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Abstract

This work describes a parallelizable optical flow estimator that uses a modi-

fied batch version of the Self Organizing Map (SOM). This gradient-based estimator

handles the ill-posedness in motion estimation via a novel combination of regression

and a self organization strategy. The aperture problem is explicitly modeled using an

algebraic framework that partitions motion estimates obtained from regression into

two sets, one (set Hc) with estimates with high confidence and another (set Hp) with

low confidence estimates. The self organization step uses a uniquely designed pair

of training set (Q = Hc) and the initial weights set (W = Hc ∪ Hp). It is shown

that with this specific choice of training and initial weights sets, the interpolation of

flow vectors is achieved primarily due to the regularization property of SOM. More-

over, the computationally involved step of finding the winner unit in SOM simplifies

to indexing into a 2D array making the algorithm parallelizable and highly scalable.

To preserve flow discontinuities at occlusion boundaries, we have designed anisotropic

neighborhood function for SOM that uses a novel OFCE residual-based distance mea-

sure. A multi-resolution or pyramidal approach is used to estimate large motion. As

the algorithm is scalable, with sufficient number of computing cores (for example

on a GPU), the implementation of the estimator can be made real-time. With the

available true motion from Middlebury database, error metrics are computed.
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Chapter 1

Introduction

Optical flow computation is an important component of the early vision prob-

lem. The computation results in a 2 dimensional (2D) vector field over the image

pixel locations x at time t. The vectors v(x, t) are referred to as flow vectors and the

2D vector field is called the optical flow field. The optical flow model is based upon

the illumination changes between a small number of (typically 2) consecutive frames

(images) of a video sequence. The flow field represents the motion of objects within

the sequence.

This work describes a new optical flow estimator that uses a self organization

strategy and is applicable to image sequences containing a priori unknown number

of motion classes along with occlusion boundaries. It is well known that the prob-

lem of estimating motion is ill-posed with regression or regularization being typically

used in gradient-based estimators to overcome the ill-posedness. The optical flow

estimator developed in this work handles the ill-posedness via a novel combination

of regression and a self organization strategy (specifically, self organization using un-

supervised learning). The aperture problem is explicitly modeled using an algebraic

framework that partitions motion estimates obtained from regression into two sets,
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one (set Hc) with estimates with high confidence and another set (Hp) with low con-

fidence estimates. The choice of the training set (Q = Hc) and the initial weights set

(W = Hc ∪ Hp) used during unsupervised learning is novel and leads to interpola-

tion/correction of flow vectors. Using Heskes [Hes01] interpretation of Self Organizing

Map (SOM) we show that the interpolation of flow vectors is achieved primarily due

to the regularization property of SOM. Anisotropic neighborhoods designed for SOM

using a novel residual-based distance measure preserve flow discontinuities at occlu-

sion boundaries.

A multi-resolution or pyramidal approach is used to estimate large motion. As

self organization-based motion estimation is computationally intense, parallel process-

ing on Graphics Processing Units (GPU) is used for speedup. With sufficient number

of GPU computing cores the implementation of the estimator can be made real-time.

With the available true motion from Middlebury database, error metrics like Angular

Error (AE) and End Point Error (EE) are computed.

1.1 2D Motion Field and Optical Flow Field

Assume that some objects are moving in 3D space and are being imaged. The

3D motion of the objects can be represented using 3D motion vectors. These 3D

motion vectors when projected on the camera’s 2D image plane lead to 2D motion

field. Optical flow field, on the other hand, is a 2D vector field which is estimated from

the image intensity variations and does not always correspond to the 2D motion field.

For example, consider a rotating white textureless sphere with Lambertian reflective

surface. The 3D rotation motion generates a 2D motion field when projected on a 2D

plane, but when imaged, the sphere appears with same image intensity across frames

and hence with zero magnitude optical flow vectors. Optical flow is thus defined as

2



the apparent motion of brightness patterns in the image frames. The goal of optical

flow estimators is to output an optical flow field that is as close to 2D motion field as

possible. Hence forth, the terms optical flow and 2D motion are used interchangeably.

Applications that use motion information vary based on the density of the flow

field. For example, motion segmentation of images requires dense flow fields where

as tracking applications work with sparse flow fields. Optical flow has applications in

fields such as surveillance, object-based video compression and recovery of 3D shape

of objects.

Quantitative evaluation of various optical flow estimators can be found at

Middlebury website (http://vision.middlebury.edu/flow). The Middlebury database

is a set of test cases that is used to benchmark optical flow estimators. It is a

good place to get an idea of the state-of-the-art in this field. Broadly, there are

three categories [BB95a] of estimators for optical flow, namely, the frequency-domain

estimators, the gradient-based estimators and the feature-based estimators.

The estimator developed in this work is gradient-based. The spatial and tem-

poral gradients of the image intensity are used to determine motion. Gradient-based

(differential) methods can further be classified into regularization-based global meth-

ods such as the Horn-Schunck [HS81] approach and into regression-based local meth-

ods such as the Lucas-Kanade [LK81] technique. Local methods determine estimates

by optimizing some local energy-like expression whereas global methods try to mini-

mize a global energy functional. The local methods are known to be robust to noise

compared to global methods. On the other hand, global methods generate denser flow

fields than the local methods. The estimator developed in this work starts as a local

method and then uses a self-organization strategy (specifically, unsupervised learn-

ing) to interpolate flow field. This interpolation corrects the estimates and increases

the flow field density as well. This self organization-based optical flow estimator can
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be positioned in between local and global methods with respect to the density of flow

field.

Differential methods rely on the Brightness Constancy Assumption (BCA)

which assumes that all changes in brightness in the image sequence are attributed to

motion. BCA is valid most of the time but violations have to be mitigated to get

acceptable flow fields. A major source of BCA violation is occlusion. With multiple

objects moving in different direction, the 2D motion field may have motion bound-

aries with different flows on either side of the boundary. This happens when an object

occludes another. At these motion boundaries, brightness pattern previously unseen

in a frame appears (dissoccludes) in the next frame. Similarly, brightness pattern

in a frame might disappear (occlude) in the next frame. In these cases, there is no

preservation of brightness pattern at the motion boundaries and BCA fails. These

motion boundaries are referred to as occlusion boundaries. Other sources of BCA

violation like specular reflections, transparent or translucent surfaces, ambient light-

ing variations and self illumination are ignored in this work. Estimation of multiple

object flow fields with mitigation of occlusion boundaries is the focus of this work.

1.2 Gradient-based Estimation Theory

Gradient-based methods start explicitly with the Brightness Constancy As-

sumption (BCA). Suppose an image point x = [x y]T at time t is moved to [x +

dx y+dy]
T at time t+dt. Under a constant brightness assumption, the images of the

same object point at different times have the same intensity value. Therefore

I(x+ dx, y + dy, t+ dt) = I(x, y, t) (1.1)
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The Taylor series expansion of the left side term with only the linear terms, yields:

I(x+ dx, y + dy, t+ dt) = I(x, y, t) + Ixdx + Iydy + Itdt

where Ix = ∂I
∂x

, Iy = ∂I
∂y

and It = ∂I
∂t

. Applying BCA (Eq 1.1) we get:

Ixdx + Iydy + Itdt = 0 (1.2)

Optical Flow Constraint Equation (OFCE): (Eq 1.2) can be written in terms

of the flow vectors by dividing it by dt as:

Ixu+ Iyv + It = 0 or ∇ITx v = −It (1.3)

The OFCE (Eq 1.3) is a relation between the spatial gradients ∇ITx = [Ix Iy] and the

temporal gradient It of image intensity I(x, t), with the velocity v = [u v]T at pixel

location x.

Spatial Coherence: OFCE (Eq 1.3) when applied at a single pixel location is

underconstrained, as there are two unknowns u and v in a single equation. Thus the

problem of estimating motion using just single OFCE is ill-posed. Figure 1.1 shows

the motion components u and v constrained by line ∇ITx v = −It. Velocity v = [u v]T

can lie anywhere on the line and the exact position cannot be determined without

adding additional constraints.

To overcome the ill-posedness, two techniques are typically used, namely, re-

gression and regularization. In the regression-based methods, it is assumed that two

(or more) adjacent pixels correspond to points of the same object and thus have same

motion. This kind of spatial coherence assumption is characterized as ”piecewise

5



Figure 1.1: Optical Flow Constraint Line.

constant” motion assumption. On the other hand, the regularization-based methods

assumes that flow within a neighborhood varies gradually since it is caused by single

motion. Thus the spatial coherence assumption for regularization-based methods is

characterized as ”piecewise smooth” motion assumption. Regression-based methods

are local in approach, in the sense that, the solution (motion estimate) obtained at a

pixel has no influence on the solution obtained at nearby pixels. This is in contrast

with global methods where solution (motion estimate) obtained at a pixel location is

influenced by solutions at pixel locations in the neighborhood.

1.2.1 Regression-based Methods

With the assumption that motion is ”piecewise constant”, the regression-based

methods pool OFCEs within a neighborhood (window or aperture) and simultane-

ously solve them to compute single motion vector. The motion is assigned to the pixel

at the center of the aperture. This procedure is repeated by forming a neighborhood

around each pixel.
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For example, Lucas-Kanade [LK81] use the weighted least squares for obtaining the

regression solution. They minimize the following error term (using L2 norm).

ELK =
∑
R

W 2 (Ixu+ Iyv + It)
2 (1.4)

where R is the region-of-support of pixels forming the aperture and W is a window

function giving less weight to residuals further from the center from R. The confidence

in the motion estimates can be ascertained by eigen analysis of the least squares

matrix. The confidence of solution is typically low in low textured areas of the image.

Aperture Problem: In sparse texture area of the image, the spatio-temporal gra-

dients in (Eq 1.4) may not have enough information to provide an unique solution

(motion estimate). This problem is referred to as the Aperture Problem. Figure 1.2

shows motion of a rectangular region. The window labeled Aperture 1, has gradient

information in both spatial directions and motion can be estimated reliably.

Figure 1.2: Aperture Problem

In an aperture with texture in only one dimension (Aperture 2 in Figure 1.2),

motion can be estimated only in direction parallel to intensity gradient. Motion per-

pendicular to this direction cannot be uniquely identified due to lack of information.

In an aperture with no texture, Ix, Iy and It will all be zero, hence no motion esti-

mate can be made. Assuming single motion, the estimation ability and accuracy of

the estimate with larger aperture is likely to be better than with smaller aperture

7



due to pooling of more information. But increasing the aperture size increases the

chances of pooling information from pixels with different motions and hence leading

to grossly wrong motion estimate. Thus aperture size cannot be made arbitrarily

large and this problem is referred to as the Generalized Aperture Problem. Black

and Anandan [BA96] try to overcome issues at occlusion boundaries by using robust

statistics to estimate the dominant motion by ignoring some OFCEs (outliers).

The regression-based methods purge motion estimates with low confidence

measures (mostly with aperture issues) thus leading to sparse but reliable flow field.

1.2.2 Regularization-based Methods

As seen earlier, the Brightness Constancy Assumption (Eq 1.1) leads to Op-

tical Flow Constraint Equation (Eq 1.3) which is ill-posed due to presence of two

unknowns u and v in a single equation. The regularization-based techniques try

to overcome this ill-posedness by assuming ”piecewise smoothness” of motion (Spa-

tial Coherence). Regularization methods try to solve the problem by minimizing a

global energy functional which incorporates both the Brightness Constancy Assump-

tion (BCA) and the Spatial Coherence Assumption. The typical form of the global

energy term is given [BSL+07] as:

EGlobal = EData + λEPrior (1.5)

where the Data Term EData is based on OFCE errors or residuals, and where the

Prior Term EPrior is based on smoothness assumption favoring certain flow fields

over others. λ controls the relative importance of EData and EPrior. With larger

value of λ, more smooth flow fields are obtained.

The Data Term is obtained by aggregating the error (residual) per pixel of the OFCEs

8



over the image using some norm. For example, the Horn-Schunck algorithm [HS81]

uses L2 norm to get:

EData =
∑
x,y

[Ixu+ Iyv + It]
2 (1.6)

The Prior Term is derived by assuming that neighboring points in an image will move

in a similar manner, constraining the optical flow to change smoothly over the image.

For example, the Horn-Schunck algorithm [HS81] uses Laplacian of the optical flow

to enforce smoothness with:

EPrior =
∑
x,y

[
u2x + u2y + v2x + v2y

]
(1.7)

where ux = ∂u
∂x

, uy = ∂u
∂y

, vx = ∂v
∂x

and vy = ∂v
∂y

.

Robust Statistics: The use of L2 norm assumes that the gradients of the flow

field are Gaussian and IID [BSL+07]. These assumptions are not true especially near

occlusion boundaries. Black and Anandan [BA96] use robust penalty functions for

both the Data Term and the Prior Term to handle violations of assumptions used in

gradient-based techniques. While Black and Anandan [BA96] use Lorenzian penalty

function, the recent algorithms typically use L1 norm [BSL+07]. There are various

algorithms that refine the regularization-based approach using temporal smoothness,

spatial weighting functions, photometrically invariant features and some other tech-

niques, which are described in [BSL+07].

The solution (motion estimates) in regularization-based methods is obtained

by minimizing the global energy term (Eq 1.5) typically using either Gradient Descent

algorithms or by using Variational approaches.
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1.2.3 Self Organization Approach

This work uses clustering techniques to overcome ill-posedness of motion esti-

mation while generating dense flow fields. The idea is to feed motion data as input to

a clustering algorithm to identify clusters of motion vectors. The motion data should

have both the high and low confidence motion estimates obtained from a regression-

based technique. Once the cluster membership is known it is possible to refine low

confidence estimates to make them similar to high confidence estimates. This refine-

ment is justified using the spatial coherence assumption, either ”piecewise constant”

or ”piecewise smooth”. The motion estimates with low confidence measures are the

ones that are affected due to aperture issue. The refinement of these vectors thus

helps mitigate the aperture problem.

Self Organization: Not all clustering algorithms are suitable for motion refine-

ment. Some clustering algorithms require that the number of clusters to be formed

be specified before hand. For a general flow field it is not possible to know the

number of clusters a-priori and such algorithms cannot be used for general flow field

estimation. A class of clustering algorithms follow self organization approach and

do not require number of clusters as input. These self organizing algorithms use

competitive learning with soft-max adaptation to identify clusters. Self organizing

algorithms like Self Organizing Map (SOM) [Koh90] and Neural Gas (NG) [MBS93]

are used in this work to show feasibility of using self organization methods in motion

estimation/refinement.
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1.3 Large Motion using Pyramids

The OFCE (Eq 1.3) is a differential motion model based on spatial and tem-

poral gradients of image intensity. The gradients are computed using image intensity

values within a small neighborhood. If the motion magnitude is larger than this

neighborhood, then the motion model that we use is no longer valid. That is, OFCE

assumes small motion. To handle large motion, multi-resolution or pyramidal ap-

proach is required. If the resolution of images is reduced sufficiently, then use of the

differential motion model (OFCE) becomes valid.

The pyramidal approach typically involves construction of pyramids of spa-

tially filtered (low-pass) and sub-sampled images. The differential motion model must

be valid at the coarsest-resolution of the pyramid. Motion estimation starts at the

coarsest resolution and moves through remaining pyramid levels. Motion computed

at a coarser resolution is used to estimate motion at the next finer resolution in the

pyramid. To make sure that the OFCEs are valid at the finer resolution, the motion

estimate from coarser resolution is scaled and used to warp one of the finer resolution

images (say image1) towards another (say image2). The remaining (delta) motion

between the warped image and image2 is small and can be computed. The process

is repeated till the highest resolution in the pyramid. The delta motion computed at

each level is scaled and accumulated to generate the final motion estimate.

In this work, the pyramid is used along with the self organization-based motion

estimation technique to handle large motion. Another side-effect of multi-resolution

processing is the increase in density of flow estimates.
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1.4 Parallel Computing on GPU

The self organization-based motion estimation is computationally intense. The

good thing is that, all stages for computing optical flow using this technique can be

made data-parallel (rather datum-parallel) and can be speeded up using Single In-

struction Multiple Data (SIMD) type machines. To effectively leverage SIMD hard-

ware capabilities, it is important that the processing of each data element be inde-

pendent of the processing of other data elements.

In this work, NVIDIA GPUs are used as SIMD machines for general purpose

computing. GPUs are well suited for data-parallel computations as they have multiple

computing cores driven by very high memory bandwidth. NVIDIA has Compute

Unified Device Architecture (CUDA) which is suitable for ”general purpose computing

on GPU” (GPGPU). Apart from NVIDIA specific CUDA, there is OpenCL (Open

Computing Language) specification which can be used for GPGPU. We use NVIDIA

CUDA in this work.

1.5 Middlebury Database

Evaluation of optical flow estimators is based on applications. For tracking ap-

plications, sparse flow estimators are good as they provide reliability measures along

with the flow. For applications that require dense optical flow, the quantitative eval-

uation of estimators is based on error metrics. To compute error metrics, true motion

needs to be known for the image sequence. This is where standard test databases

have a role to play. Middlebury database (http://vision.middlebury.edu/flow/data/)

has test sequences with complex scenes and serves as a effective benchmark for dense

optical flow estimators. With the available true motion, error metrics like Angular
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Error (AE) and End Point Error (ER) are computed.

1.6 Outline

The work described here in is a new optical flow field estimator that uses self

organization techniques and is applicable to image sequences containing a priori un-

known number of motion classes along with occlusion boundaries. The rest of the

chapters go into details of the estimator and its evaluation. Chapter 2 explains the

theory behind self organization and analyzes various algorithms and ascertains suit-

ability for motion estimation. Chapter 3 is about the application of self organization

techniques to motion estimation. It goes into details of gradient estimation, local

(regression-based) motion estimation and use of SOM and Neural Gas algorithms

for motion refinement or interpolation of flow. Online and batch versions of these

algorithms are also discussed. Chapter 4 is about large motion and the use of multi-

resolution or pyramidal framework. This chapter thus provides the end-to-end details

of the optical flow estimator. The quantitative evaluation of the algorithm also can

be found in this chapter. Chapter 5 shows how the estimator developed in Chapter 4

is mapped onto GPU. Conclusion is stated and follow on work is discussed in Chapter

6.
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Chapter 2

Self Organization Approaches and

Algorithms

Self organizing algorithms use competitive learning with soft-max adaptation

to identify clusters. Self organizing algorithms like Self Organizing Map (SOM)

[Koh90] and Neural Gas (NG) [MBS93] are used in this work. This chapter goes

into details of clustering algorithms but leaves their application to motion estimation

to the next chapter.

Clustering: The goal of clustering is to group data such that data points with cer-

tain similarity are assigned to the same class. Clustering methods differ in various

aspects including the assignment of data points to classes which might be crisp or

fuzzy, the arrangement of clusters which might be flat or hierarchical, or the repre-

sentation of clusters which might be represented by explicit cluster identification or

by few prototypical vectors (exemplars) [CHHV06].

For our optical flow estimator, explicit cluster membership information is not re-

quired. The algorithms that are considered here deal with crisp assignments and
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representation of clusters by exemplars. Going forward, various neural clustering

algorithms are detailed and the applicability for optical flow is accessed.

Neural Networks: In this work, we deal with neural networks and leverage their

ability to learn. The network architectures can roughly be divided into three cate-

gories, each based on a different philosophy [Koh90], namely, the feedforward net-

works, the feedback networks and the competitive or self-organizing networks. The

feedforward networks are made up of layers of neurons, typically, with an input layer,

a hidden layer and an output layer. There are weights associated with the connections

between layers and information in the net always passes in one direction, that is from

the input layer towards the output layer. Back propagation is a widely used technique

for training the feedforward network weights. Feedforward neural networks with back

propagation learning are quite popular for pattern mapping, especially classification

[Sch97]. Feedback neural networks, on the other hand, have directed cycles in the

network connections. These are also called recurrent networks and the fully-recurrent

ones are formed by neurons that have directed connections with every other neuron

in network. Recurrent networks form autoassociative memory and the stored pat-

tern correspond to the stable states of a nonlinear system [Sch97]. The third type of

networks, called the self-organizing networks are based on competitive learning. The

neighboring neurons in these neural networks compete in their activities by means

of mutual lateral interactions, and develop adaptively into detectors of specific signal

patterns [Koh90].

Another way to categorize neural networks is according to the way they are

trained. Categorization by type of training leads to two types of networks, namely,

supervised networks and unsupervised networks. In supervised learning, the net-

work weights are trained using a training set consisting of input and output training
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patterns. In unsupervised learning, on the other hand, there are no known output pat-

terns. Unsupervised learning uses just the inputs to train the weights. The network

weights adapt or learn based on the experiences collected through the input patterns.

Some measure of pattern associativity or similarity is used to guide the learning

process, which usually leads to some form of network correlation, clustering, or com-

petitive behavior [Sch97]. The feedforward networks and some feedback networks use

supervised learning while self-organizing networks use unsupervised learning.

For the optical flow estimator, the clustering ability of the self-organizing

networks is of importance and this chapter focuses on unsupervised learning and

self-organizing networks. Specifically, we discuss k-Means, the Self Organizing Map

(SOM) and Neural Gas (NG). All the algorithms have both online version as well as

batch version. It will be seen that Batch SOM plays an important role in optical flow

estimation.

Quantization of Vector Space: Cluster representation using exemplars leads to

quantization of vector space. Vector quantization allows modeling of vector spaces

(specifically, their density functions) by a set of prototype vectors. Vector quanti-

zation has applications in density estimation and data compression. Assume data

points x ∈ Rm are distributed according to an underlying distribution P . The goal

of vector quantization is to find prototype locations wi ∈ Rm, i = 1, . . . , N , such that

these prototypes represent the distribution P as accurately as possible. A data vec-

tor x is described by the best-matching or ”winning” reference vector wi(x) for which

the distortion error d(x,wi(x)) (for example, squared Euclidean distance) is minimal

[MBS93]. These reference vectors are also referred to as codebook vectors. The op-

timal choice of reference vectors wi varies based on the cost or error function being

minimized.
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The neural clustering algorithms that we are interested in, represent clusters

by neurons or rather by the corresponding weight vectors. This essentially is vector

space quantization and the weight vectors approximate the underlying (unknown)

distribution of the vector space. Each of these algorithms minimize a different cost

function, hence the reference vectors obtained by different algorithms need not be

same. The following discussion closely follows [CHHV06].

2.1 k-Means

k-Means optimizes the standard quantization error [CHHV06]

Ekmeans(w) ∼
N∑
i=1

∫
χI(x)(i) d(x,wi) P (dx) (2.1)

where I(x) denotes the index of the closest prototype (one of the w’s), the winner

for x, and χI(x)(i) is the indicator function or characteristic function (from the set

theory). More specifically, χI(x)(i) = 1 if wi is the winner unit weight, otherwise

χI(x)(i) = 0. χI(x)(i) restricts the integration to only part of domain of x for which

wi is the winner.

k-Means online version: The online version of the algorithm is used when the

distribution P is not known a priori, but instead a stochastic sequence of sample

data points xj(t) which is governed by P is available. The learning rule consists of a

stochastic gradient descent, yielding

∆wi = ε δij(xj) (xj − wi) (2.2)
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for all prototypes wi given a data point xj. ε is the step size and δij is the Kronecker

delta.

k-Means batch version: If the discrete training data x1, . . . , xM are known a pri-

ori, then fast batch version can be used. Batch k-Means optimizes the same cost

function as the online variant [BB95b]. Starting from random positions of the proto-

types, batch learning performs the following two steps until convergence [CHHV06]

1. Determine the winner index I(xj) for each data point xj using some distance

measure.

2. Determine the new prototypes as

wi =

∑
j|I(xj)=i

xj

|{j|I(xj) = i}|
(2.3)

k-Means is very sensitive to initialization of the prototypes since it adapts the proto-

types only locally according to their nearest data point. There is no guarantee that

it will converge to the global minimum and the results depend on the initialization of

weights wi. As the algorithm is fast, k-Means can be run multiple times with different

starting conditions to mitigate the dependence on initialization.

For simple optical flow cases, k-Means gives good results when the number

of motion classes are known before hand. In general, the number of flow classes is

unknown and the choice of k is a challenging issue. k-Means is therefore not useful

for general optical flow estimation.
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2.2 Self Organizing Map (SOM)

SOM implements a form of local competitive learning. SOM is a neural learn-

ing structure involving networks that perform dimensionality reduction through con-

version of feature space (input data space) to yield topologically ordered similarity

graphs or maps or clustering diagrams [Koh90].

Figure 2.1: SOM Topology

SOM is a sheet-like neural network (Figure 2.1) with weights associated with

each unit. The ability of SOM to provide visualization of clusters present in high

dimensional space by projection onto a 2D map is very useful. An important aspect of

the SOM network is the lateral connections between the units. The lateral connections

help in determining the neighborhood during training of the net and are responsible

for maintaining the topology of input space during the projection onto the lower

dimensional map.

SOM uses soft-max adaptation as part of its update strategy, that is, it not only

updates the winner unit weights, but also updates the weights of the neighboring units

(Figure 2.2). The k-Means algorithm in contrast follows winner-takes-all approach

and is thus very local. The soft-max update helps SOM avoid local minima during

training of weights.
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Figure 2.2: SOM Neighborhood

SOM online version: The learning rule for the online version of SOM consists of

a stochastic gradient descent, yielding

∆wi = ε hλ(nd(I(xj), i)) (xj − wi) (2.4)

for all prototypes wi given a data point xj. hλ(t) = exp(−t/λ) is decaying exponential

with λ > 0. nd is a two-dimensional neighborhood around the winning unit given by

index I(xj).

SOM [Koh90] does not posses a cost function in the the continuous case and its

mathematical investigation is difficult [CFP98]. However, if the winner is chosen as

the unit i with minimum averaged distance

dij =
N∑
l=1

hλ(nd(i, l)) d(xj − wl) (2.5)

as shown by [Heskes2001], then it optimizes the cost [CHHV06]

ESOM(w) ∼
N∑
i=1

∫
χI∗(x)(i)

N∑
l=1

hλ(nd(i, l)) d(xj − wl) P (dx) (2.6)
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where I∗(x) denotes the winner index (according to Eq 2.5) of the closest prototype

(one of the w’s), and where χI∗(x)(i) is the indicator function. More specifically,

χI∗(x)(i) = 1 if wi is the winner unit weight, otherwise χI∗(x)(i) = 0.

SOM batch version: Batch SOM optimizes the same cost function as the online

variant [Che97]. For the discrete training data x1, . . . , xM , starting from random

positions of the prototypes, batch learning performs the following two steps until

convergence [CHHV06]

1. Determine the winner index I∗(xj) for each data point xj using distance measure

given by Equation 2.5.

2. Determine the new prototypes as

wi =

∑M
j=1 hλ(nd(I∗(xj), i)) xj∑M
j=1 hλ(nd(I∗(xj), i))

(2.7)

SOM is not as sensitive to initialization of the prototypes as k-means, since it adapts

the prototypes using soft-max approach as against winner-takes-all approach.

2.3 SOM, VQ and Mixture Models

Mixture Models is a probabilistic framework for representing clusters of data.

Each cluster is represented by a parametric distribution, eg. Gaussian distribution.

The entire dataset, that is, all the clusters are together modeled by mixture of the

individual distributions. If all the clusters are represented by Gaussian distributions,

then the entire dataset is modeled as a mixture of Gaussians. The parameters of

the distributions and the mixture values (fractions) are estimated by the maximum

likelihood criteria using Expectation Maximization (EM) algorithm [DLR77].
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Heskes [Heskes2001] explores the links between SOM, Vector Quantization(VQ)

and Mixture Models and we follow that material closely here. In the next chapter we

utilize these results to derive cost function for motion estimation. SOM can be in-

terpreted as Vector Quantization with lateral interactions. With this interpretation,

the error function or cost in discrete domain minimized by SOM is given as:

Fquant(P,W ) =
M∑
j=1

N∑
i=1

pij

N∑
l=1

hilD(xj, wl) (2.8)

where M is the cardinality of inputs/training set and N is the cardinality of weights

set. pij denotes the probability that the input xj is assigned to node with weight wi

and where D(xj, wl) is some distance measure (for example, it could be Euclidean

distance measure). Even if we assign input xj to weight wi, there is a confusion

probability hil that the input xj is instead quantized by the weight vector wl in the

neighborhood of wi. hil corresponds to the lateral interaction strength and typically

hil = exp[−dil/2σ2] where dil refers to the node distance on a two dimensional grid.

The annealed version of SOM uses an entropy term of the form

Fentropy(P ) =
M∑
j=1

N∑
i=1

pij log

(
pij
gi

)
(2.9)

where gi is interpreted as prior probability assignments. The usual choice of gi is

1/N . The final energy functional is given as:

F (P,W ) = λFquant(P,W ) + Fentropy(P ) (2.10)

Expectation Maximization: Heskes [Heskes2001] derives the Expectation Max-

imization (EM) algorithm for SOM using the energy functional (Eq 2.10). The ex-
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pectation step takes the form

pij(W ) =
gi exp[−β

∑N
t=1 hitD(xj, wt)]∑N

l=1 gl exp[−β
∑N

t=1 hltD(xj, wt)]
(2.11)

Minimizing F (P,W ) with respect to the parameters W , given the current set of

assignment P gives the maximization step

wl(P ) =

∑M
j=1

∑N
i=1 pijhilxj∑M

j=1

∑N
i=1 pijhil

(2.12)

Mixture Model Interpretation: From [Hes01] we also have interpretation of

SOM as mixture model plus additional regularization. The energy functional being

optimized in this case is given as

E(W ) = −L(W ) + Eregular(W ) (2.13)

L(W ) =
M∑
j=1

log P (xj|W ) (2.14)

Eregular(W ) = −
M∑
j=1

log
N∑
i=1

gi e
−βVi(W ) (2.15)

where L(W ) is the optimization criterion corresponding to a maximum likelihood

procedure for mixture of Gaussians when no lateral interactions are considered, similar

to that of Vector Quantization. In Vector Quantization case, the mixture of Gaussians

is given as P (x|W ) =
∑N

i=1 gi G(x|wi).

Whereas, for SOM, [Hes01] shows that E(W ) is obtained by the following mixture of

Gaussians

P (x|W ) =
N∑
i=1

g̃i(W )G(x|w̃i) (2.16)
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with

g̃i(W ) ≡ gi e
−βVi(W )∑N

l=1 gl e
−βVl(W )

Eregular(W ) uses the variance term Vi(W ) that when minimized leads to regular-

ization. Lateral interactions that are characteristic of SOM are responsible for the

variance term and in turn responsible for regularization. The variance term is ob-

tained by decomposition of error
∑N

l=1 hilD(x,wl) into a bias term D(x, w̃i) and a

variance term Vi(W ) =
∑N

l=1 hilD(w̃i, wl) with w̃i =
∑N

l=1 hilwl. The essence here is

that the average error can be decomposed into an error of an average weight w̃i and

a variance term independent of the input x.

SOM can be applied to motion estimation as it does not need to know the

number of motion classes a priori. Moreover, we will see in the next chapter that

using the interpretation of SOM as mixture model plus additional regularization,

how a special case of SOM leads to non-linear interpolation of optical flow.

2.4 Neural Gas (NG)

Neural Gas (NG) [MBS93] also uses the soft-max adaptation rule like SOM,

but the neurons that are updated along with the best matching (winner) unit are

selected differently. It selects the neighbors for update using a neighborhood ranking

scheme. A set Dxj
= {d(xj, wi), i = 1, 2, . . . , N} is calculated and is used to generate

a rank index for each of the units (weight vectors). The unit (weight vector) with

least distance from the training vector has the highest rank. This rank is used to

determine the neighborhood of the winner unit.

The name Neural Gas reflects the fact that the neighborhood used to update networks

is determined by the relative distances between the neural units within the unit
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weight space and not determined by relative distances between neural units within a

topologically prestructured lattice. Neighborhood-ranking requires explicit ordering

of the rank of each unit. Explicit ranking is computationally costly and can be

replaced with an implicit ordering metric [AS98].

Neural Gas (NG) optimizes the following cost function [MBS93]

ENG(w) ∼ 1

2C(λ)

N∑
i=1

∫
hλ(ki(x,w)) d(x,wi) P (dx) (2.17)

where ki(x,wi) = |{wj|d(x,wj) < d(x,wi)}| is the rank of the prototypes sorted

according to the distances, and C(λ) is the constant
∑N

i=1 hλ(ki). hλ(ki) is typically

a decaying exponential.

NG online version: The learning rule consists of a stochastic gradient descent,

yielding

∆wi = ε hλ(ki(xj, w)) (xj − wi) (2.18)

for all prototypes wi given a data point xj.

NG batch version: For the discrete training data x1, . . . , xM , starting from ran-

dom positions of the prototypes, batch learning performs the following two steps until

convergence [CHHV06]

1. Determine kij = ki(xj, w) = |{wl|d(x,wl) < d(x,wi)}| as the rank of prototype

wi.

2. Determine the new prototypes based on the hidden variables kij as

wi =

∑M
j=1 hλ(kij) xj∑M
j=1 hλ(kij)

(2.19)
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The Neural Gas algorithm does not require the knowledge of the number of

clusters, and hence can be used for motion estimation.
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Chapter 3

Self Organization-based Optical

Flow

The work described here is a new optical flow field estimation technique that is

applicable in image sequences containing a priori unknown number of motion classes

along with occlusion boundaries. It is well-known that the determination of motion

parameters for even a single motion class using an optical flow formulation poses

several well-known challenges, including an inherently locally ill-posed estimation

problem with the possibility of the aperture problem.

This work can be categorized as an intensity-based differential (gradient-based)

method. The algorithm described here tries to overcome the aperture problem by

formulating an algebraic framework involving rank, condition numbers and min-norm

solution and then by using non-linear interpolation. Unsupervised learning techniques

are used for non-linear interpolation that also help in cases with multiple motion

classes with occlusion.

In regularization techniques (seen in Chapter 1), the iterations propagate flow

to neighboring areas and can cause problem at occlusion boundaries. At the occlusion
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boundaries two different motion fields/classes are neighbors. Each motion class tries

to propagate its values leading to averaging of the flow field. This issue at occlusion

boundaries in regularization methods has been addressed by [BA96] using robust sta-

tistical techniques. Even for unsupervised learning-based techniques (specifically for

SOM), the occlusion boundaries need to be handled and we do so by using anisotropic

neighborhood functions. We use Neural Gas inspired anisotropic functions in SOM to

make sure that only one of the competing training motion vectors wins. This avoids

the averaging of motion of two competing training motion vectors. In effect, smearing

of motion at occlusion boundaries is minimized.

The steps of our motion estimation technique are exemplified by processing

the two images of a synthetic image sequence as shown in Figure 3.1. The images

have eight square objects moving in eight different directions, therefore we have eight

motion classes to be detected. The true motion (u, v) for each object is shown in

Figure 3.2. The origin of the coordinate system is at the top left corner of the image.

The temporal difference image is given in Figure 3.2.

Figure 3.1: Binary Image Sequence.

Our motion estimation algorithm can be split into following three consecutive

stages.

1. Gradient Estimation

2. Local Motion Estimation
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Figure 3.2: True Motion and Temporal Difference Image.

3. Non-Linear Interpolation

3.1 Gradient Estimation

As we use intensity gradients, we assume that the image intensity is differen-

tiable. This assumption generally holds for natural images, as the image formation

process involves integration. On the other hand, the differentiability assumption may

not hold for synthetically generated images. When images are binary (eg. intensity of

0 or 255 only), they are not differentiable. In order to calculate gradients, the images

need to be smoothed and made differentiable. We use the approximate differentiation

as given in [HS81]. Figure 3.3 shows the spatial and temporal gradients computed for

the sample image sequence.

Figure 3.3: Gradients Ix, Iy and It
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3.2 Local Motion Estimation

In chapter 1, we saw the Optical Flow Constraint Equation (OFCE) (Eq 1.3)

Ixu+ Iyv + It = 0

∇I(x, t)Tv = −It

derived using the Brightness Constancy Assumption (BCA) (Eq 1.1). OFCE es-

tablishes a relationship between intensity gradients Ix, Iy, It and the motion vector

components u and v. As noted earlier, OFCE at single pixel location is ill-posed as

there are two unknowns (u, v) and just a single equation. To overcome ill-posedness,

spatial coherence is assumed, which states that nearby pixels are likely to correspond

to the same object and thus would have same or similar motion. In local motion

computation, we assume piecewise constant motion and solve multiple OFCEs simul-

taneously to get the motion estimate. For example, an aperture or window of size

2× 2 yields four equations and can be formulated as:



Ix1 Iy1

Ix2 Iy2

Ix3 Iy3

Ix4 Iy4


 u

v

 = −



It1

It2

It3

It4


D v = − f

t
(3.1)

The regression-based motion estimate can then be obtained using Moore-Penrose

inverse as

v = −(D)†f
t

(3.2)
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Figure 3.4: Local Motion Estimation with Aperture Problem.

3.2.1 Aperture Problem - An Algebraic Viewpoint

Typically, a square neighborhood around a pixel is considered for OFCE pool-

ing to form an aperture with more regional support. With more pixels being pooled,

the matrix D and vector ft grow more taller. For example, in a 3× 3 aperture, nine

pixels contribute their OFCEs making D a 9×2 matrix, while making ft a 9×1 sized

vector. The solution is still given by (Eq 3.2). The solution depends on the gradient

values and is correlated with the amount of texture within the aperture. We have

developed an algebraic viewpoint of the aperture problem that involves the rank of

matrix D (Eq 3.1). It has to be noted that the rank of matrix D will be at most two

(2), independent of the number of pixels used in the spatial coherence augmentation.

There are always the following three cases:

1. rank(D) = 0. This case corresponds to a location with no spatial texture or

where motion is not discernible. (Interior regions of the squares in Figure 3.4).
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2. rank(D) = 1. This image location suffers from the aperture problem. Motion

vector component parallel to the spatial gradient can only be estimated. The

vector component normal to the spatial gradient could be of any magnitude

and is indeterminate. Let v = vpartEst + va, where vpartEst is the observable

component of motion and where va is the component that cannot be determined

due to the aperture problem. va satisfies Dva = 0 or va ∈ nullspace(D). The

Moore-Penrose inverse of D is used to find minimum norm solution for this rank

deficient case. (Sides of the squares in Figure 3.4).

3. rank(D) = 2. This case leads to a complete and acceptable motion estimate if

the condition number of D is reasonable. (Corners of the squares Figure 3.4).

The algebraic viewpoint provides a formal, systematic technique for the recovery

of the missing local motion component va using modified versions of unsupervised

learning algorithms.

Handling Occlusion: A larger aperture size with the system of the form of (Eq

3.1) leads to more rank(D) = 2 systems which, in turn, leads to more algebraically

complete local motion estimates. But as the aperture size is increased, the chance of

pooling information from pixel locations from different motion classes increases. This

is very often the case near occlusion boundaries; the algebraic system can be numer-

ically well-conditioned, but the solution (motion estimates) could be wrong. This is

referred to as the generalized aperture problem [BA96]. The effects of outliers can be

minimized by using anisotropic neighborhood functions. The anisotropic weights give

more importance to the pixels with dominant motion in the neighborhood. The opti-

mal weights, however, vary spatially and need to be estimated. Black and Anandan

[BA96] implicitly calculate these weights by applying redescending influence functions
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to residual values.

Approximating Weighted LS: Given a 3× 3 aperture, in this work, we approx-

imate an anisotropic neighborhood using the four weight functions shown in Figure

3.5. The 3× 3 aperture is split into partly overlapping 2× 2 apertures using weights

Wk, k = 1, 2, 3, 4. Each 2 × 2 aperture leads to an overdetermined system and the

assumption is that atleast one of these systems would remain unaffected by occlusion

and is best suited for motion estimation. Instead of solving one system of equations

for 3× 3 aperture, we now need to solve four systems corresponding to four different

orientations within the encompassing 3 × 3 aperture. We estimate motion and the

residual error for each orientation by solving the overdetermined systems:

Dk v = −f
t

k = 1, 2, 3, 4 (3.3)

Only one of the four systems is eventually retained. We choose the orientation that

gives the least residual value and use motion estimate obtained at the chosen orien-

tation as the best local estimate for the whole 3 × 3 aperture, thus approximating

locally weighted least squares.

Figure 3.5: Opportunistic Anisotropic Neighborhood Weights.
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3.2.2 Efficient 2-Pass Evaluation

From (Eq 3.3), at each pixel location, 4 least squares estimates need to be pro-

duced. This is computationally demanding. The computational load can be reduced

considerably by exploiting the redundancies in evaluation of the systems. Consider

a block of pixels shown in Figure 3.6. The anisotropic weights Wks are centered and

superimposed around two pixel locations p7 and p8. The circles show the pixel loca-

tions that are used to form a system (Eq 3.1) by pooling the optical flow constraints

for each of the Wks. The system formed at p7 using W2 is same as the system formed

at p8 using W1. Similarly, the system formed at p7 using W4 is same as the sys-

tem formed at p8 using W3. Instead of solving the same systems at multiple pixel

locations, we can save computations by utilizing this redundancy using a two pass

approach.

Figure 3.6: Opportunistic Anisotropic Weights - Redundant Systems.

Pass I: At each pixel location, use weights W1 and solve least squares system (Eq

3.1). Calculate the corresponding residuals and store them as shown in Figure 3.7(a).

For example, r7 is the residual of the system formed using p1, p2, p5 and p7 while r8

is the residual of the system formed using p2, p3, p7 and p8. Weights W2, W3 and

W4 do not play any role in this 2-pass approach.
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Pass II: At each pixel location determine the minimum residual amongst the four

neighbors (Figure 3.7(b)). This step is equivalent to choosing one of the four orien-

tations within a 3 × 3 aperture. For example, at location of pixel p7 in the residues

array, four neighboring values r7, r8, r11 and r12 are compared. These four residues

correspond to four systems around p7 formed as if using weights W1, W2, W3 and W4

respectively. Choosing the minimum of these four residue values gives the best orien-

tation to compute motion that is least likely to be affected by occlusion. The motion

corresponding to the minimum residual is chosen as the ’best’ motion estimate.

By using the two pass approach the number of systems that need to be solved

for an r× c block of pixels is reduced from 4rc to (r+ 1)(c+ 1) which approximately

saves computational load of 3rc systems.

(a) Pass I

(b) Pass II

Figure 3.7: Opportunistic Motion Estimation - 2 Pass
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3.2.3 Matrix Rank-based Partitioning

The algebraic viewpoint helps identify the motion estimates that suffer from

aperture problem and have missing motion components. Unsupervised learning tech-

niques are later employed in the recovery of these missing local motion components.

We partition the motion estimates into two sets, set Hc which is a set of motion vec-

tors with complete solution and set Hp which is a set of motion vectors with partial

solution. The motion vectors are augmented with two more components specifying

their pixel locations leading to 4 dimensional feature vectors. Thus the vectors in sets

Hc and Hp are of the form:

v = (x, y, u, v)T (3.4)

where u and v are motion components at pixel location (x, y). If the rank of matrix

D is either 0 or 1 (Aperture Problem) or if the residual is high (violation of spatial

coherence), we put the motion estimate in set Hp, otherwise, the motion estimate is

put in set Hc.

3.3 Unsupervised Learning

Once we have partitioned the local motion estimates into sets Hc (complete

motion estimates) and Hp (partial motion estimates), it is time to interpolate the

information and come up with global motion estimate. The non-linear interpolation

is done using unsupervised learning techniques. We evaluate the use of Neural Gas

(NG) and Self Organizing Map (SOM) for motion interpolation. Some modifications

to the standard algorithms are required, and so different names are used to distin-

guish between various version. We discuss three algorithms, namely, NGFlow which

uses modified online version of NG, SOMFlow which uses modified online version of
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SOM, and BatchSOMFlow which uses modified and simplified version of Batch SOM

algorithm.

3.3.1 NGFlow

Neural Gas (NG) [MBS93], as seen in Chapter 2, uses soft-max adaptation to

train a set of weightsW = {w1, w2, . . . , wN} using training vectorsQ = {q
1
, q

2
, . . . , q

M
}.

Before training starts the weights W need to be initialized. Typical initialization

scheme involves use of random numbers. For motion interpolation, if we initialize

the NG weights W using a Gaussian distribution and train using local motion output

such that Q = Hc ∪Hp then for the example case, the output of NG is as shown in

Figure 3.8. However, a more opportunistic scheme for weight initialization exists. We

set W = Hc∪Hp as initial weights and train them using NG with training set Q = Hc

and it leads to better interpolation. As shown in (Eq 3.4), we have 4 dimensional

feature vectors and the NG weight update needs modification so that only the motion

components u and v get updated while the pixel location components x and y remain

untouched.

Neural Gas [MBS93, AS98] algorithm has been modified for motion interpolation to

use following steps [SS09]:

1. Initialize unit weights as W = Hc ∪ Hp and use set Q = Hc as the training

set. For the example case, Figure 3.9 show initial W and Figure 3.10 shows the

training set Q.

2. Present the input training vector q
j

and compute the distances set Dq
j

=

{d(q
j
, wi), i = 1, 2, . . . , N}. Use a weighted distance metric given by

d(q
j
, wi) = ||q

j
− wi||R =

√
(q
j
− wi)T R (q

j
− wi)
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(a) Initial Weights (b) Weights after 10 iterations

Figure 3.8: Neural Gas Clustering (Gaussian Initialization).

where diagonal matrix R is used to compensate scale differences between the

motion components and the pixel locations. Due to small motion model, motion

components have values of order 100 where as pixel location components can

have values of order of 102. Setting diagonal of R to [1, 1, 100, 100] leads to

scaling up of motion components and makes sure that d(q
j
, wi) is sensitive to

changes in motion components as well.

3. Calculate dmax and dmin from the distances set Dq
j
.

4. Adapt weight vectors according to

∆wi = ε(t)hλ′(mij(qj,W ))F (q
j
− wi) (3.5)

where ε(t) is the learning rate, mij(qj,W ) is the implicit ordering of W defined

as mij =
dij−dmin
dmax−dmin . dmin, dmax being the minimum and maximum distance

between q
j

and all wis, hλ′(mij) = exp(−mijλ
′(t)), λ′(t) = λ(t)/(N − 1) and
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Figure 3.9: Initial Weights in W = Hc ∪Hp

where

F =



0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1


only corrects the last 2 elements of wi (i.e., the flow). Pixel locations are

persistent. It should be noted that weights wis closer to q
j

both in terms of pixel

locations and motion values get corrected the most. wis corresponding to pixel

locations far away from q
j

hardly get corrected. Similarly, wis corresponding to

motion much different from q
j

also hardly get corrected.

5. Repeat steps 2, 3 and 4 for each q
j
∈ Q to form one iteration.

6. Multiple iterations are required for flow interpolation.

hλ′(mij) determines the neighborhood function around the winner weight. As

39



Figure 3.10: Training Vectors in Hc

training vectors are presented one after another, weights in the corresponding neigh-

borhoods get their motion corrected leading to non-linear interpolation. In effect,

vectors affected by aperture issue get their missing motion components filled in dur-

ing the training. The outcome of interpolation using NGFlow for the eight squares

case is shown in Figure 3.11.

Step 2 of NGFlow algorithm is computationally intense. For each training

vector q
j
, the distances set Dq

j
needs to be computed and it depends on the car-

dinality of set W which it typically large in motion estimation due its construction

involving sets Hc and Hp. The weights set W grows with image size, leading to high

computation time.
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Figure 3.11: Weights after NGFlow Interpolation

3.3.2 SOMFlow

The SOM [Koh90] algorithm, as seen in Chapter 2, can be used instead of

Neural Gas algorithm to significantly increase the speed of interpolation by leveraging

the topology of the SOM network. But the neighborhood function used in SOM has

to be modified to be effectively used for flow interpolation. SOM’s neighborhood

function is tied down to the topology of the network and is not a function of weight

space as in NG. This leads to isotropic neighborhood and causes issues near occlusion

boundaries in optical flow. We mitigate this by modifying the SOM neighborhood

to be anisotropic in form. Similar to NGFlow, the set Hc is used as the training set

and W = Hc ∪Hp is used as the weight set. We choose to use 2D topology for SOM

mirroring the image dimensions.

Fast Indexing: As topology dimensions are equal to 2-D image dimensions, we have

one-to-one correspondence between SOM weights and image pixels. This mapping
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helps speed up the training process by orders of magnitude. The usual training

process involves finding the winner weight corresponding to the training vector under

consideration. This step involves finding distance of the training vector from all the

weight vectors and is followed by finding the weight vector (wc) with the minimum

distance. This is computationally involved process and can be by-passed by utilizing

the one-to-one mapping. Recall that weights are initialized using W = Hc ∪Hp and

each vector is 4-dimensional with the form (x, y, u, v). The training vectors from Hc

are also of the same form. As all training vectors are also present in W , we already

know the location rc ∈ R2 of winner weight. The first two components, that is,

(x, y) are same for training vector and the winner weight. So the process of finding

the winner weight simplifies to indexing in a 2D array and is independent of the

cardinality of weights set W .

Anisotropic Neighborhood: The typical SOM [Koh90] weight update is given by

∆wi = ε(t) hic(t) (q
j
− wi) (3.6)

The neighborhood function hic(t) used in the SOM algorithm can be specifically

chosen to better handle motion at occlusion boundaries. Typically, two choices for

hic(t) occur [Koh90].

The simpler of them (step function) refers to a neighborhood set of array points

around node c (Figure 3.12). Let the neighborhood be denoted Nc(t), whereby

hic(t) = 1 if ri ∈ Nc(t) and hic(t) = 0 if ri /∈ Nc(t). The radius of Nc(t) mono-

tonically decreases with time. Another widely applied, smooth neighborhood kernel
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Figure 3.12: Neighborhood around the winner weight

has Gaussian form given by

hic = exp

(
−‖ rc − ri ‖

2

2σ2(t)

)

Both of the above specified neighborhoods are isotropic and can lead to unwanted

averaging of motion at occlusion boundaries. Recall that at the occlusion boundaries,

two different motion classes exist. Each motion class could have training vectors

spatially close to one another. Weight vectors belonging to a motion class should be

modified only by the training vectors of same motion class. Otherwise the weight

vectors will be competitively trained for two different motions leading to incorrect

interpolation.

We design an anisotropic neighborhood function hλ′ic to better handle interpolation

near occlusion boundaries and the design is inspired by NG neighborhood. Figure

3.13a shows an example with training vectors from different motion classes around

occlusion boundaries and Figure 3.13b shows an example of anisotropic neighborhood

function around a winner weight vector (In our case, its also a training vector). The

anisotropic neighborhood function should restrict influence of a training vector to
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Figure 3.13: Anisotropic Neighborhood around the winner weight

only the weight vectors that belong to the same motion class. The weight update

using training vector q
j
∈ Hc = {q

1
, q

2
, . . . , q

M
} is defined by:

∆wi = ε(t) F hλ′ic(t) (q
j
− wi) (3.7)

where hλ′ic = hλ′(mij(qj,Wnbr)). Wnbr = {wi | ‖ rc − ri ‖< radius} with rc be-

ing the location (x, y) of winner unit wc in SOM 2D topology. mij(qj,Wnbr) is the

implicit ordering of Wnbr defined as mij =
dij−dmin
dmax−dmin . dij is as given in (Equation

3.8). dmin, dmax being the minimum and maximum distance between q
j

and wis,

hλ′(mij) = exp(−mijλ
′(t)), λ′(t) = λ(t)/(Nnbr − 1). Conceptually, the wi ∈ Wnbr

around q
j

are weighted according to how close they are in the weight space (4D of

the form (x, y, u, v)). mij(qj,Wnbr) orders the wi ∈ Wnbr with mij smaller for wi’s

closer to q
j

in 4D weight space. hλ′(mij) is the weight associated with wi and is high

for smaller mij that is when wi is closer to q
j

in 4D weight space. In terms of flow,

it means that, the motion vectors (weights) similar to training motion vectors get

higher weight values than other weights in Wnbr. Thus, anisotropic neighborhood is

formed.
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Residual Distance Measure: Another novelty of our approach is the use of a

non-obvious distance measure. A typical weighted distance metric is given by

dij = d(q
j
, wi) = ||q

j
− wi||R =

√
(q
j
− wi)T R (q

j
− wi) (3.8)

where R is the diagonal matrix consisting of estimated inverse variance values of the

vector components.

In our experience, this distance measure (Equation 3.8) does not result in

required anisotropic behavior. We explore two alternative distance measures that

involve residue value of the OFCE (Equation 1.3). First OFCE residue-based distance

measure uses

dij = d(q
j
, wi) = (Ixiuj + Iyivj + Iti)

2 (3.9)

where, Ixi, Iyi and Iti are the gradients corresponding to wi at pixel location ri. uj

and vj are the velocity components of training vector q
j
. dij’s are then used in mij

computation as shown earlier. Second alternative does way with mij computation

and instead uses

dij =
n×n∑
k=1

|Ixkuj + Iykvj + Itk| (3.10)

where, Ixk, Iyk and Itk are the gradients corresponding to wk in small n× n window

around wi. uj and vj are the velocity components of training vector q
j
. hλ′ic is now

defined as hλ′ic = exp(dij(qj,Wnbr)/α). For 3×3 window around wi, it was empirically

determined that α with value 250 works well. This second alternative (Equation 3.10)

better defines anisotropic neighborhood. Moreover, the memory storage requirement

for dij’s is also eliminated which helps in GPU implementation as will be seen later.
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Implementation with 2 Dimensional Vectors: For SOM the vector dimensions

can be reduced to 2 by removing the pixel position information from each vector. As

the SOM units are in a 2D topology mirroring the image dimensions, the location

of unit in the 2D topology gives the pixel location. Storing pixel location (x, y) is

redundant and can be obtained by looking at the index of the SOM unit. For the

following algorithm steps, the vectors in Hc and Hp are assumed to be 2 dimensional

with just (u, v) components.

The algorithm we hereafter refer to as SOMFlow (to distinguish it from Kohonen’s

SOM) is as follows:

1. Initialize unit(neuron) weights as W = Hc ∪Hp and use set Hc as the training

set Q.

2. For input q
j

select wc as the winner weight by indexing into SOM 2D topology

using rc ∈ R2 as index. rc is the location (x, y) of training vector q
i
.

3. Update weights of winning unit and weights in its neighborhood. The updating

strategy with anisotropic neighborhood function is given by

∆wi = ε(t) hλ′ic(t) (q
j
− wi) (3.11)

Compared with Equation 3.7, note the absence of matrix F in the update

equation. Use residual distance measure (Equation 3.10) for computing hλ′ic(t).

Use hλ′ij = exp(−dij/α).

4. Repeat steps 2 and 3 for each q
j
∈ Q to form one iteration.

5. Multiple iterations are required for flow interpolation.
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As training vectors are presented one after another, weights in the corresponding

neighborhoods get their motion corrected leading to non-linear interpolation. Similar

to as in NGFlow, the vectors affected by aperture issue get their missing motion com-

ponents filled in during the training. The outcome of interpolation using SOMFlow

for the eight squares case is similar to the output of NGFlow (Figure 3.11).

Example - Isotropic Vs Anisotropic: Consider the image sequence given in

Figure 3.14. The images were generated using code developed by Kamitani [Kam].

With the four squares moving diagonally towards the center of the image, there are

(a) 1st frame (b) 2nd frame (c) True Motion -
4 Squares only (En-
larged)

Figure 3.14: Sine wave sequence - Occlusion Example

4 motion classes and 4 occlusion boundaries. The use of isotropic neighborhood

functions, as specified in (Eq 3.6), leads to incorrect flow vectors at the occlusion

boundaries (Figure 3.15(c)).

The SOMFlow update using (Eq 3.11) gives flow with motion discontinuities pre-

served at occlusion boundaries as seen in Figure 3.15(d). Thus SOMFlow helps solve

the generalized aperture problem as it tries to overcome aperture problem while pre-

serving motion discontinuities.
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(a) Initial W = Hc ∪Hp (b) Hc

(c) Final W with isotropic neighborhood (d) Final W with anisotropic neighbor-
hood

Figure 3.15: Sinewave sequence - SOMFlow correction
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3.3.3 BatchSOMFlow

The execution time for SOMFlow can be reduced by parallel processing. We

use NVIDIA CUDA GPUs as a hardware platform for parallel implementation. GPUs

are well suited for data-parallel computations as they have multiple computing cores

driven by very high bandwidth. To be data-parallel, each weight vector should be

independently and parallely processable. The SOM algorithm as-is (online version)

is not data-parallel, but the batch version of SOM is data-parallel. Instead of look-

ing at neighborhood of weight vectors around each training vector, the batch ver-

sion [CHHV06] looks at neighborhood of training vectors around each weight vector.

The cost function optimized by batch-SOM is equivalent to the function optimized by

online-SOM [Che97].

With initial weights as W = Hc∪Hp and the training set Q = Hc, the weight update

for BatchSOMFlow (with isotropic neighborhood) is defined by:

wi =

∑M
j=1 hijqj∑M
j=1 hij

(3.12)

where, hij = 1 if q
j
∈ Qnbr, otherwise hij = 0. Qnbr = {q

j
| ‖ rj − ri ‖< radius}

where rj ∈ R2 and ri ∈ R2 are the location vectors of training vector q
j

and weight

vector wi respectively.

To handle occlusion, we use anisotropic neighborhood function hλ′ij and then the

weight update for BatchSOMFlow is given as:

wi =

∑M
j=1 hλ′ijqj∑M
j=1 hλ′ij

(3.13)

where, hλ′ij = exp(dij(Qnbr, wi)/α). The distance dij uses the residual distance (Eq

3.10) for better anisotropic form.

49



The above update function can be understood if we look at location of a weight

vector as the center of a neighborhood. At occlusion boundary, the neighborhood

of a weight has training vectors with different motion values. We apply residual-

based distance measure to training vectors around the weight to get an anisotropic

neighborhood function. This weights the training vectors according to their distance

(OFCE residues) from the weight vector. The idea is to train the weight vector by

only the training vectors that satisfy OFCE (Equation 1.3) using spatio-temporal

gradients at the weight vector location. Training vectors that lead to large OFCE

residue at weight vector location should not affect the weight vector, even if they are

spatially close.

The above specified update (Eq 3.13) is data-parallel (or rather datum-parallel) as

each weight can be independently and parallely updated. Moreover, only one iteration

is required as can be seen (in Section 3.4) by analyzing the effect of incorporating

W = Hc ∪Hp and Q = Hc into SOM cost function given by [Hes01]. Also, the later

section (Section 3.5) shows that, with this particular use of weights and training set,

we achieve interpolation of flow vectors primarily due to the regularization property

of SOM.

3.4 BatchSOMFlow Quantization Error

Given a set of input vectors Q and weights W , let pij denote the probability

that the input q
j

is assigned to node with weight wi. Even if we assign input q
j

to

weight wi, there is a confusion probability hil that the input q
j

is instead quantized

by the weight vector wl. The quantization error [Hes01], as was seen in Chapter 2, is
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given as:

Fquant(P,W ) =
M∑
j=1

N∑
i=1

pij

N∑
l=1

hilD(q
j
, wl) (3.14)

where M = |Q| and N = |W |. hil corresponds to the lateral interaction strength

and typically hil = exp[−dil/2σ2] where dil refers to the node distance on a two

dimensional grid between wi and wl. As seen earlier, anisotropic lateral interaction

can be designed using hλ′il(dil) = exp(−dil/α) with the distance dil based upon the

residual distance (Eq 3.10). But for the following analysis we do not use anisotropic

interaction strengths so that we can keep the equations similar to those in [Hes01].

As hλ′il >= 0, we can always replace hil with hλ′il.

With W = Hc ∪ Hp and Q = Hc, the term
∑N

i=1 in Equation 3.14 can be written

in two parts. Let the cardinality of set Hp be K. As Hc ∩ Hp = ∅, N = M + K.

Therefore
∑N

i=1 =
∑M+K

i=1 leads to

Fquant(P,W ) =
M∑
j=1

M∑
c=1

pcj

N∑
l=1

hclD(q
j
, wl) +

M∑
j=1

K∑
k=1

pkj

N∑
l=1

hklD(q
j
, wl) (3.15)

Recall that pcj denotes the probability that the input q
j

is assigned to node with

weight wc ∈ Hc. As Hc ⊂ W by design, q
j
∈ W as one of the wcs and therefore

pcj = 1. As there is only one w ∈ W that satisfies wc = q
j

and pcj = 1, it implies

that the probability that the input q
j

is assigned to any other node is 0.

pkj denotes the probability that the input q
j

is assigned to node with weight wk ∈ Hp.

q
j
’s will never be assigned to any weight in Hp as they always find a match in Hc

with probability equal to 1. Hence all the pkj are zero and the second summation

term evaluates to zero. Therefore we have

Fquant(P,W ) =
M∑
j=1

M∑
c=1

pcj

N∑
l=1

hclD(q
j
, wl) (3.16)
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It can be seen that pcj = 1 when wc = q
j

and pcj = 0 for wc 6= q
j
. This further

simplifies the quantization term to

Fquant(W ) =
M∑
j=1

N∑
l=1

hclD(q
j
, wl) (3.17)

where index c of hcl corresponds to wc such that wc = q
j

which can be written as

Fquant(W ) =
M∑
j=1

N∑
l=1

hjlD(q
j
, wl) (3.18)

As seen in Chapter 2, Heskes EM algorithm for SOM includes the maximization step

wl(P ) =

∑M
j=1

∑N
i=1 pijhilqj∑M

j=1

∑N
i=1 pijhil

which simplifies for W = Hc ∪Hp and Q = Hc as

wi =

∑M
j=1 hjiqj∑M
j=1 hji

(3.19)

Moreover, as probability values are known and do not change, we do not require the

expectation step. We get the weights in one step without iterations.
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3.5 Regularization due to BatchSOMFlow

As seen in Chapter 2, [Hes01] shows SOM as mixture model plus additional

regularization. The energy functional being optimized in this case is given as

E(W ) = −L(W ) + Eregular(W )

L(W ) =
M∑
j=1

log P (q
j
|W )

Eregular(W ) = −
M∑
j=1

log
N∑
i=1

gi e
−βVi(W )

where L(W ) is the optimization criterion corresponding to a maximum likelihood

procedure for mixture of Gaussians when no lateral interactions are considered, similar

to that of Vector Quantization. In Vector Quantization case, the mixture of Gaussians

is given as P (q|W ) =
∑N

i=1 gi G(q|wi). Whereas for SOM, the mixture of Gaussians

is given as

P (x|W ) =
N∑
i=1

g̃i(W )G(x|w̃i)

with g̃i(W ) ≡ gi e
−βVi(W )∑N

l=1 gl e
−βVl(W ) .

Minimizing E(W ) minimizes Eregular(W ) which in turn minimizes the variance

term Vi(W ) and this leads to regularization.

With W = Hc ∪ Hp and Q = Hc, the probability of finding q ∈ Hc given W is 1.

P (q|W ) evaluates to 1 and therefore L(W ) = 0 and is independent of W . Therefore

we have just regularization term left.

E(W ) = Eregular(W ) (3.20)

The expectation-maximization (EM) algorithm developed by [Hes01] for SOM tries
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to optimize

E(W ) = −
M∑
j=1

log

N∑
i=1

giexp(−β
N∑
l=1

hilD(q
j
, wl))

To show SOM as mixture model with added regularization, [Hes01] splits the term∑N
l=1 hilD(q

j
, wl) into bias termD(q

j
, w̃i) and a variance term Vi(W ) =

∑N
l=1 hilD(w̃i, wl)

with w̃i =
∑N

l=1 hilwl.

Simplifying for W = Hc ∪Hp and Q = Hc, we see that w̃i = q
j

= wc with wc ∈ Hc.

Therefore, D(q
j
, w̃i) = D(q

j
, q
j
) = 0. Vi(W ) simplifies to Vc(W ) =

∑N
l=1 hclD(wc, wl)

and the regularization term becomes

Eregular(W ) = −
M∑
j=1

log
N∑
c=1

gce
−βVc(W ) (3.21)

As the algorithm minimizes Eregular(W ), the variance Vc(W ) is minimized. Minimiz-

ing Vc(W ) leads to training of wl towards wc. As wc ∈ Hc, we see that motion vectors

wl get their missing motion components from wc and thus SOMFlow regularizes the

motion estimate solution.
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Chapter 4

Pyramid BatchSOMFlow -

pyrSOMFlow

This chapter provides the end-to-end details of the optical flow estimator. We

refer to the estimator as pyrSOMFlow. Its quantitative evaluation is also provided in

this chapter. All the steps required to estimate optical flow field (given two frames

in a image sequence) are listed. For the self-organization part, the BatchSOMFlow

algorithm described in Chapter 3 is used. Moreover, to handle large motion, the

algorithm is embedded in a multi-resolution framework. The OFCE (Eq 1.3) is based

on spatial and temporal gradients of image intensity that are computed using image

intensity values within a small neighborhood. If the motion magnitude is larger than

this neighborhood, then the motion model that we use is no longer valid. That is,

OFCE assumes differential motion. If the resolution of images is reduced sufficiently

enough, then use of the differential motion model (OFCE) becomes valid.
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Figure 4.1: Flow Chart - Estimating Small Motion

4.1 Small Motion with BatchSOMFlow

At each resolution or level of the pyramid, the small motion model developed

in Chapter 3 is applied. Before going into pyramidal processing we gather here in

one place all the required steps from Chapter 3. Figure 4.1 shows the steps required

to get the optical flow if the motion is small enough for differential model (Eq 1.3) to

be valid.

The motion estimation algorithm can be split into following three consecutive stages.

1. Gradient Estimation: We use the approximate differentiation as given in

[HS81].

2. Local Motion Estimation: We use the efficient 2-Pass evaluation (Section 3.2.2)

to compute local motion estimates using the following weighted Least Squares

formulation.

E =
∑
3×3

W 2 (Ixu+ Iyv + It)
2
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Sub-systems of the following form are formed during the efficient 2-Pass evalu-

ation.



Ix1 Iy1

Ix2 Iy2

Ix3 Iy3

Ix4 Iy4


 u

v

 = −



It1

It2

It3

It4


D v = − f

t

and are solved using Moore-Penrose inverse to get regression-based motion es-

timate

v = −(D)†f
t

Matrix Rank-based Partitioning: If the rank of matrix D is either 0 or 1 (Aper-

ture Problem) or if the residual is high (violation of spatial coherence), we put

it in set Hp, otherwise, the motion estimate is put in set Hc. Storing pixel

location (x, y) is redundant and can be obtained by looking at the index of the

SOM unit. The vectors in Hc and Hp are assumed to be 2 dimensional with

just (u, v) components.

3. Self Organization-based Interpolation of Flow: We initialize the SOM weights

using W = Hc ∪ Hp and train the weights with Q = Hc. BatchSOMFlow is

used to train the weights and the weight update equation is given as

wi =

∑M
j=1 hλ′ijqj∑M
j=1 hλ′ij

where, hλ′ij = exp(dij(Qnbr, wi)/α). Qnbr typically uses a window size of 15×15.
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The distance dij uses the residual distance given by

dij =
n×n∑
k=1

|Ixkuj + Iykvj + Itk|

where, Ixk, Iyk and Itk are the gradients corresponding to wk in small n × n

window around wi. uj and vj are the velocity components of training vector q
j
.

For 3× 3 window around wi, α with value 250 works well.

4.2 Multiresolution or Pyramidal Approach

The pyramidal approach typically involves construction of pyramids of spa-

tially filtered (low-pass) and sub-sampled images. The differential motion model

must be valid at the coarsest-resolution and that determines the required number of

levels of the pyramid. Motion estimation starts at the coarsest resolution and moves

through remaining pyramid levels. Motion computed at a coarser resolution is used

to estimate motion at the next finer resolution in the pyramid. To make sure that the

OFCEs are valid at the finer resolution, the motion estimate from coarser resolution

is scaled and used to warp one of the finer resolution images (say image1) towards

another (say image0). The remaining (delta) motion between the warped image and

image0 is small and can be computed. The process is repeated till the highest resolu-

tion in the pyramid. The above specified algorithm is used to compute delta motion

as the small motion constraint is satisfied. The delta motion computed at each level

is accumulated and scaled to generate the final motion estimate. Median filtering of

delta motion can optionally be done to suppress noise. Median filter does not disturb

the flow discontinuities.

Figure 4.2 shows example of pyramidal processing. The dotted lines show the
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Figure 4.2: Multiresolution or Pyramidal Approach

pyramid level that is being processed. The pyramids on the left of the dark arrow are

inputs to the processing step (for example, Back Warping) and the pyramids on

the right are the output of the processing step. Two steps, namely, Back Warping

and 2X Interpolation use bicubic convolution interpolation [Rob81]. Consider two

images, img0 and img1. The processing starts with construction of data pyramids

img0Pyr and img1Pyr by low-pass filtering and sub-sampling images img0 and img1

respectively. Other pyramids shown in Figure 4.2 are allocated and initialized with

zero values. Following description uses suffix (k) along with the pyramid name to

identify the kth level of the pyramid. For example, oFlowPyr(k) refers to the kth level

of pyramid oFlowPyr, oFlowPyr(0) refers to the base level and oFlowPyr(L-1) refers

to the top or coarsest-resolution of the pyramid with L number of levels. The first
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step (Back Warping) requires use of optical flow information from oFlowPyr(k) to

backwarp img1Pyr(k). The resultant backwarped image is stored at imgWarpPyr(k).

Note that when processing starts at the coarsest-resolution (level L-1), oFlowPyr(L-1)

has zero values. Therefore at level L-1, imgWarpPyr(L-1) is same as img1Pyr(L-1).

At other levels, this step leads to cancellation of coarse motion (accumulated so

far) between img0Pyr(k) and img1Pyr(k). The remaining (delta) motion that may

remain can be computed using small motion model (Eq 1.3) with img0Pyr(k) and

imgWarpPyr(k). The second step (Gradient calculation) computes the spatial

gradients (gradXPyr(k), gradYPyr(k)) and temporal gradients (gradTPyr(k)) using

img0Pyr(k) and imgWarpPyr(k). The third step (Local Motion Est) uses regression

and matrix rank to generate HcPyr(k) and HcUHpPyr(k). The (Self Organization)

in the fourth step then trains HcUHpPyr(k) to get the corrected motion at level k.

The fifth step (Accumulate Flow) is for keeping track of the flows estimated at

different levels. Adding the flow HcUHpPyr(k) to oFlowPyr(k) gives the optical flow

estimate for the kth level of pyramid. If k is equal to zero, that means that the base

or highest resolution is reached and oFlowPyr(0) is the optical flow estimate from

the technique. The sixth step (2X Interpolation) is applicable only if k is greater

than zero. In that case, oFlowPyr(k) is interpolated and scaled up by 2 and stored

in higher resolution oFlowPyr(k-1). The steps are repeated for level k-1 and so on.

4.3 Predictor-Corrector Approach

Predictor-Corrector Approach [SW82] can be used to iteratively refine motion

estimates. Figure 4.3 shows the use of Predictor-Corrector Approach in use in the

multi-resolution framework. Adding the flow HcUHpPyr(k) to oFlowPyr(k) gives the

optical flow estimate for the kth level of pyramid. This estimate/prediction can be
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used to refine/correct the estimates by going back to warping stage but staying at

the same resolution. For Self Organization-based motion estimation, the Predictor-

Corrector Approach works best at the highest resolution.

Figure 4.3: Predictor-Corrector Approach

4.4 Evaluation using Middlebury Database

The Middlebury database is a set of test cases that is used to benchmark

optical flow estimators. Quantitative evaluation of various optical flow estimators

can be found at Middlebury website (http://vision.middlebury.edu/flow). Figure 4.4

shows the Average Angular Error (AAE) and Average Endpoint Error(AEE) for the

testcases from Middlebury database. True flow is known for the eight testcases and

error metrics can be computed. The charts show the error values with varying SOM

neighborhood extent. Due to the use of anisotropic distance measure, the errors
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values do not change drastically even with increasing SOM neighborhood windows.

The AAE and AEE values from Figure 4.4 suggest that pyrSomFlow estimator gives

reasonable results and is comparable to other techniques listed on Middlebury website.

Figure 4.4: AAE and AEE

The Figures 4.5 to 4.12, show the true flow and the estimated flow for the Middlebury

image sequences.

Comparison with other Optical Flow Estimators: Figure 4.13 shows the AAE

metric comparison of pyrSOMFlow with other three optical flow estimators. The im-

plementation of these other estimators can be obtained at (http://www.cs.brown.edu/ dq-

sun/research/software.html). Classic+NL [DSB10] is one of the leading regularization-

based estimators with approximate computation time of 16 minutes [DSB10] for ”Ur-
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(a) True Flow. Max Motion: 4.6700;
u = -4.329 .. -0.268; v = -2.647 .. 2.232

(b) Frame 10 (584× 388)

(c) pyrSOMFlow. Max Motion: 4.6860;
u = -4.268 .. -0.287; v = -2.001 .. 2.280

(d) Flow Colors

Figure 4.5: Dimetrodon Sequence. AAE = 3.55 and AEE = 0.06
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(a) True Flow. Max Motion: 5.0313;
u = -3.313 .. -1.999; v = -2.261 ..
4.012

(b) Frame 10 (640× 480)

(c) pyrSOMFlow. Max Motion:
5.1651; u = -4.836 .. -0.932; v = -
2.629 .. 4.164

(d) Flow Colors

Figure 4.6: Grove2 Sequence. AAE = 3.17 and AEE = 0.06
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(a) True Flow. Max Motion: 18.6087;
u = -2.320 .. 14.335; v = -4.091 ..
11.893

(b) Frame 10 (640× 480)

(c) pyrSOMFlow. Max Motion:
19.8309; u = -3.687 .. 16.961; v = -
5.228 .. 11.523

(d) Flow Colors

Figure 4.7: Grove3 Sequence. AAE = 8.06 and AEE = 0.14
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(a) True Flow. Max Motion: 11.1214;
u = -7.021 .. 11.014; v = -3.199 .. 2.351

(b) Frame 10 (584× 388)

(c) pyrSOMFlow. Max Motion: 10.8979;
u = -6.410 .. 10.835; v = -3.457 .. 2.282

(d) Flow Colors

Figure 4.8: Hydrangea Sequence. AAE = 2.66 and AEE = 0.05
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(a) True Flow. Max Motion: 4.6157;
u = -4.576 .. 2.575; v = -2.575 .. 2.919

(b) Frame 10 (584× 388)

(c) pyrSOMFlow. Max Motion: 4.3020;
u = -4.302 .. 2.698; v = -2.310 .. 2.471

(d) Flow Colors

Figure 4.9: RubberWhale Sequence. AAE = 5.89 and AEE = 0.1
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(a) True Flow. Max Motion: 22.1906;
u = -21.322 .. 6.261; v = -0.872 ..
8.512

(b) Frame 10 (640× 480)

(c) pyrSOMFlow. Max Motion:
22.3448; u = -21.356 .. 4.492; v = -
1.453 .. 12.630

(d) Flow Colors

Figure 4.10: Urban2 Sequence. AAE = 4.94 and AEE = 0.09
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(a) True Flow. Max Motion: 17.6161;
u = -4.181 .. 2.351; v = -3.335 ..
17.334

(b) Frame 10 (640× 480)

(c) pyrSOMFlow. Max Motion:
23.9820; u = -5.608 .. 5.167; v = -
5.180 .. 23.738

(d) Flow Colors

Figure 4.11: Urban3 Sequence. AAE = 7.53 and AEE = 0.13
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(a) True Flow. Max Motion: 9.3750;
u = -9.375 .. 7.000; v = 0.000 .. 0.000

(b) Frame 10 (420× 380)

(c) pyrSOMFlow. Max Motion: 8.8874;
u = -8.887 .. 7.151; v = -3.262 .. 2.938

(d) Flow Colors

Figure 4.12: Venus Sequence. AAE = 5.80 and AEE = 0.1
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ban” test sequence on Matlab. BA refers to Black and Anandan’s [BA96] flow esti-

mator while HS refers to Horn and Schunck’s [HS81] flow estimator. pyrSomFlow is

tuned more for computational efficiency than for keeping error metrics low. The next

Chapter talks about the parallelization of pyrSomFlow and the real-time possibilities

on GPU.

Figure 4.13: AAE Comparison
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Chapter 5

Parallel Implementation on GPU

For non-linear interpolation of flow we use unsupervised techniques which are

computationally intense. The good thing is that, all stages for computing optical flow

using these techniques can be made data-parallel and can be speeded up using SIMD

type machines.

5.1 GPGPU - GPU Computing

GPGPU refers to General Purpose computing on Graphics Processing Unit

also known as GPU Computing [OHL+08].

Hardware Architecture: The GPUs have evolved from being just 3D graphics

accelerators to being general purpose parallel processors with graphics capabilities.

GPU used to be fixed-function processor built to handle massive parallelism inherent

in 3D graphics. 3D Graphics involves description of objects using geometric primitives

(mostly triangles) and processing of these primitives to be displayed on the screen.

The graphics pipeline used to involve processing of input with steps implemented in
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hardware using fixed-function units. Two main steps in the graphics pipeline involve

processing vertices and subsequent processing of fragments made out of these vertices.

The GPU architecture first evolved away from fixed-function towards programmable

vertex and fragment processors. With this evolution GPUs supported non-graphics

programs as well but had to be written such that non-graphics data needed to be

masqueraded as vertices and fragments. The latest GPUs have unified processors for

both vertex and fragment processing and allow non-graphics programs to be written

without graphics context [OHL+08].

Software Development: Programming can be done with high-level languages like

C. Graphics processing is highly parallelizable and GPUs take advantage by repli-

cating the hardware units to process more data at a time. For GPGPU, the Single

Program Multiple Data (SPMD) programming model is followed. There are GPU ven-

dor specific programming interfaces and languages like NVIDIA’s CUDA and AMD’s

Stream. Where as OpenCL is vendor independent specification that is designed to

provide a unified API for heterogeneous computing on several kinds of parallel devices,

including GPUs, multicore CPUs and the Cell Broadband Engine (www.gpgpu.org).

In this work we use NVIDIA GPUs as SIMD machines for general purpose computing.

Figure 5.1 shows the difference between the typical layouts of a CPU and a GPU.

GPUs are well suited for data-parallel computations as they have multiple computing

cores driven by very high memory bandwidth.

5.2 NVIDIA CUDA

The NVIDIA CUDA (Compute Unified Device Architecture) facilitates ac-

cess to the computational power of GPU for non-graphics applications. CUDA is a
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Figure 5.1: CPU vs GPU (CUDA Programming Guide)

software and hardware architecture for issuing and managing computations on GPU

as a data-parallel computing device without the need of mapping them to a graphics

API. The CUDA API comprises an extension to the C programming language. When

programmed through CUDA, the GPU can be considered as a highly multi-threaded

co-processor to host CPU. Both the host (CPU) and the device (GPU) maintain their

own DRAM, referred to as host memory and device memory, respectively. One can

copy data from one DRAM to the other using DMA.

Hardware: The device is implemented as a set of multithreaded Streaming Mul-

tiprocessors (SMs) as illustrated in Figure 5.2. A multiprocessor consists of eight

Scalar Processor (SP) cores along with other supporting functional units. Each mul-

tiprocessor has a SIMD architecture: At any given clock cycle, each processor of the

multiprocessor executes the same instruction, but operates on different data. Each

multiprocessor has on-chip memory of the four following types:

1. One set of local 32-bit registers per processor,

2. A parallel data cache or shared memory that is shared by all the processors and

implements the shared memory space,

3. A read-only constant cache that is shared by all the processors and speeds up

reads from the constant memory space, which is implemented as a read-only
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region of device memory,

4. A read-only texture cache that is shared by all the processors and speeds up

reads from the texture memory space, which is implemented as a read-only

region of device memory.

The local and global memory spaces are implemented as read-write regions of device

memory and are not cached. Each multiprocessor accesses the texture cache via a

texture unit.

(a) CUDA Hardware Model (b) CUDA Memory Model

Figure 5.2: CUDA Architecture (CUDA Programming Guide)

Programming Model: As per NVIDIA CUDA Programming Guide: ”CUDA is a

parallel programming model and software environment designed to overcome the chal-

lenge of developing applications that transparently scale their parallelism to manycore

GPUs with widely varying number of cores”. At its core are three key abstractions

- a hierarchy of thread groups, shared memories and barrier synchronization - that
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are simply exposed to the programmer as a minimal set of extensions to C. These

abstractions allow the programmer to partition the problem into coarse sub-problems

which can be solved independently in parallel. The sub-problems can be solved with

fine grain parallelism with cooperation allowed among the finer pieces.

Data-parallel portions of applications can be executed using multiple threads

by downloading a program (called a kernel) on the GPU. Data-parallel processing

maps data elements to parallel processing threads. Not all threads may run on the

device at the same time though. The threads are batched into thread-blocks and

these thread-blocks are in turn grouped into block-grid. Each thread is identified

by its thread ID, which is the thread number within the block and each block is

identified by its block ID, which is the block number within the grid. This allows

the total number of threads that can be launched in a single kernel invocation to be

much larger than number of processors on the device. But there are some restrictions

that are placed on communication between threads due to thread-batching. Only

threads within a thread-block can communicate where as threads across thread-blocks

cannot communicate and synchronize with each other. A block is processed by only

one multiprocessor, so that the shared memory space resides in the on-chip shared

memory leading to very fast memory accesses. The multiprocessors registers are

allocated among the threads of the block.

5.3 Mapping pyrSOMFlow onto CUDA

We use eleven different kernels for the eight stages of the CUDA-based pyra-

midal optical flow computation. The pyramidal approach starts with a data pyramid

creation stage for the input images and involves low-pass filtering and subsampling.

This is one-time activity before the pyrSOMFlow algorithm starts. pyrSOMFlow at
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each pyramid level goes through pipeline of seven stages involving ten kernels.

Figure 5.3: Mapping Optical Flow Computation on CUDA

Each kernel follows a similar pattern of implementation. Figure 5.3 shows the

typical mapping of memory elements. The inputs of each stage are 2 dimensional

arrays and the contents of the arrays do not change, that is they are immutable

during processing of that stage. The input arrays are held in device global memory

but are mapped as textures leading to use of texture cache for their access. The

output arrays are written (hence are mutable) during the processing and are held

in device global memory but are not mapped as texture, since textures need to be

read-only. The data is not directly written to output arrays in global memory as it

has very high latency. The data is written in two stages making use of low latency

shared memory. First, the shared memory is used as a scratch-pad and written to

and read from by threads. Later, once computation of a thread-block is done, the

data from shared memory is transferred to global memory. Simultaneous writing by

all threads to global memory improves performance by leveraging memory coalescing.
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The one-time data pyramid creation stage requires one kernel and the seven stages

with the ten kernels of pyrSOMFlow as:

1. Bicubic Backwarp: A single kernel is used where in optical flow values are used

to backwarp an image. Bicubic convolution interpolation is used during the

backwarp process.

2. Gradients Estimation: A single kernel is used to compute all three gradients

(Ix, Iy, It).

3. Local Motion Estimation: Two kernels are required for this stage. One kernel

per pass of the efficient 2-Pass evaluation of weighted least squares (Section

3.2.2). At the end of Pass2, we get the sets Hc and Hp.

4. BatchSOMFlow: A single kernel is used to train weights W = Hc ∪ Hp using

Q = Hc.

5. Median Filtering: The trained weights W are filtered using a single kernel that

implements median filtering. Median Filtering in optional.

6. Accumulate Flow: A single kernel is needed.

7. Interpolate Flow to Higher Resolution: Bicubic convolution interpolation is used

during the process with 2X change in resolution and requires three kernels. The

bicubic convolution interpolation is separable and can be implemented with

separate vertical and and horizontal cubic interpolation passes. The two cubic

passes work when the data in available in checkerboard pattern. So first kernel

fills data in checkerboard pattern and the second and third kernels implement

the vertical and horizontal cubic interpolation passes respectively.
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5.4 Speedup using NVIDIA CUDA

Figure 5.4 shows the speedup obtained on CUDA for processing a pair of

frames in Middlebury database image sequences to compute the optical flow. It can

be seen that the speedup increases with increasing number of GPU cores. This is due

to the embarassingly parallel structure of pyrSomFlow. Real-time performance can

be achieved by further increasing the number of GPU cores.

Figure 5.4: Speedup with CUDA

Figure 5.5 shows the timing of various stages for serial code and code executed

with CUDA. These timings are for the case when Predictor-Corrector (Section 4.3)

iteration is applied once at the highest resolution. Median Filtering of optical flow

with a 5 × 5 window is also done to improve the flow fields [DSB10]. The time for
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each stage shows the accumulated time over all levels of the pyramid. The testcase

(Rubber Whale) has image size is 584× 388.

Figure 5.5: Timing Details for Rubber Whale Testcase
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Chapter 6

Conclusion

This work describes a new optical flow estimator that uses a self organization-

based strategy. The determination of motion parameters for a single motion class

using an optical flow formulation poses several well-known challenges, including an

inherently locally ill-posed estimation problem and the possibility of the aperture

problem. An a priori unknown number of motion classes with possible occlusion

boundaries further compounds the problem. The self organization-based optical flow

estimator handles image sequences containing a priori unknown number of motion

classes along with occlusion boundaries.

The conceptual core of the self organization-based optical flow estimation ap-

proach consists of two sequential phases:

1. Local (regression-based) estimation of image motion parameters.

2. Global pass for determination of refined motion estimates using a modified

SOM. Initialization of SOM weights and selection of training vectors is key to

the applicability of self organization approach for optical flow estimation.

We cast the self organization-based optical flow estimation approach in a pyra-
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midal framework to handle large motion vectors. We use modified version of batch

SOM to make the estimator datum-parallel. The GPU (CUDA) implementation sig-

nificantly speeds up the computation and due to its embarrassingly parallel nature,

shows increasing speedup with increasing number of computing cores.

We evaluate the algorithm by comparing flow with known true estimates of

Middlebury database image sequences. The attributes that we looked for optical

flow were density of optical flow field along with preservation of occlusion boundaries

and the ability to handle large-motion. Average Angular Error (AAE) and Average

Endpoint Error (AEE) metrics were computed with the help of ground truth flow

from Middlebury database.

6.1 Possible Extensions

The optical flow estimator is based on Brightness Constancy Assumption. In

image areas where the assumption doesn’t hold true, for example due to shadows, the

estimator output is incorrect. The estimator could be extended to handle these kind

of BCA violations in a more robust manner.

6.2 Contribution

Following is a list of contributions that have been made towards optical flow

estimation knowledge.

1. We have shown the applicability of self organization-based techniques for esti-

mating optical flow. The error metrics obtained for Middlebury database show

that the quality of estimates is close to the leading techniques if not the best in

class. Most existing dense optical flow estimation algorithms cast optical flow
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estimation as a regularization problem and optimize a global energy function

involving data term and a smoothness term. The self organization-based optical

flow estimation on the other hand is two step process with an initial regression-

based motion estimate that is later refined/interpolated by self-organization

techniques.

2. During regression-based motion estimation, we employ an efficient 2-pass ap-

proximation strategy to compute locally weighted least squares. This makes

the initial estimates less susceptible to occlusion boundary issues.

3. Moreover, we explicitly cast the aperture problem in an algebraic framework

and use matrix-rank to identify motion estimates that are reliable (set Hc) and

the ones that suffer from aperture issue (set Hp).

4. Self organization work well due to our novel formulation of weight initialization

set (W = Hc ∪Hp) and training set (Hc). Using Heskes [Hes01] interpretation

of SOM as mixture model with added regularization, we show why the vectors

in set Hp get their motion corrected/refined during SOM training.

5. During self organization phase (for modified SOM), anisotropic neighborhoods

are formulated. The distance norm which provides good anisotropic behavior

is novel and uses residuals of the optical flow constraint equation. As SOM

propagates motion information spatially, the motion discontinuities at occlu-

sion boundaries are preserved due to the use of these anisotropic neighborhood

functions.

6. Another contribution is with respect to making the whole estimator paralleliz-

able. The parallelism of the algorithm can be termed embarrassingly parallel

and it is shows good speedup on SIMD type machines. We have shown using
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NVIDIA CUDA, the speedup obtained using GPUs with varying number of

cores.

7. Due to the inherent independence, the optical flow can be estimated with a

mask to avoid computation. If flow is required only in certain areas or edges,

the interpolation can be turned off at other places.
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