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ABSTRACT 
 

Over 50 million Americans are affected by ailments to the central nervous system 

(CNS) and it impacts the American economy over $400 billion a year. The number of 

people in the United States who have spinal cord injury (SCI) has been estimated to be 

approximately 276,000 persons as of 2014 with a range from 240,000 to 337,000 persons. 

The annual incidence of SCI, not including those who die at the scene of the accident is 

approximately 12,500 new cases each year. Due to the limited regenerative capacity of 

the adult CNS and lack of clinically effective therapies, these conditions commonly result 

in permanent functional deficits. SCI damages both ascending sensory and descending 

motor axonal pathways interrupting the transmission of synaptic signals between the brain 

and peripheral tissues. Although damaged axons attempt an initial regenerative response, 

this is rapidly aborted due to the presence of growth inhibitory molecules in CNS myelin 

and the glial scar and intrinsic limitations of adult CNS neuronal biochemistry such as the 

ability to maintain cAMP levels and upregulate the expression of ‘regeneration-associated 

genes’. On the other hand, TBI, stroke, and Parkinson’s disease result in neuronal cell 

death. The CNS has limited capacity to replace lost neurons because the neurons 

themselves are terminally differentiated and post-mitotic. Although neural stem cells 

(NSCs) have been identified in specialized regions of the adult brain such as the sub-

ventricular zone (SVZ) and the sub-granular zones (SGZ), their number is insufficient and 

the pathological environment inadequate to support an effective regenerative response. 

The end goal of this project is to develop a biomimetic scaffold using grooved fibers 

for neural regeneration. This goal was met with a two-pronged approach. In the first 

approach, grooved fibers immobilized with bioactive adhesive molecule were developed 

to topographically guide regenerating axons. In the second approach, grooved fiber 
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staples were used as cell-laden microcarriers and integrated into a composite hydrogel 

which demonstrated its ability to serve as a platform for cell proliferation. This latter 

approach can be translated into an injectable in situ crosslinkable scaffold that can be 

used for neural stem cell (NSC) delivery with the prospect of stem cell differentiation into 

neurons to replenish cell loss.   

The first part of this research focused on immobilizing a bioactive 140 kDa 

fragment of L1 neural cell adhesion molecule on uniquely designed groovy capillary 

channel polymer (CCP) fibers. L1-CAM is an attractive candidate for growth of spared 

axonal growth cones upon injury. It mediates CNS maturation, by means of neurite 

outgrowth, adhesion, fasciculation, migration, survival, myelination, axon guidance, 

synaptic plasticity and regeneration after trauma. High levels of L1 are expressed by 

growing axons during development and after SCI and there is a positive correlation 

between their expression and axonal growth. CCP fibers with surface immobilized L1-

CAM were demonstrated to guide growth of primary neurons in vitro. In the latter part of 

this research, a methodology to fabricate CCP fiber staples was developed and these 

were employed as cell-laden microcarriers. These microcarriers were then integrated into 

a composite hydrogel blend and demonstrated high cell proliferation in vitro compared to 

control gels. This composite system can be a promising platform for NSC delivery and 

differentiation into neurons.  
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                                                         CHAPTER ONE 

                                           INTRODUCTION 

 

1. CNS injuries and diseases (TBI, SCI, Neurodegenerative diseases) 

 

Over 50 million Americans are affected by ailments to the central nervous system 

(CNS) and it impacts the American economy over $400 billion a year. Traumatic insults to 

the central nervous system (CNS) such as in spinal cord injury (SCI) and traumatic brain 

injury (TBI), result in impaired motor and sensory functions; cystic cavity and glial scar 

formation thereby causing disruption of signaling pathways. Apart from spinal cord injury 

(SCI) and traumatic brain injury (TBI), neurological diseases such as Alzheimer’s disease, 

Parkinson’s disease, and Huntington’s disease result in neuronal loss. Furthermore, if 

blood supply is impaired by hemorrhage or ischemia, the functional consequences 

worsen, as the CNS has limited capability to replace or regenerate lost neurons. In the 

adult CNS, the damaged axons do not regenerate spontaneously because of the extrinsic 

inhibitory environment and their intrinsic limited regenerative ability as well. In addition, 

replacement of lost neurons in debilitating cases of neurodegeneration by neural stem 

cells is also limited in the adult CNS. However, it is now known that various neural 

engineering and neuroprotective strategies can enable regeneration and replacement of 

surviving and lost neurons respectively. One approach to engineering the SCI pathology, 

is to transplant physical support that provides topographic cues for directional guidance. 

Such topographic support should be able to mimic the native ECM (extracellular matrix) 

environment of the neuronal niche. Other approaches include cellular therapy wherein 
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transplanted cells provide trophic biochemical support and can also replenish lost neurons 

by differentiating in response to the environmental niche at the defect site.  

 

1.1.1 Spinal Cord Injury (SCI) 

The number of people in the United States who have spinal cord injury (SCI) has 

been estimated to be approximately 276,000 persons as of 2014 with a range from 

240,000 to 337,000 persons [1]. The annual incidence of SCI, not including those who die 

at the scene of the accident is approximately 12,500 new cases each year. This greatly 

compromises the quality of life of affected individuals and has a significant socioeconomic 

impact. The average individual cost borne with just SCI cases is $250,000 and amounts 

to a sum of about $10,000,000,000 in medical expenses every year. The pathophysiology 

of SCI involves two stages [2]. The primary injury involves initial mechanical infliction 

which results in direct compression of the spinal cord by bone fragments and spinal cord 

disc material that causes damage to axons and neuron membrane. The spinal cord can 

swell in this situation resulting in secondary ischemia. The secondary injury cascade 

involves cell apoptosis in response to toxic chemicals released from damaged cells, axons 

and blood vessels in addition to glutamate excitotoxicity. The neural engineering challenge 

comes in to reinnervate surviving axons by guidance from the rostral to the caudal end 

across the gap to restore the neuronal circuit.  

 

1.1.2 Traumatic Brain Injury (TBI) 

Traumatic brain injury (TBI) is one of the major causes of morbidity in the United 

States, impacting the lives of 1.5 million new patiently annually. The annual mortality due 

to TBI amounts to approximately 50,000 contributing to about 30% of all injury deaths [3] 

with an additional 230,000 patients requiring hospitalization. As of 2010, about 2.5 million 
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patients exist overall in US itself while approximately 6.5 million exist worldwide [4]. The 

repurcussions can last from anywhere between few days to lifetime disabilities. The 

severity of a TBI may range from mild to severe. A mild injury would result in a brief change 

in mental status or consciousness while severe case would involve in an extended period 

of unconsciousness or amnesia after the injury. The effects involved with TBI can include 

impaired thinking or memory, movement, sensation (e.g., vision or hearing), or emotional 

functioning (e.g., personality changes, depression).  TBI is often referred to as a ‘silent 

epidemic’ because of these complications may not be obvious. These issues not only 

affect the patients but can have lasting socioeconomic effects on families and 

communities. Neurons show limited ability for repair and no therapy exists currently to 

reverse the neuronal injury complications. Unlike SCI, TBI involves neuronal cell death 

and requires cell replacement strategies.  

 

1.1.3. Stroke 

Brain stroke is the second leading cause of death worldwide. It can be classified 

into hemorrhagic, ischemic or embolic in origin. 500,000 new cases of brain strokes are 

reported each year in the US itself, which causes a great socioeconomic burden of 

approximately $54 billion/year absorbing 6% of the health care budgets. Ischemic stroke 

accounts for the majority of the stroke types, amounting to 80% of all brain strokes. 

Although no effective treatment is available for cerebral ischemic stroke till date, current 

treatments focus on thrombolysis and neuroprotection, which have demonstrated limited 

benefits in few patients. Most neuroprotective drugs investigated for stroke have failed in 

clinical trials during the last two decades [5]. 
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1.1.4 Parkinson’s disease (PD) 

PD is a neurodegenerative disorder that affects movement and balance in addition to 

impairing cognitive abilities. It is found in 2% of the adult population over 65. These 

symptoms are triggered by the loss of dopaminergic (DA) neurons in the substantia nigra 

as well as a decrease in the levels of dopamine in the caudate and putamen. The current 

treatment method is administration of oral L-3, 4-dihydroxyphenylalanine (L-DOPA), which 

can be converted to dopamine in the body. However, this treatment is less effective with 

progression of degeneration with adverse effects as dyskinesias (movement disorders that 

are characterized by involuntary muscle movements) [6, 7]. 

 

1.2. Structure/Function of PNS and CNS: 

 

The nervous system consists of the central nervous system (CNS) and the peripheral 

nervous system (PNS). The CNS includes the brain, spinal cord, optic, olfactory and 

auditory systems. It conducts and interprets signals conducted to it by the sensory neurons 

and also provides excitatory stimuli to the PNS. The PNS includes the cranial nerves from 

the brain, the spinal nerves from the spinal cord, sensory nerve cell bodies (dorsal root 

ganglia) and their processes. Peripheral nerves innervate muscle tissue, transmitting 

sensory and excitatory input to and from the spinal column [8, 9].  

The spinal cord can be anatomically divided into the cervical, thoracic, lumbar, 

sacral, and coccygeal regions. The center of the spinal cord is a butterfly-shaped region 

referred to as gray matter which contains the somata, neuroglia and blood vessels. The 

gray matter is ensconced within the white matter which consists of axons and neuroglia. 

The nerves on each side of the cord are subdivided into roots. The dorsal root carries 

sensory/afferent neurons which conduct sensory information to the CNS while ventral root 

carries motor/efferent neurons which convey the response from the CNS to the 
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end/effector organs such as muscles and glands. The cell bodies of the sensory neurons 

are located in the dorsal root ganglia just next to the spinal cord while the cell bodies of 

the motor neurons are located in the ventral horns of the spinal cord or brainstem (Fig.1.1).  

 

In the PNS, nerve fibers are enveloped in a protective sheath called endoneurium 

composed predominantly of oriented collagen fibers. Several axons are bundled together 

into fascicles, each surrounded by a protective sheath known as the perineurium formed 

from many layers of fibroblasts and collagen. Several fascicles are bundled together by 

the outermost connective tissue layer called epineurium composed of loose 

fibrocollagenous tissue forming the anatomically defined nerve cable/trunk. Peripheral 

nerves are well vascularized by capillaries within the support tissue of the nerve trunk or 

by vessels that penetrate the nerve from surrounding arteries and veins. 

The cellular components of the nervous system are neurons and glial cells. Neurons 

are the basic structural and functional elements of the nervous system consisting of a cell 

body (soma or perikaryon) from which axons and dendrites emanate. Dendrites transmit 

electrical signals to the soma from preceeding neurons and the axon conducts impulses 

away to the next neuron. Sensory nerve soma cluster into ganglia. Glial cells also referred 

to as neuroglia include Schwann cells which ensheath axons in the PNS and astrocytes 

and oligodendrocytes in the CNS. These are support cells that aid the functioning of 

neurons. A basement membrane called neurilemma envelopes the outer surface of this 

Schwann cell layer. CNS axons lack the neurilemma but have insulating myelin sheath 

formed by oligodendrocytes. Similarly, in PNS, the Schwann cells produce myelin which 

serves to increase the propagation velocity of the nerve impulse. Astrocytes create the 

blood-brain barrier that barricades the CNS from blood proteins and cells.  
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Fig.1.1 Anatomy overview of the spinal cord (a) The spinal cord anatomy (b,c) Cross-section of the spinal 
cord showing gray,white matter and neighboring ganglia (d) Connective tissue arrangement of the nerve 
bundle [8] 
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1.3. Pathology of nerve injury: 

 

                            

                                          Fig.1.2. Responses to axotomy in the (a) PNS and (b) CNS [8, 10]. 
 
 
 

1.3.1. PNS injury: 

 

The most severe PNS injury results in complete nerve transection. Such trauma results 

in axons being torn away from their cell bodies and eventually degrade; the distal stump 

of the transected nerve undergoes anterograde degeneration accompanied by 

disintegration of the cytoskeleton and cell membranes into their molecular constituents 

and shedding of myelin by the endogenous Schwann cells and PNS glial cells. This 

degeneration phenomena is referred to as Wallerian degeneration (WD) - a process that 

occurs before nerve regeneration and can be described as a myelin and neuronal debris 

cleaning/clearing process that essentially prepares the distal stump for reinnervation [11]. 

WD commences with axoplasm and axolemma degradation induced by activation of 
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axonal proteases and calcium influx. The success of regenerative response depends on 

the sparing of connections between the proximal fiber fascicles and the endoneurium of 

the severed distal segments. In case of a crush lesion, the continuous endoneurial basal 

lamina provides guidance for regenerating axons from the proximal nerve stump to the 

distal end. However in case of axotomy, complete separation of the proximal and distal 

stumps impedes reinnervation and often leads to the formation of neuroma [12]. At the 

transection site, Schwann cells (SCs) infiltrate to clear the myelin and neuronal debris by 

phagocytosis. Hematogenous macrophages are recruited by SC induced chemoattraction 

[12]. Both macrophages and SCs also produce neurotrophin cytokines to enhance axon 

growth. Schwann cells are involved in ECM production and are a versatile source of 

trophic factors [13]. After the initial extrusion of myelin sheaths, the Schwann cells having 

lost contact with the viable axons dedifferentiate and proliferate by mitosis to align within 

the remnant basal lamina endoneurial tubes to form bands of Büngner, which provides a 

growth substrate for the growth cone formed at the tip of the severed axon in the proximal 

nerve stump. This growth cone transduces guidance cues into intracellular signals for 

neurite extension and orientation extending into the ECM, retracting upon encountering 

inhibitory molecules or in absence of positive cues [14].  

 

1.3.2. CNS injury: 

 

In case of SCI, the spinal cord generally experiences 4 types of forces namely – 

flexion, extension, rotation and compression. A combination of two of more of these forces 

may lead to injury that can result in dislocated vertebrae and fractured vertebral bodies. 

Such injuries lead to concussion, contusion or laceration of the spinal cord. In case of 

concussion, no transient loss of function resulting in anatomical damage is involved. 
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However, contusion and laceration injuries involve anatomical damage that lead to 

permanent deficits [15]. 

SCI response can be listed into 3 phases upon injury – acute phase, subacute 

phase and late chronic phase. The acute phase occurs immediately upon injury and is 

characterized by mechanical damage to neural and other soft tissues, including 

endothelial cells of the vasculature resulting in hemorrhage, localized edema, and loss of 

microcirculation by thrombosis and vasospasm. Hemorrhage begins in the highly 

vascularized gray matter near the central canal and spreads radially to the posterior horns 

and into the white matter [16]. Over a time course of minutes to weeks the debilitating 

effects of ischemic cellular death, ionic shifts (formation of free radicals), release of nitric 

oxide and proteases, and edema continue from the acute phase [17]. The spinal cord 

parenchyma is invaded by the inflammatory cells. Apoptosis i.e. cell death occurs and 

involves reactive gliosis that includes the increased expression of glial fibrillary acidic 

protein (GFAP) and astrocytic proliferation. The subacute phase follows necrosis and is 

accompanied with inflammatory response due to microglia and astrocyte mediate reactive 

gliosis along with disruption of the blood-brain barrier which allows blood-borne immune 

cells from the periphery to infiltrate the spinal cord. Upregulation of cell surface proteins 

such as major histocompatibility complex (MHC II) on the microglia results in their 

transformation into macrophages. Reactive astrocytes begin to proliferate within 2 days of 

injury and accumulate at the lesion site within a week. However, myelin debris cannot be 

cleared by astrocytes and inflammatory microglia, which is another impediment to 

regeneration scope in the CNS. Finally, in the late chronic phase, which occurs over a 

time course of days to years, apoptosis continues, together with scarring, demyelination 

and cyst formation. The phenomenon of post traumatic cystic cavitation makes the CNS 

injury more complex and expands the lesion size leading to a scar encapsulated cavity 

many times the size of the initial wound [18]. A glial scar develops in days to weeks after 
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the injury, and glial hypertrophy peaks at 2-3 weeks after the injury [19]. Axons in the CNS 

do not tend to regenerate in their native environment because several glycoproteins as 

myelin in the native extracellular environment and glial scar are weaved by astrocytes, 

oligodendrocytes, and microglia which are inhibitory for regeneration and impenetrable. 

Fibroblasts, monocytes, and macrophages may also be present in the glial scar. 

Macrophages infiltrate the CNS lesion to remove myelin but this occurs slower than PNS 

because of the blood-spine barrier restricting macrophage entry into the nerve tissue to 

just the site of compromised barrier integrity. Absence of SCs in the CNS also results in 

low cell adhesion molecule (CAMs) expression in the distal end of the injured spinal cord 

limiting macrophage recruitment. Astrocytes in the CNS proliferate and become “reactive 

astrocytes,” producing glial scars that inhibit regeneration (Fig.1.2). A phenomenon that 

can further impede regeneration is progressive cavitation in which after days to weeks, 

the CNS injury can expand in size leading to a scar encapsulated cavity many times the 

size of the initial wound. The underlying mechanism is mediated by activated 

macrophages inducing astrocyte abandonment and migration away from the neuronal 

processes [18]. 

 

1.4. Topographic guidance approaches: How to bridge the gap? 

 

In order to bridge the transection gap and bring about functional axon 

regeneration, the graft should contain growth supporting cues and function as a 

guiding substrate. Cues appropriate to the axon must be built into scaffolds if they are to 

provide positive enhancement of neural regeneration. Guidance cues may be diffusible 

chemicals or surface contact chemicals inherent in the physical structure of the surface. 

Conventional hydrogel scaffolds are isotropic, providing no directional cues and thus 
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depend entirely on exogenously delivered neurotrophic factors for directional axon growth. 

Biomaterials that enhance proliferation of supporting cells should support more 

satisfactory reinnervation than those that target just the neuron. 

Most work done towards nerve regeneration have been towards the PNS, but the 

concepts can well be translated to the CNS as well. Scaffolds have been designed to 

reinnervate PNS neurons across nerve gaps which is not the barrier for the CNS injury 

model. A detailed understanding of the biological/biochemical microenvironment of the 

bands of Büngner in the PNS injury site needs to be understood and all its properties 

incorporated into a biointeractive ‘intelligent’ nerve graft. For instance, one of the 

properties of the bands of Büngner is the alignment of Schwann cells in the endoneurial 

tubes; such a cellular alignment can be brought about by controlled topography of the 

graft. These smart nerve guides should be readily formed into a conduit with desired 

dimensions, be sterilizable and tear resistant; withstand handling and suturing, withstand 

patient movements throughout tissue regeneration period, be biodegradable, pliable, 

semipermeable and porous; have ability to deliver bioactive factors and incorporate 

support cells, lend protection from inhibitory molecules, stimulate remyelination, be 

internally oriented to support cell migration and resist collapse during implantation 

(Fig.1.3). Biodegradable scaffold obviates the need for a second surgery to remove the 

implant. A polymer foam with high porosity allows higher cell attachment due to higher 

surface area and also determines the diffusion of different biomolecules as growth 

promoters or inhibitors.  
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                                            Fig.1.3. Properties of the ideal nerve guidance channel [20] 

 

In the case of PNS, the degree of reinnervation with such external support is also 

dependent upon the length of the gap, shorter gaps as 1-4 mm being relatively easier to 

repair than larger gaps (>10mm) which may require extensive exogenous support for the 

regenerating fibers to cross and reconnect. An ideal growth substrate should have all such 

guidance cues as ECM protein, growth factors and support cells distributed preferably 

anisotropically in 3D to maximize availability to the growing fibers [21]. For short nerve 

gaps (< 5 mm), the severed ends can be sutured by coaptation as long as no tension is 

created at the injury site. For larger gaps, autologous grafts (typically the sural nerve at 

the back of the leg) have been termed as the ‘gold standard’ for nerve grafts because of 

their superior nerve regeneration potential as compared to any other alternative. However, 

limitations include morbidity at the donor site, constraints on the amount of donor nerve at 

site of harvest, requirement of dual surgeries, size and fasciculation mismatch between 

the two sites, limited functional recovery, and possible formation of painful neuromas [22]. 

The rate of success needs to be improved by tissue engineering intervention to increase 

the intrinsic regenerative capability while also suppressing the effect of extrinsic barriers 

to regeneration.  
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                                                 Fig.1.4. Tubes or guide types for peripheral nerve repair [23] 

 

Nerve guidance conduits (NGCs) is the clinically approved alternative for autograft 

repair in PNS injury model. These conduits have the advantages of limited myofibroblast 

infiltration, reduced neuroma and scar formation, reduced collateral sprouting and no 

donor site morbidity; ultimately being able to guide regenerating neurons from the proximal 

to the distal target [24]. However, the use of these hollow NGCs is currently limited to a 

nerve gap of 4 cm [25]. Inadequate regeneration in the hollow NGC is attributed to the 

impeded formation of ECM components during the initial stages of regeneration which 

involves the formation of the fibrin cable through the lumens of the NGCs [26]. Without the 

formation of the ECM bridge, the formation of glial bands of Bungner is limited. The 

approach to guide the nerves through the NGCs is to pack microfilament fibers through 

the lumens, however, this approach requires advanced processing techniques. The use 

of aligned polymeric nanofibers by itself is a feasible alternative to the use intraluminal 

fibers/filaments. A critical nerve gap of 17 mm was successfully bridged by aligned 

electrospun thin films made of poly (acrylonitrile-co-methylacrylate; PAN-MA) [27]. These 

aligned fibers with diameter 400-600 nm, showed significantly higher nerve regeneration 

compared to unaligned films.  
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1.4.1. Autologous non-nerve grafts- 

Tissues harvested from the patient are immunologically compatible and composed 

of natural, non-toxic materials with optimal donor-host integration characteristics and 

oriented micro-structure. Blood vessels [28], skeletal muscle [29], epineurial sheaths [30], 

tendons [31] have been used as autologous nerve grafts. Combination of vein-skeletal 

muscle graft was also tried [32]. Autologous venous nerve conduit (AVNC) in combination 

with autologous SCs and Matrigel showed good axonal growth over a transection of 6 cm 

[33].  The limitations of such biological tissues include need of dual surgeries, tissue 

reactions, early fibrosis, scar infiltration and lack of precise control of the conduit’s 

mechanical properties. 

  

1.4.2. Non-autologous non-nerve grafts- 

Allogenic and xenogeneic sources of nerve grafts are widely available. The 

limitations include requirement of pre-treatment of such grafts to prevent any immune 

response, inflammation or disease transmission to the patient. Various decellularization 

techniques as freeze thawing, detergent treatment and irradiation are used to render the 

graft sterile and non-immunogenic.  

 

1.4.3. Biologically derived polymers- 

Naturally occurring polymers as collagen, fibrin, Matrigel, fibronectin, alginate, silk 

have been explored. Polysialic acid (PSA) is a relatively new biocompatible and 

bioresorbable material for artificial nerve conduits which is involved in steering processes 

like neuritogenesis, axonal path finding, and neuroblast migration [34]. Natural polymers 

are an obvious choice as nerve scaffolds due to their inherent cell binding sites and 

biocompatibility but design considerations such as poor mechanical properties, batch to 
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batch variability and their propensity to swell is problematic in the widespread use of such 

materials.  

 

1.4.4. Synthetic polymers- 

Synthetic polymers are widely researched for nerve implants owing to their ability 

to be tailored in terms of mechanical properties such as strength and degradability. They 

do not possess any biological recognition sites and serve as a blank slate, therefore 

require the integration/conjugation of biomolecules. Various such polymers include 

silicone, polyesters (such as PLA, PLGA, PGA, PHB, PCL), polyphosphoesters [as Poly 

(bis (hydrozyethyl) terephthalate-ethyl phosphoester/terephthaloyl chloride)), Poly 

(caprolactone-co-ethyl ethylene phosphate)], PNiPAAm, PAN-MA, polyurethane, 

polyorganophosphazene and methacrylate based hydrogels (PHEMA). Polymers with 

electrical activity as polypyrroles (Ppy) have also been explored to induce nerve repair by 

electrical stimulation, one such instance being immobilizing NGF to Ppy to bring about 

additive effect of electrical and chemical stimuli for nerve repair [35].  Nonbiodegradable 

synthetic polymers as silicone, pHEMA are less preferred because of their need to be 

removed or their inability to be removed after regeneration has taken place.       

 

Contact Guidance: 

Neurons are highly responsive to natural cues in the surrounding 

microenvironment. This behavior is very prominent during growth and development and 

during regeneration as well. A regenerating axon is dependent on guidance provided by 

physical topography and the chemistry of the scaffold surface in addition to biochemical 

signaling molecules in the microenvironment. Since regeneration is a response to 

physical, chemical and biochemical support in the axon’s milieu, the tissue engineering 
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strategy for CNS injury repair is to recreate the environmental cues in a way induce neural 

growth [36-38]. The ability of cells to respond to topographical features have been shown 

widely [39-42]. “Contact guidance” refers to the phenomenon where a cell is polarized 

along the length axis of a topographical feature [43].  

The appropriate geometry and size that can influence cellular behavior is being 

considered in the purview of topographic guidance. The nature and distribution of 

topographic cues provided by the bioscaffold will determine the cellular attachment, 

alignment, migration and proliferation of the cells. During neural tissue development, 

aligned extracellular matrix (ECM) or glial tracts, guide neural migration and differentiation 

[44-46]. Inspite of the limited capability of surviving neurons to grow, engineering 

substrates with specific topographies can guide cell behavior. The mechanisms involved 

in cellular interaction with the surface of the biomaterial substrate are complex but involve 

cell membrane receptors sensing the topographical details of dimensions, texture and 

stiffness and in the case of neurons that results in neuronal extension. The filopodial 

extensions which are actually a result of organization of the neuronal cytoskeleton, 

emanating from the growth cone continuously feel the surface and advance or retract 

depending upon the physical and chemical cues in their microenvironment. The 

dimensions of the scaffold can determine the constraints on the growth cone cytoskeletal 

organization. This behavior has been studied widely by many groups wherein neurons 

have been seeded on photolithographically patterned surface of grooves and ridges of 

various dimensions. A different body of topography related work has been done with 

electrospun fibers. Both these bodies of work will be elucidated further in the next two 

sections. 
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1.4.4.1. Topographic guidance using photolithographic anisotropic grooved 

features 

Topographic structures such as grooves and ridges were found to influence the 

direction of axonal growth when these structures were of size in the order of microns. 

Various groups have worked on creating structures of grooves and ridges by 

photolithography or reactive ion etching on silicon or PDMS and studied the effect of 

dimensional features on guidance of neurites (Fig.1.5).  

 

 

 

                                            Fig.1.5. Topographies presented to neurons in vitro [47]. 

 

Axons can be guided by nanosized patterns (grooves and ridges) down to 100nm 

on a polymer material; their growth is observed on ridges in the pattern rather than in 

grooves, although groove width affected guidance [48]. Hippocampal neurites were shown 

                                                                                       17 
 



to grow perpendicular to narrow and shallow grooves (130 nm deep and 1µm wide) but 

parallel to wider and deeper grooves (1100 nm deep and 4 µm wide) [49]. The effect of 

microchannel width and depth was also studied with PC-12 cells wherein it was found that 

width of 20-30 um was most effective in maintaining neurite direction [50]. In narrow 

channels, neurites would extend more along the long axis with lower angular orientations 

i.e. more parallel to the channel. Neurites tend to grow parallel to the channel wall in 

narrow microchannels, but perpendicular to the channel wall in wider microchannels (40–

60 μm), where neurites grow until they reach the channel wall. 

An interesting piece of work has shown how neurites from DRGs possess the unusual 

capability to pull themselves out of grooves (depth 50 um, width 30-200 um) by climbing 

up the walls and suspending themselves without any underlying solid support, this 

phenomenon being referred to as ‘neurite bridging’ (Fig.1.6) [43].  

                         

Fig.1.6. Scanning electron micrograph of DRG after 24 h culture on laminin-coated, micropatterned PDMS 
substrate. A neurite (arrow) bridges between two adjacent plateaus without interacting with the groove wall or 
groove floor. P, plateau; G, groove; W, groove wall; F, groove floor [43]. 
 
 

                                                                                       18 
 



In 1987, Clarke et al also showed that topography can indeed influence the 

mannerism of cell locomotion. Using a groove-ridge system, they showed that at steps, 

be it grooves or ridge edges, the chick embryonic neural cells would try to make the most 

cytoskeletally conservative decision [41]. The lamellipodia formed protrusions/filopodia at 

the edge. This is different for different cells and also depends upon the angle of approach 

to such an edge. Cells do not extend around external angles at 17 degree greater than 

horizontal plane due to cytoskeletal inflexibility i.e if the angle to be changed is higher than 

17 degree their locomotion in that direction is inhibited. At 10 um steps, almost all cells 

are stranded or trapped on ridge or grooves. For neurons this limit is 4 um which means 

that at 4 um steps, they do not step down or up. Even neurons confined in 7 um wide and 

2 um deep grooves, failed to cross-over and double back and forth the edges. Frequency 

of ascent was lower than descent. Thus for neurons 2 um deep grooves is enough to 

contain them without any crossover. Clark et al followed up this work with some more 

findings in 1990 [42]. They found that alignment was inversely proportional to spacing and 

that groove depth proved to be much more important in determining cell alignment, which 

increased with depth. The outgrowth of neurites appeared unaffected on the 1um patterns, 

the growth cones having crossed many grooves and ridges. On 2 um deep patterns 

neurite outgrowth was markedly aligned to groove direction, though crossing over edges 

did occur. The finding that deeper grooves promoted higher orientation of neurons was 

corroborated in other works as well [51].  

Baranes et al observed that ridges as low in height as 10 nm influenced the manner 

neurons in which interacted with them. Two main factors in this interaction was the height 

of the ridge and the angle of approach of the neuron to the ridge [52]. The higher the height 

and the more the angle of approach of the neuron, the more neuronal processes were 

affected. From 10-100 nm, the number of such affected processes increased. Neurons 
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oriented themselves on the ridges and aligned along the axis of the ridge; when 

encountering edge of the ridge they would send off a bifurcated process. 

It has also been shown that an aligned monolayer of astrocytes resulted in aligned 

growth of DRG neurites atop them [53]. This is because of organized cue (laminin, 

fibronectin, NCAM, CSPG) production by the astrocytes onto which the neurites grow. 

DRG neurites were shown to grow on underlying SC layer and follow the SC patterns on 

PDMS conduits and films in parallel or perpendicular orientations. Neurites were found to 

extend maximum length on parallel SC tracks and found to turn on perpendicular oriented 

SC tracks [54]. Britland et al have shown that neurites did not align to 12-100 μm pitch 

grooves which were less than 1 μm deep [55]. The proportion of aligned neurites increased 

with groove depth. Cells growing in 12 um wide grooves were more aligned than in wider 

grooves.  Maximum neurite alignment was seen when 6 μm deep, 25 μm wide grooves 

contained superimposed parallel adhesive tracks. For groove depths less than 1 um, 

neurites could cross across orthogonally patterned adhesive strips. In similar work by 

Clarke et al, spiral ganglion neurons (SGNs) were shown to align parallelly along 

microchannels with ridge periodicity of 50 um and channel depths of 0.6-1um [56]. It was 

also shown that fibroblasts were unable to align to these microchannels which suggests 

cell specific responses to topographic cues.  

Sorribas et al immobilized cysteine terminated RGDC peptide to patterned chips 

with grooves and ridges and found that outgrowth along narrow lines of 5 to 15 um RGDC 

patterns was more frequent than along 25 um lines [57]. Johansson et al nano-imprinted 

patterns on PMMA consisting of parallel grooves with depths of 300nm and varying widths 

of 100–400 nm [48]. The distance between two adjacent grooves was 100–1600 nm. They 

found that nano-imprinted patterns with groove sizes higher than 100nm could be 

conducive to neurite growth with preference to grow on the ridge edges. No protein was 

coated on these surfaces but NGF was used in media.  

                                                                                       20 
 



Growth cones were shown to have decision making capability which is a 

summation of growth permissiveness preference and straightness preference [58]. 

Neurons prefer to travel straight because it is cytoskeletally most favorable; if needed to 

change directions, they bend to the least possible angular orientation. In this work, 

micropatterned substrate was photolithographically fabricated; PDL was coated on the 

plateaus and the substrate dipped in Matrigel solution (1:10), thus Matrigel would be in 

the grooves. In case of shallow grooves with 2.5-4.6 microns depth, neurons disregarded 

such topography and could cross-over with neglect of any topographical variation. For 

intermediate depth grooves 11-15 micron depth, the percentage of neurons which could 

disregard topography decreased. With increase in depth of the grooves, the neurons 

extended on the plateaus and at the ridge could either go left/right/down the ridge or go 

straight into the matrigel; they preferred going straight into the matrigel than turning 90 

deg. 

Topography dimensions in the range of 300 nm to 2 um in the form of lines of 

holes, did not affect neuron adhesion to quartz substrate [59]. % polarization was higher 

on the line topographies compared to holes and smooth surface. Axon elongation data 

indicated that both the 300 nm and 2 μm grooves appeared to catalyze axon growth 

relative to the smooth surface and the 300 nm holes.  

The question that arises at this point is, what goes on at the biochemical level 

inside the neurites in response to topographical substrates? Using nanoimprint lithography 

technique, Ferrari et al demonstrated that neurons form focal adhesion contact with the 

substratum followed by intracellular ROCK1/2-myosin II activity to induce the polarity in 

the neurite by inducing focal adhesion (FA) maturation [60]. On the substrate, the neurite 

seeks to form stable FAs, following which cytoskeletal machinery triggers association of 

actin, vinculin, FAK, paxilin and talin in response to the tension of FA formation with the 
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substrate. Inhibition of ROCK1/2-Myosin II was found to impair the cell polarity thus 

proving the hypothesis correct. 

 
1.4.4.2. Topographic guidance using electrospun fibers 
 
 

Electrospinning is a straightforward, cost-effective and versatile technique earlier 

used in the textile industry and has recently been used in the medical field for fabricating 

sheets of fibers at the nanoscale [61]. This technique spins continuous nano-featured 

scaffolds with large surface area–volume ratio and interconnected porous geometry with 

spatial orientation. Also, it does not involve heating or chemical reactions during nerve 

guidance conduit (NGC) synthesis. Thus, a material not stable to heat or chemical 

reactions can be processed by electrospinning into microfibrous or nanofibrous form. 

Nanofibrous scaffolds can dimensionally mimic the fibrillar structure of the ECM matrix 

intricately and their interaction with the growth cone can provide contact guidance cues 

thereby directing neurite outgrowth. Electrospun scaffolds provide superior cues for the 

differentiation of neurons and neurite outgrowth owing to their high porosity and large 

surface area which in turn leads to higher concentrations of adsorbed serum proteins. The 

porosity influences the diffusion and adhesion of serum proteins and growth factors [14]. 

Unidirectional aligned scaffolds are more useful in replicating the ECM environment and 

promote directional contact guidance to a much greater extent than random counterparts. 

Polymerization of cytoskeletal microtubules causes the traction force to be generated in 

the direction of protrusion by filopodia and lamellipodia formation. Probably along the 

direction of alignment, the rate of cytoskeletal polymerization is highest, requires 

expenditure of least metabolic energy and the signaling between axons is also enhanced 

[62, 63]. Fiber diameters of electrospun nanofibrous mats approach that of collagen fiber 

bundles, between 50 and 500 nm. Various factors as inter-fiber distance, fiber diameter, 

size of cells and the chemical and interfacial properties of the fibers influence the migration 
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of the cells in the 3D scaffold.  The flexibility in controlling fiber size and fiber orientation 

makes this technique superior to other methods of scaffold formation such as self-

assembly, phase separation and solvent casting. 

The basic electrospinning setup consists of a spinneret, fiber collector and a high 

voltage power supply (Fig.1.7). The spinneret is connected to a syringe reservoir 

containing the working polymer solution to be electrospun. A syringe pump is used to 

control the feed rate of the solution into the spinneret. Upon application of a high voltage 

to the spinneret, a pendent droplet of the polymer solution at the tip of the spinneret 

becomes highly electrified which induces charge accumulation on the surface of the 

droplet subsequently allowing the droplet to elongate into a conical shape, better known 

as the Taylor cone. This deformation is caused by two electrostatic forces–electrostatic 

repulsion between the surface charges of the droplet and Columbic force exerted by the 

strong external electric field applied. When the applied electric field crosses a threshold 

value, the electrostatic force overcomes the viscoelastic force and surface tension of the 

polymer droplet resulting in a finely charged jet forced from the tip of the Taylor cone. This 

jet then undergoes an unstable stretching and whipping process accompanied by rapid 

evaporation of the solvent, followed by the formation of a series of ultra-fine dry fibers. 

These fibers can be collected in the form of an interconnected, nonwoven mat on a 

grounded metallic target due to the potential difference between the tip and the target. 

Different types of fiber collectors are available as plate, cylinder, and disc. The alignment 

of the fiber is rather complicated due to the bending instability of the polymer jet, but it can 

be attained by tuning the rotational speed of the collector. The fibers are on the order of 

several nanometers (5 nm to 1 µm). Varying the applied electric field, polymer molecular 

weight, polymer concentration, solution flow rate, needle/needle tip size, mandrel speed 

and spinneret size can manipulate the fiber diameter. 
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Fig.1.7. (Left) Schematic representation of electrospinning apparatus (Right) Different types of fiber collectors. 
(a) Plate type; (b) cylinder type; (c) disc type [61]. 
 

 

Polyesters such as PLLA, PGA and PCL are the most commonly used synthetic, 

biodegradable, and biocompatible polymers for neural repair. PLGA nanofibrous conduit 

was successfully able to regenerate nerves across a 10 mm sciatic gap in rats without any 

exogenous therapeutic agent [64]. Various studies have evaluated these materials as 

electrospun mats having aligned and/or random fiber orientations. PLLA aligned 

nanofibers (ANF) having an average diameter of 300 nm were spun at higher mandrel 

speed while the random counterpart (RNF) having average diameter of 700 nm was 

formed at lower speed. The average pore size was in the range of 100 nm in width. Neural 

stem cells (NSCs) were found to align themselves in case of ANFs while no topographical 

guidance was observed in case of RNFs (Fig.1.8) [65]. The relation of axon diameter 

appeared to be crucial for axonal guidance. Although alignment is a requirement for the 

success of such nanofibrous scaffolds, the caveat in the degree of alignment lies in the 

fact that high and precise alignment can lead to lower inter-fiber distance which may in 

turn limit the penetration of cells into the scaffold and detrimentally cause the implant to 

be perceived as a 2D surface with grooves instead of a porous 3D scaffold [14]. The type 

of neurons also defines the success of such research. For instance, neurites from dorsal 

root ganglia (DRG) explants growing radially, sharply turned to align themselves when in 
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contact with fibers aligned at a different angle [63, 66], while cortical neurons cultured on 

random, nonwoven electrospun PLGA and PLLA scaffolds demonstrated little evidence of 

contact guidance. Also cortical neurons are more influenced by the fiber density than 

contact guidance [67]. PCL/PLGA electrospun fibers made into a porous, flexible tube 

elicited sciatic nerve regeneration across a 10 mm gap without significant inflammation 

[68]. Collagen IV deposition was found in the lumens along with myelinated axons. 

 

 

                     

                      

Fig.1.8. (Top) SEM micrographs of PLLA (left) ANF (right) RNF; (Bottom) Phase contrast micrographs of NSC 
growth on (left) ANF (right) RNF [65] 

 

Microfibers of PHBV-PLGA copolymer were electrospun into an aligned mat to 

serve as an inner core component ensheathed by an outer porous micropatterned PHBV-

P(LD)LA-PLGA film [69]. The films were made macroporous by using PEG as a porogen 

which was leached in water after solvent casting on a PDMS mold (Fig.1.9). Fig.1.9 shows 

the maximum pore size observed on the patterned film is around 4–5 µm which is smaller 
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than the size of most neural cells. This pore size of the micropatterned film would allow 

the nutrients to permeate whilst not allowing the permeation of inflammatory scar tissue 

cells forcing them to remain outside the tube, while allowing the axons to align and migrate 

along the axis of the micropatterns on the inner lumen. This work integrated two oriented 

components – an aligned electrospun fibrous mat (inner core) and a porous 

micropatterned film (outer enveloping tube) in the same structure to maximize topographic 

guidance cues for directing growth of axons along the axis of the fibers and grooves of the 

films emphasizing that the importance of alignment of the cells in regeneration. Apart from 

the engineered two in one design, a large surface area to volume ratio was being made 

available to the axonal growth. The outer film rolled around the fibrous core and was 

formed into a tube by using acrylate based adhesive; a limitation of this approach is the 

formation of a seam which may break in vivo by stress propagation or can also elicit 

inflammation response as fibrous capsule.  

  

  

Fig.1.9. (Left)-Scanning electron micrographs of micropatterned polymeric films obtained from the PDMS 
replica of the Si template porous micropatterned PHBV–P(L-D,L)LA–PLGA (2:2:1, w/w) film.(Right)- Formation 
of 3D construct and (a–b) various cross sectional views of the construct by SEM (EM: electrospun mat, MPF: 
porous micropatterned film). Inset 1 of a: SEM image of the exterior surface of the tubular construct. Inset 2 
of a & an inset of b: SEM images of certain parts of the constructs at higher magnifications [69]. 
 
 

Synthetic basal lamina fibers made from trichloroacetic acid (TCA) precipitated BD 

Matrigel™ was electrospun to deposit nonwoven nanofiber mats. The nanorough 
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topography (average surface roughness of 23 nm) was found to contribute to DRG neurite 

process growth and allowed Schwann cell movement and clustering [70]. The neurite 

extension on such electrospun fibers was higher than just coating the Matrigel on 

coverslip. Although the authors confirmed by SDS-PAGE that the proteins did not degrade 

upon processing, it may seem that there could be possible denaturation of integrin-

recognition motifs when exposed to electric fields and splaying. This technology has been 

shown to not be detrimental to cell membrane integrity when cellular suspensions in 

PDMS were electrosprayed and high cell viability recorded thereupon [71] which lays to 

rest  any doubts of denaturation and loss of bioactivity in using electrospinning. More so, 

blending with synthetic polymers helps maintain the integrity of such chemotactic motifs 

in biomolecules/biopolymers. 

To that end, blended electrospinning can be an efficient technique to introduce a 

biochemical guidance cue into the nanofibrous scaffold. Laminin was blended in PLLA 

fibers and found to promote higher PC-12 outgrowth than covalently conjugated and 

adsorbed groups [72]. Blended electrospinning is a rapid and simple modification 

technique compared to covalent immobilization and physical adsorption which involve 

several steps to achieve protein conjugation to the nanofibrous scaffold. In addition, the 

presence of laminin molecules on the surface and in the interior of the blended nanofibers 

can provide the necessary signals for cell interaction as the synthetic polymer degrades.  

PCL/gelatin (70:30) blend fibers were fabricated wherein incorporation of gelatin 

enhances the hydrophilicity of PCL scaffold due to amine and carboxyl groups [73]. Higher 

gelatin content in the blend (50:50) resulted in poor mechanical properties, lower fiber 

diameter, lower % elongation and pore size since more fibers could overlap with each 

other. In a separate study by the same group, PCL/collagen electrospun fibers were found 

to be less effective in SC adhesion and proliferation than plasma treated PCL films [74] 

although Schnell et al have shown that PCL/collagen electrospun blend fibers are the most 
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optimum material for nerve regeneration [75]. Surface collagen conjugated electrospun 

fibers of copolymer of methyl methacrylate (MMA) and acrylic acid (AA) (PMMAAA) 

promoted neural stem cell viability and neurite length with increasing collagen content [76].  

Gupta et al fabricated PCL/gelatin blend nanofibrous scaffold in aligned and 

random orientations to study the effect on Schwann cell growth, proliferation and 

alignment [77]. The random scaffold showed higher cell proliferation than the aligned 

scaffold because of higher porosity, more interconnected pores, and higher roughness in 

the form of grooves and ridges in the former. However, this result is in stark contrast to 

other similar research where it is mostly established that aligned fibers demonstrate higher 

proliferation because of the affinity of the neural cells to arrange themselves in a pattern 

[66, 78]. This anomaly could probably have been due to low pore size of 1-2 µm or high 

compactness of the aligned fiber scaffold that impeded Schwann cell migration and 

proliferation. The hydrophobicity of PCL was decreased upon blending with gelatin and 

was still able to retain similar tensile strength. The elastic modulus of PCL/gelatin was 

enhanced compared to PCL which shows better resistance to deformation. Blending of 

gelatin resulted in integration of amine, hydroxyl and carboxyl peaks into the polymer and 

made the material hydrophilic. Similar work was also done with PLCL/gelatin blend 

[PLCL=Poly-l-lactide co ε-Caprolactone] which characterized the mechanical strength of 

gelatin composite electrospun scaffolds wherein the Young’s modulus increased and 

porosity decreased because of lower fiber diameter [79].  

Aligned electrospun PLLA fibers immobilized with Laminin and bFGF via di-Amino-

PEG and heparin as linkers showed neurite extension parallel to the fiber alignment 

compared to random fiber scaffold [62]. The heparin in this case helps protect the 

bioactivity of the biomolecules. More branching of neurites was observed in the random 

scaffolds while more axonal directionality was achieved in the aligned form. 
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Uniaxially aligned poly (acrylonitrile-co-methylacrylate) (PANMA) electrospun 

fibers stacked in 3D facilitated Schwann cell migration and DRG axonal elongation across 

a 17 mm nerve gap, similar to Bands of Büngner [80]. The endogenous deposition of ECM 

protein laminin by the Schwann cells along the direction of alignment was confirmed to 

support the guidance of the neurite fronts without any exogenous delivery of regenerative 

agents such as NGF, laminin or cellular implants. In another study on PANMA, aligned 

nanofiber films were compared with thin solvent casted smooth films to investigate the 

potential role of differential fibronectin protein adsorption on topography-dependent neural 

cell responses [81]. Aligned nanofiber films promoted enhanced adsorption of fibronectin 

compared to smooth films. Fibronectin adsorption mediated the ability of the aligned fiber 

topographical cue to influence Schwann cell migration and neurite outgrowth such that the 

cells could align themselves, proliferate and produce their own ECM matrix. However, 

PAN-MA is non-degradable may cause nerve compression in the long run. A degradable 

polymer in this regard with rate of degradation and byproducts that do not interfere with 

the regeneration process and Bands of Bungner formation would be ideal.  

It has been demonstrated that it is the increased surface area of aligned fibrous 

scaffold that results in successful nerve regeneration than contact guidance [82]. PCLEEP 

fibers were electrospun directly onto PCLEEP film so as to form a tube with fibers at the 

center in two different orientations- longitudinal and circumferential; both were found to 

bridge 15 mm sciatic gap with higher numbers of myelinated axons and larger cross-

sectional areas as compared with hollow PCLEEP tubes. The fibers when electrospun as 

PCLEEP/GDNF blends facilitated a more significant recovery as a synergistic effect with 

high surface area. The introduction of phosphate group to the PCL polymer in this case 

helped increase the flexibility and degradation rate. 

PLCL [copolymer of poly (L-lactide-co-caprolactone)] was electrospun into the 

luminal region as aligned and onto an outer region as randomly oriented nanofibers into a 
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one-step nerve conduit synthesis to form a bilayer seamless conduit [83].  This direct 

electrospinning of bi-layer nanofibrous conduits is a fast process that obviates the 

otherwise tedious and unreliable option of rolling and sealing sheet [69]. The seamless 

construction of the bi-layer nanofibrous conduit also presents a smooth and even luminal 

surface for nerve growth and poses no risk of mechanical failure by stress propagation. 

Neurites were shown to extend radially from DRG explants and change direction 

to align along direction of PLLA fibers [66]. Neurites on highly aligned substrates were 

longer than neurites on random and intermediate fibers. However, there is a limit to how 

closely neurites can follow fibers even when the fibers are well aligned because of less 

space between them. It was also observed that the neurites grew fastest on aligned fibers. 

Neurite growth slows in cases of random fibers wherein growth cones need to make 

choices between two paths or materials.  

The specificity and accuracy of fiber alignment was enhanced by insulating the area of the 

needle around the tip to dampen the electrical field around the needle resulting in more 

fibers being deposited onto the collection disk [84]. PLLA fiber density was enhanced by 

using this technique and resulted in reduced chances for fiber crossing which can 

otherwise impede functional recovery by delaying the growth cone in making a directional 

orientation decision. 

Double layers in 3D of varying degrees of PLLA fiber alignment influenced DRG neurite 

extension where neurites were able to penetrate from the top to the underlying layer and 

make sharp turns to follow the long-axis of fibers in the underlying layer [63]. 

Polyamide electrospun nanofibers covalently conjugated with D5 peptide (specific 

to the alternatively spliced fibronectin type III region of human Tenascin C) were found to 

elicit neurite outgrowth in vitro and in vivo [85, 86]. The limitation of this scaffold was its 

random folding during implantation because of which regenerating axons could be 

impeded and can result in nerve compression. In another study, NGF was covalently 
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conjugated onto electrospun PCL/PCL-PEG-diamine nanofibrous meshes using 

ethylenediamine carbodiimide-Hydroxybenzotriazole (EDC/HOBt) chemistry [87].  

 

1.5. Stem cell differentiation in response to topography: 

 

Multipotent stem cells can differentiate into the three cell lineages of the CNS- 

neurons, astrocytes and oligodendrocytes depending upon the environment [88, 89]. In 

recent years, neurons and glia have been generated successfully from stem cells in 

culture, fuelling efforts to develop stem-cell-based transplantation therapies for human 

patients [90]. NSCs are multipotent and self-renewing stem cell populations that are 

present in both the developing and adult mammalian CNS. NSCs are responsible for 

generating the neurons and glial cells of the developing brain and for the ability of the adult 

brain to regenerate after injury/disease [91]. During the early embryonic stages, they exist 

as neuroepithelial stem cells in the embryonic neural tube. Upon progression of symmetric 

division, NSCs exist as radial glia cells and begin to generate neuronal lineages by 

asymmetrically dividing within the germinal ventricular zone (GVZ). NSCs then acquire 

gliogenic competency and produce glial progenitor cells, which proliferate mostly in a 

second germinal or subventricular zone (SVZ) as well as the subgranular zone (SGZ), 

which is positioned between the dentate gyrus and the hilus of the hippocampus. By the 

postnatal stage, most of the radial glia transforms into astrocytes and the ventricular zone 

disappears. Some portions of the SVZ remain in adulthood and become host sites for 

adult neurogenesis [92]. These specific sites are highly significant for CNS tissue 

engineering. For this approach, there are two methods in which neural stem cells can be 

used to promote this regeneration. One option could be by activation of the endogenous 

stem cells or otherwise, by transplantation of neural stem cells [93, 94].  
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Stem cells can be isolated and transplanted to the diseased brain and spinal cord, 

either directly or after predifferentiation/genetic modification in culture to form specific 

types of neuron and glia. Stem cells could provide clinical benefits by neuronal 

replacement, remyelination and neuroprotection. The possibility of stable expansion and 

differentiation into neurons make human NSCs an attractive cell source for reconstructive 

transplantation strategies in CNS trauma and neurodegenerative diseases. NSCs are 

undifferentiated stem cell populations that are present in both the developing and adult 

mammalian CNS which can both self-renew and generate the three major cell types that 

constitute the CNS, i.e. neurons, astrocytes, and oligodendrocytes, a characteristic known 

as multipotency [91, 94]. NSCs display sensitivity to substrate presentation of 

topographical cues via changes in cell morphology which transmits biomechanical 

responses to the nucleus through cytoskeletal linked signaling pathways as Wnt and Shh 

[95].  

ANSCs that were cultured on aligned fibers elongated along the major fiber axis 

and significantly more number of cells differentiated into the neuronal phenotype as 

compared to random non-aligned fibers [96]. The aligned fiber substrates promoted 

neuronal lineage specification of NSCs with an efficiency of 82% within days of seeding 

on laminin coated nanofibers [97]. With rat hippocampus adult NSCs (rNSCs) an increase 

of 20% neuronal differentiation was observed on nanofibers compared to tissue culture 

plastic [98]. With increase in fiber diameter, rat Neural Stem Cells (rNSCs) showed 

reduced migration, spreading and proliferation in the presence of FGF-2 and serum free 

medium. Under the differentiation condition (in retinoic acid and FBS), rNSCs spread and 

assume glial cell shape and preferentially differentiate into oligodendrocytes, whereas 

they elongate on 749-nm and 1452-nm fibers and preferentially differentiate into neuronal 

lineage. 
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Hippocampal progenitor cells differentiated into neurons on Polystyrene-Laminin 

micropatterned substrates [16x13x4 micron (groove width x groove spacing x groove 

depth] in individual culture or astrocyte co-culture [99]. On planar non patterned 

substrates, differentiation into neurites was not observed.    

A multi-architectural chip (MARC) containing topographies varying in geometry 

and dimension was developed to facilitate topography-induced neural differentiation in 

vitro from human embryonic stem cells (hESCs) [100]. The differentiation period was 

shortened to 7 days as compared to longer time periods required in conventional 

differentiation methods, to derive a population of 20–25% Tuj1-positive neurons, 10% 

MAP2-positive oligodendrocytes from hESCs growing on anisotropic gratings 

(250x250x250 nm grating dimensions) and a population of 25–40% GFAP-positive 

astrocytes from hESCs growing on the isotropic pillars. 

NSCs seeded on laminin-coated aligned polystyrene fibers were shown to induce 

differentiation into 82% neuronal lineage for cells seeded on the fibers [101]. It was also 

interestingly observed that neighboring cells in close proximity of few millimeters to the 

cells differentiated into neurons on fibers also differentiated into 72% neurons, anticipated 

mostly due to paracrine signaling. As opposed to this phenomenon, the NSCs farther away 

from the fibers mostly yielded glia (Fig.1.10). 
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Fig. 1.10. (Left) Immunofluorescence staining of NSCs seeded on aligned 2D and 1D STEP-aligned, 
polystyrene fiber meshes. (a) Schematic of used 1D and 2D substrates. (b) Significantly enhanced neuronal 
differentiation (>80%) by MAP2 staining (green) is seen on both 2D and 1D STEP fiber meshes versus a 
planar control, on which glial differentiation dominates (red); bold dotted lines indicate substrate edges; arrows 
indicate directions of fiber alignment (blue: nuclear DAPI stain). (c) Cross-section of the fiber substrate. Not 
only NSCs seeded on fibers undergo preferred neuronal differentiation but also NSCs directly underneath the 
fiber mesh, most likely due to paracrine signals from NSCs on fibers, while NSCs on a planar surface far away 
from fibers undergo mostly glial differentiation [101]. 
(Right) Quantification of immunofluorescence staining (MAP2 for neurons, GFAP for astrocytes, and CNPase 
for oligodendrocytes) of NSCs on 2D and 1D STEP-aligned polystyrene fiber meshes, and on planar 
substrates ‘‘near’’ and ‘‘away’’ from cells on fibers.  
 
 

Adult rat NSCs were found to differentiate into neurons on 749 nm electrospun 

polyethersulfone fibers; the number of cells differentiated being 20% higher than on 

polystyrene culture plate control [102]. PLLA electrospun fibers both in micro and nano 

scales were equally capable of orienting NSCs, although the nanoscale fibers increased 

neuronal differentiation over the microscale fibers (average diameters 250 nm and 1.25 

μm) [65]. 

Embryonic stem (ES) cells are known to differentiate into neuronal lineage upon 

formation of embryoid bodies and retinoic acid (RA) induction. However, Xie et al were 

able to induce neuronal differentiation in ES cells using electrospun aligned fibers without 

the need for formation of embryoid bodies [103]. Human embryonic stem cells seeded 

onto the 350-nm ridge/groove pattern arrays differentiated into neuronal lineage after five 

days, in the absence differentiation-inducing agents [104]. This work is highly encouraging 
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since it shows that topography alone can induce differentiation of ESCs without the need 

for embryoid body formation or biochemicals such as RA. 

 

1.6. CCP fiber scaffolds for tissue regeneration: 

 

The regeneration of certain tissues as tendons, ligaments, nerves and muscles, 

require cell alignment along one or more axes for optimum functioning. For myocardial 

tissue to function effectively by contraction signal transmission over long distances, 

cardiomyocytes are organized into parallel cardiac muscle fibers with intracellular 

contractile myofibrils oriented parallel to the long axis of each cell [105]. For load bearing 

tissues as tendons and ligaments, axial alignment of cells and fibers is important. Nerve 

tissue engineering focuses on alignment of neurons in a direction from proximal to distal 

end across the injury gap for nerve regeneration processes [106, 107]. The alignment and 

topographically controlled orientation of neurons on anisotropic groove and ridge features 

has been widely explored.  However, these anisotropic structures are not translatable to 

clinical applications wherein 3-dimensional arrangement of cells in an implantable scaffold 

is required.  

A unique design of polymer fibers called capillary-channeled polymer (CCP) fibers 

has been fabricated for aligned tissue engineering applications in 3D. These fibers have 

eight deep grooves (or channels) running continuously along their longitudinal axis in its 

cross-section- 2 major and 6 minor (Fig.12). This unique geometry enhances the surface 

area for ligand presentation and cell adhesion by more than two-fold when compared to 

round fibers of comparable dpf (denier per filament) [108, 109]. Lu et al prepared CCP 

fibers from two polymers, poly(L-lactic acid) (PLA) and poly(ethylene terephthalate) (PET) 

and seeded them with two cell types- rat skin fibroblasts (RSFs) and rat aortic smooth 
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muscle cells (RASMCs) to assess the cell alignment capability [110]. Both cell types were 

found to attach and extend their cytoplasmic lamellipodia in addition to proliferating and 

depositing ECM proteins as laminin and collagen within the grooves. RASMCs and RSFs 

showed highly aligned actin and vimentin cytoskeleton, respectively.  

                                                              

                 

                                               Fig.1.11. Cross-sectional view of CCP fibers [110] 

 

In another study, CCP fibers prepared by melt extrusion were cultured with normal 

human dermal fibroblasts (NHDF) and compared versus round fiber controls [108, 109]. 

They demonstrated that the cells aligned better along the grooves of the CCP fiber than 

the round cross-section counterpart in addition to aligned collagen deposition along the 

grooves. The authors found this work promising towards regeneration of highly-organized 

cellular structures such as the anterior cruciate ligament (ACL) of the knee. 

 

2. Role of Cell adhesion molecules (CAMs) in nervous system: 

 

The nervous system is a highly organized orchestra of cell migration, 

differentiation, survival and connection between neurons and their postsynaptic targets 

[111]. During early development of the nervous system, neurons seek synapse formation 
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by axon elongation and cell-cell adhesion. A crucial step during tissue morphogenesis is 

the ability of cells to contact tightly and interact specifically with other cells. The 

architecture of tissues is determined mainly by various cell adhesion mechanisms that 

bind cells together along with their connections to the internal cytoskeleton. The neurons 

polarize and formation of synaptic connections results in formation of an ordered nervous 

tissue. After the developmental processes stop, synaptic contacts still remain viable. In 

adults, the various stages of evolving plasticity include learning, memory consolidation, 

and neuronal regeneration. This requires that the nervous system have structural flexibility 

to enable contact-mediated attraction or repulsion of neuron-neuron or neuron-glia 

contacts. 

Such processes are mediated by membrane proteins called cell adhesion 

molecules (CAMs). Some of the key processes involving CAMs include formation of neural 

tube and neural crest, neuron and glia migration, axonal outgrowth and guidance, 

stabilization of synapses and plasticity, selection of targets, myelination and nerve 

regeneration post-injury [112].  

Cell adhesion molecules (CAMs) play a critical role in cell-cell adhesion and cell-

ECM interaction in both developing and maturing nervous system. SCI perturbs the stable 

state of the tissue environment and requires the interplay of CAMs and neurotrophins both 

inhibitory and growth promoting to bring about the neuronal outgrowth across the lesion. 

CAMs should act not only as adhesion molecules at the extracellular level but also as 

signal transduction molecules at the intracellular level. Most CAMs identified belong to 

either of 3 different families- Immunoglobulin superfamily (Ig), integrins, and cadherins 

[113]. Integrins are heterodimeric cell-surface receptors that induce axonal elongation in 

neurons by binding to ECM molecules such as laminin, fibronectin and tenascin and also 

to Ig superfamily molecules to promote cell-cell adhesion. Cadherins are Ca2+ dependent 
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homophilic CAMs that bring about morphogenesis in both neuronal and non-neuronal 

systems. Ig superfamily is the largest family of proteins, as NCAM, L1CAM, TAG-1, Myelin 

associated glycoprotein (MAG) and P0. We will focus on L1CAM and its role in neuronal 

outgrowth, growth cone motility and signal transduction in order to consider its integration 

in a neural engineered scaffold. 

 

2.1. Role of L1-CAM in axonal growth: 

 

                           

                                                    Fig.1.12. Schematic of L1-CAM [114] 

 

L1CAM is a neuronal cell adhesion molecule (CAM) that belongs to the 

immunoglobulin (Ig) superfamily that is conducive to CNS development in humans. It 

mediates CNS maturation, by means of neurite outgrowth, adhesion, fasciculation, 

migration, survival, myelination, axon guidance, synaptic plasticity and regeneration after 

trauma [114, 115]. It is mainly expressed on neurons possessing strong regenerative 

capability such as retinal ganglional cells (RGCs), dorsal root ganglion (DRGs) and 

neurons in the thalamic reticular nucleus [116]. L1 exhibits homophilic interactions i.e. can 

functionally interact with one another and heterophilic binding with other CAMs, signaling 
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receptors, and extracellular matrix proteins. High levels of L1 are expressed by 

regenerating neurons during development and after SCI and there is a positive correlation 

between their expression and axonal growth, the expression levels being low during 

maturation. Recently, Schwann cells have been engineered to express L1 to promote 

myelination and motor recovery after SCI. Herein we discuss the L1 mechanism in growth 

cones- highly specialized membranous extension at the distal tip of growing axons which 

act as sensory structures that interact with localized cues in the environment to produce 

the directed growth of axons toward their appropriate targets [117]. 

L1CAM molecule is made up of 6 Ig domains and 5 fibronectin domains (Fig.1.12). 

The extracellular domain binds to at least 8 distinct molecules. Interaction with these 

molecules could either be cis or trans depending on whether the interaction is on the same 

cell membrane or on different cell membranes respectively. 

Depending upon the extracellular conformation of L1CAM, binding could be 

modular or cooperative. The extracellular chain could either be horseshoe shaped or 

extended linear as shown in Fig.1.13. Modular binding takes place in the extended linear 

form of L1 where single domain of L1 binds to specific molecule. For instance, Ig6 domain 

binds to integrins and Ig1 binds to neurocan/NP-1.   

              

Fig.1.13. Left- Homophilic binding of L1 in horseshoe or extended forms; Right- Modular and cooperative 
binding of L1 with different molecules [114] 
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Inside-out regulation of L1CAM-mediated adhesion: 

The ability of L1 to stimulate neurite growth implies that it can activate second-

messenger systems which in turn lead to neuron growth. When cells in suspension 

medium are dropped over a substrate, the membrane receptors bind non-covalently to the 

protein ligands adhered to the material surface. When neurons attach, the ligands and 

receptors diffuse in the plasma membrane and react in the small region of contact. The 

sequence of events taking place at such region of contact is depicted in Fig.1.14. 

                               

                           Fig.1.14. Sequence of events at region of neuron attachment [118] 

Following ligand binding, the receptors aggregate by decrease of inter-receptor 

distance. The clustered receptors then bind cytoskeletal molecules to their cytoplasmic 

portions. Subsequently, signal transduction mechanisms as focal adhesion kinase (FAK) 

binding and tyrosine phosphorylation stimulate the interaction of cytoskeleton and 

signaling molecules with focal contact proteins. The actin polymerization brings about 

changes in shape of the cell becoming more oblong and spread out with 

lamellipodia/filopodia formation.  
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L1CAM-mediated adhesion can be controlled by at least 4 mechanisms in an 

outside manner (Fig.1.15) [119]:  

1. Lateral oligomerization of L1CAM 

2. Internalization and recycling of L1CAM  

3. Proteolytic cleavage of L1CAM ectodomain 

4. Transcriptional regulation of L1CAM expression 

                               

Fig.1.15. Four distinct mechanisms involved in the inside-out regulation of IgCAM-mediated adhesion. 
These four pathways cooperatively regulate cell adhesion both spatially and temporally [119]. 

 

Amongst these oligomerization and internalization/recycling are the major 

mechanisms of the inside-out regulation. Oligomerization of the L1 is mediated by both its 

cytoplasmic and extracellular domains. The cytoplasmic domain interacts with ankyrin 

partially mediated by phosphorylation/dephosphorylation of tyrosine kinase and 

phosphatase (Fig.1.16c). Ankyrin is referred to as a ‘clutch’ molecule which regulates the 

slippage and restraining forces for neuronal migration/growth. Ankyrin in turn binds to 

spectrin (Fig. 1.16d). Spectrin in turn binds to actin and initiates actin polymerization to 

form F-actin. Retrograde flow of F-actin leads to formation of filopodia from the 

lamellipodia which leads to neuronal migration- desired after SCI.  
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Endocytotic L1 trafficking in neuronal growth cones 

The motility of the growth cone depends on cytoskeletal dynamics of F-actin and 

microtubules located in the peripheral (P) and central (C) domains respectively. Spatially 

localized actin polymerization/depolymerization and actin-myosin interactions generate a 

retrograde movement of F-actin, which is a traction force-generating system to move the 

growth cone in the forward direction. L1 is internalized at the C-domain and centrifugally 

transported to the P-domain and reinserted into the plasma membrane at the leading 

edge. Forward translocation of growth cone requires strong adhesion at the leading edge 

and weak adhesion at the rear (Fig.1.16a).  

    

                                 

Fig.1.16. (a). Left- Molecular mechanism of L1-mediated growth cone migration (b). Middle- L1 interaction at 
its cytoplasmic domain with other cytoplasmic proteins (c). Right- Cytoskeletal organization and actin 
dynamics in growth cones. (d). Bottom- Schematic of Spectrin which plays a role in actin polymerization by 
binding to ankyrin [113, 118, 120] 

 

The cytoplasmic domain of L1 has an alternatively spliced RSLE (Arg-Ser-Leu-

Glu) sequence expressed only in neurons but not in Schwann cells. This results in a YRSL 

sequence which matches the tyrosine-based sorting motif Yxxφ where x is any amino acid 

d 

a b c 
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and φ is one with a bulky hydrophobic side group. Tyrosine based signals interact with 

clathrin-associated adaptor AP-2 composed of 4 subunits (α,β1/β2,µ2,σ2), resulting in 

endocytosis of signal bearing molecules by clathrin coated vesicles. Clathrin is triskelion 

in shape which coats outside of the protein, forms hexagonal shape on the network. AP-

2 complex is a protein that interacts with both clathrin, as well as sorting signals in the 

cargo proteins. 

                 

Fig.1.17. Left- Clathrin triskelion structure; Right- Model of dynamin-mediated pinching off clathrin/AP-coated 
vesicles [119] 

 

A cytosolic protein dynamin is essential for the membrane fission event which 

results in formation of clathrin coated vesicles. After a vesicle bud forms, dynamin 

polymerizes over the neck (Fig.1.17). Dynamin-catalyzed hydrolysis of GTP provides 

energy for release of the vesicle from the donor membrane. The membrane proteins in 

the donor membrane are incorporated into vesicles by interacting with AP complexes in 

the coat. Src is implicated in the clathrin-mediated endocytosis via the phosphorylation of 

clathrin and dynamin. L1 endocytosis is triggered by Y1176 dephosphorylation. Src on the 

one hand induces L1 endocytosis by phosphorylating clathrin at C-domain by 

dephosphorylating Y1176 and also prevents L1 endocytosis at the P-domain by 

phosphorylating Y1176, this role leads to the creation of weaker and stronger adhesion 

respectively. 
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                                                       Fig. 1.18. Proposed L1-signaling pathway [121] 

 

Cross-linking of L1 molecules on the growth cone membrane is proposed to induce 

dynamin-mediated endocytosis of L1 via the Src tyrosine kinase, leading to initiation of an 

intracellular signal transduction cascade involving the sequential activation of PI3-kinase, 

Rac, MEK, and mitogen-activated protein kinase (MAPK). It is suggested that Rac 

activation in the growth cone causes cytoskeletal changes resulting in lamellipodia and 

that MAPK may have nuclear effects on gene expression, both of which may be needed 

for neurite outgrowth (Fig.1.18). 

 

Conclusion:  

Topographic cues influence various cell types such as neurons and glia. But such cues 

work in conjunction with biochemical cues by providing desired directional and biological 

response as well. A synergism of physical and trophic support is required to design a 

biomaterial scaffold to achieve functional regeneration in CNS related pathologies. A vast 
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plethora of therapeutic modules can be integrated with biomaterials to devise the ‘silver 

magic’ bullet that can heal injuries to the CNS. While entubulation and intraluminal 

strategies have failed because of issues of collapse, fabrication difficulty respectively, the 

approach of fiber-based scaffolds has gained more recognition and promise because of 

higher stability, higher surface area and higher match to the natural environmental ECM 

niche. This dissertation work in the initial stages focused on development of acellular 

synthetic biomaterial-based bridges for directional guidance growth of primary neurons. 

This acellular scaffold was developed by integration of a novel biochemical cue L1-CAM 

with the unique groovy topography of CCP fibers for neurite guidance. In later stages, an 

injectable defect conforming cell laden microcarrier biomaterial was developed. The 

microcarrier approach is aimed towards a stem cell based scaffold which can act as a cell 

proliferation platform and also as a differentiation inducing platform to replenish cell loss 

in CNS related injuries and diseases.  

 

Dissertation arrangement 

 

The following manuscript is arranged in chapters that highlight individual studies 

that relate to the overall aims of the project. Chapter 2 enlists the aims, rationale and 

novelty of this dissertation work. Chapter 3 focuses on highlighting CCP fibers as probable 

scaffold for guided CNS tissue regeneration. In Chapter 4, a model niche has been 

developed with fibroblasts in a composite hydrogel based on polyethelene glycol (PEG), 

Hyaluronic acid, peptide GRGDS and CCP staples. In Chapter 5, we are using NSCs 

within the optimized hydrogels described in Chapter 4 for brain regeneration after 

traumatic injury or neurodegenerative disease models.  
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                                                 CHAPTER 2 

                             AIMS AND RATIONALE 

 

The central nervous system (CNS) is vulnerable to a variety of traumatic injuries 

including spinal cord injury (SCI), traumatic brain injury (TBI), and ischemic stroke; as well 

as various neurodegenerative diseases such as Parkinson’s, Alzheimer’s and 

Huntington’s diseases. Due to the limited regenerative capacity of the adult CNS and lack 

of clinically effective therapies, these conditions commonly result in permanent functional 

deficits. SCI damages both ascending sensory and descending motor axonal pathways 

interrupting the transmission of synaptic signals between the brain and peripheral tissues. 

Although damaged axons attempt an initial regenerative response, this is rapidly aborted 

due to the presence of growth inhibitory molecules in CNS myelin and the glial scar and 

intrinsic limitations of adult CNS neuronal biochemistry such as the ability to maintain 

cAMP levels and upregulate the expression of ‘regeneration-associated genes’. On the 

other hand, TBI, stroke, and Parkinson’s disease result in neuronal cell death. The CNS 

has limited capacity to replace lost neurons because the neurons themselves are 

terminally differentiated and post-mitotic. Although neural stem cells (NSCs) have been 

identified in specialized regions of the adult brain such as the sub-ventricular zone (SVZ) 

and the sub-granular zones (SGZ), their number is insufficient and the pathological 

environment inadequate to support an effective regenerative response.  

The goal of neural tissue engineering is to use combinations of biomaterial 

scaffolds; adhesive and trophic biomolecules; and in some cases therapeutic cell 

transplantation to overcome injury- and pathology-induced barriers and deficiencies and 

promote regeneration and functional recovery. In general, the guiding principle for all 

approaches has been to attempt to recapitulate a microenvironment more closely 
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resembling that of the growth-supportive embryonic CNS or adult peripheral nervous 

system (PNS). Tissue engineering for SCI has focused on delivery of bioactive signals 

that can both stimulate and direct axonal regeneration. Examples include fabrication of 

tubular or multi-lumen scaffolds and the provision of bioactivity either through recombinant 

proteins/genes or transplantation of various stem and glial cell populations. Tissue 

engineering strategies for large-scale TBI, stroke, and Parkinson’s disease have 

emphasized neuronal cell replacement through stem cell transplantation. One aspect of 

the developing CNS / adult PNS that has only recent begun to gain widespread attention 

is the presence and bioactivity of topographic structural microarchitecture. In the 

developing CNS, primitive radial glia form highly aligned structures that guide pioneering 

axons, which subsequently provide a pathway for later arriving axonal projections. In 

addition, recent studies have shown that substrate topography can play an important role 

in NSC differentiation, most importantly, in terms of increasing differentiation into neurons 

as opposed to various glial cell types. Thus, topography can offer an important contribution 

towards strategies for CNS repair aimed towards both axonal regeneration and cell 

replacement through transplantation and differentiation of NSCs.  

Previously, capillary channel polymer (CCP) fibers have been reported that 

possess micrometer-scale, aligned surface grooves. These fibers have been shown to 

provide increased surface area and support increased fibroblast alignment relative to 

traditional fibers with a round cross-section. The overall objective of this dissertation was 

to investigate the application of CCP fibers to the development of scaffolds for CNS 

regeneration. In the first study, CCP fibers in combination with the L1 neural cell adhesion 

molecule were evaluated as a potential scaffold design for long-distance axonal 

regeneration following SCI. Next, CCP fibers were fabricated into ‘staples’ 100-200 

micrometers in length and investigated as injectable microcarriers using NIH 3T3 
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fibroblasts as a model cell line. In the final study, the ability of CCP staples to increase 

neuronal differentiation of NSCs was examined. 

 

The specific aims were as follows: 

 

Specific Aim 1. To develop acellular fibrous scaffolds for axonal regeneration 

integrating topographic guidance and trophic bioactivity. 

Approach 

Specific studies were conducted to evaluate the bioactivity of a cell adhesion 

molecule L1-CAM and protein laminin for neurite outgrowth on 2D polylactide films and 

investigate the effect of fiber channel dimensions on neurite orientation and extension. 

Novelty & Innovation 

 A novel acellular scaffold was devised by integration of cell adhesion molecule L1-CAM 

and CCP fibers into a biomaterial for neural engineering scaffold. 

 

Specific Aim 2. To fabricate fiber ‘staples’ and test their utility as microcarriers 

within hybrid hydrogels   

Approach 

CCP fibers were used to make short staples. The viability of these staples for cell 

adhesion and purported use as injectable microcarriers was validated. These cell laden 

staples were encapsulated into hydrogels and cell proliferation was quantified.  
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Novelty & Innovation 

A strategy for fabrication of CCP fiber staples amenable to cell adhesion was 

developed. A novel hydrogel/staple composite injectable scaffold was designed which 

served as a cell proliferation platform. 

 

Specific Aim 3. To evaluate effect of hydrogel/staple composite on neural stem cell 

(NSC) differentiation 

Approach 

The composite scaffold developed in Aim 2 was used to investigate NSC 

differentiation in response to staple topography and chemical inducer Retinoic acid. 

Novelty & Innovation 

 For the first time, CCP fiber staples are being considered for NSC differentiation 

in response to the unique grooved topography.  
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                                               CHAPTER 3 
 

   ENGINEERING GUIDED NEURON GROWTH USING CCP FIBERS 
  

 

                                                     INTRODUCTION  

 

SCI inflicts functional deficits that are mostly severe with no effective treatment. At 

the basic research level, the strategies being investigated include (a) trophic support- 

encouraging the survival and growth of damaged axons using neurotrophins [1], (b) 

targeting the downstream signaling molecules such as cAMP to induce axonal outgrowth 

[2], (c) neutralizing inhibitory molecules such as chondroitin sulphate proteoglycans 

(CSPGs) by using enzymatic treatment with chondroitinase [3] or Nogo with blocking 

antibodies to the Nogo receptor [4], and (d) providing a permissive growth environment by 

biomaterial implantation and/or cell transplantation [5]. The various cells explored include 

neural stem cells, subventricular zone astrocytes [6], and glial cells such as olfactory 

ensheathing cells [7], Schwann cells [8] and oligodendrocyte precursor cells [9]. However, 

the delivery mechanism of cell transplants with optimum survival and integration in 

addition to patient safety has been an enormous challenge because of the hostile 

environment at the lesion site. The major hindrances with direct cell transplantation include 

(a). cell isolation, propagation and stabilization for storage, (b). in vitro testing for biological 

activity and potency and stemness for stem cells, (c). viability and functional integration of 

cells into target tissue, (d). ectopic differentiation including chances of tumorigenicity [10]. 

These difficulties with cell transplants call for surgically implanting acellular scaffolds at 

the site of injury which would anchor the transplanted cells, provide adhesive/topographic 

activity and topographic guidance. These scaffolds can be loaded with proteins or ECM to 

                                                                                       56 
 



control the attachment, growth and differentiation of cells. Apart from trophic support, 

these scaffolds should be able to provide physical and structural topographic guidance to 

surviving neurons from adjacent tissue by infiltrating the scaffold. 

The vast majority of studies examining cell alignment, survival, and differentiation 

have used two dimensional (2-D) cultures. Neuron growth behavior in response to groove 

width and depth has been studied by photolithographically fabricated models. Neurons 

can be directionally guided by topographic manipulations of patterns such as grooves and 

ridges [11-17]. These groups were able to show that neurons would follow directed 

guidance in 4-10µm deep and 10µm wide grooves. Although such studies have been able 

to demonstrate neuron growth behavior with respect to dimensionality, these models have 

seldom been translatable to 3D scaffolds for tissue engineering. The aim of the work 

presented here was to develop a novel scaffold which potentially provides guidance to 

axons in the injured spinal cord and facilitating signal transduction as well with a view 

towards clinical application. We demonstrate the use of uniquely designed Capillary 

Channel Polymer (CCP) fibers for guided growth of neurons. A unique design of polymer 

fibers called capillary-channeled polymer (CCP) fibers has been fabricated for aligned 

tissue engineering applications in 3D. These fibers have eight deep grooves (or channels) 

running continuously along their longitudinal axis in its cross-section- 2 major and 6 minor. 

This unique geometry enhances the surface area for ligand presentation and cell adhesion 

by more than two-fold when compared to round fibers of comparable dpf (denier per 

filament) [18]. 

Apart from topographic guidance, biochemical cues are required to induce 

signaling within the axon or the growth cone. Most researchers have used laminin-coated 

scaffolds for promoting neuronal adhesion and axon elongation. Laminin is a 

heterotrimeric glycoprotein consisting of α, β, and γ subunits that signals though a variety 
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of integrins and constitutes a major component of basement membrane ECM. When 

integrin receptors activate, they in turn activate a focal adhesion complex and the mitogen-

activated protein kinase which causes neurites to grow. For tissue engineering scaffolds, 

laminin is not coated directly to the substrate, but onto polylysine or polyornithine coated 

surfaces [19, 20]. In some cases, laminin has also been integrated in the bulk of the 

polymer [21]. Presenting the laminin-derived IKVAV or RGDS peptide epitopes has shown 

to enhance the growth of neurites from DRG neurons along direction of nanofibers [22]. 

In this work, we consider the use of another biomolecule for making the scaffold 

promote neurite elongation. In order to provide trophic support and enhance adhesion of 

neurons, a biomolecule of interest - L1-CAM (cell adhesion molecule) has shown great 

promise [23]. L1 neural CAM is a member of the immunoglobulin superfamily and plays 

an important role in the overall development of both the central and peripheral nervous 

systems, making it an attractive candidate for promoting neural regeneration following 

injury. Although L1 used for experimental studies is primarily mammalian-derived, insect 

cell expression system has been used to express a 140 kDa L1 fragment described 

previously to provide an alternative source of recombinant L1 with equivalent bioactivity 

[24].  

We hypothesized that the unique design of the CCP fibers can provide high 

directional support and guidance to neurons. In order to investigate neurite extension in 

response to fiber grooves of various dimensions, we have melt extruded polylactide (PLA) 

fibers, physisorbed L1 on them and seeded Chicken forebrain neurons (CFN) and dorsal 

root ganglia (DRG) neurons as well. We also compared the effect of different ligands as 

laminin and polylysine on neurite lengths on these fibers. This study was able to show that 

L1-CAM is crucial for axon elongation and is superior to the effect of laminin which has 
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been widely used by other researchers worldwide. Also, this study was able to 

demonstrate the directional growth of neurons along the grooves of the CCP fibers. 

 

                                              MATERIALS AND METHODS 

 

Fabrication of CCP fibers 

 

Capillary channel polymer (CCP) fibers were melt extruded from polylactide (PLA, 

Natureworks, Minnetonka, MN) as previously described [18]. Briefly, an extruder with a 30 

hole custom spinneret was used to produce CCP fibers at an extrusion temperature of 

240 °C, flow rate of 8.76 cc/min and take up speeds indicated in Table 1.  

     Table 1. CCP fibers of different dimensions made by varying extrusion conditions 

Fiber Sample Polymer throughput rate (m/min) 

A 590 

B 350 

C 270 

D 160 

E 115 

F 109 

G 50 

 

 

Morphology and characterization of CCP fibers 

 

The dimensions of the CCP fibers were measured from fiber samples embedded 

in Optimal Cutting Temperature compound (OCT, Tissue Tek, Fisher Scientific, MA) and 
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sectioned using cryotome (Microm, HM 505N, ThermoFisher Scientific, MA). ImagePro 

Plus software (ICube, Crofton, MD) was used to measure the groove dimensions. At least 

10 individual fibers were measured from a representative sample for each group. The 

fibers were imaged by SEM using TM-3000 (Hitachi).  

 

Expression and purification of L1-CAM 

 

L1-CAM was expressed and purified as described previously [24]. Briefly, High 

FiveTM (Life Technologies, Carlsbad, CA) cells were plated in T-175 flasks (2.5 x 107 

cells/flask) and infected with recombinant baculovirus. The supernatant was harvested 72 

hour post-infection, dialyzed and purified by chromatography column (# 731-1550, 

Polyprep, Biorad, Hercules, CA). The purified protein was sterile-filtered through a 0.2 µm 

syringe filter (#180-1320, Nalgene, ThermoFisher Scientific) and stored at 4˚C. The 

concentration of L1-CAM was determined by BCA (bicinchoninic acid) assay kit 

(ThermoFisher Scientific). 

 

Preparation of 2D polystyrene samples  

 

96 well plate wells were coated with L1-CAM at varying concentrations of 0-50 

ug/ml. PBS was used to make the dilutions. The L1-CAM was incubated at room 

temperature overnight for physisorption followed by washing twice with PBS. Cell culture 

media containing BME with 10% FCS, 20 mM KCL, 33mM glucose and 50 U/ml penicillin 

and streptomycin was placed into each well and incubated at 37°C for 15 minutes prior to 

neuron plating.   
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Preparation of 2D spin cast samples 

 

Microscopic glass slides were cut with a diamond scribe into 2.5 cm x 1.5 cm 

pieces and cleaned with acetone and water and blow dried with compressed air. The slides 

were then treated with Piranha solution (3:1 Sulfuric acid : 30% Hydrogen peroxide) and 

rinsed thoroughly with distilled water. Poly-l-lactide (PLLA, Natureworks, Minnetonka, MN) 

was dissolved at 10% w/v in dichloromethane and spin coated on the glass slides at 2000 

rpm and dried in vacuum for 48 hours to completely remove the dichloromethane. The 

samples were physisorbed with either 20µg/ml L1-CAM or laminin (#23017-015, Life 

technologies, Carlsbad, CA) overnight at room temperature followed by washing twice 

with sterile Phosphate Buffer Solution (PBS). For the dual coated samples, polylysine 

(0.01% in water) was coated on the samples for 1 hour, followed by washing twice with 

sterile distilled water, after which either laminin or L1-CAM was adsorbed at 20 µg/ml 

overnight.   For controls, 0.01% polylysine (MW 150000-300000, # P1399-100MG, Sigma) 

was coated overnight and washed with distilled water twice. The substrates were 

incubated in cell culture media at 37˚C until seeding within one hour. 

 

Preparation of fiber samples 

 

Double sided tape was placed on two opposite edges of round glass cover slips 

(#26024, Ted Pella, Redding, CA). CCP fibers were aligned and secured between the 

taped portions of each coverslip. These samples were sterilized by exposure to UV for 1 

hour in 24 well plate. The samples were physisorbed with either 20µg/ml L1-CAM or 

laminin (#23017-015, Life technologies, Carlsbad, CA) overnight at room temperature 

followed by washing twice with sterile Phosphate Buffer Solution (PBS). For controls, 

                                                                                       61 
 



0.01% w/v polylysine was coated overnight and washed with distilled water twice. The 

substrates were incubated in cell culture media at 37˚C until seeding within one hour. 

Cell preparation 

 

Rat cerebellar neurons were isolated from Day 3 post natal (P3) rat pups. 

Cerebella were stripped of meningeal tissue, minced in a small volume of L-15 medium 

(Gibco), transferred to a centrifuge tube and digested  with 1ml 1% trypsin in HBSS for 15 

min. The trypsin was then aspirated and the tissue perfused with fresh media Eagle's 

Basal Medium (BME) with 10% FCS. The tissue was gently triturated through fire-polished 

Pasteur pipettes, then incubated in 35 mm petri dishes pre-coated with polylysine (PLL, 

0.5 mg/ml overnight) for 10 minutes. This ‘panning’ step allows astrocytes to attach leaving 

the neurons suspended in the media. The media was removed, centrifuged and the cells 

resuspended in BME with 10% FCS, 20 mM KCL, 33mM glucose and 50 U/ml penicillin 

and streptomycin for plating.   

CFN explants (E8) were isolated from embryonic day 8 white leghorn chicken eggs 

according to protocol used previously [25]. Explants were minced with a small scissor and 

used as is or dissociated into individual neurons by triturating though fire polished Pasteur 

pipette and cultured on the 2D film or 3D fiber samples in Basal Medium Eagle (BME, 

Gibco, ThermoFisher Scientific, MA) supplemented with 6 mg/mL glucose (Sigma, MO), 

1% antibiotic/antimycotic 100x stock solution (Gibco, ThermoFisher Scientific, MA), 10% 

fetal bovine serum (FBS, ThermoFisher Scientific, MA), and 2 mM L-glutamine (Hyclone, 

Logan UT) for 48 h in a humidified, 5% CO2 incubator.  

Dissociated dorsal root ganglion (DRG) neurons were isolated from E8 white 

leghorn chicken eggs as well. Dorsal ganglia were stripped of nerve roots in HBSS buffer 

(Gibco) with 10% glucose (Sigma, MO). The DRGs were then trypsinized for 30 minutes 
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followed by dissociation through fire polished Pasteur pipette. The dissociated DRGs were 

incubated in a petri dish to ‘pan’ out the Schwann cells for 4 hours at 37˚C.  

 

Cell adhesion and neurite outgrowth on 2D polystyrene, PLLA spin cast film and 3D 
fiber samples 
 

Rat cerebellar neurons were plated at 5000 cells/well in 96 well plates in BME with 

10% FCS, 20 mM KCL, 33mM glucose and 50 U/ml penicillin and streptomycin. The 

neurons were allowed to attach and grow for 24 hours post-seeding at 37°C with 5% CO2 

in incubator after which the neurons were fixed in 4% paraformaldehyde.  

Chicken forebrain neurons were plated at 150,000 cells/well in 6 well plates in BME 

supplemented with 6 mg/mL glucose (Sigma, MO), 1% antibiotic/antimycotic 100x stock 

solution (Gibco, ThermoFisher Scientific, MA), 10% FBS, and 2 mM L-glutamine (Hyclone, 

Logan UT) for 24 h in a humidified, 5% CO2 incubator. The neurons were allowed to attach 

and grow for 24 hours post-seeding at 37°C with 5% CO2 in a humid incubator.  

Similary for the 3D fiber samples, chicken forebrain neurons were plated at 60,000 

cells/well of 12 well plate. 

Immunohistochemical staining 
 

The CFNs were fixed 24 hrs post seeding for 1 hour in 4% paraformaldehyde (Alfa 

Aesar, MA) and washed three times with staining media. The CFNs were immunostained 

by Anti mouse β-III Tubulin produced in Rabbit (1:500, mouse IgG, Sigma, MO) to identify 

the neurons. As secondary antibody goat anti-rabbit IgG Alexa 488 (Life Technologies, 

Carlsbad, CA) was used at 1:200 dilution in staining media. The immunostained neurons 

were visualized with a fluorescence microscope AMG-EVOS (Fisher Scientific, MA). For 

the quantitative comparison of neurite outgrowth, ImagePro software was used. Only 
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single stand-alone neurites, not connected to other neurites were measured and 

quantified. 

 

Scanning electron microscopy (SEM)  
 

 

For SEM analysis, the samples were fixed with 4% paraformaldehyde for 1 h at 

room temperature. The samples were washed three times with PBS (1x) and dehydrated 

through a graded ethanol series (50, 70, 90, 95 and 100%). HMDS (1,1,1,3,3,3-

hexamethyl disilazane, United Chemical Technologies Inc., Bristol, PA) was added and 

left to air dry at room temperature. For SEM imaging, the samples were placed on glass 

cover slips mounted on stainless steel SEM stubs, coated with platinum and imaged with 

a Hitachi S-4800 high resolution scanning electron microscope at 10 kV image beam 

intensity. 

 

Statistical analysis 
 
 

All the data presented are expressed as mean ± standard error of the mean. 

Single-factor analysis of variance was carried out to compare the means of different data 

sets, and a value of p ≤ 0.05 was considered statistically significant. 
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                                                 RESULTS AND DISCUSSION 
 

Effect of L1-CAM concentration on neurite length in 2D: 

 

In order to determine the effect of L1 coating concentration on neurite length, L1-

CAM was plated in 96 well plate wells overnight at concentrations ranging from 0-50 µg/ml. 

For the negative control, the well was submerged in PBS instead of L1-CAM. The aim of 

this experiment was to determine the optimum concentration of L1-CAM coating that could 

be most viable for neurite elongation. Rat cerebellar neurons were used for this 

experiment.  
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     Fig.3.1. Dose dependent neurite extension response of L1-CAM in 2D polystyrene on rat cerebellar 

neurons 
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Neurite outgrowth increased with increasing coating concentration of L1 in a dose-

dependent manner (Fig.3.1). This corroborates the fact that increased availability of the 

biochemical cue would trigger enhanced signaling in the axon which would in turn increase 

axon extension. It was observed that no neurites grew on the negative control (no L1-

CAM) and highest average neurite extension (~ 276 µm) was measured at 25-50 µg/ml 

L1-CAM plating concentration. The neurite extension plateaued after 25 µg/ml plating 

concentration and therefore there was no statistically significant difference between 25 

and 50 µg/ml plating concentration. For the rest of the study, we chose to use 20 µg/ml as 

an optimum concentration.  

 

Effect of ligand on neurite length in 2D: 

 

In order to determine the neurite elongation response of different ligands, 

polylactide films were coated by physisorption. It can be surmised that different ligands 

would elicit different responses from neurites because of different receptor ligand 

interactions and biochemical pathways. While laminin has been widely used as the ligand 

of interest in tissue engineering scaffolds, seldom has any other ligand been explored. 

Also, laminin is usually adsorbed on polylysine pre-coated substrates and not by itself. We 

compared the elongation response of chicken forebrain neurons on PLLA spin cast films 

coated with polylysine, laminin, polylysine/laminin, L1-CAM, and polylysine/L1-CAM. Cells 

are known to bind to polylysine by charge interaction, while laminin induces integrin based 

adhesion.  
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Fig.3.2. Dissociated Chicken forebrain neurons on different ligands (a). laminin (b). L1-CAM (c). polylysine 

(d). PLL/L1-CAM (e). PLL/laminin (Scale bar = 400 um) 
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Fig.3.3. Comparison of neurite length extension in 2D on PLA coated with different ligands (* indicates 

significant different versus L1 at p< 0.05) 

 

As previously described, only single stand-alone neurites, not connected to other 

neurites were measured and quantified (Fig.3.2). At 24 hours, it was observed that L1-

CAM coated films promoted the growth of longest neurites (~54 µm), significantly higher 

than all other ligands. It was interesting to note that there was no significant difference in 

neurite extension on PLL vs PLL/LN vs PLL/L1-CAM (~30 µm) (Fig.3.3). It is interesting 

to note that coating L1-CAM on PLL pre-coated substrate reduces neuron growth by half, 

this could possibly be because of the charge interaction between positively charged PLL 

and negatively charged domains in L1-CAM that could cause its conformation to change 

to a less bioactive one than by its hydrophobic interaction on polylactide film. In addition, 

probably L1 adsorbs more efficiently by hydrophobic interactions with PLA than PLA/PLL. 

Also, it was noted that laminin when coated by itself, does not induce any single neurite 

extension. This means that polylysine pre-coating enables laminin to adsorb on it in a 
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manner that is most conformationally bioactive on the charged surface and that the 

bioactive sites get hidden and non-accessible to neurons when laminin interacts with a 

hydrophobic surface as PLA. 

 

Fabrication of extruded PLLA CCP fibers 

 

Seven different CCP fibers having varying groove dimensions were fabricated by 

controlling the take up speed during melt extrusion. The various melt extrusion conditions 

are listed in Table 1. 
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It could be observed that the dimensions of major and minor groove width and depth 

increased with decreasing take up speed of the fibers during extrusion (Fig.3.4c).   

 

Effect of fiber dimensions on neurite extension:     

 

The next step was to check the effect of different dimension CCP fibers on neurite 

extension. In order to do so, chicken forebrain neurons (CFN) were seeded on L1-CAM 

(20 ug/ml) coated CCP fiber samples A-G.  

 

 

 

 

 

 

 

 

 

Fig.3.5. Effect of groove dimensions of CCP fibers on neurite extension was quantified with dissociated CFN 
neurons 

 

No sigificant difference (at p<0.05) in neurite length was observed among the CCP 

fiber groups with different groove dimensions (Fig.3.5). Thus between groove width range 

of 5-25 µm and depth range of 5-55 µm across A-G, neurite lengths did not vary 

significantly. This is in agreement with widely researched effect of dimensions of 

anisotropic photolithographic arrangement of grooves and ridges. Neuron growth behavior 

in response to groove width and depths has been studied by photolithographically 
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fabricated 2D models [12-17]. These groups were able to show that neurons would follow 

directed guidance in 4-10 µm deep and 10 µm wide grooves. Thus we concluded, that all 

the fiber samples A-G are equally capable of directing neuron guidance. While sample A 

was too soft to handle and Sample B was a more handle-able sample with dimensions of 

groove width in the range of (7.5-12.5 µm) and groove depth in the range of (10-22.5 µm). 

Thus, we chose Sample B for further studies.  

       

Effect of CCP biofiber topography and biochemical cue L1-CAM on neurons and 
tissue explants: 
 

In order to study the effect of CCP fiber topography on neuronal guidance and 

extension, dissociated rat (P3) cerebellar and embryonic chicken (E8) forebrain and DRG 

neurons in addition to neuron tissue explants were seeded. Thus far it has been 

demonstrated that L1-CAM is a superior ligand for promoting neurite growth as compared 

to polylysine and laminin. Also, L1-CAM requires only a single physisorbed coating vs pre-

coating of PLL in case of laminin. Also, sample B was chosen for studying the effect of 

CCP topography on neuronal guidance.  
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Fig.3.6. Effect of CCP biofiber topography on postnatal rat cerebellar neuron explants (a) Primary Rat 
cerebellar neuron explants growing randomly on L1-CAM coated PLA film in 2D (b,c). Primary Rat cerebellar 
neuron explants directionally guided on L1-CAM coated CCP fibers in 3D (Green stain =   β-III tubulin 
neuronal marker, Scale bar = 400 um) 

 

It can be seen in Fig.3.6a that rat cerebellar neuron explants emanate neurons in 

random directions on L1 coated PLA film in 2D, while directional growth along the length 

of the fiber away from the explant body can be seen in 3D on L1 coated PLA fibers (Fig.3.6 

b,c). We also observed similar topographic guidance response when chicken forebrain 

neuron explants (Fig.3.7) and cDRGs (Fig.3.8) were seeded on PLA fibers; and likewise 

with dissociated chicken forebrain neurons (Fig.3.9). 

 

a 

b 
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Fig.3.7. Effect of CCP biofiber topography on E8 chicken forebrain neuron explants (Green stain =   β-III 
tubulin neuronal marker; Scale Bar = 400um) 
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Fig.3.8. Topographic guidance of cDRG neurons (a,b). Neurites growing along direction of CCP fiber from 
cDRG explant (c). Dissociated DRG neurons growing along CCP fiber axis length (Green stain =   β-III tubulin 
neuronal marker; Blue = DAPI; Yellow arrow shows direction of fiber axis) (d,e). SEM images showing effect 
of CCP biofiber topography on E8 cDRG neuron explants  
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Fig.3.9. a). Primary chick embryonic forebrain dissociated neurons cultured on L1-CAM adsorbed CCP 
fibers in 3D (Green stain =   β-III tubulin neuronal marker; Yellow arrow shows direction of fiber axis) 

 

 

     CONCLUSION: 
 

Micron scale topographic features can be employed in vitro in order to mimic the 

natural cellular surroundings of the ECM for nerve regeneration application. In this work, 

uniquely designed CCP fibers were studied for neuronal alignment and polarization 

response. The effect of CCP fiber dimensions on the topographic guidance of various 

neuronal tissue explants and dissociated cells was studied.  In addition, we have studied 

the response of neurons on different ligands and shown that L1-CAM could possibly be 

used in biomaterials for triggering axon extension. L1-CAM was shown to be capable of 

supporting significantly greater neurite extension than the widely used ECM protein 

laminin. Therefore, this work will contribute towards better designing of the surface of 

biomaterials for neural applications, such as nerve tissue engineering scaffolds and neural 

prostheses. 
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                                                           CHAPTER 4 

   ENGINEERING CELL PROLIFERATION USING TOPOGRAPHY AND HYDROGEL 

 

                                                           INTRODUCTION: 

Tissue engineering and regenerative medicine encompass a broad group of strategies 

directed towards the structural and functional restoration of diseased or damaged tissues.  

Scaffolds play a central role as provisional matrices to support the adhesion, migration, 

proliferation, and differentiation of transplanted or endogenous cells. Early examples of 

scaffolds included sponges and meshes with interconnected pores and high surface area 

/ volume ratio prepared by solvent casting / particulate leaching [1], phase separation [2], 

gas-foaming [3], and fiber bonding. More recent efforts in the field have focused on 

designing scaffolds with bioactive cues capable of directing specific cellular activities. For 

example, incorporation and controlled release of recombinant growth factors or gene 

delivery vectors has been used to enhance cell differentiation and scaffold vascularization 

[4-6]. In another approach, advanced fabrication techniques such as solid-free form 

fabrication and electrospinning have been used to prepare scaffolds with bioactive 

topographic / structural features [7]. Microtopographies shaped like pillars, posts and 

convex micro-hills have been shown to accelerate human mesenchymal stem cells 

(hMSC) proliferation compared to smooth controls [8, 9]. Human embryonic stem cells 

(hESCs) were shown to proliferate 10 times on polyurethane electrospun fibers after 18 

days of seeding compared to day 5 of cell seeding [10]. These hESCs differentiated into 

neurons (~80% of total cell population) while very little astrocyte differentiation was 

observed. In comparison, about 95% of the total cell population differentiated into 

astrocytes on planar non fiber controls.  Higher neurite length and higher neuronal 

differentiation was observed from ESCs seeded on aligned polycaprolactone (PCL) fibers 
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as compared to random counterparts [11]. Similarly, 2.5 fold higher number of adult neural 

stem cells (ANSCs) cells were found to differentiate into neuronal lineage on aligned PCL 

nanofibers compared to planar controls [12]. However, one important limitation of these 

types of scaffolds is that they generally must be pre-fabricated in the laboratory and 

therefore invasive surgery is required for their implantation.  

In order to minimize surgical trauma, much attention has focused on hydrogel scaffolds 

that can be prepared from aqueous solutions, delivered in a minimally invasive manner by 

injection, and crosslinked in-situ. Hydrogels offer several additional advantages including 

chemical compatibility with cells and biomolecules allowing their homogenous 

encapsulation; shape conformation to tissue defects of irregular geometry; and structural 

and mechanical properties similar to the native ECM. [13]. While hydrogels prepared from 

natural polymers most closely resemble the ECM and possess intrinsic bioactivity, they 

have a limited range of mechanical properties and potential immunogenicity. On the other 

hand, synthetic hydrogels can be tailored to control the network physical and chemical 

properties, but are relatively bioinert. Hybrid hydrogels, composed of both synthetic and 

naturally-derived macromolecules, attempt to integrate the advantages and overcome the 

limitations of each material component when used alone [14-17]. For example, 

polyethylene glycol polymers crosslinked with protease-sensitive peptides have been 

shown to support cell-mediated remodeling, bone regeneration, and angiogenesis [18, 

19]. In spite of these benefits, such hydrogels are predominantly amorphous in nature and 

cannot provide any topographic bioactivity to encapsulated cells. 

 Our goal was to integrate anisotropic topographic cell microcarriers providing 

topographic support in 3D within the bulk of hydrogel matrix while retaining compatibility 

with minimally invasive delivery. The concept of microcarriers was introduced by van 

Wezel in 1967 to produce viral vaccines and biological cell products using mammalian 

                                                                                       79 
 



cells [20]. These substrates can serve for proliferation of anchorage dependent cells at 

the site of defect. Another means of regeneration of various tissues is to deliver the cells 

as undifferentiated cells at the site and then induce to differentiate into the cell of interest 

at the specific location in the body. Various factors involved in designing a microcarrier 

include consideration of chemical composition, surface topography, porosity and charge 

density, all of which determine the ease of cell adhesion to the microcarrier [21]. Most 

primary cells and non-malignant cell lines require a substrate in order to proliferate in 

culture. The interaction of the cells with the substrate is thought to affect the arrangement 

of cellular structures involved in control of growth and other essential functions. In 1986, 

fibroblasts were shown to attach and proliferate on dextran microcarriers [22]. 

Commercially available Cytodex microcarriers were later used for expansion in 3D of a 

wide variety of cells as chondrocytes [23], animal derived stem cells [24-27]. This mode 

of expansion provides high surface area in a bioreactor and is therefore superior to 

expansion in regular 2D cell culture flasks. For example, 1 g of CytodexTM microcarriers 

provides a surface area of 4400 cm2, equivalent to the surface area as approximately fifty-

eight 75 cm2 culture flasks,  which makes microcarriers for tissue culture space saving 

and cost effective, as well as less time and labor intensive than standard culture methods 

[28]. Likewise, microspheres made of PLLA have been used as microcarriers for skin 

epidermal and dermal cell delivery for wound healing in a porcine model [29]. More 

recently, keratinocyte seeded microcarriers have been used to enhance healing of full 

thickness wounds [30, 31]. Previous work with capillary channel polymer (CCP) fibers has 

shown that the surface micro-architecture of the CCP fibers, consisting of eight surface 

grooves parallel to the fiber axis, provided favorable geometrical constraints and promoted 

spreading and generation of increased cellular organization which achieved biomimetic, 

physical templates akin to the native ACL (anterior cruciate ligament) of the knee [32, 33]. 

These fibers were shown to promote significantly greater cell alignment parallel to the fiber 
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axis and organized ECM deposition than round fiber controls of comparable denier or 

perimeter. In this study, we demonstrated the development of an injectable fiber-based 

microcarrier for tissue regeneration. Gel-based composite systems have been shown to 

provide physical support for cellular focal adhesion while also facilitating cell spreading 

phenotype [34]. Gelatin grafted gellan (TriG) microspheres have been used as cell-laden 

microcarriers for hMSCs which upon encapsulation within agarose gel demonstrated two 

fold increase in cell proliferation compared to gel only controls [34]. The composite 

developed in this study is a photocrosslinked, hybrid semi-interpenetrating polymer 

network (semi-IPN) composed of synthetic polyethylene glycol diacrylate (PEGdA), native 

hyaluronic acid (HA), and the integrin binding peptide GRGDS with dispersed cell carrying 

CCP polylactide (PLA) staples sized approx. 180 µm. The results of these studies 

demonstrate that fibroblasts pre-seeded on CCP-based microcarriers exhibit significantly 

increased cell proliferation with PEGdA/HA semi-IPNs relative to bulk-encapsulated cells 

without microcarriers. 

 

                                               MATERIALS AND METHODS 

 

Capillary channel polymer fiber staple fabrication and characterization 

 Capillary channel polymer (CCP) fibers were melt extruded from polylactide (PLA, 

Natureworks) as previously described [32]. Briefly, an extruder with a 30 hole custom 

spinneret was used to produce CCP fibers at an extrusion temperature of 240 °C, flow 

rate of 8.76 cc/min and take up speed of 270 m/min. CCP fibers were embedded in 

Optimal Cutting Temperature (OCT) compound and cut on a cryostat microtome (Microm 

HM 505 N). The OCT slices were collected in a 50 ml tube and washed three times (1 
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hr/wash) by sonication in distilled water (Model 75D, VWR International, West Chester, 

PA). After each wash, the staples were centrifuged (Accuspin 1R, Fisher Scientific) at 

6000 rpm for 10 minutes and the supernatant discarded and replaced. The complete 

removal of OCT from the staples was verified by ATR-FTIR (Thremo-Nicolet Magna 550 

FTIR spectrometer equipped with a Thermo-SpectraTech Endurance Foundation Series 

Diamond ATR). The staples were then recovered by lyophilization (Freezone 4.5, 

Labconco). For SEM imaging, the samples were placed on glass cover slips mounted on 

stainless steel SEM stubs, coated with platinum and imaged with a Hitachi S-4800 high 

resolution scanning electron microscope at 10 kV image beam intensity (Fig.3.2). The 

staples were also imaged by phase contrast microscopy and their size was measured 

using ImagePro (Media Cybernetics, Rockville, MD) software. 

Cell culture and seeding on staples 

Mouse-derived NIH3T3 fibroblasts (ATCC® CRL-1658) were cultured in 75cm2 

tissue culture flasks with DMEM/F-12 50:50 1X media (Mediatech, Herdon, VA) 

supplemented with 10% (v/v) bovine growth serum (Hyclone, Logan UT), and 50 U/mL 

penicillin and 50 µg/mL streptomycin (Mediatech). Medium was changed every 2 days and 

cells were maintained in a tissue culture incubator at 37⁰C with 5% carbon dioxide (CO2).  

In order to improve cell adhesion, the staples were incubated with fibronectin 

(20µg/ml, F1141-5MG, Sigma) in a micro-centrifuge tube overnight at room temperature 

attached to a rotary cell culture system (Synthecon Inc., Houston, Texas) rotating at 15 

rpm and then washed with 1X PBS. FN-coated staples (15mg) were seeded with 1x106 

cells in 1 ml medium in a 1.5 ml micro-centrifuge tube and incubated on a rotary platform 

(15 rpm) housed in a cell culture incubator for 6 hr. The staples were allowed to settle and 

the supernatant was discarded. The cell-seeded staples were then transferred to a 24 well 

plate at 7.5 mg per well and incubated for 42 hours. This method allowed any remaining 
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non-adherent cells to be removed by attachment to the bottom of the well. The seeding 

efficiency on the CCP staples was assessed by viability staining at 48 hrs (Calcein AM, 

Life Technologies, Carlsbad, CA). To evaluate cell morphology and cytoskeletal 

organization, cells were fixed in 4% paraformaldehyde for 1 hour, permeabilized with 0.1% 

Triton X-100, and stained with Alexa 594-phalloidin and DAPI (Life Technologies). 

Fluorescence images were captured using an AMG EVOS microscope (Fisher Scientific, 

Pittsburgh, PA). For SEM imaging, cell-seeded staples were fixed in paraformaldehyde, 

dehydrated in a series of ethanol washes, immersed in hexamethyldisilazane (United 

Chemical Technologies, Bristol, PA) and air dried on glass cover slips at room temperature 

overnight in fume hood. The samples were then mounted on stainless steel SEM stubs, 

coated with platinum, and imaged at 10 kV image beam intensity (Hitachi S-4800). 

 

 

 

 

 

 

 

 

 

                Fig.4.1. Schematic of 3T3 fibroblast cell seeding and culture in 3D hydrogel composites. 
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Validation of injectability  

 CCP staples were seeded with NIH 3T3 fibroblasts as described above. At 48 

hours post-seeding, staples were suspended in medium (10 mg/ml) and passed through 

a 21G syringe needle (Becton Dickinson, Franklin Lakes, NJ) to validate their injectability 

and investigate the effect of injection on cell viability. Cells were stained with Calcein AM 

and compared to non-injected controls.   

 

Synthesis of PEG-DA macromers with ester linkages containing variable alkyl 

spacers  

Three different types of PEG-DA macromers with varying susceptibility to 

hydrolytic degradation were synthesized by a two-step process as previously reported 

[32]. Briefly, PEG (4000 MW, Fluka, Buchs, Switzerland) was reacted with either 

choroacetyl chloride, 2-chloropropionyl chloride, or 4-chlorobutuyrl chloride (Sigma-

Aldrich, St. Louis, MO) in the presence of triethylamine (TEA, Sigma-Aldrich) at a 1:4:1.8 

molar ratio in dry dichloromethane (Sigma-Aldrich). After 24 hrs reaction at room 

temperature, the reactants were filtered, washed with sodium bicarbonate and water, dried 

with anhydrous sodium sulfate, and then precipitated in ethyl ether. After recovery, each 

resulting intermediate product was reacted with sodium acrylate (5X molar ratio) in dry 

dimethylformamide (Acros, Morris Plains, NJ) for 30 hours at 50, 85, and 100 ⁰C to yield 

PEG-bis (acryloyloxy acetate) [PEG-bis-AA], PEG-bis-(acryloyloxy propanoate) [PEG-bis-

AP] and PEG-bis-(acryloyloxy butyrate) [PEG-bis-AB], respectively.  The products were 

purified by filtration, rotary evaporation, and precipitation in ethyl ether and dried under 

vacuum. The structures of each PEGdA and the degree of acrylation were determined 
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from the 1H-NMR (Brucker 300MHz, CDCl3) spectra. All samples achieved acrylation 

efficiencies greater than 90%. 

 

Preparation of staple-hydrogel composites 

HA (2% w/v, 1.5 MDa, LifeCore Biomedical, Chaska, MN) and PEG-DA (30% w/v) 

stock solutions were prepared in 1X-PBS (0.1M, pH 7.4).  Acryl-PEG-GRGDS was 

synthesized by conjugating GRGDS peptide (Bachem, Torrance, CA) to acryl-PEG-NHS 

(Jenkem, Beijing, China) as previously described [35]. Gel precursor solutions were 

prepared containing PEG-DA (6% w/v), HA (0.36% w/v 1.5 MDa), acryl-PEG-GRGDS 

(1 mol/mL), 2-hydroxy-1-[4-(hydroxyethoxy) phenyl]-2-methyl-1-propanone (I-2959, 

BASF, Florham Park, NJ, 0.1% w/v), and cell seeded staples (5 mg/ml). Sample volumes 

(45 µl) were pipetted in between glass coverslips separated by 1 mm Teflon spacers and 

exposed to low intensity UV light (365nm, 10mW/cm2, Black-Ray B100-AO, Upland, CA) 

for 5 minutes on each side of the disc. Hydrogels with encapsulated staples were cultured 

in Petri dishes (Becton Dickinson, San Jose, CA) with 2mL culture medium. As a control, 

hydrogels with the same composition were prepared with cells only and no staples. Gels 

(n=7 samples / group) were cultured for 21 days.  

 

Confocal imaging 

The viability of encapsulated cells was determined by vital staining using Calcein 

AM/ethidium bromide at 1, 7, 14, and 21 days post-encapsulation. Gel samples were 

placed in glass-bottom well chambers (Lab-Tek, Hatfield, PA) for imaging. Images of 

stained cells were captured via confocal laser scanning microscopy (Ti-Eclipse, Nikon, 

Tokyo, Japan). Cell morphology inside hydrogel was visualized and compared to assess 
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cell spreading and proliferation. The region of interest in the gel sample was identified and 

the system software was programmed to collect images at 20 µm intervals through the 

thickness of the gel (z-dimension). Macroscopic images of sample hydrogels were also 

captured alongside with an iphone 5 (Apple).  

 

Cell proliferation 

At 1, 7, 14, and 21 days post encapsulation, gel samples (n=5 gels/group) were 

homogenized in 0.1% Triton-x and stored at -80 ⁰C until ready for assay. The samples 

were thawed and homogenized using probe sonication (10W for 1 minute, Omni-Raptor 

4000, OMNI International Inc.) on ice followed by centrifugation and collection of the 

supernatant. The DNA content in each gel sample was then determined by PicoGreen 

double stranded assay (Life Technologies, Carlsbad, CA). Gels containing cells without 

staple microcarriers were used as control and gels without any cells were used as blanks. 

Serial dilution of 3T3 fibroblasts at known concentration was used to generate a standard 

curve. Samples were analyzed according to the manufacturer’s instructions, using a 

Synergy H1 hybrid fluorometer (Bio-Tek, Winooski, VT) at 480 nm excitation and 520 nm 

emission wavelengths.  

 

Statistical analysis 

Quantitative data for cell proliferation were compared by ANOVA using Tukey’s 

method for post-hoc comparisons (one-way ANOVA). p values < 0.05 were considered to 

be statistically significant. All quantitative data are presented as mean ± standard error of 

the mean. 
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                                                                   RESULTS: 

 

Preparation of CCP staples 

 

              CCP fibers were melt extruded using a customized spinneret as previously 

described in Chapter 3. We used group B of the various CCP fiber samples described in 

the Table 1 in Chapter 3. The fibers were imaged by a microscope and found to have the 

following groove dimensions- major groove width (25±1.37) µm, major groove depth 

(34±1) µm, minor groove width (14.8±1.08) µm, minor groove depth (15.67±.75) µm.  The 

average length of staples made from these fibers was found to be 184.8±11µm. The 

staples were imaged by SEM (Fig.4.2). 

  

                 

                                        Fig.4.2. SEM image of CCP staples (x400) 
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Cell culture and seeding on staples 

 

Cells were found to be efficiently seeded in the grooves of the CCP staples after 6 

hour rotary followed by 42 hour static seeding. The adhered cells were seen to spread in 

the grooves by actin/DAPI staining which clearly illustrates the polarization of the cell 

nuclei and cytoskeleton (Fig.4.3a). Also the filopodial projections could be observed by 

SEM imaging (Fig.4.3b). This combined method of rotary and static seeding enabled more 

uniform distribution of cells on the staples as opposed to just static seeding. In addition, 

any excess cells non adherent to the staples would adhere to the well bottom and allowed 

them to be screened away from the cells adhered to the staples.  

 

  

Fig.4.3. 3T3 cells on CCP staples after 48 hours in culture (a). Actin filaments (green) and nuclei 
(blue) indicate spread of cells inside the staple grooves (b). SEM image showing filopodial projections 
on staple 
 
 
 

Validation of injectability  

               Staple injectability was tested by injecting CCP staples through 21G needle at 

concentration of 5mg/ml. Viable adherent cells were stained with Calcein AM before 

passing through the injection needle. Images were taken before and after the injectability 

a b 

                                                                                       88 
 



test. It was found that staples retained viable cells when passed through 21 gauge needle 

(Fig.4.4). 

 

  

Fig.4.4. Injectability of CCP seeded 3T3 fibroblasts stained live with Calcein AM (a).before and (b). 
after injection through 21G needle (Scale bar = 400 um) 
 

Cell-staple encapsulation and growth within hydrogel composites 

             Cell adhesion and proliferation are crucial to designing scaffolds for tissue 

engineering [36]. In order to employ the microengineered 3D hydrogel-staple composites 

for tissue engineering applications, encapsulated cells must demonstrate viability and 

proliferation over time. We encapsulated NIH3T3 fibroblasts as a model cell line in this 

study. Hydrogel composite semi-IPNs were made by blending PEG-DA macromers, 

hyaluronic acid and GRGDS-acrylate with CCP staples to investigate the effect of staples 

as microcarriers for cell growth and proliferation. Gels without staples were used as 

controls. Each gel contained approximately 225 µg of staples and 69000 cells.  

We compared the response of round fiber cross-section staples using the same 

hydrogel composite system, but cells would aggregate the round staples and prevent 

homogeneous distribution in the bulk of the hydrogel during crosslinking. The CCP 

a b 
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counterpart, allows the staples to remain non-aggregated and separated during 

photocrosslinking (Fig.4.5). 

 

                

Fig.4.5. Cell adhesion to staples 48 hours post seeding (a). Round cross-section staples show aggregate 
formation (b). CCP cross-section staples show no aggregation and well dispersed. (Scale bar 400um, 
Magnification 10x, Green = Calcein AM live stain) 

 

                Cell growth in the hydrogel composites was qualitatively observed by laser 

confocal microscopy. Live cell staining showed that the fibroblasts in hydrogel composites 

were highly viable and proliferating with time during the culture (Fig.4.6). At Day 10, 

conspicuous signs of increased cell number could be observed with the staples at the core 

of expanding cell colonies. From day 14 onwards, the cell colonies merged to form high 

cell density areas as compared to the control gels. The control gels without staples 

demonstrated round but viable cells over 3 weeks (Fig.4.7). These cells did not exhibit any 

form of spreading or proliferation but formed aggregates that would exude out of the gel 

periphery at Day 21. The observations from laser confocal imaging were also be 

corroborated by macroscopic imaging as shown in Figs. 4.6 & 4.7. 3D rendering of the cell 

behavior comparison in composite and control gels is also shown at Day 1 and Day 21 

time points in Fig. 4.8.  

a b 
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Fig.4.6. Fluorescent images of live 3T3 fibroblasts grown in hydrogel composites (PEGdA/HA/PLA staples).  
Cell seeded staple encapsulation density was 5 mg ml-1. 3T3 fibroblasts were labeled with live cell stain 
Calcein AM. [Scale bar on columns denotes- left 1 cm, right 200µm] 
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Fig.4.7. Fluorescent images of live 3T3 fibroblasts grown in hydrogel controls (PEGdA/HA).  Cell 
encapsulation density was 1.5x106 cells ml-1. 3T3 fibroblasts were labeled with live cell stain Calcein AM. 
(Scale bar on columns denotes- left 1 cm, right 200µm) 

 

       

 

    

Fig.4.8. 3D Z-stack image of fibroblasts grown in (a) Day 1 hydrogel composite (PEGdA/HA/PLA staples) (b). 
Day 1 hydrogel control (PEGdA/HA) (c). Day 21 hydrogel composite (PEGdA/HA/PLA staples (d). Day 21 
hydrogel control (PEGdA/HA). Cell seeded staple encapsulation density was 5 mg ml-1. 3T3 fibroblasts were 
labeled with live cell stain Calcein AM. [Scale bar = 200µm] 
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                   In addition to qualitative determination of cell proliferation in the 3D composite 

gels using confocal imaging, we also quantified the proliferation using Picogreen assay 

for ds-DNA. The composite hydrogels demonstrated increase in cell number by almost 

ten-fold by Day 21 when compared to Day 1. No significant difference in cell proliferation 

was observed among the controls after 21 days (Fig.4.9).  

 

 

Fig.4.9. Proliferation of NIH3T3 fibroblasts in hydrogel composites (PEGdA/HA/Staples) and PEGdA/HA 
controls. Cells were encapsulated at 1.5x106 cells ml-1. Cell number was determined by Picogreen assay 
for DNA. One way ANOVA revealed differences between Day 1 and Day 21 for the composite gels 
(p<0.05, * vs Day 1 composite, # vs Day 1 control) 
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                                                DISCUSSION: 

 

            In this manuscript, the use of PEGdA/HA-CCP staple composite hydrogel system 

for cell culture and tissue engineering applications has been demonstrated. PEGdA 

hydrogels were blended with hyaluronic acid (HA) and cell adhesion motif peptide 

GRGDS-acrylate. Signals from RGD sequences induce direct and specific α5β1 integrin 

binding [37] and cells form focal contacts at the integrin-binding sites by synthesizing focal 

adhesion proteins (namely vinculin, paxillin, talin) that in turn connect to cytoskeletons 

[38]. 

 

The gels were mixed with cell laden microcarrier CCP staples and 

photocrosslinked. The hydrogel composite showed excellent cell proliferation as 

compared to control gels. The microcarrier based composite offers a unique method for 

cell amplification at site of defect in situ by serving as substrates for the propagation of 

anchorage-dependent cells. A composite integrating the microcarriers inside a hydrogel 

can not only provide a suitable platform for cellular focal adhesion but in addition facilitates 

the cells to overcome gel enlacement and fully spread out into their natural morphology 

[34]. This system can be translatable into delivery of expanded culture of undifferentiated 

or differentiated cells. The encapsulation of the microcarriers within biocompatible and 

injectable hydrogels enhances the viability of cells at the repair site. For instance, 

angiogenesis was demonstrated when endothelial cell laden gelatin coated Cytodex-3 

microcarriers were entrapped in three dimensional fibrin matrix with fibronectin, basic 

fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF) [39]. It was 

shown that mere proliferation and migration was not essential for capillary formation, but 

that inter-cellular adhesion was a crucial factor for efficient neovessel formation. Apart 
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from promoting intercellular attachment, encapsulation within a matrix can lend a 

protective and trophic environment for the cells to endure shear forces during injection 

delivery to the defect site.  

One step further would be the development of microcarriers which allow the cells 

to maintain their natural phenotype. It is widely accepted that the phenotype of cells in 

two-dimension culture is very different from their behavior in three dimensions [40]. Micro 

and nano sized scale features can be used to mimic the natural ECM microenvironment 

of tissues [41]. To that end, we were interested in exploring the role of topographical 

features on cell adhesion, polarization and proliferation for various tissue engineering 

applications. In this work, we studied the effect of a uniquely designed capillary channel 

polymer (CCP) fiber staples and its topographic effect on cell polarization and proliferation 

inside a synthetic hydrogel. The staples were coated with fibronectin for aiding the 

adhesion of fibroblasts, in addition the presence of cross-linked peptide cell adhesion motif 

GRGDS in the bulk of the hydrogel also helps the cells to interact with the otherwise 

synthetic matrix by integrin binding.  

Nanofibrous polyglycerol sebacate (PGS) staples have been explored by 

Ravichandran et al for injectable cardiomyocytes delivery within an infarct [42]. They 

observed that the morphology of the short fiber staples was retained after passing through 

an 18G needle. These fibers were of length 3.8 µm and diameter of 1 µm. However, they 

did not show how cell laden short fibers would respond to passage through the injection 

needle. In our work, we have explored the viability of CCP fiber staples in the micron –

size range – length ~180µm and diameter ~50 µm with cells adhering and retaining 

viability and remaining adherent to the staples even upon passing through 21G needle.  

The cells in the control gels did not show any proliferation over 3 weeks which 

supports our hypothesis that physical topographic support plays an important role in cell 
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proliferation. This NIH3T3 cell response in control gels is contrary to normal human dermal 

fibroblast (NHDF) response when encapsulated in PEGdA/HA blend gels [16] wherein 1.5 

fold proliferation was recorded in 14 days compared to Day 1. This is consistent with Shu 

et al, who also showed 1.5 times increase in T-31 fibroblast after 15 days culture inside 

the HA-DTPH-PEGdA hydrogel [43]. In our work, we were able to demonstrate 10 fold 

increase in cell number in hydrogel composite samples over 3 weeks by Picogreen assay 

which quantifies the increase in double stranded DNA (dsDNA). The importance of 

physical support in the form of microcarriers is corroborated by the fact that no increase 

in cell number was observed in the control gels (Fig.4.9).   

 
 

The isotropic nature of the hydrogels can be overcome by integrating topographic 

structures to induce anisotropy and cell polarization. The resulting composite could 

topographically mimic the ECM to control cell adhesion, morphology and tissue 

architecture.  In the composite gels developed in this work, the presence of physical 

topographic support by the CCP staples perhaps orients the cell cytoskeleton in a manner 

which induces higher ECM production and hence proliferation [44-46]. Substratum 

topography can serve as a means of manipulating cell function because surfaces provide 

a two-pronged biomimetic extracellular physical milieu and cell stimulating cue.  

 

Of special long term interest to us is the ability to induce adhesion, polarization 

and thereby differentiation of neural stem cells in an injectable hydrogel system for neural 

regeneration purposes. This is because for stem cells, the ability to control and regulate 

cell proliferation in 3D is crucial for cell differentiation fate and proliferation. Using the 

composite system developed in this work, we can expand NSCs in three dimensions in 

the bulk by contact with the staples followed by induction of differentiation.  
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                                                            CONCLUSION: 

 

A biodegradable hydrogel-fibrous staple composite demonstrating sustained cell 

survival and proliferation was developed. 3T3 fibroblasts pre-seeded on CCP staples 

when encapsulated in PEGdA/HA hydrogel blends, showed high proliferation as 

compared to control gels without CCP staple microcarriers. The physical properties of the 

composite system demonstrated cell cluster formation around the staples in 3D by 

proliferation. This study indicated that the hydrogel-staple composite may have promising 

potential in various tissue regeneration applications involving stem cell proliferation and 

differentiation. Future studies could include incorporation of neural stem cells to induce 

differentiation into neural lineage for targeting CNS trauma and neurodegenerative 

disease. 
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                                              CHAPTER 5 
 

       ENGINEERING STEM CELL FATE USING COMPOSITE SCAFFOLD 

 
                                              INTRODUCTION: 

 

Biodegradable scaffolds provide a temporal structural support for transplanted stem 

cells. In addition, the scaffold also delivers bioactive signals for stem cell differentiation, 

either in the form of released/immobilized trophic factors or through topographic 

microarchitecture and appropriate biomechanical properties. However, the nervous tissue 

is extremely complicated. It starts off as the neural plate - a flat sheet of cells on the top 

surface of the embryo, and undergoes a series of elaborate deformations, resulting in 

morphogenetic transformation into a hollow tube [1]. One end of this neural tube eventually 

forms the brain and the other end forms the spinal cord. This complex formation of the 

nervous system makes it difficult to design an intricate scaffold that would simulate the 

growth of nervous tissue. While stem cell therapy is a viable option for CNS treatments, 

many challenges need to be addressed including low cell survival, lack of control on stem 

cell fate and low cell engraftment and integration with existing neuronal circuitry after 

transplantation [3]. Though overcoming these obstacles is challenging, the design of 

structures that mimic the native stem cell niches for transplanted cells can be promising. 

So, the need to develop a suitable cell laden scaffold which can serve as a cell proliferation 

platform and also induce differentiation at the transplant site is substantial.  

 NSCs are self-renewing, multipotent stem cell populations that are present in both 

the developing and adult mammalian CNS [3]. They are responsible for generating 

neurons and glia in developing brain and so play a key role in augmenting the otherwise 

limited ability of the adult CNS to regenerate after injury or disease [4]. NSCs exist as 

neuroepithelial stem cells in the embryonic neural tube. When the tube undergoes 
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symmetric division, the NSCs exist as radial glia cells and begin to generate neuronal 

lineages by asymmetrically dividing within the germinal ventricular zone (GVZ). NSCs then 

acquire gliogenic competency and produce glial progenitor cells, which proliferate mostly 

in a second germinal or subventricular zone (SVZ) – located along the lateral wall of the 

lateral ventricle [5]. By the postnatal stage, most of the radial glia transform into astrocytes 

and the ventricular zone disappears. Some portion of the SVZ is retained in the adult CNS 

and serves as one of the primary sites for neurogenesis [6]. These sites are highly 

significant when considering neural tissue engineering approaches. Two approaches can 

be considered for NSC mediated regeneration – activation of endogenous stem cells or 

transplantation of neural stem cells [7, 8]. The regenerative capacity of the endogenous 

stem cells is very low since they are unable to reconstitute the structural architecture of 

the CNS.  

 Transplantation of NSCs is a more promising approach for CNS regeneration 

although the fate of transplanted cells is determined by the type of injury/disease and the 

biochemical and biomechanical microenvironment at the site [8]. The hostile environment 

at the site affects the survival and functionality of the transplanted cells [9]. Rather than 

direct injection, the creation of the physiological stem cell niche is a more efficient 

approach [10]. This niche should be a specialized conglomerate providing the correct 

architecture and containing the required biochemical cytokines/growth factors and signals 

apart from the right biomechanical properties of native environment [11]. These 

requirements are important to consider in the development of a biomaterial to mimic the 

microenvironment [12, 13]. A variety of biomaterials such as hydrogels and nanofibers 

have been explored towards this end. Hydrogels are of particular interest in this case 

because of their close resemblance to soft tissues, owing to their cross-linked hydrophilic 

polymer network. The crosslink density of the polymer network can be tuned to match the 
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mechanical properties of the CNS tissue. Also, hydrogels are injectable and in situ 

crosslinkable, which makes them a minimally invasive and defect conforming scaffold. 

Hydrogels can assist in angiogenesis, prevent immune response and inhibit glial scarring 

as well. However, hydrogels are isotropic and may not strictly control the differentiation 

fate of NSCs as desired. The fate can be specified by inducing the cells towards a 

morphological shape that would facilitate their differentiation by cytoskeletal 

rearrangement of actin filaments and focal adhesion complexes, thus bringing about a 

signal transduction from the extrinsic mechanical signaling to intrinsic intracellular 

signaling [14, 15]. 

 The differentiation response of NSCs to surface topography has been widely 

studied. Aligned nanofibers exhibited higher differentiation into neurons as compared to 

random counterpart and planar control [16]. Bakhru et al showed that NSCs adhered on 

and in close proximity to aligned fibers showed more differentiation inclination towards 

neuronal lineage while cells further away from the fibers differentiated into astrocytes [17]. 

They also showed that the differentiation into neurons was induced in cells not 

immediately on fibers by paracrine signaling from cells on the fibers. Hseih et al developed 

a composite gel-fiber scaffold made of hyaluronan-methylcellulose (HAMC) and 

polycaprolactone-co-D,L-lactide [P(CL:DLLA)] that induced higher differentiation into 

neurons and oligodendrocytes than HAMC itself [18].  

 The process of differentiation into neuronal lineage is not straightforward. The 

architecture and topography of the scaffold alone does not promote differentiation; so the 

media is supplemented with chemical inducers that stem the process of cell proliferation 

and induce biochemical signaling pathways that result in differentiation. Retinoic acid is 

involved in the induction of neural differentiation, motor axon growth and neural patterning 

[19]. Axon outgrowth and nerve regeneration are triggered in adults in response to 
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elevated RA signaling. RA also maintains the differentiated state of adult neurons and 

altered RA signaling leads to neurodegenerative diseases as Parkinson’s and Alzheimer’s 

disease.  RA is a metabolic product of vitamin A (retinol). When retinol binds to retinol-

binding protein 4 (RBP4), it is taken up by cells through a membrane receptor (STRA6) 

that interacts with the RBP4. In embryos, retinol dehydrogenase 10 (RDH10) metabolizes 

retinol to retinaldehyde (Ral), which is then metabolized to RA by retinaldehyde 

dehydrogenases (RALDHs). RA can be released from the cytoplasm and taken up by the 

receiving cell (paracrine signaling), or can act back on its own nucleus (autocrine 

signaling). Cellular retinoic-acid-binding protein 2 (CRABP2) assists RA entry into the 

nucleus. In the nucleus, RA binds to RA receptors (RARs) and retinoid X receptors 

(RXRs), which themselves heterodimerize and bind to a sequence of DNA that is known 

as the retinoic acid-response element (RARE). This binding activates the transcription of 

target genes. RA is catabolized in the cytoplasm by the CYP26 class of P450 enzymes 

[19]. 
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            Fig.5.1. Pathways that are involved in the generation, action and catabolism of retinoic acid (RA) [19] 
 
 
 
 In this study, NSCs were adhered to a unique microcarrier and encapsulated within 

a photocrosslinkable hydrogel. Capillary channel polymer (CCP) fiber staples (~200 µm) 

were used as microcarriers and crosslinked within PEGdA-HA blend hydrogel. The 

concept was to induce proliferation of the NSCs, followed by neuronal differentiation on 

the specialized groove channel topography of the staple with added induction by retinoic 

acid (RA). The work validates adhesion of NSCs to the microcarriers and investigates the 

bioactivity of topography by itself or in conjunction with RA. NE-4C mouse neuroepithelial 
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cell lines were chosen for this study. These NSCs have been established to differentiate 

into neurons in response to all-trans RA [20]. 

 

                                      MATERIALS AND METHODS 

 

Preparation of 2D spin cast samples 

 

           Microscopic glass slides were cut with a diamond scribe into 2.5 cm x 1.5 cm pieces 

and cleaned with acetone and water and blow dried with compressed air. The slides were 

then treated with Piranha solution (3:1 Sulfuric acid : 30% Hydrogen peroxide) and rinsed 

thoroughly with distilled water. Poly-l-lactide (PLLA, Natureworks, Minnetonka, MN) was 

dissolved at 10% w/v in dichloromethane and spin coated on the glass slides at 2000 rpm 

and dried in vacuum for 48 hours to completely remove the dichloromethane. The samples 

were physisorbed with either fibronectin (20µg/ml, F1141-5MG, Sigma) or laminin 

(20µg/ml, #23017-015, Life technologies, Carlsbad, CA) overnight at room temperature 

followed by washing twice with sterile Phosphate Buffer Solution (PBS). For the laminin 

samples, polylysine (0.01% in water) was pre-coated on the samples for 1 hour, followed 

by washing twice with sterile distilled water, after which laminin or was adsorbed overnight.   

For controls, 0.01% polylysine (MW 150000-300000, # P1399-100MG, Sigma) was coated 

overnight and washed with distilled water twice. The substrates were incubated in cell 

culture media at 37˚C until seeding within one hour. 
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Preparation of fiber samples 

 

Double sided tape was placed on two opposite edges of round glass cover slips 

(#26024, Ted Pella, Redding, CA). CCP fibers were aligned and secured between the 

taped portions of each coverslip. These samples were sterilized by exposure to UV for 1 

hour in 12 well plate. The samples were physisorbed with either 15 µg/ml poly-l-lysine 

(MW 150000-300000, # P1399-100MG, Sigma) or fibronectin (20µg/ml, F1141-5MG, 

Sigma) overnight at room temperature followed by washing twice with sterile water. The 

substrates were incubated in cell culture media at 37˚C until seeding within one hour.  

 

Cell culture and seeding  

Mouse-derived NE-4C neuroectodermal cells (ATCC® CRL-2925) were cultured 

in poly-l-lysine pre-coated 75cm2 tissue culture flasks with EMEM media (ATCC 30-2003, 

Manassas, VA) supplemented with 4mM L-glutamine, 10% (v/v) bovine growth serum 

(Hyclone, Logan UT), and 50 U/mL penicillin and 50 µg/mL streptomycin (Mediatech). 

Medium was changed every 2 days and cells were maintained in a tissue culture incubator 

at 37⁰C with 5% carbon dioxide (CO2).  

For cell adhesion, the staples were incubated with poly-l-lysine (15 µg/ml, MW 

150000-300000, # P1399-100MG, Sigma) in a micro-centrifuge tube overnight at room 

temperature attached to a rotary cell culture system (Synthecon Inc., Houston, Texas) 

rotating at 15 rpm and then washed with 1X PBS. PLL-coated staples (15mg) were seeded 

with 1x106 cells in 1 ml medium in a 1.5 ml micro-centrifuge tube and incubated on a rotary 

platform (15 rpm) housed in a cell culture incubator for 6 hr. The staples were allowed to 

settle and the supernatant was discarded. The cell-seeded staples were then transferred 

to a 24 well plate at 7.5 mg per well and incubated for 42 hours. This method allowed any 

                                                                                       107 
 



remaining non-adherent cells to be removed by attachment to the bottom of the well. The 

seeding efficiency on the CCP staples was assessed by SEM imaging at 48 hours (Calcein 

AM, Life Technologies, Carlsbad, CA). For SEM imaging, cell-seeded staples were fixed 

in paraformaldehyde, dehydrated in a series of ethanol washes, immersed in 

hexamethyldisilazane (United Chemical Technologies, Bristol, PA) and air dried on glass 

cover slips at room temperature overnight in fume hood. The samples were then mounted 

on stainless steel SEM stubs, coated with platinum, and imaged at 10 kV image beam 

intensity (Hitachi S-4800). 

For 2D polystyrene tissue culture plastic (TCP) or 3D CCP fiber samples, NSCs 

were seeded in 12 well cell culture plate at 1.8 x 105 cells/well. 

To induce differentiation of NSCs, culture media containing 10-6 retinoic acid (RA) 

was administered 48 hours post cell seeding. A10-2 M stock solution of all-trans RA 

(Sigma) in dimethylsulfoxide (DMSO) was stored in -80°C. Culture media was changed 

every other day and RA supplementation was diluted directly in to the culture medium 

whenever fresh medium was added. 

 

 

Immunostaining of mNSCs 

 
 To evaluate cell morphology and cytoskeletal organization, cells were fixed in 4% 

paraformaldehyde for 1 hour, permeabilized with 0.1% Triton X-100, and stained with Anti 

mouse β-III Tubulin produced in Rabbit (1:500, mouse IgG, Sigma, MO) to identify 

neurons. As secondary antibody goat anti-rabbit IgG Alexa 488 (Life Technologies, 

Carlsbad, CA) was used at 1:200 dilution in staining media. The nuclei were stained with 
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4’,6-diamidino-2-phenylindole (DAPI, Life Technologies). Fluorescence images were 

captured using an AMG EVOS microscope (Fisher Scientific, Pittsburgh, PA).  

 

Synthesis of PEG-dA macromers with ester linkages containing variable alkyl 

spacers  

Three different types of PEG-DA macromers with varying susceptibility to 

hydrolytic degradation were synthesized by a two-step process as previously reported 

[32]. Briefly, PEG (4000 MW, Fluka, Buchs, Switzerland) was reacted with either 

choroacetyl chloride, 2-chloropropionyl chloride, or 4-chlorobutuyrl chloride (Sigma-

Aldrich, St. Louis, MO) in the presence of triethylamine (TEA, Sigma-Aldrich) at a 1:4:1.8 

molar ratio in dry dichloromethane (Sigma-Aldrich). After 24 hours reaction at room 

temperature, the reactants were filtered, washed with sodium bicarbonate and water, dried 

with anhydrous sodium sulfate, and then precipitated in ethyl ether. After recovery, each 

resulting intermediate product was reacted with sodium acrylate (5X molar ratio) in dry 

dimethylformamide (Acros, Morris Plains, NJ) for 30 hours at 50, 85, and 100 ⁰C to yield 

PEG-bis (acryloyloxy acetate) [PEG-bis-AA], PEG-bis-(acryloyloxy propanoate) [PEG-bis-

AP] and PEG-bis-(acryloyloxy butyrate) [PEG-bis-AB], respectively.  The products were 

purified by filtration, rotary evaporation, and precipitation in ethyl ether and dried under 

vacuum.  

 

Preparation of staple-hydrogel composites 

HA (2% w/v, 1.5 MDa, LifeCore Biomedical, Chaska, MN) and PEG-DA (30% w/v) 

stock solutions were prepared in 1X-PBS (0.1M, pH 7.4).  Acryl-PEG-GRGDS was 

synthesized by conjugating GRGDS peptide (Bachem, Torrance, CA) to acryl-PEG-NHS 
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(Jenkem, Beijing, China) as previously described [21]. Gel precursor solutions were 

prepared containing PEG-DA (6% w/v), HA (0.36% w/v 1.5 MDa), acryl-PEG-GRGDS 

(1 mol/mL), 2-hydroxy-1-[4-(hydroxyethoxy) phenyl]-2-methyl-1-propanone (I-2959, 

BASF, Florham Park, NJ, 0.1% w/v), and cell seeded staples (5 mg/ml). Sample volumes 

(45 µl) were pipetted in between glass coverslips separated by 1 mm Teflon spacers and 

exposed to low intensity UV light (365nm, 10mW/cm2, Black-Ray B100-AO, Upland, CA) 

for 5 minutes on each side of the disc. Hydrogels with encapsulated staples were cultured 

in 12 well plate wells with 2mL culture medium per well.  

 

                                   RESULTS AND DISCUSSION: 

 

Validation of CCP staple as NSC microcarrier 

The seeding efficiency and adherence of NE-4C NSCs to polylysine coated 

polylactide staples (~180 µm) using the rotary and static seeding method was validated 

by SEM imaging. As can be seen in Fig.5.2, the cells are adhered to the staple and also 

extending filopodia.  

                                        

                     Fig.5.2. SEM image showing NSCs on CCP staples after 48 hours in culture SEM image 
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Investigation of NSC differentiation 

 NSCs being anchorage dependent cells, different ligands were tested as effective 

adhesion molecule to support the adhesion and growth of NSCs. First, the response of 

NSCs on two dimensional polylactide films was investigated, followed by the response on 

three dimensional CCP fibers. Polylysine coated tissue culture plates were used as 

controls while polylactide films were coated with cell adhesive ligands – fibronectin or 

laminin. Laminin was coated in the traditional Polylysine/laminin manner. RA was 

administered 24 hours after cell seeding. 

                                                                   

 

 

 

 

   

 

 

Fig.5.3. Fluorescence mages of NSCs polylysine coated TCP (tissue culture plastic) after 8 days of cell 
culture. For differentiation induction, cells were cultured with 1µM RA (-1/+7)  [Green stain =   β-III tubulin 
neuronal marker, Blue stain = DAPI; Scale bar = 400 um] 

 

The controls demonstrated high cell proliferation and aggregate formation when 

cultured in absence of RA, while proliferation was reduced by RA administration though 

no specific differentiation trend could be recorded in presence of RA (Fig.5.3). Similar to 

the polylysine controls, no neuronal differentiation could be observed specifically in 

PLL  

(+RA) 

PLL  

(-RA) 

                                                                                       111 
 



response to RA induction. Higher cell aggregation and proliferation was observed without 

RA (Fig.5.4). 

                                                     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig.5.4. Fluorescence mages of NSCs on two dimensional planar polylactide (PLA) films after 8 days of cell 
culture. For differentiation induction, samples were cultured with 1µM RA (-1/+7) [Green stain =   β-III tubulin 
neuronal marker, Blue stain = DAPI; Scale bar = 400 um] 
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Fig.5.5. Fluorescence mages of NSCs on three dimensional CCP fibers after 8 days of cell culture. For 
differentiation induction, samples were cultured with 1µM RA (-1/+7) [Green stain =   β-III tubulin neuronal 
marker, Blue stain = DAPI; Scale bar = 400 um] 

 

 NSCs were seeded on 3D CCP fiber samples to test for the bioactivity of the 

topography with or without RA induction. The result on 3D CCP fibers was similar to the 

results on 2D surfaces described earlier. As can be seen in Fig.5.5, some neuronal 

differentiation could be seen on CCP fibers without RA administration. Cell proliferation 

was drastically reduced upon RA induction, but no neurons could be observed. 
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Discussion: 

NE-4C cells are immortalized neuroectodermal progenitor cell line, which have 

been established to differentiate into neurons and astrocytes in presence of all-trans 

retinoic acid (RA) [20]. However, these cells only differentiate when RA administration is 

in concert with formation of adequate intercellular contacts via aggregation [22]. In order 

to achieve differentiation, the timing of RA administration appears to be critical, otherwise 

cell death occurs owing to the ‘contact lateral inhibition’ phenomenon of these cells. 

Various factors such as signaling by the membrane anchored receptor/ligand pair, Notch 

and Delta are known to interact to determine the repression or expression of neurogenic 

genes, consequently inhibiting or inducing neuronal commitment in NE-4C cells [23]. 

These facts indicate that gap junctions between these cells communicate signals that 

control cell proliferation and differentiation [24, 25]. 

Schlett et al found that the first neurons appear on the 3rd day after induction and 

a dense network of morphologically differentiated neurons develop by the 7th day [20]. 

However, differentiation into neurons only takes place when RA-treated cell aggregates 

are formed, if RA is absent, the cells in the aggregate die. The formation of aggregates 

indicated the importance of 3D contacts in neuronal cell fate decision. Cells with astroglial 

characteristics appear only by the 10th -12th day of RA induction. These facts indicate that 

apart from RA, local biochemical cues are involved during in vitro induction of neuronal 

differentiation. Treatment with RA strengthens the cell-to-cell adhesion at the expense of 

cell-to-substrate interaction. The appropriate formation of aggregates is also contingent 

on the initial cell seeding density, a critical density of 25000 cells/cm2 is necessary for 

neuron formation after the initial 24 hours of induction. The importance of paracrine 

signaling in neurogenesis was established by blocking gap junction communication with 
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high concentrations of glycyrrethinic acid (GRA) and carbenoxolone (CRX), which highly 

reduced rate of neurogenesis in human and mouse cell lines [26].   

In this work, RA was administered after 24 hours post cell seeding (-1/+7). When 

no significant and specific neuronal differentiation could be observed in response to RA, 

some adjustments were made for a new experimental design. For the last experimental 

trials (data not shown), the media used was devoid of FBS (fetal bovine serum), the 

rationale being that serum withdrawal could encourage differentiation and subdue 

proliferation. The experimental design consisted of 3D CCP fibers and 2D TCP with or 

without RA induction (-3/+10), which would give adequate time for cells to proliferate and 

form aggregates over the first three days and then induce the formation of neurons till Day 

7 and astrocytes by Day 10. However, high cell death was observed throughout the 

experiment and by Day 10, most cells were dead (results not shown).   

It can be inferred from these experiments with NE-4C NSCs that they do not 

differentiate in response to the topography of the grooved fibers, but can only respond to 

meticulously timed induction by RA. The formation of healthy aggregates of RA induced 

cells can differentiate into neurons by paracrine signaling through gap junction formation. 

Since NE-4C cells have not been previously used for studying effect of physical 

topography of scaffold, it will be feasible to select a stem cell line that has been used for 

such investigations by other research groups. Bakhru et al have used adult rat 

hippocampal NSCs (Chemicon, Billerica, MA, USA) to demonstrate differentiation in 

response to proximity to aligned fibers; cells on and in close proximity to fibers 

differentiating into neurons while those further away from the fibers differentiating into glial 

phenotypes [17]. NSCs have also been isolated and purified from Fischer 344 rat 

hippocampi, and shown to differentiate in response to different diameters of electrospun 

fiber substrates [27]. A suitable alternative choice of NSCs for future work should be able 
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to respond to the groove topography of CCP fibers by exhibiting enhanced survival, 

reduced apoptosis and changes in gene expression via cytoskeletal and nuclear 

elongation. It is known that nuclear distortion results in decreased proliferation and 

induction of neurogenic pathways via canonical β-catenin/Wnt signaling [28-30].  

 

Conclusion: 

  Stem cells have been shown to change their morphology in response to 

topography of the substrate and this results in changes on cell proliferation, survival and 

differentiation gene expression. In this study NE-4C neuroepithelial cells have been used 

to investigate the response to groove topography of CCP fibers; this study was the first of 

its kind. No differentiation could be induced in these cells in response to topography even 

when supplemented by retinoic acid as inducer. Future studies will be focused on using a 

different cell type such as commercially available adult rat hippocampal NSCs that have 

already been found to respond by differentiation to fiber topography. 
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   CHAPTER 6                                                          

                            CONCLUSIONS AND FUTURE WORK  

 

Conclusions: 

The first objective of this research was to demonstrate long distance axonal growth 

on L1-CAM immobilized capillary channel polymer (CCP) fibers as a potential scaffold. 

L1-CAM was chosen for its critical role in proper nervous system development and its 

selectivity of neuron adhesion in the presence of astrocytes. Dose dependent response of 

L1-CAM was established by demonstration of higher neurite extensions with higher 

concentrations. In addition the superiority of L1-CAM to widely used laminin for axon 

extension was shown. The studies showed that primary dissociated neurons and explants 

would align along the direction of the grooves of the fibers and could serve as a suitable 

scaffold for SCI injury model.   

The second objective of this research was to fabricate fiber ‘staples’ and test their 

utility as cell laden microcarriers within hybrid hydrogels. This aim was driven by the 

rationale that micron scale topographic features can be employed to mimic the natural 

cellular surroundings of the ECM for nerve regeneration application. A biodegradable 

hydrogel-fibrous staple composite demonstrating sustained cell survival and proliferation 

was developed. 3T3 fibroblasts pre-seeded on CCP staples when encapsulated in 

PEGdA/HA hydrogel blends, showed 10 times more proliferation as compared to day 1 

samples and to control gels (without CCP staple microcarriers) as well. The physical 

properties of the composite system demonstrated cell cluster formation around the staples 

in 3D by proliferation. This study indicated that the hydrogel-staple composite may have 
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promising potential in various tissue regeneration applications involving stem cell 

proliferation and differentiation. Future studies could include incorporation of neural stem 

cells to induce differentiation into neural lineage for targeting CNS trauma and 

neurodegenerative disease. 

The third objective of this research was to evaluate the gel-staple composite on NSC 

differentiation. In this study NE-4C neuroepithelial cells have been used to investigate the 

response to groove topography of CCP fibers; this study was the first of its kind. The 

adherence of NSCs in grooves of polylysine coated staples was validated. However, no 

differentiation could be induced in these cells in response to topography even when 

supplemented by retinoic acid (RA) as inducer. Upon delving into the possible reasons of 

this behavior, it was found that these cells differentiate only upon RA induced aggregation 

which causes paracrine signaling by gap junction formation, which was contrary to 

confluence mediated aggregation induction that was being attempted in this study. 

Although, it was obvious from this study that these cells did not respond to the bioactivity 

of topography and relied on RA induction only for neuronal differentiation. Thus, future 

studies will be focused on using a different cell type such as commercially available adult 

rat hippocampal NSCs that have already been found to respond by differentiation to fiber 

topography. 

 

Future Project Recommendations: 

 Investigate the differentiation of a different NSC line such as adult rat hippocampal 

NSC in response to retinoic acid on 2D tissue culture plastic. 

 Upon optimization conditions of NSC differentiation on 2D surfaces, investigation 

of differentiation on 3D CCP fibers 
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 Investigate the proliferation and differentiation of NSCs in 3D gel-staple composite 

 Conjugation or immobilization of magnetic nanoparticles to staples and 

development of a system to align staples for a suitable SCI scaffold. 

 Investigation of the composite scaffold towards differentiation of human 

mesenchymal stem cells into osteogenic cells. 

 In vivo animal studies for investigating the feasibility of injectable in situ 

crosslinkable composite scaffold for SCI/TBI models. 

 

 

 

 

 

 

 

 

 

                                                                                       121 
 


	Clemson University
	TigerPrints
	5-2015

	CAPILLARY CHANNEL POLYMER FIBER-BASED SCAFFOLDS FOR NEURAL REGENERATION
	Atanu Sen
	Recommended Citation


	L1-CAM was expressed and purified as described previously [24]. Briefly, High FiveTM (Life Technologies, Carlsbad, CA) cells were plated in T-175 flasks (2.5 x 107 cells/flask) and infected with recombinant baculovirus. The supernatant was harvested 7...

