 

  Average Edge Length 30,356 28,188 82,018 

  Std Dev 24,102 21,012 36,107 

Linkages   1,062 944 224 

  Min Linkage Length (meters) 464 291 217 

  Max Linkage Length 217,919 150,581 192,459 

  Average Linkage Length 20,007 18,359 22,777 

  Std Dev 24,087 21,066 37,872 

Corridors   1,058 944 216 

  Min Corridor Area (hectares) 29 26 27 

  Max Corridor Area 481,150 279,109 710,926 

  Average Corridor Area 14,626 12,306 38,545 

 
Total Corridor Area 15,474,947 11,617,723 8,325,855 

  Std Dev 34,852 27,993 92,010 

Minimum Spanning Tree Edges 223 207 27 

  Min Edge Length (meters) 4,830 6,123 20,131 

  Max Edge Length 150,094 150,263 217,237 

  Average Edge Length 20,745 21,165 72,185 

  Std Dev 16,827 19,271 44,177 

  Total Spanning Tree Length 4,626,226 4,381,261 1,949,001 
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Minimum Spanning Trees 

 

 The minimum spanning tree represents the most efficient solution for connecting 

all nodes within the graph. As such, minimum spanning trees provide a useful metric for 

comparing landscape connectivity between landscapes or multiple scenarios. They 

represent the fewest number of edges with the shortest total distance required to connect 

all nodes in a graph. By design however they do not illustrate redundant connections that 

may be desired in a real world ecological systems and/or conservation practice. 

The C-PAN scenario minimum spanning tree was the largest (4,626 km) as it 

connected more nodes than in the other two scenarios. The inclusion of these additional 

nodes however led to reductions in the max, min, and average edge length within the tree. 

The C-PAN minimum spanning tree exhibited the shortest minimum edge length (4.8 

km), maximum edge length (150.1 km) and average edge length (20.7 km) when 

compared to the other scenarios. The corridor design minimum spanning tree was of 

intermediate length (apx. 4,381 km) and exhibited only slightly longer minimum, max, 

and average edge lengths at 6.1, 150.3, and 21.2 km respectively. The minimum spanning 

tree for the FunConn scenario included approximately 1/8 the number of nodes. This 

however only translated into a landscape network which was approximately half the total 

length (1,949 km) of the C-PAN tree. Additionally, the minimum edge length of the 

FunConn minimum spanning tree was 20.1 km, the maximum edge length was 217.2 km, 

and the average edge length was 72.2 km; all significantly longer than those metrics 

reported for either of the other two scenarios. The landscape network graph and the 

minimum spanning tree for each scenario are depicted in Figure 4.5.  
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Figure 4.5 – Minimum Spanning Tree Comparison 

 

 
The minimum spanning tree for each scenario is depicted in black and the entire landscape 

network is depicted in grey. While each scenario depicts isolated graphs for Nova Scotia, the 

FunConn scenario is among the most potentially isolated.  
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Patch and Corridor Gap Analysis Modeling Methods 

 

The resulting landscape networks and their source patches were converted to 

raster datasets and combined to perform a gap analysis evaluating the effective coverage 

of each scenario. Cells depicting their relative inclusion in 1, 2, or all 3 scenarios were 

then categorized and quantified in order to identify which areas were unique or held in 

common when compared across all of the scenarios. These areas were then extracted and 

classified to locate the conservation gaps in coverage between both the source patches 

and corridors within each scenario. 

 

Patch and Corridor Gap Analysis Results 

 

 The gap analysis conducted here indicated significant deficiencies in conservation 

coverage when compared to all three scenarios. When evaluating patches within each 

scenario, 14% of the patch area for all 3 scenarios was spatially coincident, 9% was 

coincident over 2 scenarios, while the majority of patch area (76%) was non-redundant. 

This indicates significant gaps in source area coverage between these scenarios. A spatial 

output of this analysis is provided in Figure 4.6.  

 Additionally, 5% of the corridor area for all 3 scenarios was spatially coincident, 

34% was coincident over 2 scenarios, while the majority of corridor area (59%) was non-

redundant; again indicating significant coverage gaps in the corridors between these 

scenarios. A summary of this information is provided in Table 4.3 and the spatial output 

is provided in Figure 4.7. 
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Table 4.3 – Patch & Corridor Gap Analysis 

Gap Analysis Overlaps Area Coincident (Hectares) Percent Area Coincident 

      

Patch Overlaps: 
 

  

1 Scenario Alone 3,785,404 76.09% 

2 Scenarios Overlap 479,339 9.64% 

All Scenarios Overlap 710,045 14.27% 

Corridor Overlaps: 
 

  

1 Scenario Alone 6,966,340 59.75% 

2 Scenarios Overlap 4,055,895 34.78% 

All Scenarios Overlap 637,788 5.47% 
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Patch Gap Analysis 

 

Figure 4.6 – Patch Gap Analysis Overlaps 

 

 

 

Patch area that is unique to one scenario is depicted in light green (76.1%), patch area that is held in 

common by two of the scenarios is an intermediate shade of green (9.6%), and areas in dark green 

represent patch regions that are part of all three scenarios (14.3%). 
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Corridor Gap Analysis 

 

Figure 4.7 – Corridor Gap Analysis Overlaps 

 

 

 

Corridor area that is unique to one scenario is depicted in light green (59.8%), patch area that is held 

in common by two of the scenarios is an intermediate shade of green (34.8%), and areas in dark green 

represent patch regions that are part of all three scenarios (5.4%). 
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Connectivity Modeling Discussion 

 

Ecoregion Connectivity 

 

 The three landscape networks modeled here indicated that while local 

connectivity in portions of the ecoregion is potentially present, widespread connectivity 

across the ecoregion as a whole is less likely. This was apparent in the C-PAN and 

Corridor Design patch scenarios, as multiple connections were delineated across the 

majority of the study area. Even so, no connections were delineated connecting the large 

central graph with a smaller more linear one spanning Nova Scotia. This is due to the 

narrow land area that could potentially serve as connection to this region and the 

relatively high human footprint found in this area. While the FunConn patch scenario 

landscape network also reported no connectivity to this area, it also depicted a general 

lack of connectivity spanning Nova Scotia as no linkages were delineated between 

patches in the north and south of this region. While it is speculative, it is also likely that 

providing additional stepping stone patches throughout this choke point may improve 

connectivity between Nova Scotia and the rest of the region. 

 

Landscape Networks 

 

The C-PAN patch network scenario was comprised of the greatest number of 

patches. This ultimately resulted in the delineation of multiple and potentially beneficial 

redundancies in the landscape network. Increasing the number of patches also improved 

distance metrics within the minimum spanning tree for this scenario. More patches served 

as intermediate stepping stones which resulted in shorter linkage and edge lengths and 

smaller average corridor requirements. The FunConn patch landscape network however 
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connected significantly fewer patches. This resulted in the longest linkage and edge 

distances and the largest average corridors within the ecoregion. This is an apparent 

tradeoff between the number of potentially beneficial redundant connections and total 

landscape network corridor area. While more connections may contribute to increased 

landscape connectivity and landscape function, the increased area requirement may 

dictate that it is also potentially more costly to implement. On the other hand, fewer 

connections may be less costly from an implementation standpoint, but may also reduce 

landscape connectivity and ecological function. 

 

Gap Analysis 

 

The gap analysis used here resembles the process utilized by others for detecting 

unprotected high-conservation value areas (Scott 1993 and Scott et al.. 2002). A 

simplifying assumption is often that coarse-scale corridors may provide overlapping or 

“umbrella” effects (Perkl and Baldwin, In Prep). This ecoregional patch and corridor gap 

analysis provided the means for testing this assumption by evaluating corridor overlap 

and coverage gaps between scenarios. To this author‟s knowledge, this is among the first 

the first corridor gap analyses to be conducted at this scale. 

The patch gap analysis indicated that the majority of patch area (76%) contributed 

to a single scenario, while 9% and 14% of the patch area was held in common among two 

and three scenarios respectively. It is important to point out however, that while the 

majority of patch area is dissimilar, this is to due to variations in patch delineation among 

approaches. The majority of all patches delineated within the ecoregion share common 

nodes of origin. This is to say that the patches cover many of the same core areas but vary 
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in the extent of their individual size. As the modeled landscape networks share common 

nodes of origin, corridor coverage and gap comparisons can be made across scenarios.  

The corridor gap analysis indicated that 5% of the corridor area for all 3 scenarios 

was spatially coincident, 34% was coincident over 2 scenarios, while the majority of 

corridor area (59%) was non-redundant. While this indicated significant coverage gaps in 

the corridors among these scenarios, areas held in common may prove to be no-regret 

areas for conservation action. These results indicate that selecting “what” to connect at 

the ecoregion-scale has significant implications for selected corridors. As there was so 

little modeled corridor area in common among scenarios, there is little reason to believe 

alternate corridors would be functionally equivalent. This indicates that connecting any 

one set of habitat nodes would not likely serve as a corridor umbrella for all other 

scenarios. 

 

Ecoregion-scale Implications and Implementation 

 

 Landscape networks derived by FunConn are useful tools for evaluating 

ecoregion-scale connectivity. It is particularly useful for comparing connectivity across 

multiple scenarios. While each scenario evaluated here exhibited differences in 

components of their respective landscape networks, a number of regions of connectivity 

concern became readily apparent. These areas have been categorized into two distinct 

categories: regions with few redundant landscape linkages and areas lacking habitat 

nodes necessary for anchoring linkages. In regions where few linkages are present, 

connectivity is potentially threatened by poor quality matrix and relatively long and 

narrow corridors spanning these areas. Additionally, corridors within these regions are 
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critically important to connectivity of the ecoregion as there are potentially no alternate 

or redundant corridors to serve their function. Corridors within these areas are of 

potentially the highest priority for protection and mitigation as they are located in highly 

fragmented landscapes with a relatively high human footprint. They represent the last 

remaining linkages to adjacent natural areas.  These areas are delineated in Figure 4.8. 

 Other areas lacked the nodes necessary for anchoring linkages. When large 

portions of the ecoregion were void of habitat nodes, the lack of landscape linkages was 

attributable to a heightened and impassable cost distance associated with traversing these 

areas. Providing additional stepping stone patches and mitigation of the matrix within 

these areas may prove critical to rehabilitating connectivity within and through these 

regions. These areas are depicted in Figure 4.8. 
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Priority Connection Areas and Linkages 

 

 Figure 4.8 depicts areas of conservation priority that have been categorized into 

two distinct categories, regions with few redundant landscape linkages, and areas lacking 

habitat nodes necessary for anchoring linkages. Regions 1, 2, and 4 represent areas where 

few linkages are present and connectivity is potentially threatened by poor quality matrix 

and relatively long and narrow corridors spanning these areas. Area 3 was highlighted in 

all three ecoregion connectivity scenarios as lacking any linkages between New 

Brunswick and Nova Scotia. This was largely attributable to the fact that there is a 

geographic bottleneck, a high human footprint, and a lack of any modeled habitat patches 

that may serve as stepping stones. The lack of connectivity in this area potentially isolates 

Nova Scotia from the rest of the ecoregion.  

Figure 4.8 – Priority Connection Areas 

 

 
Priority connection areas 1, 2, and 4 represent regions with few modeled linkages. Priority connection 

area 3 lacks any linkages connecting New Brunswick and Nova Scotia, effectively isolating those 

regions. 
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Priority Connection Area 1 

 

Priority connection area 1 (Figure 4.9) is comprised of four linkages, two from the 

C-PAN and one each from the Corridor Design and FunConn scenarios. Regions in dark 

green represent areas where the corridors for these scenarios overlapped. These regions 

may be no-regret areas for conservation action as they are critical to connecting the 

Adirondacks in the southwest with the Green-White Mountains to the northeast.  

 

Figure 4.9 – Priority Connection Area 1 
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Priority Connection Area 2 

 

Priority area 2 (Figure 4.10) encompasses a thin ribbon of poorly connected 

matrix which separates the core of the ecoregion located in northern Maine from largely 

connected portions to the north in Quebec. These relatively short corridors are critical to 

connecting the largest and most intact natural areas of the ecoregion.  

 

Figure 4.10 – Priority Connection Area 2 
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Priority Connection Area 4 

  

Priority area 4 (Figure 4.11) includes a thin strip of land which is critical to 

maintaining connectivity within Nova Scotia. A single corridor was delineated for both 

the C-PAN and Corridor Design scenarios within this region. This area is largely 

important because it serves as the only connection between one of the largest intact 

blocks of habitat in the south and the rest of the ecoregion. 

 

Figure 4.11 – Priority Connection Area 4 
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Priority Connection Area 3 

 

Priority connection area 3 represents a region in which no linkages were 

delineated in any of the connectivity modeling scenarios (Figure 4.12). This is of concern 

as it results in isolating Nova Scotia from New Brunswick and the rest of the ecoregion. 

Providing connectivity through this heavily settled geographic bottleneck will likely 

prove challenging. As it currently stands, protected areas are distantly separated and the 

matrix between them is costly to traverse. Adding additional protected areas through the 

acquisition of land, enactment of conservation easements, and buffering existing 

protected areas within this area are but a few mechanisms by which the provision of 

connectivity throughout this region could be addressed. Additionally, more detailed and 

local scale connectivity modeling will be necessary for identifying potential linkages 

within and throughout this priority connection area. 

Figure 4.12 – Priority Connection Area 3 
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Ecoregion-scale Connectivity Modeling Conclusions 

 

Ecoregion-scale connectivity modeling may prove to be a potential mechanism 

for better incorporating “planning for persistence” and addressing global climate change 

as was discussed earlier. The large size and very nature of ecoregion-scale corridors may 

prove to be the provocative means by which natural disturbance regimes, environmental 

gradients, and shifting species ranges may be captured in our conservation networks. 

The landscape network generated for connecting C-PAN patches (N = 225) 

consisted of 1,062 linkages and edges and 1,058 corridors spanning across the ecoregion. 

The landscape network generated for connecting Corridor Design patches (N = 209) 

consisted of 944 linkages, edges, and corridors across the ecoregion. The landscape 

network consisted of two graphs. The landscape network generated for connecting 

FunConn patches (N = 31) consisted of 224 linkages and edges and 216 corridors across 

the ecoregion. These results taken together with the subgraphs for the region and their 

respective minimum spanning trees indicated that while local connectivity was 

potentially present, widespread ecoregional connectivity was less likely. 

To this author‟s knowledge, the gap analysis conducted here is unique in scale 

and application. The results of the corridor gap analysis indicated that selecting “what” to 

connect at the ecoregion-scale has significant implications for selected corridors. As there 

was so little modeled corridor area in common among scenarios, there is little reason to 

believe alternate corridors would be functionally equivalent. This indicates that 

connecting any one set of habitat nodes would not likely serve as a corridor umbrella for 

all other scenarios. 
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Additionally, this research served in flagging areas for conservation prioritization 

based on their connectivity role. As such, ecoregion-scale connectivity analyses such as 

this may prove useful for evaluating connectivity at local scales. Any one of the 

subgraphs found within these modeled landscape networks could help inform local scale 

conservation efforts. Similarly, local scale connectivity and conservation actions could be 

added to the ecoregion-scale landscape network. As with many things, a successful 

landscape network is made up of the sum of its locally implemented parts.  
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APPENDIX: A 

 

Theoretical Rationale: Why Model Large Reserves and Core Habitat? 

 

Habitat loss, fragmentation, and species reduction are all inextricably linked to 

accelerated rates of human induced land use change. The conversion of natural 

landscapes to human dominated land uses causes habitat loss in two primary ways 

(Weber et al., 2005). First, the direct reduction in area of available habitat can drastically 

reduce or eliminate entirely certain species and their ecosystems (Dramstad et al., 1996). 

Second, the diffuse pattern of present day urban and suburban expansion effectively 

fragments the natural landscape creating smaller patches of intact natural areas of reduced 

quality (Dramstad et al., 1996).  

Urban expansion is perhaps the most well-studied and often modeled type of land-

use change worldwide. Current accounts have found that within the United States alone, 

there has been an effective doubling of high density developed areas from 1960 to 1990 

(Theobald, 2001). This however pales in comparison to the rate of suburban expansion. 

Exurban development generally results in the unplanned dispersal of homes on large 

parcels of land (Hilty et al., 2006). Low density residential development in the United 

States is now the fastest growing type of land use and the number of suburban residents 

in many European countries has more than doubled or tripled in the last fifty years 

(Theobald, 2001).  

Numerous studies have shown the negative ecological effects of ecosystem 

fragmentation on the landscape. Habitat fragmentation is arguably the greatest threat to 

wildlife and is primarily responsible for species extinction (Sorrell, 1997). In general, less 
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suitable habitat correlates with lower species richness and fewer specialists (Drapeau et 

al., 2000). Fragmentation of habitat and increasing edge conditions reduce both the 

distributions and abundance of North American wildlife species (Weber et al. 2005, 

Donovan et al. 1995, Robinson et al. 1995, Hansen and Urban 1992, and Yahner 1988). 

Loosely defined, habitat fragmentation encompasses the conversion of natural landscapes 

to anthropocentric land uses in a nonsystematic way thus increasing the potential for 

adverse effects in the remaining habitat. Furthermore, those species that are most 

vulnerable to the impacts of fragmentation tend to have already small populations, are 

large in size, have large home ranges, are ecological specialists, have unique habitat 

requirements, and are those species with variable populations that are dependent on 

unpredictable resources (Weber et al., 2005). 

For these reasons, there is growing support for assembling larger, more cohesive 

tracts of habitat with substantial core area as opposed to collecting smaller reserves with 

vulnerable linkages. Increasing patch area may be a better strategy for protecting 

fragmented populations (Haddad, 1999). Simberloff et al. (1992) state that increasing the 

size of conservation areas (areas enrolled in some form of protective framework whereas 

ecosystem sustainability, function, and processes are of primary concern) and habitat 

patches will improve local population persistence. Larger habitat patches tend to have 

larger local populations and larger populations of more species while smaller patches 

may be entirely void of some species altogether (Beier et al., 2002). This is supported 

further by Falcy et al. (2007) in that populations tended to be greater in larger patches 

rather than smaller and more fragmented patches with approximately similar area. This 

was achieved primarily through the provision of high quality interior core habitat 
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(Simberloff et al., 1992). In this way, average population size and persistence increase if 

the patch size required to sustain viable populations is large enough (Falcy et al., 2007). 

This association is documented in the individual-area relationship (Conner et al., 2000) 

and the density-area relationship identified by Matter (1997).  

Habitat fragmentation and patch size are inherently related to edge-to-area ratios. 

Peck (1998) states that fragmentation increases “edge” habitat and decreases “interior” 

habitat. Edge habitat has been shown to vary greatly in terms of conditions and 

composition from that of the interior. In general, the microclimate associated with edge 

conditions tends to be more severe than that of the interior (Saunders et al., 1991). Edge 

areas are also exposed to a greater degree of the impacts from adjacent land uses. Chief 

amongst these impacts is the introduction of new species to the edge area (Hobbs and 

Huenneke, 1992). The dispersal of these species tends to alter the makeup of the natural 

habitat patch even though it remains, in space, unaltered. Generalist species tend to 

persist in edge environments and over time will often outcompete the more sensitive 

native inhabitants (Peck, 1998). In this way, the reduced size and fragmented 

characteristics associated with natural areas changes the ratio of edge to interior or core 

habitats; as interior habitats decrease, so to do the more sensitive native species (Peck, 

1998). Larger contiguous patches however tend to encompass a greater degree of interior 

habitat thus mitigating edge effects. This is important from a modeling perspective 

because patches can be identified and selected based on their measures of core interior 

habitat. 

The negative impacts of edge effects on inhabitants are well documented. Paton 

(1994) has shown that edge effects can reduce avian nesting success rates. In another 
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study, some birds are found in and throughout patches of all sizes while other birds are 

only observed in patches of certain sizes, in the interior, or in the edges of others (Beier et 

al., 2002; Ford et al., 2001; Trzcinski et al., 1999). Additionally, Ewers and Didham 

(2007) have found that irregularly shaped habitat patches exhibited regularly diminished 

populations of core-dwelling species by 10-100%, depending on the scale and the relative 

proportion of edge area to interior area.  

In these ways, maintaining relatively large and cohesive patches is tied closely 

with sustaining viable populations of natural inhabitants. More specifically however, the 

positive effects of patch size can be diminished if the patch is irregularly shaped and has 

a relatively low proportion of interior or core habitat to edge conditions. Based on these 

well supported suppositions, it would appear that the best conservation management 

solution would be to assemble a vast array of relatively large and cohesive habitat areas.  

Patch size matters on a theoretical level as well. There are a number of scientific 

principals and theories that scientists call upon to better manage and explain landscape 

functionality (Hilty et al. 2006). Those that are centrally tied to the existence of habitat 

patches include: optimal foraging theory (MacAurthur and Pianka, 1966), island 

biogeography (Wilson, 1967), dispersal theory (Fahrig and Merriam, 1985), source-sink 

dynamics (Pulliam, 1988), hierarchical patch dynamics (Wu and Loucks, 1995), wildlife-

habitat relationship modeling (Morison and Hall, 1998), metapopulation dynamics 

(Hanski, 1999), landscape metrics (Vos et al. 2001, McGarigal et al. 2002), predicting 

species occurrences (Scott et al., 2002), and metacommunity dynamics (Holyoak et al., 

2005) (Girvetz and Greco, 2007). 
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As many of these theories are directly tied to the function of patch size and 

cohesion, greater discussion of them is appropriate here, chief among them: island 

biogeography theory (Wilson, 1967), the intermediate disturbance hypothesis (Connell, 

1978), metapopulation theory (Levins, 1969), and metacommunity theory (Wilson, 

1992). As stated by Pulliam and Johnson (2001), island biogeography has become one of 

the fundamental paradigms for conservation reserve design and for understanding the 

biological consequences of habitat fragmentation, that is, the splitting of contiguous 

habitat into smaller, isolated fragments.  E.O. Wilson (1967) surmised that both the 

populations and variety of species on islands are influenced by the patterns of 

immigration and local extinctions in addition to competition between inhabitants for 

resources. Furthermore, he points out that the patterns of immigration are functions of 

distance from the mainland and that local extinctions are functions of island size. In 

general terms, islands with closer proximity exhibit more sustainable patterns of 

immigration and islands of larger size are more likely to sustain populations with little 

likelihood of local extinction. In this same way, larger and more cohesive patches of 

habitat may better sustain local populations. 

Habitat size becomes a paramount component of island biogeography theory. 

Isolated habitat areas are essentially islands in a sea of competing land uses. Small habitat 

areas are essentially small islands in the same sea thus making their inhabitants 

particularly susceptible to local extinctions. In these ways, functional size is expected to 

increase with progressively greater degrees of physical connectivity (Pullman and 

Johnson, 2001). In other words, the size and connectivity of habitat islands is critical in 
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assuring sustainable immigration of inhabitants and lessening possible species 

extinctions.  

Connell (1978) has shown that areas of the greatest biologic diversity are those 

that experience intermediate levels of disturbance. A disturbance is defined as any event 

in time that disrupts ecosystem or community structure while changing resource 

availability or the physical environment (White & Pickett, 1985). Intermediate 

disturbances occur at several different levels ranging from frequent to infrequent, short 

time since last disturbance to long time since last disturbance, and large to small (Pulliam 

& Johnson, 2001). An example of a large disturbance may include the eruption of a 

volcano while a small scale disturbance would include an uprooted tree from a 

windstorm.  

In the absence of intermediate disturbances, competition among species will result 

in superior competitors out competing others. Additionally, very few species can tolerate 

extremely frequent or intense disturbances. For these reasons, it is imperative that historic 

disturbance regimes be maintained. These regimes include considerations characterized 

by their type, frequency, intensity, and spatial extent of the disturbances to ensure various 

successional trajectories (Pullman & Johnson, 2001). Peck (1998) makes the effective 

connection between maintaining natural disturbance regimes and habitat size; under 

optimal conditions, habitat areas should be large enough to accommodate disturbance 

regimes that are historically characteristic of the region. In essence, as the size of a 

cohesive habitat patch increases, so too does the chance that natural disturbance regimes 

will remain intact.  
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Based on this empirical evidence and these theoretical suppositions, the C-PAN 

spatial modeling approach outlined herein provides a unique and potentially beneficial 

method for identifying patches comprised of large cohesive tracts of suitable core habitat. 

Additionally, once identified, these patches and sites can be ranked based on the newly 

formed patch metrics associated with core area developed by the C-PAN model. The core 

area metrics of the C-PAN value, rank (a grading of patch cohesion compared to others), 

and quotient (a measure of comparison between each patch and the patch with the highest 

cohesion) ultimately aid in further categorizing and ranking individual patches based on 

the desired spatial aspects of large cohesive patches with heightened core area. This is 

largely desirable because of the well documented ecologic benefit to biodiversity that is 

generated by patches exhibiting these characteristics. 
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APPENDIX: B 

 

Graph Theory & Landscape Network Terminology 

 

Graph: the collection of habitat patches, blocks, or reserves found within the 

landscape being evaluated; they are represented as nodes. 

Node: the vector data point that represents the location of the habitat patch, block, 

or reserve; nodes are connected in a graph by edges. 

Edge: the line that connects each connected node within the graph; it is not to be 

confused with other usages of the term edge within conservation planning such as 

when discussing edge effects, corridors, or interior habitat. Here edge is simply 

demarking the connection between patches, blocks, or reserves. 

Path: a sequence of connected nodes that when taken together form a walk. A 

path encompasses several patches, blocks, or reserves strung together. 

Walk: a unique combination of nodes connected by their respective edges. The 

length of a walk is represented by the sum of each edge. A walk represents a 

unique combination of a path, a walk could be thought of spatially as a potential 

greenway. 

Cycle: a type of walk that represents a closed loop of nodes, a walk is considered 

closed if the starting node and the ending node are the same. A cycle indicates a 

potential greenway that is closed to form a loop. 

Tree: a type of walk that does not represent a closed loop of nodes or cycles. This 

represents a path that is linear in nature similar to the spatial configuration of a 

stream. 
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Spanning Tree: a tree that includes every node, patch, block, or reserve found 

within the graph or landscape. There may be several spanning trees for each 

graph, each comprised of a unique combination of paths or walks. 

Minimum Spanning Tree: the spanning tree that includes the shortest total 

distance of edge length. 

Connected Graph: a graph where there is a path between any two nodes, thus 

allowing every node within the landscape to be reachable or connected in some 

sequence. 

Subgraph: a graph where some nodes may be unreachable from others because 

no path exists. This would be likely in highly fragmented landscapes where edge 

distances are great, effective distances are too high, or barriers persist. 

Graph Component: a connected subgraph where there is a path between any two 

nodes, thus allowing every node within the component to be reachable. A 

subgraph can be comprised of multiple isolated components. Individual 

components, while isolated from each other, may still function as important 

ecological drivers at the ecoregion-scale. 
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