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ABSTRACT 

The Cyp2b subfamily contains five members (Cyp2b9, Cyp2b10, Cyp2b13, 

Cyp2b19, and Cyp2b23) of which three (Cyp2b9, Cyp2b10, Cyp2b13) are hepatic 

enzymes involved in xenobiotic detoxification. In this study, we made a Cyp2b-

knockdown mouse using lentiviral-promoted shRNA homologous to all five Cyp2b 

subfamily members in FVB/NJ mouse to characterize Cyp2b’s role in xenobiotic 

detoxification. We assessed the in vivo function of Cyp2bs in the toxicity from pesticides 

(i.e. parathion) and drugs (i.e. zoxazolamine). We demonstrated that Cyp2b isoforms play 

a key role in parathion and Zoxazolamine metabolism and toxicity.  In addition, we in 

partially phenotyped and characterized Cyp2b-KD model and assessed changes 

associated with the lack of Cyp2bs. We focused on role that Cyp2bs play in lipid 

metabolism. Changes in Cyp2b expression led to perturbation in lipid metabolism in 

Cyp2b-KD mice. Both young and old Cyp2b-KD male and female mice showed 

significant changes in some organ weights, especially an increase in abdominal, inguinal, 

and renal adipose. Interestingly, associated with changes in fat to body ratios was 

changes in non-fasting triglycerides levels.  Our data suggest that Cyp2b is more than a 

detoxification enzyme, but is also involved in the metabolism of unsaturated fatty acids 

as Cyp2b-KD mice have increased fat deposition and show increased serum and liver 

lipid levels. 
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CHAPTER ONE 
 
 

INTRODUCTION 
 

The mouse has become the dominant experimental model in the study of human 

cytochrome P450-mediated processes. The mouse genome contains 105 cytochrome 

P450 (Cyp) genes while the human genome contains 58 Cyp genes. The CYP 

superfamily is one of the most ancient, widespread and diverse enzyme systems found in 

animals, plants, and microorganisms. A superfamily of mammalian CYP genes encodes a 

multitude of CYP enzymes that play a pivotal role in the metabolism and detoxification 

or bioactivation of a variety of xenobiotics (e.g. drugs, carcinogens, environmental 

toxicants, plant products) as well as functioning in the biotransformation of numerous 

endobiotics (e.g. steroid hormones, bile acids, fatty acids, eicosanoids) (Nelson et al., 

1996). CYPs enzymes play a central role in the metabolic conversion of these xenobiotic 

and endobiotics to more polar derivatives that can be conjugated by phase II enzymes to 

be removed rapidly (Danielson, 2002). The CYPs are also involved in the formation of 

toxic intermediates and may cause adverse drug reactions (ADRs).   

 

CYPs are separated into families, subfamilies, and isoforms. For example, 

CYP2B6 is the human isoforms (gene) in family 2 (CYP2), subfamily B, isoforms 6. 

CYP2B6 was first described in 1989 (Yamano et al., 1989) as the human ortholog to the 

phenobarbital-inducible CYP2B in rodents. The functional CYP2B6 gene and the 

pseudogene CYP2B7P are located in the middle of the chromosome-19 cluster, which 

also contains the CYP2A and CYP2F subfamilies (Rodriguuez-Antona and Ingleman 
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2006). CYP2B6, initially thought to consist of a small fraction of hepatic P450 and 

expressed at low levels, has gained more attention in recent studies because of its role in 

xenobiotic detoxification and its inducibility (Wang and Tompkings, 2008). It was 

estimated that CYP2B6 encompasses 2-10% of the total microsomal P450 pool in liver  

(Gervot et al., 1999; Lang et al., 2001), but lower levels of CYP2B6 are found in several 

other tissues, including the brain, kidney, trachea, lung, small intestine, uterus, 

endometrius, bronchoalveolar macrophages, peripheral blood and lymphocytes (Gervot et 

al., 1999; Lang et al., 2001; Ding and Kaminsky, 2003; Miksys et al., 2003; Bernauer et 

al., 2006; Yengi et al., 2003). 

 

Although CYP2B6 has been thought to constitute only a small percentage of total 

hepatic P450, it has a wide range of xenobiotic and endobiotic substrates such as bile 

acids, steroid hormones, and bilirubin (Wei et al., 2000; Hodgson and Rose, 2007). 

Initially underestimated, the number of drugs recognized as CYP2B6 substrates has been 

constantly increasing, and several clinically important substrates are known to be 

preferred substrates of this enzyme. It is involved in the metabolic activation and 

inactivation of a growing number (25-30%) of clinically important drugs (a

 

Ekins and 

Wrighton 1999; Lang et al., 2001; Guana et al, 2006), such as the HIV-1 reverse 

transcriptase inhibitors nevirapine and efavirenz (Erickson et al., 1999; Ward et al., 

2003). Recently, efavirenz was described as a potentially important phenotyping tool for 

CYP2B6-mediated metabolic activity (Haas et al., 2004). 
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Table 1.1: Some of Cyp2b6 substrates 
Classification Substrate References  
Antidepressant  Bupropion Faucette et al., 2000; Hesse et al., 2000 
Chemotherapeutics Cyclophosphamide 

Tamoxifen 
Ifosfamide 

Chang et al., 1993; Roy et al., 1999 
White et al., 1995 
Granvil et al., 1999 

Anti retrovirals Efavirenz 
Nevirapine 

Erickson et al., 1999 
Ward et al., 2003 

Anti malarial Artemisinin Svensson and Ashton, 1999 
Opioids  Methadone Gerber et al., 2004 
 Nicotine McCracken et al., 1992; Yamazaki et al., 1999 
Steroids Estrogen 

Testosterone  
b

 

Ekins et al., 1999 

 Five CYP2B isoforms have been identified in mouse (Cyp2b9, 2b10, 2b13, 2b19, 

and 2b23) that are expressed in different tissues and putatively perform specific and 

redundant functions. Cyp2b isoforms are primarily expressed in the liver with Cyp2b9, 

Cyp2b10, and to a lesser extent Cyp2b13 being the major hepatic CYP2b isoforms 

(Honkakoski et al., 1998; Wei et al., 2000; Hernandez et al., 2009; Mota et al., 2010). 

The hepatic Cyp2bs also show sexual dimorphism as female mice express more Cyp2b9 

and Cyp2b13 than males (Jarukamjorn et al., 2002; Wiwi et al., 2004; Hernandez et al., 

2006; Mota et al., 2010). Cyp2bs are also expressed in other tissues such as small 

intestine (Zhang et al., 2003),  kidney (Jarukamjorn et al., 2001), brain (Albores et al., 

2001; Rosenbrock et al., 2001), lungs (Forkert et al., 1986), testes, (Omiecinski, 1986 ) 

skeletal muscles (Finger et al., 2011), skin (Keeney et al., 1998, Du et al., 2005) adipose 

(Yoshinari et al., 2004), and prostate (Kumagai et al., 2007).  

 

Cyp2bs (mainly Cyp2b9 and Cyp2b10) are involved in the metabolism of several 

exogenous chemicals such as parathion, chlorpyrifos, phenobarbital, nonylphenol, some 
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PCBs, and DDT (Lee et al., 1998; Foxenberg et al., 2007) and endogenous compounds 

such steroid hormones, prostaglandins, and fatty acids (Waxman, 1988; Keeney et al., 

1998; Kawamoto et al., 2000; Ladd et al., 2003; Du et al., 2005). Cyp2b19 is considered 

a novel specific cellular marker of late differentiation in skin keratinocytes (Keeney et al., 

1998; Du et al., 2005). It is involved in arachadonic acid metabolism, a normal 

constituent of cellular membranes and the precursor of biologically active lipids such as 

epoxyeicosatrienoic (EET) acids, hydroxyeicosatetraenoic (HETE) acids, leukotrienes, 

thromboxanes, and prostaglandins (Keeney et al., 1998).  

 

 Several transcription factors regulate the basal and the inducible expression of 

CYP2B. Importantly, expression of CYP2B is strongly inducible by different drugs and 

potentially toxic chemicals, thereby allowing for enhanced detoxification following 

exposure (Denison and Whitlock, 1995). Induction of hepatic Cyp2b family members in 

mice (Cyp2b10) and humans (CYP2B6) is regulated by the constitutive androstane 

receptor (CAR) and the pregnane X receptor (PXR) (Honkakoski et al., 1998; Tzameli et 

al., 2000; Wei et al., 2000). However, CAR is of special interest because of the 

identification of a phenobarbital response element (PBREM) in the 5’ region of Cyp2b10 

and the elucidation of CAR as the receptor that is activated following phenobarbital 

exposure (Honkakoski et al 1996; Wang et al., 2004). Several CAR activators such as 

phenobarbital, 1,4-bis[2-(3,5-dichloropyridyloxy)]benzene (TCPOBOP), phenytoin, 

nonylphenol, and O-(3,4-dichlorobenzyl) oxime (CITCO) are potent Cyp2b inducers and 

therefore Cyp2b is an excellent biomarker for CAR activation (Maglich et al., 2003; 
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Wang et al., 2004; Hernandez et al., 2007). However, as evidence mounts that CAR is 

also a nutrient sensor (Masson et al., 2008; Dong et al., 2009; Kono et al., 2009; Gao et 

al., 2009; Maglich et al., 2009), Cyp2b10’s function may need to be re-evaluated. 

 

It has been demonstrated that Cyp2b9 regulated by the forkhead box protein A2 

(FOXA2) (Hashita et al., 2008). FoxA2 is activated by fasting and fatty acids, and 

inhibited by insulin (Wolfrum et al., 2004). Therefore; it must be considered that Cyp2b9 

is an important energy metabolism enzymes.  

 

The importance of CYP2B6 as an effective monooxygenase for environmental 

chemicals is illustrated by the fact that the use of phenotyped human microsomes shows a 

correlation between CYP2B6 content and increased production of metabolites of known 

CYP2B6 substrates (Hodgson and Rose, 2007). For example, using human hepatocytes, 

CYP2B6 was involved in the activation of chlorpyrifos to chlorpyrifos oxon. Also, 

endosulfan sulfate was determined to be the major product from human microsomes and 

CYP2B6 was the primary CYP responsible for α-endosulfan metabolism (Hodgson and 

Rose, 2007). Although the relative importance of CYP2B6 in drug and pesticide 

metabolism is apparent from in vitro (microsomal) and recombinant studies; its function 

in vivo is not clear. Most studies were done in vitro with microsomes or recombinant 

enzymes, or in vivo using nuclear receptor-null mice such as CAR- null mice (Ramírez et 

al., 2004, Hernandez et al., 2007). There is no null (Cyp2b knockout) mouse to study the 

physiological, pharmacological and toxicological functions of Cyp2b in vivo, and the role 



 

 6 

of CYP2B-produced intermediates in causing adverse effects. In fact, few of the 

detoxifying P450s with multiple isoforms have been knocked out. If not for the recent 

production of the Cyp3a-null mouse by in part chromosomal deletion (van Herwaarden et 

al. 2007), there would be no CYP-null mice for P450 subfamilies with multiple isoforms.  

 

The problem is that there are more P450 isoforms in each subfamily of the mouse 

genome than there are in the human genome. For instance, there is one isoform in the 

human CYP2B subfamily (CYP2B6) while the murine Cyp2b subfamily has five 

individual isoforms (Cyp2b9, Cyp2b10, Cyp2b13, Cyp2b19, and Cyp2b23) with most 

likely redundant functions. Knocking down one isoform will have presumably little to no 

effect as other Cyp2b isoforms with redundant functions will still be available to 

metabolize the chemical of interest. Therefore, the redundancy in CYP subfamily 

members has made the typical P450 gene knockout ineffective, or extremely difficult to 

produce. The cost of knocking down all the isoforms is impractical. Modern technologies 

such as siRNA under the control of lentiviral promoters may alleviate such obstacles and 

produce efficient knockdown mice.  

 

Small Interfering RNAs (siRNAs) are short, double-stranded RNA molecules (21-

25 nucleotides) that can form complementary sequences with single-stranded mRNAs, 

and in turn target them for degradation in a process called RNA interference (RNAi) 

(Elbashir, 2001). This leads to a decrease (but not the absence) of the expression of the 

corresponding protein. The siRNA-mediating gene silencing is likely a self-defense 
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mechanism against viral invasion. RNAi has emerged as a powerful tool to downregulate 

the expression of specific genes. The gene silencing effect of dsRNA is mediated in a 

two-step process: 1) the dsRNA is recognized by Dicer, an RNase III family of nucleases 

that processes the dsRNA into small double-stranded molecules called siRNA (Nykanen 

et al., 2001); 2). Following the cleavage of dsRNA into siRNAs by Dicer, the second 

important stage of mRNA degradation occurs. This is mediated by a protein complex 

with nuclease activity known as RNA-induced silencing complex (RISC) which 

 

is guided 

to its target RNA by siRNA (Martinez et al., 2002; Tijsterman et al., 2002). Functional 

RISC is believed to contain at least four different subunits, an endonuclease, an 

exonuclease, a helicase, and “homology searching” component (Nykanen  et al., 2001, 

Martinez  et al., 2004). The most successful application of the discovery of RNAi has 

been to study the gene function in cultured human and mouse cells. However, the 

knockdown effect of siRNA is transient. To achieve a more sustained gene silencing 

effect, shRNA (small hairpin RNA) expressed from a vector is preferred (Gao and Zhang, 

2007).  

Viral vectors carrying siRNA expression cassettes have been developed in an 

attempt to achieve delivery to a range of cell types (including neurons) and longer-term 

expression, leading to a more persistent silencing effect (Bantounas et al., 2004). 

Lentiviral vectors are becoming the vectors of choice for short-interfering RNA (siRNA) 

(Sachdeva et al., 2007). They have been successfully used to knock down the expression 

of specific genes in vivo and in vitro. The control of the shRNA under a lentiviral 
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promoter allows the incorporation of the construct into the hosts DNA and therefore, 

provides stable expression, and germline transmission (Lois et al., 2002). The 

cytomegalovirus (CMV) promoter was considered to drive a robust transgene expression 

(Park, 2007) and lentivirus vectors containing the U6 promoter have been used to 

generate transgenic animals at high efficiency (100%) in F0 mice and 50% in F1 mice 

(Punzon et al., 2004; Okada et al., 2007). Recently, short hairpin RNA (shRNA) 

molecule overexpression has become popular using lentiviral transgenesis, with low-to 

moderate transgenic efficiencies (13-53%) observed in founder mice harboring a shRNA 

construct (Tiscorina et al., 2003; Dann et al., 2006; Kissler et al., 2006; Rubinson et al., 

2007). However, 

 

RNAi was not used to knockdown whole subfamilies. There are 

conserved areas between the Cyp2b murine subfamily members that show high 

homology and therefore are potential targets for shRNA that could knockdown all of the 

Cyp2b subfamily members (see next Chapter). Therefore, we can potentially knockdown 

all five isoforms with one siRNA.  

A Cyp2b knockdown (Cyp2b-KD) mouse model will be an important tool in 

toxicological and pharmacological studies. This model will enable us to perform many 

studies in vivo, currently too expensive or impractical and provides a model to build on 

for the future. We proposed to use siRNA to knockdown the expression of the whole 

Cyp2b subfamily in mice using lentiviral driven shRNA. The loss of Cyp2b function 

caused changes in susceptibility to toxicants, and potentially changes in basic physiology 

(lipid metabolism). This genetic model (Cyp2b - knockdown mouse) will provide 
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powerful tools for further study Cyp2b-mediated xenobiotics metabolism, as well as the 

physiological and toxicological functions of Cyp2b complex.  

 

1.1  Research Objectives 

The Cytochrome P450s (CYPs) are important enzymes in protecting us from 

xenobiotics (e.g. drugs, pesticides, industrial chemicals) and endobiotics (e.g. steroid 

hormones, bilirubin, arachadonic acid, fatty acids, bile acids) chemicals. However, few in 

vivo models are available to study the function of CYPs in metabolizing, detoxifying, and 

eliminating drugs and environmental toxicants. Knockout mice are important animal 

models for studying the role of genes in vivo. There are very few P450-null (P450 

knockout) mice and there are no Cyp2b null-mice because the murine Cyp2b subfamily 

has five members with redundant functions. Knocking out one isoform in the subfamily 

will have little effect of the physiology of the mouse as other redundant isoforms are still 

available to metabolize the chemical of interest. Therefore, we need to knockout all the 

isoforms at once. The redundancy has made typical Cyp2b knockout worthless. Further, 

the cost of knocking down the five isoforms has made Cyp2b knockout impractical. 

Small interference RNA (siRNA) technology under the control of lentiviral promoter 

may alleviate this obstacle and produce efficient knockdown mice. Because there is no 

model of Cyp2b function, the exact physiological roles that Cyp2b subfamily plays have 

not been thoroughly studied using proven, substantiated techniques, in vivo. To 

systematically assess the in vivo impact of Cyp2b on the physiology, and the relative 

contributions of the liver to first-past metabolism of many drug substrates and other 
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chemicals, we made and characterized a Cyp2b-knockout mouse. This research has the 

following objectives: 

 

Objective 1: Make siRNA constructs for Cyp2b and a scrambled construct within a 

lentiviral promoted vector, and test these constructs in vitro.   

A. Design, produce, concentrate, and titer lentivirus expressing Cyp2b-specific siRNA 

and scrambled siRNA (in vivo control). 

B. Determine the construct that consistently represses (knock’s down) Cyp2b mRNA 

and protein levels the greatest in mouse primary hepatocytes. 

 

Objective 2: Produce RNAi transgenic mice that overexpress the Cyp2b-siRNA (a 

Cyp2b knockdown mouse, repress Cyp2b function, and determine the efficacy 

of the Knockdown.  

A. Produce Cyp2b siRNA knockdown mice. The mice were genotyped and the founders 

were used for breeding studies. Test whether Cyp2b-knockdown (Cyp2b-KD) mice 

shown reduced Cyp2b expression.  

B. Determine if TCPOBO the potent Cyp2b-inducer (TCPOBOP), can out-compete 

shRNA-mediated repression, or if the knockdown is powerful enough to continue 

reducing Cyp2b expression.  
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Objective 3: Test whether the loss of Cyp2b alters the phenotype of the mouse. 

A. Determine the role of Cyp2b in the metabolism of a variety xenobiotics and 

endobiotics such as parathion.  

B. Test whether Cyp2b-KD mice are sensitive to the effects of drugs such as 

zoxazolamine. 

C.  Determine if the Cyp2b-knockdown mouse shows any histological, pathological, or 

clinical abnormalities. 

1.2  Summary 

Cytochrome P450s, including the Cyp2b subfamily, are important in the 

metabolism and elimination of drugs and environmental toxicants; however, few in vivo 

models are available for their study. Cyp2b is a key enzyme in our chemical sensitivity to 

a number of drugs, and occupational and environmental chemicals and Cyp2b is 

instrumental in steroid hormone homeostasis and bile acid metabolism.  

 

There is no Cyp2b knockdown mouse model due to the fact that Cyp2b has 

several isoforms with redundant functions and knocking down one isoform will have 

little to no effect on the metabolism rate. RNA interference (RNAi, siRNA, shRNA) 

under the control of lentiviral promoters may alleviate such obstacles and is an efficient 

toll to produce efficient knockdown mice.  

 

The main objective of this study is to produce efficient Cyp2b knockdown mice to study 

their function in vivo. We were able to produce the knockdown mice for Cyp2b-
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KD2 mice. The next step is to perform in vivo studies to determine the Cyp2b 

function. These studies will increase our knowledge of the human sensitivity to 

toxicant and drugs and will aid to the understanding of the xenobiotic metabolism. 

1.3   Organization of the Dissertation   

 This dissertation is organized into chapters intended for publications in peer-

reviewed journals. Therefore, some of the introductory material and methods are 

repeated. Chapter 1 introduces the importance of cytochrome P450 (CYP2B6) and the 

uses of siRNA in knocking down Cyp2bs in mice. Chapter 2, titled “Lentiviral-mediated 

RNAi knockdown yields a novel mouse model for studying Cyp2b function” will be 

submitted for publication in Toxicological Sciences. Chapter 3, titled “In vivo RNAi 

Repression of Cyp2b Expression Increases Adipose Deposition and Serum Lipids” has 

been submitted for publication in American Journal of Physiology: Gastrointestinal and 

Liver Physiology. Chapter 4 summarized the overall results and purpose of this research, 

its importance in toxicology and physiology, and future considerations. 
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2.1  ABSTRACT 

  

There are few in vivo knockout models available to study the function of Cyp2 

members involved in the metabolism of endogenous and exogenous chemicals.  These 

models may help provide insight into the CYPs responsible for the detoxification and 

activation of drugs, environmental toxicants, and endobiotics. The aim of this work is to 

produce a potent Cyp2b-knockdown (KD) mouse for subsequent study of Cyp2b 

function. We made a quintuple Cyp2b-KD mouse using lentiviral-promoted shRNA 

homologous to all five murine Cyp2b subfamily members (Cyp2b9, 2b10, 2b13, 2b19, 

and 2b23). The Cyp2b-KD mice are viable, fertile, and without physiological 

abnormalities except for an increase in liver weight and abdominal fat deposition. 

Expression of the three hepatic Cyp2b members, 2b9, 2b10, and 2b13, is significantly 

repressed as demonstrated by Q-PCR and Western blotting. The CAR activator, 

TCPOBOP was used to determine if shRNA-mediated Cyp2b10 repression could be 

outcompeted by Cyp2b10 induction. TCPOBOP-treated Cyp2b-KD mice show 80-90% 

less Cyp2b protein expression than TCPOBOP-treated WT mice, demonstrating that Cyp 

induction does not outcompete the repressive function of the shRNA. Furthermore, 

Cyp2b-KD mice are sensitive to parathion, an organophosphate insecticide primarily 

metabolized by Cyp2b enzymes, when compared to WT mice, and TCPOBOP-treated 

Cyp2b-KD mice are poor metabolizers of parathion compared to WT mice.  In summary, 

we designed a shRNA construct that stably repressed the expression and activity of 
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multiple Cyp2b enzymes. We foresee that this novel Cyp2b-KD mouse model will 

significantly improve our understanding of the role of Cyp2b enzymes in chemical 

sensitivity and drug metabolism. 

2.2  Introduction 

 The cytochrome P450s (CYPs) are important in lipid metabolism, 

including the metabolism of fatty acids, retinoids, eicosanoids, steroids, vitamin D, 

bilirubin, bile acids, and xenobiotics. The CYPs in families 1-4 are important in the 

metabolism of xenobiotic chemicals with most of the drug metabolism being performed 

by CYP families 1-3 (Baldwin et al. 2009; Muerhoff et al. 1994; Waxman 1988; 

Waxman et al. 1991; Willingham and Keil 2004). The CYP2 family contains several 

crucial subfamilies involved in detoxification such as CYP2A, 2B, 2C, 2D, and 2E 

subfamilies.   

 

CYP2B’s participate in the metabolism of numerous xenobiotics, including 

parathion, malathion, diazinon, bupropion, efavirenz, and cyclophosphamide (reviewed 

in (Hodgson and Rose 2007; Wang and Tompkins 2008)). In some cases CYP2B 

metabolism leads to chemical activation (Foxenberg et al. 2007; Mutch and Williams 

2006; Tang et al. 2001). The importance of CYP2B proteins as effective 

monooxygenases for environmental chemicals is illustrated by the fact that phenotyped 

human microsomes show a correlation between CYP2B6 content and increased 

production of metabolites of known CYP2B substrates (Hodgson and Rose 2007). It is 

estimated that up to 12% of the available drugs on the market are metabolized by 
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CYP2B6 (Wang and Tompkins 2008) although CYP2B6 only makes up about 3-5% of 

the CYPs in the human liver (Lang et al. 2004). However, CYP2B6 content varies as 

much as 100-fold between individuals (Ekins et al. 1998), is sexually dimorphic (Lamba 

et al. 2003), and polymorphic (Lang et al. 2004), and these variances probably cause 

individual differences in the metabolism of these drugs.   

 

Humans have one CYP2B gene, CYP2B6, while mice have five Cyp2b genes, 

Cyp2b9, Cyp2b10, Cyp2b13, Cyp2b19, and Cyp2b23 (Nelson et al. 2004). Cyp2b9, 

Cyp2b10, and Cyp2b13 are the forms primarily expressed in the liver (Finger et al. 

2011). CYP2B6 in humans and Cyp2b10 in mice is transcriptionally regulated by the 

constitutive androstane receptor (CAR), a metabolic and xenobiotic sensing nuclear 

receptor, (Honkakoski et al. 1998; Wang et al. 2003; Zhang et al. 2002; Kretschmer and 

Baldwin 2005). Perturbations in CAR activity are known to alter the metabolism and 

toxicity of bile acids ( Uppal et al. 2005; Beilke et al. 2009), acetaminophen (Zhang et al. 

2002), and parathion (Mota et al. 2010). However, Cyp2b’s role in protecting individuals 

from these endogenous and exogenous chemicals is not fully understood as other 

detoxification enzymes are also regulated by CAR.  Overall, the role of Cyp2b isoforms 

in mice and CYP2B6 in humans for metabolizing endogenous and exogenous chemicals 

is often overlooked and poorly understood in part due to the lack of an in vivo model 

(Reschly and Krasowski 2006; Yamada et al. 2006; Wang and Tompkins 2008).  
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Although there are in vivo models for studying many drug metabolizing CYPs, 

including recombinant Cyp2b isoforms, there are few in vivo models of CYP function 

such as CYP-knockout mice. In fact, few of the detoxifying P450s with multiple isoforms 

have been knocked out. If not for the recent production of the Cyp3a-null mouse (van 

Herwaarden et al. 2007) in part by in chromosomal deletion, there would be no CYP-null 

mice for P450 subfamilies with multiple isoforms. There are no CYP-null mice for any of 

the Cyp2 subfamily members critical in detoxification (i.e. Cyp2a, Cyp2b, Cyp2c, and 

Cyp2d) with the exception of Cyp2e1 (Lee et al. 1996), a one-member subfamily. There 

is also a Cyp2j5-null mouse (Athirakul et al. 2008); however, this CYP does not appear 

to have a significant role in detoxification. Of the 68 functional CYPs in families 1-4, 

only twelve have been deleted in some forms to our knowledge. The primary reason that 

Cyp-null mice have rarely been made is because most murine Cyps in subfamilies 2-4 

have many individual isoforms that perform redundant functions. For example, the 

Cyp2b subfamily in mice has five isoforms (Nelson et al. 2004). Therefore, knocking out 

Cyp2b10 may have little effect on the physiology of the mouse because Cyp2b9, 

Cyp2b13, Cyp2b19, and Cyp2b23 with similar structures and potentially redundant 

functions are still available. In addition, the cost of making a quintuple knockout has 

made such inquiries impractical.   

 

Small Interfering RNAs (siRNAs) are short, double-stranded RNA molecules (21-

25 nucleotides) that can form complementary sequences with single-stranded mRNAs, 

and in turn target them for degradation in a process called RNA interference (RNAi) 
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(Elbashir et al., 2001). This leads to a decrease, but not the absence, of the expression of 

the corresponding protein. RNAi-mediated gene knockdown has been performed through 

several techniques at multiple levels and the most successful application of the discovery 

of RNAi has been to study the gene function in cultured human and mouse cells. The 

generation of transgenic and knock-out mouse models has been constantly improved, 

providing researchers with a large number of invaluable animal models. However, 

 

RNAi 

has not been used to knockdown whole subfamilies of Cyps, or produce efficient, 

persistent knockdown mice under the control of a lentiviral promoter that demonstrate the 

repression of multiple Cyps. Because the Cyp2b murine subfamily members show high 

homology, the Cyp2b subfamily can be targeted for shRNA-mediated repression. 

Therefore, we can potentially knockdown all five isoforms with one siRNA construct. 

We used siRNA to repress the expression of each member of the murine Cyp2b 

subfamily. We hypothesized that the whole Cyp2b subfamily can be efficaciously 

knocked down in mice using lentiviral driven shRNA homologous to each of the five 

Cyp2b subfamily members and this was tested in the liver of Cyp2b-knockdown (Cyp2b-

KD) mice. Further, we tested whether the repression of Cyp2b function caused changes 

in toxicant metabolism using the pesticide parathion. We envision that the Cyp2b-KD 

model will provide a new tool for further study of the impact of Cyp2b enzymes on the in 

vivo metabolism of endobiotic and xenobiotic chemicals.   
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2.3  Materials and Methods 

 

2.3.1  Design of Cyp2b-constructs and generation of shRNA containing lentiviruses. 

The five Cyp2b subfamily members were aligned with ClustalW (Fig. 1), and shRNAs 

were designed based on siRNA Scales (http://gesteland.genetics.utah.edu/siRNA_scales) 

(Mateeva et al. 2007). Constructs of 21-22 base pairs were designed because previous 

work shows that dsRNA smaller than 23bp do not elicit an anti-viral interferon response 

that causes the cessation of all protein synthesis rather than elicit specific repression of a 

gene (Elbashir et al. 2001). Three different siRNA constructs (Cyp2b-KD2, Cyp2b-KD3, 

and scrambled) were chemically synthesized and cloned into the pRNAT-U6.2/Lenti 

plasmid at their BamH1 and Xho1 sites (Fig. 1). This plasmid also contains coral green 

fluorescent protein (cGFP) (Genscript, Piscataway, NJ) as a marker for expression. 

 

Lentiviral particles were produced according to the manufacturer’s instructions 

(Invitrogen, Carlsbad, CA). Human embryo kidney (293FT) cells (Invitrogen) were 

cultured in complete DMEM media containing 10% FBS, 6 mM L-glutamine, 1 mM 

MEM Sodium Pyruvate, 0.1mM MEM Non-Essentail Amino Acids and 500 µg/ml 

Geneticin (G418). One day before transfection, 5x106 cells were seeded in 10-cm dishes 

without G418. Twenty-four hours later the cells were transfected with the pRNAT-

U6.2/lenti plasmid from Genscript along with VirapowerTM plasmids and 

lipofectamineTM 2000 (Invitrogen) following the manufacturer’s instructions. The next 

day, media containing lipofectamine was replaced with complete DMEM media and forty 

http://gesteland.genetics.utah.edu/siRNA_scales)(ref)�
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eight hours later, the viral supernatant was collected, centrifuged, filtered through 0.45µm 

low protein filter, and concentrated by ultracentrifugation (Burns et al. 1993; Ramezani 

and Hawley 2002). The viral pellets were suspended in complete DMEM media with no 

antibiotic for perivitelline microinjection. Concentrated and unconcentrated viral stocks 

were titered and stored at -150 ο

 

C.  

 Viral concentrations were determined according to the manufacturer’s 

instructions (Invitrogen). HT1080 cells (Invitrogen) seeded in 6-well plate at 200,000 

cells/well in complete DMEM media and 1% Penicillin/Streptomycin, were transduced 

with a serial dilution of the viral stocks, 6 µg/µl polybrene® (Invitrogen), and incubated 

at 37 οC overnight in a humidified 5% CO2 incubator. The following day, the media was 

changed to complete DMEM media and G418 (350 µg/ml) to select the transduced cells. 

Media was replaced every 3-4 days with fresh media containing G418. Titer was 

determined by counting the percentage of positive cells (green cells) with an inverted 

fluorescent microscope after 5-7 days of transduction, or colonies were counted after two 

weeks of G418 exposure ( Sastry et al. 2002; Blesch 2004). Lentiviral titers were 1.0, 1.2, 

1.5 × 106 Transduction Units (TU) per ml, for Cyp2b-KD2, Cyp2b-KD3, and scrambled, 

respectively. Concentrated lentiviral titers for Cyp2b-KD2, Cyp2b-KD3, and the 

scrambled construct were 3×108, 5×108, and 1×108

 

 TU, respectively. 
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2.3.2  Primary hepatocytes transduction. 

 Primary mouse hepatocytes (Cellzdirect, Pittsboro, NC) from male CD-1 mice 

plated in 12-well plates (128,000 cell/ well) were transduced with Cyp2b-KD2, Cyp2b-

KD3, or scrambled constructs at a multiplicity of infection (MOI) of 5 or 20. Twenty-four 

hours after transduction, the cells were treated with the CAR activator 1,4-Bis[2-(3,5-

dichloropyridyloxy)] benzene (TCPOBOP) (Sigma Aldrich, St. Louis, MO) to induce 

Cyp2b subfamily members (especially Cyp2b10). Cells were harvested for RNA 

extraction and Q-PCR 24 hours after TCPOBOP treatment.  In addition, the percentage of 

cells infected based on the presence of green fluorescence using fluorescent microscopy 

(Zeiss Axiovert 200M, Carl Zeiss International, Gottingen, Germany) was determined so 

that the drop in Cyp2b expression could be compared to the number of cells transduced.   

 

2.3.3  Perivitelline injection 

 Donor FVB/NJ (FVB) female mice (The Jackson Laboratory; Bar Harbor, ME) 

were superovulated and mated to FVB stud males. Donor females showing vaginal plugs 

were sacrificed. The 1-cell embryos were washed several times in micro drops of M16 

medium (Millipore; Billerica, MA) and used in microinjection. Concentrated Cyp2b-KD2 

lentivirus (8pl/cell) suspended in DMEM media or PBS at concentrations of 

approximately 5 x108 

 

TU were injected into the perivitelline space of fertilized single-cell 

FVB embryos. The zygotes then were cultured overnight, and transplanted into 

pseudopregnant CD-1 mice the next morning.  
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2.3.4  Genotyping 

 Viral and siRNA integration were detected by PCR analysis and confirmed by 

sequencing. Total genomic DNA was isolated from mice tail biopsies with the DNeasy® 

blood and tissue DNA extraction kit following the manufacturer’s instructions (Qiagen, 

Valencia CA). Primers spanning the shRNA were used in PCR to genotype the mice. 

These primers, pRNAT-U.6/Lenti specific primers and Cyp2b-KD, amplify 956 and 359 

bp targets, respectively, within the promoter and shRNA and are available in 

Supplementary Table 1. Genotyping results were determined from PCR reactions run on 

1.6% agarose gels. To confirm the PCR results, the PCR- product was purified using the 

MinElute® PCR purification kit (Qiagen) and sequenced. 

 

2.3.5 Mice Treatment 

 All studies were carried out according to NIH guidelines for the humane use of 

research animals and pre-approved by Clemson University’s IACUC. Mice were 

provided water, and fed ad libitum prior to and during treatments. Wild-type (FVB/NJ) 

mice from The Jackson Laboratory were bred to positive Cyp2b-KD2 mice to maintain 

the genetic background. Untreated FVB and Cyp2b-KD2 mice were euthanized at 8-12 

weeks of age (n = 4-8) to investigate differences in Cyp2b expression. In addition, 8-12 

week-old FVB and Cyp2b-KD mice were injected with 3 mg/kg TCPOBOP or received 

vehicle (corn oil) to investigate Cyp2b expression following treatment with a CAR 

activator and Cyp2b inducer (Tzameli et al. 2000; Wei et al. 2000). Mice were weighed 

prior treatment. Twenty-four hours after treatment, mice were euthanized, livers excised 
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and weighed, and then cut into three pieces for sample preparation (RNA, protein, 

histopathology). 

 

2.3.6 Sample preparation. 

 A portion of the liver was placed in 10% formalin (Fisher Scientific, Pittsburgh, 

PA) for histology investigations. The rest of the liver was snap frozen, diced, separated 

into two tubes, and placed in a freezer at -80 oC for further preparation. Total RNA was 

extracted from one third of the liver using modified phenol/chloroform extraction 

technique with TRI-Reagent®

 

 

 

 according to the manufacturer’s instructions followed by 

DNAse digestion to remove residual genomic DNA (Promega Corporation, Madison 

WI). RNA concentrations were determined spectrophotometrically at 260/280 nm 

(Molecular Devices, Ramsey, MN). Reverse transcription was performed to make cDNA 

using 200 units Moloney Murine Leukemia Virus–Reverse Transcriptase (MMLV-RT), a 

10 mM dNTP mixture, and 0.05 mg random hexamers (Promega Corporation, Madison, 

WI). For cytosol and microsome preparation, the liver was individually homogenized 

with a Dounce Homogenizer and protein fractions were prepared by differential 

centrifugation (Van der Hoeven and Coon 1974). Protein concentrations were determined 

from cytosol and microsomes using the Bio-Rad protein assay according to the 

manufacturer's instructions (Bio-Rad Laboratories, Hercules, CA).  
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2.3.7. Quantitative Real-time Polymerase Chain Reaction (Q-PCR). 

Quantitative real-time PCR (Q-PCR) was performed using primers for specific 

isoforms to Cyp2b9, Cyp2b10, and Cyp2b13 subfamily members, and 18S or β-actin as 

the housekeeping genes (Supplementary Table 1). For primary mouse hepatocytes, cDNA 

was diluted 1:5 prior to Q-PCR. To generate a standard curve and determine the PCR 

efficiency of each reaction, a composite sample of cDNA from treated and untreated cells 

was made with dilutions of 1:1, 1:5: 1:50: and 1:500.  For Cyp2b10, a TaqMan probe was 

used and β-actin was the housekeeping gene; for Cyp2b9, SybrGreen was used and 18S 

rRNA was the housekeeping gene.  

 

For studies with mice, Cyp2b9, Cyp2b10, Cyp2b13, and CAR were quantified 

from liver cDNA samples that were diluted 1:10 prior to Q-PCR. The primers used are 

described in Supplementary Table 1. To generate a standard curve and determine the 

PCR efficiency of each reaction, a composite sample of cDNA from treated and 

untreated FVB and Cyp2b-KD mice was made, and dilutions from 1:1 to 1:10-6 were 

prepared. Amplifications of the samples and the standard curve were performed in 

triplicate using a 96-well iQ5TM multicolor Real-Time PCR Detection System (Bio-Rad) 

with 0.25× SybrGreen (SA Biosciences, Frederick, MD) as the fluorescent double 

strand-intercalating agent to quantify gene expression as described previously 

(Hernandez et al. 2006; Mota et al. 2010). Muller’s equation was used to determine 

relative quantities of each CYP (Muller et al. 2002). A minimum of forty cycles was run 

on all real-time samples to ensure a log based growth curve. 



 

 34 

2.3.8 Immunoprecipitations and Western blots. 

 CAR was immunoprecipitated prior to quantification by Western blotting as 

described previously (Hernandez et al. 2009b). Western blots were also performed to 

detect and quantify Cyp2b protein levels as described previously using 30 to 50 µg of 

hepatic microsomal protein. β-actin (Sigma Aldrich, St. Louis, MO) was used as a 

housekeeper to ensure equal loading of samples (Mota et al. 2010). Goat anti-rabbit IgG 

(Bio-Rad) alkaline-phosphatase coupled secondary antibodies were used for recognizing 

the Cyp2b primary antibody and goat anti-mouse (Bio-Rad) IgG were used to recognize 

β-Actin primary antibodies. Bands were visualized with chemiluminescence detection 

using the Immun-Star AP Chemiluminescent Protein Detection System and quantified 

with the Chemi Doc XRS HQ using Quantity One 4.6.5 software (Bio-Rad Laboratories).  

 

2.3.9  Parathion metabolism. 

Changes in parathion metabolism were examined with 250 µg of microsomes 

from TCPOBOP-treated FVB and Cyp2b-KD2 mice (Foxenberg et al. 2007; Mota et al. 

2010). Samples were incubated in buffer (0.1M Tris-HCl and 5mM MgCl2 at pH 7.4) 

and 20 μM parathion at 37°C in the presence of the esterase inhibitors 1mM EDTA and 

50 μM iso-OMPA. Reactions were initiated with 1 mM NADPH, and stopped after 60 

minutes with 500 μl of methanol/0.1% phosphoric acid.  Metabolite concentrations from 

filtered (0.22 μm PTFE filter; Fisher Scientific) samples were measured by Reverse 

Phase-HPLC as described previously (Mota et al. 2010). Chemical detection was 
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determined at 275 nm for parathion and paraoxon, and at 310 nm for PNP. The detection 

limit for paraoxon is 0.0275 µg/ ml, and the detection limit for PNP is 0.0139 µg/ ml. 

 

2.3.10  Histopathology 

To evaluate the histopathological effect of Cyp2b repression on Cyp2b-KD mice, 

liver samples from male and female, corn oil and TC-treated, FVB, and Cyp2b-KD mice 

(n=3) were fixed in 10% formalin. Samples were processed and stained with hemotoxylin 

and eosin at Colorado Histo-Prep for blind histopathological evaluation (Fort Collins, 

CO). Standardized toxicologic pathology criteria and nomenclature for the mouse were 

used to categorize microscopic tissue changes (Banks 1993; Percy and Barthold 2001). 

Parameters examined were hepatocellular swelling, necrosis, hypertrophy, hyperplasia, 

inflammation, bile duct hyperplasia, and mineralization. The individual parameters were 

scored 0-4 and then summed. There is considered minimal pathology if the mouse liver 

scored less than 5, mild pathology if the total score is 5-10, moderate pathology if the 

total score is 10-15, and marked pathology if the total score is 15-20. Total scores for the 

hepatic histopathology lesions in each mouse were ranked and statistical significance 

determined by Kruskal–Wallis followed by Dunn’s post hoc test. 

 

2.3.11  Zoxazolamine. 

 Untreated male and female mice from FVB and Cyp2b-KD mice (n = 5-15) were 

injected with 400 mg/kg zoxazolamine. Paralysis time was measured by placing 

paralyzed mice on their backs and measuring the time until they were able to consistently 
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right themselves (Hernandez et al. 2007). Mice that did not recover from Zox-induced 

paralysis within 8 hours were euthanized.  

 

2.3.12 Parathion toxicity.   

 Both male and female, FVB and Cyp2b-KD mice (n=5-15/treatment) were injected 

ip with 5 mg/kg/day of parathion and behavioral changes observed over the next 6 hours 

as described previously (Mota et al. 2010). The severity of toxicity was quantified based 

on these symptoms: 0 = not toxic, 1 = eye leakage, 2 =slow tremors, 3= morbid and 4= 

death. Mice showing severe toxicity were immediately euthanized.   

 

2.3.13 Statistical analysis.  

 Results are expressed as mean ± SEM. Tests of significance (GraphPad PRISM 4.0, 

San Diego, California) were conducted by unpaired Student’s t-test, or ANOVA followed 

by Tukey’s post-hoc test when multiple treatments were compared. A p-value < 0.05 is 

regarded as statistically significant. Differences in the number of mice paralyzed by Zox 

were determined by the Mann-Whitney rank sum test.  Parathion toxicity was determined 

statistically with behavorial rankings as described previously (Mota et al. 2010) using the 

Kruskal–Wallis nonparametric test for independent variables followed by Dunn’s post 

hoc test. 

 

 

 



 

 37 

2.4  Results 

2.4.1  Design and determine the efficacy of the Cyp2b shRNA constructs: 

ClustalW alignments of the five Cyp2b subfamily members demonstrated that 

there are five highly homologous areas of the murine Cyp2bs. shRNA constructs that 

recognize all five Cyp2b subfamily members in mice were designed based on these 

homologous areas. Three of these sites, designated KD1, KD2, and KD3, respectively 

(Fig. 2) are potential targets for shRNA based on siRNA scales (Mateeva et al. 2007) that 

indicates these constructs would repress Cyp2b expression greater than 70% in cell 

culture. 

 

In addition, each construct was compared to several other CYP genes to make 

sure they were not homologous to other CYPs and cause the repression of their 

expression. The homologous region of Cyp2a4 is 57% identical to the Cyp2b-KD2 

construct; all other Cyps examined showed less than 50% identity to the Cyp2b-KD2 

shRNA construct. Homologous regions of Cyp2c29 and Cyp2c37 showed 82% and 73% 

identity to the Cyp2b-KD3 construct (Additional File 1). All other Cyps examined 

showed less than 60% identity to the Cyp2b-KD3 shRNA constructs.   

 

  The efficacy of Cyp2b-KD2 and KD3 lentiviral shRNA constructs to repress 

Cyp2b9 and Cyp2b10 expression was tested using primary mouse hepatocytes. The 

percentage of cells infected based on the presence of green fluorescence using fluorescent 

microscopy was approximately 80% in KD2 transduced cells at MOI of 5 and about 70% 
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in KD3 transduced cells at a MOI of 5. 

 

Cyp2b-KD2 reduced Cyp2b9 and Cyp2b10 

expression 73-98% (Table 1). This suggests that the cells that were infected showed 

nearly a complete abolishment of these Cyp2b subfamily members. Cyp2b-KD3 was not 

as efficacious. It reduced Cyp2b10 expression 50% following infection of 70% of the 

cells; however, KD3 did not repress Cyp2b9 expression relative to cells treated with the 

scrambled shRNA (Table 1).  Because Cyp2b-KD2 is more efficacious, and Cyp2b-KD3 

does not reduce Cyp2b9 expression and shows higher homology to other Cyp2 members, 

transgenic mice were made with the Cyp2b-KD2 construct.   

2.4.2  Generation of Transgenic mice 

Engineered lentiviral Cyp2b-KD2 particles were microinjected into the 

perivitelline space of FVB/NJ mouse zygotes. Perivitelline injection of FVBs produced 

134 pups of which 100% were positive by PCR genotyping of the tail clippings (Fig. 3). 

DNA sequencing confirmed the existence of the Cyp2b-KD2 construct in our mice. In 

addition, newborn mice were screened for GFP under a UV light, and only three mice 

visually expressed GFP seven days after birth.  Several of these mice continued to show 

fluorescence in the ears, tail, feet, and especially the eyes when adults (Fig. 3). None of 

the F1 or F2 generation mice tested showed brilliant green skin expression, but some of 

them expressed green teeth.  Five transgenic founders (4 males and 1 female) identified 

based on genotyping and sequencing results were mated to FVB/NJ mice to obtain F1 

progeny. All F0 mice were able to give rise to transgenic offspring. Nearly 86% of our F1 

and 49 % of F2 mice are positive after mating positive F1 to FVB/NJ mice.  The high 
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percentage of positive F1 mice indicates that our F0 Cyp2b-KD mice had multiple 

integrants.   

All of the transgenic mice have developed and bred normally. In addition, none of 

the mice show obvious spontaneous abnormalities except for a putative increase in 

abdominal fat deposition and a significant increase in liver/body weight ratios 

(hepatosomatic index) compared to WT mice.  Liver index increased 21 to 22% (p < 

0.0001) in males and females, respectively. Liver enlargement is symptomatic of toxicant 

exposure and has been observed in other mice with repressed hepatic CYP function such 

as the P450 oxidoreductase-null (POR-null) mouse (Finn et al. 2009).  

 

2.4.3  Efficacy of Cyp2b repression in Cyp2b-KD mice 

 Q-PCR and Western blots were performed to measure changes in the expression 

of individual Cyp2b isoforms in wild-type (WT) and Cyp2b-KD mice. Q-PCR of 

untreated adult WT and Cyp2b-KD mice indicated that most but not all of the hepatic 

Cyp2b members are repressed in the knockdown mice. The expression of Cyp2b9, 

Cyp2b10, and Cyp2b13 are repressed in male Cyp2b-KD mice relative to WT mice. In 

contrast, only Cyp2b10 and Cyp2b13 are repressed in female Cyp2b-KD mice relative to 

their WT controls (Fig. 4A). Cyp2b9, a female predominant Cyp (Hashita et al. 2008) is 

not repressed in females.  Western blots demonstrate that Cyp2b protein expression is 

also repressed.  Two distinct Cyp2b members, thought to be Cyp2b9 and Cyp2b10, are 

repressed in females (Fig. 4B), indicating that Cyp2b protein expression is reduced in the 

female Cyp2b-KD mice. Untreated male mice have low Cyp2b expression (Hernandez et 
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al. 2006; Hernandez et al. 2009b) and our antibody was not sensitive enough to 

consistently quantify Cyp2b levels in the FVB or Cyp2b-KD mice.  Therefore, we also 

measured Cyp2b expression in TCPOBOP-treated mice.   

 

 The CAR activator, TCPOBOP (Tzameli et al. 2000), was used to determine the 

efficacy of our Cyp2b-KD construct at reducing Cyp2b levels following treatment with a 

powerful inducer. The primary purpose of this experiment was to determine if 

TCPOBOP-treatment and the subsequent Cyp2b-induction would outcompete lentiviral-

promoted shRNA repression of Cyp2b. None of the hepatic Cyp2b’s showed lower 

transcript expression after TCPOBOP treatment in the Cyp2b-KD mice compared to the 

WT mice (Fig. 5A). Cyp2b10 and Cyp2b13 showed greater expression in the TCPOBOP-

treated female mice than the WT mice by 2.6X, indicating a compensatory mechanism.  

However, protein levels as determined by Western blots did not confirm the Q-PCR 

results and actually showed significant decreases in Cyp2b expression (about 5-10X) in 

the Cyp2b-KD mice compared to the WT mice (Fig. 5B). This demonstrates that 

TCPOBOP-mediated Cyp2b induction did not outcompete the shRNA’s ability to repress 

Cyp2b protein expression.  Therefore, the Cyp2b-KD mouse was still functionally 

repressing Cyp2b even after the addition of a Cyp2b inducer. 

  

 CAR constitutively regulates the expression of Cyp2b10 and Cyp2b13 

(Hernandez et al. 2009b; Mota et al. 2010), and may constitutively regulate the 

expression of Cyp2b9 in males (Mota et al. 2010).  Therefore, we hypothesized that CAR 
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transcript expression may be increased in the Cyp2b-KD mice as a compensatory 

mechanism that increases CAR’s sensitivity to endogenous ligands or its constitutive 

activity, and in turn increases Cyp2b expression especially Cyp2b10. Q-PCR and 

Western blotting were performed (Fig. 6), and Q-PCR suggested that CAR may be 

increased in female Cyp2b-KD mice relative to WT mice, but the data was not 

statistically significant (p = 0.061). Western blots were performed to confirm Q-PCR 

results and ascertain whether there was a trend suggesting increased CAR in females. 

CAR protein expression was significant increased (2.9X) in the TC-treated Cyp2b-KD 

female mice, but not the untreated mice compared to the corresponding WT mice, 

suggesting that CAR may be involved in a compensatory mechanism that helps Cyp2b-

KD mice respond to a chemical insult like TCPBOP (Fig. 6). Overall, this data suggests 

that increased CAR expression in the TC-treated female mice may provide a 

compensatory mechanism to increase Cyp2b expression; however, the compensatory 

mechanism did not overcome the ability of the shRNA construct to repress Cyp2b protein 

expression in the mice. 

 

2.4.4  Histopathology 

Because CAR is critical in hepatic responses to toxicants, we investigated whether 

Cyp2b-KD mice may show histpathological changes especially after TC-treatment. 

Summation of the different histopathology parameters examined indicates that only TC-

treated Cyp2b-KD female mice responded in an atypical manner (Fig. 7; Additional File 

2 contains H&E stained slides). For example, all of the male TC-treated mice and the 
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female TC-treated FVB mice showed increased histopathology scores primarily because 

of increased hyperplasia; typical of TC-treated mice (Wei et al. 2000). However, TC-

treated Cyp2b-KD female mice had significantly decreased histopathology scores.  Only 

eight mice showed a score of 6 or less; this includes all three female TC-treated Cyp2b-

KD mice.  The other mice with scores of less than 6 were all three male control FVB and 

two control Cyp2b-KD mice.   

 

2.4.5 Cyp2b-mediated metabolism is compromised in the Cyp2b-KD mice:   

The in vivo metabolism of parathion was examined in microsomes from TC-

treated mice to test whether TC-treated Cyp2b-KD mice demonstrated perturbed 

metabolism of parathion relative to TC-treated FVB mice. Cyp2b enzymes have a high 

affinity for parathion and in turn are probably key enzymes in the metabolism of 

parathion to its toxic form paraoxon (POXON), and its non-toxic form para-nitrophenol 

(PNP) (Foxenberg et al. 2008; Foxenberg et al. 2007; Mota et al. 2010).  Parathion 

metabolism was severely compromised (down 3-7X) in the male and female Cyp2b-KD 

mice compared to the WT mice (Fig. 8) consistent with the Western blot results 

demonstrating that TC-treatment cannot overcome the persistent repressive effects of the 

Cyp2b shRNA.   

 

2.4.6 Toxicological changes in Cyp2b-KD mice:    

  Zox is a classical CYP substrate used to estimate the functional in vivo effects of 

perturbations in CYP activity, as increased paralysis indicates inhibition or repression of 
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CYPs and decreased paralysis indicates induction (Hernandez et al. 2007; Wei et al. 

2000). Untreated Cyp2b-KD female mice were extremely sensitive to Zox-treatment as 

50% of Cyp2b-KD female mice died 4-5 hours after Zox-treatment and the other 50% 

were euthanized as they had not recovered from ZOX-induced paralysis after 8-hours 

(Table 2). In comparison, WT female mice showed little toxicity to Zox-induced 

paralysis.  None of the WT female mice were paralyzed by 400 mg/kg Zox but 3 out of 

the 5 WT females did show slow eratics movements for 10-15 minutes after injection.  

Males did not show a significant difference in Zox-paralysis times as few of the WT or 

CYP2b-KD mice showed significant paralysis although there appeared to be increased 

“shaking” that lasted hours in the Cyp2b-KD mice.     

 

CAR-null mice show reduced parathion metabolism and increased toxicity (Mota 

et al., 2010). These mice also have reduced expression of several CYPs including several 

Cyp2b members ( Hernandez et al., 2009; Mota et al., 2010). Since we observed that 

Cyp2b-KD mice are also poor parathion metabolizers using in vivo assays, we examined 

toxicity induced by parathion in vivo. Both Cyp2b-KD males and females showed 

increased sensitivity to parathion at 5mg/kg compared to WT mice. Initial toxicity was 

shown by mucous discharge from the eyes and later reduced activity, lethargy, significant 

morbidity, or death.  All of the Cyp2b-KD mice showed toxicity symptoms, and some of 

the Cyp2b-KD mice showed morbidity. None of the WT mice showed morbidity, a few 

were lethargic, but almost 50% of the WT mice showed no overt toxicity to parathion.  

Moreover, WT mice recovered faster than the Cyp2b-KD mice, indicating that Cyp2b’s 
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are key enzymes in the detoxification of parathion, and a lack of metabolic activity 

towards parathion probably increases the retention of paraoxon and its subsequent 

toxicity.  

 

2.5 Discussion  

 Most of the Cyp2b subfamilies in mice have undergoes significant gene 

duplication events. In contrast, human CYP2B subfamily members often have few or 

only one gene (Nelson et al. 2004). The redundancy of murine Cyp2bs in each subfamily 

makes targeted mouse gene knockouts impractical and costly because if one Cyp is 

eliminated, there are still four other Cyp2bs available to carry out potentially redundant 

functions. To circumvent this limitation, we designed and determined an efficient shRNA 

construct with the potential to knockdown five isoforms of murine Cyp2b.  This construct 

was used to generate the first persistent quintuple Cyp2b knockout mouse for the 

subsequent study of Cyp2b functions in vivo.   

 

The expression of hepatic Cyp2b isoforms is significantly repressed in the Cyp2b-

KD mice. Western blots with liver microsomes demonstrate a near complete abolishment 

of Cyp2b proteins in the liver of untreated mice, and Q-PCR indicates that all of the 

hepatic Cyp2b isoforms are repressed in males and all but Cyp2b9 is significantly 

repressed in females.  Furthermore, TCPOBOP-mediated Cyp2b induction did not 

outcompete the shRNA’s ability to repress Cyp2b protein expression demonstrating that 

the Cyp2b-KD mouse model is functional in the presence of a CAR activator and 
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powerful Cyp2b inducer.  Therefore, we have produced an efficient knockdown of at 

least the three major hepatic Cyp2b members in mice, including the highly inducible 

Cyp2b10.  

 

In addition, parathion metabolism was significantly lower in hepatic microsomes 

from TCPOBOP-induced Cyp2b-KD mice than WT mice.  In a previous study, liver 

microsomes from CAR-null mice that have lower expression of several Cyps including 

Cyp2b and Cyp3a subfamily members compared to their WT counterparts, metabolize 

parathion slowly compared to WT mice.  Furthermore, CAR-null mice show increased 

sensitivity to this organophosphate pesticide (Mota et al. 2010).  Therefore, we examined 

the role of Cyp2bs in the metabolism of parathion in Cyp2b-KD mice. We observed that 

parathion metabolism is perturbed in the hepatic microsomes of TCPOBOP-induced 

Cyp2b-KD mice, and parathion toxicity is greater in Cyp2b-KD mice than WT mice.   

 

Previous studies with rats, chemically-induced liver microsomes, and recombinant 

human CYPs also indicate a key role for Cyp2b in parathion metabolism, fate, and 

toxicity (Foxenberg et al. 2008; Foxenberg et al. 2007; Kim et al. 2005; Mota et al. 2010; 

Mutch et al. 1999). Parathion toxicity is caused by its bioactivation to the toxic 

metabolite POXON (Sultatos et al. 1984), but we observed reduced POXON production 

in the Cyp-KD mice.  This suggests that toxicity in the Cyp2b-KD mice is due to poor 

metabolism of parathion to PNP, which is also catalyzed by Cyp2b (Foxenberg et al. 

2008; Foxenberg et al. 2007; Mutch and Williams 2006), extrahepatic metabolism of 
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parathion, or higher clearance of paraoxon from the liver of Cyp2b-KD mice compared to 

WT mice because of poor metabolism of parathion and paraoxon. Liver perfusion studies 

indicate that parathion metabolized to paraoxon may exit the liver as paraoxon and cause 

toxicity (Sultatos et al. 1985). Overall, this study demonstrates that in vivo Cyp2b 

isoforms play a key role in parathion metabolism and toxicity, and is the first study to 

demonstrate that individuals with compromised Cyp2b are susceptible to the toxic effects 

of parathion.   

 

ZOX paralysis time is a key indicator of perturbations in Cyp activity in vivo. 

Female Cyp2b-KD mice did not recover from Zox injection indicating poor metabolism 

and clearance, and indicating a key role of Cyp2b in Zox metabolism.  In contrast, male 

Cyp2b-KD mice did not demonstrate a significant difference in Zox paralysis time. Most 

Cyp2b’s (Cyp2b9, Cyp2b13,and maybe Cyp2b10) are female predominant (Hernandez et 

al. 2006; Hernandez et al. 2009a; Wiwi et al. 2004), and therefore reducing Cyp2b levels 

in female mice may cause a more pronounced effect.  FVB mice also metabolize Zox 

better than B6 mice, and a higher dose is needed to cause paralysis (Hernandez et al. 

2006). A 450 mg/kg dose appeared to high in a previous study (Hernandez et al. 2006), 

and therefore we performed a pilot study and came and decided on 400 mg/kg.  However, 

this dose may have been too low for the FVB male mice as few of them (WT and Cyp2b-

KD) were fully paralyzed by Zox.     
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Furthermore, the Cyp2b-KD mice are viable, fertile, and did not exhibit 

significantly abnormal phenotypes or physiological abnormalities except TCPOBOP-

treated female Cyp2b-KD mice did not respond and show perturbed histopathology 

parameters, untreated mice showed an increase in liver weight, and a subjective increase 

was observed in abdominal and renal fat. Liver enlargement has been regarded as a 

marker of drug associated enzyme induction, and suggests a compensatory mechanism 

(Amacher et al. 2001; Webber et al. 1994), probably to adapt to increased concentrations 

of an endobiotic.  Similar increases in hepatostomatic indices have been observed in other 

transgenic mice with low Cyp activity such as mice that lack key hepatic transcription 

factors that regulate Cyps. Examples include hepatic POR-null mice (Henderson et al. 

2003) and HNF4α-null mice (Hayhurst et al. 2001) where the liver/body weight ratios 

probably increased because of the accumulation of lipids.  

 

Interestingly, there also appears to be a molecular compensatory reaction to the 

repression of Cyp2bs in the Cyp2b-KD mice.  For example, Cyp2b9 mRNA expression 

was not repressed in female Cyp2b-KD mice. Furthermore, no TCPOBOP-treated male 

mice showed repression of Cyp2b mRNA transcript levels, and female mice actually 

demonstrate greater expression of Cyp2b10 and Cyp2b13 in Cyp2b-KD mice following 

TCPOBOP-treatment than WT mice. This suggests that there is some type of 

compensatory mechanism trying to overcome the repressive effects of the shRNA. CAR 

basally regulates Cyp2b10 and Cyp2b13, and may in part regulate Cyp2b9 (Hernandez et 

al. 2009b; Mota et al. 2010). Therefore, we hypothesized that CAR may be induced in 
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order to adapt to the lack of Cyp2b members, especially Cyp2b10, in the Cyp2b-KD 

mice. CAR protein levels are increased in TCPOBOP-treated females, and this may help 

the mice adapt to lower Cyp2b expression and in turn increase Cyp2b mRNA expression.  

In addition to CAR, forkhead box protein A2 (FoxA2 also known as hepatic nuclear 

factor 3β), a female predominant transcription factor, regulates Cyp2b9 (Hashita et al. 

2008), and therefore this transcription factor may also play a role in the lack of Cyp2b9 

repression in untreated and TCPOBOP-treated Cyp2b-KD female mice.  Lastly, the 

compensatory induction of Cyp2b10 in males and females may just be due to increased 

retention of TCPOBOP caused by the lack of Cyp2b’s; leading to greater activation of 

CAR and in turn higher Cyp2b10 transcript levels.  

 

Overall, even though Cyp2b transcript levels were increased in Cyp2b-KD mice 

to levels equal to or greater than WT mice following TCPOBOP-treatment, protein 

expression was still much lower in the Cyp2b-KD mice.  It has been suggested that 

Western blots are more reliable to confirm the efficacy of siRNA (Holmes et al. 2010). 

There are several potential reasons for this  including the extracted RNA is nuclear or not 

available for siRNA degradation, or the 3’mRNA cleavage products resulting from 

siRNA mediated cleavage accumulate within the cell (Holen et al. 2002), but are still 

large enough fragments that they result in small templates for cDNA synthesis and give 

rise to a false signal of mRNA detection by Q-PCR (Holmes et al. 2010).   
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 The shRNA generated Cyp2b-KD mice demonstrate low expression of hepatic 

Cyp2b members in untreated and TCPOBOP-treated mice. They also poorly metabolize 

the Cyp2b substrates Zox and parathion, and in turn are sensitive to these toxicants 

indicating that Cyp2bs play a key role in protecting individuals from select chemicals.  

Therefore, Cyp2b-KD mice may be able to act as a sentinel for individuals with low 

Cyp2b-expression or limited metabolic capacity because of Cyp2b polymorphisms. 

Further, this model can be built upon to form even better models for human disease, 

human metabolism, and human genetic polymorphisms by making CYP2B6/7 humanized 

mice. This study provides a new platform for studying Cyp2b function and especially its 

role in the metabolism of distinct pharmaceuticals and environmental chemicals.   
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Table 2.1: Relative Cyp2b expression in primary hepatocytes transduced with Cyp2b-

KD2 and KD3 shRNA compared to hepatocytes transduced with a scrambled 

construct. 

 

Cyp2b9 1.0  0.11*   0.02*   1.41 

CYP  Scrambled KD2 (5 MOI)  KD2 (20 MOI) KD3 (20 MOI) 

Cyp2b10 1.0  0.27*   0.30*   0.36*   

a

 

MOI = Multiplicity of Infection  

Table 2.2: Zox induced paralysis in Cyp2b-KD mice compared to wild-type mice (WT).  

 

Mouse strain  Malea  Female a

WT    1/7  0/5   

  

Cyp2b-KD  1/7  15/15*   

a

An asterisk indicates a significant difference in the percentage of female mice paralyzed 

by Zox when compared to the corresponding WT mice using Mann-Whitney rank sum 

test (GraphPad PRISM 4.0).    

 Data are shown as number of mice showing paralysis /number of mice treated with 400 

mg/kg Zox.  
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Figure Legends:   

Fig. 2.1: Short hairpin RNA (shRNA) constructs.  (A) Simple linear map of the 

pRNAT U-6.2/lenti vector and the insertion of Cyp2b shRNA constructs. (B) Sequence 

of full length constructs including sense, loop, and anti-sense Cyp2b shRNA constructs. 

Underlined areas of the construct are the sense and anti-sense strands that recognize and 

target CYP mRNA for destruction. Each of the Cyp2b-KD constructs recognizes all five 

isoforms (genes) of the mouse Cyp2b subfamily (Cyp2b9, Cyp2b10, Cyp2b13, Cyp2b19, 

Cyp2b23). The scrambled shRNA was used for in vitro research and contains the same 

ATCG percentages as Cyp2b-KD3. 

 

Fig. 2.2:  siRNA target areas for mouse Cyp2b genes.  There are five areas of the 

mouse Cyp2b subfamily that are sufficiently conserved so that all of the Cyp2b’s could 

potentially be knocked down by the same siRNA. siRNA Scales estimates a greater than 

70% knockdown (shown in parenthesesa

  

) of Cyp2b expression using three of these 

siRNAs (shown in gray). shRNA constructs were made to KD2 and KD3 and inserted 

into the pRNAT-U6.2/lenti vector. NCBI accession numbers are provided next to the 

name of each Cyp2b gene.  Numbers on the right indicate sequence length near the area 

of homology.  
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Fig. 2.3:  PCR and GFP results for transgenic mice. (A) Gel electrophoresis analysis 

of mouse genotype using primers that recognize the U6 promoter and an area 

downstream of the shRNA construct and produce a 956 bp product as described in the 

Materials and Methods.  Mouse 1, 2, and 4 are postive and mouse 3 is negative. Mouse 1: 

F0-68; 2:F0-38; 3:F1-111; 4:F1-1. (B) Seven-day old pup (F0-68) demonstrating 

expression of GFP, and (C) GFP expression in this mouse is weakly visible in the eyes, 

ears, and toes as an adult.   

 

Fig. 2.4: Hepatic Cyp2b expression in WT (FVB) and Cyp2b-KD mice as 

demonstrated by Q-PCR (A) and Western blots (B). Data is expressed as mean + SEM 

(n = 5-8). Statistical significance was determined by Student’s t test using the GraphPad 

Prizm 4.0 software package. An asterisk indicates significant difference with a p < 0.05, 

two asterisks indicate a p < 0.01, and three asterisks indicate a p < 0.001. WT = wild-

type, KD= Cyp2b-KD mice, M= male, F= female. Expression was not quantified in the 

Western blots because of the low expression of Cyp2b’s in the male mice and Cyp2b-KD 

female mice. 
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Fig. 2.5:  Hepatic Cyp2b expression in WT (FVB) and Cyp2b-KD mice treated with 

the Cyp2b10 inducer, TCPOBOP. (A) RNA expression of Cyp2b9, Cyp2b10, and 

Cyp2b13 as measured by Q-PCR (n = 5-8). (B) Protein expression of hepatic Cyp2b 

subfamily members (n = 3-4).  Data is expressed as mean + SEM.  Statistical significance 

was determined by Student’s t test using the GraphPad Prizm 4.0 software package. An 

asterisk indicates a p < 0.05, and two asterisks indicate a p < 0.01. WT = wild type, KD= 

Cyp2b-KD mice, M= male, F= female.   

 

Fig. 2.6: Hepatic expression of CAR in WT and Cyp2b-KD mice treated with 

TCPOBOP or corn oil (carrier) as measured by Q-PCR (A) or Western blots (B, C). 

(A) WT mice are shown in white bars and Cyp2b-KD mice are shown in black bars.  

Statistical significance was determined by ANOVA followed by Tukeys post-hoc test 

with the GraphPad Prizm 4.0 software package. Western blots in corn oil (B) or 

TCPOBOP-treated mice (C). Statistical significance of the Western blots was determined 

by Student’s t-test. An asterisk indicates significant difference with a p < 0.05.   

 

Fig. 2.7:  Histopathology scores of FVB (WT) and Cyp2b-KD (KD) treated with 

corn oil or TCPOBOP (TC). Histopathology was measured as described in the 

Materials and Methods using a total histopathology score from several different 

measures. An asterisk indicates a statistical difference (p < 0.01) as determined by 

Kruskal-Wallis followed by Dunn’s multiple comparison test (n = 3).   
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Fig. 2.8: Microsomal metabolism of parathion. Microsomes from TC-treated WT and 

Cyp2b-KD mice were exposed to parathion.  Quantification of formation of parathion’s 

relatively non-toxic metabolite, p-nitrophenol (PNP) (A), and its toxic metabolite 

paraoxon (POXON) (B) was measured by HPLC as described in the Materials and 

Methods. A white bar indicates FVB mice and a black bar indicates Cyp2b-KD mice.  

Significant differences in the formation of the metabolites between WT and Cyp2b-KD 

mice were assessed by ANOVA followed by Tukey’s multiple comparison test using the 

GraphPad Prizm 4.0 software package. The letter [a] indicates a significant difference 

between WT and Cyp2b-KD males (p < 0.01), and the letter [b] indicates a significant 

difference between WT and Cyp2b-KD females (p < 0.01). 

 

Fig. 2.9: Increased toxicity of parathion in Cyp2b-KD mice compared to WT mice.  

(A) WT male mice treated with parathion.  (B) Cyp2b-KD male mice treated with 

parathion, (C) WT female mice treated with parathion. (D) Cyp2b-KD female mice 

treated with parathion. (E) Overall, differential toxicity to parathion in Cyp2b-KD mice 

compared to WT mice.  A significant increase in toxicity to parathion was observed in 

Cyp2b-KD mice as determined by the Kruskal–Wallis non-parametric test for 

independent variables followed by Dunns post hoc test using the GraphPad Prizm 4.0 

software package. Severity of toxicity: 0 = not toxic; 1 = eye leakage;  2 = 

lethargy/tremors; 3 = morbidity; 4 = death (p <0.05). WT= wild type, KD= Cyp2b-KD 

mice, M=male, F= female.  
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Figure 2.1 

 

B 

 

 

Figure 2.2 

 

  

Cyp2b member      Cyp2b sequence and homology      
KD1 (71%)a     
Cyp2b9  NM_010000.2    TCCAAAAGGAGATTGATCAGGTGATCGGCTCACACCGGCTACCAACTCTT 1045 
Cyp2b13 NM_007813.1    TCCAAAAGGAGATTGATCAGGTGATCGGCTCACACCGGCTACCAACCCTT 1045 
Cyp2b23 NM_001081148   TCCAAAAGGAGATTGATCAGGTGATCAGTGCACACCATGTCCCAACCCTT 1020 
Cyp2b10 AK028103.1     TCCAAAAGGAGATTGATCAGGTGATCGGCTCACACCGGCTACCAACCCTT 1047 
Cyp2b19 AF047529.1     TCCAAAAGGAGATTGATCAGGTGATCGGCTCACACCGGCTACCGACTCTT 1023 
                       ************************** *  ******   * ** ** *** 
KD2 (83%)a 
Cyp2b9  NM_010000.2    ACACACTGTTCCGAGGGTACCTGCTCCCCAAGAACACTGAGGTGTACCCC 1195 
Cyp2b13 NM_007813.1    ATACCATGTTCCGAGGGTACCTGCTCCCCAAGAACACTGAGGTGTACCCC 1195 
Cyp2b23 NM_001081148   ACACAGTGTTCCGAGGATACCTGCTCCCCAAGAACACTGAGGTGTACCCC 1170 
Cyp2b10 AK028103.1     ATACCATGTTCCGAGGGTACCTGCTCCCCAAGAACACTGAGGTGTACCCC 1197 
Cyp2b19 AF047529.1     ACACACTGTTCCGAGGATACCTGATCCCCAAGAACACTGAGGTGTACCCC 1173 
                       * **  ********** ****** ************************** 
KD3 (73%)a    
Cyp2b9  NM_010000.2    AAGCTTTTCTGCCCTTCTCCACAGGAAAGCGCATTTGTCTTGGTGAAAGC 1345 
Cyp2b13 NM_007813.1    AAGCTTTTCTACCCTTCTCCACAGGAAAGCGCATTTGTCTTGGTGAAAGC 1345 
Cyp2b23 NM_001081148   AAGCTTTTCTGCCCTTCTCCACAGGAAAGCGCATTTGTCTTGGCGAAGGC 1320 
Cyp2b10 AK028103.1     AAGCTTTTCTGCCCTTCTCAACAGGAAAGCGCATTTGTCTTGGTGAAAGC 1347 
Cyp2b19 AF047529.1     AAGCTTTCATGCCCTTCTCCACAGGAAAGCGCATTTGTCTTGGAGAAGGC 1323 
                       *******  * ******** *********************** *** ** 
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Figure 2.3 
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Fig. 2.4 
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Figure 2.5 
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Figure 2.6 
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Figure 2.7 

 

P value < 0.05 
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Figure 2.8 

 

P value <0.01 
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Figure 2.9 

 

 

 

P value < 0.05 
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Additional Files:   
2.3  Supplementary Table 1: PCR primer and probe sequences used for genotyping and 

Q-PCR. 

 

2.10  Additional File 1: Homology of shRNA constructs designed to knockdown Cyp2b 

genes to other Cyp2 family genes.  (A) The construct is shown in red as part of the 

Cyp2b10 gene. Homologous regions within the other Cyp genes are below and 

also in region. The number of identical nucleotides over the total number of 

nucleotides is provided in (B).   

 

2.11  Additional File 2: Decreased histopathology scores were observed in Cyp2b-KD 

mice treated with TC compared to mice only receiving the vehicle, corn oil.   
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2.3  Supplementary Table 1: PCR primer and probe sequences used for genotyping and 

Q-PCR 

Gene Forward primer Reverse primer  Tm  
oC 

AS 
(bp) 

Cyp2b9 CTGAGACCACAAGCGCCAC CTTGACCATGAGCAGGACTCC 64.3 71 

Cyp2b10 CTGAATCCGCTCCTCCACACTC  TGAGCCAACCTTCAAGGAATAT 61.4 120 

Cyp2b13 GAACTGAGACTACCAGCACCACTCCT  TGAGCATGAGCAGGAAACCACT  
61.5 

72 

18s rRNA ATGGCCGTTCTTAGTTGGTG ATGCCAGAGTCTCGTTCGTT 61.7 68 

18s rRNA CGCCGCTAGAGGTGAAATTC CCAGTCGGCATCGTTTATGG 51.0 150 

CAR GGAGCGGCTGTGGAAATATTGCAT TCCATCTTGTAGCAAAGAGGCCCA 56.5 94 

U.6/Lenti TTATCGTTTCAGACCCACCTCCCAA TCCCATAAGGTCATGTACTGGGCA 57.0 956 

Cyp2b-KD2 GAGGGCCTATTTCCCATGAT AGGCACAGTCGAGGCTGAT 52.3 359 

Β-actin GCTATGTTGCTCTAGACTTCG CCTCATGGTGCTAGGAGC 52.0 ABS  

Cyp2b10 GACTTTGGGATGGGAAAGAG CCAAACACAATGGAGCAGAT 53.0 136 

Cyp2b10 probe 56 
FAM/TAGTGGAGGAACTGCGG
AAATCCC/3BHQ_1 

 60.0  

ABS:Human β-actin Part # (4326315E)Applied Biosystem, Foster City, CA  
Tm: Annealing Temperature oC 
AS bp: amplicon Size (base pair) 
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2.10  Additional File 1: Homology of shRNA constructs designed to knockdown Cyp2b 

genes to other Cyp2 family genes. (A) The construct is shown in red as part of the 

Cyp2b10 gene. Homologous regions within the other Cyp genes are below and also in 

region. The number of identical nucleotides over the total number of nucleotides is 

provided in (B).   
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2.11  Additional File 2:  Decreased histopathology scores were observed in Cyp2b-KD 

mice treated with TC compared to mice only receiving the vehicle, corn oil.   

 

 

 
(A) FVB TC -treated female 200X   
(B) Cyp2b-Kd TC-treated female 200X 
(C) FVB TC -treated female 400X  
(D) Cyp2b-Kd TC-treated female 400X 
(E) FVB mouse showing Hyperplasia after TC-treatment  
(F) Cyp2b-KD mouse showing no hyperplasia after TC-treatment  
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CHAPTER 3 

 
 

RNAI REPRESSION OF CYP2B EXPRESSION INCREASES ADIPOSE 

DEPOSITION AND SERUM LIPIDS 

 

Estimate Publication in American Journal of Physiology Gastrointestinal and Liver 

Physiology 

3.1  Abstract 

  

The Cyp2b subfamily contains five members of which three (Cyp2b9, Cyp2b10, 

Cyp2b13) are hepatic enzymes involved in xenobiotic detoxification. We made a Cyp2b-

knockdown Cyp2b-KD) mouse model using lentiviral-promoted shRNA homologous to 

all five Cyp2b subfamily members in order to characterize Cyp2b’s role in xenobiotic 

detoxification. Unexpectedly, the 8-12 week old Cyp2b-KD mice showed significant 

changes in increases in abdominal, inguinal, and renal adipose. Interstingly, associated 

with changes in fat to body ratios were changes in non-fasting serum triglyceride and 

VLDL levels with a statistically significant increase in the males. Therefore, wild-type 

and Cyp2b-knockdown mice were housed for 35 weeks and necropsies performed to test 

whether these older Cyp2b-KD mice show perturbed lipid utilization. Similar to young 

Cyp2b-KD mice, 35-week old Cyp2b-KD mice exhibited a significant increase in their 

body weight caused by a significant increase in fat deposition compared to wild-type 

(FVB) mice. This was accompanied by increased triglyceride and low density lipoprotein 
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levels. Subsequent studies were performed with corn oil or the CAR activator and potent 

Cyp2b-inducer TCPOBOP (TC) dissolved in corn oil as a carrier. Surprisingly, 8-12 

week-old Cyp2b-KD mice showed some difficulty acclimating to the corn oil. Significant 

increases in total serum cholesterol were observed in the corn oil control Cyp2b-KD male 

and female mice compared to the WT mice, probably because the Cyp2b-KD mice were 

unable to respond to the unsaturated fatty acids in the corn oil. The increases in non-

fasting serum total cholesterol and triglyceride was reversed by TC treatment in Cyp2b-

KD male mice but not in Cyp2b-KD female mice as TC treatment caused a significant 

increase in triglyceride in Cyp2b-KD females. In addition, Cyp2b-KD mice appear to 

have perturbations in clearing corn oil from the liver as corn oil treatment increased Oil 

Red O staining indicating accumulation of lipids in the livers of Cyp2b-KD mice 

compared to WT mice.  In conclusion, changes in Cyp2b expression led to perturbation in 

lipid metabolism in Cyp2b-KD mice.  This indicates that Cyp2b is more than a 

detoxification enzyme, but is also involved in the metabolism of unsaturated fatty acids, 

as Cyp2b-KD mice have increased fat deposition and show increased serum and liver 

lipid levels.    
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3.2  Introduction 

 Five Cyp2b isoforms have been identified in mouse (Cyp2b9, 2b10, 2b13, 2b19, 

and 2b23) compared to only one in humans (CYP2B6). CYP2B members participate in 

the metabolism of endogenous and exogenous compounds. Xenobiotic chemicals 

metabolized by CYP2B isoforms include parathion, efavirenz, chlorpyrifos, 

phenobarbital, nonylphenol, some PCBs, and DDT (Lee et al., 1998; Foxenberg et al., 

2007; Hodgson and Rose., 2007). Evidence suggests that several endogenous chemicals 

are also metabolized by CYP2B members including steroid hormones, prostaglandins, 

and fatty acids (Waxman, 1988; Keeney et al., 1998; Ladd et al., 2003; Du et al., 2005). 

For example, Cyp2b19 is a potent arachidonic acid epoxygenase primarily found in 

keratinocytes that is important in 14,15- epoxyeicosatrienoic acid formation, a key factor 

in epithelial cornification (Keeney et al., 1998).     

 

 Cyp2b’s are widely expressed. For example, they are expressed in the kidney 

(Jarukamjorn et al., 2001), small intestine (Zhang et al., 2003), brain (Albores  et al., 

2001; Rosenbrock  et al., 2001; Udomsuk et al., 2010), lungs (Forkert et al., 1986), heart 

(Isensee et al., 2007), testes, skeletal muscle (Finger et al., 2011); skin (Keeney et al., 

1998; Due et al., 2005), adipose (Yoshinari et al., 2004), and prostate (Kumagai et al., 

2007). To our knowledge, no studies have established that Cyp2b23 is expressed.  

However, Cyp2b isoforms are primarily expressed in the liver with Cyp2b9, Cyp2b10, 

and to a lesser extent Cyp2b13 being the major hepatic CYP2b isoforms (Honkakoski et 

al., 1998; Wei et al., 2000; Hernandez et al., 2009; Mota et al., 2010).   
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 The hepatic CYPs also show sexual dimorphism as female mice express more 

cyp2b9 and Cyp2b13 than males (Jarukamjorn et al., 2002; Wiwi et al., 2004; Hernandez 

et al., 2009; Mota et al., 2010). The sexually dimorphic expression of Cyp2b members is 

probably regulated by several transcription factors including hepatocyte nuclear factor 4α 

(HNF-4α), estrogen receptor (ER) and Forkhead box A2 (FoxA2) that regulates Cyp2b9 

(Hashita et al., 2008), and the constitutive androstane receptor (CAR) that in part basally 

regulates Cyp2b9, Cyp2b10, and potentially Cyp2b13 (Hernandez et al., 2009; Mota et 

al., 2010). Of special interest are CAR (NR1I3) and FoxA2. CAR is a xenobiotic sensor 

that regulates the induction of Cyp2b10, and several other detoxification genes after 

exposure to a variety of chemicals, including phenobarbital or 1,4-bis[2-(3,5-

dichloropyridyloxy)] benzene (TC) (Honkakoski et al., 1998; Wei et al., 2000; Hernandez 

et al., 2009). FoxA2, which up-regulates Cyp2b9 (Hashita et al., 2008), has been 

implicated in sporadic cases of early onset Type II diabetes (Woflrum et al., 2004).  

FoxA2 is activated by fasting and fatty acids, and inhibited by insulin (Wolfrum et al., 

2004). Fatty liver and diabetes activate both of these receptors and increases drug 

metabolism due in part to increased Cyp2b9 and Cyp2b10 (Wolfrum et al., 2004; Dong et 

al., 2009).   

 

 Recent data indicates that CAR much like FoxA2 is also a metabolic sensor. For 

example, TC-activation of CAR ameliorated diabetic activity and fatty liver disease in 

ob/ob mice, and double mutants (ob/ob mice that are also CAR-null) did not respond to 
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TC-mediated amelioration of diabetes and fatty liver, indicating a role for CAR in 

inducing β-oxidation (Dong et al., 2009). This provides a link between drug metabolism 

and energy metabolism.  Additionally, the hepatic P450 oxidoreductase-null mouse 

(hepatic reductase null, POR-null, or HRN), which lacks hepatic CYP activity, shows 

profound changes in lipid homeostasis and liver size (Finn et al., 2009). This is associated 

with significantly elevated Cyp2b10, and linked to hepatic triacylglycerol accumulation 

and increased hepatic unsaturated fatty acids in the HRN mice, indicating a crucial role 

for CYPs in unsaturated fatty acid metabolism. Furthermore, double HRN/CAR-null 

mice did not demonstrate Cyp2b10 induction, and linoleic acid, an unsaturated fatty acid, 

activated CAR in transactivation assays. The authors suggest that increases in Cyp2b10 

could be an adaptive response against unsaturated fatty acid toxicity and indicated that 

this study is the first evidence that P450s, and particularly Cyp2b10, play a major role in 

controlling unsaturated fatty acid homoeostasis via CAR (Finn et al., 2009).  

 

 Recently, we constructed a Cyp2b-knockdown (Cyp2b-KD) mouse model using 

RNAi technology under the control of a lentiviral promoter, and demonstrated reduced 

expression of all of the hepatic Cyp2b isoforms. The Cyp2b-KD mice developed 

normally and were fertile; however, we observed enlarged livers and a putative increase 

in abdominal fat deposition (Previous Chapter). Therefore, we investigated whether the 

Cyp2b-KD mouse has increased fat deposition, as well as serum and liver parameters 

associated with perturbed lipid homeostasis compared to wild-type (WT; FVB) mice. The 

endogenous role of the Cyp2b subfamily is not known (Yamada.et al, 2006; Reschly et 
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al., 2006), and this study suggests a role for Cyp2b’s in fatty acid metabolism, and 

therefore they may act as anti-obesity CYPs.  

 

3.3  Materials and Methods 

3.3.1 Mice treatment 

 All studies were carried out according to NIH guidelines for the humane use of 

research animals and pre-approved by Clemson University’s IACUC. Mice were 

provided water, and fed ad libitum prior to and during treatments. Cyp2b-KD mice were 

constructed as described previously (Previous Chapter), and bred with FVB/NJ (wild-

type; WT) mice to maintain the genetic background. Genotyping demonstrated that 86% 

of the mice were transgenic indicating multiple inserts in the mice and therefore both 

sibling controls and separate FVB bred lines were used as controls.  

 

 In separate experiments, untreated WT and Cyp2b-KD mice at 9 weeks or 35-

weeks of age were weighed, blood was collected by heart puncture, and then mice were 

euthanized. Later WT and Cyp2b-KD mice (9 weeks old), were treated with 3 mg/kg TC 

or received corn oil as a vehicle control. Treated and corn oil control mice were weighed, 

blood collected, and then euthanized 24 hours after treatment. During the necropsy, livers 

were excised and weighed, and then cut into four pieces for sample preparation (RNA, 

protein, histopathology, and Red Oil O). Abdominal/renal/inguinal fat was collected and 

weighed in addition to spleen, kidneys, brain, and testes.   
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3.3.2 Serum Chemistry  

 Serum was prepared by centrifugation and analyzed at Comparative Pathology 

Laboratory, Baylor College of Medicine, TX for levels of non-fasting serum; cholesterol, 

triglyceride, high density lipoporotein (HDL), low density lipoporotein (LDL), very low 

density lipoprotein (VLDL), albumin, glucose, and phosphorus (n = 4-6). 

 

3.3.3 Sample preparation.  

 A portion of the liver was placed in formalin for histology investigations and Oil 

Red O evaluation of liver triglycerides. The rest of the liver was snap frozen, diced, 

separated into two tubes for RNA or protein sample preparation, and stored at -80oC. 

Total RNA was extracted with TRI-Reagent®

 

 according to the manufacturer’s 

instructions followed by DNAse digestion to remove residual genomic DNA (Promega 

Corporation, Madison WI). RNA concentrations were determined spectrophotometrically 

at 260/280 nm (Molecular Devices, Ramsey, MN). Reverse transcription was performed 

to make cDNA using 200 units Moloney Murine Leukemia Virus–Reverse Transcriptase 

(MMLV-RT), a 10 mM dNTP mixture, and 0.05 mg random hexamers (Promega 

Corporation, Madison, WI). Microsomes were prepared by differential centrifugation, 

and protein concentrations determined with Protein Concentration Reagent (Bio-Rad 

Laboratories, Hercules, CA). 

3.3.4 Quantitative Real-time Polymerase Chain Reaction (Q-PCR).   
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 Quantitative real-time PCR (Q-PCR) was performed as described previously by 

us and other groups (Muller et al., 2002; Mota et al., 2010), cDNA from liver samples 

was diluted 1:10 prior to Q-PCR. To generate a standard curve and determine the PCR 

efficiency of each reaction, a composite sample of cDNA from FVBs and KDs, treated 

and untreated mice was made and dilutions from 1:1 to 1:10-6

 

 were prepared. During 

PCR, samples were denatured at 95°C for 10 s, lowered to the appropriate annealing 

temperature for 30 s, and extended at 72°C for 20 s. Amplifications of the samples and 

the standard curve were performed in triplicate using a 96-well MyiQ Real-Time PCR 

Detection System (Bio-Rad) with 0.25× SybrGreen (SA Biosciences, Frederick, MD) as 

the fluorescent double strand-intercalating agent to quantify gene expression as described 

previously using Muller’s equation ( Muller et al., 2002) to determine relative quantities 

of each CYP. A minimum of forty cycles was run on all real-time samples to ensure a log 

based growth curve. 18S was used as he housekeeping gene. The primers and their 

annealing temperatures are presented in Supplementary Table 1.   

3.3.5 Western Blots:   

 Western blots were performed with 30-50 µg of hepatic microsomal protein as 

described previously using our rabbit-anti-mouse Cyp2b antibody and a goat anti-rabbit 

IgG (Bio-Rad) alkaline-phosphatase coupled secondary antibody (Mota et al., 2010). β-

actin (Sigma Aldrich, St. Louis, MO) was used as a housekeeper to ensure equal loading 

of samples. Bands were visualized via chemiluminescent detection (Bio-Rad) and 

quantified with the Chemi Doc XRS HQ using Quantity One 4.6.5 software (Bio-Rad).  
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3.3.6 Histopathology and Oil Red O staining 

 Samples fixed in 10% formalin were processed and stained with hemotoxylin and 

eosin at Colorado Histo-Prep for blind histopathological evaluation (Fort Collins, CO). 

Standard toxicology pathology criteria and nomenclature for the mouse were used to 

categorize microscopic tissue changes (Bank, 1993; Percy and Barthold, 2001; 

Hernandez et al., 2006; Mota et al., 2010). Individual parameters (hepatocellular 

swelling, necrosis, hypertrophy, hyperplasia, inflammation, bile duct hyperplasia, 

mineralization) were scored 0-4 and then summed. Total scores for the hepatic 

histopathology lesions in each mouse were ranked and statistical significance determined 

by Kruskal–Wallis followed by Dunn’s post hoc test. Tissues samples were also frozen 

for Oil Red O staining and examination by blind histopathological evaluation by 

Colorado Histo-Prep (Fort Collins, CO).  Results were scored 0-4 for statistical 

evaluation. Scores of 1 to 4 were recorded based primarily upon the extent of 

hepatocellular involvement.1 = minimal, 2 = mild, 3 = moderate, 4 = severe 
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3.4  Results  

 

3.4.1  Fat Deposition in Cyp2b-KD mice  

Because we observed what appeared to be a putitive increase in fat in the Cyp2b-

KD mice (Chapt 1); at necropsy the body weight of the mice as well as their inguinal, 

renal, and abdominal fat was combined and measured.   In young mice (9 weeks), no 

significant differences in body weights were observed between KD-mice and their 

corresponding WT controls. However, the weight of the fat to body weight increased 

112% in male and 75.3% in female Cyp2b-KD mice, respectively, compared to the WT 

controls (Fig. 1). 

 

 In contrast to the young mice, a significant increase in body weight of 35-week 

old Cyp2b-KD female (17.4%) and male (22.3%) mice compared to WT mice was 

observed (Fig. 1). This was also accompanied by a significant increase in weight in 

abdominal/inguinal/renal fat (Fig.1) and the fat/body weight ratios of male (73.7%) and 

female Cyp2b-KD mice (412%). There was a significant increase in weight when 

comparing young and old mice, however; there was not a significant increase in the 

weight of fat when comparing the young and old mice. Interestingly, 50% of the aged 

Cyp2-KD male mice had 3-4 mm of round solid tissue of fat necrosis, but none of the 

WT mice had fat necrosis. 
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 Liver, kidney, brain, and testis weights were also determined in the young and old 

mice and these weights were compared to body weight to determine organ to body weight 

ratio (Supplementary Table 2). Liver weight to body weight ratio (hepatosomatic index) 

increased 18-26% in the young mice, and increased 26-59% in the older mice.  

Significant differences in spleen, testes, brain, and kidney weights were also measured 

between the WT and Cyp2b-KD groups; however, none of these changes remained 

consistent between the different sexes on ages suggesting that minor physiological 

perturbation of type II statistical error. 

 

3.4.2 Histopathology:   

 There are few differences in the histopathology results between the WT and 

Cyp2b-KD mice.  However, all the untreated Cyp2b-KD hepatocytes from the young 

mice were individualized giving an appearance of slight cytomegally (Fig. 2). No other 

differences were found. Hepatocytes from 35-week old Cyp2b-KD-male and female mice 

were more likely to show increased periportal hypertrophy (p < 0.0001) as all of the 

Cyp2b-KD mice showed periportal hypertrophy and none of the WT mice showed 

periportal hypertrophy. However, the score was one and considered weak or moderate 

hypertrophy in each individual (Fig. 2). In addition, Oil Red O staining results indicated 

that no significant fat droplets were observed in the young or older mice Cyp2b-KD mice 

compared to the WT mice.   
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3.4.3 Serum lipid levels in young (9 week old) and old (35-week old) mice 

 To test whether Cyp2b repression caused significant perturbations in serum lipid 

concentrations and homeostasis; cholesterol, triglycerides, HDL, LDL, and VLDL were 

measured. Serum triglycerides were significantly higher (39%) in Cyp2b-KD males than 

WT males and 18.3% higher in Cyp2b-KD females than WT females (Fig. 3), although 

the increase in serum triglycerides was not significant in females. The increased in serum 

triglycerides levels were associated with increased VLDL. Cholesterol, HDL, and LDL 

levels were not perturbed in the 9 week old mice compared to the WT mice (Fig. 3 & 4). 

Similarly, the 35-week old Cyp2b-KD mice exhibited a significant increase in serum 

triglycerides (62%) compared to the corresponding WT- mice and this was significant in 

both males and females (Fig. 3). This was accompanied by increased VLDL in both 

genders (Fig. 4). In addition, male Cyp2b-KD male mice also showed increased 

cholesterol and LDL levels at 35-weeks (Fig. 3 & 4). Overall, the age-related changes in 

serum lipids were more profound in Cyp2b-KD males than Cyp2b-KD females. 

Hypertriglyceremia is a key biomarker of metabolic disorder and pre-diabetic condition. 

Therefore, we tested non-fasting blood sugar in both young and old mice. No significant 

changes in blood sugar were observed in the Cyp2b-KD untreated young and old mice 

(Supplementary Table 3 & 4). 

 

 

 

 



 

 85 

3.4.4 Changes in CAR, FoxA2, Cpt1a, and Cyp expression: 

 It is has been demonstrated that CYP2B expression is inducible under some 

stressful conditions such as fasting or energy restriction (Ding et al., 2006; Rencurel et 

al., 2005; Rencurel et al., 2006), in addition to xenobiotic activation (Kretschmer and 

Baldwin, 2005; Wang and Tompkins., 2008). FoxA2 and CAR regulate Cyp2b9 and 

Cyp2b10 under these nutritional stress conditions (Wolfrum et al., 2004; Dong et al., 

2009). Therefore, we examined the expression of FoxA2 and Cpt1a, which is activated by 

FoxA2 during fasting (Nakamua et al., 2007) but repressed by FoxA2  in coordination 

with CAR activation (Moreau et al., 2008).  Besides that, we examined the expression of 

CAR, the hepatic Cyp2b members, and several other Cyps reportedly regulated by CAR 

(Mota et al., 2010). In the young mice, Cyp2b9, Cyp2b10, and Cyp2b13 expression are 

repressed in the males (Table 1). Female mice show repression of Cyp2b10 and Cyp2b13 

but not Cyp2b9 (Table 2), which is in part regulated by FoxA2 (Hashita et al., 2008). 

However, the FoxA2 biomarker, Cpt1a was not repressed suggesting that the increase in 

Cyp2b9 in Cyp2b-KD mice was not mediated by FoxA2. The expression of the other 

Cyps was not perturbed in the 9 week-old or 35-week old mice.  

  

 Interestingly, in the older (35-week-old) mice none of the genes investigated 

showed differences in expression between the WT and Cyp2b-KD mice, including the 

Cyp2b9, Cyp2b10, and Cyp2b13 genes that are repressed by RNAi. This suggests that 

some factor is activating the transcription of these genes. Polyunsaturated fatty acids such 

as linoleic acid have been shown to activate CAR, and monounsaturated fatty acids have 
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been shown to induce Cyp2b9 and Cyp2b13. Therefore, it is possible that changes in the 

serum lipid profiles are resulting in changes in Cyp2b expression. However, we did not 

observe increased lipids in the young or old Cyp2b-KD mice compared to the WT mice. 

In a previous study, TC-treated Cyp2b-KD mice showed no difference in Cyp2b cDNA 

expression, but continued to demonstrate a drop in protein expression (Chapter 1). 

Therefore, Western Blots were performed to test whether Cyp2b protein expression was 

perturbed in the young and old Cyp2b-KD mice. 

 

3.4.5 Western Blot: 

 Western blots indicate that Cyp2b protein expression was significantly repressed 

in male mice. The young mice showed weak to moderate repression and the older mice 

showed much greater expression (Fig. 5). However, Cyp2b-KD female mice showed no 

repression of Cyp2b. Cyp2b9 is the primary Cyp2b member in female mouse livers (JAX 

gene expression; Wiwi et al., 2004; Sutton et al., 2010), suggesting that Cyp2b9 is not 

being repressed further indicating some compensatory mechanism in females that helps 

restore Cyp2b9 expression.  

 

3.4.6 The Unsaturated Fats in Corn Oil Increase Serum Lipids in Cyp2b-KD Mice:   

 Corn oil is a commonly used carrier for chemical treatments as it dissolves lipid 

soluble chemicals. We treated WT and Cyp2b-KD mice with corn oil or TC dissolved in 

corn oil for 24 hours, and surprisingly observed a significant increase in total serum 
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cholesterol in Cyp2b-KD mice compared to their corresponding WT controls (21% 

males; 40% females).  Serum triglyceride and VLDL concentrations were significantly 

increased in male (53%), but not female Cyp2b-KD mice (21%) (Fig. 6 & 7). In contrast, 

both males and females exhibited a significant increase in cholesterol (11.1, 16.5%), 

HDL (17.3, 42.6%), and LDL (42.1, 48.7%). (Fig. 6 &7). Other than phosphorous, no 

other changes were observed between WT and Cyp2b-KD mice (Supplimentary data 4). 

Corn oil contains approximately 55% linoleic acid (polyunsaturated), 30% oleic acid 

(monounsaturated) (85% unsaturated fatty acids), and 15% saturated fatty acids (U.S. 

Department of Agriculture, Agricultural Research Service. 2007). We hypothesize that 

the fatty acids in the corn oil perturbed serum lipid concentrations, and the wide range of 

differences exhibited in lipids measurements in Cyp2b-KD mice compared to WT mice 

suggests a role for Cyp2bs in lipid metabolism. 

 

 Furthermore, the CAR activator and Cyp2b inducer, TC in part, reversed the 

effects of corn oil on serum lipids. In males, corn oil increased cholesterol, triglycerides, 

HDL, LDL, and VLDL concentrations, and TC abrogated the effects of corn oil on all of 

these parameters. The effects of TC in female Cyp2b-KD mice were not as prominent as 

in males (Fig. 6 & 7). In contrast, TC-treatment led to an increase in serum triglycerides 

(60%) and VLDL levels (67%) in Cyp2b-KD female mice. It has been demonstrated 

previously that TC treatment led to a CAR dependent increase in serum TG in mice 

(Maglich et al., 2009). Therefore, we measured changes in gene expression of CAR and 

other transcription factors that regulates serum lipids and Cyp2b levels.   
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3.4.7 Changes in CAR, FoxA2, Cpt1a, and Cyp expression in Corn Oil and TC-treated 

WT and Cyp2b-KD Mice:   

 There are no significant differences between the WT and Cyp2b-KD male mice 

after corn oil or TC-treatment as to the expression of CAR, FoxA2, Cpt1a, and a number 

of Cyps (Table 3). However, instead of the decreased Cyp2b expression in Cyp2b-KD 

mice measured in untreated mice (Table 1), corn oil-treated mice showed no significant 

changes in Cyp2b expression with trends suggesting increased Cyp2b expression (Table 

3). Corn oil-treatment caused few significant changes in the Cyp2b-KD female mice 

compared to the WT mice (Table 4). However once again the Cyp2b isoforms no longer 

showed a significant drop in expression as they did in untreated animals, and Cyp2b9 was 

significantly increased in the Cyp2b-KD mice following corn oil-treatment (Table 4). 

This suggests that corn oil is perturbing liver lipid homeostasis and causing induction of 

Cyp2b isoforms similar to previous studies that indicate Cyp2b10 mediated induction by 

linoleic acid (Finn et al., 2009), and Cyp2b9 and Cyp2b13 mediated induction by olive 

oil (Guillen et al., 2009) which is about 85% monounsaturated fatty acids and primarily 

comprised of oleic acid (Acin et al., 2007). 

 

 TC-treatment was previously shown to protect Cyp2b-KD male mice but not 

female mice from the increased lipids associated with corn oil (Fig. 6 & 7). However, 

there were no significant changes in expression between TC-treated WT and TC-treated 



 

 89 

Cyp2b-KD mice. Interestingly, male Cyp2b-KD mice did show lower Cyp2b9 and 

Cyp2b13 after TC-treatment compared to WT mice, as these enzymes are associated with 

reduced liver lipids (Guillen et al., 2009; Hashita et al., 2008); however the data is not 

statistically significant.  In contrast, the induction of Cyp2b10 and Cyp3a11 is higher in 

female Cyp2b-KD mice than WT female mice, indicating continued CAR activation in 

the Cyp2b-KD mice potentially due to an inability to acutely eliminate the TC or the 

unsaturated fats from the liver after corn oil treatment.  

 

 Increased induction of Cyp2b10 and to a lesser extent Cyp3a11 mRNA was 

shown previously to be associated with increased hepatic triglycerides in the POR-null 

mouse model lacking all hepatic CYP activity after treatment with a diet rich in 

sunflower oil, which is approximately 88% unsaturated fatty acids and similar to corn oil 

primarily linoleic acid and oleic acid (Finn et al., 2009). Therefore, we performed 

Western blots to test whether Cyp2b levels continued to be repressed in Cyp2b-KD mice 

following corn oil or TC-treatment. The Western Blots demonstrate that hepatic Cyp2b 

protein levels continue to be repressed (Fig. 8). TC can increase Cyp2b levels in the 

Cyp2b-KD mice, but not to the extent that TC can increase Cyp2b in a WT mouse (Fig. 

8) demonstrating continued Cyp2b repression following a diet (corn oil) or xenobiotic 

(TC) insult. 
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3.4.8 Corn oil treated Cyp2b-KD mice have higher hepatic lipid levels: 

Cyp2b-KD mice have perturbation in cleaning hepatic accumulation of corn oil as 

indicated by Oil Red O (Fig. 9). Cyp2b-KD male mice treaed with corn oil are the only 

mice exhibited significant increase in hepatostomatic index compared to WT mice 

(Supplementary Table 5). To determine if the changes in serum lipids are associated with 

changes in liver steatosis, we performed Oil Red O analysis of hepatic lipids. In addition, 

because TC appeared to provide some protection from the corn oil-induced increases in 

lipids in our study and previous studies (Dong et al., 2009), we test whether Oil Red O 

staining was significantly greater in corn oil treated Cyp2b-KD female mice than corn oil 

treated WT mice (p value <0.05) (Fig. 9). This indicates that the loss of Cyp2b is causing 

an increase in hepatic lipid deposition following treatment with unsaturated fatty acids. 

Therefore, Cyp2bs are probably involved in the metabolism of fatty acids, and 

specifically hepatic metabolism of unsaturated fatty acids.  

 
3.5 DISCUSSION 

 There is growing evidence that Cyp2bs could be involved in lipid metabolism and 

homeostasis. Transcription factors that regulate Cyp2bs such as CAR and FOXA2 are 

nutrient sensors and involved in energy homeostasis and lipid metabolism (Wolfrum et 

al., 2004; Finn et al. 2008; Gao et al., 2009). Furthermore, hepatic deletion of POR (HRN 

mouse) led to a profound time-dependent induction of Cyp2b10 that was associated with 

increased non-fasting plasma triglyceride and total cholesterol levels (Finn et al., 2008).  

In this manuscript, we demonstrate that Cyp2b-KD mice have increased fat deposition, 
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increased serum lipids, and in comparison to WT mice are unable to eliminate 

unsaturated fatty acids.   

 

 Although Cyp2b-KD mice were fertile and developed normally, they exhibit 

significantly abnormal phenotypic changes associated with decreased Cyp2bs at basal 

expression. Young Cyp2b-KD mice have enlarged livers, and they maintain an increased 

load of abdominal body fat associated with hypertriglycemia, key symptoms of metabolic 

disorders, although Cyp2b-KD young mice were not overweight.  These changes were 

more profound in Cyp2b-KD male mice than female mice in untreated mice.  Most but 

not all (56-79%) of the hepatic Cyp2b members were repressed in the knockdown mice at 

early age. The expression of the three Cyp2bs tested, Cyp2b9, Cyp2b10, and Cyp2b13, in 

Cyp2b-KD males and Cyp2b10 and Cyp2b13 in Cyp2b-KD females were repressed 

relative to WT mice. Cyp2b9, a female predominant Cyp2b regulated by FoxA2 (Hashita 

et al. 2008) was not repressed in females. These finding suggest that Cyp2b-KD young 

mice that lack Cyp2bs (mainly Cyp2b10 and 2b13) were not able to utilize the increased 

serum triglyceride which led to an accumulation of central fat.   

 

Regulation of CYP2B expression is markedly influenced by not only various 

endogenous and exogenous compounds, but also age, sex, and nutritional status 

(Udomsuck et al., 2009). Therefore, to determine possible changes associated with 

stressors, we challenged Cyp2b-KD mice by aging or injecting them with corn oil. It has 

been demonstrated that expression of Cyp2bs decreases during aging and males express 
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less Cyp2bs than females (Lam et al., 2010). Therefore, to determine possible age-

dependent physiological changes in Cyp2b-KD mice, both male and female Cyp2b-KD 

mice were housed for 35-weeks. In contrast to younger Cyp2b-KD mice, both old male 

and female Cyp2b-KD mice were obese. Similar to young Cyp2b-KD mice, both old 

Cyp2b-KD male and female mice exhibited increased fat weight associated with a 

significant increase in serum triglyceride and cholesterol in males but triglycerides in 

females. The increased serum lipids in old Cyp2b-KD male mice was associated with 

increased expression of Cyp2b9 and 2b13 as was demonstrated by Q-PCR instead of 

decreased expression.  Overall, as the mice aged, the Cyp2b-KD mice showed increased 

fat deposition relative to body weight and greater perturbations in serum lipid levels.  We 

hypothesize that the profound changes in serum lipids in older males could be as a result 

of the lower expression of Cyp2bs in males compared to female mice.  

 

Obesity, increased abdominal fat deposition, and increased triglycerides are all 

key symptoms of prediabetic and strongly associated with metabolic disorder. Many 

diabetic/obesity models did not show much difference than WT mice unless challenged 

with a high fat diet. We (inadvertently) challenged our Cyp2b-KD mice with one dose of 

corn oil (100 ul ip). Both Cyp2b-KD male and female mice appear to show perturbations 

in clearing the injected corn oil, which is 99% triglyceride (85% unsaturated fats and 

15% saturated fats). During fasting and low blood sugar, triglycerides are converted into 

free fatty acids that bind to albumin, which in turn transports the fatty acids to organs 

such as the muscles and liver for oxidation. The normal levels of serum glucose in 
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untreated Cyp2b-KD young mice indicate that both mice are not diabetic. However, 

Cyp2b-KD female mice treated with corn oil revealed a significant decrease in serum 

glucose levels (p value 0.02) associated with increases in Cyp2b levels, serum lipids , 

serum albumin (Supplementary File 3&4), a free fatty acid carrier, and greater 

triglycerides (Oil Red O staining) in the liver.  These changes are also common during 

fasting conditions.  

 

It has been demonstrated that fatty liver and diabetes activate CAR and FoxA2 

and increase drug metabolism due in part to increased Cyp2b9 and Cyp2b10 (Wolfrum et 

al., 2004; Dong et al., 2009). POR null mice also show induction of Cyp2b10 in 

association with increased fatty liver due to the lack of CYPs and the inability to 

metabolize and eliminate fatty acids (Finn et al., 2009). In addition, in humans non-

alcoholic fatty liver disease (NAFLD) progression increases CYP2B6 and CYP2C9 

mRNA and protein levels (Chtioui et al., 2007). The increased hepatic lipids of NAFLD 

is associated with increased plasma fatty acids released from adipose stores or dietary 

sources (Chtioui et al., 2007). Cyp2bs are regulated by the metabolic transcription factors 

CAR and FoxA2, as well as other transcription factors such as STAT5b and HNF4a that 

in part cause their sexually dimorphic expression (Wiwi et al., 2004, Hashita et al., 2008, 

Dong et al., 2009). In normal conditions or under metabolic stress, CAR and FoxA2, 

which are transcription factors important in the expression of hepatic genes involved in 

glucose, cholesterol, and fatty acid metabolism, exhibit constitutive transactivation 

activity apparently by being continuously bound to a variety of fatty acids (Jump et al., 
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2005) that affect the expression of Cyp2bs such as Cyp2b13 (Wortham et al., 2003; 

Holloway et al., 2008).  

 

CAR activation modulates hepatic metabolism by lowering lipids and glucose 

levels and by compromising liver adaptation to hyperlipidemia (Dong et al., 2009). 

However, others have shown that CAR activation by TC led to increased serum 

triglycerides in mice fed high fat diet (Maglich and Moore, 2009). Interestingly, our 

studies show that CAR activation by TC reversed serum hyperlipidemia in male but not 

female Cyp2b-KD mice while the TC-induced reversal in male mice is probably due to 

the regulation of multiple genes, it is interesting to speculate that Cyp2bs may play a 

crucial role. As for females, CAR expression is greater in Cyp2b-KD female mice treated 

with TC (Chapter 1) and in turn Cyp2b10 induction is greater in TC-treated Cyp2b-KD 

mice than WT mice (Table 4). This increased activity is associated with decreased 

hepatic triglycerides, but increased serum lipids. Overall, increased expression of Cyp2b 

mRNA as mice age or are exposed to corn oil suggests CAR or FoxA2 activation as a 

compensatory mechanism to lower serum and liver lipids.  . 

 

Hepatic lipid accumulation as was indicated by Oil red O staining results was not 

correlated with changes in both liver/body weight ratio and the change in serum total 

cholesterol and triglyceride in all treatments. However, most of the hepatocytes in all 

corn oil and TC treatments showed mild to moderate swelling where the cytoplasm of the 

hepatocytes showed glycogenosis or showed low to moderate numbers of discrete-to-
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coalescing, smooth surfaced microvacuoles consistent with an incipient hepatic lipidosis 

indicating depuration of the unsaturated fatty acids. The only significant increased in 

liver index was observed in corn oil treaed males where the hepatocells showed 

dysplasia.  

 

 Taken together, our data suggest an influence of Cyp2b isoforms on regulation of 

serum lipid and hepatic lipids.  Coupled with recent data demonstrating unsaturated fatty 

acid activation of CAR, Cyp2b10 induction, and fatty liver in HRN mice fed excess 

unsaturated fatty acids in sunflower oil (Finn et al., 2009), as well as a different study 

demonstrating Cyp2b9 and Cyp2b13 induction by olive oil (Guillen et al., 2009); we 

propose that hepatic Cyp2b’s are increased in response to unsaturated fatty acids and are 

important in the regulation of unsaturated fatty acids.  Although Cyp2bs are expressed in 

the small amounts in the uninduced liver, there is significant evidence for lipid 

metabolism and homeostasis in addition to their role in xenobiotic metabolism. 
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Table 3.1: Q-PCR for Cyps and transcription factors in male mice 

 

Males 

Untreated (9) weeks Old 35-weeks 

WT KD WT KD 

Cyp2b9 1.0  ± 0.28 0.29 a** 1.0 ± 0.43 ±  0.31 8.76 ± 0.33 

Cyp2b10 1.0  ±  0.31 0.33 1.0 ± 0.26 ±  0.08 2.12 ± 0.47 

Cyp2b13 1.0  ±  0.30 0.21 a*** 1.0 ± 0.26 ± 0.03 8.75 ±  0.62 

Cyp2a4 1.0  ± 0.19 0.48 a* 1.0 ± 0.53  ± 0.12 0.20 ± 0.03 

Cyp2c29 1.0 ± 0.32 1.19 ± 0.41 1.0 ±  0.28 1.79 ±  0.5 

Cyp3a11 1.0 ± 0.18 1.43 ± 0.64 1.0 ±  0.11 1.49 ±  0.48 

CAR 1.0 ± 0.18 0.89 ± 0.24 1.0 ± 0.22 1.44 ± 0.54 

FoxA2 1.0 ± 0.23 0.60 ± 0.12 1.0 ± 0.23 0.83 ± 0.21 

CPT1A 1.0 ± 0.32 0.85 ± 0.29 1.0 ± 0.32 0.65± 0.41 

a:WT vs KD * P value <0.05 , **< 0.01, *** < 0.001 
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Table 3.2: Q-PCR for Cyps and transcription factors in female mice 

Females 
Untreated (8-12) weeks Old 35-weeks 

WT KD WT KD 

Cyp2b9 1.0 ± 0.18 1.33 1.0 ± 0.30 ± 0.24 0.98 ± 0.18 

Cyp2b10 1.0 ± 0.29 0.33a* 1.0 ± 0.24 ± 0.09 0.61 ± 0.11 

Cyp2b13 1.0 ±  0.07 0.46 a* 1.0 ± 0.49  ± 0.09 3.11 ± 1.12 

Cyp2a4 1.0 ±  0.03 0.81 ± 0.15 1.0 ± 0.53 1.10 ± 0.15 

Cyp2c29 1.0 ±  0.29 1.05 ± 0.34 1.0 ± 0.27 0.74 ± 0.12 

Cyp3a11 1.0 ±  0.29 1.03 ± 0.22 1.0 ± 0.79 1.17 ± 0.25 

CAR 1.0 ± 0.30 0.30 ± 0.0.09 1.0 ± 0.27 0.85 ± 0.09 

FoxA2 1.0  ± 0.21 0.42 ± 0.03 1.0 ± 0.36 1.34 ± 0.55 

CPT1A 1.0 ± 0.16 0.85 ± 0.23 1.0 ± 0.31 0.84 ± 0.15 

a:WT vs KD * P value <0.05 , **< 0.01, *** < 0.001 
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Table 3.3:  Q-PCR measured expression of Cyps, CAR and FoxA2 in corn oil- and 

TC-treated male mice.  

 

Males 

Treated (8-12) weeks 

WT-CO KD-CO WT -TC KD-TC 

Cyp2b9 1.0 ± 0.92 19.0 ± 7.05 91.1 ± 29.8 13.8 ± 6.61 

Cyp2b10 1.0 ± 0.37 6.31 ± 2.33 514 ± 171 552 d*

Cyp2b13 

  ± 138 

1.0 ± 0.98 3.37 ± 2.53 5.34 ± 4.52 0.136 ± 0.068 

Cyp2a4 1.0 ± 0.20 1.19 ± 0.42 1.5 ± 0.65 0.37±  0.11 

Cyp2c29 1.0 ± 0.54 0.043 ± 0.023 13.4 ± 5.1 21.7 ± 8.5 

Cyp3a11 1.0 ± 0.42 0.46 ± 0.15 2.9 ± 1.36 2.88 ± 0.45 

CAR 1.0 ± 0.47 1.74 ± 0.39 4.41 ± 1.74 1.34 ± 0.46 

FoxA2 1.0 ± 0.51 5.79 ± 2.2 9.67 ± 7.03 2.60 ± 0.77 

CPT1A 1.0 ± 0.34 1.33 ± 0.32 0.59 ± 0.16 1.84 ± 0.55 

a:WT-CO vs KD-CO * P value <0.05 , **< 0.01, *** < 0.001 
b: WT-TC vs KD-TC 
c: WT-CO vs WT-TC 
d: KD-CO vs KD-TC 
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Table 3.4:  Q-PCR measured expression of Cyps, CAR, and FoxA2 in corn oil- and 
TC-treated female mice.  

Females 
Treated (8-12) weeks 

WT-CO KD-CO WT -TC KD-TC 

Cyp2b9 1.0 ± 0.05 2.23 a** 0.07 ± 0.02  ± 0.35 0.13 d***

Cyp2b10 

 ± 0.03 

1.0 ± 0.03 2.14 ± 0.7 51.0 ± 8.39 135 c** , d*** ± 25.2

Cyp2b13 

  

1.0 ± 0.28 2.31 ± 0.59 0.59 ± 0.08 1.74 ± 0.27 

Cyp2a4 1.0 ± 0.38 0.96 ± 0.22 1.54 ± 0.34 1.05 ± 0.41 

Cyp2c29 1.0 ± 0.10 4.63 ± 1.56 45.8 ± 9.93 126.0 ±32.9 

Cyp3a11 1.0 ± 0.22 1.74 ± 0.49 7.19 ± 2.08 20.6 c*** ,d***± 1.83

CAR 

  

1.0 ± 0.24 3.1 ± 1.03 0.46 ± 0.08 2.66  ± 0.55 

FoxA2 1.0 ± 0.40 4.2 ± 1.17 0.53 ± 0.23 3.0 ± 0.75 

CPT1A 1.0 ± 0.19 3.9 ± 0.99 0.41 ± 0.23 1.3 ± 0.28 

a:WT-CO vs KD-CO * P value <0.05 , **< 0.01, *** < 0.001 
b: WT-TC vs KD-TC 
c: WT-CO vs WT-TC 
d: KD-CO vs KD-TC 
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Figure legend  

Fig. 3.1: Increased fat deposition and body weight of Cyp2b-KD mice. Untreated young 

and old Cyp2b-KD mice show significant increased fat deposition in (A) female, 

(B) male mice compared with wild-type (FVB) mice. Old Cyp2b-KD mice show 

increased body weight in (C) females and (D) males compared with wild-type 

(FVB) mice. Significant differences between WT and Cyp2b-KD mice were 

assessed by ANOVA followed by Tukey’s multiple comparison tests using the 

GraphPad Prizm 4.0 software package. An asterisk indicates a significant 

difference with a p < 0.05, two asterisks indicate a p < 0.01, and three asterisks 

indicate a p < 0.001.The letter [a] indicates a significant difference between young 

WT and young Cyp2b-KD mice, the letter [b] indicates a significant difference 

between old WT and old Cyp2b-KD mice, the letter [c] indicates significant 

differences between young WT and old WT mice, and the letter [d] indicates 

significant difference between young Cyp2b-KD and young Cyp2b-KD mice. 

WT= wild-type, KD= Cyp2b-KD mice, M = male, F= female, Y = Young, O =Old 

 

Fig. 3.2: Liver Histopathology in untreated young and old mice. Mouse liver fragments 

were stained using hematoxylin and eosin stain from male mice (A) FVB -young, 

(B) Cyp2b-KD–young male, (C) FVB-old male, (D) Cyp2b-KD – old male, and 

female mice (E) FVB-young, (F)- Cyp2b-KD-young female, (G) FVB-old female, 

and (H) Cyp2b-KD-old female. Minimal hypertrophy (score of 1) of hepatocytes 
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in the periportal area of both Cyp2b-KD old male and female mice was observed 

but not in WT mice. 

 

Fig. 3.3: Non-fasting serum lipid profile for untreated young (Y; 9 weeks) and old (O; 35 

weeks). Serum cholesterol level in (A) females (B) in males indicated significant 

increase in cholesterol only in Cyp2b-KD males compared to wild-type mice. 

Serum triglyceride levels in (C) female and (D) male mice indicated significant 

increase levels in both young and old Cyp2b-KD mice. Significant differences 

between WT and Cyp2b-KD mice were assessed by ANOVA followed by Tukey’s 

multiple comparison tests using the GraphPad Prizm 4.0 software package. An 

asterisk indicates significant difference with a p < 0.05, two asterisks indicate a p < 

0.01, and three asterisks indicate a p < 0.001. The letter [a] indicates a significant 

difference between young WT and young Cyp2b-KD, the letter [b] indicates a 

significant difference between old WT and old Cyp2b-KD, the letter [c] indicates 

significant differences between young WT and old WT mice, and the letter [d] 

indicates significant difference between young Cyp2b-KD and young Cyp2b-KD. 

WT = wild-type, KD= Cyp2b-KD mice, M = male, F= female, Y = Young, O = 

old. 

 

Fig. 3.4:  Lipoprotein profiles for untreated young (Y; 9 weeks) and old (O: 35 weeks) 

mice. (A) HDL in females (B) HDL in males (C) LDL in females (D) LDL in 

males (E) VLDL in females and (F) VLDL in males indicated significant increase 
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in LDL in old Cyp2b-KD male mice compared to both WT old mice and young 

Cyp2b-KD mice. VLDL significantly increased in both young and old Cyp2b-KD 

males. Significant differences between WT and Cyp2b-KD mice were assessed by 

ANOVA followed by Tukey’s multiple comparison tests using the GraphPad 

Prizm 4.0 software package. An asterisk indicates significant difference with a p < 

0.05, two asterisks indicate a p < 0.01, and three asterisks indicate a p < 0.001. The 

letter [a] indicates a significant difference between young WT and young Cyp2b-

KD, the letter [b] indicates a significant difference between old WT and old 

Cyp2b-KD, the letter [c] indicates significant differences between young WT and 

old WT mice, and the letter [d] indicates significant difference between young 

Cyp2b-KD and young Cyp2b-KD. WT = wild-type, KD= Cyp2b-KD mice, M = 

male, F= female, Y = Young, O = Old. 

 

Fig. 3.5:  Hepatic Cyp2b expression in WT (FVB) and Cyp2b-KD mice as demonstrated 

by Western blots of young and old mice.  

 

Fig. 3.6: Non-fasting serum cholesterol and TG in WT and Cyp2b-KD mice after 

treatment with corn oil or TCPOBOP. Corn oil treatment significantly increased 

cholesterol levels in both Cyp2b-KD (A) female and (B) male mice compared to 

their wild-type mice and serum triglyceride levels were significantly increased in 

(C) TC treated female (D) corn oil treated male mice. Significant differences 

between WT and Cyp2b-KD mice were assessed by ANOVA followed by Tukey’s 
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multiple comparison tests using the GraphPad Prizm 4.0 software package. An 

asterisk indicates significant difference with a p < 0.05, two asterisks indicate a p < 

0.01, and three asterisks indicate a p < 0.001. The letter [a] indicates a significant 

difference between WT treatd with corn oil and Cyp2b-KD treated with corn oil, 

the letter [b] indicates a significant difference between WT treated with TC and 

Cyp2b-KD treated with TC, the letter [c] indicates significant differences between 

WT treated with corn oil and old WT treated with TC, and the letter [d] indicates 

significant difference between Cyp2b-KD treated with corn oil and Cyp2b-KD 

treated with TC. WT = wild-type, KD= Cyp2b-KD mice, M = male, F= female, 

CO = corn oil, TC= TCPOBOP. 

 

Fig. 3.7: Lipoprotein profiles in WT and Cyp2b-KD mice after corn oil and TCPOBOP 

treatments. Corn oil treatment significantly increased levels of HDL in (A) Cyp2b-

KD females (B) Cyp2b-KD males, LDL levels in (C) Cyp2b-KD females (D) 

Cyp2b-KD males, and VLDL levels in (F) Cyp2b-KD males. Significant 

differences between WT and Cyp2b-KD mice were assessed by ANOVA followed 

by Tukey’s multiple comparison tests using the GraphPad Prizm 4.0 software 

package. An asterisk indicates significant difference with a p < 0.05, two asterisks 

indicate a p < 0.01, and three asterisks indicate a p < 0.001. The letter [a] indicates 

a significant difference between WT treatd with corn oil and Cyp2b-KD treated 

with corn oil, the letter [b] indicates a significant difference between WT treated 

with TC and Cyp2b-KD treated with TC, the letter [c] indicates significant 
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differences between WT treated with corn oil and old WT treated with TC, and the 

letter [d] indicates significant difference between Cyp2b-KD treated with corn oil 

and Cyp2b-KD treated with TC. WT = wild-type, KD= Cyp2b-KD mice, M = 

male, F= female, CO = Corn oil, TC= TCPOBOP. 

 

Fig. 3.8: Hepatic Cyp2b expression in WT (FVB) and Cyp2b-KD mice treated with corn 

oil and TCPOBOP as demonstrated by Western blots (A) female (B) male mice 

demonstrated increased expression of Cyp2b9 and Cyp2b10. Statistical 

significance was determined by Student’s t test. An asterisk indicates significant 

difference with a p < 0.05 WT= wild-type, KD= Cyp2b-KD mice, M=male, F= 

female. CO = Corn oil, TC = TCOPBOP. 

 

Fig. 3.9: Increased Oil Red O staining in the hepatocytes of Cyp2b-KD mice treated with 

corn oil or TCPOBOP. Corn oil significantly increased Oil Red O staining in livers 

of corn oil-treated Cyp2b-KD mice compared to WT mice. (A) Liver from an 

untreated WT female mouse. (B) Liver from a corn oil-treated WT female mouse.  

(C) Liver from a corn-oil treated Cyp2b-KD female mouse. The average extent of 

Cyp2b-KD mice treated with CO or TC hepatocellular involvement in Oil Red O 

staining compared to their corresponding WT is shown in (D). [a] indicates a 

significant difference between WT and Cyp2b-KD treated with corn oil. An 

asterisk indicates significant difference with a p < 0.05 WT= wild-type, KD= 

Cyp2b-KD mice, M=male, F= female. CO = Corn oil, TC = TCOPBOP. 
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Figure 3.1 
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Figure 3.2  
 

 

 

(A) WT-Young male 
(B) Cyp2b-KD-Young male 
(C) WT-Old male 
(D) Cyp2b-KD-Old male 
(E) WT-Young female 
(F) Cyp2b-KD-Young female 
(G) WT-Old female 
(H) Cyp2b-KD-Old female 
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Figure 3.3 
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Figure 3.4 
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Figure 3.5 
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Figure3.6 
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Figure 3.7 
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Figure3.8:   
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Figure3.9 
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(C) 

 

(A): Oil Red O results for females 

 (B): Oil Red O results for males 

 (C): Hepatic lipid accumulation scores 
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3.5  Additional Files 

Supplementary Table 1: PCR primer and probe sequences used in Q-PCR 

Gene Forward primer Reverse primer   
Tm (°C) 

Reference  

CAR GGAGCGGCTGTGGAAATAT
TGCAT 

TCCATCTTGTAGCAAAGAGGC
CCA 

56.5 Thismanuscript 

CPT1 A TTGATCAAGTGCCGGACGA
GT 

GTCCATCATGGCCAGCACAAA
GTT 

55.5 This manuscript 

Cyp2a4 AGCAGGCTACCTTCGACTG
G  

GCTGCTGAAGGCTATGCCAT 63.6 (Wiwi et al. (2004) 

Cyp2b9 CTGAGACCACAAGCGCCAC CTTGACCATGAGCAGGACTCC 64.3 (Wiwi et al. (2004) 
Cyp2b10 CTGAATCCGCTCCTCCACA

CTC  
TGAGCCAACCTTCAAGGAATA

T 
61.4 (Hernandezet al., 2006) 

Cyp2b13 GAACTGAGACTACCAGCAC
CACTCCT  

TGAGCATGAGCAGGAAACCAC
T 

61.5 (Wiwi et al. (2004) 

Cyp2c29 GGCCTCAAAGCCCTACTGT
CA  

AACGCCAAAACCTTTAATC  53.6 (Luo et al. (1998) 

Cyp3a11 CTTTCCTTCACCCTGCATTC
C  

CTCATCCTGCAGTTTTTTCTGG
AT 

64.2 (Wiwi et al. (2004) 

FoxA2 TCAACGACTGCTTTCTCAA
GGTGC 

TTCTCGAACATGTTGCCCGAGT
CT 

57.8 (Wiwi et al. (2004) 

18s rRNA CGCCGCTAGAGGTGAAATT
C 

CCAGTCGGCATCGTTTATGG 51 (Hernandezet al., 2006) 

 

Tm: Annealing Temperature oC 

AS bp: amplicon Size (base pair) 
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3.6  Supplementary Table 2: Organ weights and organ to body weight ratios of Young 
(9-week old) and older (35-week-old) WT and Cyp2b-KD mice.  Statistical analysis 
was performed by Student’s t-test.  P-values are shown.    
 
 
 
 
A:  Organ weights of 9–week- old male mice 

Males Organ weight (g) ± SEM % 
of differences P value WT Cyp2b-KD 

Liver 1.29 ± 0.06 1.76 ± 0.05 + 36.4 <0.0001 
Fat 1.09 ± 0.16 2.33 ± 0.12 + 13.8 <0.0001 
Kidneys 0.47 ± 0.02 0.52 ± 0.01 + 6.3 0.1 
Spleen 0.089 ± 0.00 0.11± 0.006 + 24.2 0.3 
Brain 0.419 ± 0.017 0.405± 0.034 + 3.3 0.7 
testes 0.20 ± 0.008 0.27 ± 0.015 + 35 0.0002 
Body weight (g)  28.14 ± 0.67 27.29 ± 0.05 -3.1 0.37 
n=5-6 
 
 
 
 
 
 
B: Organ weights of 9-week-old female mice 

 
 
 
 
 
 
 
 
 

n=5-8 
 
 
 
  

Females Organ weight (g) ± SEM % 
of differences P value WT Cyp2b-KD 

Liver 1.37 ± 0.03 1.45 ± 0.037 + 5.8 <0.0001 
Fat  0.81 ± 0.19 1.47 ± 0.11 + 81.5 0.0004 
Kidneys 0.31 ± 0.01 0.38 ± 0.01 + 6.0 0.6 
Spleen 0.108 ± 0.006 0.114 ± 0.005 + 10.3 0.4 
Brain 0.417 ± 0.001 0.43 ±.017 +1.2 0.3 
Body weight (g) 20.42 ± 0.50 20.42 ± 0.17 0 0.998 
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C: Organ weights of 35-week-old male mice 

Males Organ weight (g) ± SEM % 
of differences P value WT Cyp2b-KD 

Liver 0.94 ± 0.04 1.81± 0.04 + 92.5 <0.0001 
Fat 0.87 ± 0.17 1.85 ± 0.17 + 112.6 0.0007 
Kidneys 0.58 ± 0.02 0.62 ± 0.01 + 6.9 0.086 
Spleen 0.084 ± 0.004 0.097 ± 0.003 +15.5 0.017 
Brain 0.43 ± 0.007 0.44 ± 0.016 + 2.3 0.46 
testes 0.21 ± 0.006 0.24 ± 0.009 + 14.3 0.04 
Body weight (g) 30.24 ± 073 36.98 ± 0.87 +22.3 <0.0001 
n=9-10 
 
 
 
 
 
D: Organ weights of 35-week-old female mice 
Aged Females Organ weight (g) ± SEM % 

 of differences 
P value 

WT Cyp2b-KD 
Liver  0.99 ± 0.11 1.44 ± 0.05 + 45.5 <0.0032 
Fat 0.32 ± 0.11 1.69 ± 0.55 + 428 0.0075 
Kidneys 0.41 ± 0.02 0.43 ± 0.019 + 4.9 0.308 
Spleen 0.092 ± 0.005 0.10 ± 0.006 +8.7 0.29 
Brain 0.46 ± 0.009 0.44 ± 0.013 - 4.4 0.23 
Body weight (g) 24.63 ± 0.44 28.91 ± 1.34 + 17.4 0.0096 
n=9-11 
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E: organ weight to body weight ratio of 9-week-old male mice 
Young Males % Organ/body weight  ± SEM % 

of difference 
P value 

WT Cyp2b-KD 
Liver 5.18 ± 0.001 6.13 ± 0.001 +18.3 0.0002 
Fat 3.15 ± 0.004 6.68 ± 0.003 +112.1 0.0003 
Kidneys 1.69 ± 0.0004 1.59 ± 0.0004 - 6.3 0.92 
Spleen 0. 32 ± 0.0000 0. 37 ± 0.0001 +15.2 0.46 
Brain 1.51± 0.0006 1.34 ± 0.0004 -9.3 0.2 
Testes 0. 55 ± 0.0003 0. 89 ± 0.0006 + 61.8 <0.0001 
n=10-12 
 
 
 
 
F:  Organ weight to body weight ratio of 9-week-old female mice 
Young Females % (Organ/body weight)  ± SEM % 

of difference 
P value 

WT Cyp2b-KD 
Liver 5.34 ± 0.003 6.71 ± 0.001 + 25.6 <0.0001 
 Fat 3.25 ± 0.005 5.64 ± 0.003 + 73.5 0.0004 
Kidneys 1.49 ± 0.0002 1.48 ± 0.0005 - 0.7 0.92 
Spleen 0. 40 ± 0.0003 0.48 ± 0001 +19.2 0.03 
Brain 1.62 ± 0.001 1.83 ± 0.0006 + 11.4 0.21 
n=8-12 
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G: Organ weight to body weight ratio of 35-week-old male mice 
Aged Males  % (Organ/body weight) ± SEM 

WT Cyp2b-KD % 
of differences 

P value 

Liver 3.09 ± 0.0012 4.90 ± 0.0012 + 58.6 <0.0001 
Fat 2.85 ± 0.005 4.95 ± 0.0034 +73.7 0.005 
Kidneys 1.89 ± 0.0005 1.68 ± 0.0006 +12.5 0.01 
Spleen 0. 28 ± 0.0001 0. 26 ± 0.0000 -7.7 0.2 
Brain 1.43 ± 0.0004 1.21 ± 0.0005 -18.2 0.07 
testes 0. 62 ± 0.0008 0. 65 ± 0.0004 + 4.8 0.39 
n=9-10 
 
 
 
 
 
H: organ weight to body weight ratio of 35-week-old female mice 
Aged Females % (Organ/body weight ) ± SEM % 

of differences 
P value 

WT Cyp2b-KD 
Liver 4.04 ± 0.005 5.04 ± 0.0021 + 24.7 <0.009 
Fat 1.29 ± 0.004 5.31± 0.0150 + 411.6 0.003 
Kidneys 1.66 ± 0.0009 1.51± 0.0006 - 9.0 0.2 
Spleen 0. 38 ± 0.0002 0. 35 ± 0.0002 - 8.6 0.4 
Brain 1.85 ± 0.0004 1.53 ± 0.0007 - 20.9 0.007 
n=9-11 
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3.7  Supplementary Table 3: Blood chemistry profiles in young and old Cyp2b-KD 
mice compared to WT mice.   

Gender 
Blood  

Test 

Young (9) weeks Old 35-weeks 

WT KD WT KD 

Female 

Albumin 2.9 ± 0.03 2.93 ± 0.07 2.90 ± 0.04 2.8 ± 0.06 

Phosphorus 8.89 ± 0.81 8.1 ± 0.75 6.85 ± 0.52 9.43 ± 0.49 

Glucose 279.7 ±27.8 288.0 ± 10.4 235.7 ± 12.3 205.3 ± 10.1 

Male 

Albumin 2.6 ± 0.03 2.84 ± 0.02 2.83 ± 0.02 2.6 ± 0.05 

Phosphorus 7.58 ± 0.36 8.97 ± 0.42 6.84 ± 0.3 8.1 ± 0.41** 

Glucose 313.4 ± 14.3 284.6 ± 10.3 297.3 ± 26.8 284.6 ± 10.4 

a:WT-CO vs KD-CO * P value <0.05 , **< 0.01, *** < 0.001 
b: WT-TC vs KD-TC 
c: WT-CO vs WT-TC 
d: KD-CO vs KD-TC 

  n = 4- 6 
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3.8  Supplementary Table 4: Blood chemistry profiles in corn oil- and TC-treated 

Cyp2b-KD mice compared to WT mice. 

Gender 
Blood  

Test 

Treated (8-12) weeks 

WT-CO KD-CO WT-TC KD-TC 

Female 

Albumin 2.8 ± 0.02 3.25a 2.9 ± 0.11 *** ± 0.05 3.25 b

Phosphorus 

 *± 0.06 

11.65 ± 1.35 8.88 a 8.33 ± 1.0  * ± 0.21 9.78 ± 1.01 

Glucose 268.5 ± 5.5 204.8 ±14.8 226.0 ± 27.0 227.3 ± 23.7 

Male 

Albumin 2.66 ± 0.06 2.89 a 2.75 ± 0.05  * ± 0.08 2.93  ± 0.11 

Phosphorus 6.55 ±  0.36 9.99 a 6.95 ± 0.48  ** ± 0.69 9.9 b

Glucose 

 ** ± 0.37 

253.0 ± 10.4 257.0 ± 36.0 253.7 ± 10.4 214.3 ± 43.0 

a:WT-CO vs KD-CO * P value <0.05 , **< 0.01, *** < 0.001 
b: WT-TC vs KD-TC 
c: WT-CO vs WT-TC 
d: KD-CO vs KD-TC 

n = 4 -6 
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3.9  Supplementary Table 5: Liver weight to body weight for treated corn oil and 
TC (9-week-old) male and female mice 
Treatment % (liver/body weight)  ± SEM % 

of differences 
P value 

WT KD 
CO-Female 5.00 ± 0.0031 5.11 ± 0.0025 + 2.2 0.28 
TC-Female 5.90 ± 0.0014 6.20 ± 0.0033 + 5.1 0.49 
CO-Male 4.38 ± 0.0034 4.92 ± 0.0065 + 11.2 0.0013 
TC-Male 5.17 ± 0.0027 5.47 ± 0.0015 + 5.8 0.36 
n = 4-5 
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CHAPTER FOUR 

DISCUSSION 

 

In this study, we made a Cyp2b-knockdown mouse using lentiviral-promoted 

shRNA homologous to all five Cyp2b subfamily members in FVB/NJ mouse to 

characterize Cyp2b’s role in xenobiotic detoxification. We focused in assessing the in 

vivo function of Cyp2bs in the toxicity from pesticides (i.e. parathion) and drugs (i.e. 

zoxazolamine). In addition, we in partially phenotyped and characterized Cyp2b-KD 

model and assessed changes associated with the lack of Cyp2bs. We focused on role that 

Cyp2bs play in lipid metabolism. Our data suggest that Cyp2b is more than a 

detoxification enzyme, but is also involved in the metabolism of unsaturated fatty acids. 

Cyp2b-KD model will provide a new tool for further study of the impact of Cyp2b 

enzymes on the in vivo metabolism of endobiotic and xenobiotic chemicals.   

 

 The discovery of RNA interference (RNAi) has had a great impact on toxicology 

and CYP-mediated metabolism and drug discovery. Small interference RNA (siRNA) has 

emerged as a powerful tool to down regulate the expression of specific genes 

(Wiznerowicz et al., 2006). Knockout mouse models have become the experimental 

model of choice for the study of human genetics, physiology, metabolism and disease 

(Barbaric et al., 2007). The Cyp2b subfamily in mouse species contains five members 

(Cyp2b9, Cyp2b10, Cyp2b13, Cyp2b19, and Cyp2b23) of which three (Cyp2b9, 

Cyp2b10, Cyp2b13) are hepatic enzymes. The multiple murine Cyp2b isoforms and the 
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redundancy of these isoforms in each subfamily made targeted mouse gene knockouts 

impractical and costly. To circumvent these limitations, we designed and determined an 

efficient shRNA construct with the potential to knockdown five isoforms of murine 

Cyp2b (Chapter1). This construct was used to generate the first persistent quintuple 

Cyp2b knockout mouse for the subsequent study of Cyp2b functions in vivo (Chapter 1).  

 

 We demonstrated that Cyp2b isoforms play a key role in parathion and 

Zoxazolamine metabolism and toxicity (Chapter 1). In addition, we in partially 

phenotyped and characterized the Cyp2b-KD model and assessed changes associated 

with the lack of Cyp2bs and we focused in lipid metabolism (Chapter 2). Our data 

suggests that Cyp2b is more than a detoxification enzyme, but is also involved in the 

metabolism of unsaturated fatty acids as Cyp2b-KD mice have increased fat deposition 

and show increased serum and liver lipid levels. This study is the first step in 

demonstrating the in vivo function of Cyp2b. The next step is to perform more in vivo 

studies to determine the Cyp2b function and to fully characterize Cyp2b-KD model. 

These studies will increase our knowledge of the human sensitivity to toxicant and drugs 

and will aid to the understanding of the xenobiotic metabolism. Cyp2b-KD mice may be 

able to act as a sentinel for individuals with low Cyp2b-expression or limited metabolic 

capacity because of Cyp2b polymorphisms. Significances of Cyp2b-KD mouse model, 

suggested future research, and directions are described below. 
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Overall results and the purpose of the research  

4.1  Objective 1 

Several siRNA constructs that recognize all five Cyp2b subfamily members in 

FVB/NJ mouse, typically without significant overlap with human CYPs were designed 

and build in a lentiviral vector. These constructs were tested in vivo using primary mouse 

hepatocytes to choose the potent construct that will knockdown major hepatic Cyp2bs 

(Cyp2b9, Cyp2b10, and Cyp2b13). 

4.2  Objective 2 

Using a highly concentrated lentivirus preparation, we generated the first 

persistent quintuple Cyp2b knockout mouse by perivitelline injection for the subsequent 

study of Cyp2b functions in vivo. Our work demonstrated that the expression of the three 

hepatic Cyp2bs tested (Cyp2b9, Cyp2b10, and Cyp2b13) isoforms is significantly 

repressed in male but Cyp2b9 in female Cyp2b-KD mice. Furthermore, TCPOBOP-

mediated Cyp2b induction did not outcompete the shRNA’s ability to repress Cyp2b 

protein expression demonstrating that the Cyp2b-KD mouse model is functional in the 

presence of a CAR activator and powerful Cyp2b inducer. Therefore, we have produced 

an efficient Cyp2b knockdown of at least the three major hepatic Cyp2b members in 

mice, including the highly inducible Cyp2b10 that is responsible for different xenobiotic 

metabolism.  
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4.3  Objective 3 

In this study, we in part characterized Cyp2b-KD mice to determine the 

phenotypes associated with low Cyp2bs induction. This study demonstrates that in vivo 

Cyp2b isoforms play a key role in parathion and Zoxazolamine metabolism and toxicity. 

It is the first study to demonstrate that individuals with compromised Cyp2b are 

susceptible to the toxic effects of parathion. We also observed that parathion metabolism 

is perturbed in the hepatic microsomes of TCPOBOP-induced Cyp2b-KD mice as 

parathion metabolism was significantly lower in these microsomes than WT mice. Our in 

vivo and in vitro data agreed with previous studies (Mutch et al. 1999; Kim et al. 2005; 

Foxenberg et al. 2007; Mota et al. 2010).  

 

Zoxazolamine paralysis time is a key indicator of perturbations in Cyp activity in 

vivo. Interestingly, more pronounced Zox toxicity effect was observed on Cyp2b-KD 

female mice than male mice. In contrast to males, female Cyp2b-KD mice showed poor 

metabolism and clearance for Zox as they did not recover indicating a key role of Cyp2b 

in Zox metabolism. Sex differences in the induction of Cyp2bs could be a critical factor 

for Zox toxicity differences. In addition, it appears to be a molecular compensatory 

reaction to the repression of Cyp2bs in the Cyp2b-KD mice. For example, Cyp2b9 

mRNA expression was not repressed in female Cyp2b-KD young and old mice. Since 

most Cyp2b’s (Cyp2b9, Cyp2b13, and may be Cyp2b10) are female predominant 

(Hernandez et al. 2006; Hernandez et al. 2009; Wiwi et al. 2004), reducing Cyp2b levels 
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in female mice may cause a more pronounced effect. In addition, Cyp2b-KD young 

males did not exhibit significant Cyp2b10 repression like the females.  

We also in part characterized Cyp2bs function in lipid metabolism. We showed 

that Cyp2b-KD mice are viable, fertile, and did not exhibit significantly abnormal 

phenotypes or physiological abnormalities. However, both young and old Cyp2b-KD 

mice showed an increase in liver weight, and a subjective increase was observed in 

abdominal and renal fat in both male and female mice indicating that our Cyp2b-KD 

mice exhibit the same phenotypes.  

 

The increased in fat weight in Cyp2b-KD mice was associated with an increase in 

serum lipids. Different than young mice, Cyp2b-KD old mice exhibit increased body 

weight and increased Cyp2bs induction. This suggests that there is some type of 

compensatory mechanism trying to overcome the repressive effects of the shRNA and to 

adapt the increased serum lipids and the increased weight. These data also demonstrated 

the importance of Cyp2bs in lipid metabolism and as anti obesity enzymes.  

 

Lentiviral vector-mediated transgene expression can be maintained for long 

periods of time (Park, 2007). Lentiviral integration is thought to allow for longer and 

more stable transgene expression. To determine if our siRNA-Cyp2b transgene in the old 

mice is stable and the phenotypes observed are due to the lack of Cyp2bs, Western bolts 

for old mice were performed. Old Cyp2b-KD male mice exhibited low expression of 
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Cyp2bs comparing to old WT- mice indicating that our transgenic siRNA is still 

functional over the 35 weeks. 

 

Nutritional stressor such as unsaturated fatty acids in the injected corn oil caused 

dramatic increase in serum lipids, changes in liver histopathology, increased 

accumulation of hepatic lipids, and activated molecular compensatory mechanisms 

(increased Cyp2bs induction mediated by increased CAR and FoxA2) as an attempt to 

adapt to and clear the unsaturated fatty acids. These findings suggested that there is 

significant evidence for Cyp2bs specific involvement in lipid metabolism and 

homeostasis. These data are consistent with other ther studies. The hepatic P450 

oxidoreductase-null mouse (hepatic reductase null, POR-null, or HRN), which lacks 

hepatic CYP activity, shows profound changes in lipid homeostasis, increased liver size. 

This was associated with significantly elevated Cyp2b10, and linked to hepatic 

triacylglycerol accumulation and increased hepatic unsaturated fatty acids simalr to our 

cyp2b-KD female mice. Furthermore, double HRN/CAR-null mice did not demonstrate 

Cyp2b10 induction, and linoleic acid, an unsaturated fatty acid, activated CAR in 

transactivation assays. The authors suggest that increases in Cyp2b10 via CAR activation 

could be an adaptive response against unsaturated fatty acid toxicity and indicated that 

this study is the first evidence that P450s, and particularly Cyp2b10, play a major role in 

controlling unsaturated fatty acid homoeostasis via CAR (Finn et al., 2009).  However, 

further studies to investigate the function of Cyp2bs as energy P450 are needed. 
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4.5 Significance and future considerations 

 The production of Cyp2b-KD mouse model provides many benefits for toxicologist, 

investigators, and pharmaceutical companies. This study provides a new platform for 

studying Cyp2b function, especially its role in the metabolism of distinct pharmaceuticals 

and environmental chemicals as well as its role as energy related P450. Cyp2b-KD mice 

may be able to act as a sentinel for individuals with low Cyp2b expression or limited 

metabolic capacity because of Cyp2b polymorphisms. The lack of Cyp2B in some 

individuals could have a protective effect against the toxicity of certain compounds such 

as organophosphates that can be metabolized to more toxic metabolite by Cyp2bs. 

Cyp2b-KD animals could be used to determine if these enzymes play protective roles in 

these individuals. Cyp2b polymorphism and dimorphism can have a pronounced effect of 

the metabolism of different xenobiotics and xenobiotics. Scientist can study the role of 

Cyp2bs in the metabolism, activation, detoxification, elimination, and homeostasis of 

xenobiotics and different compounds such as industrial chemicals, pharmaceutical, and 

pesticides in an in vivo system. 

 

Cyp2b-KD model could be used for future studies to test chemicals and drugs 

with potential clinical implication to investigate the fate, the metabolism, the clearance, 

and the effects of these drugs. Scientist can study the role of Cyp2bs in drug-drug 

interaction in an in vivo system. Impact of low Cyp2bs induction and drug drugh 

interaction could have a great impact on our understanding to drug toxicity. 
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 Scientist can study the function of Cyp2bs in metabolizing endogenous compounds 

an in vivo system. For instance, we can determine if Cyp2bs are involved in steroids 

hormone or bile acid homeostasis. Cyp2b-KD mice exhibited changes in lipid 

metabolism and increased serum lipids such as increased cholesterol in males by aging 

and by dietary unsaturated acids. This increase may lead to difference in steroids 

synthesis and metabolism which may also lead to changes in several biological activities 

such as reproduction. It has been demonstrated previously that Changes in Cyp2B 

expression under stress conditions such as fasting and energy restriction may suggest the 

involvement of CYP2B6 in pathways of energy metabolism, homeostasis, and the 

metabolism of endobiotics (Wang and Tompkins, 2008). These pathways could be 

harmful or protective pathways. Cyp2b-KD mice may provide a good model to identify 

direct evidence for such involvement.    

 

   Cyp2b-KD model can be built upon to form even better models for human disease, 

human metabolism, and human genetic polymorphisms by making CYP2B6/7 humanized 

mice. In addition, polymorphic humanized mice can be made to study slow metabolism 

or gene-environment interactions, and toxic responses mediated by P450s as they would 

occur in humans. Further use of this technology to produce other P450 knockdown mouse 

models of other subfamilies will enhance toxicology and our ability to study Cytochrome 

P450 function.  

 



 

 136 

In this study, we have taken the first steps towards developing a potent Cyp2b-

knockdown (KD) mouse for subsequent study of Cyp2b function. To enhance our 

understanding for the effect of the loss of Cyp2b on xenobiotic metabolism and 

elimination and on physiological function, especially those pertaining to endobiotic 

metabolism and elimination, more work is needed. This includes but not limited to: 

 

1- Microarray test: This test will enable us to measure changes in the expression levels 

of large numbers of genes in Cyp2b-KD mice at basal or induced level.  

2- Challenge the mice with different types of diet especially, high fat diet to tested if 

Cyp2bs are anti-obesity enzymes and are involved in the utilization and deposition 

of fatty acids in the body. Cyp2b-KD mice demonstrated high serum lipids, 

triglyceride, and enlarged liver at early age and showed increased body weight and 

greater perturbations in serum lipid levels in elderly age. Obesity and increased 

serum triglyceride are key biomarkers of pre-diabetic and metabolic syndrome and 

strongly associated with hypertension and type II diabetes all of which increase risk 

of heart diseases. Obesity, diabetes, and heart diseases are growing problems in the 

United States and much of the world. Controlling obesity could significantly 

enhance the worldwide health. Cyp2b-KD mouse may able to act as a pre-diabetic/ 

metabolic syndrome/or obesity model and thus, it could enable us understanding the 

molecular mechanisms of obesity and diabetes. This may improve our ability to 

develop new therapeutics as well as better understand the genetic and 

environmental basis for these diseases. However, many diabetic/obesity models did 



 

 137 

not show much difference than WT mice unless challenged with a high fat diet 

(Maglich and Moore, 2009). To determine whether Cyp2b-KD mice are able to 

properly metabolize and utilize a high fat diet, Cyp2b-KD mice need to be 

challenged with different nutritional stressors. This could be clear from the fact that 

injected corn oil also acted as a nutritional stressor to this model and Cyp2b-KD 

mice acted as in fasting-conditions under the corn oil stressing effect. Fasting is one 

of the obligations for millions of people, both sexes and in different ages, in 

different religions and cultures especially in the Middle East and Asia. It can be 

long enough (e.g. 11-15 hours daily for 30 days) to cause changes in energy 

metabolism and ultimately, in Cyp2B and other Cyps induction. There is a high 

prevalence of diabetes mellitus, obesity, hypertension in the Middle East and 

cardiovascular disease is a major health problem (Motlagh et al., 2009). Cyp2b-KD 

model can be used to further understanding of potential risks of fasting associated 

with low Cyp2bs levels (polymorphisms). Furthermore, additional studies can be 

performed to determine if TCPOBOP-treatment can alleviate some of the symptoms 

of obesity and help reducing fat deposition. This can help in finding more specific 

drugs that could alleviate serum lipids. Besides that, Cyp2b-KD mice exhibit 

enlarged liver, non alcoholic fatty liver (NAFL), when they were treated with corn 

oil. Further studies could be done to determine the histopathological changes of 

NAFL in Cyp2b-KD mice using different drugs. 

3- Distributed metabolic regulation in Cyp2b-KD can also be studied using glucose 

tolerance test and insulin tolerance test. Blood glucose level alters insulin 
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expression and serum hepatic lipids levels which in turn affect other transcription 

factors such as CAR and FoxA2. This will ultimately change Cyp2bs regulation.  

4- How down regulation of Cyp2bs will affect immune system and immune response? 

It has been demonstrated that LPS significantly down regulates the induction of 

Cyp2b10 and Cypp2b9 even in the presence of phenobarbital (Li-Masters and 

Morgan, 2001). To study the physiological changes and modulation of gene 

expression in Cyp2b-KD mice during inflammation, Cyp2b-KD mice need to be 

challenged by lipopoly saccharide (LPS).  

• Cyp2b-KD mice showed significant phonotypical changes by nutritional stressors, 

which led to hepatic steatosis. Hepatic inflammation, steatohepatitis, can develop 

because of hepatic steatosis (Angulo, 2002).  

• Cyp2b is also involved in arachadonic acid metabolism (Keeney et al., 1998), 

therefore, skin development may be affected, and immune system may be weaker in 

Cyp2b-KD mice. Only two Cyp2b-KD female mice were used in breeding and both 

developed skin inflammation and lost their toes after they were used in breeding for 

3 times. None of other Cyp2b-KD females showed similar symptoms. This could be 

an indicator of changes in the immune system due to a stressor (pregnancy).  

 

4.6  Summary 

 

The endogenous role of the Cyp2bs is poorly understood (Reschly and Krasowski, 

2006; Yamada et al., 2006), probably in part due to a lack of an in vivo model to study 
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Cyp2b function. A Cyp2b-KD transgenic mouse 

  

model has been developed using siRNA 

that recognizes the five Cyp2bs subfamily members in FVB/NJ mice. Our data 

demonstrated that Cyp2bs have specific involvement in lipid metabolism and 

homeostasis besides their role in xenobiotic metabolism. Cyp2-KD mouse model will 

provide a powerful model to study the in vivo function of Cyp2bs.  
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