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ABSTRACT 

 

This dissertation presents a closed-loop control and state estimation framework 

for a class of distributed-parameter processes employing a moving radiant actuator. These 

radiation-based processes have the potential to significantly reduce the energy 

consumption and environmental impact of traditional industrial processes. Successful 

implementation of these approaches in large-scale applications requires precise control 

systems. This dissertation provides a comprehensive framework for: 1) integration of 

trajectory generation and feedback control, 2) online distributed state and parameter 

estimation, and 3) optimal coordination of multiple manipulated variables, so as to 

achieve elaborate control of these radiation-based processes for improved process quality 

and energy efficiency. 

The developed framework addresses important issues for estimation and control 

of processes employing a moving radiant actuator from both practical and theoretical 

aspects. For practical systems, an integrated motion and process control approach is first 

developed to compensate for disturbances by adjusting either the radiant power of the 

actuator or the speed of the robot end effector based on available process measurements, 

such as temperature distribution. The control problem is then generalized by using a 1D 

scanning formulation that describes common characteristics of typical radiant source 

actuated processes. Based on this 1D scanning formulation, a distributed state and 

parameter estimation scheme that incorporates a dual extended Kalman filter (DEKF) 

approach is developed to provide real-time process estimation. In this estimation scheme, 

an activating policy accompanying the moving actuator is applied in order to reduce the 
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computational cost and compensate for observability changes caused by the actuator’s 

movement. To achieve further improvements in process quality, a static optimization and 

a rule-based feedback control strategy are used to coordinate multiple manipulated 

variables in open-loop and closed-loop manners. Finally, a distributed model predictive 

control (MPC) framework is developed to integrate process optimization and closed-loop 

coordination of manipulated variables. Simulation studies conducted on a robotic 

ultraviolet (UV) paint curing process show that the developed estimation and control 

framework for radiant source actuated processes provide improved process quality and 

energy efficiency by adaptively compensating for disturbances and optimally 

coordinating multiple manipulated variables. 
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CHAPTER ONE 

INTRODUCTION 

 

1.1 Research Motivation 

This research is motivated by the potential benefits of a class of radiation-based 

processes which can help establish resource-economical and environmental-friendly 

production patterns for modern industry. The main objective of this dissertation is to 

investigate and develop formal approaches for implementing control and estimation for 

these process employing moving radiant actuators. 

Energy and environmental issues are two major challenges faced by many 

industrial sectors, such as chemical and food processing, motor vehicle manufacturing, 

and so on. They contribute to increasing proportions of energy consumption and pollutant 

emissions. The 2008 Annual Energy Review provided by the Energy Information 

Administration (EIA) of the U. S. Department of Energy (DOE) showed that, in 2008, the 

total industrial energy consumption (amounting to 31% of all domestic energy 

consumptions) remained greater than the total energy consumptions in other end use 

categories [1]. On the other hand, the 2008 Annual Greenhouse Gases Emissions Report 

provided by U. S. Environmental Protection Agency (EPA) showed that the industrial 

sector was the largest source of energy-related CO2 emissions in 2008 [2]. 

In many conventional industrial sectors, fossil fuels such as coal, petroleum and 

natural gas are used to provide energy in the term of heat for various thermal-related 

processes, such as the batch reactions in chemical manufacturing, frying or drying in food 

processing, and paint drying and curing in automotive manufacturing [3]. Typically, the 
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heat generated from combusting fossil fuels is delivered to the target items through 

conduction and/or convection. However, these conventional processes involve large 

amounts of greenhouse gases emissions and considerable energy losses in fuel 

combustion and subsequent heat transfer. These processes also require large investments 

in the installation and maintenance of these burning/heating facilities. In addition, these 

conduction/convection-based methods usually require the whole product to stay in a 

high-temperature environment for extended periods of time. This may lead to quality 

defects in the product, such as stress gradient, geometric changes, and so on. 

The alternative approach for these thermal-related manufacturing processes is to 

use various radiation-based technologies, such as infrared (IR) / microwave drying [4-6], 

ultraviolet (UV) / electron beam (EB) curing [7-9], laser processing [10, 11], etc. 

Compared to traditional conduction/convection methods, these radiation-based processes 

provide the following potential advantages: 1) higher energy efficiency; 2) less pollutant 

emissions 3) improved productivity; 4) less space use and maintenance cost; 5) more 

controllability. As an example, a case study reported in [12] showed that the replacement 

of the convection oven by a new IR oven allowed a metal finishing plant to increase its 

production by 50% and reduce natural gas consumption by 25% annually. Another study 

from U. S. Department of Energy showed that the implementation of UV-curable coating 

for aluminum can production may save as much as 55% in capital and installation costs 

over thermal curing and reduce 47,000 tons / year of CO2 emission if implemented 

industry-wide [13].  
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1.2 Problem Statement 

Although these radiation-based methods have numerous potential advantages as 

described above, the implementation of these methods in mass production faces the 

following challenges. First, some spatially large target items (e.g. automobiles) usually 

require the use of many radiant actuators that operate simultaneously during the process. 

This will in turn increase the equipment cost and compromise the energy savings. Using 

large radiant sources can reduce the number of actuators but may affect the process 

uniformity [14]. Second, the alignment of these distributed actuators must be carefully 

designed to ensure that the radiant energy is delivered to the target evenly and properly. 

Inappropriate disposition of these radiant actuators will cause unevenness in process 

quality due to shadow effects, particularly on short wavelength radiation, such as UV 

light [14]. Moreover, the designed actuator alignment needs to change with product 

shapes and dimensions to ensure process quality. The redesign process will increase the 

maintenance cost and affect the process efficiency. 

An alternative approach, which uses industrial robots to manipulate high-power 

mobile radiant actuators, has been attracting more attention recently [14-16]. Compared 

to the configuration that uses multiple fixed actuators, this approach only employs a 

single radiant actuator, which can be carried by the robot to move around the target and 

complete the desired processing task. This robotic method can help reduce the equipment 

cost and energy consumption by minimizing the number of radiant actuators. It can also 

help accommodate the orientation of the radiant actuator to complex target geometries 

thanks to additional control options provided by the robot manipulator. Furthermore, the 



 4 

robotic approach provides adaptability for switching among various product models by 

only reprogramming the robot without changing the hardware configuration.  

The three alternative configurations discussed above are summarized and 

illustrated in Figure 1.1. 

Air

a. Convective Oven b. Fixed Radiant Array c. Robotic Radiant Array
 

Figure 1.1 Convective-based (a) and radiation-based (b and c) processes 

However, the introduction of a moving radiant actuator demands elaborate control 

systems to achieve the desired process quality. The main problems to be addressed in this 

dissertation are identified and summarized as follows. 

1. Closed-loop control systems that integrate the motion and process control are needed 

to maintain process quality and effectively compensate for disturbances, such as 

geometric variations and material property changes. 

2. There is a lack of robust and cost-effective direct sensing alternatives for measuring 

key state variables in robotic radiation-based processes. Therefore, effective 

distributed estimation schemes should be developed for monitoring and control of the 

process. This effort should also consider the changing observerbiltiy associated with 

this moving radiant actuator configuration and take into account the reduction of 

computational cost for the estimation scheme.  
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3. The motion of the robot and the radiant power of the actuator should be carefully 

coordinated to achieve further improvement and optimization of the process. A novel 

approach is needed to optimally resolve the coordination problem online by taking 

into account both process quality and energy efficiency. 

All of these challenges above motivate the development of a framework that can 

guide the control, estimation, and optimization of these robotic radiation-based processes. 

1.3 Objectives and Contributions 

The objective of this dissertation is to address these robotic radiation-based 

processes and develop a framework for guiding the control, estimation, and optimization 

of these processes. This framework should provide solutions to the major challenges 

described above. It should guide the design of close-loop control systems to guarantee 

essential process quality in the presence of disturbances. It should also provide methods 

for estimating distributed process states and parameters under the lack of feasible direct 

sensing alternatives. In addition, this framework should provide a systematical approach 

that coordinates multiple manipulated variables optimally in order to achieve process 

improvement. 

The major contributions of this dissertation are summarized as follows: 

1. A generalized 1D scanning framework for addressing the control and estimation 

issues for processes employing moving radiant actuators. 

2. A distributed-parameter state/parameter estimation scheme developed under the 1D 

scanning framework for process monitoring and control. 
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3. A distributed-parameter model predictive control (MPC) strategy that systematically 

addresses the optimal coordination of multiple manipulated variables for processes 

with moving radiant actuators. 

4. A simplified rule-based feedback control strategy that integrates static process 

optimization and closed-loop coordination of multiple manipulated variables through 

designed control rules. 

5. A novel online trajectory generation approach integrating motion control and process 

status feedback, specifically suitable for practical robotic radiant-based processes to 

compensate for disturbances. 

6. An experimental platform that could be used to evaluate and validate the developed 

strategies and methods for estimation, control, and optimization of robotic radiation-

based processes. 

1.4 Dissertation Overview 

The rest of this dissertation is organized as follows: 

In Chapter 2, a review of related work is presented, including the state of the art 

control algorithms for processes employing moving actuators, state and parameter 

estimation methods for distributed-parameter processes, and applications of model 

predictive control to distributed-parameter processes. 

Chapter 3 discusses online trajectory generation and output feedback control for 

practical robotic radiation-based processes. A survey of current technologies for process 

monitoring and sensing is presented. A process-feature based online trajectory generation 

method is also presented. This is followed by the development of an output feedback 
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control strategy that employs individual input manipulation. A case study of irradiation 

control for a robotic UV curing process is then used to illustrate the proposed trajectory 

generation method and output feedback control strategy. In addition, an experimental 

platform for demonstrating the UV irradiation case is presented and discussed. 

In Chapter 4, a distributed-parameter state and parameter estimation scheme is 

developed. The proposed scheme uses a dual extended Kalman filter to estimate the key 

process states and associated parameters based on the measurement of distributed process 

outputs. The estimation scheme is then demonstrated on the robotic UV curing process 

described in Chapter 3. 

Chapter 5 presents various coordinated control strategies for robotic radiation-

based processes. A rule-based control strategy that combines static process optimization 

and closed-loop coordination of multiple manipulated variables of the moving radiant 

actuator is presented and discussed. This chapter also details the development of a 

distributed-parameter model predictive control strategy that can systematically coordinate 

multiple manipulated variables to optimize process quality and energy efficiency. 

Finally, Chapter 6 summarizes the research work and presents concluding 

remarks, future research trends, and directions for applying the topics covered here to 

other areas. 
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CHAPTER TWO 

REVIEW OF RELATED WORK 

 

In this chapter, a review of existing research work related to this dissertation is 

presented. The relevant work is categorized into three areas. First, an overview of control 

strategies proposed for processes with moving actuators is presented. Then, a review of 

estimation methods applied for distributed-parameter processes is presented. This is 

followed by a review of model predictive control applications in this area.  

2.1 Control Strategies for Processes Employing Moving Actuators 

A comprehensive introduction on the modeling and control of manufacturing 

processes has been provided by Hardt in [17]. In this paper, various fundamental topics 

were discussed, including the classification of manufacturing processes, the modeling and 

identification methods, and the comparison between two basic control approaches. 

According to the theories provided in [17], most of these manufacturing processes with 

moving actuators (e.g. painting, welding, etc.) are categorized into the class of serial 

processes, in which the dominant transformation, either material or energy, occurs in a 

small region usually localized around a moving material or energy source. The control of 

these serial processes can be achieved with two different approaches. One uses direct 

measurement or estimation of the controlled process states, and the other employs 

intermediate states or process outputs, such as displacement, temperature, and so on [17]. 

Numerous control strategies for these serial manufacturing processes have been 

developed based on the fundamental concepts discussed in [17], and an overview of these 

strategies will be presented below from two aspects.  
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2.1.1 Theoretical Study 

From the theoretical perspective, many industrial processes that involve the use of 

robot manipulators or similar devices can be simplified as a distributed-parameter system 

employing a moving actuator. Based on this assumption, some theories and methods have 

been proposed for guiding the design and control of such processes. 

The earliest research was conducted by Butkovskii et al [18, 19]. They proposed 

the concept of mobile control and established some fundamental theories for modeling 

and control of distributed-parameter systems with a mobile source. The control problem 

is approximately solved by using Poisson's resummation formula and the method of 

stationary phase [18]. The solution enables the law of motion and the intensity of the 

mobile source to be determined [19]. Applications including process control in zonal 

heating, welding, and melting were also discussed in [19]. 

A similar approach has also been discussed by Khapalov in [20]. A mobile point 

control approach was proposed and compared to locally distributed methods.  In this 

approach, the trajectory of the mobile point is pre-assigned and the control input becomes 

a function of time only. This research work also discussed the controllability and 

observability for the case of using two mobile points to control a class of distributed-

parameter systems described by semi-linear parabolic equations. 

Demetriou et al. also reported on series of work on control of distributed-

parameter processes employing moving actuators [21-25]. In one of these strategies, both 

the position and the signal intensity of the actuator are manipulated by an LQR controller 

based on some pre-defined performance indexes, but the actuator has to move discretely 
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between some allowable locations [21]. These locations are determined according to 

some controllability and performance enhancing criteria [21, 22]. A moving collocated 

actuator/sensor method has also been developed to achieve simplified local static 

feedback control by using this actuator/sensor pair [23, 24]. Implementations of these 

control strategies to practical manufacturing processes, such as arc welding, were also 

discussed [25]. 

These theories presented above provide guidance for designing control systems 

for distributed-parameter processes employing moving actuators, but the physical factors 

of the moving actuator, such as the input distribution, power or speed limitations, etc., are 

seldom discussed. These factors should be integrated into the control design when 

dealing with actual processes.  

2.1.2 Control Application 

On the other hand, numerous practical control strategies have been developed and 

implemented to various industrial processes employing moving actuators. Compared to 

the theoretical study, most of these control applications focus on providing solution to a 

particular process by using either direct output feedback approaches or some model-

based control methods. The following presents a review of these control applications in 

the areas of welding, painting, and so on. 

Welding is a typical serial manufacturing process that involves material (rod or 

wire) and/or energy (heat) transformation between the moving actuator (torch) and the 

target. The major control inputs of the welding process include the power supply voltage, 

the wire feed-rate, travel speed of the torch, and the distance between the contact tip and 
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the target [26]. The outputs of the welding process include both geometric features of the 

bead (e.g. bead width, depth and height) and thermal characteristics, such as heat-affected 

zone, cooling rate and so on [27]. Based on these inputs and outputs, a number of 

strategies have been developed to achieve closed-loop control of the welding process. 

General multiple-input and multiple-output (MIMO) control frameworks have been 

discussed by Hardt [17], Huissoon [26], and Moore [28]. Their work provided basic 

structures for control of the welding process from equipment, geometry and thermal 

properties. Many of these closed-loop control strategies involve the use of geometric 

features as feedback signals. One of them uses a real-time full-penetration monitoring 

method through vision sensing and neural networks to control a robotic arc welding 

system [29]. Thermal-based depth estimation method has also been used to develop 

closed-loop strategies for weld pool depth control [27]. Another significant issue in these 

control applications is the modeling of the welding process. A short survey of different 

types of welding process model has been presented in [30]. Multivariable adaptive 

control strategies have also been developed to achieve improved welding quality based 

on identification of unknown process parameters in real time [31-33]. 

Similar research can be found in other manufacturing applications, such as 

painting, spray forming, and so on. A semi-autonomous robotic coating system, using 

thickness detection through multiple cameras and a laser point, has been developed by 

Seelinger, et al. to guide a coating robot [0]. Thermal machine vision is also used to 

monitor real-time painting status and control the painting robot in terms of nozzle path, 

speed, and so on [35]. For a spray forming process, Jones, et al. designed a time-varying 
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H2 controller to regulate the temperature profile of the target by adjusting the spray rate 

based on thermal image feedback through an infrared camera [36]. In a robotic cutting 

process, a combined control strategy (adaptive position control, a switching logical 

velocity control, and a learning algorithm for force control) that uses position/velocity 

feedback and force compensation has been developed by Zeng, et al. to ensure the cutting 

quality [37]. To improve the dimensional accuracy and surface finish of targets in a laser 

cladding manufacturing process, Liu and Li developed an in-time motion adjustment 

strategy that manipulates the speed and orientation of the robot based on measured status 

of the existing clad layer, stand-off distance, and melt pool through multiple sensors [38]. 

Moreover, feedback control of the moving actuator has also been applied to a metal 

forming process, in which a stereovision camera is used to provide geometric feedback 

for controlling the mobile tool based on a reduced process model [39]. 

Although these control applications described above involve various 

manufacturing processes employing one or more moving actuators, the common 

objective of most of these applications can be summarized as: To achieve improved 

process quality by adjusting one or more manipulated variables of the moving actuator 

based on measured or estimated process states. Since the direct sensing of essential 

process states is not always available, estimation from measurable process outputs 

becomes important to for monitoring the on-going process status. The next section will 

provide a review of some estimation methods applied to distributed-parameter processes. 
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2.2 Estimation Methods for Distributed-Parameter Processes 

As already pointed out, the use of state observer or estimator is essential for many 

manufacturing process due to the lack of robust and cost-effective direct sensing 

alternatives for some key process states. The major challenges in developing appropriate 

estimation methods for these distributed-parameter processes arise in the three 

fundamental issues [40]. First, the process model has to be reduced or simplified so that it 

can be used for designing the estimator. Then, the type and structure of the estimator 

should be carefully selected and designed. Moreover, uncertainties of the models used for 

estimation should be compensated for robustly and adaptively. The following sections 

will present a review of estimation methods for distributed-parameter processes in 

consideration of the three issues. 

2.2.1 Model Reduction and Simplification 

Many model reduction and simplification methods have been used for estimation 

of distributed-parameter processes. A survey of general model reduction methods can be 

found in [41, 42]. The applications of these methods to distributed parameter process 

have been discussed in [43-47]. Rafaralahy, et al. used Generalized Orthogonal 

Polynomials (GOP) to reduce the distributed-parameter system governed by partial 

differential equations (PDEs) to a finite dimensional non-linear system and designed a 

state observer based on the reduced process model [43]. This method was then 

implemented to a 1D heat transfer problem, but no external control input was applied. A 

similar study has been conducted by Lilly in [44]. A linear distributed parameter system 

was reduced by using a set of orthogonal basis functions and then an adaptive observer 
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was designed for state and parameter estimation. Alaeddine and Doumanidis developed a 

finite dimensional model for a class of thermal-based processes by using Galerkin 

optimization method which minimizes the error between the approximated and actual 

models [45]. Another Galerkin-based method (Galerkin weighted residual projection) has 

been used by Shvartsman et al. in [46] to simplify a 2D reaction model and use it for 

estimation and control design. The approximate inertial manifold (AIM) method has also 

been used for model reduction by Christofides and Daoutidis in [47]. This method 

approximates the original system by using its dominant dynamics called inertial manifold, 

and the corresponding PDEs are reduced to a set of ordinary differential equations 

(ODEs). 

2.2.2 Types and Structures of the Estimator 

The overview of different types of estimators used for distributed-parameter 

process control can be found in [40, 48]. Soroush provided a comprehensive introduction 

of various observers applied to linear, nonlinear, and multi-rate estimations in [48]. 

Dochain discussed three types of estimators (Kalman, Luenberger, and Asymptotic 

observers) and gave detailed applications of these estimators to a chemical reaction 

process in [40]. In this dissertation, we choose to use the Kalman filter for state and 

parameter estimation, and thus the following paragraphs present a review of various 

applications of the Kalman filter for estimation and control of distributed-parameter 

processes. 

One of the most popular Kalman type filters used for state and parameter 

estimation is the extended Kalman filter (EKF), which has been widely used for 
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estimation and control of various nonlinear distributed-parameter processes. In one of 

these applications, Soucy and Holt used the EKF algorithm to estimate the extent of 

reaction in a polymer composite processing system from temperature measurements and 

proposed a closed-loop control approach [49]. The EKF design is based on an 

approximation of the kinetic and heat transfer models. Similar research involving the 

control of a reactive distilling system based on estimated process state through the EKF 

algorithm can be found in [50]. The influence of model uncertainties on the estimation 

performance was also discussed in this study, but no uncertainty compensation was 

applied to the estimator. Xiong, et al. discussed the implementation of the EKF to a 

chemical vapor deposition process for estimating film thickness, roughness, and growth 

rate from film surface reflectance measurements captured by an in situ sensor [51]. The 

EKF algorithm has also been used in a freeze-drying process to estimate the temperature 

profile along the frozen product based on a simplified process model and single point 

temperature measurement [52]. 

Other structures of the Kalman filter, adapted from the original form, have also 

been used for process estimation and control. Lendek, et al. developed a distributed 

Kalman filtering strategy to estimate the state of a linear distributed-parameter process 

[53]. In this strategy, a decomposition of the process model into a set of subsystems 

allows the use of individual Kalman filter on each of these subsystems. This distributed 

strategy reduces the complexity and computational costs at the price of suboptimal 

performance. Li and his co-workers designed a hierarchical EKF structure to estimate 

unmeasured states and key kinetic parameters in an ethylene–propylene–diene polymer 
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(EPDM) polymerization process [54]. In this hierarchical structure, two EKFs, using 

different measuring rates, were designed and applied to two subsystems involving the 

dominant dynamics of the process. Rezaei, et al. used a hybrid EKF strategy, including a 

conventional lumped Kalman filter and an off-line process model, to estimate the end-

state distribution along a tubular plug-flow reactor [0]. This hybrid method reduces the 

computational cost, but it is limited to the estimation of the end-states.  

2.2.3 Model Uncertainty Compensation 

Model uncertainty, caused by inaccurate modeling or unknown model parameters, 

is one of the biggest challenges faced by most of the estimation methods discussed above. 

One approach to compensate for these uncertainties is to design a class of estimators that 

do not require accurate modeling, such as asymptotic observers [56]. The main drawback 

of this approach is that the convergence rate of the estimation is fully determined by 

operating conditions [40, 57]. The alternative way is to use a basic model with known 

structure but unknown or inaccurate parameters and estimate these parameters online. 

The estimated parameters are then incorporated into the state observer to improve 

estimation performance [40, 57]. This online parameter estimation approach is chosen in 

this dissertation to compensate for model uncertainties involved in the design of the 

Kalman type state estimator. An overview of various online parameter estimation 

methods is given below. 

Some of these methods use the EKF algorithm to estimate state and parameter 

simultaneously. There are two basic approaches to achieve simultaneous state and 

parameter estimation: Joint EKF and Dual EKF [58]. The Joint EKF incorporates the 
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unknown parameters into the state vector and uses a single extended Kalman filter to 

estimate the new combined state and parameter vector. In contrast, the Dual EKF uses 

two cooperating extended Kalman filters to estimate the state and parameter in parallel. 

Applications of these two EKF strategies are found in the estimation and control of some 

biochemical or mechanical processes [57, 59]. Hulhoven, et al. discussed the application 

of the joint state and estimation strategy to a macroscopic bioprocess in [57]. They used 

the combination of a Joint EKF and an asymptotic observer for improved estimation 

performance and uncertainty compensation. Similarly, Moireau, et al. developed a joint 

state-parameter estimation procedure based on a collocated feedback strategy and a 

Kalman filter for parameter estimation [59]. This procedure was then implemented to a 

linear and a bilinear mechanical system, respectively. They also discussed the potential of 

extending this framework to other state observers. The Dual EKF approach has been 

applied to the estimation of traffic flow, vehicle status, noisy speech signals, etc [60-62]. 

However, applications of the Dual EKF are seldom found in literature that discussed 

distributed-parameter processes. 

Other estimation methods, such as particle filters, are also used for online 

parameter estimation. Chen, et al. developed a framework for online state and parameter 

estimation for a batch process by using a particle filter algorithm along with an auxiliary 

sampling importance re-sampling (ASIR) filter and a kernel smoothing method [63]. 

However, the computational cost will be increased significantly when this approach is 

implemented to distributed-parameter processes due to the increasing model dimension. 

Sawo, et al. proposed an online estimation strategy for both the states and parameters of a 
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2D distributed-parameter system described by linear PDEs [64]. The simultaneous state 

and parameter estimation is decomposed into a linear and a non-linear problem by using 

the sliced Gaussian mixture filtering. Damak developed and applied an asymptotic state 

and parameter estimation method to a distributed biochemical process [65]. The 

estimation strategy was designed based on local asymptotic stability properties, and a 

reduced process model obtained by using the orthogonal collocation method.  

In summary, the above three subsections reviewed the existing estimation 

methods from aspects of model reduction, estimator type and structure, and uncertainty 

compensation. These methods provide fundamental frameworks for guiding the design of 

appropriate state and parameter estimators for robotic radiation-based processes that are 

studied in this dissertation. 

2.3 Model Predictive Control for Distributed-Parameter Processes 

For most robotic radiation-based processes, the process quality is usually 

influenced by multiple manipulated variables of the actuator, such the radiant power, the 

moving speed, and so on. Therefore, it inherently requires the optimization of these 

manipulated variables to achieve the desired performance indexes, for example, the 

acceptable quality, minimum energy use, etc. One widely-used method that can help 

achieve this objective is the model predictive control (MPC) approach. This method uses 

the model-based process prediction and the moving finite-horizon optimization algorithm 

to achieve the control objective. In this section, a review of MPC-related methods and 

their applications to distributed-parameter processes is presented. 
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Model predictive control strategies have been used for various industrial 

processes that are described by distributed-parameter models. Dufour, et al. developed a 

MPC framework for the control of a class of distributed-parameter processes modeled by 

PDEs [66, 67]. The proposed framework is composed of an off-line trajectory 

optimization based on a nonlinear PDE model and an online MPC strategy based on 

linearized model and process measurements. Shang, et al. presented another MPC 

approach for the control of distributed-parameter systems based on the method of 

characteristics [68, 69]. In this strategy, the PDEs describing the process model are 

transformed into ODEs along the characteristic curves, and a high-accuracy process 

prediction is used to formulate the MPC algorithm. However, constraints are not 

considered in this characteristics-based MPC approach. Aggelogiannaki and Sarimveis 

developed a nonlinear MPC strategy based on radial basis function neural network and 

applied it to a tubular reactor in [70]. This method uses the neural network trained by 

input-output data to describe the temporal and spatial behaviors of the system instead of 

using PDEs, so it helps reduce the computational cost when implementing the MPC 

strategy in real time. A hybrid singular value decomposition and radial basis function 

model used for MPC design was also discussed in this study. Bernard and Moghaddam 

proposed a nonlinear MPC approach to control a complex glass forming process, based 

on a PDE type process model solved by Finite Element Method (FEM) [71]. The MPC 

strategy is developed in consideration of the trade-off between the control performance 

and computational cost. The potential of this method for real industrial applications was 

also outlined. 
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Model predictive control applications are also found in processes involving 

moving actuators. Dubljevic developed a model predictive control framework for a class 

of diffusion-reaction processes with multiple collocated actuators and sensors [72]. The 

MPC strategy generates an optimal control action to switch these actuators which are 

located at a set of pre-specified positions. Model decomposition was also considered in 

the MPC formulation. Although this multiple fixed actuators architecture can be 

equivalent to the one employing a single moving actuator, the constraint on the speed of 

the moving device should be integrated into the MPC controller since it has to travel from 

one position to another physically. Qian and Zhang developed a two-input single-output 

MPC strategy to control a quasi keyhole plasma pipe welding process based on a linear 

model [73]. An online recursive least squares algorithm was used to identify uncertain 

model parameters. The designed MPC strategy has also been implemented in real time. 

The control of the speed of the welding torch wasn’t discussed in this study. Moreover, a 

neural-network based nonlinear MPC strategy applied to a cutting process was discussed 

in [74]. In this work, a neural-network process model and a robust generic-algorithm-

based optimizer were developed. The proposed MPC strategy was then applied to control 

the tool support shifting in the cutting process to achieve desired process quality and 

prevent tool oscillation. The manipulation or control of the cutting speed control wasn’t 

discussed in this work. 

These reviewed MPC methods which are used to control various distributed-

parameter processes employing either fixed or moving actuators provide essential 

guidance for developing a distributed-parameter MPC framework for the control of 
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robotic radiation-based processes in this work. The proposed MPC framework that 

focuses on addressing the optimal coordination of multiple manipulated variables will be 

detailed in Chapter 5. 

Chapter Summary 

This chapter provided a review of related work on: 1) control algorithms and 

applications for processes employing moving actuators; 2) estimation methods for 

distributed-parameter processes; 3) model predictive control strategies and applications 

for distributed-parameter processes. The first section of this chapter summarized existing 

theories and applications for the control of moving-actuator-based processes. Most of 

these control methods involve online sensing or estimation of process states, and 

coordination of multiple manipulated variables. Different estimation methods for 

distributed-parameter processes were reviewed in the second section from the aspects of 

model reduction, estimator type and structure, and uncertainty compensation. The 

Kalman type estimators for both state and parameter estimation are found popular in 

various applications. The final part of this chapter reviewed the use of various model 

predictive control methods in distributed-parameter processes employing fixed or moving 

actuators. These theories and methods reviewed in this chapter provided significant 

guidance for the continuing investigations in some of these areas, which will be detailed 

in the rest of this dissertation. 

The following chapters will present the continuing work in developing a general 

framework, including closed-loop control design, online state and parameter estimation, 

and coordinated control and optimization for robotic radiation-based processes. This 
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framework integrates some of the theories and methods discussed above with essential 

adaptations to the moving-actuator problem addressed in this dissertation. Case studies on 

a robotic UV curing process will also be presented to illustrate the developed framework. 
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CHAPTER THREE 

ONLINE TRAJECTORY GENERATION AND FEEDBACK CONTROL 

 

As pointed out in Chapter 1, the performance of these robotic radiation-based 

processes is significantly influenced by the relative configuration between the moving 

radiant actuator and the target item. In traditional trial-and-error methods, this issue is 

usually handled by taking a lot of off-line training or calibration on the practical robotic 

system, which may not be robust enough for disturbance rejection. The alternative way is 

to implement some of the feedback control approaches summarized in the first section of 

Chapter 2, which can help improve the process performance and compensate for 

disturbances by adaptively adjusting either the motion of the robot or the power of the 

radiant actuator. 

This chapter will discuss the application of feedback control methods to practical 

robotic radiation-based processes from the following aspects: 1) online motion/trajectory 

planning for the robot; 2) basic output feedback process control. The two approaches 

developed in this chapter combine the fundamental feedback control theories and some 

novel practical strategies proposed for this particular problem. A survey of state of the art 

sensing technologies that can be used for real-time process monitoring is presented at 

first. This is followed by the development of an online trajectory generation method for 

manipulating the motion of the robot in real time. In addition, a basic output feedback 

control strategy is proposed to achieve disturbance rejection by adjusting either the 

motion of the robot or the power of the radiant actuator. Both the online trajectory 

generation method and the output feedback control strategy are implemented to a robotic 
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UV curing process through simulation, and an experimental platform is also developed 

for demonstration.  

3.1 Process Monitoring and Sensing 

To achieve the closed-loop control objective, online monitoring and sensing of the 

process is needed to provide essential feedback information. A review of existing 

methods that are widely used for online process monitoring and sensing is presented 

below. 

3.1.1 Mechanical Methods 

There are a lot of methods that depend on detecting mechanical properties of the 

product, such stress, stiffness, etc., to monitor on-going status of industrial processes. For 

example, for a film drying process, Chen, et al. used stress measurement method to 

monitor the moisture loss during the drying process [75]. Another example is the use of 

ultrasonic technologies to monitor online cure status for epoxy-based polymerization 

processes [76, 77].  

3.1.2 Optical Methods 

For some industrial processes, the on-going process status can be monitored by 

using various passive or active optical methods, such as optical imaging through cameras 

[78, 79], refractive index measurement [80], etc. These methods are widely used in online 

process monitoring and sensing because of their nondestructive mechanism and high 

accuracy. However, the performance of these optical methods may be significantly 

influenced by the environmental factors, such as fog, dust, and etc. 
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3.1.3 Electrical Methods 

Another approach for online process monitoring and sensing is to use various 

electrical or electromagnetic methods, such as dielectrometry, electromagnetic pulse 

detection, etc. The dielectric methods have been used for process monitoring during the 

curing of adhesively bonded joints [81] and glass fiber-epoxy composites [82]. However, 

the dielectric sensors used in these methods have to be embedded into the monitored 

target. For a film painting process, a noncontact method has been developed to monitor 

the film thickness by measuring the echo signal of a terahertz (THz) electromagnetic 

pulse [83]. Other electrical methods, such as triboelectric sensing, have also been used for 

process monitoring in industrial granulation and drying processes [84]. 

3.1.4 Spectrometry Methods 

Various spectrometry methods, such as real-time infrared spectroscopy (RTIR), 

near-infrared spectroscopy (NIR), etc., are also used for online process monitoring [85-

87]. However, most of these methods are not suitable for industrial applications due to 

the high equipment cost and the lack of appropriate physical form factors of the devices. 

3.1.5 Thermal Methods 

Many industrial processes, such as drying, curing, and welding, involve 

associated thermal evolution represented by temperature changes during the process. 

Such thermal characteristics can be used for process monitoring. These thermal-based 

methods can be divided into two major categories. One is the calorimetry-based methods 

that are used for monitoring cure status of polymerization processes [88, 89]. The other is 

a class of thermograph-based methods that use various infrared (IR) sensing technologies. 
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These methods have been widely used in various industrial applications due to their fast 

response, nondestructive nature, reasonable cost and feasible physical form factors [90, 

91]. 

3.2 Process-Feature Based Online Trajectory Generation 

For most robot-based manufacturing processes, the motion of the robot 

manipulator is pre-determined before it is implemented to these processes. In this 

approach, both the path (spatial domain) and trajectory (temporal domain) of the robot 

manipulator are usually designed through trial-and-error or calibration. The drawbacks of 

this off-line approach include: 1) low process efficiency caused by time-consuming 

calibrations; 2) poor disturbance-rejection capability due to the open-loop control nature. 

These drawbacks could be further aggravated for robotic radiation-based processes, since 

these processes may run faster and have higher quality requirements than others. 

In this section, an online trajectory generation method will be developed to deal 

with these issues by incorporating process status feedback through some of the sensing or 

monitoring methods discussed in the previous section. The general structure of the 

proposed online trajectory generation strategy is illustrated in Figure 3.1. 
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Figure 3.1 Online trajectory generation using process status feedback 



 27 

The path design shown in Figure 3.1 can be done off-line considering the 

geometric model (given in various computer-aided design (CAD) formats) of the target 

product. In this process, the desired spatial profile of the end effector of the robot is 

generated in the operational space. The next step is to generate the trajectory in the 

temporal domain. In the proposed approach illustrated in Figure 3.1, the trajectory 

generation not only uses the designed spatial path as starting input, but it also takes into 

account the real-time process status. To implement this online trajectory generation 

strategy, two practical approaches can be considered as illustrated in Figure 3.2. 

v

(a) Look and Move (b) Run by Run 
 

Figure 3.2 Two practical approaches for online trajectory generation 

In the first approach shown in Figure 3.2(a), the sensor used for measuring 

process status is co-located with the moving actuator (denoted by the blue box). A look-

and-move strategy can be used to determine the trajectory based on this actuator/sensor 

configuration. The complete path profile is divided into a set of segments, and the 

actuator moves through these segments in a discrete manner. In the meantime, the sensor 

keeps monitoring (“look”) the process status of the current segment where the actuator 

stays, and determines when it should move to the next segment.  
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The second approach depicted in Figure 3.2(b) uses a run-by-run strategy to 

achieve the online trajectory generation. In this case, the process status is monitored in a 

global manner by using either multiple distributed sensors embedded in the product or a 

single overhead sensor which has a full view of the product. Compared to the first 

approach in which the task is divided spatially, this strategy breaks down the task into a 

series of sequential actions. The actuator has to move through the product multiple times 

to complete the desired task. The trajectory of the actuator at each run is determined 

based on the measured process status at the end of the previous run.  

The following subsections provide more details on the two trajectory generation 

strategies [92, 93]. 

3.2.1 Look-and-Move Strategy 

In the look-and-move strategy, the total path is divided into a set of segments that 

can be characterized by the position and orientation of their central normal vectors in the 

operational space. These kinetic characteristics are represented by a series of 

transformation matrices defined below [94].  
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Here, the number of segments is denoted by 
sN . The vector pi

 represents the 

position of the central normal vector of the i
th

 segment in the operational space. The 
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associated orientation is described by three vectors named ni
, oi

, and ai
. These 

transformation matrices can also be described in the joint space by using the following 

nonlinear functions. 

1 2( , , , ), 1,2, ,   i i i ni sT J q q q i N   (3.3) 

 

In equation (3.3), the joint variables 
1 2, , ,i i niq q q  are defined with respect to their 

own local coordinate frames. The subscript n  denotes the degree-of-freedom (DOF) of 

the robot. To make the robot end effector target each segment in the designed position 

and orientation, the following inverse kinematics problem should be solved to find the 

joint variables corresponding to a given position and orientation [95]. 
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Here, the vector qi
 is composed of all joint variables and it determines the 

posture of the robot corresponding to the current segment it will move through. The 

above transformation from the operational space to the joint space is illustrated in Figure 

3.3. 
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Figure 3.3 Path transformation from operational space to the joint space 
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Once the joint vectors for all segments of the path have been calculated, the 

trajectory of each joint can be generated in a discrete manner as illustrated in Figure 3.4. 
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Figure 3.4 Trajectory of position, velocity and acceleration of the j
th

 joint 

In Figure 3.4, the position, velocity and acceleration of the j
th

 component of the 

joint vector is denoted by jq , jq , and jq , respectively. The joint positions corresponding 

to two adjacent path segments are represented by jiq  and ( 1)j iq   ( 1,2, , si N ). The 

position trajectory shown in Figure 3.4 illustrates a single look-and-move cycle. First, the 

position of the j
th

 joint changes from jiq  to ( 1)j iq   when the end effector moves from the 

previous segment to the current one. Then the j
th

 joint and others rest at their current 

positions to allow the actuator and sensor to process and monitor the product. Once the 

operation on the current segment has been completed, another look-and-move cycle is 

activated to repeat this process on the next segment. As shown in Figure 3.4, the 

trajectory of a single cycle is composed of two parts. The first part (“move”) is designed 
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as a spline type to smooth the movement of the end effector between two adjacent 

segments. The duration of this part is defined as 
mt  (

1/2m i it t t   ). This duration is 

designed off-line based on the dynamic characteristics of the robot manipulator. In the 

second part (“look”), the joint will hold its current position for a while until the next 

cycle is activated. The duration of this part ( 1 1/2p i it t t    ) is determined online based 

on the comparison of the measured process status and the set point (feedback error).  

3.2.2 Run-by-Run Strategy 

In the run-by-run strategy, the end effector with the radiant actuator will move 

through the whole product continuously at each run. In the mean time, a single global 

sensor or multiple distributed local sensors are used to measure the process status at the 

end of each run. For the first run, the robot moves the actuator by following a pre-

designed trajectory, and the sensor captures status map of the whole product at the end of 

this run. The status map is then compared with the reference and some adjustments are 

applied to the trajectory of the robot to improve the performance for the next run. A 

simple 2D processing example is given below to illustrate this strategy. The initial 

trajectory uses a constant moving speed (shown in Figure 3.6(a)) and the measured status 

map after the first run is depicted in Figure 3.5. 

iy ty fy

 

Figure 3.5 Status map of a 2D rectangular target at the end of the first run 
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As shown in Figure 3.5, the process uniformity after the first run is poor due to 

some uneven properties of the surface (e.g. uneven finishing, etc.). Since the right half of 

the plane has a higher degree of process completion than the left one, the initial trajectory 

should be adjusted to help compensate for this unevenness during the next run. The 

updated trajectory is illustrated in Figure 3.6(b). 
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Figure 3.6 The initial and adjusted trajectories of the position  

and the velocity of the robot end effector 

 

In the initial trajectory shown in Figure 3.6, the end effector with the actuator 

starts from the initial position 
iy  with zero velocity and then accelerates to a constant 

speed. When it is close to the final position fy , the end effector will decelerate and reach 

the end with zero velocity. In practice, this continuous trajectory is approximated by a 

series of points with a pre-determined time interval t . The duration of acceleration (
cit ) 

and deceleration ( f cft t ) is also designed off-line based on the dynamic characteristics 

of the manipulator. In the adjusted trajectory, two time intervals ( 1t  and 2t ) are used 
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to switch the speed of the end effector when it moves across the boundary position 

denoted by 
ty . In this case, a higher speed ( 2 1t t   ) is implemented to the end effector 

when it enters the right half part of the target plane so that the unevenness of the process 

can be compensated for. The above online trajectory adjustment can be repeated during 

the remaining runs until the desired process quality is achieved.  

3.3 Output Feedback Control Design 

The online trajectory generation method discussed in the previous section 

provides one approach to improve process quality by adjusting the motion of the actuator 

gradually. This section details a more comprehensive closed-loop control approach that 

employs the measured process output for feedback. The proposed control strategy 

combines both the moving/local sensing and the global monitoring configurations. It aims 

to improve the process quality in the presence of disturbances by manipulating one of the 

manipulated variables of moving radiant actuator [0]. The general structure of the 

proposed control strategy is illustrated in Figure 3.7. 
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Figure 3.7 The basic output feedback control structure 
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In the control structure shown in Figure 3.7, the process output (e.g. temperature, 

etc.) is measured by using both the local and global sensors. The feedback signal is then 

generated and sent to the process controller. The actuator has two types of manipulated 

variables. The calibrated variable is determined off-line, while the online manipulated 

variable is regulated by the process controller based on the comparison of quality set-

point and process output feedback. The following paragraphs detail the generation of the 

feedback signal and the selection of different manipulated variables for control of the 

process. 

3.3.1 Generation of the Feedback Signal 

 Considering a radiation-based process on a simple 2D rectangular target, the 

local and global measurement of the process output can be represented in a general form: 

( , , ) ( , ) ( , , ),    [ , ],  [ , ]lb ub lb ubV x y t x y Y x y t x x x y y y    (3.5) 

 

Here, the boundaries of the rectangular area are defined by 
lbx x , 

ubx x , 

lby y , and 
uby y . The distributions of the actual and measured process output are 

represented by ( , , )Y x y t  and ( , , )V x y t , respectively. The relationship between them is 

described by a spatial distribution function ( , )x y . The following definitions of ( , )x y  

are used for the local and global measurement configurations, respectively. 

Local Measurement: 
1,   if [ , ],  [ , ]

( , )
0,   otherwise 

a x a x a y a yx x w x w y y w y w
x y

     
 


 (3.6) 

Global Measurement: ( , ) 1,    [ , ],  [ , ]lb ub lb ubx y x x x y y y       (3.7) 
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In equation (3.6), a rectangular window function is defined to describe the local 

measurement configuration in which the sensor is co-located with the moving actuator. 

The position of the actuator is denoted by (
ax ,

ay ), which is also the center of the 

measuring window. The length and width of the window are represented by  
xw  and yw , 

respectively. For the global measurement configuration, the observation window is 

expanded to the whole processing zone, so the measured distribution of the process 

output covers the whole zone.  

The measured distribution of the process output through the local and global 

configurations is usually averaged in the following manner to generate appropriate 

feedback signals. 

 Ω ,  Ω

1
( ) ( , ) ( , , )

x y

t w x y V x y t dxdy
A




   (3.8) 

 

Now the feedback signal becomes only the function of time by averaging the 

spatially distributed process output within the measuring window Ω . The area of the 

measuring window is denoted by 
 ΩA . The term ( , )w x y  is a spatially distributed weight 

coefficient. The selections of ( , )w x y  for both the local and global measurement 

configurations are determined by the designed control strategy. This issue is discussed in 

the next subsection. 

3.3.2 Feedback Control by Using Different Manipulated Variables 

The feedback signals generated from the local and global sensors are then used to 

achieve closed-loop control of these robotic radiation-based processes. Here, two 
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manipulated variables are considered for the feedback control: the radiant power of the 

actuator and the speed of the robot end effector. Given the control structure shown in 

Figure 3.7, either of the two can be selected as the online manipulated variable while the 

other is calibrated off-line and kept constant during the process.  

A cascade control structure is designed to exploit both the local and global 

feedback information. This cascade control structure is illustrated in Figure 3.8. 
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Figure 3.8 The cascade structure of the process controller 

The rectangular color map in Figure 3.8 represents the distribution of the 

measured output of a 2D process. The processed and unprocessed areas are denoted by 

the red and blue color, respectively. The currently processed area is enclosed by a small 

black frame, which also defines the measuring window for the local sensor. Since the 

currently processed area includes both the processed and unprocessed parts, the average 

process output within the local measuring window is typically lower than the quality set-

point.  Therefore, a secondary set-point, named local set-point, may be generated for 
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regulating the local process output. This local set-point is generated by the global 

controller. Although the global sensor can monitor the complete area enclosed by the 

white dash-line frame, the weight coefficient ( , )w x y  mentioned in the previous 

subsection will be introduced to ensure that the average process output within the global 

measuring window is calculated dominantly from the processed area rather than 

unprocessed area. 

The cascade controller can manipulate either the radiant power of the actuator or 

the speed of the robot end effector. The main advantage of this control structure is that it 

takes into account both the local and global process information. The control 

performance is demonstrated in the case study below. 

3.4 Case Study: Temperature Feedback Control of a UV Curing Process 

The case study presented in this section illustrates the implementation of the 

online trajectory generation method and the output feedback control strategy to a robotic 

ultraviolet (UV) paint curing process, as illustrated in Figure 3.9. 
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Figure 3.9 The robotic UV paint curing process 
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As one of the most significant radiation-based processes, the UV curing method 

depicted in Figure 3.9 has the potential to replace conventional oven-based curing 

methods due to its low energy cost and short processing time.  In this process, the cure 

quality is mainly influenced by the distribution of the UV irradiance on the processed 

product. Therefore, the irradiance distribution has to be precisely controlled to ensure that 

the UV energy is delivered to the target surface properly and uniformly. The online 

trajectory generation method and the output feedback control strategy developed in the 

previous section will be used to deal with this issue. 

3.4.1 Modeling of the UV Irradiation Process 

The case study here only considers the irradiation part of the UV curing process. 

The basic UV irradiation mechanism can be described by using the monochromatic 

Lambertian point source model [97] and fundamental radiative heat transfer theory [98]. 

The irradiance distribution on the 2D surface shown in Figure 3.9 is represented by: 

2
1

( ) cos ( , , ) cos ( , , )
( , , ) ( , )

( , , )d

i iN
s r

i i

t x y t x y t
I x y t k x y

N x y t

  



  (3.9) 

 

The UV source used here (an LED panel) is composed of multiple cells (LEDs)  

and each of them is modeled as a Lambertian point source. The number of the cells and 

the total radiant flux (W) of the UV source is denoted by N  and ( )t , respectively. The 

coefficient ( , )k x y  is used to describe the UV absorption variety throughout the target 

surface. The irradiation from a single UV cell is significantly influenced by the relative 

configuration between the cell and the target surface. This configuration is characterized 

by three fundamental parameters: the position vector ( , , )d x y t , the emission angle 
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( , , )s x y t , and the incidence angle ( , , )r x y t . The superposition principle is applied to 

obtain the total irradiation distribution ( , , )I x y t . The energy density distribution on the 

target surface ( ( , , )E x y t ) is then represented by: 

0
( , , ) ( , , )

t

E x y t I x y d    (3.10) 

 

The accumulated energy will cause a temperature increase on the target surface. 

In this case study, conductive and convective heat transfer components are simply 

ignored, considering the dominant energy delivery through UV radiation. Then the 

thermal dynamics can be roughly described by: 

( , , )
( , , )

dT x y t
cl I x y t

dt
   (3.11) 

 

Here,  , c , and l  denote the density, the specific heat capacity, and the thickness 

of the paint film, respectively. Equation (3.11) can be further transformed into: 

0 0
0

1 1
( , , ) ( , , ) ( , , ) ( , , ) ( , , )

t

T x y t T x y t I x y d T x y t E x y t
cl cl

 
 

     (3.12) 

 

The correlation between the temperature ( , , )T x y t  and the accumulated energy 

( , , )E x y t  on the target surface makes it possible to use temperature feedback to control 

the UV irradiation process. 

3.4.2 Application of the Online Trajectory Generation 

To demonstrate the online trajectory generation method, a simulation study is 

conducted in this subsection, using the irradiation model implemented in 

MATLAB/Simulink and a dynamic model of the robot manipulator established in 
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SIMPACK (a multi-body dynamics simulation package). The process target used in this 

simulation is a 2D rectangular plane. The simulation configuration is illustrated in Figure 

3.10. 

(a) System Model (b) Simulation Scenarios
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Figure 3.10 Simulation configuration for the UV irradiation process 

The robot manipulator and the 2D rectangular target are illustrated in Figure 

3.10(a). The spatial path of the end effector is designed as a linear one, starting from the 

left side of the target to the right side. The UV source (an LED panel) model is developed 

based on equation (3.9). The output variable of the source model is the irradiance 

distribution on the target. The input variables include the radiant flux and the relative 

geometric configuration of the UV LED panel. Two simulation scenarios (shown in 

Figure 3.10(b)) will be conducted to demonstrate the online trajectory generation method. 

In the first scenario (S1), the target surface is divided into two regions with different UV 

absorption coefficients (denoted by 
1k  and 

2k ). In the second scenario (S2), the variation 

(
2 1d d ) occurs in the distance between the target surface and the moving actuator. The 

two scenarios represent typical disturbances existing in the curing process caused by 
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material and geometric factors, such as uneven paint, finishing variations, etc. The two 

online trajectory generation strategies (“look-and-move” and “run-by-run”) described in 

Section 3.2 are applied to robotic curing system in these scenarios, and then compared 

with the open-loop curing method (the trajectory is pre-determined). The simulation 

results for the first scenario are given in Figure 3.11 ~ Figure 3.13. 
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(b) 

Figure 3.11 (a) Temperature map of the target, open-loop curing (b) Temperature 

distribution along the centerline for the three methods (Scenario-1) 
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(b) 

Figure 3.12 (a) Temperature map of the target, “look-and-move” strategy (b) 

Temperature map of the target, “run-by-run” strategy (Scenario-1) 
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Figure 3.13 Trajectory of the end effector for the three methods (Scenario-1) 

The temperature map illustrated in Figure 3.11(a) shows that the open-loop curing 

method cannot maintain process uniformity due to the uneven distribution of the UV 

absorption coefficient along the target in Scenario-1.  The process uniformity is improved 

by implementing the two online trajectory generation strategies, as seen from the 

temperature maps in Figure 3.12 (a) and (b). There is only a slight unevenness occurring 

at the intermediate area between the left and right parts of the target. The comparison of 

the temperature distribution along the centerline of the target among the three curing 

methods is presented in Figure 3.11(b). The trajectories of the robot end effector for the 

three methods are depicted in Figure 3.13. Compared to the open-loop curing method 

which employs a constant moving speed, the look-and-move strategy reduces the 

duration of curing at each segment when the actuator begins illuminating the area with 

higher UV absorption coefficient. Similarly, the run-by-run strategy uses two different 

velocities when the actuator sweeps back (the second run) to compensated for the uneven 
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UV absorption distribution. The simulation results for the second scenario are illustrated 

in Figure 3.14 ~ Figure 3.16. 
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(b) 

Figure 3.14 (a) Temperature map of the target, open-loop curing (b) Temperature 

distribution along the centerline for the three methods (Scenario-2) 
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Figure 3.15 (a) Temperature map of the target, “look-and-move” strategy (b) 

Temperature map of the target, “run-by-run” strategy (Scenario-2) 
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Figure 3.16 Trajectory of the end effector for the three methods (Scenario-2) 

In Scenario-2, the open-loop curing method fails to maintain the process 

uniformity due to the varying distance between the actuator and the target. The improved 

results by using the two online trajectory strategies are presented in Figure 3.15. This can 

be explained by the trajectory adjustment illustrated in Figure 3.16. The look-and-move 

strategy increases the duration of curing at each segment when the end effector enters the 

area with a larger distance to the target. The run-by-run strategy also adjusts the speed of 

the end effector adaptively to compensate for the distance variations.  

The two scenarios discussed above demonstrate that the proposed online 

trajectory generation method can help improve process uniformity in the presence of 

different types of disturbances.  

3.4.3 Application of the Temperature Feedback Control 

This subsection presents the implementation of the temperature feedback control 

strategy discussed in Subsection 3.3.2 to the robotic UV curing process through 
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simulation. Two infrared (IR) cameras are used to provide the local and global 

temperature measurements in this application. The feedback signals corresponding to the 

local and global configurations are generated based on the average method described by 

equation (3.8). The detailed feedback signal generation is given below: 

1
( ) ( , )

( 1)( 1)

ub ub

lb lb

j i

j j i iub lb ub lb

T t T i j
i i j j  


   

  (3.13) 

 

In equation (3.13), the average temperature is denoted by ( )T t , which is 

calculated within the following defined processing window for the local and global 

cameras, respectively. 

Local Processing Window: 
( ) ,  ( ) ,

( ) ,  ( )

lb a Lx ub a Lx

lb a Ly ub a Ly

i i x i i x

j j y j j y

 

 

   

   
 (3.14) 

Global Processing Window: 

   ( ) ,  ( ) ,

( ) ,  ( )

lb a Gx ub a Gx

lb a Gy ub a Gy

i i x i i x

j j y j j y

   

 

     

   

 

(3.15) 

Again, the current position of the actuator is described by  
ax  and 

ay . This is also 

the center of the local processing window. The length and width of the local processing 

window are defined by 2 Lx  and 2 Ly , respectively. The center of the global processing 

window is shifted in the opposite direction of the actuator’s movement by a distance  , 

to make sure that the global camera only processes data from the cured area. The length 

and width of the global processing window are defined by 2 Gx  and 2 Gy , respectively. 

The cascade controller discussed in Subsection 3.3.2 is detailed for this 

application. Two proportional–integral–derivative (PID) controllers are used to regulate 
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both the local and global temperature levels. The cascade controller can manipulate either 

the radiant power of the actuator or the speed of the end effector. The two alternative 

control structures are illustrated in Figure 3.17. 

PID+-

PID



+

+

0

+-

GdT

GT

LT

+

+

0LT

LdT

PID+-

PID

v

+

+

0v

+-

GdT
LT

+

+

0LT

LdT

(a) Radiant Power Control (b) Speed Control

GT

 

Figure 3.17 Two alternative structures of the cascade PID controller 

In Figure 3.17, the global temperature set-point and the measured average 

temperature through the global camera are denoted by 
GdT  and GT , respectively. The first 

PID controller is used to adjust the local temperature set-point 
LdT  around a nominal 

value 
0LT . The measured average temperature through the local camera is represented by 

LT , which is compared with 
LdT  to determine either the radiant power or the speed. The 

nominal speed and radiant power are denoted by 
0v  and 

0 , respectively. The above two 

control approaches are demonstrated by using the scenarios described in the previous 

subsection. The simulation results for Scenerio-1 are given in Figure 3.18 ~ Figure 3.20. 
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(b) 

Figure 3.18 (a) Temperature map of the target, open-loop curing (b) Temperature 

distribution along the centerline for open-loop and feedback control (Scenario-1) 
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(b) 

Figure 3.19 (a) Temperature map of the target, using power control (b) Temperature map 

of the target, using speed control (Scenario-1) 
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(b) 

Figure 3.20 Time history of the power and the speed of the UV source (Scenario-1) 



 48 

The temperature maps depicted in Figure 3.19 and the temperature distribution 

along the centerline illustrated in Figure 3.18(b) show that the uneven UV absorption 

distribution can be compensated for by adjusting either the power or the speed of the UV 

source based on the local and global temperature feedback. This can be explained by the 

time history of the power and the speed of the UV source shown in Figure 3.20. In the 

power control strategy, a constant speed is used and the radiant power is adjusted around 

a nominal value. The time history in Figure 3.20(a) shows that a higher radiant power is 

applied when the UV source passes the area with lower absorption coefficient. This 

manipulation is equivalent to the speed decrease shown in Figure 3.20(b). For the speed 

control approach, the radiant power is kept constant during the whole process.  

The simulation results for Scenario-2 are presented in Figure 3.21 ~ Figure 3.23. 
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(b) 

Figure 3.21 (a) Temperature map of the target, open-loop curing (b) Temperature 

distribution along the centerline for open-loop and feedback control (Scenario-2) 
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(b) 

Figure 3.22 (a) Temperature map of the target, using power control (b) Temperature map 

of the target, using speed control (Scenario-2) 
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(b) 

Figure 3.23 Time history of the power and the speed of the UV source (Scenario-2) 

In this scenario as well, the unevenness caused by the varying distance can also be 

reduced with either the power or speed control strategies. The time history of the power 

and the speed of the UV source given in Figure 3.23 shows that the distance increase is 

compensated for by applying higher radiant power or reducing the speed of the UV 

source.  

The above simulation results for the two different scenarios demonstrate that 

these temperature feedback control strategies can significantly improve the process 

uniformity by manipulating either the radiant power or the speed of the moving actuator. 
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3.5 Experimental Platform Development 

This section presents the development of an experimental platform which can be 

used to validate some of the methods and strategies described in the previous sections for 

the UV curing process. The developed experimental system also provides a basic 

platform for conducting relevant research on robotic UV curing and other radiation-based 

processes. The general structure of this experimental platform is illustrated in Figure 3.24. 
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Figure 3.24 The general structure of the experimental platform 

As shown in Figure 3.24, the experimental platform is composed of three basic 

parts: a manipulator system, a UV radiation system, and a thermal vision system. All of 

these systems are coordinated by a dSPACE rapid control prototyping system and a 

computer. The three subsystems are detailed below. 
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3.5.1 Manipulator System 

A six degree-of-freedom (DOF) PUMA560 manipulator is used in this 

experimental platform. The original servo drives of the manipulator have been replaced 

by six new pulse-width modulation (PWM) amplifiers. These amplifiers are controlled by 

the dSPACE system to drive the motor of each joint in such a way that the end effector of 

the manipulator can follow the desired trajectory. The control structure of the 

manipulator system is illustrated in Figure 3.25. 
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Figure 3.25 The control structure of the manipulator system 

In the control structure shown in Figure 3.25, the joint position signals are 

captured by six built-in encoders and sent to the controller through an encoder interface 

board and an analog-to-digital (A/D) board. The central processor, directed by the real-

time motion control program, calculates the control signal based on the trajectory 

reference and the motion feedback. The amplifiers obtain the converted control signal 

from a digital-to-analog (D/A) board and drive the manipulator to follow the desired 

trajectory. 
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3.5.2 UV Radiation System 

The UV radiation system is composed of a Clearstone 42-cell UV LED head and 

the associated power controller. This UV LED head can be turned on/off instantly and 

has suitable shape factor for mobile use. The dominant emission wavelength of the LED 

head is 365 nm and its maximum power is 16.1 W. The LED head is connected with a 

CF2000 power controller which provides various options for manipulating the output of 

the UV power. The control structure of the UV radiation system is depicted in Figure 

3.26. 
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Figure 3.26 The control structure of the UV radiation system 

As illustrated in Figure 3.26, the dSPACE processor has two channels to control 

the UV LED Head. It can either send a simple on/off command to the CF2000 power 

controller through DS2103 D/A board and a switch, or adjust the UV power level from 

zero to its maximum value through ControlDesk (software package associated with the 

dSPACE system), the computer and the USB interface. 
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3.5.3 Thermal Vision System 

A thermal vision system is utilized in this platform to capture the temperature 

distribution on the target surface. The main component of this system is a Thermoteknix 

infrared (IR) camera. It has a 640×320 pixel array and can measure the temperature 

range from -20 to 150 °C. This camera can communicate with the computer through the 

USB interface and send out digital video at a frame rate of 30 Hz. The captured thermal 

images are processed as a series of 640×320 matrices in MATLAB/Simulink and then 

converted to real-time temperature signals. The basic structure of the thermal vision 

system is shown in Figure 3.27. 

DS1006

Processor

Data 

Acquisition

Program

USB

Interface

IR CameraComputer

ControlDesk

 

Figure 3.27 The structure of the thermal vision system 

In the actual system, the IR camera is connected with the computer through two 

USB cables, one of which is used to transfer thermal images and the other carries the 

control signal. The image processing is performed in the computer and the converted 

temperature signal is sent to the central processor of the dSPACE system through a cross-

over patch cable and ControlDesk interface. The thermal vision system provides essential 
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temperature feedback information for the control system to manipulate the motion of the 

robot or the power of the UV LED head. 

3.5.4 Preliminary Experiments 

In this subsection, some preliminary experiments including the sample curing test 

and the demonstration of the look-and-move strategy will be presented. In the sample 

curing test, the open-loop characteristics of the UV irradiation and the photo-initiated 

polymerization are evaluated. This is followed by an experimental demonstration of one 

of the online trajectory generation strategies (look-and-move), in which the motion of the 

robot end effector is adjusted in real-time by using local temperature feedback through 

the thermal vision system. 

 Sample Curing Test 

The UV curable paint material used in this test is provided by Red Spot Paint & 

Varnish Corporation. This formulation is typically utilized as a protective clearcoat for 

parts made out of polycarbonate. In this test, the paint is applied to some plastic 

substrates through an adjustable micrometer film applicator. The substrate and the 

applicator are illustrated in Figure 3.28. 

(a) Substrate (b) Film Applicator

 

Figure 3.28 The substrate and the film applicator 
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The objective of the sample curing test is to obtain the open-loop characteristics 

of the UV radiation and the photo-initiated polymerization. Two parameters that can 

significantly influence the curing performance are considered in this test: the curing time 

and the distance between the UV LED head and the painted substrate. The degree of cure 

conversion is evaluated through Fourier Transform Infrared (FTIR) Spectrometry [99]. 

The results of the sample curing test are given in Figure 3.29 ~ Figure 3.30. 
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Figure 3.29 FTIR spectra of the painted samples (film thickness: 5 mils; distance to UV 

LED: 0.0254m) at different curing time (t=0s and t=30s)  
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Figure 3.30 The degree of cure conversion versus curing time for different distances 

between the sample and the UV LED head (d=0.0254m and d=0.0508m) 
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Generally, the degree of cure conversion for acrylate materials can be obtained by 

monitoring the decrease of the peak of the absorbance band at 1635, 1410, and 808 cm
-1

 

[100], using the IR spectra shown in Figure 3.29. In this test, the absorbance band at 1410 

cm
-1 

is used to determine the degree of cure. The evolution of the relative absorbance (the 

ratio of peak at 1720 cm
-1 

to 1410 cm
-1

) for different distances is shown in Figure 3.30. 

The associated temperature measurements are also indicated. It can be observed that a 

shorter distance results in a higher degree of cure conversion at the same curing time. 

Another observation from Figure 3.30 is that the major curing conversion occurs within 

the first 30 seconds during the curing process. Given the results of the sample curing test, 

the set-point for the temperature feedback control can be selected as 29 ° C, which gives 

an acceptable degree of cure conversion for the defined curing configuration (film 

thickness: 5 mils; distance to UV LED: 0.0254 m). 

 Demonstration of the look-and-move strategy 

The look-and-move strategy is selected for experimental demonstration because it 

is suitable for the relatively slow curing process (30s) in this particular application and 

paint specimen. The paint is applied to a rectangular plastic substrate and a straight-line 

path is designed for the PUMA560 manipulator to complete the curing task. This 

demonstration is performed on the developed experimental platform and the 

configuration of the actual curing system for the look-and-move strategy is illustrated in 

Figure 3.31. 



 57 

 

Figure 3.31 System configuration for the look-and-move strategy 

The painted area along the path of the end effector is divided into six segments. 

The length of each segment is set as 0.09m, which is slightly shorter than the length of 

the UV LED head. This can help improve the cure uniformity at the intermediate area 

between two adjacent segments due to the overlap effect. The UV LED is turned off 

when it moves from one segment to the next. The curing duration for each segment is 

calculated online by the dSPACE controller that employs temperature feedback and the 

look-and-move strategy. The experimental results are illustrated in Figure 3.32. 
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Figure 3.32 Trajectory of the end effector and time history of temperature signal 

 As shown in Figure 3.32, a curing cycle starts when the end effector just arrives 

at a segment to be cured. The curing of this segment is complete when the measured 

temperature level reaches the set-point. The decrease of curing duration from the first to 

the final segment can be explained by the fact that future segments have already received 

some UV radiation from the LED head which stays at the current location. Therefore, the 

controller reduces the curing duration gradually when the LED head processes the 

subsequent segments. This can help maintain the cure uniformity and improve curing 

quality. 

Chapter Summary 

This chapter discussed two important issues in developing closed-loop control 

approaches for practical robotic radiation-based processes: online trajectory generation 
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and process output feedback control. Two online trajectory generation strategies, using 

either the local or global measurement of some process outputs, were developed for two 

discrete process configurations. A basic output feedback control method was then 

developed to deal with the continuous process configuration by adjusting the power or 

the speed of the radiation actuator based on the combined local and global measurements. 

Both the online trajectory generation method and the output feedback control strategy 

were demonstrated on a robotic UV curing process through simulation. The results 

showed that these closed-loop approaches succeed in compensating for disturbances and 

maintaining process uniformity. The development of an experimental platform for 

demonstrating these methods and strategies was also discussed in this chapter. 

It should be noted that although the online trajectory generation method and the 

output feedback control strategy were developed based on existing feedback control 

theories and methods, they focused on addressing the closed-loop control issue for a class 

of robotic radiation-based processes in a practical manner. The following chapters will 

discuss the estimation and coordination issues based on a more generic description of 

these robotic radiation-based processes. 
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CHAPTER FOUR 

DISTRIBUTED STATE AND PARAMETER ESTIMATION 

 

The online trajectory generation method and feedback control strategy discussed 

in the previous chapter assume that the measured process outputs (e.g. temperature) are 

highly relevant to the state variables to be controlled (e.g. cure-conversion level). 

Sometimes, the correlation between the output measurements and the controlled state 

variables may be influenced by disturbances. For example, the temperature change during 

the curing process is not only determined by the heat generated from the polymerization 

reaction, but it is also influenced by conductive and convective heat transfer components. 

Therefore, it is necessary to monitor the controlled state variables directly. 

However, since the direct measurements of the controlled state variables are not 

always available due to the lack of robust and cost-effective sensing alternatives, 

state/parameter estimation is needed to obtain such information. For robotic radiation-

based processes, two significant issues should be addressed in the development of an 

estimation scheme. First, these processes are typically described as distributed-parameter 

systems with a number of state variables. This may increase the computational cost for 

estimation. Second, with moving actuators, the observability depends on the motion and 

location of the actuator. This changing observability will have a significant influence on 

the estimation performance. 

This chapter will discuss the estimation problem in consideration of the two issues 

described above, based on a generalized distributed-parameter description of these 

robotic radiation-based processes. In this formulation, these processes are simplified as a 
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1D scanning problem, in which the radiant actuator is modeled as a point source and the 

processed target is represented by a 1D strip. A distributed state and parameter estimation 

scheme that incorporates a dual extended Kalman filter (DEKF) is then developed. The 

implementation of the developed estimation scheme is also detailed, including the design 

of an activating policy for reducing computational cost and compensating for 

observability changes. The developed estimation scheme is finally demonstrated on a 

model of the robotic UV curing process. 

4.1 Problem Formulation 

Although most robotic radiation-based processes involve geometrically complex 

objects, such as aircrafts, automobiles, etc., the major process evolution considered here 

occurs in the direction of the movement of the actuator. In addition, the spatial path of the 

moving actuator is usually designed parallel to the geometric profile of the target, and the 

actuator itself is comparatively smaller than the processed target. With these assumptions, 

the actual process can be simply treated as a general 1D scanning problem illustrated in 

Figure 4.1. 

Actuator

( )au t

( , )tu x t

( )av t

0d

Target Strip

Actuator Path

t
n

a
n

d



( )ax t

 

Figure 4.1 The general 1D scanning problem 
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As shown in Figure 4.1, the moving actuator is simplified as a point source. The 

spatial coordinate and the time are represented by x  and t . The input power and the 

speed of the actuator are denoted by ( )au t  and ( )av t , respectively. The term ( , )tu x t  

represents the distribution of the power density on the target strip. The two normal 

vectors (
an  and 

tn ) and the position vector d  characterize the relative geometric 

configuration between the actuator and the target strip. The normal distance between the 

path of the actuator and the target strip is denoted by 
0d . 

The 1D scanning problem illustrated in Figure 4.1 describes the energy 

transmission phase included in most robotic radiation-based processes. The mathematical 

description of this phase is given by a nonlinear function in equation (4.1). Similarly, the 

two other essential phases of these processes, namely state evolution and co-evolution, 

can be represented by equation (4.2) and equation (4.3). 

 ( , ) ( ), ( ),  pt ET a a ETu x t f u t v t  
(4.1) 

 
( , )

( , ), ( , ),
ω

ω   pST t ST

d x t
f x t u x t

dt
  

(4.2) 

 
( , )

( , ), ( , ), ( , ),
ζ

ζ  ω   pCE t CE

d x t
f x t x t u x t

dt
  

(4.3) 

 

Here, the nonlinear functions used to describe the energy transmission, the state 

evolution, and the co-evolution phases are denoted by ( )ETf  , ( )STf  , and ( )CEf  , 

respectively. The variables involved in the state evolution and the co-evolution phases are 

represented by the two vectors ( , )ω x t  and ( , )ζ x t . The parameters associated with the 

three phases are denoted by three vectors pET
, pST

, and pCE
, respectively. In the 
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following subsections, two particular robotic radiation-based processes are provided as 

examples of the above general formulation of the 1D scanning problem. 

4.1.1 Robotic UV Curing Process 

The energy transmission phase of the UV curing process, namely the irradiation 

phase, has been discussed in Subsection 3.4.1 in Chapter 3. The 1D form of the model of 

the irradiation phase can be re-written as [97, 98]: 

 
2

2

( ) cos ( , )
( , ) ( )

( , )d

t x t
I x t k x

x t

 


  

(4.4) 

 

Here, the irradiance distribution on the target strip is denoted by ( , )I x t . The 

absorption coefficient and the radiant flux of the source are represented by ( )k x  and ( )t , 

respectively. The orientation angle and the position vector are denoted by ( , )x t  and 

( , )d x t , respectively. Given the geometric configuration shown in Figure 4.1, the 

irradiance distribution can be further described by: 

  

2 2

0 0

2 2
22 2

2
0

0
0

( ) ( )
( , ) ( ) ( )

( ) ( )
t

a
a

t d t d
I x t k x k x

x t x d v d x d

 

   

 
         


 (4.5) 

 

In equation (4.5), the oriental angle ( , )x t  and the position vector ( , )d x t  are 

represented by the normal distance (
0d ) between the path of the actuator and the target 

strip, and the current position ( ( )ax t ) of the actuator that can be further represented by 

the integral of the actuator’s speed ( )av t . The UV irradiation on the target strip initiates 
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the state evolution phase of the curing process, which can be characterized by the 

following equations [101, 102]. 

[ ]( , )
[ ]( , ) ( , )

d PI x t
PI x t I x t

dt
   

(4.6) 

   
0.5 0.5[ ]( , )

[ ]( , ) [ ]( , ) ( , )
d M x t

M x t PI x t I x t
dt

    
(4.7) 

0.5/p tk k   
(4.8) 

 

Equation (4.6) describes initiation kinetics of the UV induced polymerization, in 

which the photo-initiators absorb the UV irradiation and form a few free radicals to 

induce the crosslink reaction. The photo-initiator concentration is denoted by [ ]( , )PI x t . 

The two coefficients   and   represent the quantum yield of initiation and the molar 

absorptivity, respectively. The kinetics of the propagation and termination of the 

polymerization are described by equation (4.7), where the monomer concentration is 

denoted by [ ]( , )M x t . The coefficient   is composed of the propagation rate constant pk  

and the termination rate constant 
tk . The differential equation in (4.6) can be solved to 

obtain the following explicit expression of the photo-initiator concentration [ ]( , )PI x t . 

0
( , )

0[ ]( , ) [ ]( , ) 

t

I x d
PI x t PI x t e

     
(4.9) 

 

Substituting equation (4.9) into equation (4.7) yields: 

  0

0.5
( , )0.5

0

[ ]( , )
[ ]( , ) [ ]( , ) ( , ) 

t

I x dd M x t
PI x t M x t I x t e

dt

  
 

    
 

 
(4.10) 
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The co-evolution phase of the UV curing process involves the temperature 

increase of the target strip due to the accumulated radiation energy and the heat generated 

from polymerization reaction. A general thermal dynamic equation can be used to 

describe the co-evolution phase [102]. 

 

0
( , )

0

( , ) ( , ) [ ]( , )
( , )

                     [ ]( , ) ( , )

t

I x d

T x t T x t d M x t
c H h T x t T

t x x dt

PI x t e I x t
  

 







   
       



 
(4.11) 

 

Here, the temperature distribution along the target strip is represented by ( , )T x t . 

The density and specific heat capacity are denoted by   and c , respectively. The right 

hand side of equation (4.11) considers both the conductive and convective heat transfer, 

the heat generation from the polymerization, and the radiation from the UV source. The 

conductive and convective heat coefficients are represented by   and h . The 

polymerization enthalpy and the ambient temperature are denoted by H  and T
, 

respectively. The term [ ]( , ) /d M x t dt  can be eliminated by substituting equation (4.10) 

into equation (4.11). 

Combing equations (4.5), (4.10), and (4.11), we can describe the robotic UV 

curing process in the form of the general 1D scanning problem discussed above: 

 0( , ) ( ), ( ), { ( ), }T
   ET aI x t f t v t k x d     

(4.12) 

0

[ ]( , )
[ ]( , ), ( , ), { , , , [ ]( , )}T

     ST

d M x t
f M x t I x t PI x t

dt
       

(4.13) 

0

( , )
( , ), [ ]( , ), ( , ), { , , , , , , , [ ]( , )}T

          CE

dT x t
f T x t M x t I x t c h H PI x t

dt
        

(4.14) 
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It should be noted that the key states of the three essential phases of the UV 

curing process vary with both time and spatial coordinate. The spatial distribution of 

these state variables is significantly influenced by the movement of the actuator along the 

target strip. The estimation scheme to be developed should take into account this 

distributed characteristic. 

4.1.2 Robotic IR Drying Process 

The energy transmission phase of the IR drying process can be described in a 

similar way. Instead of using a UV source, the IR drying process employs a high-

temperature lamp or LED to deliver energy to the target through thermal radiation. This 

thermal radiation process can be modeled as follows, according to the Stefan–Boltzmann 

Law [98] and Lambert's Cosine Law [97]. 

   
4 24

2

( ) cos ( , )
( , )

( , )d

a a aA T t T x t
P x t

x t

  




  

(4.15) 

 

In equation (4.15), the power density (W/m
2
) on the target strip is denoted by 

( , )P x t . The surface area and temperature of the IR source are represented by 
aA  and 

( )aT t , respectively. The ambient temperature is represented by T
, and   is the Stefan–

Boltzmann constant. The emissivity factor of the IR source is denoted by 
a . Using the 

moving speed ( ( )av t ) and the normal distance between the source and the target (
0d ), we 

can rewrite equation (4.15) as:  
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The thermal energy arriving at the target strip is mainly used to remove the 

moisture. The governing equation of the state evolution phase of the IR drying process 

can be expressed as [103, 104]: 

 
( , ) ( , )

( , ) ( , )M M
M M Me

C x t C x t
D C T S C x t C

t x x

   
      

 
(4.17) 

 

Here, the moisture concentration is represented by ( , )MC x t . The effective 

diffusion coefficient is denoted by ( , )MD C T , which is a function of the moisture 

concentration and temperature. The surface emission coefficient and the equilibrium 

moisture concentration are represented by S  and 
MeC , respectively. The co-evolution 

phase of the IR drying process can be described by the following energy balance equation: 

 

  4 4

( , ) ( , )
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( , )
( , )                     M
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
  



 
(4.18) 

 

In equation (4.18), the density   and the specific heat capacity c  change with the 

varying moisture concentration. The conductive and convective heat transfer coefficients 

are denoted by   and h , respectively. The latent heat of vaporization is represented by 

vL , and the emissivity factor of the target strip is denoted by 
t . 
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The three fundamental phases of the IR drying process can also be summarized in 

the general form described above: 

0( , ) ( ), ( ), { , }T
   ET a a aP x t f T t v t d     

(4.19) 

( , )
( , ), { ( , ), }T

  M
ST M M

dC x t
f C x t D C T S

dt
     

(4.20) 

( , )
( , ), ( , ), ( , ), { , , , , , }T

        CE M v t

dT x t
f T x t C x t P x t c h L

dt
       

(4.21) 

 

The above two examples (robotic UV curing and IR drying) illustrate how these 

robotic radiation-based processes are simplified as a general 1D scanning problem 

described by equations (4.1) ~ (4.3). The following section details the development of a 

distributed state and parameter estimation scheme that uses the dual extended Kalman 

filter (DEKF) based on this general formulation. 

4.2 Dual Extended Kalman Filter Design 

In this section, a distributed state and parameter estimation scheme is presented 

based on the generalized 1D formulation describing various robotic radiation-based 

processes. The proposed estimation scheme is based on the dual extended Kalman 

filtering (DEKF) theory reviewed in Chapter 2. The general structure of the DEKF 

estimation scheme designed for this problem is illustrated in Figure 4.2. 
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Figure 4.2 The structure of the DEKF estimation scheme 

Here, the input power and the speed of the actuator are denoted by 
au  and 

av , 

respectively. The state vector of the co-evolution phase (represented by ( , )ζ x t ) is taken 

as the measurable output of the process. The state estimation is applied to the state 

evolution phase of the process, and the state vector to be estimated is denoted by ( , )ω x t . 

The parameter estimation may be applied to any of the three fundamental phases, and the 

parameter vector to be estimated (represented by p ) may include some unknown or 

uncertain components of parameter vectors ( pET
, pST

, and pCE
) associated with the 

energy transmission, state evolution and the co-evolution phases.  

4.2.1 Development of the DEKF Estimation Scheme 

The three fundamental phases described by equations (4.1) ~ (4.3) can be 

integrated into the following nonlinear discrete state-space form: 

 ( ) ( 1), ( 1), ( 1)
s

x x u p nj F j j j      
(4.22) 

( ) ( ) ( 1)my x nj C j j    
(4.23) 
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j j j j j j j

j u j v j



    
 

(4.24) 
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Here, the process state at time j is represented by ( )x j , which is determined from 

the previous process state and input based on a nonlinear function ( )F  . The vector ( )x j  

is formed by combining the state vectors of both the state evolution and the co-evolution 

phases. The two vectors ( ( , )ω x t  and ( , )ζ x t ) are discretized in both the temporal and 

spatial domains in equation (4.24). The target strip is divided into a series of spatial units, 

and the number of these units is denoted by N. The measured process output at time j is 

represented by ( )y j , which is a linear combination of the elements in the state vector 

( )x j  through the matrix C . The vectors ( 1)sn j   and ( 1)mn j   denote the process and 

measurement noise, respectively. Here, they are assumed to be white and with normal 

probability distributions.  

Given the above description of the process and associated measurement, the 

detailed DEKF estimation procedure for this problem is outlined as follows [105, 106]. 

Parameter Prediction: ˆ ˆ( ) ( 1)p pj j    
(4.25) 

State Prediction:  ˆˆ ˆ( ) ( 1), ( 1), ( 1)x x u pj F j j j      
(4.26) 

State Correction: ˆ ˆ ˆ( ) ( ) ( ) ( )x x y xsj j K j C j       
(4.27) 

Parameter Correction: ˆ ˆ ˆ( ) ( ) ( ) ( )p p y xpj j K j C j       
(4.28) 

 

Generally, the state and parameter estimation using the DEKF is performed 

through a two-step prediction/correction approach. The prediction step for the state and 

parameter is described in equations (4.25) and (4.26), respectively. The parameter 

prediction at time j ( ˆ ( )p j ) is simply obtained by using the previous parameter estimate 
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( ˆ ( 1)p j  ). The state prediction at time j ( ˆ ( )x j ) is achieved by calculating from the 

previous state estimate ( ˆ( 1)x j  ) and the predicted parameter ( ˆ ( )p j ) based on the 

nonlinear process model ( )F  . In the correction step, the final state and parameter 

estimates are obtained by correcting the predicted state and parameter, using the current 

process output measurement and online determined gain matrices. The two gain matrices 

(
sK  and pK ) are calculated in an optimal manner to minimize the estimated error 

covariance for both states and parameters. The time-updated equations for calculating the 

gain matrices 
sK  and pK  are given by [105, 106]: 

Update 
sK  : Tˆ ˆ( ) ( 1)s sP j P j Q       

(4.29) 

 
1

T Tˆ ˆ( ) ( ) ( )s s sK j P j C CP j C R


   
 

 
(4.30) 

  ˆ ˆ( ) ( ) ( )s s sP j I K j C P j   
(4.31) 

Update pK : ˆ ˆ( ) ( 1)p pP j P j    
(4.32) 

 
1

T Tˆ ˆ( ) ( ) ( )p p pK j P j H HP j H R


   
 

 
(4.33) 

 ˆ ˆ( ) ( ) ( )p p pP j I K j H P j     
(4.34) 

 

Here, the predicted error covariance matrices at time j for state and parameter 

vectors are denoted by ˆ ( )sP j
 and ˆ ( )pP j , respectively. The specified constant covariance 

matrices for process noise and measurement noise are represented by Q  and R . The two 

gain matrices (
sK  and pK ) are updated by using the predicted error covariance matrices 
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( ˆ ( )sP j
 and ˆ ( )pP j ). These error covariance matrices are then corrected by using the gain 

matrices.   and H  are two Jacobian matrices defined as follows: 

ˆ ( 1) xx j

F




 


,  

ˆ ( 1) p
p

j

F
H C







 (4.35) 

 

The DEKF-based state and parameter estimation scheme described above is 

developed following the basic theory of the Kalman filtering method. However, the 

implementation of the developed estimation scheme to the robotic radiation-based 

processes is different from other applications due to the distributed characteristics of 

these processes, and this issue is discussed in the following subsection. 

4.2.2 Discussion on the Implementation of the DEKF Estimation Scheme 

Two challenges should be addressed when implementing the developed DEKF 

estimation scheme to robotic radiation-based processes. First, since most of these 

processes involve spatially large objects that should be modeled as distributed-parameter 

systems, the dimension of the state vectors in the DEKF increases with the size of the 

target. This in turn increases the computational burden for real-time implementation. 

Second, the spatial movement of the radiant actuator has significant influences on the 

observability of the system and thereby the performance of the estimator. The following 

discusses the two issues in detail. 

 Reduction of the DEKF 

Since the moving radiative actuator is smaller than the processed target in these 

robotic radiation-based processes, it can only influence the local process state near the 

current position. This makes it possible to reduce a large central DEKF into a group of 
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distributed DEKFs with smaller or manageable dimensions. Each DEKF only deals with 

the local state and parameter estimation within its own region. On the other hand, these 

local DEKFs can operate sequentially corresponding to the movement of the actuator 

instead of staying active throughout the whole process. This is because only the area 

within the actuator’s current processing range is affected the most and should be 

considered for state and parameter estimation. Other areas of the target strip are affected 

less since they are far away from the actuator. Therefore, the local DEKFs for these areas 

can be frozen to reduce the computational cost. The operation mechanism of these local 

DEKFs is illustrated in Figure 4.3. 

Target Strip

Actuator PathActuator

Current Processing Range

Active DEKF

Frozen DEKF

 

Figure 4.3 The operation mechanism of distributed local DEKFs 

 Observability Analysis 

The low-order subsystems corresponding to these distributed local DEKFs 

depicted in Figure 4.3 can be described by: 

 ( ) ( 1), ( 1),x x u pi i ij F j j    
(4.36) 

( ) ( ), 1,2, ,y x    i i ij C j i G   
(4.37) 
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 1 1( ) ( ), ( ), ( ), ( ), ( ), ( )

1 ( 1) , 1
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x ω ω ω ζ ζ ζ

  

i p p q p p qj j j j j j j

N N
p i q p

G G

 

     
 

(4.38) 

 

Here, the number of the distributed local DEKFs and the number of the 

discretized units describing the target strip are denoted by G  and N , respectively. Then 

the original state vector ( ( )x j ) can be divided into G  segments and each segment is 

represented by ( )xi j . The nonlinear governing equation for each state segment is 

denoted by ( )iF  . The corresponding measurement equation is described in equation 

(4.37), in which the local process output ( )yi j is a linear combination of the 

corresponding state segment ( )xi j  through
iC .  

The observability for each subsystem can be approximately evaluated by 

analyzing the following observability matrix: 

 
( 1)

/ 1

,

 x

   
x

i

i

i i
i

i i

i j
N G

i i

C

C F
O
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


 
 

    
  
 

  

 
(4.39) 

If the rank of the observability matrix defined in equation (4.39) is equal to the 

order of the subsystem ( /N G ), then the subsystem is fully observable. However, since 

the Jacobian matrix 
i  is calculated from the previous state ( 1)i j x  and input ( 1)j u , 

the observability for each subsystem will change with time due to the local state change 

caused by the movement of the actuator. Therefore, the activating policy for these 

distributed local DEKFs should be carefully designed to ensure that each of them 
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operates under good observability. The detailed observability analysis is provided with a 

demonstrative example in the next section. 

4.3 Demonstrative Example on Robotic UV Curing 

In this section, a detailed discussion is presented to illustrate the implementation 

of the developed DEKF estimation scheme to the robotic UV curing process described in 

Subsection 4.1.1. In this example, the original process model has been reduced to a series 

of low-order subsystems, and the distributed DEKF strategy is used for state and 

parameter estimation based on available measurements of the process output [107, 108]. 

4.3.1 Reduction of the UV Curing Model 

Assuming that the photo-initiated curing (monomer consumption) is rapid and 

occurs before any significant diffusion of monomer takes place, the evolution of 

monomer concentration can be assumed to be independent for each point on the target 

strip. In addition, considering a substrate and film with much lower thermal conductivity 

compared to the exothermic polymerization, it is possible to ignore the diffusion term in 

the thermal dynamics equation. Further, the temperature change caused by the directly 

absorbed UV irradiation is negligible compared to the heat generation from the 

polymerization. Given these assumptions and considerations, the original curing model 

described in Subsection 4.1.1 can be further reduced and represented in the following 

discrete form [108]: 

2
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j d
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   

     
   
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(4.40) 
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(4.41) 

 ( , ) [ ]( , ) [ ]( , 1) 1 ( , 1)
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 
 

(4.42) 

 

Here, the indexes j  and z denote the j
th

 time step and the z
th

 spatial unit from 

the left-end of the target strip. The number of these units is represented by N . The 

temporal and spatial steps are denoted by t  and x , respectively. Grouping some of the 

coefficients and variables, we obtain: 

( , ) ( ) ( ) ( , , )aI z j k z j v z j   
(4.43) 
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(4.44) 
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(4.45) 
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(4.46) 
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If the composite input term 
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is replaced by a simplified 

one  , 1, ( 1), ( 1), ( )au z j j v j k z   , then equations (4.44) and (4.45) can be expressed 

as: 

  1 1[ ]( , ) , 1, ( 1), ( 1), ( ) 1 [ ]( , 1)aM z j f u z j j v j k z M z j         
(4.48) 

   
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3 1 4 4
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T z j f
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

        
 

(4.49) 

 

Given the simplified curing process model described in the above equations, the 

objective of this estimation problem can be outlined as follows. 1) To estimate the 

monomer concentration distribution along the target strip by using the process model and 

the temperature measurements; 2) To estimate some of the unknown or uncertain 

parameters of the process model in parallel to improve the accuracy of the state 

estimation. In this example, the distributed values of the UV absorption coefficient and 

the convective heat transfer coefficient are selected for demonstrating the parameter 

estimation. 

4.3.2 Design of the Distributed Local DEKFs 

As pointed out in Subsection 4.1.2, a number of distributed local DEKFs will be 

used for state and parameter estimation instead of using a central large-dimensional one. 

In addition, only those around the current position of the actuator are activated during the 

curing process to reduce the computational cost. 
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To implement the distributed estimation structure and the activating policy, the 

following vectors and matrices are used to store the key variables and parameters of these 

distributed DEKFs. 
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Here, the vectors for saving the predicted states, parameters, the composite inputs, 

and the measured outputs are denoted by ˆ ( )X j , ˆ ( )P j , ˆ ( )U j , and ( )Y j  respectively. The 

index ig  represents the spatial position of the i
th

 local DEKF on the target strip. The 

number of the distributed local DEKFs and the number of the discretized units that 

constitutes the target strip are denoted by G  and N  (setting 2N G  in this example). 

The nonlinear state transition vector and the measurement matrix are defined by F  and 

C , respectively. The Jacobian matrix Φ  is calculated based on the first-order Taylor 

Series approximation. Additional vectors and matrices are defined below for saving the 

error covariance, the Kalman gains, and other information for these distributed local 

DEKFs. 
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Here, the two error covariance matrices (denoted by ( )Ps j  and ( )Pp j  ) are used 

to save the time-varying state and parameter error covariances for these distributed local 
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DEKFs. The time-varying Kalman gains for these DEKFs are stored in two gain matrices 

( ( )Ks j  and ( )K p j ) . The calculation of the Jacobian matrix for measurement ( ( )H j ) is 

outlined by equations (4.61) ~ (4.63). It should be noted that the derivative of function 2f  

with respect to the absorption coefficient k  is given by a highly nonlinear expression. 

Process and measurement noise terms are added to the UV curing process model 

in a linear manner. Two constant matrices are defined below to represent the covariance 

of the process and measurement noise for these distributed local DEKFs. The two terms 

(
igQ  and 

igR ) defined in equation (4.65) denote the significant tunable factors that can 

influence the estimation performance of each DEKF.  
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In summary, the above formulations (denoted by equations (4.50) ~ (4.65)) 

represent the design of these distributed local DEKFs in an integral matrix form. Now the 

activation policy can be easily designed by implementing the general DEKF estimation 

scheme (described in equations (4.25) ~ (4.35)) to selected subsystems of this integral 

matrix form. Given the mechanism illustrated in Figure 4.3, only the DEKFs around the 
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moving actuator will be activated to perform the state and parameter estimation. The 

mathematical description of the state and parameter estimation with the activating policy 

is presented as follows. 

:sub   
denoting the 

Li
th

 ~ 
Ri

th
 elements (rows and columns) of 

each vector (matrix) 

(4.66) 

Li , 
Ri :  determined by the activating policy 

(4.67) 

Parameter Prediction: ˆ ˆ( ) ( 1)P Psub subj j    
(4.68) 

State Prediction: ˆ ˆ ˆ ˆ( ) ( 1), ( 1), ( 1)X F X U Psub sub sub sub subj j j j     
 

 
(4.69) 

State Correction: ,
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )X X K Y C Xsub sub s sub sub sub subj j j j j    

 
 

(4.70) 

Parameter Correction: ,
ˆ ˆ ˆ( ) ( ) ( ) ( ) ( )P P K Y C Xsub sub p sub sub sub subj j j j j    

 
 

(4.71) 

 

The subscript “sub” denotes the 
Li

th
 ~ 

Ri
th

 elements (rows and columns) of each 

vector (matrix) shown in equations (4.68) ~ (4.71). The two boundary indexes (
Li  and 

Ri ) 

are determined by the current position of the moving actuator and the width of a spatial 

window that contains the activated DEKFs. The simulation results of the above 

distributed DEKF formulation are discussed in the next subsection. 

4.3.3 Results and Discussion 

The simulation of the UV curing process is performed by using the full model 

described in equations (4.5), (4.10), and (4.11). The reduced process model characterized 

by equations (4.40) ~ (4.42) is used in the design of the distributed DEKF estimation 

scheme. The spatially distributions of the two parameters to be estimated in this example 

are defined as follows: 1) The UV absorption coefficient decreases from the left-end to 
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the right-end of the target strip; 2) Two different convective heat transfer coefficients are 

applied to the left and right parts of the target strip, respectively. In these examples, the 

UV source will move through the target strip with constant speed and radiant power. 

Most of the chemical, thermal and material parameters used in this simulation are 

obtained from the references [101, 102]. The configurations of this simulation scenario 

are summarized in Table 4.1.  

Table 4.1 Simulation configurations 

Description Notation Value and unit 

Length of the target strip L  1.4 m 

Paint film thickness pd  0.0001 m 

Time step of the simulation t  0.01 s 

Length of a discretized unit x  0.01m 

Number of discretized units N  140 

Moving range of the UV source - [0.2 1.2] m 

Speed of the UV source  av  0.1 m/s 

Radiant power of the UV source   10.2 W 

Normal distance  0d  0.03 m 

Distributed UV absorption 

coefficient 
( )k x  ( ) 2 / 7 0.8,  [0,  1.4 m]k x x x     

Distributed effective convective 

heat transfer coefficient 
( )eh x  

23.1/ , [0,  0.7 m]
( )

28.9 / , (0.7,  1.4 m]

p

e

p

d x
h x

d x


 


W/(m

3 
°C) 

Initial values of estimated 

absorption coefficient 0
ˆ( )k x  0

ˆ( ) 0.6,  [0,  1.4 m]k x x   

Initial values of estimated 

convective coefficient 0
ˆ ( )eh x  0

ˆ ( ) 26 / ,  [0,  1.4 m]e ph x d x   

System noise for each unit ns
 

0 0.1
[ ] , [ ]

0 0.01

mol/L
n n

C
s sE 

   
    
   

 

Measurement noise  for each unit nm
 [ ] 0, [ ] 0.001n  n Cm mE    
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The effective convective heat transfer coefficient ( )eh x  is defined as follows. 

Considering the fundamental thermal dynamics: 

 
( , ) ( , )

 ( , )
T x t T x t

dV c dV dA h T x t T
t x x

  

   
      

 
(4.72) 

It can be re-written as: 

 

 

( , ) ( , )
( , )

/

( , )
                  ( , )

p

T x t T x t h
c T x t T

t x x dV dA

T x t h
T x t T

x x d

 







   
      

  
     

 
(4.73) 

The term /dV dA  is equal to the thickness (denoted by pd ) of the paint film on 

the target strip. Then, the new coefficient / ph d  is defined as the effective convective 

heat transfer coefficient and is represented by 
eh  in Table 4.1. 

The major parameters of the UV curing process model are listed in Table 4.2. 

Table 4.2 Parameters of the UV curing process model 

Description Notation Value and unit 

Initial distribution of the photo-

initiator concentration 0[ ] ( )PI x  
0[ ] ( ) 0.16PI x   mol/L, [0,  1.4 m]x  

Initial distribution of the 

monomer concentration 0[ ] ( )M x  
0[ ] ( ) 2.5M x   mol/L, [0,  1.4 m]x  

Quantum yield for initiation   2.1810
-4

 mol/Einstein 

Molar absorptivity   188.2 L/(mol cm) 

Composite reaction factor  
0.5/p tk k   4.22 [L/(mol s)]

0.5
 

Polymerization enthalpy H  39.71 kJ/mol 

Density   1.14 g/cm
3
 

Specific heat capacity c  1.98 kJ/(kg °C) 

Thermal conductivity   0.19 W/(m
 
°C) 

Ambient temperature T
 25 °C 
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The design parameters for the distributed DEKF estimation scheme are presented 

in Table 4.3. 

Table 4.3 Design parameters of the distributed DEKF estimation scheme 

Description Notation Value and unit 

Number of all distributed DEKFs G  70 

Number of  DEKFs in the 

activating window aG  25 

System covariance matrix for 

each DEKF igQ  
 

 

2

2
4

0.01

1 10

mol/L

C
Q



 
 
 
 

 

Initial measurement covariance 

matrix for each DEKF 
,0igR   

2
8

0 9.5 10 CR    

Adjusted measurement 

covariance matrices for DEKFs 

in the activating window 

'
igR  

   

   

2
8

2
8

' 4 0.4( ) 10 , ~ 1

' 8 6( ) 10 , ~

C

C

i

i

g L L M

g M M R

R i i i i i

R i i i i i





     

    

 

Initial state error covariance 

matrix for each DEKF 
, (0)

is gP  
 

 

2

, 2
4

0.01
(0)

1 10

mol/L

C
is gP



 
 
 
 

 

Initial parameter error covariance 

matrix for each DEKF 
, (0)

ip gP  

5

, 6

1.1 10
(0)

4 10ip gP




 
  

 
 

( k  and 
4 are dimensionless) 

 

In Table 4.3, the indexes of the first, the middle, and the last DEKFs within the 

current activating window are denoted by 
Li , 

Mi , and 
Ri , respectively. The index ig  

represents the spatial position of the i
th

 DEKF on the target strip.  

The simulation results are presented in Figure 4.4 ~ Figure 4.6. 
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(b) 

Figure 4.4 Cure-conversion level distributions when the actuator crosses different 

positions on the target strip: (a) 
ax =0.35m, (b) 

ax =0.9m 
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(b) 

Figure 4.5 UV absorption coefficient distributions when the actuator crosses different 

positions on the target strip: (a) 
ax =0.35m, (b) 

ax =0.9m 
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(b) 

Figure 4.6 Convective heat transfer coefficient distributions when the actuator crosses 

different positions on the target strip: (a) 
ax =0.35m, (b) 

ax =0.9m 

 

The solid ball shown in Figure 4.4 ~ Figure 4.6 denotes the UV actuator that 

moves along the target strip. The state estimation results are presented in Figure 4.4, 

where the estimated cure-conversion distributions are compared with the actual values. 

The cure-conversion level, denoted by ( , )x t , is calculated from the initial and current 

monomer concentrations (
0[ ] ( )M x  and [ ]( , )M x t ) as follows: 

0

0

[ ] ( ) [ ]( , )
( , )

[ ] ( )

M x M x t
x t

M x



  (4.74) 

 

In the simulations, the initial monomer concentration (included in Table 4.2) is set 

as constant for all discretized units on the target strip. The comparison is performed when 

the actuator crosses different positions (
ax =0.35, 0.9m) on the target strip. The shaded 

area represents the activating window containing the currently activated DEKFs. The 

results in Figure 4.4 show that the estimated state (cure-conversion level) distribution has 

a good match to the time-varying spatial distribution of the actual process state. 
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 The estimation results for the UV absorption coefficient distribution are shown in 

Figure 4.5. Figure 4.5(a) gives the comparison of the estimated and actual distributions of 

the absorption coefficient when the actuator crosses the position (
ax =0.35) near the 

starting point. It shows that the activated DEKFs within the activating window are 

performing the estimation of the absorption coefficient for the covered locations, while 

the remaining DEKFs stay inactive and the corresponding absorption coefficients of these 

locations keep the initial values. It can be observed from Figure 4.5(b) that the estimated 

distribution of the absorption coefficient matches the actual distribution well when the 

actuator is close to the end point. 

Figure 4.6 illustrates the estimation results for the convective heat transfer 

coefficient distribution. Similar comparisons of the estimated and actual distributions of 

the convective heat transfer coefficient are given in Figure 4.6(a) and (b), respectively. It 

can be observed that estimated distribution of the convective heat transfer coefficient for 

the locations which the actuator has passed shows a good match to the actual distribution. 

For those locations which haven’t yet been illuminated by the actuator, the associated 

DEKFs will start the estimation once they enter the activating window with the approach 

of the actuator.  

In addition to these spatial distributions shown in Figure 4.4 ~ Figure 4.6, time 

history plots of the states and parameters for selected positions on the target strip are also 

provided in  Figure 4.7 ~ Figure 4.9 for further analysis. 



 89 

0 2 4 6 8 10
0

0.2

0.4

0.6

0.8

1

time (s)

c
u
re

-c
o
n
v
e
rs

io
n
 le

v
e
l

actual state

estimated state

t
 L

t
 R

 t
 M

 
(a) 

0 2 4 6 8 10
-0.06

-0.04

-0.02

0

0.02

0.04

time (s)

e
rr

o
r 

o
f 
e
s
tia

m
te

d
 a

n
d
 a

c
tu

a
l

c
u
re

-c
o
n
v
e
rs

io
n
 le

v
e
l t

 L
t
 R

 t
 M

 
(b) 

Figure 4.7 (a) Time history of the cure-conversion level at x=0.9m (b) Time history of the 

error of the actual and estimated cure-conversion level at x=0.9m 
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(b) 

Figure 4.8 (a) Time history of the UV absorption coefficient at x=0.9m (b) Time history 

of the error of the actual and estimated absorption coefficient at x=0.9m 
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(b) 

Figure 4.9 (a) Time history of the convective heat transfer coefficient at x=0.9m (b) Time 

history of the error of the actual and estimated heat transfer coefficient at x=0.9m 

 

Three time indexes, denoted by 
Lt , 

Mt , and 
Rt  in Figure 4.7 ~ Figure 4.9, are used 

to represent the time when the DEKF (at x=0.9m) is activated, when the actuator is 

exactly crossing this position (x=0.9m), and when the DEKF (at x=0.9m) is frozen again, 

respectively. Figure 4.7(a) shows the time history of the estimated and actual cure-

conversion level at the selected position (x=0.9m). The associated error dynamics is 

illustrated in Figure 4.7(b). It can be observed that the error of estimated and actual cure-

conversion level begins to converge once the local DEKF (at x=0.9m) is activated (
Lt t ). 

Then the error is further pulled closed to zero after the actuator crosses this position 

(
Mt t ) and the estimated cure-conversion level also has a good match to the actual value. 

 Figure 4.8 shows the time history of the estimated and actual UV absorption 

coefficient at the selected position (x=0.9m). In Figure 4.8(a), the estimated UV 

absorption coefficient first keeps its initial value before the associated DEKF is activated 

(
Lt t ). Once it has been activated (

Lt t ), the estimation starts but the result shows little 
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match to the actual value due to the fact that the actuator is still not close enough to 

provide necessary observability. This can be explained by checking the corresponding 

observability matrix presented below for this parameter. 

2,

3 1

1 1

ˆ[ ]( , 1)i ig g

i

j j

f u
M g j

k k
 

 

 
 

 
 (4.75) 

 

When the actuator is far away, the term igu

k




 is close to zero due to the low UV 

irradiation given the complete expression described in equations (4.62) and (4.63). Then, 

the observability matrix shown in equation (4.75) is also close to zero, which means the 

current observability of the subsystem is not good enough to support the estimation of the 

UV absorption coefficient. 

The estimation performance is improved when the actuator crosses the current 

position (x=9m, 
Mt t ) since the actuator’s approach improves the observability, and 

thus the error of the estimated and actual values depicted in Figure 4.8(b) converges to 

zero very quickly.  

Similar observations can be found in Figure 4.9 which depicts the time history of 

the estimated and actual convective heat transfer coefficients at the selected position 

(x=0.9m). The beginning stage of the estimation shows poor performance because the 

actuator is still far away although the DEKF associated with this position (x=0.9m) has 

already been activated. This can also be explained by using the following observability 

matrix corresponding to the convective heat transfer coefficient. 
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2,

4 1

ˆ( , 1)ig

i

j

f
T g j T







  


 (4.76) 

 

When the actuator is far away from the selected position, the temperature at this 

position is almost the same as the ambient temperature ( T ) since there is litter 

polymerization taking place. Therefore, the observability matrix described in equation 

(4.76) is close to zero, which means the convective heat transfer coefficient cannot be 

estimated well under this condition. Once the actuator crosses the selected position 

(x=0.9m), the observability of the system is greatly improved due to the temperature 

increase caused by the heat generation from the polymerization. Therefore, the 

corresponding estimation performance is improved and the estimation error converges to 

zero quickly.  

The above example of state and parameter estimation for the UV curing process 

demonstrates that the developed distributed DEKF estimation scheme can give an 

acceptable estimation of the cure-conversion level distribution by using the temperature 

measurements and the reduced curing process model with some parameters (UV 

absorption coefficient and convective heat transfer coefficient) adaptively updated for 

improved model accuracy and estimation performance. 

Chapter Summary 

This chapter presented a distributed state and parameter estimation scheme that 

can be used for monitoring and control of robotic radiation-based processes. This 

distributed estimation scheme was developed based on a generalized 1D scanning 

formulation and the dual extended Kalman filtering (DEKF) approach. In this scheme, 
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the state and parameter estimations are performed in parallel by a group of distributed 

local DEKFs with a designed activating policy corresponding to the spatial movement of 

the actuator. The change of system observability due to the moving actuator and the 

associated influences on the estimation performance were also discussed. The developed 

distributed state and parameter estimation scheme was then implemented to a robotic UV 

curing process through simulation. The results demonstrated that the developed scheme 

can provide a good estimation of the distributed process states in the presence of 

unknown process parameters and varying observability. 
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CHAPTER FIVE 

COORDINATED CONTROL AND PROCESS OPTIMIZATION 

 

Most robotic radiation-based processes involve the use of multiple manipulated 

variables. The two major variables, which have significant influences on the final quality 

of these processes, are the power and the speed of the moving radiant actuator. Process 

control by manipulating either of the two variables has been discussed in Chapter 3. To 

achieve improved process quality and energy efficiency, a framework for coordinating 

multiple manipulated variables and realizing process optimization is highly needed. 

In this chapter, the coordinated control problem is addressed at three different 

levels by using the generalized 1D scanning formulation described in Chapter 4. First, 

open-loop coordination is used to determine the optimal nominal radiant power and speed 

of the actuator in consideration of the energy cost and process efficiency. Second, a basic 

coordinated feedback control strategy is developed, which uses some designed control 

rules and distributed process state information through online estimation as outlined in 

Chapter 4. In this rule-based coordination, the radiant power and the speed of the actuator 

are adjusted around nominal values obtained from the open-loop coordination. Third, a 

distributed model predictive control (MPC) strategy, which incorporates online process 

estimation, prediction and optimization, is developed to achieve optimal coordination of 

the radiant power and the speed of the moving actuator for improved process quality and 

energy efficiency. 
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5.1 Open-loop Coordination 

The objective of the open-loop coordination is to find the optimal nominal radiant 

power and speed of the moving actuator that can be applied in an open-loop manner 

without updates during the process. Generally, the open-loop coordination can be 

described as the following static optimization problem: 

min  2
1 2 2

1
( , )a a a

a

J v u q u q
v

   (5.1) 

subject to ( , ) 0, ,  q a a lb a ub lb a ubf v u v v v u u u      (5.2) 

 

Here, the cost function ( , )a aJ v u  is composed of two terms: the square of the 

radiant power (related to energy cost), and the reciprocal of the speed (related to process 

efficiency or productivity). 1q  and 2q  are weighting coefficients for the two terms in the 

cost function. The equality constraint function qf  describes the relationship of the speed 

av  and the radiant power au  that can drive the process state to the desired level. In the 

two inequality constraints, the lower and upper boundaries of the speed are denoted by 

lbv  and ubv , respectively. Similarly, lbu  and ubu  represent the corresponding boundaries 

for the radiant power. An example of this open-loop coordination for the robotic UV 

curing process will be presented later in Section 5.4. 

5.2 Rule-Based Coordinated Control 

Although the open-loop coordination provides the optimal combination of the 

radiant power and speed that can help achieve the desired process quality under ideal 

conditions, closed-loop control is still needed to compensate for various disturbances in 
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practical processes. In this section, a rule-based feedback control strategy is developed to 

coordinate the radiant power and the speed of the moving actuator based on process state 

feedback obtained from the distributed DEKF estimators and the optimization results 

from the open-loop coordination. The general structure of the rule-based coordinated 

control is illustrated in Figure 5.1. 

The Actual 

Process

DEKF EstimatorFeedback Signal 

Generator

+
-

( )au t

( )av t( )e t
dq

( )q t

( , )ζ x t

( , )ω x t

Actuator
Rule-Based 

Controller

0 0,   a au v

 

Figure 5.1 The general structure of the rule-based coordinated control 

Here, the nominal radiant power and speed determined by the open-loop 

coordination are denoted by 0au  and 0av , respectively. The measured process outputs and 

the estimated process states are represented by ( , )ζ x t  and ( , )ω x t , respectively. The 

actual process quality level ( )q t  is generated from the estimated process states ( , )ω x t , 

and compared with the desired process quality level (set-point) dq . The error signal ( )e t  

is then sent to the rule-based controller, which determines the control inputs ( ( )au t  and 

( )av t ) based on some designed rules. The following subsections detail the generation of 

the feedback signal and the design of the control rules. 

5.2.1 Local Feedback Signal Generation 

Recall that, in the distributed estimation scheme, only those DEKFs around the 

current position of the moving actuator need to be activated for state/parameter 
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estimation. Likewise, the generation of the feedback signal for the closed-loop control 

also needs to be performed locally, associated with the spatial movement of the actuator. 

Here, the local feedback signal is generated from the estimated process states within 

some defined sampling windows illustrated in Figure 5.2. 
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Figure 5.2 Sampling windows used for local feedback signal generation 

The solid ball in Figure 5.2 represents the moving actuator. Three sampling 

windows, namely “Processed”, “Current Processing”, and “Unprocessed”, are defined to 

obtain process information from the different positions on the target strip. The final 

feedback signal is then generated by calculating the average process information within 

the three sampling windows in the following manner [108]. 
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Here, the estimated process states are normalized with respect to the initial value 

0ω . The index of the three sampling windows is denoted by u  ( 1,  2,  3u   

corresponding to “Processed”, “Current Processing”, and “Unprocessed”, respectively). 

The width of each sampling window is represented by 
uZ , which is defined as the 

number of discretized units included in the sampling window. 
u  is the weighting 

coefficient for each sampling window.  

5.2.2 Design of the Control Rules 

The coordinated control rules are designed based on some natural characteristics 

of these robotic radiation-based processes. First, at the beginning of the process, the 

actuator should stay at the initial position and apply the maximum radiant power to the 

target strip to drive the local process state close to the desired level as soon as possible. 

Then, the actuator starts moving and the associated radiant power should be reduced to 

avoid over-processing in those areas close to the initial position. Once the actuator moves 

away from the initial position, both the radiant power and speed of the actuator should be 

adjusted around the nominal values to maintain process uniformity in the presence of 

disturbances. The detailed control rules will be developed later and applied to the UV 

curing process for illustration. 

It should be noted that the rule-based coordinated control is not necessarily 

optimal although it uses the off-line optimal nominal radiant power and speed obtained 

from the open-loop coordination. To achieve closed-loop optimal coordination, a 

distributed model predictive control (MPC) strategy is developed and applied to these 
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robotic radiation-based processes described by the 1D scanning formulation. This 

distributed MPC framework is detailed in the next section. 

5.3 Distributed Model Predictive Control 

In this section, the model predictive control (MPC) method is used to achieve the 

online optimal coordination of the radiant power and the speed of the actuator for these 

robotic radiation-based processes. Compared to typical MPC applications in industry, the 

development of the distributed MPC strategy poses two major challenges. First, these 

radiation-based processes are comparatively fast in addition to being distributed-

parameter processes and thus require particular attention to the computation time of the 

online optimization. Second, the movement of the actuator has significant effect on the 

process and should be incorporated into the control design. The following subsections 

detail the development of the distributed MPC strategy for robotic radiation-based 

processes in consideration of these issues. 

5.3.1 Model Simplification and Linearization 

The generalized 1D scanning model described in Chapter 4 will be used to 

develop the distributed MPC formulation. However, the major process dynamics 

described by equations (4.1) and (4.2) are highly nonlinear, which may increase the 

computation burden when implementing the MPC strategy. Therefore, the nonlinear 

process model should be simplified and linearized before it is used to develop the MPC 

strategy. 
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 Simplification of the Energy Transmission Model 

The energy transmission model (equation (4.1)) describes the relationship 

between the two manipulated variables (the radiant power and the speed) of the actuator 

and the power distribution on the target strip. To simplify the energy transmission model, 

the spatial distribution of the radiant power on the target strip can be approximated by 

using a triangular model illustrated in Figure 5.3. 

2

( , )tu x t

x
ax

tmu

0 L

Moving Actuator

Actual power distribution

Triangular model

av
au

 

Figure 5.3 The simplified energy transmission model 

In Figure 5.3, the height and half width of the triangle are denoted by 
tmu  and  , 

respectively. The current position of the moving actuator is represented by 
ax . The length 

of the target strip is denoted by L . Assuming that the height of the triangle (
tmu ) is 

directly determined by the radiant power 
au , then the triangular model can be 

mathematically described as follows [109]: 

( , ) 0,   [0, ] or [ , ]t a au x t x x x x L       
(5.5) 

( , ) 1 ,   ( , )tm
t tm a a a

ux
u x t u x x x x

 

 
     
 

 
(5.6) 

( , ) 1 ,   ( , )tm
t tm a a a

ux
u x t u x x x x 

 

 
     
 

 
(5.7) 
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The above triangular model varies with the radiant power (
au , determining

tmu ) 

and the position (
ax ) of the moving actuator. Given the triangular model, the small 

variation of the power distribution from the previous value can be described by retaining 

first-order terms in the Taylor series expansion of the above equations. The discrete form 

of this approximation is presented below. 

   ( , ) 0,   0, ( 1)    or   ( 1) ,t a au z j z x x n z x x n L            
(5.8) 

 

( 1) ( 1)
( , ) 1 ( ) ( ),

                                              ( 1) , ( 1)

a tm
t tm a

a a

x n u nz x
u z j u j x j

z x x n x n

  



  
       

 

    

 
(5.9) 

 

( 1) ( 1)
( , ) 1 ( ) ( ),

                                              ( 1), ( 1)

a tm
t tm a

a a

x n u nz x
u z j u j x j

z x x n x n

  



  
       

 

    

 
(5.10) 

,  1,  , pj n n n H    
(5.11) 

 

Here, the spatial and temporal indexes are denoted by z  and j , respectively. The 

previous position of the actuator is represented by ( 1)ax n , and the previous peak power 

density on the target strip is denoted by ( 1)tmu n , corresponding to the previous radiant 

power of the actuator ( ( 1)au n ). The spatial step is denoted by x . Here, the range of 

the approximation is taken as the prediction horizon ( pH ) that will be discussed later. 

The definitions of ( , )tu z j , ( )tmu j , and ( )ax j  are given below: 

( , ) ( , ) ( , 1)t t tu z j u z j u z n     
(5.12) 

( ) ( ) ( 1)tm tm tmu j u j u n     
(5.13) 
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( ) ( ) ( 1)a a ax j x j x n     
(5.14) 

,  1,  , pj n n n H    (5.15) 

 

The matrix forms of equations (5.8) ~ (5.10) can be represented as follows: 

( ) ( ) ( 1)

( )

u u u

            u

t t t

a a

j j n

B j

   

 
 

(5.16) 

(1, )

( )
( ) ( , ) , ( )

( )

( , )

t

tm

t t a

a

t

u j

u j
j u z j j

x j

u N j

 
 
   
       

   
 
  

u    u  
(5.17) 

 

In equation (5.16), the matrix 
aB  is calculated from the previous peak power 

density ( ( 1)tmu n ) and the position of the actuator ( ( 1)ax n ) by using equations (5.8) ~ 

(5.10). Since 
aB  can be treated as a constant matrix within the range of approximation 

( ,  1,  , pj n n n H   ), the nonlinear energy transmission model can be linearized by 

using the above approximation around the previous point. 

 Linearization of the State Evolution Model 

The state evolution model (equation (4.2)) can also be linearized, using the first-

order Taylor series approximation around the previous point. The linearized state 

evolution model can be represented in the following discrete matrix form: 
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 

   

 

1

1

( ) ( 1), ( 1),

( 1), ( 1), ( 1) ( 1)

( 1) ( 1)

ω ω  u  p

       ω  u  p ω ω
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          u u
u

ST t ST

ST
ST t ST
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t n

j F j j

F
F n n j n

F
j n





  


      




   


 (5.18) 

 

Substituting equation (5.16) into equation (5.18) yields: 

   
1

1

0

( ) ( 1), ( 1), ( 1) ( 1)

( 1)

( 1) ( 1)

ω ω  u  p ω ω
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            u
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       ω u
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t n
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A j B j B






      




  


     

 

(5.19) 

1 1

, , 1, 2,         , 
ω u

ST ST
a p

n t n

F F
A B B j n n n H

 

 
     

 
 (5.20) 

 0

1

( 1), ( 1), ( 1)ω  u  p ω
ω

ST
ST t ST

n

F
B F n n n




    


 

(5.21) 

 

Equations (5.19) ~ (5.21) give the linearization of the nonlinear state evolution 

model around the previous point. It should be noted that the coefficient matrixes A , B , 

and 
0B  will be updated periodically by using the estimated process states and applied 

control inputs to maintain the accuracy of the linearized model. This model can be used 

for predicting future process states within the MPC strategy. 

5.3.2 Mathematical Formulation of the Distributed MPC 

The fundamental task of MPC is to perform moving finite-horizon optimization to 

determine the control inputs that should be applied to the process. The optimization is 

based on predicted future process states within a defined time horizon given current 
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measurements or estimates of process states. The basic operation mechanism of MPC is 

illustrated in Figure 5.4 [110]. 

control horizon

prediction horizon

n 1n  un H pn H

uH

pH

1n 

set-point

actual state

predicted state

control input

 

Figure 5.4 The basic operation mechanism of MPC 

Here, the previous and current time indexes are denoted by 1n   and n , 

respectively. The prediction horizon pH  defines the time range where the state prediction 

is performed. The control horizon 
uH  determines the duration on which the candidate 

control input is allowed to change in suitably parameterized form (often in discrete steps) 

so as to achieve a predefined performance objective. The prediction and optimization 

performed at time n  provide the open-loop optimal sequence of control inputs over the 

current control horizon 
uH . These control inputs will be implemented to the system until 

the next sampling time ( 1n  ). The optimization process is then repeated by using the 

new measurements or estimates at the next sampling time. 
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Assuming the process state at time n  have been obtained through the DEKF 

estimation, then the future states starting from time n  can be predicted by using the 

linearized process model described by equations (5.19) ~ (5.21). The following prediction 

formulation is adapted for this problem from the original version described in [111]. 

          
0( 1) ( ) ( )ω ω uan A n B n B      

(5.22) 

         
   
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             ω u u

             ω u u
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A A n B n B B n n n B

A n AB B n B n n AB B

A n AB B B n n n A I B
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        

       

 
(5.23) 

 
 

 0 0 0( ) ( ) ( ), , ( 1| 2)
T

ω ω u uuH

u a a u un H A n n n H n H B                          
(5.24) 

  1

1 1 0( 1) ( ) ( ), , ( 1| 2)
T

ω ω u uuH

u a a u un H A n n n H n H B


            
(5.25) 

 
 

       0( ) ( ) ( ), , ( 1| 2)
T

ω ω u upH

p a a u un H A n n n H n H B            
(5.26) 

p uH H    (5.27) 

 

The definitions of 
0 ~   and 

0 ~   are given by: 

 1 2 1 2
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,  ,  ,  ,  

u u u u
H H H Hi i

i i
A B A B B A A I
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 1 1 1

1 10 0 0
,  ,  ,  ,  

u u u u
H H H Hi i i

i i i
A B A B A B A A I

 

  
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(5.29) 

 
 

 1 2 1 1
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p p p u p p
H H H H H Hi i i

i i i
A B A B A B A A I 
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  
          

(5.30) 
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The control input increments shown in the above equations are defined as follows: 

( ) ( ) ( 1)u u ua a an n n     
(5.31) 

( 1) ( 1) ( 1),

( 1| ) ( 1) ( )

u u u

u u u

a a a

a a a

n n n

n n n n

     

    
 

(5.32) 

 
 

( 1) ( 1) ( 1),

( 1| 2) ( 1) ( 2)

u u u   

u u u

a u a u a

a u u a u a u

n H n H n

n H n H n H n H

       

          
 

(5.33) 

 

The matrix form of the above prediction formulation can be represented as: 

0( )W ω  Uf an B       (5.34) 
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(5.36) 

 

Equation (5.34) shows that the future states ( Wf ) over the prediction horizon are 

calculated from the estimated state at time n  ( ( )ω n ) and the sequence of control input 
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increments ( Ua ) to be determined over the control horizon. Given the prediction 

formulation described in equations (5.34) ~ (5.36), the optimization objective can be 

represented as follows: 

min              0 0 1 2( )
T T T

U W W W W U U U Ua f f f f a a a aV Q R R         
(5.37) 

         subject to  0( ) , ( 1)W ω  U   U u Uf a a a an B n           (5.38) 

                          , , , , , ,, ,      W W W  U U U  U U Uf lb f f ub a lb a a ub a lb a a ub          (5.39) 
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1 0
, ,

0 0 1
        

I I

I I I
I

I I I I

   
   

               
   
   

 
(5.40) 

 

Here, the three positive semi-definite matrices Q , 
1R  and 

2R  denote the 

weighting coefficients which penalize the state error, control input change, and control 

input, respectively. Substituting the two equality constraints described in equation (5.38) 

into equation (5.37), we can express the cost function in the following form: 

       

   

1

2

( )
T T

ω ω

T

u u

U  U E  U E U U

                D + U D U

a a a a a

a a

V Q R

R

         

  
 

(5.41) 

0 0( ) , ( 1)ω uE ω W   D uf an B n        (5.42) 

 

Equation (5.41) can be reduced to: 

     1 2 3( )
T

U U U Ua a a aV Z Z Z        
(5.43) 

   1 2 2 1 22 ,
T T T T

ω uE D  Z Q R Z Q R R         
 

 
(5.44) 
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   3 2

T T

ω ω u uE E D DZ Q R   
(5.45) 

 

Here, 
3Z  is a constant during the current optimization cycle, and thus it can be 

eliminated from the cost function. The inequality constraints described in equation (5.39) 

can also be represented in terms of Ua : 

1 1

, 0 , 0( ) ( )  W ω U W ωf lb a f ubn B n B                    
(5.46) 

, ,   U U Ua lb a a ub      (5.47) 

1 1

, ,( 1) ( 1)   U u U U ua lb a a a ub an n                 
(5.48) 

 

Given the above transformations, the original optimization problem described in 

equations (5.37) ~ (5.39) can be reduced to a quadratic programming (QP) problem 

summarized as follows: 

min        1 2( )
T

U U U Ua a a aV Z Z        
(5.49) 

subject to   Ulb a ub    
(5.50) 

 1 1

, 0 , ,max ( ) , , ( 1)   W ω  U   U ulb f lb a lb a lb an B n                
(5.51) 

 1 1

, 0 , ,min ( ) , , ( 1)   W ω  U   U uub f ub a ub a ub an B n                
(5.52) 

 

The solution of the above QP problem *
Ua  gives the sequence of the optimal 

control input increments that can achieve the defined performance objective over the 

prediction horizon. Then, the actual control input that will be applied to the process 

during the time  , 1 n n   is obtained by: 
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 

* *

*

( ) ( 1) ( )

( 1) 1:
a

a a a

a a

n n n

n N

  
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u

u u u

         u U
 

(5.53) 

 

Here, 
ua

N  denotes the number of manipulated variables included in the control 

input vector ua
. The optimal control input solved at time n  ( * ( )ua n ) will be applied to 

the process until the next sampling time ( 1n  ). Then, with the new state estimates at 

time 1n  , the above optimization will be repeated.  

The dimension of the predicted future state vector Wf  should be reduced as much 

as possible when implementing the above MPC strategy to the distributed-parameter 

radiation-based processes. A subsystem, which includes the states of the areas on the 

target strip dominantly illuminated by the moving actuator, is selected to perform the 

above prediction and optimization. This is consistent with the activating policy used in 

the DEKF estimation scheme as discussed in Chapter 4. In other words, the prediction 

and optimization are only performed on those discretized units that are included in the 

activating window. 

5.4 Simulation Results 

In this section, a simulation study of the robotic UV curing process is presented to 

illustrate the coordinated control and process optimization methods described in the 

previous sections. First, the open-loop coordination is implemented to determine the 

optimal nominal radiant power and speed of the moving actuator. This is followed by the 

implementation of a rule-based feedback control to the curing process to achieve closed-
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loop coordination. Finally, the distributed MPC strategy developed in Section 5.3 will be 

applied and verified. 

In this simulation study, the robotic UV curing process is described by the 1D 

nonlinear model that has been used in Chapter 4. The associated process parameters 

remain the same as those listed in Table 4.1 and Table 4.2. The distributed DEKF 

estimation scheme is also used in this simulation to provide essential state estimation for 

the rule-based coordinated control and the distributed MPC. 

5.4.1 Results of the Open-loop Coordination 

The open-loop coordination problem described by equations (5.1) and (5.2) is 

adapted for the robotic UV curing process as follows: 

min  2
1 2 2

1
( , )a

a

J v q q
v

    (5.54) 

                          subject to  2( , ) 1 0
f

q a df v e      
 

 
(5.55) 

    ,   lb a ub lb ubv v v        
(5.56) 

 
2 2 2

0 0 0

21
0.5 arctan0.5
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2 1
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a t

L Lk

v d d L dt

a

Lk
f e

v d









  
   

    
  

   
   

 
(5.57) 

 
0.5

1 0 2

1
[ ]( , ) ,   

2
PI x t          

(5.58) 

 

The derivation of the equality constraint equation ( , ) 0q af v    is detailed in 

Appendix-A. In this open-loop coordination, the chemical and material parameters of the 

UV curing process are listed in Table 4.2. Other parameters associated with the above 

optimization problem are listed in Table 5.1. 
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Table 5.1 Parameters associated with the open-loop coordination 

Description Notation Value and unit 

Total moving distance tL  1 m 

Normal distance 0d  0.03 m 

UV absorption coefficient k  1 

Desired cure-conversion level d  0.85 

Lower boundary of speed lbv  0.02 m/s 

Upper boundary of speed ubv  0.1 m/s 

Lower boundary of radiant power lb  10 W 

Upper boundary of radiant power ub  50 W 

 

The results of the open-loop coordination for the robotic UV curing process are 

given in Table 5.2. 

Table 5.2 Optimization results for different weighting coefficients 

Weighting coefficients Optimal radiant power (W) Optimal speed (m/s) 

1 210, 1  q q   10.0 0.022 

1 25, 1  q q   12.5 0.025 

1 21, 1  q q   21.6 0.032 

1 21, 5  q q   37.1 0.041 

1 21, 15  q q   50.0 0.046 

 

The results in Table 5.2 show that the lower boundary (10 W) of the radiant 

power is reached when we use a set of weighting coefficients that penalizes energy cost 

more than process efficiency. On the other hand, the maximum radiant power (50 W) is 

used to achieve the highest process efficiency. These are as should be expected. The other 

listed weighting coefficient combinations reflect the trade-off between energy cost and 
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process efficiency and give corresponding optimal values for the radiant power and the 

speed. 

5.4.2 Results of the Rule-based Coordinated Control 

In this subsection, the rule-based coordinated control strategy is implemented to 

the robotic UV curing process. The coordination of the radiant power and the speed is 

performed around the nominal values determined by the open-loop coordination, based 

on the estimated process state and some designed rules presented in Table 5.3 [108]. 

Table 5.3 The control coordination rules 

Error (
de    ) Control rules 

2 m
c e e   0,  =a mv    

1 2c e c   
0

1
,  =

2
a a p mv v K e     

1e c     0 0,  =a a pv iv dv p i dv v K e K edt K e K e K edt K e            

 

Here, the error of the actual and desired cure-conversion levels (denoted by   

and 
d , respectively) is the major factor that is considered in designing these control 

rules [112, 113]. As shown in Table 5.3, the range of the absolute value of the error is 

divided into three zones:  10,c ,  1 2,c c , and  2 ,
m

c e  . The maximum value of e  is 

represented by 
m

e , which usually occurs at the beginning of the process. The nominal 

values of the radiant power and the speed are denoted by 
0 and  

0av , respectively. The 

maximum radiant power is represented by 
m . The designed control rules can be 

explained as follows. 
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When e  is located in the zone  2 ,
m

c e  , for example, at the beginning of the 

curing process, the actuator stays at its original position and applies the maximum radiant 

power to reduce the error quickly. After the error has been brought to the zone  1 2,c c , 

the radiant power is cut to half of its maximum value and the actuator begins to move. In 

the mean time, a proportional controller is used to adjust the speed of the actuator. Once 

the error further falls to the zone  10,c , the speed of the actuator is adjusted by a new 

PID controller around its nominal value and the radiant power is regulated by another 

PID controller. 

The simulation parameters associated with the rule-based coordinated control for 

the UV curing process are listed in Table 5.4. The chemical parameters, estimation-

related parameters and other parameters are as listed in Table 4.1 ~ Table 4.3. 

Table 5.4 Parameters associated with the rule-based coordinated control 

Description Notation Value and unit 

Desired cure-conversion level d  0.85 

Nominal speed 0av  0.041 m/s 

Nominal radiant power 0  37.1 W 

Maximum radiant power m  50 W 

Sampling window width uZ  1 2 3Z Z Z    6 (discretized units) 

Sampling window weight 

coefficient u  

1 2 3

1 1 1
, ,

3 3 3
        (actuator rests) 

1 2 3

1 1 1
, ,

2 3 6
        (actuator moves) 

Feedback signal   
   

 

0

0

13
0

1 0

( , )1
( )  

ui Z

u

u i iu

M M i j
j

Z M
 

 

 

 
  

 
 

 
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0

3
,  1,  2,  3

2
a u

u
i i Z u


    

Error signal e  de     

Error signal threshold 1 2,  c c  1 20.04, 0.25 c c   

Control gains (speed control) , , ,p pv iv dvK K K K  
0.085,

0.35, 0.05, 0.07

p

pv iv dv

K

K K K

 

  
 

Control gains (power control) , ,p i dK K K    100, 10, 5p i dK K K      

Disturbance (UV absorption) ( )k x  

( ) 2 / 7 0.8k x x    (Scenario-1) 

0.8, [0,  0.7 m]
( )

0.4, (0.7,  1.4 m]

x
k x

x


 


(Scenario-2) 

 

Two simulation scenarios (Scenario-1 and -2) are considered in order to 

demonstrate the developed rule-based coordinated control strategy. In Scenario-1, the 

disturbance is introduced by defining a tilted distribution of the UV absorption coefficient 

on the target strip ( ( ) 2 / 7 0.8k x x   ). For Scenario-2, an uneven distribution of the 

UV absorption is characterized by a step function defined in the last row of Table 5.4. 

The simulation results for Scenario-1 are illustrated in Figure 5.5 ~ Figure 5.6. 
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(b) 

Figure 5.5 Cure-conversion level distributions on the target strip (Scenario-1): (a) open-

loop curing; (b) rule-based coordinated control 
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(b) 

Figure 5.6 Time history of control signals (Scenario-1): (a) radiant power; (b) speed 

The result in Figure 5.5(a) shows that a deviation of the distribution of cure-

conversion level from the set-point occurs when the nominal radiant power and speed 

obtained from the open-loop coordination are applied. This is caused by the tilted uneven 

distribution of the UV absorption coefficient illustrated by the blue dot line. As shown in 

Figure 5.5(b), the cure quality is improved by implementing the closed-loop rule-based 

coordinated control strategy. The time history of control signals depicted in Figure 5.6 

show that the radiant power is increased and the speed is reduced following the online 

estimated process state and the designed control rules. The adjusted radiant power and 

speed (around the nominal values) are able to compensate for the tilted disturbance and 

maintain cure uniformity, compared to the open-loop approach. 

The simulation results of Scenario-2 are given in Figure 5.7 ~ Figure 5.8. 
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(b) 

Figure 5.7 Cure-conversion level distributions on the target strip (Scenario-2): (a) open-

loop curing; (b) rule-based coordinated control 
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Figure 5.8 Time history of control signals (Scenario-2): (a) radiant power; (b) speed 

Similarly, the open-loop curing cannot maintain cure uniformity in the presence 

of the stepped disturbance in UV absorption, as shown in Figure 5.7(a). The unevenness 

of cure-conversion level distribution has been improved by using the same rule-based 

coordination control strategy as used in Scenario-1. In this case, the radiant power and the 

speed are adjusted to mitigate the effect of the stepped disturbance on cure uniformity. 
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The results for the two scenarios demonstrate that the closed-loop rule-based 

coordinated control of the robotic UV curing process can significantly improve the cure 

quality in the presence of different types of disturbances which the open-loop curing fails 

to compensate for. 

5.4.3 Results of the Distributed MPC 

This subsection discusses the implementation of the distributed MPC strategy to 

the UV curing process. The control input is determined in an optimal manner, using the 

online state estimation and the designed moving finite-horizon optimization algorithm. 

The simulation parameters are listed in Table 5.5. 

Table 5.5 Simulation parameters for the distributed MPC 

Description Notation Value and unit 

Time step of simulation dt  0.01 s 

MPC calculation period  MPCT  0.07 s 

Prediction horizon pH  0.56 s (8 MPCT ) 

Control horizon cH  0.42 s ( 6 MPCT ) 

Dimension of the MPC - 30 (discretized units) 

Input constraints , ,,  u  ua lb a ub  , ,

0 50
,

0.2 1.2
  u  ua lb a ub

   
    
   

(W)

(m)
 

Input change constraints , ,,  u  ua lb a ub   , ,

10 10
,

0.1 0.1
  u  ua lb a ub

   
      

   

(W/s)

(m/s)
 

 

The performance of the controller is mainly influenced by the three weighting 

matrices: Q , 
1R , and 

2R , which penalize the state error, control input change, and control 

input, respectively. The last two matrices are treated as constant during the whole process. 
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The matrix Q  varies with the movement of the actuator, and the generation of this matrix 

is detailed in Table 5.6 below. 

Table 5.6 The generation of the weighting matrix Q (Example) 

Actuator’s position 
ax  (m) Weighting matrix Q :     

1,2, , 1,2,3, ,

,
p

i i z

i H z N

Q Q Q q
 

 diag  diag  

0.2ax   

6

3

6

8 10 , 1 4

2 10 , 4 4

8 10 , 4

 

 

 

a

z a a

a

z X

q X z X

X z N







    


     

   

 

0.2 0.26ax   

6

3

3
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8 10 , 1 4

2 10 , 4 1

7 10 , 4

8 10 , 4
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a a

a
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X z X

X z N
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





    


    
 

   
    

 

0.26 1.2ax   

6

2

3

6

8 10 , 1 4

1.3 10 , 4 1

2 10 , 4

8 10 , 4
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a a
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a a

a

z X
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X z X

X z N









    


    
 

   
    

 

 

Here, 
iQ  denotes the sub-matrices that constitute the weight matrix Q , and 

zq  

represents the elements of each sub-matrix. The dimension of these sub-matrices is 

denoted by N , which is equal to the total number of discretized units that comprise the 

target strip. 
aX  represents the index of the element that is corresponding to the actuator’s 

position 
ax . As shown in Table 5.6, these sub-matrices 

iQ  are designed in a symmetric 

manner at the beginning ( 0.2ax  m). This will make the radiant actuator continue curing 

the area around the initial position without moving. Once the cure-conversion level of 

this area is close to the set-point (determined from the error signal), asymmetric sub-
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matrices (penalize more on uncured areas) are used to initialize the movement of the 

actuator. After the normal gradient of monomer concentration has been established (the 

actuator travels a certain distance away from the initial position), the direction of the 

asymmetry is reversed. In this case, the weighting matrix will penalize more on cured 

areas to maintain the uniformity of the error signal. 

The selection of weighting matrices 
1R  and 

2R  influences the balance in 

minimizing the state error, and the corresponding costs for the control input and control 

input change. The following values of 
1R  and 

2R  are chosen for the simulations by 

considering the trade-off among these factors. 

Table 5.7 The selection of weighting matrices 
1R  and 

2R  (Example) 

Weighting matrix Value 

1R   
3

1 1, 1, 3
1,2, ,

2.4 10
,

3.6 10
u

i i

i H

R R R


 
   

 
  diag   

2R   2 2, 2,

1,2, ,

33.6
,

0
u

i i

i H

R R R


 
   

 
  diag   

 

The same simulation scenarios used in the previous subsection are considered for 

demonstrating the distributed MPC strategy. The corresponding results for Scenario-1, in 

comparison with those of the open-loop coordination and rule-based coordinated control, 

are presented in Figure 5.9 ~ Figure 5.10. 
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(b) 

Figure 5.9 Cure-conversion level distributions for three curing methods (Scenario-1): (a) 

Full-range view (b) Zoomed around the set-point 
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Figure 5.10 Time history of control signals for three curing methods (Scenario-1): (a) 

radiant power; (b) speed 

 

As shown in Figure 5.9, both the MPC and rule-based control methods are able to 

maintain the cure uniformity in the presence of decreasing UV absorption coefficient, 

compared to the open-loop coordination. This is because both of the two closed-loop 

approaches use estimated process state as feedback to adjust the radiant power and the 

speed of the actuator online.  The result in Figure 5.10(a) shows that the MPC approach 

implements lower radiant power than the rule-based coordinated control method for most 
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of the curing duration. This can be explained by the fact that the MPC approach has 

explicitly considered the minimization of both the state error and the control input costs 

along the prediction horizon during each calculation period. The speed profiles in Figure 

5.10(b) show that the MPC strategy exposes more options through adjusting the speed of 

the actuator. The radiant actuator can even go back to previously cured area if necessary.  

The simulation results of Scenario-2 are given in Figure 5.11 ~ Figure 5.12. 
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Figure 5.11 Cure-conversion level distributions for three curing methods (Scenario-2): (a) 

Full-range view (b) Zoomed around the set-point 
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Figure 5.12 Time history of control signals for three curing methods (Scenario-2): (a) 

radiant power; (b) speed 
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In this scenario, the same MPC controller is used to control the curing process 

occurring on the target strip where the UV absorption coefficient has a step change 

between the left and right sides. This unevenness has also been successfully compensated 

for by applying either the rule-based coordinated control or the MPC strategy, as shown 

in Figure 5.11. Compared to the rule-based coordinated control, the MPC method gives a 

better match with the set-point after the actuator enters the area with lower UV absorption 

coefficient. This can be explained by the results shown in Figure 5.12(a). The MPC 

controller increases the radiant power more drastically than the rule-base coordinated 

controller does, when the actuator crosses the intermediate region between the low-

absorption and high-absorption areas. The corresponding speed profiles illustrated in 

Figure 5.12(b) also show that the MPC controller reduces the speed of the actuator to 

compensate for the change in UV absorption coefficients between the left and right parts 

of the target strip. It is also observed that the MPC gives rather noisy actuation inputs as 

it seeks the optimal solutions at each calculation cycle.  

The major difference between the rule-based coordinated control and the MPC 

approach can be described as follows. In the rule-based coordinated control approach, the 

radiant power and the speed are adjusted around nominal values obtained from the open-

loop coordination. In the MPC approach, the online optimization algorithm directly 

determines the radiant power and the position (or speed), subject to the defined 

constraints on the control input and input change. In this case, although no nominal 

radiant power and speed are applied, the MPC strategy still succeeds in maintaining the 

cure uniformity in the presence of different types of disturbances in UV absorption 
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coefficient. The simulation results also show that the MPC approach can be designed for 

achieving lower power use than the rule-based coordinated control method by selecting 

appropriate weighting matrices for the cost function of the online optimization algorithm. 

Chapter Summary 

This chapter discussed the coordination of two major manipulated variables 

(radiant power and speed of the moving actuator) of robotic radiation-based processes. 

First, the coordination was addressed for the open-loop case, in which the radiant power 

and the speed were treated as constants during the process. A static optimization 

algorithm was developed to determine the values of the radiant power and the speed that 

can minimize the energy cost and processing time, subject to some defined state and 

input constraints. The results of the open-loop coordination were then incorporated into a 

closed-loop rule-based coordinated control strategy to achieve improved disturbance 

rejection performance. Given the online estimated process states, the radiant power and 

the speed of the actuator were coordinated by some designed rules around nominal values 

obtained from the open-loop coordination. Finally, a distributed model predictive control 

(MPC) strategy was developed to achieve online optimal coordination of the two 

manipulated variables. The distributed MPC strategy was formulated as a quadratic 

programming problem within a moving prediction horizon. Essential constraints on the 

control input and input change were also integrated into the MPC formulation. 

Simulation studies illustrated the implementation of the three coordination methods to a 

robotic UV curing process. 
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CHAPTER SIX 

CONCLUSIONS AND FUTURE WORK 

 

6.1 Conclusions 

This dissertation presented a framework of control and estimation for processes 

actuated with moving radiant sources commonly applied in robotic configurations. The 

framework included three fundamental parts: 1) integration of trajectory generation with 

feedback control; 2) online state and parameter estimation; 3) multi-variable control 

coordination and process optimization. The framework provides a way to systematically 

address major challenges associated with these processes from both the theoretical and 

practical aspects.  

A process-feature based online trajectory generation strategy was developed to 

deal with the time consuming calibration involved in traditional trial-and-error methods 

and the disturbance-rejection issue faced by most open-loop robotic radiation-based 

processes. In addition to a baseline trajectory design performed offline, the proposed 

trajectory generation strategy can adjust the motion of the robot manipulator in real time, 

using essential process features extracted from available measurements. Two practical 

approaches (named “look-and-move” and “run-by-run”), corresponding to different 

sensor configurations, were designed as the first sets of the online trajectory generation 

strategies. Moreover, an output feedback control method was proposed to enhance the 

online trajectory generation by continuously adjusting either the radiant power or the 

speed of the actuator, according to measured process outputs obtained from sensors either 

collocated or non-collocated with the actuator. Both the online trajectory generation and 
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the output feedback control strategies were then demonstrated through simulation studies 

on a robotic UV paint curing process. It was shown that these closed-loop control 

methods can successfully maintain temperature uniformity on the processed target in the 

presence of various disturbances. An experimental platform was also developed for 

further validation of these strategies and methods. Preliminary experiments implementing 

the “look-and-move” approach to the robotic UV curing process demonstrated the 

potential of the online trajectory generation strategy in maintaining temperature 

uniformity on the processed target. 

Recognizing that robotic radiation-based processes are inherently and correctly 

modeled as distributed-parameter processes, further work was conducted posing the 

problems as such. A unified framework was first established for a 1D generalization of 

the processes in which the moving actuator was treated as a radiant point source 

operating on a spatially large strip-type target. It was shown how the generalized 

formulation could be utilized to describe different robotic radian-based processes (e.g. 

curing, drying) resolved into three simultaneous parts: energy transmission to target, state 

evolution for dominant process dynamics and co-evolution of measurable states. 

Using the unified framework, a distributed state and parameter estimation scheme 

was proposed to compensate for the lack of direct sensing alternatives for some 

significant process states and parameters. In particular, a dual extended Kalman filter 

(DEKF) was developed to achieve online estimation of key process states and unknown 

parameters in parallel. To reduce the computational cost and take into account the 

changing observability distribution accompanying the actuator’s movement, the 
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developed full-dimensional DEKF was further broken into a set of distributed local filters 

with an activating policy. These distributed local DEKFs were activated sequentially 

following the moving actuator to provide estimates of states and parameters of areas (on 

the target strip) where the dominant process evolution occurs. The distributed state and 

parameter estimation scheme was then demonstrated on a 1D robotic UV curing process 

and the simulation results showed that this scheme provided a good estimation of the 

actual process state in the presence of system and measurement noises, with the help of 

simultaneous estimation of unknown parameters and an appropriate design of the 

activating policy that compensates for the changing observability. 

The dissertation also addressed the coordination of multiple manipulated variables 

for these robotic radiation-based processes to ensure quality and optimization. This issue 

was addressed progressively from three different levels, involving open-loop 

coordination, rule-based coordinated feedback control, and distributed-parameter model 

predictive control (MPC). In the open-loop coordination, the two major manipulated 

variables (speed and radiant power) were treated as constant during the process, and the 

values of the two variables were determined by solving a static optimization problem 

offline, considering energy cost, process efficiency and essential process and actuation 

constraints. A rule-based feedback control strategy was then developed to coordinate the 

radiant power and the speed of the actuator in a closed-loop manner, using the online 

estimated process states and some designed control rules. The two manipulated variables 

were adjusted simultaneously around the nominal values obtained from the open-loop 

coordination or static optimization. 
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Finally, a distributed model predictive control strategy was developed and 

investigated for systematically coordinating the manipulated variables in an online 

optimization framework using updated estimation of process states. The distributed MPC 

was formulated as a constrained quadratic programming problem, using future process 

states predicted from current state estimates and a linearized process model in order to 

determine the sequence of control input changes that can optimize the defined 

performance indexes. 

Simulation studies were conducted on the robotic UV curing process to 

demonstrate the three coordination approaches. It was shown that the distributed MPC 

strategy integrated both the optimal and closed-loop characteristics from the other two 

approaches and enabled the effective coordination of these manipulated variables to 

achieve improved process performances and reduced control input costs. 

6.2 Future Work 

There are many possible future directions that can be pursued based on the 

formulation presented in this dissertation. 

 This work focused on addressing state changes in the direction of the motion of the 

radiant actuator. The online trajectory generation and output feedback control 

strategies could be extended to the cross-directional case as well. Some work in this 

area has been discussed in [114] for cross-directional control of sheet and film 

processes. Such considerations for radiant source actuated processes have not yet 

been addressed. 
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 The distributed state and parameter estimation schemes could also be used for 

processes in which the diffusion terms are retained for both the state evolution and 

co-evolution phases. For these applications, two issues should be considered in 

designing the activating policy. First, any local DEKF within the activating window 

requires information from the adjacent DEKFs to perform the estimation due to the 

diffusion effect. This may be handled by incorporating off-diagonal terms into the 

state transition matrix of a subsystem consisting of those activated local DEKFs to 

address the diffusion effect. Second, the two boundaries (left and right) of the 

activating window have significant influences on the estimation accuracy of the 

DEKFs within the activating window. One possible approach is to set the left 

boundary as the previous estimates provided by the DEKF near the left end of the 

activating window, while to set the right boundary as the initial process state since the 

areas on the right of the activating window haven’t yet been significantly illuminated 

by the radiant actuator. 

 In this research, the process model was linearized for use in this first work on the 

distributed MPC strategy for processes employing moving radiant actuators. In future 

work, the nonlinear process models could be incorporated within a distributed 

(nonlinear) MPC framework and the solutions should be compared with the present 

work for any potential advantages. 

 The moving radiant actuator considered in this first research was simplified to a 

single radiant point source. Future work can investigate the case where the moving 

actuator contains multiple radiant point sources (such as LEDs) that are 
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independently controllable. This new structure not only enables the manipulation of 

the total power level of the actuator, but it also gives the opportunity to control the 

spatial distribution of the radiant power emitted from the actuator. These potential 

advantages may help achieve even further flexibility in process control extending the 

estimation and control strategies developed in the present work. 
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APPENDIX A 

 

Derivation of the Equality Constraint Equation for the Open-Loop Coordination 

Implemented to the 1D Robotic UV Curing Process 

 

The objective of this appendix is to derive the equality constraint equation 

involved in the open-loop coordination to describe the relationship between the radiant 

power and the speed given the desired cure-conversion level. The following derivation 

will use both the energy transmission and state transition equations of the 1D robotic UV 

curing process. 

The energy transmission phase of the robotic UV curing process can be 

represented as follows: 
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In equation (A.1), the irradiance distribution on the target strip ( I ) is described as 

a nonlinear function of the radiant power (  ), the speed ( av ), and the absorption 

coefficient ( k ). In the open-loop coordination, since the radiant power and speed of the 

actuator is treated as constant during the whole process, equation (A.1) can be further 

simplified as: 
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Here, 0x  denotes the initial position where the actuator starts moving. Then the 

associated energy distribution on the target strip can be calculated by: 
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Given equation (4.10), the curing dynamics can be expressed as: 
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The differential equation in (A.5) can be further transformed into: 
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Integrating both sides of equation (A.7) from 0 to ft yields: 
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In equation (A.9), 1( , )f x t  can be approximated by using the following piecewise 

function: 
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Given the above approximation of 1( , )f x t , the integral equation (A.8) can be 

calculated by: 
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Then, the final monomer concentration distribution can be represented as: 
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The derivative of final monomer concentration distribution [ ]( , )fM x t  with 

respect to the spatial coordinate x  can be represented as: 
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Equations (A.18) and (A.19) can be further represented as: 
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Since the normal distance ( 0d ) between the actuator and the target strip is much 

smaller than the length of the target strip, the following conditions are usually fulfilled 

except that the actuator is closed to the initial ( 0x ) and final positions ( 0 a fx v t ). 
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Then, equation (A.20) and (A.21) can be further simplified as: 
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Then the derivative of [ ]( , )fM x t  with respect to x  can be simplified as: 
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Given the parameters listed in Table 4.2, the numerical value of the derivative 

term is small, so the final monomer concentration distribution is almost uniform under 

the open-loop curing with constant radiant power and speed. Therefore, the following 



 135 

equation is used to describe the relationship between the desired cure-conversion level 

and the required radiant power and speed that can achieve this objective. 
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Here, the desired cure-conversion level is denoted by d . It is calculated by using 

the monomer concentration at the position mx , which is in the middle of the region 

0 0[ , ]tx x L  on the target strip. The total moving distance is represented by tL  

( t a fL v t ). Equations (A.28) ~ (A.30) describe the equality constraint for the radiant 

power ( ) and the speed ( av ) of the actuator under a certain desired cure-conversion 

level ( d ). 
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