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ABSTRACT 
 

 

This manuscript presents the results of a thorough theoretical and experimental 

investigation on fluid mud underflows generated in a typical coastal dredge disposal 

operation. The main goal of this investigation is to understand the propagation dynamics 

of fluid mud underflows that depends upon a number of factors, including: 

concentrations, rheological properties and released configurations of fluid mud. 

Laboratory experiments were conducted with different initial fluid mud concentrations in 

three different experimental set-ups: rectangular flume for constant volume release, 

rectangular flume for constant flux release, and a square pool for radial constant flux 

release of fluid mud. The experiments in the rectangular flume generated two-

dimensional underflows. The experiments in the pool simulated typical open water 

pipeline disposal operations with submerged vertical discharge configuration in the field 

and radially axisymmetric three-dimensional fluid mud underflows were generated in 

these experiments. As expected, constant volume release experiments generated gravity 

currents that exhibit slumping, inertial and viscous propagation phases while constant 

flux release experiments generated initial horizontal buoyant jets which then transform 

into gravity currents that exhibit inertial and viscous propagation phases. The 

experiments showed that the propagations of underflows were significantly influenced by 

the non-Newtonian rheology of released fluid mud. Underflows formed by initial low 

concentration of fluid mud release did not experience the viscous propagation phase in 

the limited experimental set-ups that were used in the experimental investigation. 

However, high concentration fluid mud releases rapidly transitioned into viscous 
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propagation phase, sometimes even bypassing the expected inviscid phase. The inter-

transitions of propagation phases were determined from experimental data and they were 

related to the initial source parameters by deriving order-of-magnitude expressions for 

transitions. The theoretical part of this investigation also includes experimental 

evaluation of three mathematical modeling approaches to model the inertial and viscous 

propagation of fluid mud gravity currents. These three mathematical modeling 

approaches are, from simplest to the most complex: force-balance, box model and 

shallow water/lubrication theory approximation. The force-balance and box model 

solutions for viscous propagation of non-Newtonian gravity currents were non-existent 

and hence, derived in this investigation. For the inertial propagation of fluid mud gravity 

currents, it was concluded that box model would be the most efficient analytical model 

due to its closed-form solution for all of the release configurations, and its predictive 

accuracy (based upon its experimental evaluation and inter-comparison of the models). 

For the viscous propagation, self-similar solution based on the lubrication theory 

approximation would be the better choice. However, only box model solution can provide 

analytical solution for all possible release configurations which make it a good 

alternative, especially for quick predictions. The results of this study are expected to be 

useful for predicting the temporal fate of fluid mud underflows in coastal dredge disposal 

operations. 

Keywords: Dredge disposal, pipeline disposal, fluid mud, underflows, gravity current, 

box model, shallow water model, force-balance, viscous propagation, non-Newtonian 

fluid, turbidity current. 



iv 

 

DEDICATION 

 

Dedicated to my parents, nana (M. A. Quasem Chowdhury), and nani (Mrs. M. A. 

Quasem Chowdhury), without whom I would not be who I am now. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



v 

 

ACKNOWLEDGMENTS 

 

At first, I express my heartfelt gratitude to my advisor and the chairman of my 

doctoral dissertation committee, Dr. Firat Y. Testik, for his constant encouragement, 

guidance, critical evaluation, and valuable suggestions in conducting this research and 

preparation of this manuscript. Working with him has been a fruitful and enjoyable 

learning experience. I also thank the members of my doctoral dissertation committee, Dr. 

Abdul A. Khan, Dr. Nigel B. Kaye, and Dr. Earl J. Hayter for their critical reviews of this 

manuscript, helpful suggestions, and insightful comments which helped me to make this 

manuscript complete.  

I also highly appreciate the help and cooperation of the members of Flow Physics 

Laboratory, especially Mike Jacobson, Nazli Yilmaz, and Jiwon Mun in conducting the 

experiments. Special thanks are due to Mr. Danny Metz of Glenn Department of Civil 

Engineering, Clemson University for the design and fabrication of the experimental 

setups. Support for this research was provided by the U.S. Army Corps of Engineers 

under grant number W912HZ-09-C-0068 which is gratefully acknowledged.  

Last but not the least; I owe the deepest appreciation to my brothers – Mahfuz and 

Riaz, my younger sister – Shadika, and my wife – Samira for their patience and 

emotional support throughout the entire period of my extended studentship.   



vi 

 

TABLE OF CONTENTS 

   Page 

 

TITLE PAGE ....................................................................................................................... i 

ABSTRACT ........................................................................................................................ ii 

DEDICATION ................................................................................................................... iv 

ACKNOWLEDGMENTS ...................................................................................................v 

LIST OF TABLES ...............................................................................................................x 

LIST OF FIGURES ........................................................................................................... xi 

 

I. INTRODUCTION 

1.1 Statement of the Problem .........................................................................................01 

1.2 Motivation ................................................................................................................03 

1.3 Research Approach and Objectives ..........................................................................06 

1.4 Organization of the Dissertation ..............................................................................07 

 

II. LITERATURE REVIEW 

2.1 Pipeline Dredge Disposal .........................................................................................09 

2.2 Characteristics of Fluid Mud ....................................................................................10 

2.3 Dispersion Processes and the Process of Interest .....................................................13 

2.4 Descent of the Discharged Fluid Mud to the Bed ....................................................16 

2.5 Fluid Mud Wall Jet ...................................................................................................26 

2.6 Fluid Mud Gravity Current ......................................................................................27 

2.6.1 Anatomy of a Gravity Current ......................................................................31 

2.6.2 Propagation Dynamics of a Gravity Current ................................................34 

Inertial Propagation of a Gravity Current ..................................................34 

Transition between Inertial and Viscous Propagation ...............................40 

Viscous Propagation of a Gravity Current .................................................42 

 

 



vii 

 

III. EXPERIMENTAL SETUP, METHODOLOGY AND MEASUREMENT   

TECHNIQUES 

3.1 Experimental Set-up and Release Configurations ....................................................46 

3.1.1 Rectangular Flume ........................................................................................46 

Constant Volume Release ..........................................................................47 

Constant Flux Release................................................................................49 

3.1.2 Square Pool ...................................................................................................53 

3.2 Experimental Methodology and Measurement Techniques .....................................57 

3.2.1 Density and Rheology Measurement ............................................................57 

3.2.2 Flow Rate Measurement ...............................................................................62 

3.2.3 Flow Characteristics Measurement ...............................................................63 

 

IV. PROPAGATION PHASES AND THEIR TRANSITIONS 

4.1 Propagation of Fluid Mud Underflows ....................................................................66 

4.1.1 Two-dimensional Fluid Mud Underflows ....................................................66 

Constant Volume Release ..........................................................................67 

Constant Flux Release................................................................................70 

4.1.2 Radial Axisymmetric Fluid Mud Underflows ..............................................72 

4.2 Propagation Phases ...................................................................................................75 

4.2.1 Two-dimensional Fluid Mud Underflows ....................................................76 

Constant Volume Release ..........................................................................76 

Constant Flux Release................................................................................77 

4.2.2 Radial Axisymmetric Fluid Mud Underflows ..............................................81 

4.3 Transition Time and Position ...................................................................................84 

4.3.1 Constant Volume Release .............................................................................84 

4.3.2 Constant Flux Release...................................................................................88 

 

V. INERTIAL PROPAGATION OF FLUID MUD UNDERFLOWS 

5.1 Mathematical Modeling of Inertial Propagation  .....................................................91 

5.1.1 Two-dimensional Propagation ......................................................................92 



viii 

 

Force-Balance Model .................................................................................94 

Box Model .................................................................................................95 

Shallow Water Model ................................................................................98 

5.1.2 Radial Axisymmetric Propagation ..............................................................100 

Force-Balance Model ...............................................................................101 

Box Model ...............................................................................................102 

Shallow Water Model ..............................................................................103 

5.2 Experimental Evaluation of the Mathematical Models  .........................................104 

5.2.1 Two-dimensional Fluid Mud Gravity Currents ..........................................104 

Constant Volume Release Experiments ...................................................104 

Constant Flux Release Experiments ........................................................111 

5.2.2 Radial Axisymmetric Fluid Mud Gravity Currents ....................................114 

 

VI. VISCOUS PROPAGATION OF FLUID MUD UNDERFLOWS 

6.1 Mathematical Modeling of Viscous Propagation  ..................................................118 

6.1.1 Two-dimensional Propagation ....................................................................118 

Force-Balance Model ...............................................................................119 

Box Model ...............................................................................................120 

Lubrication Theory Model .......................................................................122 

6.1.2 Radial Axisymmetric Propagation ..............................................................123 

Force-Balance Model ...............................................................................124 

Box Model ...............................................................................................124 

Lubrication Theory Model .......................................................................126 

6.1.1 Inter-Model Analysis ..................................................................................127 

6.2 Experimental Evaluation of the Mathematical Models  .........................................130 

6.2.1 Two-dimensional Fluid Mud Gravity Currents ..........................................131 

Constant Volume Release Experiments ...................................................131 

Constant Flux Release Experiments ........................................................138 

6.2.2 Radial Axisymmetric Fluid Mud Gravity Currents ....................................141 

 



ix 

 

VII. CONCLUSIONS AND FUTURE WORK 

7.1 Conclusions  ...........................................................................................................142 

7.2 Major Research Contributions   .............................................................................146 

7.2.1 Experimental Contributions ........................................................................147 

7.2.2 Theoretical Contributions ...........................................................................148 

7.3 Future Work  ..........................................................................................................148 

 

Appendix A. Parameterization of Viscous Transition Time ......................................151 

BIBLIOGRAPHY ..........................................................................................................155 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



x 

 

 

LIST OF TABLES 
 

 

     Table                                                                                                                        Page 

 

 2.1 Typical Conditions for open-water pipeline                                                                       

disposal operations ................................................................................. 11 

 

 2.2 Buoyant jet characteristics at a downward vertical                                                                                  

   distance, z, from the discharge source  .................................................. 24 

 

 3.1  Experimental conditions for the two-dimensional constant 

   volume release experiments in the rectangular flume............................ 49 

 

 3.2 Experimental conditions for the two-dimensional constant 

   flux release experiments in the rectangular flume ................................. 53 

 

 3.3 Experimental conditions for the radial axisymmetric 

   fluid mud underflows in the square pool ............................................... 56 

 

 4.1 Variation of front position with time for two-dimensional 

         and axisymmetric fluid mud underflows in different 

   propagation phases  ................................................................................ 75 

 

 4.2 The transition times and positions for two-dimensional 

   constant volume release experiments in Table 3.1 ................................ 86 

 

 4.3 Experimental transition times and positions for 2-D 

   constant flux release experiments in Table 3.2 ...................................... 89 

 

 4.4 The transition times and positions for radial  

   axisymmetric experiments in Table 3.3 ................................................. 90 

 

      5.1      Best-fit Froude number for constant flux release fluid 

   mud underflow experiments ................................................................ 115 

 

 6.1  Front position parameterization for two-dimensional and  

   Radial axisymmetric gravity current .................................................... 127 

 

 6.2 Proportionality constant, Kv, and coefficient of correlation, R
2
, 

   values for viscous non-Newtonian models for the  

   the experiments in Table 3.1 ................................................................ 138 

 



xi 

 

LIST OF FIGURES 
 

 

    Figure                                                                                                                        Page 

 

 2.1 Conceptual sketch of the dispersion phases                                                                      

of the discharged fluid mud in a typical                                                                             

open water pipeline disposal operation. ................................................. 14 

 

 2.2 Conceptual Sketch of the three discharge                                                               

configurations of the open-water pipeline disposal ............................... 18 

 

 2.3 Typical flow structures of an inertial gravity                                                                     

current illustrating instabilities .............................................................. 32 

 

 3.1 Schematic of the 2-D constant volume                                                                       

release experimental setup ..................................................................... 47 

 

 3.2 Propagation of the constant-volume                                                                              

released fluid mud underflow ................................................................ 48 

 

 3.3 Schematic of the 2-D constant flux                                                                           

release experimental setup ..................................................................... 50 

 

 3.4 A photograph showing the propagation of a                                                                 

constant flux released fluid mud underflow                                                                     

in the rectangular flume ......................................................................... 52 

 

 3.5 Experimental square pool ............................................................................ 54 

 

 3.6 Photographs showing the propagation of a                                                                  

typical axisymmetric fluid mud underflows .......................................... 57 

 

 3.7 Rheological properties of the fluid mud suspension .................................... 61 

 

 4.1 Photograph showing the propagation of two-dimensional                                                    

fluid mud underflow over time .............................................................. 67 

 

 4.2 Frontal structure of fluid mud gravity current ............................................. 68 

 

 4.3 Front position of the fluid mud underflows, xN,                                                            

as a function of elapsed propagation time, t                                                                              

for the two-dimensional, fixed volume release                                                         

experiments listed in Table 3.1 .............................................................. 69 



xii 

 

List of Figures (Continued) 

 

     Figure                                                                                                                        Page 

 

 4.4 Front position of the fluid mud underflows, xN,                                                                     

as a function of elapsed propagation time, t                                                                    

for the two-dimensional, constant flux release                                                   

experiments listed in Table 3.2 .............................................................. 71 

 

 4.5 Photographs showing the propagation of radial fluid                                                       

mud underflows over time. .................................................................... 73 

 

 4.6 Front position of the axisymmetric fluid mud                                                       

underflow, rN, as a function of elapsed propagation                                               

time, t for the radial, constant flux release                                                    

experiments listed in Table 3.3 .............................................................. 74 

 

 4.7 Log-log plots of dimensionless front position,                                                              

Xn, vs. dimensionless time, T, for the 2-D                                                              

constant volume release experimental                                                        

currents listed in Table 3.1. .................................................................... 79 

 

 4.8 Scaled front position, XN, vs. scaled time, T,                                                                        

for all of the 2-D constant-flux release                                                                    

experimental currents listed in Table 3.2. .............................................. 80 

 

 4.9 Log-log plot of dimensionless radial front                                                                      

position, R, vs. dimensionless time, T. ................................................... 81 

 

4.10 Theoretical t** vs. experimental t** ............................................................ 85 

 

 5.1 Schematic description of a                                                                                               

two-dimensional gravity current. ........................................................... 90 

 

 5.2   Schematic description of radially axisymmetric                                                                

gravity current.  ...................................................................................... 99 

 

 5.3 Comparison of the current front position                                                               

predictions by the force-balance model                                                                   

with the 2-D constant-volume                                                                 

release experimental data. .................................................................... 103 

 

 

 



xiii 

 

 

List of Figures (Continued) 

 

   Figure                                                                                                                         Page 

 

 5.4 Comparison of the current front position                                                                 

predictions by the compositional box model                                                                                

with the 2-D constant-volume release                                                            

experimental data. ................................................................................ 105 

 

 5.5 Comparison of the current front position                                                                           

predictions by the suspension box model                                                                                 

with the 2-D constant-volume release                                                          

experimental data ................................................................................. 106 

 

 5.6 Comparison of the current front position predictions                                                           

by the compositional shallow water model. ......................................... 108 

 

 5.7 Comparison of the current front position predictions                                                          

by the suspension shallow water model                                                                  

using deep ambient Fr condition .......................................................... 109 

 

 5.8 Comparison of the current front position predictions                                                    

by the compositional box model                                                                                          

with the experimental data. .................................................................. 111 

 

 5.9 Comparison of the current front position                                                                 

predictions by the compositional box model                                                                                

with the experimental data. .................................................................. 114 

 

 6.1 Conceptual sketch of the box model .......................................................... 118 

 

 6.2 Variation of the viscous proportionality                                                                       

constants, Kv, for the box                                                                                  

and lubrication theory models. ............................................................. 127 

 

 6.3 Comparison of the predictions by the viscous                                                                       

force-balance model with the experimental                                                              

data for the front position of the fluid mud                                                                  

gravity currents in the viscous-buoyancy                                                         

propagation phase. ............................................................................... 132 

 

 

 



xiv 

 

List of Figures (Continued) 

 

   Figure                                                                                                                        Page 

 

 6.4 Comparison of the predictions by the viscous                                                                       

box model with the 2-D constant-volume                                             

release experimental data for the front                                                                    

position of the fluid mud gravity currents                                                            

in the viscous-buoyancy propagation phase. ....................................... 136 

 

6.5       Comparison of the predictions by the viscous                                                                       

lubrication theory model with the 2-D                                                             

constant-volume release experimental data                                                                                 

for the front  position of the fluid mud gravity                                                                            

currents in the viscous-buoyancy propagation phase. .......................... 137 

 

6.6  Comparison of the current front position, xN, predictions                                                 

by the viscous box model solution and lubrication theory                                                     

model with the 2-D constant flux release                                                    

experimental data. ................................................................................ 138 

 

6.7  Comparison of the current front position, xN, predictions                                                 

by the viscous box model solution and lubrication theory                                                     

model with the axisymmetric constant flux release                                                    

experimental data. ................................................................................ 141 

 

 

 

 

 

 



1 

CHAPTER ONE 

 
INTRODUCTION 

 

 

In this chapter, first the problem statement and the motivation for this doctoral 

research are discussed in detail. Then the objectives and approach of this research are 

outlined. Finally, the organization of the dissertation is given. 

1.1 Statement of the Problem 

Each year large volumes of sediments are dredged from rivers, waterways, ports 

and harbors around the world primarily to maintain and enlarge their navigability. An 

estimated 230 million cubic-meters of sedimentary materials are dredged by the U.S. 

Army Corps of Engineers in the United States annually (Hales, 1996). Much of these 

sedimentary materials dredged (especially those from rivers, channels, lakes and 

estuaries) are cohesive fine-grained fluid mud that consists of water, cohesive sediment 

particles (clay and silt), and organic material (McAnally, 2007; Teeter, 1992b). Each year 

the United States spends more than $100,000,000 on dredging operations to remove the 

fluid mud for maintaining safe navigation in U.S. waters (McAnally et al., 2007). Among 

the different dredging methods employed in removing fluid mud, the hydraulic pipeline 

dredging method is one of the most common and economical methods for the 

maintenance dredging of rivers, estuaries or channels (Barnard, 1978). In this method, the 

hydraulically dredged fluid mud is generally pumped and then transported through a 

suitable pipeline to dispose into a designated aquatic disposal area (Neal et al., 1978; 

Schubel et al., 1978). As soon as they are discharged, the fluid mud starts to descend in 
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the water column and then flow away from the impingement point at the bottom in the 

form of an underflow due to the density difference of the fluid mud and the ambient 

water (Nichols et al., 1978). It is estimated that 99% of the disposed fluid mud in an open 

water pipeline disposal operations are transported in the form of fluid mud underflows 

(Nichols et al., 1978; Teeter, 2001). Therefore, the propagations of the underflows play 

the key role in determining the fate of the discharged fluid mud. In order to develop 

predictive models for the fate of the discharged fluid mud, it is of importance to 

understand the propagation dynamics of fluid mud underflows in relation to a number 

possible controlling factors for a particular disposal operation, namely: density and 

rheological properties of the discharged fluid mud, depth of the disposal areas (shallow or 

deep water), release configurations (constant volume or constant-flux release), discharge 

port configurations (above-water, submerged, discharge angle with the horizontal), 

ambient water condition (e.g. presence of current and shear stresses) and bathymetry of 

the bottom (e.g. presence of slope) (Teeter, 2000). The main goal of this research is to 

understand the propagation dynamics of fluid mud underflows based on a thorough 

experimental and theoretical investigation. The investigation focuses on studying the 

propagation dynamics of the underflows in relation to the density, rheological properties 

and release configurations of fluid mud. The influence of other controlling factors such as 

ambient water conditions and bathymetry of the bottom have not been investigated.  
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1.2 Motivation 

It is evident that the central concern in any open-water disposal operation is the possible 

environmental impact from the dispersion of the discharged dredged materials on the 

receiving water environment. This concern is particularly significant in open-water 

pipeline disposal case because the dredged sediments in this case are mostly cohesive 

fine-grained which are most susceptible to dispersion (Barnard, 1978). Having the 

majority of the discharged fluid mud, the fluid mud underflows can be extremely harmful 

to the receiving aquatic environment (Teeter, 2001). They are believed to be highly 

dispersive in nature and may propagate several kilometers away from the source 

depending upon a number of factors such as the bottom slope, the ambient flow field and 

the released volume of slurry among others. For example, Teeter (2002) observed an 

underflow propagation of approximately 3 kilometers for the pipeline discharge of 

approximately 
5 35.2 10 m fluid mud. Hence, as the fluid mud underflow spreads, it may 

overrun everything in its path, killing benthos such as clams and oysters (Nichols et al., 

1978). If there is a high bed shear stress, entrainment of the underflows by the ambient 

water can generate a turbid plume of suspended sediment in the water column (Teeter, 

2001).  This turbid plume may pollute the water quality and block sunlight, harming 

underwater flora and fauna.  Since dredge material is usually disposed in nearby open 

water in pipeline disposal, when the fluid mud spreads over a broad area, it may backfill 

the dredged channel. In addition, the discharged fluid mud may also contain contaminants 

entrained from the dredging site (Mcanally et al., 2007). If the underflow propagates a 

broad area, it may pollute the water in this whole area by releasing those contaminants. 



4 

 

An integral part of the assessing the environmental impacts during open water pipeline 

disposal operation is to predict the post-disposal dispersion behavior and hence, the fate 

of the discharged fluid mud (Brandsma and Divoky, 1976). In addition, the estimations of 

the post-disposal dispersion behaviors and the fate of the discharged fluid mud are also 

required to satisfy the applicable standard for disposal such as meeting the Clean Water 

Act (Teeter, 2000) and other conventions (see Burt and Fletcher, 1997) as well as to 

properly select the location and size of the disposal sites, and the specification conditions 

of the discharge. However, the fates of the discharged fluid mud largely depend on the 

propagation dynamics of the fluid mud underflow formed at the bottom. Therefore, it is 

of great environmental importance to investigate the propagation dynamics of such fluid 

mud underflows. Realizing the importance, a thorough laboratory and theoretical 

investigation was conducted to analyze the propagation dynamics of fluid mud 

underflows. The results of this investigation are presented in this dissertation. 

There have been very limited analytical, laboratory or field investigations that 

thoroughly investigate the behavior of fluid mud underflows, generated in a typical open 

water pipeline disposal operation. Laboratory and field studies had been carried out by 

Neal et al. (1978), Nicholes et al. (1978), and Thevenot et al. (1992) on the short and long 

term fate of discharged fluid mud in a typical open water pipeline disposal operation. 

Those studies mostly focused on the estimation of turbidity generation by fluid mud 

dispersion. Recently, Teeter (2002) conducted field experiments to evaluate their 

proposed model for predicting dispersion in open water pipeline disposal operation in 

Teeter (2001). However, they mainly focused on evaluating their numerical model with 
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the field data, rather than analyzing the propagation dynamics of fluid mud. As it will be 

presented in the Chapter 4, 5 and 6 of this dissertation, after the initial short duration of 

its formation at the impingement point, the fluid mud underflow during a typical open 

water pipeline disposal operation is generally a gravity current of fluid mud. Since 

gravity current is a ubiquitous phenomenon, different forms of gravity currents have been 

studied in many fields (see Simpson, 1997 for different applications). Therefore, there is 

a large body of literature on different forms of gravity currents (especially, saline gravity 

currents); the propagation dynamics of which is now well understood based a large 

number of experimental studies. Based on the understanding of their propagation 

dynamics, different types of simple analytical mathematical models (e.g. force-balance, 

box model, shallow water model, lubrication approximation) have been used successfully 

to approximate the propagation of the gravity currents. However, the earlier theoretical 

investigations on fluid mud gravity flow (e.g. Teeter, 2002 and Van Kessel and 

Kranenburg, 1996) mainly provided complex numerical models, rather than simple 

mathematical models that provide analytical solutions for the quick prediction of the 

propagation. One of the goals of this investigation is therefore to investigate the flow 

dynamics of the fluid mud underflows in four different laboratory set-ups and then 

evaluate the predictions of the some widely-used analytical mathematical models using 

our experimental observations. 

An important complexity associated with the fluid mud underflows is that fluid 

mud suspensions exhibit profound non-Newtonian behavior (Teeter, 1992b). Therefore, 

their propagation dynamics when the viscous force becomes pronounced will be 
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governed by their non-Newtonian behavior. There has not been a thorough understanding 

how the non-Newtonian rheological characteristics influence the propagation dynamics 

of a gravity current, mainly because of the lack of experimental studies. Therefore, an 

important focus of this investigation is determining the impact of the rheological 

properties on the propagation dynamics of fluid mud underflows. 

Apart from the open-water pipeline disposal case, fluid mud underflows may also 

occur naturally. For example, they can be generated from the cohesive beds after they are 

fluidized by waves and currents (McAnally et al., 2007), submarine landslide (Jiang, 

1993a;1993b), mountain slide by the torrential rain (Mei and Yuhi, 2001). This study 

would also be useful to understand the propagation dynamics of those naturally occurring 

fluid mud gravity flows. 

1.3 Research Approach and Objectives 

The goal of this research is to investigate the propagation dynamics of fluid mud 

underflows. Our approach in this investigation is in two fronts: laboratory experiments 

and then mathematical modeling of the experimental observations of the fluid mud 

underflows. Though the fluid mud underflows are three-dimensional (i.e. radial, 

henceforth the term radial and three-dimensional are used interchangeably) in open water 

pipeline disposal operation, we first investigated two-dimensional fluid underflows, a 

simplified representation of radial underflows. In two-dimensional investigation, 

laboratory experiments were carried out for fixed volume and constant flux release of 

dense fluid mud. The constant flux release experiments represent the underflows 
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generated from the continuous discharge of fluid mud in a typical open water pipeline 

disposal operation. However, once the discharge of fluid mud is interrupted or completed 

in a particular disposal operation, the underflow may still propagate resembling fixed 

volume underflows. Investigation is underway for the radial fluid mud underflows. The 

major objectives of this work are the followings: 

 To investigate the propagation dynamics of the two-dimensional and radial 

fluid mud underflows through laboratory experiments. 

 To determine how the non-Newtonian rheology of the fluid mud influences the 

dynamics of the underflows. 

 To model the flow characteristics of fluid mud underflows. Where available, 

existing mathematical models are used and when needed, new models are 

derived. 

 To model the transition of the propagation phases from one phase to another 

phase. 

 To provide a large data set of the propagation characteristics of fluid mud 

underflows. 

1.4 Organization of the Dissertation 

This dissertation is organized as follows. In Chapter 2, a literature review related 

to the fluid mud underflows in coastal dredge disposal is given. Experimental set-ups, 
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methodology and measurement techniques for the experimental investigation of fluid 

mud underflows are provided in Chapter 3. The propagation phases (e.g. Jet/Slumping, 

inertia-buoyancy and viscous-buoyancy phases) and the transition among the propagation 

phases of the fluid mud underflow experiments are discussed in Chapter 4. Then, the 

inertial propagation (inertia-buoyancy phase) of the fluid mud underflows is 

approximated with the three existing mathematical models (force-balance, shallow water 

and box model) in Chapter 5. In Chapter 6, the force-balance and the box model solution 

for non-Newtonian viscous propagation (viscous-buoyancy phase) are derived. It also 

provides the modeling of the viscous propagation (viscous-buoyancy phase) of the fluid 

mud underflows with these two newly derived models (force-balance and box models) 

and existing lubrication theory approximations. They are followed by the conclusions and 

future works in Chapter 7. 
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CHAPTER TWO 

 

LITERATURE REVIEW 

 
 

In this chapter, a review of literature related to the fluid mud underflows 

generated in a typical open water pipeline disposal operation is provided. In Section 2.1, 

the relevant technical information on the open pipeline dredge disposal is summarized. 

Then, the characteristics of fluid mud suspension are discussed in Section 2.2. Section 2.3 

presents the dispersion processes that the discharged fluid mud experiences in a typical 

open water pipeline disposal operation. Then, the subsequent sections are devoted in 

illustrating the dynamics and characteristics of the dispersion processes. The discussion is 

mostly focused on the process of interest of this investigation (i.e. fluid mud underflows). 

2.1 Pipeline Dredge Disposal 

Hydraulic pipeline dredging is usually carried out for the maintenance dredging of 

rivers, estuaries or channels located near rivers and estuaries. Generally, any dredging 

process consists of three phases: removal or excavation of the dredged materials from the 

channel bottom using a suitable dredger, transportation of the dredged materials by a 

suitable method and then, utilization or disposal of the dredged materials (USACE, 

1983). In order to remove them from channel bottom in a hydraulic dredging operation, 

the fluid mud are generally pumped and then transported through a suitable pipeline 

(Henry et al., 1978). Due to its economic viability, a common method of disposing fluid 

mud in hydraulic pipeline dredging operations is to discharge them into designated open-

water or occasionally side channel disposal areas near the dredging site (Neal et al., 1978; 
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Barnard et al., 1978). The disposal area is generally located within 1000 meters from the 

dredging site (Johnson, 1974; Barnard 1978). The discharge port (i.e. end of the pipeline) 

may be either above water or submerged and the dredging and hence, the disposal 

operation is normally continuous, but occasionally may be interrupted by mechanical 

breakdown, ship traffic, or bad weather (Barnard, 1978). The important parameters to 

characterize a hydraulic pipeline disposal operation are:  the flow rate of the discharged 

fluid mud, the water depth at the discharge location, characteristics of dredged materials, 

discharge configuration, solid contents and bulk density of the fluid mud, and pipeline 

diameters among others. Though the values of the parameters can be widely varied 

depending on the particular maintenance dredging operations, Table 2.1 shows typical 

values for these parameters. The disposed materials in the form of fluid mud in open-

water pipeline disposal operations are mainly fine-grained sediments such as silt, clay or 

both (Nichols et al., 1978). 

2.2 Characteristics of Fluid Mud 

Fluid mud is generally considered to be a cohesive fine-grained sediment 

suspension in which settling is substantially hindered. The fine grained sediments 

primarily are clay- and silt-size particles; with size less than 74 microns (McAnally et al., 

2007a; Teeter, 1992b). A typical fluid mud sample with low organic content usually 

consists of 50-70% clay-sized particles and silt-sized particles are usually secondary to 

clay. Larger particles (e.g. sand) are occasionally entrained into the fluid mud, but their 

rapid settling tendency keeps them to less than a few percent. Different types of organic 
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matter and contaminants can also be entrained from the dredging site in the fluid mud 

(Mcanally et al., 2007a). Unlike non-cohesive suspension, fluid mud can persist in a 

fluid-like state for long periods due to largely the cohesive nature of the suspended 

particles. In the context of dredging, the fluid mud suspension mass concentration, Cm 

ranges from about 50 to 350 dry-g/L, corresponding to bulk wet density, ρm ranges from 

1.05 to 1.25 wet-g/cu-cm or to volume concentration, Cv [ ( )v s s wC V V V  , where Vs and 

Vw are the volume of suspended sediment and water in the prepared suspension, 

respectively] of 0.02 to 0.13 cm
3
 solids/cm

3
 mud (Teeter, 1992b). 

Table 2.1. Typical conditions for open-water pipeline disposal operations 

(Barnard, 1978; Brandsma and Divoky, 1976; USACE, 1983) 

 

 

 

 

Parameters Typical Values 

Pipeline diameter, d0 (m) 0.1-0.5 

Discharge velocity, u0 (m/s) 4-6 

Depth of water, H  (m) 6-12 

Type of dredged material fine-grained (silt, clay) 

Concentration of the fluid mud (g/L) 50-350 

Solid contents of the fluid mud (%) 10-20 

Volume concentration of the fluid mud, Cv 0.02-0.13 

Bulk densities of the fluid mud (kg/m
3
) 1050-1250 

Discharge angle below the horizontal (˚) 

 

0, 90 

  

Behaviors of cohesive fluid mud vary widely depending on the compositions (e.g. 

particle size distributions, organic contents and pore water chemistry), state, imposed 

shear stress, shear history and time. Therefore, fluid mud from different locations can act 
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differently, even at the same concentration or density (Teeter, 1992a; 1992b). However, 

they always exhibit profound non-Newtonian behavior, exhibiting strong dependency of 

viscosity with shear rate (Teeter, 1992a; Whitehouse et al., 2000). Non-Newtonian 

behavior can be a nonlinear stress-strain relationship (referred to as viscoelastic or 

viscoplastic fluid), or yield stress below which a stress produces no deformation (pseudo-

plastic) depending on the characteristics of a particular fluid mud sample (Teeter, 1992b; 

McAnally, 2007a). Thixotropy is another important characteristic of fluid mud when 

subjected to constant, sufficiently high strain or stress. Hence, the rheological properties 

(e.g. viscosity, yield stress) can gradually decrease in time (McAnally, 2007a). 

Many constitutive models have been applied to describe the non-Newtonian 

behavior of fluid mud suspensions. The general form of expression which is mostly used 

to describe its rheological properties is called the Hurschel-Buckley constitutive equation, 

defined as (Huang and Garcia, 1998): 

1

   .

n

y

u u
m

z z
 


 

 
 

 (2.1) 

Here   is the shear stress, y  is the yield stress, u is the x-velocity component, u z   is 

the shear rate, n is the flow behavior index which is a positive real number, and m is the 

consistency index of the suspension. y , m and n are determined experimentally. When 

n=1, this expression simplifies to the Bingham plastic model equation. 
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The Herschel-Bulkley model is often simplified to the Ostwald power-law model 

given in Eq. (2.2), which can be considered as an asymptotic case of the Herschel-

Bulkley model with yield stress, 0y  . 

1

   .

n
u u

m
z z




 


   

(2.2) 

The power-law model describes pseudo-plastic (i.e. shear-thinning) fluids for the case of 

0 1n  , dilatants or shear-thickening fluids for the case of 1n  , and Newtonian fluids 

for the case of n = 1. Often fluid muds are shear thinning, but have a lower-limit of 

viscosity at high-shear rates (see Teeter, 1992b; McAnally, 2007a, Huang and Garcia, 

1998 and Coussat and Piau, 1995). The rheological properties of fluid mud have also 

been modeled using the Bingham plastic model especially for high shear rates (see Mei 

and Liu, 1987; Van Kessel and Kranenburg, 1996; and Huang and Garcia, 1997). 

2.3 Dispersion Processes and the Process of Interest 

In a hydraulic pipeline dredging operation, the dredged material is pumped as fluid 

mud through a pipeline and then discharged at the disposal site as a continuous stream. 

As soon as the fluid mud exits the pipeline, any coarser material (e.g. gravel, clay balls or 

coarse sand) will immediately settle to the bottom of the disposal area and usually 

accumulates directly beneath the discharge point (USACE, 1983). The dispersion of the 

remaining vast majority of the pipeline-discharged fluid mud can be divided into three 

distinct processes (Thevenot et al., 1992): 

1. Initial descent of the discharged fluid mud and impingement on the bed 
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2. Underflows of fluid mud on the bottom. 

3. Passive dispersion of the suspended sediments in the water column, often called 

turbidity plume. 

A conceptual sketch of the three dispersion phases is shown in Fig. 2.1. 

 

 
Figure 2.1. Conceptual sketch of the dispersion phases of the discharged fluid mud                                       

in a typical open water pipeline disposal operation. 

 

Though the dispersion of pipeline-discharged fluid mud usually consists of the 

three processes, the nature, degree and extent of each dispersion process are controlled by 

the discharge conditions of a particular disposal operation and mainly dependent on the 

following controlling factors:  characteristics of the dredged fluid mud (e.g. size 

distribution of sediment particles, solid concentration, and composition), depth of the 

disposal areas (shallow or deep water), discharge port configurations (above-water, 
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submerged, discharge angle with the horizontal), ambient water condition (e.g. presence 

of current and shear stresses) and bathymetry of the bottom (e.g. presence of slope). The 

first dispersion phase is regarded as the near-field dispersion process whereas the second 

and third processes are regarded as far-field dispersion processes. Far field dispersion 

processes are of greatest environmental concern (Thevenot et al., 1992). The turbidity 

plume (i.e. third dispersion process) is usually formed by the very fine particles during 

the interaction of descending buoyant jet of fluid mud with the ambient water and they 

can be dispersed by a number of processes: turbulent diffusion, shear dispersion and 

advection by current among others (Neal et al., 1978). It is estimated that the turbidity 

plume accounts for only 1-3% by mass of the discharged fluid mud while the remaining 

fluid mud disperse as fluid mud underflows from the impingement point (Neal et al., 

1978). Therefore the main focus of this research is on the fluid mud underflow which is 

the key propagation process of the two far-field dispersion processes as it disperses the 

majority of the discharged slurry in a typical open water pipeline disposal operation. The 

fluid mud underflow from the impingement point can also be divided into two main 

regimes (Chen, 1980; Papakonstantis and Christodoulou, 2010): momentum-dominated 

wall jet and buoyancy-dominated fluid mud gravity flows. Clearly, these two regimes of 

fluid mud underflows are generated after the buoyant jet of the slurry impinges the 

bottom and hence, the source of the inflow for the fluid mud underflows is at the 

impingement point of the buoyant jet. Hence, the characteristics of the buoyant jet of 

fluid mud will play vital role for the propagation of fluid mud underflows. Therefore, in 

the next section, a brief review of the buoyant jet characteristics is given which is 
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followed by the detailed discussion on the two regimes of fluid mud underflows. Note 

that there could be another propagation regime in between of these two regimes which is 

characterized by a balance between the radial momentum flux and the rate of change of 

the inertial force (Papakonstantis and Christodoulou, 2010). However, there have not 

been enough evidences that this regime may occur in most of the flow conditions and the 

physics behind this regime was limited in scope. It was observed in the experimental 

study by Kotsovinos (2000) on axisymmetric intrusion of saline gravity flows. Hence, 

this regime will not be considered in this dissertation. 

2.4 Descent of the Discharged Fluid Mud to the Bed 

After exiting the discharge port (e.g. end of the pipeline), the majority portion of 

the discharged fluid mud starts to descend in the water by forming a buoyant jet. The 

buoyant jet of the fluid mud is created due to the high momentum of the discharged fluid 

mud as well as the density difference between the fluid mud and the water (Hall et al., 

2010). Since the fluid mud jet contains sediments unlike single-phase jet (e.g. jet of brine 

solution), it is a two-phase buoyant jet. However, the analysis of the two-phase sediment-

laden turbulent jets is still under active investigation both theoretically and 

experimentally, compared to single-phase jets (Jiang et al., 2005). Therefore, definitive 

conclusions are not available for many physical characteristics of the two-phase 

sediment-laden buoyant jets. However, limited investigations of two-phase sediment 

laden jets such as in Jiang et al. (2005) and Hall et al. (2010) revealed that their behavior 

mostly conform to their single-phase counterparts. To our knowledge, none of the 
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investigations on two-phase jets used cohesive particle such as clay or silt in their 

investigations. Only Thevenot et al. (1992) provided some experimental observations on 

the certain aspect of buoyant jet from cohesive mud slurry. However, their investigation 

is far from complete. Therefore, due to the scarcity of the studies on two-phase cohesive 

particle-laden buoyant jets, we will mostly use the concept of single-phase buoyant jet 

when it is not available for two-phase jet. 

As noted earlier, there can be a number of discharge configurations in open water 

pipeline disposal operations, mainly: submerged downward (Fig. 2.2a), submerged 

horizontal (Fig. 2.2b) and above water horizontal (Fig. 2.2c). In a particular disposal 

operation, when the dispersion in the water column or free surface needs to minimized, 

submerged discharge configuration is expected to be chosen since there is no interaction 

of the descending jet with the free surface in this configuration (Thevenot et al., 1992). 

On the other hand, if the minimization of the propagation distance of the bottom 

propagation is desired, above surface discharge would be a good choice. Choosing an 

above surface vertically downward discharge would not be practical since horizontal 

discharge will be more effective to minimize the propagation distance of the bottom 

propagation. Conceptual sketches of the three discharge configurations are shown in Fig. 

2.2. Please note that the results of the investigation on this dissertation only focus on the 

submerged downward configuration (Fig. 2.2a). It is expected that the information gained 

from this investigation would be the basis for the other two discharge configurations. 
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Figure 2.2. Conceptual Sketch of the three discharge configurations of the open-water 

pipeline disposal, a) submerged vertical, b) submerged, and c) above-water horizontal 

configurations. 

As is seen in Fig. 2.2a, the fluid mud with a density m  is discharged with a 

velocity, 0u  from the discharge port of diameter, 0d
 
in open water with density,

 a   

having a depth of H. The distance between the discharge port to the bottom is z* and the 

jet impinges the bottom at an angle, θ. The main flow parameters are the initial (at the 

source) specific volume flux Q0, initial momentum fluxes M0 and its initial buoyancy flux 

B0 defined for the round jet as (Jirka and Doneker, 1992): 

(a) 

(c) (b) 
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Here, 0

( )a m

a

g
g

 




  is the negative buoyancy gradient which is also called 

apparent/reduced acceleration of gravity at the source. The buoyant jet of the slurry 

would have jet like characteristics depending on its initial volume flux, Q0, initial 

momentum fluxes, M0, and plume like characteristics depending on its initial buoyancy 

flux, B0, (Fischer, et al., 1981). The densiometric Froude number Fr0 and Reynolds 

number 0Re  at the source are defined as: 

0 0 0 0Fr u g d
 

0 0 0Re u d   

Here   is the viscosity of the slurry. If the source Reynolds number, 0Re  is such that

0Re 3000 , it ensures fully turbulent source flow conditions and viscous effects then can 

be neglected (Cavalletti and Davies, 2003). Note that the above definitions of 0Re  and the 

fully turbulent source flow condition are for a buoyant jet of Newtonian fluid while the 

discharged fluid mud in pipeline disposal operation are generally non-Newtonian. To the 

best of the author‟s knowledge, there has not been any experimental study which 

provided a condition for turbulent source flow based on a non-Newtonian Reynolds 

number. 



20 

 

The simplest configuration for open-water pipeline disposal operation is the 

vertically downward submerged discharge in stagnant water (see Fig. 2.2a), which is the 

focus of this dissertation. In this configuration, since the discharge is submerged there is 

no interaction with the water surface. Having no horizontal shear in the water column, the 

dilution in the water column will also be minimal. Since the receiving water is stagnant 

and homogeneous, the turbulent buoyant jet behavior will be dependent on Q0, M0, B0 

and the distance from the source point, z, provided that the buoyant jet is fully turbulent 

so that the viscous effects can be neglected (Fischer et al., 1979). Two important lengths 

scales, discharge length scale - Ql  and jet/plume transition length scale - Ml , derived 

from dimensional analysis describe the relative importance of the fluxes (i.e. Q0, M0 and 

B0) on the behavior of the buoyant jet (Fischer et al., 1979: Jirka, 1992) where: 

0

1 2

0

Q

Q
l

M
  

3 4

0

1 2

0

M

M
l

B


 

The first length scale, Ql is important in the analysis of jet and the second, Ml  includes the 

effect of buoyancy. When Qz l the flow is fully developed jet and when ( )Qz o l , the 

flow is controlled by the jet exit geometry. The ratio Q Ml l is called jet Richardson 

number. When Mz l
, 

the flow is momentum-driven, hence jet-like, and buoyancy 

effects are secondary, and when Mz l  the flow is buoyancy-driven, hence plume-like. 

Previous investigations on single-phase buoyant jets revealed that the flow will be jet-like 
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when j Mz p l    where pj is a constant which has been found to vary between 0.5 – 1 [e.g. 

0.53jp  in Chen and Rodi (1980), 0.6 in Wang and Law (2002) and 1 in Papanicolaou 

and List (1988)]. On the other hand, the flow will be plume-like when p Mz p l  where pp 

is a constant which has been found to vary between 5 – 6 [e.g. 5.3pp  in Chen and Rodi 

(1980), 6 in Wang and Law (2002) and 5 in Papanicolaou and List (1988)]. The region 

between 
j p

M

z
p p

l
   is the transitional region where both buoyancy and momentum 

govern the behavior of the buoyant jet. Therefore, given enough flow depth (i.e. 6 Mz l

), all buoyant slurry jets will eventually act as plumes. Determining whether a buoyant jet 

of the discharged fluid mud shows a plume-like or jet-like behavior at a particular instant 

(especially at the impingement point) is of importance since it may dictate the behavior of 

the bottom propagation of the fluid mud from the impingement point. For example, if 

discharge is carried out in very shallow water, the buoyant jet may impinge the bottom as 

a jet, since it did not travel enough distance to transition into a plume. In this case, from 

the impingement point, the fluid mud may spread in all directions as a wall jet before 

making a transition into a radial gravity current. On the other hand, if there is a sufficient 

flow depth, the initial buoyant jet will impinge the bottom as a plume. In this latter case, 

an extended wall jet may not be expected and buoyancy would dominate in the bottom 

propagation of the discharged fluid mud. 

The descent of the buoyant jet of the fluid mud until its impingement to the 

bottom may be classified into two main distinct regions: zone of flow development and 
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zone of developed flow (Fischer, et al., 1981; George, 1980). The initial phase of the 

buoyant jet behavior occurs in the vicinity of the outlet port called zone of flow 

development region. In this region, the axial velocity maintains the source value (Jiang et 

al., 2005). The shearing action at the edge of the jet causes a decrease in the edge 

velocity, but it does not affect the velocity near the center of the jet (George, 1980). For a 

single-phase turbulent jet of high Re, the flow development region extends a length of 

about 6d0 (Rajaratnam, 1976). Physically, the limit of this region is where the mixing 

zone penetrates the center of the jet (George, 1980). Jiang et al. (2005) estimated the 

length of zone of development region for two-phase jets by an empirical expression, 

while Hall et al. (2010) found the same length of single phase jets. For two-phase 

sediment-laden jet, Jiang et al. (2005) reported that, in a dilute sediment-laden jet, if the 

sediment density is close to that of the fluid, the zone of flow development for the 

sediment velocity should be similar. However, since the sediment is typically heavier, the 

zone of flow development for the sediment velocity will be longer for a downward jet 

due to the sediment inertia. A detailed experimental investigation is needed for an 

accurate quantification of the length of the zone of flow development for fluid mud 

buoyant jet. Dilution and propagation are minimal in the zone of flow development and 

the transverse plume velocity and concentration profiles in this zone develop from top-hat 

to Gaussian shape (Thevenot et al., 1992). 

In the developed flow region, starting right after the flow development region, the 

buoyant jet continues to expand and the mean velocity and concentration decays (Fischer 

et al., 1979). Unabated entrainment that is driven by the turbulent eddies occurs there. 
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The mean velocity and concentration profiles in this zone are self-similar; hence, they can 

be expressed in terms of a maximum value (measured at the jet centerline) and a measure 

of width (Fischer et al., 1979). The functional forms of velocity and concentration 

profiles are Gaussian (Fischer et al., 1979; Wang and Law, 2002) for single phase flows. 

Jiang et al. (2005) reported Gaussian velocity and concentration profiles also for the 

sediment-laden two phase jet flows. As the buoyant jet descents, the centerline velocity 

of the jet is decreased and the energy of the jet is diffused into the surrounding fluid. This 

process continues until all the initial energy of the jet is dissipated, or until the influence 

of a boundary causes an impinging flow region (George, 1980). 

The buoyant jet characteristics at a distance, z, from the port will depend on 

whether it behaves as a momentum-dominated jet or buoyancy-dominated plume. Some 

of the expressions for the important characteristics of both types of flows are tabulated in 

Table 2.2. Note that the expressions tabulated in Table 2.2 for the buoyant jets of the 

fluid mud are for the zone of developed flow region. Perhaps, the behavior of the buoyant 

jets of the discharged fluid mud at the impingement point of the bed is most relevant to 

open water pipeline disposal operations because the impingement point characteristics 

dictate the behavior of the fluid mud underflow from the discharge point. 
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The important local jet parameters at the impingement point are: local specific 

momentum flux M, buoyancy flux B, volume flux Q, and apparent acceleration to 

gravity, g . These parameters are generally different from the initial ones at the source 

(Papakonstantis et al., 2010). These local parameters at the impingement point are 

generally estimated using well-established integral models (e.g. Wang and Law, 2002; 

Fan, 1967; Jirka, 2004) or analytical solutions (e.g. List and Imberger, 1973; 

Papanicolaou and List, 1988). In integral models, the conservation equations of mass, 

momentum and buoyancy fluxes are integrated over the jet cross section to yield a set of 

Table 2.2. Buoyant jet characteristics at a downward vertical distance z from the 

discharge source. The information was compiled from a number of sources (e.g. Wang 

and Law, 2002; Fischer et al., 1979; Papanicolaou and List, 1988). Notations:  z – vertical 

distance from the discharge port, x – axial distance from the center of the jet; ,jw pw  , 

,jc pc  ,
jwk  and 

pwk  are all empirical constants for the respective expressions ( w - 

velocity and C – concentration; Subscripts: c- center line, 0 – initial value at the source, j 

- jet, p – plume). 

 

 

 

 

 

Characteristics Jet Plume 

Mean velocity distribution 

across buoyant jet, w 

2exp[ ( ) ]c jww w x z 
 

0.103 0.115jw    

2exp[ ( ) ]c pww w x z 
 

0.126 0.136cw    

Mean concentration 

distribution across buoyant, C 

jet, C 

2exp[ ( ) ]c jcC C x z 
 

0.126 0.136jc    

2exp[ ( ) ]c pcC C x z 
 

0.109 0.125pc    

Decay of the center-line axial 

velocity, wm 

0 0c jww k w d z
 

5.8 6.8jwk    

1 3 1/3

0c pww k B z
 

3.4 4.13pwk    

Centerline mean 

concentration, Cm 

0 0c jcC k C d z
 

4.96 5.4jck    

1 2 2 3

0 0 ( )c pc mC k Q M z l
 

9.1 11.3pck    
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ordinary simultaneous differential equations. The solution of these equations yields the 

parameters at the impingement point (Koh and Brooks, 1975; Wang and Law, 2002). In 

submerged vertically downward discharge configuration, if there is no shear stress in the 

water column to interact with the descending jet, the impingement angle, θ (see Fig 2.2a) 

is expected to be close to 90  which is in line with the experimental observations by 

Papakonstantis et al. (2010).  The impingement angle, 90  signifies that fluid mud 

spreads away approximately in equal magnitude in all directions (Papakonstantis and 

Christodoulou, 2010) and hence, the shape of the propagation fluid mud from the 

impingement point will be circular and radially axisymmetric. 

For the horizontal discharge configuration (Fig. 2.2b and 2.2c), the trajectory of 

the descending jet would be elongated as it is qualitatively shown in Fig. 2.2b and 2.2c. 

In these discharge configurations, the impingement angle, θ is not expected to be 90 due 

to the elongation of the trajectory as observed by Papakonstantis and Christodoulou 

(2010). They found that the bottom propagation in this case is non-circular, not radially 

symmetric and the downstream propagation is more pronounced that that of the upstream 

one.  A more in-depth experimental investigation is needed to relate the impingement 

angle, θ to the discharge angle, θ0. Since the source of the inflow for the fluid mud 

underflows is at the impingement point, the local parameters at the impingement point 

(M, B, Q, g ) rather than the discharge source parameters (M0, B0, Q0, 0g ) should be taken 

as the source parameters for the fluid mud underflows. Although a steady source 

constantly feeds the underflow from the impingement point, the propagation rate is 
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expected to slow down with time and distance (especially for the horizontal bottom) as 

the kinetic energy of the slurry is spent overcoming the friction of the bed and internal 

friction between spreading underflow and overlying water (Dankers, 2002). 

2.5 Fluid Mud Wall Jet 

Generally, from the impingement point, the horizontal propagation of fluid mud 

may initiate as a momentum-dominated wall jet. In this regime, momentum of the 

flowing fluid mud far outweighs its buoyancy (Papakonstantis and Christodoulou, 2010). 

It is subject to driving inertia force, retarding viscous force, and gravitational force that 

suppresses vertical mixing and enhance lateral propagation (Didden and Maxworthy, 

1982). From dimensional analysis, the temporal variation of two-dimensional and radially 

axisymmetric propagation buoyant wall jets can be expressed as (Chen, 1980): 

Two dimensional: 
1/4 2/3

1( ) .Nx t C M t  (2.3) 

Radial: 
1/4 1/2

2( ) .Nr t C M t

 
(2.4) 

Here, xN and rN are the front position of the jet with impingement point as the origin, t is 

time from its initiation at the impingement point, and C1 and C2 are empricial constant. 

As the jet spreads, the momentum of the jet reduces and the effect of buoyancy becomes 

more pronounced. When the buoyancy of the fluid mud outweighs its momentum, the 

fluid mud spreads as a radial gravity current. To the best of the author‟s knowledge, there 

has not been any experimental investigation to accurately determine the transition time 

scale from a radial jet to a gravity current. However, the transition is expected to be 



27 

 

within short duration (Papakonstantis and Christodoulou, 2010) which is in line with the 

finding of the experiments conducted in the present investigation (see Chapter 3). From 

the above discussion, it is expected that the momentum-dominated wall jet of the fluid 

mud is generally short-lived. Therefore, the radial propagation of the fluid mud from the 

impingement point will occur mostly as a gravity current for most of its propagation, 

which is the main focus of this dissertation. The next section presents a detailed 

discussion on the fluid mud gravity currents. 

2.6 Fluid Mud Gravity Current 

As is discussed in the previous section, fluid mud underflows propagate as a 

radial gravity current either after the wall jet regime or from the impingement point 

(when the wall jet is absent) in a particular discharge flow condition. The fluid mud 

gravity current is caused by the density difference between the dense fluid mud and less 

dense ambient water (Bonnecaze et al., 1995a). This radial gravity current generally can 

be approximated as a constant flux release gravity current until the end of the disposal 

operation since the source at the impingement point releases fluid mud at a constant rate, 

Q. However, when the disposal operation ends or is interrupted due to, for example, a 

mechanical breakdown, the propagation of the gravity current can be regarded as the 

fixed volume released case since more volume of fluid mud is not added from the source. 

Therefore fluid mud gravity currents from both constant flux and fixed volume releases 

are investigated in our study and the relevant literature is reviewed in this Section. 
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As noted earlier, the radial fluid mud gravity current in a typical open water 

pipeline disposal operation can be axisymmetric (for vertically downward discharge 

configuration) as well as radially asymmetric (for horizontal discharge configuration).  

However, to our knowledge, there has been only one experimental study (Papakonstantis 

and Christodoulou, 2010) that investigated the dynamics of a radial saline gravity current 

formed from a horizontal discharge configuration. Papakonstantis and Christodoulou 

found that the downstream propagation of gravity currents in this case is more 

pronounced than the upstream propagation. However, their investigation could not relate 

that effect with the source parameters, thus leaving this research area open for new 

investigation. Since a thorough understanding on the asymmetric radial gravity current 

generated from horizontal discharge is lacking at this point, the following discussion will 

mostly focus on axisymmetric radial gravity currents, which is also the focus of this 

dissertation. 

The propagation rate and the extent of radially axisymmetric fluid mud gravity 

currents depend on a number of source parameters at the impingement point, such as: 

inflow rate Q, solid concentration and density of the propagation fluid mud, particle size 

distribution and density of the suspended sediment in the fluid mud, and the rheological 

properties of the fluid mud among others (Nichols et al., 1978; Teeter, 2000). In addition, 

the dynamics of the flowing axisymmetric fluid mud gravity current may depend on the 

bottom topography and hydrodynamic conditions in the ambient water (Nichols et al., 

1978; Barnard, 1978). For example, the flow dynamics of a gravity current on a 

horizontal bottom would differ greatly from a gravity current on a sloping bottom (see 
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Bonnecaze and Lister, 1999; Huppert, 1982b and Van Kessel and Kranenburg, 1996). 

Besides, the hydrodynamics conditions such as the presence of waves or current in the 

ambient water would further complicate the flow of a radially propagation gravity current 

(see Hallworth et al., 1998; Huppert, 1998; Robinson et al., 2006 and Ng and Fu, 2002). 

This research is focused on the simplest case: horizontal bottom with no currents and 

waves and hence, the following discussions will be limited to that case. 

There have been very few analytical, laboratory and field investigations which 

thoroughly investigate the behavior of fluid mud gravity currents generated in open water 

pipeline disposal operations. Laboratory and field studies had been carried out by Neal et 

al. (1978), Nicholes et al. (1978), and Thevenot et al. (1992) on the short and long term 

fate of discharged fluid mud in a typical open water pipeline disposal operation. Those 

studies mostly focused on the estimation of turbidity generation by fluid mud dispersion. 

Recently, Teeter (2002) conducted field experiments to evaluate his proposed model 

(PDFATE – Pipeline Disposal Fate model) for predicting dispersion in open water 

pipeline disposal operations. However, Teeter (2001) mainly focused on evaluating the 

numerical model with field data, rather than analyzing the propagation dynamics of fluid 

mud. Therefore, those limited investigations could not provide a thorough understanding 

on the dynamics of the fluid mud gravity currents generated in open water pipeline 

disposal operations and required information in many aspects is lacking. However, the 

subject of gravity currents is an active area of research for the last few decades (see 

Ungarish, 2009; Huppert, 2006; Kneller and Buckee, 2000; Meiburg and Kneller, 2010; 

Simpson, 1997; for review of the recent research on various forms of gravity currents). 
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There have been extensive experimental and theoretical studies on the propagation 

dynamics of different forms of gravity currents, especially with saline gravity currents 

(e.g. Huppert and Simpson, 1980; Rottman and Simposn, 1983; Huppert, 1982 and 

Didden and Maxworty, 1982) and non-cohesive particle-driven currents (e.g. Bonnecaze 

et al., 1993; Bonnecaze et al., 1995; and Gladstone et al., 1998). Evidently, fluid mud 

gravity currents are compositionally and rheologically different than the saline and non-

cohesive particle-driven currents investigated in those studies.  A fluid mud gravity 

current is a cohesive, fine-grained particle driven current, and the suspension has 

profound non-Newtonian behavior (see Section 2.2). Hence, the propagation dynamics 

are expected to be influenced by their composition and rheology. Despite the differences, 

many of the concepts, results, and conclusions of these prior investigations provide broad 

background for the analysis of the propagation dynamics of fluid mud gravity currents. 

Most insights gained on gravity currents were from two-dimensional experimental 

studies (e.g. Huppert and Simpson, 1980; Rottman and Simposn, 1983; Huppert, 1982 

and Didden and Maxworty, 1982; Bonnecaze et al., 1993; Bonnecaze et al., 1995; and 

Gladstone et al., 1998). The reason to choose two-dimensional experiments is the 

simplicity. Therefore, both radial and two-dimensional propagation of fluid mud gravity 

currents will be explored in this study. An in-depth discussion on fluid mud gravity 

currents on a horizontal bottom in calm ambient water is given next. 
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2.6.1 Anatomy of a Gravity Current 

The three-dimensional flow structure of a typical gravity current can be divided 

into two main parts: frontal zone and body. The frontal zone of a propagating saline 

gravity current had been investigated in a number of previous studies (e.g. Simpson, 

1969; Fleischmann et al., 1994; Haertel et al., 2000; and La Rocca et al., 2008). Fig. 2.3 

shows a typical flow structure of the frontal zone of a gravity current. Those studies 

revealed that gravity currents advance forming characteristic frontal zones where there 

are a distinct dividing lines between the intruding current and the ambient, less dense 

fluid. The leading edge of the frontal zone has a foremost point or nose that is slightly 

raised above the bed. The overhanging nose is shown to be the direct result of the no-slip 

boundary condition at the bottom boundary (Simpson, 1997; Middleton, 1993; Parsons 

and Garcia, 1998). The interface of the frontal zone and the ambient fluid can be 

characterized by two-types of instabilities: billows (right above and behind the head of 

the current) and lobe and clefts (at the leading edge and right behind the nose) (Britter 

and Simpson, 1979; Simpson, 1987). Both types of instabilities are shown in Fig. 2.3. 

The lobes are the protruding regions of the flow and are separated by sharp cusps called 

clefts. The formation of the lobe and cleft at the leading edge is due to the gravitational 

instability caused by the overrunning of less dense ambient fluid by the dense gravity 

current (Simpson and Britter, 1979). Britter and Simpson (1978) and Parsons and Garcia 

(1998) in two experimental investigations found that the lobe-cleft instability is the direct 

result of the no-slip boundary condition and the elevated nose. Their experimental 

investigations, with an apparatus that allowed them to evaluate gravity currents without 
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no-slip condition, revealed that the elevated nose and the lobe-cleft instability 

disappeared; only billows were observed. As the current propagates, the clefts do not 

simply disappear but are absorbed in or absorb neighboring clefts; thus, all lobes are 

continually shrinking or swelling.  Once a lobe reaches a maximum size, a new cleft 

forms within it (see Simpson, 1997). 

 

Figure 2.3. Typical flow structures of an inertial gravity current illustrating instabilities 

(courtesy of Anja Catharina Slim; copied from Slim, 2006). 

As the lighter fluid is displaced by the current, a portion of the dense fluid is 

swept up behind the head of the current by the lighter fluid which causes the formation of 

billows at and behind the head of the current. Hence, the billows are created by velocity 

shear between the layers that counteract the stabilizing buoyancy forces (De Silva et al, 

1996). The investigation of salt-water gravity currents by Simpson and Britter (1979) 

revealed that these billows were both qualitatively and quantitatively similar to the 

Kelvin-Helmholtz (K-H) instability of a shear layer separating two fluids of different 
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density. Cantero et al. (2007) applied direct numerical simulations (DNS) of high 

Reynolds number lock exchange experiments that allowed for an in-depth look at the 

creation of the K-H billows. They found that K-H billows form in the head, are shed as 

the current advances, and „manifest as interfacial undulations‟. As the current propagated, 

the amplitude of the undulations decreased with time indicating that the strength of the 

billows decrease with time.  Further, it was observed that the rate of formation decreased 

with time as well. Please note that the above descriptions of K-H billows are for the 

gravity currents in inertia-buoyancy propagation phase. When the current reaches the 

viscous-buoyancy phase, the K-H billows are negligible (Cantero et al., 2008). The 

inertia-buoyancy and viscous-buoyancy propagation phases are discussed in Section 2.6.2 

in detail. 

Notably less research has been conducted on the body than the head.  The body of 

the gravity current is best described as two separate regions: a dense underlying layer and 

a region of less dense fluid mixed out of the head of the current (Britter and Simpson, 

1978; Simpson and Britter, 1979). Some researchers believe that this mixed layer is not a 

part of the gravity current and should be deemed as a “zone of clouded water” (see 

Kneller and Buckee, 2000 and references therein). 

2.6.2 Propagation Dynamics of a Gravity Current 

Extensive experimental investigations on different forms of gravity currents (e.g. 

Britter, 1979; Huppert and Simpson, 1980; Rottman and Simpson, 1983; Bonnecaze et 

al., 1993; Bonnecaze et al., 1995; and Gladstone et al., 1998) confirmed that their 



34 

 

propagation dynamics are governed by the inter-play among three key forces, namely: 

buoyancy, inertia and viscous forces. During the earlier propagation phase (henceforth, 

inertia-buoyancy phase) of a gravity current, the propagation dynamics is governed by 

the buoyancy and inertia forces. The propagation dynamics is governed by the buoyancy 

and viscous forces during the later propagation phase (henceforth, viscous-buoyancy 

phase). The propagation of a gravity current in the earlier inertia-buoyancy propagation 

phase is often referred to as inertial propagation, whereas in the later phase, it is often 

referred to as viscous propagation. In the next three sections, in-depth descriptions of the 

two propagation phases and their transitions, along with the description of different 

mathematical modeling approaches to approximate their propagation characteristics are 

provided. 

2.6.2.1 Inertial Propagation of a Gravity Current 

In the inertia-buoyancy phase, the propagation of a gravity current is governed by 

the driving buoyancy force that is balanced by the retarding inertia force, while viscous 

force is negligible compared to these two forces (Huppert and Simpson, 1980). However, 

experimental studies (e.g. Huppert and Simpson, 1980; Bonnecaze et al., 1993) revealed 

that the inertia-buoyancy phase of a gravity current generated from a fixed volume 

release is preceded by another phase called slumping phase. The slumping phase, 

occurring near the source of the dense fluid, is an adjustment phase in the formation of a 

fully developed gravity current with characteristic features like nose, head and body.  The 

current front propagation speed in this phase is approximately constant (Rottman and 

Simpson, 1983; Gladstone et al., 1998; Huppert and Simpson, 1980).  Though the flow in 
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slumping phase is mainly governed by the inertia - buoyancy balance, the overlying 

ambient fluid is very dynamic in this phase, affecting the propagation characteristics of 

the gravity current.  After the slumping phase, the inertia-buoyancy phase commences.  

Here, the front propagation velocity is no longer constant, but decreases with distance. 

For a gravity current generated from a constant flux release, the inertia-buoyancy phase 

may be preceded by a wall jet phase (Didden and Maxworthy, 1982) rather than a 

slumping phase. The wall jet phase is generally not considered a phase of gravity current 

and hence, discussed separately in Section 2.5. 

A significant number of studies have elucidated the quantitative prediction 

capability (see Von Karman, 1940; Benjamin, 1968; Hurzeler et al., 1996; Kirwan et al., 

1986; Bowen et al., 1984; Kuenen, 1952; Mulder et al., 1998) for the propagation 

characteristics (e.g. front position, height, and volume fraction of particles) of different 

forms of inertial gravity currents.  These studies utilized various mathematical modeling 

approaches characterized by different levels of complexities, ranging from dimensional 

analysis to solving complex Navier-Stokes equations. The simplest mathematical model 

is a simple one-equation model, such as the modified form of the Chezy-type equation 

(e.g. Kirwan et al., 1986; Bowen et al., 1984; Kuenen et al., 1952; and Mulder et al., 

1998). This investigation focuses on three different widely used mathematical modeling 

approaches for inertial propagation of gravity currents, namely: force-balance, box model 

and one-layer shallow water modeling approaches. As far as modeling of the fluid mud 

gravity currents is concerned, this investigation mainly focuses on the models which 

provide analytical solutions. As will be described in detail in Chapter 5, these  
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mathematical modeling approaches admit a general form of expression for the 

propagation of an inertial gravity current: 

Two dimensional: 
21
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  (g – acceleration due to gravity, c - density of the current and a

- density of the ambient) is the reduced gravity in terms of ambient density; and q is a 

dimensional constant which is related to the volume of the fluid released. IK
 
is the 

proportionality constant function for inertial propagation that differs depending upon the 

modeling approaches. Detailed discussions on the proportionality constant functions for 

force-balance, box, and shallow water modeling approaches are given in Chapter 5. In 

Eqs. (2.5) and (2.6),   is a constant that represents the type of released fluid volume 

source. The cases of 0  and 1   represent gravity currents originating from fixed 

volume and constant flux release of fluid, respectively. 

A force-balance expression is usually obtained by equating the expression of two 

dominant forces in the respective flow regimes. Therefore, for inertial propagation of 

gravity currents, it can be obtained by equating the order of magnitude of the buoyancy 

and inertia forces. However, since it is an order-of-magnitude relationship, a pre-
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multiplicative constant exists in the resulting expression, and this multiplicative constant 

need to be determined experimentally. 

At the next level of complexity is the box model approach where the current is 

considered to evolve in a series of boxes of equal area which have uniform properties at 

any instant of time (Huppert, 1998). Other key assumptions of this approach are that there 

is no horizontal variation of the flow properties (e.g. current height and volume fraction 

of particles) within the current, and entrainment of ambient fluid by current head is 

negligible (Harris et al., 2001). One of the major advantages of this approach is that it 

leads to closed form analytical solution (Huppert, 1998). The box model approach has 

been one of the most widely used modeling approaches for predicting the inertial 

propagation of gravity currents. Huppert and Simpson (1980) first used the box model 

approach for inertial propagation compositional gravity current. It was later extended by 

Dade et al. (1995a; 1995b) for inertial propagation of particle-driven currents. Despite 

having a number of simplifying assumptions, a number of studies (e.g. Huppert and 

Simpson, 1980; Dade et al., 1995a, 1995b; Gladstone et al., 1998; Hogg et al., 1999; and 

Huppert, 1998) have shown that the predictions of the box model solution were in general 

in good agreement with the experimental observations of gravity currents. 

Shallow water models are the most complex among the three modeling 

approaches. In this approach, Navier-Stokes equations are solved in the depth-average 

form. The basic assumption in this approach is that no significant vertical variations in 

the properties of the current exist so that the pressure field is purely hydrostatic. This 
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assumption results in one mean value for each state variable at each point downstream 

(Kneller, et al., 2000). Therefore, one can find horizontal variations of properties within 

the current such as velocities and volume concentrations using shallow water model 

approach. In this approach, the flow dynamics of gravity currents can be approximated by 

two methods: one layer models and two layer models. In one layer models, the dynamics 

of gravity currents is estimated by neglecting the dynamics of the overlying water, 

whereas two-layer models incorporate the dynamics of the overlying fluid layer. Two-

layer shallow water models are expected to provide more accurate predictions than those 

of one-layer models, especially in the slumping phase (for fixed volume release) when 

the overlying water is dynamic. The disadvantage of two-layer models is that they require 

numerical solutions as there are no closed form analytical solutions for them.  A gravity 

current with a deep ambient fluid is usually formulated by a one-layer shallow water 

while a two-layer model is preferred for gravity currents with shallow ambient (Meiburg, 

et al., 2009). The term „ambient‟ is used in this manuscript extensively which refers to the 

depth of the ambient fluid in relation to the gravity current height. Therefore, a current in 

shallow ambient implies that the ratio of the current height and the depth of the ambient 

fluid is high while, for deep ambient, the ratio is low. There have been attempts to predict 

the flow dynamics of a gravity current in a shallow ambient by a one-layer model such as 

by Hogg et al. (1999) and Harris et al. (2001). Those studies showed that the predictions 

of one-layer models are in good agreement with the experimental observations. To model 

a gravity current governed by an inertia-buoyancy balance, Rottman et al. (1983) 

proposed a shallow water model for a compositional gravity current, which is later 
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extended for particle-driven currents of non-cohesive sediments by Bonnecaze et al. 

(1993; 1995; 1999) and Parker et al. (1986). A one-layer shallow water model for 

compositional gravity currents admits a similarity solution (Bonnecaze, et al., 1993). 

However, there has not been any similarity solution even for one-layer shallow water 

models for particle-driven gravity currents. Only recently, Hogg et al. (2000) and Harris 

et al. (2001)  derived an asymptotic solution of one-layer shallow water models for 

particle-driven gravity currents which somewhat obviated the necessity to take numerical 

approach to analyze the propagation of particle-driven currents. 

In addition to these mathematical modeling approaches two-dimensional and 

three-dimensional high-resolution numerical simulations of gravity currents  (e.g., 

Blanchette et al., 2006; Cantero et al., 2008; Haertel et al., 2000; Necker et al., 2002) 

have been attempted. In terms of modeling, the goal of this study is to apply the described 

mathematical modeling approaches (force-balance, box, shallow water) which admit 

analytical solutions. Hence, complex numerical simulations are out of the scope of this 

study and will not be explored further. In Chapter 5 the expressions for the selected 

mathematical models are provided and then their predictive capabilities are evaluated 

using fluid mud gravity current experimental observations. 

2.6.2.2 Transition between Inertial and Viscous Propagation 

As the gravity current propagates in the inertia-buoyancy propagation phase, it 

starts experiencing an increasing viscous force. After some time, depending on the 

rheological properties of the current fluid, the viscous force may become comparable to 
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the inertia force. As the viscous effect becomes more and more pronounced after further 

propagation, the gravity current may transition into the viscous-buoyancy propagation 

phase where the propagation is mainly governed by the driving buoyancy force and the 

retarding viscous force, with negligible effects due to the inertia force. For the fixed 

volume case, if viscous effects exhibit greater importance before the slumping phase is 

completed, the current may not even exhibit the self-similar phase of the inertia-

buoyancy phase, but rather directly transition into the viscous-buoyancy phase (Huppert 

and Simpson, 1980). Such a transition was observed in our experiments, the results of 

which are presented later in this dissertation.  The rheological properties and the inflow 

rate of the fluid mud at the source will determine when the fluid mud gravity current 

makes the transition from the inertial propagation to the viscous propagation. 

Determining the transition time between the two propagation phases is of importance for 

modeling the propagation of a gravity current because two different models are required 

to model its flow dynamics in these two distinct phases. The inertia-buoyancy 

propagation phase of a gravity current is usually modeled by predictive models which are 

constructed with the assumption that the current is fully governed by an inertia-buoyancy 

balance with negligible viscous effects. On the other hand, the predictive models of the 

viscous-buoyancy phase of a gravity current are based on the assumption of a viscous-

buoyancy balance with negligible inertia effects. Perhaps one of the most overlooked 

characteristics of gravity currents, albeit being an active research area in the last few 

decades, is how currents make the transition from the inertia-buoyancy to viscous-

buoyancy phase. The reason for this is most of the experimental gravity currents 
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generated in laboratory studies were of Newtonian fluids, mainly of saline solution or 

non-cohesive particle suspensions (see Bonnecaze et al., 1993; 1995; Dade and Huppert, 

1995; Gladstone et al., 1998), that did not show pronounced viscous effects in the limited 

propagation distance of the experimental set-ups. Huppert and Simpson (1980) studied 

the transition in their saline gravity current experiments and provided an expression for 

the transition time based on their experimental data. Later, Bonnecaze et al. (1993) 

derived critical Reynolds number criterion for the transition based on the transition time 

expression of Huppert and Simpson (1980). Huppert (1982) derived the transition time 

expressions for two-dimensional and radial gravity currents from order-of-magnitude 

relationships. All of these expressions/criteria are for Newtonian gravity currents. To the 

author‟s knowledge, there is no experimental study which investigated the transition of a 

non-Newtonian gravity current. Hence, a major focus of this investigation is dedicated to 

studying the transition from inertial to viscous propagation. In this effort, transition time 

expressions for the two-dimensional and radial propagation of non-Newtonian gravity 

currents are derived and their predictions are compared with the transition time 

observations from fluid mud gravity current experiments, which are described in detail in 

Chapter 4. Please note that Di Federico et al. (2006) attempted to extend the order-of-

magnitude expression of transition time of Huppert (1982) for non-Newtonian gravity 

currents. However, the final expression provided in their Appendix does not conform to 

our derivations presented in Chapter 4. 
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2.6.2.3 Viscous Propagation of a Gravity Current 

When the gravity current is in the viscous-buoyancy phase, its propagation 

dynamics is governed by the driving buoyancy force which is balanced by the retarding 

viscous force (Huppert and Simpson, 1980). As discussed in Section 2.6.2.2, there have 

been various theoretical models and extensive laboratory experiments devoted to inertial 

gravity currents over the last few decades.  Conversely, the viscous propagation of 

gravity currents has received less attention, and most of the literature on viscous 

propagation has been for the Newtonian currents. The theoretical modeling of viscous 

propagation of a non-Newtonian gravity current is generally more complex than its 

Newtonian counterparts, as the non-linear constitutive equation of such currents leads to 

highly non-linear governing equations which must often be solved numerically (Pascal, 

2000). Like inertial propagation, the same three modeling approaches are chosen for 

viscous propagation of fluid mud gravity current. As it will be described in detail in 

Chapter 6, these three mathematical modeling approaches also admit a general form of 

expression for the propagation of a viscous gravity current: 

Two dimensional: 
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is the 

proportionality constant function for viscous propagation that differs depending upon the 

modeling approaches and are functions of α and n. Detailed discussions on the 

proportionality constant functions for force-balance, box, and shallow water modeling 

approaches are given in Chapter 6. In Section 2.6.2.1, these three different modeling 

approaches (force-balance, box, shallow water) were discussed for the inertia-buoyancy 

phase of propagation. Similar theoretical treatments of viscous Newtonian and non-

Newtonian gravity current propagations are given below. 

The force-balance expression for the viscous-buoyancy balance can be obtained 

by equating the order of magnitude expressions of buoyancy force and viscous force 

expressions. Didden and Maxworthy (1982) derived such expressions to model the 

viscous propagation of two-dimensional and radial axisymmetric Newtonian gravity 

currents. Predictions of their expressions showed good agreement with their experimental 

observations for the case of constant flux release. Viscous propagation of two-

dimensional forms of such currents for variable inflow rates were then investigated 

experimentally by Maxworthy (1983). The first attempt to predict the viscous 

propagation of non-Newtonian gravity currents by a force-balance expression was 

recently by Chowdhury and Testik (2011). The derivation of this force-balance 

expression and comparisons of its predictions with viscous propagation of experimental 

observations of fluid mud gravity currents are detailed in Chapter 5. 
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Despite its widespread use to predict the inertial propagation of gravity currents 

(e.g. Huppert and Simpson, 1980; Dade et al., 1995, 1995a; Gladstone et al., 1998, 2000 

and Hogg et al., 1999), the box model approach has not been implemented for predicting 

the propagation of viscous gravity currents. In his recent monograph, Ungarish (2009) 

described a box model solution for the viscous propagation of Newtonian gravity currents 

which has not yet been tested experimentally. To the best of the author‟s knowledge, 

there has not been any attempt to implement the box model approach on viscous 

propagation of non-Newtonian gravity currents. In this study, a box model solution for 

non-Newtonian gravity currents is proposed and the solution is evaluated by the 

experimental observations of fluid mud gravity currents. 

The viscous counterpart of the shallow water modeling approach is the lubrication 

theory. The main assumption in lubrication theory for viscous gravity current is that the 

currents spread as a thin layer which, in turn, implies the velocity profile of such a current 

is parabolic (Huppert, 2004). Hoult (1972), studying the viscous propagation of oil along 

the free surface of water, obtained a similarity solution for the two-dimensional viscous 

propagation of a surface gravity current.  Then, Huppert (1982) obtained a self-similarity 

solution for the viscous propagation of bottom gravity currents along a horizontal surface 

for the case of fixed volume release.  Subsequently, Lister and Kerr (1989) investigated 

the propagation of two-dimensional and axisymmetric viscous gravity currents at a fluid 

interface and obtained a similarity solution for the governing one-layer shallow water 

model equations. Recently, Di Federico et al. (2006), Gratton and Minotti (1999) and 

Pascal (2000) in three separate investigations used the lubrication theory approach with 
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associated simplifying assumptions for estimating viscous propagation characteristics of 

non-Newtonian gravity currents.  In these investigations they provided analytic 

expressions that required numerical solutions, except for some limiting cases in which 

closed form analytic solutions are available (for example, fixed-volume release; see 

Pascal, 2000; Di Federico et al., 2006). In Chapter 5, the predictions of the shallow water 

model by Di Federico et al. (2006) are compared with our experimental observations of 

fluid mud gravity currents. 

A comparison can be drawn among the three modeling approaches. The Force-

balance expression is the simplest among the three models. However, it has a 

proportionality constant which needs to be determined experimentally. The box model 

approach provides a closed-form analytic solution and it does not have any pre-

multiplicative constant. However, the box model solutions cannot describe all the 

characteristics features of gravity currents (e.g. lacks a description of the horizontal 

variation of the current height).  Therefore, at any instant of time, the current height along 

the current is assumed to be equal to the current height at the head. The shallow 

water/lubrication thoery model is the most accurate among the three and unlike the box 

model, it can provide the horizontal variation of gravity current characteristics. However, 

it provides analytic expressions that require numerical solutions, except for some limiting 

cases in which closed form analytic solutions are available (for example, fixed-volume 

release; see Pascal, 2000; Di Federico et al., 2006a; 2006b). 
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CHAPTER THREE 

 

EXPERIMENTAL SETUP, METHODOLOGY, AND                      

MEASUREMENT TECHNIQUES 

In order to investigate the propagation dynamics of fluid mud underflows, two 

experimental facilities – rectangular flume and square pool - with two different discharge 

configurations were used. The rectangular flume was used to conduct two series of 

experiments: one with constant volume release and the other with constant flux release of 

fluid mud. Those experiments were performed to study two-dimensional propagation of 

fluid mud underflows. In the square pool, fluid mud with different concentrations was 

discharged from a submerged vertical pipe, which generated radially axisymmetric fluid 

mud underflows. The experimental setups for the conducted experiments are described in 

section 3.1. Experimental procedures for each type of experiment and the apparatus used 

to measure the flow properties are presented in Section 3.2. 

3.1 Experimental Set-ups and Release Configurations 

In this section, the experimental facilities are described in detail. 

3.1.1 Rectangular Flume 

A rectangular Plexiglas flume with a lock-gate was used to conduct constant 

volume release experiments. The flume was designed and constructed such that with 

simple modifications, it was also used to conduct constant flux release experiments. The 

details of both set-ups are presented below. 
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3.1.1.1 Constant Volume Release 

The rectangular flume consists of two sections: a small reservoir section (0.245 m 

– length, 0.25 m – width, 0.5 m – height) filled with the prepared fluid mud suspension at 

one end (henceforth, upstream end) of the tank; and the experimental section that is filled 

with the ambient fluid (i.e., tap water) from the reservoir to the other end (henceforth, 

downstream end) of the tank. A simplified schematic of the setup is shown in Fig. 3.1. 

 

Figure 3.1.  Schematic of the 2-D constant volume release experimental setup: 1- 

experimental section filled with tap water, 2- fluid mud suspension reservoir with fluid 

mud suspension behind the lock-gate, 3- mixing tank, 4- mixer, 5- pump and the piping, 

6- lights, and 7- video cameras.  Symbols: h0 – fluid mud suspension depth before 

release; x0 – length of the lock section; x – horizontal coordinate with the origin at the 

lock gate; z – vertical coordinate with the origin at the tank bottom. 

A removable vertical aluminum plate located at a distance x0 = 24.5 cm from one 

end of the flume serves as the lock-gate.  To avoid exchange of fluids between the two 

reservoirs (i.e., experimental section filled with tap water and fluid mud reservoirs) 

before the experiments commence, the gate was sealed with petroleum jelly around its 

edge. The tank was marked by vertical reference lines every 10 cm from the lock-gate to 
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the end of the flume.  A mixing tank located next to the lock section was used to prepare 

the fluid mud suspension. A typical experiment in this setup was as follows. First, the 

experimental section was filled with tap water to a height of h0.  Then, just before the 

experiment commenced the fluid-mud reservoir was filled to the same level as the water 

reservoir.  For each experiment, fluid mud underflow was generated by the instantaneous 

release of the dense fluid mud by lifting the lock-gate. As soon as the lock-gate was 

lifted, a two-dimensional fluid mud underflow formed and began propagating in the 2-D 

experimental tank. Figure 3.2 presents a photograph of this fluid mud underflow 

propagating over a horizontal bottom. A total of 12 constant-volume release experiments 

with different concentrations of fluid mud suspensions were carried out in this set-up. 

The initial parameters for these experiments are tabulated in Table 3.1. 

 
Figure 3.2.  Propagation of the constant-volume released fluid mud underflow in Exp. # 

5 after 9 seconds of releasing the fluid mud suspension in a rectangular flume.  The 

current front position, xN, is at 102 cm from the lock-gate at the shown instant. 
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Table 3.1.  Experimental conditions for the two-dimensional constant volume release 

experiments in the rectangular flume.  Parameter values are given for the prepared fluid 

mud suspensions before the release. 
 

Exp. # 
(a)

 
Cm 

(g/l)
 (b)

 

Cv 

(%)
 (c)

 

ρc 

(g/cm
3
)
 (d)

 

h0 

(cm)
 (e)

 

Rheological Properties 

m (Pa s
n
)
 (f)

 n
 (g)

 

1 25 1.0 1.015 15 ---- ---- 

2 50 1.9 1.03 15 0.0016 1.00 

3 75 2.8 1.045 15 0.0340 0.52 

4 100 3.7 1.06 15 0.0880 0.41 

5 150 5.4 1.09 15 0.3200 0.30 

6 200 7 1.12 15 0.7800 0.24 

7 250 8.7 1.14 15 1.6500 0.19 

8 300 10.2 1.166 15 2.9000 0.17 

9 350 11.8 1.19 15 4.6600 0.15 

10 400 13.2 1.214 15 7.0000 0.14 

11 450 14.7 1.24 15 10.000 0.124 

12 350 11.8 1.19 10 4.6600 0.15 
 

(a) 
Exp. # - Experiment number 

(b) 
Cm - Sediment mass/volume of water 

(c) 
Cv - Volume Concentration 

 

(e) 
h0 - Lock height 

(f) 
m – consistency index 

(g) 
n – flow behavior index 

(d) c - Density of the suspension 

3.1.1.2 Constant Flux Release 

The two-dimensional experiments from constant flux release of fluid mud were 

conducted in the same horizontal, rectangular Plexiglas flume used in the constant 

volume release experiments described in Section 3.1.1.1. However the experimental set-

up was modified for a constant flux of dense fluid mud release into the ambient water. A 

simplified schematic of the modified experimental setup is given in Fig. 3.3. 
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Figure 3.3.  Schematic of the 2-D constant flux release experimental setup: 1- 

experimnental section with tapwater, 2- reservoir with fluid mud suspension, 3- mixing 

tank, 4- overhead tank, 5- fluid mud spilling tank, 6- pump, 7- electromagnetic flowmeter, 

8- adjustable flowrate control valves, 9- splattering plate, 10- video cameras, 11- lights.  

Symbols: hi – inlet height ; x0 – length of the reservoir; x – horizontal coordinate with the 

origin at the inlet; z – vertical coordinate with the origin at the tank bottom, and H- height 

of fluids in the reservoir and the experimental section of the tank. 

In this setup, two vertical aluminum plates placed adjacent to each other separated 

the reservoir section from the experimental section.  One of the two plates that span the 

entire width of the tank is fixed with an opening of height, hi, from the bottom of the 

tank.  The opening under this fixed plate serves as an inlet through which the dense fluid 

mud is released from the reservoir into the experimental section.  The other plate can be 

moved vertically to the desired height from the bottom. Before an experiment 

commences, this adjustable plate is extended to the bottom of the tank and is sealed with 

petroleum jelly around the edge to avoid exchange of fluids between the reservoir and the 

experimental section.  The experimental section is marked by vertical lines every 10 cm 
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from the inlet position to the downstream end.  The downstream wall of the experimental 

section is cut down to a height of hr, and prior to each experiment this section is filled 

with tap water to a height of hr.  Thus, any added volume of fluid mud causes the same 

volume of water to spill from the experimental section, with the total volume of fluid in 

the experimental section remains constant throughout an experiment. 

The experimental setup also includes a mixing tank to form homogeneous fluid 

mud mixtures and an overhead tank that provides a constant head of fluid mud to the 

reservoir of the experimental tank. Fluid mud is first pumped up from the mixing tank 

approximately 3 m to the overhead tank; the fluid mud overflow is then returned to the 

mixing tank via a side pipe attached to the overhead tank (see Fig. 3.3).  The fluid mud is 

then discharged from the overhead tank to the reservoir of the flume through a 2.54 cm 

diameter pipe. To control and measure the discharge flow rate, two valves and an 

electromagnetic flowmeter (see the description in section 3.2.2) are attached to this 

discharge pipe.  Throughout each experiment, the discharge volume flow rate is acquired 

at 1 Hz using a computer.  The end of the discharge pipe is directed onto a splattering 

plate to ensure that the discharged fluid mud does not impart any energy onto the fluid 

mud suspension in the reservoir. 

To provide a constant flux release of fluid mud from the reservoir, the fluid mud 

height in the reservoir was kept constant.  Therefore, the excess fluid mud discharged into 

the reservoir was drained from the reservoir using three circular openings of 1.27 cm 

diameter at the height of hr above the bottom of the experimental tank.  The drained fluid 
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mud is collected in a separate container and the collected fluid volume is measured after 

each experiment.  Because the volume flow rate of the drained fluid mud was much 

smaller than the inlet flow rate (approximately less than 2% of the inlet flow rate), the 

flowmeter measurements were not corrected by subtracting the average drain rate from 

the flowmeter readings. Once the constant head of fluid mud in the reservoir was ensured, 

the adjustable lock-gate was lifted and the dense fluid mud advanced through the inlet 

into the experimental section forming an underflow flowing under the ambient water. 

 

Figure 3.4. A photograph showing the propagation of a constant flux released fluid mud 

underflow in the rectangular flume.  Horizontal white line indicates the water and fluid 

mud level in the experimental section and the reservoir of the tank, respectively.  The 

blurriness in the reservoir is caused by the splashes of the fluid mud from the splattering 

plate. Experimental conditions: Exp. #18, t = 14s, xN = 158 cm. 

A photograph of a typical fluid mud underflow in this set-up is shown in Fig. 3.4. 

A total of 12 experiments (Exps. #13-24) with different concentrations of fluid mud 

suspensions were carried out in this set-up are tabulated in Table 3.2. 
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Table 3.2.  Experimental conditions for the two-dimensional constant flux release experiments in 

the rectangular flume.  Parameter values are given for the fluid mud mixtures in the reservoir. 

Exp. # 
(a)

 
Cv                 

(%)
 (b)

 

ρc   

(g/cm
3
)
 (c)

 

q0       

(cm
2
/s)

 (d)
 

hi               

(cm)
 (e)

 

hr               

(cm)
 (f)

 

Rheological Properties 

m (Pa s
n
)
 (g)

 n
(h)

 

13 0.4 1.006 7 3 15 --- --- 

14 4.43 1.072 10 3 21 0.12 0.33 

15 5.67 1.092 25 5 21 0.29 0.28 

16 8.38 1.136 35 5 21 1.102 0.20 

17 6.40 1.104 24.00 3 15 0.420 0.249 

18 6.90 1.111 24.00 3 15 0.550 0.24 

19 9.30 1.151 25.00 3 15 1.524 0.187 

20 10 1.162 21 3 21 1.963 0.177 

21 10.2 1.166 30 5 21 2.1 0.174 

22 10.75 1.174 24.00 3 15 2.490 0.168 

23 10.8 1176 22.5 3 21 2.55 0.167 

24 12.23 1.198 20 3 15 3.854 0.152 
 

(a) 
Exp. # - Experiment number 

(b) 
Cv - Volume concentration of the fluid mud mixture 

(c) c - Density of the fluid mud 
(e) 

q0 – Released fluid mud volume flow rate per unit width of the tank at the inlet 
(e) 

hi - Inlet height 
(e) 

hr – Depth of fluid mud in the reservoir 
(f) 

m – Consistency index 
(g) 

n – Flow behavior index 

3.1.3 Square Pool 

The radial experiments were conducted by discharging a constant flux of fluid 

mud with varying concentrations into an experimental pool (3.6 m - length, 3.6 m - 

width, 1 m – height), three sides of which are made of Plexiglas for visualization 

purposes. The bottom floor of the pool was marked by reference concentric circles in 20 
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cm radial increments from its center. A schematic of the experimental setup and picture 

of the set-up are shown in Figs. 3.5. 

 

 

Figure 3.5. Experimental square pool. a) Schematic of the set-up for constant-flux 

release : 1 - pool with tap water, 2 - mixing tank with fluid mud suspension, 3 –overhead 

tank with constant head of fluid mud suspension, 4 - electromagnetic flowmeter, 5 - 

adjustable valves, 6 – pump, and 7 - video cameras, and b) Picture of the pool. 

(a) 

(b) 
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The experimental setup also includes a mixing tank placed beside the pool to form 

homogeneous fluid mud mixtures. An overhead tank is placed approximately Ho=3.2 m 

above the bottom of the pool to provide a constant head of fluid mud. Fluid mud was first 

pumped up from the mixing tank to the overhead tank; the fluid mud overflow is then 

returned to the mixing tank via a side pipe attached to the overhead tank which ensures a 

constant head tank of fluid mud suspensions in the overhead tank (see Fig. 3.5). 

Before each experiment, the pool was filled with tap water to a depth of H. The 

delivery of the fluid mud was then introduced from the overhead tank at the center of the 

pool through a 2.54 cm diameter discharge pipe. The discharged pipe was aligned 

perpendicular to the center of the bottom floor and positioned hd = 40 cm (for first series 

of experiments) or hd = 10.6 cm (for the second series of experiments) below the free 

surface of the water in the pool. To control and measure the discharge flow rate, two 

valves and an electromagnetic flowmeter were attached to the discharge pipeline. The 

discharge flow rate, water depth and the position of the discharge pipe were chosen from 

an appropriate scaling analysis of typical pipeline disposal field conditions with Froude 

number similarity and a fully turbulent discharge condition. A total of 11 constant flux 

release experiments (Exps. #25-35) were conducted using this setup, the initial conditions 

of which are tabulated in Table 3.3. The outcomes of those experiments are radial 

axisymmetric fluid mud underflows. A photograph of a typical radial fluid mud 

underflow in this set-up can be seen in Fig. 3.6. 
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Table 3.3.  Experimental conditions for the radial axisymmetric constant-flux release fluid 

mud underflows in the square pool. All the values except hd/lM  is at the discharge port. 

Exp. # 
(a)

 
Cv                                

(%)
 (b)

 

ρm                           

(g/cm
3
)
 (c)

 

Q0                      

(cm
3
/s)

 (d)
 

hd                       

(cm) 
(e)

 

H                       

(cm) 
(f)

 
Fr0

 (g)
 hd/lM

(h) 

25 2.60 1.042 320 40 60 6.2 2.7 

26 4.13 1.067 240 40 60 3.7 4.55 

27 5.23 1.086 575 40 60 7.8 2.15 

28 5.73 1.093 250 40 60 3.2 5.16 

29 6.4 1.105 220 10.6 20 2.7 6.22 

30 8.3 1.135 185 40 60 2.0 8.40 

31 9.8 1.158 640 40 60 6.4 2.62 

32 10.23 1.166 110 10.6 20 1.1 15.66 

33 11.52 1.186 770 40 60 7.1 2.37 

34 9.2 1.147 30 10.6 20 0.3 53.6 

35 6.5 1.107 40 10.6 20 0.5 35.2 
 

(a) 
Exp. # - Experiment number 

(b) 
Cv - Volume concentration of the fluid mud suspension 

(c) m - Density of the discharged fluid mud suspension 
(d) 

Q0 – Discharge Flowrate
 

(e) 
hd – Discharge height from the bottom 

(f)
 H – Water depth 

(g) 
Fr0 – Discharge Froude number [ 0 0 0 0Fr u g d ]

 

(h)
 hd/lM  – Dimensionless distance of the bottom from the discharge port. 
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Figure 3.6. Photographs showing the propagation of a typical axisymmetric fluid mud 

underflows from side (left picture) and from top (right picture). Experimental conditions: 

Exp. #33,  t = 11.75 s, rN = 77 cm. 

3.2 Experimental Methodology and Measurement Techniques 

This section describes the instruments and methodologies used in the 

experiments. 

3.2.1 Density and Rheology Measurement 

The main constituent of all of the experiments was a homogeneous fluid mud 

mixture/suspension which, in turn, forms the fluid mud underflows in the respective 

experiments. Fluid mud was prepared by vigorously mixing cohesive Kaolinite clay 

particles with tap water in a mixing tank. The mean particle size and the average density 

of the clay particles are 0.7 µm and 2620 kg m
-3

, respectively. Before each experiment, 

the density of the prepared fluid mud mixture was measured by an Anton Paar DMA-35 

densitometer with an accuracy of 0.001 g cm
-3

. The densities of the fluid mud 
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suspensions prepared for each experiment are listed in respective Tables (Tables 3.1, 3.2 

and 3.3) 

In addition, the rheological properties of the prepared fluid mud suspensions were 

obtained using a BrookField LVDVII Pro
+
 viscometer with an enhanced UL (Ultra Low) 

adapter. For the purpose of clarity, Figure 3.7a shows typical apparent viscosity (µa) vs. 

shear rate, and Fig. 3.7b shows typical shear stress vs. shear rate measurements for fluid 

mud suspensions of with different concentrations.  It is evident from Fig. 3.7a,b that the 

fluid mud suspensions exhibit shear-thinning non-Newtonian behavior as the viscosity 

decreases with shear rate. Similar non-Newtonian behavior was observed for all the 

experimental suspensions, except for the suspensions with low concentration values (

2%vC  ) that exhibit Newtonian behavior. Viscosity measurements are not available for 

the suspension used in Exp. #1 (Cv = 1%) in Table 3.1 and Exp. #13 (Cv = 0.4%) in Table 

3.1 due to the limitations of the viscometer. However, since the suspension used in Exp. 

#2 of Table 3.1 (with higher concentration value than the suspension used in Exp. #1 and 

13) exhibits Newtonian behavior, it is evident that the suspensions used in Exp. #1 and 13 

also exhibit Newtonian behavior. 

The prepared fluid mud suspensions are observed to be shear thinning (see Fig. 

3.7a) which can be modeled by the Ostwald power-law constitutive equation presented in 

Chapter 2 (Eq. 2.2). Therefore, a power-law constitutive equation is fitted to the shear 

stress vs. shear rate measurements (see solid lines in Fig. 3.7b) to determine the flow 

behavior index, n and consistency index, m for the different prepared suspensions. Fitted 
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values of these rheological constants (symbols) for these suspensions are shown in Fig 

3.7 c and d.  Here, the m value increases and the n value decreases with the volume 

concentration increase.  Correlation of the power-law constants (m and n) to the volume 

concentration [ ( )v s s wC V V V  , where Vs and Vw are the volumes of suspended 

sediment and water in the prepared suspension, respectively] for fluid mud suspensions 

was reported by Ng and Mei (1994). Following the same procedure as Ng and Mei 

(1994), after measuring the rheological properties of the fluid mud suspensions with 

different concentrations, the calculated m and n values of suspensions were correlated to 

the Cv values of suspensions.  This enabled us to predict the m and n values of the 

suspensions within our range of experimental conditions, minimizing the effects of the 

measurement range limitations of our viscometer. The empirical parameterizations for m 

and n values as a function of volume concentration for the prepared fluid mud 

suspensions were developed by fitting curves (see solid lines in Fig. 3.7 c,d). Please note 

that estimation of rheological parameters is difficult due to experimental geometric 

restrictions, settling of particles, wall slip, edge, and particle segregation effects, a view 

also shared by Mcanally et al. (2007) and Barnes et al. (1989). Furthermore, correlating 

power-law constants with the concentration of the fluid mud requires curve fitting the 

experimental data twice (see Fig. 3.7 c and d) which may also pose additional accuracy 

limitations. Two empirical parameterizations for m and n values were developed, one 

during the fixed volume 2D experiments and another during the constant flux 2D 

experiments. 
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Figure 3.7. Rheological properties of the fluid mud suspension: (a) Measured apparent 

viscosity, µa, as a function of shear rate, ∂u/∂z, (b) shear stress, τ, as a function of shear 

rate, ∂u/∂z, for three different concentrations of mixtures, (c) consistency index, m, as a 

function of volume concentration, Cv, (d) flow behavior index, n, as a function of volume 

concentration, Cv.  Symbols represent measurements and the legend identifies the volume 

concentration values of the fluid mud mixtures.  The solid line in (b) indicates the fitted 

power-law model, and solid lines in (c) and (d) represents the estimations by the 

developed empirical parameterizations for m and n values as a function of Cv. 
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For fixed volume experiments tabulated in Table 1, power-law constants (flow 

behavior index, n, and consistency index, m) were determined for 7 different suspensions 

and for the constant flux release experiments tabulated in Table 2, and power-law 

constants (flow behavior index, n, and consistency index, m) were determined for 9 

different suspensions. The developed parameterizations during fixed volume release 

experiments were: 3 3.431 10 vm C  and 0.861.26 vn C  , and during constant flux 

experiments were: 3 3.400.8 10 vm C  and 0.761.03 vn C  (here, unit of m is Pa.s
n
). As it 

appears, the parameterizations are not exactly the same, but differ marginally. However,   

the developed parameterizations are of the same form as the parameterizations proposed 

by Ng and Mei (1994). Note that the differences in the parameterization of this study and 

Ng and Mei (1994) are expected, since different sediments were used in these two 

studies. The estimated m and n values using these parameterizations for all of the 

experiments are tabulated in Tables 3.1 and 3.2. 

3.2.2 Flow Rate Measurement 

The flow rates for the two dimensional and radial constant flux release 

experiments were measured by a magnetic flowmeter (Signet Magmeter Flow Sensor) 

which can measure the flow rate of mud accurately. The magmeter was connected to the 

computer via „Signet 3-0250 USB to S
3
L Configuration/Diagnostic Tools‟ interface. 

Hence, the flowmeter values can be recorded and saved directly to the computer during 

experiments. 
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3.2.3 Flow Characteristics Measurement 

For the two-dimensional experiments, the propagation of experimental currents 

was recorded using with two high definition Sony camcorders with 30 frames per second 

from one side of the Plexiglas tank.  The field of view for each camcorder was adjusted to 

cover the respective half of the flume length.  Recorded videos were later digitized using 

commercial software to obtain 30 images per second of recording.  A systematic 

approach was used to determine the front position and height information over time from 

the digitized images.  First, optical calibration factors (total of 40 calibration factors) 

between the vertical reference lines along the flume were calculated to be used in 

converting current geometric characteristics from pixels to real world length units.  The 

reason for calculating more than one calibration factor is simply to avoid any optical 

distortion errors that are associated with such large field of views ( 200 cm for each 

camera).  Then, the experimental front positions were obtained by summing the distance 

of the front from the closest vertical reference line upstream of the front and the absolute 

position of the reference line.  The distance of the front from the reference line is 

calculated by multiplying the total number of pixels between the front and the reference 

line and the respective calibration factor for that position.  Similarly, the current height is 

calculated by multiplying the number of pixels corresponding to the current height and 

the calibration factor for a given position. 

For the radial experiments, each of the experiments was recorded using two high 

definition Sony camcorders: one from the side and the other from the top. The top camera 
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was placed high enough to reduce any parallax error. The recorded video signals were 

then fed into a computer and digitized using commercial software to obtain 30 individual 

images per second of recording.  A similar systematic approach was used to determine 

radial propagation distance measurements of current fronts as a function of time from the 

digitized images.  First, optical calibration factors (total of 8 calibration factors) between 

the concentric reference circles on the floor were calculated for use in converting 

geometric characteristics of a current from pixels to length units.  The experimental radial 

front positions, rN, were then obtained by summing the distance of the current front from 

the closest concentric reference circle upstream of the front and the absolute position of 

that reference line. With respect to the discharge impact point (i.e. center of the 

concentric circles), the distance of the front from the reference circle was calculated by 

multiplying the total number of pixels between the front and the reference circle and the 

respective calibration factor for that position. 
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CHAPTER FOUR 

 

PROPAGATION PHASES AND THEIR TRANSITIONS 
 

 

This chapter is devoted to the analysis of the propagation of fluid mud underflows 

generated in the experimental setups described in the previous chapter (chapter three) to 

elucidate propagation phases and their transitions. The propagation curves (i.e. temporal 

evolution of front position) for the fluid mud underflows are presented in section 4.1. 

Using the propagation curves, the propagation phases observed in experiments are 

identified in section 4.2. As the fluid mud underflows propagate they undergo distinct 

propagation phases (e.g. slumping - for fixed volume release, wall jet – for constant flux 

release, inertia-buoyancy, and viscous-buoyancy, see Chapter 2 for detailed discussion).  

Because propagation characteristics of each phase vastly differ from one another, a 

different modeling approach is required for each phase. Therefore, it is important to 

identify the phase transition positions/times to implement the appropriate modeling 

approach. Therefore, in section 4.3 the propagation phase transition times and positions 

for fluid mud underflow experiments listed in Tables 3.1, 3.2 and 3.3 are analyzed and 

compared with the prediction of developed order-of-magnitude expressions. Part of the 

results and analysis presented in this chapter appeared in Chowdhury et al. (2009), 

Chowdhury and Testik (2011a), and Chowdhury and Testik (2011b), and under review in 

Chowdhury and Testik (2011c). 
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4.1 Propagation of Fluid Mud Underflows 

In this section, the experimental observations on the propagation of fluid mud 

underflows generated in both rectangular flume and square pool are presented. 

4.1.1 Two-Dimensional Fluid Mud Underflows 

The outcome of a typical experiment in the rectangular flume (both constant 

volume and constant flux release) is a two-dimensional fluid mud underflow that 

propagates along the tank bottom, displacing the less dense ambient water. Fig. 4.1 shows 

pictorial representation of the propagation of a typical two-dimensional fluid mud gravity 

current over time. 

As is discussed in chapter 2, the typical frontal structure of the saline gravity 

current was investigated in a number of previous investigations. Encouraged by their 

investigation, the three-dimensional flow structure of fluid mud underflow generated 

from constant volume of fluid mud release was captured in this investigation.  Fig. 4.2 

shows the three-dimensional frontal structure of fluid mud underflows, which 

qualitatively conforms to that of a salt-water gravity current presented by Simpsons 

(1999), also described in Chapter 2. As can be seen in Fig. 4.2, the frontal zone is 

associated with lobe-cleft patterns at the leading-edge and billows that form above and 

behind the head of the current. The other distinguishable feature of the leading edge is 

that lobes are observed to grow in size over distance from the nose. After attaining a 

maximum size at a certain distance from the nose, the lobes gradually decay and 

subsequently breakdown. 
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Figure 4.1. Photographs showing the propagation of two-dimensional fluid mud 

underflow over time, t. Currents in (a) and (b) are in inertial phase, while current in (c) is 

in viscous phase. Experimental conditions: Exp. #9 (Table 3.1). 

The next two subsections discuss the experimental propagation curves for two-

dimensional fluid mud underflows from constant volume and constant flux release 

experiments. 

4.1.1.1 Constant Volume Release 

In Fig. 4.3, experimentally measured front positions, xN (see definition sketch in 

Fig. 3.1 of chapter 3), of the fluid mud underflows generated by releasing a fixed volume 

of the dense fluid mud with different initial concentrations in the lock-exchange set-up 

(see Section 3.1.1, chapter 3) as a function of propagation time, t, are presented (see 

Table 3.1 for the experimental parameters). 

(a) t = 3 s, xN = 76 cm 

(b) t = 6 s, xN = 136 cm 

(c) t = 36 s, xN = 385 cm  
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Figure 4.2. Frontal structure of fluid mud gravity current. Top- (a) and side-view (b, c) photographs 

of fluid mud gravity current are presented. In these photographs, lobe-cleft patterns at the leading 

edge of the current (a), nose and billows above and behind the head of the current (b), decay and 

breakdown of the billows, and (c) behind the nose can be seen. 

As is evident in Fig. 4.3, the initial front propagation velocities of the gravity 

currents with higher initial concentrations are larger due to the larger driving gravitational 

/ buoyancy force.  However, all propagation curves have a similar initial trend, a steep 

constant-slope initial portion indicating a constant front propagation velocity. These 

steepest portions of the curves correspond to the slumping phases in the respective 

experiments. However, a qualitative difference can be seen between the propagation 

curves in Fig. 4.3a (especially, Exp. #1-5) and Fig. 4.3b. The propagation curves of Fig. 

4.3b, which corresponds to the experiments with higher fluid mud concentrations, show a 

drastic change (decrease) in slope. It may be initially concluded that these experiments 

experienced the viscous propagation phase and hence the velocity reduced drastically. 

(a)  

(b)  

(c)  
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Figure 4.3. Front position of the fluid mud underflows, xN, as a function of elapsed 

propagation time, t for the two-dimensional, fixed volume release experiments listed in 

Table 3.1.  Symbols represent the data from the experiments (see the legend). 
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However, it is difficult to discern the self-similar and viscous phase transitions from this 

figure. By appropriate scaling, three propagation phases for these curves are 

distinguished in Section 4.2.1.1. 

4.1.1.2 Constant Flux Release 

In Fig. 4.4, the experimentally measured front positions, xN, of fluid mud 

underflows generated in the two-dimensional constant flux release experimental set-up 

(see Section 3.1.2 of chapter 3) as a function of propagation time, t, for the experiments 

listed in Table 3.2 are presented. As is clearly evident, all propagation curves, except for 

Exp. #13 and 14, have a similar behavior with an initial portion of the curves associated 

with a steeper slope, and then followed by a relatively abrupt transition to milder slopes. 

However, it is difficult to discern the respective propagation phases from these curves. 

They are distinguished by applying an appropriate scaling in Section 4.2.1.2. Note that 

the slumping phase does not exist for constant flux release experiments, and a two-

dimensional horizontally buoyant wall jet may form initially.  Subsequently, this jet may 

first transition into an inertial gravity current, which may then transition into a viscous 

gravity current. 
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Figure 4.4.  Front position of the fluid mud underflows, xN, as a function of elapsed 

propagation time, t for the two-dimensional, constant flux release experiments listed in 

Table 3.2.  Symbols represent the data from the experiments (see the legend). 
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4.1.2 Radial Axisymmetric Fluid Mud Underflow 

As soon as the fluid mud is discharged from the discharge pipe in the square pool, 

it formed a buoyant jet of the discharged fluid mud which impinges on the bottom and 

generates an axisymmetric fluid mud underflow propagating radially from the 

impingement point. Since the discharge pipe is vertical in all of our experiment, the shape 

of the underflow for all experiments were axisymmetric (see Fig. 4.5), which conform to 

the observations of a number of previous studies (see chapter 2 for detailed discussion). 

The axisymmetric propagation of fluid mud underflow observed in a typical radial 

experiment can be seen in the sequential pictures presented in Fig. 4.5. 

In Fig. 4.6, experimentally measured radial front positions, rN, of radially 

axisymmetric fluid mud underflows for the experiments listed in Table 3.3 as a function 

of propagation time, t, are presented.  As is evident, the initial front propagation 

velocities of underflows with higher initial concentrations are larger due to the larger 

driving gravitational/buoyancy force. The propagation phases for these curves are 

distinguished in section 4.2.2. 
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Figure 4.5. Photographs showing the propagation of radial fluid mud underflows over 

time, t. Experimental conditions: Exp. #29 (Table 3.3) 

 

. 

(a) t = 1 s, rN = 22 cm (b) t = 4 s, rN = 40 cm 

(d) t = 25 s, rN = 135 cm (c) t = 12 s, rN = 80 cm 
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Figure 4.6.  Front position of the axisymmetric fluid mud underflow, rN, as a function of 

elapsed propagation time, t for the radial, constant flux release experiments listed in Table 

3.3. Symbols represent the data from the experiments (see the legends). 
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4.2 Propagation Phases 

In this section, the different phases for the propagation curves presented in section 

4.1 are distinguished by a systematic method. This method is based upon relating the 

slope of the propagation curves on a log-log plot to the predicted slopes of theoretical 

models.  The front positions of two-dimensional and radially axisymmetric underflows 

vary in different propagation phases with time variable, t as tabulated in Table 4.1: 

Table 4.1. Variation of front position with time for two-dimensional and axisymmetric 

fluid mud underflows in different propagation phases. 
 

Current Slumping Wall Jet Inertial Viscous 

2-D Nx t  
2

3
Nx t

 

2

3
Nx t



 
( 2)

2 3

n n

n
Nx t

 

  

Axisymmetric ----
 1

2
Nr t  

2

4
Nr t



 
( 2)

3 5

n n

n
Nr t

 

  

When the experimental front positions are plotted as a function of time on a log-

log scale, the expected propagation curve slopes for two-dimensional and radial 

underflows should conform to the power of time given in Table 4.1. Therefore, for the 

two-dimensional constant volume release case, the slopes corresponding to the slumping 

and inertial propagation phases are 1 and 2/3, respectively. However, the slope 

corresponding to the viscous phase will vary depending on the consistency index, n. For a 

Newtonian gravity current, the slope corresponding to the viscous phase is 1/5. For the 

two-dimensional constant flux release case  . . 1i e   , the slope corresponding to the 

buoyant wall jet and inertia-buoyancy phase are 2/3 and 1, respectively. The slope 

corresponding to the viscous phase for this case varies (slope ≈ 0.68-0.78 for n ≈ 0.1-1). 
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For the radial constant flux release case  . . 1i e   , the slopes corresponding to the jet 

and inertia-buoyancy phases are 1/2 and 3/4, respectively. Again, the slope corresponding 

to the viscous phase varies depending on the value of n. 

In the following sub-sections, the propagation phases of each experiment are 

determined following the method described above. 

4.2.1 Two-Dimensional Fluid Mud Underflows 

The propagation phases of the propagation curves corresponding to the two-

dimensional fluid mud underflows presented in Figs. 4.3 and 4.4 are identified in this 

section. 

4.2.1.1 Constant Volume Release 

In order to determine the transitions from the slumping to inertial phase and then 

inertia to viscous phase, a log-log plot of the dimensionless front position (XN= xN/xo; x0 – 

lock length and h0 – lock height) vs. dimensionless time (
0 0a

t
T

x g h



) following the 

procedure of Rottman and Simpson (1983) for saline gravity currents is used. In Fig. 4.7, 

a log-log plot of XN vs. T for the fluid mud underflows from our experiments with 

different initial concentrations is given. In non-dimensionalization and all the calculations 

presented later in the dissertation, initial value of ag for the prepared fluid mud 

suspensions was used instead of the ag  value at a given position.  Because it is assumed 

that the underflows density does not change significantly for the experimental 
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propagation distances and times due to small settling velocities of clay particles and low 

entrainment of ambient fresh water.  To verify this assumption, Exp. #11 was repeated 

and sampled small amounts of fluid mud from the propagating underflows at 1, 2 and 3 

meters from the lock-gate using sampling probes operating under vacuum.  The measured 

densities of those collected samples at different positions showed negligible variation 

from the initial value, verifying the assumption. As it can be seen from Fig. 4.7, the 

experimental data are characterized by three distinct slopes: 1 (more accurately, 0.95) 

for the slumping phase, 2/3 for the inertial phase, and a variable slope value as a function 

of the n value of the fluid mud suspension for the viscous phase which conform to the 

expected results (see description above and Table 4.1).  Please note that given the limited 

length of the experimental tank only some of the generated fluid mud currents (Exps. # 7-

12 in Table 3.1) had sufficient propagation distance to transition into a viscous 

propagation phase.  After the slumping phase, all of the underflows (Exps. # 1-11 in 

Table 3.1) exhibited the inertial phase, except for the underflow in Exp. # 12 (see Table 

3.1) that transitioned directly into the viscous phase bypassing the expected inertial 

phase. 

4.2.1.2 Constant Flux Release 

To identify the transition positions and times among the wall jet, inertial and 

viscous propagation phases for two-dimensional constant flux release experiments (Table 

3.2), a different form of scaling than the one used in Section 4.2.1.1 was applied. In Fig. 

4.8a, scaled front positions ( N N iX x h ) as a function of scaled time (
1 3

0i

t
T

h B
 ; 
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0 0aB g q is the initial buoyancy flux at the inlet) are plotted for all of the experiments.  

As is seen in this figure, initial portions of the scaled propagation curves collapse onto a 

line (dashed line) with a slope of 0.7, which conform to the expected buoyant jet slope of 

2/3. In order to be ascertained that they conform the jet-like propagations, the initial 

portions of the propagation curve are plotted with scaled front positions ( N N iX x h ) as 

a function of scaled time based on two-dimensional jet-propagation (
1 4

0i

t
T

h M 
 ; 0M is 

the initial momentum flux at the inlet) in Fig. 4.8b for all of the experiments. It can be 

seen they can be represented by a jet-like expression,

2

3

Nx t . After the conclusion of the 

jet phase, the propagation curves for Exps. #13-15 collapse onto a line (solid line) with a 

slope of 1, which is equal to the expected slope value for the inertial phase. The 

remainder of the experimental propagation curves deviated from these two lines 

indicating the commencement of viscous propagation phase in respective experiments.  

As noted earlier, the expected value of the slope for viscous propagation curves of the 

constant flux release experiments is close to 0.7 (ranging between 0.68-0.78 for the 

experimental conditions).  As it can be seen in Fig. 4.8, the viscous propagation curves 

approximately conform to the slope value 0.7 (see the triangle with slope 0.7 and the 

experimental values in Fig. 4.8c). Note that while there was sufficient propagation 

distance for the underflows generated in Exps. #15-24 to transition into viscous-buoyancy 

propagation phase, the gravity currents generated in Exps. #13 and 14 did propagate in 

the inertia-buoyancy phase for their remaining propagation did not transition into viscous 

phase given the limited size experimental tank. 
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Figure 4.7.  Log-log plots of dimensionless front position, XN, vs. dimensionless time, T, 

for the 2-D constant volume release experimental currents listed in Table 3.1 (lock-

exchange set-up).  Experimental data for all three propagation phases (i.e., slumping, 

inertial, and viscous) are shown in (a), and the part of the data corresponding to only the 

viscous phase for Exps. # 7-12 are shown in (b).  Symbols represent the data from the 

experiments tabulated in Table 3.1 and are defined in the legend.   
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Figure 4.8. Scaled front position, XN, vs. scaled time, T, for all of the 2-D constant flux 

release experimental currents listed in Table 3.2. Experimental data for all three 

propagation phases (i.e., jet, inertial, and viscous) are shown in (a), only the jet part of 

the curves is shown in (b) with scaling of jet, and the slope of the viscous part of the 

data for Exps. # 17-24 are shown in (c). Solid lines represent the slopes of the current 

position curves. 

4.2.2 Radial Axisymmetric Fluid Mud Underflows 

In order to determine the propagation dynamics of underflows presented in Fig. 

4.6, scaled radial front positions of the experimental gravity flows ( N d
R r h ; hd – 

discharge height) as a function of scaled time (
4/3 1/3

0d

t
T

h B
 ; here, 0 0aB g Q ) are plotted 

as a log-log plot in Fig. 4.9a. Note that a similar form of scaling was used as in for two-

dimensional constant flux release experiments. In well-established buoyant jet analysis, a 

virtual origin offset is typically made in order to account the effect of a non-ideal area 

source.  Fig. 4.9b is the counterpart of Fig. 4.9a in which the virtual origin offset is made 

by replacing hd with hd+zavs where zavs is the distance of a asymptotic virtual source 
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above the actual source at z=0. zavs is calculated for the experiments listed in Table 3 

using the scale diagram of Morton and Middleton (1973) and Bremer and Hunt (2010).   

As seen in Fig. 4.9a, the initial portions of the propagation curves for all of the 

experiments collapse on a line (dash-line). After some propagation time, the curves 

collapse on the inertial slope of 0.75. Since the scaling used in the Fig 4.9 is based on 

inertial propagation of a gravity current, the initial jet portion is plotted in Fig. 4.10 based 

on jet scaling. The curves of Exps. #32, 34 and 35 deviates from the inertial line 

indicating the transition from the inertial phase to the viscous phase.  It is evident from 

Fig. 4.9 that most of these fluid mud gravity currents (except Exps. #32, 34, and 35) in 

the radial experiments are governed by the inertia-buoyancy balance for most of their 

propagation before reaching the side walls of the pool for the experimental conditions 

studied. 
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Figure 4.9. Log-log plot of dimensionless radial front position, R, vs. dimensionless time, 

T is shown without virtual origin offset in (a), and with virtual origin offset in (b).  

Symbols represent the data from the experiments tabulated in Table 3.3 and are defined 

in the legend. 
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Figure 4.10. Dimensionless radial front position, R, vs. dimensionless time, T for the jet-

like propagation of radial experiments (Table 3.3). Scaling is based on theoretical model 

of buoyant wall-jet propagation.  
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straightforward using a log-log plot of the experimental data in Fig. 4.7a.  The 

experimental data from slumping and inertial phases collapses onto two separate lines 

(shown as solid lines in Fig. 4.7a) and the T* value corresponds to the T value at the 

intersection point of these two lines (i.e., T=24). 

0 ,0 0

*
24.*

a

t
T

x g h
 


 

(4.1) 

 

The estimated transition time to inertial phase, t*, for all of the experiments are 

given in Table 4.2.  It can be seen from this table that t* decreases as the initial 

concentration of the fluid mud increases.  However, since the propagation velocity of 

higher concentration suspensions are higher, the transition length x* (x* = xN at t*), the 

propagation distance till the end of slumping phase, is approximately constant ( 215 - 

255 cm) for all the experiments, except Exp. #12.  This x* value corresponds to 

approximately 9-10 lock-lengths for the experimental set-up and conforms to 

observations of previous studies for compositional Newtonian gravity currents that 

reported x* values of 5-10 lock-lengths (see Meiburg and Kneller, 2010).  For very high 

concentration suspensions, the current may make a transition to the viscous phase even 

before the slumping phase has been completed and the inertial phase may be absent (see 

Exp. #12 in Fig. 4.7).  This is the reason why the slumping length, x*, in Exp. # 12 is 

much less than that of other experiments. 
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The transition time to viscous phase, t**, is determined both experimentally and 

theoretically and are presented in Table 4.2. The experimental t** is calculated by 

determining the dimensionless time that the experimental data start deviating from the 

Table 4.2.  The transition times and positions for experiments in Table 3.1.  The 

front positions, xN at t* and t** are determined from the experimental data. 
 

Exp. # 

t* (s) 

(from                    

Eq. 4.1) 

xN at t* (cm) 

(expt.) 

t** 

(from                    

Eq. 4.2) 

t** (s) 

(expt.) 

xN at t** (cm) 

(expt.) 

1 39.2 238.0 ------- ------- ------- 

2 27.8 236.0 401.4 ------- ------- 

3 22.8 241.0 134.3 ------- ------- 

4 19.9 234.0 88.7 ------- ------- 

5 16.4 248.0 52.2 ------- ------- 

6 14.3 250.0 35.4 ------- ------- 

7 12.9 255.0 25.7 26.0 363.6 

8 11.9 240.0 19.9 18.0 303.6 

9 11.1 249.0 16.1 16.0 298.5 

10 10.5 215.5 13.8 12.0 249.7 

11 9.9 225.0 11.5 11.0 236.0 

12 13.6 188.0 13.1 10.7 179.9 

 

solid trend lines in Fig. 4.7.  The theoretical t** is calculated using the derived 

parameterization in appendix A for a non-Newtonian gravity current.  The simplified 

form of this theoretical expression for a constant volume release case  0   is as 

follows: 
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Here, q0=q is the volume released per unit width for fixed volume release.  This 

expression is based on the dimensional considerations when the viscous force becomes 

comparable to the inertia force acting on gravity current.  Therefore, an empirical 

constant coefficient, c1, term is embedded in Eq. (4.2).  Using the experimental t** 

values, the estimated value of c1 is 6.6 (see Fig. 4.11).  Experimental and calculated t** 

values using Eq. (4.2) are presented in Table 4.1. 

 

Figure 4.11. Theoretical t** vs. experimental t** for different experimental fluid 

mud gravity currents. Solid line represents the best-fit line with a slope of 6.6, which 

is the value of C1 in Eq. 4.2. 
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4.3.2 Constant Flux Release 

There are two phase transition times in the constant flux release experiments 

characterizing transitions: (i) from initial buoyant wall jet to inertial phase,
*

cft , and (ii) 

from jet/inertial phase to viscous phase, 
**

cft . The dimensionless transition time, 
*

cfT  and 

position, 
*

cfX  from jet to inertial phase corresponds to T and XN value at the intersection 

point of the jet line and inertial line. For two-dimensional fluid mud gravity current, the 

*

cfT  and 
*

cfX are: 

*

*

1

3

2 .09
cf

cf

i o

t
T

h B


   (4.3a) 

*

* 31.7
cf

cf

i

x
X

h
   (4.3b) 

 

The transition time and position from jet to inertial phase, 
*

cft  and 
*

cfx  , 

corresponding to Eq. (4.3) for all of the two-dimensional constant flux release 

experiments are given in Table 4.3. 

For radial axisymmetric fluid mud underflows, the transition times and lengths from 

initial buoyant wall jet to inertial phase are: 

*

,*

, 13

34

2.4
cf r

cf r

d o

t
T

h B


   (4.4a) 

*

,*

, 1.8
cf r

cf r

d

r
R

h
   (4.4b) 
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The transition time from jet to inertial phase, 
*

,cf rt  and 
*

,cf rr corresponding to Eq. (4.4) for 

all of the radially axisymmetric experiments are given in Table 4.4. 

The experimental t** is calculated by determining the dimensionless time that the 

experimental data starts deviating from either of the jet (in the absence of inertial phase) 

or the inertial line and they are given in Tables 4.3 and 4.4. Please note that some of the 

gravity currents in the experiments tabulated in Table 4.3 and 4.4 directly transitions to 

viscous phase from the jet phase, bypassing the inertial phase. In that case, the viscous 

transition time, t** is less than the jet transition time. 

Table 4.3. Experimental transition time and positions for the jet and viscous phases 

for two-dimensional constant flux release experiments in Table 3.2. 
 

Exp. # *

cft  (s) xN at
*

cft (cm) t** (s) xN at t** (cm) 

13 5.0 26.3 ----- ------ 

14 8.5 97.9 24.0 212.3 

15 8.5 130.0 ----- ----- 

16 7.0 134.9 ---- ---- 

17 5.5 88.0 9.5 126.8 

18 6.0 98.3 8.5 140.0 

19 5.0 103.2 9.0 140.0 

20 5.0 98.2 8.5 131.2 

21 6.0 131.0 9.0 163.0 

22 4.0 77.5 12.0 142.0 

23 5.5 111.7 6.0 115.0 

24 -- -- 6.0 107.8 
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Table 4.4.  The transition time and positions for the jet and viscous phases for 

radially axisymmetric experiments in Table 3.3. 
 

Exp. # *

,cf rt  (s) rN at 
*

,cf rt (cm) t** (s) rN at t** (cm) 

25 11.0 67.4 ----- ----- 

26 10.5 79.3 ----- ----- 

28 13.0 70.7 ----- ----- 

29 5.0 42.0 ----- ----- 

30 13.5 67.3 ----- ----- 

31 6.0 62.0 ----- ----- 

32 3.0 20.8 13.0 94.0 

33 6.0 72.7 ----- ----- 

34 4.0 18.6 27.0 71.6 

35 4.5 21.8 29.5 81.8 
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CHAPTER FIVE 

 

INERTIAL PROPAGATION OF FLUID MUD UNDERFLOWS 

In this chapter, results on the inertial propagation of fluid mud underflows (i.e. 

inertial gravity current phase of the fluid mud underflow) in which the inertia and 

buoyancy forces are the governing forces are described. Three widely used mathematical 

modeling approaches are chosen to model the inertial propagation of fluid mud gravity 

currents. Prediction capabilities of these models are evaluated using laboratory 

experiments. Evaluated models are at different levels of complexities.  These models, 

from the simplest to the most complex are the force-balance model, box models for the 

compositional and suspension currents, and shallow water models for the compositional 

and suspension currents.  All five models assume that the current is fully inviscid and the 

flow is governed by pure inertia-buoyancy balance. Therefore, laboratory experimental 

data for t<t** (i.e., discarding the viscous phase data) are used in this evaluation. For 

completeness, each model is briefly introduced, and appropriate references are provided 

for the detailed derivations. Part of the results and analysis presented in this chapter 

appeared in Chowdhury and Testik (2011a) and Chowdhury and Testik (2011b). 

5.1 Mathematical Modeling of Inertial Propagation 

This section describes the modeling approaches for the inertial propagation of 

gravity currents. The three selected modeling approaches – force-balance, box and 

shallow water modeling approaches – are briefly described for two-dimensional gravity 

currents in Section 5.1.1 and for radially axisymmetric gravity currents in Section 5.1.2 
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5.1.1 Two-dimensional Propagation 

Consider a two-dimensional inertial (inviscid) gravity current of an 

incompressible fluid of density c  propagating under an ambient fluid of lesser density 

a  along a horizontal bottom, as shown in Fig. 5.1. 

 
Figure 5.1. Schematic description of a two-dimensional gravity current 

The current is generated due to the inflow of the denser fluid at the origin, 0x   (see Fig. 

5.1), and the volume of the fluid released per unit width, V, of the current at any instant of 

time, t, is given by: 

.V qt  (5.1) 

Here q (> 0) is a dimensional constant and  ( 0) is a constant that represents the type of 

released fluid volume source. The case of 0   represents gravity currents originating 

because of the release of a fixed volume of fluid. The case of 1   represents gravity 

currents that originate due to the release of a constant fluid volume flux, and the case of 
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1   represents gravity currents that form due to a leak or eruption which worsens with 

time (Ungarish, 2009). For 0  , q  represents the initial volume released per unit width 

(i.e., q =  q0 = V). 

In box and shallow water modeling approaches, a Froude number N

a N

u
Fr

g h

 
 

  

 

condition at the current head is used as the boundary condition. Huppert and Simpson 

(1980) obtained two different Fr conditions for two-dimensional saline gravity currents 

with 0  depending on the relative depth (hn/H). For a current in shallow ambient 

which implies that the ratio of the current height and the depth of the ambient fluid is 

0.075 1nh

H
  , the Fr condition is: 

1

3

.0.5 nh
Fr

H



 
  

 
 (5.2a) 

For a current in deep ambient which implies that the ratio of the current height and the 

depth of the ambient fluid is 0.075nh

H
 , the Fr condition is: 

19.1.Fr   (5.2b) 

The Froude number conditions for the constant volume release gravity current (Eq. 5.2) 

are widely accepted and have been found to be in good agreement with experimental 

data. However, there have not been much experimental studies to determine such a 

Froude number condition for constant flux release experiments. For constant flux release 

(i.e. 1  ), Ungarish (2009) stated that Fr = 0.8 yields fair agreements with available 
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experiments, while Bonnecaze et al. (1995b) mentioned that Huppert and Simpson 

(Unpublished Data, 1980) experimentally obtained Fr = 0.72 for 1Nh

H
. The reason for 

different Froude number conditions at the front of fixed volume and constant flux release 

gravity currents is the different flow dynamics of these two currents. Unlike fixed-

volume release current, fluid continually flows into the head from the body of the 

constant flux release gravity current. Note that the Froude number conditions presented 

above are experimentally determined which include the effects of viscous drag and 

Reynolds stresses along the head of the current (Bonnecaze et al., 1995). 

The force-balance, box model and shallow water model formulations for two-

dimensional gravity currents are as follows. 

5.1.1.1 Force-Balance Model 

This simple single-equation model for the inertia-buoyancy propagation phase is 

based on the balance between the buoyancy and the inertia forces (see Huppert, 1982 for 

details).  Neglecting the mixing process at the interface between the two fluids, the fluid 

volume defined in Eq. (5.1) for a rectangular, two-dimensional gravity current (see Fig. 

5.1) can be related by an order-of-magnitude relationship, given below (Didden and 

Maxworthy, 1982; Huppert, 1982): 

( ) ( ).N NV q t h t x t  (5.3) 

Here, ~ implies an order-of-magnitude relationship, V is the volume released per unit 

width from the source, and Nh is the representative height of the current of length xN. 
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From dimensional grounds and using Eq. (5.3), the order of magnitudes of the 

inertia, Fi, and buoyancy, Fg, forces for the two-dimensional propagation of a gravity 

current can be estimated as follows (Huppert, 1982): 

2 2
2

2
.c a

g c a N

N

g q t w
F g h w

x





  (5.4) 

2 2

2
.c n

i c N N

qx w
F u h w

t 





 (5.5) 

Here, w is the width of the current, and ~ implies an order of magnitude relationship. 

Equating Eqs. (5.4) and (5.5), one obtains the expression for the front position of a two-

dimensional gravity current as follows:  

1 2

3 3( ) .n I ax K g q t


  (5.6) 

In Eq. (5.6), KI is a constant of proportionality and its value should be obtained 

experimentally. 

5.1.1.2 Box Model 

Box models for two-dimensional propagation assume that the current evolves in a 

series of equal-area rectangles with uniform properties at any instant of time (Huppert, 

1998). Two different types of box models are used to model the inertia-buoyancy 

dominated propagation of compositional and suspension gravity currents.  Although fluid 

mud gravity currents are suspension-driven currents, given the very small settling 

velocity of the cohesive sediment and the experimental propagation length, the box 

model for compositional gravity currents is appropriate for the analysis. To ensure 

completeness, both models and their predictions, first for compositional currents and then 
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for suspension currents, are presented in this section. The box model solution for a 

compositional gravity current was obtained by combining two governing conditions (see 

the detailed derivation by Huppert and Simpson, 1980): (i) conservation of volume and 

(ii) Froude number condition at the current head (Eq. 5.2).  In addition to these two 

governing conditions, the box model for the suspension gravity currents includes a third 

governing condition that incorporates the evolution of particle concentration due to 

deposition as the gravity current propagates (Gladstone and Woods, 2000). The box 

model parameterization for the front position of the two-dimensional propagation of a 

compositional gravity current is expressed below. 

2
1 2

3
3 3 3

3
( ) .

2
N a

Fr
x g q t






 

  
 

 (5.7) 

 

For the fixed volume release fluid mud gravity current experiments conducted in this 

investigation (Table 3.1), the shallow ambient Fr condition (Eq. 5.2a) is more applicable.  

The resulting parameterization for the front position of a compositional gravity current 

from the lock-gate is expressed below (Huppert and Simpson, 1980). 

1 6

3 2 6 7
0

7
[ ( ) ] .
12

N ax g q H t  (5.8) 

The box model solution for 2-D suspension currents from fixed-volume release by 

Dade and Huppert (1995a) is employed in this study.  Omitting the details and 

derivations (see Dade and Huppert, 1995a), the dimensionless front position, XN, for a 

suspension current in a shallow ambient is parameterized as follows. 
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Here,
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, 2

0 0( )NDQ q h  is the dimensionless 2-D volume behind 

the lock-gate,   (
,0 0s aw g h ) is the dimensionless settling number, and 0( )D H h  is 

the dimensionless ambient water depth.  Cs is a free parameter that is equal to unity for a 

compositional gravity current and varies for a suspension current based on a number of 

factors such as initial concentration and size of particles (Dade and Huppert, 1995).  The 

expression for ( )s sf T  is found in Appendix B of that article.  It should be noted that in 

the calculations of Eq. (5.9) for fluid mud suspension currents investigated in this study, 

the hindered settling velocity (Wh) which is suitable for cohesive sediments and 

concentrated suspensions as suggested by Winterwerp and Kesteren (2004) and Coussot 

(1997) is used instead of the Stokes settling velocity ( 2( ) 18s p w w
W gd    ; µw and 

w - dynamic viscosity and density of water, respectively) that is used by Dade and 

Huppert (1995) to model the experimental observations of non-cohesive suspension 

current of Bonnecaze et al. (1993).  The hindered settling velocity can be expressed as 

(Winterwerp and Kesteren, 2004): 

(1 )
100

.pv
h s

kC
W W   (5.10) 

Here k and p are empirical constants.  We used k=1 and p=5.1 for estimating hindered 

settling velocity of the clay particles since they have been found to agree well with the 

experimental observations for cohesive sediments (see page 19 of Coussat, 1997). 
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5.1.1.3 Shallow Water Model 

Shallow water models for gravity current propagation are based upon the Navier-

Stokes solutions with the basic assumption that vertical accelerations are negligible so 

that the pressure field is purely hydrostatic.  Unlike box models, shallow water models 

provide horizontal variations of current properties (such as height) (Kneller and Buckee, 

2000).  Depending upon the relative depth of the ambient fluid (hN/H, see Huppert and 

Simpson, 1980), either one-layer or two-layer shallow water model formulations are 

employed (see Meiburg and Kneller, 2010; Ungarish, 2009).  One-layer shallow water 

formulations neglect the motion of the overlying fluid; hence, they are more applicable 

for a gravity current with a deep ambient (hn/H<0.075).  Conversely, two-layer shallow 

water formulations account also for the dynamics of the overlying ambient fluid layer, 

and are more applicable for a gravity current with a shallow ambient (0.075≤hn/H≤1). In 

this investigation, only the evaluation of shallow water model solutions for fixed volume 

release experiments (Table 3.1) are attempted. Hence, the shallow water model for fixed 

volume release experiments is described below. 

For the propagation of the compositional gravity currents in the inertia-buoyancy 

phase, a similarity solution for the one-layer shallow water model exists.  However, a 

closed analytical solution for the two-layer model is unavailable and numerical solution is 

required. Based upon the reasoning in Section 5.1.1.2, compositional shallow water 

models are adequate for the analysis of the experimental observations in Table 3.1.  To 

ensure completeness, both shallow water models and their predictions, first for 
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compositional currents and then for suspension currents, are presented in this section. 

Although the two-layer models are more applicable for the experimental conditions, one-

layer shallow water models are employed in this investigation since they can provide 

similarity solution. 

As detailed derivations and formulations of the one-layer model are found in 

Bonnecaze et al. (1993), a brief description is provided here.  Similarity solution for the 

front position, xn, is expressed as: 

1
1 22 3

3 3 3
2

27
( ) .

12 2
N a

Fr
x g q t

Fr

 
  

 
 (5.11) 

Given that the one-layer shallow water model assumes a deep ambient, a deep 

water Fr condition (Fr=1.19, from Eqn. 5.2b) is typically used in Eq. (5.11).  In the front 

position calculation for the experiments in Table 3.1, the deep water Fr determined from 

experimental observations by Huppert and Simpson (1980) is employed and then the 

actual Fr measurements that correspond to the shallow ambient condition in the 

experiments is employed. 

Because there is no exact solution for one- or two-layer shallow water models of 

suspension gravity currents, shallow water models for suspension currents are solved 

numerically (e.g., Bonnecaze et al., 1993).  Hogg et al. (2000) and Harris et al. (2001) in 

two separate communications provided asymptotic solutions for shallow water models of 

suspension gravity currents.  These solutions are obtained for the case when the settling 

velocity of the particles is much less than the initial velocity of propagation of these 

currents (Hogg et al., 2000).  This is clearly the case for the experiments with cohesive 



100 

 

sediments as discussed earlier.  Since the intent of the asymptotic solution by Harris et al. 

(2001) is to capture the flow behavior throughout the current‟s entire propagation within 

the inertia-buoyancy phase, rather than using Hogg‟s solution (with propagation time 

limits) Harris et al.‟s solution (see Eq. 3.69 of Harris et al., 2001) is employed in this 

study.  Please see Harris et al. (2001) for the asymptotic solution formulations in their 

entirety. 

5.1.2 Radial Axisymmetric Propagation 

In this section, the force-balance, box and shallow water modeling are described 

for radial axisymmetric gravity currents. Consider a horizontal, radial axisymmetric 

(cylindrical cross-section) inertial gravity current of an incompressible fluid of density 

c  propagating under ambient fluid of lesser density a  along a horizontal bottom, as 

shown in Fig. 5.2.  The current is generated due to the inflow of the denser fluid at the 

origin, 0r   and the z axis represents the axis of symmetry. The volume of the fluid 

released V  at any instant of time t is given by: 

.V Qt  (5.12) 

Here, V [Length
3
] is the volume released from the source and Q is a dimensional constant 

with dimension [Length
3
.Time

-α
]. For 0  , Q V  represents the initial fixed volume 

released and the dimension is [Length
3
]. For 1  , Q  is the constant flux of fluid and the 

dimension is [L
3
T

-1
]. 
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Figure 5.2. Schematic description of radially axisymmetric gravity current. z 

axis represents the axis of symmetry. 

 

5.1.2.1 Force-Balance Model 

Following a procedure similar to that of Section 5.1.1.1, and neglecting the 

mixing process at the interface between the two fluids, the order of magnitude of the fluid 

volume a cylindrical, axisymmetric gravity current can be described by the following 

expression (Didden and Maxworthy, 1982; Huppert, 1982): 

2.N NV Qt h r  (5.12) 

Here, Nh is the representative height of the current of length rN. For the radially 

axisymmetric propagation (Huppert, 1982): 
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Equating Eqs. (5.13) and (5.14), one can obtain the expression for the front position of a 

radially axisymmetric gravity current as follows: 

1 2

4 4( ) .N I ar K g Q t


  (5.15) 

In Eq. (5.15), KI is a constant of proportionality; its value should be obtained 

experimentally. 

5.1.2.2 Box Model 

In the box modeling approach for gravity flows, the gravity flow is considered to 

evolve as an axisymmetric cylinder that has uniform properties at any instant in time. The 

first governing equation of the box model is provided by the volume continuity 

requirement expressed as: 

2 .N Nr h V Qt    (5.16) 

Note that if the experiment is conducted in a sector tank with an angle Φ (e.g. Bonnecaze 

et al., 1995b), Eq. (5.16) should be modified to: 

2 .
2

N Nr h V Qt



   (5.17) 

When the flow spread uniformly in all direction, the pre-factor
2


 is unity. Using this 

boundary condition and a Fr number condition in the head, the box model solution for the 
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propagation of compositional axisymmetric gravity currents can be expressed as (Huppert 

and Simpson, 1980; Dade and Huppert, 1995b; Ungarish, 2009): 

1
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 (5.18) 

The same Froude number condition mentioned for two-dimensional gravity currents (Eq. 

5.2) is generally applied for radially axisymmetric gravity currents considering a radially 

axisymmetric gravity currents  is locally two-dimensional (see Huppert and Simpson, 

1980). 

5.1.2.3 Shallow Water Model 

The similarity solution of the shallow water modeling approach for a radially 

axisymmetric gravity current provides the radial front position, rN of the current as 

follows (Bonnecaze et al., 1995b): 
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 (5.19) 

Here h0 is the characteristic length scale for a particular gravity current and C is a 

constant which can be obtained analytically for 0  . When Fr = 1.19, C is 1.29. 

However, C cannot be determined analytically for 0  . Hence, a continuous similarity 

solution does not exist for axisymmetric gravity current for 0   (Grundy and Rottman, 

1986; Bonnecaze et al., 1995b). This leaves the box-model approximation (Eq. 5.18) as 

the only practical analytical solution for axisymmetric gravity currents when 0   at the 

present state of knowledge (Ungarish, 2009). 
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5.2 Experimental Evaluation of the Inertial Mathematical Models 

In this section, predictive capabilities of the mathematical models for inertial 

propagations of fluid mud gravity currents are evaluated using laboratory experiments. 

First, the evaluation is performed for the models for two-dimensional gravity currents 

with the two-dimensional fluid mud gravity current experiments (Table 3.1 and 3.2) in 

Section 5.2.1 and then the radially axisymmetric experimental data of fluid mud gravity 

currents (Table 3.3) are used to evaluate the radially axisymmetric inertial models in 

Section 5.2.2. 

5.2.1 Two-dimensional Fluid Mud Gravity Currents 

First, the prediction capabilities of force-balance, box model and shallow water 

models are compared with the inertial propagation of fixed volume release fluid mud 

gravity currents (Table 3.1) in Section 5.2.1.1, and then the predictive capabilities of 

those models are compared with the inertial propagation of constant flux release 

experiments (Table 3.2) in Section 5.2.1.2. 

5.2.1.1 Constant Volume Release Experiments 

The front position predictions by the force-balance model expressed in Eq. (5.6) 

with α=0 and the experimental observations for the fixed volume release experiments 

(see Table 3.1) are presented in Fig. 5.3.  Here, different symbols represent the 

experimental data for fluid mud suspensions with different initial concentrations and 

solid lines represent the predictions for the corresponding experiments. 
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Figure 5.3.  Comparison of the current front position predictions by the 

force-balance model [solid lines, Eq. (5.6)] with the 2-D constant volume 

release experimental data (Table 3.1).Every alternate experiment is shown 

in the figure for clarity purposes. Symbols represent the data from the 

experiments tabulated in Table 3.1 and are defined in the legend. 

As is evident, the predictions from this simple model agree well with the 

experimental observations, except for the earlier times of the current propagation.  The 

discrepancy in the earlier phases of the propagation is due to the omission of ambient 

water dynamics in the model.  As soon as the gate is lifted in a lock-exchange set-up, an 

initial counter-flow of ambient water occurs above the forming fluid-mud current which 

then hits the end-wall and is reflected back, forming a bore (Rottman and Simpson, 

1983).  This bore affects the current until its energy is dissipated (i.e., till the end of 

slumping phase).  Clearly, the simple expression in Eq. (5.6) is incapable of modeling 

this complex phenomenon. The best fit value of KI for all of our experiments is calculated 
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to be 1.14, except for Exp. # 11 and 12.  Average R
2
 value for Exp. # 1-10 with KI = 1.14 

is 0.974 (see Table 3) and the average R
2
 value decreases to 0.876 for the preset value of 

KI=1 that represents an exact balance between the inertia and buoyancy forces.  KI value 

being larger than this preset value is partly due to the ambient water dynamics in the 

vicinity of the gate as described above and partly due to viscous effects.  Though initially 

small, the viscous effects steadily accumulate as the current propagates. 

In Fig. 5.4, the front position predictions by the compositional box model solution 

expressed in Eq. (5.8) and the experimental observations are presented.  Here we see that 

for most part of the current propagation, the predictions of the compositional box model 

closely agree with the experimental data whereas at the later propagation times, the 

compositional box model over-predicts the current front position.  This over-prediction is 

because the gravity current begins to experience increasing viscous affects while the box 

model is constructed with the inviscid flow assumption.  At these later propagation times, 

the current flow is not purely dominated by the inertia-buoyancy balance; rather a 

relatively small magnitude viscous force retards the current propagation.  Note that, 

unlike force-balance expression [Eq. (5.6)], the compositional box model solution has no 

adjustable parameter.  Therefore, without any adjustable parameters, the compositional 

box model agrees well with the experimental observations for much of the current 

propagation. 
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Figure 5.4.  Comparison of the current front position predictions by the 

compositional box model (solid lines, Eq.5.8) with the 2-D constant volume 

release experimental data (Table 3.1).   Every alternate experiment is shown in 

the figure for clarity purposes. Symbols represent the data from the experiments 

tabulated in Table 3.1 and are defined in the legend. 

 

A comparison of the front position predictions by the box model solution for 

suspension currents (Eq. 5.9) and our experimental observations for fluid mud suspension 

currents is given in Fig. 5.5.  Interestingly, the best fit value for the free parameter Cs 

with coefficient of correlation values, R
2
> 0.92, is 1 for all of the experiments.  This 

observation confirms our earlier statement that fluid mud gravity currents behave like 

compositional gravity currents for small propagation times.  Since the best Cs fit value is 

unity for suspension-box model solution, the prediction curves of the model are similar to 

that of compositional counterparts. 
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Figure 5.5.  Comparison of the current front position predictions by the suspension 

box model (solid lines, Eq. 5.9) with the 2-D constant volume release experimental 

data (see Table 3.1).   Every alternate experiment is shown in the figure for clarity 

purposes.  Symbols represent the data from the experiments tabulated in Table 3.1 

and are defined in the legend. 

 

The front position predictions by the one-layer shallow water model expressed in 

Eq. (5.11) with Fr = 1.19 and experimental observations are presented in Fig. 5.5a.  Here, 

the model predictions significantly over-predict the experimental observations, mainly 

due to the use of deep water Fr condition.  If an Fr value of 0.8 is used, which is a more 

representative value for our shallow ambient experiments, the model predictions improve 

significantly (see Fig. 5.6b).  The discrepancy observed here between the model 

predictions and the experimental data at the initial propagation times corresponds to the 

slumping phase of propagation in which the overlying water is very dynamic.  The one-

layer shallow water model does not consider this phenomenon. 
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The predictions of suspension shallow water model by Harris et al.‟s solution and 

our experimental observations are presented in Fig. 5.7, which shows a close agreement 

between the predictions and the overall experimental data trend.  As in the case of one-

layer compositional shallow water model predictions, the discrepancy between the 

predictions and the data are attributable to the use of the deep water Fr condition.  The 

use of a more representative shallow ambient Fr condition is quite complex in Harris et 

al.‟s solution and is out of the scope of this study. 
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Figure 5.6.  Comparison of the current front position predictions by the compositional shallow 

water model (solid lines, Eq. 5.11) using two different Fr conditions [(a) Fr = 1.19, and (b) Fr = 

0.8] with the 2-D constant volume release experimental data.   Every alternate experiment is 

shown in the figure for clarity purposes.  Symbols represent the data from the experiments 

tabulated in Table 3.1 and are defined in the legend. 
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Figure 5.7.  Comparison of the current front position predictions by the suspension 

shallow water model (solid lines) using deep ambient Fr condition (i.e., Fr = 1.19) with 

the 2-D constant volume release experimental data.   Every alternate experiment is shown 

in the figure for clarity purposes.  Symbols represent the data from the experiments 

tabulated in Table 1 and are defined in the legend. 

5.2.1.2 Constant Flux Release Experiments 

From Fig. 4.8 and the transition time in Table 4.3, it is evident that most fluid 

mud gravity currents (except Exps. #13 and 14) from the constant flux release 

experiments made transition from jet to viscous phase either bypassing the inertial phase 

or after propagating a very short duration (≈1-3 seconds) in the inertial phase. Therefore, 

only the inertial propagation of Exps. #13 and 14 are used to evaluate the inertial models. 

Among the three models, only the box model solution is used for the evaluation. For a 
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constant flux release two-dimensional gravity current, a closed-from self-similarity 

solution is not available in the literature though Ungarish (2009) mentioned that it can be 

obtained and hence, is not attempted here. In addition, unlike fixed volume release case, 

there is no widely accepted Fr number condition for constant flux release two-

dimensional gravity currents. As noted earlier, Ungarish (2009) suggested Fr = 0.8 while 

Huppert and Simpson found Fr = 0.72 for 1Nh

H
 in an unpublished study. Therefore, we 

a best-fit Froude number for the inertial propagation of constant flux release fluid mud 

gravity currents is obtained in this study. Since Froude number is used as a free-

parameter in implementing the box model solution, box-model solution turns into a form 

of force-balance expression and hence, the original force-balance solution is also not 

attempted. Fig. 5.8 shows the comparison of the box model prediction with the 

experimental observations of constant flux release two-dimensional fluid mud gravity 

currents. In Fig. 5.8a, the origin of the inertial propagation was considered at the inlet 

position while in Fig. 5.8b, the jet portions of the curves are omitted and the source is 

shifted to a virtual origin at the jet transition position  * *,cf cfx t . As it can be seen from Fig. 

5.8, when the jet portion is omitted, the prediction of the model agrees better with the 

experimental data. 
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Figure 5.8.  Comparison of the current front position predictions by the 

compositional box model (solid lines, Eq. 5.8) with the 2-D constant flux 

release experimental data (Table 3.2).  a) Source at inlet and b) source at the 

jet transition position. Symbols represent the data from the experiments 

tabulated in Table 3.2 and are defined in the legend. 
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5.2.2 Radial Axisymmetric Fluid Mud Gravity Currents 

In this investigation, the radial fluid mud gravity currents were generated from 

constant flux release of fluid mud. As is stated in Section 5.1.2.3, there is no analytical 

solution of the shallow water model for 1  . In addition, there is no widely accepted 

Froude number condition for constant flux release experiments to implement in the box 

model solution. Therefore, it is more effective to implement the Froude number in the 

box model solution (Eq. 5.18) as a free parameter and obtain a best fit Froude number 

condition based upon the experimental data. In this case, it is not worthwhile to employ a 

force-balance model. Hence, in this study, only box model solution with the best-fit Fr 

condition is used to predict the radial fluid mud gravity current experimental 

observations. The experimentally best-fit Froude numbers for constant flux release 

experiments (both two-dimensional and radial) are tabulated in Table 5.1.  It can be seen 

that the experimentally obtained best-fit Froude number values are much higher than the 

suggested values of Huppert and Simpson (Unpublished data, 1980) and Ungarish 

(2009). 

The predictions of the box model solution and the radially axisymmetric fluid 

mud gravity currents experimental data are plotted in Fig. 5.9. Please note that the jet 

portion is not deleted in this plot. Hence, except Exp. #33 in Fig. 5.9b, initially the model 

under-predicts the experimental data, but then the model predictions are observed to be in 

good agreement with the data in the inertial propagation phase. In Exp. #33, current 
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transitioned into viscous phase approximately at 12 seconds and hence, the inviscid box 

model over predicts the viscous propagation in this experiment. 

Table 5.1. Best-fit Froude number for constant-flux released fluid mud 

underflow experiments 
 

Exps. # Fr # Experiment Type 

13 1.09 
Two-dimensional experiments 

14 1.08 

26 1.21 

 

Radial Experiments 

27 1.05 

28 0.92 

29 0.99 

30 0.95 

31 0.99 

32 1.05 

33 0.82 

34 1.22 

. 
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Figure 5.9.  Comparison of the radial current front position predictions by the 

compositional box model (solid lines, Eq. 5.18) with the radial constant flux 

release experimental data (Table 3.3).  Presented in two separate graphs for 

clarity purposes. Symbols represent the data from the experiments tabulated in 

Table 3.3 and are defined in the legend. 
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CHAPTER SIX 

 

VISCOUS PROPAGATION OF FLUID MUD UNDERFLOWS 
 

 

This Chapter elucidates the viscous propagation of the fluid mud underflows (i.e. 

viscous gravity current part of the fluid mud underflow) in which the viscous and 

buoyancy forces are the governing forces. Fluid mud gravity currents with sufficiently 

high levels of concentration (see Fig. 3.7) have a non-Newtonian rheology and their 

viscous propagation characteristics vastly differ from the Newtonian gravity currents. As 

discussed in Chapter 2, the numbers of experimental and theoretical studies on viscous 

gravity currents have been far less than that of inertial counterparts. Even among the 

available studies on the viscous propagation, most of them are on Newtonian viscous 

gravity current, while fluid mud gravity current is non-Newtonian. There are no viscous 

force-balance and box model solutions available for non-Newtonian gravity currents. 

Hence, force-balance and box model solutions for the both rectangular two-dimensional 

and radial axisymmetric viscous non-Newtonian gravity currents are derived in detail in 

this Chapter. There are recent self-similarity solutions based on lubrication theory for 

rectangular two-dimensional (Di Federico et al., 2006a) and cylindrical axisymmetric (Di 

Federico et al., 2006b) viscous propagation of a non-Newtonian gravity current that have 

not been laboratory tested before this doctoral research. These three models - non-

Newtonian force-balance, box and lubrication approximation models- are laboratory 

tested to evaluate their predictive capabilities in Section 6.2.  Part of the results and 
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analysis presented in this chapter appeared in Chowdhury and Testik (2011a) and under 

review in Chowdhury and Testik (2011c). 

6.1 Mathematical Modeling of Viscous Propagation 

This section describes three mathematical modeling approaches (force-balance, 

box and lubrication approximation) for viscous propagation of a non-Newtonian gravity 

current. First, these three modeling approaches are described for a rectangular, two-

dimensional viscous current in Section 6.1.1 and then, they are described for a radial 

axisymmetric viscous non-Newtonian current in Section 6.1.2. A theoretical analysis for 

the resulting expressions of three modeling approaches is provided in Section 6.1.3. 

6.1.1 Two-Dimensional Non-Newtonian Gravity Current 

Following the same procedure of Section 5.1, consider a two-dimensional viscous 

gravity current of an incompressible non-Newtonian fluid of density c  propagating 

under a Newtonian ambient fluid of lesser density a  along a horizontal bottom.  The 

surface tension effects along the interface and nose of the current as well as the 

entrainment of the ambient fluid into the gravity current are considered negligible.  The 

current is generated due to the inflow of the denser fluid at the origin, 0x   (see Fig. 

5.1), and the volume of the fluid released per unit width V  of the current at any instant of 

time t is given by Eq. (5.1). 
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6.1.1.1 Force-Balance Model 

A force-balance expression for the front position in the viscous-buoyancy phase 

of a non-Newtonian gravity current can be obtained by equating the order of magnitudes 

of buoyancy and viscous forces acting on the current.  In this derivation, a similar 

procedure by Didden and Maxworthy (1982) is followed by considering the non-

Newtonian rheological properties of fluid mud suspensions expressed by Ostwald power-

law constitutive equation (Eq. 2.2) as follows. 

Neglecting the mixing process at the interface between the two fluids, the fluid 

volume defined in Eq. (5.1) for a rectangular, two-dimensional gravity current can be 

related by an order-of-magnitude relationship, given by Eq. (5.3). The order of magnitude 

of the viscous force acting on a 2-D non-Newtonian gravity current, based on the 

Ostwald power-law constitutive relationship (Eq. 2.2), can be obtained as follows. 

2 1 ( 1) .

n

n n nN
v N N

N

U
F m x w mx q t w

h

    
 
 

 (6.1) 

Equating Eqs. (5.4) and (6.1), one can obtain the following force-balance relationship for 

the current front position. 

1
2 ( 2)
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2 3 2 3 .

n n n
n

c cn n
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g
x K q t

m




  


 
 

  
 

 (6.2) 

Here vK  is a free parameter included based upon dimensional considerations and it needs 

to be determined experimentally. Note that reduced gravity based on current density, 
c

g

 ( )c c a cg g       is usually used for viscous analysis of the gravity current instead 
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reduced gravity in terms of ambient density, 
a

g . Following this convention, 
c

g will be 

used for this chapter.  

6.1.1.2 Box Model Solution 

Ungarish (2009) described a box model solution for quantifying the viscous 

propagation of Newtonian gravity currents that has not yet been evaluated 

experimentally.  In this section, a box model solution for non-Newtonian gravity currents 

is derived, which will be evaluated via laboratory observations. 

In box modeling approach, the current is approximated by a rectangular box of length xn 

and height hN at a given propagation time t as shown in Fig. 6.1 (a simplified 

representation of Fig. 5.1). With this assumption on the shape of the gravity current, two 

governing equations are employed to obtain box model solutions. 

 
Figure 6.1. Conceptual sketch of the box model.  The source of the current is located at 

x=0.  Symbols: H – ambient fluid height; c and a - densities of the current and the 

ambient fluids, respectively; hn and xn – height and front position of the gravity current at 

a given time, respectively. 
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The first governing equation of the box model is provided by the volume 

continuity requirement provided in Eq. (6.3) based upon Eq. (5.1). 

.N NV q t h x   (6.3) 

The second governing equation involves a dynamic consideration which can be 

obtained by equating the expressions of the driving buoyancy force and retarding viscous 

force (Ungarish, 2009). Assuming a hydrostatic pressure distribution, the driving 

buoyancy force per unit width, FB, of the propagating current can be expressed as: 

2 21 1
( ) .

2 2
B c a N c c NF gh g h       (6.4) 

Using Eq. (2.2), the viscous force per unit width, Fv, is expressed as: 

1
.

1

n

N
v N

N

u
F m x

n h

 
  

  
 (6.5) 

 

The second governing equation for the viscous propagation of a non-Newtonian gravity 

current is then can be obtained by equating Eq. (6.4) and (6.5) as: 

2
1

.
2

n

N c c N
N

N

dx g hn
u

dt mx

  
   

 
 (6.6) 

Please note that this boundary condition of (6.6) appears inconsistent with the box 

model simplification at x=0 as observed by Ungarish (2009). However, it is assumed that 

this discrepancy has negligible effect on the global balances in Eqs. (6.4) and (6.5). 

Combining Eqs. (6.4) and (6.5) and performing a time integration yields the box model 

expression for the front position of a non-Newtonian gravity current as follows: 
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 (6.7) 

The expression for the height of the current, hN, can be obtained by combining Eqs. (6.3) 

and (6.7), which is expressed as: 
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 (6.8) 

 

These box model parameterizations [Eqs. (6.7) and (6.8)] provide current position and 

height predictions for the viscous propagation of non-Newtonian compositional gravity 

currents originating from a source with any  value.  Note that for n = 1, Eq. (6.7) and 

(6.8) simplify to the box model solution of Ungarish (2009) for Newtonian viscous 

gravity currents. 

6.1.1.3 Lubrication Theory 

Extending the work of Huppert (1982a) that is for Newtonian viscous gravity 

currents, Di Federico et al. (2006a) recently provided self-similarity solution from one-

layer lubrication theory for rectangular two-dimensional viscous propagation of a non-

Newtonian gravity current.  The lubrication theory solution is the viscous counterpart of 

the shallow water model solution that is for inertial gravity currents where the main 

assumption is the vertical velocity is negligibly small as compared to the horizontal 

velocity and hence, the pressure is hydrostatic (Ungarish, 2009). In the solution by Di 

Federico et al. (2006a), the rheological properties of the intruding non-Newtonian fluid 

are represented by the Ostwald power-law constitutive relationship.  Please note that this 
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solution has not been experimentally tested and in this Chapter, we will evaluate the 

predictive capabilities of this model experimentally. 

The self-similarity solution for the front position, xN, of the two-dimensional 

viscous propagation of a non-Newtonian gravity current is (Di Federico et al., 2006a): 
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 (6.9) 

Here, N is the similarity variable at the nose of the current and it needs to be determined 

by numerically integrating Eqs. (15) and (16) of Di Federico et al. (2006a) for 0   (the 

interested reader is kindly referred to Di Federico et al., 2006), and swq  is a constant 

related to volume released per unit width, V, expressed as: 
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Using Eqs. (5.1) and (6.10), one can manipulate Di Federico‟s front position expression 

(Eq. 6.9) into the same functional form of the force-balance expression in Eq. (6.4) and 

the box model solution in Eq. (6.7) as follows. 
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6.1.2 Radial Axisymmetric Non-Newtonian Gravity Current 

In this section, the force-balance, box and lubrication theory models are described 

for cylindrical axisymmetric non-Newtonian gravity currents. Consider a horizontal, 

radially axisymmetric viscous gravity current of an incompressible non-Newtonian fluid 
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of density c  propagating under a Newtonian ambient fluid of lesser density a  along a 

horizontal bottom (see Fig. 5.2).  The current is generated due to the inflow of the denser 

fluid at the origin, 0r   and the z-axis represents the axis of symmetry. 

6.1.2.1 Force-Balance Model 

Following the similar procedure of Section 6.1.1.1 and neglecting the mixing 

process at the interface between the two fluids, the order of magnitudes of the fluid 

volume for a radially axisymmetric gravity current can be expressed by Eq. (5.12). The 

order of magnitude of the viscous force acting on a cylindrical axisymmetric gravity 

current, based on the Ostwald power-law constitutive relationship (Eq. 2.2), can be 

expressed as follows. 
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 (6.11) 

Equating order of magnitude of buoyancy (Eq. 5.13) and viscous (Eq. 6.11) forces, one 

can obtain the following force-balance relationship for the current front position. 
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 (6.12) 

Here vK  is a free parameter included based upon dimensional considerations and its 

value needs to be determined experimentally. 

6.1.2.2 Box Model  

In box modeling approach for radially axisymmetric gravity current, the current is 

approximated by a cylindrical box of radius rN and height hN at a given propagation time t 
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as shown in Fig. 6.1. Please note that, for radially axisymmetric case, x and xN will be 

replaced by r and rN and the z-axis represents axis of symmetry.  The first governing 

equation of the box model is provided by the volume continuity requirement expressed 

by Eq. (5.16). 

The second governing equation involves a dynamic consideration which can be 

obtained by equating the expressions of the driving buoyancy force and retarding viscous 

force (Ungarish, 2009). Assuming a hydrostatic pressure distribution, the driving 

buoyancy force per unit width, FB, of the propagating current is expressed as: 

2 21 1
( ) .

2 2
B c a N N c c N NF gr h g r h       (6.13) 

Using Eq. (2.2), the viscous force per unit width, Fv, is expressed as: 
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The front condition for the viscous propagation of a non-Newtonian gravity current is 

then obtained by equating Eq. (6.13) and (6.14) as: 
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Combining Eqs. (5.16) and (6.15) and performing a time integration yields the box model 

expression for the front position of a non-Newtonian gravity current, which is expressed 

as: 
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The expression for the height of the current, hN, can be obtained by combining Eqs. 

(5.16) and (6.16), which is expressed as: 
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These box model parameterizations [Eqs. (6.16) and (6.17)] provide current position and 

height predictions for the viscous propagation of non-Newtonian compositional gravity 

currents originating from a source with any  value.  Note that for n = 1, Eq. (6.16) and 

(6.17) simplify to the box model solution of Ungarish (2009) for Newtonian viscous 

gravity currents. 

6.1.2.3 Lubrication Theory Model 

Here, the self-similarity solution of Di Federico et al. (2006b) for radial 

axisymmetric viscous non-Newtonian gravity currents is described. In this solution, the 

front position, rN, of a cylindrical axisymmetric non-Newtonian gravity current is (Di 

Federico et al., 2006b): 
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Here, h is a typical length scale and N is the similarity variable at the nose of the current 

that needs to be determined by numerically integrating Eqs. (15) and (16) of Di Federico 

et al. (2006b) for 0   (the interested reader is kindly referred to Di Federico et al., 

2006b). Taking a length scale,  

1

3h Q  and using Eq. (6.15), one can manipulate Di 
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Federico‟s front position expression (Eq. 6.18) into the same functional form of the force-

balance expression in Eq. (6.20) as follows. 
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6.1.3 Inter-Model Analysis 

In the previous section, three different non-Newtonian viscous propagation 

models are described. The resulting expressions for these models have a similar form, as 

can be in Table 6.1. 

Table 6.1. Front position parameterization for two-dimensional and radial 

axisymmetric gravity current. 
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A comparison of the resulting expressions shows that the only differences among 

them are the pre-multiplicative proportionality constants, Kv which is a function of α and 

n. In this dissertation, the Kv of the force-balance model will be referred as empirical Kv, 



128 

 

the Kv of the lubrication theory model will be referred as self-similar Kv and the Kv of the 

box model solution will be referred as the box model Kv. 

For two-dimensional gravity currents, the empirical Kv needs to be determined 

experimentally while the box model and the self-similar Kv are 
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, respectively.  In the self-similar Kv, n is obtained by numerically 

integrating an equation (Eq. 15 of Di Federico et al., 2006a) that represents the shape of 

the gravity current. Therefore, only the box model solution provides a closed form 

analytical solution for any value of α and n. However, the box model suffers from a 

number of simplifying assumptions and inconsistencies (see Section 6.1.1.2) which 

somewhat reduces the motivation of using the box model solution (Ungarish, 2009). 

However, for very quick prediction, the box model solution would be a good alternative. 

Fig. 6.2 presents a comparison of the box model and the self-similar Kv calculated for 

different values of   for n = 0.15, 0.25, 0.5 and 1.0. For the self-similar Kv,    is 

determined by solving Eq. (15) of Di Federico et al. (2006) by the fourth-order Runge-

Kutta method. As can be seen in Fig. 6.2, the proportionality constants for the box model 

solution are higher than that of the lubrication theory model solution when the fluid is 

Newtonian (n = 1) for different values of α, which is in line with the observation of 

Ungarish (2009). However, the difference of proportionality constant between the two 

models decreases as n decreases and when n = 0.25, they are almost equal. For n = 0.15, 

which is representative condition for the experiments conducted in this study, the 
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proportionality constants of the box model solution is less than that of lubrication theory 

model (see Fig. 6.2c). 
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Figure 6.2. Variation of the viscous proportionality constants, Kv, for the 

box (solid line) and lubrication theory model (dashed line) models with α 

for n = 1.0, 0.5 in (a), n = 0.25 in (b), and n = 0.15 in (c). 

 

6.2 Experimental Evaluation of the Models 

This section presents the comparison of the predictions of the mathematical 

models discussed in Section 6.1 with the fluid mud gravity current propagation data from 

viscous propagation experiments. Only those experiments that fluid mud gravity currents 

propagated in the viscous-buoyancy phase for a significant time period are used. Please 

note that the evaluation of viscous models with experimental data is complicated. It is 

because even for the simple case of 0  , the transition process from inertial to viscous 

solution (i.e. the position to apply the viscous propagation model) is not clear and for

0  , the situation is more difficult (Ungarish, 2009). Since the above mentioned 

viscous models are valid for **t t  , it is very difficult to define a virtual origin for the 

0.5

0.9

1.3

0 1 2 3

P
ro

p
o

rt
io

n
a

li
ty

 C
o

n
st

a
n

t

α

Box Model

Lubrication Theory

(c)  



131 

 

starting position for the viscous model predictions. Ungarish (2009) suggested to use a 

virtual origin corresponding to  ** vt  with a proper choice of v . However, it is not 

clear what would be the value of v  for a particular experiment. Hence, in evaluating the 

models, we assume that they are valid for t = t** and xN = x**, i.e. the virtual origin is at 

the transition point. Therefore, experimental data for t ≥ t** (i.e., discarding the data 

corresponding to inertia-buoyancy phase) are used in our evaluation. 

First, the models for two-dimensional non-Newtonian gravity current are 

evaluated using the date from viscous propagation experiments for two-dimensional fluid 

mud gravity currents and then the radially axisymmetric models are evaluated using the 

data from viscous propagation experiments for radial axisymmetric fluid mud gravity 

currents. 

6.2.1 Two-Dimensional Fluid Mud Gravity Currents 

First, the two-dimensional viscous propagation experiments for fluid mud gravity 

currents from constant volume release of fluid mud are used to evaluate the mathematical 

models described in Section 6.1 with 0  . Then, the constant flux release experiments 

are used to evaluate the mathematical models with 0  . 

6.2.1.1 Constant Volume Release 

In addition to determining the virtual origin in modeling the viscous propagation, 

calculating the model predictions for the viscous propagation characteristics of the 

gravity currents in lock-exchange experiments is cumbersome and requires a careful 
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consideration of the problem (see also the discussion in page 257 of Ungarish, 2009).  

The direct implementation of the respective expressions of the force-balance (Eq. 6.4), 

box (Eq. 6.13) and the lubrication theory models (Eq. 6.7) for 0   is inadequate.  Upon 

release of the fluid mud suspension, the initial propagation of the current in the inertia-

buoyancy phase is considered to be inviscid. When the viscous transition occurs after a 

significant propagation distance, the current has already been well-established with a 

characteristic height and velocity.  Though the viscous transition occurs over a finite 

propagation distance, for modeling simplicity it must be assumed that the transition 

occurs at a well-defined spatial position.  When the current head passes the viscous 

transition position, most of its body is still in the inviscid region.  For viscous 

propagation modeling purposes, the portion of the current in the inviscid region can be 

replaced with a source of fluid mud located at the viscous transition position (i.e., xN at 

t**).  A crude, but an essential assumption, in this analysis is that this source supplies a 

constant flux ( ** **V U h , U** and h** are the representative velocity and height of 

the laboratory gravity current at the transition position, respectively) fluid mud (i.e., 

1  ).  Characteristics of this hypothetical viscous gravity current originating from the 

source is representative of the characteristics of the laboratory generated fluid mud 

gravity current in the viscous-buoyancy phase.  Considering the transition position as the 

origin, the total released volume of fluid mud per unit width, V, at a particular time, t, 

from the source can be calculated as: 

** ** .V h U t  (6.20) 
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Equating Eqs. (6.20) and (5.1) for  =1, one can show that ** **q h U .  Once 

q  is calculated, current front position with respect to the viscous transition position can 

be determined by using the selected viscous propagation model.  Simplified 

representation of the inviscid portion of the current as a source at the transition position 

has limitations.  The viscous transition position as the origin (i.e., location of the source) 

cannot be considered for the full duration of the viscous current propagation.  When the 

entire current is in the viscous-buoyancy phase, the source location should be shifted.  

Hence, in mathematical modeling of the viscous propagation of the current, when the 

released fluid mud volume from the source, V, becomes equal to the initial lock volume, 

q0, the source location should be shifted to the respective front position at that particular 

time. 

A comparison of the force balance model predictions and the experimental 

observations corresponding to the viscous-buoyancy phase for current front positions in 

select experiments for clarity purposes are presented in Fig. 6.2.  The estimated m and n 

values (see Table 3.1) are employed in these calculations.  In Fig. 6.2a, the source is 

considered to be stationary at the viscous transition position throughout the experiment.  

As is evident in Fig. 6.2a, the predictions of the force-balance expression with the 

stationary source approach are in good agreement with the experimental data until V=q0 

and deviations of the predictions from the experimental observations increase as the 

current propagates.  These deviations can be mitigated by shifting the source location as 

the entire current volume enters the viscous region.  Figure 6.2b presents typical 
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comparison of model predictions by shifting the source location and the experimental 

data.  The time at which the source location is shifted (i.e., when V= q0) is indicated by an 

arrow in the graph.  The velocity U** at the shifted position can now be determined from 

the model prediction as the time required to travel the distance between the new and 

previous source locations are known.  The best fit Kv values are calculated and tabulated 

in Table 6.1. 

Based on the same mathematical modeling considerations described above, the 

self-similar solution expressed by Eq. (6.10) and box model solution by Eq. (6.7) are 

implemented to predict the viscous propagation of fluid mud gravity current. The self-

similar and box model Kv values (tabulated in Table 6.1) are very close to the empirical 

Kv values in the force-balance expression and expectedly, the box model Kv values for a 

particular experiment is higher than that of self-similar Kv.  Lubrication theory and box 

model predictions, which are in good agreement with the experimental data, are presented 

in Fig. 6.4 and Fig. 6.5, respectively.  Comparing the force-balance, box model and 

lubrication theory model predictions with the experimental data, it is found that the R
2
 

values are very similar, with slightly better values for the force-balance model 

predictions.  This is simply due to the fact that the force-balance expression has a free 

parameter which is fitted using the experimental data (i.e., empirical Kv) while the other 

two model lack this free parameter.  It is important to note that although the three models 

are intended for compositional gravity currents, their predictions are in good agreement 

with the experimental data for the fluid mud gravity currents. 
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Figure 6.3.  Comparison of the predictions by the viscous force-balance model 

(solid lines) with the 2-D constant volume release experimental data (symbols, see 

the legend) for the front position of the fluid mud gravity currents in the viscous-

buoyancy propagation phase. (a) Predictions using a fixed source location (xN at 

t**, shown with thick vertical solid lines) for the entire experimental viscous 

propagation, (b) predictions for Exp. # 10 using a shifting source location (shown 

in the graph) as V becomes equal to q0. 
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Figure 6.4.  Comparison of the predictions by the viscous box model (solid lines) 

with the 2-D constant volume release experimental data (symbols, see the legend) 

for the front position of the fluid mud gravity currents in the viscous-buoyancy 

propagation phase. (a) Predictions using a fixed source location (xN at t**, shown 

with thick vertical solid lines) for the entire experimental viscous propagation, (b) 

predictions for Exp. # 10 using a shifting source location (shown in the graph) as 

V becomes equal to q0. 
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Figure 6.5.  Comparison of the predictions by the lubrication theory (solid lines) with 

the 2-D constant volume release experimental data (symbols, see the legend) for the 

front position of the fluid mud gravity currents in the viscous-buoyancy propagation 

phase. (a) Predictions using a fixed source location (xN at t**, shown with thick 

vertical solid lines) for the entire experimental viscous propagation, (b) predictions 

for Exp. # 10 using a shifting source location (shown in the graph) as V becomes 

equal to q0.  
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Table 6.1. Proportionality constant, Kv, and coefficient of correlation, R
2
, values for 

viscous non-Newtonian force-balance, box and lubrication theory models for the 

viscous phase of the 2-D constant-volume release experiments in Table 3.1. 

Exp. # 
Force-balance Lubrication Theory Box Model 

Kv R
2
 Kv R

2
 Kv R

2
 

7 0.93 0.965 0.9287 0.962 0.994 0.945 

8 0.96 0.9 0.933 0.896 0.982 0.856 

9 0.8 0.98 0.936 0.86 0.973 0.8 

10 1 0.987 0.941 0.975 0.963 0.96 

11 0.98 0.966 0.9433 0.952 0.959 0.934 

12 0.8 0.98 0.936 0.944 0.973 0.93 

 

 

6.2.1.2 Constant Flux Release 

In modeling calculations for constant flux release experiments, a discrete 

transition at the viscous transition position was assumed although viscous transition 

occurs over a finite propagation distance.  Moreover, in viscous propagation calculations 

the portion of the current in the inviscid region was replaced with a two-dimensional 

source of constant fluid mud flux located at the viscous transition position. Therefore, the 

experimentally determined transition position is considered as the virtual origin for the 

viscous propagation phase. In our calculations, the associated transition lengths are added 

to the model front position predictions. In this section, only the predictive capabilities of 

the box model and lubrication theory models are provided, primarily to see how the 

closed form analytical solution of the box model performs in comparison to the 

lubrication theory, which needs numerical solution for constant flux release experiments. 
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In Fig. 6.6, comparisons of the current front position observations and the 

corresponding box model and lubrication theory model predictions are presented.  

Comparisons of only select experiments are shown for the clarity of the figure.  In this 

figure, data from the inertia-buoyancy propagation phase is omitted and only the front 

position data for the viscous-buoyancy propagation phase is plotted. Model predictions 

are calculated beginning from viscous transition points. As can be seen from this figure, 

although predictions by both of the models agree well with the experimental data, the box 

model solution usually provides lower values of front position, xN, the lubrication theory 

model solution for a given time, t. The underestimation of the box model solution is due 

to the differences in the proportionality constants, Kv for our experimental conditions (see 

Fig. 6.2). 
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Figure 6.6.  Comparison of the current front position, xN, predictions by the box model 

solution (solid lines, Eq. 6.7) and lubrication theory model (dash lines, Eq. 6.10) with the 

2-D constant flux release experimental data.  Exp. #18 is not shown in the figure for 

clarity purposes.  Symbols represent the data from the experiments tabulated in Table 3.2 

and the corresponding experiment identifiers are defined in the legend. 
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6.2.2 Radial Axisymmetric Fluid Mud Gravity Current 

Following the same procedure of two-dimensional constant flux release 

experiments (Section 6.2.1.2), the viscous propagations of radially axisymmetric 

experiments (Expt. #32, 34 and 35) are compared with the predictions of radial viscous 

box model solution in Eq. (6.16) which is shown in Fig. 6.7. As it was the case for two-

dimensional gravity current, the trend of the prediction of box model solution is in good 

agreement with the experimental data, however the box model overestimate the 

experimental observation. 

 
Figure 6.7.  Comparison of the current radial front position, rN, predictions by the 

viscous box model solution (solid lines, Eq. 6.16) with the experimental data. Symbols 

represent the data from the experiments tabulated in Table 3.3 and the corresponding 

experiment identifier is defined in the legend. 
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CHAPTER SEVEN 

 

CONCLUSIONS AND FUTURE WORK 

Conclusions of this investigation are summarized in Section 7.1. Noteworthy 

scientific contributions of this investigation are listed briefly in Section 7.2. 

Recommendations for the future work are also provided in Section 7.3. 

7.1 Conclusions 

In this dissertation, the results of a thorough theoretical and experimental 

investigation on fluid mud underflows generated in a typical coastal dredge disposal 

operation have been presented. The investigation was performed to determine the 

influence of the disposal characteristics (e.g. discharge configuration, initial 

concentrations and rheological properties of discharged fluid mud) on the propagation 

dynamics of the fluid mud underflows. 

Laboratory experiments were conducted with different initial fluid mud 

concentrations in three different experimental set-ups: rectangular flume for constant 

volume release, rectangular flume for constant flux release, and a square pool for radial 

constant flux release of fluid mud. The experiments in the rectangular flume generated 

two-dimensional underflows. The experiments in the pool simulated typical open water 

pipeline disposal operations with submerged vertical discharge configuration in the field 

and radially axisymmetric three-dimensional fluid mud underflows were generated in 

these experiments. To determine the propagation phases for each experiment, the 
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propagation curves (front positions vs. time) were scaled using appropriate length and 

time scales for each release configuration and the scaled propagation curves were plotted 

in log-log plots to distinguish the propagation phase for each experiments. The log-log 

plots of the scaled propagation curves revealed that constant volume release experiments 

generated gravity currents of fluid mud that exhibit slumping, inertial and viscous 

propagation phases while constant flux release experiments generated initial horizontal 

buoyant wall jets which then transform into gravity currents that exhibit inertial and 

viscous propagation phases. These plots also showed that the propagations of underflows 

were significantly influenced by the non-Newtonian rheology of the released fluid mud. 

Underflows formed by low concentration fluid mud releases did not experience the 

viscous propagation phase in the limited experimental set-ups that were used in the 

investigation. However, high concentration fluid mud releases rapidly transitioned into 

viscous propagation phase, sometimes even bypassing the expected inviscid phase. The 

transition times and positions/lengths for propagation phase transitions were also 

determined from the experimental data. For the constant volume release experiments, the 

transition length, x*, from slumping to inertial phase was found to be constant and was 

approximately 9-10 lock-lengths which conforms to the observations reported by 

previous studies for compositional Newtonian gravity currents. However, the transition 

time, t*, from slumping to the inertial phase decreases as the concentration of fluid mud 

increases, for release of the same fluid mud volume. For constant flux release 

experiments, the transition length from the initial jet to the gravity current, xj , was found 

to be related with the inlet height for the two-dimensional and the discharge height 
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(height from the discharge port to the bottom) for the radially axisymmetric gravity 

currents.  On the other hand, the transition time from the initial jet to the gravity current, 

tj , was found to depend on the buoyancy flux, B0,  and the inlet height (for two-

dimensional) or the discharge height (for radially axisymmetric). The viscous transition 

time, t** was found to depend on the released volume or volume flux of the fluid mud 

and the rheological properties. If the same volume or flux is released in two separate 

experiments with different concentrations, having the higher viscosity, the fluid mud 

current with the higher initial concentration would make faster transition to the viscous 

phase. For some of the experiments, currents made transitions to the viscous phase 

directly from the slumping phase or the jet phase bypassing the expected inertial phase. 

Sometimes, the viscous transition occurred even before the underflow propagated the 

expected jet or slumping length mentioned above. 

The theoretical part of this investigation included experimental evaluation of three 

mathematical modeling approaches to model the inertial and viscous propagation of fluid 

mud gravity currents. These three mathematical modeling approaches are, from simplest 

to the most complex: force-balance, box and shallow water/lubrication theory 

approximation models. For constant volume release experiments, the predictions of force-

balance, box and shallow water model with a representative Froude number condition 

were in good agreement with the inertial propagation of experimental fluid mud gravity 

currents. The predictive capabilities of the compositional box and the shallow water 

models were also compared with the predictions of their suspension counterparts in 

which settling of the particles are incorporated. These comparisons revealed that the 



145 

 

inertial propagation of fluid mud can be modeled by the mathematical models for the 

compositional gravity current without compromising much accuracy. However, note that 

for longer propagation distances/times that the ones in our experiments, the settling 

effects may be significant, and accuracy of the compositional models may be 

compromised. The predictions of the box model solution were also compared with the 

inertial propagations of two-dimensional and radial axisymmetric constant flux released 

experiments. Best-fit Froude number conditions for each constant flux release experiment 

were obtained since there is no widely accepted Froude number condition for the constant 

flux release experiments. It was found that the best-fit Froude number values are much 

higher than the suggested value in the literature.  For the inertial propagation of fluid mud 

gravity currents, it was concluded that the box model would be the most efficient 

analytical model due to its closed-form solution for all of the release configurations and 

its predictive accuracy (based upon its experimental evaluation and inter-comparisons of 

the models). 

Unlike the inertial gravity currents, the mathematical modeling attempts for the 

non-Newtonian viscous gravity currents are limited in the literature. For example, there 

were no force-balance and box model solutions for viscous propagation of non-

Newtonian gravity currents. These two models were derived for both two-dimensional 

and radially axisymmetric gravity currents in this investigation.  The prediction 

capabilities of these two proposed models, force-balance and box models, along with the 

available self-similarity solution based upon the lubrication theory were using the viscous 

propagation experiments of fluid mud gravity currents. However, the implementations of 
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viscous models are complicated and need careful consideration of the problem. It is 

because the viscous models are valid when t>>t**. Hence, a virtual origin needs to be set 

from which the predictions of the viscous models starts. It is suggested in the literature to 

use a virtual origin corresponding to  ** vt   with a proper choice of v . However, it 

was not clear what would be the proper value of v for a particular flow condition. In our 

evaluation of the viscous models, the virtual origin was placed at t** considering 0v  . 

In addition, it is shown that the fixed volume release experiments need to be considered 

as a constant flux release case viscous modeling calculations. Experimental evaluation of 

the box and lubrication theory models indicated that the lubrication theory model has 

better predictive capabilities. However, there is a pre-multiplicative constant in the 

lubrication theory model that needs to be determined numerically for constant flux 

release experiments whereas box model solution is a closed form analytical solution for 

all possible release configurations making it a good alternative, especially for quick 

predictions. A parameterization for t** that includes an empirical coefficient was derived 

from the order-of-magnitude relationships and the predictions of this parameterization 

were compared with the experimental data for constant volume release experiments the 

value of the empirical coefficient was determined. 

7.2 Major Research Contributions 

This section lists the major research contributions (experimental contributions in 

Section 7.2.1 and theoretical contributions in Section 7.2.2) of this doctoral research. 
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7.2.1 Experimental Contributions 

There are very few experimental investigations on fluid mud underflows and the 

experimental component of this doctoral research contributed the literature as follows: 

 Large data sets of the propagation of two-dimensional fluid mud underflows 

from both constant volume and constant flux release of fluid mud are provided. 

Though Van Kessel and Kranenburg (1996) conducted two-dimensional 

constant flux release fluid mud experiments, the current propagation data was 

not provided. 

 An experimental data set of the propagation of radially axisymmetric fluid mud 

underflows from laboratory experiments that simulated typical coastal dredge 

disposal operations is provided. To the best the author‟s knowledge, this is the 

first thorough attempt to obtain experimental data on the radial advance of fluid 

mud underflows over time. 

 Based on the analysis of the experimental data, this investigation provided much 

insight on how fluid mud underflows experience different propagation phases 

and how they transition from one phase to another. It also experimentally 

determined the transition positions and times. 

 Non-Newtonian rheology effects on the propagation dynamics of the 

underflows are elucidated thoroughly. 
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7.2.2 Theoretical Contributions 

In evaluating the mathematical models, the inertial propagation of fluid mud 

gravity currents were modeled using the available inertial models. However, since 

models for all the mathematical modeling approaches were not available for viscous 

propagation of non-Newtonian gravity currents, the following theoretical contributions 

have been made: 

Contributions Equation number 

 

Derivation and evaluation of Force-balance expressions for two-

dimensional and radially axisymmetric viscous non-Newtonian 

(power-law) gravity currents. 

 

(6.2), (6.12) 

 

Derivation and evaluation of box model expression for two-

dimensional propagation of a viscous non-Newtonian (power-law) 

gravity current 

 

(6.7), (6.8) 

 

Derivation and evaluation of box model solution for radially 

axisymmetric viscous non-Newtonian (power-law) gravity current 

 

(6.16), (6.17) 

 

7.3 Future Work 

It is expected that the work presented in this dissertation will stimulate more 

research on the fluid mud underflows generated in coastal dredge disposal operations or 

in other applications, particularly on the following areas: 

1. The most obvious extension of the experimental investigation part of this 

work is to conduct a thorough laboratory study on the fluid mud underflows 



149 

 

generated from horizontal (see Fig. 2.2b and 2.2c for example) or other 

discharge configurations. It is expected that the underflows will not be 

asymmetric and the downstream portion will be more pronounced than the 

upstream portion for horizontal discharge configuration. The first step of the 

investigation would be to find the impingement angle in relation to the 

discharge angle. Then, the propagation for both upstream and downstream 

propagation can be studied to determine the propagation dynamics and inter-

transition of propagation phases. 

2. In this investigation, fluid mud underflows were investigated with horizontal 

bottom and the slope of the bottom was not considered. However, slope of 

the bottom is expected to influence the propagation dynamics significantly. It 

will be interesting to see how the propagation transition position and time 

varies in relation to the slope angle. 

3. In addition to the slope of the bottom, the ambient water conditions will also 

affect the propagation of underflows generated in a typical dredge disposal 

operation. It is highly likely that either current or waves or both may be 

present in most disposal locations. Experimental investigations are necessary 

to see the effects of these ambient conditions on the propagation dynamics of 

underflows. Several such studies on the propagation of saline gravity currents 

are available in the literature which can be the basis of such complex fluid 

mud studies. 
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4. Though this investigation provided insights on the influence of the 

rheological properties on the transition from inertial to viscous phase, there is 

a need for further studies. A Reynolds number criterion for the transition of 

laminar to turbulent gravity current is of importance among others. 

5. Developing mathematical models for the propagation of asymmetric fluid 

mud underflows is of importance. A box model solution which will 

incorporate the impingement angle in the derivation for quick prediction of 

such currents may be possible. As discussed in Chapter 5, the inertial box 

model solution can be easily modified for the experiments conducted in a 

sector tank which can be the basis for developing such a model. If the 

impingement angle can be related to the discharge angle from the 

experimental investigation mentioned above (see 1), such a model would 

give the complete information for the propagation fluid mud underflows 

generated from different discharge configurations 

6. Finally, experimental investigations are necessary to determine the run-out 

length of fluid mud underflows. Such experiments may need a large 

experimental facility. 

------------------ 
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Appendix A 

Parameterization of Viscous Transition Time 

As noted earlier, the mathematical models described in Section 6.1 are valid when 

t>>t**. Therefore, it is of importance to provide a mathematical expression for t**, 

propagation time that corresponds to transition between inertia-buoyancy and viscous-

buoyancy phases. Huppert (1982) proposed a parameterization for t**, for two-

dimensional and radial propagation of Newtonian compositional gravity currents. 

Following Huppert‟s procedure, in this section, parameterizations for t** for two-

dimensional and radial propagation of a non-Newtonian compositional gravity current are 

derived. 

A.1 Two-dimensional Gravity Current 

Considering a two-dimensional power-law viscous gravity current of an 

incompressible non-Newtonian fluid of density c  propagating under a Newtonian 

ambient fluid of lesser density a  along a horizontal bottom, the order of magnitude 

expressions for the buoyancy force Fg, inertia force Fi, and viscous force Fv can be 

obtained as follows: 

2 ' 2 2 2 .g c c N c c NF g h w g q x wt      (A.1) 

2 2

i c N N c NF U h w qx wt    (A.2) 
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Equating Eqs. (A.1) and (A.2) [i.e. the current propagates under inertia-buoyancy 

balance], one can show that: 

 
21

' 33 .n cx g q t


 (A.4) 

 

Equating (A.2) and (A.3) [i.e. inertia and viscous forces become comparable], and using 

(A.4), the transition time t** can be obtained as: 

 
1

3 3 3(2 ) (1 )

3 ' 2
** .

n n
c

n

c

q
t

m g

      
 
 

 (A.5) 

 

 

A.2 Radial Axisymmetric Gravity Current 

Following the same procedure of section A.1 and considering a radially 

axisymmetric power-law viscous gravity current of an incompressible non-Newtonian 

fluid propagating under a Newtonian ambient fluid  along a horizontal bottom, the order 

of magnitude expressions for the buoyancy force Fg, the inertia force Fi, and the viscous 

force Fv can be obtained as follows: 

2 ' 2 3 2 .g c c N N c c NF g h r g Q r t      (A.6) 

2 2

i c N N N c NF U h r Qr t    (A.7) 



154 

 

2 3 2 ( 1)

n

n n nN
v N N

N

U
F m r mr Q t

h

    
 

 
 (A.8) 

 

Equating Eqns. (A.6) and (A.7) [i.e. the current propagates under inertia-

buoyancy balance], one can show that: 

 
21

' 43 .n cr g Q t


 (A.9) 

 

Equating Eqns. (A.7) and (A.8) [i.e. inertia and viscous forces become comparable], and 

using (A.9), the transition time t** can be obtained as: 

 
1

4 3 (10 3 ) (2 )

4 ' 1 3
** .

n n
c

n

c

Q
t

m g

     



 
 
 

 (A.10) 
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