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ABSTRACT 

Nerve injury is a general but intractable disease in traumatic injuries, leading to a 

significant reduction of functions in the nervous system. Extensive efforts are made on 

nerve injury rehabilitation. Since the appropriate connections between neurons and their 

targets are necessary, guiding axonal outgrowth is an essential step for neuron outgrowth 

in nervous system development, functioning, and regeneration. Besides the direct surgical 

nerve connection, an artificial means of guiding nerve regeneration called nerve conduits 

is widely applied in nerve injury rehabilitation. The main function of nerve conduits is to 

bridge the nerve gap, to help regenerating axons across damaged regions and guide them 

to appropriate targets. Recently, polymeric hollow fiber membranes (HFMs) have been 

studied as a potential nerve conduit for nerve regeneration and repair. In order to further 

improve the efficiency of HFMs, micropatterns such as aligned grooves are usually 

introduced on the inner surface of HFMs as an effective topographical guidance cue. 

The goal of this study is to fabricate HFMs with aligned grooves on the inner 

surface and understand their effect on nerve regeneration and repair. Consequently, there 

is a need, first, to carefully design the fabrication process of HFMs introducing aligned 

grooves on inner surface and understand the groove formation mechanism; second, to 

better understand the role of defined grooves on the inner surface of HFMs as 

topographical guidance cues promoting axonal outgrowth. 
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The grooved HFMs were fabricated by means of a phase inversion-based spinning 

technique with a smooth and annular spinneret by carefully controlling the fabrication 

conditions. The effects of different operating conditions were experimentally studied, and 

the fabricated HFMs were also characterized. In order to explain the formation of grooves 

on the HFM inner surface, two different instability mechanisms were introduced: a 

hydrodynamic or Marangoni instability and an elastic or buckling instability. The results 

obtained between the experimental and the theoretical studies were compared in terms of 

the number of grooves under different operating conditions. Then, the fabricated HFMs 

with textured inner surface were used as nerve conduits. The effect of the geometry of the 

grooved inner surface on the axonal outgrowth was studied. A numerical model 

describing the motion and deformation of an axon moving on the grooved HMF inner 

surface was developed to study the effect of substrate geometry on axonal outgrowth. 

This work developed the first theoretical model for the groove formation 

mechanism during the HFM fabrication. In this model, the Marangoni instability was first 

used to investigate the onset of instability in the HFM fabrication, and the buckling of 

instability magnification was also studied. This work also presented the numerical 

simulation of axonal outgrowth on a three-dimensional substrate, where the influence of 

the substrate geometry was taken into account. The work covered by this thesis will help 

to fabricate nerve conduits for better nerve regeneration and repair. 
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CHAPTER ONE 

INTRODUCTION AND MOTIVATION 

This chapter gives the introduction and background of this research. The 

background of the nervous system and axonal outgrowth is introduced. The effect of the 

nerve conduit on promoting nerve regeneration is described, while different types of 

nerve guidance cues are reviewed. Since the semi-permeable hollow fiber membranes 

(HFMs) are used as nerve conduits, the fabrication of HFMs is introduced, and the effect 

of different fabrication conditions on the HFM morphology and geometry is reviewed. 

Then theoretical mechanisms of the groove formation are proposed. The current 

numerical models for axonal outgrowth are also presented. The motivation of this work 

and the organization of the thesis are presented at the end of this chapter.   

 

1.1 Introduction 

1.1.1 Nerve structure and damage 

Generally, the nervous system consists of two parts: the central nervous system 

(CNS) and the peripheral nervous system (PNS). The nerve is an enclosed, cable-like 

bundle of nerve fibers from different neurons (Fig. 1.1). The nerve is wrapped in the main 

epineurium, and inside the epineurium is a group of axons, each axon being covered by 

Schwann cells [Filler2004]. In some cases, one neuron is also called a “nerve cell”. Three 
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parts can be defined in typical neurons and are the critical parts of the nervous system: 

cell body (or soma), dendrites and axon (Fig. 1.1). The soma is the center part of the 

neuron. It contains the nucleus of the neuron, where most proteins are synthesized. The 

axon and dendrites are two types of protoplasmic protrusions that extend from the soma. 

The dendrites of a neuron are cellular extensions with many branches, where the majority 

of input signals to the neuron occurs. The axon is a finer long projection from the soma, 

which can carry nerve signals away from the soma. The dendrites and axon are referred 

to as neurites, and neurons must elongate their neurites to reach their targets.  

 

Nerve

Epineurium

Perineurium Endoneurium

Axon

Schwann 
cell

Interfascicular
epineurium

Filopodium

Lamellipodium

Microtubule

Soma

Axon

Growth 
cone

Dendrites

 

Fig. 1.1. Anatomy of nerve structure, the neuron and the growth cone (adapted from 

[Filler2004]). 
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Fig. 1.2. Different types of nerve injury (adapted from [Filler2004]). 

 

Damages to the nervous system, caused by mechanical, thermal, chemical, or 

ischemic factors, can impair various nervous system functions cancelling 

communications between nerve cell bodies and their targets. As shown in Fig. 1.2, 

different types of nerve injury can be classified as: compression, sheath loss, 

disconnection, and degeneration [Filler2004]. A simple compression on the nerve may 

disturb the connection of the nervous system, but the nerve can recover very rapidly; 

while the nerve sheath may be destroyed physically or chemically, and the recovery of 

this sheath loss may take a longer time. A more serious damage to nervous system is 

nerve disconnection, and in this case, the nervous system needs to regenerate, and the 

most serious nerve injury is the complete nerve transection. In this work, a nerve conduit 
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based treatment is introduced to repair nerve breaks. 

For nerve injuries, there are mainly two kinds of surgical treatments (Fig. 1.3): a 

direct end-to-end surgical reconnection, or the autologous nerve graft [Schmidt2003]. 

The direct end-to-end reconnection sutures two ends of the broken nerve cable, but it is 

only suitable for small defects and gaps (~3 cm) in the nerve. An autologous nerve graft 

method is used for longer nerve gaps, where a piece of healthy nerve is harvested from a 

donor site in the body, and grafted to the injured part. There exists a major drawback with 

autologous graft, because it partially deinnervates the donor site to reinnervate the injury 

site [Rutkowski2004]. Thus, bioengineering strategies, such as bridging the gap with 

nerve conduits are being developed to improve nerve regeneration. 

 

MuscleInjury site

Nerve from donor site

 

              (A)                                   (B) 

Fig. 1.3. Clinical approaches for treating nerve injuries. (A) Direct end-to-end 

reconnection (adapted from [Schmidt2003]). (B) Autologous nerve graft. 
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1.1.2 Guidance cues and nerve conduit 

After nerve injury, neurons most likely face a complex environment that contains 

different inhibitory factors. Since dense scar tissues easily form on the damaged parts, the 

neurites may grow to inappropriate targets and lose the correct connection in the nervous 

system [Zhang2005]. Therefore, to help regenerating axons cross the scar area to 

associated targets is a significantly important step during nerve regeneration [Long2008]. 

Currently, different guidance cues are found to significantly promote nerve regeneration 

efficiency. The guidance cues can be classified as contact-induced and chemo-induced 

guidance cues [Tessier-Lavigne1996]. Both contact-induced and chemo-induced 

guidance cues have two types: attractive or repulsive. Contact-induced guidance cues, 

also called topographical guidance cues, are mainly associated to nano- to micro-groove 

patterned substrates, such as edges, fibers, and grooves which adjust the orientation of 

neurons growing upon them [Zhou2009, Kofron2010]. Contact-induced guidance cues 

can be defined as physical guidance cues, while chemo-induced guidance cues mainly 

consists of chemical or biological factors. The chemical factors can be different 

molecules, such as neurotrophic factors, nerve growth factors, and fibroblast growth 

factors [Schmidt2003]. While biological factors can be Schwann cells, or astrocytes, 

which can promote neurite outgrowth and alignment.    

Currently, bioengineering strategies associated with different kinds of guidance 
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cues, are being developed as potential treatments to help regenerating axons across the 

scar area by guiding them to appropriate targets. Nerve conduits, which are usually 

fabricated as tubular structures, are being investigated as guidance channels to connect 

the gap between damaged nerves [Schmidt2003]. Such nerve conduit-based treatments 

for nerve injuries have the following advantages: 

1. Nerve conduits allow the bridging of gaps between the cut ends and can permit the 

inclusion of neurotrophic factors [Vasconcelos2000]; 

2. Nerve conduits can provide a channel for the diffusion of growth factors secreted by 

the injured nerve ends and reduce the infiltration of scar tissue [Schmidt2003]; 

3. Nerve conduits can organize the fibrin cable and improve the outcome of peripheral 

and central nerve transection [Hoffman-Kim2010]; and 

4. Nerve conduits can protect the nerve from the surrounding axons into the distal nerve 

stump [Pfister2007].  

The nerve conduit essentially will serve as analogs of the extracellular matrix 

(ECM) to assist nerve regeneration and axonal outgrowth, while different guidance cues 

will significantly promote axonal outgrowth. Based on current investigations a number of 

researchers have concluded that the nerve conduit needs to be more than a simple tubular 

structure, and additional physical properties have to be incorporated for an ideal nerve 

conduit [Hoffman-Kim2010, Brushart1995]. As shown in Fig. 1.4, as an ideal nerve 
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conduit, a) it should have a porous wall, which is semi-permeable; b) it should have the 

ability to deliver the growth factors for enhancing nerve regeneration; c) it may cooperate 

with supportive cells to improve neurite outgrowth; d) it can have electrical activity in 

order to stimulate nerve regeneration by electricity when conductive polymers are used; e) 

it may have multichannels in the lumen to mimic the structure of nerve fascicles; f) it 

may be fabricated with an oriented texture on the inner surface to improve the alignment 

of neurite for directional outgrowth [Schmidt2003]. 

 

 

Fig. 1.4. Properties of an ideal nerve conduit (adapted from [de Ruiter2009]). 
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1.1.3 HFMs as a nerve conduit 

One important aspect of guidance for nerve regeneration is the choice of 

materials for nerve conduits. Materials used to construct tubular guides can be classified 

into natural polymers or synthetic polymeric materials [Wang2010]. Natural polymers 

include materials such as collagen, chitosan, and gelatin, which have excellent 

biocompatibility and functions, and can reduce serious immune response. However, a 

lack of mechanical strength and a fast degradation in vivo [Wang2010] were observed for 

natural polymers. Thus, synthetic non-biodegradable or biodegradable polymeric 

materials are widely used in nerve conduit manufacturing. The latter group consists in 

polymer tubes made of poly(L-lactide) acid (PLLA), poly(glycolic acid; PGA), 

polyglactin, or blends of these components. They have the advantage of degrading over 

time in vivo, and thus avoid the need for a second surgery to remove the scaffolding 

material [Ngo2003]. Furthermore,  

1. Semi-permeable polymer conduits are more suitable than nonporous conduits, since 

semi-permeability allows reduction in infiltration of fibrous tissue;  

2. It can increase the concentration of endogenous proteins inside the channel; and  

3. It can permit or inhibit the diffusion of macromolecules between the neurons inside 

and the surroundings [Bregman1998, Tresco2000].  

Therefore, biodegradable semi-permeable polymeric HFMs show promise in promoting 
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axonal regeneration both in vitro and in vivo [Lu1999]. 

In surgical applications, fabricated nerve conduits must have the correct 

dimensions, and must be easy to handle and suture. Typical HFMs designed as nerve 

conduits usually have a diameter in the order of 1 mm, which is much larger than neurite 

physiological size (10 μm). For HFMs to be effective nerve conduits, different techniques 

have been used leading to a better orientation and outgrowth rate for regenerating 

neurites. For example, thin filaments (5 μm in diameter) have been assembled into HFMs 

to decrease HFM cross section [Wen2006], and recently, oriented assemblies of 

nano-fibers were also used in directing neurites [Yang2005]. An alternative approach to 

increase the guidance efficiency of semi-permeable HFMs is to generate aligned grooves 

on the inner surface of HFMs [Zhang2005, Hsu2007]. The effects of substrate 

topographical cues on neuron outgrowth have been extensively studied in the last decade 

[Rajnicek1997, Recknor2004, Johansson2006], and it was found that neurites can grow 

perpendicularly on the grooves to form a neurite bridge across grooves [Rajnicek1997, 

Goldner2006], and patterned substrates with certain groove size induces alignment and 

outgrowth of the chosen neuron in a particular direction associated with the pattern 

[Rajnicek1997, Johansson2006], improving nerve regeneration. As typical nerve conduits, 

HFMs are designed to bridge the gap of a sectioned nerve. For the HFM to be an 

effective nerve conduit, three dimensional (3D) textured micro-topology of the order of 
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10 µm has been introduced on the HFM inner surface to stimulate axonal outgrowth 

[Miller2001, Taylor2005]. It was found that aligned grooves (around 50 µm in full width 

of half maximum) can be formed on the inner surface of HFMs by carefully controlling 

the operating conditions, and such grooved HFMs have shown promising results in 

stimulating the rat dorsal root ganglion (DRG, a nodule on a dorsal root containing cell 

bodies of neurons in afferent spinal nerves) regeneration in vitro [Zhang2005]. Some in 

vivo studies also indicated that topography by itself, without additional biochemical cues, 

is capable of promoting nerve regeneration [Hoffman-Kim2010]. 

 At the biological level, the topography of the substrate can affect 

[Hoffman-Kim2010] 

1. The way the proteins interact with the surface and consequently the way cells bind to 

the surface; 

2. The orientation and organization of the cytoskeleton of neuron to improve the 

alignment;  

3. The localization of receptors, leading to different signaling behavior; 

4. The shape and morphology of neurons; and  

5. The gene expression in neurons, leading to behavioral and functional changes. 

A great number of ideas have been proposed, but a few mathematical models have been 

developed that take into account different topographical mechanisms. Our goal is not to 
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introduce the biological ideas, but to study the effect of a textured substrate on the axonal 

outgrowth and the dependence of the nerve regeneration on the texture from a numerical 

point of view based on the biological data in the literature.  

 

1.1.4 Mechanism of axonal outgrowth 

On the tip of neurites (both axon and dendrite), there is a terminal structure called 

growth cone. The growth cone comprises two types of protrusion: filopodia and 

lamellipodia (Fig. 1.1), which are full of actin. Filopodia are thin extensions that 

constantly initiate, extend, retract, and disappear from the growth cone periphery, while 

lamellipodia are sheet-like veils that are also highly dynamic, frequently initiating, 

extending, retracting, and disappearing between filopodia [Maskery2005]. 

 

 

Fig. 1.5. Stage of axon outgrowth (adapted from [Dent2003]). 
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As a typical outgrowth process, the axonal elongation mainly can be divided into 

three stages: protrusion, engorgement, and consolidation (Fig. 1.5) [Dent2003, 

Mortimer2008, Lowery2009]. Protrusion occurs by the elongation of filopodia and 

lamellipodia on the growth cone, apparently through the polymerization of actin 

filaments [Dent2003]. Engorgement occurs due to the invasion of central domain with 

microtubules into extended peripheral region. Finally, a nascent axon segment becomes 

consolidated through the retraction of actin at the neck of the growth cone and the 

crosslinking of microtubules into a stable bundle [Mortimer2008]. These three 

continuous stages occur during the formation of nascent axons.  

 

Growth cone

Depolymerization
Retrograde flow Protrusion

Polymerization

F-actin

 

Fig. 1.6. Schematic of filopodium outgrowth (adapted from [Lowery2009]). 

 

In the axon outgrowth process described above, a driving force of axonal 

elongation comes from the growth cone pulling force applied on the tip of the axon. 
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Therefore, the growth cone is of significant importance in both driving the axon forward, 

and sensing guidance cues during outgrowth. The asymmetric filopodial extension on the 

growth cone can steer the axonal outgrowth, which will reorientate the axonal outgrowth 

direction. 

The filopodial structure can be featured as parallel actin filaments bundled by 

proteins, which constantly extend and retract. The free actin monomers, called G-actin, 

usually are added to the distal end of filaments as actin polymerization (the polymeric actin 

monomers are called F-actin); simultaneously, F-actin dissociates from the proximal end 

as depolymerization. The process, where the continual addition of actin subunits at the one 

end of an actin polymer and disassembly of the polymer at the other end, is called “actin 

treadmilling” [Lowery2009] (Fig. 1.6). Meanwhile, the entire actin filament is dragged 

back by myosin-like molecular motors into the central domain of the growth cone, which is 

called F-actin retrograde flow. Chan et al. [Chan2008] presented a model of filopodia 

motion based on the retrograde flow, called the “motor-clutch” model. In this model, 

filopodia are modeled as 1D rigid filaments, which are pulled at the end by molecular 

motors located in the center of the growth cone. Physical links between filopodia and the 

substrate are formed, which are called molecular clutches. By creating this physical 

coupling, filopodia are thought to experience the adhesion force from the substrate, which 

is regarded as a “traction force” [Ananthakrishnan2007]. The summation of all the 
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traction forces gives a resultant force on the growth cone, which is exerted at the tip of 

neurites to pull the neurite forward. The traction force from the growth cone is one of the 

important driving mechanisms for neurite outgrowth. 

 

1.2 State of the art 

1.2.1 Fabrication of HFMs  

As reviewed in [Su2007], the first artificial fibers were fabricated at the end of 

nineteenth century. Generally, there are several ways to prepare polymeric membranes, 

such as stretching, coating, and phase inversion, while most commercially available 

membranes are obtained by phase inversion methods [Mulder1996]. Phase inversion 

methods include a range of different techniques such as solvent evaporation, thermal 

precipitation, and immersion precipitation. The most popular technique among the phase 

inversion methods is the immersion precipitation, where the polymer solution is 

immersed into a coagulation bath containing a nonsolvent. The diffusion and 

convection-induced mass transfer between the solvent and nonsolvent leads to the phase 

separation and decomposition of the homogenous polymer solution into one polymer rich 

phase with a high polymer concentration, and one polymer lean phase with a low 

polymer concentration. Since the glass transition temperature of polymer solution 

increases with the polymer concentration, when the glass transition temperature reaches 
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the ambient temperature, the polymer solution solidifies and the polymer rich phase 

develops into a polymer dense matrix; while the polymer lean phase develops into 

macrovoids. Therefore, the immersion precipitation-induced phase-inversion is a process 

whereby a polymer is transformed in a controlled manner from a liquid to a solid state 

[Mulder1996]. 

 

Polymer

SolventNonsolvent

Binodal

Spinodal

 

Fig. 1.7. Schematic polymer/solvent/nonsolvent a ternary phase diagram. 

 

The relation between polymer/solvent/nonsolvent during phase inversion 

generally is presented by a ternary phase diagram (Fig. 1.7). In Fig. 1.7, three corners of 

the triangle represent the pure components, three axes stand for three possible binary 

combinations, and one point inside the triangle is a ternary mixture [Long2008]. There 

are one binodal and one spinodal lines as shown in Fig. 1.7. The phase inversion begins 
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with a solution on the border of polymer/solvent, and the solution stays homogenous 

outside the binodal line. The region between binodal line and spinodal line is a 

metastable region [Wang2009], where liquid-liquid demixing of the polymer solution 

takes place. When the solution composition enters the region inside the spinodal line, 

rapid demixing will occur. Finally, the polymer rich phase solidifies leading to a 

membrane.     

 

Bore fluid
Dope fluid

Flow meter
Flow meter

Spinneret

Coagulation bathe

Motor

Take-up device  

Fig. 1.8. Schematic of a commercial setup of fiber fabrication. 

 

In the recent years, HFMs are more and more commercially utilized in various 

industrial processes because of the commonly recognized reason that HFMs have a larger 

surface area to volume ratio than flat sheet membranes. An illustration of a commercial 
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fiber fabrication setup is shown in Fig. 1.8. There are two inflow points: one for bore 

fluid, the other for dope fluid (polymer solution), and two flow meters usually are used to 

monitor and control bore and dope flow rates. The dope and bore flows are extruded by 

the spinneret and enter the coagulation bath, which are full of nonsolvent. After 

precipitation in the coagulation bath, the solidified polymeric membrane is collected by a 

motor driven take-up device.   

 

External coagulation bath
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NS
S

S
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Fig. 1.9. Schematic of dry-jet wet polymer fiber spinning process (S: solvent, NS: 

nonsolvent).  
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The fabrication process of HFMs (Fig. 1.8) can be classified into two types 

according to extrusion and quench. If the extrudate is pure polymer without solvent, the 

process is called “melt” spinning, while if polymer solutions are co-extruded with one or 

more solvents, it is called “solution” spinning [Su2007]. For “solution” spinning process, 

both “wet” and “dry-jet wet” spinning can be defined based on the existence of 

coagulation bath in the spinning process. If the polymer solution and nonsolvent flows 

just pass through an air gap, do not immediately contact the coagulation bath, it is called 

“dry-jet wet” spinning (Fig. 1.9). If the polymer solution and nonsolvent flows enter the 

coagulation bath immediately after extrusion from spinneret, it is called “wet” spinning. 

In the general dry-jet wet spinning process, three types of material are used: 

polymer, solvent, and nonsolvent. Before the spinning process, the polymer is dissolved 

into solvent to form the polymer solution, which will be co-extruded with nonsolvent 

through the spinneret. When the polymer solution contacts the nonsolvent during the air 

gap and in the coagulation bath, phase inversion occurs, and then the polymer solution 

solidifies to form a polymeric membrane. In this process, the inner nonsolvent (bore) 

flow induces the solvent/nonsolvent mass transfer between polymer solution and 

nonsolvent, resulting in the phase inversion close to the inner surface of nascent HFMs 

during the air gap. Meanwhile, the inner nonsolvent flow also keeps the fiber open to 

form hollow fibers, and contributes to the determination of the inner diameters of HFMs.  
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500 μm

200 μm 100 μm

100 μm

A

B C
Inner surface with irregular

or aligned grooves  

Fig. 1.10. Cross sectional view of HFM. (A) Smooth inner surface; (B) irregular 

[Bonyadi2007], or (C) axially grooved [Long2008] inner surface. 

 

Generally, HFMs are fabricated using a spinning process with an annular and 

smooth die, but both inner and outer cylindrical surfaces can have a circular or 

non-circular cross section. The presence of an air gap in the setup leads to HFMs with a 

smooth outer surface and a smooth or a grooved inner surface depending on the 

fabrication conditions. HFMs with a uniformly thick wall and a smooth inner surface are 

shown in Fig. 1.10A, while HFMs with deformed inner surface also can be obtained 

under selected fabrication conditions. It is found that both irregular (Fig. 1.10B) and 
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regular (Fig. 1.10C) deformed inner surfaces can be formed depending on the materials, 

experimental setup and operating conditions. HFMs, with regular deformed inner surface 

exhibiting aligned grooves along the longitudinal direction, are used as nerve conduits 

[Zhang2005].  

As investigated, the groove formability and size are influenced by different 

fabrication conditions, such as the polymer solution flow rate, inner nonsolvent flow rate, 

polymer solution concentration, air gap distance, and take-up speed. Chung, et al. 

[Chung1997] studied the effect of the air gap distance on the morphology and thermal 

properties of polyethersulfone (PES)/N-methyl-2-pyrrolidone (NMP)/water hollow fibers. 

They fabricated HFMs with a deformed inner surface in the absence of air gap, and found 

that the deformation can be suppressed when the air gap distance increases from 0 to 14.4 

cm. Shi et al. [Shi2007] obtained irregular inner surface in the case of poly(vinylidene 

fluoride-co-hexafluropropylene) (PVDF-HFP)/NMP/water HFMs. Shi et al. also studied 

the effect of NMP (solvent) added in the bore fluid, and observed a deformed irregular 

inner surface for a low concentration of NMP in the bore fluid. Pereira et al. [Pereira2000] 

also reported deformations and corrugations on the inner surface of poly (ether imide) 

(PEI)/NMP/water HFMs when NMP was added to water. Some other conditions to obtain 

deformed inner surface have been considered by Santoso et al. [Santoso2006]. They 

manufactured polysulfone (PSU)/NMP/water HFMs, and observed deformed HFMs with 
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a high take-up speed, or a low bore fluid flow rate, and also found as [Shi2007, 

Pereira2000] that the deformation of the HFM cross section can be obtained by 

decreasing the concentration of NMP in bore fluid (NMP/water mixture). A more 

extensive study on the effect of operating conditions on the HFM geometry was carried 

out by Bonyadi et al. [Bonyadi2007], who considered the effects of air gap distance, 

solvent concentration in bore fluid, polymer concentration, external coagulant, and 

take-up speed on polyacrylonitrile (PAN)/NMP/water and PVDF/NMP/water HFMs 

fabrication. They obtained deformed inner surface with both regular and irregular 

grooves. They found a longer air gap can eliminat the deformation. While a larger 

take-up speed, or a lower polymer concentration was found to lead to more grooves on 

the HFM inner surface. They also observed that when NMP concentration increases from 

0 to 60% in the bore fluid (NMP/water mixture), the groove number increased, but no 

grooves were observed when the NMP concentration the further increases to 80%. They 

showed that by replacing water with iso-propanol (IPA) as the external coagulant, the 

deformation of the HFM cross section can be eliminated. Zhang et al. [Zhang2005] also 

obtained regular aligned grooves on polyurethane (PU)/dimethyl sulfoxide 

(DMSO)/water HFMs for different polymer solution and nonsolvent flow rates. They 

discussed the influence of these fabrication conditions and found that the groove height 

increases with polymer solution flow rate but decreases with nonsolvent flow rate. 
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Following [Zhang2005], Long et al. [Long2008] worked on PU/DMSO/water HFMs 

fabrication, and found that more grooves formed on the inner surface of HFMs when the 

nonsolvent flow rate increase, or when the polymer solution flow rate or the 

concentration decreases. 

It can be deduced from previous works that the fabrication conditions play an 

important role in obtaining HFMs with grooved inner texture. The different fabrication 

conditions need to be carefully chosen, and currently no systematic studies have been 

performed in order to understand the process. Furthermore, most of the works are focused 

on the elimination of corrugations on the inner surface of HFMs, so less effort is spent on 

the design of grooved geometry. In order to be used as nerve conduits, textured HFMs 

with defined grooves serving as topographical guidance cues on the inner surface need to 

be produced, therefore, the effect of different fabrication conditions on the grooved 

geometry as well as material properties such as material strength should be investigated. 

 

1.2.2 Mechanism of groove formation on the inner surface of HFMs 

It is well recognized that the grooves on the inner surface of HFMs are caused by 

process-induced instability during the fabrication. The possible process-induced 

instabilities can develop in the longitudinal (along the spinning direction) or in the 

circumferential direction. The longitudinal instability, which appears as melt fracture, 
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draw resonance [Su2007], necking [Bonyadi2007], may lead to fiber breakage during the 

spinning. The circumferential instability may lead to a deformed HFM cross section, 

non-uniform wall thickness, or corrugated/grooved inner surface [Bonyadi2007, 

Long2008]. Therefore, the circumferential instability plays a critical role in groove 

formation on the HFM inner surface.  

 

 

Fig. 1.11. Instability associated with proposed hydrodynamic mechanism (adapted from 

[Bonyadi2007]). 

 

Bonyadi et al. [Bonyadi2007] recently have pioneered two different 

circumferential instability mechanisms for groove formation: an hydrodynamic instability 

(Fig. 1.11) and a buckling (Fig. 1.12). The first one is associated to the onset of instability 

before solidification, while the second one takes place during the solidification after the 
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polymer solution enters the coagulation bath. As shown in Fig. 1.11, the polymer 

solution/bore fluid interface is perturbed and penetrates into the fluid differently 

depending on regions and contact area. The region with a deeper penetration and an 

increasing contact area can promote the solvent-nonsolvent exchange in this region, 

leading to a higher precipitation-induced pressure. Due to the non-uniform distribution of 

high penetration regions, the pressure inward will generate the deformation of HFM inner 

surface.  

Air gap 
distance

 

Fig. 1.12. Schematic of buckling mechanism [Bonyadi2007]. 

 

The other mechanism for groove formation is the buckling of HFMs during 

solidification (Fig. 1.12). Bonyadi et al. assumed that HFMs can be considered as a 

six-layer elastic shell, and postulated that an inward pressure is induced by the shrinkage 
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of the HFM outer surface during solidification in the coagulation bath. When the inward 

pressure exceeds the critical buckling pressure of the inner layer of the nascent HFM, the 

inner surface will deform to form grooves. 

However, currently no theoretical model has been presented to predict the 

deformation of HFMs during fabrication and to study the groove formation. Therefore, a 

model needs to be developed to study the groove formation process based on both 

hydrodynamic instability and buckling, and to investigate the effect of different 

fabrication conditions. 

 

1.2.3 Modeling of axonal outgrowth 

Currently, just a few numerical models can be found to simulate the axonal 

outgrowth on a substrate. In order to study the axonal outgrowth, the material type of the 

axon has to be defined first. Generally, materials can be classified based on the 

deformation responding to stimuli, where materials may stretch like springs, termed as 

elastic materials, or may flow as fluids, termed as viscous materials. Based on previous 

experimental studies, it is found that the axonal deformation refers both elastic stretching 

and viscous deformation. Under an external force, the axonal elongation response to a 

tensile force can be described as a viscoelastic one including three stages: first the initial 

elastic stretching, then the delayed stretching, and finally the elongation at a constant rate 
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[Dennerll1989, Lamoureux2010]. In order to model the 1D deformation of axon, a 

viscoelastic fluid is generally described as a series of Burgers elements (Fig. 1.13), where 

a spring (E1), a Voigt element (a spring E2 and a dashpot η2 in parallel), and a dashpot (η) 

are connected in series. 

 

E2

η2

E1 η

 

Fig. 1.13. Schematic of a Burgers element. 

 

O’Toole et al. [O’Toole2008] studied the 1D axon elongation, and Aeschlimann 

[Aeschlimann2000] studied the two dimensional (2D) motion of an axon on a planar 

surface (Fig. 1.14). In the former study, the axon is modeled as a series of dashpots, and 

in the latter one, the axon is treated as a series of elastic segments. While the axonal 

elongation was modeled considering a viscoelastic fluid behavior [O’Toole2008] and a 

viscoelastic solid behavior [Aeschlimann2000], respectively, in both works the axon and 

substrate interaction was defined as a friction force proportional to the axonal velocity. 

As O’Toole et al.’s work introduced only the stretching for the axonal 1D elongation, 
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Aeschlimann studied the stretching and bending in the 2D motion of axon on a planar 

surface. 
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Fig. 1.14. Schematic of the axonal outgrowth on a planar surface. 

 

Numerous experimental investigations have proved the effectiveness of the 

micropatterned 3D structure in promoting nerve regeneration with tubular nerve conduits 

[Rutkowski2004, Zhang2005, Hsu2007]. However, these two models, mentioned above, 

cannot be applied in the case of the axonal outgrowth on a micro-patterned 3D surface. In 

order to study the axonal outgrowth on the curved geometry, the 3D deformation and 

motion of an axon need to be taken into account in the new numerical model, where not 

only the stretching and bending but also the rotation of the axon will be considered. The 

interaction between axon and substrate also need to be improved. Based on this model, 

the effect of substrate geometry on axonal outgrowth can be predicted. 
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1.3 Motivation and goals 

The main goal of this research is to manufacture HFM-based biomimetic nerve 

conduits with designed grooved textures on their inner surface as guidance cues to assist 

nerve regeneration. In order to achieve this goal,  

1. There is a need to fabricate HFMs with well aligned grooves, which is the target inner 

structural geometry. Based on previous studies [Bonyadi2007, Long2008, 

Santoso2006, Pereira2000, Shi2007], grooved HFMs form during dry-jet wet solution 

spinning. However, most of the works focus on the elimination of grooves. Therefore, 

it is essential to study the effect of fabrication conditions on the HFM inner surface to 

control the groove geometry and the strength of the fabricated membranes. 

2. A model describing the predominant mechanism leading to groove formation during 

HFM fabrication has to be defined. In order to manufacture HFMs with aligned 

grooves with a specific geometry on their inner surface, it is necessary to understand 

the groove formation mechanism. Based on Bonyadi et al.’s study [Bonyadi2007], the 

groove on HFM inner surface is formed due to process-induced instability: an 

hydrodynamic instability or a buckling. However, there is no theoretical work on the 

instability modeling and its characterization. Since the instability is found to be 

influenced by different operating conditions as well as materials, a detailed theoretical 

model for groove formation has to be developed. 
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3. A model of axonal outgrowth in the grooved nerve conduit needs to be deduced. As 

grooved HFMs are used in nerve regeneration as a nerve conduit, the choice of the 

substrate geometry and its effect on axonal elongation is a major concern. Though, 

experimental works [Zhang2005, Hsu2007] have been reported for neurite outgrowth 

on a grooved substrate, no numerical modeling has been reported to investigate the 

substrate geometry effect on axonal outgrowth. Therefore, the mechanism of 

interaction between axon and grooved substrate needs to be addressed, in order to 

study the axonal outgrowth on a grooved substrate. To achieve this goal, the motion of 

an axon on a grooved substrate described as a 3D motion of a beam on a surface has to 

be studied. 

In this thesis, the fabrication of HFM-based nerve conduits and the axonal 

outgrowth have been studied theoretically, numerically and experimentally, in order to 

explain and control the formation of aligned grooves on the inner surface of HFMs 

serving as nerve conduits and also to give some understanding of the effect of the 

topographical guidance cue on the axonal outgrowth.  

 

1.4 Structure of the dissertation 

As shown in Fig. 1.15, this project covers different studies on the fabricated 

HFMs with aligned grooves on the inner surface, and on the ability of grooved HFMs as 
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a nerve conduit to provide a solution for nerve regeneration and repair. 
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Fig. 1.15. Flowchart of the work in this thesis. 

 

The dissertation is organized as follows. In Chapter 1, the background of HFM 

fabrication and characterization, and neuron outgrowth under topographical guidance 

cues are introduced. Then, the motivation and goal of this work are given. In Chapter 2, 

the experimental part of this thesis dedicated to grooved HFM fabrication and 

characterization under different fabrication conditions, such as air gap distance, polymer 

solution concentration, flow rates of polymer solution and inner nonsolvent flows is 

reported. The relation between fabrication conditions and HFM geometry and 

morphology is studied. In Chapter 3, an hydrodynamic insatiability, the first instability 

mechanism which may lead to groove formation, is studied. It characterizes the onset of 
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instability and is driven by the Marangoni effect. In Chapter 4, the buckling of a 

multilayer structure of HFMs, the second instability mechanism, which may lead to 

groove formation, is theoretically modeled. The effect of an air gap distance on the 

groove number is accurately predicted by the model. In Chapter 5, HFMs with aligned 

grooves on the inner surface will be used as a nerve conduit, grooves working as a 

topological guidance cue. An axon is numerically modeled as a 1D Cosserat beam 

[Antman1995]. The interaction between axon and substrate is introduced to study the 

influence of substrate geometry on axonal outgrowth. Finally, Chapter 6 deals with the 

conclusions, and highlights the contribution and the future work.   
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CHAPTER TWO 

HFM FABRICATION WITH GROOVED INNER SURFACE 

In this work, PAN/DMSO/water HFMs are fabricated as nerve conduits using a 

phase inversion method, where the aligned grooves are formed due to process-induced 

instability. Based on the experimental observation, it is found that the geometry, 

morphology, and material properties of fabricated HFMs depend on different fabrication 

conditions, such as polymer concentration, polymer solution flow rate, nonsolvent flow 

rate, and air gap distance. The effect of these fabrication conditions on the texture and the 

strength is carefully examined in order to control the process. 

The general method for HFM fabrication is the immersion precipitation-induced 

phase inversion [Mulder1996]. The grooved HFMs can be obtained by typical dry-jet wet 

spinning process (Fig. 1.9), where the polymer solution (dope) is co-extruded with an 

inner nonsolvent flow (bore) through the spinneret and passes an air gap before entering 

the coagulation bath. HFMs are obtained with deformed inner surface, including grooved 

textures, using smooth and annular spinnerets [McKelvey1997, Pereira2000, 

Santoso2006, Shi2007, Long2008]. Numerous studies have shown that the inner surface 

morphology is sensitive to the spinning conditions such as the air gap distance [Shi2007, 

Bonyadi2007], the bore fluid composition [McKelvey1997, Pereira2000, Shi2007, 

Bonyadi2007] and flow rate [Santoso2006, Long2008], the polymer solution composition 
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[Pereira2000, Bonyadi2007, Long2008] and flow rate [Long2008], the external coagulant 

[Bonyadi2007], and the take-up speed [Santoso2006, Bonyadi2007], to name a few. Most 

studies on grooved HFMs aimed to eliminate the circumferential instability to form a 

smooth inner surface for applications such as ultrafiltration and pervaporation. As so, few 

works have examined systematically the relations between the fabrication conditions and 

the development of circumferential instabilities. So the circumferential instabilities are 

studied in this chapter to control the texture of groove. 

 

2.1 Experimental setup 

2.1.1 Materials and experimental design 

 

Nonsolvent

Polymer 
solution

Inner tube
Outer tube

5 cm

 

Fig. 2.1. Spinneret design. 
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The polymer solution (dope) was prepared by dissolving PAN (Mw = 150000 Da, 

Pfaltz & Bauer, Waterbury, CT, USA) in DMSO (Sigma-Aldrich, Milwaukee, WI, USA) 

through continuous stirring for 8 hours. The solution viscosity was measured using a 

Brookfield viscometer (DV-I prime, Brookfield Engineering, MA, USA). The bore fluid 

and the precipitant in the coagulation bath was deionized water.  

 

Table 2.1. Spinning conditions of HFM fabrication 

Materials Controlled factors Spinneret geometry 
• Polymer: PAN 
• Solvent: DMSO  
• Nonsolvent: 

de-ionized water 

• Polymer solution flow rate: 0.4-2.4 ml/min 
• Nonsolvent flow rate : 0.8-3.6 ml/min 
• Polymer concentration: 7-9 w/w% 
• Air gap distance: 1-20 cm 

• Inner tube 
inner diameter: 1.4 mm 
outer diameter: 1.64 mm 

• Outer tube  
Inner diameter: 3.38 mm 

 

 The spinneret used in the experiments is shown in Fig. 2.1, and the characteristics 

of inner and outer tubes are listed in Table 2.1. No take-up speed device was used. The 

following fabrication conditions including the polymer solution flow rate and 

concentration, nonsolvent flow rate, and air gap distance were varied as shown in Table 

2.1. Once fabricated, the HFMs were kept in deionized water for 48 hours to remove the 

residual solvent before characterization. When studying the HFM morphology and the 

inner surface detail in the air gap, the coagulation bath was also replaced by a bath of 



35 
 

liquid nitrogen to fully preserve the morphology of nascent fibers as used by Tsai et al. 

[Tsai2006].  

 The structure and morphology of fabricated HFMs were characterized using a 

scanning electron microscope (SEM, S-3400N, Hitachi, Japan). Samples were prepared 

by fracturing fibers in liquid nitrogen before SEM testing. The mechanical properties 

such as the Young’s modulus and fracture tensile stress of HFMs were measured using a 

Bose tension test machine (Electroforce 3200, Bose, MN, USA) with a crosshead speed 

of 10 mm/min and a clamp distance of 10 mm. 

 

2.1.2 Grooved HFM characterization 

During the spinning process, once the polymer solution and the nonsolvent 

(deionized water herein) are brought into contact at the spinneret outlet, the phase 

inversion occurs almost immediately at the nonsolvent/polymer solution interface, 

forming the inner surface of HFM. When the polymer solution, partly solid and partly 

liquid, enters the external coagulant bath, a second phase inversion occurs along the outer 

surface of this nascent fiber. The nascent fiber can thus be considered as a multilayer 

shell with inner and outer skin layers in contact with the nonsolvent. Due to the shrinkage 

of the outer surface induced during solidification, the newly formed elastic inner skin 

layer may buckle and further develop into a grooved inner surface. The formability of 
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grooved inner surface depends on the fabrication conditions including spinneret design, 

fluids, air gap distance, composition of dope, and bore and dope flow rates. The influence 

of the air gap distance, polymer solution concentration, and polymer solution (dope) and 

nonsolvent (bore) flow rates for a given set up and fluids has been studied. 
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(A)           (B) 

Fig. 2.2. (A) HFM with smooth inner surface (nonsolvent flow rate 4 ml/min, polymer 

concentration 9 w/w%, polymer solution flow rate 1 ml/min, air gap 8 cm) and (B) HFM 

with grooved inner surface (nonsolvent flow rate 2 ml/min, polymer concentration 7 

w/w%, polymer solution flow rate 1 ml/min, air gap 5 cm). 

 

Both smooth (Fig. 2.2A) and grooved (Fig. 2.2B) HFMs can be obtained using 

PAN/DMSO/water by carefully controlling the fabrication conditions. As shown in Fig. 

2.2B, the grooved HFMs, similar to those observed in other studies [Bonyadi2007, 

Machado1999], can be divided into six layers: two thin dense inner (I1) and outer (O1) 
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skin layers, two fingerlike layers (I2 and O2) and two spongelike layers with large 

macrovoids (I3 and O3). It should be pointed out that some layers may merge or disappear 

under certain fabrication conditions. 
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A
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BInner skin 
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Outer skin layer O1

Inner skin 
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Sublayer I2

Outer skin layer O1

Inner sublayer O3  

Fig. 2.3. HFMs with different morphologies at (A) polymer solution flow rate = 1.4 

ml/min, and (B) polymer solution flow rate = 0.7 ml/min, and other conditions are: 9 

w/w% polymer concentration, 8 cm air gap, and 2.0 ml/min nonsolvent flow rate. 

 

 As shown in Fig. 2.3, two distinct morphologies are formed under different 

polymer solution flow rates. There is a typical six-layer cross section with the presence of 

an obvious fingerlike layer (O2) just below the outer surface when the polymer solution 

flow rate is high (Fig. 2.3A), and when the polymer solution flow rate is low enough, a 

five- or four-layer cross section is obtained(Fig. 2.3B). The inner layers in Fig. 2.3B are 

similar to those in six-layer morphology (Fig. 2.3A), while the fingerlike layer under the 

outer skin disappears. The following sections will discuss more in detail the morphology 
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changes due to fabrication conditions. 

 

2.2 Experimental observations 

2.2.1 Groove forming region 

 It is of interest to fabricate HFMs with aligned grooves on the inner surface, as 

they can serve as nerve conduits. According to spinneret geometry and fluids properties, 

fabrication conditions to obtain such HFMs can be specified. It has been found that 1) 

Too large a polymer solution flow rate (> 3.0 ml/min) or too high a polymer 

concentration (> 13 w/w%) will easily block the spinneret outlet during fabrication, while 

too small a polymer solution flow rate (< 0.4 ml/min) and too large nonsolvent flow rate 

(> 10 ml/min) will reduce the HFM wall thickness, leading to broken HFMs; 2) Too 

small a nonsolvent flow rate (< 0.8 ml/min) will generate a small inner diameter that the 

inner surface may collapse with an irregular contour, while too low a polymer 

concentration (< 5 w/w%) will produce a very flexible membrane, which is not suitable 

for further measurement and applications. As shown in Fig. 2.4, a “fabrication region” in 

a four dimensional space built with the nonsolvent flow rate, the polymer solution flow 

rate, the polymer concentration and the air gap distance can be obtained based on the 

experimental observations. Inside this domain, a groove forming region can be delimited 

to define the conditions to obtain textured HFMs with regular grooves on their inner 
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surface. 
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Fig. 2.4. Groove forming region (shaded) for a 9 w/w% polymer solution, under a 15 cm 

air gap. Points ‘x’ indicate the fabrication region of grooved HFMs while points ‘O’ the 

fabrication region of smooth HFMs, for a polymer solution flow rate between 1.0 and 1.6 

ml/min. 

 

 For a given polymer concentration, it is possible to find a groove forming zone. It 

can be seen from Fig. 2.4 that under different air gap distances, grooves can be formed 

for nonsolvent and polymer solution flow rates falling into a specified domain, and this 

domain shrinks when the air gap decreases from 15 to 5 cm. Furthermore, for a short air 

gap less than 3 cm, the groove forming region disappears, and the inner surface of HFMs 

becomes smooth. Under the conditions of a 15 cm air gap and a 9 w/w% polymer 
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concentration, the Fig. 2.4 inset further illustrates the groove forming region and its 

boundary inside the HFM fabrication domain. By increasing the polymer solution flow 

rate from 1.0 to 1.6 ml/min, the HFM fabrication region expands, whereas the groove 

forming region shrinks. The groove forming regions have been also obtained under 

different polymer solution concentrations. For a given polymer solution concentration (7, 

8, or 9 w/w%), increasing the air gap distance enlarges the groove forming region. 

 

2.2.2 Effect of air gap on groove formation 

 The effect of air gap was intensively investigated, for three different polymer 

concentrations (7, 8, and 9 w/w%), and the detailed experimental conditions and results 

can be seen in Table 2.2. As shown in Fig. 2.5 for a 7 w/w% polymer concentration, the 

HFM inner surface is smooth for a 2 cm air gap, but with increasing air gap distance the 

fiber becomes grooved with an increasing groove number and overall the membrane gets 

thinner. The groove height first increases when grooves appear, and then a longer air gap 

distance leads to more grooves of smaller height. A similar tendency has also been 

observed for two other polymer concentrations investigated (8 and 9 w/w%). 
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Fig. 2.5. Effect of air gap distance on (A) groove number, (B) groove height, (C) HFM 

inner diameter, and (D) HFM thickness (Nonsolvent flow rate 2 ml/min, polymer solution 

flow rate 1 ml/min, and polymer concentration 7 w/w%). 

 

During the dry-jet wet process, the outer surface of the membrane is first exposed 

to humid air in the environment and then to nonsolvent in the coagulation bath. Both 

evaporation of solvent and intake of water vapor may occur within the air gap, leading to 
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vapor-induced phase separation (VIPS). Since the solvent DMSO has a high miscibility 

with water and a low volatility [Cheng2003], the water intake due to humid air in the air 

gap might be apparent, and mass transfer between the polymer solution and water in the 

air gap may lead to phase inversion on the outer surface. This VIPS process and its role in 

the morphology control of HFMs were studied by Tsai et al. [Tsai2006] who introduced 

the concept of transient gel to explain the disappearance and reappearance of macrovoids 

close to the outer surface in case of PSU HFMs with very long air gaps up to 60 cm. The 

presence of the gel layer [Tsai2006] may suppress the solvent-nonsolvent exchange on 

the outer interface, makes the first coagulation at the inner surface predominant. Since 

fingerlike pores are formed mainly due to the instantaneous demixing of polymer solution, 

a solvent/nonsolvent combination with high affinity between each other, such as 

DMSO/water, is a very strong factor to form fingerlike morphology [Mulder1996]. Thus, 

the fingerlike morphology only forms due to a fast exchange of solvent and nonsolvent in 

the coagulation bath. During the air gap period, the distinct precipitation rates on the 

inner and outer surfaces make the morphology of HFM cross section more and more 

asymmetric as the air gap increases. As shown in Fig. 2.6, when the air gap distance 

increases, the fingerlike pore layer no longer exists close to the outer surface, the outer 

skin layer gets thicker, two layers have merged, and the shape of macrovoids also 

changes as they move closer to the outer surface. 
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Table 2.2. Effect of air gap distance for different polymer concentrations. 

Fabrication conditions: 

• Polymer solution flow rate = 1.0 

ml/min  

• Nonsolvent flow rate = 2.0 

ml/min  

Inner 

diameter 

(mm) 

Outer 

diameter 

(mm) 

thickness 

(μm) 

Groove 

number 

Groove 

width 

(μm) 

Groove 

height 

(μm) 

7.0 w/w% 

polymer solution 

concentration 

Air gap (cm)  

1 1.47±0.087 1.81±0.040 171±15 0 - - 

2 1.45±0.022 1.77±0.036 159±29 0 - - 

3 1.31±0.073 1.61±0.036 150±19 7±1 611±144 24±6 

5 1.10±0.031 1.37±0.024 136±8 12±1 288±15 32±7 

8 0.98±0.013 1.20±0.008 109±7 18±1 180±5 29±5 

15 0.78±0.034 0.98±0.045 103±10 19±1 134±2 23±6 

20 0.69±0.034 0.89±0.031 98±12 22±1 101±7 21±5 

8.0 w/w% 

polymer solution 

concentration 

Air gap (cm)  

1 1.45±0.054 1.84±0.023 193±15 0 - - 

3 1.40±0.051 1.78±0.036 187±48 0 - - 

4 1.40±0.027 1.73±0.005 176±14 7±1 629±111 20±10 

5 1.20±0.032 1.48±0.030 141±8 9±1 449±33 39±6 

8 0.94±0.038 1.18±0.045 121±5 14±1 217±24 28±5 

15 0.80±0.027 1.03±0.034 113±4 18±1 146±10 25±8 

20 0.75±0.006 0.95±0.015 100±7 19±1 127±6 23±3 

9.0 w/w% 

polymer solution 

concentration 

Air gap (cm)  

1 1.51±0.003 1.88±0.012 189±10 0 - - 

4 1.46±0.014 1.80±0.011 170±12 0 - - 

5 1.23±0.078 1.57±0.062 168±17 7±1 599±60 26±6 

8 1.10±0.076 1.41±0.056 154±24 11±2 315±81 38±10 

15 0.94±0.031 1.21±0.056 137±28 14±1 212±9 30±6 

20 0.86±0.056 1.11±0.006 127±26 15 184±12 25±7 
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Fig. 2.6. Cross section and morphology of HFM under different air gaps distances: (A) 1 

cm, (B) 5 cm, (C) 8 cm, and (D) 20 cm (7 w/w% polymer concentration, nonsolvent flow 

rate 2 ml/min, and polymer solution flow rate 1 ml/min). 

 

 Table 2.2 shows that the groove width decreases as the air gap increases from 3 to 

20 cm.  By increasing the air gap and controlling the polymer concentration and flow 

rates, a groove width of the order of 100 μm can be obtained. Such a groove size is 

suitable for nerve conduit applications [Zhang2005]. As seen from Table 2.2, by varying 

the air gap distance, grooves can form on the HFM inner surface and the groove size as 

well as the groove number can be controlled to a certain extent. It is also observed (Fig. 

2.6) that when the air gap increases from 1 to 20 cm the morphology close to the inner 

surface has only slight variations, since the first phase inversion mainly takes place in the 
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air gap. However, Figs. 2.6B, 2.6C and 2.6D show significant changes in the morphology 

close to the outer surface. 

 

500 µm 200 µm 

A

100 µm 
500 µm 500 µm 

B

 

Fig. 2.7. The nascent fiber formed (A) by quenching the polymer solution in liquid 

nitrogen and (B) in the coagulation bath, after a 8 cm air gap. (Nonsolvent flow rate 2 

ml/min, polymer solution flow rate 1 ml/min, and polymer concentration 9 w/w%). 

 

In order to understand how the air gap influences the microstructure and what 

happens when the membrane enters the coagulation bath, the polymer solution was 

directly injected into a liquid nitrogen bath after it passed through the air gap. The fast 

quenching froze the fiber morphology in the air gap. By comparing the morphologies in 

Fig. 2.7, it can be seen that the same dense inner layer I1 and the same fingerlike layer I2 

can be obtained, but the two middle layers with large macrovoids (I3 and O3) seem a little 

crushed in Fig. 2.7A. A significantly different morphology of HFMs quenched in liquid 

nitrogen is obtained close to the outer surface because no immersion precipitation takes 
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place from the outer front during the quenching process. Similar phenomenon was also 

observed by Tsai et al. [Tsai2006]. It can be deduced that the groove formation is due to 

the shrinkage of outer layer resulting from either quenching or solidification, and the 

fingerlike pores and large macrovoids form in the air gap. 

 

2.2.3 Effect of polymer concentration 

 The role of polymer concentration in HFM fabrication has been primarily studied 

by [Pereira2000, Bonyadi2007, Long2008]. Therefore, the different polymer 

concentrations were used while maintaining other fabrication conditions. The detailed 

results of polymer concentration effect on HFMs are listed in Table 2.3. 

 

Table 2.3. Effect of the polymer concentration on the geometry of a textured HFM. 

Fabrication conditions: 

• Polymer solution flow rate 1.0 
ml/min 

• Nonsolvent flow rate 2.0 ml/min 

Inner 
diameter 

(mm) 

Outer 
diameter 

(mm) 

thickness 
(μm) 

Groove 
number 

Groove 
width 
(μm) 

Groove 
height 
(μm) 

Polymer solution 
concentration 

Air gap 
distance (cm) 

 

7 w/w% 
8  

0.98±0.013 1.20±0.008 109±7 18±1 180±5 29±5 

8 w/w% 0.94±0.038 1.18±0.045 121±5 14±1 217±24 28±5 

9 w/w% 1.10±0.076 1.41±0.056 154±24 11±2 315±81 38±10 

7 w/w% 
15 

0.78±0.034 0.98±0.045 103±10 19±1 134±2 23±6 

8 w/w% 0.80±0.027 1.03±0.034 113±4 18±1 146±10 25±8 

9 w/w% 0.94±0.031 1.21±0.056 137±28 14±1 212±9 30±6 
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Fig. 2.8. Effect of polymer concentration on (A) HFM thickness, and (B) groove number 

(Nonsolvent flow rate 2 ml/min, air gap 8 cm, and polymer solution flow rate 1 ml/min). 

 

As seen from Fig. 2.8, HFM thickness increases but the number of grooves 

decreases with the polymer concentration. A similar trend was also observed in previous 

studies [Bonyadi2007, Long2008]. The tendency to eliminate the grooves using 

sufficiently high concentration solutions can also be seen from Fig. 2.9. 

 

Table 2.4. Mechanical properties of PAN HFM (inner flow rate = 2.0 ml/min, outer flow 

rate = 1.0 ml/min, air gap distance = 8 cm). 

Polymer concentration (w/w%) 7 8 9 
Polymer solution viscosity (Pa·s) 1.08 2.08 3.55 
HFM Young’s modulus (MPa) 23 26 32 
HFM fracture tensile stress (MPa) 0.81 1.1 1.13 
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 During the spinning process, no take-up device was used in this study, so once the 

polymer solution was extruded from the spinneret, it fell under its own weight. Due to 

gravity, surface tension and absence of die swell, HFM inner and outer diameters 

decrease as well as the HFM wall thickness in the air gap, so the diameters of the 

fabricated HFMs are smaller than the inner and outer diameters of the spinneret, 

respectively. As seen from Fig. 2.8A, HFMs become thicker when the polymer solution 

concentration is higher, so the HFM diameters are closer to the diameters of spinneret, 

respectively. 

 

500 µm 

A

100 µm 

B

500 µm 100 µm 

C

500 µm 100 µm  

Fig. 2.9. Effect of polymer concentration on HFM morphology: (A) 7 w/w%, (B) 9 

w/w %, and (C) 13 w/w% (Polymer solution flow rate 1.0 ml/min, air gap 8 cm, and 

nonsolvent flow rate 2.0 ml/min). 
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 The effect of polymer concentration on HFM morphology is shown in Fig. 2.9. 

The membranes exhibit one very thin inner and one thin outer layers, one fingerlike layer 

on the inner side and one or two large spongelike layers with large macrovoids. 

Comparing the HFMs made using 7 w/w% (Fig. 2.9A) and 9 w/w% (Fig. 2.9B) 

concentrations, there is no obvious morphological difference except the HFM thickness, 

which is larger using the 9 w/w% solution. When the polymer concentration increases to 

13 w/w% (Fig. 2.9C), the two inner and outer skin layers look similar to those of Figs. 

2.9A and 2.9B except that they are thicker. The other layers have merged and long 

fingers separated by large macrovoids connect the inner and outer layers. Comparing the 

three pictures in Fig. 2.9, the membrane porosity is the highest when the lowest 

concentration used, which agrees with Mulder’s conclusion [Mulder1996]: a less porous 

structure with a larger Young’s modulus (Table 2.4) is obtained from a higher polymer 

concentration. 

 As grooved HFMs may serve as nerve conduits in vivo, it is necessary to know the 

strength of fabricated HFMS. Nerve conduits need to resist different kinds of external 

loads and protect the neurons inside. An increase in the polymer solution concentration 

induces an increase in the viscosity of polymer solution (Table 2.4), an increase in the 

membrane thickness as seen from Fig. 2.9. The Young’s modulus and fracture tensile 

stress of HFMs increase when the polymer solution concentration increases, which 
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indicates that the strength can be significantly improved by increasing the polymer 

solution concentration. 

 

2.2.4 Effect of inner nonsolvent flow rate 

 When the nonsolvent flow rate increases, both HFM inner and outer diameters 

increase as seen from Table 2.5. Since a larger inner nonsolvent flow rate expands the 

lumen, the inner and outer diameters can be controlled by varying the nonsolvent flow 

rate, leading to designed HFM geometries for different biomedical applications. It is 

noted from Fig. 2.10B that with a sufficiently high nonsolvent flow rate (larger than 3.1 

ml/min), grooves can be eliminated. The same phenomenon was also observed by 

Santoso et al. [Santoso2006]. Based on the observations herein, it is found that when the 

nonsolvent flow rate approaches the groove disappearing limit (larger than 2.7 ml/min), 

the groove height is significantly reduced until vanishing (Fig. 2.10C). This means that 

when a larger inner flow rate expands the inner surface, it also generates a 

circumferential tension which tends to reduce the groove height but maintains an almost 

constant groove number. With a further increase of the nonsolvent flow rate, the pressure 

due to the shrinkage of the outer layer is no longer high enough to induce the buckling of 

inner skin layer. As a result, the inner surface becomes smooth. Fig. 2.10A also shows the 

variations of inner and outer diameters as the nonsolvent flow rate increases, indicating 
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different types of variation for the diameters of smooth and grooved HFMs. 
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Fig. 2.10. Effect of inner nonsolvent flow rate between 0.8 to 3.6 ml/min on (A) HFM 

diameters, (B) groove number, and (C) groove height (Polymer solution flow rate 1 

ml/min, air gap 8 cm, and polymer concentration 9 w/w%). 

 

 The differences between the structures of smooth and grooved HFMs using 

different nonsolvent flow rates can be observed in Figs. 2.2A and 2.7B. Increasing the 
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nonsolvent flow rate leads to a decrease in the thickness and a more asymmetric 

membrane. The macrovoids of the inner sublayer are closer to the inner surface and are 

inward pointed, whereas a layer of ellipsoidal macrovoids appear close to the outer 

surface. 

 

Table 2.5. Effect of inner nonsolvent flow rate. 

Fabrication conditions: 

• Air-gap: 8 cm 
• 9.0 w/w% polymer solution 

concentration 

Inner 
diameter 

(mm) 

Outer 
diameter 

(mm) 

Thickness 
(μm) 

Groove 
number 

Groove 
width 
(μm) 

Groove 
height 
(μm) 

Polymer 
solution 

flow rate: 
1.0 ml/min 

Inner nonsolvent 
flow rate (ml/min) 

 

0.8 0.85±0.017 1.28±0.012 216±3 9±1 287±13 38±4 

1.0 0.92±0.032 1.30±0.017 188±5 11±1 255±11 31±8 

1.2 0.94±0.025 1.32±0.027 191±28 9±1 317±24 34±4 

1.4 0.95±0.021 1.33±0.043 190±24 10±1 310±24 35±3 

1.6 0.97±0.046 1.33±0.033 182±19 12±1 261±16 34±1 

1.8 1.01±0.028 1.38±0.016 186±17 10 317±9 38±5 

2.0 1.10±0.076 1.41±0.056 154±24 11±2 315±81 38±10 

2.4 1.06±0.060 1.40±0.056 167±11 10±1 346±33 38±8 

2.6 1.06±0.051 1.38±0.035 157±15 10±1 326±50 35±7 

3.0 1.18±0.094 1.46±0.084 137±7 10±1 376±68 25±1 

3.1 1.34±0.081 1.60±0.054 131±19 9±1 488±56 21±1 

3.3 1.39±0.051 1.61±0.036 107±8 0 - 0 

3.6 1.47±0.009 1.69±0.014 110±3 0 - 0 

 

2.2.5 Effect of polymer solution flow rate 

The polymer solution flow rate mainly influences the HFM thickness. As shown 
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in Table 2.6, the HFM wall thickens when the polymer solution flow rate increases, 

which indicates an efficient way for controlling the HFM thickness. The groove number 

decreases when the polymer solution flow rate increases, and the grooves may even 

disappear when the polymer solution flow rate is high enough (Fig. 2.11B), showing the 

boundary of the groove forming region. Comparing the groove number tendencies in 

Tables 2.5 and 2.6 (under different dope and bore flow rates), it can be concluded that the 

groove number is determined easily by the polymer solution (dope) flow rate. Within the 

groove forming region, varying the nonsolvent (bore) flow rate does not obviously 

change the groove number. The decrease of the groove number due to the increased 

polymer solution flow rate has been also observed by Long et al. [Long2008]. 
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Fig. 2.11. Effect of polymer solution flow rate (A) HFM thickness, (B) groove number 

(nonsolvent flow rate 2 and 2.6 ml/min, air gap 8 cm, polymer concentration 9 w/w%). 
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Table 2.6. Effect of polymer solution flow rate. 

Fabrication conditions: 

• Air-gap: 8 cm 
• 9.0 w/w% polymer solution 

concentration 

Inner 
diameter 

(mm) 

Outer 
diameter 

(mm) 

Thickness 
(μm) 

Groove 
number 

Groove 
width 
(μm) 

Groove 
height 
(μm) 

Inner 
nonsolvent 
flow rate: 
Case 1: 

2.0 ml/min 

Polymer solution 
flow rate (ml/min) 

 

0.4 1.17±0.120 1.29±0.092 62±14 15±2 262±63 16±9 

0.5 1.12±0.111 1.30±0.100 90±6 13±1 278±35 19±4 

0.6 1.12±0.068 1.33±0.046 106±15 12±2 279±33 32±6 

0.7 1.03±0.076 1.23±0.093 100±25 12±1 262±28 29±8 

0.8 1.03±0.065 1.29±0.054 130±6 12±1 265±48 40±6 

0.9 0.99±0.013 1.29±0.013 154±7 12±1 259±21 37±7 

1.0 1.10±0.076 1.41±0.056 154±24 11±2 315±81 38±10 

1.6 1.06±0.062 1.43±0.075 186±17 10±2 351±77 45±1 

1.8 1.21±0.034 1.63±0.045 211±10 7±1 522±53 32±4 

2.0 1.25±0.034 1.69±0.065 222±19 7±1 590±52 36±4 

2.2 1.20±0.008 1.71±0.008 252±4 7±1 569±51 31±7 

2.4 1.21±0.048 1.77±0.067 280±13 6±1 606±66 36±1 

Inner 
nonsolvent 
flow rate 
Case 2: 

2.6 ml/min 

Polymer solution 
flow rate (ml/min) 

 

0.4 1.18±0.033 1.29±0.045 56±7 13±1 279±13 13±2 

0.6 1.05±0.070 1.25±0.062 99±3 13±1 256±36 24±4 

0.8 1.13±0.075 1.41±0.030 140±16 10±1 355±24 30±9 

1.0 1.06±0.051 1.38±0.035 158±15 10±1 326±50 35±7 

1.4 1.17±0.063 1.50±0.065 161±6 9 410±22 37±5 

1.6 1.14±0.112 1.50±0.041 183±25 8±1 454±101 39±15 

1.7 1.44±0.023 1.81±0.021 184±7 0 - 0 

1.8 1.43±0.027 1.81±0.024 190±15 0 - 0 

 

 Two different HFM morphologies (Fig. 2.3) were obtained using two different 

polymer solution flow rates (1.4 vs. 0.7 ml/min). There is a pronounced difference 
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between these two structures: the six-layer cross section with the presence of a fingerlike 

layer just below the outer skin layer when the polymer solution flow rate is high, and a 

four-layer cross section with a different morphology close to the outer skin layer. During 

dry-jet wet spinning, precipitation occurs first close to the inner surface then the outer 

surface when a nascent fiber first passes through the air gap and then enters the 

coagulation bath. Two coagulation fronts move in opposite directions and meet each 

other forming the spongelike layer of ellipsoidal macrovoids as seen in Fig. 2.3A. With a 

lower polymer solution flow rate, the duration between the first and second coagulations 

is longer, and the inner front moves further into the HFM wall. As a result, the fingerlike 

pores are longer. All of these lead to an asymmetric membrane as seen in Fig. 2.3B. 

 

2.3 Summary 

This chapter presents a method to fabricate textured PAN HFMs, with aligned 

grooves formed on the inner surface by a dry-jet wet spinning process under certain 

fabrication conditions. The grooves were found to be formed due to process-induced 

instability. The effects of the four parameters fixing the fabrication conditions: air gap 

length, polymer solution concentration, polymer solution and nonsolvent flow rates were 

systematically studied. A groove forming region is defined for different combinations of 

fabrication conditions, where HFMs with aligned grooves on the inner surface are 
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obtained. The geometry, morphology and mechanical properties of HFMs have been 

characterized in terms of the four parameters, and have been analyzed to design textured 

HFM for specific applications. Specifically, within the groove forming region, the 

number of grooves increases with the air gap distance between 1 and 20 cm. The number 

of groove decreases with the polymer solution concentration and flow rate. The groove 

number was found to not be sensitive to the inner nonsolvent flow rate. 
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CHAPTER THREE 

ONSET INSTABILITY MODEL FOR GROOVED HFMS 

FABRICATION 

The fabrication of HFMs with grooved inner texture is presented in last chapter. 

The aligned grooves on the inner surface of HFM are generally considered to be formed 

due to the process-induced instability in the circumferential direction. Bonyadi et al. 

[Bonyadi2007] recently have pioneered two different instability mechanisms for groove 

formation: hydrodynamic instability and buckling, which are based on two assumptions: 

1) the hydrodynamic instability happens during mass transfer and phase separation before 

solidification, and is the onset of instability during the HFM fabrication; and 2) the 

buckling is the magnifying solidification step for the development of a non-uniform cross 

section of hollow fibers.  

In this chapter, the hydrodynamic instability will be discussed first. The driving 

mechanism for hydrodynamic instability is the existence of interfacial tension gradients 

associated to polymer concentration variations, and is called the Marangoni effect. For 

the first time, the Marangoni instability is used to explain the formation of axially and 

internally grooved HFMs. The theoretical predicted results are then compared with the 

experimental results obtained for PU/DMSO/water [Long2008], the Marangoni 

instability having enough time to develop. However, it is found that the hydrodynamic 
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instability is not the predominant mechanism of groove formation for PAN/DMSO/water 

HFMs. 

 

3.1 Role of Marangoni instability in groove formation 

The interfacial instability between two immiscible liquid phases has been widely 

studied. When a third component diffuses between two immiscible liquid phases, the 

interface may become unstable, and spontaneous convection sets in [Sørensen1977]. A 

theoretical understanding of the interfacial instability observed during mass transfer 

across an interface has been developed by Sternling and Scriven [Sternling1959] who 

reported high fluctuations in the vicinity of the interface (also known as interfacial 

turbulence) between two incompressible fluid phases which in some cases accompany 

mass transfer. The essence of their explanation is that the interfacial instability is due to 

concentration-induced variation of interfacial tension, known as the Marangoni effect, but 

they assumed no deformation of the interface. Hennenberg and Sørensen et al. 

[Sørensen1977, Hennenberg1977] have carried out a stability analysis on isothermal, 

deformable interfaces with transfer of surface-active substances. They formulated the 

balance laws for a moving and deformable interface in local equilibrium with immiscible 

bulk liquids in which a third component is distributed. Von Gottberg et al. [von 

Gottberg1995] studied interfacial instabilities due to a chemical reaction, which is taking 
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place at the interface. The stability of the system was examined with respect to small 

perturbations with the normal mode method. Slavtchev et al. [Slavtchev2006] studied 

Marangoni instability in partially miscible liquid-liquid systems in the presence of 

surface-active solutes. The surface-active solute, soluble in both phases, is transferred 

across the interface between the two liquids, introducing interfacial tension gradients 

which drive a solutal Marangoni instability. In all these works, a linear stability analysis 

was carried out to study the condition of stability and the influence of different 

parameters such as the diffusivity ratio and the viscosity ratio of the two phases.  

Marangoni instability [Davies1963] is known as an interfacial instability driven by 

interfacial tangential forces due to interfacial tension gradients. Solvent extraction 

introduces concentration gradients in the solution which lead to these interfacial tension 

gradients. An interfacial instability can cause the inner surface pattern of HFMs and the 

number of forced grooves depends on the wavelength of the most dangerous wave. In the 

present study, it is assumed that the groove formation occurs during the solvent extraction 

process and is due to the onset of an instability developing at the interface. Consequently, 

phase inversion and/or solidification-induced shrinkage effects are decoupled from the 

Marangoni instability. Mass transfer starts with the spontaneous extraction of solvent 

between the two immiscible phases: polymer solution and nonsolvent. Then the nonsolvent 
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invades the solution. In order to study the onset of instability, only the solvent extraction 

process is considered. 

 

3.1.1 Modeling assumptions 

In general HFM fabrication, two flows, polymer solution and nonsolvent, 

discharge from the spinneret together through the air gap (Figure 1.9). Once these two 

flows are brought into contact in the air gap, several steps occur: first a spontaneous 

extraction of the solvent from the polymer solution, then an invasion of the polymer 

solution by the nonsolvent leading to phase inversion in the ternary mixture 

polymer/solvent/nonsolvent and solidification. The interfacial instability is supposed to 

occur during the first step of the process [Cohen Addad1999]. Different assumptions are 

considered for this first step and summarized as follows: 

1. The time scale of the first step, extraction of the solvent, is smaller than the 

characteristic diffusion time t0 associated to the interfacial region estimated as 1 ms 

(thickness of the zone 1 μm and diffusivity 5×10-10 m2/s) and smaller than the 

characteristic advective time associated to the vertical flows of the two phases of the 

order of 0.1 s (volume flow rate 4 ml/min for a 1 mm diameter). The two phases are 

assumed at rest, and consequently for the onset of instability, the basic solution is the 
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classical diffusion solution when two incompressible semi-infinite fluid layers are in 

contact along a deformable interface; 

2. During the first step, only the solvent mass transfer is considered. Therefore, polymer 

solution and nonsolvent can be treated as two immiscible liquid phases while the 

solvent is transferred across the interface; 

3. Thermal and rheological effects are neglected; and 

4. The region of interest is located close to the interface. Its thickness of the order of 1 

μm is far smaller than the inner radius or/and the thickness of the HFM, so the 

problem can be studied in a 2D rectangular geometry with two semi-infinite layers on 

each side of a planar interface. This assumption is validated by the simulation results 

that the wavenumber of the most dangerous wave is k ~ 0.3, and the associated 

wavelength is far larger than the length scale. 

 

3.1.2 Problem formulation 

Consider a 2D system of two semi-infinite layers of a polymer solution, phase 2, 

in contact with a nonsolvent, phase 1, along an interface. The governing equations of 

mass, momentum and solvent diffusion are written in both phases as: 
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0iv∗∇ ⋅ =
r                                          (3.1) 

2
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ρ μ
∗

∗ ∗ ∗ ∗⎛ ⎞∂
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r r r                          (3.2) 
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∗
∗ ∗ ∗∂

+ ⋅∇ = ∇
∂

r                                  (3.3) 

where iv ∗r  is the velocity, ic ∗  the solvent concentration distribution, ip ∗  the pressure, 

iρ  the density, iμ  the viscosity, and iD  the solvent diffusivity in phase i (i = 1 for 

nonsolvent, and i = 2 for polymer solution). It should be pointed out that variables with a 

superscript “*” are dimensional. The densities, viscosities and diffusivities of each phase 

are assumed to be constant. 

The fluid domain is divided into three regions, as shown in Fig. 3.1, the two bulk 

regions separated by the third one which is a thin adsorption layer adjacent to the 

interface, the adsorbed polymer layer. The solvent transfer is due to diffusion in each 

bulk up to the adsorption layer and due to adsorption-desorption of polymer inside the 

adsorption layer in phase 2. Polymer adsorption is a reversible process, but polymer 

desorption is a very slow process [Somasundaran2006], whose characteristic time is far 

larger than the diffusion time t0. It is assumed that only adsorption is concerned herein. 
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Fig. 3.1. The fluid domain with the unperturbed interface between two phases: 

nonsolvent and polymer solution (the inset shows the perturbed adsorbed polymer layer). 

 

The Langmuir model is used to describe a polymer adsorption coupled with bulk 

diffusion [Somasundaran2006]. The interfacial excess polymer concentration Γ ∗  is 

expressed in terms of the concentration of polymer /p sc∗  in the solution evaluated just 

above the interface: 

/
max

/1

l
p s

l
p s

K c
K c

Γ Γ
∗

∗
∗=

+
                                      (3.4) 

where maxΓ  is the maximum interfacial polymer concentration and lK  the Langmuir 

equilibrium constant measuring the ability to adsorb. The interfacial tension σ ∗  depends 

on the polymer concentration and this dependence is expressed by the 

Langmuir-Szyskowski isotherm: 

( )max /ln 1 l
solv p s

w

RT K c
M

σ σ Γ∗ ∗ ∗= − +                                (3.5) 
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where solvσ ∗  is the interfacial tension of pure solvent, T the absolute temperature, R the 

gas constant, and wM  the molecular weight of the polymer. Eq. (3.5) shows the drop of 

the interfacial tension due to the presence of a polymer such as PU in a solvent DMSO 

and the surfactant property of the polymer. However, in case of PAN/DMSO/water 

system, it was found that the interfacial tension between water (nonsolvent) and the 

polymer solution just slightly depends on PAN concentration [Weh2004]. 

 

3.1.3 The basic solution 

During the solvent extraction, the concentration profiles in each phase are 

obtained from the diffusion equations, the bulk fluid being considered at rest with a 

planar interface. The diffusion time scale t0 is assumed far larger than the advective time 

scale associated with the perturbation. Consequently, the concentration profiles are frozen 

at time t0 to study the perturbation as considered by Sterling and Scriven [Sterling1959]. 

The solvent concentrations (0)
ic∗  are solutions of the 1D diffusion equations in two 

semi-infinite domains: 

( ) ( )0 02

*2
i i

i
c cD
t y

∗ ∗

∗

∂ ∂
=

∂ ∂
,    

1, 0
2, 0

i y
i y

∗

∗

⎧ = − ∞ < ≤
⎨

= ≤ < ∞⎩
                      (3.6) 

where *y  is the y coordinate. The concentration profiles ( )( )**0*  , ytci  are deduced from 

Eq. (3.6) complemented by the following conditions: 
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A1.  Interfacial conditions 

a. Concentration continuity: 

         ( )( ) ( )( )0 ,0 , *0*
2

*0*
1 tctc =                                (3.7) 

b. Equality of the solvent fluxes, that is, no accumulation of solvent: 
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A2.  Initial conditions: uniform concentration profiles in each phase: 
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where ∞1c  and ∞2c  are the initial solvent concentrations in phases 1 and 2, respectively. 

The solutions can then be written as: 
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where 
2

1

D
Dd = , and ( ) ∫ −=

Y
z dzeY

0

22erf
π

. The solvent concentration profiles are shown 

in Fig. 3.2 for t0 = 10-3 s, as the polymer concentration )0*(
pc  is defined as follows: 

)()( *)0*(
22

*)0*( ycycp −= ρ                        (3.11) 
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Fig. 3.2. Concentration profiles: )0*(
ic  (solid line), )00*(

ic  (dashed line), and )0*(
pc  

(dotted line) of the basic polymer solution in bulk 2 at time t0 = 10-3 s deduced from Eqs. 

(3.10), (3.13), and (3.11), respectively, with D1, D2, c1∞, and c2∞ as shown in Table 3.2. 

 

The concentration profiles are approximated by using an approximation of the 

error function [Sørensen1977]: 

( ) ( ) ( )YYY 444.1exp-erf1erf1 −≈+=−                         (3.12) 

The corresponding concentration profiles after approximation, )00*(
ic , define the basic 

solution for the solvent concentration in each phase. The basic solution ci
* 0( ) t*,  y*( ) 

given by Eq. (3.10) is first written at time 0tt =∗ , then Eq. (3.12) is used to obtain the 

approximation of Eq. (3.10) as follows: 
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where: 2 1(0)
1 1

c c
c

d
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+
, 
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2 0
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2 d D t
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2 D t

β = , and 2 1dβ β= . 

 

3.1.4 Perturbation equation and normal mode method 

Different scales are first introduced to perform the stability analysis. The length 

scale H is the diffusion length 2 0D t  associated to the diffusion process in phase 2 at 

time t0. Time, velocities, pressures and solvent concentrations are scaled with 

22
(0)2 2
2

2

, , andi
D DH c

D H H
ρ ⎛ ⎞ Δ⎜ ⎟
⎝ ⎠

 respectively. The dimensionless governing equations of 

mass, linear momentum and solvent diffusion read now: 
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where in dimensionless form, ivr  is the velocity, ip  the pressure, and ic  the solvent 

concentration in phase i. Some dimensionless parameters are introduced such as the 

density ratio 
2

1

ρ
ρ

=f , the viscosity ratio 
2

1

μ
μ

=m  and the Schmidt number, 
22
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The velocities, pressures and concentrations are then expressed as the sums of the 

corresponding value for the basic solution and a perturbation: 

(0) (0) (00), ,i i i i i i i i iv v v y p p p c c cδ δ δ= + = + = +
r r r              (3.17) 

where (0) 0iv =
r , and (0)

ip  is uniform. The location of the deformed interface yS is 

defined as: 

( )txhyS ,δ=                                        (3.18) 

where hδ  is the interfacial deformation. Eqs. (3.14)-(3.16) are then linearized and read: 

0ivδ∇ ⋅ =
r                                      (3.19) 
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The perturbation is generated at the interface and vanishes far from the interface: 

1 1 1

2 2 2

, , 0 as
, , 0 as

v p c y
v p c y

δ δ δ
δ δ δ

→ → −∞⎧
⎨ → →∞⎩

r

r                           (3.22) 

The interfacial conditions at the interface are: 

B1.  Condition for the bulks 

a. Continuity of the normal component of the velocities: 
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b. Continuity of the tangential component of the velocities. This equation can 

be expressed thanks to Eq. (3.19) in terms of the normal components 

( 1, 2)iv iδ =  only: 
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c. Continuity of the solvent concentrations 
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B2.  Kinematic condition: 
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The interfacial excess polymer concentration Γ ∗  and the interfacial tension σ ∗  

are scaled respectively with maxΓ  and 0σ
∗ , the interfacial tension at the interface in the 

basic state. The dimensionless interfacial excess polymer concentration Γ  and 

interfacial tension σ  are such that: 

0

max

ΓΓ δΓ
Γ

∗

= + , 1σ δ σ= +                            (3.27) 

where 0Γ ∗  is the value of Γ ∗  for the basic state. Due to polymer adsorption, three more 

interfacial equations are needed as follows: 

C1. Interfacial mass balance: 
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where SD  is the surface diffusion coefficient; 

C2.  Interfacial normal linear momentum balance: 
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where Cr is the crispation number defined as 
H
D

*
0

22

σ
μ  and the last term of the right 

side includes the deformation of the interface ( hδ ); 

C3.  Interfacial tangential linear momentum balance: 
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and δ σ  can be expressed as follows based on Eqs (3.4) and (3.5): 
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The stability analysis is carried out in terms of normal modes. The different 

unknowns are defined as: 
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where k is the wavenumber, ω  the growth rate of the perturbation, and iv% , ip% , ic% , Γ% , 

σ% , and h%  the amplitudes of each perturbation. 

First, the different fields iv% , ip% , and ic%  are determined as follows and then are 

introduced into the interfacial balances to obtain the dispersion equation. Combining the 

continuity and Navier-Stokes equations in each phase, a differential equation for the 

pressures ip%  is deduced: 

0ipΔ =% , 1, 2i =                                    (3.34) 

The boundary conditions Eq. (3.22) lead to the solutions: 
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                         (3.35) 

where 10p% and 20p%  are two constants to be determined. Substituting the two expressions 

for 1 2andp p% %  given by Eq (3.35) into the Navier-Stokes equations Eq (3.20), the 

velocities in phases 1 and 2 take the form: 
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                     (3.36) 
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where: 2
1 Sc

fq k
m
ω

= + , 2
2 Sc

q k ω
= + , 10 1

fp A
k
ω

= −% , 20 2p A
k
ω

=% , and A1, 

A2, B1, and B2 are four constants to be determined. The two diffusion equations Eq. (3.21) 

can now be solved with: 
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Due to the choice of diffusion time t0 associated to H, the length H can be such that 

2 1Hβ = . The perturbations 1 2andc c% %  are consequently given by: 
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where 2
1r k

d
ω

= + , 2
2r k ω= + , 1

2

1b
d

β
β

= = , and 1l   and 2l  are  two 

new constants to be determined. The perturbation solution depends on 9 constants, A1, A2, 

B1, B2, l1, l2, , andh Γ σ% % % . The perturbation is the solution of the linear system of 

equations deduced from Eqs. (3.23)-(3.26), and (3.28)-(3.32). The dispersion equation is 

obtained by writing that the determinant ( )det M  of the linear system defined by its 

matrix M has to be zero. 

( ) ( )det , 0M F kω= =                                 (3.39) 
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The function F contains several parameters such as the diffusivity, viscosity, and density 

ratios, the Schmidt number 
22

2Sc
Dρ
μ

= , the adsorption number ( )Hc 0
2

maxNa
Δ
Γ

= , the 

interfacial diffusion number 
H

DS

2

max
DI

μ
Γ

= , the crispation number 
H
D

*
0

22Cr
σ
μ

= , the 

Marangoni number 
22

maxMa
D

H
μ
ΓαΓ=   and the mass fraction of solvent in phase 2. All 

these dimensionless numbers can be expressed as the ratios of characteristic times as 

shown in Table 3.1. 

 

Table 3.1. Different characteristic times and dimensionless groups. 

Characteristic times 
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In order to study the onset of instability in the neighborhood of marginal stability 

corresponding to ω = 0, when the perturbation does not grow or decay with time, the 

different elements of the matrix M are expanded in powers of ω. Keeping only the first 

order terms in ω in the determinant, the characteristic equation is now written as: 

0ω− =A B                                         (3.40) 

where A  and B  are expressed in terms of the dimensionless groups as: 
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      (3.42) 

 

3.2 Validation of Onset of hydrodynamic instability 

Since the solutal Marangoni instability happens only during the initial mass 

transport stages, some polymer/solvent/nonsolvent materials may not have enough time 

to develop. For PAN/DMSO/water system, the interfacial tension is not sensitive to PAN 

concentration [Weh2004], so the interfacial gradient of PAN solution/water interface (δσ) 
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is weak when the PAN adsorption variation (δΓ) is small at the beginning of phase 

inversion, and in Eq. (3.32) αΓ is very small. Based on the definition of the Marangoni 

number 
22

maxMa
D

H
μ
ΓαΓ= , a smaller αΓ will reduce the value of Ma. While from the 

dispersion relation Eqs. (3.40) to (3.42), it can be deduced that the growth rate ω will be 

smaller, which means the Marangoni instability needs a longer time to develop. Since a 

rapid solidification is observed in the PAN/DMSO/water HFM fabrication, the polymer 

solution solidifies before the Marangoni instability can totally develop. Therefore, 

another model of groove formation during solidification needs to be developed for 

PAN/DMSO/water HFMs, which will be discussed in Chapter 4. 

Since the model presented in this chapter is dimensionless, the model can be 

applied to different polymer/solvent/nonsolvent systems with different material properties. 

Since the hydrodynamic instability can develop in PU/DMSO/water HFMs fabrication, 

the groove formation results for the fabrication of PU/DMSO/water HFMs [Long2008] is 

used to validate this theory. 

 

3.2.1 Dispersion relation for PU/DMSO/water 

In Long et al.’s work [Long2008], HFMs were fabricated for a PU (Mw = 

40000-70000 Da; Thermedics Polymer, Wilmington, MA, USA)/DMSO (Sigma-Aldrich, 
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Milwaukee, WI, USA) solution as shown in Fig. 1.9. The polymer solution was 

co-extruded with a nonsolvent (de-ionized water) through a spinneret. Both polymer 

solution and nonsolvent flows passed through a 10 mm air gap before the nascent HFM 

enter the bath. The fabrication process was implemented under different conditions by 

varying the flow rates and the polymer concentration. 

For the (PU/DMSO)/water solution, the absolute temperature is T = 298 K, the 

gas constant R = 8.31 J/(K·mol) and the PU molecular weight Mw is assumed equal to 50 

kg/mol. The polymer maximum adsorbed amount Гmax is about 64 10−×  mol/m2 ~ 0.2 

g/m2 [Rios1994], and the Langmuir equilibrium constant is taken as 0.02lK =  m3/kg 

[Fleer1993]. The different parameters used to define the system are given in Table 3.2 of 

the Appendix. The interfacial tension *
0σ  and the ratio 0

max

Γ
Γ

∗

, obtained using Eqs (3.5) 

and (3.4), are about 2×10-2 N/m, and close to 1, respectively. The surface diffusivity Ds 

[Valkovska2000], is assumed of the same order as the bulk diffusion coefficients 

10 210 m /s−  and can then be defined as 1 2

2s
D D

D
+

=  [Sørensen1977]. 
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Table 3.2. Parameters in PU/DMSO/water HFM fabrication. 

Parameters 

ρ1 Density of phase 1 1000 kg/m3 

ρ2 Density of phase 2 1100 kg/m3 

μ1 Viscosity of phase 1 10-3 kg/(m·s) 

μ2 Viscosity of phase 2 5 kg/(m·s) 

D1 Solvent diffusivity in phase 1 5×10-9 m2/s 

D2 Solvent diffusivity in phase 2 5×10-10 m2/s 

t0 Diffusion time 10-3 s 

β1 Solvent profile coefficient in phase 1 610 10   m-1 

β2 Solvent profile coefficient in phase 2 106 m-1 

Mw PU molecular weight 50 kg/mol 

maxΓ  Excess polymer concentration 2× 410− kg/m2 

Kl Langmuir equilibrium constant 0.02 m3/kg 

1c ∞  Initial solvent concentration in phase 1 0 

2c ∞  Initial solvent concentration in phase 2 990 kg/m3 

solvσ ∗  Interfacial tension DMSO/water 0.046 N/m 

Γα  Interfacial tension gradient 9.03× 210  m2/s2 

K2 Equilibrium constant in phase 2 4.52 ×10-2  

0σ
∗  Interfacial tension for basic state 0.017 N/m 
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With the data in Table 3.2, the first two terms in B  can be neglected (Eq. 3.42) 

except in the vicinity of zero, and the growth rate is approximated by: 
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                                                                   (3.43) 

The growth rate depends on some dimensionless numbers characterizing capillary and 

soluto-capillary effects such as Cr and Ma. The growth rate dependence in terms of Ma is 

very weak except close to the origin. A nonzero growth rate ω depends on the existence 

of an interfacial tension gradient but not on the value of this gradient. If the interfacial 

tension remains constant and does not depend on the polymer concentration, Ma is zero, 

resulting in a zero ω too. The numerator in Eq. (3.43) defines the range of instability, and 

this range depends on Na and 0

max

Γ
Γ

∗

, which is close to one. It should be noted that while 

the Marangoni instability is considered the dominant factor leading to the onset of 

instability herein, the contributions of other effects such as capillary effects have also 

been included in determining the onset of instability as seen in Eq. (3.43). 

The dispersion curve of Fig. 3.3 shows that there exist three regions delimited by 



79 
 

,mincrk  and ,maxcrk , two critical wavenumbers. For k between ,mincrk  and ,maxcrk , the 

perturbation grows and grooves may form. Consequently, the system is unstable for 

modes whose wavelengths λ∗  are such that: 

,min ,max
,max ,min

2 2
cr cr

cr cr

H H
k k
π πλ λ λ∗ ∗ ∗= < < =                       (3.44) 
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Fig. 3.3. Dispersion curve based on the parameters listed in Table 3.2. 

 

For wavelengths smaller than ,mincrλ∗  (minimum critical wavelength) or larger 

than ,maxcrλ∗  (maximum critical wavelength), the system is stable. Considering the 

groove number N instead of the wavelength of the perturbation, the results shown in Fig. 

3.3 define a range for the groove number between *
max,cr

ID
λ
π  and *

min,cr

ID
λ
π , where DI is the 
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HFM inner diameter. Sørensen et al. [Sørensen1978] also found two strictly positive 

values, kcr,min and kcr,max, delimiting the instability region in case of an exponential 

concentration profile. The only restriction for ,mincrk  or ,maxcrλ∗  is that the wavelength 

has to be smaller than the inner perimeter IDπ . 

The most unstable mode is obtained for kmax, the wavenumber of the most 

dangerous wave. The wavelength 
max

*
max,

2
k

H
cr

πλ =  associated with kmax gives the number 

of grooves: 

max2
ID

N k
H

=                                      (3.45) 

For the parameters in Table 3.2, an estimation of maxλ∗  is 25 μm, which is of the order of 

the groove width measured in Long et al.’s experiment [Long2008]. Therefore, the model 

can predict the order of magnitude of the groove width and of the groove number. For 

given fluids, the dispersion curve depends on 0

max

Γ
Γ

∗

, Na, and Cr; or alternatively, maxΓ , 

lK , and ∞2c  based on the definitions of Na and Cr and Eqs. (3.31), (3.42), (3.46), (3.47), 

and (3.48). The influence of these different parameters on the system instability is shown 

in Figs 3.4, 3.5, and 3.6. 
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Fig. 3.4. Effect of maxΓ  on the dispersion curve based on other parameters listed in 

Table 3.2 ( *
0σ  depends on maxΓ ). 
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Fig. 3.5. Effect of Kl on the dispersion curve based on other parameters listed in Table 3.2 
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0σ  depend on Kl). 
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3.2.2 Model validation 

The maximum interfacial polymer concentration Γmax is the maximum polymer 

amount adsorbed on the interface associated to the affinity of the interface to a certain 

polymer. Increasing the Langmuir equilibrium constant Kl measuring the ability to adsorb 

increases the changes in polymer concentration and consequently decreases the time 

necessary to introduce a surface tension gradient and finally will increase the growth rate 

ω. For fixed Kl and given polymer concentration scenarios, increasing Γmax keeps the 

max

0

Γ
Γ ∗

 ratio constant, decreases the interfacial tension, increases the adsorption time, and 

consequently decreases the growth rate. When Γmax increases, kmax decreases and the 

number of grooves N decreases. Increasing Γmax from 1.5×10-4 to 2×10-4 produces a 

decrease of 25% in the groove number (Fig. 3.4). Increasing Kl also leads to a decrease in 

the groove number, but this dependence is less sensitive to the Langmuir constant (Kl) than 

to the maximum excess polymer concentration (Γmax). 

The problem examined was a 2D problem in a horizontal cross section and the 

flows of polymer solution and nonsolvent were ignored. The flow rates actually affect Kl. 

Increasing the polymer solution flow rate increases 0

max

Γ
Γ

∗

 for a given initial polymer 

concentration and thus increases Kl. The increase of Kl produces a decrease in both kmax 

and the number of grooves N as seen from Fig. 3.5, and this tendency is the same as in 
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the experimental results [Long2008]. Increasing the inner nonsolvent flow rate decreases 

0

max

Γ
Γ

∗

 for a given initial polymer concentration and thus decreases Kl. The decrease of Kl 

produces an increase in kmax (Fig. 3.5) and the number of grooves N, which is also in 

agreement with the experimental results [Long2008]. 

The different dimensionless groups (Na, 0

max

Γ
Γ

∗

, and Cr), appearing in Eq. (3.43), 

depend on the initial concentration of polymer (cp∞) or solvent (c2∞) in phase 3. It should 

be noted that in generating Fig. 3.6, Na, 0

max

Γ
Γ

∗

, and Cr are given, respectively, as 

follows: 

max
(0)
2

Na
c H
Γ

=
Δ

 with (0) 2
2 1

c dc
d
∞Δ =
+

                       (3.46) 
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where ( )* 00
2/sc  is the solvent concentration in phase 2 evaluated just above the interface. 

2 2

0

Cr D
H
μ
σ ∗=  with ( )( )* 00

0 max /ln 1 l
solv p s

w

RT K c
M

σ σ Γ∗ ∗= − +                (3.48) 

Several dispersion curves are given in Fig. 3.6 to show the effect of the initial 

polymer concentration. They are obtained from the following expressions of Num(ω) and 

Den(ω) as ( )
( )ω
ωω

Den
Num

= , where 
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and 2
0 max 2ln 1

1
l

solv
w

cRT K
M d

σ σ Γ ρ∗ ∗ ∞
⎡ ⎤⎛ ⎞

= − + −⎢ ⎥⎜ ⎟⎜ ⎟+⎢ ⎥⎝ ⎠⎣ ⎦
. It can be seen that when the 

initial polymer concentration increases or the initial solvent concentration decreases, kmax 

decreases, the wavelength of the most dangerous wave increases and the number of 

grooves decreases. This prediction agrees well with the experimental results [Long2008] 

as shown in Fig. 3.6B. As discussed by Bonyadi et al. [Bonyadi2007] the stabilizing 

effect of the polymer concentration can be explained as follows. When the initial polymer 

concentration increases, the polymer chain orientation on the interface is higher. As a 

result, less solvent is extracted and the driving mechanism of the instability is reduced 

leading to a decrease of the groove number. 
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Fig. 3.6. (A) Effect of initial polymer concentration (cp∞ = ρ2 – c2∞) on the dispersion 

curve based on other parameters listed in Table 3.2, and (B) experimental measurements 

of groove numbers [Long2008]. 

 

The comparison of the experimental and theoretical results shows that the evolution 

of the groove number in terms of the polymer concentration is in good agreement with the 

available experimental results. As so, the proposed model may give a plausible explanation 

of the HFM groove formation mechanism due to hydrodynamic instability.  

 

3.3 Summary 

The hydrodynamic instability for groove formation during HFM fabrication is 

studied in this chapter. The Marangoni effect is used to study the onset of hydrodynamic 
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instability before the solidification of polymer solution. It was found that for 

PAN/DMSO/water HFMs the solutal Marangoni instability does not have enough time to 

develop before solidification, so the hydrodynamic instability is not valid to explain the 

groove formation of PAN/DMSO/water HFMs. But by studying the grooved 

PU/DMSO/water HFM fabrication, the predicted values of the groove number compares 

well with those experimental results. Therefore, the model developed here gives a 

reasonable explanation of the groove formation mechanism in PU/DMSO/water HFM 

fabrication. 
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CHAPTER FOUR 

MULTILAYER BUCKLING MODEL FOR GROOVE 

FORMATION 

Chapter 2 reports the fabrication of PAN/DMSO/water HFMs. In the case of 

PAN/DMSO/water system, the interfacial tension between water (nonsolvent) and the 

polymer solution just slightly depends on the PAN concentration [Weh2004]. Thus, due 

to the rapid solidification, the solutal Marangoni instability does not have time to develop, 

leading to a circular inner surface during the air gap. Therefore, the inner surface of 

PAN/DMSO/water HFMs remains circular until it enters the coagulation bath, and 

grooves form due to buckling when HFMs solidify. The shrinkage during HFM 

solidification introduces a radially inward stress in HFMs. When this inward stress is 

large enough, the inner skin layer buckles and forms a grooved texture. In this chapter, a 

multilayer model for HFM buckling is developed. The predicted results are compared 

with experimental results reported in Chapter 2 for PAN/DMSO/water HFMs. 

 

4.1 Multilayer model of PAN HFMs 

A representative six-layer morphology of both smooth and grooved HFMs is 

shown in Fig. 2.2B. Generally, the six-layer morphology consists of: (1) an inner and an 

outer top skin layers (I1 and O1 layers), which are formed by a vitrification process 
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because of the sudden solvent outflow from the polymer solution; (2) two sublayers 

include I2 and O2 sublayers; and (3) two inner sublayers in the bulk (I3 and O3 sublayers). 

The sublayers are formed by liquid–liquid demixing [Machado1999, Bonyadi2007]. Both 

inner and outer skin layers (I1 and O1), where only tiny microvoids are formed, are thin 

but dense. The sublayers adjacent to the inner and outer skin (I2 and O2) are relatively 

thicker than the skin layers, and their structure is more porous. Also, these two sublayers 

are the transition region between the skin layer and the inner sublayer. The inner 

sublayers (I3 and O3), which are the thickest layers, are in the middle of HFM wall, and 

they contain macrovoids. Based on the aforementioned six-layer structure model 

[Bonyadi2007], it is assumed that the inner skin layer (I1) buckles when the inward 

pressure exceeds the critical buckling pressure of the inner forming elastic skin layer. 

This radially inward pressure is mainly due to the shrinkage of the solidifying outer 

surface upon entering the coagulation bath. 

For example, the six-layered structure is considered, so the HFM is modeled as a 

thin-walled elastic cylindrical shell with six distinct but seamlessly connected 

layers/sublayers as in Fig. 4.1. The Young’s modulus of each layer/sublayer is Ei, the 

thickness of each layer/sublayer is hi, where i stands for I1, I2, I3, O1, O2 and O3 as the 

index of each layer/sublayer. To model this inward pressure-induced buckling 

phenomenon, the following assumptions are introduced: 
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a). The material of each layer/sublayer is elastic and isotropic, then the 

strain-stress relations can be written as follows: 
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where ( )i
rrσ , ( )i

θθσ , ( )i
zzσ , ( )i

zθτ , ( )i
rzτ , and ( )i

rθτ  are the components of the stress 

tensor, ( )i
rrε , ( )i

θθε , ( )i
zzε , ( )i

zθγ , ( )i
rzγ , and ( )i

rθγ  are the components of the strain 

tensor expressed in the cylindrical coordinate system in Fig. 4.1. Due to the 

porous morphology of each layer, Young’s moduli of the inner and outer skin 

layers (I1 and O1) are the highest, while the I2 and O2 sublayers are stiffer than 

the I3 and O3 sublayers due to the existence of macrovoids inside I3 and O3. In 

this work, it is assumed that all layers/sublayers have the same Poisson’s ratio 

(ν) when their porosities are no more than 70% [Arnold1996]. 
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Fig. 4.1. Schematic of the six-layer model before and after the shrinkage-induced inward 

pressure. 

 

b). The HFM fabrication process introduces an axially uniform, inward radial 

pressure on the inner skin layer (I1) of the forming long hollow fiber, so as in 

a plane deformation case, the pre-buckling stress and displacement fields are 

axisymmetric, and the buckling modes are 2D for such a multilayer structure 

[Kardomateas2005]. Both stresses and the displacements do not depend on the 

axial coordinate z. Due to axisymmetry, the stresses and displacements are 

only dependent on the radial coordinate r; 

c). Due to the macrovoid structure of sublayers I2, O2, I3 and O3, the 

shrinkage-induced inward pressure is transmitted to the inner skin layer (I1) 

through the sublayers (O1, I2, O2, I3 and O3). The buckling of I1 is much 
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smaller compared to the HFM diameter, so the inner skin layer buckling may 

not significantly affect the HFM stress distribution and displacement of the 

other layer/sublayers before and after buckling; 

d). There is a pressure p0 applied on both inner and outer surfaces before HFM 

shrinkage happens. The outer surface experiences an extra inward pressure q 

during the HFM shrinkage. Then the HFM is under an internal and an external 

pressures, p0 and p0+q, respectively (Fig. 4.1); and 

e). Based on the fabrication process as shown in Fig. 1.9, when the polymer dope 

solution comes out of the spinneret, it first interacts with the inner nonsolvent 

fluid, resulting in an elastic inner skin layer. At that time, the outer skin layer 

is not well formed yet. In this study, it is assumed that this inner skin layer 

solidification-induced shrinkage may be fully released before the outer skin 

layer solidifies. 

An elasticity theory-based solution for an orthotropic homogeneous cylindrical 

sandwich shell under an external or internal pressure has been discussed by Kardomateas 

et al. [Kardomateas2005]. The stresses of each layer/sublayer, as in an isotropic 

homogeneous deformation case, can be simplified as follows [Kardomateas2005, 

Timoshenko1970] 
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and the radial displacement is found to be [Kardomateas2005]: 
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where Ai and Bi are the coefficients to be determined based on the boundary and 

interfacial conditions, and i stands for I1, I2, I3, O1, O2 and O3 as the index of each 

layer/sublayer. 

For a given outer surface shrinkage d, the O1 displacement boundary condition is 

as follows: 
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where h is the HFM wall thickness, and a is the inner radius before shrinkage. The 

pressure on the inner surface is assumed to be the atmospheric pressure (~ 105 Pa), then 

the stress boundary condition along the inner surface is: 

( )
0

2
11

1 paBA IIar

I
rr −=+= −

=
σ                                             (4.8) 

where p0 is assumed to be 105 Pa, which will not vary too much during the experiments. 
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For seamlessly connected HFM layers/sublayers, the radial stress ( )i
rrσ  is 

continuous at each interface. The five interfacial conditions are expressed as: 

( ) ( ) 2
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2
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The radial displacement is also continuous, leading to the following five equations 
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The 12 unknowns (Ai and Bi) should satisfy the twelve boundary conditions defined by 

Eqs. (4.7)-(4.18). For a given shrinkage d, the radial stress and displacement distributions 

across the HFM can be predicted using Eqs. (4.2) and (4.6). 

 

4.2 Buckling mode estimation 

Based on the proposed six-layer HFM model, the shrinkage-induced inward 

pressure along the I1/I2 interface can be calculated as follows 

( )[ ]2
111

1

−

+=
++−=−= IIIharrr haBAP

I
σ                           (4.19) 

Under the effect of inward pressure, the inner elastic skin layer may buckle if the 

resulting pressure is higher than the critical pressure, Pcr, which can be determined by 

applying a classical instability theory [Timoshenko1961] to the inner skin layer 

considered as a thin-walled elastic cylindrical shell 

( )
( )23

23
11

112
1

ν−
−

=
a

nhEP II
cr                                    (4.20) 

In Eq. (4.20) n is the buckling mode (the number of circumferential waves). Under a 

sufficient high process-induced pressure difference 0pP − , the inner skin layer buckling 

mode can be obtained based on Eq. (4.20) as follows 
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The whole procedure for groove number prediction is shown in Fig. 4.2. 
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Fig. 4.2. Groove number prediction flowchart. 

 

4.3 Model validation and discussion 

4.3.1 Parameters selection and modeling results 

The model presented above is used to predict the influence of air gap distance on 

groove number of PAN/DMSO/water HFMs in Chapter 2. For different air gap lengths, ν 

= 0.3 [Cabasso1976] is assumed to be constant [Bonyadi2007]. The Young’s modulus of 

each layer is defined as: 
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The thickness of each layer/sublayer hMj (M = I, and O, and j = 1, 2, and 3) can be 

determined from the SEM images, and Eave is measured. Their different values are listed 

in Table 4.1. The Young’s modulus ratio ηi in Eq. (4.22) is approximated from the 

examination of the microstructures of the corresponding layer and its porosity 

[Arnold1996]. The relation between the average Young’s modulus Eave and the Young’s 

modulus of each layer/sublayer can be written as: 
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where AIj and AOj are the area of the j inner and outer sublayers, respectively. Based on 

Eqs. (4.22) and (4.23), the thicknesses, the Young’s modulus ratios, and the Young’s 

modulus of each layer, particularly of the inner layer, can be obtained. 
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Table 4.1. Prediction of groove number under different air gap distances. (Nonsolvent 

flow rate 2 ml/min, polymer solution flow rate 1 ml/min, and polymer concentration 7 

w/w%; for 5 cm air gap: EI1/EI2 = 5, EI1/EI3 = 125, EI1/EO3 = 200, EI1/EO2 = 5, and EI1/EO1 

= 1; and for 20 cm air gap: EI1/EI2 = 5, EI1/EO3 = 200, and EI1/EO1 = 1.25). 

Air gap distance 5 cm 20 cm 

Inner radius r (mm) 0.548 0.346 

Estimated thickness of each layer hi (μm) 136 

I1 = 3.9 

98 

I1 = 4.7 

I2 = 11.9 I2 = 13.6 

I3 = 41.9 O3 = 70.4 

O3 = 48.0 

O1 = 9.3 O2 = 22.0 

O1 = 8.3 

1I

r
h

 141 68 

Measured Shrinkage of outer surface (μm) 8.2 7.8 

Measured Young’s modulus E (Pa) 2.0×107 3.6×107 

Estimated EI1 (Pa) 1.4×108 2.3×108 

Calculated pressure difference P-p0 (Pa) 847 23726 

Calculated 
1

0

IE
pP −

 6.3×10-6 1.0×10-4 

Groove number : experimental result 12 22 

Groove number: modeling result 13 21 

 

To show the effect of air gap, two air gap scenarios are considered: 5 cm (Fig. 

2.6B) and 20 cm (Fig. 2.6D). The examination of the HFM morphologies shows that the 

sublayer I2 (or O2) is more porous than the skin layer I1 (or O1), and the sublayer I3 (or O3) 

is more porous than the sublayer I2 (or O2) (Fig. 2.6), so it is concluded that the ratio ηi 
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increases from layer 1 to layer 3. With a 5 cm air gap, the morphology is more symmetric, 

so the stiffness of the inner and outer skin layers is set as 1
1

1 =
O

I

E
E

. The sublayers I2 and 

O2 are softer than the skin layers I1, so it is assumed that 5
2

1

2

1 ==
O

I

I

I

E
E

E
E . The sublayers 

I3 and O3 are more porous than the layer I1, and based on Fig. 2.6B, where the 

macrovoids in O3 are larger than those in I3, so it is assumed 
3

1

3

1

I

I

O

I

E
E

E
E

> ~100. The 

values to be adopted are 125
3

1 =
I

I

E
E , and 200

3

1 =
O

I

E
E . As seen from Fig. 2.6, the 

morphology varies significantly under the air gap distances of 5 and 20 cm. In the case of 

20 cm air gap distance, the six-layer structure reduces to a four-layer structure, and the 

two outer sublayers O2 and O3 merging with the inner layer I3. It can be observed that 

both inner and outer skin layers become thicker. It can also be noticed that due to the 

longer precipitation time of inner surface, the inner skin is stiffer than the outer skin. It is 

assumed that 25.1
1

1 =
O

I

E
E  while the other two ratios are chosen as in the case of a 5 cm 

air gap distance as specified in Table 4.1. By comparing the HFM outer diameter just 

before and after entering the coagulation bath, the shrinkage of the outer layer was 

measured and is about 8 μm for both cases. Table 4.1 lists measurements and predictions 

using Eq. (4.21). 
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As observed, the inner radius of HFM r decreases with the air gap distance, so the 

1Ih
r  ratio also decreases as expected. With a longer air gap, the middle sublayers become 

stiffer due to a long precipitation time, thus less stress caused by the shrinkage of outer 

surface can be absorbed by the middle sublayers, leading to a larger pressure difference 

P-p0. The multilayer model developed for six-layer HFMs can be applied for the 5 cm air 

gap scenario and also can be adapted to four-layer HFMs fabricated using a 20 cm air gap 

by introducing four layers instead of six. The pressure differences P-p0 deduced from the 

multilayer buckling model and the corresponding ratios 
1

0

IE
pP −  are listed in Table 4.1. 

There is a significant increase in 
1

0

IE
pP −  with the air gap distance, and the groove 

number determined from the buckling model (Eq. 4.21) also increases. Table 4.1 shows a 

good agreement between the results obtained from the model predictions and the 

experimental observations, supporting the validity of the proposed groove formation 

mechanism and modeling approach. 

 

4.3.2 Discussion 

The results show that for a very short air gap distance (1 cm) the inner surface is 

smooth, but as the air gap distance increases from 3 to 20 cm the number of grooves 
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increases (Fig. 2.5A). The multilayer buckling model can also predict the increase of the 

groove number with the air gap distance as shown in Table 4.1. However, Shi et al. 

[Shi2007] and Bonyadi et al. [Bonyadi2007] had different observations regarding the 

effect of air gap and found that HFMs may have irregular inner surfaces in the absence of 

air gap, and may become smooth as the air gap increases. 

Shi et al. [Shi2007] considered the high viscoelasticity of PVDF-HFP as one of 

factors responsible for the irregularities of the inner surface of the membrane. The 

orientation of the macromolecules induced by shear in the spinneret is frozen during 

phase inversion, and a partial release of the stress in the transverse direction contributes 

to the deformation of the inner contour. As the air gap increases, more relaxation and 

rearrangement of the macromolecules lead to a smoother inner surface. It was concluded 

that grooves are initiated in the coagulation bath. This interpretation might be suitable for 

PVDF-HFP HFMs. However in this study, no grooves formed under a very short air gap 

and the number of grooves increases as the air gap increases. Once the polymer solution 

and inner nonsolvent solution are brought into contact at the spinneret outlet, a solutal 

Marangoni instability induced by the solvent extraction from the polymer solution may 

occur as discussed in Chapter 3. So it could be deduced that the grooves may be initiated 

in the air gap instead of the coagulation bath. But in case of the PAN/DMSO solution, the 

interfacial tension between nonsolvent and polymer solution depends weakly on PAN 
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concentration [Weh2004]. Due to the rapid solidification in the air gap, the interfacial 

instability does not have enough time to develop; as a result, the inner surface remains 

circular in the air gap until the nascent fiber enters the coagulant bath. 

 Bonyadi et al. [Bonyadi2007] reported that a longer air gap tends to reduce the 

groove number indicating a different effect of the air gap distance on the shape of the 

inner surface. But the deformed HFMs reported by Bonyadi et al. exhibit large 

deformations with a small number of lobes, characterizing the deformations of the whole 

HFM structure instead of the deformations of only a thin sublayer of the HFM structure, 

observed in this work. Bonyadi et al. also explained the inner surface deformation by 

introducing the buckling of a thin inner skin layer in a six-layer structure without 

considering the effect of other layers. They pointed out that a longer air gap distance will 

decrease the inner radius r and increase the Young’s modulus of inner skin layer EI1. 

However, the thickness hI1 and the Young’s modulus of the inner layer EI1 also need to be 

carefully determined and the pressure difference P-p0 has to be calculated for each air gap 

distance. Moreover, it is observed in the experimental study that the air gap distance can 

also influences the number of layer/sublayer and the morphology, such as the location of 

macrovoids and the appearance of fingerlike layers. Therefore, the multilayer model in 

this work can predict the variation of shrinkage-induced pressure P on the I1/I2 interface 

due to the change in the air gap distance. As the air gap distance increases, a slight 
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decrease of 
1I

r
h

 is observed, and a significant increase of 
1

0

IE
pP −  is calculated, 

modeling the fast solidification, the predominant factor for the groove number 

determination. As the morphology variations and the pressure changes were not taken 

into account in Bonyadi et al.’s work, their model is not relevant to this study. Since 

different variations of 
1I

r
h

 and 
1

0

IE
pP −  may be caused by different fluids, spinneret 

design, flow rates, and concentrations, the different contributions have to be carefully 

controlled to understand how and why the groove number varies. 

 

4.4 Summary 

In Chapter 4, a shrinkage-induced multilayer buckling model is developed for a 

thin-walled elastic cylindrical shell under a uniform, radially inward pressure. The model 

is used to predict the buckling modes and to study the influence of air gap distance on 

groove number of PAN/DMSO/water HFMs. The groove number has been determined by 

taking into account the changes in the morphology, the thickness and Young’s modulus 

of each layer/sublayer. A reasonable prediction of accuracy of the groove numbers and 

the tendencies were observed, which can validate this theoretical model in 

PAN/DMSO/water HFM fabrication. 
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CHAPTER FIVE 

STUDY OF SUBSTRATE GEOMETRY EFFECT ON AXONAL 

OUTGROWTH 

In this chapter, a numerical model of axonal outgrowth on a grooved substrate is 

developed to study the influence of the substrate geometry. The axon, outgrowing at a 

very slow speed (of the order of 10-8 m/s [Zhang2005]) along a 3D grooved substrate of 

the nerve conduit, is modeled as a 1D elastic beam. The Cosserat theory is introduced to 

model the nonplanar deformation and motion of the axon. The 3D deformation of axon, 

under the effect of friction and external traction force, is solved using the finite element 

method. The proposed modeling approach is validated by comparing the results with the 

experimental results in the literature. Finally, the conclusions are drawn. 

Numerous experimental investigations have proved the effectiveness of the 

micropatterned 3D structure in promoting nerve regeneration with tubular nerve conduits 

made from poly(D,L-lactic acid) (PDLLA) [Rutkowski2004], poly(D,L-lactic) (PLA) 

[Hsu2007], and PU [Zhang2005]. The existing axonal outgrowth models are 1D 

[O’Toole2008] or 2D [Aeschlimann2000]. For the 3D grooved substrate, a 3D model is 

needed and neither of the aforementioned modeling approaches can work. In order to 

fully understand the outgrowth of an axon on a 3D grooved substrate, a model describing 

the motion and deformation of an axon in the 3D space needs to be developed. 
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5.1 Assumptions and kinematic description 

The Cosserat model is a geometrically exact model which concerns the nonplanar 

dynamics of an extensional and twistable beam [Antman1995] and which is generally 

used to model the motion of various 1D slender objects such as hair and wire 

[Chang2007]. The motion of any slender 3D body is characterized by the motion of its 

line of centroids as well as the rotation of its different cross sections. With the Cosserat 

model, the study of a beam motion and deformation requires the determination of three 

vector fields, one for the line of centroids and two for the rotation of the cross sections. 

The model is implemented to describe the 3D motion and deformation of the axon on a 

3D grooved substrate. 

 

5.1.1 Assumptions 

There are generally two driving mechanisms explaining how axon elongates. The 

first one, taking place along the axon, is called “stretch outgrowth” [Franze2010]. As the 

axon moves on the substrate, the growth cone may experience an adhesion force from the 

substrate, generating a traction force [Ananthakrishnan2007] stretching the axon. The 

second one is called “tip outgrowth”. It is due to microtubules polymerization at the distal 

end of the axon [van Veen1994], called the tip, and as time evolves a new mass is added 
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there [O’Toole2008, Franze2010]. During the outgrowth process, the proximal part of the 

axon remains firmly attached to the substrate, while the distal part of the axon moves 

[Chang1998].  

 
500  μm

Width (W)

Height (2H) Axon

Oy

z
x

Soma
 

Fig. 5.1. The schematic of an axonal outgrowth on a grooved substrate, substrate 

geometry being characterized by its width W and height 2H. 

 

As shown in Fig. 5.1, an axon grows on a substrate with grooves characterized by 

their longitudinal direction x, their width W and height 2H. The substrate, as a cylindrical 

surface whose axis is parallel to the x-direction, is defined as: 

z = F(y)                                                             (5.1) 

where F(·) is a fully smooth function. In order to simulate the axon outgrowth process, 

some assumptions are made: 
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(a) The axon is modeled as a 1D beam. In the previous experimental studies, the groove 

widths of the textured nerve conduits vary from 10 to 100 μm. The groove width is 10 

μm in [Rutkowski2004], while it is 20 μm in [Hsu2007]. These two grooved nerve 

conduits were fabricated by casting polymer on a grooved master wafer for a better 

control of the groove width. The grooved nerve conduits formed by process-induced 

instability have a width around 50 μm [Zhang2005]. All these nerve conduits were 

demonstrated to enhance the nerve regeneration. The groove width to be considered 

in this study varies between 10 to 100 μm and the chosen width in the numerical part 

of this work is on the order of 100 μm. Since the radius of an axon is usually less than 

0.5 μm [Aeschlimann2000], the length larger than 10 μm and the ratio of the axonal 

diameter to the groove width about 0.01, a 1D model for the axon growthing on this 

grooved geometry is justified; 

(b) The axonal motion is considered as quasi-static [Aeschlimann2000], and this 

assumption will be further discussed later; 

(c) The substrate is rigid;  

(d) During the outgrowth, the axon remains in the same groove in contact with the 

substrate. Though, some studies reported that neurons can bridge their neurites over 

the groove [Johansson2006], this assumption follows the experimental results from 

[Li2005] that for groove height greater than 11 μm and groove width 100 μm, axons 
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of E11-E14 mouse embryos will remain inside one groove; 

(e) The axon itself is modeled as an elastic material [Aeschlimann2000], and there is an 

inelastic elongation at the tip, which is proportional to the external force exerted at 

the distal tip [Heidemann1994]. Therefore the behavior of axon can be considered as 

viscoelastic. 

 

5.1.2 Kinematic description and representation of the rotation 

 

Centerline 

1d
r

2d
r

3d
r

O

y

z

x ( )1er
( )2er

( )3er

( ) ( )zyx rrrtr ,,, =σr

Cross section 

M

 

Fig. 5.2. The schematic of Cosserat theory. 

 

The Bernoulli hypothesis is adopted. Any cross section of the axon is considered 

as rigid, therefore any cross section in a 3D space depends on six parameters: three for 

translation and three for rotation. The translation specifies the position of the centroid of 

a cross section with respect to a given frame of reference (O, 1er , 2er , 3er ). The 
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configuration of the line of centroids at time t is defined by ( ) ( )zyx rrrtr ,,, =σr , a function 

of curvilinear abscissa [ ]1 ,0∈σ  and time t. The deformation and rotation of any cross 

section can be described in terms of the rotation of a moving frame of reference (M, 1d
r

, 

2d
r

, 3d
r

) called the local frame of reference, 1d
r

 and 2d
r

 are in the plane of the cross 

section as shown in Fig. 5.2 and 3 1 2d d d= ×
r r r

 is assumed to be tangent to the line of 

centroids. 

Based on the vectors introduced above, the deformation can be defined as follows 

[Antman1995]. The translational velocity  

( ) r
t

trvt
&r

r
r

=
∂

∂
= ˆ,σ                                                       (5.2) 

is associated to the motion of the line of centroids and the translational strain vector 

( ) 'ˆ, rtrv r
r

r
=

∂
∂

=
σ
σ

σ                                                       (5.3) 

associated to its stretching, while associated to the rotation of the cross sections is the 

temporal derivative of the directors pd
r

 (p = 1, 2, 3)  

( )
p

p
p d

t
td

d
rr

r
&r ×=

∂

∂
= ω

σ ,
                                                (5.4) 

where ωr  is the angular velocity vector of the local frame with respect to the reference 

frame and the “spatial” derivative of the directors pd
r

 expressing the change in 

orientation of the cross section along the line of centroids 
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( ),
ˆ p

p p

d t
d u d

σ
σ

∂′ = = ×
∂

r
r rr                                                 (5.5) 

where ur  is the rotational strain vector. The basis ( 1d
r

, 2d
r

, 3d
r

) being orthonormal, it 

can be deduced that: 

( )[ ] ( ) ( )[ ] ωωωωωω
rrrrrrrrrrrr&rr

23
3

1

3

1

3

1
=−=⋅−⋅=××=⎟

⎠
⎞⎜

⎝
⎛ × ∑∑∑

=== p
pppp

p
pp

p
pp dddddddd         (5.6) 

leading to an expression of ω
r  in terms of pd

r
 and its time derivative pd&

r
 (p = 1, 2, 3) 

∑
=

⎟
⎠
⎞⎜

⎝
⎛ ×=

3

12
1

p
pp dd &rrr

ω                                                     (5.7) 

A similar expression can be obtained for the rotational strain vector 

( )∑
=

×=
3

1
'

2
1

p
pp ddu
rrr                                                      (5.8)  

The pd
r

 components of ωr  and ur  are denoted by ωp and up (p = 1, 2, 3) respectively.  

The orientation of any cross section, at each time t depends on the rotation of the 

local frame of reference ( 1d
r

, 2d
r

, 3d
r

), where 3d
r

 is normal to the cross section and 

1 2d and d
r r

 lie in its plane. Several approaches exist to represent the rotation, such as 

Euler angles, the rotational vector and the unit quaternion. The unit quaternions were 

chosen to avoid singularities and develop straightforward and systematic method to 

determine the rotation from the angular velocity. Background on quaternions can be 

found in Zupan et al. [Zupan2009]. A quaternion is defined as the sum of a vector and a 

scalar and can be expressed as:  
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1 1 2 2 3 3 4 4q̂ q e q e q e q q q= + + + = +
r r r r                                      (5.9) 

Operations on quaternions make the set of quaternions an algebra, the multiplication 

leading to the definition of a norm as: 

2 2
4q̂ q q= +

r                                                     (5.10) 

and consequently to the polar form of any quaternion: 

( )     ,
ˆ

qcos    ,cossinˆˆ 4

q
qq

q
qqq nn r

r
rr
==+= θθθ                             (5.11) 

where nqr  is a unit vector. A unit quaternion is such that: 

12
4

2
3

2
2

2
1 =+++ qqqq                                                 (5.12) 

and can be expressed as: 

( ) ( )ˆ sin 2 cos 2q w φ φ= +
r                                              (5.13)  

and describes any rigid rotation where wr is a unit vector along the axis of rotation, and 

φ  is the rotation angle. The quaternion depends on three independent parameters as a 

rotation in the 3D space. 

The rotation between two orthonormal bases ( 1er , 2er , 3er ) and ( 1d
r

, 2d
r

, 3d
r

) can 

be obtained in terms of the matrix [R] [Zupan2009] 

[ ]
( ) ( )

( ) ( )
( ) ( ) ⎥

⎥
⎥
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⎢
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⎡
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2
2

141324231
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42314321
2
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3
2

2
2

1

22
22
22

qqqqqqqqqqqq
qqqqqqqqqqqq
qqqqqqqqqqqq

R         (5.14) 

with the components Rpq defined as the components of the pd
r

 vectors in the basis ( 1er , 
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2er , 3er ) 
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=
3
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qqpp eRd rr

                                                       (5.15) 

expressed also as 
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                                                                   (5.16) 

Thus, the components of ur  and ωr  (Eqs. 5.7 and 5.8) can be expressed in the local 

frame as (p = 1, 2, 3) 

[ ][ ]( ) [ ]'2 qqBduu T
ppp ⋅=⋅=

rr                                             (5.17) 

[ ][ ]( ) [ ]qqBd T
ppp &

rr
⋅=⋅= 2ωω                                             (5.18) 

where [q] is the 4×1 matrix of components qk (k = 1 to 4), associated to q̂ , and [ ]'q , [ ]q& , 

[ ]qδ  are the 4×1 matrices associated to the quaternions 'q̂ , q&̂ , and q̂δ . The different 

matrices [Bp] (p = 1, 2, 3), and the derivation of Eqs. (5.17) and (5.18) are given in 

Appendix B. 

 

5.2 Governing equations and numerical model 

5.2.1 Governing equations for axon elastic deformation 

As the axonal outgrowth process is assumed quasi-static (Assumption b), the 
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equations of motion to be considered obtained based on the virtual work principle, are the 

equilibrium equations. The virtual work due to internal forces δWI is  

( )bsI UUUW δδδδ +−=−=                                              (5.19) 

where U is the strain energy of the axon, Us its stretching energy, and Ub its bending and 

torsional energy. Specifically, 

( )∫ −=
1

0

21'
2
1 σdrKU ss

r                                                 (5.20) 

( )∫∑
=

=
1

0

3

1

2

2
1

p
ppb duKU σ                                                 (5.21) 

where  

Ks = EπR2, 
4

4

21
REKK π

== , 
2

4

3
RGK π

=                                 (5.22) 

E is the Young’s modulus of the axon, R its radius, G its shear modulus. Here, the axon 

cross section is assumed circular, and the axon is considered elastic (Assumption e). 

During the stretch outgrowth, the external forces experienced by the axon include 

the interaction force between the axon and the substrate and the external outgrowth force 

exerted at the tip of axon Nf
r

, which will be discussed later. The interaction between the 

axon and the substrate is mainly due to friction [Aeschlimann2000, O’Toole2008]. This 

friction force per unit length fF
r

 is assumed to be proportional to the axon velocity 

[O’Toole2008]: 
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rFf
&r

r
1μ−=                                                           (5.23) 

where μ1 is the first constant of friction. The friction moment per unit length fM
r

 is also 

assumed to be proportional to the angular velocity of the axonal cross section as: 

ωμ
rr

2−=fM                                                          (5.24) 

where μ2 is the second constant of friction. Therefore, the virtual work of all the external 

forces is  

( )
1

0

E f f N TW F r M d f rδ δ δϕ σ δ= ⋅ + ⋅ + ⋅∫
rr r rr r                                   (5.25) 

where rrδ , ϕδ
r  are the virtual displacement and virtual rotation at any point M on the 

line of centroids, and Trδ
r  is the virtual displacement of the axon tip. 

The virtual displacements are chosen compatible with the constraints. First, q̂  is 

a unit quaternion, so qk (k = 1 to 4) satisfy Eq. (5.12)  

Second, due to the Bernoulli hypothesis, the unit vector 3d
r

 normal to the cross section 

is tangent to the axon line of centroids, so 

'
'

3 r
rd r

rr
=                                                            (5.26) 

By applying the virtual work principle, the translational velocity and the angular velocity 

are obtained for any given time t, and this velocity information is used to update the axon 

configuration. 
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5.2.2 Numerical simulation 

The axon is modeled as a 1D beam moving on the substrate. In order to 

numerically solve the problem and obtain the axon motion at any time, a finite element 

approach is used. The line of centroids is divided into elements, and the nodes are shown 

in Fig. 5.3. The position of the ith (i = 1 to N) node along the centerline is defined by the 

vector ( )ziyixii rrrr ,,=
r , and the rotation of the jth (j = 1 to N-1) segment is defined by the 

quaternion { }jjjjj qqqqq 4321 ,,,ˆ =  at the midpoint of this segment. Consequently, the 

axon configuration is described at time t by ir
r  (i = 1 to N) and jq̂  (j = 1 to N-1). Since 

the axon is always in contact with the substrate in this study (Assumption d), the z 

component of ir
r  is such that ( )yizi rFr =  (Eq. 1), the ith node is thus defined by two 

independent components rxi and ryi as ( )( )yiyixi rFrr ,, . 
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Fig. 5.3. Discretization of axon centerline. 

 

The discrete spatial derivatives are approximated as  
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with the lengths li and q
jl  defined as: 

00
1

==
+ −≈ t

i
t

ii rrl rr  and ( )jj
q
j lll +≈ +12

1                                      (5.28) 

which are obtained based on the initial configuration (t = 0). For each segment, the 

constant shape functions are used  

( )
2

1 ii
i

rrr
rr

r +
= +σ  and ( )

2
ˆˆ

ˆ 1 jj
j

qq
q

+
= +σ                                     (5.29) 

Therefore, the stretching energy of the jth segment is expressed as 

( )
2
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1 1' 1 1
2 2
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sj s j j j
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U K r d r r
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⎛ ⎞
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⎝ ⎠∫ r r r                          (5.30) 

Substituting Eq. (5.17) into Eq. (5.21), the bending and torsional energy of the jth 

segment becomes 
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∑ ∑∫ ∫

∑
               (5.31) 

By substituting Eqs. (5.30) and (5.31) into Eq. (5.19), the virtual work of internal forces 

is now 
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                                                                   (5.32) 

The expressions of the different partial derivatives in Eq. (5.32) are given in Appendix B. 

During simulation, the friction force is distributed over the nodes 

[Aeschlimann2000]. Thus, the friction force if
r

 on the ith node is expressed as: 

ii rf &r
r

1η−= , (i = 1 to N)                                                 (5.33) 

where ir&
r  is the velocity of ith node, and η1 is the first constant of friction used in 

simulation and the friction moment on the mid cross section of the jth segment jmr  is 

jjm ωη
rr

2−= , (j = 1 to N-1)                                             (5.34) 

where jω
r  is the angular velocity of jth segment, and η2 is the second constant of friction 

used in simulation. The choice of η1 and η2 is discussed below. Therefore, the virtual 

work of external forces (in Eq. 5.25) can be expressed as:  
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                                (5.35) 

where ir
rδ  is the virtual displacement of the ith node, N Tr rδ δ=

r r and 

[ ][ ]( ) [ ]{ }∑
=

⋅=
3

1
2

p
pjj

T
jpj dqqB

rr
δϕδ  is the virtual rotation of the jth segment. Thus, Eq. (5.35) 

can be rewritten as 
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All the generalized forces introduced in Eq. (5.36) are listed in Appendix B. 

The first constraint, Eq. (5.12), is expressed for each segment as: 

1ˆ 2
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1 =+++= jjjjj qqqqq                                          (5.37) 

This constraint can be satisfied by normalizing jq̂  at each time step as in 

[Spillman2007]. Based on Eqs. (5.16) and (5.27), the second constraint, Eq. (5.26) can be 

expressed on the jth segment in the component form as: 
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Because of the constraints (Eqs. 5.36-5.38), the virtual work principle reads now 
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for any virtual displacement (δrxi, δryi) and (δq1j, δq2j, δq3j, δq4j), λ1j, λ2j, and λ3j being the 

Lagrange multipliers, and 
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Then the system of equations governing the motion is obtained from Eq. (5.41) with δWI 

and δWE given by Eqs. (5.32) and (5.36) and the constraints defined by Eqs. (5.38)-(5.40). 

Based on the current axonal configuration at time t, the governing equations give the 

velocities ( xir& , yir& , jq1& , jq2& , jq3& , and jq4& ), and the Lagrange multipliers (λ1j, λ2j, and 

λ3j). Since the constraints (C1j, C2j, and C3j) are satisfied at any time t, in order to 

determine the velocities at time t, Eqs. (5.38)-(5.40) are replaced by their derivatives with 

respect to t,  
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The new system of equations deduced from Eqs. (5.41) and (5.43) is numerically solved 

for the velocities. Once the velocities xir&  and yir&  and the temporal derivatives of 

quaternion ( jq1& , jq2& , jq3& , and jq4&  ) are obtained, the axonal configuration at time t is 

updated as: 

( ) trrr i
t

i
tt

i Δ+=Δ+ &rrr  and ( ) tqqq j
t
j

tt
j Δ+=Δ+ &̂ˆˆ                                   (5.44) 

 

5.2.3 External force at the axonal outgrowth tip 

Previous results established that the contractile filopodia and lamellipodia 

[Trinkaus1985] and the cytoplasmic filling of the growth cone from the rear part of the 

axon [Franze2010] may result in a tension force, which causes stretch outgrowth at the 
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axonal outgrowth tip. In addition, the traction force is generated by microtubules and 

actin filaments within the cytoskeleton structures to push and pull the neurite forward 

[Mahoney2005]. As so, the collective effect exerted by the growth cone on the axon is 

modeled as an external force Nf
r

, which is applied at the tip of the axon. On a planar 

substrate as shown in Fig. 5.4A, the external force Nf
r

 is always parallel to the surface, 

and its magnitude is assumed constant as 810−=Nf
r

 N. This value has been chosen of 

the same order of magnitude as the traction force introduced by Aeschlimann 

[Aeschlimann2000]. Considering the complex morphology and dynamic behavior of the 

growth cone, the traction force, exerted at the tip of the axon, is generally modeled as a 

random force on the planar surface [Forciniti2009]: 

( )tff NNx θsin
r

=  and ( )tff NNy θcos
r

=                                  (5.45) 

where fNx and fNy are the components of Nf
r

 in the x and y directions, 

respectively. ( ) [ ]πθ ,0∈t  is a random, variant angle, describing the axon outgrowth 

orientation: 

[ ]

( )[ ] ( )⎪
⎩

⎪
⎨

⎧

=+==Δ+≤≤Δ

=Δ≤≤

− LL 3, ,2 ,1 ,
10

1

,
2

0

1 bRaTbtTb

Tt

bb
πθθθ

πθ
                    (5.46) 

where ∆T = 10 s is the time duration associated with the angle variation, θb is an 

angular variable, and [ ]5.0,5.0−∈Ra  is a random number. In order to keep θb within the 
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range of [0, π], the following condition is imposed: if ( ) 0
101 <+−
Ra

b
πθ  or 

( ) ππθ >+− 101
Ra

b , then ( ) 101
Ra

bb
πθθ −= − . 
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Fig. 5.4. The force Nf
r

 for a planar surface (A) or for a grooved surface (B). 

 

On the grooved substrate, since the axon always attaches to the substrate as 

assumed in this study, the normal component of the external force at the tip is balanced 

by the reaction force from the substrate. As so, the acting force Nf
r

 as show in Fig. 5.4B 

is tangential and defined as: 

ττ
rrr

NNxN feff += 1                                                      (5.47) 

where 1er  is the longitudinal direction of the groove, and τr  is the direction in the 
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tangent plane at the tip (Nth node), normal to 1er : 

2 3 2 2

1(0, , ) 0, ,

1 1

z

y N

z z

y yN N

dr
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dr dr
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r                             (5.48) 

where 
Ny

z

dr
dr

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
 is calculated at the Nth node, and the unit vectors here ( 1er , 2er , 3er  and 

τr ) are based on the Nth node. Similar as in the planar substrate case, the random force 

profile on the grooved substrate can be expressed in the x and τ directions as: 

θsinNNx ff
r

=  and θτ cosNN ff
r

=                                     (5.49) 

Further, Nf
r

 can be expressed as: 

3211 efefeffeff NzNyNxNNxN
rrrrrr

++=+= ττ                                   (5.50) 

Then the virtual work due to Nf
r

 is written as: 
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which is part of Eq. (5.36). 

 

5.2.4 Axon tip outgrowth and crystallization 

Different models have been developed to capture the tip outgrowth, considering 

the effects of the tubulin concentration at the tip [van Veen1994], the neurite length [van 

Veen1994], or the tension force in the axon [Heidemann1994]. The tip outgrowth rate has 
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been assumed to be an inverse function of elastic tension [Graham2006], since the 

assembly rate decreases with elastic tension for a certain type of neurons microtubule. 

Some tip outgrowth models [Zheng1991, Heidemann1994, O’Toole2008] introduce the 

tip outgrowth rate as proportional to the external force at the tip. Since the relationship 

between the tip outgrowth rate and the external force depends on the type of neuron, 

different parameters characterizing the axon response to the external force, if needed, 

should be experimentally determined. The tip outgrowth model developed by Heidemann 

et al. [Heidemann1994] is applied here for its good physical description of the inelastic 

elongation. In this model, the tip outgrowth rate 
dt
dlt  is expressed as follows: 

( )0Ffk
dt
dl

Nt
t −=

r
                                                    (5.52) 

where lt is the elongation due to the tip outgrowth, kt is the tip outgrowth rate coefficient, 

and F0 is the minimal tension required to trigger tip outgrowth. As so, the tip outgrowth 

rate is proportional to the magnitude of the excess external force at the tip with respect to 

the threshold F0. For PC12 neurites, it was found that kt is about 5 to 50 m/(s·N) and F0 = 

10-9 N [Zheng1991]. When the tip outgrowth is the predominant effect in axonal 

elongation, the ratio of the tip outgrowth rate to the external force, based on O’Toole et 

al.’s model, is about 3 m/(s·N) [O’Toole2008]. Herein, kt is set on the order of 1 m/(s·N) 

accordingly, and Nf
r

 is assumed constant and on the order of 10-8 N 
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[Aeschlimann2000], thus 
dt
dlt  is set as 10-8 m/s. 
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Fig. 5.5. Flowchart of axonal outgrowth modeling. 

 

Since only the distal part of the axon moves during the outgrowth [Chang1998], 

the proximal part of the axon is artificially crystallized in this study as in 

[Aeschlimann2000], and for simplicity the crystallization rate 
dt

dlcr  is set as 
dt
dl

dt
dl tcr = , 

where lcr is the crystallized length during the axon outgrowth process. The axonal 

outgrowth modeling procedure is described in Fig. 5.5. 

 

5.3 Axonal outgrowth simulation and validation 

5.3.1 Simulation parameters 

In this simulation, the initial axonal length is set as 5 μm and divided into 50 

segments, resulting in 0.1 μm long segments. To simulate the axonal outgrowth progress 
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as depicted in Fig. 5.5, some parameters need to be determined either experimentally or 

theoretically. As treated as an elastic beam, the axon Young’s modulus E depends on the 

type of neuron cell. By assuming the cross sectional area A of axon being of the order of 

10-12 m2, the Young’s modulus E of typical neuritis such as the PC12 neurite is of the 

order of 105 Pa [Dennerll1988, Aeschlimann2000]. However, this is no available 

information regarding the axon shear modulus G. Since G can be estimated using 

( )ν+=
12
EG , where ν is the Poisson’s ratio. Herein G is assumed to have the same order 

of magnitude of E. The axon radius R is about 0.3 μm [Aeschlimann2000], thus Ks = 

EπR2 is set as 3×10-8 N, 
4

4

21
REKK π

==  as 6×10-22 N·m2, and 
2

4

3
RGK π

=  as 10-21 

N·m2. 

The first constant of friction μ1 was estimated based on Dennerll et al.’s work 

[Dennerll1988] by Aeschlimann, and μ1 for one neurite is chosen as 0.1 N·s/m 

[Aeschlimann2000]. Since the outgrowth process is simulated with the finite element 

method, the friction force is distributed on the nodes among the segments. As so, the first 

constant of friction in simulation η1 is estimated as 
1

1.0~1 −N
η  N·s/m, where N-1 is 50 in 

this study, resulting in η1 on the order of 10-3~10-2 N·s/m, which is comparable to the 

measurement results by O’Toole et al. [O’Toole2008]. In this study, η1 is arbitrarily 

chosen as 10-2 N·s/m. There is no available information about the second constant of 
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friction η2 thus far, and η2 = 10-12 N·s·m is assumed for each segment. Table 5.1 lists the 

parameters characterizing the axon and the axon/substrate interactions. 

 

Table 5.1. Axon parameters in the simulations. 

Symbol Meaning Estimated value References 

R Radius 3×10-7 m [Aeschlimann2000] 

ρ Density  103 kg/m3 [Aeschlimann2000] 

E Young’s modulus  105 N/m2 [Dennerll1988] 

G Shear modulus  105 N/m2  

Nf
r  Magnitude of force exerted on the tip of axon 10-8 N [Aeschlimann2000] 

μ1 First constant of friction 104 Pa·s [O’Toole2008] 

μ2 Second constant of friction 10-5 N·s  

η1 First constant of friction in simulation 10-3~10-2 N·s/m [Aeschlimann2000] 

η2 Second constant of friction simulation 10-12 N·s·m  

dlt/dt Inelastic elongation rate  10-8 m/s [Aeschlimann2000] 

dlc/dt Crystallization rate  10-8 m/s [Aeschlimann2000] 

 

5.3.2 Simulation results and validation 

Grooves have been fabricated on the inner surface of polymeric hollow fiber 

membrane-based nerve conduits [Zhang2005]. Their shape, shown in Fig. 5.1, can be 

described as: 

( ) ⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛−==

W
yHyFz π2cos1                                             (5.53) 

with two important characteristics: width W and height 2H. Both parameters are varied in 

this study to appreciate the influence of geometry on the axonal outgrowth. According to 

previous studies [Rutkowski2004, Hsu2007], the groove width is chosen on the order of 
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100 μm, while the groove height is on the order of 10 μm. 
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Fig. 5.6. Randomly generated Nf
r

 profile. 

 

The effect of the groove geometry (W and H) on axonal outgrowth under a given 

external force ( )0,, NyNxN fff =
r

 as shown in Fig. 5.6, during a two-hour period, is 

illustrated in Fig. 5.7. The axonal outgrowth is a process which has both deterministic 

and stochastic factors [Maskery2005], so the external force is randomly generated. It can 

be seen when W increases from 50 μm to 200 μm that the average axonal length along the 

x direction decreases. There is a 20% decrease of the average directional outgrowth 

between the grooved one with a 50 μm width and a 20 μm height and a planar substrate 

(H = 0). A similar trend can be observed when the groove height H increases. For a 100 

μm width substrate, the average outgrowth length in the x direction increases from 70.9 to 

90.4 μm when 2H increases from 0 to 60 μm. Under the width and height range 
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investigated, a narrow and deep groove may better promote directional outgrowth as 

predicted. It is concluded that the axonal alignment can be improved by increasing the 

ratio 
W
H of the substrate geometry and a carefully designed substrate texture improves 

directional outgrowth. 
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Fig. 5.7. Effect of groove geometry on the mean value of outgrowing axons under a given 

external force: (A) width effect when H = 10 μm and (B) height effect when W = 100 μm. 

 

The simulation results also have been compared with the experimental 

observations in the outgrowth of dorsal root ganglion (DRG). In DRG regeneration, it 

was found that both the alignment and outgrowth rate of regenerating axons increased 

significantly on grooved nerve conduits compared with those on smooth nerve conduits 

[Zhang2005]. As shown in Fig. 5.8, the simulated outgrowth rate (0.94×10-8 m/s,) is very 
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comparable to that of the experimental study (0.93×10-8 m/s). For the grooved nerve 

conduits (50 μm width and 40 μm height), the simulated outgrowth rate is lower than the 

measured one: 1.3×10-8 m/s versus 1.6×10-8 m/s, and still satisfactorily captures the 

outgrowth process. The good agreements in Fig. 5.8 show that the proposed modeling 

approach is capable of capturing the axonal outgrowth process on some grooved 

substrates. 
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Fig. 5.8. Comparison of experimental [Zhang2005] and numerical results of 

axonal/neurite outgrowth over different substrates. 

 

5.4 Discussion 

In this study, the textured substrate surface is represented by the sinusoidal groove, 

which is of the order of 100 μm in width and 10 μm in height. This groove size is larger 



129 
 

than the diameter of axon (1 μm), justifying the 1D beam model treatment for the axon. 

The axon geometry is such that the diameter is much smaller than the groove size, but the 

length has the same order of magnitude as the groove width. As seen in this study, even if 

the diameter of the axon is very small compared with the groove size, the effect of the 

substrate geometry cannot be ignored. However, in some previous experimental studies, 

where the groove width varied from 100 nm [Johansson2006] to 350 μm [Li2005] and the 

groove height varied from 300 nm [Johansson2006] to 150 μm [Houchin-Ray2007], the 

associated influence of the groove geometry was not clearly understood. Some 

contradictory observations regarding the substrate effect have been reported. For example, 

the axon of mouse sensory ganglia can well sense a tiny grooved pattern (200 nm) and 

grow parallel to the groove [Johansson2006], while neonatal rat DRGs may bridge their 

neurites perpendicularly to a 100 μm groove [Goldner2006] by ignoring the guidance 

effect of grooves. Certainly, the effect of the substrate geometry on the outgrowth 

performance depends on the neuronal cell type, the neurite/substrate interactions, and 

even the substrate compliance [Li2005]. A more general model should be further studied 

to describe the effect of contact-induced guidance with the help of systematic 

experimental investigations and biophysical understanding of the axon outgrowth 

mechanism. 

The model is based on the assumption that the axonal outgrowth is a quasi-static 
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process (Assumption b), thus at each time t the governing equations are the equilibrium 

equations. In order to validate the assumption, a simple problem involving only the 

stretching of a beam is considered. The classical equation of the beam motion for the 1D 

displacement D in the x-direction reads: 

t
D

x
DEA

t
DA

∂
∂

−
∂
∂

=
∂
∂

12

2

2

2

μρ                                              (5.54) 

There are three terms in Eq. (5.54), the inertia term 2

2

t
DA

∂
∂ρ , the elastic term 2

2

x
DEA

∂
∂ , 

and the friction term 
t
D
∂
∂

1μ . For a characteristic time T and a characteristic length L, the 

orders of magnitude to be compared are respectively:  

2T
Aρ , 2L

EA , and 
T

1μ                                                    (5.55) 

or can be rewritten as: 

2

2

ET
Lρ , 1, and 

EAT
L2

1μ                                                   (5.56) 

Based on the values of the parameters defined in Table 5.1 and L chosen of the order of 

10 μm, it can be deduced from Eq. (5.56) that the three terms are now: 

2

1210
T

−

, 1, and 
T

 10                                                     (5.57) 

The time scale associated to the evolutions of the external force Nf
r

 is 10 s. So for a 

characteristic time T = 10 s, the first ratio in Eq. (5.57) is far smaller than 1, and the 

contribution of inertia term can be neglected with respect to the elastic term. Additionally, 
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the velocity of axon is about 10-8 m/s, and the elastic term and the friction term thus have 

the same order of magnitude. 
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Fig. 5.9. Axonal configurations at different times when outgrowing on the planar surface. 

 

A representative axonal outgrowth progression on a planar substrate is illustrated 

in Fig. 5.9. This is simulated under an external force ( )0,, NyNxN fff =
r

 (Fig. 5.6) during a 

two-hour period. Since fNx and the axonal initial configuration are both along the x 

direction, the positive fNx ensures that the axon is always pulled forward by the external 

force and does not move backward. At the same time, fNy varies between -10-8 to 10-8 N, 

the axon may turn right and then left upon the fNy direction. This is consistent with the 
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experimental observations, showing that the intrinsic stiffness of the neurite inhibits the 

perpendicular migration of the axon [Forciniti2009]. In this example, the total axonal 

length is 99.2 μm after 2 hours outgrowth, while the axonal outgrowth in the x direction 

is only 70.9 μm, leading to an axonal outgrowth efficiency as 

%6.71
2.99
9.70

length axonal Total
direction  thein length  Axonal

==
x , which is much lower than those of 

grooved substrates, for example, 98.9% on a 50 μm width and 40 μm height groove. 
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                    (A)                                 (B) 

Fig. 5.10. Effect of the first constant of friction η1 on axonal elongation. (A) Stretch 

outgrowth; (B) stretch outgrowth and tip outgrowth. 

 

The interaction between axon and substrate is characterized by the constants of 



133 
 

friction η1 and η2, which need to be carefully discussed. In [Aeschlimann2000], for the 

PC12 neurite, a value of η1 was estimated between 10-3~10-2 N·s/m. Due to the adhesion 

and surface roughness, the constants of friction for the axon on the polymeric-based 

nerve conduit may be even larger. Thus, the effect of the first constant of friction is 

discussed and shown in Fig. 5.10. The purely elastic axonal elongation (without tip 

outgrowth) with different first constants of friction η1 can be seen in Fig. 5.10A, for an 

initial axon configuration along the x direction with a 5 μm length, and subject to the 

constant external force 1
810 efN
rr

−=  N. When the first constant of friction η1 increases, 

the axon reaches the same steady state more slowly. However, as shown in Fig. 5.10B, 

for a 10-8 m/s tip outgrowth with the force profile obtained in Fig. 5.6, the effect of the 

friction is not obvious, meaning the tip outgrowth is the predominant mechanism of 

axonal outgrowth. While Fig. 5.11 shows the second constant of friction η2 associated to 

moment with the contribution as the force Nf
r

 specified in Fig. 5.6. It is found that when 

η2 increases, the axonal length decreases but the outgrowth in the x-direction increases, 

which means that the axonal outgrowth efficiency is improved by a higher η2. A higher η2 

may keep the initial outgrowth direction, and prevent the axon from extending 

perpendicularly, leading to a better alignment. 
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Fig. 5.11. Effect of the second constant of friction η2 on axonal elongation. 
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Fig. 5.12. Effect of the tip outgrowth rate on axonal elongation. 

 

Under the same external force profile in Fig. 5.6, the axon configurations look 

very similar; however, the axonal length in the x-direction increases significantly with the 
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tip outgrowth rate. As seen from Fig. 5.12, the predominant factor influencing the axonal 

elongation is the tip outgrowth. This indicates that the chemical and/or biological 

guidance cues may significantly promote the outgrowth rate while the axon alignment 

depends mainly on the elastic and the friction contributions, the axonal material 

properties and the topological guidance cue. 

In the current model, the grooves are applied as the substrate surface, and their 

cross sections are represented with a sine curve with a 100 μm width and a 10 μm height. 

This groove size is much larger than the diameter of axon 1 μm, justifying the 1D beam 

model for the axon. The axon geometry is such that the diameter is much smaller than the 

groove size, but the length has the same order of magnitude as the groove width. Even if 

the diameter of the axon is very small compared to the groove size, the effect of the 

geometry of the substrate cannot be neglected. However, in previous experimental studies, 

where the groove width varied from 100 nm [Johansson2006] to 350 μm [Li2005], and 

groove height varied from 300 nm [Johansson2006] to 150 μm [Houchin-Ray2007], the 

influence of the groove size was not clearly determined. For example, the axon of mouse 

sensory ganglia can sense a tiny grooved pattern (200 nm) and grow parallel to the 

groove [Johansson2006], while neonatal rat DRGs can bridge their neurites 

perpendicularly to a 100 μm groove [Goldner2006], which means the guidance effect of 

substrates with large width or large height can be ignored. The contradictory effects are not 
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only due to the neurite. The effect of the substrate geometry is associated with the 

neuronal cell type, the neurite/substrate interactions, and even the substrate compliance 

[Li2005]. Therefore, the model in this work takes into account the geometry of the 

substrate, one type of friction, and a rigid substrate. A general model to describe the 

effect of a contact-induced guidance is needed, requiring more experimental data and 

better description of the physical mechanisms involved.  

 

5.5 Summary 

In this chapter, a numerical model is presented to study the axonal outgrowth in a 

textured nerve conduit. This is the first numerical model, where the effect of the substrate 

geometry and the interaction between axon and textured substrate are taken into account. 

Based on this model, it was found that the substrate geometry will affect the axonal 

outgrowth length and its alignment. When groove width decreases from 200 to 50 μm or 

groove height increases from 0 to 60 μm, the axonal elongation in the longitudinal 

direction of groove may increase. Directional outgrowth can thus be significantly 

improved with a narrow and deep grooved texture. For a given groove texture, the axonal 

length was found mainly determined by the tip outgrowth while the axon alignment will 

be mainly affected by the axon elastic properties and the friction due to the substrate. The 

simulation results were in good agreement with previous experimental observations.  
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CHAPTER SIX 

 CONCLUSIONS 

In this chapter, the different tasks carried out and the different results obtained in 

this work are summarized. The contributions to the fabrication of textured nerve conduits 

and their application to nerve regeneration are listed. Further researches related to this 

study are presented at the end. 

 

6.1 Conclusions 

The goal of this study is to fabricate textured HFMs with aligned grooves on the 

inner surface and to understand the effect of the grooved texture on nerve regeneration 

and repair. This study includes an experimental part investigating the grooved HFM 

fabrication, a theoretical part explaining the groove formation, and a numerical part 

studying the axonal outgrowth on the grooved substrate. The conclusions can be 

summarized as follows: 

1. The PAN/DMSO/water HFMs were fabricated using immersion-precipitation induced 

phase inversion methods. A spinneret with smooth and annular die was used for the 

dry-jet wet spinning process. Besides HFMs with smooth inner surface, HFMs with 

deformed inner surface also can be obtained. In order to be applied as an efficient 

nerve conduit, the HFM with grooved inner texture was designed and controlled. It 
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was found that the HFM geometry, morphology and strength are sensitive to the 

experimental operating conditions, such as polymer solution flow rate and 

concentration, nonsolvent flow rate, and air gap distance. So the effect of these 

fabrication conditions was carefully studied. It is observed that under a defined 

polymer concentration, at different air gap distances, the regular aligned grooves on 

the inner surface of HFMs can be obtained for a certain combination of polymer 

solution and nonsolvent flow rates, which is called the groove forming region for 

HFM fabrication. Then, fabricated HFMs were also carefully characterized in terms of 

geometry of the cross section, morphology, and strength. The influence of different 

fabrication conditions on the HFM characteristics was carefully investigated in order 

to obtain the designed HFMs for further application as nerve conduits. As the most 

concern in this work, the number of groove in the HFM inner surface was found to 

increase with the air gap distance, and decrease with the polymer solution 

concentration and flow rate. But it was found that the number of groove is not 

sensitive to the inner nonsolvent flow rate.  

2. The process-induced instability was presented as the groove formation mechanism, and 

two possible mechanisms were studied: an hydrodynamic instability and a buckling. 

The hydrodynamic instability happens before polymer solution solidification, so it is 

the onset of instability during the HFM fabrication, while the buckling is the 
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magnifying solidification step for the development of instability, leading to the final 

geometry of HFMs. Theoretical models were developed for both hydrodynamic 

instability and buckling. It was found that the hydrodynamic instability does not have 

enough time to develop for PAN/DMSO/water HFMs, so the predominant factor for 

the groove formation in PAN/DMSO/water HFMs is buckling. While, by studying the 

solutal Marangoni effect in PU/DMSO/water HFMs using the hydrodynamic 

instability model, the predicted groove number tendency of PU/DMSO/water HFMs in 

terms of the initial polymer solution concentration was in good agreement with the 

available experimental results. Then, the buckling due to the shrinkage of HFM outer 

surface during solidification, for example in case of PAN/DMSO/water HFMs, was 

studied. A multilayer buckling model was developed to explain the groove formation. 

In this model, the morphology of HFMs was divided into several sublayers. The 

shrinkage of the outer surface during the polymer solidification leads to a radially 

inward pressure, and then the inner skin layer of HFMs buckles to form the aligned 

grooved texture due to the inward pressure. A reasonable prediction of the tendency of 

groove number variation under different fabrication conditions was observed for 

PAN/DMSO/water HFMs.  

3. The axonal outgrowth on a textured substrate was numerically modeled. The influence 

of the substrate geometry was studied, introducing the effect of the substrate geometry 
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and the interaction between axon and textured substrate. The axon was modeled as a 

viscoelastic beam, and its motion and deformation were described as it remains in 

contact with a 3D substrate, which is the inner surface of grooved nerve conduits. In 

this work, the stretching, bending and rotation of the axon were considered. The 

interaction between axon and substrate is due to friction. Both elastic elongation and 

tip outgrowth mechanisms were included in this model. Based on this model, it was 

found that the substrate geometry will affect the axonal outgrowth length and its 

alignment. When groove width decreases from 200 to 50 μm or groove height 

increases from 0 to 60 μm, the axonal elongation in the longitudinal direction of 

groove increases. Directional outgrowth can thus be significantly improved with a 

narrow and deep grooved texture. It is also found that for a given grooved substrate, 

the axonal length was found mainly determined by the tip outgrowth while the axon 

alignment will be mainly affected by the axon elastic properties and the friction due to 

the substrate. The simulation results were in good agreement with previous 

experimental observations.  

 

6.2 Research contributions 

The results in this work, which can contribute to the future research on nerve 

conduit fabrication and nerve regeneration, are listed as follows: 
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1. By investigating effects of four operating conditions: polymer concentration, polymer 

solution flow rate, nonsolvent flow rate, and air gap distance, a groove forming region 

is for the first time experimentally defined for a certain polymer concentration, where 

stable and regular grooved HFMs can be obtained. Another interesting observation is 

that by fixing polymer concentration, polymer solution flow rate, and nonsolvent flow 

rate, the groove number increases with air gap distance within 1 to 20 cm, which is 

different from previous studies [Bonyadi2007, Shi2007]. These different effects of air 

gap distance on groove number in grooved HFM fabrication may be defined not only 

on material properties, but also on the fabrication setup, for example spinneret and 

pumps. 

2. In previous studies, it is generally recognized that grooves are introduced by 

process-induced instability, and it is proposed that both hydrodynamic instability and 

buckling play roles. But, there is not any rigorous mathematical model can be used to 

predict the groove formation process. In this work, it is the first time to mathematically 

model the groove formation process, where both hydrodynamic instability and 

buckling are studied. In the study of the hydrodynamic instability, the solutal 

Marangoni effect due to polymer adsorption at the interface is introduced as the 

driving mechanism, which has never been studied in the field of HFM fabrication. A 

dimensionless model is developed for the Marangoni effect-induced hydrodynamic 



142 
 

instability, where the dispersion relation results from a scale analysis associated to a 

linear stability analysis. Thus this model can be applied for different material 

combinations. The buckling of HFMs induced by the shrinkage during solidification is 

studied with a multilayer model. Since the morphology of HFM is significantly 

influenced by fabrication conditions and the number of sublayer in the HFM 

morphology varies, this multilayer buckling model can be adapted to take into account 

different layered morphologies.  

3. In this study, the model of axonal outgrowth on the grooved substrate is the first 

numerical model, which can consider the effect of substrate geometry. Assumed as a 

quasi-static outgrowth process, the axon configuration is updated by solving the 

governing equations at any time t. By introducing the Cosserat theory, the axon is 

modeled as a 1D beam with 3D motion and 3D deformation, allowing stretching, 

bending, and torsion of the axon. In most of other simulations, only the stretching and 

bending are described for the axon deformation on a planar substrate. But in this 

model, the rotation of the axon cross section is also taken into account. This study 

shows that by carefully choosing the size (width and height), the groove on the inner 

surface of nerve conduits can be a promising topographical guidance cue to improve 

the axonal outgrowth. 
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6.3 Future work 

This work covers experimental, theoretical, and numerical studies on the 

fabrication of a polymeric nerve conduit with topographical guidance cues on its inner 

surface, and explains the formation of grooved inner surface and the role of this grooved 

texture on the axonal outgrowth. However, more related researches need to be carried out, 

such as: 

1. HFMs with grooved inner texture are fabricated with a smooth and annular die by 

controlling the fabrication conditions. By applying the theory of instability, the groove 

number and geometry can be controlled in a certain range by adjusting the operating 

conditions. However, due to the nature of process-induced instability, it is difficult to 

accurately determine the groove number and geometry using just a smooth and annular 

die. So in order to control the groove size more precisely, one reliable method is to 

modify the inner tube in the spinneret from a cylindrical shape to a designed shape, 

imposing the grooved shape to HFMs. Some researchers have designed smart 

spinnerets with a grooved die (Fig. 6.1) to fabricate grooved HFMs for gas separation 

[Nijdam2005, Culfaz2010]. Therefore, a grooved inner tube also can be used in our 

spinneret to fabricate grooved HFMs. So in this approach, the grooved texture in HFM 

inner surface is no longer formed due to buckling, which has to be eliminated. 

Although, with a grooved die, the groove number of fabricated HFMs is determined, it 
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was found that the inner/outer diameters of HFMs and the groove size are reduced 

during the fabrication [Nijdam2005]. Therefore, the control of HFM geometry and the 

effect of fabrication conditions on the final geometry when a grooved die is used, need 

to be addressed. 

 

 

Fig. 6.1. The spinneret with grooved die [Culfaz2010]. 

 

2. Two instability mechanisms are studied in this work, where the hydrodynamic 

instability is the onset of instability, and the buckling can lead to the final grooved 

geometry. But in some cases, the interfacial gradient of polymer solution/nonsolvent 

interface during the mass transfer is such that a solutal Marangoni instability can 

develop within a very short time period. Once the hydrodynamic instability has 

enough time to develop, and can lead to an obvious non-uniform HFM cross section 

before the solidification of polymer solution, the hydrodynamic instability will be the 
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predominant instability mechanism during the fabrication process, such as 

PU/DMSO/water fluids. In this case, nascent fibers with a deformed inner surface are 

formed before entering the coagulation bath, so the hydrodynamic and the elastic 

problems are coupled. Therefore, it is very necessary to develop a model, which can be 

applied to different combinations of fluids.  

3. In the simulation of axonal outgrowth on the grooved substrate with groove width of 

order of 100 μm, the ratio of the axon diameter to the groove width is about 0.01, thus 

the axon can be modeled as a 1D beam, and it is assumed that the axon remains in the 

same groove during outgrowth. But in the current research of nerve regeneration on 

patterned substrates, the groove width of substrate can be as small as 1 μm, even 100 

nm [Gomez2007]. On other studies, substrates with certain surface roughness (about 1 

μm) are also used as nerve conduit. In these cases, the axon diameter is of the order of 

the groove width or the surface roughness, so a general 3D model has to be developed 

for the axon. Furthermore, in this study the interaction between axon and substrate is 

considered as a friction, but other interactions may exist depending on the neuron type 

and the material properties of the substrate, such as the formability of biological bonds. 

Meanwhile, the substrate stiffness is also found to have significant influence on the 

axon morphology and reaction [Balgude2001]. Therefore, a more comprehensive 

model needs to be developed to describe the axonal outgrowth. Moreover, due to the 
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time scale of the force evolution exerted at the tip Nf
r

 is on the order of 1 ~ 10 s, the 

model introduces an elastic stretching and an inelastic tip outgrowth. In order to 

compare to a 24 hours axonal outgrowth, a viscoelastic constitutive law needs to be 

chosen for the axon, and a totally viscoelastic model has to be developed for the axon, 

the limit case, for 7 days, being the totally viscous model as developed by O’Toole et 

al. [O’Toole2008]. 
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Appendix A 

Three-layer buckling model for PU/DMSO/Water HFMs 

The driving mechanism of the buckling of HMFs may vary based on the material 

property and fabrication setup. Because of different operating conditions and 

morphologies between PAN and PU HFMs, an alternative buckling model is developed 

in this appendix. It is a model which can explain the groove formation on the inner 

surface of PU/DMSO/water HFMs.    

 

A.1 Three-layer buckling model 

As shown in Fig. A.1, the fabrication of PU/DMSO/water HFMs by phase 

inversion method leads to the formation of three distinct layers, two dense inner and outer 

skin layers and one porous intermediate layer [Long2008]. When the polymer dope 

solution comes out of the spinneret as seen in Fig. 1.9, it first interacts with the inner 

nonsolvent bore fluid, resulting in the mass transport and phase separation-induced elastic 

inner skin layer. The outer skin layer is not well formed until the nascent fiber enters the 

external nonsolvent-based coagulation bath after traveling through an air gap. Once the 

nascent fiber enters the coagulation bath, the phase separation and solidification 

processes occur at the fiber outer surface while the inner surface might have already well 

developed into a thin-walled elastic cylindrical layer. The HFM intermediate layer 
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usually is the last part to completely solidify and may shrink lastly due to mass transfer 

through both the inner and outer surfaces. As a similar effect due to pre-strain, the 

shrinkage results in a circumferential stress on the inner and outer elastic layers. This 

stress may be mainly relieved through the buckling of the inner layer, which solidifies 

first, instead of the outer layer. This solidification-induced deformation scenario is 

similar to the buckling of a stiff thin elastic film on a compliant soft elastic plane 

substrate [Huang2005], which has been intensively studied recently [Groenewold2001, 

Song2008]. As so, the groove formation of HFM is modeled here as the intermediate 

layer shrinkage-induced buckling of the inner layer. The inner layer buckles with a 

particular wave length to minimize the total elastic energy of the system. 

 

B

100 µm

20 µm

Inner dense 
skin layer

Intermediate layer 
with macrovoids

Outer dense skin layer

A Inner surface 
with aligned 

grooves

 

Fig. A.1. PU/DMSO/water HFM with A) smooth, or B) axially grooved inner surface. 

 

PU HFMs here are modeled as a thin-walled elastic cylindrical shell with three 
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distinct but seamless connected layers as in Fig. A.2. For each layer Ei is the Young’s 

modulus, hi is the thickness, and νi is the Poisson’s ratio, where i = 1 stands for the inner 

layer, i = 2 the intermediate layer, and i = 3 the outer layer. Both the inner and outer 

layers bond to the intermediate layer seamlessly as a whole fiber during fabrication. To 

study this shrinkage-induced buckling phenomenon, the following assumptions are 

introduced: 

a) Due to the porous microstructure of the intermediate layer and the dense-skin 

structure of the inner layer, the inner layer is much stiffer than the 

intermediate layer, i.e. E1 >> E2. As shown in Fig. A.1, the thickness of the 

inner layer is usually much smaller than that of the intermediate layer, i.e. h1 

<< h2, so the intermediate layer is modeled as a semi-infinite solid substrate; 

b) As the inner layer is a circular thin layer, the tangential strain of the inner 

layer θθε  is considered uniform; 

c) As E3 >> E2, the thin outer layer is considered as a rigid boundary for the 

thick intermediate layer; 

d) Due to the thin-walled cylindrical shell geometry of HFM, this buckling 

process is modeled as plane-strain [Kardomateas2005]; and 

e) The HFM total energy consists of: the membrane energy (Um), which is the 

strain energy due to stretching of the inner layer; the bending energy (Ub), 
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which is the strain energy due to bending of the inner layer; and the substrate 

energy (Us), which is the strain energy of the intermediate layer. 

 

θ
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Inner layer 
(subscript 1)

Intermediate layer 
(subscript 2)

Outer layer 
(subscript 3)  

Fig. A.2. Schematic of the three-layer model before and after instability (three layers are 

denoted using the subscripts 1, 2, and 3). 

 

A.2 Strain energy of HFM 

The inner layer strain energy has two parts: the membrane and bending energies. 

Assuming the radius of inner layer is 'a  before shrinkage, the radius after shrinkage a is 

( )ε+1
'a , where ε  is the solidification-induced equivalent pre-strain applied to the 

intermediate layer. As shown in Fig. 4.8, the radial displacement ( )1
ru  is defined as: 

( ) ( ) 'cos1 akAaur −+= θ                                                (A.1) 
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where A is the groove amplitude, 
λ
πak 2

=  is the groove number (wave number), and λ 

is the wave length. The nonlinear membrane strain of the inner layer is defined as 

[Bogdanovich1993]: 

( ) ( ) ( ) 2111
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where ( )1
ru  and ( )1

θu  are the displacements in the r and θ directions. Per the θθε  

uniformity assumption, ( )1
θu  can be further determined based on Eqs. (A.1) and (A.2): 

( ) ( ) ( )θθθ k
a
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By substituting Eqs. (A.1) and (A.3) into Eq. (A.2), it is found: 
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Based on Eq. (A.4), the membrane energy [Timoshenko1961] can be estimated as 

follows: 
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where 2
1

1
1 1 ν−
=

EE . The tangential curvature change θχ  [Bogdanovich1993] of any two 

points of the inner layer is: 
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Based on Eq. (A.6), the bending energy [Timoshenko1961] can be further estimated as 
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follows: 
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The intermediate layer here is assumed as a semi-infinite solid substrate after 

solidification, and this assumption can be verified based on the finite thickness solution 

as follows. For the intermediate layer, the boundary conditions at the inner/intermediate 

interface are the displacement continuity and zero shear stress as follows: 

( ) ( )θkAu
arr cos2 =

=
, 0=

=arrθσ                                          (A.8) 

There is no displacement at the intermediate/outer interface during the process, so the 

boundary condition can be written as follows: 

( ) 02 =
=Hrru , ( ) 02 =

=Hr
uθ                                               (A.9) 

where H is the radius of intermediate/outer interface. The Airy stress function given by 

the Michell solution [Barber2005] is expressed as: 

( ) ( )θφ krArBrArB kkkk cos22
2

1
2

1
−+−+ +++=                                (A.10) 

Both displacements and stresses can be obtained from the Michell solution, and the 

coefficients A1, A2, B1, and B2 can be determined based on the boundary conditions Eqs. 

(A.8) and (A.9). It should be noticed that in the HFM geometry, 
2
1~

H
a , and k is large, 

which was around 50 in this study, so 1<<⎟
⎠
⎞

⎜
⎝
⎛

k

H
a . Due to small 

k

H
a
⎟
⎠
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⎝
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coefficients A1, A2, B1, and B2 can be expressed as follows: 
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where ( )2

2
2 12 ν

μ
+

=
E , and 22 43 νκ −=  for this plane-strain case. Therefore the Airy 

stress function to be considered is the Airy stress function of a semi-infinite substrate, 

which confirms the assumption of semi-infinite intermediate layer. 

As so, associated with A1 and A2 (Eq. A.11), the Cauchy stress tensor components 

can be deduced [Barber2005] as follows: 
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. The strain energy of the intermediate layer Us can be 

expressed as: 
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where σ  and ε  are the stress and strain tensors of the intermediate layer, respectively. 

Using Gauss’ theorem with the specified boundary conditions, this intermediate layer 

strain energy can be expressed as follows: 
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where nr  is the normal vector, ( )2ur  is the displacement vector, and S is the inner 

surface of the intermediate layer. 

The total energy is based on the inner and intermediate layers while the outer 

layer is considered as a rigid boundary for the whole system, then the total energy can be 

represented as a function of the groove number k and the amplitude A as follows: 

( ) ( ) ( ) ( )AkUAkUAkUAkU sbmtotal ,,,, ++=                  (A.19) 

By substituting Eqs. (A.5), (A.7), and (A.18) into Eq. (A.19), the total energy is rewritten 

in the following form: 
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The total energy (Eq. A.20) is a fourth order polynomial of A. The groove number k and 
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the amplitude A are to be determined by minimizing the total energy: 
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When f > 0, the minimum of total energy can be only obtained at A = 0, that is, there is no 

groove on inner layer. When f < 0, the minimum of total energy can be obtained at a 

positive amplitude: 

42k
fA −=                                                         (A.24) 

Once the amplitude A is determined, the groove number k can be obtained accordingly by 

solving Eq. (A.23). 

 

A.3 Shrinkage induced buckling in PU/DMSO/water HFMs 

In this study, it is considered that the HFM intermediate layer is the last part to 

completely solidify and may shrink lastly due to mass transfer through both the inner and 

outer surfaces. The typical phase separation-induced polymeric membrane shrinkage has 

been determined experimentally around 2% [Wu2006, Menut2008]. The intermediate 

layer solidification-induced equivalent pre-strain ε is also taken as 2% in this 

PU/DMSO/water-based fabrication study. It should be pointed out that this equivalent 
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pre-strain has to be experimentally determined for better modeling accuracy. 

For the model validation purpose, the Young’s modulus of fabricated HFMs 

[Long2008] was measured using an Electroforce 3200 tension test machine (Electroforce 

3200, Bose, MN, USA) with a crosshead speed of 10 mm/min and a clamp distance 10 

mm. The average Young’s modulus Eave was found around 107 Pa, which is of the same 

order of typical HFMs [Cabasso1976, Tsai2001]. Since it is difficult to determine the 

Young’s modulus for each layer, it is assumed in this study that the porous intermediate 

layer has a lower Young’s modulus comparing with the dense inner and outer skin layers. 

For simplicity, the inner and outer layers are considered to have a same Young’s modulus 

(E1 = E3), and a Young’s modulus ratio is further introduced: η = E1/E2 = E1/ E3. The 

experimentally measured average aveE  is a function of η and the thickness of layers: 

( )[ ] ( ) ( )[ ] ( ) ( )[ ]
( ) 22

2
21
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2
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2
212

22
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''
''''''

aha
hhahaEhahhaEahaEEave −+

++−+++−+++−+
=     (A.25) 

where 321 hhhh ++= . E1 (E3) and E2 can be determined using Eq. (A.25) given Eave and 

η. The Poisson’s ratio of both inner and intermediate layers was taken as ν1 = ν2 = 0.3 

based on the measurement of typical HFMs [Cabasso1976]. Based on the experiment 

observations, the thickness of the inner and outer layers (h1 and h3) is assumed as βh, and 

the thickness of the intermediate layer (h2) as (1-2β)h, where β is taken as 0.05 based on 

the experimental observations. 
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Fig. A.3. (A) Effect of the Young’s modulus ratio η on the f minimum value (2 < k < 

60) and (B) effect of the groove number on f (η = 150 and β = 0.05). 

 

For any given HFM geometry, both f which is dependent on η as shown in Eq. 

(A.21) and 
k
f
∂
∂  should be negative for grooves to form as specified by Eq. (A.23). Fig. 

A.3 shows the relationship between f and η. The case considered in the figure 

corresponds to the following conditions: 12.5 w/w% polymer solution concentration, 4 

ml/min inner nonsolvent flow rate, and 1.2 ml/min polymer solution flow rate (Table 

A.1). It can be seen that f is only negative within a certain η range under given process 

conditions. While η is to be experimentally determined in the future, it is taken as 150 in 

this study to illustrate the proposed modeling approach. As E1 >> E2, the ratio η is of the 

order 102, so 150 is considered to be a reasonable approximation. From Fig. A.3B, it is 
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found that only the groove range AB satisfies both the groove forming requirements: f < 

0 and 0<
∂
∂
k
f , which means that grooves can only form under certain operating 

conditions for a given material system. The exact groove number and amplitude can be 

determined by solving Eq. (A.23). Under certain fabrication conditions, the HFM 

material properties and geometry lead to a positive f when k is positive, thus no groove 

can form under these fabrication conditions. Therefore, this buckling model not only can 

predict the groove number and the amplitude, but also can explain qualitatively why 

under certain conditions no groove can form.  

Fig. A.4 further illustrates the measured and predicted groove numbers for η = 

150 under different flow rates and polymer concentration ratios as specified in Table A.1. 

A reasonable prediction accuracy of groove number has been observed for the 

experimental cases studied. Therefore, based on the buckling-induced instability 

mechanism, the HFM groove number is modeled by studying the buckling of a thin 

elastic film on a soft compliant substrate under the effect of shrinkage. 
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Fig. A.4. Groove number comparison between the measurements and predictions (η = 

150 and β = 0.05) per each fabrication condition: (A) polymer solution flow rate, (B) 

inner nonsolvent flow rate, and (C) polymer concentration. 
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Table A.1. PU/DMSO/water HFM fabrication conditions and experimental observations. 

Fabrication conditions 
(under a 10 mm air-gap) 

Inner diameter 
(mm) 

Outer diameter 
(mm) 

Average 
groove number 

Effect of polymer solution 
flow rate 

• 12.5 w/w% polymer 
solution concentration  

• 4 ml/min inner 
nonsolvent flow rate  

Polymer solution 
flow rate (ml/min) 

 

0.8 1.54 1.72 No groove 

1.0 1.44 1.65 No groove 

1.2 1.41 1.60 50 

1.4 1.33 1.52 40 

1.6 1.25 1.47 31 

1.8 1.19 1.42 23 

2.0 1.12 1.38 No groove 

Effect of inner nonsolvent 
flow rate  

• 12.5 w/w% polymer 
solution concentration  

• 1.6 ml/min polymer 
solution flow rate 

Inner nonsolvent 
flow rate (ml/min) 

 

2.0 1.10 1.36 No groove 

3.0 1.20 1.42 28 

4.0 1.33 1.52 34 

5.0 1.34 1.58 35 

6.0 1.42 1.66 48 

7.0 1.49 1.71 No groove 

Effect of polymer solution 
concentration  

• 1.6 ml/min polymer 
solution flow rate  

• 4 ml/min inner 
nonsolvent flow rate 

Polymer solution 
concentration 

 

10 w/w% 1.38 1.57 41 

12.5 w/w% 1.30 1.52 33 

15 w/w% 1.23 1.46 No groove 

 

A.4 Summary 

The buckling instability is studied for PU/DMSO/water HFM fabrication. The 

buckling takes place during the polymer solution solidification, which will lead to the 

final grooved cross section of HFM. The PU/DMSO/water HFM is described by a 
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three-layer model, and the buckling is introduced by solidification-induced shrinkage of 

the intermediate layer. A reasonable modeling accuracy of groove number is observed 

compared to experimental results of PU/DMSO/water HFM fabrication. Therefore, the 

model developed here gives a reasonable explanation of the groove formation in HFM 

fabrication for certain fluids. 
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Appendix B 

Equations and derivations for axonal outgrowth model 

In this section, the expressions of ui and ωi given by Eqs. (5.17) and (5.18) are 

derived. The expression of the rotation rate of an axon cross section defined by Eq. (5.4) 

as 

pp dd
rr&r ×=ω  (i = 1, 2, 3)                                                (B.1) 

For illustration, when p = 3,  
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The projection of Eq. (B.3) onto 1d
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Substituting Eqs. (5.16) and (B.5) into Eq. (B.4), it can be deduced that 
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Comparing two expressions of ω1 given by Eqs. (5.18) and (B.6), as 1ˆ =q , the matrix 

[B1] can be obtained [ ]
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The virtual work of internal forces of the ith segment is deduced from the 

expression of the stretching and bending energies of any segment i by Eqs. (5.30) and 

(5.31) as 
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Thus, the partial derivatives in Eq. (5.32) are: 
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The other partial derivatives with respect to q2i, q3i, and q4i are obtained similarly. 

The virtual work of internal forces in one segment can be obtained based on the 

generalized force (Eq. 5.35) exerted on the ith node (i = 1 to N) defined by: 
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Based on Eqs. (5.38)-(5.40), the different partial derivatives needed to express the 
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virtual work principle as in Eq. (5.42) are given by 
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