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ABSTRACT 

 

 Previous research at Clemson has shown that multistage, packed column, 

supercritical extraction (also called dense-gas extraction, or DGE) of petroleum pitches is 

a promising technique for the production of carbonaceous precursors that can be 

processed into a variety of carbon products, including activated carbons and high thermal 

conductivity carbon fibers.  As the existence (or lack thereof) of a liquid crystalline 

phase, or mesophase, plays a key role in establishing the suitability of a potential 

precursor material for a given application, we developed the SAFT-LC (liquid crystal) 

equation of state by combining Maier-Saupe theory for multicomponent mixtures with 

the SAFT equation.  SAFT-LC was used with some success to predict the effect of 

temperature and pressure, as well as pitch and solvent composition, on the formation of 

mesophase at both supercritical and ambient conditions.  Unfortunately, the lack of 

information about the actual molecular structures present in petroleum pitch hindered the 

development of an appropriate set of pure-component parameters for use with SAFT-LC.  

Thus, the second half of this dissertation focused on structural characterization. 

 Previous efforts to characterize the molecular structures of the major species 

present in pitches have been limited by an inability to fractionate the pitch into cuts of 

narrow molecular weight (mol wt).  However, by using DGE followed by preparatory-

scale gel permeation chromatography (prep-scale GPC), we are now able to fractionate 

petroleum pitch into its constituent oligomers.  Subsequent analytical characterization of 

these oligomers using high-performance liquid chromatography with photodiode array 
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detection (HPLC/PDA), matrix-assisted, laser desorption and ionization, time-of-flight 

mass spectrometry (MALDI), MALDI-post source decay (PSD), and UV-Visible 

spectrophotometry (UV-Vis) has determined that M-50 monomer is primarily comprised 

of benzenoid, polycyclic aromatic hydrocarbon (PAH) “backbones” (the most prevalent 

of which are pyrene, chrysene, benz[a]anthracene, triphenylene, benzo[a]pyrene, 

benzo[e]pyrene, and benzo[ghi]perylene), substituted with from 0 to 4 alkyl (primarily 

methyl) groups.  The most prevalent dimers are formed from the condensation reaction of 

two of the most prevalent monomer units, such that four hydrogens are lost and a five-

membered, connecting ring is formed to create a fluoranthenoid PAH.  For trimers and 

tetramers, MALDI, UV-Vis, and transmission FT-IR results are all consistent with the 

linkage of the most prevalent lower-order oligomeric units via a single, five-membered 

ring.  Thus, the body of evidence indicates that the highly PAH-condensed structure 

previously proposed for such pitches does not exist.  
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CHAPTER 1 

 

INTRODUCTION 

 

 

Carbonaceous pitch is the name given for a class of materials consisting primarily of 

relatively large polycyclic aromatic hydrocarbons (PAHs), with both alkyl (particularly 

methyl) and/or naphthenic substitution occurring.
1,2,3,4,5,6

 There are three major classes of 

pitches: (i) coal-tar pitches,
7
 the residue remaining after the high-temperature distillation 

of coal-tar, (ii) petroleum pitches,
8
 produced by the heat-soaking of fluid catalytic 

cracking (FCC) decant oil (a byproduct of the catalytic cracking of the heavy gas oil 

fraction of crude oil), and (iii) synthetic pitches produced from the thermal or catalytic 

polymerization of a pure compound, such as anthracene
9
 or naphthalene.

5
  In 1965, 

Brooks and Taylor
10

 demonstrated that all of these pitches form an ordered, discotic, 

liquid-crystalline phase, or mesophase, upon heating to elevated temperatures.  In 

addition, a commercially available, isotropic (0% mesophase) petroleum pitch such as M-

50 can be processed into mesophase by removal of the lower molecular weight (mol wt) 

components, thereby concentrating the high mol wt species.
11

  Thus, these materials have 

characteristics in common with both thermotropic and lyotropic liquid crystals.
12,13,14

  

Because of these unique characteristics, pitches can serve as precursors for a variety of 

carbon products.
15

  For example, to produce high modulus, high thermal-conductivity 

carbon fibers, the starting pitch should be liquid-crystalline at processing conditions.
16

 

Thus, this precursor material should consist primarily of moderate to high mol wt (500-

1000 Da) molecules,
11

 which will spontaneously align upon melting to form the desired 

liquid-crystalline mesophase.  On the other hand, production of the matrix phase of a 
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carbon-carbon composite requires a lower mol wt pitch fraction that remains isotropic, 

yet has a high carbon yield.
17 

The work contained in this dissertation focused on two problems encountered in 

producing such precursor materials.  As mentioned in the preceding paragraph, precursor 

pitches of different mol wts are required, depending on the properties desired in the final 

carbon product.  Thus, a major focus of the Carbon Research Group at Clemson has been 

the preparation of carbonaceous pitches of controlled mol wt distribution (MWD) that 

would serve as precursors for carbon products.  For the following reasons, we have found 

that petroleum pitches are quite suitable for this work: (i) they are inexpensive (M-50 

petroleum pitch costs only $0.23/lb
18

), (ii) the oxidative stabilization rates for fibers made 

from petroleum pitch are much faster than for those made from coal-tar pitch,
6
 and (iii) 

by applying Clemson’s dense-gas/supercritical extraction (DGE/SCE, or DGE for short) 

process
11

 for the extraction and precipitation of selected species, pitch precursors can be 

produced with a wide range of mol wts and, as a result, a wide range of softening points 

and mesophase contents.
11

  

The empirical solution of the appropriate DGE operating conditions for producing a 

pitch of a given mol wt, MWD, and mesophase content is time-consuming; furthermore, 

optimum regions of operation could be entirely missed.  Thus, thermodynamic models of 

our DGE processes have always been of interest.  This chapter therefore begins with a 

discussion of past studies by Clemson researchers with respect to modeling the relevant 

phase behavior for such extraction processes.  Next, a discussion of previous work by 

other researchers in modeling the formation of mesophase is presented.   
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In the course of carrying out the modeling work described herein, it became apparent 

that improvement in the thermodynamic modeling of both the extraction and mesophase 

formation processes was being limited by our inability to accurately describe the 

molecular composition of petroleum pitches.  Thus, the focus of the final half of this 

dissertation is concerned with the analytical characterization of petroleum pitches, with 

the goal of determining the specific, major molecular structures that exist therein. 

   

Modeling Supercritical Extraction of Petroleum Pitches – Previous Work 

 

The work of Hutchenson 

Hutchenson et al.
19

 modeled vapor-liquid equilibrium (VLE) between A-240 

petroleum pitch and toluene at elevated temperatures and pressures using the Peng-

Robinson (PR) equation.  Such phase behavior was relevant to his investigation of one-

stage SCE processing of pitch with supercritical (SC) toluene.  The PR model was chosen 

both for its simplicity and for its ability to model the SC region with at least fair 

accuracy, even though work by Alexander
20

 and Schwartz and Prausnitz
21

  indicated that 

a perturbed hard chain-type equation of state may be more accurate for predicting the 

overall phase behavior of a complex mixture such as petroleum pitch.  Hutchenson 

modeled the molecular composition of A-240 pitch by using the 3 pseudocomponents 

(PCs) defined by Dickinson
1
 for A-240 pitch (this work will be discussed in greater detail 

later in this chapter).  The pure-component PR characteristic constants aC, b, and  for 

each of the three PCs were then determined by the following procedure:   
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Hutchenson et al. first compiled a list of Tc, Pc, and  (calculated from the available 

vapor pressure data) for 43 model PAHs.  These pure-component properties were then 

used to calculate the corresponding pure-component aC, b, and  for each of the 43 model 

PAHs.  They then showed that each of these characteristic constants could be expressed a 

linear function of the most statistically relevant molecular structure parameters: MN, the 

number average mol wt of the PC; Caro, the number of aromatic carbons for the PC; C1, 

the number of aromatic nonbridge carbons for the PC; RS, the number of alkyl substituent 

groups for the PC; and %cA, the weight percent of the PC that consists of aromatic 

carbon.   

Modeling results indicated that the PR equation does an adequate job in calculating 

both the solvent and overall pitch content in both the extract and residue phases at 

conditions of VLE.  However, experimental results indicated that high operating 

temperatures (674 K) were necessary in order to achieve even modest extraction yields (~ 

20 wt % of pitch feed) into the top phase.  With the weak extractive power of the SC 

solvent at these operating conditions, it was not possible to produce a residue that was 

high enough in mol wt so as to permit the formation of bulk mesophase.   



The work of Hochgeschurtz, Bolaños, Dauché, and Zhuang 

Following the work of Hutchenson et al.,
19

 Hochgeschurtz
22

 and Bolaños
23

 

investigated a region of liquid-liquid equilibrium located at elevated temperatures and 

pressures.  These workers discovered that the heavier, pitch-rich liquid phase frequently 

contained the proper mol wt/MWD required to form mesophase pitch.  Dauché et al.
24
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then conducted a more thorough study of this region of liquid-liquid equilibrium (LLE).  

In particular, they fractionated an isotropic Conoco petroleum pitch via one-stage 

extraction with SC toluene at various pressures (45 to 155 bar), temperatures (583 to 633 

K), and solvent-to-pitch (S/P) ratios
 
(2.5 to 4.0); see Fig. 1.1.  There was marked 

improvement in the experimental extraction yields obtained, compared to Hutchenson’s 

earlier work.  Measurements of the extraction yield indicated that the majority of the 

pitch was extracted into the top phase; upon drying of the residue phase, the mesophase 

content was observed to range from 38 to 100%.     

 

Figure 1.1.  A single-stage liquid-liquid extraction process using near-critical (NC) or SC 

toluene to create pitch precursors that possessed various mesophase contents upon 

solvent removal.  Reprinted with permission;
25

 copyright American Chemical Society. 

 

In order to model the liquid-liquid extraction process for pitch-toluene mixtures, 

Dauché initially considered the PR equation for its relative simplicity. However, it was 
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soon discarded after preliminary calculations by both Zhuang
26

 and Pigott
27

 indicated that 

cubic equations of state (including the PR equation) gave inaccurate predictions for the 

liquid-liquid phase equilibrium of interest.  Because of the relative success of the SAFT 

(Statistically Associating Fluid Theory) equation of state for modeling LLE for polymer-

solvent mixtures
28

 and phase equilibria for the extraction of bitumen with SC CO2,
 29

 this 

model was selected for further investigation.  

In SAFT theory, a molecule is assumed to be a chain, composed of a number of 

equally sized segments.  For each component, required inputs to the SAFT equation 

include 3 pure-component fitting parameters: ui
0
, an energy parameter representing the 

temperature-independent depth of the square well potential between two molecules of 

species i; v
00

, the temperature-independent volume of a chain segment; and m, the 

number of segments in a chain.     

In order to determine the SAFT parameters for a given pitch, it is first necessary to 

replace the essentially continuous nature of the MWD of pitch with a defined number of 

PCs.  To this end, Bolaños
30

 generated PCs from experimental gel permeation 

chromatography (GPC) data for A-240 pitch using a quadrature method.  In particular, he 

expressed the GPC curve as the sum of three normal distribution functions.  Then, using 

the Gauss-Chebyshev quadrature technique,
31

 he generated 7 quadrature points for each 

normal distribution function (NDF), with each quadrature point representing a PC, for a 

total of 21 PCs.  PC mol wts were directly obtained from the prepared GPC calibration 

curve of mol wt vs. retention time, by noting the retention time associated with each 

quadrature point comprising the NDFs, and calculating the associated mol wt.  Finally, 
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the mass fractions of each PC were determined according to the Gauss-Chebyshev 

method.   

Folowing the approach of Bolaños, Zhuang
26

 resolved the MWD of a Conoco feed 

pitch (vs. A-240) into 21 PCs.  Using these PCs as input into the SAFT equation, he 

correlated the predicted toluene solvent weight fractions to the experimentally determined 

values by adjusting the binary interaction parameters kij.  For lack of a better alternative, 

the SAFT parameters for each pitch PC were calculated from the mathematical 

relationships developed by Huang and Radosz
29

 for bitumen PCs.  Required inputs to 

these equations were the PC mol wt and carbon-to-hydrogen (C/H) ratio (additional 

structural information, including the molecular structure itself, was not necessary).  

However, realistic values for the C/H ratios did not yield good results, so this parameter  

was treated as an adjustable parameter; with the best fit to the experimental data 

occurring at a C/H ratio of 1.0 (this C/H ratio was erroneously reported as being equal to 

1.10
26

).  The SAFT model was shown to correctly predict the experimentally observed 

solvent weight fractions present over a range of experimental, SC conditions with a 

reasonable degree of accuracy (see Fig. 1.2a).  In addition, it correctly predicted the 

marked increase in extraction yield observed at elevated pressures (see Fig. 1.2b).  

However, at the time these studies were made, it was not possible to confirm the accuracy 

of the MWDs predicted for the top and bottom phases.   
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Figure 1.2.  In panel a, SAFT predictions of the toluene compositions in both the pitch-

rich phase (residue) and solvent-rich phase (extract) are in close agreement with 

experimental data.
26

  The data in panel b indicate the ability of the SAFT equation to 

predict the elevated extraction yields achieved when using denser NC or SC solvents.  

Reprinted with permission;
26

 copyright American Chemical Society. 
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While useful, the above work was limited in that the SAFT model cannot be used 

to predict the extent of liquid crystal (LC)/mesophase formation in either phase.  

Therefore, the next topic of discussion will concern the work of previous researchers in 

modeling the formation of mesophase.   

 

Modeling to Predict Mesophase Formation – Previous Work 

LC Theory of Maier and Saupe 

 In the late 1950s, Maier and Saupe
32,33,34

 developed a theory in which the liquid-

crystalline mesophase formation is assumed to arise as the result of an anisotropic 

potential that exists for a mesogen (that is, a mesophase-forming molecule) interacting in 

the mean field generated by its neighbors.  In this chapter, we denote this potential as the 

anisotropic energy parameter .  Based on the work of Maier and Saupe, for a pure 

mesogen, the following relationship holds for  

                                                                 4.541 clkT                                    (1.1) 

In Equation 1.1, k is Boltzmann’s constant and Tcl, the clearing temperature, is the 

temperature at which a phase transition from ordered mesophase to a disordered, 

isotropic phase occurs. Only an isotropic phase is observed at temperatures above Tcl.  In 

this manner, the anisotropic potential energy parameter is related to the macroscopic 

variable, Tcl.  In developing this theory, Maier and Saupe assumed that mesogens can be 

represented by long, cylindrical rods, as indicated in Fig. 1.3.  Each individual molecule 

is oriented at an angle  relative to a preferred state, or director.  In Fig. 1.3, the director 
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is denoted by n .  The Helmholtz free energy of molecular orientation A
ori 

(see Equation 

1.2 below), is a function of  and Tcl,.  The order parameter P in Equation 2 is a function 

of the ensemble average angle of orientation for all molecules.   

          (1.2) 

 

Figure 1.3.  Each mesogen is oriented at a unique angle 1 relative to the director n  (or 

preferred orientation).  Maier and Saupe proposed that the mesophase molecules can be 

represented as long rods.   

 

 

 



 

 11 

Extension of Maier-Saupe Theory to Multicomponent Mixtures 

 In the early 1970s, Humphries et al.
35,36,37

 extended Maier-Saupe theory to 

mixtures of liquid-crystalline molecules.  The desired, corresponding equation is shown 

below as Equation 1.3.  The authors then used the theory to successfully predict a 

nematic-isotropic phase diagram for a mixture of 2 nearly identical, rodlike nematogens 

(see Fig. 1.4).  nematogen I is p-phenylene dianisate and nematogen II is 4-(4-

methoxybenzoxy)phenyl-4-methoxybicyclo[2.2.2]octane-1-carboxylate.    

(1.3) 

 
Figure 1.4.  Maier-Saupe theory (as modified by Humphries, James, and Luckhurst) 

predictions for the nematic-isotropic transition are close to the experimentally observed 

data points obtained by Dewar and Goldberg
38

 for a binary mixture of two nematogens.  

These nematogens are p-phenylene dianisate (I) and 4-(4-methoxybenzoxy)phenyl-4-

methoxybicyclo[2.2.2]octane-1-carboxylate (II). Adapted from Humphries et al.
35
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Maier-Saupe Theory for Modeling of Phase Equilibrium of Pitch-Containing Mixtures 

 In 1997, Shishido et al.
39

 used Maier-Saupe theory (as expanded to 

multicomponent mixtures by Humphries et al.
35,36,37

) to predict the nematic-isotropic 

phase transition behavior for mesophase pitches at atmospheric pressure and elevated 

temperatures.  Mochida and Korai
40

 had previously determined phase boundaries for a 

pitch system experimentally as follows.  First, benzene-soluble (isotropic) and benzene-

insoluble (typically mesophase-forming) fractions of a coal-tar pitch were mixed together 

in various proportions.  Next, Mochida and Korai
40

 observed the phase transition 

behavior of these mesophase pitches on a hot stage via optical microscopy (see Fig. 1.5).  

They observed that the pitch could be in one of three states: (i) a nematic, liquid-

crystalline phase, (ii) a fully isotropic liquid phase, or (iii) a nematic liquid-crystalline 

phase in equilibrium with a fully isotropic liquid phase.   

To model these phase equilibria, Shishido et al.
39

 had to by necessity assume a 

binary mixture of two (i. e., benzene-soluble and benzene-insoluble) components.  

Isotropic interactions between these two species were governed by the ideal solution 

model, and anisotropic interactions by Humphries et al.’s extension
35,36,37

 of Maier-Saupe 

theory.  Even though mesophase pitch is comprised of disclike, rather than rodlike, 

mesogens, model predictions were in qualitative agreement (see Fig. 1.5) with the 

experimental data of Mochida and Korai.  
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Figure 1.5.  Thermodynamic models used to predict the nematic-isotropic phase behavior 

for a mixture of benzene solubles and benzene insolubles (determined experimentally by 

Mochida and Korai
40

 for a coal-tar pitch). 

 

Coupling of Maier-Saupe Theory to Regular Solution Theory – The work of Hurt and Hu 

 Hurt and Hu
41

 then extended the modeling work of Shishido et al.
39

 with a 

thermodynamic model that included not only anisotropic (that is, liquid-crystalline) but 

also other nonideal (that is, differences in mol wt and chemical composition of the 

various components present) effects. Because of the nonpolar nature of carbonaceous 

pitches, a model based upon both regular solution theory and Flory-Huggins theory was 

chosen to thermodynamically model these additional nonideal mixing effects.  An 

assumption in regular solution theory is that there is no excess entropy of mixing – that 
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is, all mixing occurs because of enthalpic effects.  However, in order to account for the 

combinatorial entropy of mixing molecules with large differences in molecular size (such 

as the light and heavy pitch molecules), the combinatorial portion of the Flory-Huggins 

theory (this theory is used to model phase equilibrium for molecules which vary greatly 

in size, such as polymer chains and solvent) was used.  In Equation 1.4 below, the model 

of Hurt and Hu
41

 is expressed in terms of the Gibbs free energy of mixing, Gmix 

      
ideal enthalpic combinatorial ori

mixG G G G G                 (1.4) 

where G
ideal 

accounts for ideal solution mixing effects,G
enthalpic

 is the enthalpic 

contribution to the Gibbs free energy of mixing (from regular solution theory), 

G
combinatorial

 is the contribution to the Gibbs free energy of mixing by the combinatorial 

entropy (from Flory-Huggins), and G
ori

 is the contribution to the Gibbs free energy of 

mixing by the anisotropic potential, which causes molecular orientation and, therefore, 

mesophase formation.  The G
ori

 term was adapted from the statistical theory of 

Humphries and coworkers
35,37

 discussed earlier and denoted in Equation 1.3 in terms of 

A
ori

.  Because Hurt and Hu modeled phase equilibria for systems at ambient pressures, 

they assumed that PV
ori

 (the difference between G
ori

 and A
ori

) was inconsequential 

under these circumstances and that it could therefore be neglected (thus, G
ori 

= A
ori

).  

The model of Hurt and Hu was tested against the experimental data of Mochida 

and Korai
40 

(see Fig. 1.5) and yielded somewhat better agreement with the data than the 

method of Shishido et al.
39

  It was also successfully tested against the hot-stage 

observations of Lewis
12

 and the petroleum pitch MWD data of Greinke and Singer.
42
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However, neither the model of Shishido et al.
39

 nor that of Hurt and Hu
41

 could be used to 

predict phase equilibrium at the SC conditions typical of DGE, as the ideal solution 

reference state does not exist at these conditions.   

Of equal importance was the fact that input to the above models had thus far been 

qualitative at best.  For example, benzene-solubles and benzene-insolubles are hardly 

definitive molecules, nor are average mol wts of pitches of broad MWD.  Thus, with such 

limited characterization data, it was to a large extent uncertain as to how much of the 

observed deviations between experiment and theory were due to the model itself, or the 

inadequacy of the characterization of the system of interest.     

 

Characterization of Pitches – Previous Work 

One of the first quality characterizations of petroleum pitch was made in 1984 by 

Dickinson.
1
  First, he successively fractionated A-240 pitch using 3 solvents: a 90:10 

mixture of cyclohexane and acetone, a 50:50 mixture of cyclohexane and acetone, and 

toluene.  He then characterized these three fractions using vapor pressure osmometry 

(VPO), proton NMR, 
13

C NMR, and elemental analysis.  By applying Knight’s method, 

average molecular structures (see Fig. 1.6) were obtained for each fraction.  Note that 

these structures consist of PAHs with limited methyl and ethyl substitution.  As 11% of 

the pitch was insoluble, no information on this higher mol wt portion of the pitch was 

obtained.   
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Figure 1.6.  Average molecular structures for three solvent fractions of A-240 pitch, as 

proposed by Dickinson.
1
  All percentages denote weight fractions. 

 

While useful, this work was limited in that it yielded only average molecular 

structures, which reflected the overall composition of the pitch fraction in question, as 

opposed to structures for the actual species present in the pitch.  Furthermore, the whole 

pitch was expressed as a mixture of only 3 PCs, which is not a high degree of precision. 

A number of techniques have been used to obtain information concerning the mol 

wt, structure, and composition of petroleum pitches (see Table 1.1).  VPO yields the 

average mol wt of a sample, but gives no information concerning the MWD.  Some 

methods, such as elemental analysis and Fourier Transform-Infrared (FT-IR) 

spectroscopy, do not require the use of a solvent.  However, elemental analysis, while  
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Table 1.1.  Advantages and disadvantages of methods used to characterize carbonaceous 

pitches.   

Method of  

Characterization 

Measured 

Properties 

Advantages and Disadvantages Reference 

Elemental 

Analysis 

C/H ratio Solubility not an issue; can be used to 

approximate aromaticity but is of 

limited use otherwise 

1, 4 

FT-IR  Functional 

groups 

present 

Solubility not an issue: is primarily used 

to obtain qualitative information 

concerning functional groups present in 

a mixture (such as the presence and  

position of methyl groups on various 

pitch species).  Cannot provide 

structural information for individual 

species present in mixtures, but only for 

the mixture as a whole. 

3, 16 

GPC MWD Is a well-established technique for 

determining MWDs for polydisperse 

samples, but not all pitches are fully 

soluble in GPC mobile phases. 

43, 44, 45 

MALDI-TOF-

MS 

Absolute 

mol wt, 

MWD 

Measures actual mol wts of  species in 

distribution; appropriate matrix material 

needed.  Can be performed on either 

solvent-based or solvent-free basis.  

Carbon Group research on using 

MALDI to quantify the MWD of 

pitches, while very promising, is still in 

its early stages.   

11, 46, 48, 

49, 50  

Proton NMR and 
13

C NMR 

Relative 

presence of 

different 

types of 

hydrogen 

and carbon 

atoms 

These two well-established techniques 

yield useful quantitative information 

concerning the different types of 

hydrogen and carbon atoms present in a 

mixture.  However, they cannot be 

applied to heavier pitch fractions which 

have low solubility in common NMR 

solvents. 

1,3,4  

VPO Average 

mol wt 

Yields number average mol wt of a 

sample, but is time-consuming and does 

not yield the mol wts of individual 

species present. 

1,43,54 

UV-Visible 

Spectro- 

photometry 

UV, visible 

light 

absorbance 

Is capable of unequivocal identification 

of PAHs.  However, samples must be 

highly pure.  

3,56,58, 

60 
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providing useful information concerning aromaticity in the form of the molecular C/H 

ratio, is of limited value otherwise.  Meanwhile, FT-IR provides useful information 

concerning the different functional groups present on a molecule.  For example, FT-IR 

spectra of carbon fibers subjected to various degrees of oxidation yield information 

concerning the atomic makeup of the intermolecular linkages that form at various stages 

during the fiber stabilization process.
16

  However, the technique is primarily used for 

qualitative (vs. quantitative) characterization.   

Proton NMR yields structural information concerning the relative presence of 

aromatic and alkyl protons, while 
13

C NMR yields structural information concerning the 

relative presence of different types of carbon atoms (aromatic, naphthenic, etc.).  

However, the technique cannot be applied to heavier pitch fractions, which have low 

solubility in common NMR solvents such as deuterated chloroform.   

GPC is the traditional technique for determining the MWD of pitches
42,43,44

 and 

continues to have its uses.  However, it does have its drawbacks.  Even when high-

temperature GPC, with aggressive solvents such as 1,2,4-trichlorobenzene is used,
45

 

portions of the pitch are insoluble.  Rapid degradation of the column
24

 occurs when 

attempts are made to analyze the entire pitch by GPC, probably because the insoluble, 

highest mol wt species plug the column pores.  Another drawback of GPC is the 

difficulty of finding suitable calibration standards that mimic the behavior of pitch, 

especially at mol wts above 500 g/mol.   

Seeking an alternative to GPC, Edwards et al.,
46

 showed that a relatively new 

mass spectrometry technology, matrix-assisted laser desorption and ionization, time of 
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flight mass spectrometry (MALDI-TOF-MS, or MALDI for short) could be used to 

obtain reproducible mass spectra for partially insoluble carbonaceous pitches.  The 

MALDI technique has two distinct advantages: (1) analyses can be conducted using 

either solvent-free or solvent-based sample preparation methods, thus eliminating pitch 

solubility as an area of concern, and (2) unlike other mass spectrometry techniques, 

which require that the species of interest be at least somewhat volatile, MALDI can be 

applied to the whole mol wt range of the pitch.  Edwards
46,47,48

 and then Cervo
11,49

 

successfully used MALDI (with solvent-free sample preparation) to characterize pitch 

cuts isolated by DGE.  The quantitative determination of the MWD of pitches is the 

subject of ongoing research in our laboratory.
50

  

For many of the methods described above, proper characterization of a 

carbonaceous pitch requires that the pitch be separated into narrow mol wt fractions, such 

that molecular information on the various types of species that comprise pitches can be 

obtained.  Furthermore, once the separation of pitches into a well-defined fraction is 

accomplished, other analytical techniques that heretofore have not been applied to 

pitches, but have been applied to other complex mixtures of chemically homologous 

materials, may become quite useful.  Methods used for the fractionation of pitches, as 

well as analytical characterization techniques that may prove to be useful as narrow mol 

wt pitch fractions become available, are discussed next. 
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Methods Previously Used for the Fractionation of Pitches 

DGE 

 

 DGE is a multistage, countercurrent extraction technique that has been in use by 

the Carbon research group for the fractionation of petroleum pitches for about five years, 

and is a significant improvement over the previously discussed single-stage extraction 

processes employed by earlier Carbon group researchers. DGE was invented by Zosel,
51

 

who used this technique to fractionate a wide range of chemical mixtures.  For example, 

he fractionated a mixture of -olefins (carbon numbers 16, 18, 20, 22, 24, and 26) into 

narrow, single-oligomer cuts of 95-99% purity using ethane at elevated pressure as the 

dense-gas solvent.  However, none of the mixtures separated were chemically similar to 

pitches, so significant changes for column design, operating conditions, and solvent type 

have been investigated and developed by the Carbon group at Clemson over the past 

several years.
47,48,52,53

 

For DGE fractionation of a representative petroleum pitch, M-50, a dense-gas 

(typically at SC temperatures upon entering the extraction column) solvent is used to 

produce cuts of desired composition.  As shown in Fig. 1.7, M-50 pitch can be classified 

as oligomeric, as there are four distinct groups of species.  Of course, the oligomers 

themselves are not pure, as the starting material, FCC decant oil, is itself a mixture.  

However, for simplicity, we call the species comprising the first broad peak monomer 

(marked with a 1 in Fig. 1.7).  Those comprising the second, third, and fourth broad 

peaks are called dimer (2), trimer (3), and tetramer (4), respectively. The DGE process 
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depicted in Fig. 1.7 yields a narrow, oligomeric fraction comprised of high-purity M-50 

monomer.  DGE has also been used by the Thies group to yield high-purity dimer
52,53

 and 

trimer-rich
47

 cuts.  

 

Figure 1.7.  MALDI spectrum of M-50 pitch (left panel; adapted from Cervo and 

Thies
52

), and a schematic of the DGE process by which a narrow fraction rich in M-50 

monomer is produced (right panel).  A temperature gradient is imposed throughout the 

column such that the bottom section is at 330° C, the middle section at 350° C, and the 

top section at 380° C.   

 

 

 

 

 

Preparatory-Scale (Prep-Scale) GPC 

 

Another method that has been used to prepare pitch fractions for further analysis 

is prep-scale GPC.  In 1980, Greinke and O’Connor
43

 used prep-scale GPC to obtain 

calibration standards for the characterization of petroleum pitches by analytical-scale 

GPC (with the stationary phase being Styragel).  The material fractionated was a 

polymerized isotropic petroleum pitch; the toluene-insoluble fraction was subjected to 
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reductive ethylation and then mixed with the toluene-soluble portion.  This mixture was 

then fractionated using hot quinoline at 87°C as the GPC mobile phase.  The average mol 

wt of each fraction was determined using VPO.  Results indicated that there was a linear 

relationship between log mol wt and the retention volume of the collected fractions.     

In 1990, Boenigk, Haenel, and Zander
54

 fractionated a coal-tar pitch using prep-

scale GPC, using pyridine at 60° C as the mobile phase.  The stationary phase was 

Sephadex LH-20.  Like Greinke, they used VPO to determine the mol wts for each of the 

fractions collected.  They confirmed that the relationship between the log of the mol wt of 

the collected coal-tar pitch fractions and the retention volume is indeed linear at these 

operating conditions.  Again, however, no information concerning the mol wt range of 

the collected fractions was given.   

In 1998, Kandiyoti, Herod, and co-workers
55

 fractionated a coal-tar pitch using 

prep-scale GPC.  The stationary phase was 10 micron poly(divinylbenzene), and the 

mobile phase was unstabilized tetrahydrofuran (THF).  Eluent fractions were collected at 

1 minute intervals.  MALDI analysis revealed that most of the species in the fractions 

containing the lightest species (i. e., below ~ 500 Da) fell within a range of 100-200 Da.  

Clearly, further analyses of chromatographic fractions of the pitch would have been 

necessary if one wished to obtain more definitive information on the types of species that 

exist within pitches.   
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Methods Previously Used for the Structural Characterization of PAHs and Carbonaceous 

Pitches 

High-Performance Liquid Chromatography 

 

In 1995, Fetzer and Kershaw
56

 analyzed chromatographic fractions of a coal-tar pitch that 

were previously prepared using open-column liquid chromatography.  For these analyses, 

high-performance liquid chromatography with UV-Vis/photodiode array detection 

(HPLC/PDA) was used.  For the chromatographic separation, a Bakerbond C-18 

reversed-phase PAH column was used.  From this work, it was possible to unequivocally 

identify almost two dozen PAHs present in the pitch.  Later, Somers and Wornat
57

 used 

HPLC/PDA to identify the species present in the SC pyrolysis product of 1-

methylnaphthalene (see Fig. 1.8).  Even though many species were present in this 

complex mixture, it was possible to unequivocally identify dozens of PAHs present.  In 

both of these studies, species were identified by matching the UV-Vis spectra of the 

eluent stream at a specific instant in time to those of known reference standards.  For 

example, the close match of the UV-Vis spectrum for species A in Fig. 1.8, eluting at 40 

min, with that of a reference standard, establishes the identity of species A as 

dibenzo[a,i]fluorene (see Fig. 1.9a).  Species E is similarly identified as naphtho[2,1-

a]pyrene (see Fig. 1.9b).  This work and other efforts
58,59,60

 have clearly established the 

usefulness of HPLC/PDA for both separating and unequivocally identifying mixtures of 

PAHs with mol wts < ~ 450. 
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Figure 1.8.  HPLC chromatogram, obtained by Somers and Wornat,
57

 for the SC 

pyrolysis product of 1-methylnaphthalene.  Reprinted with permission; copyright Taylor 

& Francis. 

 

 

Figure 1.9.  Comparison, by Somers and Wornat,
57

 of the UV-Vis spectra obtained at 

HPLC elution times of 40 and 63 min unequivocally confirm that species A and E are 

dibenzo[a,i]fluorene and naphtho[2,1-a]pyrene, respectively.  Reprinted with permission; 

copyright Taylor & Francis. 
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In 2007, Wang and Eser
61

 analyzed FCC decant oils using a Shimadzu GC-17A 

gas chromatograph coupled to a QP-5000 mass spectrometer.  FCC decant oils are 

particularly of interest to us because these materials are the precursors that are thermally 

polymerized at elevated temperatures to form petroleum pitch.  Wang and Eser 

determined that naphthalene, phenanthrene, pyrene, chrysene, and alkylated derivatives 

of these compounds (possessing, at most, four methyl groups) were prominent species in 

the decant oils (see Fig. 1.10). However, because of poor peak resolution, it was not 

possible to identify heavier compounds present.  Therefore, HPLC with mass 

spectrometer detectors in tandem (HPLC/MS/MS) was used for identification of these 

species (which included benzo[a]pyrene, benzo[e]pyrene, benzo[ghi]perylene, and 

alkylated derivatives thereof; see Fig. 1.10).  A Finnigan mass spectrometry MAT TSQ 

7000 triple-stage quadrupole instrument equipped with an atmospheric pressure chemical 

ionization source was used to obtain the mass spectra. 
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   Prevalent Aromatic Backbones Present in FCC Decant Oil 

              

 

                          

 

Naphthalene         
Mol Wt 128 Da 

Phenanthrene            
Mol Wt 178 Da 

Pyrene             
Mol Wt 202 Da 

Chrysene             
Mol Wt 228 Da 

Benzo[a]pyrene         
Mol Wt 252 Da 

Benzo[e]pyrene         
Mol Wt 252 Da 

Benzo[ghi]perylene         
Mol Wt 276 Da  

Figure 1.10.  Molecular structures for the aromatic PAH backbones present in FCC 

decant oils analyzed by Wang and Eser.
61

  The majority of the decant oil is comprised of 

alkylated derivatives of these species possessing up to 4 methyl groups.   

 

 

 

Post-Source Decay (PSD) 

Another technique that is useful for obtaining MS/MS information is post-source decay 

(PSD).   This technique is available on many MALDI machines; it can be used to perform 

molecular fragmentation analyses on a specific ion (or ions) within a mixture.  When 

ionization occurs, provided a sufficient laser power is applied, the energy absorbed by the 

molecule will be enough to bring about metastable fragmentation.  Because the length of 
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the MALDI time-of-flight (TOF) tube is much greater than the length of the ion 

acceleration region immediately before the TOF tube, it can be assumed that the vast 

majority of molecular fragmentation occurs in the TOF tube.  If fragmentation occurs in 

the TOF tube, the parent ion of a particular mol wt and all fragments derived from it 

travel at the same velocity, as no energy is lost in the fragmentation process.
62

   

An ion gate consisting of alternating negative and positive voltages arranged in a 

Venetian blind sequence is used to allow only the ions of interest to reach the ion 

detector.  When activated, ions approaching the gate are deflected toward the walls of the 

time-of-flight tube of the MALDI instrument, where they lose their charge.  Only when 

the ion gate is deactivated are ions able to pass through it and reach the reflector, which is 

a voltage grid with the same polarity as the ions traveling through the TOF tube.  The 

reflector deflects incident ions toward the detector.  Therefore, the parent ion and all 

associated fragment ions, which were all bunched together in a tight packet upon 

reaching the reflector, are now separated according to mol wt.  This separation occurs 

because the ions of different mol wt are accelerated by the reflector such that they 

possess equal kinetic energies. Thus, smaller ions are accelerated at higher velocities than 

the larger ones, which penetrate the reflector to a greater depth.  At reflector voltages 

sufficient to reflect the heaviest fragments and the parent ion, it is not feasible to reflect 

the smaller and medium mol wt ions with enough accuracy so that they reach the 

detector.  Therefore, in order to provide an accurate representation of the mol wt of each 

fragment, it is necessary to sum several spectra, each taken at a different reflector 

voltage, gradually stepping it down.  At greatly reduced reflector voltage, smaller ions 
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can be focused on the detector with accuracy, while large ions have enough momentum 

to fully penetrate the reflector voltage grid
62

 (and are therefore not reflected at all). 

To illustrate the potential usefulness of PSD to our work, we consider as an 

example the 2007 work of Frache et al.
63

  This group analyzed a mixture of diesel engine 

exhaust particles by performing MS analyses on product ions produced via the post-

source decay of precursor ions produced by LDI-TOF-MS (that is, MALDI with no 

matrix).  They used a Bruker Reflex IV MALDI-TOF mass spectrometer (Bruker 

Daltonics, Bremen, Germany).  This instrument was equipped with a nitrogen laser 

(wavelength 337 nm). 

Frache et al.
63

 showed that PSD could be used to detect the presence of alkylation 

on PAHs. These PAHs included aromatics substituted with long alkyl chains (an example 

of such a compound is 6-n-butylchrysene; see Fig. 1.11a).  PSD could also detect the 

presence of methylation if a compound (such as 1,4,6,7-tetramethylnaphthalene; see Fig. 

1.11b) was substituted with multiple methyl groups.  They also showed that the 

performance of PSD on non-alkylated PAHs yielded no fragment peaks.        
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Figure 1.11.  PSD spectra obtained by Frache et al.
63

 for 6-n-butylmethylchrysene (panel 

a), and (1,4,6,7-tetramethylnaphthalene (panel b).  Reprinted with permission; copyright 

John Wiley and Sons.  The superimposed molecular structures have been generated by 

the author of this dissertation. 

 

Goals of Dissertation 

 

One of the long-term goals of the Carbon research group at Clemson University has 

been the development of a thermodynamic model that is reliable for the prediction of SC 

phase equilibria for pitch-solvent mixtures.  It is also desired that this model have the 

capability to predict mesophase formation.  Chapter 2 represents both a correction and an 

extension of the work of Zhuang, who (1) used SAFT to predict phase equilibria for 

pitch-solvent mixtures and (2) combined the orientational Helmholtz energy term of 

Humphries et al.
35,36,37

 with SAFT theory to create a new equation of state, SAFT-liquid 

crystal (SAFT-LC).  In this chapter, which has been previously published in slightly 
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modified form,
25

 a detailed discussion of SAFT, Maier-Saupe theory, and Humphries et 

al.’s extension is given.  The manner in which GPC and Gauss-Chebyshev quadrature 

were used to generate pitch PCs in discussed next.  Then, by fitting the new equation of 

state (EoS) to both phase equilibrium and mesophase content data for a pitch-toluene 

system, we tested the ability of SAFT-LC to predict the formation of mesophase during 

extraction processes conducted at SC conditions. 

The focus of Chapter 3 was on improving the method of predicting necessary inputs 

to the SAFT-LC model derived in the previous chapter.  Specifically, the focus was on 

improving the method of determining feed pitch MWD, and the method of predicting the 

SAFT parameters for the PCs comprising said MWD.  First, MALDI was used to 

estimate the MWD of the feed pitch.  MALDI was chosen in favor of the methods used to 

determine the MWD in Chapter 2 because of the conclusion in Chapter 2 that the mol wts 

of the heaviest species were likely significantly overestimated.  The MALDI spectrum for 

the feed pitch was resolved into 10 PCs; SAFT parameters for each PC were calculated 

using the correlations of Huang and Radosz, which were developed for bitumen.  The 

EoS was fitted to the same phase equilibrium and mesophase content data as in Chapter 

2, and comparisons were made.  This chapter has been previously published
64

 in slightly 

modified form. 

It was shown that SAFT-LC does at least a fair job at predicting the formation of 

mesophase resulting from supercritical extraction processes.  However, there still exist 

cases in which model predictions differ significantly from the trends observed 

experimentally.  We concluded that the method of predicting SAFT parameters for the 
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PCs comprising the MWD of the feed pitch must be improved, which would require the 

knowledge of the molecular structure for each species comprising the MWD of the pitch. 

 

The second phase of this work was to determine the actual molecular structures of 

the major components of the pitch, so as to obtain a definitive set of compounds that 

could be used as a starting point for future parameter determinations with the SAFT EoS.  

In Chapter 4, the major monomeric compounds present in M-50 pitch were determined.  

DGE was used to produce g-sized quantities of monomer-rich cuts of M-50 pitch.  Prep-

scale GPC was then used to separate pitches into narrower fractions of purities that are 

not obtainable using DGE.  These cuts were then subjected to MALDI and PSD analyses, 

thus determining the mol wts and molecular structural information for the most prevalent 

monomer species.  Selected cuts and fractions were also analyzed using HPLC/PDA to 

identify the major aromatic backbone species present in M-50 monomer.  Using these 

analytical techniques, actual, rather than average, molecular structures are presented for 

the major components of M-50 petroleum pitch monomer.  

In Chapter 5, additional clarifying discussions concerning the work conducted in 

Chapter 4 are given.  

 In Chapter 6, molecular structures for the higher oligomers comprising M-50 

pitch were determined.  As before, the sequence of DGE followed by prep-scale GPC 

was used to produce narrow oligomeric fractions of M-50 pitch.  Prep-scale GPC was 

also used to fractionate a less polydisperse anthracene pitch produced by Conoco, Inc.  

These fractions were characterized using UV-Vis spectrophotometry to determine the 



 

 32 

nature of the bonding between the monomer species comprising the major oligomers 

present.  MALDI and PSD analyses were used to determine the mol wts and nature of the 

substituent groups present on these molecules, respectively.  This information, along with 

the knowledge of reaction mechanism, and the most prevalent M-50 pitch monomer 

structures obtained in Chapter 4, was used to predict the dominant molecular structures 

present in the M-50 dimer, trimer, and tetramer.  

In Chapter 7, additional clarifying discussions concerning the work conducted in 

Chapter 6 are given.  

In Chapter 8, the conclusions from the work presented in this dissertation are 

presented.  Recommendations are made concerning future work for the characterization 

of, and thermodynamic modeling of, petroleum pitches.  
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CHAPTER 2 

 

SAFT–LC:  AN EQUATION OF STATE FOR PREDICTING LIQUID  

CRYSTALLINE PHASE BEHAVIOR IN CARBONACEOUS PITCHES 

 

Introduction 

Carbonaceous pitches are obtained from the thermal polymerization of decant oil, 

a by-product of the fluid catalytic cracking (FCC) of a vacuum bottoms fraction of crude 

oil.  They are oligomeric in nature and have a broad molecular weight (mol wt) 

distribution (MWD), ranging from about 250 to at least 2000 g/mol.
1,2

  Pitches consist 

primarily of polycyclic aromatic hydrocarbons (PAHs), with both methyl and naphthenic 

substitution being abundant,
3,4

 and can also be made from coal tar, or the thermal or 

catalytic polymerization of pure PAHs.
5
  

Surprisingly, this complex mixture of molecules can exhibit liquid crystalline 

behavior, as first reported by Brooks and Taylor
6
 in 1965.  Furthermore, the formation of 

the discotic nematic mesophase is initiated by changes in either temperature or 

composition.  Thus, these unusual materials have characteristics in common with both 

thermotropic
 
and lyotropic liquid crystalline phases.

7-9 

Pitches are versatile materials that serve as precursors for a wide range of carbon 

products.
10

  Depending on the final application, pitches with different phase behaviors, 

average molecular weights, and compositions are desired.  For example, to produce high 

thermal conductivity carbon fibers, the starting pitch should be liquid crystalline and so 

should consist primarily of higher mol wt (>800-1000) molecules, which will 

spontaneously align upon melting to form the desired mesophase.
11

  On the other hand, a 
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carbon-carbon composite may consist of an isotropic matrix phase into which a stronger, 

reinforcing material is dispersed.
12

   

A more fundamental understanding of the relationship between pitch composition 

and phase behavior is of significant interest to researchers; thus, the development of 

thermodynamic models to describe the isotropic/mesophase transition is an important 

focus of our research program on carbonaceous pitches. 

The first attempt to thermodynamically model the phase behavior of pitches was 

by Shishido et al.
13 

  In their work, the statistical theory of liquid crystalline mixtures, 

developed by Humphries et al.
14-16

 as an extension to the pure-component liquid crystal 

theory of Maier and Saupe,
17-19 

was used to predict the phase behavior obtained by 

mixing benzene-soluble and benzene-insoluble fractions of coal-tar pitch.
 
 The benzene-

soluble fraction was modeled as a nonmesogenic (i.e., having no liquid-crystal-forming 

tendency) pseudocomponent, and the benzene-insoluble fraction as a mesogenic 

pseudocomponent.  Because ideal solution behavior is assumed in the theory, the 

predicted phase split was caused entirely by orientational effects. 

Hu and Hurt
20

 were the first to propose a more general theory of phase behavior 

for carbonaceous pitches, taking into account both the orientational free energy 

(following Humphries et al.
14-16

) and nonideal solution behavior (using Flory-Huggins 

and regular solution theory
21

) that such systems exhibit.  For pitch of a given MWD, their 

model contained two adjustable parameters, one based on the solubility parameters and 

another on the clearing temperatures of the pitch pseudocomponents. 
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Zhuang and Thies
22

 used the SAFT equation version of Huang and Radosz
23-24

 to 

describe the liquid–liquid phase split that occurs for solvent–pitch mixtures at 

supercritical solvent conditions.  The mol wt of each pseudocomponent was used to 

determine pure-component parameters, and the binary interaction parameters were 

assumed to be well-behaved with respect to mol wt, as has been shown to be the case 

when SAFT is applied to other systems.
25

   

With our interest in using supercritical extraction processes to produce both 

isotropic and mesophase pitch fractions of defined MWD
2,26-27

, a versatile equation of 

state for modeling such systems is of significant interest.  In this paper, we develop such 

an equation by adding the free energy of orientation term described above to the SAFT 

equation.  We call this equation SAFT–liquid crystal (SAFT–LC).  The efficacy of 

SAFT–LC was tested by using it to model both the extraction of pitch with supercritical 

toluene and the percent mesophase present in the dried, high mol wt extraction product.  

In addition, the ability of SAFT–LC to predict the experimentally observed property of 

high mol wt pitch fractions to dissolve large amounts of solvent, while still maintaining 

their liquid crystalline nature, was evaluated. 

 

Development of SAFT–LC Equation 

The SAFT Equation 

The Statistical Associating Fluid Theory (SAFT) equation of state is discussed in 

detail elsewhere,
23-24,28

 so only a brief synopsis is given here.  The residual molar 
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Helmholtz free energy (A
res

) in dimensionless form for a nonassociating fluid is described 

by SAFT as follows:  
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Here A
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 are the segment, chain, segment hard sphere, and 

segment dispersion contributions to the residual free energy of the mixture.  m is the 

average segment number of the mixture, weighted by the pure-component mole fractions: 
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and 
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Here, = number of molecules/Å
3
, xi = mole fraction, dii = temperature-dependent hard 

sphere diameter of component i, and ui
o
/k = temperature-independent energy parameter 

(in K) for component i.  The temperature-independent hard sphere diameter i is related 

to the temperature-independent segment volume parameter vi
oo

 by
28 

           

3/1

Av

oo
i

24

i
N

2v10














      (2.6) 

where the units of oo
iv  are in cc/mol and those of i are in Angstroms. 
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 Finally, we define the dispersion contribution to A
res

 as
28 
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The Dij values are universal constants
28

 and are defined by Chen and Kreglewski.  Van 

der Waals one-fluid theory mixing rules are used to extend this equation to mixtures: 
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A
orient

 term for SAFT–LC 

A statistical treatment of nematic mesophase based on molecular field theory was 

first developed by Maier and Saupe (M-S).
17-19 

 Their theory is able to predict both the 

temperature dependence of molecular orientation and the nematic-isotropic phase 

transition.  Humphries et al.
14-15 

extended M-S theory to multicomponent mixtures, and 

their model forms the basis of our approach.  As the theoretical development of A
orient

 is 
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reported elsewhere,
14-15,29 

our discussion here is brief and focused on those aspects most 

relevant to application to our work with carbonaceous pitches.  

 For a multicomponent mixture, the orientational internal energy for a molecule of 

component i is given by 

n

i j ij j i

j 1

U x ε P P


                 (2.15) 

Here, xj is the mole fraction of component j (which includes i), and ij is the energy 

interaction parameter for the anisotropic potential between two molecules i and j.  Pi is 

the order parameter describing orientational order of the molecule i and is defined using 

the second Legendre polynomial: 
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where i is the angle between the axis of molecular symmetry (this is the short axis that 

runs through the center of a disc-like molecule) and the director n̂ .  In a discotic 

mesophase, the short axes of the molecules preferentially align themselves along a single 

direction, which is called the director (see Fig. 2.1).  jP is the ensemble average order 

parameter for the species j.  Note that for the isotropic phase, jP  is zero, as the molecular 

axes point in all directions with equal probability.  For typical liquid crystalline material, 

jP decreases as the temperature is increased and ranges in value from 0.3 to 0.8.
29
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 For mixtures containing components that differ significantly in size (and thus, 

molar volumes), Humphries and Luckhurst
30 

extended M-S theory to obtain the following 

expression for the energy parameter ij: 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 2.1.  In a nematic discotic mesophase, the molecules tend to align themselves 

along a director, denoted by the vector n̂ .   is the angle between the axis of molecular 

symmetry and n̂ . 
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where Vk is the liquid molar volume of component k and ij
~  is the composition-

independent energy parameter:   

                                 
jcliclij TTk542.4~     (2.18) 

 We wish to point out that the volume dependence of ij is not well-established,
29

 

so the above form was chosen because it was successful in fitting experimental clearing 
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temperatures for binary mixtures of nematogens
30 

(i.e., mesogens).  The clearing 

temperature 
iclT is the temperature of the phase transition between the liquid crystalline 

and the isotropic (i.e., the ―clear‖) state.  Note that Equation 2.18 from M-S theory 

provides the key link between the molecular and macroscopic states.   

The probability Pri of a molecule i in the mixture being oriented at an angle i  

from the director n̂  is assumed to be represented by the Boltzmann distribution 
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where the orientational partition function Zi is given by (using integration over spherical 

space instead of summation) 
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and jP , the ensemble average order parameter, is calculated from 
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Now the ensemble average internal energy of a single molecule of species i iU  

is calculated from the expression 

       
2π 
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to obtain 
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Finally, the total orientational molar internal energy U is obtained by summing over i 

molecules, multiplying by N, Avogadro’s number of molecules, and then dividing by 2 so 

that we count only pairs of molecules:
14
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To determine the entropy of the system, we begin with the entropy of a single molecule 

of component i in the mixture:
31
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Summing over all i components and multiplying by N, we obtain the total orientational 

molar entropy: 
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Finally, the overall Helmholtz orientational molar free energy is given by 
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Details of calculating the order parameters, partition functions, and A
orient

 are given 

elsewhere.
32

   

Finally, this A
orient

 term is added to the SAFT terms from Equation 2.1 to obtain 

the desired SAFT–LC equation: 
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Application of SAFT–LC to Carbonaceous Oligomeric Pitches 

For a complex mixture such as pitch, pseudocomponents must be defined for use 

in an equation of state.  The approach taken here was to generate pseudocomponents 

mathematically from a measured MWD for the pitch of interest.  Specifically, gel 

permeation chromatography (GPC) was used to determine the MWD of a heat-soaked, 

isotropic petroleum pitch obtained from Conoco Inc.
 
and fluxed with hot toluene to 

remove the insolubles.
22

  (This pitch is very similar to the A-240 brand of pitch 

commercially sold by Ashland Oil for many years.)  The GPC data were then normalized 

(so that the area under the curve summed to one) and fit to the sum of three normal 

distribution functions (NDFs).  Numerical integration by 9-point Gauss-Chebyshev (G-C) 

quadrature
33

 was then applied to each of the NDFs (fewer quadrature points are 

inadequate for fitting a NDF).  Each of the 9 quadrature points defined a pitch 

pseudocomponent, whose mass fraction was determined by multiplying the value of the 

normal distribution function at the quadrature point by the appropriate G-C weighting 

factor.  Quadrature points 1 and 9 were discarded because their mass fractions were 

negligible (i.e., on the order of 10
-5

 each), giving us 7 pseudocomponents per NDF, for a 

total of 21 pseudocomponents.  Finally, the mol wts of the pseudocomponents were 

obtained from a GPC calibration curve of mol wt as a function of retention time.
 
 Details 

of the procedure are given elsewhere.
34

  The normalized GPC data, the three NDFs, and 

the overall curve created by summing the distributions are given in Fig. 2.2.  Note that a 



 49 

good fit to the original GPC data is obtained with the summed curve.  Parameters for 

each of the normal distributions, along with the mass fractions and mol wts of each of the 

21 quadrature-generated pseudocomponents, are given in Table 2.1.   

For each pitch pseudocomponent, several pure-component parameters had to be 

determined in SAFT–LC.  The SAFT-based parameters v
oo

, m, and ui
o
/k were estimated 

from correlations developed by Huang and Radosz
35

 for bitumen components of varying 

aromaticity.  Necessary inputs to the correlations were the C/H atomic ratio and the 

molecular weight.  Because no other information was available, we initially assumed that 

all pseudocomponents had the same C/H ratio as was experimentally measured for the 

parent Conoco pitch.  For any defined components used in combination with the pitch 

(e.g., solvents), literature values for the pure-component SAFT parameters were used.
23
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Figure 2.2.  GPC chromatogram of Conoco petroleum pitch and the 3 fitting NDFs used 

to generate the quadrature points (i.e., pseudocomponents): GPC data (◊); NDFs (—); 

Overall curve (—).  Mol wts are given by the calibration equation log10 MW = 6.13394 – 

0.19659*(ret. time). 
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Table 2.1. Quadrature-Generated Pseudocomponents for Modeling MWD of Conoco 

Petroleum Pitch 

 

 Pseudocomponent GPC Retention  Molecular Weight Mass Fraction 

 No. Time (min) 

 

 

  NDF 1  (µ = 15.45,  = 0.942,  = 0.4049)
a
 

 1 12.19 5476 0.0003 

 2 13.03 3741 0.0063 

 3 14.16 2239 0.0831 

 4 15.45 1249 0.2256 

 5 16.74 697 0.0831 

 6 17.87 417 0.0063 

 7 18.71 285 0.0003 

 

  NDF 2  (µ = 16.72,  = 0.448,  = 0.1986) 
 8 15.17 1418 0.0001 

 9 15.57 1183 0.0031 

 10 16.11 927 0.0408 

 11 16.72 703 0.1105 

 12 17.33 533 0.0408 

 13 17.87 418 0.0031 

 14 18.27 349 0.0001 

 

 NDF 3  (µ = 18.14,  = 0.4455,  = 0.3965) 
 15 16.60 743 0.0003 

 16 17.00 620 0.0062 

 17 17.53 487 0.0815 

 18 18.14 370 0.2205 

 19 18.75 281 0.0815 

 20 19.28 220 0.0062 

 21 19.68 184 0.0003 

 
a
 µ = NDF mean;  = NDF standard deviation;  = NDF mass fraction. 
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The ―LC-based‖ pure-component parameters consisted of the parameters a and b 

and the liquid molar volumes Vk.  Based on physically realistic assumptions,
20,36

 we 

assumed the following linear relationship between mol wt and clearing temperature (C) 

for the pitch pseudocomponents:   

  
iicl, MWbaT        (2.29) 

Here, Tcl,i is the clearing temperature and MWi is the mol wt of pseudocomponent i.  

Thus, the adjustable pure-component parameters a and b characterize the mesophase-

forming tendency of a given pitch pseudocomponent.  The liquid molar volumes Vk in 

the A
orient

 term were assumed to be constant and were calculated by dividing the mol wt 

of each pseudocomponent by the liquid mass density (1.20 g/cc) of A-240 pitch.
37

  

Solvent molar volumes were fixed to their literature values at the normal boiling point.  

With these assumptions, we note that A
orient

 is independent of fluid density, but 

knowledge of the density dependence of the molecular interaction term ij is not 

understood well enough to make alternative assumptions.
29 

In addition to a and b, SAFT–LC contains three adjustable parameters, A, B, and C, 

which are needed to calculate the binary interaction parameters (these fitting parameters 

are used as a correction to the geometric mean combining rule for the cross dispersion 

energy parameter uij as indicated in Equation 2.11) between pitch pseudocomponents, and 

between pitch pseudocomponents and solvent.  Following the previous approach of Thies 

and co-workers,
22

 we assumed that the interaction parameters between the solvent and 

pitch pseudocomponents were linear with respect to mol wt: 

k1,j = A*MWj + B        (2.30) 
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where 

k1,j = interaction parameter between the solvent (1) and the jth pseudocomponent, 

MWj = mol wt of the jth pseudocomponent, 

A, B = adjustable parameters. 

 

The interaction between pitch components was computed using the following expression: 

ki,j = C|MWi – MWj|        (2.31) 

where 

ki,j = interaction parameter between pseudocomponents i and j, 

MWi = molecular weight of the ith pseudocomponent, 

C = adjustable parameter. 

 

SAFT–LC for the Solvent Extraction of Carbonaceous Pitches 

We test the efficacy of SAFT–LC by using it to model the solvent extraction of 

carbonaceous pitches.  Such processes have been used both commercially
8,38-39

 and on a 

laboratory scale
11,26 

to produce mesophase pitch.  A simplified schematic of a near 

critical/supercritical extraction process used at Clemson
 
that is representative of such 

processes is shown in Fig. 2.3.  The process is initiated by combining an isotropic feed 

pitch (e.g., Conoco or A-240 petroleum pitch) with the solvent of interest and allowing 

the mixture to come to equilibrium.  At temperatures, pressures, and solvent-to-pitch 

(S/P) ratios corresponding to those shown in the figure, two phases form in the phase 

separator:  a top, solvent-rich fluid phase and a bottom, pitch-rich liquid phase.  The pitch 

components distribute between the two phases, with lower mol wt species being 

concentrated in the top and higher mol wt pitch components in the bottom phase.  The 
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bottom phase is then dried to remove the solvent, and the remaining pitch fraction is the 

desired product, which can consist of anywhere from 0 to 100% mesophase. 

 

Isotropic
Pitch

Solvent
T: 310~360 °C
P: 45~155 bar
S/P: 2.5~4.0

Solvent-rich 
fluid phase (V)

Isotropic,  
pitch-rich liquid 
phase (L)

Drying Step

Solvent removalExtraction Step

T~340 °C
Mesophase

Isotropic

 

Figure 2.3.  The process for producing mesophase pitch by supercritical extraction 

consists of an extraction step and a drying step. 

 

We were interested in the use of SAFT–LC to model both steps of the process, that 

is, the extraction step and the drying step.  For the extraction step in Fig. 2.3, a two-phase 

flash calculation incorporating the so-called ―negative flash algorithm‖
 32,40

 was used.  By 

allowing phase fractions (e.g, V/F) to be less than 0, convergence of phase equilibrium 

calculations is enhanced with this algorithm.  Input consisted of the pseudocomponent 

compositions of the feed pitch (i.e., the Conoco pitch given in Table 2.1), the S/P ratio, 

and the temperature and pressure of the phase separator.  All K-values were calculated 

via SAFT–LC.  Integration to determine the order parameter jP  in the A
orient

 term (see 

Equation 2.21) was accomplished numerically using 10,000 segment slices.  A converged 
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solution for jP  was readily obtained by successive substitution using an initial guess of 

0.6.  Output from the flash calculation consisted of the amounts, compositions, and 

densities of the V and L phases. 

For the drying-step calculation (see Fig. 2.3), the solvent toluene is removed from 

the pitch-rich liquid phase isolated in the extraction step (i.e., L), and a two-phase 

―negative flash‖ is performed on the overall composition of the ―dried‖ pitch mixture to 

determine mesophase content.  This flash calculation was performed at 340 C and 50 

bar, as these conditions are representative of those at which mesophase pitch is processed 

(e.g., melt-spun into nonstabilized carbon fibers
11

). 

All calculations involving SAFT-LC were performed using a computer program 

written in the Visual FORTRAN programming language.  In this program, a 

parameterized version of the SAFT equation is used in order to keep the size of the 

program at a minimum; Huang and Radosz discuss it in depth in the Appendix of their 

1991 paper.
24

   

 

Results and Discussion 

SAFT–LC for Prediction of Solvent Extraction and Drying Steps 

Dauche et al.
26

 investigated supercritical extraction with toluene (Tc = 591.8 K, Pc 

= 41.1 bar) for the single-stage fractionation of carbonaceous pitches, using the process 

illustrated in Fig. 2.3.  In particular, top-phase (V) and bottom-phase (L) solvent 

compositions were measured for 17 different combinations of temperature, pressure, and 

S/P ratio, see Table 2.2.  Following the solvent extraction process, Dauche et al.
26 

dried 
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the bottom L phase under vacuum at 340 C to remove the solvent, and then determined 

the softening point (a simple melting-point test) and the percent mesophase by polarized 

light microscopy (see Table 2.2).  

We used SAFT–LC for both the correlation and prediction of Dauche et al.’s 

results.  For correlation, Extraction Runs 1-8 in Table 2.2 were used, as they all contained 

less than 100% mesophase in the dried bottom-phase samples, and thus were the most 

useful ones for fitting.  These runs were used to fit the adjustable SAFT–LC parameters  

Table 2.2.  Experimental, correlated, and predicted solvent compositions and mesophase 

contents for extraction of Conoco petroleum pitch with supercritical toluene (also see Fig. 

2.3). 

Expt. Correl. Expt. Correl. Expt. Expt. Correl.

1 0.784 0.750 0.258 0.301 203 38 29.0

2 0.792 0.780 0.222 0.268 210 50 51.2

3 0.785 0.733 0.254 0.305 212 38 56.6

4 0.844 0.805 0.239 0.272 214 44 53.7

5 0.847 0.796 0.227 0.284 228 59 76.4

6 0.836 0.823 0.216 0.244 231 85 73.4

7 0.801 0.767 0.230 0.256 234 98 91.2

8 0.785 0.769 0.218 0.250 236 95 88.8

Expt. Predicted Expt. Predicted Expt. Expt. Predicted

9 0.738 0.734 0.245 0.240 238 100 91.8

10 0.831 0.816 0.201 0.235 262 100 100

11 0.820 0.795 0.221 0.228 269 100 100

12 0.771 0.771 0.214 0.229 272 100 94.5

13 0.741 0.722 0.232 0.246 274 100 100

14 0.821 0.817 0.184 0.217 284 100 100

15 0.764 0.766 0.173 0.232 298 100 100

16 0.814 0.814 0.171 0.223 306 100 100

17 0.804 0.787 0.184 0.247 319 100 100

Extract 

Run 

No.

Operating Variables

Press/Temp              

S/P Ratio 

Top Phase (V) Bottom Phase (L)

Percent 

Mesophase

Toluene Mass Fraction--Extraction Step Dried Bottom Phase

Softening 

Point (°C)

46/320/2.5

45/310/3.0

81/360/2.5

46/320/3.5

81/360/3.5

45/310/4.0

84/340/3.0

77/330/3.0

94/320/2.5

77/330/4.0

94/320/3.5

94/310/3.0

154/360/2.5

94/310/4.0

155/330/3.0

155/330/4.0

154/360/3.5

 

(i.e., A, B, C; a and b) by minimizing an objective function consisting of the sum of the 

squares of (1) the experimental minus calculated toluene mass fractions in the top and 
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bottom phases and (2) the experimental minus calculated mesophase fractions in the dried 

bottom phases.  In addition, a weighting factor of 0.5 was assigned to the deviation in 

mesophase fractions so that its contribution to the objective function would be 

approximately the same as the deviation in mole fraction.  A downhill simplex method 

was used for the minimization.
41

 Some constraints were set to these adjustable 

parameters.  In particular, we assumed that the resulting k1,j’s and ki,j’s would be in-line 

with our previous work
22

 and with what has been observed by previous workers.
35 

 

Furthermore, the values of a and b were constrained to physically realistic ranges.
36

  The 

optimized fitting parameters obtained were A = 2.42E-05, B = 7.00E-02, C = 1.21E-05, a 

= 99.2K, and b = 0.350.  These values, when input into eqs. 30 and 31, yield binary 

interaction parameters ranging from <0.01 to 0.20.  From Equation 2.29, the clearing 

temperature for a pseudocomponent of mol wt 500 is predicted to be approximately 0 C.  

This is on the low side of estimates obtained from theory, but still consistent with 

previous work.
36 

The correlations developed by Huang and Radosz
35

 for estimating the pure-

component SAFT parameters v
oo

, m, and ui
o
/k yielded significantly better results when 

we allowed the C/H ratio to deviate from the experimentally measured value for Conoco 

pitch.  In particular, a C/H ratio of 0.71 for all pseudocomponents was found to provide 

the best fit to the experimental data – a significant deviation from the experimentally 

measured value of 1.5 for A-240 (or Conoco) pitch.
3,4

  We note that Huang and Radosz’s 

correlations were developed from cuts of bitumen, with their C/H ratios ranging from 

0.55 to 0.72, whereas fractions of A-240 (or Conoco) pitch can have C/H ratios that vary 
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from 1.2 to 1.8.
2
  In retrospect, one could not have expected ―bitumen‖ correlations to 

have performed well, when used so far out of their experimentally determined range.   

The above parameters were then used to predict (not fit) the solvent compositions 

and mesophase percentages in the dried bottom phase L for Extraction Runs 9-17 (see 

Table 2.2).  Comparing the correlated to the predicted toluene mass fractions, we see that 

the SAFT–LC parameters behave ―globally‖, as the predicted results (Runs 9-17) are of 

comparable accuracy to those obtained by correlation (Runs 1-8).  For the percent 

mesophase calculations, the correlated values (Runs 1-8) are generally within 15 wt % of 

the experimentally measured values, which is in-line with the typical experimental 

accuracy for this measurement.
26

 For Runs 9-17, SAFT–LC correctly predicts the 

experimentally measured values of 100% mesophase for all but Runs 9 and 12. 

Phase amounts, phase densities, and pseudocomponent compositions are shown 

for two representative cases of solvent extraction, Runs 4 and 11, in Tables 2.3 and 2.4.  

In addition, the impact of the extraction process on the distribution of pseudocomponents 

(PCs) in each phase is shown in Figs. 2.4 and 2.5.  These results indicate several 

interesting trends.  First, SAFT–LC predictions for the density of the toluene-dominated 

vapor phase are in agreement with experimentally observed values for pure toluene
42

 at 

the conditions given in Table 2.2.  Because the SAFT parameters for toluene, and the 

heavier PAHs phenanthrene and anthracene (the latter two compounds have mol wt 178) 

fit experimental liquid density data (from conditions ranging from ambient to near-

critical) to better than 3% difference,
23

 liquid phase density predictions for the pitch-

dominated bottom phase are also expected to be reasonable.  Second, the predicted yields 
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of pitch (i.e., the percentage of the feed pitch) in the bottom phase L of 17% for Run 4 

and 11% for Run 11 are in good agreement with the 10-20% typically obtained when 

mesophases are produced in the laboratory.
26 

 

Table 2.3.  Phase amounts, densities, and pseudocomponent compositions as predicted by 

SAFT–LC for Extraction Run No. 4 (see Table 2.2).
a 

V = 0.948                      L = 0.0523                                         

  ρpred = 0.503 g/cc  ρpred = 0.685 g/cc

PC Number Mol Wt Mass Fraction Mass Fraction

Solvent 92.1 0.805 0.272

1 5476 3.16E-10 1.18E-03

2 3741 2.17E-06 2.68E-02

3 2239 0.002 0.313

4 1249 0.041 0.218

5 697 1.81E-02 2.55E-02

6 417 1.41E-03 1.25E-03

7 285 6.25E-05 4.63E-05

8 1418 2.23E-05 1.86E-04

9 1183 5.90E-04 2.60E-03

10 927 8.70E-03 1.98E-02

11 703 2.40E-02 3.43E-02

12 533 9.26E-03 9.81E-03

13 418 6.99E-04 6.21E-04

14 349 3.11E-05 2.51E-05

15 743 5.98E-05 9.22E-05

16 620 1.37E-03 1.68E-03

17 487 1.81E-02 1.79E-02

18 370 4.94E-02 4.10E-02

19 281 1.84E-02 1.35E-02

20 220 1.41E-03 9.67E-04

21 184 6.26E-05 4.14E-05

Run 4 (P = 46 bar, T = 320° C, S/P = 3.5)

 

a 
Phase amounts V and L are reported on a mass basis. 

As discussed in the introduction, a goal of pitch extraction processes is the 

concentration of higher mol wt pitch molecules (i.e., mesogens) that can form mesophase.  

In Fig. 2.4, the PC distribution of the feed pitch F is compared with those of the products 

V and L.  Here, we see that the shift to higher mol wts in the distribution for L is 
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significant – significant enough to result in the experimentally observed (and predicted) 

formation of ~50% mesophase when the phase is dried to remove the solvent.  In Fig. 2.5, 

we see that the more aggressive extraction conditions of Run 11 produce an L phase that 

is significantly enriched in the higher mol wt pseudocomponents relative to Run 4, 

resulting in a dried L phase that contains 100% mesophase. 

Finally, we note that when a three-phase flash was carried out on the extraction 

step shown in Fig. 2.3, the presence of a mesomorphic third phase was predicted for some 

of the runs (e.g., Run 11).  This mesophase typically was found to consist of about 7 wt 

% toluene, with the PC composition consisting of more than 90 mass % PC 2 (mol wt = 

3741).  The predicted amount of this third phase was always less than 0.01 mass fraction.  

As can be seen in Fig. 2.2, the GPC curve stops at a retention time of ~13.4 min, which 

corresponds to a mol wt of 3160.  Thus, the existence of PC 2 was caused by application 

of the NDF/quadrature method to the experimental GPC data.  Because (1) we had no 

experimental evidence supporting the existence of this in situ mesophase, (2) its predicted 

amount was so small, and (3) the phase disappeared if PCs 1 and 2 were eliminated from 

the pitch, we used the two-phase flash described earlier for all extraction-step 

calculations (see Fig. 2.3) and thus did not take into account the presence of this third 

phase. 
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Table 2.4.  Phase amounts, densities, and pseudocomponent compositions as predicted 

by SAFT–LC for Extraction Run No. 11 (see Table 2.2).
a 

V = 0.968                        L = 0.0316                                       

 ρpred = 0.552 g/cc    ρpred = 0.721 g/cc

PC Number Mol Wt Mass Fraction Mass Fraction

Solvent 92.1 0.795 0.228

1 5476 3.96E-11 1.95E-03

2 3741 1.42E-06 4.44E-02

3 2239 3.43E-03 0.479

4 1249 4.75E-02 0.131

5 697 1.85E-02 1.60E-02

6 417 1.42E-03 9.22E-04

7 285 6.25E-05 3.78E-05

8 1418 2.78E-05 1.25E-04

9 1183 6.67E-04 1.53E-03

10 927 9.21E-03 1.16E-02

11 703 2.46E-02 2.14E-02

12 533 9.37E-03 6.69E-03

13 418 7.02E-04 4.57E-04

14 349 3.12E-05 1.94E-05

15 743 6.17E-05 5.66E-05

16 620 1.40E-03 1.09E-03

17 487 1.83E-02 1.25E-02

18 370 4.96E-02 3.13E-02

19 281 1.83E-02 1.11E-02

20 220 1.40E-03 8.34E-04

21 184 6.23E-05 3.69E-05

Run 11 (P = 94 bar, T = 320° C, S/P = 3.5)

 

a 
Phase amounts V and L are reported on a mass basis. 
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Figure 2.4.  PC mass fractions (converted to a solvent-free basis for this and following 

figures) for the feed pitch (F), and for the vapor (V), and liquid (L) phases upon solvent 

removal, for Extraction Run 4 (see Table 2.2).  The curves connecting the PCs are to 

show readers their NDF origin.  The extraction process causes a shift to a higher MWD. 
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Figure 2.5.  PC mass fractions for the feed pitch (F), and for the vapor (V) and liquid (L) 

phases upon solvent removal, for Extraction Run 11 (see Table 2.2).  Note the higher 

MWD of the L phase compared to Run 4. 
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SAFT–LC for Predicting the Effect of Solvent Addition on Mesophase Formation 

In the early 90s, researchers at Conoco
39

 discovered that high-melting, mesogen-

containing pitch fractions can dissolve up to 20 wt % toluene and still consist of 100% 

mesophase.  We therefore evaluated the capability of SAFT–LC, used in a purely 

predictive mode, to model this effect.  In particular, the addition of toluene to three, dried 

(i.e., solvent-free) bottom (L) phases from Extraction Runs 11, 13, and 17 (with softening 

points of 269, 274, and 319 C, respectively) was simulated using SAFT–LC.  Both 

experimental work and prediction indicate that in the dried, solvent-free state, these 

fractions consist of 100% mesophase (see Table 2.2).  Calculations were performed with 

the SAFT–LC pure-component and binary interaction parameters previously determined 

above.  The temperature and pressure used in the simulation were representative of 

spinning conditions for carbon fiber, that is, 340 C and 50 bar.
11

  Moderate deviations in 

temperature and pressure from these conditions had little effect on the results obtained, as 

long as all phases present remained in the condensed state.   

As shown in Fig. 2.6, SAFT–LC does predict the ―solvating‖
39

 effect of 

mesophase, as the L phases from all three runs still consist of 100% mesophase when 

significant amounts (i.e., 5-10 wt % toluene) are added.  Representative PC compositions 

for both the isotropic and the mesophases formed by the addition of toluene to the L 

phase from Run 11 are shown in Figs. 2.7 and 2.8.  At the point of incipient isotropic 

phase formation, when ~5 wt % toluene has been added (Fig. 2.6), we see that the 

isotropic phase has a significantly lower mol wt than the feed and mesophase pitch (Fig.  
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Figure 2.6.  Effect of added toluene solvent on the mesophase content of the dried pitch 

fraction ―L‖ resulting from three different extraction runs as predicted by SAFT–LC.  

These pitch fractions, denoted as Run 11, Run 13, and Run 17, comprise 11.1, 4.6, and 

6.3 wt % of the pitch feed F, respectively. 

 

2.7).  Note that the feed and mesophase MWDs are essentially superimposed on each 

other.  With the overall addition of ~13 wt % toluene, the isotropic phase has grown to 

essentially half of the total phases present (Fig. 2.6).  Now the differences in the PC 

distribution between the isotropic and mesophases (Fig. 2.8) are less significant.  Finally, 

as shown in Fig. 2.6, when the overall toluene addition reaches 15 wt %, the percent 

mesophase for Run 11 plateaus out at about 5 wt % and essentially remains flat for 

further additions of toluene.  However, we note that this residual mesophase consists of 

more than 90 wt % PC 2 (mol wt = 3741), whose existence, as discussed above, is 

uncertain.  In the absence of PC 2, SAFT–LC predicts only one (isotropic) phase at these 

higher solvent contents for Runs 11, 13, and 17 (because the clearing temperature of PC 2 
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in the solvent-free state is predicted, via Equation 2.29, to be 1036° C, it is expected that 

significantly higher temperatures and/or solvent contents would be necessary to achieve a 

mesophase content of 0% in the L phases resulting from Runs 11, 13, and 17).  In Fig. 

2.6, it is hypothesized that the abrupt manner in which the mesophase content falls is 

caused by the fact that these mesophase fractions are dominated by one PC, PC 3 (a more 

gradual, continuous change would be expected were a variety of species over a range of 

mol wts present in relatively equal amounts). 
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Figure 2.7.  SAFT–LC predictions of the PC composition of the feed (the dried L phase 

resulting from Run 11), isotropic phase, and mesophase at the point of incipient isotropic 

phase formation after solvent addition.  The overall toluene content is 4.8 wt % (see Fig. 

2.6).  
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Figure 2.8.  SAFT–LC predictions of the PC composition of the feed (the dried L phase 

resulting from Run 11), isotropic phase, and mesophase at 50 wt % mesophase after 

solvent addition.  The overall toluene content is 13 wt % (see Fig. 2.6).  

 

 

Conclusions 

As originally developed, SAFT cannot predict liquid crystalline behavior.  

However, by adding an orientational free energy term based on Maier–Saupe theory, we 

have developed an equation of state that can be used to predict the phase behavior of 

carbonaceous, oligomeric pitches over a wide range of conditions, where either excess 

free energy or orientational free energy effects dominate, both with and without solvents.  

For example, SAFT–LC can be used to identify supercritical solvent extraction 

conditions for producing pitch fractions that, upon solvent removal, consist of 100% 

liquid crystalline mesophase.  In addition, SAFT–LC can predict the experimentally 

observed ability of mesophases to dissolve significant amounts of solvent while still 

maintaining their 100% mesophase character.  These ―solvated‖ mesophases have 

dramatically lower melting points, facilitating their processing into carbon artifacts.
39
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CHAPTER 3 

SAFT-LC: PREDICTING MESOPHASE FORMATION FROM A STATISTICAL 

MECHANICS-BASED EQUATION OF STATE 

 

Introduction 

Carbonaceous pitches are polycyclic aromatic, oligomeric materials that have a 

molecular weight (mol wt) range from about 200 up to over 1000 g/mol (see Fig. 3.1).
1
  

They are produced via the thermal polymerization of decant oil, a by-product of the fluid 

catalytic cracking (FCC) of crude oil fractions.  In 1965, Brooks and Taylor discovered 

that carbonaceous pitches, when heated to elevated temperatures such that a fluid phase 

forms, form a nematic, discotic, liquid crystalline phase, or mesophase.
2
  Other 

researchers subsequently discovered that mesophase formation is also influenced by pitch 

composition; thus, these unique materials have characteristics in common with both 

thermotropic and lyotropic liquid crystals.
3
   

 

Figure 3.1.  MALDI mass spectrum of M-50 petroleum pitch  

and suggested structures for typical monomer and dimer species.
1 
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It is often necessary to process carbonaceous pitches in the liquid crystalline state.  

Such is the case when they serve as precursors for high modulus, high thermal 

conductivity carbon fibers.
4
  On the other hand, a carbon-carbon composite may consist 

of an isotropic matrix into which a stronger, reinforcing material is dispersed.  Thus, the 

degree to which a potential precursor pitch forms mesophase at processing conditions 

strongly influences its suitability for a given use.    

With both temperature and molecular composition affecting the isotropic/nematic 

phase equilibria of pitches, a predictive model is of significant interest to researchers.  In 

Chapter 2, we presented the development of such an equation, the Statistical Associating 

Fluid Theory – Liquid Crystal equation of state, or SAFT–LC.
5
  In brief, our approach 

has been to combine the SAFT equation of Huang and Radosz
6
 with the liquid crystal 

theory of Maier and Saupe.
7
  Thus, this model accounts not only for the nonideal free 

energy of mixing (via SAFT), but it also accounts for the orientational free energy 

exhibited by liquid crystalline systems (via Maier-Saupe). 

Near critical and supercritical extraction (SCE) processes are of interest for the 

fractionation of carbonaceous pitches into cuts with a range of mesophase-forming 

tendencies.  In this paper, we use SAFT–LC to explore the effect of SCE operating 

conditions on the oligomeric composition of pitch fractions and on isotropic–nematic 

phase equilibria. 

Previously, we used gel permeation chromatography (GPC) in tandem with a 

Gauss-Chebyshev quadrature technique to resolve the complex mol wt distribution 

(MWD) of the Conoco feed pitch into discrete pseudocomponents (PCs).
5
  There was 
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some uncertainty as to the accuracy of the GPC calibration curve predictions for the mol 

wts of the largest PCs.  Therefore, for this work, the mass spectrum of the pitch, obtained 

via matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry 

(MALDI-TOF-MS, or MALDI for short), was used as the starting point for resolution of 

the MWD of the feed pitch into PCs.  Unlike GPC, MALDI provides absolute mol wt 

values for the species comprising the MWD of the pitch.    

 

 

 

Supercritical Extraction for the Production of Mesophase Pitch 

 A schematic illustrating the production of mesophase pitch via the supercritical 

extraction of carbonaceous pitches is shown in Fig. 3.2.  Note that the process is divided 

into two steps.  The first step is an extraction in which an isotropic feed pitch and solvent 

are fed into an extractor, which is simply a single-stage flash vessel.  Over the range of 

temperatures, pressures, and solvent-to-pitch (S/P) ratios shown in Fig. 3.2, two phases 

form in the extractor:  a lighter, solvent-rich phase (denoted by V) and a heavier, pitch-

rich liquid phase (denoted by L).  Lower mol wt pitch components concentrate in the top 

V phase, while heavier pitch components tend to concentrate in the bottom L phase.  In 

the second step of the process, the L phase is dried to remove all solvent, yielding the 

final product.  Depending on the experimental conditions and the feed pitch used, this 

final product can range from being completely isotropic to being 100% mesophase.    
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The SAFT-LC Equation 

Background 

 

 

Isotropic 
Pitch 

Solvent 
T: 310~380 °C 
P: 40~200 bar 
S/P: 2.0~5.0 

Solvent-rich  
fluid phase (V) 

Isotropic,   
pitch-rich liquid  
phase (L) 

Drying Step 

Solvent removal Extraction Step 

T~340 °C 
Mesophase 

Isotropic 

 

Figure 3.2.  Schematic of a supercritical extraction process for fractionating 

carbonaceous pitches in order to produce mesophase pitch.  Adapted from Burgess et al.
5 

 

The development and details of SAFT–LC are presented elsewhere,
5
 so only a 

brief description is given here.  The expression for the orientational Helmholtz free 

energy, as defined by Maier and Saupe
7
 and extended to multicomponent mixtures by 

Humphries et al.
8
 is 

                 
n n n

i j ij j i i i

i=1 j=1 i 1

orient orient orient N
A A U TS x x ε P P NkT x lnZ

2
     (3.1) 

Here, N is Avogadro’s number, xi and xj are species mole fractions, k is Boltzmann’s 

constant, T is temperature, ij is the anisotropic potential energy parameter between 
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molecules i and j, Zi is the orientational partition function for the species (this term 

encompasses a summation of all of the energy states that arise because of the anisotropic 

interactions of a molecule in the mean field generated by the neighboring molecules), and 

jP  is the average order parameter for all the molecules of species j.  Both Zi and jP  are 

dependent upon the angle  at which a particular molecule tends to align relative to a 

director, or preferred state; this concept is discussed in greater detail in Chapter 2.   

The orientational partition function Zi represents a summation of the different 

energy states which arise because of the anisotropic interactions between a molecule and 

the mean nematic field generated by its neighbors.  Thus, this is an intermolecular (vs. the 

classic intramolecular) partition function.  Assuming that the distribution of these 

possible orientational energy states is continuous, Zi can be expressed as an integral as 

shown in Equation 3.3 (by integrating over all possible orientation states, which are 

dependent upon  and the azimuthal angle ).  The observed energy state of a nematogen 

is dependent upon the angle 1 at which it is oriented relative to the fully oriented, 

preferred state denoted by the director.  This is a representation of a laboratory-based 

coordinate system (see Chapter 2, pp. 44-45).   

Note that this orientational partition function is not the same as the rotational 

partition function, which is based upon a summation of rotational energy states within a 

particular molecule; these rotational energy states do not depend upon interactions with 

another molecule.  Also, the rotational energy states are calculated using a molecular-

based coordinate system instead of our laboratory-based coordinate system.   

The energy parameter ij is obtained from
9 
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n

1k

kk

jiij

ij

Vx

VV~

                                                   (3.2a) 

where Vi and Vj are species molar volumes at ambient conditions, xi is the composition of 

a species, and the parameter ij
~  is the composition-independent energy parameter, which 

itself is given by 

                                           
jcliclij TTk542.4~                                           (3.2b) 

Here the parameter Tcl is the clearing temperature of a species, that is, the temperature at 

which the phase transition from the anisotropic to isotropic state takes place.  Thus, the 

equation links the molecular to the macroscopic state.   

From statistical mechanical arguments, it can be shown that the orientational 

partition function is given by 

n
 π  2π  π

i

i i i j ij j i i
 0  0  0

j=1

U 1
Z exp sin θ dθ dφ 2π exp x ε P P sin θ dθ

kT kT
i

        (3.3) 

and the average order parameter by 

n
 π

j i i j i j j j
 0 π  2π

i =1

j j j j j
 0  0

j

1
2π P exp x ε P P sin θ dθ

kT
P P Pr sin θ dθ dφ

Z
             (3.4) 

In Equation 3.4, the probability that a molecule has a particular degree of 

orientation is given by the term Prj.  The Pj term represents to the order parameter for a 

particular molecule of species j.  It is related to the angle of orientation j as shown in 

Equation 3.4a below: 
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 In order to obtain SAFT–LC, we add the Helmholtz orientational free energy 

term described above to the segment and chain contributions from the SAFT equation, 

A
seg

 and A
chain 

: 
6 

                                                     
RT

A

RT

A

RT

A

RT

A
orientchainsegres

                                (3.5) 

The use of SAFT-LC to model the supercritical extraction of pitch using toluene 

as the solvent, and to predict the mesophase content of the unextracted dried bottoms 

phase, is described below. 

 

Application of SAFT–LC to Carbonaceous Pitches; Definition of Pitch PCs and SAFT–

LC Parameters 

In order to apply the SAFT-LC equation to a poorly defined system such as 

carbonaceous pitch, the pitch must be represented as a mixture of discrete PCs.  To this 

end, the MWD of a pitch obtained from Conoco (denoted by the company as PB35A/B; 

CAS 68187-58-6) was obtained by matrix-assisted laser desorption/ionization, time-of-

flight mass spectrometry (MALDI-TOF-MS).  Details of the development of this 

analytical method for carbonaceous pitches are presented elsewhere.
10

  We note that 

MALDI, because it gives the absolute mol wt of individual pitch species, is a significant 

improvement over the traditional method for determining the mol wt of pitches, GPC.   
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In Fig. 3.3, the MALDI spectrum obtained is presented in terms of the normalized 

intensity of the MALDI detector response, so that the total area under the MALDI 

spectrum is equal to unity.  In order to define PCs for the pitch, the plot was then divided 

into 10 regions, with each oligomeric peak being divided into 2 sections.  Next, the 

number average molecular weight ( nM ) and the area under the curve for each region was 

calculated.  Each region was assumed to represent one PC, and the area fraction of the 

curve in that region was assumed to equal the PC mole fraction.  Work in progress in our 

laboratory indicates that this latter assumption is a good first approximation.  Each region 

was divided into thin vertical slices (approximately 1000 per region), the mol wt in the 

middle of each slice was determined, as was the area of each slice as a fraction of the 

total area encompassed by the respective region; from these data, the number average 

molecular weight for each region could be calculated.  The results of these calculations 

are summarized in Table 3.1.   
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Figure 3.3.  MALDI-TOF-MS mass spectrum (grey line, left axis) of PB35A/B 

petroleum pitch.  PC mass fractions (right axis) are denoted by the open circles.  The 

vertical, dashed lines bound the mol wt ranges assigned to each of the 10 PCs.   
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It was then necessary to determine the pure-component SAFT parameters for each 

PC.  These parameters (v
00

, m, and u
o
/k) were obtained using correlations developed by 

Huang and Radosz for bitumen.
11

  Required inputs to the correlations are the PC mol wts 

and the atomic carbon-to-hydrogen (C/H) ratio.  For each PC, the values for the C/H 

ratios (Table 3.1) were predicted using a correlation developed in our labs that relates the 

MALDI-determined number average mol wt of a particular pitch fraction produced by 

dense-gas extraction to the C/H ratio of that fraction.
12 

The final pure-component parameters to be determined were the clearing 

temperatures for each PC.  Following the work of Hurt and Hu,
13

 we assumed that 

clearing temperature was a linear function with respect to molecular weight:   

                                   ii,cl MW*T ba                                                 (3.6) 

where Tcl,i represents the clearing temperature of PC i (in K), MWi represents the mol wt 

of said component, and the parameters a and b are adjustable. 

 

Table 3.1.  Physical and chemical properties of the 10 pitch PCs. 

 

Pitch PC data 

PC # Mol Wt 
Mole Fraction 
(MALDI Area) 

C/H 
Ratio 

1 287 0.1161 1.14 

2 360 0.2290 1.21 

3 527 0.1970 1.36 

4 641 0.1777 1.46 

5 793 0.1018 1.60 

6 922 0.0839 1.71 

7 1064 0.0456 1.84 

8 1198 0.0300 1.96 

9 1335 0.0146 2.09 

10 1452 0.0044 2.19 
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 In order to calculate the binary interaction parameters between the various 

species, we followed our previous approach with SAFT.
14

  That is, binary interaction 

parameters between the solvent and the various pitch PCs were assumed to be a linear 

function of mol wt: 

                                                       BMW*Ak jj,1                                                 (3.7) 

Here, k1,j represents the interaction parameter between the solvent “1” and pitch PC j, A 

and B are adjustable fitting parameters, and MWj is the mol wt of PC j.  Binary 

interaction parameters between the pitch PCs were defined as follows:   

                                                   jij,i
MWMW*Ck                                                (3.8) 

where ki,j represents the interaction parameter between the pitch PCs i and j, and C is a 

fitting parameter. 

 

Results and Discussion 

Dauché et al.
15

 investigated the phase behavior of mixtures of petroleum pitch and 

toluene at supercritical conditions, determining the mass fractions of solvent in the top 

(V) and bottom (L) phases at 17 different sets of experimental conditions (see Fig. 3.2 

and Table 3.2).  In addition, the mesophase content in the solvent-dried, bottom product 

(L) was determined by polarized light microscopy.   

All SAFT-LC calculations were performed using a computer program written in the 

Visual FORTRAN programming language.  In this program, a parameterized version of 

the SAFT equation described by Huang and Radosz
6
 was used in order to minimize the 

amount of programming necessary. 
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The adjustable parameters A, B, C, a, and b in SAFT-LC were fit to the solvent 

phase compositions and mesophase percentages for Runs 1-8 using a downhill simplex 

method.  We chose these runs as fitting points because the experimentally determined 

mesophase content in the dried bottoms phase was less than 100%, maximizing the 

sensitivity of SAFT-LC to changes in mesophase composition and therefore providing a 

more rigorous test for SAFT–LC (as indicated in Table 3.2, many pitches can form 100% 

mesophase; however, the values obtained for these five adjustable parameters are not 

greatly affected if they are fit to all 17 sets of experimental data).  For the percent 

mesophase calculation, it was assumed that P = 50 bar, and T = 340° C, as these 

conditions are representative of those at which mesophase pitch is processed into carbon 

products, such as fibers.  

The above optimization process yielded SAFT–LC parameter values of A = 

2.65E-4, B = -0.123, C = 1.03E-4, a = 146.6 K, and b = 0.541.  We note here that these 

values of A, B, and C yield binary interaction parameters for pitch–solvent interactions 

ranging from -0.047 to 0.26 for the lightest and heaviest PCs, respectively.  Slight 

changes in the values of these ki,j’s (e.g., setting the negative values for the 2 lightest PCs 

to zero) have a negligible impact on the predicted phase behavior.  We also note that 

from Equation 3.6, PC 6 (MW = 922) has a clearing temperature of 645 K, in good 

agreement with the theoretical work of previous workers.
13

   

 

 

 



 81 

Table 3.2 

Experimental, correlated, and predicted solvent compositions and mesophase contents for 

extraction of PB35A/B petroleum pitch with supercritical toluene. 

 

 

 

 

 

 

 

 

 

 

 

After the adjustable parameters in SAFT–LC were determined, the equation was 

used to predict the experimental conditions given in Table 3.2 for Runs 9-17.  It is 

encouraging to note that the predictions are of approximately the same accuracy as those 

obtained in the fitting step (Runs 1-8), indicating that the parameters are to a significant 

extent global. 

Finally, we were somewhat surprised to find that the correlations developed by 

Huang and Radosz
11

 for determining the SAFT parameters m, v
oo

, and u
o
/k have in fact 

yielded reasonable results, because these correlations were developed from the analytical 

characterization of cuts of bitumen, which, with C/H ratios ranging from 0.55 to 0.72, are 

Expt. Correl. Expt. Correl. Expt. Correl.

1 0.784 0.776 0.258 0.188 38 70.4

2 0.792 0.807 0.222 0.187 50 73.9

3 0.785 0.789 0.254 0.221 38 43.0

4 0.844 0.840 0.239 0.210 44 46.4

5 0.847 0.868 0.227 0.284 59 27.0

6 0.836 0.853 0.216 0.200 85 56.5

7 0.801 0.807 0.230 0.199 98 65.6

8 0.785 0.805 0.218 0.192 95 75.4

Expt. Predicted Expt. Predicted Expt. Predicted

9 0.738 0.757 0.245 0.140 100 100

10 0.831 0.851 0.201 0.203 100 60.0

11 0.820 0.818 0.221 0.151 100 100

12 0.771 0.790 0.214 0.140 100 100

13 0.741 0.758 0.232 0.177 100 100

14 0.821 0.836 0.184 0.146 100 100

15 0.764 0.786 0.173 0.142 100 100

16 0.814 0.832 0.171 0.145 100 100

17 0.804 0.819 0.184 0.187 100 100154/360/3.5

154/360/2.5

94/310/4.0

155/330/3.0

155/330/4.0

94/320/2.5

77/330/4.0

94/320/3.5

94/310/3.0

81/360/3.5

45/310/4.0

84/340/3.0

77/330/3.0

46/320/2.5

45/310/3.0

81/360/2.5

46/320/3.5

Top Phase (V) Bottom Phase (L)
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Mesophase

Extract 

Run 

No.

Press/Temp              
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much more aliphatic than our pitches, which have C/H ratios that range from 1.2 to 

1.86.
12 

Because a long-term objective of our work on the solvent extraction of pitches is 

control of the oligomeric composition of carbonaceous pitches, SAFT-LC was then used 

to predict the impact of the extraction pressure on the PC mass distribution in the dried L 

phase (see Fig. 3.2).  For a temperature of 330 C and a S/P ratio of 3.0 (toluene solvent), 

pressures of 40, 77 (Run 8), and 155 (Run 15) bar were examined.  The change of the PC 

mass distribution with pressure is given in Fig. 3.4.   

These results reveal some interesting trends.  First, for the dried residues formed 

at lower extraction pressures (40 and 77 bar), two phases, one isotropic and one nematic, 

exist at the mesophase determination conditions of 340° C and 50 bar.  As the extraction 

pressure is increased, the PC distribution in the bottom phase shifts to the right.  The 

effect of the denser solvent is a more aggressive extraction, with a key contribution to the 

increase in mesophase content being the marked decrease in the presence of PCs 1-5 as 

the pressure is increased from 40 bar to 77 bar.  Even higher extraction pressures are 

required for the bottom L phase to consist entirely of 100% mesophase.  At 155 bar, 

SAFT–LC predicts that there are only trace amounts of PCs 1-4, with PC 5 being present 

at only about 1 wt %.  Thus, the primary mesophase-forming species are the five heaviest 

PCs.  

The PC distributions predicted by SAFT–LC for the isotropic phase and the 

mesophase separately, for the extraction conditions and overall bottom phase L shown in 

Fig. 3.4, are given in Fig. 3.5.  Of interest is the fact that the average mol wt of the 
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isotropic phase increases with extraction pressure as its overall fraction of the bottom L 

phase decreases.  The mesophase PC distribution, on the other hand, goes through a 

minimum in mol wt as the L phase changes from a two-phase mixture to 100% 

mesophase.   

The effect of SCE pressure on the mesophase content of the dried L phase, as 

predicted by SAFT–LC, is shown in Fig. 3.6.  For a S/P ratio (toluene solvent) of 3.0 and 

extraction temperatures of 330, 350, and 380 C, pressures of 90, 130, and 180 bar, 

respectively, are required to obtain 100% mesophase.  Consistent with our recent 

experimental results,
1
 we also see that for a given extraction pressure an L phase with a 

higher percentage of mesophase is obtained at lower extraction temperatures, where the 

solvent is more liquid-like.   
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Figure 3.4.  Change in PC mass distribution in the bottom L phase (upon solvent 

removal) with extraction pressure as predicted by SAFT-LC at T = 330° C, S/P = 3.0, and 

various extraction pressures (P).  Mesophase content is predicted to be 32.3% at P = 40 

bar (thin dashed black line), 75.4% at P = 77 bar (thick dashed black line), and 100% at P 

= 155 bar (thin black line).  PC mass fractions are denoted by open circles, and the lines 

are only to guide the eye. 
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Figure 3.5.  SAFT-LC predictions for PC mass distributions for the isotropic (IS) phase 

and mesophase (M) fractions contained in the L phases shown in Fig. 3.4.   

 

S/P = 3.0

0

20

40

60

80

100

40 80 120 160 200

Extraction Cell Pressure (bar)

W
t 

%
 M

e
s

o
p

h
a

s
e

 i
n

 D
ri

e
d

 L
 P

h
a

s
e

Extr. T = 330 °C

Extr. T = 350 °C

Extr. T = 380 °C

 

Figure 3.6.  Effect of SCE pressure on the predicted mesophase content of the dried L phase 

(see Fig. 3.2).  SAFT–LC predictions were made at an S/P ratio of 3.0 and three operating 

temperatures.   
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The effect of S/P ratio on mesophase content in the L phase was also investigated.  

Results for a constant extraction temperature of 330 C and several extraction pressures 

are given in Fig. 3.7.  SAFT–LC predictions of a decrease in mesophase content in L with 

an increase in S/P ratio are counterintuitive and, in fact, contradict the experimental 

results given in Table 3.2 (e.g., compare Runs 1 and 4, 2 and 6, 8 and 10; for these pairs, 

only the S/P ratio was changed).  SAFT–LC also predicts (not shown) that the fraction of 

the feed pitch which remains unextracted and ends up as the L phase increases from 20 to 

30 wt % as the S/P ratio is increased from 2.0 to 5.0 at 330 C and 90 bar.  Prediction of 

an increase in bottom-phase yield of this magnitude would, indeed, lead to a lower 

average mol wt and less mesophase content.  Our investigation of what aspects of SAFT–

LC are leading to this anomalous behavior are in progress, and tentatively point to the 

pure-component parameters that were derived from bitumen data. 
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Figure 3.7.  Effect of solvent-to-pitch ratio (toluene solvent) on the mesophase content in 

the dried L phase for a SCE temperature of 330° C, as predicted by SAFT–LC. 

T = 330 °C 
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Finally, we evaluated the ability of SAFT–LC to predict the surprising behavior 

of carbonaceous mesophase pitches to absorb up to 20 wt % solvent and still consist of 

100% mesophase.
16

  To this end, phase diagrams were generated that illustrate system 

phase behavior as a function of temperature for the addition of toluene solvent to L 

phases consisting of 100% mesophase, generated by the SCE process shown in Fig. 3.2.  

As an example, Fig. 3.8 shows a phase diagram at 50 bar for 100% mesophase pitch 

fractions produced at three different SCE conditions: (1) an L phase obtained at 

extraction conditions of 330 C, 100 bar, and a S/P ratio of 3.0 (Fraction 1); an L phase 

obtained at the same T and S/P ratio, but 155 bar (Fraction 2); and an L phase obtained at 

the same T and S/P ratio, but 200 bar (Fraction 3).   
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Figure 3.8.  Calculated binary phase diagram for the addition of toluene to 100% 

mesophase pitch fractions at 50 bar.  Pitch fractions were obtained at extraction 

conditions of T = 330° C, S/P ratio = 3.0, and pressures of (i) 100 bar (gray phase 

boundaries), (ii) 155 bar (thick black phase boundaries), and (iii) 200 bar (thin black 

phase boundaries)   
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Several trends are apparent from an examination of Fig. 3.8.  First, we note that 

for the fractions produced at higher extraction pressures, and with higher average mol 

wts, increasing amounts of toluene are required before we cross the phase boundary to 

create an isotropic phase (analogous to a bubble point). For example, at a temperature of 

340 C an isotropic phase forms from Fraction 1 with the addition of only 0.5 wt % 

toluene; however, no phase split occurs for the higher mol wt fractions until the toluene 

wt % reaches 8.5 and 10.5 wt %, respectively.   

A different behavior is observed at the boundary between the 2-phase region and 

the isotropic phase (the clearing temperature; analogous to the dew point).  At low 

concentrations of solvent (< ~ 0.04 weight fraction), the behavior is as expected, with the 

clearing temperatures increasing with the average mol wt of the fraction.  However, at 

solvent concentrations > ~ 0.04, this trend reverses itself, as Fraction 1 becomes the 

toluene/pitch mixture with the highest overall clearing temperature.  Although we have 

no immediate explanation for this phenomenon, we note that Fraction 1, having the 

lowest average mol wt, in fact contains the lowest mole fraction of solvent.  Therefore, 

the presence of solvent may have less of an impact on this fraction than those of higher 

average mol wt.  Finally, we also note that as the extraction pressure increases, the size of 

the two-phase region decreases markedly.  At 0 percent toluene, Fraction 1 has a “bubble 

point” of 380 C and a clearing temperature of 490 C.  However, for Fraction 3, the two 

phase transitions differ by less than 20 C.  For all fractions, the addition of toluene 

greatly expands the size of the two-phase region, while significantly lowering the fraction 

clearing temperature. 
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Conclusions 

SAFT–LC has shown itself to be a versatile equation of state for application to 

carbonaceous pitches, a unique class of materials that can form discotic nematic 

mesophases at appropriate oligomeric compositions.  In general, both the supercritical 

extraction conditions required to produce 100% mesophase fractions and the effect of 

solvent addition on system phase behavior were successfully predicted.  However, the 

extent to which SAFT–LC can accurately predict the oligomeric distribution of the 

fractions isolated will require the measurement of new phase equilibrium data, including 

the molecular composition of the recovered fractions.  Fortunately, with the recent 

development of MALDI mass spectrometry as an effective analytical tool for 

carbonaceous pitches, this is now an achievable objective. 

Another important task is the modification of the set of pure-component SAFT 

parameters so that they are appropriate for carbonaceous pitches, which possess a 

significantly higher aromatic content than the cuts of bitumen for which the correlations 

of Huang and Radosz (which were used to define SAFT parameters for this study) were 

defined.  These correlations were defined based primarily on SAFT parameter data for 

aliphatic compounds; in addition, in deriving these correlations, Huang and Radosz only 

considered aromatic compounds up to a mol wt of 228 Da (triphenylene).  Thus, the 

accuracy of SAFT parameters predicted for PCs of highly aromatic pitches is highly 

questionable. 
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Finally, in order to use group contribution theories to obtain a new set of pure-

component SAFT parameters, it will be necessary to determine a new MWD for the feed 

pitch, along with molecular structures for each of its constituents.      

 

Comparison of the Performance of SAFT-LC Models Presented in Chapters 2 and 3: 

Which one is Better? 

 In this section, the effect of the methods presented in Chapters 2 and 3 for 

predicting the mol wt distribution and SAFT parameters on the SAFT-LC model 

predictions presented in each chapter is investigated.  In Fig. 3.9, the solvent 

compositions for the V and L phases given in Tables 2.2 and 3.2 are presented in 

graphical form.  In Fig. 3.9, Model 1 refers to the SAFT-LC model predictions presented 

in Chapter 2, in which GPC and Gauss-Chebyshev quadrature were used to resolve the 

feed pitch into 21 PCs and each PC was assumed (for the sake of modeling) to have the 

same C/H ratio, with this value being set as a fitting parameter.  Model 2 refers to the 

SAFT-LC model predictions presented in Chapter 3, in which an MWD obtained via 

MALDI mass spectrometry was resolved into 10 PCs, with the molecular C/H ratio for 

each PC obtained from a correlation developed in our labs that relates the MALDI-

determined number average mol wt of a particular pitch fraction produced by dense-gas 

extraction to the average C/H ratio of that fraction.  Finally, Model 3 refers to SAFT-LC 

calculations obtained using the same 10 PCs as Model 2, but with the C/H ratio set as a 

fitting parameter )just as in Chapter 2, the optimum value for C/H ratio = 0.71. 



 90 

0

2

4

6

8

10

12

14

16

18

0.100 0.200 0.300 0.400 0.500 0.600 0.700 0.800 0.900

Mass Fraction Solvent Present

R
u

n
 N

u
m

b
e
r

Exp. Data

SAFT-LC Model 1

SAFT-LC Model 2

SAFT-LC Model 3

V Phase Solvent 

Compositions

L Phase Solvent 

Compositions

0.0200.0223

0.0410.0142

0.0350.0201

AAD for 

L Phase 

Comps.

AAD for 

V Phase 

Comps.

Model

 

Figure 3.9.  Toluene solvent compositions in the V and L phases obtained at the 

extraction conditions denoted in Tables 2.2 and 3.2.  Average absolute differences 

(AADs) between experimental and correlated/predicted solvent compositions for V and L 

phases indicate that use of Models 1 and 3 is typically more effective at reproducing 

experimental results.   

  

 From Fig. 3.9, it is apparent that there is a high degree of similarity between the 

solvent compositions predicted using Models 1 and 3.  That is, under the constraints of 

Models 1 and 3, SAFT-LC tends to overpredict solvent compositions in the L phase, and 

it underpredicts them in the V phase.  The correlated/predicted values yielded by Models 

1 and 3 for the mesophase content in the dried L phase are also similar (although the 

correlations and predictions obtained using Model 1 are superior to those obtained using 

Model 3, as indicated by the AAD values given in Fig. 3.10).  



 91 

0

10

20

30

40

50

60

70

80

90

100

1 3 5 7 9 11 13 15 17

Run Number

W
t 

%
 M

e
s
o

p
h

a
s
e
 i
n

 D
ri

e
d

 L
 P

h
a
s
e

Exp. Data

SAFT-LC Model 1

SAFT-LC Model 2

SAFT-LC Model 3

10.23

12.72

5.51

AAD for 

Mesophase  

Comps.

Model

    

Figure 3.10.  Mesophase compositions in the dried L phases resulting from extractions at 

the conditions denoted in Tables 2.2 and 3.2.  Models 1 and 3 are clearly more closely 

correlated to the experimental results for runs 1-8 than Model 2, as indicated by the 

AADs between experimental and correlated/predicted mesophase compositions.  

 

 While otherwise identical (both treat the C/H ratio as an adjustable parameter), 

Models 1 and 3 incorporate different methods of resolving the MWD of the feed pitch 

into PCs (GPC and Gauss-Chebyshev quadrature in the first case, and MALDI in the 

second).  It is very notable that the difference in the number of PCs (21 vs. 10) utilized in 

each case does not greatly impact the model predictions for solvent phase compositions 

and mesophase contents.  Nor does the great difference in the width of the MWD (for 

Model 1, PC mol wts range from 184 to 5476, while for Model 3, PC mol wts range from 

287 to 1452) have a great impact on the model predictions.  Therefore, it appears unlikely 
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that changing the spacing of the intervals for the MALDI spectrum in Fig. 3.3 so that the 

PC distribution more closely models the MWD of the feed pitch, or altering the number 

of such intervals to change the number of PCs would greatly impact the model 

predictions either.   

 Based on the data analysis presented within this section, Model 1 yields the best 

correlations/predictions for mesophase content in the dried L phase.  Because the 

accurate prediction of mesophase content is essential to controlling the mesophase 

content of pitches produced from such extraction processes, Model 1 is the best of the 

three models.  This is true even though the GPC-derived MWD is skewed to the high side 

and SAFT parameters are predicted using a C/H ratio that is not indicative of that present 

in carbonaceous pitches.  Because the fit results were best when C/H ratio was set as an 

adjustable parameter, the correlations of Huang and Radosz used to predict the SAFT 

parameters for the pitch PCs must be replaced.    

 Parameter sensitivity analyses were conducted by perturbing one adjustable fitting 

parameter (A, B, C, a, or b), typically ±10%, while holding all others constant.  For 

SAFT-LC Model 1, analysis results indicate that such moderate deviations in the value of 

one parameter have a small but noticeable effect on the predictions for toluene-pitch 

phase behavior and mesophase formation in the dried bottom L phase (see Figs. 3.11-

3.15).  Model 1 and Model 3 were considerably more tolerant than Model 2 of equally 

sized perturbations in the adjustable fitting parameters, with the phase equilibrium and 

mesophase content data generated using Model 1 being the least affected by perturbations 

in the fitting parameters. 
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Figure 3.11.  Sensitivity analysis results for perturbation of the A parameter in SAFT-LC 

Model 1. 
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Figure 3.12.  Sensitivity analysis results for perturbation of the B parameter in SAFT-LC 

Model 1. 
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Figure 3.13.  Sensitivity analysis results for perturbation of the C parameter in SAFT-LC 

Model 1. 
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Figure 3.14.  Sensitivity analysis results for perturbation of the a parameter in SAFT-LC 

Model 1. 
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Figure 3.15.  Sensitivity analysis results for perturbation of the b parameter in SAFT-LC 

Model 1. 
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CHAPTER 4 

STRUCTURAL IDENTIFICATION OF THE MONOMERIC CONSTITUENTS OF 

PETROLEUM PITCH 

 

Introduction 

Petroleum pitches are generally obtained from the thermal polymerization of fluid 

catalytic cracking (FCC) decant oil,
1-2

 a byproduct of the catalytic cracking of the heavy 

gas oil fraction of crude oil.  These polycyclic aromatic hydrocarbons (PAHs) possess a 

higher degree of alkyl substitution
3
 than do coal-tar pitches and are more likely to contain 

methylene bridges
4
 between carbon atoms.  As shown in Fig. 4.1a and validated 

independently by several researchers,
3,5-8

 these materials are oligomeric in nature, with a 

molecular weight (mol wt) range that extends from about 200 to more than 1000.
5-6

   

Petroleum pitches can serve as raw materials for a wide variety of carbon products, 

including high thermal conductivity carbon fibers
9
, carbon electrodes

10
, activated carbon 

fibers
11-12

, and as an impregnating agent for the densification of carbon-carbon 

composites.
13 

 For several of the above applications, conversion of the initially isotropic 

pitch to a liquid-crystalline mesophase must also be carried out.  Although the mol wt and 

structure of pitches are known to play a role in their suitability for a given 

application,
5,9,14 

this understanding has been limited because of an inability to properly 

characterize the constituents of pitch.   

The focus of this paper was the identification of the key monomeric species that exist 

in a representative petroleum pitch.  For this study, Marathon M-50
15

 was chosen, 
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primarily because of its similarity to its well-known predecessor, Ashland A-240, which 

had a significant commercial market for many years.  Monomer information about such 

pitches is needed to assist in the prediction of the molecular structures of the dimer and 

higher-order oligomers present in petroleum pitch, as these oligomers serve as key 

precursors for the advanced carbon materials described above.   

Previous work in this area has been limited.  The material safety data sheet (MSDS)
15

 

for M-50 pitch reports the concentration of several persistent bioaccumulative toxins 

(PBTs) present in M-50 pitch.  However, this list is hardly inclusive, as the vast majority 

of species present in M-50 pitch are not on the list (only 6 of the many species present in 

M-50 pitch, covering four mol wt values, are listed).  Fetzer and Kershaw
16

 used 

reversed-phase high performance liquid chromatography with photodiode array/UV-Vis 

detection (HPLC/PDA) to identify individual species present in chromatographic 

fractions of pitch, but it was a coal-tar pitch that was studied.  Basova et al.
17

 used gas 

chromatography-mass spectrometry (GC-MS) to identify monomeric components present 

in both a Korean and a Conoco petroleum pitch.  However, because no pre-fractionation 

of the pitches was carried out, good resolution between the pitch components was not 

achieved.  In addition, as shown by Wang and Eser,
18-19

 GC-MS is less suitable for 

species above a mol wt of 250, as they become increasingly difficult to resolve and elute.  

Furthermore, it is not always possible to distinguish between the mass spectra of PAH 

isomers. 

 Also of interest to us is the characterization of FCC decant oils.  Because they are the 

starting materials for petroleum pitch, we would expect similarities between these species 



 

 

 100 

and the monomer fraction of pitch, although the processes of polymerization and 

volatilization would also be expected to create differences.  Eser and co-workers
18-19

 used 

GC-MS, HPLC/PDA, HPLC/MS/MS, and laser desorption/mass spectrometry (LD/MS) 

to characterize a number of different decant oils. Their work showed that the decant oils 

were composed primarily of methylated derivatives of 3-6 ring PAHs, including 

phenanthrene, pyrene, chrysene, perylene, the benzopyrene isomers, and 

benzo[ghi]perylene.   

 Recently, Cristadoro et al.
3
 investigated the monomer and dimer fractions of M-50 

petroleum pitch, using both fractionation and characterization techniques.  Monomer- and 

dimer-rich fractions of the pitch were isolated using the method of dense-gas extraction 

(DGE).
20-21 

 These fractions were then characterized by a wide variety of techniques, 

including matrix-assisted, laser desorption and ionization, time-of-flight mass 

spectrometry (MALDI-TOF-MS, or MALDI for short), MALDI-post-source decay 

(MALDI-PSD, or PSD for short), UV-Vis spectrophotometry, IR spectroscopy, and 
1
H 

NMR.  A key finding of this work was that the major PAH species comprising M-50 

monomer are grouped into well-defined, Gaussian-like distributions, with each 

distribution consisting of an aromatic backbone substituted (primarily ) with from 0 to 

6 methyl (and occasionally ethyl) groups.  However, the molecular structures of the 

aromatic backbones could not be unambiguously established.   

 Thus, the motivation of this paper was twofold:  (1) identify all important PAH series 

present in the monomer fraction of M-50 pitch (which comprises almost half of the entire 

pitch
22

), and (2) unambiguously determine the PAH backbones for these monomer series.  
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To meet these objectives, narrow mol wt fractions of M-50 monomer separated by DGE 

were fractionated into even narrower cuts by preparatory-scale gel permeation 

chromatography (prep-scale GPC).  The degree of separation achieved by this 2-step 

process was such that many of the individual species present were then isolated, and thus 

could be analyzed.  MALDI-TOF-MS and PSD were subsequently applied to selected 

fractions, and the species therein, to obtain mol wt distribution (MWD), molecular 

structure, and series distribution information.  Finally, these fractions were analyzed by 

reversed-phase HPLC/PDA in order to conclusively identify the major PAH backbone 

species present in M-50 monomer.   

 

Experimental 

Materials 

 M-50 petroleum pitch (CAS number 68187-58-6), was obtained from Marathon 

Petroleum Company LLC. The mass spectrum of M-50, as obtained by MALDI, is given 

in Fig. 4.1a.  The broad peaks are classified in terms of oligomers as follows: monomer 

(210 to 388 Da), dimer (388 to 645 Da), trimer (645 to 890 Da), and tetramer (890 to 

1120 Da).  As described below in Section 2.2, three narrow mol wt, monomeric fractions 

of the M-50 pitch were isolated by DGE and also served as materials in this study.   

 Both toluene (HPLC grade, CAS number 108-88-3) and methanol (HPLC grade, 

CAS number 67-56-1) were obtained from Fisher Scientific and used as DGE solvents.  

GPC-grade 1,2,4-trichlorobenzene (TCB; CAS number 120-82-1) was used as the mobile 

phase for the prep- scale GPC work and was supplied by J. T. Baker.  For reversed-phase 
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HPLC work, the solvents acetonitrile (ACN; HPLC grade, CAS number 75-05-8) and 

water (HPLC grade, CAS number 7732-18-5) were supplied by Burdick and Jackson and 

Thermo Scientific, respectively.  For UV-Vis spectrophotometry, the solvent cyclohexane 

(CAS number 110-82-7) was obtained from Sigma-Aldrich.  For MALDI and PSD 

analyses, the matrix 7,7,8,8-tetracyanoquinodimethane (TCNQ; CAS number 1518-16-7) 

was supplied by TCI America. 

 

DGE Pitch Cuts 

 It was necessary to generate 3 fractions of M-50 monomer in order to subsequently 

isolate and characterize species in the low (270 Da and below), medium (270-335 Da), 

and high (335-388 Da) mol wt ranges.  These fractions are shown as DGE Pitch Cuts 1-3 

in Figs. 4.1b-4.1d, respectively.  DGE Pitch Cut 1 was produced from M-50 pitch by 

continuous DGE using methanol as the extractive solvent.  The column operating 

pressure was 36 bar; a positive temperature gradient was employed throughout the DGE 

column such that the bottom section was held at 330° C, the middle at 350° C, and the 

top at 380° C.  Additional details are given elsewhere.
3
 DGE Pitch Cut 2, identified as 

Fraction 4 in Table 3 of Reference 3, was generated from M-50 pitch via semibatch DGE, 

using toluene as the extractive solvent.  Column temperatures and pressures were the 

same as those described above.    

 DGE Pitch Cut 3 was also prepared by semibatch DGE, but here the feed charge was 

not M-50 but rather a dimer-rich cut containing only the heaviest monomer species.  

Conditions were the same as described for DGE Pitch Cut 2 above, except that the 
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column operating pressure was 29 bar.  The dimer-rich charge itself was produced from 

M-50 pitch using a 2-column DGE process, as developed by Cervo and Thies,
21

 and is 

referred to in that paper as “Dimer-Rich B”.  Details of its preparation are given there.   

 

Prep-scale GPC 

 Prep-scale GPC was used to produce narrow mol wt fractions from DGE Pitch Cuts 

1-3, using hot TCB as the mobile phase at 140° C.  Hutchenson et al.
23

 found that nearly 

ideal elution behavior (i.e., a linear relationship between log mol wt and retention time) 

was obtained when hot TCB was used as the mobile phase.  In addition, past solubility 

tests
24 

indicate that petroleum pitch is > 99% soluble in hot TCB over a concentration 

range of 1.5 to 100 mg/mL.   

 An analytical-scale Waters Alliance GPCV 2000 was used for our work; several 

modifications were made so that it could be used on the preparative scale.  In particular, 

both the viscometer and the solvent preheater loop were bypassed so that the mobile-

phase flow rate could be increased to 2.50 mL/min at an operating temperature of 140° C.  

Two prep-scale GPC columns (25 mm i. d. x 300 mm long) were supplied by Polymer 

Laboratories.  The packing material was PLgel, with a particle size of 10 microns.  The 

packing material in the first column (part number PL1210-6125) had a pore size of 500 

Å, and in the second column (part number PL1210-6120) a pore size of 100 Å. 

 DGE Pitch Cuts 1 and 2 were prepared for GPC fractionation at a concentration of 

10 mg/mL.  Because of its scarcity, DGE Pitch Cut 3 was prepared at a lower 

concentration of 3 mg/mL.  It should be noted that higher pitch concentrations were 
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generally avoided, so as to extend column life and maintain column efficiency
25

.  

Samples were filtered with a 0.5 micron filter prior to injection and were then injected at 

a volume of 1.08 mL.  Sample collection was achieved by diverting the column eluent 

stream to a Waters Fraction Collector (model 1).  A refractive index (RI) detector was 

used to obtain the GPC chromatogram.   

Figure 4.1.  MALDI spectra for (a) M-50 pitch (adapted from Cervo and Thies
21

), (b) 

DGE Pitch Cut 1, (c) DGE Pitch Cut 2, and (d) DGE Pitch Cut 3.     

 

Pitch species identification by HPLC/PDA 

 HPLC/PDA was used to unequivocally identify species present in three pitch 

fractions: DGE Pitch Cut 1 and GPC Fractions 6 and 7, which were isolated from DGE 

Pitch Cut 2 via prep-scale GPC.  Analysis of DGE Pitch Cut 1 was conducted by 
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dissolving the sample in pure ACN at a concentration of 7 mg/mL.  Such a high 

concentration had to be used because of the relatively broad MWD of this sample.  With 

the two GPC fractions being of much narrower MWD, a lower concentration could be 

used.  GPC Fractions 6 and 7 were first dried at 110° C and 15 torr to remove the GPC 

mobile phase TCB.  These samples were then dissolved in 1 mL of ACN at a 

concentration of about 0.1 mg/mL, and water was subsequently added to the solution 

until the UV-Vis absorbance measured from 0.5 to 0.6 absorption units at 254 nm and an 

optical path length of 1.0 cm.  Typically, the ACN:water ratio was 1:1 by volume.  The 

sample volume injected onto the HPLC column was 10 L in all cases.   

 Reversed-phase HPLC was chosen in favor of normal-phase HPLC because of the 

success of previous workers
16,26-29 

in utilizing this technique to separate mixtures of 

PAHs with mol wts up to 450 Da. In this study, a C18 reversed-phase column (length 250 

mm, inner diameter 4.6 mm, particle size 5m) manufactured by Restek (Pinnacle II, 

product no. 9214575) was used.  Gradient elution was performed with a quaternary 

Waters model 626 solvent pump at a mobile phase flow rate of 1.0 mL/min.  The initial 

makeup of the mobile phase was 30/70 v/v ACN/water on a volume basis, with the 

mobile-phase ACN concentration being increased by 1 volume percent per minute until 

pure ACN was the eluent.  The run then proceeded for 20 more min under these 

conditions.  A Waters model 996 PDA detector was used to obtain the UV-Vis spectra of 

the eluent stream exiting the column every 1.0 second.  In order to identify the species 

eluting from the HPLC column, these UV-Vis spectra were compared to those of 

reference standards.  Standards were prepared using water/ACN solutions at 
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concentrations identical to those of the HPLC mobile phase at elution time.  For the 

analysis of DGE Pitch Cut 1, fractions of the column eluent were collected for 

subsequent MALDI analysis; typically, the collection time was 20 seconds.    

 

MALDI and PSD 

Both MALDI and PSD analyses were performed on GPC fractions 1-12, using a 

Bruker Daltonics Autoflex MALDI mass spectrometer with a 337 nm nitrogen laser.  

MALDI was used to obtain the absolute mol wt of the most prominent species in a given 

fraction; this was followed up with PSD on said prominent species, in order to obtain 

specific molecular structure information on those species.  We have previously described 

the operating parameters for both MALDI and PSD in detail elsewhere.
3 

  Because of the 

low amounts of pitch present in each collected GPC or HPLC eluent fraction (the 

amounts are on the order of micrograms), the following sample preparation procedure 

was followed in order to minimize the amount of sample necessary for MALDI analysis.  

First, the TCNQ matrix was ground into a fine powder with the aid of a ball mill (Thermo 

Electron Corp., Wig-L-Bug model).  The TCNQ was then deposited onto the MALDI 

target using water spotting, a method developed by our group at Clemson.
6
  Next, a drop 

of the fraction of interest was spotted onto the dried TCNQ.  Once dry, the sample was 

subjected to analysis.   
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UV-Vis Spectrophotometry 

UV-Vis analyses were performed on selected GPC fractions with a Spectral 

Instruments 400 Series spectrophotometer.  The GPC fractions were first dried for 2 

hours at a temperature of 120° C and a pressure of 25 torr to remove the TCB mobile 

phase.  They were then re-dissolved in cyclohexane, the UV cutoff wavelength of which 

is ~ 110 nm less than that of TCB.  This action allowed measurement of the UV-Vis 

spectrum over a wider wavelength range.  The concentrations of the GPC fractions 

analyzed were controlled by adding cyclohexane solvent until the maximum light 

absorbance value recorded fell below 2.0.  

 

Results and Discussion 

 

MALDI-PSD to detect alkyl substitution on PAH backbones 

 The MALDI spectrum of M-50 pitch, focused in on the monomer region, is given in 

Fig. 4.2.  Previous work
3
 had established that species within the monomer fraction could 

be resolved into Gaussian signal distributions, created by the distribution of methyl (and, 

to a limited extent, ethyl) substituents on base PAH backbone(s) of a given mol wt.  The 

“blue rectangle” series originating at a mol wt of 216 Da, the “yellow ring” series 

beginning at 228 Da, and the “orange dot” series starting at 252 Da had been previously 

identified, but their PAH backbones had not been identified.  In addition, for the “yellow 

ring” series the extent of alkyl substitution could not be determined because we were not 

able to properly isolate the species in this series for PSD analysis.   
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Figure 4.2.  MALDI of M-50 pitch, showing only the mol wt range of the monomer 

(210-388 Da).  Major species signal distributions are highlighted.  The “red triangle” and 

“white square” signal distributions are new and have not been previously reported.    
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Figure 4.3.  GPC chromatograms for DGE Pitch Cuts 1-3, showing the 12 fractions that 

were selected for MALDI-PSD analyses.  The actual, isolated species selected for 

analysis are denoted in boldface.   
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Figure 4.4.  MALDI-PSD fragmentation analyses for individual species comprising the 

“yellow ring” (left panel), “red triangle” (center panel) and the “white square” (right 

panel) distributions given in Fig. 4.2. PSD spectra given in a-b and f-o were obtained 

from GPC Fractions 1-12 (see Fig. 4.3), while the spectra given in c-e were previously 

obtained
3
 directly from DGE Pitch Cut 1.  

 

In this work, such isolation was successfully carried out by applying prep-scale GPC 

to DGE Pitch Cuts 1-3.  Up to 31 GPC fractions per DGE Pitch Cut, with each cut 

typically being collected over a 15-second time span, were obtained.  MALDI analysis 

was performed on these fractions, and 12 of these had prominent peaks well-isolated such 

that they could be readily analyzed for molecular structure by PSD (see Fig. 4.3).  PSD 
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analyses for the “yellow ring” signal distribution in Fig. 4.2 are given in Figs. 4.4a-e.  

Analysis of the m/z = 228 peak in Fraction 1 and of the 242 peak in Fraction 2 produced 

no fragmentation (Figs. 4.4a and 4.4b), a result that occurs for both unsubstituted 

aromatics and those substituted with only a single methyl group.  However, for parent 

peaks of m/z = 256.2, 270.2, and 298.5 (see Figs. 4.4c-e), signals with m/z of 15 less than 

those of the parent species appear, with the magnitude (and thus, the abundance of these 

peaks) generally increasing with respect to the mol wt of the parent species.  As PSD 

mass spectra for PAHs containing two or more methyl groups exhibit strong peaks at m/z 

of 15 less than the parent species,
30-31

 we conclude that the yellow-ring series originates 

with an unsubstituted PAH backbone with a mol wt of 228.3 Da, with the other species 

containing the same PAH backbone with varying degrees of methylation (in Fig. 4.4e, the 

peak at m/z = 269.8 indicates the limited presence of ethyl groups).   

 Investigation of the “red triangle” series in Fig. 4.2, beginning with the signal at m/z 

= 276.1 Da, was carried out by PSD analysis of GPC Fractions 3-7, obtained by 

fractionating DGE Pitch Cut 2 (see Fig. 4.3).  Neither the fragmentation analyses for the 

parent species of 276.1 Da (see Fig. 4.4f) nor 290.5 Da (see Fig. 4.4g)  display peaks 

indicating the loss of a methyl group, a result consistent with what has already been 

observed for the “blue rectangle”, “yellow ring”, and “orange dot” signal distributions.  

PSD analyses for the parent species of mol wts 304.5 (Fig. 4.4h) and 318.5 Da (Fig. 4.4i) 

exhibit peaks indicating the  presence of a de-methylated species, while the fragmentation 

pattern for the parent species of mol wt 332.6 Da (Fig. 4.4j) indicates the presence of 

both methyl and ethyl groups.  These trends, as well as the increase in size of the de-
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methylation peak with increasing degree of alkylation, indicate that the “red triangle” 

series of Fig. 4.2 is comprised of one or more PAH backbones of mol wt 276 that possess 

varying degrees of alkylation. 

 

 

Figure 4.5.  MALDI spectrum for GPC Fraction 5, produced by prep-scale fractionation 

of DGE Pitch Cut 1.   

 

The benefits of our 2-step fractionation process (i.e., DGE followed by GPC) are 

illustrated by examining the MALDI (not PSD) spectrum for GPC Fraction 5, given in 

Fig. 4.5. Because the signal at m/z = 304.4 is strong with respect to the nearest 

neighboring species (i.e., those within m/z = 5-10), the Bradbury-Nielsen ion gate is able 

to fully screen out all ions except those arising from the parent species.   
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PSD of the “white square” signal distribution was carried out by analysis of GPC 

Fractions 8-12, obtained by the fractionation of DGE Pitch Cut 3 (see Fig. 4.3).  The 

trends observed in the fragmentation analyses for this series (see Fig. 4.4k-o) are similar 

to those observed for the two signal distributions previously described herein.  However, 

it is notable that no peak indicating the presence of de-ethylated ions is observed in Fig. 

4.4o, in which case the peak denoting the parent ion appears at m/z = 382.8 Da.   

 

HPLC/PDA Analysis of Monomer Pitch Fractions 

HPLC/PDA Analysis of DGE Pitch Cut 1 

 In Fig. 4.6, the HPLC chromatogram for DGE Pitch Cut 1 is given.  Here, the 

average absorbance from 200 to 450 nm (the range of wavelengths over which light 

absorption is measured) was plotted against time in order to allow for the fact that 

different compounds absorb strongly at different wavelengths.  For unsubstituted PAHs, 

only matching of each unknown UV-Vis spectrum against the molecular “fingerprint” of 

a reference standard is necessary for unequivocal compound identification.  The UV-Vis 

spectrum for species A, which elutes at a time of 48.82 min (see Fig. 4.6), is compared to 

that of pyrene in Fig. 4.7a.  The results indicate close agreement between the two spectra.  

For the eluting species, the rise in baseline between 250-260 nm is due to the presence of 

a co-eluting species (likely an alkylated phenanthrene).  In addition, the UV-Vis spectrum 

for species B, which elutes at a time of 51.52 min, compares favorably to that of 

triphenylene in Fig. 4.7b.  These two spectral matches confirm, for the first time, that 

triphenylene and pyrene are present in M-50 pitch.   Chrysene (species C) and 
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benz[a]anthracene (species D), both of mol wt 228, were detected in comparable amounts 

(see Fig. 4.6).  Other unsubstituted aromatics detected in DGE Pitch Cut 1, albeit at lower 

levels than the aforementioned species, include phenanthrene (mol wt 178), anthracene 

(178), benzo[b]fluorene (216), benzo[e]pyrene (252), and benzo[a]pyrene (252). 

 The discovery that pyrene (mol wt 202) is present in considerable amounts in DGE 

Pitch Cut 1 suggests that the “blue rectangle” signal distribution in Fig. 4.2, originating at 

216 Da, actually begins at 202 Da.  Therefore, we sought to determine if methylpyrenes 

and other alkylpyrenes were present in DGE Pitch Cut 1. 

 Two of the strongest peaks in Fig. 4.6, labeled A1 and A2, occur at 54.77 and 55.86 

min.  The UV-Vis spectra obtained at both of these elution times are similar to that of 

pyrene (see Figs. 4.8a and 4.8b).  A slight bathochromic (that is, in the direction of higher 

wavelengths) shift in the UV-Vis spectra of these eluting compounds relative to that of 

pyrene is observed, as would be expected for an alkylpyrene;
26

 furthermore, the mol wts 

of species A1 and A2 (see Figs. 4.8d and 4.8e) as observed by MALDI correspond in 

both cases to that of a methylpyrene (216 Da).  Finally, comparison of the UV-Vis 

spectra to the reference spectra of Freidel
32

 confirms that peak A1 represents 4-

methylpyrene and peak A2 2-methylpyrene.   
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Figure 4.6.  HPLC chromatogram for DGE Pitch Cut 1.  Results are plotted against 

average UV-Vis absorption from 200 to 450 nm.  All molecules corresponding to peaks 

in the “A series”   have pyrene (mol wt 202) backbones with varying degrees of 

alkylation.  The aromatic backbones of species in the B, C, and D peak series are 

triphenylene, chrysene, and benz[a]anthracene (all of mol wt 228), respectively.  Species 

E is benzo[a]pyrene (mol wt 252).  
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Figure 4.7.  UV spectral matches, obtained by HPLC/PDA, of (a) species A with pyrene 

and (b) species B with triphenylene reference standards.  

 

 Another sharply absorbing peak in Fig. 4.6 is peak A4, obtained at an elution time of 

61.62 min.  Its UV-Vis spectrum also bears a strong similarity to that of pyrene.  

Considering that the major peak in the MALDI spectrum for the HPLC fraction collected 

between 61.50 and 61.83 min has a mol wt of 230 Da (see Fig. 4.8f), we conclude that 

peak A4 is a dimethylpyrene.  The additional MALDI peaks in Fig. 4.8f at 252 and 256 

Da are, based on both HPLC elution times and UV absorbance behavior, believed to be 

benzo[a]pyrene and dimethyltriphenylene, respectively. 

As shown in Fig. 4.6, other dimethylpyrenes (species A3 and A5), as well as 

trimethylpyrene (species A6) were also detected in DGE Pitch Cut 1.  Thus, it is now 

clear that the “blue rectangle” signal distribution of Fig. 4.2, originally tentatively 

identified as a series of benzo[b]fluorene (mol wt 216) and alkylbenzo[b]fluorenes,
3
 is 

composed primarily of pyrene and alkylpyrenes.  On the other hand, the “yellow ring” 

signal distribution in Fig. 4.2 consists mainly of triphenylene, chrysene, 

benz[a]anthracene, and their alkylated derivatives (species B1-B3, C1-C9, and D1-D6 in 
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Figure 4.8.  UV-Vis spectra for alkylpyrenes (panels a-c) are similar to those for the 

reference standard for pyrene, with a slight bathochromic shift.  The MALDI spectra in 

panels d-f give the mol wts of the respective alkylpyrenes.   
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Fig. 4.6, respectively).  Here, triphenylene is a species that was not previously identified.  

The exact locations of the methyl groups on all but 2-methylpyrene and 4-methylpyrene 

are unknown.  Therefore, based on our previous results,
3
 in Figs. 4.6 and 4.8c we have 

placed the majority of methyl groups on aromatic carbons located at a position  from an 

“inner” aromatic carbon atom that bonds with 3 other carbon atoms.    

 

 HPLC/PDA Analysis of GPC Fractions 6 and 7 from DGE Pitch Cut 2 

In order to identify the specific components that comprise the “orange circle” and 

“red triangle” signal distributions in the monomer fraction of M-50 pitch (see Fig. 4.2), 

GPC Fractions 6 and 7 (see Fig. 4.3) were subjected to reversed-phase HPLC analysis.  

The MALDI spectrum for Fraction 6 (Fig. 4.9b) shows the presence of major species at 

266, 280, and 290 Da, while Fraction 7 (Fig. 4.9a) includes major species at 252, 266, 

and 276 Da.  GPC Fractions 6 and 7 are particularly suitable for HPLC analysis because 

only a few species are present; therefore, co-eluting peaks were less likely to interfere in 

the HPLC chromatograms for these fractions.   

Figure 4.9.  MALDI spectra for (a) GPC Fractions 7 and (b) 6, from prep-scale GPC.         
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Figure 4.10.  HPLC chromatograms for (a) GPC Fractions 7 and (b) 6.   

 

HPLC chromatograms for GPC Fractions 7 and 6 are given in Figs. 4.10a and 

4.10b, respectively.  For Fraction 7 (Fig. 4.10a), the component eluting at 58.58 min is 

identified as benzo[e]pyrene (mol wt 252) in Fig. 4.11a.  Similarly, the species eluting at 

61.38 min is identified as benzo[a]pyrene (mol wt 252) in Fig. 4.11b, and the third 

prominent peak in Fraction 7 (Fig. 4.10a) at 66.72 min is identified as benzo[ghi]perylene 

(mol wt 276) in Fig. 4.11c.  Also shown at 68.02 min and 63.73 min, and identified by 

their UV-Vis spectra in Figs. 4.11d and 4.11e, are two methylbenzopyrenes.  The PAHs 

perylene (mol wt 252), and anthanthrene (mol wt 276) are also present, albeit at lower 

levels (in both cases, the maximum absorbance values measured were ~ 0.010).  The 

PAHs benzo[b]fluoranthene and benzo[k]fluoranthene (both of mol wt 252 Da), each of 

which contain a 5-membered ring, are also present in trace amounts.       

 Referring next to the HPLC chromatogram for Fraction 6 (Fig. 4.10b), it is 

interesting to note that the UV-Vis spectra obtained at an elution time of 63.73 min are 

virtually identical for both GPC Fractions 6 and 7 (Fig 4.10a and 4.10b), although the 

magnitude of response is noticeably greater in the case of GPC Fraction 6.  These UV-
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Vis spectra are very similar to that of benzo[e]pyrene (mol wt 252; see Fig. 4.11a), with a 

bathochromic shift of 1-2 nm being observed.  Furthermore, the only major peak 

appearing in the MALDI spectra for both fractions (see Figs. 4.9a and 4.9b) has a mol wt 

of 266 Da.  Therefore, the species in question must be a methylated benzo[e]pyrene.  

However, it is not possible to deduce the location of the alkyl substituent because of the 

lack of UV-Vis reference spectra for the benzo[e]pyrene isomers.     

 Another peak, occurring at an elution time of 68.02 min, also appears in the HPLC 

chromatograms for both GPC Fractions 7 and 6 (Figs. 4.10a and 4.10b).  The resulting 

UV-Vis spectra are virtually identical and are very similar to benzo[a]pyrene, with a light 

bathochromic shift of 1-2 nm being observed (Fig. 4.11e).  Again, the only major peak 

that appears in the MALDI spectra for both fractions corresponds to 266 Da, so the 

eluting component must be a methylbenzo[a]pyrene. 

 Based on the results in Fig. 4.11, then, we conclude that the “orange circle” signal 

distribution for the monomer fraction in Fig. 4.2 consists primarily of the benzopyrenes 

and their alkylated derivatives.  Perylene and its alkylated derivatives are also present, 

but in significantly lower quantities. 

The final peaks of interest in the HPLC chromatogram of GPC Fraction 6 occur in 

the 71-72.5 min range, with the UV-Vis spectrum for the peak at 71.33 min being 

virtually identical to that of the reference standard for benzo[ghi]perylene (Fig. 4.11f).  

Furthermore, we have a MALDI peak in Fraction 6 (Fig. 4.9b) at 290 Da, so the 

compound must be a methylbenzo[ghi]perylene.  In addition, the HPLC chromatogram 

peaks at 71.89 and 72.22 min also exhibit UV-Vis spectra that are virtually identical to 
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Figure 4.11.  UV-Vis spectra indicate that the PAHs (a) benzo[e]pyrene, (b) 

benzo[a]pyrene, and (c)  benzo[ghi]perylene are predominant in GPC Fraction 7, while 

these same aromatic backbones, albeit with methyl substitution, are predominant in GPC 

Fraction 6.   
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benzo[ghi]perylene.  Thus, we conclude that there are 3 distinguishable isomers of 

methylbenzo[ghi]perylene present in this mixture, all with a mol wt of 290 Da.  

Methylanthanthrene, eluting at ~ 73.3 min, was also detected in trace amounts.       

 In summary, considering both the UV-Vis results above and the PSD results in Figs. 

4.4f-j, we can now unambiguously identify the “red triangle” series in Fig. 4.2 as 

benzo[ghi]perylene and its alkylated (primarily methylated) derivatives. 

 

UV-Vis Analysis of GPC Fraction 11 from DGE Pitch Cut 3 

 HPLC/PDA analysis of the GPC fractions isolated from DGE Pitch Cut 3 (see Fig. 

4.3) were not carried out because of the scarcity of reference UV-Vis standards for these 

higher mol wt species that make up the “high end” of the monomer fraction of M-50 

pitch (see Fig. 4.2).  Thus, having only conventional UV-Vis spectrophotometry available 

for analysis, we selected a fraction containing one dominant species.  As shown in Fig. 

4.12a, the MALDI spectrum for GPC Fraction 11 exhibits a major peak at m/z 340.  

Based on the PSD analysis for the “white square” series in Fig. 4.2, we would expect the 

peak at m/z 340 (Fig. 4.4l) to denote a species containing one methyl group.   

Of the multitude of possible PAH backbone structures that exist for a molecular 

weight of 326 Da, only a handful of UV-Vis reference standards exist.  None of these are 

a fingerprint match for the spectrum given in Fig. 4.12b.  Nevertheless, the characteristic 

features of the spectrum are somewhat surprising, as there are none of the strong 

absorption peaks that are observed above 300 nm for the larger PAHs with mol wts near 

326 Da, such as peropyrene (326), the dibenzoperylenes (326 or 352), anthanthrene 
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(276), and the dibenzoanthanthrenes (376).
33

  (One exception might be naphtho[8,1,2-

bcd]perylene (326), which, because of the presence of peaks at 440 and 470 nm in Fig. 

4.12b, may be present in small amounts.)  Instead, the UV-Vis spectrum for GPC 

Fraction 11 exhibits a strong drop-off in absorption above 300 nm and weak absorbance 

at higher wavelengths.   

Such characteristics are much more consistent with the UV-Vis spectra for 

fluoranthenoids,
33-34

 that is, those PAHs containing one five-membered ring
27

 (those 

containing only 6-membered aromatic rings are known as benzenoid PAHs).  Examples 

of fluoranthenoid PAHs with mol wts at or near 326 for which reference spectra are 

available include 2.3-o-phenylene-4.5-benzopyrene (mol wt 326), 2,3-o-phenylenepyrene 

(276), 2.3,5.6-dibenzofluoranthene (302), and naphtho-(2’.3’:10.11)-fluoranthene (302).  

Unfortunately, none of these are a particularly good match for the UV-Vis spectrum 

shown in Fig. 4.12b, but that could be partly because GPC Fraction 11 contains species 

other than the 340 Da moiety.    

 Another possibility is that the PAH backbone molecule at 326 Da is actually a dimer 

created by the condensation reaction of pyrene (mol wt 202) and naphthalene (mol wt 

128), joined together by a 5-membered ring.  Although naphthalene is not present in M-

50 monomer, it has been shown by Eser and co-workers
18-19

 to be a component of FCC 

decant oil, the starting material used for M-50 pitch.  However, no reference UV-Vis 

spectrum exists for examination of this hypothesis.  In summary, while it is highly 

probable that the PAH backbone for the “white square” distribution of Fig. 4.2 is a 

fluoranthenoid PAH, the actual structure cannot be identified.   
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Figure 4.12.  (a) MALDI spectrum and (b) UV-Vis spectrum for GPC Fraction 11.   

The Molecular Composition of the Monomer Fraction of M-50 Pitch 

The results of this study are summarized in Table 4.1 and Fig. 4.13.  In Table 4.1, we 

list the compounds that make up each of the PAH series distributions given in Fig. 4.2 for 

the monomer fraction of M-50 pitch (except for the “white square” series, for which 

positive identification of the PAH backbone(s) was not achieved).  In Fig. 4.13, we give 

the specific PAH backbones comprising each of the distributions.  Estimates of species 

concentrations, in both wt % and mol %, as a percentage of the M-50 monomer range 

investigated, are also given in Table 4.1.  These estimates were obtained by (1) 

determining the monomer area under the MALDI spectrum between 216 and 318 Da, (2) 

assuming that area fraction and mol fraction are approximately equal for each species (in 

Chapter 5, this approximation is somewhat reliable for PAHs of mol wt > 250 Da, but 

alkylated PAHs are overcounted relative to non-alkylated PAHs), (3) calculating a 

number average mol wt (Mn = 280) for the above mol wt range, and (4) calculating a wt 

% for the species mol wts investigated in this study.  Results indicate that we are 

identifying more than 40 wt % of the individual pitch species present in the monomer in 

the 216-318 mol wt range.  
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Table 4.1.  Major species present in the monomeric fraction of M-50 pitch, their 

concentrations in the entire pitch, and their associated signal distributions (see Fig. 4.2).    

 

 

 

 

Compound 
Wt % in 

Monomer 

Mol % in 

Monomer 

Mol Wt 

(Da) 

Signal 

Distribution 

Methylpyrenes (A1, A2) 0.16 0.20 216 Blue rectangle 

Dimethylpyrenes (A3, A4, A5) 1.28 1.56 230 Blue rectangle 

Trimethylpyrene (A6) 2.16 2.48 244 Blue rectangle 

Triphenylene, chrysene, benz[a]anthracene (B, C, D) 0.11 0.14 228 Yellow ring 

Methylated triphenylene, chrysene, and 

benz[a]anthracene (B1, C1, C2, D1, D2, D3) 

1.02 1.18 242 Yellow ring 

Dimethylated triphenylene, chrysene, and 

benz[a]anthracene (B2, C3, C4, C5, D4, D5, D6) 

2.69 2.94 256 Yellow ring 

Trimethylated triphenylene and chrysene (B3, C6, C7, 

C8, C9) 

3.30 3.42 270 Yellow ring 

Benzopyrenes 0.18 0.20 252 Orange circle 

Methylbenzopyrenes 4.20 4.42 266 Orange circle 

Dimethylbenzopyrenes 8.45 8.45 280 Orange circle 

Trimethylbenzopyrenes 7.88 7.51 294 Orange circle 

Methylbenzo[ghi]perylenes 2.68 2.59 290 Red triangle 

Dimethylbenzo[ghi]perylenes 4.15 3.83 304 Red triangle 

Trimethylbenzo[ghi]perylenes 3.74 3.30 318 Red triangle 

Totals 42.0 42.2 ------- ---------------- 
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Figure 4.13.  The dominant PAH backbones comprising the signal distributions in the 

monomer fraction of M-50 pitch (see Fig. 4.2 and Table 4.1). 

 

 

Conclusions 

 By combining our macroscopic dense-gas extraction (DGE) process with 

conventional analytical-scale fractionation and characterization techniques, we have been 

able to obtain a high degree of separation between M-50 pitch components, such that 

individual species can be unambiguously identified.  Thus, we now have a fairly 

complete picture of the dominant molecular species that comprise the monomer fraction 

of a representative petroleum pitch.  In each of 5 series that were identified, the first 

molecule was found to be a bare PAH backbone, with the succeeding molecules in each 

series having increasing degrees of methyl substitution.  The dominant PAH backbones 

include pyrene (mol wt 202); chrysene, benz[a]anthracene, and triphenylene (mol wt 
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228); benzo[a]pyrene and benzo[e]pyrene (mol wt 252); and benzo[ghi[perylene (mol wt 

276).  Composition estimates were also obtained and indicate that the most abundant 

species are those with from one to three methyl groups.  Only when a high level (i.e., > 3) 

of methyl substitution was already present on a molecule was any evidence of ethyl 

substitution observed.   

 As FCC decant oil is the starting material for producing petroleum pitch, one would 

expect similarities in the molecular composition of the monomer fraction and of decant 

oil.  To a significant extent, this assumption is correct.  However, several PAHs identified 

in our work, including the relatively abundant triphenylene, benz[a]anthracene, and their 

alkylated derivatives, have not been reported in decant oil.  In addition, M-50 monomer 

contains neither naphthalene nor its alkylated derivatives, which have been detected in 

decant oil.
18-19

 

 Finally, the fact that species with mol wts as high as those observed in the “white 

square” series distribution in Fig. 4.2 (mol wt 326-382) have not been reported in decant 

oil indicates that this series may not be monomeric at all, but the result of the 

condensation of naphthalene and pyrene to form a small dimer.  The elucidation of the 

structure of the dimer and trimer species in M-50 pitch is the subject of Chapter 6.     
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CHAPTER 5 

ADDITIONAL DISCUSSIONS CONCERNING THE STRUCTURAL 

IDENTIFICATION OF THE MONOMERIC CONSTITUENTS OF PETROLEUM 

PITCH 

 

 This section contains additional information concerning methods used in the 

fractionation, identification, and quantification of the most prevalent polycyclic aromatic 

hydrocarbons (PAHs) in M-50 monomer.  In addition, recommendations concerning the 

optimization of equipment performance and lifetime are made.     

 

Extending the Lifetime of the Preparatory-Scale Gel Permeation Chromatography (Prep-

Scale GPC) Fractionation Equipment 

Extending Prep-Scale Column Lifetime 

 While performing prep-scale GPC, several precautions are taken in order to 

maximize column lifetime.  First, in order to prevent clogging of the prep-scale columns 

(and subsequent column and system damage resulting from the excessive backpressure 

encountered in such situations), the mobile phase 1,2,4-trichlorobenzene (TCB) was 

filtered twice – first with a 10 micron filter at the interface between the solvent reservoir 

and the solvent intake line, and then with a 2 micron filter at the mobile phase pump 

outlet.  Second, Dauché et al.
1
 have observed significant loss in column efficiency after 

performing analytical-scale GPC experiments on petroleum pitches for only a matter of 

weeks.  We, too, observed that the prep-scale fractionation of pitch cuts rich in the 
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heavier M-50 oligomers prepared at 50 mg/mL eventually results in peak tailing (after a 

couple dozen such fractionation experiments had been performed).  Therefore, in order to 

maximize column lifetime, we recommend minimizing the amount of pitch fractionated 

in the first place.  Thus, samples prepared at relatively low concentrations (~ 10 mg/mL) 

were typically injected into the prep-scale GPC column.  As the volume of the sample 

injection loop used was 1.080 mL, just over 10 mg pitch were fractionated per prep-scale 

GPC run.  Utilization of concentrations in this range results in the collection of fractions 

with concentrations sufficient to make feasible their subsequent characterization using 

matrix-assisted, laser desorption and ionization, time-of-flight mass spectrometry 

(MALDI), MALDI-post source decay (PSD), high performance liquid chromatography 

with photodiode array detection (HPLC/PDA), and stand-alone UV-Visible 

spectrophotometry (UV-Vis).     

 

Modification of Alliance GPCV2000 System for Prep-Scale Applications 

With the prep-scale GPC columns installed, it is necessary to bypass the 

viscometer, as flow rates of greater than 1.5 mL/min damage the viscometer pressure 

transducer.  In addition, bypassing the solvent preheater loop lowers the pump 

backpressure.  With these changes to the system, it was feasible to set the mobile phase 

flow rate at 2.50 mL/min at an operating temperature of 140° C.  A higher flow rate is not 

feasible, as the pump piston seals fail and cause solvent to leak from the pump.  Also, at a 

flow rate of > 3 mL/min, the refractive index (RI) detector flow cell could crack.   
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Optimizing PSD Results 

 It should be noted that the ability of the Bradbury-Nielsen ion gate to isolate ions 

of a desired mol wt may be limited if there are peaks of comparable intensity within m/z 

±5-10 of each other.  If there are two peaks of comparable intensity within m/z ±2 of each 

other, it is seldom possible to obtain a good PSD spectrum of either one without the 

presence of “pollution” peaks arising because of the ion gate’s inability to filter out ions 

and fragments arising due to the other species.  Because the species distributions in M-50 

dimer and trimer are more uniform, with fewer peaks that are dominant with respect to 

their nearest neighbors, it becomes increasingly difficult to isolate the MALDI signals for 

a particular dimer or trimer species.  Usually, in order to perform PSD on dimer and 

trimer species, a prep-scale GPC fractionation step  is necessary in order to obtain less 

uniform fractions (see Fig. 4.5, Chapter 4) in which the MALDI response for the desired 

species is sufficiently strong (at least twice as intense) with respect to its nearest 

neighbors.   

 

Procedure for Collecting Reference UV-Vis Spectra for PAHs 

 For the UV-Vis spectral identification of M-50 monomer compounds discussed in 

Chapter 4, reference UV-Vis spectra for PAHs were obtained using a Spectral 

Instruments model 400 series spectrophotometer.  The PAH reference standards pyrene 

(CAS 129-00-0, > 99.0 % purity) and triphenylene (CAS 217-59-4, 98.5 % purity) were 

obtained from Fluka, while the PAHs anthracene (CAS 120-12-7, 99.9+ % purity), 
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phenanthrene (CAS 85-01-8, 99.5+ % purity), benzo[b]fluorene (CAS 243-17-4, 98 % 

purity), chrysene (CAS 218-01-9, 98 % purity), benz[a]anthracene (CAS 56-55-3), 

benzo[a]pyrene (CAS 50-32-8, 97 % purity), perylene (CAS 198-55-0, 99+ % purity), 

and benzo[ghi]perylene (CAS 191-24-2, 98 % purity) were obtained from Aldrich.  

Benzo[e]pyrene (CAS 192-97-2, neat) was supplied by Supelco.   

UV-Vis spectra are obtained by dissolving the standard of interest in a solvent at 

low (on the order of 0.1 mg/mL) concentration.  Reference spectra for such PAHs are 

readily available.
2,3

  However, as indicated in Fig. 5.1, the choice of solvent impacts the 

location of the absorption peaks on the UV-Vis spectrum.  The peak maxima in the UV-

Vis spectrum for pyrene in an 80:20 (by volume) mixture of acetonitrile (ACN) and water 

(with a mixture refractive index of 1.34) occur at absorption wavelengths of 320 and 335 

nm.  Using TCB (refractive index 1.57) as the UV-Vis solvent instead of the ACN/water 

mixture causes the peak maxima to shift in the direction of higher wavelengths, to 326 

and 342 nm.    
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Figure 5.1.  Comparison of UV-Vis spectra for pyrene in 80:20 (by volume) ACN:water, 

and in TCB.  An increase in the refractive index of the solvent utilized shifts the peak 

maxima in the direction of higher wavelength.   

 

Therefore, we adhered to the following procedure in the identification of PAHs 

eluting from the HPLC column.  In Chapter 4, we noted that Species A elutes at 48.82 

min, at the point where the mobile phase is approximately 80:20 (by volume) 

ACN:water.  Next, we noted that the shape of the instantaneous UV-Vis spectrum for the 

eluent stream taken at this time is similar to that of pyrene.  Therefore, we obtained the 

UV-Vis spectrum for a reference standard of pyrene in an ACN/water solution of this 

concentration.  Finally, we matched the two UV-Vis spectra in order to unequivocally 

confirm the presence of pyrene in M-50 pitch. 
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Additional MALDI and UV-Vis Spectral Justifications for Identification of Prevalent 

Monomer Species 

In Chapter 4, we demonstrated that unsubstituted aromatics can be identified by 

matching the UV-Vis spectra of unknown PAHs (from the HPLC analysis of DGE Pitch 

Cut 1, which is shown again in Fig. 5.2) with those of known reference standards for the 

PAHs pyrene and triphenylene.  In Fig. 5.3, additional spectral matches confirming the 

identities of species 1, 2, 4, and C in Fig. 5.2 are given.  These unsubstituted PAHs are 

anthracene and phenanthrene (both mol wt 178), benzo[b]fluorene (mol wt 216), and 

chrysene (mol wt 228), respectively.      

Figure 5.2.  HPLC chromatogram of DGE Pitch Cut 1, with selected peaks labeled.  

Results are plotted against average UV-Vis absorption from 200 to 450 nm.  Peaks 

labeled 1-7 represent M-50 monomeric constituents not appearing on Fig. 4.6 in Chapter 

4; peaks labeled B1, C, C1, D, and D1 appear in both cases.   
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Figure 5.3.  UV-Vis spectral matches indicate the presence of: (a) phenanthrene, (b) 

anthracene, (c) benzo[b]fluorene, and (d) chrysene in DGE Pitch Cut 1.   

 

Meanwhile, UV-Vis spectra for PAHs containing substituent groups are similar in 

form to that of the unsubstituted PAH.
3,4

  Each of the UV-Vis spectra in Figs. 5.4a-d, 

representing the peaks labeled 3, 5, 6, and 7 in Fig. 5.2, are similar to that of 

unsubstituted phenanthrene, but with a slight shift of the peak maxima in the direction of 

higher wavelengths.  Unfortunately, MALDI analyses of the collected eluent fraction 

associated with the elution time of Species 3, 5, and 6 (see Figs. 5.4a-c) did not 

conclusively reveal the presence of any major peak (possibly because these fractions are 

dominated by phenanthrene derivatives, which exhibit little to no light absorption at 337 
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nm, the frequency of the MALDI N2 laser).  However, the similarity of these UV-Vis 

spectra with that of unsubstituted phenanthrene, along with our knowledge that M-50 

monomer is composed primarily of PAH backbones possessing varying degrees of 

methyl (and to a limited extent, ethyl) substitution, we conclude that the UV-Vis spectra 

in Figs. 5.4a-c likely represent alkylphenanthrenes.     

 

Figure 5.4.  UV-Vis spectral results indicate the presence of molecules with a 

phenanthrene backbone in DGE Pitch Cut 1.   

 

 Meanwhile, the MALDI spectrum for the HPLC eluent fraction collected from 

62.17 to 62.50 min (during which time Species 7 elutes), given in Fig. 5.5, indicates that 
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this fraction is comprised primarily of species of mol wt 234, 244, 250, and 256.  This 

fraction includes the species eluting at 62.49 min that give rise to the UV-Vis spectrum in 

Fig. 5.4d.  This UV-Vis spectrum exhibits strong absorption peaks at 257 and 265 nm, 

values which are similar to the wavelengths at which unsubstituted phenanthrene (mol wt 

178) and benzo[b]fluorene (mol wt 216) exhibit their max UV-Vis absorbances (251 and 

263 nm respectively; see Figs. 5.3a and 5.3c).  Because the presence of alkyl substituent 

groups shifts the wavelength of maximum absorption in the direction of higher 

wavelengths, the major eluents at 62.49 min are likely tetramethylphenanthrene (mol wt 

234) and dimethylbenzo[b]fluorene (mol wt 244).  In Fig. 5.5, the MALDI response for 

the phenanthrene derivative of mol wt 234 is comparatively weak despite the fact that 

UV-Vis spectrum at 62.49 min, shown in Fig. 5.4d, is dominated by it.  The weak 

MALDI response is likely because phenanthrene and its derivatives would not be 

expected to strongly absorb light (or even absorb light at all!) at 337 nm, the frequency of 

the MALDI laser.   Notably, it was not possible to conclusively verify the presence and 

mol wts of phenanthrene derivatives in other HPLC eluent fractions by MALDI.   

 

Figure 5.5.  MALDI spectrum for HPLC eluent fraction containing Species 7; peak at 

m/z = 234 corresponds to mol wt of phenanthrene molecule containing 4 methyl groups.   
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More alkylated PAHs are identified in Fig. 5.6.  The UV-Vis spectrum, collected 

at the maximum for peak B1 (see Fig. 5.2), shown in Fig. 5.6a is very similar to that of 

triphenylene. A bathochromic shift of 1-2 nm relative to that of the unsubstituted 

triphenylene is observed.  The MALDI spectrum in Fig. 5.6d indicates that this species 

has a mol wt of 242 Da.  Therefore, this species is methyltriphenylene.   

The UV-Vis spectrum for the peak labeled D1 (see Fig. 5.2), eluting at 58.66 

minutes, is given in Fig. 5.6b.  It is similar to that of benz[a]anthracene, while the 

baseline elevation in the range 250-260 nm is due to the presence of a co-eluting species.  

Again, a bathochromic shift of 1-2 nm is observed, relative to the absorption spectrum of 

unsubstituted benz[a]anthracene.  The MALDI spectrum given in Fig. 5.6e indicates that 

the fraction collected between 58.50 and 58.83 minutes contains species of mol wt 230 

and 242.  A species of 242 Da corresponds to a methylated benz[a]anthracene. 

The UV-Vis spectrum given in Fig. 5.6c is similar to that of chrysene, but shifted 

~ 2 nm in the direction of higher wavelengths.  The peak at 290 nm is due to the presence 

of the co-eluting species benzo[e]pyrene, which absorbs UV-Vis radiation strongly at this 

wavelength.  Continuing the trend observed for species B1 and D1, the UV-Vis spectrum 

taken at the max of peak C1 (see Fig. 5.2) exhibits a bathochromic shift of 1-2 nm 

relative to that of the unsubstituted chrysene.  The MALDI mass spectrum given in Fig. 

5.6f indicates the presence of species of 242 Da and 252 Da in the fraction collected from 

58.83 to 59.17 min elution time.  The species corresponding to peak C1 is therefore 

methylchrysene.  Benzo[e]pyrene (mol wt 252) absorbs strongly at 290 nm; this is the 

identity of the co-eluent.   
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Figure 5.6.  UV-Vis and MALDI spectral identification of alkylated PAHs in the HPLC 

eluent stream. UV-Vis spectra for methylated triphenylene, benz[a]anthracene, and 

chrysene (panels a-c, respectively) are similar in form to those of the respective 

unsubstituted PAH, with the spectra of the eluting species shifted in the direction of 

higher wavelengths.  MALDI spectra in panels d-f indicate the mol wt(s) of the eluent(s).   
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 Finally, spectral evidence indicating the presence of perylene in GPC Fraction 7 

from Chapter 4 (see Fig. 5.7) is given. 

                          

Figure 5.7.  UV-Vis spectral match indicating the presence of perylene in GPC Fraction 

7.  The peaks at ~ 280, 290 and 300 nm are a result of the co-eluting species 

benzo[b]fluoranthene. 

 

Comparison of MALDI and HPLC/PDA Characterization Results for DGE Pitch Cut 1 

As indicated in Chapter 4 (see Figs. 4.1b and 4.6 from that chapter), MALDI and 

HPLC/PDA yield conflicting results as to the mol wts of the most prevalent species in 

DGE Pitch Cut 1.  MALDI analyses suggest that the species comprising the “orange 

circle” signal distribution, particularly those at m/z 266, 280, and 294, are the most 

dominant in DGE Pitch Cut 1.  However, HPLC analysis of DGE Pitch Cut 1 indicates 

that the components comprising the “orange circle” distribution (originating at 252 Da) 

are not among the most prevalent species in this pitch cut.  Indeed, only one species of 

mol wt 252 Da, benzo[a]pyrene, was determined to be present in DGE Pitch Cut 1 (it is 

likely that other species comprising the “orange circle” signal distribution are indeed 

present, but that their peaks are obscured by those of more strongly-UV absorbing species 
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that are also present in greater amounts).  This observation contradicts the result observed 

in the MALDI spectrum for DGE Pitch Cut 1 given in Fig. 4.1b in Chapter 4.  

 

Figure 5.8.  MALDI spectrum for an equimolar mixture of PAHs ranging in mol wt from 

202 to 276.  

 We considered the possibility that relatively few of the heavier PAHs (particularly 

those in the “orange circle” signal distribution) were detected using HPLC/PDA because 

of solubility limitations – that is, the heavier species in DGE Pitch Cut 1 were less 

soluble in the relatively weak (for nonpolar molecules) solvent acetonitrile than the 

lighter species, such as pyrene (202 Da).  Investigating further, we examined the MALDI 

mass spectrum for an equimolar mixture containing the PAHs pyrene, benzo[b]fluorene, 

chrysene, benzo[e]pyrene, 7-methylbenzo[a]pyrene, and benzo[ghi]perylene (in order to 

determine if MALDI could be overpredicting the presence of the species in the “orange 

circle” signal distribution and other species of similar mol wt).  Using a ball mill (Wig-L-
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Bug model, Thermo Electron), the prepared mixture was then mixed with the MALDI 

matrix TCNQ at a matrix:PAH mixture mass ratio of 20:1.   A water spotting method, 

described in detail elsewhere
5
, was used to apply the mixture to the MALDI target.   

 The results of the MALDI analysis (see Fig. 5.8) indicate: (1) PAHs with mol wt 

> 250 g/mol are greatly over-represented in the MALDI spectrum and (2) the MALDI 

response for 7-methylbenzopyrene is far stronger than that of any of the unsubstituted 

molecules.  From these observations, we draw two conclusions.  First, it is likely that 

MALDI underpredicts the presence of species with a mol wt below ~ 250 Da, which are 

more likely to volatilize within the high-vacuum MALDI environment (on the order of 

10
-9

 bar).  Indeed, to this end, Edwards et al.
5
 recommend that MALDI not be used in the 

analysis of species with a mol wt of less than 250 Da.  Second, the prevalence of 

aromatics possessing alkyl substituent groups relative to that of unsubstituted aromatics is 

overestimated in MALDI.  This phenomenon has been previously documented by 

Cristadoro et al.,
6
 who theorized that its cause was twofold.  First, the  electrons of the 

alkylated PAHs associate more weakly with the  electrons of neighboring PAHs than do 

the  electrons of their non-alkylated counterparts, with weaker  interactions leading 

to an increased probability of desorption.  Second, the ionization energy of the PAH 

analyte is reduced by the presence of alkyl substituents.   

 Because of these results, we concluded a major source of the discrepancy between 

the MALDI and HPLC results for DGE Pitch Cut 1 is that MALDI significantly 

underpredicts the presence of species with a mol wt less than ~ 250 Da.  We recommend 

minimizing the amount of time that the MALDI target plate is in the instrument, in order 
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to limit volatilization of the TCNQ matrix and other pitch species of mol wt less than ~ 

250 Da.   

The solubility of DGE Pitch Cut 1 in the initial HPLC mobile phase (comprised of 

30% acetonitrile and 70% water on a pre-mixed volume basis) is also likely to be of 

concern.  Because it was prepared at a concentration of 7 mg/mL in acetonitrile (a very 

high injection concentration to use for HPLC analysis), not all of the injected sample 

elutes from the HPLC column, with some sticking to the packing instead (when this 

occurs, it is necessary to flush the column for several hours afterward in order to ensure 

that all of the injected sample has eluted).  Because larger PAHs, such as benzo[a]pyrene 

(mol wt 276) would be expected to have lower solubilities than smaller PAHs such as 

pyrene (mol wt 202), these larger PAHs may precipitate out of solution to a greater extent 

than the smaller ones.  Finally, because DGE Pitch Cuts 2 and 3 were prepared at 

significantly lower concentrations (on the order of 0.1 mg/mL), solubility concerns 

should not be a big issue. 

 

An Additional Note Concerning Figs. 4.8c and 4.8f in Chapter 4 

 

In Chapter 4, the UV-Vis spectrum given in Fig. 4.8c in Chapter 4 (for the HPLC 

eluent stream at 61.62 min) bears a strong resemblance to that of pyrene, indicating that 

the most prevalent species in this mixture is a molecule with a pyrene backbone.  The 

MALDI spectrum of the eluent fraction eluting between 61.50 and 61.83 min (given in 

Fig. 4.8f in Chapter 4) indicates that this fraction is comprised of species of mol wts 230, 
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252, and 256 Da.  A pyrene molecule substituted with two methyl groups has a mol wt of 

230 Da; thus, dimethylpyrene is the likely identity of the species of mol wt 230 Da.  The 

peak at 252 Da in Fig. 4.8f in Chapter 4 is attributed to the minor component 

benzo[a]pyrene, which has a peak maximum at 61.9 minutes and would not be expected 

to have begun eluting at 61.62 minutes.  Triphenylene (mol wt 228 Da) absorbs UV 

radiation strongly at 260 nm.  Therefore, the identity of the co-eluent is 

dimethyltriphenylene (mol wt 256 Da). 

 

Method of Determining Concentrations of Major Species Present in M-50 Pitch 

Monomer 

 With the work presented thus far herein, we are now able to unambiguously 

identify the specific molecular structures that comprise the major species in the 

monomeric fraction of M-50 pitch.  Our final objective in this work is to estimate the 

concentration of these species in M-50 monomer based on the HPLC results for DGE 

Pitch Cut 1 (in Chapter 4, we put forth a method to estimate the concentrations of M-50 

monomer-range species based on MALDI; see Table 4.1).  In MALDI mass 

spectrometry, the “default” assumption is that the area of the peaks in a MALDI mass 

spectrum is proportional to the molar concentration.
7
  However, the methods used in this 

work provided us with an alternative, independent method for estimating species 

concentration in the monomer.  To show how we calculated the concentration of a given 

species in the M-50 monomer, we take pyrene as an illustrative example.  Referring to 

Fig. 4.6 in Chapter 4, we note peak A is for pyrene, with the peak maximum at 48.82 
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min.  The maximum absorbance at 48.82 min was 1.15 at 240 nm (Fig. 4.7a in Chapter 

4), and max, the maximum extinction coefficient, was found to be ~ 80,000
3
 (max values 

obtained from reference spectra found in the literature are useful here; work conducted in 

our laboratory indicates that solvent choice has no discernible effect on max.  Assuming 

that the absorbance peaks are symmetrical triangles so that the average absorbance equals 

one-half the maximum absorbance, we used the Beer-Lambert law (A = elc) to calculate 

a concentration of 7.19 x 10
-6

 mol/L (with the optical path length l = 1.0 cm).  The wt 

% of pyrene in DGE Pitch Cut 1 (0.91) was then obtained by multiplying the above 

concentration times the peak width (0.44 min) times the mobile phase flow rate (1000 

L/min) times the molecular weight (202) of pyrene, all divided by the mass of DGE 

Pitch Cut 1 injected (70 g).  The wt % values for other constituents of DGE Pitch Cut 1 

are given in Table 5.1. 
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Table 5.1.  Predicted Composition of DGE Pitch Cut 1, for major PAHs present in DGE Pitch 

Cut 1.  Compound designations (such as A1) refer to peaks on the HPLC chromatogram of DGE 

Pitch Cut 1, given in Fig. 4.6 in Chapter 4. 

Compound Amax max 

cavg, 

mol/L 

Mol Wt, 

g/mol 

Eluting 

Mass, g 

Wt % of DGE 

Pitch Cut 1 

Pyrene (A) 1.15 80000 0.0029 202 0.64 0.91 

4-methylpyrene (A1) 1.45 71000 0.0044 216 0.97 1.39 

2-methylpyrene (A2) 1.6 96000 0.0036 216 0.79 1.13 

Dimethylpyrene 1 (A3)* 0.58 45000 0.0030 230 0.65 0.93 

Dimethylpyrene 2 (A4)* 0.62 45000 0.0032 230 0.70 1.00 

Dimethylpyrene 3 (A5)* 0.41 45000 0.0021 230 0.46 0.66 

Trimethylpyrene (A6)* 0.45 45000 0.0025 244 0.54 0.77 

Triphenylene (B) 0.56 150000 0.0008 228 0.19 0.27 

Methyltriphenylene (B1) 1.08 150000 0.0020 242 0.38 0.55 

Dimethyltriphenylene (B2) 0.8 150000 0.0016 256 0.30 0.43 

Trimethyltriphenylene (B3) 0.6 150000 0.0011 270 0.24 0.34 

Chrysene (C) 1.04 150000 0.0015 228 0.35 0.50 

Methylchrysene 1 (C1) 1.16 150000 0.0022 242 0.41 0.59 

Methylchrysene 2 (C2) 1.45 150000 0.0028 242 0.51 0.74 

Dimethylchrysene 1 (C3) 0.5 150000 0.0010 256 0.19 0.27 

Dimethylchrysene 2 (C4) 0.3 150000 0.0012 256 0.11 0.16 

Dimethylchrysene 3 (C5) 0.6 150000 0.0012 256 0.23 0.32 

Trimethylchrysene 1 (C6) 0.3 150000 0.0006 270 0.12 0.17 

Trimethylchrysene 2 (C7) 0.6 150000 0.0012 270 0.24 0.34 

Trimethylchrysene 3 (C8) 0.4 150000 0.0008 270 0.16 0.23 

Trimethylchrysene 4 (C9) 0.4 150000 0.0008 270 0.16 0.23 

Benz[a]anthracene (D) 0.69 80000 0.0020 228 0.43 0.62 

MBAA 1 (D1) 0.65 80000 0.0020 242 0.43 0.62 

MBAA 2 (D2) 0.4 80000 0.0012 242 0.27 0.38 

MBAA 3 (D3) 0.6 80000 0.0018 242 0.40 0.57 

DMBAA 1 (D4) 0.4 80000 0.0013 256 0.28 0.40 

DMBAA 2 (D5) 0.3 80000 0.0010 256 0.21 0.30 

Totals     10.36  

max values were obtained by reading off of the UV-Vis spectra for the unsubstituted 

species A, B, C, and D as presented by Friedel.
3
  Except for species A1-A6, alkylated 

species were assumed to have the same max as nonsubstituted aromatics.    

*In determining max and Amax for species A3-A6, only values obtained at absorption 

wavelengths of 300 nm and higher were considered.   

MBAA = methylbenz[a]anthracene, DMBAA = dimethylbenz[a]anthracene 
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Finally, we know that the overhead comprising DGE Pitch Cut 1 represents 12.5 

wt % of the entire pitch.
8
  We show that, for the “blue rectangle” and “yellow ring” signal 

distributions (see Fig. 4.2 in Chapter 4), approximately equal amounts of the species in 

question are present in the top and bottoms fractions.  Note that, in the MALDI spectrum 

for M-50 pitch in Fig. 5.9, the MALDI response at m/z = 230, R230, is equal to 665 units, 

while the MALDI response at m/z = 468, R468, is 2114 units.  Meanwhile, the MALDI 

spectrum (see Fig. 5.10) for the remaining 87.5% of M-50 pitch (that is, M-50 minus 

DGE Pitch Cut 1) indicates that the ratio R230/R468 = 358/2114 when scaled to the value 

of R468 for M-50 pitch in Fig. 5.9.  358 is just over half of 665; assuming that MALDI 

response is proportional to concentration, just under half of the species of mol wt 230 are 

extracted in DGE Pitch Cut 1.  This assumption is true for the species comprising both 

the “blue rectangle” and “yellow ring” signal distributions.  Thus, we estimate that 

pyrene (determined to be a member of the “blue rectangle” distribution) comprises 0.23 

wt % of the M-50 feed pitch.   

Analogous steps to those described above were used to calculate the concentration 

of benzo[a]pyrene in M-50 pitch.  However, for every molecule of mol wt 280 extracted 

(and generally for all members of the “orange circle” distribution, including unsubstituted 

benzo[a]pyrene), approximately 3 remain in the bottom phase (see values for R280 and 

R468 in both Figs. 5.9 and 5.10).  Using this methodology, the concentration of 

benzo[a]pyrene present in the M-50 feed pitch was determined to be 0.18 wt % (0.31 mol 

%).  Based on trends observed for the “blue rectangle” and “yellow ring” signal 

distributions, the methylbenzo[a]pyrenes are thus predicted to outnumber unsubstituted 
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Figure 5.9.  MALDI spectrum for M-50 pitch, with mol wt value labels above the most 

prominent peaks.  The terms R230, R256, R280, and R468 denote the MALDI response at m/z 

= 230, 256, 280, and 468 respectively. 

 

benzo[a]pyrene ~ 2.5:1 (and, therefore, a total methylbenzo[a]pyrene mass fraction of 

0.45 wt %).  Similarly, we predicted that the total dimethylbenzo[a]pyrene and 

trimethylbenzo[a]pyrene presences were 2 (0.36 wt %) and 1.5 (0.27 wt %) times that of 

the unsubstituted benzo[a]pyrene, respectively.       
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Figure 5.10.  MALDI spectrum for the residue remaining after DGE Pitch Cut 1 is 

extracted from M-50 pitch, with mol wt value labels above the most prominent peaks.  

The terms R230, R256, R280, and R468 denote the MALDI response at m/z = 230, 256, 280, 

and 468 respectively. 

 

 As benzo[e]pyrene and benzo[ghi]perylene are not detected in DGE Pitch Cut 1, 

extra steps are required to estimate their presence in M-50 pitch.  However their 

approximate compositions can be estimated because the approximate amount of 

benzo[a]pyrene in M-50 pitch has already been determined.  The UV-Vis spectra for the 
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3 major PAH constituents of GPC Fraction 7 were examined in greater detail in order to 

provide a rough estimate of the concentration of these two species in the whole M-50 

pitch.  The Beer-Lambert Law (A = lc) can be rearranged in order to solve for the molar 

concentration (c = A/l), and the molar ratio for the concentration of compound 2 to that 

of compound 1, c2/c1 (this molar concentration ratio is equal to the mole fraction ratio, 

x2/x1).  Because path length is constant, l1 = l2, the molar ratio c2/c1 = x2/x1 = A21/ A12.   

 Defining compound 2 as benzo[e]pyrene and compound 1 as benzo[a]pyrene, one 

can proceed to estimate the concentration of benzo[e]pyrene present in M-50 pitch.  An 

important assumption is that the relative concentrations of the species in GPC Fraction 7 

are indicative of the pitch as a whole.  We define the variables as follows: 

A2 = maximum absorption value for benzo[e]pyrene, 0.026 

A1 = maximum absorption value for benzo[a]pyrene, 0.045 

2 = maximum extinction coefficient observed for benzo[e]pyrene, 52480
3 

1 = maximum extinction coefficient observed for benzo[a]pyrene, 57540
3 

x2 = mole fraction of benzo[e]pyrene 

x1 = mole fraction of benzo[a]pyrene, 0.0031 

 

 

 In this manner, the mole fraction of benzo[e]pyrene present is determined to be 

0.0020.  Similarly, the mole fraction of benzo[ghi]perylene present is 0.0019.  The mass 

fractions of these two compounds present was determined with a knowledge of the 

MALDI-determined mol wt of M-50 pitch (436 g/mol); the mass fractions of their 

alkylated derivatives were estimated by applying the same assumptions used to estimate 

the presence of the alkylated benzo[a]pyrene derivatives.  All mass and mole fractions of 

major M-50 constituents are given to Table 5.2. 
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Table 5.2.  Estimated concentrations of major M-50 monomeric constituents in M-50. 

Compound 

Wt % in 

M-50 

Mol % in 

M-50 

Mol Wt 

(Da) 

Signal 

Distribution 

Pyrene (A) 0.23 0.50 202 Blue rectangle 

4-methylpyrene (A1) 0.35 0.71 216 Blue rectangle 

2-methylpyrene (A2) 0.28 0.57 216 Blue rectangle 

Dimethylpyrenes (A3, A4, A5) 0.65 1.23 230 Blue rectangle 

Trimethylpyrene (A6) 0.19 0.34 244 Blue rectangle 

Triphenylene (B) 0.07 0.13 228 Yellow ring 

Methyltriphenylene (B1) 0.14 0.25 242 Yellow ring 

Dimethyltriphenylene (B2) 0.11 0.19 256 Yellow ring 

Trimethyltriphenylene (B3) 0.09 0.15 270 Yellow ring 

Chrysene (C) 0.13 0.25 228 Yellow ring 

Methylchrysenes (C1, C2) 0.33 0.59 242 Yellow ring 

Dimethylchrysenes (C3, C4, C5) 0.19 0.32 256 Yellow ring 

Trimethylchrysenes (C6, C7, C8, C9) 0.24 0.39 270 Yellow ring 

Benz[a]anthracene (D) 0.16 0.31 228 Yellow ring 

Methylbenz[a]anthracenes (D1, D2, D3) 0.39 0.70 242 Yellow ring 

Dimethylbenz[a]anthracenes (D4, D5, D6) 0.23 0.39 256 Yellow ring 

Benzo[a]pyrene 0.18 0.31 252 Orange circle 

Methylbenzo[a]pyrenes 0.45 0.74 266 Orange circle 

Dimethylbenzo[a]pyrenes 0.36 0.56 280 Orange circle 

Trimethylbenzo[a]pyrenes 0.27 0.40 294 Orange circle 

Benzo[e]pyrene 0.11 0.20 252 Orange circle 

Methylbenzo[e]pyrenes 0.28 0.46 266 Orange circle 

Dimethylbenzo[e]pyrenes 0.23 0.35 280 Orange circle 

Trimethylbenzo[e]pyrenes 0.17 0.25 294 Orange circle 

Benzo[ghi]perylene 0.12 0.19 276 Red triangle 

Methylbenzo[ghi]perylenes 0.31 0.46 290 Red triangle 

Dimethylbenzo[ghi]perylenes 0.24 0.35 304 Red triangle 

Trimethylbenzo[ghi]perylenes 0.18 0.25 318 Red triangle 

326 Da backbone There is not enough 

data to estimate 

concentrations of 

species comprising 

the “white square” 

signal distribution. 

326 White square 

326 Da backbone + methyl group 340 White square 

326 Da backbone + 2 methyl groups 354 White square 

326 Da backbone + 3 methyl groups 368 White square 

326 Da backbone + 4 methyl groups 382 White square 

Totals 6.68 11.54   
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Advantages and Disadvantages of MALDI- and HPLC-Derived Methods to Determine 

Concentration of M-50 Monomeric Species 

 In summary, the HPLC-derived method for determining the concentrations of the 

major M-50 oligomers is good for determining the concentrations of the light monomeric 

species with molecular weights less than ~ 250 Da.  In this molecular weight range, the 

HPLC-derived method is superior to the MALDI-derived method for determining species 

concentration discussed in Chapter 4, because these species volatilize to a large extent in 

the high-vacuum environment of MALDI and are therefore under-represented when the 

MALDI-derived method is used to determine species concentrations.  Because this 

portion of the monomer contains fewer different molecular structures than that above 250 

Da, a well-resolved HPLC chromatogram for species with molecular weights in this 

range is achievable.   

 However, for determining concentrations of the species above 250 Da, the 

MALDI-derived method is recommended (as these species are not volatile, even in the 

high-vacuum environment of MALDI).  Mass spectrometry is superior to 

chromatography in that the former results in better peak resolution than the latter (the 

MALDI peaks for all species differing in mol wt by ~ 1 Da are fully resolved from each 

other.  In addition, MALDI can be used on either a solvent-based or a solvent-free basis, 

while solubility of the sample in the HPLC mobile phase is a must.    
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CHAPTER 6 

MOLECULAR STRUCTURES FOR THE OLIGOMERIC CONSTITUENTS OF 

PETROLEUM PITCH 

 
Introduction 

 

Petroleum pitches are inexpensive raw materials that can be processed into a wide 

range of carbon products, including high thermal conductivity (HTC) carbon fibers,
1
 

carbon electrodes,
2
 activated carbon fibers,

3,4
 and the matrix phase of carbon-carbon 

composites.
5
  As shown in Fig. 6.1, these materials have a broad molecular weight (mol 

wt) distribution, ranging from about 200 to more than 1000 Daltons (Da).
6,7

  Petroleum 

pitches are oligomeric in nature; previous work
8,9

 has shown that the monomer species 

(202-388 Da) consist of a polycyclic aromatic hydrocarbon (PAH) backbone substituted 

with from 0 to 4 methyl groups (with an occasional ethyl group being observed).  The 

dimer (388 to 645 Da), trimer (645 to 890 Da), and tetramer (890 to 1120 Da) species are 

believed to be formed via condensation reactions of the lower mol wt oligomers.
10,11 

As early as the 1970s, 
4,7,12

 researchers recognized that the mol wt of the precursor 

pitch has a significant impact on the material properties of the final carbon product.  For 

example, the pitch precursor for HTC carbon fibers must have a high enough mol wt to 

form a liquid crystalline phase, or mesophase.  However, a fundamental understanding of 

the effect of the mol wt distribution of pitches, or of the molecular structures of the pitch 

species themselves, on both pitch and final product properties is still lacking.  A key 

impediment to obtaining such information has been the difficulty in isolating either 
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individual species or even narrow mol wt fractions of pitch for characterization.  Thus, 

most of the past work has reported on the characterization of broad cuts of pitch, obtained 

by extraction/precipitation with selected solvents and solvent mixtures
13,14,15

 (e.g., 

cyclohexane/acetone mixtures, toluene, pyridine, or quinoline).    

 

Figure 6.1. MALDI spectrum for M-50 pitch, with the oligomeric peaks (monomer 202-

388 Da, dimer 388-645 Da, trimer 645-890 Da, and tetramer 890-1120 Da) indicated.  

Adapted from Cervo and Thies.
16

 

 

Some progress has been made in determining actual molecular structures for pitch 

components.  In particular, Mochida et al.
15,17

 applied field desorption mass spectrometry 

(FD-MS) to the benzene-soluble portion of both isotropic and mesophase pitches derived 

via the catalytic and thermal polymerization of anthracene.  From FD-MS, the mol wts of 

the major species present in these fractions, including dimers, trimers, and tetramers, 

were obtained.  However, because the benzene-soluble fractions had a broad mol wt 

distribution (MWD), that is, from 200 to over 1000 Da, 
1
H NMR and 

13
C NMR spectra of 

these fractions were for only “average” hydrogen and carbon atoms.  Thus, the proposed 

molecular structures were based on definitive mol wt, but only average structural 

information.   
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Recent work by our group
9
 has demonstrated how the characterization of pitches 

in terms of their constituent species is facilitated by separation into narrow mol wt 

fractions.  In particular, narrow mol wt cuts of the monomer and dimer portions of 

Marathon M-50 pitch were isolated by the sequential application of dense-gas extraction 

(DGE), followed by high-temperature, preparative-scale gel permeation chromatography 

(prep-scale GPC).  The resultant fractions of this 2-step process were then subjected to a 

battery of characterization methods, including matrix-assisted laser desorption, time-of-

flight mass spectrometry (MALDI), molecular fragmentation analysis via MALDI-post 

source decay (PSD), and high-performance liquid chromatography with photodiode array 

detection (HPLC/PDA).  A key finding of these works was that the M-50 monomeric 

species are divided into well-defined Gaussian distributions, with each distribution 

consisting of an aromatic backbone species possessing from 0 to 4 methyl (and 

occasionally ethyl) substituent groups.  The aromatic backbone structures were 

unequivocally identified using HPLC/PDA.  MALDI analyses of the dimer-rich cuts 

indicated that the formation of major dimer species was consistent with condensation 

reactions between major monomer species, with a loss of 4-6 hydrogen atoms.  However, 

the arrangement of the bonds between monomer units was not determined. 

The objective of this study was the determination of the major molecular species 

present in the dimer and higher oligomers of two pitches produced by thermal 

polymerization (also called “heat-soaking” in industry): (1) an anthracene pitch and (2) a 

representative petroleum pitch, Marathon M-50.
18

  In particular, we sought to build upon 

our recently obtained knowledge
9
 of the dominant molecular structures present in M-50 
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monomer to predict structures for the dimer, trimer, and tetramer constituents of 

thermally soaked pitches.  Recent work in our laboratory
19

 has shown that mesophase 

pitch, the pitch precursor of greatest commercial interest, consists almost exclusively of 

mixtures of these oligomers.  However, definitive molecular structures for actual (vs. 

average) species present in petroleum-based mesophase pitch have heretofore not been 

reported.   

In order to accomplish the above objectives, M-50 pitch was first fractionated into 

narrow mol wt cuts rich in a single oligomer.  These cuts, and the anthracene pitch, were 

further fractionated by prep-scale GPC into subfractions, with many consisting of well-

separated individual species encompassing a mol wt range of less than 50 Da.  These 

GPC fractions were subsequently characterized by MALDI to determine mol wt and by 

PSD to determine molecular structure information, particularly the degree of alkylation.  

Next, UV-Vis spectra of the fractions were used to determine the types of bonds 

connecting monomer units to form the oligomers.  Finally, this new information was 

combined with our previous knowledge of the most prevalent monomers in M-50 pitch
9
 

to propose actual molecular structures for the major oligomeric species comprising M-50 

pitch.  

 

Experimental 

 

Materials 

 M-50 pitch (CAS number 68187-58-6; see Fig. 6.1) was obtained from Marathon 

Petroleum Company LLC.  As discussed in Section 2.2, DGE was used to produce three 
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narrow mol wt pitch cuts from M-50 pitch, which are referred to hereafter as DGE Pitch 

Cuts 1-3 (with two of these cuts rich in dimer, and the third rich in trimer and tetramer).  

The anthracene pitch (see Fig. 6.2a) was provided to us by Conoco, Inc.  It was produced 

via the thermal polymerization of anthracene at 475 °C for 2 h in a nitrogen environment.  

Additional details concerning its production are provided elsewhere.
6
  

 The DGE solvent toluene (HPLC grade, 99.9% purity, CAS number 108-88-3) 

was obtained from Fisher Scientific.  For the prep-scale GPC experiments, the mobile 

phase TCB (1,2,4-trichlorobenzene; GPC grade, 99% min. purity, CAS number 120-82-

1) was purchased from J. T. Baker.  For the MALDI and MALDI-PSD analyses, the 

matrix 7,7,8,8,-tetracyanoquinodimethane (TCNQ; 98% min. purity) was supplied by 

TCI America.  The UV-Vis solvent cyclohexane (99+% purity, CAS number 110-82-7) 

was obtained from Sigma-Aldrich.  All chemicals were used as supplied without further 

purification.     

Figure 6.2.  (a) MALDI spectrum for anthracene pitch produced via thermal 

polymerization of anthracene at 475 °C. (b) GPC chromatogram for this anthracene pitch.  

The black bars indicate the 20-s time intervals over which the fractions of interest were 

collected. 
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Production of DGE Pitch Cuts 

DGE Pitch Cuts 1 and 2 (see Figs. 6.3a and 6.4a) were produced from M-50 pitch 

using a two-step process.  First, a two-column, continuous DGE process, as developed by 

Cervo and Thies,
16

 was used to obtain a dimer-rich cut also containing some heavy 

monomer and light trimer species; they refer to this cut as “Dimer-Rich B.”  For the 

second step, and the actual production of DGE Cuts 1 and 2, ~ 1.5 g of the dried, Dimer-

Rich B cut were subjected to a one-column, semibatch DGE process, which is described 

in detail elsewhere.
8
  For the production of DGE Pitch Cut 1, a positive temperature 

gradient was employed such that the bottom of the column was held at 330 °C, the 

middle at 350 °C, and the top at 380 °C.  Collection of DGE Pitch Cut 1 as the extracted 

top product commenced as soon as the column reached the desired operating pressure of 

29 bar and continued thereafter for 40 min.  The column pressure was then raised to 42 

bar, and collection of DGE Pitch Cut 2 as overhead product began 2.25 h later and lasted 

for 40 min thereafter. 

 

Figure 6.3.  (a) MALDI spectrum for DGE Pitch Cut 1, rich in light M-50 dimer species.  

(b) GPC chromatogram for DGE Pitch Cut 1, with the black bars indicating the 15-s time 

intervals over which the fractions of interest were collected.  The mol wts listed with the 

fraction numbers indicate the species to which PSD was subsequently applied. 
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Figure 6.4.  (a) MALDI spectrum for DGE Pitch Cut 2, rich in M-50 dimer species.  (b) 

GPC chromatogram for DGE Pitch Cut 2, with 15-s time intervals being used for fraction 

collection.  The mol wts listed with the fraction numbers indicate the species to which 

PSD was subsequently applied.  

 

 

DGE Pitch Cut 3 (see Fig. 6.5a), rich in M-50 trimer and tetramer, was also 

produced via a two-step process.  First, M-50 pitch was subjected to a one-column, 

continuous DGE process (column pressure 49.3 bar, with the column temperature 

constant at 330 °C) to produce a heavy pitch cut (bottoms product) rich in trimer and 

tetramer.  Next, 1.5 g of this pitch cut was subjected to a one-column, semibatch DGE 

process.  First, dimer was removed as top product by setting the column pressure to 56.2 

bar (column temperatures were identical to those used for DGE Pitch Cuts 1 and 2 

above).  After a period of 2 h, the pressure was raised to 111.8 bar.  Collection of DGE 

Pitch Cut 3 began at this point, and lasted for 40 min thereafter. 
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Figure 6.5.  (a) MALDI spectrum for DGE Pitch Cut 3, rich in M-50 trimer and tetramer 

species.  (b) GPC chromatogram for DGE Pitch Cut 3, with 15-s time intervals being 

used for fraction collection.  The mol wts listed with the fraction numbers indicate the 

species to which PSD was subsequently applied.   

 

Production of Narrow Mol Wt Pitch Fractions via Prep-Scale GPC 

 Prep-scale GPC was used to produce narrow mol wt fractions of the anthracene 

pitch (GPC Fractions A1-A3; see Fig. 6.2b) and of DGE Pitch Cuts 1-3 (GPC Fractions 

4-23; see Figs. 6.3b-6.5b).  A Waters Alliance GPCV 2000 was adapted
9
 so that it could 

be operated on a preparative scale, with the mobile-phase flow rate set to 2.50 mL/min at 

an operating temperature of 140 °C.  The soluble portion (~ 80 wt % at room 

temperature) of the anthracene pitch and the fully-TCB soluble DGE Pitch Cuts 2 and 3 

were prepared for GPC fractionation at a concentration of 10 mg/mL.  Because of its 

scarcity, DGE Pitch Cut 1 (fully soluble in TCB) was prepared at a concentration of only 

3 mg/mL.  Because it was necessary to collect several micrograms of M-50 trimer and 

tetramer for FT-IR analyses (much more than what was required for MALDI, PSD, and 

UV-Vis), a second fractionation of DGE Pitch Cut 3 was conducted at a much higher 

injected sample concentration of 50 mg/mL.  For all samples fractionated, an injection 
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volume of 1.080 mL was used.  The M-50 trimer and tetramer fractions collected as a 

result of this second fractionation of DGE Pitch Cut 3 are referred to as GPC Fractions 24 

and 25.   GPC Fraction 24 was collected from 55.9 to 57.4 min, and GPC Fraction 25 was 

collected from 58.4 to 59.9 min. 

GPC Fractions A1-A3 and 4-25 were collected by diverting the column eluent 

stream to a Waters Fraction Collector (model 1).  For the fractionation of the anthracene 

pitch, the time interval for each fraction collected was 20 s; for DGE Pitch Cuts 1-3, it 

was 15 s.  The refractive index detector of the GPCV 2000 was used to produce the GPC 

chromatogram.   

   

Analytical Characterization of Collected Fractions 

 UV-Vis analyses of the collected GPC fractions were carried out using a Spectral 

Instruments 400 Series spectrophotometer.  GPC fractions subjected to UV-Vis analysis 

were either run directly, or were dried for 2 hours at 120 °C and a pressure of 25 torr to 

remove the TCB mobile phase before re-dissolving in cyclohexane, the UV cutoff 

wavelength of which is ~110 nm less than that of TCB.  Typically, cyclohexane was used 

as the UV-Vis solvent for the dimer-range GPC fractions, while for the trimer and 

tetramer fractions TCB had to be used because of the poor solubility of these heavier 

fractions in cyclohexane. In all cases, the concentrations of the GPC fractions analyzed 

were adjusted by adding solvent until the maximum light absorbance value measured was 

less than 2.0.  
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 Both MALDI and PSD analyses were performed on GPC Fractions A1-A3 and 4-

23.  All MALDI and PSD analyses were obtained using a Bruker Daltonics Autoflex 

(model 1) MALDI mass spectrometer with a 337 nm nitrogen laser.  We have previously 

described both the sample preparation method
6,8

 and the operating parameters for the two 

techniques
8
 in detail elsewhere.   

A Nicolet Magna 550 Fourier Transform IR (FT-IR) spectrometer equipped with 

a Thermo-Spectra Tech Nic-Plan FT-IR microscope was used to perform all FT-IR 

analyses, in transmission mode, on thin films of the dried GPC Fractions 24 and 25.  (The 

film method of IR analysis was chosen because only a few micrograms of sample are 

required per analysis.)  Prior to FT-IR analysis, each GPC fraction analyzed was dried for 

2 h at a temperature of 140 °C and 25 torr to remove the TCB mobile phase.  Next, each 

sample was subjected to a second drying at a temperature of 200 °C and a relatively low 

pressure of 1.5 torr, in order to remove any residual TCB that was still present.  For each 

pitch fraction characterized, a stainless steel rolling tool was used to deposit a small 

portion of sample into a thin film on the zinc selenide IRTran plates (the sample analysis 

surface).   

 

Results and Discussion 

 

Structural Characterization of Anthracene Pitch Oligomers 

Isolating Anthracene Pitch Oligomers by GPC 

 Because the goal of the GPC fractionations was to obtain fractions containing 

only a single oligomer, the time intervals for collection (see Fig. 6.2b) were chosen with 
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this objective in mind.  Of the 51 GPC fractions collected during the fractionation of the 

anthracene pitch, GPC Fractions A1-A3 were the purest fractions collected, and thus 

were the ones selected for further analysis.  As the number of species in anthracene pitch 

is considerably lower than for M-50 pitch, prep-scale GPC alone was sufficient to prepare 

the desired fractions, so no DGE fractionation step was necessary.   

  

 

Anthracene Pitch Dimer 

 MALDI analysis (see Fig. 6.6a) reveals that GPC Fraction A3 (see Fig. 6.2b) is 

primarily composed of a species of mol wt 352.4, suggesting that the anthracene pitch 

dimer forms via a condensation reaction between two anthracene (mol wt 178) monomer 

units, accompanied by the loss of 4 hydrogen atoms.  PSD analysis of the peak at m/z = 

352.4 indicates no fragment peaks, a mass spectrum result
20

 consistent with this 

hypothesis.  The absence of strong fragment peaks also indicates that the species 

possesses no naphthenic rings.  The UV-Vis spectrum for GPC Fraction A3 (see Fig. 

6.6b, thin black line) was subsequently compared to reference spectra
21

 for two isomers 

of mol wt 352, either of which could possibly be a dimer of anthracene.  For 2.3-

benzonaphtho-(2".3":11.12)-fluoranthene (BNF: thick black line), the two anthracene 

monomer units are situated such that the two intermolecular bonds form a five-membered 

ring (such species are known as nonalternant PAHs). The other possible anthracene 

dimer, 1.2,7.8-dibenzoperylene (DBP; thick gray line), is comprised solely of six-

membered aromatic rings (such species are known as alternant, or benzenoid, PAHs).  

Clearly, the UV-Vis spectrum for the nonalternant PAH provides a much better match to 
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GPC Fraction A3 than does the alternant PAH.  Furthermore, we note that fully alternant 

PAHs of this mol wt exhibit strong light absorption above 400 nm,
21

 a feature noticeably 

absent in GPC Fraction A3.  Thus, we conclude that BNF is a major component of 

anthracene pitch dimer, and that most of the remaining species in this dimer are also 

nonalternant PAHs containing a five-membered “connecting” ring.     

 

Figure 6.6.  (a) MALDI spectrum for GPC Fraction A3 (see Fig. 6.2b).  (b) The UV-Vis 

spectrum for GPC Fraction A3 (thin black line) is compared to that of BNF (thick black 

line) and DBP (thick gray line). Reference spectra are adapted from Clar.
21

   

  

Anthracene Pitch Trimer 

 MALDI analysis (see Fig. 6.7a) of the trimer-rich GPC Fraction A2 (Fig. 6.2b) 

indicates that the most prevalent peak occurs at m/z = 526.8.  This suggests that this 

trimer forms via condensation between anthracene pitch monomer (178.4 Da) and the 

most common anthracene pitch dimer, BNF, again with an accompanying loss of 4 

hydrogen atoms.  The PSD spectrum for this peak does not reveal the presence of any 

fragment peaks, an observation consistent with the suggested structure shown in Fig. 

6.7a, and with the absence of any naphthenic content. 
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 Besides the peak at m/z = 526.8, the MALDI spectrum of anthracene pitch trimer 

contains approximately a dozen other peaks.  PSD spectra for two of these peaks, arising 

at m/z = 528.8 and 530.9, indicate the presence of fragment peaks possessing m/z ratios 

of 15 and 28 less than that of the parent species. Such behavior is consistent with that 

observed for the dihydroanthracenes (mol wt 180),
20

 which possess 2 naphthenic carbon 

atoms. Scaroni
10

 proposed that, upon heating of anthracene to 465-525 °C, free-radical 

dihydroanthracenes are formed, with these species then reacting with anthracene and/or 

each other to create dimers and higher oligomers. Therefore, it is likely that this trimer 

consists of a combination of anthracene and dihydroanthracene “monomer” units.  PSD 

analysis for the peak at m/z = 540.9 reveals a spectrum in which there are no fragment 

peaks, a result consistent with the mass spectrum of the species at m/z = 526.8 if a single 

methyl group was added to that base PAH backbone.
20,22  

 

The UV-Vis spectrum for GPC Fraction A2 (see Fig. 6.7b, thin black line) does 

not exhibit any sharp peaks because of the presence of multiple species.  Instead, it 

exhibits a uniform decrease in light absorption with respect to increasing wavelength.    

Comparison of the spectrum for GPC Fraction A2 was made to reference spectra for two 

of the few PAH trimers available in the literature: the fully alternant 7.8-benzoterrylene 

(see Fig. 6.7b, thick gray line) and the nonalternant 1.2,3.4-di(peri-

naphthylene)anthracene (thick black line).  Each of these trimers consists of the same 

three monomer units: two naphthalenes and one anthracene molecule.     
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a

 

Figure 6.7.  (a) MALDI spectrum for GPC Fraction A2, composed of anthracene pitch 

trimer, along with a proposed structure for m/z = 526.8.  (b) The UV-Vis spectrum for 

GPC Fraction A2 (thin black line) is much more similar to that of the nonalternant 

1.2,3.4-di(peri-naphthylene) anthracene (thick black line) than to that of the alternant 7.8-

benzoterrylene (thick gray line).  Reference spectra are adapted from Clar.
21

 

 

Results clearly indicate that the UV-Vis spectrum for the nonalternant PAH is the 

better match for GPC Fraction A2.  Particularly striking is the fact that 7.8-

benzoterrylene exhibits its maximum absorption at a wavelength of 643.5 nm – a 

wavelength where the light absorption by GPC Fraction A2 is virtually nil.  Thus, while 

we cannot positively identify the molecular structures present in anthracene pitch trimer, 

we can conclude that the vast majority of the species present in the trimer must be 

nonalternant PAHs with their characteristic five-membered rings. 

The above results are in significant contrast to those of Mochida et al.
15

 and of 

Edwards and Thies,
23 

who proposed structures for anthracene pitch trimers composed 

only of alternant PAHs with their six-membered rings.  In the case of Mochida et al.,
15

 

their isotropic anthracene pitch was produced catalytically using HF/BF3 (with the 

mesophase pitch subsequently being produced from this isotropic pitch by thermal 

polymerization).  On the other hand, five-membered connecting rings are in agreement 
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with the work of Sasaki et al.,
24

 who predicted that the high-temperature (480 °C) 

carbonization of anthracene results in the formation of large, two-dimensional, discotic 

molecules consisting of anthracene monomers bonded via five-membered rings.  

 

Anthracene Pitch Tetramer 

 MALDI analysis of tetramer-rich GPC Fraction A1 (see Fig. 6.8a) reveals that the 

most prevalent peaks occur at m/z = 701.1, 703.1, and 705.1.  Consistent with our 

previous analysis, the peak at m/z = 701.1 is likely due to the condensation reaction of an 

anthracene molecule (mol wt 178) with the trimeric species of mol wt 526.8 (Fig. 6.7a), 

and the accompanying loss of 4 hydrogens.  The peak at m/z = 703.1 is likely due to the 

reaction of the anthracene trimer of mol wt 528.8 (Fig. 6.7a) with anthracene, while the 

peak at m/z = 705.1 could arise from either the reaction of the anthracene trimer of mol 

wt 528.8 with dihydroanthracene (mol wt 180), or from the reaction of the anthracene 

trimer of mol wt 530.9 (Fig. 6.7a) with anthracene.  Unfortunately, it was not feasible to 

perform PSD analyses on these peaks, as it was not possible to isolate the ions (parent 

and fragments) arising from each respective species from those arising from neighboring 

species.   

 The UV-Vis spectrum of tetramer (see Fig. 6.8b, thin black line) is quite similar 

to that of trimer, as it exhibits a uniform decrease in light absorption with respect to 

increasing wavelength.  The UV-Vis spectrum for GPC Fraction A1 was compared to 

reference spectra for two large PAHs available in the literature
21

 that are the closest 

match to our most likely species: (i) quaterrylene (see Fig. 6.8b; thick gray line), which 
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can be visualized as a tetramer of naphthalene and (ii) 1.2,3.4,5.6,7.8-tetra(peri-

naphthylene)anthracene (Fig. 6.8b; thick black line), a large PAH that contains four five-

membered rings.  Once again, the UV-Vis spectrum for the nonalternant PAH provides a 

much better match to the UV-Vis spectrum for the GPC fraction.  Thus, all 

characterization data observed for the three oligomeric fractions of anthracene pitch are 

consistent with the formation of oligomers by joining monomers via a five-membered 

ring. 

 

Figure 6.8.  (a) MALDI spectrum for GPC Fraction A1, composed of anthracene pitch 

tetramer. (b) The UV-Vis spectrum for GPC Fraction A1 (thin black line) is much more 

similar to that of the nonalternant PAH (thick black line) than to that of the alternant PAH 

quaterrylene (thick gray line).  Reference spectra are adapted from Clar.
21

 

 

Structural Characterization of M-50 Pitch Oligomers 

M-50 Pitch Dimer 

The MALDI spectrum of M-50 pitch, focused in on the heavy monomer and 

dimer region, is given in Fig. 6.9.  Previous work
8,9

 has established that the species 

present in M-50 monomer can be resolved into a number of Gaussian signal distributions, 

with their constituent species being separated by increments of 14 Da.  Such distributions 
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are created by methyl groups on a base PAH backbone of given mol wt.  Like M-50 

monomer, the major constituents of M-50 dimer can also be resolved into signal 

distributions separated by increments of 14 Da.  For example, the “black square” signal 

distribution, originating at m/z = 376.4, is comprised of species of mol wts of 376.4, 

390.5, 404.5, 418.5, 432.6, 446.5, and 460.5 Da.  Three other major signal distributions 

present in M-50 dimer shown in Fig. 6.9 are (1) the “black triangle” distribution, 

originating at m/z = 400.4, (2) the “white circle” distribution, originating at m/z = 426.2, 

and (3) the “white triangle” distribution, originating at m/z = 450.6.   

 
Figure 6.9.  MALDI of M-50 pitch, focused in on the mol wt range of the heavy 

monomer and dimer.  Major signal distributions are highlighted.  Molecular structures of 

major and notable components, based on the structural characterization results discussed 

later in this section, are also shown.   
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The orange circles and red triangles shown in Fig. 6.9 are the tail end of the 

monomer distributions that were previously identified.
9
  The “white square” signal 

distribution, originating at m/z = 326.5, was previously identified by our group.
9
  

However, the parent aromatic backbone was not established.   

In preparation for PSD analyses, prep-scale GPC was applied to DGE Pitch Cuts 

1-3 to produce GPC fractions rich in M-50 dimer, and in trimer and tetramer (see Figs. 

6.3-6.5).  Up to 45 GPC fractions per DGE pitch cut were obtained, with each cut being 

collected over a time interval of 15 s.  MALDI analysis was performed on these fractions, 

and 16 of them exhibited prominent, well-isolated peaks such that they could be readily 

analyzed for molecular structure by PSD.  Mol wts of the species in dimer-rich GPC 

Fractions 4-19 that were subjected to PSD analysis are given below the respective 

fraction numbers in Figs. 6.3b and 6.4b.  We have previously discussed the capabilities 

and limitations of PSD elsewhere.
9
      

In Figs. 6.10 and 6.11, MALDI-PSD fragmentation analyses are shown for the 

species in each of the aforementioned distributions.  The PSD fragmentation patterns for 

the first two species in the “black square”, “black triangle”, and “white circle” signal 

distributions exhibit no fragment peaks, an observation that is in agreement with 

reference mass spectra
20

 for unsubstituted and single-methylated PAHs.  However, PSD 

spectra for all other species constituting these signal distributions exhibit a sharp 

fragment peak at a mol wt 15 Da less than that of the parent species, indicating a species 

that has lost a methyl group (e.g., 454.5 and 439.5 in Fig. 6.11i).  In addition, PSD 

spectra for some of the heavier and all of the heaviest species in each distribution exhibit 
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fragment peaks at a mol wt 29 Da less than that of the parent species, indicating a species 

that has lost an ethyl group (e.g., 446.5, 431.5, and 417.6 in Fig. 6.10k).  Notably, these 

trends are similar to those observed in PSD spectra for the species comprising M-50 

monomer.
9
  Also notable is the fact that none of the observed PSD spectra are consistent 

with mass spectra for molecules containing naphthenic groups.
20

  

For none of GPC Fractions 4-19 was it feasible to perform MALDI-PSD analyses 

on the species of mol wt 450.6 Da, because of interference from closely neighboring 

species with stronger MALDI responses.  However, we consider it likely that the “white 

triangle” signal distribution (see Figs. 6.9 and 6.11m-r) begins at 450.6 Da.  Similarly, 

PSD could not be applied to the portion of M-50 dimer above ~520 Da, as prep-scale 

GPC was not able to adequately isolate individual species for PSD analysis in this mol wt 

region.   
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Figure 6.10.  MALDI-PSD fragmentation analyses for the “white square” (a-e) and 

“black square” (f-l) signal distributions given in Fig. 6.9.  PSD spectra are from GPC 

Fractions 4-11 (see Fig. 6.3b).  Note that more than one PSD spectra was obtained from a 

given GPC fraction in many instances.  For example, GPC Fraction 10 was the source of 

spectra for the parent species at both 340.6 (b above) and 376.4 (f above) Da. 
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Figure 6.11.  MALDI-PSD fragmentation patterns for the “black triangle” (a-f), “white 

circle” (g-l), and “white triangle” (m-r) distributions depicted in Fig. 6.9.  PSD spectra 

were generated from GPC Fractions 12-19 (see Fig. 6.4b).   

 

The next step in our work was the determination of the arrangement of bonds 

between the monomer units comprising the dimers.  GPC Fractions 5, 10, and 14 were 

selected for UV-Vis analysis because of their relatively high purity, with each containing 

only one major species (see Fig. 6.12).  The dominant peak in GPC Fraction 10 at m/z = 

340.6 (Fig. 6.12a) corresponds to the second species in the “white square” distribution 

(see Figs. 6.9 and 6.10b), while in GPC Fraction 5 (Fig. 6.12c) the dominant species at   
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Figure 6.12.  MALDI and UV-Vis spectra for dimer-rich GPC Fractions 10 (panels a and 

b), 5 (panels c and d), and 14 (panels e and f).  The similarity of these UV-Vis spectra to 

that of the reference standard 2.3-o-phenylenepyrene (adapted from Clar
21

) indicates that 

these dimers are formed by joining the monomer precursors via a 5-membered ring.  

Depicted on the MALDI spectra are the molecular structures of the most prevalent dimer 

species for the signals at m/z = 340.5, 432.6, and 468.6.  
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m/z = 432.6 belongs to the “black square” signal distribution (Figs. 6.9 and 6.10j).  

Finally, GPC Fraction 14 (Fig. 6.12e) is rich in species that belong to the “white circle” 

(m/z = 468.6; Figs. 6.9 and 6.11j), “white triangle” (m/z = 492.5; Figs.6. 9 and 6.11p), 

and “black triangle” (m/z = 456.6; Figs. 6.9 and 6.11e) signal distributions. 

The UV-Vis spectra (see Figs. 6.12b, 6.12d, and 6.12f) for these three GPC 

fractions exhibit common features: strong light absorption at wavelengths below 350 nm, 

with particularly strong absorption below 300 nm, and essentially nonexistent light 

absorbance at and above 500 nm.  UV-Vis spectra for the other M-50 dimer-rich fractions 

are similar in appearance to those described above.  Thus, all of these UV-Vis spectra 

differ significantly from those of fully alternant, benzenoid PAHs, such as the benzenoid 

dimers of phenanthrene and of pyrene presented by Clar.
21

  They are much more similar 

to those of nonalternant PAHs,
21

 such as 2.3-o-phenylenepyrene.  Thus, the prevailing 

evidence indicates that M-50 dimer is primarily comprised of nonalternant PAHs 

containing a five-membered ring.   

The next issue to be resolved was whether any significant structural change in the 

monomer precursors occurred in the formation of dimers.  As shown in Figs. 6.10 and 

6.11, the PSD fragmentation patterns indicate the absence of both naphthenic content and 

single biphenyl linkages in the dimer species analyzed.  Thus, we concluded that the only 

structural change in the monomer precursors upon forming a dimer was the loss of two 

aromatic hydrogen atoms/monomer and subsequent formation of the 5-membered 

connecting ring.  Furthermore, as was the case for the monomer distributions,
9
 PSD 
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fragmentation patterns in Figs. 6.10 and 6.11 indicate that that the first species in each 

signal distribution is unsubstituted.   

Taking into account the above information, we then proposed molecular 

structures for the most prevalent M-50 dimers by assuming that they form from the 

condensation reaction of two of the most common monomeric species, with the 

accompanying loss of 4 hydrogens and the formation of a five-membered “connecting” 

ring.  Using this method, we were able correctly predict the mol wts for the most 

prevalent dimer species shown in Fig. 6.9.  For example, the “white square” peak at m/z 

= 340.6 is a dimer of pyrene (m/z = 202) and naphthalene (m/z = 128) with one methyl 

substituent, while the “black square” peak at 432.6 is a dimer of pyrene and phenanthrene 

(178) with 4 methyl substituents.  At 468.7, the “white circle” peak is a tri-methylated 

dimer of pyrene with a monomer of m/z = 228.  Here the monomer could be chrysene, 

triphenylene, or benz[a]anthracene, as all of these were found in significant amounts in 

the monomer of M-50 pitch.  A summary of the most prevalent dimers, their mol wts, and 

their monomer precursors, is given in Table 6.1.   

 

M-50 Pitch Trimer 

M-50 trimer was also prepared for characterization by using the two-step 

fractionation technique employed in the previous section.  Specifically, DGE Pitch Cut 3 

(see Fig. 6.5) was subjected to prep-scale GPC to yield GPC Fractions 20-23, on which 

MALDI, PSD, and UV-Vis analyses were then performed.      
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 The MALDI spectrum of GPC Fraction 22, which encompasses most of the mol 

wt range for trimer in M-50 pitch (see Fig. 6.1), is given in Fig. 6.13.  Analogous to what 

has previously been observed for the monomer and dimer portions of M-50 pitch, the 

highest-intensity peaks in the spectrum can be seen to belong to Gaussian-type signal 

distributions, with each peak separated by increments of 14 Da.  For the “red triangle”, 

“green square”, and “blue circle” distributions shown in Fig. 6.13, PSD analysis (see Fig. 

6.14) demonstrates that these increments are created by methyl substituent groups, again 

consistent with what we have previously reported for both monomers
8,9

 and, above, for 

dimers.  Because of signal interference from closely neighboring peaks, PSD analysis 

could only be performed on a limited number of the species within these signal 

distributions (and, in fact, on none of the species in the “purple rectangle” distribution).   

 

Figure 6.13.  MALDI spectrum for trimer-rich GPC Fraction 22 (see Fig. 6.5b).  Major 

species distributions are highlighted; molecular structures of the most prevalent trimers 

are depicted. 
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Figure 6.14.  MALDI-PSD fragmentation patterns for selected species comprising 

various signal distributions in M-50 trimer: “red triangle” distribution (a-d), “green 

square” distribution (e-h), and “blue circle” distribution (i-l).  PSD spectra were 

generated from GPC Fractions 21-23.    

 

As was the case for M-50 dimer, none of the PSD spectra in Fig. 6.14 are 

consistent with reference mass spectra for molecules possessing either naphthenic content 

or single biphenyl linkages.
20

  The weak intensity of the de-methylation peaks (and the 

total lack of any de-ethylation peaks) in Fig 6.14 occurred because a lower laser power 

had to be used for PSD analyses (thus reducing fragmentation) in order to reduce the total 

number of ions that had to be screened out by the ion gate.  A higher ion count would 

have overloaded the ion gate, making all but impossible the task of isolating peaks in the 

more “crowded” GPC fractions containing the trimer species. 
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The UV-Vis absorption spectrum for GPC Fraction 22 is given in Fig. 6.15, as is 

the spectrum for trimer-rich, anthracene pitch GPC Fraction A2.  The two spectra are 

quite similar, with both exhibiting the weak absorption at higher wavelengths 

characteristic of mixtures comprised primarily of nonalternant PAHs with their five-

membered rings.  These results thus continue the trend observed above for the dimers 

and/or trimers of anthracene and M-50 pitches:  that is, M-50 pitch trimers consist of a 

dimer and a monomer joined via a five-membered ring.  

Trimer structures for the most prominent signals in the MALDI spectrum for GPC 

Fraction 22 (see Fig. 6.13) were then constructed by assuming that some of the most 

prevalent dimer structures in M-50 pitch (e.g., the species of mol wts 432.6, 470.7, 482.8, 

and 492.8 in Fig. 6.9) undergo a condensation reaction with two of the most abundant 

monomer species in M-50, for example, methylbenzo[a]pyrene and 

methylbenzo[e]pyrene.
9
  Once again, this procedure was successful in predicting the mol 

wts of some of the most prominent trimer signals in Fig. 6.13.  Note that many variations 

on the reactions proposed above are possible.  In fact, any species from the “black 

square”, “black triangle”, “white circle”, or “white triangle” signal distributions in Fig. 

6.9 could react with an alkylated benzopyrene to produce the trimer structures shown in 

Fig. 6.13, as long as the total number of methyl substituent groups on the final trimer in 

question remained unchanged.  Finally, we note that, unlike the dimer distributions 

shown in Fig. 6.9, the first trimer in a series distribution in Fig. 6.13 does not consist of a 

bare PAH backbone, as these precursors were not among the most abundant ones.  A 
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summary of the most prevalent trimers, their mol wts, and their monomer precursors, is 

given in Table 6.1. 

 

Figure 6.15.  UV-Vis spectra for trimer-rich GPC Fraction 22 (solid black line) and for 

trimer-rich, anthracene pitch GPC Fraction A2 (dotted black line) are compared.   

 

M-50 Pitch Tetramer 

 M-50 tetramer was isolated for characterization by subjecting DGE Pitch Cut 3 to 

prep-scale GPC.  The heaviest fraction, GPC Fraction 20 (see Fig. 6.5b) was found to 

contain more than 90% tetramer and was thus selected for analysis by both MALDI and 

UV-Vis analysis.  PSD could not be performed because the tetramer peaks were too close 

to each other for any to be isolated.   

The MALDI spectrum for tetramer-rich GPC Fraction 20 is given in Fig. 6.16.  

Applying the analogous methods to what was previously applied to M-50 dimers and 

trimers, we can classify many of the most prevalent constituents of M-50 tetramer as 

belonging to one of three signal distributions, denoted in Fig. 6.16 by white rectangles, 

white diamonds, and black circles, with the peaks in each distribution being separated by 
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increments of 14 Da.  Although the more continuous nature of the mol wt distribution of 

the M-50 tetramer makes the application of PSD for fragmentation analysis impractical, 

there is no reason to believe that the increments of 14 Da described above could be 

anything but increasing levels of methylation on a base PAH backbone, analogous to 

what was definitively determined for the dimer and trimer oligomers.     

 

Figure 6.16.  MALDI spectrum for tetramer-rich GPC Fraction 20 (see Fig. 6.5b).  Major 

signal distributions are highlighted, and the molecular structures of some of the most 

prevalent tetramer species are depicted. 

 

The UV-Vis absorption spectrum for GPC Fraction 20 is given in Fig. 6.17, along 

with the spectrum of tetramer-rich, anthracene pitch GPC Fraction A1.  As before, the 

weakness of absorption at higher wavelengths suggests that M-50 tetramer is formed by 
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the condensation reaction of lower mol wt oligomeric units such that five-membered 

rings connect the reacting monomeric or oligomeric species.  Proposed molecular 

structures for the major M-50 tetramer species, which are consistent with the 

condensation reaction of two common dimers, or with the reaction of a common 

monomer and trimer, are given in Fig. 6.16.  The mol wts of these species, and their 

monomeric constituent units, are summarized in Table 6.1. 

 

 

 

 

 

Figure 6.17.  UV-Vis absorption spectra for GPC Fraction 20 (solid black line) and 

anthracene pitch, tetramer-rich GPC Fraction A1 (dotted black line) are compared. 
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Table 6.1.  Molecular weights of both the precursor monomer units
b
 and the resultant 

major oligomers that comprise M-50 pitch.   

Oligomer 

Type Monomer 

Reactant 

1 

Monomer 

Reactant 

2 

Monomer 

Reactant 

3 

Monomer 

Reactant 

4 

H 

Atom 

Loss
a 

Mol Wt of 

Oligomer 

Product 

(g/mol) 

Dimer 220
i 

216
ii 

------ ------ 4 432.6 

Trimer 220
i 

216
ii 

266
iii 

------ 8 694.9 

Dimer 244
iv

 230
v 

------ ------ 4 470.7 

Trimer 244
iv

 230
v
 266

iii
 ------ 8 732.9 

Tetramer 244
iv

 230
v
 266

iii
 244

iv
 12 973.4 

Tetramer 244
iv

 230
v
 266

iii
 256

vi
 12 985.4 

Dimer 230
v
 242

vii
 ------ ------ 4 468.7 

Trimer 230
v
 242

vii
 266

iii
 ------ 8 730.9 

Tetramer 230
v
 242

vii
 266

iii
 270

viii
 12 997.5 

Dimer 270
h
 216

ii
 ------ ------ 4 482.8 

Trimer 270
h
 216

ii
 266

iii
 ------ 8 744.9 

Tetramer 270
h
 216

ii
 266

iii
 270

viii
 12 1011.5 

Dimer 266
iii

 230
v
 ------ ------ 4 492.8 

Trimer 266
iii

 230
v
 266

iii
 ------ 8 754.9 

a
Four hydrogen atoms are lost for each condensation reaction between monomeric units 

as a five-membered connecting ring is formed. 
b
Likely identities for the monomer units are proposed based on our previous results:

9 
 

i
Trimethylphenanthrene; 

ii
Methylpyrene; 

iii
Methylbenzo[a]pyrene, 

methylbenzo[e]pyrene; 
iv

Trimethylpyrene; 
v
Dimethylpyrene; 

vi
Dimethylchrysene, 

dimethylbenz[a]anthracene, dimethyltriphenylene; 
vii

Methylchrysene, 

methylbenz[a]anthracene, methyltriphenylene; 
viii

Trimethylchrysene, trimethylbenz[a]anthracene, trimethyltriphenylene. 

 

 

FT-IR Spectroscopy of M-50 Pitch Oligomers 

 

 For FT-IR analyses, two GPC fractions of higher concentration than those 

described above were also collected:  GPC Fraction 25, a trimer-rich fraction collected 

from 58.4 to 59.9 min, and GPC Fraction 24, a tetramer-rich fraction collected from 55.9 

to 57.4 min.  The FT-IR absorption spectra for these trimer- and tetramer-rich fractions of 

M-50 pitch, along with spectra for monomer- and dimer-rich fractions of M-50 pitch, are 

shown in Figs. 6.18a-d.  Of particular interest to us is the fact that all fractions of M-50  
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Figure 6.18.  Transmission FT-IR analysis for (a) a pitch cut containing 98% M-50 

monomer, (b) a pitch cut containing 97% M-50 dimer, (c) a trimer-rich cut (GPC Fraction 

25), and (d) a tetramer-rich cut (GPC Fraction 24).  The monomer and dimer cuts were 

prepared as described by Cristadoro et al.
8
 Significant aryl content (note peaks from 900 

to 700 cm
-1

 indicating out-of-plane bending vibrations of aryl C-H groups) are observed 

for all fractions.     
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pitch have significant aryl content, as exhibited by the strong absorption between 900 and 

700 cm
-1

 in all cases.  The fact that the aryl content does not significantly decrease with 

increasing oligomeric size is consistent with our structural observations thus far: that is, 

linkage between monomer units does not occur by large-scale condensation or significant 

rearrangement of monomer units to form highly condensed, graphitic structures, but by 

the loss of only four hydrogen atoms and the formation of a single, five-membered ring. 

 

Conclusions 

 Although characterization of the mesophase-forming constituents (i.e., mesogens) 

in pitches has been a subject of interest for many years, identification of their actual 

molecular structures has met with limited success.  By applying our two-step, sequential 

fractionation process (i.e., DGE followed by prep-scale GPC) to M-50 petroleum pitch, 

we have been able to isolate individual oligomeric constituents for subsequent analysis 

and identification.  A key finding of our work is that the dimer, trimer, and tetramer 

oligomers present in petroleum pitch are formed by the joining of monomer “building 

block” units via a nonalternant, 5-membered connecting ring – and not by the alternant, 

6-membered connecting ring that is typically proposed in the literature.
8,25,26

  

Furthermore, the monomer precursors are seen to undergo essentially no structural 

change and minimal loss of alkyl substituent groups as they link up to form oligomers.  

Because this oligomer formation occurs via a condensation reaction in which only a total 

of 4 hydrogens are lost as the connecting, nonalternant ring is created between two 

monomer units, no large-scale condensation occurs.  This is in significant contrast to the 
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highly condensed nature of the higher mol wt species that are found in coal-tar pitches,
27

 

and may have significant implications for the formation of mesophase pitch from each of 

these starting materials.   

Finally, we note that M-50 pitch and the mesogenic oligomers therein are 

typically produced by the thermal polymerization of FCC decant oil.  Whether similar 

formation mechanisms and molecular structures occur when catalytic polymerization is 

used to produce isotropic and mesophase pitches will require further investigation.  
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CHAPTER 7 

ADDITIONAL DISCUSSIONS CONCERNING THE STRUCTURAL 

IDENTIFICATION OF THE OLIGOMERIC CONSTITUENTS OF 

PETROLEUM PITCH 

Effect of Reaction Mechanism on Bonding Arrangement Between Monomers 

The lack of understanding of the bonding arrangement between the monomer 

units comprising pitch oligomers is an impediment to determining accurate molecular 

structures for the components of mesophase pitch.  Previous work suggests that the 

reaction conditions (that is, whether the reaction proceeds by a thermal, or catalytic 

polymerization mechanism) largely determines the number and arrangement of the 

bonds.  For example, reaction of naphthalene in the presence of AlCl3 results in the 

formation of perylene,
1
 a dimer of naphthalene in which the monomer units are joined via 

a six-membered ring.  Similar results are observed when the reactant is pyrene or 

coronene.  Therefore, we studied two pitches which were produced at similar conditions:  

M-50 pitch (the residue produced by the thermal polymerization of FCC decant oil) and 

an anthracene pitch produced by reacting anthracene at high temperature with no 

catalyst.
2,3

  In this work, we seek to use our knowledge of the structures present in M-50 

monomer to determine molecular structures for the heavier, mesophase-forming trimer 

and tetramer oligomers of M-50 pitch.  The objectives of this work, then, were twofold:  

(i) determining the number and arrangement of the bonds in the prominent species 

comprising the oligomers of anthracene and M-50 pitches, and (ii) using this information 
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in predicting molecular structures for the major oligomers in both anthracene and M-50 

pitches.    

 

 

Optimizing the Quality of UV-Vis Spectra 

UV Cutoff Wavelength 

The UV cutoff wavelength indicates the lowest wavelength for which absorbance 

values can be measured for a particular compound.  All light of lower wavelength 

incident on the sample solution is absorbed by the solvent.  The UV cutoff wavelengths 

for cyclohexane and 1,2,4-trichlorobenzene (TCB) are 200 and 308 nm, respectively.  

Clearly, a solvent with a lower UV cutoff is desirable, as such a choice would allow for 

the collection of a UV-Vis spectrum over a greater range of wavelengths.  However, pitch 

cuts of higher molecular weights (trimer-range and higher) are typically insoluble in such 

solvents.  For pitches, aromatic solvents such as benzene, toluene, and TCB possess 

greater solvating power than cyclohexane and other common UV-Vis solvents.  

However, there is a trade-off as aromatic solvents have relatively high UV cutoff 

wavelengths. 

 

Effect of Concentration 

Lower concentrations which lead to max absorbances below 2.0 (using the 

Spectral Instruments 400 Series spectrophotometer) result in better, well-resolved UV-

Vis spectra.   
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Note Concerning the Mol Wt at Which the Monomer/Dimer Boundary Occurs 

Because of the similarity in the overall form of the UV-Vis spectra in Figs. 12b, 

12d, and 12f in Chapter 6, it is likely that a number of “heavy monomer” species, such as 

those comprising the “white square” signal distribution, are actually dimers.  Thus, there 

is no clear point where monomer ends and dimer begins (note the overlap in Fig. 6.9 in 

Chapter 6 between the “red triangle” distribution in M-50 monomer with the “white 

square” distribution in M-50 dimer).  Rather, the species within a mol wt range of 326 

and 388 Da are comprised of both monomer and dimer. 

 

UV-Vis Spectra for Benzenoid Dimers 

In this section, we give additional UV-Vis spectral justification for our conclusion 

that benzenoid (that is, aromatic molecules containing only 6-membered rings) dimers are 

not present in M-50 pitch in significant amounts.  In Fig. 7.1, the UV-Vis spectra for 

phenanthrene dimer (see panel a) and pyrene dimer (see panel b) are given.  Each of these 

dimers has an isomer, the UV-Vis spectrum of which is similar in form to those displayed 

in Fig. 7.1.  The UV-Vis spectra shown in this figure were adapted from Clar (1964).
4  

Unlike the UV-Vis spectra for the GPC Fractions introduced in Chapter 6, the 

peaks at absorption wavelengths above 400 nm are very strong.  Hence we conclude that 

dimer molecules in which the monomer units are joined via a six-membered ring are not 

prevalent in M-50 dimer.  
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Figure 7.1.  UV-Vis spectra for selected benzenoid dimers of phenanthrene (panel a), and 

pyrene (panel b).  Adapted from Clar.
4
   

 

Additional Discussions Concerning IR Spectral Analyses of Pitches 

M-50 and coal-tar pitches are similar in that both classes of pitch are residues 

remaining after the high-temperature distillation of carbonaceous feeds (FCC decant oil 

and coal-tar, respectively).  Herod et al.
5
 have reported IR spectra indicating that the 

heaviest species of coal-tar pitch are structurally very dissimilar to the lighter ones 

(acetonitrile-soluble), postulating that while light PAHs such as pyrene and the 

benzopyrene isomers are present in the pitch, the largest species have a structure that is 3-

D, with very few aromatic C-H bonds present.  Specifically, IR spectra for light fractions 

of coal-tar pitch exhibit sharp, strong peaks in the fingerprint region of the spectrum 

between 900 and 700 cm
-1

.  These peaks indicate out-of-plane bending vibrations of aryl 

C-H groups.  However, IR spectra for the heaviest fractions of coal-tar pitch exhibit weak 

absorption in this area, suggesting that there are very few aryl C-H sites present in these 

fractions.   
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 Because of the marked differences in the IR spectra of the light and heavy 

fractions of coal-tar pitch, the IR spectra for oligomeric fractions of M-50 monomer, 

dimer, trimer, and tetramer were compared (see Fig. 6.18, Chapter 6).  For all M-50 pitch 

fractions characterized, there is a sizable presence of peaks in the region 900-700 cm
-1

.  

From this result we can conclude that there are an appreciable number of aryl C-H sites 

present in M-50 monomer, dimer, trimer, and tetramer, a conclusion markedly different 

to that observed for the coal-tar pitch.  This conclusion differs from that observed for the 

coal-tar pitch in that the light coal-tar pitch fractions exhibited strong peaks in this region, 

while the heavy ones did not.  Therefore, for M-50, the hypothesis that molecules in this 

mol wt range consist of monomers connected via condensation reactions appears 

accurate. 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

198 

References 

1
Fetzer, J. C. The Chemistry and Analysis of Large PAHs. Polycyclic Arom. Compd. 

2007, 27(2), 143-162. 

 
2
MSDS for M-50 Pitch.  http://www.mapllc.com/MSDS/0275MAR019.pdf   

 
3
Edwards, W. F.; Jin, L.; Thies, M. C.  MALDI-TOF Mass Spectrometry; Obtaining 

Reliable Mass Spectra from Insoluble Carbonaceous Pitches.  Carbon 2003, 41, 2761. 

  
4
Clar, E.  Polycyclic Hydrocarbons.  Academic Press, London (1964).  pp. 58, 266. 

 
5
Herod, A. A.; Bartle, K. D.; Kandiyoti, R.  Characterization of Heavy Hydrocarbons by 

Chromatographic Mass Spectrometric Methods: An Overview. Energy Fuels 2007, 21(4), 

2176-2203. 



 
 

 199 

CHAPTER 8 

CONCLUSIONS AND RECOMMENDATIONS 

 The work of the Carbon group has been focused on both controlling and 

characterizing the molecular composition of carbonaceous pitches, with a longer-term 

goal of producing molecularly optimized precursors for high-performance carbon 

molecules.  To this end, this dissertation had two major goals: (i) development of an 

equation of state for predicting the global phase behavior of carbonaceous pitches over a 

wide range of temperatures and pressures, both in the presence and absence of solvents. 

(ii) identification of the molecular structures of the major components in a representative 

petroleum pitch.    

 The success of this work is illustrated by 3 major achievements: 

(1) The Statistical Associated-Fluid Theory (SAFT) equation of state was combined 

with the liquid crystal theory of Maier and Saupe
1,2,3

 (as expanded to 

multicomponent mixtures by Humphries, James, and Luckhurst
4,5,6

) to produce 

the SAFT-liquid crystal (SAFT-LC) equation, which can be used to predict both 

isotropic phase equilibria and mesophase content in pitch and pitch-solvent 

mixtures. 

(2) Matrix-assisted, laser desorption and ionization, time-of-flight mass spectrometry-

post source decay (MALDI-PSD, or PSD) was applied to narrow molecular 
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weight (mol wt) fractions of M-50 pitch to determine molecular structure 

information (primarily alkyl substituent information) for the species therein. 

(3) A two-step separation technique, consisting of dense-gas extraction (DGE) 

followed by high-temperature, preparatory-scale gel permeation chromatography 

(prep-scale GPC), was used to produce narrow pitch fractions in quantities 

sufficient to allow for the further, successful characterization of said fractions 

using high-performance liquid chromatography with photodiode array detection 

(HPLC/PDA), ultraviolet-visible spectrophotometry (UV-Vis), MALDI, PSD, and 

thin films transmission Fourier Transform-Infrared (FT-IR) spectroscopy. 

Achievements (2) and (3) above are the most complete structural characterization 

to date of the most prominent individual species comprising M-50 pitch. 

 

Conclusions 

SAFT-LC Equation 

 SAFT-LC is a potentially powerful tool for predicting the optimum DGE 

operating conditions for producing pitch fractions of a desired mol wt distribution 

(MWD) and mesophase content.  For the first time, an equation of state that can predict 

both the isotropic phase equilibrium (e. g., both vapor-liquid equilibrium and liquid-

liquid equilibrium) and mesophase content of pitch and pitch-solvent mixtures at near-

critical and super-critical conditions is available.  So far, this equation has been used to 
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predict phase equilibrium and mesophase content only for single-stage extraction 

processes, but it could also be extended to multistage DGE separations using packed 

columns (such multistage calculations would be aided by the use of a simulation package 

such as ASPEN or HYSYS).   

 However, the accuracy of SAFT in predicting the oligomeric composition of pitch 

fractions obtained via DGE processing remains an open question.  Recall that the 

experimental phase-equilibrium data used in Chapters 2 and 3 to fit SAFT-LC parameters 

was incomplete, as only the solvent content of each phase during DGE, plus the 

mesophase content after solvent drying, were available for fitting SAFT-LC parameters 

(the MALDI technique was nascent at that time, and no such instrumentation existed at 

Clemson University).   

 

PSD 

 PSD has shown itself to be a useful technique for the characterization of pitches, 

as a pitch species of a given mol wt that has been insufficiently isolated can be can be 

analyzed to obtain a molecular fragmentation pattern (which yields information 

concerning the molecular structure, such as naphthenic content and the nature of 

substituent groups present).  Unlike other mass spectrometry techniques, the PSD 

technique can be applied to nonvolatile species.  The unique ability of our group to obtain 

oligomeric cuts by DGE, and then to isolate pitch species from these DGE cuts by high-

temperature GPC, was a key factor in the success of this work.   
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The quality of the PSD spectra obtained was maximized through proper selection 

of the instrument operating parameters.  In the FlexControl MALDI operating software, 

separate methods have been prepared to yield crisp, neat spectra (featuring well-defined 

peaks with a minimum of baseline elevation), depending on the mol wt of the pitch 

species to be characterized.  These methods include pre-programmed values of the laser 

power and microchannel plate detector gain to be used for each segment of the PSD 

spectrum obtained (see Appendices E and F).  However, it is necessary to reassess these 

parameters based on the age of the detector.  This issue is discussed in greater detail later 

in this chapter.     

Prep-scale GPC 

 Prep-scale GPC was successfully used to fractionate up to 10 mg of pitch (during 

a single chromatographic run) into oligomeric fractions of narrow MWD without 

observing any deterioration in column performance.  In Chapter 4, M-50 monomer-rich 

pitch cuts produced from both continuous and semibatch DGE were subjected to prep-

scale GPC to yield fractions encompassing a mol wt range of 60 Da or less.  This two-

step separation method was essential for adequately isolating pitch fractions for 

subsequent PSD analysis.  It is not feasible to perform PSD on the whole M-50 pitch, as 

for most, if not all species in the whole pitch the MALDI response is overshadowed or 

interfered with by those of neighboring monomer species (within a range of at least ±2 

g/mol).  That is, when we attempted to perform PSD on such species, we find that the ion 

gate is not able to fully screen out neighboring species for which the mol wt of the parent 
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compound is within a range of at least ±2 g.mol of the species of interest (leading to 

unreliable PSD spectra).  As we saw from the work in Chapter 4, DGE/prep-scale GPC 

sequential separation solved the problem to a large extent for the monomeric portion of 

M-50 pitch.    

 In Chapter 5, the combination of DGE and prep-scale GPC continued to be an 

essential means for separation, as fractions of dimer and higher oligomers were generated 

that were narrower in mol wt than any produced in this laboratory to date.  For example, 

semibatch DGE was used to produce pitch cuts of 100% dimer spanning a mol wt range 

of just over 200 g/mol.  When these DGE cuts were subjected to prep-scale GPC, dimer-

rich fractions encompassing a mol wt range of less than 100 g/mol were isolated.  In a 

similar manner, semibatch DGE was used to produce a pitch cut containing nearly 90 mol 

% M-50 trimer, with the remainder consisting of M-50 tetramer.  The subsequent 

fractionation of this pitch cut via prep-scale GPC resulted in the collection of two 

fractions: one containing 100% M-50 trimer and spanning a range of about 200 g/mol and 

a second containing 94% M-50 tetramer and spanning a range of ~ 300 g/mol.   

 It is only necessary to inject ~ 10 mg of pitch into the GPC column in order to 

collect pitch fractions of concentrations sufficient to make feasible their subsequent 

characterization by UV-Vis, MALDI, PSD, and HPLC/PDA.  Key to the development of 

the MALDI and PSD work was the use of a sample preparation technique developed in 

our laboratory (see Chapter 4) that requires that only one drop of the collected fraction be 

spotted onto a thin film of matrix on the MALDI target.     
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HPLC/PDA 

 HPLC/PDA has proven to be a useful tool for unequivocally identifying prevalent 

polycyclic aromatic hydrocarbon (PAH) backbones present in M-50 monomer, which 

include pyrene, chrysene, benz[a]anthracene, triphenylene, chrysene, benzo[a]pyrene, 

benzo[e]pyrene, and benzo[ghi]perylene.  Again, the DGE/prep-scale GPC separation 

technique described above was essential in allowing us to separate pitch species 

adequately such that HPLC could be applied.  Typically, the narrower the pitch fraction 

analyzed, the higher the quality of the results, as it became increasingly possible to 

resolve the chromatographic peaks from each other.   

 

Recommendations 

 

Improving the SAFT-LC Equation 

 In order to improve the SAFT-LC equation so that it gives accurate quantitative 

predictions for the MWDs of the top and bottom phases associated with the DGE process, 

the following course of action is recommended.  Efforts need to be made to modify the 

pure-component parameters of the SAFT-LC equation of state so that they are 

appropriate for carbonaceous pitches, such as petroleum pitch (the parameters that we 

have been using to date were developed using equations developed for bitumen, a much 

more aliphatic and less PAH-condensed material than our pitches are).  First, it will be 



 
 

 205 

necessary to obtain phase equilibrium data for the M-50 pitch/toluene system over a 

range of temperatures, pressures, and solvent-to-pitch ratios.  This task could be 

accomplished by performing DGE experiments without any packing material in the 

column; however, measures must also be taken (e. g., preheating and mixing) to ensure 

that true equilibrium is obtained.  Next, the adjustable SAFT-LC parameters A, B, C, a, 

and b must be re-calculated by fitting the parameters to the above equilibrium data.  The 

objective function could be developed to minimize the differences in experimental and 

calculated values for pseudocomponents (PCs) – or for selected “key species” in each 

oligomeric cut.  The mesophase content of the dried bottom phase may (or may not) be 

included as desired.     

 If the above procedure does not produce a SAFT-LC model with acceptable 

predictive capabilities, then the method of calculating the pure-component SAFT 

parameters v
00

, m, and u
0
/k for our pitch PCs or species should be re-evaluated.  For all 

SAFT-LC work discussed in this dissertation, SAFT parameters were generated using 

correlations developed by Huang and Radosz
7
 for PCs of bitumen.  Huang and Radosz 

developed these correlations based on their knowledge of SAFT parameters for aliphatic 

compounds (of mol wts from 16 to 619 g/mol) and aromatic compounds (of mol wts from 

78 to 228 g/mol).  A necessary input to the correlations was the PC aromaticity, which 

was determined from knowledge of the PC mol wt and its atomic carbon/hydrogen (C/H) 

ratio.  The bitumen PCs of Huang and Radosz have atomic C/H ratios ranging from 0.55 

to 0.72, indicating a relatively high aliphatic content.  Notably, these C/H ratio values are 

significantly lower than those for pitch PCs, which are PAHs (e.g., in Chapter 3 C/H 
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ratios of pitch PCs ranged from 1.14 to 2.19).  As noted above, Huang and Radosz only 

considered aromatic compounds up to mol wt 228 g/mol (triphenylene) in developing 

their correlations.  Furthermore, their correlations were based primarily on an aliphatic 

database used because of the relative paucity of data for aromatic compounds.  In 

addition, all but 2 of the pitch PCs used in Chapters 2 and 3 possessed mol wts 

significantly greater than 228 g/mol.  To our knowledge, no SAFT parameter data exist in 

the literature for PAHs containing more than 4 rings.  Thus, it is difficult to confirm that 

the calculated values for the pure-component SAFT parameters for PCs are reliable.    

 Clearly, another method of predicting the three pure-component SAFT parameters 

m, v
00

, and u
0
/k is desirable.  One such method was put forth recently by Tamouza et 

al,
8,9

 who used a group contribution method to express each pure-component SAFT 

parameter as a function of several group contribution parameters reflecting the nature 

(that is, whether the carbon is part of a methylene group, methyl group, etc.) of the 

various carbon atoms comprising the molecule.  Therefore, use of such a method requires 

the knowledge of the molecular structure of the molecule.   

Subsequently, Huynh et al.
10

 used the method of Tamouza et al. to calculate group 

contribution parameters for various types of carbon atoms present in PAHs (examples of 

such are the 10 outer aromatic ring carbons in pyrene that are bonded to two carbon 

atoms and a hydrogen atom, and the 6 inner aromatic carbon atoms in pyrene that are 

bonded to three other carbon atoms).  This task was completed by regressing to PVT data 

available for seven PAHs (the largest being triphenylene, with a mol wt of 228 Da).   The 

group contribution parameters thus calculated for the various carbon atoms present in 
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PAHs could be used to predict SAFT parameters for pitch constituents with mol wt 

values significantly greater than 228 Da.  However, in order to successfully extend the 

group contribution theory of Tamouza et al. to PAHs, it was necessary to add another 

Helmholtz energy term to the SAFT equation in order to account for quadrupolar 

interactions.  Another deficiency is that this group contribution theory does not create a 

separate classification for carbon atoms that are part of a five-membered ring. 

 As altering the current SAFT program file currently in use at Clemson University 

would be a time-consuming task, an alternate course of action may be worthy of 

investigation. One idea is to follow the general approach used by Hutchenson et al.
11

 in 

determining the pure-component Peng-Robinson parameters aC, b, and  for pitch PCs.  

Hutchenson et al. then showed that each of these characteristic constants could be 

expressed a linear function of the most statistically relevant molecular structure 

parameters.  In order to apply this method to the current problem, it would first be 

necessary to compile a list of literature values for the pure-component SAFT parameters 

for as many PAHs as feasible.  The next step would be to develop a new set of equations 

expressing each of these parameters as a function of the most statistically significant 

structural parameters.  This set of parameters could include, but not be limited to, the 

numbers of the different types of carbon atoms present in the molecule of interest (for 

example, it could also include mol wt and the number of carbon atoms that are part of a 

five-membered ring).  It is recommended that a number of sets of structural parameters 

be investigated as the variables in which terms the pure-component SAFT parameters are 

expressed.     
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Troubleshooting long-term variations in PSD spectra 

 In order to successfully conduct PSD analyses, it is necessary to account for the 

factors that cause long-term variation in the PSD spectra.  One problem encountered is 

that of long-term variability in the laser power and detector gain necessary to achieve 

well-resolved spectra with high signal-to-noise ratios, without inducing baseline 

elevation.   

 An example in the long-term variability in the laser power and detector gain (i. e., 

the voltage across the microchannel plate detector; higher detector gains result in stronger 

secondary electron currents arising from the incident ions on the walls of the detector 

microchannels and thus, stronger MALDI responses) necessary to achieve roughly 

identical PSD spectra is shown in Table 8.1 for two different time periods:  May 2008 

(when the reflector detector was still relatively new) and March 2010.  Values for laser 

power and detector gain for the first 3 segments (see Appendices E and F for detailed 

information on how PSD spectra are obtained) in the composite PSD spectrum are 

shown, as these are typically the only ones in which fragment peaks occur (for 

constituents of M-50 pitch).  The values labeled May 2008 are taken from the MALDI 

FlexControl software operating method FAST_May_2008.psm.  The values labeled 

March 2010 are taken from the method FAST_March_2010.psm.  From Table 8.1, it is 

apparent that increasing the values for both laser power and detector gain is necessary as 

time passes and the channels of the microchannel plate detector become clogged with 

matrix and analyte materials.  To make up for the loss of detector sensitivity that occurs 

due to this aging process, the operator can increase laser power and/or detector gain.  It 
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has been the experience of this researcher that the larger ion counts produced from higher 

laser powers tend to “overload” the Bradbury-Nielsen ion gate, increasing the likelihood 

that undesired species will not be prevented from reaching the detector.  Therefore, it is 

recommended that the current MALDI method utilized in the collection of PSD spectra 

be updated periodically (that is, a new method with updated parameters that result in a 

PSD spectrum with peak heights similar to those obtained using the original method) in 

order to account for the detector aging.  The loss of detector sensitivity observed because 

of aging should be counteracted by creating a new operating method in which the 

detector gain is increased as necessary, while keeping increases in the laser powers for 

each segment to a minimum.   

 

 

 

Table 8.1.  Variation, with respect to time, of the detector gain and laser power necessary 

to achieve similar PSD spectra. 

 

Segment 

Number 

Laser Power  

(% of Maximum) 
Detector Gain 

May 

2008 

March 

2010 

May 

2008 

March 

2010 

1 26 31 6.10 12.20 

2 29 29 8.10 26.00 

3 30 30 10.20 36.00 
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Modifying the prep-scale GPC apparatus to allow for higher mobile-phase flow rates 

 The maximum flow rate that the Alliance GPCV2000 model is designed to handle 

is 1.5 mL/minute.  If the mobile phase flow rate is higher than this value, the result will 

be damage of the pressure transducer in the viscometer.  If the viscometer and solvent 

preheater loop are bypassed, then the solvent pump can deliver a maximum flow rate of 

2.5 mL of the mobile-phase 1,2,4-trichlorobenzene (TCB) per minute (because of the 

relatively high viscosity of TCB relative to that of other common GPC mobile phases, it 

is possible that the maximum flow rate will rise other, less viscous mobile phases are 

used).  For TCB, if flow rates higher than 2.5 mL/min are used, then the pump piston seal 

begins to leak.   

 The disadvantage of the low maximum allowable mobile phase flow rate is that 

the run times are relatively long.  A pitch fractionation experiment typically requires a 

run time of 70-80 minutes.  Using a mobile phase flow rate of 10.0 mL/min would cut the 

necessary run time to one quarter of the current value, with comparable peak resolution.  

In order to increase the flow rate above 2.5 mL/min without damaging the apparatus, 

several parts of the system must be altered, including the solvent pump, the solvent 

degasser, and the refractometer unit, as follows:   

1. In order to deliver mobile-phase flow rates greater than 2.5 mL/min without 

damaging the equipment, it would be necessary to procure a new solvent pump 

that can deliver the desired flow rates.  It would be necessary to bypass the current 

GPC pump in order to accomplish this task, with the discharge side of the new 
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pump connected to the Alliance GPCV 2000 apparatus at the inlet to the solvent 

in-line filter.   

2. Relying on the current degassing unit to degas a mobile-phase pumped by a new, 

stronger pump is not advised by the Alliance GPCV2000 manufacturer Waters 

Inc.  Thus, it would be necessary to manually degas the solvent prior to use.  The 

degassing operation is important because this is the process by which dissolved 

oxygen is removed from the mobile phase.  If this operation is not performed, 

then one runs the risk of starving the pump of solvent, leading to a messy 

baseline. 

3. Eluent stream (with TCB as the mobile-phase) flow rates of greater than 3 

mL/min within the refractometer risk cracking the refractometer flow cell.  

Replacing the refractometer would cost a minimum of $10,000.  Therefore, when 

the flow rate of mobile phase is above this value, it will be necessary to   install a 

flow splitter at the column outlet, so that only a portion of the effluent enters and 

passes through the refractometer.  The installation of such a device would allow 

the GPC operator to vary the percentage of the total eluent stream entering the 

refractometer (with the rest of the eluent stream bypassing the refractometer).  

One could adjust the flow splitter such that most of the column effluent bypasses 

the refractometer, being sent straight to the fraction collector instead.   
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Purging TCB from refractometer when changing to another mobile phase 

 Special care must be taken to fully purge all TCB from the Alliance GPCV 2000 

system (particularly the refractometer) when changing the GPC mobile phase.  If the 

refractometer is not fully purged of TCB, its sensitivity will be greatly weakened 

(sometimes the signal-to-noise ratio is so low that it is difficult to distinguish the GPC 

response from baseline noise).  TCB is particularly difficult to purge from the 

refractometer because it is significantly more viscous than many other common GPC 

mobile phases.   

 It was often necessary to switch from operating in prep-scale mode (in which 

TCB was used as the mobile phase) to analytical-scale mode (in which tetrahydrofuran 

was used as the mobile phase).  The prep-scale columns were first removed.  Because 

TCB and tetrahydrofuran are immiscible, it was necessary to first switch the GPC mobile 

phase from TCB to toluene (normal boiling point 110° C); many common GPC mobile 

phases, including both TCB and THF, are fully miscible with toluene.  In order to 

effectively purge TCB from the refractometer, we set the column compartment 

temperature to 80° C and allowed it to reach equilibrium (this process takes 

approximately an hour).  The toluene flow rate was set to 1.0 mL/min, with a purge time 

of 60 minutes (the procedure for purging the refractometer is given in the Alliance 

GPCV2000 system software operating manual, Section 3.4.3, Purging the 

Refractometer).  When the purge is complete, check the refractometer LED current (from 

Diagnostics Mode of the Alliance GPCV 2000 system operating software, click 

Diagnostics, click on Service Diagnostics login, enter the password, and click Detector 
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Diagnostics).  The reading should be less than 40 mA.  If it is significantly higher than 

this number, then the refractometer has not been completely purged of TCB.  When the 

reading for the LED current was below 40 mA, the temperatures of the column, carousel, 

and injector compartments were programmed to 40° C and allowed to reach equilibrium.  

At that point, the mobile phase was switched over to tetrahydrofuran. 

    

Maximizing GPC Column Lifetime 

Prep-scale GPC column lifetime is maximized by limiting the amount of pitch 

injected onto the column.  At an injection volume of 1.080 mL, we recommend that the 

injection concentration be no greater than 10 mg/mL (that is, no more than 10 mg pitch 

fractionated per run) in order to avoid pore clogging and buildup of pitch on the column-

packing particles.  Our experience in this laboratory has been that such factors greatly 

reduce the efficiency of the prep-scale columns by causing peak tailing effects, 

particularly when the species fractionated are primarily heavy (that is, trimer-range and 

higher) oligomers.   

 

HPLC/PDA identification of dimer and higher-order oligomers 

 Based on the success of HPLC/PDA in identifying the most prevalent monomer 

species present in M-50 pitch from pitch, this technique is recommended for use in the 

unequivocal identification of the lower mol wt species in all kinds of pitches (including 

synthetic pitches produced via the catalytic or thermal polymerization of a single 
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molecule, such as naphthalene, anthracene or pyrene).  Reference UV-Vis spectra for a 

wide range of unsubstituted aromatics of mol wt < 450 Da (and selected substituted 

aromatics) are available in the open literature, so analysis of both monomer and dimer 

species will be possible.  Because many dimer species have mol wt < 450 Da (for 

example, in Chapter 5, the chief component of anthracene pitch dimer is shown to have a 

mol wt of 352 Da), HPLC/PDA analysis of narrow dimer fractions is also recommended.  

HPLC/PDA analyses of higher oligomeric fractions are possible, but unequivocal 

identification of the species present in such fractions is hindered by the scarcity of 

reference UV-Vis spectra in the literature for PAHs with a mol wt over 450 Da. 

 It is the view of this researcher that HPLC/PDA would be particularly effective 

for the unequivocal molecular characterization of oligomeric fractions derived from 

synthetic pitches (which would enable future researchers to relate the molecular 

structures of said pitches to their processibility and the properties of the final carbon 

products into which they are fabricated).  As indicated in Chapter 6, anthracene pitch 

(Fig. 6.2a) is comprised of relatively few species compared to M-50 petroleum pitch (Fig. 

6.1).  Thus, it was possible to isolate oligomeric fractions from this synthetic pitch with 

much narrower mol wt ranges than for M-50.  Because the anthracene dimer and trimer 

fractions are comprised of relatively few species, HPLC/PDA analysis should yield 

chromatograms with well-resolved peaks, allowing for the collection of UV-Vis spectra 

for each eluting compound, and thus making unequivocal compound identification 

possible if the respective reference UV-Vis spectra are present. 
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 In order to separate dimer and higher pitch oligomers via HPLC, it will be 

necessary to alter the mobile-phase program from that put forth in Chapter 4 for the 

HPLC/PDA analyses for various M-50 petroleum pitch fractions containing M-50 

monomer.  As was reported by Fetzer and Kershaw,
12

 pure acetonitrile (ACN: a highly 

polar solvent that nevertheless can dissolve some low mol wt PAHs because of the 

presence of a methyl group in its molecular structure) is too polar to cause larger, highly 

nonpolar, dimer-range PAHs (mol wt 300 to 424 Da) in coal-tar pitch to elute from the 

HPLC column.  Similar trends have been noted in other works.
13,14,15,16

  Therefore, we 

recommend using a solvent gradient from ACN to a chemical such as methylene chloride 

(as did Fetzer and Kershaw
12

) or chlorobenzene.  Both of these solvent gradients have 

been used with success by previous researchers in the HPLC analyses of PAHs above 

mol wt 300 Da.
13,14,15,16

  However, methylene chloride causes plastic polyether ethyl 

ketone (PEEK) tubing to swell.  Because this type of tubing is used in many HPLC 

systems, we recommend the use of an ACN-to-chlorobenzene solvent gradient.  

 HPLC column lifetime is maximized by greatly limiting the amount of pitch 

injected onto the column.  We recommend a small injection volume (10 L) and injection 

concentration (on the order of 0.1 mg/mL) in order to avoid buildup of pitch on the 

column-packing particles.  Such buildup has the end result of distorting the 

chromatogram baseline as the excessive pitch material belatedly elutes from the HPLC 

column during subsequent analyses.   
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Where Does This Work Fit Into the Big Picture? 

 The analytical methods presented in this dissertation have yielded a means to 

determine actual molecular structures present in petroleum pitches and related materials.  

Where, then, does the interested researcher go from here?  How could the methods 

presented in this chapter aid the pursuits of future researchers? 

 A current objective of the Carbon research group at Clemson is the design of 

precursor materials that are suitable for a given application.  In order to accomplish this 

objective, it is necessary to consider three important variables: the precursor viscosity, 

softening point and mesophase content.  Mesophase pitches produced by DGE or related 

techniques often have high softening points.  Such pitches are difficult to spin, as the high 

temperatures required for spinning of such fibers causes them to oxidize upon exposure 

to air.  The fibers then become brittle and break easily, resulting in low fiber yields per 

unit mass of precursor supplied. 

 Currently, the design of suitable pitch precursor materials is more of an art than a 

science, because investigators cannot relate the molecular structures of the precursor 

materials to mesophase content, precursor processibility and properties of the final carbon 

product in anything but a general sense.  For example, what molecular structures must be 

present to form mesophase?  What makes a good plasticizer (that is, a material that 

lowers the softening point (and thus, the minimum processing temperature necessary) of 

the precursor while having little to no effect on its mesophase content)?  Does the 

presence of a five-membered ring in the molecular structure have a noticeable effect on 
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the tendency of molecules within a certain mol wt range to act as a mesogen or a 

plasticizer?   

 The molecular structures present in the precursor can also be related to final 

carbon product properties such as porosity, tensile and compressive strengths, tensile 

(Young’s) modulus, and thermal conductivity.  In so doing, the investigator can glean 

clues concerning the graphitizabilities of stabilized fibers produced from various 

precursors (graphitization is a high-temperature reaction in which a stabilized fiber is 

converted to thin sheets of graphite).  Specifically, does the presence of a large proportion 

of 5-membered rings in a given precursor have a noticeable effect on its ability to form 

the highly graphitic microstructure necessary to achieve high tensile strength, tensile 

modulus and thermal conductivity in the final carbon product?   
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APPENDIX A 

EXTENSION OF THE MAIER-SAUPE THEORY TO MIXTURES OF HARD DISKS 

 

 The Maier-Saupe theory was originally derived to model the nematic interaction 

between long, rod-like molecules.
1,2,3

  This theory can be expressed as a Helmholtz 

energy of orientation which quantifies the tendency of these molecules form a liquid-

crystalline phase, or mesophase. An example of such a molecule, 4,4’-di-n-methoxy-

azoxybenzene (otherwise known as p-azoxyanisole) is shown as Species I (R = CH3) in 

Fig. A.1 below.  Derivatives of this molecule, such as 4,4’-di-n-heptyloxy-azoxybenzene 

(Species II: R = C7H15) also exhibit the tendency to form a liquid-crystalline phase.   

 

Figure A.1.  Mesophase-forming molecules 4,4’-dimethoxy-azoxybenzene (I),
3
 4,4’-di-

n-heptyloxy-azoxybenzene (II);
3
 in the structure of (III),

4
  the coronene-3,4:9,10-

bis(dicarboximide) backbone is substituted with alkyl chains.  

 

 In this appendix, the applicability of the Maier-Saupe theory to disk-like 

molecules, such as the polycyclic aromatic hydrocarbons that comprise pitch, will be 
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investigated.  First, we note a key assumption made by Maier and Saupe
2
 in the 

derivation of their theory.  They assumed that the liquid crystalline phase forms solely as 

a result of general, Coulombic dispersion interactions (even if the nematogen, such as p-

azoxyanisole, does in fact possess a permanent dipole moment, interactions between the 

permanent dipole moments of two such molecules are not assumed to play an appreciable 

role in the formation of nematic order and are thus neglected), with only the dipole-dipole 

term of the dispersion forces being considered.  Higher-order terms, such as quadrupole-

quadrupole and octopole-octopole terms, are shorter in range and would be expected to 

be negligible.
5
 It is notable that nonpolar, carbonaceous pitches, the discotic mesophase-

forming materials in which we are interested, do not even possess permanent dipoles. 

 We note that the structures of discotic nematogens are similar to the rod-like 

nematogens in that they are both highly rigid molecules with a highly conjugated system 

of double bonds.  Because of the similarities (i. e., aromatic content, a two-dimensional 

core structure substituted with alkyl chains of varying length) in the molecular properties 

of rod-like (Fig. A.1, structures I and II) and disk-like nematogens (Fig. A.1, structure III) 

, the Maier-Saupe theory will be derived for disk-like molecules using the same initial 

assumptions previously set out by Maier and Saupe.    
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Determination of the Nematic Interaction Energy Between A Molecule and the 

Mean Field Generated by its Neighbors  

 

Note: In performing this derivation, the nomenclature used by Maier and Saupe was used.  

Therefore, it differs from the nomenclature used in the presentation of the SAFT-LC 

equation in Chapters 2 and 3.   

 

 Using these assumptions, Maier and Saupe arrive at the following expression: 
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Here, f0 and f0 are measures of the isotropy of the 0- and 0- transitions, while 

the terms 0 and 0 are measures of the anisotropy of the 0- and 0- transitions (i.e., 

the transitions from the ground state 0 to energy state  or ).  The term E00 represents 

the combined ground state energies for molecule l and molecule k, while E represents 

the combined energies of molecules l and k in energy states  and , respectively.  The 

angle l represents the angle between the long axis of molecule l and a fixed, laboratory-

based axis.  Similarly, k represents the angle between the long axis of molecule k and 

the laboratory-based axis.  The term Rlk represents the distance between the centers of 

gravity of molecule l and molecule k (this step is not derived herein).  A(Rlk), B(Rlk) and 

C(Rlk) are functions of the molecular coordinates X, Y, and Z (where R
2
 = X

2
 + Y

2
 + Z

2
), 
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which denote the centers of gravity of the molecules.  Maier and Saupe do not explicitly 

define these terms.  However, De Jeu
6
 states that they can be written as: 

                                                                      

          (A.2) 

                   (A.3) 

                                             (A.4) 

                                                                                                                                                                        

Here, the subscripts are dropped from the R terms, for the sake of simplicity.  The 

right hand side of Equation A.1 is composed of three terms, the first of which is 

dependent solely upon isotropic transitions.  The second term is dependent on both 

isotropic and nematic transitions, and the final term is dependent only upon nematic 

transitions.   

The next step in the development of Maier-Saupe theory is the alteration of 

Equation A.1 so that it predicts the intermolecular potential between a particular 

molecule l and the mean field generated by its neighbors.  This average is obtained by 

first assuming that the average orientation angle for all molecules (other than molecule l) 

in the system at any particular instant in time is a constant value, .  The average value of 

k (the angle of orientation for molecule k over an infinitely long period of time), is 

assumed to be equal to .  For any ergodic system, this is a good assumption to make.  

Therefore,   

2 2

ksin θ  = sin θ        (A.5) 
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While it is not fully accurate in the immediate vicinity of molecule k, it 

considerably simplifies the problem of deriving the theory.  By converting the sin
2
 k 

term on the right hand side of Equation A.1 to an average (and then by substituting 

Equation A.5 into Equation A.1), an equation for the intermolecular potential between 

molecule l and the mean field generated by its neighbors is created in the form of 

Equation A.6.   
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Equation A.6 is still quite complicated.  However, it can be shown that the middle 

term is equal to zero when the central molecule l is assumed to be spherically symmetric.  

Even though the assumption that the central molecule l is spherically symmetric is strictly 

incorrect for both rod-like and discotic nematogens, it must be made in order to reduce 

Equation A.6 to a simpler equation, in which the average energy of a central molecule l is 

divided into an isotropic component independent of nematic order, and a second 

component dependent upon the angle of molecular orientation l.  This task is carried out 

by determination of the average value of the term B(Rlk)/Rlk
6
 on the right hand side of 

Equation A.6, expressed as follows: 
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Using a cylindrical coordinate system,  is equal to the volume outside the central 

molecule, while d is equal to the surface area of a cylindrical shell.  To begin, it is 

assumed that the central molecule is spheroidal (approximately rodlike), with a short axis 

(in the plane of the equator of the spheroid) of length b and a long axis of length a.  

Equation A.8 is integrated in the following manner, in which the spheroidal volume 

occupied by the molecule is excluded from integration:   
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 The quantity r0 is in the plane of the equator of the spheroid.  It ranges from 0 to 

b, the length of the short axis of the spheroid.  When at a point in the plane of the equator, 

r0 = b.  When at a point at the poles, r0 = 0.  De Jeu
6
 makes the following substitution for 

r0, 

22222
0 zzebr       (A.12) 
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in which the excentricity e of the spheroid is given by: 
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 Substitution of Equation A.12 into Equation A.11 yields Equation A.14.  
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 In the limit of a spherically symmetric excluded volume (which is assumed to 

represent the volume occupied by the molecule), the long axis and the short axis become 

indistinguishable, b = a, and the eccentricity e equals zero.  Equation A.14 simplifies to: 
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 Integration with respect to z yields: 
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 In the limit of spherical symmetry of the excluded volume, b = a, and the above 

equation simplifies to: 
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 Meanwhile, 
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Substituting for r0, and setting e = 0, the following equation is obtained. 
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Integration with respect to z yields: 
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Substituting the results of Equations A.18 and A.24 into Equation A.7,  
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 Therefore, in all cases in which the central molecule l is assumed to be spherically 

symmetric, Equation A.6 reduces to Equation A.26 (as indicated in Equation A.25, in 
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such a scenario the term in Equation A.6 containing B(Rlk)/(Rlk)
6
 goes to zero), which 

represents the mean energy of interaction for molecule l, with the first term on the right 

hand side of Equation A.26 arising from isotropic effects and the latter term arising from 

anisotropic effects.
2
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 Maier and Saupe abbreviate the latter term as shown in Equation A.27, in order to 

yield an equation for D1, the mean energy of interaction, due entirely to anisotropic 

interactions, for molecule l in the nematic phase,  









 l

2

2l sin
2

3
1S

V

A
D     (A.27) 

 with  

 
 
 








k
6
lk

lk

00

00

2 R

RC

EEV

A
    (A.28) 

 and  
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 The term S denotes the average order parameter, which defines the average state 

of nematic order for all the molecules in a mixture.  Meanwhile, the term V represents 

molar volume.  Maier and Saupe
2
 assert that the anisotropic energy parameter A is 

temperature-independent because the “liquid lattice” symmetry will not be greatly 

affected as a result of a temperature change.   
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Because an assumption implicit in the derivation of Equation A.27 is that the 

central molecule l is spherically symmetric, it is plausible that it will also predict, with 

reasonable accuracy, the formation of mesophase within species that are modeled as hard 

disks, rather than rods (because of the success of the Maier-Saupe theory, under this 

implicit assumption, in modeling the nematic interactions for molecules that are modeled 

as hard rods).   

In order to determine Aori, the molar Helmholtz energy of orientation resulting 

from the isotropic-nematic phase transition, the molar internal energy of orientation Uori 

and molar entropy of orientation Sori must first be calculated (see Equation A.30).   

ori ori oriΔA =ΔU -TΔS    (A.30) 

 Uori = Uori, n – Uori, i  where Uori, n is the internal energy of orientation of the 

nematic phase, and Uori, i is the molar internal energy of orientation of the isotropic phase 

(an analogous relation holds for the molar Helmholtz energy of orientation, Sori = Sori, n 

– Sori, i.   

For the isotropic phase, the average order parameter for all molecules, S, is equal 

to 0.  Therefore, Uori, i = 0, and Uori = Uori, n.   Starting with Equation A.27, Uori, n is 

obtained by first summing to yield the average orientation of molecule l, and then 

multiplying by N/2 pairs of molecules, where N is Avogadro’s number.  Thus,   

                                                      
2

ori ori, n 2

NAS
U ΔU =

2V
      (A.31) 

 The molar entropy of orientation Sori is then calculated.  According to the 

equation put forth by McQuarrie,
7
 the entropy Si of a single molecule i would be given by 
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Equation A.32.  Substitution of Equation A.27 into Equation A.32 yields an expression 

for the orientational entropy of one molecule i.  To obtain the average entropy of one 

molecule i, iS , an average must be taken over all possible orientation angles l for 

molecule l in Equation A.33, leading to Equation A.34. 
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The average entropy of molecule i is given by: 

Zlnk
TV

AS
Zlnk

T

U
S

2

2
i

i      (A.34) 

Therefore, the molar entropy of orientation Sori for all N molecules is obtained by 

multiplying Equation A.34 by N. 
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S =N S N k ln Nk ln Z

T TV
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where Z is the orientational partition function.  It is given by 

i i2π πD Dn

kT kT
i i i

i = 1 0 0

Z exp exp sinθ dθ dφ
 

       (A.36) 

 The orientational partition function Z represents a summation of the different 

energy states which arise because of the anisotropic interactions between molecule l and 

the mean nematic field generated by its neighbors.  Thus, this is an intermolecular (vs. the 



 

 

 

 

232 

classic intramolecular) partition function.  Assuming that the distribution of these 

possible orientational energy states is continuous, Z can be expressed as an integral as 

shown in Equation A.36 (by integrating over  and the azimuthal angle ).  The observed 

energy state of a nematogen is dependent upon the angle 1 at which it is oriented relative 

to the fully oriented, preferred state denoted by the director.  This is a representation of a 

laboratory-based coordinate system (see Chapter 2, pp. 44-45).   

Note that this orientational partition function is not the same as the rotational 

partition function, which is based upon a summation of rotational energy states within a 

particular molecule; these rotational energy states do not depend upon interactions with 

another molecule.  Also, the rotational energy states are calculated using a molecular-

based coordinate system instead of our laboratory-based coordinate system.    

 

By integrating Equation A.36 with respect to the azimuthal angle , the above 

expression is simplified: 
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 Substituting for the energy Di yields 
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Next, substitution of Equation A.38 into Equation A.35 yields    
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The value for Sori, the difference in the entropy between the isotropic and nematic 

states, is given by: 

ori ori,n ori,iΔS S S      (A.40) 

 Where the terms Sn,ori and Si,ori represent the orientational entropies of the nematic 

and isotropic phases, respectively.  Because the value for the average order parameter S is 

zero throughout the isotropic phase, the determination of Sori,i is academic.  Substitution 

of S = 0 into Eq. A.38 yields Z = 4.  Substitution of this result into Eq. A.35 yields Eq. 

A.41 below. 

π

ori,i i i

0

S NklnZ Nkln 2π sinθ dθ Nkln4π
 

   
 
    (A.41) 

Meanwhile, the orientational entropy of the nematic phase is given by 
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It can be shown that  
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because sin
2 
 is symmetric about  = /2.  Therefore, 
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Substitution of Equations A.41 and A.44 into Equation A.40 yields Sori. 
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Subsequent substitution of Equations A.31 and A.45 into Eq. A.30 yields an 

equation for the orientational Helmholtz energy.   
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Maier and Saupe
3
 show, that for the nematic to isotropic phase transition at 

constant volume, A/V
2
 = 4.541.  This equation holds for both hard disks and hard rods.  

At the clearing temperature, S is predicted to be 0.4292.  This model provides results that 

match closely with the experimentally observed order parameter of p-azoxyanisole.
1
   

This equation can also be expressed in the nomenclature used in Chapters 2 and 3, 

as indicated in Equation A.47. 

2
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2 εP 3 1π/2
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 
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 The term inside the parentheses on the right hand side of Equation A.47 is 

equivalent to the partition function Z if the simplifying assumptions of Humphries et al.
8
  

and Shishido et al.
9
 are used to simplify Equation A.36 to eliminate the  dependence of 
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Z, and to change the limits of integration from  = 0 to , to  = 0 to /2.  In that case, 

Equation A.47 simplifies to Equation A.48.  It can be shown that Equation A.48 is 

equivalent to the result obtained by Humphries et al.
8
  

2

ori

NεP
ΔA = NkTlnZ

2
     (A.48) 
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APPENDIX B 

 

DERIVATION OF AN EQUATION FOR THE EFFECT OF MOLECULAR 

ORIENTATION ON THE FUGACITY COEFFICIENT OF THE NEMATIC PHASE 

 

In his dissertation, Topliss
1
 put forth a relationship to calculate the fugacity 

coefficient i for species i in a mixture, with a knowledge of the mixture Helmholtz 

energy 
~

A . 
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Substitution of Equation B.1b into Equation B.1a yields 
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where 

  

i = Fugacity coefficient of component i 

 = Density of the mixture of n components 

~

A  
= Dimensionless Helmholtz energy 

xi = Mole fraction of component i 
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Humphries et al.
2
 extended Maier-Saupe theory to cover multicomponent 

mixtures; below in Equation B.2a is the definition for the orientational molar Helmholtz 

energy of the mixture, aorient.  It is given in Equation 2.23 of their work.  This definition 

was used by Hurt and Hu
3
 in subsequent experiments.  It is given in Equation 9 of that 

work. 
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V = Avogadro’s number, 6.022 x 10
23

 

xi, xj = Mole fractions of two different components i and j 

ij = Anisotropic energy parameter between two molecules i and j 

i

_

P , j

_

P  
= Ensemble average order parameter for components i and j 

Zi = Orientational partition function for component i 

 

The ij term is dependent on mole fraction, so it needs to be defined.  It is defined 

as shown below. 

 

























n

1k

kk

ji

jjiiij

Vx

VV
         (B.3a) 



 

 

 239 

The pure component molar volume Vi of component i is related to the pure 

component density as follows: 

 

i

i
i

MW
V


            (B.3b) 

 

Meanwhile, the pure-component energy parameters ii and jj  represent 

anisotropic potentials between two like molecules, and are defined as follows. 

 

i,clii kT542.4           (B.4a) 

 

j,cljj kT542.4           (B.4b) 

 

Substituting Eqs. B.4a and B.4b into Equation B.3a, the following expression for ij is 

obtained: 
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The aorient term is made dimensionless by dividing each side of Equation B.2a by 

NAVkT, yielding 
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where the dimensionless anisotropic pair potential is given by 
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A breaking down of the terms constituting ij reveals that there is no dependence 

of ij on , the overall mixture density. 

 

Next, the ensemble average order parameter, k

_

P , is defined.  The k

_

P  for all 

component k molecules in the mixture is given in Equation 2.18 in Humphries, et al.
2
  It 

was also employed in the work of Hurt and Hu
3
 and is given in Equation 15 of their 

paper.   
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where Pk is the order parameter for a single molecule k. 

 

2

1
cos

2

3
P k

2
k              (B.8) 

 

and k is the angle of orientation of molecule k.   
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We want to learn if the macroscopic quantity k

_

P  is dependent on  or xi.  This 

task requires taking two derivatives, so I will start by differentiating with respect to a 

hypothetical property M. 
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where 



n

1j

jjkj PxD          (B.9b) 
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The value Pk can come outside the summation sign because the summation is with 

respect to j. 
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Now we need to examine the terms within the following derivative:                    
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The integral is a summation that includes all O(10
23

) molecules.  The variable of 

integration  represents i, the angle of orientation of an individual molecule. 

 

If all of the terms inside the summation sign are independent of k, then this 

derivative can come outside of the integrals in the equation above.  A review of the 

earlier discussion concerning the energy parameter jk will indicate that this variable does 

not depend on k. It is quite obvious that the mole fraction of a species present in the 

nematic phase can not be altered simply by changing the order parameter of one of the 

~10
23

 molecules.  By the same reasoning, the ensemble average order parameter k

_

P will 

be virtually unaffected if the k of a single molecule is altered. 



 

 

 243 

 Thus the derivative can come out of the integral.   
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Thus, k

_

P  is independent of both density  and mole fraction x.   

Finally, the orientational partition function is defined. For component k, Zk is 

obtained from Equation 2.17, Humphries, et al.
2
  This equation differs slightly from that 

put forth in Equations 2.20 and 3.3 of this work in that the limits of integration with 

respect to the angle  are from 0 to /2 instead of from 0 to , and there is no integration 

with respect to the azimuthal angle .  Humphries et al.
2
 justify their choice of not 

integrating with respect to  by noting that the distribution of possible energy states is 

independent of .  They do not explicitly state or justify their choice of an integration 
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range with respect to , from 0 to /2.  However, Shishido et al.,
4
 in a later work, justified 

that choice by reasoning that the head of a discotic mesogen cannot be distinguished from 

its tail.  Thus, the energy states when the molecular axis is oriented at angles  and  –  

relative to the director would in this case be identical (one notes that, because cos
2
  = 

cos
2
   – ), the orientational order parameter Pi (see Equation 2.16) for mesogen i with 

the short axis oriented at an angle  with respect to the director is equal to that calculated 

for the same molecule oriented at an angle  –  relative to the director. 

For simplicity, we use the partition function defined by Humphries et al.
2
 and 

given in Equation B.10, rather than the one given in Equations 2.20 and 3.3.  In the end, 

either approach yields identical results for the orientational contribution to the Helmholtz 

free energy (however, the determination of this free energy is much more straightforward 

when the partition function of Humphries is used).  In Appendix A, Equation A.36 for the 

orientational partition function Z for a single component is equivalent to Equation 2.20 or 

3.3 as adapted for a pure species; Equation A.36 is used in the development of Equation 

A.48 (a somewhat tedious procedure) for the orientational contribution to the Helmholtz 

free energy Aori.  It can be shown that the right hand side of Equation A.48 is equivalent 

to Equation 2.25 (Humphries et al.
2
) for the orientational Helmholtz free energy of a pure 

nematic mesophase (provided that in this equation of Humphries et al.,
2
 the terms within 

the summation on the right hand side of the equation are restricted to terms for which L = 

2).      
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It becomes apparent that none of the terms in Equation B.2a depend on the 

mixture density .  Thus, the last two terms on the right hand side of Equation B.1c are 

zero and Equation B.1c reduces to 
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Now, the goal is to find i
orient

, the portion of the fugacity coefficient for component i that 

is due to anisotropic interactions between molecules.  Thus, Equation B.11a is rewritten: 
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In order to make this calculation, the derivative of 

orient~

A with respect to mole fraction 

must be calculated.  We start with: 
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The next step is to calculate 

ij xx,P,T
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Next we evaluate the partial derivative of Zk with respect to component i. 
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Substituting Equations B.10 and B.15 into Equation B.14, we obtain 
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As determined earlier (see p. 223), the derivative can come outside the integral, yielding 
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 Using the definition of k

_

P (Equation B.7), Equation B.17 is simplified. 
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Now the derivative on the right hand side of Equation B.15 must be calculated. 
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Substituting Equation B.20 into Equation B.18, 
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Substituting into Equation B.11b, we obtain  
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This final expression (Eq. B.25) is identical to the one in the Visual FORTRAN 

SAFT-LC computer program employed by researchers in the Carbon group at Clemson.   
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There appears to be no overall mixture density dependence in Equation B.5.  The 

way the equation is set up, the ij terms depend on the various Vi values, which in turn 

depend on the pure component density values i.  So, as it stands, it is safe to say that the 

a
orient

 term can be decoupled from the SAFT equation (mixture density values calculated 

by SAFT are the same regardless of whether LC part is added or not).     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 250 

 

References 

1
Topliss, R. J.  Techniques to Facilitate the Use of Equations of State for Complex Fluid 

Phase Equilibria.  Ph. D. Dissertation, University of California, Berkeley, 1985. 

2
Humphries, R. L.; James, P. G.; Luckhurst, G. R.  A Molecular Field Treatment of 

Liquid Crystalline Mixtures.  Symp. Faraday Soc. 1971, 5, 107-118. 

3
Hurt, R. H.; Hu, Y.  Thermodynamics of Carbonaceous Mesophase II.  General Theory 

for Nonideal Solutions. Carbon 2001, 39, 887-896. 

4Shishido, M.; Inomata, H.; Arai, K.; Saito, S. Application of Liquid Crystal Theory to 

the Estimation of Mesophase Pitch Phase Transition Behavior. Carbon 1997, 35, 797. 

 

 

 



 
 

 251 

APPENDIX C 

DIAGNOSTIC TEST OF THE PREDICTIVE ABILITY OF THE SAFT-LC 

EQUATION TO MODEL THE DENSE-GAS EXTRACTION PROCESS 

 

In this appendix, a diagnostic test of the predictive ability of the Statistical 

Associated-Fluid Theory – Liquid Crystal (SAFT-LC) equation was performed.  The 

SAFT-LC equation (using the values of the SAFT-LC parameters A, B, C, a, and b given 

in Chapter 3) was used to predict equilibrium top and bottom phase compositions for M-

50 pitch-toluene mixtures at 56.2 bar, 350° C, and a solvent-to-pitch ratio of 5.1:1.  A 

multistage dense-gas extraction (DGE) experiment
1
 was also performed on M-50 pitch at 

these conditions (which are representative of those necessary to produce a DGE bottom 

product that, upon drying, possesses a high mesophase content
1
), using toluene as the 

dense-gas solvent.  The molecular weight distribution (mol wt distribution, or MWD) for 

M-50 pitch initially proposed by Cervo
2
 was input to the SAFT-LC model, with one 

alteration.  Mass fractions for the 10 pseudocomponents (PCs) present were altered based 

on subsequent DGE mass balance experiments
3,4

 which indicate that M-50 pitch is 

comprised of 50% monomer, 27% dimer, with the remaining 23% consisting of trimer, 

tetramer, and pentamer.  The altered MWD, mass fractions, and molecular carbon-to-

hydrogen (C/H) ratios are given in Table C.1.  For the M-50 pitch PCs, the pure-

component SAFT parameters m, v
00

, and u
0
/k were predicted using the correlations of 

Huang and Radosz
5
 in a manner identical to that described in Chapter 3.  For each PC, 
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the mol wt and the molecular C/H ratios given by Cervo
2
 were used as inputs to these 

correlations.        

Table C.1.  The MWD of M-50 pitch, as derived by Cervo;
2,3,4

 each pseudocomponent 

(PC) is assumed to account for half (by mass) of the presence of a given oligomer in the 

pitch. 

                  Pitch PC data  

PC 

number 

Mol wt Mass Fraction C/H 

Ratio 

1 246.4 0.25 1.06 

2 334.5 0.25 1.18 

3 448.6 0.135 1.25 

4 572.8 0.135 1.41 

5 696.9 0.06 1.53 

6 821 0.06 1.63 

7 957.2 0.0275 1.73 

8 1067.3 0.0275 1.75 

9 1213.5 0.0275 2.02 

10 1409.7 0.0275 2.17 

 

The results of this diagnostic test, shown in Fig. C.1, indicate that SAFT-LC 

overpredicts the extractive capacity of the dense-gas solvent at 56.2 bar and 350° C.  That 

is, the MWD of the dried bottom product predicted by SAFT-LC for a one-phase 

extraction process (see gray line, Fig. C.1) reveals a residue comprised primarily of 

molecules with a mol wt of greater than 1000, with virtually all monomer and dimer 

extracted into the top phase.  However, the mass spectrum (see black line, Fig. C.1) 

obtained for the dried bottom product resulting from the multistage DGE technique 

indicates that a substantial amount of dimer remains in the bottom phase.  Because it is 

clear from the single-stage SAFT-LC results that the model greatly overpredicts the 
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extractive capacity of the dense-gas solvent, no multistage SAFT-LC calculations were 

performed. 

From the above results, it is apparent that the SAFT-LC model must be improved.  

Recommendations as to how to improve the SAFT-LC model are discussed in Chapter 8 

(the Conclusions and Recommendations section). 

 

Figure C.1.  At 56.2 bar, 800 psig, and S/P ratio = 5.1 (DGE operating conditions 

utilized in the production of mesophase pitch from isotropic M-50), the SAFT-LC model 

greatly underpredicts the presence of M-50 dimer and trimer in the dried bottom product.  

The result labeled “Multistage DGE” indicates the smoothed mass spectrum for the dried 

bottom product obtained at the stated DGE operating conditions. 
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APPENDIX D 

GPC: PROCEDURES FOR SAMPLE PREPARATION, SYSTEM OPERATION, AND 

DATA RETRIEVAL  

 

Materials Necessary 

1. Waters Alliance GPCV 2000 model (to characterize samples via gel permeation 

chromatography (GPC)) equipped with 1080 L sample injection loop when 

operating in preparatory-scale mode and with a 106 L sample injection loop when 

operating in analytical-scale mode. Larger loop volumes are not recommended when 

fractionating M-50 pitch; the chief use of prep-scale GPC is the preparation of narrow 

fractions which can then be subjected to analytical techniques that do not require 

large amounts of sample (such as the methods indicated in Chapters 4-7).  For 

analytical-scale operation, peak resolution is optimized when using the 106 L loop, 

but larger volumes (314.5 L) have also been used with success. 

2.  1,2,4-Trichlorobenzene (TCB, GPC grade, 99% min. purity, CAS number 120-82-1, 

obtained from VWR) mobile phase 

3.  Balance (M-310 model, Denver Instrument) 

4. 2 prep scale GPC columns (PLgel stationary phase, 10 microns particle size, 300 mm 

long x 25 mm wide, first column pore size 500 Å, second column pore size 100 Å). 

5. Filter vial assembly (plunger, seal, and cup; 24/pk – part number 600000186) 

6. 0.5 micron filter (100/pk – part number 600000163) 

7. 20 mm crimp cap (100/pk; part number 600000138) 
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8. Crimping tool (part number 700000847) 

9. 10 mL volumetric flask with stopper 

10. Pitch to be fractionated 

 

Experimental – Following is the sample preparation procedure used to fractionate DGE 

Pitch Cut 2 in Chapter 4. 

1. First, prepare the sample solution.  Weigh out 100 mg of pitch (because of this 

relatively low mass requirement, prep-scale GPC is ideal for further purification of 

pitch cuts produced via semibatch DGE).   

2. Next, in order to produce a solution with a pitch concentration of 10 mg/mL,* place 

the pitch in a volumetric flask with a volume of 10 mL.  Note that the use of higher 

sample concentrations (particularly with samples containing significant amounts of 

trimer and higher-order oligomers) is not recommended because such action will 

cause the column to degrade (because our prep-scale GPC columns have a cross-

sectional area that is 10x greater than that of a typical Waters analytical-scale 

Styragel ® column of inside diameter 7.8 mm, a concentration of no greater than 1 

mg/mL is recommended when performing analytical-scale GPC). 

*Over time (that is, ~ 30 fractionation runs), the injection of a sample of M-50 pitch 

containing primarily trimer and tetramer at a concentration of 50 mg/mL was shown to 

result in column degradation, resulting in significant peak tailing.  Separate efficiency 

tests of each prep-scale GPC column indicated that the column with a pore size of 100 Å 

exhibited significantly more deterioration than the column with the 500 Å pore size. 
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3. Fill the flask up to the mark with TCB.  Place the stopper over the mouth of the flask.   

4. Shake thoroughly and sonicate for 15 minutes.  

5. Fill the metal GPC sample vial “cup” with ~ 7 mL of the sample solution (that is, it 

should be 70-80% full).  If an insufficient volume of sample is present, a reduced 

volume of sample (or none at all) will be injected into the GPC column bank.   

6. Prepare the plunger and filter.  This assembly, of which the plunger is a part, is used 

by the Alliance GPCV2000 autosampler to filter particulate matter from the prepared 

solution before it is injected into the GPC sample loop.  Make sure that the open end 

of the plunger seal is pointing toward the alignment line and away from the end of the 

plunger.  Secure a 0.5 micron filter to this end of the plunger. 

7. Secure a 20 mm, sealed crimp cap to the assembly.  Use the crimping tool to 

accomplish this task.     

8. Slide the plunger assembly, filter end first, into the sample vial.  Slide it to such a 

depth that the filter and the solution within the vial are barely in contact with one 

another.  

9. If the Alliance GPCV2000 unit is currently ready for use, skip this step and the next 

three steps and proceed to Step 13.  If the unit is ready for use, the messages CAR: 

140, INJ: 140, and COL: 140 should appear in green at the bottom of the Interactive 

Mode window.  These messages indicate that the sample carousel, injector, and 

column temperatures are at the operating temperature of 140° C. 

10. If the Alliance GPCV2000 instrument is not currently up and running, start it up 

(refer to Alliance GPCV2000 system software operating manual, Section 3.1, Starting 
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the System, pp. 62-64).  Upon completion of the steps laid out in this section, the 

Interactive Mode window appears. 

11. Click on Setup in the top left corner of the Interactive Mode window.  From the 

menu that appears, click on Current Instrument Method.  A list of instrument 

methods will pop up.  Double-click on TCB_0x10_mL_min_140_C.  This 

instrument method sets the mobile-phase flow rate at 0.10 mL/min, and sets the 

carousel, injector, and column temperatures to 140° C.  Click OK to change to the 

flow rate and temperatures to those programmed in this instrument method. 

12. It should take 1-1.5 hours for the carousel, injector, and column temperatures to reach 

140° C.  Make sure that all temperatures stabilize at 140° C (if they don’t stabilize, 

but continue rising above 140° C unabated, then there is possibly a fused column 

heater assembly).  In such an event, shut the Alliance GPCV2000 system down (to 

shut down the Alliance GPCV2000, proceed as directed in the manual, Section 3.8, 

Shutting Down the system, pp. 103-104) immediately and call Waters Technical 

Service at 1-800-252-4752 for support on identifying and fixing the problem. 

13. From Interactive mode, go to Sample Set mode (see manual, Fig. 1-12, p. 21).  Click 

on the Editor button (located in the lower left corner of the screen) to open the 

Sample Set Method Editor, which appears as a separate window.  This is where the 

GPC operator programs the operating conditions (run time, column operating 

temperature, mobile-phase flow rate, etc.) for the GPC fractionation experiment to be 

conducted.  For a detailed tutorial in this area, see manual (Section 3.7, Creating and 

Running a Sample Set, pp. 97-103). 
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14. In Row 1, under Sample, type Equilibrate.  Next, click in Row 1 under the Method 

box.  A menu will appear.  Select the method TCB_2x50_mL_min_140_C from the 

list.  Next, click on the box in Row 1 that is directly under Function.  A menu will 

appear; from this menu, select Equil.  In Row 1, under Time, type 90.00 in order to 

equilibrate the system at the mobile-phase flow rate of 2.50 mL/min for 90 minutes 

and at a temperature of 140° C (do not use a mobile-phase flow rate higher than 2.50 

mL/min, as such action causes the solvent pump piston seals to leak.  Operating at a 

flow rate of greater than 3.00 mL/min may cause the refractometer cells to crack).     

15. In Row 2, under Vial #, type 1.  Under Sample, type the sample name (for the 

fractionation of DGE Pitch Cut 2, the sample name was S_DGE_4_Cut_4).  In Row 

2, under Method, select the method TCB_2x50_mL_min_140_C; under Function, 

select Broad Unknown; under Time, select 80.00 min in order to record the GPC 

chromatogram for 80 minutes.  Click in Row 2 under the box labeled Vial Size.  A 

menu appears.  Click on 7.   

16. In Row 3, program the system to return to the standby flow rate upon completion of 

the fractionation run.  In Row 3, type Standby under the Sample box.  Select the 

method TCB_0x10_mL_min_140_C in order to tell the system to return to a resting 

mobile-phase flow rate of 0.10 mL/min.  In Row 3, under Function, select Equil.  

Once finished, click Save As to save the sample set.  Choose a filename (this name 

should clearly identify the experiment number and the sample fractionated, such as 

Exp_56_S_DGE_4_Cut_4).  In Row 3, under Time, type 1.00 min.  Click OK to exit 

the Sample Set Method Editor.        
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17. Load this sample vial (with plunger/filter assembly inserted) into the Alliance 

GPCV2000 sample compartment, at carousel position 1. 

18. In Sample Set mode, click on Run.  The Start Sample Set box appears.  To ensure 

that the chromatogram data are sent to the Empower data processing software, make 

sure that the Enable box under Empower Login is checked.  Enter the Empower user 

name and password (system and manager, respectively).  Make sure that the Local 

box is selected.  Click Browse to select the Empower project to which you want the 

chromatographic results to be sent (we sent the results for the GPC fractionation of 

DGE Pitch Cut 2 to the project Exp_56_S_DGE_4_Cut_4).  When finished, click 

OK.  The Save Sample Set box appears.  Give the sample set the same name as that 

given in Step 16 and click OK .  The run should start.   

 

Upon completion of the GPC runs, the chromatogram data must be exported so that it can 

be subsequently plotted in a program such as Microsoft Excel.  This procedure follows 

1. From the Desktop, double-click the Empower software icon.   

2. The Empower Login box pops up.  Enter username and password.  Click OK. 

3. A popup box appears.  Click Browse Project. 

4. Open the project to which you sent the chromatographic results in Step 18 above (for 

the GPC fractionation of DGE Pitch Cut 2, this project is Exp_56_S_DGE_4_Cut_4). 

5. On the screen that appears, click on the Channels tab.   
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6. Select the channel with the sample name identical to that specified in Step 15 on the 

previous pages.  Make sure that the label under Channel Description is Refractive 

Index.   

7. At the top of the screen, click Database. 

8. On the menu that appears, click Export Data.  The Export box appears. 

9. In the lower left corner of the Export box, click Export Method.  

10. The Export Method Editor box appears.  In the upper left corner of this box, click 

the Raw Data tab.  

11. Type the filename (for DGE Pitch Cut 2, the filename was 

Exp_56_SDGE_4_cut_4_022809).   

12. Specify the location to which the chromatographic data file will be exported.  To 

export to the Desktop, enter C:\Documents and Settings\Administrator\Desktop in the 

long rectangular box under Path to File(s).  Make sure that the small white box 

immediately to the left of this box is checked.   

13. In the upper left corner of the Export Method Editor box, click File/Save As.  On 

the box that appears, enter the filename for the export method, along with remarks 

indicating the column types, injection loop size, mobile-phase flow rate, etc. 

14. Click Save. 

15. Close Export Method Editor box.  

16. Back at the Export box, click OK.   

17. The Project box appears with the message “Finished exporting.”  Click OK.   

18. Retrieve exported file from the desktop. 
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Purging the detector (the refractometer) 

Special care must be taken to fully purge all TCB from the Alliance GPCV 2000 

system (particularly the refractometer) when changing the GPC mobile phase.  If the 

refractometer is not fully purged of TCB, its sensitivity will be greatly weakened 

(sometimes the signal-to-noise ratio is so low that it is difficult to distinguish the GPC 

response from baseline noise).  TCB is particularly difficult to purge from the 

refractometer because it is significantly more viscous than many other common GPC 

mobile phases.   

It was often necessary to switch from operating in prep-scale mode (in which TCB 

was used as the mobile phase) to analytical-scale mode (in which tetrahydrofuran was 

used as the mobile phase).  The prep-scale columns were first removed.  Because TCB 

and tetrahydrofuran are immiscible, it was necessary to first switch the GPC mobile 

phase from TCB to toluene (normal boiling point 110° C); many common GPC mobile 

phases, including both TCB and THF, are fully miscible with toluene.  In order to 

effectively purge TCB from the refractometer, we set the column compartment 

temperature to 80° C and allowed it to reach equilibrium (this process takes 

approximately 3 hours when starting at 140° C, the typical operating temperature when 

using TCB as the mobile phase).  The toluene flow rate was set to 1.0 mL/min, with a 

purge time of 60 minutes (the procedure for programming a refractometer purge is given 

in the Alliance GPCV2000 system software operating manual, Section 3.4.3, Purging the 

Refractometer).  When the purge is complete, check the refractometer LED current (from 

Diagnostics Mode of the Alliance GPCV 2000 system operating software, click 
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Diagnostics, click on Service Diagnostics login, enter the password, and click Detector 

Diagnostics).  The reading should be less than 40 mA.  If it is significantly higher than 

this number, then the refractometer has not been completely purged of TCB.  When the 

reading for the LED current was below 40 mA, the temperatures of the column, carousel, 

and injector compartments were programmed to 40° C and allowed to reach equilibrium.  

At that point, the mobile phase was switched over to tetrahydrofuran. 

 

 

Note: Procedure for calibrating the GPC is given in the Empower GPC Software guide. 
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APPENDIX E 

MALDI AND PSD PROCEDURES 

 

 This section contains procedures pertaining to: (1) maintenance of the MALDI 

apparatus and (2) the operating procedure for the Fragmentation Analysis and Structural 

Time-of-Flight (FAST) feature in the FlexAnalysis MALDI operating software, by which 

post-source decay (PSD) analyses are performed. 

 

 

 

Note: All screen snapshots from the FlexAnalysis and FlexControl software in this 

chapter are reprinted with the permission of Bruker Daltonics. 
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MALDI Ion Source Cleaning Procedure 

 

 The ion source (otherwise known as the IS2 plate) is responsible for initiating the 

flow of ions toward the detector.  Over time, matrix and analyte buildup on the ion source 

can cause a detraction in its performance.  Thus, in order for it to function properly, it 

must be cleaned periodically. 

 

1. Open Flex Control.  Click on the Status tab.  On the screen that appears, click the 

Details button.  A new line of tabs should appear on the upper half of the screen.  

Click the Vacuum tab.  On the screen that appears, press the Vent. button.   

2. Close Flex Control and shut down the MALDI computer.  If you do not perform 

this step, FlexControl will crash later on in the process. 

3. There is a keyhole approximately 1 meter above the MALDI sample tray 

insert/eject port.  Using the provided key, turn key to the perpendicular position. 

4. Turn the power switch at the rear of the instrument to the OFF position.  Now all 

vacuum pumps are turned off.     

5. Open the door at the rear of the instrument by loosening the screw near the power 

switch.  

6. Locate the roughing pump (it is about knee-high).  Locate the metal hose that 

leads away from this pump.  This hose is connected to the metal cylinder directly 

above the roughing pump.  A screw holds this hose in place; a plastic red fitting is 

attached to this hose.  Loosen the red fitting and remove the screw.  Then, remove 
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the vacuum hose.  You should hear some hissing as air is sucked into the 

instrument, breaking the vacuum.   

7. Using an Allen wrench, loosen the 4 screws at the base of the MALDI apparatus 

that hold the floor of the source compartment in place.  You will likely need to lie 

down on your back in order to perform this task.   

8. SLOWLY allow the floor of the source compartment to swing downward as you 

remove the last screw.  A small wire will pop out near the hinge closest to the 

wall and the electrical outlets.  It is important not to open the compartment too 

fast, lest the wire be damaged.     

9. Gently spray methanol on the source in order to wash away TCNQ and any other 

species that may have accumulated there.  Use Kimwipes to wipe clean every 

reachable surface (such as the walls of the source compartment) without touching 

sensitive equipment (such as the source plates themselves) that is easy to damage.   

10. When the source compartment has been cleaned, replace the small wire that 

popped out of its moorings when the compartment was opened.  Be patient, as 

you may not accomplish this task on your first try!!   

11. Once the wire has been secured, close the source compartment door and replace 

the four screws on the base of the source compartment.   

12. Secure the loose vacuum hose to the vacuum pump by tightening the plastic red 

fitting.   

13. Close the door at the rear of the instrument, and flip the power switch to the ON 

position.   
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14. Insert the key in the keyhole above the MALDI sample tray insert/eject port, and 

turn it to the parallel position.   

15. Restart the MALDI computer and open FlexControl.  Click on the Status tab, 

Details button, and Vacuum tab as in step 1.  This time, however, click on the 

Evac. button.  

Wait 1-2 hours for the system to evacuate.    
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MALDI Roughing Pump Oil Changing Procedure 

 

Bruker Daltonics recommends that the oil for the roughing pump located at the 

rear of the MALDI apparatus be changed at least once a year.  Typically, the spent 

oil will be a reddish color.  In order to maximize the lifetime of the pump, we have 

utilized the following procedure to change its oil.    

 

1. Open Flex Control.  Click on the Status tab.  On the screen that appears, click the 

Details button.  A new line of tabs should appear across the upper half of the 

screen.  Click the Vacuum tab.  On the screen that appears, press Vent. button.   

2. Close Flex Control and shut down the MALDI computer.  If you do not perform 

this step, FlexControl will crash later on in the process. 

3. There is a keyhole approximately 1 meter above the MALDI sample tray 

insert/eject port.  Using the provided key, turn key to the perpendicular position. 

4. Turn the power switch at the rear of the instrument to the OFF position.  Now all 

vacuum pumps are turned off.     

5. Open the door at the rear of the instrument by loosening the screw near the power 

switch.   

6. Unplug the vacuum pump by removing plug P22 from jack J22. 

7. Disconnect the inlet hose to the vacuum pump by removing the metal clamp. 

8. Disconnect the cylinder above the roughing pump from the pump by removing the 

metal clamp.  Now the pump is thoroughly disconnected from the MALDI high 

vacuum system.   
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9. Remove vacuum pump from the MALDI apparatus. 

10. Allow the old pump oil to drain out by removing the fitting on the pump face 

using an Allen wrench.  Once the draining is complete, replace the fitting.   

11. Remove red plastic cap on top of pump and pour in the new pump oil (the pump 

oil and a funnel are stored along the wall behind the MALDI computer).  Stop 

pouring once the water level is ~ 75-80% full height, as indicated on the level 

viewer.   

12. Replace the red cap. 

13. Replace the vacuum pump in the MALDI apparatus and replace the inlet hose and 

the cylinder at the pump outlet.  Make sure the clamps are tight.  Make sure the 

manufacturer name Pfeiffer is pointing toward the rear of the instrument.   

14. Replace plug P22 in jack P22.   

15. Close the door at the rear of the instrument, and flip the power switch to the ON 

position.   

16. Insert the key in the keyhole above the MALDI sample tray insert/eject port, and 

turn it to the parallel position.   

17. Restart the MALDI computer and open FlexControl.  Click on the Status tab, 

Details button, and Vacuum tab as in step 1.  This time, however, click on the 

Evac. button instead of the Vent. Button. 

Wait 1-2 hours for the system to evacuate.    
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Procedure for Obtaining PSD Spectra 

In this tutorial, the procedure for obtaining PSD spectra is given.  The MALDI 

matrix material 7,7,8,8-tetracyanoquinodimethane (TCNQ) was chosen for analysis 

because, unlike the polycyclic aromatic hydrocarbons comprising pitches, it yields a 

considerable number of fragments upon excessive irradiation by the N2 laser.  Thus, 

PSD spectra for such materials are relatively easy to obtain, so TCNQ is an ideal 

material on which beginners can practice the PSD technique.  The procedure for 

obtaining PSD spectra for TCNQ is as follows: 
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1. From the Desktop, click on the icon labeled flexControl.  A box, labeled “Logon 

Information”, pops up in the middle of the screen.  Click OK. 

 

 

 

 

 

 

 

flexControl 

flexAnalysis 
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2. The FlexControl program opens, and the Open flexControl Method box pops up.  

Double click on FAST_low mass.psm. 

3. Click on the Open/Close button, to access the loading tray.  Place the MALDI 

target in the loading tray, and press the Open/Close button a second time to load 

the target into the instrument. 

 

 

 

 

 

Open/Close button 
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4. In order to perform molecular fragmentation analyses, click on the FAST tab.  On 

the screen that appears, make sure that the ion selector is turned on by ensuring 

that the Ion Selector box is checked as indicated below.  Set the ion selection 

Window Range from -5 Da to + 5 Da.  This step allows only ions for which the 

molecular weight of the parent molecule  ranges from 199 to 209 Da to reach the 

detector.  Set the parent mass to 204.19, the molecular weight of TCNQ.  Name 

the file PSD – TCNQ Standard by typing in the long, white, rectangular box 

labeled Sample.  Make sure that the box labeled Show apparent masses is not 

checked.  
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Finally, note that the PSD spectrum will be saved in the location designated in the 

long, rectangular box next to Path; that is, D:\data\WARD\FAST\FAST_042908\ 

 

5. To adjust the FAST method parameters, click on the box labeled FAST Method.  

The following screen will appear.   
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6. At the bottom of the screen that appears will be a list of the parameters for each 

segment of the PSD spectrum.  The voltage at which the reflector is kept is unique 

for each segment and is successively stepped down with respect to increasing 

segment number over the course of PSD spectrum acquisition.  Relatively high 

detector voltages (20 kV) are necessary to redirect large ions to the detector (such 

as the parent ion).  However, when subjected to such strong reflecting voltages, 

medium-range and smaller (fragment) ions miss the detector.  Therefore, 

progressively lower reflector voltages are required to accurately redirect and 

refocus ions of diminishing molecular weight to the detector.  Because of the 

relative scarcity of fragment ions produced, it is necessary to use increasing laser 

powers and detector gains to ionize and detect fragments of diminishing size.   

   

Another factor requiring increases in detector gains and/or laser powers is 

detector aging (the detector becomes clogged with matrix and analyte). Over a 

period of time, equivalent numbers of incoming ions will yield diminishing 

amounts of secondary electron currents in the microchannel plate detector (and, 

therefore, weaker signals).  Therefore, higher detector gains are necessary to 

generate a response with an acceptable signal-to-noise ratio.  After making 

changes to the parameters for a particular segment, click Apply to save the 

changes.  To exit this screen and to return to the previous one, click OK. 
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7. Next, ensure that the ion pre-selector correctly identifies the molecular weight of 

the peak of interest.  The default method was obtained for peptides, all of mol wt 

> 1000 Da.  Add the low-mass TCNQ to the calibration curve by clicking the 

Add Mass to Calibration List button.  Click Calculate to re-calculate the 

calibration curve.  Click Apply to update the calibration curve.  Finally, to exit, 

click OK.         

 

 

 



 
 

 277 

8. Collect the mass spectrum for the first segment.  After the required number of 

shots (300 in this case; see white box next to Shots below) has been taken, click 

on the Add button.  It will add the collected spectrum to the sum buffer.  The 

color of the word „Add‟ will turn from black to grey, and the button labeled Next 

will turn green.  Click on this button to collect the mass spectrum for the next 

segment.   

 

 

 

 

‘Add’ button 



 
 

 278 

9. Repeat step 8 for the second segment, and all subsequent segments.  Note that, in 

MALDI spectrum for the second segment, a sharp fragment peak is present at 178 

Da.  This peak was not present at all in the MALDI spectrum for the first 

segment, illustrating the importance of ion focusing with the optimum reflector 

voltage.   
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10. Once the last segment spectrum is recorded, open Flex Analysis from the 

Desktop (see desktop illustration on page 7) to view and process the data into a 

single, composite MALDI spectrum.  Open the files containing the desired 

analysis by following the path shown on page 10.  Highlight each individual 

MALDI spectrum obtained for the sample PSD – TCNQ Standard as shown.  

Click the FAST tab at the top of the screen.  A pulldown menu appears.  Click on 

Paste Segment Spectra to sum each of the individual MALDI spectra into one, 

composite MALDI spectrum containing the peaks for the parent TCNQ molecule, 

as well as those of all of the fragments observed (see below).   
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APPENDIX F 

OPTIMIZING THE SEGMENT REFLECTOR VOLTAGES FOR PSD 

 Depending on the fragmentation behavior (that is, the molecular weights, or mol 

wts, of the ion fragments produced from a particular analyte as a result of laser 

irradiation) of the species to which the post source decay
1
 (PSD) technique is applied, it 

is necessary to develop suitable operating methods in the FlexControl software which is 

used to operate the Bruker Daltonics Autoflex mass spectrometer by which matrix-

assisted, laser desorption and ionization, time-of-flight mass spectrometric (MALDI-

TOF-MS, or MALDI for short) analyses are performed.  For M-50 pitch oligomers, this 

means developing individual, optimized methods to facilitate the PSD analyses of the 

species comprising a particular oligomer class (that is, monomer, dimer, etc.).  For one of 

these optimized methods, FAST_M-50_Monomer_051308.psm (FAST is an 

abbreviation standing for Fragmentation Analysis and Structural Time-of-Flight Mass 

Spectrometry; the PSD technique is referred to by this name throughout the FlexControl 

and FlexAnalysis software programs used to operate the MALDI apparatus and to 

process the mass spectral data obtained, respectively), used to obtain PSD spectra for 

species comprising M-50 pitch monomer, the method parameters are shown in Fig. F.1 as 

they appear on the FAST Method Editor screen in the FlexControl software (see page 

B.10 for instructions on how to get to this screen).   
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Figure F.1. PSD operating parameters for the method FAST_M-

50_Monomer_051308.psm, optimized for PSD analyses of individual species 

comprising M-50 monomer. 

 

As specified earlier in Appendix B (the Procedure for Obtaining PSD Spectra 

section), a PSD spectrum is actually a composite result comprised of several summed 

MALDI spectra, each obtained at a different ion reflector voltage.  Typically, the 

reflector voltage utilized in the collection of the MALDI spectrum for Segment 1 is the 

same as that used for the acquisition of a MALDI spectrum in reflectron mode (for the 

Bruker Autoflex model, when operating in reflectron mode, that value is 20.00 kV).  For 

Segment 1 of the method FAST_M-50_Monomer_051308.psm, the values FAST Low 

and FAST High denote percentages of the parent ion molecular weight.  Thus, for a 
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parent ion with a mol wt of 230.3 Da (its PSD spectrum, including details concerning the 

acquisition thereof, is given elsewhere
2
), a FAST Low value of 80.0 corresponds to an 

m/z value of 0.80*230.3 = 184.2.  Similarly, a FAST High value of 102.0 corresponds to 

m/z = 1.02*230.3 = 234.8.  Such manipulation of these values sets the mol wt range of 

the MALDI spectrum for Segment 1 of the composite PSD spectrum for the M-50 

monomeric species of 230.3 Da (as confirmed in Fig. F.2 below).  Fragment ions with 

m/z ratios falling below the mol wt corresponding to FAST Low are very unlikely to be 

detected (even if they are, the peaks are poorly resolved
1
) because such ions have too 

little kinetic energy to sufficiently penetrate the grid of a reflector charged to 20.00 kV so 

as to be accurately reflected to and focused on the detector in detectable quantities. 

 

Figure F.2.  MALDI spectrum for Segment 1 of the composite PSD spectrum for an M-

50 monomeric species of mol wt 230.3 Da, obtained using the MALDI operating method 

FAST_M-50_Monomer_051308.psm. 
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This concept also applies to weak fragment peaks detected; in the PSD spectrum 

for Segment 1 shown in Fig. F.2, there is a peak at m/z = 215.0 indicating the presence of 

a de-methylated species, which is very weak in relation to the parent peak at m/z = 229.8.  

In Segment 1, this fragment had insufficient kinetic energy to penetrate the reflectron to 

the optimum depth (as shown in Fig. F.3, this means the incoming ion must stop just 

short of fully penetrating the reflectron voltage grid before being reflected) and thus a 

weak response was observed.  In order to maximize the height of the peak at m/z = 215.0, 

it is necessary to optimize the focus of such ions on the detector.  By recording an 

additional, second segment MALDI spectrum (see Fig. F.4), the peak height can be 

increased considerably through a slight reduction of the reflector voltage (note that while 

the reflector voltage is the most important parameter to optimize, it is typically also 

necessary to optimize laser power and detector gain, as indicated in Fig. F.1).   

Figure F.3.  An almost complete penetration of the reflectron voltage grid, so that the 

reflecting voltage is just strong enough to redirect the incoming ion to the detector, is 

desired.  For the parent ion, a reflectron voltage of 20 kV is necessary to achieve this 

condition.  The fragment ion of mol wt 215 Da does not penetrate the reflectron as deeply 

as the parent ion in Segment 1, and so is not as well focused on the detector. 
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Figure F.4.  MALDI spectrum for Segment 2 of the composite PSD spectrum for an M-

50 monomeric species of mol wt 230.3 Da, obtained using the MALDI operating method 

FAST_M-50_Monomer_051308.psm. 

 

For segment 2 (and any subsequent segments that comprise a PSD spectrum), 

FAST High and FAST Low do not denote a percentage of the actual parent ion 

molecular weight.  Rather, they represent a percentage of the mol wt of the ion that 

penetrates the reflectron to the ideal depth (in Segment 1, this ion was the parent ion of 

mol wt 230 Da).  In order to preferentially focus the fragment of mol wt 214.8 Da on the 

detector, it is necessary to examine the relationship between the kinetic energy of the 

incoming ion and the reflectron voltage necessary in order to optimize the detector 

response for a particular ion.  The initial ion kinetic energy is 19 keV, which is equal to 

the charge on an ion containing one positive charge multiplied by the accelerating voltage 

(19.00 kV in our MALDI operating methods which utilize reflectron mode).  Because 

bond energies are more than three orders of magnitude smaller, the metastable ion 
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fragmentation process can be approximated as elastic, having no noticeable effect on ion 

velocities.  That is, the sum of the kinetic energies of the fragment ions is equal to that of 

the parent ion prior to fragmentation.  Thus, the fragments remain traveling at the same 

velocity as their parent ion, so that all ions arising from a particular species (such as 

dimethylpyrene) reach the reflectron at the same time as un-fragmented parent ions of 

that particular species (dimethylpyrene).   

As kinetic energy = ½*ion mass*ion velocity
2
, the ion fragment of mol wt 215 Da 

possesses less kinetic energy than the parent ion of mol wt 230 Da.  Therefore, in 

segment 1, the fragment ion does not penetrate the reflectron to the optimum depth.  For 

Segment 2, it is necessary to lower the reflectron voltage so that the fragment ion can 

satisfy this condition.  The ratio of the reflectron voltages VR,1 and VR,j utilized in 

segments 1 and j should be equal to the ratio of the kinetic energies KEparent
 
and KEfragment 

of the parent ion, and a particular fragment ion (see Equation F.1).  Therefore,    

   

                                                                                                                        (F.1)                                                                                                                                                                            

 

Because the velocities vparent and vfragment of the incoming parent and fragment ions 

are equal, Equation F.1 simplifies to 
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By rearranging Equation F.2, it can be shown that in Segment j, the mol wt 

mfragment of the fragment ion that penetrates the reflectron to the optimum distance 

(corresponding to 100.0 on the scale between FAST Low and FAST High) is a function 

of the reflectron voltages VR,1 and VR,j utilized in segments 1 and j, and mparent, the mass 

of the parent ion.  

                                      

                                                     (F.3)                                                                                               

For Segment 2, when the reflectron voltage is stepped down to 18.50 kV, 

                                                          (F.4)                                                                                                 

 

Thus, for segment 2, 213.0 Da is mass of the ion fragment that penetrates the 

reflectron to the optimum distance.  At a reflectron voltage of 18.50 kV, the incoming 

fragment ion has a mol wt (215 Da) less than 1% greater than this value, so it would 

penetrate the reflectron to approximately the same depth (see Fig. F.5).  This minimal 

difference has no adverse effects on the MALDI response for the fragment, as the peak at 

m/z = 214.8 in the MALDI spectrum for Segment 2 (see Fig. F.4) is considerably 

stronger than it is in that for Segment 1 (see Fig. F.2).    
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Figure F.5.  For the fragment ion (mol wt 215 Da) arising from the parent ion of mol wt 

230 Da, a reflectron voltage of 18.5 kV is sufficient to focus it on the detector. 

 

For Segment 2, the m/z value corresponding to FAST Low is equal to (0.80)*m2 

= 0.80*213.0 = 170.4; similarly, the m/z value corresponding to FAST High is 

determined to be 1.02*213.0 = 217.3 (as confirmed in Fig. F.4).   

 

PSD Spectra for M-50 Dimer Constituents 

A key facet of the work presented in Chapter 6 of this dissertation was the 

collection of PSD spectra for major constituents of M-50 dimer.  The FAST Method 

Editor screen indicating the method parameters for the method FAST_M-

50_Dimer_030910.psm is shown in Fig. F.6.  Note that the reflector voltages for 

segments 2 and 3 are greater than those given for the optimized method FAST_M-

50_Monomer_051308.psm, developed specifically to obtain PSD spectra for the species 

comprising M-50 monomer.  The reason for these changes is discussed in the following 

paragraphs. 
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Figure F.6. PSD operating parameters for the method FAST_M-

50_Dimer_030910.psm, optimized for PSD analyses of individual species comprising 

M-50 dimer. 

 

Based on the molecular structures for the major monomeric structures presented 

in Chapter 4 of this dissertation, and the appearance of the PSD spectra associated with 

these species, the most prominent fragment peaks were expected to indicate the loss of a 

methyl group – that is, with the fragment peak being located at m/z of 15 less than that of 

the parent species.  For a parent species of mol wt 446.7 Da (the PSD spectrum of which 

is given in Fig. 10k of Chapter 6), the fragment mol wt would be 431.7 Da.  Rearranging 

Equation F.3 (setting j = 2), an expression can be obtained for the minimum second-

segment reflector voltage VR,2 that will allow for the accurate reflection of the fragment 
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ion (mfragment = 431.7 Da) to the detector (see Equation F.5).  This minimum reflector 

voltage, 19.33 kV, is significantly greater than the 18.50 kV used in the second segment 

of the PSD spectra obtained using the FAST method FAST_M-

50_Monomer_051308.psm developed to obtain PSD spectra for monomeric M-50 pitch 

species of lower mol wts.     

                                                                                                                                    (F.5) 

 

 Because the value of the minimum second-segment reflector voltage necessary to 

detect a de-methylated fragment increases with respect to mol wt of the parent species, a 

second-segment reflector voltage of 19.42 kV was chosen for the method FAST_M-

50_Dimer_030910.psm, which was designed for the whole molecular weight range of 

the M-50 dimer species analyzed in Chapter 6.  Such care in setting the second-segment 

reflector voltage is necessary in obtaining PSD spectra for methylated dimers because, as 

was the case with the monomeric species, the peak indicating the presence of the de-

methylated species is either very weak or not present at all in the PSD spectrum for the 

first segment of the composite PSD spectrum for the dimeric species of mol wt 446.7 Da 

(see Fig. F.7).  Meanwhile, the PSD spectrum for the second segment confirms the 

reliability of the method just presented for determining the necessary reflector voltage to 

use in the second segment (see Fig. F.8), resulting in the observation of a well-defined 

peak indicating the presence of a de-methylated fragment ion of m/z = 431.5.  
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Figure F.7.  MALDI spectrum for Segment 1 of the composite PSD spectrum for an M-

50 dimeric species of mol wt 446.7 Da, obtained using the MALDI operating method 

FAST_M-50_Dimer_030910.psm. 
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Figure F.8.  MALDI spectrum for Segment 2 of the composite PSD spectrum for an M-

50 dimeric species of mol wt 446.7 Da, obtained using the MALDI operating method 

FAST_M-50_Dimer_030910.psm. 

 

 The peak at m/z = 417.6 in Fig. F.8, which indicates the presence of a de-

ethylated fragment ion, is very weak.  Its response was increased considerably by 

optimizing the reflector voltage utilized in obtaining the PSD spectrum for a third 

segment of this composite PSD spectrum.  Using the same method as we did for the 

second segment of this PSD spectrum, we calculated VR,3 (see Equation F.6), the third-

segment reflector voltage necessary to preferentially focus this ion on the detector (again, 

this would be the voltage such that a value of 100.0 on the scale of FAST Low to FAST 

High would correspond to a fragment ion of m/z = 417.7 Da).   
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                                                                                                                                    (F.6) 

 

 The use of a reflector voltage of 18.80 kV results in the collection of the third-

segment PSD spectrum that is shown in Fig. F.9.  Note that the strength of the de-

ethylated ion peak is significantly enhanced compared to the strength of the same peak in 

the PSD spectrum for the second segment, given in Fig. F.8. 

 

Figure F.9.  MALDI spectrum for Segment 3 of the composite PSD spectrum for an M-

50 dimeric species of mol wt 446.7 Da, obtained using the MALDI operating method 

FAST_M-50_Dimer_030910.psm. 

 

 

 

 

3

, ,3 ,1

417.7
* 20.00 18.70

446.7
R j R R

parent

m Da
V V V kV kV

m Da



 
 

 293 

References 

1
Cotter, R. J.  Time-of-Flight Mass Spectrometry: Instrumentation and Applications in 

Biological Research.  American Chemical Society, Washington, DC, 1997, pp. 175-181, 

191. 

 
2
Cristadoro, A.; Kulkarni, S. U.; Burgess, W. A.; Cervo, E. G.; Räder, H. J.; Müllen, K.; 

Bruce, D. A.; Thies, M. C.  Structural Characterization of the Oligomeric Constituents of 

Petroleum Pitches.  Carbon 2009, 47, 2358-2370. 

 
 



 
 

 294 

 

APPENDIX G 

A REFERENCE FOR INTERPRETING POST-SOURCE DECAY (PSD) SPECTRA 

FOR PITCH CONSTITUENTS 

 

 

 

 

 Reference mass spectra for fully aromatic PAHs (such as anthracene), are 

presented, along with those for species possessing naphthenic content (such as 9,10-

dihydroanthracene).  At the end of this section, these spectra are used to interpret the PSD 

spectra for various components of anthracene pitch, in order to determine whether or not 

said components possess naphthenic content.   
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Figure G.1.  Electron ionization (EI) mass spectra for anthracene
1
 (top) and 1,2-

dihydroanthracene
2
 (bottom).  Reprinted with the permission of the American Chemical 

Society.  Copyright 2010 American Chemical Society (ACS).  All rights reserved.  For 

Figs. G.1-G.9, superimposed molecular structures have been generated by the author.
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Figure G.2.  EI mass spectrum for 9,10-dihydroanthracene.
3
  Reprinted with the 

permission of the American Chemical Society.  Copyright 2010 American Chemical 

Society (ACS).  All rights reserved. 
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Figure G.3.  EI mass spectrum for 1,2,3,4-tetrahydroanthracene.
4
  Reprinted with the 

permission of the American Chemical Society.  Copyright 2010 American Chemical 

Society (ACS).  All rights reserved. 
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Figure G.4.  EI mass spectra for phenanthrene
5
 (top) and 9,10-dihydrophenanthrene

6
 

(bottom).  Reprinted with the permission of the American Chemical Society.  Copyright 

2010 American Chemical Society (ACS).  All rights reserved. 
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Figure G.5.  EI mass spectrum for pyrene.
7
  Reprinted with the permission of the 

American Chemical Society.  Copyright 2010 American Chemical Society (ACS).  All 

rights reserved. 
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Figure G.6.  EI mass spectrum for 4,5-dihydropyrene.
8
  Reprinted with the permission of 

the American Chemical Society.  Copyright 2010 American Chemical Society (ACS).  

All rights reserved.   
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Figure G.7.  EI mass spectrum for 1,2,3,6,7,8-hexahydropyrene.
9
  Reprinted with the 

permission of the American Chemical Society.  Copyright 2010 American Chemical 

Society (ACS).  All rights reserved.   
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Figure G.8.  EI mass spectrum for chrysene.
10

  Reprinted with the permission of the 

American Chemical Society.  Copyright 2010 American Chemical Society (ACS).  All 

rights reserved.   
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Figure G.9.  EI mass spectrum for 1,2,3,4-tetrahydrochrysene.
11

  Reprinted with the 

permission of the American Chemical Society.  Copyright 2010 American Chemical 

Society (ACS).  All rights reserved.   
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Figure G.10.  PSD spectra for selected constituents of anthracene pitch. 

 

Based on a comparison of the above PSD spectra in Figs. G.10a-c to those from 

the literature presented in Figs. G.1-G.9, it is apparent that the species of m/z = 528 

(panel c) possesses naphthenic content (as evidenced by the fragment peaks at m/z values 

of 15 and 28 less than that of the parent species), while the species of m/z = 352 and m/z 

= 526 (panels a and b, respectively) do not possess naphthenic content. 
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APPENDIX H 

EQUIPMENT LIST 

Gel permeation chromatography (GPC) 

Gel permeation chromatograph.  Manufactured by Waters Corp., model Alliance 

GPCV2000.  It comes with an automatic sample injection ststem.  This technique is used 

to fractionate petroleum pitches into fractions of narrow molecular weight distribution 

that can be subsequently subjected to further analyses.   

Preparatory-scale GPC columns.  PLgel, manufactured by Polymer Laboratories, a 

division of Varian, Inc.  Particle size is 10 microns, 300 mm x 25 mm.  (a) 500 Å pore 

size, catalog number PL1210-6125.  (b) 100 Å pore size, catalog number PL1210-6120. 

Analytical-scale GPC Columns.  StyragelHT4, manufactured by Waters Corp., part 

number WAT044209.  Particle size is 10 microns, 300 mm x 7.8 mm.  Note: the Styragel 

HT4 column also comes packed in tetrahydrofuran (WAT044210); for future work in 

which tetrahydrofuran is used as the mobile phase, this column is preferable because no 

solvent change will be necessary (each solvent change lowers the column separation 

efficiency; thus, the solvent in which a GPC column is packed should not be changed 

unless necessary). 

Sample Injection Loop.  1.080 mL, obtained from Waters Corp., part number 700001018.  

The volume of the sample injection loop determines the amount of sample injected into 

the GPC column. 



 
 

 308 

Solvent Inline Filter.  Obtained from Waters Corp., part number WAT088084.  This part 

is used to filter particulate matter from the mobile phase before it is pumped throught he 

GPC column.  Because it becomes clogged over time, it must be changed periodically.   

GPC Pump Piston Seal.  This part is obtained from Waters Corp.; part number 

WAT270938.  When working with elevated flow rates (> 2.5 mL of mobile phase per 

minute, it is possible that the piston seal will fail, causing the GPC pump to leak.  

Therefore, this part must be changed periodically.  The procedure for changing the piston 

seal is given in the Alliance GPCV2000 system software operating manual.  When 

removing, make sure to use something sharp and firm, but that will not scratch and 

damage the metal fitting (such as a toothpick).   

GPC Filter Vial Assembly.  Obtained from Waters Corp.; part number 600000186.  

These vials are used for samples, such as petroleum pitch, that are not fully soluble in the 

GPC mobile phase.   

GPC Filter Vial Caps.  Obtained from Waters Corp.; part number 600000138.   

Crimping Tool for Securing Caps to Filter Vials.  Obtained from Waters Corp.; part 

number 700000847.   

Waters Fraction Collector.  Manufactured by Waters Corporation.  Used for automated 

collection of GPC eluent fractions over a constant time interval.   
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Matrix-Assisted Laser Desorption and Ionization, Time-of-Flight Mass Spectrometry 

(MALDI) 

 

MALDI Mass Spectrometer.  Manufactured by Bruker Daltonics, model Autoflex.  Used 

to obtain mass spectra for pitches and post-source decay spectra for various species 

within said pitches. 

MALDI Target.  The sample to be subjected to MALDI analysis is deposited onto the 

target which is introduced into the MALDI apparatus.  The MTP 384 massive target (Part 

number 26755) was used in carrying out the work in this dissertation. 

MALDI Roughing Vacuum Pump Oil.  Oil P3, manufactured by Pfeiffer.  This oil is used 

in the MALDI rough vacuum pump and should be changed yearly in order to maintain 

optimum pump performance. 

MALDI Microchannel Plate Detector.  Manufactured by Bruker Daltonics, part number 

S-267682.  Over time (the last detector, used when operating in reflectron mode, had a 

lifetime of 47 months before its performance became unacceptable), the microchannels 

within the detector become clogged with matrix and analyte, reducing the secondary 

electron current generated when ions strike the detector walls. 

MALDI Laser.  Manufactured by Bruker Daltonics; part number S-555636.  The 337 nm 

N2 laser must be changed, on average, every couple of years.    

 



 
 

 310 

Miscellaneous 

 

Microcapillary Tubes.  Manufactured by Drummond Scientific Company; catalog 

number 1-000-0200.  These tubes, which hold a maximum volume of 20 L, are used in 

MALDI sample preparation by both the solvent-based and solvent-free methods.   

Sonicator.  Manufactured by Mettler Electronics Corp.; model ME 5.5S.  The sonicator is 

used to mix samples prior to their introduction into the GPC apparatus. 

Cuvette for UV-Vis Analyses.  Fisherbrand part number 14-385-902A, 1 mm optical path 

length, with Suprasil quartz windows.   

Balance.  Denver Instrument, model M-310; mass limit 310 g.  This instrument was used 

to measure out pitch in the preparation of pitch solutions for preparatory-scale GPC 

fractionation. 
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