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ABSTRACT 

 

Understanding the environmental behavior of plutonium (Pu) is essential for 

proper radioactive waste disposal or for remedial activities after an accidental 

release of Pu.  The environmental behavior of Pu is influenced by physical, 

chemical, and biotic factors, such as the simultaneous existence of multiple Pu 

species, redox transformations at mineral surfaces, colloid formation, and the 

potential of microbes and plants to affect its sorption to soil.  Plant Pu studies 

have been conducted for quantifying bioaccumulation or phytoremediation.  Until 

now, experimental studies have not focused on the capacity of plants to affect 

the transport behavior and distribution of Pu in the subsurface.   

This dissertation addressed the hypothesis that root uptake and transport in 

plants can influence the mobility of Pu in the vadose zone.  The overarching goal 

was to provide experimental support for reactive transport modeling of root 

uptake and xylem transport and for a connection between Pu uptake and the 

plant’s nutritional requirement for Fe.   The objectives were to: (1) quantify 

complexed Pu retardation in graminaceous plants and to quantify complexed Pu 

sorption to plant xylem, (2) characterize the distribution and accumulation of 

complexed Pu in plants, and (3) compare correlations between plant uptake of 

complexed Pu and Fe.  In addition, a couple of simple models for predicting Pu 

transport by roots were examined. 
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Bench scale experiments were conducted using corn (Zea mays) as a 

representative of the grass family.  Corn was grown in 1L soil pots above 500 mL 

nutrient solution containers with the primary root inserted in solution.  Growth 

conditions were 14/10 h day/night cycles (32/20 °C), 30 -50% RH, and a 

photosynthetic flux of 1300-1500 µmol/m2s.  To commence exposure, an aliquot 

of Pu(DFOB) or Pu2DPTA3 or both Pu and 59Fe complexed with DFOB was 

added to the nutrient solution.  Plants were 23 – 28 d old when sacrificed.  

Plutonium and 59Fe contents were determined by liquid scintillation analysis and 

stable element contents were determined by ICP-MS.  Sorption tests were 

conducted with Pu as Pu(IV), Pu(DFOB), or Pu2(DTPA)3 and cellulose or xylem 

excised from cotton stem tissue. 

The Pu plant transport velocities were 174 – 348 cm/h and water velocities 

were 300 - 800 cm/h.  Thus the retardation factor of Pu in live plants was 

measured to be 1-5 and estimated to be 1-10 due to water velocity uncertainty.   

With respect to the second objective, analysis of the spatial distribution of Pu in 

corn indicated that discrimination occurs at the exodermis and in root tissues, 

most of the Pu in the plant was retained in the roots, and the fraction of Pu that 

entered the xylem was rapidly transported upward to the rest of the plant.  An 

overall average of greater than 97% of the Pu was found in the roots with the 

remainder in the shoots.  The maximum shoot activity fraction was four per cent 

for plants exposed for 10 d however steady state translocation was not attained.  

Profiles of Pu concentration versus shoot length showed that Pu concentrated in 
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the upper shoots.  With respect to the third objective, several findings are of 

interest.  The plant uptake of Pu remained unchanged for Fe: Pu ratios ranging 

from 0 - 2.2 x 105.  Large changes in Fe concentrations did not inhibit or enhance 

plant uptake of Pu.  Comparisons of the distribution profiles of Pu, 59Fe, stable 

Fe, and several other nutrient elements showed that Pu was distributed very 

much like 59Fe in the shoot.  However six times as much Pu was found in the root 

than 59Fe, and 40% more 59Fe was found in the shoot than Pu.  The shoot 

distribution data strongly suggest that upon entering the xylem, Pu and Fe are 

physiologically treated in a highly similar manner.  Clearly, Pu is simultaneously 

taken up with Fe.   

Using an instantaneous partitioning model, comparisons were remarkably 

consistent between the soil concentration data of the SRS lysimeters and 

predictions using concentration ratios derived from field studies involving different 

plants, soils, and experimental conditions.  The steady-state advection model 

predicted Kd values for Pu and plant root zone soil that are much lower than 

batch sorption determinations.  This is consistent with enhanced mobility of 

sorbed Pu by siderophores or other plant exudates.   
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CHAPTER ONE 
 

INTRODUCTION 
 

 

Plutonium (Pu) is present in the environment as a result of global fallout from 

weapons testing and releases from nuclear power plants, nuclear materials 

production reactors, and research and development facilities.  Trace 

concentrations of Pu from fallout are ubiquitous across the surface of the Earth.  

Higher concentrations may occur in the vicinity of nuclear facilities and 

radioactive waste disposal sites.  Because of its toxicity, complex chemistry, and 

the long half-lives of several Pu isotopes, there is an interest in the long term 

behavior of Pu in the environment.   In the context of waste disposal, there is a 

particular interest in identifying processes affecting Pu transport in the vadose 

zone and incorporating them quantitatively in reactive transport models.   

The availability of data from four meso-scale field lysimeters at the Savannah 

River Site (SRS) has allowed significant progress to be made in quantifying Pu 

transport in the vadose zone in the last six years (Kaplan et al. 2006; Demirkanli 

et al. 2008).  The data are depth-discrete normalized Pu soil concentrations 

above and below sources buried at 26 cm depth in each lysimeter.  Three of the 

four lysimeters were exposed to Pu(III) or Pu(IV) for 11 years; a Pu(VI) lysimeter 

study was terminated after two years in the field.  The observed concentration 

profiles below the source are consistent with predictions from a mathematical 

model formed from a conceptual model having two Pu species - a mobile 

oxidized form Puo [Pu(V) and Pu(VI)] and a much less mobile reduced form Pur 
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[Pu(III) and Pu(IV)] – and first-order kinetic transformations between the two 

(Fjeld et al. 2003). Experiments conducted to complement the field data and 

modeling efforts support the redox-driven conceptual/mathematical transport 

model.  When upward transport through plants is included in the model, it yields 

predictions that are consistent with the concentration profiles above the sources 

as well (Demirkanli et al. 2009).   

In field and laboratory settings, numerous researchers have shown that plant 

uptake can affect the environmental fate and transport of radionuclides.  

Elements studied in field settings include Se (Ashworth and Shaw 2006a); Cs 

and Sr (Sanford et al. 1998); Co, Cs, and Ra (Gerzabek et al. 1998); Cs, Sr, Pu 

and Am (Nisbet and Shaw 1994); Cl and I (Ashworth and Shaw 2006b); and Pu 

and Am (Sokolik et al. 2004).  Wadey et al. (2001) noted that upward migration of 

Cs and Co was likely due to root uptake and translocation.  Similarly, Sanford et 

al. (1998) attributed upward migration of Cs to plant transport.  In the laboratory, 

Garland et al. (1981) studied Pu in soybeans and observed characteristics of 

xylem transport.  Cataldo et al. (1988) suggested that Pu exists in plant xylem as 

soluble organic complexes.  Although the mechanisms underlying the transport 

of Pu in plants have yet to be fully defined, it is known that Pu is more mobile in 

plants than in soil (Cataldo et al. 1988).  Long-term reconnaissance studies of Pu 

in soils contaminated by the Chernobyl nuclear plant accident showed that native 

grasses affect the distribution of Pu in soil through concentration in plant tissues.  

Ultimately, this affects Pu mobility in near surface soils (Sokolik et al. 2001; 

Sokolik et al. 2004) 
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Isotopic ratios of SRS lysimeter surface sediments indicated that Pu uptake 

and translocation occurred through plants that grew on the lysimeters (Kaplan et 

al. (In press)).  The weapons grade Pu sources emplaced in the lysimeters at the 

beginning of the study match the isotopic ratios found at the lysimeter surfaces.  

Those ratios distinctly differ from local and regional fallout Pu ratios.  Transport 

modeling predicted that a Pu residue may be found at the lysimeter surfaces by 

moving upward through plants (Demirkanli et al. 2008).   

The lysimeter soil data and isotope ratio analyses indicate that upward 

transport of Pu occurred at SRS.  This upward migration appears to be due to Pu 

transport in plants.  Predictions from a model require a plant uptake mechanism 

for upward transport to be consistent with the SRS field data.  The model uses 

the retardation of Pu in plants and Pu-plant Kd values as fitting constants.  Data 

for these parameters do not exist.   

Plants have no known biological need for Pu, a manmade substance.  

Several studies suggest that Pu uptake in plants occurs based on the plant’s 

requirement for Fe and the highly similar charge to size ratios of Fe(III) and 

Pu(IV) (Neu 2000, John et al. 2001, Ruggiero et al. 2004).   Evidence for this also 

does not exist.  The objectives of this research were to experimentally determine 

the retardation of Pu in plants and the Pu-plant Kd in order to build a quantitative 

knowledge base in support of transport modeling, and to examine plant uptake 

correlations between Fe and Pu.   
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CHAPTER TWO 

BACKGROUND 

 

2.1. The History and Characteristics of Plutonium 

The element Pu is inexorably linked to uranium.  Uranium was first found in 

mountainous regions of Germany in the mineral pitchblende.   In 1872, the 

Russian chemist Dmitri Mendeleev published his second version of what would 

become the periodic table.  He placed uranium as the heaviest element with an 

atomic mass of 240.  Uranium remained the heaviest known element until World 

War II, although there were earlier predictions of “missing elements” (Bernstein 

2007).  The modern periodic table incorporates quantum theory and is thus 

arranged by atomic number.  It includes two rows of heavy elements: the 

lanthanides and the actinides.   

Following the discovery of the energy released from uranium undergoing 

nuclear fission, nations became interested in the military potential of such energy 

sources.  In 1941 at the Lawrence Berkeley Laboratory, Glenn Seaborg and 

Arthur Wahl conducted experiments using neutrons generated by a cyclotron.  

They produced 239Pu via neutron bombardment of 238U with an intermediate 

239Np decay step, although their discovery remained unpublished until after the 

war.  They also generated 238Pu via deuteron collision with 238U.  They found that 

239Pu is a more fissile (neutron producing) energy source than 235U.  With this 

knowledge, the U.S. made Pu production an important objective (Bernstein 

2007).   
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The development of Pu production facilities and separation processes was 

accomplished at great expense with a great deal of development.  Although 

multiple schemes were tested for producing Pu, ultimately all methods to 

synthesize, isolate, and purify Pu were expensive, energy-intensive, and 

generated large quantities of hazardous wastes.  This is because of the complex 

chemistry of Pu (discussed below) and the difficulty of separating Pu from U.   

The first reactor to produce Pu was Hanford’s ‘B’ reactor  (Rhodes 1986).  It 

was constructed in less than a year during the Manhattan project and operated 

from 1944 until 1968.  The first nuclear bomb test at Alamogordo, New Mexico 

used Pu produced at Hanford.  The first nuclear weapon deployed at Hiroshima, 

Japan used 235U, and the second weapon deployed at Nagasaki, Japan 

contained 239Pu.   

Plutonium is a very dense metal with an atomic number of 94.  It is nearly 

twice as dense as lead.  It is an element in the actinide series, filling the 5f 

electron sub-shell (Huheey 1978).  There are 15 isotopes of Pu (Walker et al. 

1989).  Of these, seven isotopes (mass numbers 236, 238, 239, 240, 241, 242, 

and 244) are well known to nuclear physicists and radiochemists.   

Plutonium has several unique properties.  It rarely occurs in nature and has 

an extremely low crustal abundance on Earth.  It is found in ultra-trace quantities 

in a few uranium mineral deposits.  Evidence of Pu formation was found in higher 

than normal concentrations at a uranium deposit called a “natural nuclear 

reactor” in Oklo, Gabon  (Choppin et al. 2001).  Since the discovery of the Oklo 

site, other natural Pu deposits have been identified (Hoffman, et. al. 1971; Curtis, 
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et. al. 1991).  Plutonium has four oxidation states (III, IV, V, VI) which may be 

simultaneously present in aquatic systems (Choppin et al. 1997).  This fact is an 

aspect of Pu chemistry that challenges understanding and prediction of its 

environmental behavior.  Plutonium can exist in six different crystal structures 

under environmental conditions, more than any other element (Hore-Lacey 

2008). 

2.2. Plutonium in the Environment 

2.2.1. Sources 

In terms of total mass, natural sources of Pu are insignificant on the earth’s 

surface.  Synthetic Pu comes from two activities: the production of high purity Pu 

for weapons or other purposes and the operation of nuclear reactors.  Estimates 

of the global totals of Pu produced for weapons vary.  The total mass of 

weapons-grade Pu has been estimated to be 3.0 x 106 kg (Cochran 1997).   US 

quantities of weapons-grade Pu have been estimated at 100 metric tonnes, the 

former Soviet Union at 125 – 200 tonnes, and the rest of the world at less than 

20 tonnes.  Nuclear power reactors operating via thermal fission of 235U produce 

239Pu through neutron capture reactions with 238U.  Plutonium-239, like 235U, is a 

fissile material and is used as fuel.  During the life cycle of fuel in reactors, 

several Pu isotopes are created.  With 440 nuclear reactors operating worldwide, 

by the year 2000 an estimated 1,000 tonnes of Pu were produced in power 

plants.  This quantity exceeds the mass of Pu produced purposely for weapons 

by a factor of three (Hecker 2000). 
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The production of nuclear weapons in the U. S. created 3.8 x 105 m3 of high-

level waste (50% of which is transuranic waste), 3.3 x 106 m3 of low-level waste, 

and other waste streams (DOE 1996).  Research and production processes have 

created significant environmental contamination.  In 1996, the U. S. Department 

of Energy (DOE) estimated contaminated solids to be 7.9 x 107 m3 and 

contaminated groundwater to be 1.8 x 109 m3.   Most of the Pu contamination is 

located at a few DOE facilities, with the highest inventories at Hanford 

(Washington), Savannah River (South Carolina), Idaho National Laboratory, Los 

Alamos National Laboratory (New Mexico), and the Waste Isolation Pilot Plant 

(New Mexico).  In the past ten years, remedial actions have removed Pu from the 

Rocky Flats site in Colorado and from Mound Laboratories in Miamisburg, OH.  

Significant quantities of Pu contamination are present at the Nevada Test Site in 

the U. S. and other locations worldwide such as Tomsk in Russia and remote 

weapons testing locations in Siberia and Kazakhstan. 

During the Cold War, the former Soviet Union undertook great efforts to 

produce Pu. Their waste management practices lagged those of the U.S.  In the 

U. S., waste management practices underwent a long and expensive 

infrastructure development, whereas in the former Soviet Union states, nuclear 

waste disposition largely consisted of pumping wastes underground.  

Consequently, several of these areas have challenging environmental legacy 

issues.   

Additional Pu sources are found in unmanned power applications, such as 

radioisotopic thermo-electric generators.  These energy power stations were 
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particularly common in remote settings.  Plutonium energy sources have been 

used for powering deep space missions such as Cassini-Huygens and Voyager, 

undersea applications, and navigational beacons.  

2.2.2. Distribution 

The distribution of Pu in the environment is largely linked to nuclear weapons 

and nuclear power.  The use of Pu for weapons has resulted in its distribution 

via: 

• research, production, and waste facilities  

• weapons deployment and 

• weapons testing. 

The U.S. development of nuclear weapons includes some of the most 

technologically challenging efforts ever undertaken.  An assembly of scientists 

was recruited into the Manhattan Project to produce nuclear weapons.  The Cold 

War ensued after World War II; during the 1950’s and 1960’s, focus shifted from 

research and production of small Pu quantities at a few locations to large scale 

production of nuclear warheads involving many locations. 

Weapons research and production occurred at many locations in the U.S.  

This was by design so that critical research, production, and assembly facilities 

could not easily be eliminated (stopping weapons component supply) through 

enemy military action.  With time, the U.S. weapons complex footprint grew to 

facilities located in 29 states (DOE 1997). 

Historically, weapon manufacturing focused on technological development 

and production increases.  The disposition of process waste streams and 
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construction of waste handling facilities were not priorities at the time.  As a 

consequence, at smaller sites or supplier sites, funds were not available for 

adequate waste handling techniques.  At larger weapons complex sites, 

operators realized the need for more elaborate waste systems than dumps, 

storage pads, pits, trenches, and burial grounds, although the latter were still 

being created for waste streams deemed less hazardous.  Underground tanks 

were built and installed at the Hanford Site, Savannah River Site, Idaho National 

Laboratory, and other facilities to store high-level waste streams.  In the late 

1940’s and the 1950’s, 142 single shell (single wall) tanks were buried in place at 

the Hanford Site.  Later, 28 double shell tanks designed to contain larger 

volumes of high-level waste in a more structurally sound manner were installed.  

Although the single shelled tanks were expected to last 10 - 20 years, most are 

still in service.  Greater than 50% of the Hanford single shell tanks have either 

been proven to have leaked or listed as probably leaking, with an estimated 4 x 

106 L of tank waste emitted from the tanks to the vadose zone.   

High level waste at DOE sites is in a state of flux, with wastes generated 

years ago not being placed in a long term repository.  Similarly, transuranic 

wastes generated by power plants do not have a well designed permanent 

repository.  Consequently, wastes are stored onsite at virtually all U. S. operating 

power reactors.  One factor contributing to the delay in selecting a long term 

repository has been the provision of strong evidence that a repository could store 

long lived wastes without escape of radioactive contaminants for a period of 

10,000 years.  Since no previous man-made facilities have been designed with 
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such long time criteria, the evidence for repository stability will rely heavily on 

radionuclide (including Pu) transport modeling. 

The only military deployment of a Pu bomb occurred at Nagasaki, Japan on 

August 9, 1945 and resulted in the death of 78,000 Japanese citizens (Mahara 

and Kudo 1995; DOE 1997; Kudo 2001).  The bomb was detonated 500 m above 

ground.  Mahara and Kudo (1995) estimate that 1.2 kg of Pu fissioned from ~15 

kg in the bomb.  Surprisingly, only 0.3% of this deposited as local fallout, with 

greater than 99% transported into the atmosphere.  Due to wind speed and 

direction and the shape of surrounding countryside, the maximum Pu 

concentrations were found 2.8 km east of the blast hypocenter.   

Nuclear weapons tests were conducted in the atmosphere, on the earth’s 

surface, underground, and in the ocean.  Testing has resulted in the dispersion of 

Pu globally from atmospheric and surface detonations and locally from 

subsurface detonations.  Tests were conducted at remote locations subject to 

access controls.  Figure 2.1 shows nations known to have conducted nuclear 

weapons tests (in color highlights) and the locations of specific surface tests 

(circles, color indicates nation testing).  Global fallout is the deposition of 

radioisotopes following their atmospheric dispersion, mixing, and transport from 

above ground testing.  The U.S. and Russia conducted most above ground tests 

beginning in the 1940’s and ceasing upon signing the Limited Test Ban Treaty in 

1963.  France and China continued above ground tests until 1982.  The 

residence time of Pu in the atmosphere due to weapons testing is approximately 
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2 years (Buesseler 1997).  Underground tests have contributed to localized 

surface contamination and substantial subsurface contamination. 

 

 
Figure 2.1 Nuclear weapons test map showing the locations of detonations and 
the nations that conducted the tests (by color).  (WGBH, The American 
Experience, 1999) 

 

Public perception of nuclear weapons and nuclear power ranges from 

acceptance and tolerance to outrage.  Opponents of nuclear operations 

frequently point to concerns about the safe handling and storage of weapons and 

fuel and the disposition of nuclear waste.  Since weapons tests were conducted 

for military purposes, direct sharing of weapons test data has been rare.  Isotopic 

analysis is one of several methods employed to characterize weapon tests either 

remotely or as reconnaissance analysis. 

The ratios of Pu isotopes are commonly used to distinguish source inputs.  In 

studies conducted during the 1970’s and early 1980’s, ratios of 240Pu to 239Pu 

were assessed.  Higher 240Pu: 239Pu ratios are generally based on higher neutron 

fluxes.   The Pu ratios are influenced by blast intensity, height, test yield, and 
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weapon design (Buesseler 1997).  As detection sensitivity and accuracy have 

increased over time, isotopic signatures have led to much better source 

identification (Lee and Clark 2005; Smith and Williams 2005; Yoshida et al. 

2007).   

Due to its rare occurrence in nature and improved detection sensitivity, Pu 

isotopic ratios have also been used to examine anthropogenic inputs to 

phenomena such as sedimentation rates, water column concentrations and 

deposition onto coral in the ocean, and deposition onto soils, plant matter, and 

polar ice on land (Koide et al. 1975; Mahara and Kudo 1995; Pentreath 1995; 

Buesseler 1997; Jia et al. 2000; Lee and Clark 2005; Ohnuki et al. 2007).  In 

addition to isotopic ratios, comparisons between Pu and other radionuclides 

permit examination of contaminant migration rates following a relatively short-

term deposition event such as the Chernobyl accident (Holgye and Maly 2000).    

Ratios of different radionuclide activities may be more meaningful than activity 

values alone (Hulse  et al. 1999). 

Weapons development preceded the development of nuclear power.  

However, as noted previously, the amount of Pu produced by power production 

now exceeds weapons Pu.  In the nuclear fuel cycle, Pu can be located in a 

reactor, in fuel storage, at reprocessing facilities, or stored as waste.  It can also 

be consumed as fuel in a mixed-oxide fuel reactor.  As nuclear fuel, Pu is in a 

ceramic metal oxide matrix.  Barring a severe accident, it is likely to remain in the 

fuel matrix for a long time.  Since Pu is dense, in an engineered environment, 
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and non-volatile, the main pathways in which Pu is released from nuclear 

facilities are accidents or the inappropriate handling of wastes. 

2.2.3 Environmental Chemistry  

On the ground surface or in the subsurface, the simplest conceptual model of 

contaminant transport involves an aqueous phase and a solid phase.  The 

aqueous phase can be pure water, rainwater, soil water, or groundwater.  The 

solid phase consists of soil particles, minerals, rocks, or organic matter.  For a 

contaminant to be transported, it must exist in a mobile phase.  It can move with 

water, particles or microbes moving in pore water or groundwater, or inside 

plants upon passing the root tissues to the xylem.  Few contaminants move 

freely with water because they sorb to solids.  The solid-water distribution 

coefficient, Kd, is used to describe the tendency of a contaminant to sorb to solids 

and is expressed by Eqn. 2.1: 

�� � ��
��

 Eqn. 2.1 

where Cs is solid phase concentration and Cl is aqueous phase concentration of 

the contaminant.  This form of expression simplifies the physical dynamics of 

sorption or processes that may remove a contaminant from the aqueous phase.  

For this reason Kd is considered a lumped parameter meaning it inherently can 

include other processes (discussed below).  When sorption is linear, Kd 

represents an instantaneous, equilibrium, and reversible reaction.  It is well 

understood that Kd may vary significantly depending on conditions, aqueous and 

solid phase chemistries, redox, and other conditions (EPA 1999).  However, Kd is 

still of great utility, particularly in estimating contaminant transport.   
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The effect of sorption on contaminant mobility in the subsurface can be 

estimated quantitatively based on its retardation factor, R, defined as the ratio of 

water velocity to contaminant velocity.  Retardation factor is related to distribution 

coefficient by  

� � 1 	 ��

�
�  Eqn. 2.2 

where ρb is bulk soil density and θ is volumetric water content in the vadose 

zone, which is equivalent to the porosity in the phreatic zone.  Further inspection 

of the retardation factor shows that 

� � 1 	 ��

�
� �  1 	 �

������
��

��
�� ��
����

������
�� ���� ��

����
�  which reduces to � �  1 	 �����

�����
  

So, as Kd increases, so does R.  Also, if all of the contaminant stays in the 

aqueous phase, then R equals one and the contaminant moves at the same 

speed as the water.  As seen in Eqn. 2.2, retardation may be calculated from the 

Kd or an apparent Kd may be inferred from the retardation.  

Actinide aquatic chemistry processes include complexation, hydrolysis, 

precipitation/ dissolution, and colloid formation in addition to sorption (Choppin 

2001).  Plutonium speciation is complex because it has multiple oxidation states 

and its redox interactions are influenced by biogeochemical reactions at the 

surfaces of minerals, by varying oxygen content, through microbial interactions, 

and through combinations of these interactions (Nitsche and Silva 1996). 

The sorption and retardation of Pu is strongly dependant on its oxidation 

state.  Oxidation states +3 and +4 are favored under low pH conditions and +5 

and +6 are favored under high pH conditions.  Pu(IV) and Pu(V) are the most 

common oxidation states under vadose zone conditions.   Oxidized species are 
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more mobile than reduced species because they form less stable complexes and 

are therefore less likely to sorb to a solid or to form a precipitate and become 

immobile.   

Since the 1960’s, there has been an understanding that Pu oxidation state 

plays a key role in the mobility of Pu in the environment, i.e.,, that oxidized forms 

are more mobile than reduced forms (Cleveland 1970; Milyukova et al. 1969).   

The chemistry of Pu and its ability to exist in several redox states has led to 

seemingly contradictory research findings.  For example, Fried  et al. (1976) and 

Thompson (1989) observed fast fractions of non-sorbing Pu in the presence of 

strongly sorbing Pu.  In column studies of radionuclide mobilities in groundwater 

in the Snake River plain aquifer, Fjeld et al. (2001) observed multiple mobilities of 

239Pu.  Fjeld et al. (2003) developed a one-dimensional model for subsurface 

transport of Pu utilizing reduction of Pu(V) via surface mediated reactions and 

verified their conceptual model with column experiments.  Similarly, Kaplan et al. 

(2004) conducted column studies on the effects of pH and oxidation states on the 

mobility of Pu in SRS sediments.  These studies verified that Pu exists in more 

than one chemical species in the subsurface and that different species can have 

different mobilities.  In the last few years, quantification of this using reactive 

transport modeling has been advanced significantly with field data from Pu 

lysimeters at the Savannah River Site and complementary laboratory data 

(Kaplan et al 2007; Demirkanli et al. 2008).   
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2.3 Vadose Zone Radionuclide Transport Studies  

2.3.1. Background Information 

The motivation for the research reported in this dissertation comes from 

lysimeter studies.  A lysimeter is a well-defined container placed in the field and 

back-filled with soil.  Online instruments and sampling portals permit monitoring 

of soil temperature and moisture, precipitation, and leachate concentrations.  

Lysimeters have been used in agronomy to monitor soil conditions, water fluxes, 

and nutrient utilization.  During the 1970’s and 1980’s, long term lysimeter 

studies were initiated at Argonne National Laboratory, Oak Ridge National 

Laboratory, Savannah River Site, and other sites to examine the release and 

transport of radioactive contaminants from waste matrices (McConnell et al., 

1988).  Subsequent funding cuts terminated these projects before the end of their 

planned twenty year duration and significantly reduced the amount of information 

that was obtained.   

Presented below are lysimeter study results related to radionuclide migration.  

The data are obtained from depth discrete soil samples collected at various 

distances from the source following closure of the lysimeter.     

2.3.2. ORNL Lysimeters  

The lysimeters at ORNL used Portland cement molded into cylindrical waste 

forms.  The forms were prepared from Epicor-II prefilter waste materials from 

decontamination of Three Mile Island Unit-2.  The highest activity radionuclides 

present in the wastes were 137Cs, 134Cs, and 90Sr.  The experiment consisted of 

five lysimeters, four of which were filled with local soils and the fifth was 
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backfilled with silica sand and served as a control lysimeter.  The waste forms 

were buried approximately 100 cm below the ground surface.  Soil cores were 

collected and analyzed at the end of a seven year field exposure.  Soil profile 

results are presented in Figure 2.2.  The concentration profiles of the three 

radionuclides were similar in that they were relatively flat from 30 cm above the 

source all the way (another 70 cm) to the surface. The operation protocol for the 

ORNL lysimeters called for plants to be removed periodically; however plant 

roots were found in the soil core.  The roots were analyzed for 137Cs, and the 

137Cs concentration profile with depth was similar to that for the soil.  

Furthermore, the data in Figure 2.2 show that 137Cs concentrations in the plant 

root are one to two orders of magnitude higher than in the surrounding soil, 

demonstrating the ability of plants to concentrate 137Cs with respect to the 

surrounding soil.   Another interesting attribute of the data is that there is a flat, 

relatively weak concentration gradient across this depth.  Figure 2.2 contains no 

data collected within 30 cm of the source. 
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Figure 2.2   Cs and Sr concentrations versus depth in the ORNL control lysimeter 
soil.  (Sanford et al. 1998) 
 

2.3.3. Savannah River Site Pu Lysimeters 

Approximately 150 lysimeters designed for various tests were used at the 

Savannah River Site (McIntyre 1987).  Of interest here are three Pu lysimeter 

studies initiated in 1980.  The lysimeters (Figure 2.3) were constructed of 52 L 

plastic carboys with bottoms removed.  They were inverted, placed in an 

excavation in the ground, and backfilled to a depth of 51 cm.   The sediment 

used for backfilling was a well-mixed sediment collected at 4 m depth from a 

nearby vadose zone excavation.  Prior to backfilling the lysimeters, no biological 

materials were noticed in the sediment (Kaplan et al. 2007).  During backfilling, a 

single filter paper spiked with Pu(IV)(NO3)4, Pu(IV)(C2O4)2, or  Pu(III)Cl3 was 
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sandwiched between two non-radioactive filters and then placed on the central 

axis of each lysimeter at ~ 26 cm below ground surface.  

 

 

Figure 2.3  Schematic of an SRS Pu “mini-lysimeter”  
(Kaplan, et. al. 2007) 
 

At the SRS study area (Figure 2.4), the Pu lysimeters were undisturbed for 

eleven years.  The lysimeters were subjected to natural precipitation and were 

not artificially watered.  An important aspect of the operation was that plants, 

generally grasses, growing on the lysimeters were occasionally cut and left on 

the ground at the lysimeter surface.  These opportunistic plants that grew in the 

lysimeters were identified from photographs of the study area and are presumed 

to be crabgrass (Digitaria sanguinalis), bahia grass (Paspalum notatum), and 

26 cm 
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broomsedge (Andropogon virginicus).  Even though plants were neither sampled 

nor identified during the study, it should be noted that roots likely penetrated the 

entire depth of the lysimeters over the 11 year study period, based on sampling 

of similar plants growing near the study site in similar soils.  (Personal 

communication, Daniel Kaplan, Savannah River National Laboratory, Aiken SC).  

During the study period, leachate was collected initially on a monthly basis and 

from about six years into the project, on a quarterly basis.  At the end of the field 

exposure, a 51 cm long by 7.6 cm diameter soil core was extracted from the 

central axis of each lysimeter.  The soil cores were placed in cold storage for 

approximately ten years.  In 2001 the cores were cut into 1.25 or 2.5 cm thick 

discrete sections and analyzed for 239+240Pu.     

 
 

 
 
Figure 2.4 A photograph of the SRS lysimeter study area shows grass plants 
growing in and around the highlighted lysimeter surfaces. 
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The results of the field measurements and modeling efforts are presented in 

Figure 2.5, where relative Pu concentration is shown as a function of lysimeter 

depth.   Focusing on the measurements below the source, the three data sets 

are consistent in showing (1) in the first four cm below the source, the Pu 

concentration declines by more than three orders of magnitude and (2) in the 

next 10 cm, the concentration declines by two orders of magnitude.  Kaplan et al. 

(2006) and Demirkanli et al. (2007) showed that the observed Pu behavior can 

be replicated using a transport model which includes equilibrium partitioning of 

Pur (plutonium (IV)) and Puo (plutonium (V)) between the aqueous and solid 

phases and kinetic, surface-mediated redox reactions leading to transformations 

of Pur to Puo or vice versa, and time averaging of the transformation rate 

constants and percolation (mean water infiltration) rate.  The distinctive shape 

was fit by assigning a Kd of 10000 to Pur, a Kd of 15 to Puo, a rate constant on the 

order of 7.0E-4/h for reduction of Puo, and a rate constant on the order of 3.0E-

7/h for oxidation of Pur.   
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Figure 2.5  The 239Pu relative concentrations in soil versus depth in three SRS 
lysimeters.  The data are superimposed.  The dashed line indicates the best fit 
modeling result from Demirkanli et al. (2008) without invoking plant uptake. 
 

Focusing on the soil data above the source, it is found that Pu was 

transported upward all the way to the surface.  From the source depth to 20 cm, 

the concentration data of the three lysimeters decrease from the source in a 

consistent manner and from ~20 cm to the surface, the relative concentration 

ratios range from 10-6 to 10-3.   Modeling efforts that utilized advection and 

dispersion equations to account for the equilibrium partitioning of Pu redox states 

and utilized both averaged water infiltration rates and transient water conditions 

could not simulate the upward transport observed in the lysimeters.  The upward 

mobility of Pu could be explained only by estimating transport through plants.  A 

key model parameter developed for plant transport is a distribution coefficient for 
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Pu sorption to plant xylem.  Distribution coefficients of 1 - 10 L/kg are required for 

agreement with the near surface data.   

2.3.4. SRS Surface Soil Analysis 

Kaplan et al. (In press) conducted a study to test whether the Pu found at the 

SRS lysimeter surfaces was from the Pu sources or from fallout.  Thermal 

ionization mass spectrometry (TIMS) was used to analyze lysimeter surface soils 

in addition to surface soil control samples from distant locations containing Pu 

from global fallout.  TIMS is a very sensitive analysis with 239Pu soil detection 

limits of ~0.5 µBq/g (~0.2 E-15g/g).  It is used for Pu isotope ratio analyses.  

Isotope ratio analyses were performed on samples from the SRS lysimeter 

sediments, fallout surface soils, and a weapons grade control similar to the Pu in 

the lysimeter sources.  The isotopic ratios of the surface lysimeter sediments 

were virtually identical to the weapons grade control sample whereas fallout 

surface soils have distinctly different ratios.  This provided strong evidence that 

the Pu detected at the lysimeter surfaces originated from the Pu sources buried 

in each lysimeter at the beginning of the study and that the plants were behaving 

as a pump, virtually pumping the Pu at an accelerated rate from the source. 

2.3.5 Basic Upward Transport Models   

Presented in this section are two simple mathematical models for calculating 

Pu concentration in soil due to upward transport through roots.  The first is an 

instantaneous partitioning model which utilizes the concentration ratio as the 

primary transport parameter.  The second is a steady-state advection model 

which is a simplified version of the one-dimensional model of Demirkanli et al 
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(2009) with the same transport parameters.   Both of the mathematical models 

are based on a conceptual model in which the lysimeter system consists of two 

homogeneous regions:  a source zone and a root zone (Figure 2.6).  The source 

zone is the contaminated region near the filter paper Pu source, and the root 

zone is the initially uncontaminated region between the source and the surface.  

Plutonium is taken up by roots of annual plants which penetrate both the root 

zone and source zone.  Following the death of the plants at the end of the 

growing season, Pu in the roots becomes incorporated in the soil in the root 

zone.  This process is repeated each year.  The models provide a means of 

calculating the ratio of Pu concentration in root zone soil to concentration in 

source zone soil.  

2.3.5.1 Instantaneous Partitioning  

In this approximation, there is instantaneous partitioning of Pu between the 

soil in the source zone and the plant roots.  The concentration in the roots is 

given by    

0CCRC rr ⋅=  Eqn. 2.3 



 25 

 
 
Figure 2.6  Conceptual model of the Savannah River Site Pu lysimeter system for 
the instantaneous partitioning and the steady-state advection models.  (The rye 
grass root drawing shown is modified from Gregory 2006).  In this conceptual 
model, the relative root density is not to scale.  At the Pu source depth of ~26 cm, 
the root density is calculated to be 17% of that of the surface roots (Demirkanli et 
al. 2009).  The key points of this conceptual drawing is that root density 
decreases rapidly with depth and that grasses have fibrous roots that tend to 
cover a lot of area with little mass 
 

where Cr  is Pu concentration in roots [Bq/kgr], C0 is Pu concentration in source 

zone soil [Bq/kgs], and CRr is concentration ratio for roots [kgs/kgr].  

Root zone 
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Surface 
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Concentration ratio is an empirical parameter used to quantify plant uptake data 

and is most commonly expressed as the ratio of contaminant concentration in the 

plant (or plant part) to the contaminant concentration in the soil (or solution, in 

hydroponic plant studies).  Most concentration ratios reported in the literature 

apply either to the edible portions of the plant (e.g. seed, fruit or leaves) or to the 

entire above ground plant tissues.  Root values are rare unless the root is edible 

(e.g., potatoes, turnips, etc).  A table of Pu concentration ratios is presented in 

Section 2.4.4.   

At the end of the growing season (year), Pu in the roots transfers to the soil 

uniformly throughout the root zone.  Thus  

r r T s b TC V C Vρ ρ=  or r
s r

b

C C
ρ

ρ
=  Eqn. 2.4 

where ρr is bulk root density [kgr/mT
3], ρb is bulk soil density [kgs/mT

3], and VT is 

total volume of the root zone [mT
3].  Combining Eqns. (2.3) and (2.4) and taking 

into account N seasons of Pu accumulation in root zone soil yields 

0

s r
r

b

C
N CR

C

ρ

ρ
= ⋅ ⋅  Eqn. 2.5 

Eqn. 2.5 provides a means by which concentration ratio data, if available for 

roots, may be exploited for the root transport problem. 

2.3.5.2 Steady-state Advection 

In this approximation, the xylem tissues are conduits for the transpiration of 

water and dissolved constituents from the source zone to the above ground 

portion of the plant.  In Demirkanli et al. (2009), the terms root and xylem were 
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sometimes used synonymously.  To be consistent with later chapters, a clear 

distinction is made here between xylem and the surrounding root tissue.   

The conceptual model is shown in Figure 2.7.  Advective flux of soluble Pu 

entering the root zone from the source zone, jl [Bq/mw
2s] is  

l l wj C v= ⋅  Eqn. 2.6 

where Cl is aqueous Pu concentration [Bq/mw
3] and vw is the mean velocity of 

water [m/s] entering the root zone.  Aqueous Pu concentration is related to soil 

concentration in the source zone by   

0
l

ds

C
C

K
=  Eqn. 2.7 

Kds is distribution coefficient for Pu in soil [mw
3/kgs]

1.   Combining Eqns. 2.6 and 

2.7 yields  

0
l w

ds

C
j v

K
=  Eqn. 2.8 

Advective flux in the xylem, jx, is 

x x Puj C v=  Eqn. 2.9 

where Cx is Pu concentration in water flowing through the xylem [Bq/mw
3] and vPu 

is Pu velocity in the xylem [m/s].  Advective transport of a dissolved species such 

as Pu through xylem is analogous to transport through a porous medium.  Thus, 

the effect of sorption to the solid phase on Pu transport is calculated by  

w
Pu

Pu

v
R

v
=  Eqn. 2.10 

                                                 
1 Elsewhere in this dissertation, the traditional units of L/kg  (or cm3/g) are used for distribution 
coefficient.  The unit m3/kg is used in this section to maintain consistent units throughout the 
derivation. 



 

where RPu is Pu retardation factor for xylem [unitless],

Figure 2.7 Steady-state advection model diagram illustrating upward Pu transport 
from the source zone to the 
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is Pu retardation factor for xylem [unitless], 

state advection model diagram illustrating upward Pu transport 
from the source zone to the soil zone in plant xylem. 

Eqn. 2.11

 

state advection model diagram illustrating upward Pu transport 

Eqn. 2.11 
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where ρx is xylem density [kgx/mx
3], Kdx is distribution coefficient for Pu in xylem 

[mw
3/kgx], and ηx is xylem porosity [mw

3/mx
3]. 

At the end of the growing season, Pu in the water contained within the xylem 

transfers to the root zone soil.  For a thin section of the root zone, ∆z,  

x wx s b sC A z C A zρ∆ = ∆  

where Awx∆z is volume of water occupied by water in the xylem.  Thus, 

xxwx AA η=  and 

x x x s b sC A z C A zη ρ∆ = ∆  

Simplifying and rearranging,  

b s
x s

x x

A
C C

A

ρ

η
=  Eqn. 2.12 

Substituting Eqns. 2.11 and 2.12 into Eqn. 2.9 yields 

b s w
x s

x x Pu

A v
j C

A R

ρ

η
=   Eqn. 2.13 

At steady state, the flux entering the root zone (Eqn. 2.8) is equal to the flux 

through the xylem (Eqn. 2.13) 

0 b s w
w s

ds x x Pu

C A v
v C

K A R

ρ

η
=   

Rearranging and simplifying,  

0

s Pu x x

ds b s

C R A

C K A

η

ρ
=  Eqn. 2.14 

Finally, taking into account N years of Pu accumulation in the soil, 

 
0

s Pu x x

ds b s

C R A
N

C K A

η

ρ
=  Eqn. 2.15 
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Figure 2.8 shows the SRS Pu lysimeter data above the source with plots of 

the rigorous advection-dispersion simulation results of Demirkanli et al. (2009) 

and the 1D steady state advection (SSA) model (Eqn. 2.15) results for 0 - 20 cm.   

SSA model C/C0 results are plotted for Kd values of 5, 50, and 500 and constant 

parameters RPu = 3, N = 10.75 y, ηx = 0.6, ρb = 1.5 g/cm3, and Ax/As = 6.24E-5.  

N and ρb are from the SRS lysimeter study.  Xylem porosity ηx is from Demirkanli 

(PhD dissertation, Clemson University, Clemson, SC 2006).  The xylem to soil 

ratio (Ax/As) is calculated from the geometric mean of the soil sample depths from 

0 – 20 cm using the xylem area to soil area equation in Demirkanli et al. (2009).  

The Pu retardation factor is an approximate midpoint of RPu estimated and 

discussed in Chapters Five and Six.   
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Figure 2.8  SRS Pu lysimeter soil concentration data above the source shown 
with Demirkanli et al. (2009) simulations (Pu plant Kd = 15) and steady state 
advection model where RPu = 3 and Kd values of 5, 50, and 500 respectively.   
 
2.4 Plant Interactions 

2.4.1 Plant Physiology Involved In Nutrient Metal Uptake And Transport 

Vascular plants are divided into shoots (aerial) and roots (usually subterranean).  

Shoots consist of stem, branches, leaves and reproductive tissues.  Roots 

consist of primary root(s), lateral roots, root caps, and root hairs (Gregory 2006).  

Clearly, root and shoot tissues are interdependent.   For example, leaf fresh 

weight is dependent on root fresh weight for a particular species.  Leaves capture 

light, photosynthesize, and provide metabolic energy to the plant.  Roots provide 

most of the water and nutrients as well as anchor the plant.  Roots interact 
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dynamically with the soil and each influences the other (Jungk 2001; Pinton 

2007). 

In vascular plants, transmission of bulk water and nutrients occurs through 

the xylem.  Sugars, amino acids, and other energy-rich compounds generally 

produced near photosynthesis sites are distributed via phloem.  In cross 

sectional view of most mature woody plants, xylem and phloem are separated by 

significant distances and so there is little fluid exchange between them.  In 

herbaceous plants however, especially in stem tissue where xylem and phloem 

are in close proximity, there is fluid exchange (Mori et al. 2000; Ohya et al. 2008). 

Since the proposed research is concerned with metal transport within plants, 

it is important to note that: 

• the architecture of vascular tissues in different plants is highly variable 

• as plants undergo early stages of vegetative development, the size and 

positions of conductive tissues within the plant change 

• positions of vascular tissues in the stem may change along its longitudinal 

axis. 

These factors are important from the standpoint of measuring a simple 

velocity in plants.  For example, if the xylem area (the combined diameters of 

xylem vessels at a particular height in the plant) changes, then the water velocity 

in one section of the plant will be different from that of a different part of the plant.  

The velocity at a particular position in the plant should be inversely proportional 

to the xylem area diameter. 
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It is essential to understand that for a plant to affect the distribution of 

elements in the soil roots must transect the volume of interest, i.e., the roots or 

root hairs must be in close proximity to the soil particles containing the elements.  

Figure 2.9 illustrates that root distribution of corn and rye grass are quite similar.  

Both root systems are fibrous, as opposed to a taproot system such as that of a 

carrot.  For this research, the relative root zone distributions and densities of corn 

and grasses are quite similar within 40-50 cm depth, even though mature corn 

roots extend roughly 40% deeper.  Since the total depth of the lysimeters was 51 

cm, this factor is not significant. 

 

Figure 2.9   Drawings of corn and ryegrass roots shown with 80 cm depth 
(Gregory 2006) 

 

Corn Rye Grass 

80 cm 
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Long distance transport in plants (from root to leaves) is commonly explained 

using the soil-plant-atmosphere continuum.  With this concept, movement of 

water and nutrients through a plant is interconnected between environmental 

conditions in both the soil and the atmosphere.  Water and nutrients are 

transported into plants in the transpiration stream, driven by negative pressure 

created through vapor loss at leaf surfaces (Sperry et al. 2003; Steudle 2000) 

and sometimes under very wet but low transpiration conditions by root pressure.  

Transport of a soluble nutrient or contaminant involves transport across the root 

boundary into root xylem and translocation from root xylem into shoot xylem 

(Lauchli et al. 1971).  Non-volatile solutes may accumulate in the leaf and stem 

tissues as water transpires from stomatal cells. 

Generally Pu would be transported to plant roots by advection and diffusion 

(Marschner 1995; Steudle 2000).  When soil moisture is present, advective flow 

of soil solution occurs in response to the plant’s transpiration stream (Sperry et. 

al. 2003; Hainsworth and Aylmore 1986).  This is a dynamic process and if root 

uptake rates exceed mass flow rates, then a zone of depletion around the root 

can occur (Ehlken and Kirchner 2002).  Root growth counteracts this situation in 

a dynamic manner.  Through elongation and increasing fine root structure, roots 

improve access to nutrients. 

Nutrient transport across the root boundary is slow relative to axial transport 

in the xylem (Maas and Ogata 1972; Epstein and Norlyn 1973).  Using 

radiolabeled Rb+ and Br- ions and corn (Zea mays) roots, Epstein and Norlyn 

(1973) calculated radial transport velocities across the root of 1.8 and 1.4 cm/h 



 35 

versus axial transport velocities of 35 and 103 cm/h respectively.  The dimension 

of primary importance in the effective upward transport in plants is the axial.  In 

corn, the radial root is on the scale of 1-10 mm whereas the vertical scale of 

upward transport can be on the order of 1000 mm or more.  Since the radial 

distances are quite small as compared to axial distances (e.g. from root to stem), 

the radial and axial transport rates may not be important in the measurement of 

an arrival time.   

It is important to understand that solute movement from outside the root to 

inside the root and further into root xylem actually involves crossing several plant 

cell layers.  An ion or molecule that crosses into root xylem moves first through 

outer dermal cells, then across cortical layers and the Donnan free space, and 

finally across the endodermis and the Casparian strip to xylem.  In this 

document, movement or transport across the “root boundary” implies complete 

transmission across root tissues and into xylem wherein long distance transport 

within the xylem may occur.  This distinction is also important because significant 

quantities of Pu or other elements may not cross all cell layers and reach xylem; 

so in effect, the root may accumulate Pu.  For plant transport velocity 

experiments, the fraction of Pu in the xylem distributed upward is important.  In 

other experiments, both Pu in the xylem and in the roots can be important. 

Transport across the root boundary from root to xylem tissues is expected to 

be more difficult for multivalent ions.  Hence, ratios of transport velocities of 

multivalent ions across the root versus within the root xylem may be expected to 

be smaller than the values for the monovalent ions listed above.  For iron and Pu, 



 36 

transport across the root boundary is facilitated by specific plant transport 

molecules (referred to as active transport shuttles) and can not be characterized 

simply as an advective or diffusive process.  Once across the root boundary and 

inside the plant xylem, transport is an advective process (Bollard 1960; Mori et al. 

2000).  

2.4.2 Uptake of Nutrients 

Like all organisms, plants require nutrients to live and grow.  Nutrient 

elements are often classified as macronutrients, micronutrients, and beneficial 

elements.  Vascular plants need the following elements for adequate growth: N, 

P, K, Ca, Mg, S, Cl, B, Fe, Mn, Zn, Cu, Ni, and Mo.  Other elements such as Na, 

Si, Co, I, and V are considered beneficial micronutrients (Marschner 1995).  

Certain essential nutrients (Mn, Cu, Zn, Ni, Mo, and B) need to be present at the 

proper concentration; too low is insufficient for growth yet too high is toxic 

(Gobran et al. 2001).  Plants have sophisticated mechanisms to alter their 

environment to obtain nutrients and regulate internal concentrations.  In general, 

plant uptake is characterized by three qualities: 

• selectivity (finding and incorporating the nutrients they require) 

• accumulation and regulation  

• a degree of specificity according to plant genotype. 

The rhizosphere is the zone in the immediate vicinity of a plant root in which 

roots, microbes, fungi, soil, and the soil solution interface (Pinton 2007).  It is a 

dynamic environment in which many synergistic and competitive processes 

occur.  Although interactions occurring in the rhizosphere are less well 
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understood than many other factors governing plant growth, these interactions 

are critical in the biogeochemical cycling of elements.  The rhizosphere is the 

zone of entry of a nutrient or contaminant going from the soil solution into a plant.   

Nutrients enter plants through their root systems and in turn root systems 

respond to environmental factors to access water and specific nutrients.  Plants 

synthesize many organic compounds which can be exuded through their roots 

including sugars, amino acids, organic acids, fatty acids, sterols, enzymes, 

growth factors and other miscellaneous entities (Pinton 2007).   

Plant root hairs protrude into pores, crevices, and void spaces of the 

surrounding soil.  This way plants increase contact with soil and decrease 

distances between their root system and less mobile nutrients.  Figure 2.10 is an 

electron micrograph of the root hairs of crabgrass (Digitaria sanguinalis) that 

shows the intimate contact between the root hairs and soil particles.   



 

 
Figure 2.10 Electron microscopy image of crabgrass root hairs (
sanguinalis) at the root hair
 

Root exudates are primarily released through root hairs.  Jungk (2001) notes that 

root hairs are variably developed.  Their number and length depend upon 

environmental and genetic factors.  For example, 

length is a function of iron and phosphorous content.  Root length, 

area, and total root volume increase in response to nutrient deficiency.  

Plant members of the families Graminae, Chenopodiaceae, and Cruciferae 

are known to produce abundant root hairs.  Several species of these families are 

hyperaccumulators and have been used in phytoremediation studies involving 

actinide elements (Thomas and Hea

Falck 2004; Ruggiero et al. 2004)

2.4.3 The Physiological Need for Iron
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Electron microscopy image of crabgrass root hairs (
he root hair-soil interface (Gregory 2006)  

Root exudates are primarily released through root hairs.  Jungk (2001) notes that 

root hairs are variably developed.  Their number and length depend upon 

environmental and genetic factors.  For example, Ward (2008) found that root 

length is a function of iron and phosphorous content.  Root length, 

area, and total root volume increase in response to nutrient deficiency.  

Plant members of the families Graminae, Chenopodiaceae, and Cruciferae 

are known to produce abundant root hairs.  Several species of these families are 

hyperaccumulators and have been used in phytoremediation studies involving 

(Thomas and Healy 1976; Hossner et al. 1998; Lee et al. 2002; 

Falck 2004; Ruggiero et al. 2004). 

The Physiological Need for Iron 

Electron microscopy image of crabgrass root hairs (Digitaria 

Root exudates are primarily released through root hairs.  Jungk (2001) notes that 

root hairs are variably developed.  Their number and length depend upon 

found that root 

root surface 

area, and total root volume increase in response to nutrient deficiency.   

Plant members of the families Graminae, Chenopodiaceae, and Cruciferae 

are known to produce abundant root hairs.  Several species of these families are 

hyperaccumulators and have been used in phytoremediation studies involving 

ly 1976; Hossner et al. 1998; Lee et al. 2002; 
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As plants grow, they require a continuous supply of iron because iron does 

not move from old cells to new cells during photosynthesis (Brown 1978).  Since 

soluble iron is a metabolic requirement, plants express genes and commence a 

chain of activities in response to inadequate iron supply (Crowley 2006).  

Approximately 80% of the iron incorporated in gramminaceous plants is 

transported to the sites of new growth (Curie and Briat 2003).  It is transported 

from the soil to chloroplasts during photosynthesis and used for its redox electron 

shuttle properties much like heme proteins are used in animal respiration.  The 

translocation of iron from roots to shoots is vital.    

2.4.3.1 Siderophores and the Soil-Microbe-Plant Environment 

Iron is an abundant element on the Earth’s surface and in soil.  It is normally 

present in its oxidized state, Fe (III), which is insoluble under conditions favorable 

for plant growth.  In neutral pH and alkaline soils, iron availability to plants is very 

low.  Plants, microbes, and fungi have developed mechanisms to deal with the 

problem of iron acquisition.  Plants accomplish selective acquisition of nutrients 

by exuding specific chemical compounds.   Romheld and Marschner (1986) 

identified two strategies plants use to increase their intake of iron.  In dicots and 

some monocots, enzymes, protons, organic acids and low molecular weight 

chelating compounds are released to acidify the rhizosphere, complex iron and 

other metals, and then reduce the metals prior to transmission across the root 

boundary.  The metals are inducted into roots as reduced species.  This process 

is termed Strategy I.  Graminaceous plants (grasses and cereal crops) acquire 

metals using a Strategy II process.  In this process, plants release 
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phytosiderophores (PS) that are selective for iron and other metals, facilitate 

complexed-metal transport across the root boundary and may facilitate the long 

distance transport within plants.  These PS functions have been termed “search 

and fetch” and “taxi shuttle”  (Romheld and Marschner 1986; Von Wiren et al. 

1993; Suzuki et al. 2006; Yehuda et al. 1996;  Schaaf et al. 2004).  Some plants 

exude PS on a diurnal rhythm.  For example, Romheld and Marschner (1986) 

found that barley (Hordeum vulgare) exuded PS into the rhizosphere beginning 

shortly after sunrise and stopping a few hours after noon.  The exudates are 

released against transpiration and are subsequently transported back into the 

plant in the high transpiration stream around noon.  Although the siderophores 

have a short residence time in the rhizosphere, Reichard et al. (2007) and Loring 

et al. (2008) have demonstrated that plant organic acids and siderophores act 

synergistically to rapidly solubilize and complex iron from soil minerals and then 

induct it into the plant.  This way, the siderophore molecules are not lost to 

microbes as energy sources. 

Since iron solubility limits in soil are ubiquitous in the vadose zone, microbes 

and fungi are subject to its limited availability as well as plants and also release 

compounds to acquire nutrients.  Bacteria produce siderophores.  The degree 

with which plant exudates interact with other rhizosphere substances and benefit 

an individual species is not fully understood.  It has been observed that 

siderophores are used by other organisms.  Von Wiren et al. (1993) studied the 

influence of iron uptake in corn in the presence and absence of microorganisms.  

Corn plants responded to low iron by producing PS and rapidly adjusting their 



 41 

internal nutrient status.  However, in the presence of a high microbial population 

density, it appeared that the microbes degraded PS and the plants suffered iron 

deficiency.  Conversely, Bar-Ness et al. (1992) monitored iron uptake in cotton 

and corn with a fluorescent-labeled bacterial siderophore (NBD-DFOB).  Iron 

uptake increased when iron was supplied as a Fe-DFOB complex.  The labeled 

siderophore became fluorescent only when unferrated and thus served as a 

marker to follow iron removal.  By studying iron uptake in the presence and 

absence of antibiotics, they suggest microbes facilitate DFOB-mediated iron 

uptake in plants.  Ardon et al. (1998) have observed that fungi uptake DFOB-

labeled iron at increased rates as well. 

Highly detailed understanding of biochemical plant transport mechanisms 

across the root boundary is beyond the scope of this research.  However, it is 

important to realize that plants, microbes, and fungi can compete or interact 

synergistically for limiting nutrients.   

Different species produce differing types and amounts of PS.  The collection 

and refinement of these entities is a difficult and time-consuming process (Suzuki 

et al. 2006).  For this reason, plant siderophores are not commercially available 

but a bacterial siderophore, Desferrioxamine B (DFOB), is.  DFOB (as 

Desferrioxamine Myselate) is a tri-hydroxamate ferrioxamine (Neu et al. 2000) 

with a formula of C25H48N6O8CH4O3S and a molecular weight of 656.8 g.  It is 

used for medical treatment of acute metal toxicity to complex and remove metals 

from the body (Bergeron et al. 2002).   

Discussion of different siderophores is important for two reasons.  First, due 
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to the rigor and equipment involved in synthesizing, purifying, and characterizing 

plant-produced PS, DFOB has been selected as a proxy for PS.  Second, 

Romheld and Marschner (1986) studied the uptake rates and fluxes of 59Fe 

complexed with PS, DFOB, and synthetic chelates in barley (Hordeum vulgare).  

They observed that 59Fe complexed with PS had 40 times the iron concentration 

in root tissue as did 59Fe complexed with DFOB after 24 hours of exposure and 

also that 59Fe-PS was incorporated faster than 59Fe-DFOB.   

2.4.3.2 Phytoremediation and Siderophore Research 

Recently, several studies have attempted to exploit the metal-acquiring 

capabilities of siderophores or other complexing agents.  At DOE sites, 

researchers have sought naturally-enhanced remediation strategies (Neu 2000; 

Lee et al. 2002; Ruggiero et al. 2004).  The use of plants to transfer or remove 

contaminants is termed phytoremediation (Salt et al. 1995).  One goal of 

phytoremediation is to eliminate digging contaminated soil, contaminant 

screening and removal by planting “hyperaccumulating” plant species which 

transfer contaminants from the soil into plants, and then translocate 

contaminants from root to shoot tissues.  This way the above ground biomass 

can be easily collected and disposed at reduced volume and cost.  This 

approach has several limitations.  For Pu and transuranic contaminants, most of 

the activity accumulated in plants remains in root tissue (Price 1974; Wildung and 

Garland 1974; Hossner et al. 1998; Ruggiero et al. 2004).  Removal of plants 

with their roots requires heavy equipment and characterization; thus remediation 

is a more expensive process.   



 43 

Siderophores were originally believed to primarily acquire iron; however, they 

have been found to complex several metals, including Zn, Cu,  Ni, among others 

(Neu 2000; Hill et al. 2002; Duckworth and Sposito 2005; Suzuki et al. 2006).  

Geochemical research has recently been conducted to examine the effect of 

DFOB on mineral dissolution.  Duckworth and Sposito (2005) examined DFOB-

enhanced dissolution rates of Mn minerals.  Wolff-Boenisch and Traina (2007) 

investigated dissolution of U using DFOB.  Their experiments were conducted at 

pH 6.0 and 25°C using U(VI) adsorbed to kaolinite.  Under those conditions, they 

found that nearly all of the U was desorbed from the kaolinite by DFOB.  They 

observed that the UO2DFOBH complex was stable and unlikely to readsorb to 

soil particles and suggested a ligand-promoted dissolution process.  Bouklalfa et 

al. (2007) determined DFOB-Pu stability constants and the ability for DFOB to 

promote Pu oxide and hydroxide mineral dissolution.  They found DFOB to have 

a higher stability constant for Pu(4+) than for Fe(3+) (Figure 2.11).   



 44 

 
 
Figure 2.11 Plot of metal-DFOB stability constants versus metal hydrolysis 
constants (Boukhalfa et. al. 2007).  The data of Fe3+ and Pu4+ are highlighted. 
 

Complexation studies and geochemical modeling of Pu with siderophores 

(Ruggiero et al. 2004) under a range of environmental conditions show that 

siderophores exert control on the redox state of Pu.  For example, Pu introduced 

to DFOB as Pu(VI), Pu(V), or Pu(III), will become a stable and soluble 

Pu(IV)DFOB2+ complex.  This aspect of their solution chemistry is reasonable 

since siderophores complex and transport insoluble or sparingly soluble iron to 

plants for immediate utilization.  Conversely, adding Pu in an ionic form without 

sufficient complexing compounds into a dilute aqueous solution would likely 

cause Pu to undergo hydrolysis and precipitate. 
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As noted previously, plants require soluble iron for photosynthesis and once 

the iron is used in the process, it does not move from old to new cells.  During 

rapid vegetative growth most of the iron taken into a plant is transported to new 

shoot tissues where both cellular development and photosynthesis occur.  In 

corn and most grasses, shoot growth occurs at the top of the plant.  The 

demands for water, iron, and other substances are high at locations of new 

growth, yet the plant demands for all substances are not necessarily highest at 

those locations (Marschner 1995).  Therefore, the distributions of elements with 

dissimilar metabolic functions (e.g., Ca, Fe, and Mo - normally present in the 

nutrient solution) can be useful to qualitatively compare to the distribution of Pu.  

For example, if the relative concentrations of Pu and Fe in the shoot tissues 

follow similar distribution patterns in the shoots, then at least qualitatively the 

plants may be using Pu in substitution for Fe.  Experimental evidence would be 

more sound should the distribution patterns of other elements differ distinctly.  

The primary reason for speculation that Pu is taken into plants in substitution for 

Fe, is the ionic charge to radius ratios which are (at coordination number 6) 

0.47/nm for both Fe(III) and Pu(IV).  This idea has been promoted in the 

literature, especially for phytoremediation studies and the design of actinide 

sequestering agents (Neu 2000; Gorden 2003; Ruggiero 2004).  This possibility 

of Fe-Pu substitution during plant uptake has not been experimentally proven. 

2.4.4 Plant Uptake of Pu 

2.4.4.1 Field Studies 
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There is a considerable body of data on the uptake of Pu in plants due to the 

role of plants as a potential food ingestion pathway to humans.  The results of 

contaminant uptake studies are quantified by a parameter historically called the 

concentration ratio (CR) and now given the name bioaccumulation factor.  

Bioaccumulation factors may be expressed either in terms of fresh weight or dry 

weight of vegetation.  Since the primary application of bioaccumulation factors is 

in risk assessment, most of the studies focus on the edible portion of the plant 

and the data relevant to plant root uptake and transport are sparse.     

Hossner et al. (1998) compiled Pu CR data from several sources and list 

values ranging from 10-2 - 10-9 (Bq/kg dry plant: Bq/kg dry soil).  Some higher CR 

data have been reported since their review was published.  Price (1974) 

evaluated field concentration ratios of actinides in food crops and other 

vegetation at the Hanford Site and CR data trended Am > Cm ~ Np >> Pu.  

Actinide chelation with EDTA, DPTA, or other organic complexants increased 

both plant uptake and translocation (Price 1974; Vyas and Mistry 1981; Lee et al. 

2002).  In early studies, Pu was often not detected in above ground portions of 

plants.  In some of these studies, Pu observed in above ground portions of plants 

were not from plant uptake but from the resuspension of soil particles and 

deposition onto plant surfaces  (Pinder et al. 1990).  Plutonium does not 

translocate to other plant tissues after foliar deposition (Henner et al. 2005). 

Plutonium concentration ratio data for various plants are presented in Table 

2.1.  The data for vegetables, cereal crop plants, and native species are 

presented together on a dry weight basis.  In a multi-year greenhouse study, 
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Adriano et al. (1986) observed that Pu CR for clover and Bahia grass increased 

over time.  They suggested this could be the result of increased root contact with 

Pu, increased weathering, or increased plant metabolites in soil as the multi-year 

study progressed.  In 1999, Whicker et al. (1999) studied actinide accumulation 

in Brassica rapa (turnips), Phaseolus vulgaris (bush beans) and Zea mays (corn) 

grown in sediments formerly covered by PAR Pond at the Savannah River Site.  

They observed CR trends: 244Cm > 241Am > 238U > 232Th > 239Pu and noted that 

health risks of food consumption associated with all actinides was small in 

comparison with 137Cs.  This trend was remarkably similar to that noted in  

Hanford sediments, with markedly different sediments, climate, and plants (Price 

1974). 

Druteikiene et al. (1999) conducted one year field lysimeter tests using 

Pu(IV)(NO3)4, Pu(IV)O2, and Pu(III)Cl3 applied  to forest and meadow grass soils.  

In each lysimeter, 30 Bq of Pu were added to the soil surface to initiate the study.  

Their objectives were to examine the migration rates into soil beneath the surface 

and to determine grass plant uptake.  They reported dry weight CR data, 

calculating the ratio using the Pu observed in the uppermost 5 cm of soil (after 

the year in the field).  The top 5 cm of soil contained 44 – 92 % of the applied Pu, 

depending on the chemical form of the Pu.  It is not clear how the initial 

deposition of Pu was performed, since the meadow lysimeter sites are termed 

“undisturbed grassland”.  In approximately one year, from 2% (PuO2) to 39% 

(PuCl3) of the Pu spiked at the lysimeter surfaces was incorporated into grass 

plants. 
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When plant roots are near Pu in the soil, plant uptake can be substantial.  

These grass plant CR data are higher than most of the CR values in Table 2.1.  

However, this is not an isolated report of high Pu CR data.  Lux et al. (1995) 

examined soil and plant samples from a 30 km zone around Chernobyl and 

found Pu CR values generally  ranged from 0.001 – 0.02, noting an increase to 

0.3 in berries.  In a large scale study, Sokolik et al. (2004) sampled soils and 

plants from Belarusian grasslands at control sites 12 – 48 km from the Chernobyl 

nuclear power plant accident.  They determined concentration ratios as a 

function of plant species and of soil type, and calculated the transport of 241Am 

and 239+240Pu in soil between 1986 and 2001.  Their Pu CR data ranged from 

0.002 – 0.28.  Lichens and mosses had the highest CR values.  In summary, 

excluding differences in uptake by plant species, the dominant factors ultimately 

influencing Pu CR values are its sorption to soil and interaction with plant roots. 
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Table 2.1 Plutonium Concentration Ratio Data (Bq/kg dry plant: Bq/kg dry soil) 
from a Variety of Field and Greenhouse Studies 
 
Reference Condition Plant (tissue) Soil CR 
Nisbet & 

Shaw 
(1994) 

to maturity in 
lysimeters (5y) 

barley (straw) 
>15mm 

loam 
peat 
sand 

2.6E-4 
3.0E-5 
1.8E-4 

 “ cabbage 
loam 
peat 
sand 

.3-2.5E-4 
0-0.2E-4 
.2-1.5E-4 

 “ carrot 
loam 
peat 
sand 

0.3-4E-3 
0-0.5E-3 
.1-1.5E-3 

Adriano et. 
al. (2000) 

greenhouse study to 
maturity beet 

SRS H area 
sand (low 

CEC) 
2.3E-3 

 “ carrot “ 3.0E-3 
 “ turnip “ 0.6E-3 

Whicker et. 
al. (1999) 

garden plot tilled to 
23 cm and fertilized bush bean 

SRS PAR 
pond soil 

sandy acidic 
3.6E-4 

 “ corn husk “ 2.9E-4 
 “ corn kernel “ 2.1E-5 
 “ turnip green “ 2.3E-3 

Druteikiene 
et. al. 
(1999) 

Pu Oxide (in field 
lysimeter for 1 y) meadow grass 

Soddy 
podzolic, 
pH 4.3 

2.0E-2 

 Pu Nitrate “ “ 1.8E-1 
 Pu Chloride “ “ 6.0E-1 

Lux et al. 
(1995) 

30 km of Chernobyl 
exclusion zone 

all plants 1992 Organic  
forest soils 

.003-.017 

 “ all plants 1993 “ .013-0.39 

Sokolik et. 
al. (2004) 

Belarus 12-48 km 
downwind of CNPP 

(exposed ~15 y) 

meadow 
grasses 

Soddy-
podzolic sand 3E-2 

 “ “ Loamy sand 2E-2 
 “ “ Organic soils 1E-2 
 “ “ Peat-bog 5E-3 

 

2.4.4.2 Laboratory Studies 

An important series of laboratory studies of Pu uptake in plants were 

conducted by Wildung, Garland, and Cataldo at PNNL (Wildung and Garland 
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(1974); Garland et al. (1981); Cataldo et al. (1988)).  They examined the uptake, 

fate, and transport of Pu, Np, and other metals in plants using barley as a 

monocot and soybean as a dicot.  They investigated physiological processes that 

influence Pu distribution and gathered information about transport mechanisms 

inside plants.  Wildung and Garland (1974) observed that Pu plant uptake was 

limited by soil type and that concentrations in plants increased linearly with time 

over the 60 day study period.  Using Pu2DTPA3 in soybeans, Cataldo et al. 

(1988) observed a change in the chemical form of Pu upon absorption through 

roots.  DTPA (Diethylenetriaminepentaacetic acid) is an organic chelator similar 

to EDTA.  Garland (1981) found that, upon absorption, Pu2DTPA3 changed to a 

different organic chemical form once it crosses the root boundary into the plant.  

The Pu was associated with increasingly soluble fractions (roughly defined by the 

molecular weights of the associated organic constituents) as it went from root to 

stem to leaves.  Through electrophoresis of xylem exudates from soybean stems, 

they determined that Pu supplied as Pu(NO3)4 was immobile whereas Pu 

supplied as  Pu2DTPA3 accumulated in the plant.  Chemical analysis performed 

on plant exudates indicated the presence of organic acids and sugars normally 

present in plant fluids.  In five day old soybean plants, the fractions of Pu in the 

roots and shoot tissues were 0.84 and 0.16, respectively.  In soil pot 

experiments, concentration ratios ranged from 10-4 to 10-5 depending on plant 

age.  In 80 d experiments of soybean uptake from soil, the shoot Pu activity 

increases were linear for ~60 d, however in terms of shoot Pu concentration, the 

maximum value was observed when the plants were 10 d old.   
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Lee et al. (2002) studied the uptake, translocation, and distribution of Pu in 

Indian mustard (Brassica juncea) and sunflower (Helianthus annuus).  They 

compared the uptake of Pu-DTPA, Pu-citrate and Pu-nitrate using both soils and 

hydroponic solutions.  They varied DTPA concentrations both in soil and in 

solution.  They found that DTPA increased the uptake of Pu in plants in both soil 

pot and solution experiments and that the maximum uptake was for DTPA 

concentrations between 10 and 50 mg/L.  Uptake trended Pu-DTPA >> Pu-

nitrate > Pu-citrate. 

It was noted that the use of organic complexants greatly increased (in some 

cases > 1000-fold) uptake of Pu into plants.  Previous studies comparing 

complexants to chelate Pu for maximal uptake report that Pu2DTPA3 increases 

uptake greater than all other complexants tested (Price 1974; Garland et al. 

1981; Hoessner 1998).  This trend is striking, especially for cases comparing 

organically complexed Pu with ionic Pu, such as observed by Lee et al. (2002).  

As discussed in the Plant Interactions sections involving siderophores, iron 

uptake is greatly increased through combining iron with siderophores.  Since the 

literature indicates that Pu has low concentration ratios and this research is 

concerned with the transport phenomena of Pu in plants, Pu will be complexed 

with DTPA or DFOB in all live plant experiments conducted to determine uptake 

or transport phenomena. 
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CHAPTER THREE 

RESEARCH OBJECTIVES 

 

3.1 Objectives 

Together, the lysimeter soil concentration data (Figure 2.5) and isotope ratio 

analyses of surface soils provide very strong evidence of the upward transport of 

Pu at SRS.  It is hypothesized that this upward migration is due to Pu transport in 

plant roots.  A model invoking plants as the dominant long distance (i.e., more 

than a few centimeters above the source) mechanism for upward transport 

through soils yields predictions which are consistent with the SRS lysimeter data.  

However, agreement between the model and the data requires that key transport 

parameters - the retardation of Pu in plants and Pu-plant Kd values - are used as 

fitting constants.  Data for these parameters do not presently exist.  It is also 

hypothesized that Pu uptake in plants occurs based on the plant’s nutritional 

requirement for Fe.   Laboratory evidence for this hypothesis is also lacking.     

The overarching goal of this research was to provide experimental support for 

the modeling effort and for the plant uptake mechanisms.  The objectives were: 

1. To quantify Pu retardation in graminaceous plants and to quantify Pu 

sorption to plant xylem.   

2. To characterize the distribution and accumulation of Pu in plants.   

3. To compare the relationship between plant uptake of Pu and Fe. 

The Pu retardation factor in xylem was a key parameter in the advective 

transport approximation (Eqn. 2.15) and was the focus of the first objective.  To 
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determine the retardation factor, two techniques were proposed.  The first 

involves the measurement of Pu velocity in plants by measuring Pu in plant 

tissue at known distances from the source at known times following exposure to 

a nutrient solution containing Pu.  The Pu was Pu(DFOB) as a proxy for Pu 

complexed with naturally-produced phytosiderophores.  The second technique 

involves batch sorption experiments to determine the Pu distribution coefficient 

using aqueous Pu(DFOB) and ground plant xylem material.  For the first 

technique, the retardation factor for Pu can then be calculated from the 

distribution coefficient using Eqn. 2.2.   Comparison of these experimental data 

with the predictions will provide insight into the utility of the advective modeling 

approach.    

The distribution of Pu between shoots and roots was needed for the 

instantaneous partitioning model (Eqn. 2.5) and was the focus of the second 

objective.   Discrimination between shoot and root tissues was straightforward 

and the method of exposure allowed differentiation among root tissues in contact 

with the labeled solution and those that are not.  Thus, this objective was 

accomplished by determining the total Pu in shoots and in exposed roots.  These 

data enabled the estimation of root concentration ratios from the base of 

concentration ratio data (Table 2.1).  The consistency between Pu retardation 

and root concentration ratios was determined using Eqn. 2.15.  

Irrespective of the utility of either modeling approach, plant uptake of Pu may 

occur based on Pu substitution for Fe.  The focus of the third objective was to 

examine Pu uptake at low, medium (optimal), and high Fe concentrations.  The 
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objective was accomplished by determining Pu and Fe concentrations in plant 

tissues and comparing both the total Pu under different Fe conditions and the 

relative distributions of Fe and Pu in plant shoot tissues.  The total Pu uptake and 

translocation provided some insight into the substitution hypothesis.   

Comparison of the spatial distributions of Fe and Pu in shoots provided 

qualitative information about the internal transport mechanisms in plants.  If 

relative concentrations versus shoot length (distance from the source) data 

trended similarly and data for other elements taken into the plant were dissimilar, 

then this implies that Pu and Fe were transported similarly and partially affirms 

the substitution hypothesis.  

3.2 Overview of dissertation  

The research objectives are described above; however the author’s intention 

is to publish these studies.  The publication process does not facilitate the 

objectives stated herein to be followed directly and sequentially therefore the 

subsequent chapters are delineated as follows: 

• Chapter Four addresses the first part of the first objective: to quantify the 

retardation of Pu in plants for the first time.  Chapter Four was published 

as Thompson, S. W.; Molz, F. J.; Fjeld, R. A.; Kaplan, D. I.  (2009). 

“Plutonium uptake velocity in Zea mays (corn) and implications for plant 

uptake of Pu in the root zone.”  Journal of Radioanalytical and Nuclear 

Chemistry  282, 439-442.   

(http://www.springerlink.com/content/95451m6x63384vj8/)  
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• Chapter Five is an extended version of an article that has been submitted 

to Environmental Science & Technology as Thompson, S. W., Molz, F. J., 

Fjeld, R. A., and D. I. Kaplan.  Xylem Velocity, Uptake, and Distribution of 

Complexed Plutonium in Corn (Zea mays).  Chapter Five repeats and 

affirms quantification of the retardation of Pu in corn plants and addresses 

the second research objective: to characterize the spatial distribution and 

accumulation of Pu in plants. 

• Chapter Six addresses the third objective: to compare the relationship 

between plant uptake of Pu and Fe.  This research focus is intended for 

publication, but has not been prepared for submission at present. 

• Chapter Seven is a combination of additional findings which are loosely 

related but are too brief to be complete chapters.  It addresses:  

o the observed Pu discrimination at the root,  

o the evaluation of the basic upward transport models, and  

o the second part of the first objective: quantification of Pu 

sorption to plant xylem.   

• Chapter Eight contains the conclusions of this research. 

3.3 Overview of experiments 

The corn plant velocity, uptake, and distribution experiments were conducted 

in batches with the maximum number of plants limited to 22 plants per batch due 

to the plant size, space required for lighting, and the arrangement of plants and 

equipment.  Nine corn plant batches were grown and utilized; in the Appendix, 

they are called LRx where x is the sequential batch number with LR as an 
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acronym for “Long Root” (a term for the growth arrangement with the corn 

proximal roots in soil and distal roots in labeled solutions). The earliest batches, 

LR1-4, were exploratory and were useful to develop plant growth, maintenance, 

and analytical techniques.  Experimental protocols, plant treatment procedures, 

and the establishment of tissue matrix elimination, Pu analysis, and quantification 

of both the control activities and the quality control of the process were 

accomplished during this phase of the research.  Data from those batches are 

not presented in this document however basic observations resulted from the 

initial work.  First, the Pu plant velocities were much faster than initially expected.  

Second, in order to measure sensitively the Pu which moved into the plants, the 

activity levels applied to the plants would need to be increased and the control 

activities considered.  Third, lacking an environmental chamber in which to 

conduct the experiments, the physical environment would need to be as 

controlled as practically achievable.  Last and perhaps most importantly, there is 

a degree of natural variability in individual plant uptake, root size, root surface 

area, shoot size, etc. therefore in order to observe general trends such as uptake 

with time, plant replicates were essential.  However, due to the effort required to 

grow, expose, monitor, process, and interpret the data of many plant tissues, the 

art of compromise was important in deciding how much emphasis to place on a 

particular experimental parameter.  Overall, an accord was achieved, although 

some data might have been more robust with more plant replicates. 
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Batches LR5-LR9 are discussed in the text and their data are presented in 

the Appendices.  For reference to the data, Table 3.1 lists the batch, objectives, 

plant conditions, and comments about experimental parameters as applicable. 

 

Table 3.1 Corn Plant Batches and Brief Experimental Descriptions. 

Batch Description n (plants) Comment Age  (d) 

LR9 Pu Fe Dual labeled 3 Discussed in Ch. 6 23 
 Pu with 0x, 10x Fe 4 Discussed in Ch. 6 23 
 Longer exposures 9 Discussed in Ch. 5,6, & 7 23 
 Transpiration test 4 Not discussed 25 
 Control 1  25 

LR8 Pu Fe Dual labeled 2 Scoping test, not discussed 23 
 Pu with 0x, 10x Fe 6 Discussed in Ch. 6 23 
 Fe velocity 5 Not Discussed 23 
 Control 1  23 

LR7 2nd Pu velocity 6 Discussed in Ch. 5 23 
 Accumulation  6 Discussed in Ch. 5 & 6 23 
 Water velocity 2 Discussed in Ch. 5 23 
 Control 3  23 

LR6 1st Pu velocity 4 Discussed in Ch. 4 & 5 23 
 Accumulation 1-4d 6 DTPA and DFOB 23 
 Control 1 Obtain 23 d control data 23 
 Control 2 Compare with 28 d control 28 

LR5 DFOB Characterization 5 Single plants at 2,4,8,12,24 h 28 
 DTPA Characterization 6 3 duplicates at 4, 8, 12 h 28 
 Control 1  28 
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CHAPTER FOUR 

PLUTONIUM VELOCITY IN ZEA MAYS (CORN) AND  

IMPLICATIONS FOR PLANT UPTAKE OF PU IN THE ROOT ZONE. 

 

4.1 Abstract 

A transport velocity of Pu complexed with the siderophore DFOB has been 

measured in corn to be at least 174 cm/h.  Based on a calculated plant water 

velocity, a Pu retardation factor of 1 - 10 was estimated.  Dominant Pu species 

retardation in soil is typically several orders of magnitude higher than this, 

implying that plants can be a vector for exceptionally rapid upward Pu mobility. 

4.2 Introduction 

To understand vadose zone transport, field lysimeter experiments were 

conducted at the Savannah River Site (SRS) near Aiken, SC, in the 1980’s.  Ionic 

forms of 239+240Pu were deposited on filters as sources and placed near the 

center of each lysimeter.  Grasses and weeds grew in the lysimeter soils and 

were cut and deposited on the soil surfaces.  After 11 years, soil cores were 

removed from the center of each lysimeter, sectioned and Pu activity 

concentrations measured and plotted as a function of elevation (Figure 4.1).   

The resulting data have been the subject of intensive study, (Fjeld et al. 2003;  

Kaplan et al. 2006; Demirkanli et al. 2008; Demirkanli et al. 2009) which 

ultimately showed that the unexpected movement of Pu above the source was 

due to plant uptake and upward movement in the transpiration stream 

(Demirkanli et al. 2008; 2009).  A secondary implication was that Pu should 
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accumulate on the surface due to periodic cutting and annual die-back of 

grasses.  Recently, this was proven to be the case when isotope ratio analysis 

indicated that Pu present in surface soils of each lysimeter originated from the 

sources, not from fallout (Kaplan et al. 2009).  These results motivated this study 

of Pu uptake and translocation by corn, a member of the grass family.   

 
Figure 4.1 The 239+240Pu concentrations in soil versus depth in the SRS 
lysimeters.  Data are superimposed from three lysimeters, each containing an 
ionic Pu complex.  Note the Pu transport above the source. 
 

In field and laboratory settings, numerous researchers (Nisbet and Shaw 

1994; Ashworth and Shaw 1994; Gerzabek et al. 1998; Sokolik et al. 2004; 

Wadey et al. 2001; Sanford et al. 1998) have shown that plant uptake can affect 

environmental fate and transport of radionuclides.  Elements studied include Se, 

Cs, Sr, Tc, Cl, I, Na, Co, Cd, Ra, Am, and Pu.  Wadey (2001) noted that upward 

migration of Cs and Co was likely due to root uptake and translocation.  Similarly, 
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Sanford et al (1998) attributed upward migration of Cs to plant transport.  

Garland et al (1981) studied Pu in soybeans and observed characteristics of 

xylem transport.  Cataldo et al (1988) suggested that Pu exists in xylem as 

soluble organic complexes.  Although the mechanisms underlying the uptake and 

transport of Pu within plants have yet to be fully defined, it is known that Pu is 

much more mobile in plants than in soil (Cataldo et al. 1988).   

The purpose of the present study was to build a quantitative knowledge base 

by measuring Pu transport velocities in plants.  Plants identified from the SRS 

Lysimeter study area were crabgrass (Digitaria sanguinalis), bahia grass 

(Paspalum notatum), and broomsedge (Andropogon virginicus).  Although corn 

(Zea mays) is a crop plant, its fibrous root system, stem, and parallel-veined leaf 

structure are quite similar to grasses, so it was selected for study. 

For Pu to move from soil into a plant, the steps involved are: 

1. movement from soil or mineral particles to the soil solution 

2. movement of the soil solution to the plant root 

3. transport into the root and across the casparian strip into root xylem 

4. transport in root xylem upward into plant shoots.   

4.3 Experimental 

  The focus on Pu velocity required a unique experimental design in that a first 

arrival over a known travel distance was measured or bounded.  Several earlier 

studies (Garland et al. 1981; Price 1974; Lee et al. 2002a; Lee et al. 2002b) 

noted that organically-complexed Pu greatly increased plant uptake compared to 
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ionic Pu.  Therefore, plants were exposed to Pu as the complex Pu(IV)-DFOB.  

DFOB (Desferrioxamine B) is a commercially available bacterial siderophore. 

The experiments were conducted using corn plants growing in soil pots 

placed above nutrient solution containers.  Figure 4.2 is a photograph of plants in 

this arrangement.  The primary root was inserted directly into nutrient solution 

through a hole at the bottom of the soil container.  This eliminated the need to 

consider Pu sorption to soil and permitted rapid assessment of plant uptake. 

 
 
Figure 4.2 Corn plants in soil over nutrient solution containers. 
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4.3.1 Materials 

Uncoated corn seed (Zea mays, cv. trucker’s favorite) and potting soil were 

procured.  238Pu was purchased from Eckert & Zeigler Isotope Products Lab in 

Valencia, CA.  DFOB (Desferrioxamine B) was obtained from Sigma-Aldrich 

Chemical Co, and the scintillation cocktail was Ultima Gold AB from Perkin-Elmer 

of Shelton, CT. 

4.3.2 Plant Growth 

Anchor paper was used for seed germination and initial growth.  A plastic bag 

was placed over the plant seedlings and the container was placed under plant 

lights while roots elongated.  After seven days seedlings were inserted into a 

tube under a stream of water.  The tube allowed packing the plant into soil while 

keeping the root free.  Soil pots were 1L amber containers, with a 3 cm hole in 

the bottom.  Filter paper (with a hole for the root) prevented soil from falling into 

the nutrient solution.  The plant was set on top of nutrient solution (pH 6.0) in a 

500 mL aerated container.  Solutions were changed twice per week to prevent 

nutrient depletion and reduce potential interference from microbes or algae.  Soil 

was watered three times per week.   Initially, one-half strength nutrient solution 

was utilized, prepared as described by Garland et al. (1981).  After a few days, 

full strength nutrient solution was utilized.  Growth conditions were 14/10 h 

day/night cycles (31/20 °C +/-2°C) with 35% (+/- 10%) RH.  Plants grew at a 

photosynthetic flux of 1300-1500 µmol/m2s using a 400 watt Sun GroTM system.   
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4.3.3 Plant Exposure, Measurement, and Analysis 

To expose plants to 238Pu, containers of pre-mixed Pu and nutrient solution 

(74000 Bq of 238Pu and 9.7 x 10-5 M DFOB per plant) were exchanged quickly 

with non-radioactive nutrient solution.  A series of four 23 day old plants were 

exposed for 10, 20, 40 or 80 minutes and sacrificed.  To cease exposure, plant 

shoots were cut at 40 cm height and at the base.  In total, Pu traveled through 18 

cm of root and 40 cm of shoot for a distance of 58 cm before reaching the leaves 

at the top of the plant.   

Plant tissue sections were cut, chopped, dried overnight at 75 °C, weighed, 

and digested with concentrated HNO3 and 30% H2O2.  Digests were transferred 

into 20mL plastic scintillation vials as 8 mL of 0.1 M HNO3 with 12 mL of Ultima 

Gold AB scintillation cocktail and shaken prior to counting.  Samples were 

analyzed on a Wallac Model 1409 liquid scintillation counter.  238Pu alpha 

energies are emitted as a single peak at 5.49 MeV.  Sample digestion was a 

modification of a method described in Jones and Wallace (1992).  Lee et al. 

(2002b)  adapted this method to liquid scintillation.  Pulse shape discrimination 

(Wallac PSA setting = 150) was adjusted to optimize for the Pu alpha signal.   

4.3.4 Quality Control 

Samples were counted for 10,000 seconds.  The error of the >40 cm sample 

from the 20 minute plant including background and control activity was 9.7% at 

the one sigma confidence level.  The overall error was 14% at one sigma.  The 

average internal spike recovery was 94%.  Sample duplicate analyses averaged 

10% relative percent difference. 
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4.4 Results and Discussion 

Figure 4.3 shows Pu concentration (Bq/g dry) versus time for 10, 20, 40, and 

80 minute exposures.  These experiments demonstrated that Pu-DFOB moved 

into the uppermost shoots within an elapsed time of 20 minutes. The minimum 

distance traveled through the plant is 58 cm, so the Pu velocity is ≥174 cm/h.  

The fluid velocity through the plant may vary across the stem, i.e., there may be 

high velocity pathways.  Since we detect a first arrival time, the Pu velocity will be 

near the maximum, which may have varied between plants.  This is illustrated by 

the 80 minute result, which evidently had a low transpiration rate.  A small peak 

contribution was present in the 238Pu alpha region of control (unexposed) plants 

from long lived progeny present in the soil (Ac, Ra, Po, Bi, Pb, etc.), so a mean 

control plant activity value has been subtracted from all Pu plant data.   
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Figure 4.3 Net concentrations in upper shoot tissues versus time to travel 58 cm 
in corn.  Data are singular results for each plant.  Error bars represent 2 standard 
deviations of the control plant activity replicates. 

 

4.4.1 Calculation of Pu Retardation in Corn Xylem 

Corn transpiration rates averaged 5.75 g/hr (≈5.75 cm3/hr) with 12 % relative 

percent difference for two 28 day old plants.  Cross sections excised from these 

plants at six cm above the soil were examined by microscopy with dimensional 

software (Jenoptik ProgRes C5 digital camera with IMT iSolution Lite v. 7.7).  

Using tissue images enhanced with lignin pink and acid fusion stain, the stem 

area and vascular bundle size and number were determined.  Figure 4.4 is a 

cross sectional view of a corn stem with vascular bundles visible.  At the right of 

Figure 4.4, vascular bundles (oval “face-shaped” tissues) are clear.   
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Figure 4.4 Photomicrographs of a corn stem cross section.  At left, the entire 
stem is shown; at right, an enlarged image of the showing vascular bundles.  
Scale bars indicate 1 mm. 
 

Calculation of xylem to total stem area was performed by counting vascular 

bundles in ¼ of the stem shown in Figure 4.4, measuring the areas of nine 

vascular bundles and the stem, and using a xylem to vascular bundle area ratio 

of 0.25.   The xylem to total stem area ratio is 1.52% with a 21% error at 1 

standard deviation.  The total area in ¼ of the stem sampled was 32.32 mm2.  

The total xylem area is 4 ● 32.32 ● 0.0152 = 1.97 mm2.   Li et al. (2009) studied 

the xylem structure in two corn hybrids grown nearly to maturity.  They 

determined ratios of vascular bundle to total stem area and reported 1.93% and 

1.41%.  Those data correspond to xylem to stem ratios of 0.48 and 0.35% 

respectively.  Thus, the xylem to stem area ratio calculated (1.52 +/-0.32%) 

seems reasonable based on the idea that younger plants should have a 

proportionately higher vascular tissue area than more mature plants (Beck 2005). 

The measured transpiration rate of 5.75 cm3/hr included water lost through 

the soil by evapotranspiration, which should be negligible since the soil had not 

been watered for several days prior to the measurements.  Thus, using an area 
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of 1.97 mm2 (1.97x10-2 cm2) yields an average water velocity of 292 cm/hr.  If 

one assumed that average velocity and maximum velocity were equal, then the 

ratio of water velocity to Pu velocity would be 292/174 = 1.68.  This ratio is the 

retardation factor, and as calculated 1.68 is a lower bound since the maximum 

velocity may be significantly higher than the average velocity.  If the xylem area 

were halved to 0.0099 cm2, then the implied retardation factor would double to 

3.36.  These retardation estimates are subject to uncertainty and need to be 

better defined experimentally.  However, Pu-DFOB is much more mobile in corn 

than ionic Pu is in soils, where reduced Pu species can be essentially immobile 

with R ≈ 2,000 – 20,000 at typical soil pH values and less common oxidized Pu 

species  can be retarded by factors of 15 and often more. 

4.5 Conclusions 

The transport velocity of Pu-DFOB has been measured in corn plants for the 

first time to be at least 174 cm/hr.  Mean water velocities of control plants were 

292 cm/hr.  If the xylem flow exhibited plug flow, then the retardation factor would 

be 1.68.  Given the uncertainty of xylem area estimates and of fluid velocity in the 

xylem, the actual retardation could be up to 10 or more.  Future research may 

narrow this range.  However, since reduced Pu species are essentially immobile 

in soil at typical pH values, our data imply clearly that plants can serve as a 

conduit for transporting Pu rapidly from the subsurface to the surface. 
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CHAPTER FIVE 

XYLEM VELOCITY, UPTAKE, AND DISTRIBUTION OF COMPLEXED 

PLUTONIUM IN CORN (ZEA MAYS) 

 

5.1 Abstract 

The uptake, distribution, and velocity of Pu complexed with the bacterial 

siderophore (DFOB) were studied in corn (Zea mays) to experimentally validate 

the hypothesized rapid transport of Pu in grass xylem.  Plants were exposed to 

nutrient solutions containing Pu for time periods ranging from 10 min to 10 d.  

Pu(DFOB) entered root xylem and moved upward at a velocity of at least 174 

cm/h.  Based on water velocity calculations, the Pu(DFOB) xylem retardation 

factor was estimated to be in the range of 1 – 10.  Pu concentrations in xylem 

were two to three orders of magnitude smaller than those in the nutrient solution, 

because Pu(DFOB) in solution was impeded by the root.  Most (97%) of the plant 

Pu activity remained in the root external to the xylem; however, once Pu reached 

the xylem it moved rapidly upward and accumulated in the upper shoots.  

Overall, these results provide strong support for the hypothesis that grass plants 

can be a vector for extremely rapid upward transport of Pu in the vadose zone. 

5.2 Introduction  

Most, if not all, prior experimental studies of Pu uptake by plants have been in 

the context of either the contamination of food (Adriano et al. 1986; Whicker et al. 

1999) or phytoremediation (Hossner et al. 1998; Lee et al. 2002). Results 

indicated that Pu was incorporated in above ground plant tissue within a growing 
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season.  In general, plant concentrations were very small relative to soil 

concentrations, but the transport distance was relatively large considering that Pu 

normally has very low mobility (< 1 cm/y).  It has recently been hypothesized by 

Kaplan et al. (2006) and Demirkanli et al. (2008) that plant roots can be an 

important vector for the upward migration of Pu in the vadose zone.  This 

hypothesis emerged from attempts to model data from field lysimeters at the 

Savannah River National Laboratory (Demirkanli et al. 2008).  The upward 

migration observed in the data was only simulated by the model when Pu uptake 

by plant roots and subsequent transport in the xylem were included.  Further, 

reasonable fits to the data were obtained only by either assuming values for 

transport parameters (retardation of Pu in plants, Pu-xylem Kd, root Pu uptake 

efficiency) or using them as fitting parameters due to the absence of transport 

related information in the literature.  The transport of reduced Pu in soil is highly 

retarded (Demirkanli et al. 2008; Choppin et al. 2001), with a soil distribution 

coefficient of 1800 cm3/g (Retardationsoil ≈ 12,000).  The simulation results 

(Demirkanli et al. 2009) suggest a 15 cm3/g Pu-xylem distribution coefficient 

(Retardationplants ≈ 10).  This distribution coefficient implies that Pu is moving 

upward in the xylem as a mobile complex.  Presented here are the results of 

laboratory experiments focused on Pu transport in plants. 

Plants regulate their internal nutrient concentrations by homeostasis 

(Marschner 1995) and have specific transport pathways for water, K+, Fe2+, Fe3+, 

and other materials.  Transport in plants occurs within the context of the soil-

plant-atmosphere continuum.  Water and some soluble nutrients move across 
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root cell layers into the root xylem in the transpiration stream, driven by vapor 

loss at leaf surfaces (Sperry et al. 2003).  Once inside the xylem, transport of 

soluble constituents is mainly an advective process (Bollard 1960; Mori et al. 

2000) subject to applicable retardation. The use of complexants to increase the 

plant uptake of Pu is believed to enhance transport through the root tissues 

(Garland et al. 1987).  Rapid siderophore-facilitated root transport pathways have 

been demonstrated with Fe (Romheld and Marschner 1986; Yehuda et al. 1996; 

Schaaf et al. 2004) and with Zn (Suzuki et al. 2006).  However the mechanisms 

of root uptake of Pu are poorly understood.   

Garland et al. (1981) and Cataldo et al. (1988) characterized the Pu fluids 

inside soybeans by analyzing xylem exudates collected by cutting the stem 

below the first leaf node.  Garland et al. (1981) demonstrated that after passing 

through the roots, Pu2DTPA3 changed to a plant-complexed Pu species not 

subject to rapid hydrolysis.  Cataldo et al. (1988) compared the behavior of 

organo-complexed Pu4+, Fe3+, Ni2+, and Cd2+ by gel electrophoresis and found 

that Pu4+ and Fe3+ exhibited similar behavior.  Research has quantified the 

partitioning of Pu between shoot and root tissues after long time intervals (weeks 

to years) (Garland et al. 1981; Nisbet and Shaw 1994, Adriano et al. 2000; Lee et 

al. 2002), however a fundamental understanding of the movement of Pu into 

living plants is lacking.   

The objectives of this study are to estimate the velocity and retardation with 

respect to water of organically complexed Pu in corn (Zea mays) and to 

characterize the spatial and short term temporal uptake of Pu in plants.  Spatial 
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distributions were determined by discrete analysis of root and shoot tissues.  The 

uptake and accumulation of Pu were characterized using activity in relation to 

time, transpiration, and the relative amount excluded from the plant xylem.  The 

experiments were conducted with an organic complex of Pu because that is the 

form found in plants (Garland et al. 1981).  Corn was selected due to the 

structural and physiological its similarities to annual grasses (Poaceae) of the 

type found in the Savannah River Site lysimeters and because its size and 

growth rate facilitate laboratory experiments.     

5.3 Experimental 

5.3.1 Materials 

Corn seed (Zea mays, cv. Trucker’s Favorite) and potting soil (pH 6.0) were 

locally purchased.  238Pu was procured from Eckert & Zeigler Isotope Products 

Lab in Valencia, CA.  DTPA was purchased from Aldrich Chemical Company of 

Milwaukee, WI.  Desferrioxamine B was purchased from Sigma-Aldrich Chemical 

Co.  Ultima Gold AB scintillation cocktail was purchased from Perkin-Elmer 

Biosciences of Shelton, CT.  The soil pots were 1.0 L amber HDPE containers 

with the necks cut to be vertically straight-sided and cut at the bottom with 3 cm 

holes for the roots.  Solution containers were Nalgene 500 mL straight sided jars 

with holes cut for the roots and for small aeration portals. 

5.3.2 Plant Growth Conditions 

Plants were grown in soil pots resting on nutrient solution containers shown in 

the left photograph in Figure 5.1.  This permitted proximal roots of the plant to be 

anchored in the soil for stability and to provide for more natural growth than a 
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purely hydroponic system.  The distal roots grew in the nutrient solution container 

where complexed Pu could be introduced in a controlled manner.  The 

photograph at right in Figure 5.1 reveals the primary root with the soil and 

nutrient containers removed and the roots spread apart.  Plant growth and tissue 

preparation are presented in greater detail in Thompson et al. (2009; Chapter 4). 

Briefly, seeds were germinated in seed paper for seven days until their primary 

roots were long enough to exit the bottom of the soil pot and contact the nutrient 

solution.  Each seedling in a soil pot was placed on top of a container (with 

matching holes for the root) containing 500 mL of aerated nutrient solution.  

Plants were grown at 14/10 h day/night cycles at 34/20 °C (+/-2°C) and 35% (+/- 

15%) relative humidity.  A 400 watt Sun GroTM light system was suspended 

above the corn plants and was raised as the corn grew.  The initial 

photosynthetic flux to the plants was ~700 µmol/m2s as measured at the upper 

leaves.  Plant height increased until the upper leaves reached a flux of 1300-

1500 µmol/m2s, which was the daytime light flux for the remainder of the 

experiments. 

The nutrient solution, was described by Garland et al. (1981), and contained 

(in mg/L): 946 Ca(NO3)2●4H20, 150 KCl, 120 MgSO4, 68 KH2PO4, 0.69 H3BO3, 

0.06 ZnSO4●7H20, 0.024 Na2MoO4●2H20, 0.022 MnCl2●4H20, 0.017 

CuCl2●2H20, and 0.60 FeCl3.  Solutions were adjusted to pH 6.0 (+/- 0.05), the 

same pH as the Savannah River Site lysimeter soil.  To prevent Pu from 

precipitating and to maximize uptake (Lee et al. 2002), Pu was introduced to 

plants as the organic complexes, either Pu2DTPA3 or Pu(DFOB). 
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Figure 5.1 Corn plants growing in soil pots with the primary root inserted in 
nutrient solution.  On the left, corn grown under plant lights; on the right, with the 
soil and nutrient pots removed, the primary root is exposed.  To initiate an 
experiment, complexed Pu was added to the hydroponic solution. 
 

5.3.3 Plant exposure and handling 

Plutonium isotopes are not amenable to rapid autoradiography since their 

alpha particles are embedded in tissues and do not have the penetrating power 

to be rapidly detected through plant cells (the radiographic process requires 

times which are too long for the velocity measurement).  Plutonium-241 is a very 

weak beta emitter with less penetration than the Pu alpha particles (Walker et al. 

1989).  Measuring the first arrival of Pu in plants required high detection 
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sensitivity; therefore destructive analysis was required to measure Pu in plant 

tissues.  Plutonium-238 isotope was selected for study due to its high specific 

activity, 633 GBq/g.   

Experiments were conducted with Pu concentrations of 0.9–9.7 x 10-10 M.  

Complexant concentrations were 9.8 x 10-5 M.   Plants were exposed by rapidly 

exchanging non-radioactive nutrient solutions with Pu-labeled nutrient solutions.  

The shoot distribution experiments were conducted using 28 day old plants with 

DFOB or DTPA and 238Pu activities of ~37 KBq/plant.  To end exposure, plants 

were cut at the soil surface and then the shoot lengths were recorded.  The shoot 

stem and leaves were straightened, measured, and cut into 10 cm tissue 

sections.    Velocity experiments were conducted using 23 day old plants and 

238Pu(DFOB) at ~74 KBq/plant.  Exposure times were monitored using a digital 

stopwatch.  To end exposure, shoots were cut 40 cm above the soil height and 

then at the soil surface.  Since velocity experiments were conducted rapidly, root 

tissues were not collected.  The accumulation experiments were conducted with 

23 day old plants and 238Pu(DFOB) activities of 8.28 KBq/plant.  The exposure 

times were 3, 7, and 10 days for three replicate plants.  Three day plants were 

exposed once for three days.  Because of nutrient solution consumption, the 

seven day plant solutions were replaced once and the ten day plant solutions 

were replaced twice during their respective exposure times.  Thus, seven day 

plants were exposed to a total of 1000 mL and ten day plants were exposed to a 

total of 1500 mL of labeled solution.  This way, the plants did not consume 
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sufficient solution to restrict transpiration.  Accumulation plant shoots were 

processed as in the distribution experiments. 

Following exposure, shoot sections of test plants were cut into specific 

lengths, chopped finely, dried overnight at 75 °C, we ighed, and digested with 

concentrated HNO3 and 30% H2O2.  Roots removed from solution were allowed 

to drip on blotter paper, rinsed in water for one minute, dried, chopped, and 

processed like the shoot tissues.  Digests were transferred into 20 mL plastic 

scintillation vials as 8 mL of 0.1 M HNO3 with 12 mL of Ultima Gold AB liquid 

scintillation cocktail and shaken for 15 s prior to counting.  Tissue digestion was 

done as described in Jones and Wallace (1992).  Lee et al. (2002) adapted this 

method to liquid scintillation.  Samples were counted using a Wallac Model 1409 

liquid scintillation counter.  Plutonium-238 alpha energies were detected at 5.49 

MeV.  Pulse shape discrimination (PSA = 150) was adjusted to optimize for the 

238Pu signal.   The Pu recovery was 94% and data were not adjusted for 

recovery.   Sample counting errors were < 10% at the 1 σ level.   

Control plants were treated identically to those exposed to Pu.  They were 

found to contain low levels of alpha activity, presumably from the uptake of 

naturally occurring radionuclides in the potting soil.    Gamma spectrometry of 

both the soil and control plant shoots indicated the presence of the following 

natural radionuclides:  228Ac, 226Ra, 214Po, 214Bi, 210Pb, and 40K.  Since the natural 

radionuclides contribute to the Pu signal recorded for the exposed plants, it was 

necessary to subtract this contribution from exposed plant raw data.   
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5.3.4 Water Velocity and the Retardation of Complexed-Pu in Corn  

Maximum Pu velocity was measured directly, and average water velocity was 

estimated by transpiration and flow area measurements.  Water velocity in two 

23-day-old control plants was determined from the volume of water lost due to 

transpiration over a 24 hour period and the xylem cross sectional area.  

Transpiration volume was inferred from the change in total mass of their nutrient 

solutions.    Tissue cross sections of these controls were excised from the root 

and the stem at 5 cm, were stained with toluidene blue to increase vascular cell 

contrast, and were photographed with a Jenoptik ProgRes C5 digital camera 

under magnification.  Image & Microscope Technology iSolution Lite software 

(version 7.7) was used to measure dimensions.   

5.4 Results and discussion 

5.4.1 Spatial Distribution of Complexed-Pu in Corn Shoots 

Figure 5.2 shows shoot section concentrations versus distance traveled in 

plants exposed to Pu2(DTPA)3 or Pu(DFOB) for 4 and 8 h or data from controls.  

The distances are from the bottom of the soil to the midpoint of each section.  

The important observations are as follows.  First, the mean control 

concentrations are approximately constant as a function of height, indicating the 

activity taken up from the soil is uniformly distributed in the shoots.  Second, Pu 

concentrations in exposed plants are significantly larger than equivalent 

concentrations in the controls.  Third, Pu concentration increases with shoot 

height.  This occurs because the Pu, which is carried up through the plant by the 
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water, is left behind in the stomates when the water evaporates.    Finally, the Pu 

concentrations in plants exposed to Pu(DFOB) (closed symbols) exceed the  

concentrations in  plants exposed to Pu2(DTPA)3 (open symbols) by factors of 2-

4.  Price (1974) ranked the enhancement of plant uptake of Pu complexed with 

different ligands as: DTPA > EDTA > citrate > oxalate > glycolate > acetate > 

nitrate.  Our data show that Pu uptake in corn is greater for the siderophore 

DFOB than for DTPA.   

 
 

Figure 5.2 Concentration in corn shoot sections versus distance in 28 d old 
plants exposed to 238Pu and non-labeled (control) solutions. The data are 
obtained from plants exposed to solutions with equal activities of either 
Pu2(DTPA)3 or Pu(DFOB) for 4 and 8 hours.  The legend contains shoot Pu 
activities and shoot masses.  Mean control data originate from two control plants; 
relatively small error bars (shown with the square markers) are available for the 
two plants up to about 85 cm.  However only one control plant grew taller than 
this distance, thus there are no error bars for the top three control data. 
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5.4.2 Velocity of Complexed-Pu in Corn 

Velocity experiment shoot section concentration and distance data are 

presented in Figure 5.3.  The data are mean concentration values (three replicate 

plants for each exposure time) of 23 day old plant shoots exposed to Pu(DFOB) 

for 10, 20 and 40 minutes.  Following exposure, the shoots were cut at 0, 10, 20, 

30, and 40 cm heights.  The distance data are midpoint shoot section distances 

from the bottom of the soil just above the solution container.  The tissues >40 cm 

from the soil level (thus >58 cm from the soil bottom) are combined into one 

sample referred to as the top shoot.  Mean top shoot distances were ~69 cm for 

10, 20, and 40 minute plants.  The top shoot data indicate the presence of Pu in 

plants exposed for 20 and 40 min whereas no or very little Pu is detected in 

plants exposed for 10 min.  The solid oval highlights that top shoot 

concentrations of 10 min exposure plants are near the control concentration.  

The dashed oval highlights that top shoot concentrations of 20 and 40 minute 

exposure plants are significantly greater than the 10 min and control plants.  

Although concentrations in lower shoot sections of exposed plants exceed 

control concentrations, the differences are less than for the top shoots.  This is 

due to the preferential accumulation of Pu in the top shoots with evaporation as 

noted above.   
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Figure 5.3 The data are mean concentrations of shoot tissue sections from plants 
(n=3) with 10, 20, and 40 minute exposures to Pu(DFOB).  Control data have 
error bars showing two standard deviations from the mean concentrations.  For 
clarity, error bars of exposed plants have been omitted, but were approximately 
the same as those of the control.  Concentration data from 10 min plants are 
within two standard deviations of the control concentrations, whereas 20 and 40 
min plant concentrations are greater than the control and 10 min plant data.  The 
top section data from 20 and 40 min plants (dashed circle) are distinct from the 
control and 10 min plants (closed circle), indicating the presence of Pu.  
 

The top shoot data from Figure 5.3 for control, 10 min, and 20 min plants are 

plotted as a function of exposure time in Figure 5.4.  This more clearly depicts 

the presence of Pu in the top shoots of 20 min exposure plants and its absence 

in the controls (i.e., zero exposure time) and 10 min exposure plants.    The solid 

line is the mean concentration of three control plants and the dashed line is the 

control mean plus two standard deviations above the mean.   
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Plutonium velocity, vPu, is calculated from the Pu travel distance and the 

exposure time.  The minimum travel distance to the top shoots is 58 cm (18 cm 

through the primary root in the soil and 40 cm in the shoot).  From Figs. 5.3 and 

5.4, the bounds on travel time to 58 cm are 10 and 20 min, thus yielding the Pu 

velocity range as 174 cm/h ≤ vPu < 348 cm/h.   

 

 
Figure 5.4 A plot of Pu concentration versus exposure time in top shoots (58 cm 
travel distance).  The solid line indicates mean control activity and the dashed 
line is mean control activity plus two standard deviations.  Pu concentrations in 
plants exposed for 20 min clearly exceed the Pu concentrations of the controls 
and 10 min plant samples.   
 

5.4.3 Water Velocity and the Retardation of Complexed-Pu in Corn 

In corn and grasses, vascular bundles contain xylem, phloem, and bundle 

sheath cells (Jones 1985). The xylem carries water and nutrients upward to the 

above ground tissues and the sites of photosynthesis.  Phloem transports the 
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products of photosynthesis downward to all plant parts.  For short time periods 

with high transpiration rates, nearly all water moving into the plant is lost to the 

atmosphere; only very small amounts of water contribute to plant growth.  The 

average water velocity was calculated using measured transpiration rates and 

estimated total xylem area.  Figure 5.5 is a photomicrograph of a stem cross 

section at 5 cm height.  Dimension measurements were made using image 

outlines and computer calculated distances based on calibration to microscopic 

settings using iSolution Lite software v. 7.7 (Image & Microscope Technology, 

Daejeon, South Korea).   The average stem area of two control plants was 

1.0780 cm2 and the xylem area/stem area ratio was 0.0115 thus, the stem xylem 

area, Ax, at 5 cm above the soil is 0.0124 cm2.  The average transpiration rate, Q, 

(solution flow rate) of two control plants was 9.98 cm3/h during 24 h under 

continuous lighting.  Thus, the average xylem water velocity at 5 cm is:  

= = =
3

2

9.98 /
800 /

0.0124 w
x

Q cm h
v cm h

A cm
     Eqn.  5.1 

The calculated xylem water velocity has a 20% error estimate based on the 

standard deviation of the bundle areas.  The Pu velocity was measured to be at 

least 174 cm/h, so a first estimate of the Pu retardation factor.  RPu, in corn is: 

≈ = =
800 /

4.6
174 /

w
Pu

Pu

v cm h
R

v cm h
          Eqn. 5.2 

Equation (5.2) must be viewed as an approximate estimate for RPu.  First, vw was 

estimated at a fixed location in the stem, while vPu was measured over a 58 cm 

distance.  It is doubtful that vw is constant with elevation, although one would not 

expect it to be highly variable (Jones 1985).  Second, vw is an average velocity 
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over the xylem cross sectional area, while vPu is a lower bound estimate for the 

maximum Pu velocity. To be consistent, vw should also be a maximum water 

velocity (vw could vary with the radial position in the stem).  All things considered, 

our measurements suggest that RPu for corn xylem falls between 1 and 10.   

 
 

 
 
Figure 5.5 Photomicrograph of the cross section of a control plant stem cut 5cm 
above the soil.  The tissue is stained to increase contrast of the vascular bundles, 
which are the dark oval structures.  Dimension measurements were made for the 
vascular bundle areas shown in the upper right quadrant of the stem. 
 

5.4.4 Accumulation of Complexed-Pu in Corn Shoots and Roots 

The Pu velocity test data and figures discussed above focus on short term 

exposures of 0 – 40 minutes.  Additional experiments were conducted in which 

plants were exposed to Pu(DFOB) for longer time intervals.    Figure 5.6 is a plot 

of total shoot activity as a function of light exposure time (i.e., the cumulative time 

of active light).  The data in Figure 5.6 originate from several experiments and 

include the data in Figs. 5.3 – 5.4.  For convenience the data are divided into two 
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sets. Set 1 data are from single plants exposed for 10, 20, 40, 80, 840, 1680, and 

3290 minutes.  Set 2 data are from duplicate plants exposed for 10, 20, 40, 100, 

360, and 1440 minutes.  Since the total amount of Pu in the nutrient solutions 

varied (~74 KBKq/plant for plants exposed for 40 min or less and ~37 KBq/plant 

for plants exposed for longer times) the ~37 KBq/plant data have been doubled 

to normalize their shoot activities.    

 
 
Figure 5.6 Pu activities in shoots are plotted as a function of time for 18 plants 
exposed to Pu(DFOB).  Set 1 data (triangles) are from an experiment with single 
plants exposed for 10, 20, 40, 80, 840, 1660, and 3290 minutes.  In set 2 
(circles), duplicate plants are exposed for 10, 20, 40, 120, 360, and 1440 minute 
periods.  The X-axis is expressed as light exposure time since those plants 
exposed for times in excess of 840 minutes (14 hours) are combined time 
periods during which those plants were illuminated. 
 

There are two principal observations from Figure 5.6.  The first is that Pu 

activity increased with light exposure time up to the maximum exposure time of 
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3290 minutes.   This is consistent with observations for transition metals 

complexed with chelants in solution (Nowack et al. 2006) and for Pu uptake from 

soil (Garland et al. 1981) over much longer time intervals.  The second 

observation is the large variability; for example, shoot activities of the 360 and 

1400 min duplicate plants which vary by up to a factor of four.  Plant uptake 

variability in both roots and shoots of equivalent plants was observed in the data 

of all experiments.  There are many factors which may contribute to this 

variability including natural variability in root size and surface area, transpiration 

rate, overall plant size, etc.  

To examine the uptake, accumulation, and distribution trends over longer 

term exposures and to account for plant variability, 3 sets of 3 replicate plants 

each were exposed to Pu(DFOB) for 3, 7 or 10 days respectively.  Figure 5.7 

shows that the mean shoot Pu activity increased linearly with time (correlation 

coefficient of 0.98).  Figure 5.8 however shows a comparison of shoot activity 

versus transpiration volume (solution consumed) at each exposure time and 

indicates little or no correlation.   
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Figure 5.7 Total shoot Pu activity versus time of plants exposed to Pu(DFOB) for 
3, 7, and 10 days (three replicate plants at each time).  

 

Clearly, a better defined relationship exists between Pu uptake and translocation 

into the shoot versus time than versus transpiration volume.  Figure 5.8 shows 

that for the 3 and 7 day exposures, there is practically no correlation between 

total shoot activity and transpiration volume, while only one data point leads to 

some correlation for the 10 day exposure.  The Pu transport across the root is 

not proportional to water transport.   
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Figure 5.8 Total shoot Pu activity versus transpiration volume of plants exposed 
to Pu(DFOB) for 3, 7, and 10 days (three replicate plants at each time).  

 

If soluble Pu moves across the root tissues precisely with the water, then the 

xylem fluid concentration would be the same as the solution concentration.  The 

Pu in the shoots must enter in the transpiration volume Vt.  Since the 

transpiration volumes (100 – 600 mL) are large compared to the small root xylem 

volume (< 1mL), it is reasonable to assume that very little Pu remains in the root 

xylem at the end of the experiment compared to the Pu in the shoot.  If the shoot 

activity is At, then one can calculate the concentration of Pu that crossed into the 

xylem in the transpiration volume as At/Vt.  If this calculated concentration is less 

than the solution concentration, then Pu is either retained by the roots outside of 

the xylem or excluded at the root surface. 

The ratio of At/Vt for the 3, 7 and 10 day plants is plotted for 3 different times 

in Figure 5.9.  The overall mean value of At/Vt is 0.028 Bq/cm3.  The nutrient 

solution Pu concentration is 16.5 Bq/cm3, which is greater than the shoot activity 

3d 7d 10d 
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divided by transpiration volume by a factor of 580.  This quantity differs from the 

concentration ratio which is the ratio of concentration in the plant divided by the 

concentration in the water (or soil) (Lee et al. 2002).  Clearly Pu is excluded from 

the xylem.  The activity distribution of the whole plants shows that an average of 

97% of the Pu activity is in the solution roots outside of the xylem.  Research 

quantifying Pu transport through the root and examining correlations between the 

uptake of iron and Pu is reported in Chapters 6 & 7. 

 

 
 
Figure 5.9 The shoot activity divided by the transpiration volume of 3, 7, and 10 d 
plants along with the mean for each exposure time.  The nutrient solution Pu 
concentration is 16.5 Bq/cm3 and the overall mean shoot activity/ transpiration 
volume is 0.028 Bq/cm3 indicating that 1/580th of the Pu entered the xylem.   
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5.5 Conclusion 

In summary, the retardation of Pu complexed with the siderophore DFOB is 

estimated to range between 1 and 10.  This is the first plant study involving the 

use of DFOB and Pu.  Using discrete sampling, we have shown a concentration 

distribution in corn shoots, examined shoot activity as a function of time and 

transpiration, and demonstrated that most of the Pu remains in the root tissues.  

Our work is focused on the initial movement of Pu into plants, hence it does not 

represent steady-state uptake.  The effect of plant uptake on Pu transport in soil 

is influenced by the density of roots and other factors, such as soil type, type of 

deposition, and Pu species; however these results suggest that plant transport 

can be a conduit of rapid upward Pu movement that can be a million times more 

rapid than reduced Pu transport in soil.  This research is consistent with the Pu 

transport modeling results of Demirkanli et al. (2009) because our estimated Pu 

retardation is in the order-of-magnitude range of their simulated values for the 

Savannah River Site lysimeter grass plants.  These results may have 

implications on the Pu pathways assumed for calculated risks associated with Pu 

in near surface and surface soils. 

 

  



 89 

CHAPTER SIX 

RELATIONSHIP BETWEEN CORN UPTAKE OF PU(DFOB) AND FE(DFOB) 

 

6.1 Abstract 

Two types of experiments were conducted to study the plant uptake of 

Pu(DFOB) in relation to Fe(DFOB) and to test the hypothesis that Pu uptake may 

occur based on plant requirement for Fe.  Both experiments were performed 

using Zea mays (corn) grown with its distal roots in solution and proximal roots in 

soil.  In the first, plants were grown in unlabeled nutrient solutions from day 7 to 

day 21, at which time plants were exposed for two days to ~37KBq each of 238Pu 

and 59Fe complexed with DFOB, a bacterial siderophore.  The complexed Pu and 

complexed 59Fe were transported into the roots and the shoots of the plants.  

About 40% more 59Fe activity than Pu activity was found in the shoots, whereas 

600% more Pu activity than 59Fe activity was found in the roots.  Concentration 

profiles with shoot length indicated that the distribution trends of complexed 59Fe 

and Pu were quite similar and were generally distinct from the shoot 

concentration profiles of stable elements.  This suggests that once inside the 

xylem Fe and Pu are physiologically treated in a similar manner.  In the second 

experiment, plants were exposed to complexed Pu at day 21 with stable Fe 

concentrations of 0 or 10 times the normal nutrient solution Fe concentration 

(1.07 x 10-5 M).  The Pu uptake was not affected by changes in the nutrient 

solution Fe concentration.  It is possible that the Fe contained in intracellular root 

tissues (inside the root but outside the xylem) from earlier plant exposure to 
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relatively large stable Fe concentrations in solution did not result in a zero Fe 

condition in the root, even though Fe was not present in solution containers. 

6.2 Introduction 

Iron is an essential nutrient required by plants, animals, fungi, and most 

microbes.  It is commonly metabolized in activities that make use of its redox 

potential as an energy source.  In plants, a primary function of iron is in the 

development of chloroplasts which are essential for photosynthesis; 

approximately 80% of the plant iron is used in this process (Marschner 1995).  

Chlorosis is a fairly common condition in which a plant’s leaves have discolored 

or necrotic spots caused by an insufficient production of chlorophyll.  Chlorosis 

can be caused by an iron deficiency.  Photosynthesis occurs in the leaves 

therefore iron must be transported from the soil to developing chloroplasts in new 

leaf tissues.  Once the iron is metabolized in this process, it becomes 

incorporated in the leaf cell structure and cannot be recycled (Brown 1978).  Due 

to its vital role in photosynthesis, plants have evolved physiological mechanisms 

to maintain a steady supply of iron from the soil.  Importantly, while iron is an 

abundant element, it has a very low solubility at pH values favorable for plant 

growth.  So plants must perform two critical tasks to attain their required iron; first 

they must solubilize iron from the soil and second they must maintain high affinity 

transport pathways in order to incorporate iron rapidly when it is needed.   

Upon entering the xylem, Fe is transported as soluble Fe(III) complexes until 

it is metabolized.  Different plants, however, use different methods to incorporate 

Fe (Romheld and Marschner 1986).  Strategy I plants, dicots and many 
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monocots, exude protons and simple low-molecular weight entities to solubilize 

iron.  In this strategy, Fe(III) is reduced to Fe(II) during induction through the root 

cells, and then it is re-complexed with molecules such as citrate and transported 

in xylem as an Fe(III) complex.  Strategy II plants, monocots of the Poaceae 

family (grasses), exude higher molecular weight complexes called siderophores 

(Greek for “iron bearers”) to both obtain and transport complexed Fe(III) through 

the root (Romheld and Marschner 1986, Yehuda et al. 1996, Schaaf et al. 2004, 

Suzuki et al. 2006).  The form in which Fe is transported in the xylem of strategy 

II plants after induction through the root is not clear.  Although it is known that 

uptake of Fe is enhanced by complexation with siderophores, it is not known if 

the transport of Fe in xylem of strategy II plants occurs as a Fe-siderophore 

complex.  Curie et al. (2009) indicates that in xylem transport Fe reacts with 

poorly characterized organic ligands, including precursors of phytosiderophores 

(nicotianamine) and known oligopeptides of plant transporters. 

A good review of how siderophores affect iron uptake in plants is found in 

Crowley (2006).  Several studies have demonstrated that plant and fungal metal 

uptake is enhanced in the presence of bacterial siderophores (Bar-Ness et al. 

1992, Ardon et al.1998).  However there is also clear evidence that Fe uptake in 

grass plants is faster and up to 40 times more efficient when it is complexed with 

native phytosiderophore versus bacterial siderophores or synthetic chelates 

(Romheld and Marschner 1986; Walter et al. 1994).  Experiments with this 

degree of physiological detail are not available for plant uptake of Pu.    



 92 

Studies of the dissolution rates of Fe and other metals with the siderophore 

DFOB have shown that the solution complexation properties alone may or may 

not liberate a significant quantity of actinides from a soil or mineral matrix 

(Ruggiero et al. 2001; Wolf-Boenisch and Traina 2007).  Recent desorption 

studies have demonstrated that the process of liberating metals from a solid 

matrix may occur faster and much more effectively in the presence of both 

siderophores and oxalate or citrate (Reichard et al. 2005; Loring et al. 2008).  

The synthesis of high molecular weight siderophore molecules has a high 

metabolic cost for plants, hence it is not efficient for plants to produce and exude 

siderophores unless they obtain iron in the process.  Although questions remain 

about the mechanisms which siderophores use to increase metal solubility, 

research has demonstrated that once the metals are in solution, siderophores 

are very strong complexants and keep metals soluble under many conditions.  In 

fact, recent research by Xu et al. (2008) demonstrated that organic siderophore 

decomposition products significantly increased the mobility of Pu in soil.  

Since plants have no known need for Pu, its uptake may occur in response to 

a nutrient requirement for iron (Neu et al. 2002).  Fe(III) and Pu(IV) are similar in 

that they have: 1) identical charge/ionic radius ratios of 47 nm-1; 2) similar first 

hydrolysis constants (Fe3+ LogK = 11.1, Pu4+ LogK = 12.2); and 3) nearly 

identical complexation constants with DFOB (Fe3+ LogK = 30.6, Pu4+ LogK= 

30.8).  Thus, it has been suggested that bacterial and plant siderophores that 

incorporate Fe may complex Pu, thereby enhancing its availability to and mobility 

in plants (Neu et al. 2002; Ruggiero et al. 2002; John et al. 2001).  Although John 
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(2001)) and DFOE complexed with Fe and with Pu.  The siderophores DFOB and 
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recognized by the same proteins associated with transport channels and 

competed for the same sites of entry into bacteria.  However, important 

differences were observed: 

• Bacterial uptake of Pu was one quarter of that of Fe 

• Fe incorporation into the cell was ~7 times faster than Pu 

• In displacement tests, the Fe could generally displace some Pu however 

the longer the Pu was in contact with the bacteria, the smaller the degree 

of displacement.  This was attributed to the slow Pu rate of entry into the 

cell wall, yet once inside Pu was more difficult to remove. 

• Based on the slower incorporation of Pu and cell lysing tests (designed to 

gain information about the location of Pu and Fe), much less Pu than Fe 

passed through the cell wall. 

The research described here was motivated by evidence of microbial uptake, 

competition, and recognition by the transport channels of complexed Pu and Fe 

(John et al. 2001) and earlier plant research (Garland et al. 1981; Cataldo et al. 

1988) which demonstrated that Pu behavior in soybean xylem exudates was 

quite similar to that of Fe.  The hypothesis was that Pu is transported into plants 

in substitution for Fe due to similarities between the metal chemistry, the 

siderophore-complexed metals, and possibly passage into the plant roots via 

high affinity uptake pathways.  Our experimental design has been proven useful 

for the sensitive examination of Pu distribution and uptake required to measure 

Pu velocities in corn plants (Thompson et al. 2009; Chapter 5).  This same plant 

growth and exposure method has been adapted to study Pu and Fe plant uptake.   
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The research objectives are to characterize and compare the distributions of 

Pu, 59Fe, and several stable elements, including stable Fe, in corn plants which 

were simultaneously exposed to approximately equal activities (not equal molar 

quantities) of Pu and 59Fe, to perform an activity distribution analysis, and, in 

separate experiments, to examine for potential enhancement or interference 

effects of varying the stable Fe nutrient solution concentration on Pu uptake. 

6.3 Experimental 

6.3.1 Conditions 

The plant growth, exposure, and tissue processing steps were conducted as 

described in Thompson et al. (in press); Chapter 5.  An important aspect of this 

work was our plant growth and exposure system in which plants were grown in 

soil pots resting on top of nutrient solutions.  The distal plant roots were in direct 

contact with the solution and the more proximal roots were in the soil.  This 

system provided a way to expose plants to radioactivity without concern of metal 

sorption to soil.   

Two plant treatments are described below; the corn plants were 23 days old 

at the end of their respective exposures in both treatments.  In tests designed to 

compare the uptake and distributions of Pu and Fe in corn, three plants were 

exposed for two days to ~37KBq of 238Pu (4.71 x 10-10 M) and ~37KBq of 59Fe 

(6.68 x 10-13 M) complexed with 9.8 x 10-5 M DFOB in nutrient solution.  

Importantly, the DFOB existed at 5 to 8 orders of magnitude greater 

concentrations than the 238Pu and 59Fe and both metals form extremely strong 

complexes with DFOB, insuring both radionuclides existed as complexed 
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moieties during the experiments.   The pH 6.0 solutions contained 1.07 x 10-5 M 

(0.60 mg/L) stable iron and (in mg/L): 946 Ca(NO3)2●4H20, 150 KCl, 120 MgSO4, 

68 KH2PO4, 0.69 H3BO3, 0.06 ZnSO4●7H20, 0.024 Na2MoO4●2H20, 0.022 

MnCl2●4H20, and 0.017 CuCl2●2H20.  The analysis of the dual labeled plant 

tissues was performed via liquid scintillation and ICP-MS.  In the second 

treatment, plants were grown in soil pots and usual nutrient solutions until 2-3 

days prior to exposure.  At which time, the nutrient solution concentrations of Fe 

were changed to contain either zero or 1.07 x 10-4 M Fe(III) (termed 0x Fe and 

10x Fe) while the concentrations of other nutrients were prepared as described 

above.  Five plants each were exposed to 238Pu(DFOB) at ~37KBq/plant in 

solutions containing zero or 1.07 x 10-4 M Fe(III).  In these latter plant treatments, 

the plant tissue analysis of Pu was performed as described previously in 

Thompson et al. (in press); Chapter 5. 

6.3.2 Analysis of plants labeled with 238Pu and 59Fe 

Plant tissues were digested with concentrated HNO3 and 30% H2O2.  The 

resulting digests, 8 mL of sample in 0.1 M HNO3, were split: 7 mL were diluted to 

8 mL and combined with 12 mL of Ultima Gold AB cocktail for liquid scintillation 

analysis, and 1 mL was diluted to 10 mL and analyzed for Mg, K, Ca, Fe, and Mo 

via Inductively Coupled Plasma-Mass Spectrometry (ICP-MS).  The tissue 

samples consisted of roots in solution, roots in soil, and measured shoot 

sections.  In general, the roots in the soil (Figure 5.1) include two types of roots: 

the adventitious roots and the primary root.  The primary root connects the roots 

in solution with the rest of the plant, thus it is the conduit for upward xylem 
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transport of Pu.  Adventitious roots in the soil were not in direct contact with Pu.  

All root samples were analyzed, however the terms root and root tissue used in 

the discussion below apply only to the roots in solution.  The roots in soil had 

negligible radioactivity and are not reported.  This is most likely due to two 

factors.  First, the primary root in the soil had very small masses in comparison 

with both the solution roots and the shoot sections.  Second, these experiments 

were relatively short term exposures therefore little to no redistribution was 

observed into the other root tissues. 

The liquid scintillation analysis of 238Pu and 59Fe was performed using a 

Wallac Model 1409 counter.  238Pu was detected as an alpha peak at 5.49 MeV 

and 59Fe was detected as a relatively broad beta spectrum with a maximum 

energy of 1.57 MeV and average beta energy of 0.46 MeV.  Nuclides were 

analyzed simultaneously using pulse shape discrimination (PSA = 100) which 

was optimized to detect both the 238Pu alpha and 59Fe beta signals with minimal 

interferences.   Examples of the spectra of 238Pu and 59Fe are shown in Appendix 

A for reference.  The solution internal spike 238Pu recovery was 103%, 59Fe 

recovery was 87%, and plant tissue data were not adjusted for recovery.  The 

nutrient solutions were amended with 238Pu and 59Fe complexed with DFOB, such 

that the respective activities presented to the plants were equal at the time of 

their exposure based on the stock 238Pu and 59Fe solution reference dates.  

However, 238Pu has an 88 y half-life whereas 59Fe has a 44.5 d half-life, hence 

the amount of Fe decay between plant exposure and sample counting must be 

taken into consideration.  Tissue samples were counted 7 d after exposure so 
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data were decay-corrected by multiplying the measured 59Fe by a factor of 1.115.  

The majority of sample counting errors of 238Pu and 59Fe were less than 10% at 

the 1 σ level.  Relatively very small alpha and beta activities were observed in 

control plant tissues.  The control plants were not exposed to 238Pu, 59Fe, or 

DFOB, but had detectable activities in both the 238Pu alpha and 59Fe beta spectra 

which were from uptake of naturally occurring radionuclides in the potting soil.  

All plant radioactivity data were corrected for these contributions by subtracting 

the control activity. 

The concentrations of Mg, K, Ca, Fe, and Mo in the plant sample digests 

were measured using a Thermo X-Series II Inductively Coupled Plasma Mass 

Spectrometer.  An internal standard solution containing Sc, Ga, Y, and In was 

simultaneously aspirated with the samples. To reduce interferences, the 

instrument was operated using collision cell technology employing an 8% H2 / 

92% He gas mixture. Calibration standards were prepared using single and multi 

isotope standards (High Purity Standards, Charleston, SC).  All samples and 

standards were prepared in 2% ultrapure HNO3 (BDH Aristar Ultra) in distilled-

deionized water.  Sample concentrations were obtained by accounting for the 

digest fraction and then dividing by dry tissue mass.  The ICP-MS analyte 

concentration results had <5% respective errors except for Ca which had roughly 

20% analytical errors.  

Table 6.1 shows the relevant molar solution concentrations of the conditions 

for both dual labeled and 0x and 10x Fe plant uptake experiments.  Although the 

238Pu and 59Fe activities were approximately equal, due their respective decay 
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rates the molar quantities are quite different.  With the exception of the 0x Fe 

condition, the concentrations of Fe in the solutions are much greater than that of 

238Pu or 59Fe.  The DFOB concentration was selected based on the success and 

database of earlier uptake and velocity experiments (Chapters 4 & 5), and the 

complexant concentrations utilized in similar Pu uptake research (Lee et al. 

2002). 

 
Table 6.1 Solution Concentrations of Complexant, Fe, Pu, and 59Fe 
 

Experimental 
Condition 

(Molar Solution Concentration) 
DFOB Fe Pu 59Fe 

Pu and 59Fe 9.8 x 10-5  1.07 x 10-5  4.7 x 10-10 6.7 x 10-13 
0x Fe 9.8 x 10-5 0 4.8 x 10-10 0 

10x Fe 9.8 x 10-5 1.07 x 10-4 4.8 x 10-10 0 

 

6.4 Results and Discussion 

For clarity in the Chapter 6 discussion, the terms Pu and 59Fe refer to 

radioisotopes which were complexed with DFOB prior to introduction to the 

nutrient solution and exposure to the plants.  Pu denotes 238Pu, the only isotope 

of Pu used in this research.  Fe denotes stable iron, whereas 59Fe indicates the 

radioisotope which was used only in the dual labeled experiments.  One can infer 

from Table 6.1, in nutrient solution the metals are entirely complexed with the 

siderophore.  To enter the shoots these metals must enter the xylem and since 

the metals are complexed in xylem but it is not clear if they remain complexed 

with DFOB and analyses were not performed to determine metal complexation in 

the shoots, Pu and 59Fe denote the activities or concentrations observed.  To 

clearly designate the use of complexed metals, when stable isotope and 
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radioisotope results are presented together the dual labeled data will be denoted 

as Pu(DFOB) or 59Fe(DFOB). 

6.4.1 Dual Labeled Plant Shoot Distribution Profiles 

The concentration profiles of Pu and 59Fe of the three dual labeled plants are 

shown in Figure 6.2.  The concentration data are Bq per dry gram of shoot tissue 

and the shoot length data are at the midpoint of each shoot section, with zero 

distance at the soil surface (e.g., 5 cm data represents the 0-10 cm shoot 

section).  The corn shoot tissues were processed by measuring and cutting the 

stem and leaves with the leaves straightened by elongation, thus shoot length is 

more accurate than shoot height because the leaves do not naturally extend 

vertically.  Examining the Pu and 59Fe data in each plant, the concentration 

profiles with shoot length are similar although their magnitudes differ.  The main 

point of this plot is to demonstrate that concentration trends of both Pu and 59Fe 

are similar within each plant although they differ somewhat between plants.  Due 

to the total number of data on a given plot, the individual plant data are especially 

difficult to visualize with additional distribution data for comparison therefore 

averaged dual labeled experiment data will be discussed from this point forward. 
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Figure 6.2 Tissue section concentrations of Pu and 59Fe versus shoot length.  
The Pu data are open triangles, the 59Fe data are open circles, and the lines 
linking both Pu and 59Fe shoot data are consistent for each plant (e. g., the 
narrow dashed line is plant A and the solid line is plant B, etc.). 

 

Shoot tissue mass and activity fraction data for the dual labeled plants are 

shown in Figure 6.3.  The fraction data are obtained by dividing averaged data at 

a particular shoot length by the averaged total of the entire shoot.  At the bottom 

left of Figure 6.3, about 7% of the averaged shoot Pu activity (open triangle) is 

contained in the bottom tissue section.  From this plot, one can see that the 

distribution of the relative activity fraction data does not follow the shoot mass 

fraction distribution.  If the activity fraction data were distributed uniformly with 

respect to the shoot mass, then those data would overlay the mass fraction data.   

 

0

10

20

30

40

50

60

70

80

90

0 10 20 30 40

S
h

o
o

t 
Le

n
g

th
 (c

m
)

Concentration (Bq/g)

Plant A Fe
Plant A Pu
Plant B Fe
Plant B Pu
Plant C Fe
Plant C Pu



 102 

 
Figure 6.3 Mass and activity fraction data for dry shoot section masses and 
activities of 59Fe and Pu averaged over the three dual labeled plants.  Data are 
obtained by dividing each section value by the respective totals.  For example, 
nearly 20% of the total shoot mass is contained in the bottom shoot section (the 
open square at bottom right) and about 2% of the total shoot mass is in the top 
tissue sample.  Both 59Fe and Pu activity fractions are less than the mass 
fractions below 40 cm, and above this shoot length, the activity fractions exceed 
the equivalent mass fractions. 
 

Figure 6.4 is a combination of two plots showing the averaged concentrations 

versus shoot length on the left and at right the Pu and 59Fe data have been 

transformed (non-dimensionalized) by dividing the averaged concentration of a 

particular stem section by the mean concentration of all the stem sections.  The 

data are presented in this manner so that the concentration distribution profiles of 

different analytes (with greatly differing molar concentrations) can be viewed 

together as variations about their respective mean values.  The concentration 
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and relative concentration of an element that is uniformly distributed with respect 

to mass would plot as a straight line as a function of length.  Comparing the left 

and the right plots, even though 59Fe concentrations are generally greater than 

Pu, by transforming the data one can see that their shoot concentration 

distributions about their respective means are quite similar.  The transformed 

concentration data of both Pu and 59Fe are nearly identical from the bottom of the 

shoot up to the 45 cm section.  Concentration minima are found in the bottom 

two sections for 59Fe and Pu respectively and maxima are found in the 75 cm 

sections.  (Top section tissue data were occasionally noisy, due to a relatively 

small amount of dry mass and due partly to unhealthy tissue near the uppermost 

leaves.)   Beginning at 55 cm and moving upward, the 59Fe concentration data 

exceed those of Pu showing that Fe is somewhat more concentrated in the upper 

shoot tissues than Pu.  
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Figure 6.4 Combination plots of averaged and dimensionless 59Fe and Pu 
concentrations versus shoot length.  At left, the averaged data of concentrations 
versus length are shown.  On the right, data have been transformed by dividing 
the individual concentration data by the mean shoot concentration resulting in 
dimensionless ((Bq/g) / (Bq/g)) “concentration relative to the mean” data plotted 
on the same length scale. 
 

In Figure 6.5, we compare shoot radiological data with shoot chemical data 

using the shoot concentrations divided by their mean values.  The averaged total 

shoot quantities are (moles): 7.2 x 10-4 Mg, 1.1 x 10-2 K, 1.3 x 10-3 Ca, 2.2 x10-5 

Fe, 1.6 x 10-15 59Fe, 5.6 x 10-7 Mo, and 6.6 x 10-12 Pu.  Figure 6.5 shows the 

relative concentration data versus shoot length of Mg, K, Ca, Fe, 59Fe(DFOB), 

Mo and Pu(DFOB) from ICP-MS and liquid scintillation analyses.   The 

concentration trends of Mg, K, and Ca are dissimilar to those of Fe, 59Fe(DFOB), 

Mo or Pu(DFOB).  Magnesium has the highest concentration in the lowest 

section and the most uniform distribution with length, excluding the bottom 

section.  Potassium has the next most uniform concentration distribution profile 
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and is fairly constant in the upper sections.  Calcium has the third highest relative 

concentration in the lowest shoot tissues but increases in the higher sections.  

Molybdenum and Fe both have relatively low concentrations in low shoot 

sections and their concentrations increase smoothly with length.  The relative 

concentration profiles of 59Fe(DFOB) and Pu(DFOB) are very similar with low 

concentrations at the lower heights, increasing concentrations with elevation, and 

the highest values at or near the top sections as described previously.  At 45 cm, 

the concentration data of Fe, 59Fe(DFOB), and Pu(DFOB) nearly overlap, 

however above this length Pu(DFOB) and 59Fe(DFOB) are distinct from Fe, 

which indicates that Pu(DFOB) and 59Fe(DFOB) are more similarly distributed 

than are 59Fe(DFOB) and stable Fe.  The stable elements were distributed in the 

shoots over 23 days whereas the radionuclide 59Fe(DFOB) and Pu(DFOB) 

distributions resulted from relatively short term exposure from day 21 to day 23.  

As mentioned previously, once Fe is incorporated into the cells during chloroplast 

development it is bound.  The position of most active growth increases as young 

plants grow because the leaves grow out of the apical meristem (which is located 

near the top of the corn plants).  Because the Fe which was bound to cells during 

earlier growth cannot move, it is logical that Fe introduced to a 21 day old plant is 

less in demand at the lower stem structures and relatively more in demand at 

higher elevations.  The data for Fe and 59Fe at 75 cm have the largest relative 

concentration difference with Fe at ~1.5 and 59Fe at ~5.  This is clearly the 

highest concentration of 59Fe (and Pu), so it is reasonable to suggest that the 

tissues with the most active growth and demand for chloroplasts during exposure 
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were in this section, however no other plant data were collected to support this 

suggestion.  The concentration data in this research consistently show that the 

highest Pu concentrations are found at or near the top shoot sections where they 

are likely deposited as the transpiration stream evaporates.   

 

 
Figure 6.5 The concentrations relative to the mean data are plotted as a function 
of shoot length for Mg, K, Ca, Fe, 59Fe, Mo, and Pu.  The plants were exposed to 
complexes of 59Fe(DFOB) and Pu(DFOB) from day 21 to day 23, whereas stable 
shot concentration result from uptake of uncomplexed elements over 16 days.  
Fe, 59Fe(DFOB), Mo and Pu(DFOB)  have somewhat similar profiles with low 
concentrations at lower elevations and greater concentrations at higher 
elevations.  Mg, Ca and K have much different shoot concentration distribution 
profiles than the other elements.  The Fe, 59Fe(DFOB), and Pu(DFOB) data are 
similar in the lower shoot sections, but from 55 cm to 75 cm 59Fe(DFOB)  and 
Pu(DFOB) far exceed the relative concentration data of Fe.  This pattern of 
distribution not only highlights the similar trends of complexed 59Fe and Pu but 
also the differences in plant physiology of the two different exposure periods. 
 

As mentioned above, the plants had different exposure times to the nutrient 

elements and radioactive compounds in solution (16 d for stable elements versus 

2 d for 59Fe(DFOB) and Pu(DFOB)), so these concentration relative to the mean 
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data must be viewed with this in mind.  The general trends of concentrations at a 

particular location in the shoot are directly comparable.  However, the final 

concentration data integrate both the plant physiology and the exposure times, 

i.e., the short-term exposures are somewhat different and occur in more mature 

vascular pathways relative to the longer stable element exposures.  Given this 

difference, Fe, Mo, 59Fe(DFOB), and Pu(DFOB) all have similar concentration 

profiles in the shoot. 

The degree of similarity in the relative concentration profiles of Pu(DFOB) and 

59Fe(DFOB) suggests that once Pu enters the plant xylem, the two compounds 

are physiologically treated similarly.  For example, both Pu and 59Fe maximum 

concentrations are observed in the same shoot section and the respective 

minimum concentrations are observed in the two adjacent sections at the bottom.  

Clearly the Pu and 59Fe concentration profiles are distinct from most of the other 

data shown in 6.5.  The shoot activity distributions are an important part of this 

study, because they reflect how elements are distributed after entering the xylem.  

The effectiveness with which complexed Pu and 59Fe enter the xylem through the 

roots is the focus of the next section. 

6.3.2 Comparison of complexed Pu and 59Fe distributions in the roots and shoots 

Table 6.2 contains the basic distribution analysis of plant-averaged data from 

the dual labeled plants.  It has the average root and shoot activities of Pu and 

59Fe, the fractions of total plant activity of each metal found in the root and in the 

shoot, and the Pu/59Fe activity ratios of the root and shoot tissue data.  The plant 

activities are the sum of the root and shoot activities.  For Pu, nearly 99% of the 
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total plant activity was in the roots with 1% in the shoots whereas for 59Fe, ~90% 

of the plant activity was in the roots with ~9% in the shoots.   Of interest, the root 

Pu activity is ~6 times the 59Fe root activity, yet > 40% more 59Fe was transported 

into the shoots than Pu.   

 
Table 6.2  The Pu and 59Fe Activity Distribution and Activity Ratios of Pu/ 59Fe in 
the Root and the Shoot 

 

Metal Root Shoot Total Root Shoot Pu/ 59Fe Pu/ 59Fe 
 (Bq.) (Bq.) (Bq.) Fraction Fraction Root Shoot 

Pu 979.2 10.3 989.6 0.989 0.010 
5.97 0.69 

59Fe 164.0 14.9 179.0 0.903 0.089 
 
All data are plant-averaged values of the three dual-labeled plants. 
 

Table 6.3 shows the fractions of the total plant activity divided by the activity 

contained in the average solution volume transpired by the plants, the root 

activity divided by the average plant root volume, and the average root 

concentrations divided by the solution concentrations.  The solution transpiration 

volume activities represent the total activities which could have been transported 

into the plant in the fluid; they are obtained by multiplying the solution 

concentrations by the mean transpiration volumes.  The plant activities divided by 

the activities in the transpiration volume activities [Plant (Bq)/ T. Vol. (Bq)] 

indicate that about 15% of the Pu in solution was taken up but only 3% of the 

59Fe was taken up by the plants.  Following Table 6.3 to the right, the root 

activities have been divided by the root volume (calculated from the plant-

averaged root mass to be 3.02 cm3).  The root volume concentrations of Pu and 

59Fe are compared to the respective solution concentrations presented to the 



 109 

plants.  From this, Pu was concentrated in the roots relative to the solution by a 

factor of 4.4, but the 59Fe root concentration was slightly less than the solution 

59Fe concentration. The 59Fe decay has been taken into account in all these 

calculations.  

Table 6.3  The Pu and 59Fe Activity Distribution, the Total Plant Activity Fraction 
Relative to the Activity in the Average Transpiration Volume, the Root Activity Per 
Root Volume, and the Average Root Concentration Compared to the Solution 
Concentration 

 

Metal Root Shoot Total Plant (Bq) 
Bq/root 
volume Solution Root 

 (Bq.) (Bq.) (Bq.) T. Vol. (Bq) (3.02 cm3) Bq/cm3 Solution 

Pu 979.2 10.3 989.6 0.146 324.4 73.7 4.40 
59Fe 164.0 14.9 179.0 0.031 54.3 64.0 0.85 

 

We now present the dual labeled plant data focused on molar proportions 

rather than activities.  Table 6.4 contains the plant-averaged Pu and 59Fe data 

converted from activities to moles, the molar ratios of Pu/ 59Fe in the roots, the 

shoots, and the solutions. Using Eqns. 1 and 2 we find that equal 238Pu and 59Fe 

activities result in a molar ratio of 705: 1 due to their respective decay rates.   

λ
=

( )
Activity

Atoms
decay

           Eqn. 6.1 

=236.023 10
Atoms

Moles
x

           Eqn. 6.2 

Thus, the solution concentrations presented to the plants were 6.68 x 10-13 M 

59Fe and 4.71 x 10-10 M 238Pu.   Following Table 6.4 to the right, the Pu/59Fe 

molar ratios are 4289, 498, and 705 in the root, shoot, and solution respectively.  

The respective activity ratios of the root, shoot, and solution are 5.97, 0.69, and 
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1.00.  The molar ratios are in proportion to the activity ratios since they are 

derived from the activity data.  The molar solution concentrations of both Pu and 

59Fe are small as compared to the stable Fe concentration 1.07 x 10-5 M.   

 
Table 6.4  Molar Data for the Pu and 59Fe Labeled Plants 
 

Metal Root Shoot Decay Root Shoot Solution Molar Ratio Pu/Fe 
  (Bq.) (Bq.) λ (s

-1
) (Moles) (Moles) Molarity Root Shoot Solution 

Pu 979.2 10.3 2.51E-10 6.48E-12 6.83E-14 4.71E-10 4289 498 705 
59Fe 164.0 14.9 1.80E-07 1.51E-15 1.37E-16 6.68E-13 Activity Ratio Pu/Fe 

     5.97 0.69 1.00 

       Molar/Activity Ratio 
       719 719 705 

 
 
6.4.3 Pu uptake and distribution at varied stable Fe solution concentrations 

Five plants each were exposed to Pu(DFOB) in nutrient solutions containing 

either zero or ten times the stable Fe concentration in the nutrient solution.  

These Fe concentrations were presented to the plants beginning two to three 

days prior to exposure and were again presented to the plants at the time of their 

exposure to Pu.  The logic for altering the solution Fe concentration a few days 

prior to exposure was to allow time for the plants to respond to the Fe solution 

conditions and potentially produce phytosiderophores before exposure.  The 

experiments were designed to examine Pu uptake in relation to the nutrient 

solution Fe concentrations which may have the following potential outcomes: 

first, lacking sufficient Fe, the plants may produce phytosiderophores which 

would be expected to increase Pu uptake, and second, by providing an 

overabundance of Fe (which exceeded the DFOB concentration, 10.7 x10-5 M Fe 
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versus 9.8x10-5 M DFOB), the plants may show an inhibitory Pu and 59Fe uptake 

effect due to stable Fe saturation.   

Figure 6.6 is a plot showing all Pu shoot concentration versus height data at 

both Fe concentrations.  The Pu concentrations are greatest at or near the top 

shoots of both sets.  The Pu concentration data of plant 10x Fe8C, particularly at 

65 cm, greatly exceeded those of the rest of both plant treatments (plant 10x 

Fe8C data are sown with the heavy dashed line.  Plant 10x Fe8C had the largest 

transpiration and second largest root mass of the ten plants. The mean 0x and 

10x Fe concentration profiles (with and without plant 10x Fe8C) are presented in 

Figure 6.7 which indicates small differences between the plant Fe treatments 

when the data of plant 10x Fe8C are excluded.  Since the plants had roots in 

solution and in soil, it is probable that the 0x plants obtained Fe from the soil 

roots.   With their rapid growth rate during age 18 to 23 days, the corn plants 

would be expected to have chlorotic leaves and no signs of this condition were 

observed during any of the experiments. 
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Figure 6.6 Plots of plant shoot concentration versus corn shoot length for the 0x 
& 10x Fe solution concentrations.  Data symbols are 0x Fe (triangles) and 10x Fe 
(circles).  Pu tissue concentrations tended to increase with shoot length.  
 

From the shoot distribution data shown in Figure 6.7, two implied results can 

be described: comparing the 10X data without the single extraordinarily high 

concentration Pu data point at 65 cm for experiment 10X Fe 8C, little to no 

differences are seen in the data of the plant treatments, and comparing the 0x 

and 10x data with plant 8C, the 10x shoot concentrations exceed that of the 0x 

treatment.  In either case, the potential outcomes mentioned above were not 

observed which suggests that phytosiderophore production did not occur 

(possibly due to the plant’s obtaining iron from their soil pots) nor did higher Fe 

solution concentrations inhibit Pu translocation into the shoots.   

 

0

10

20

30

40

50

60

70

80

90

0 20 40 60 80

S
h

o
o

t 
Le

n
g

th
 (

cm
)

Pu Concentration (Bq/g)

0 Fe A

0 Fe B

0 Fe 8A

0 Fe 8B

0 Fe 8C

10 Fe A 

10 Fe B

10 Fe 8A

10 Fe 8B

10 Fe 8C



 113 

 
 
Figure 6.7 A plot depicts mean shoot versus length data for the 0x and the 10x 
plants with and without plant 10x Fe8C.  For all 10x plant data, at 65 cm height 
the standard deviation /mean is greater than twice that of the 10x plants 
excluding 10x Fe8C.  Comparing the 0x Fe with the 10x Fe without plant 8C, the 
mean concentration profiles are very similar. 
 

Table 6.5 summarizes the averaged activity distribution data for the 0x plants, 

the 10x plants with and without plant 8C, and the dual labeled plant data.  As 

discussed above the mean shoot activity data of the 10x plants is strongly 

affected by the data of plant 10x Fe8C.  First, focusing on comparisons between 

the 0x plants and the 10x plants without plant 8C, the root and shoot activities, 

root and shoot fractions, and the ratio of the plant activity/ the averaged 

transpiration volume activity are similar regardless of the Fe concentration.  

Inclusion of the 10x Fe8C data changes the data comparisons by increasing the 
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fraction in the shoots from 0.014 to 0.030 and by increasing the averaged root 

volume.  The averaged Pu plant activity divided by activity contained in the 

averaged transpiration volumes are similar under all conditions and also compare 

well with Pu data of the dual labeled plants.  The Pu activity divided by the root 

volume is obtained from the averaged values of the individual plant calculations.  

The two columns at the right of Table 6.5 show that the Pu root concentration 

and root concentration relative to the solution concentrations are all quite similar 

for Pu.  The Pu data differ from the 59Fe data in terms of the shoot activity 

distribution and the root concentrations relative to the solution concentration. 

 
Table 6.5 Summary Activity Distribution Data for Both the Varied Fe Solution 
Concentration Plants and the Dual Pu and 59Fe labeled Plants 
 

 Root Shoot Root Shoot Plant (Bq) 
Root 
Vol 

Pu Act 
(Bq) Root 

 (Bq) (Bq) Fraction Fraction T. Vol. (Bq) (cm3) root (cm3) Solution 
0x Fe 632.8 11.6 0.982 0.018 0.120 3.62 300 4.12 

10x Fe 671.0 20.6 0.970 0.030 0.150 3.61 284 3.91 
10x Fe* 585.2 8.2 0.986 0.014 0.173 2.76 319 4.39 

Pu 979.2 10.3 0.989 0.010 0.146 3.02 324 4.40 
Fe 164.0 14.9 0.903 0.089 0.031 3.02 54 0.85 

 
 
Under experimental conditions in which the Fe/ Pu solution concentration ratios 

are 0 – 2.2 x 105, there is no significant difference in the Pu uptake.  Thus from 

these results, Fe does not interfere with Pu uptake.  It is worth noting that the 

plants grew in nutrient solution for several days prior to removal of Fe completely 

from the solution and due to the xylem arrangement in the root tissue, therefore 

some Fe could have remained in the root but outside the xylem.  There was no 

way to determine this extra-xylem cellular Fe content in these experiments. 
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In Chapter 5 and in Table 6.3 the tissue activities found in the root and shoot 

were divided by the total activity contained in the volume of solution transpired.  

The concentration (i.e., activity/ solution volume) in tissues can be directly 

compared with the fluid concentration as a way to understand the exclusion or 

concentration of Pu.  Table 6.6 shows the activity ratios of the container solution 

concentrations divided by the average concentrations in the root and shoot.  The 

ratios of the solution concentration to the root concentration of Pu are about 7 

comparing the Fe solution concentration experiment and the dual labeled 

experiment.  An average of about 1/7th of the Pu contained in the measured 

transpiration stream transited into the root interior.  Similar comparisons show 

that less than 1/500th of the Pu in the transpiration volume was translocated into 

the shoots.  If one imagines following the transpiration stream from the solution, 

into the root tissues, and then upward to the shoots, the observation that 1/7th of 

the Pu transpired crosses into the roots and only <1/500th of it enters the xylem 

means that Pu must accumulate in the roots.  This is evidenced by the data in 

Table 6.5 showing that (on the basis of root volume and not transpiration volume) 

the root Pu concentration is about 4 times the solution concentration.  For 59Fe, 

the equivalent ratio is 36, indicating that only 1/36th of the 59Fe in solution crossed 

into the root and about 1/400th of the Fe traveled further into the shoots. 
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Table 6.6  Activity Ratios of Pu and 59Fe Concentrations in Solution Compared to 
the Concentrations of Calculated Averaged Root and Shoot Concentrations 
 

 Solution (Bq/cm3) Solution (Bq/cm3) 

 
Root /T.Vol. 

(Bq/cm3) 
Shoot /T.Vol. 

(Bq/cm3) 
Pu (0x Fe) 8.4 680 
Pu (10x Fe) 6.7 550 
Pu (10x Fe*) 5.8 760 

Pu 6.9 660 
59Fe 36.0 400 

 
 

In the introduction, the research by John et al. (2001) involving Pu and Fe 

uptake in the bacterium (Microbacter flavesence) was cited as a motivation for 

this research.  Comparing these results with those of John et al. (2001), several 

experimental factors must be considered.  First, they used equal molar Fe and 

Pu concentration whereas these tests were conducted with equal activities of Fe 

and Pu in the dual labeled tests or much different ambient concentrations of 

stable Fe and Pu in the other tests.  These differences made assessing uptake 

competition between the metals problematic in this study.  Second, basic 

physiological differences in size and complexity of bacterial cells and plants roots 

must be understood to compare the studies.  John et al. (2001) observed that 

bacterial uptake of Pu was ¼ that of Fe whereas in this study the Pu plant uptake 

was six times greater than that of Fe.  Overall two observations are consistent 

between the studies.  John et al. (2001) found that much less Pu passed through 

the bacterial cell wall than Fe.  Similarly, less Pu passed into the xylem of corn 

plants than Fe and much more Pu was localized in the root tissues than was Fe.  

The fact that more Fe was transported into the shoot and much more Pu was 

found in the root shows that the complexed Pu is much less effective than 
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complexed Fe at entering the xylem.  It also suggests that, although most of the 

Pu was excluded at the exodermis, what fraction did enter the root may have 

become trapped in the root tissue which is somewhat similar to the displacement 

test results of John et al. (2001) wherein they found that once the Pu was inside 

the cell wall, it was difficult to remove. 

6.5 Conclusions 

This research has resulted in several findings pertaining to the plant uptake 

and distribution of Pu and Fe.  First, once Pu enters the xylem, it is distributed 

and hence physiologically treated quite similarly to Fe.  The shoot 59Fe and 238Pu 

concentration distributions are highly similar as compared to those of Mg, K, Ca, 

Mo, and even stable Fe.  The observation that 59Fe has slightly higher relative 

concentrations in the upper shoot tissue sections may suggest that it has a lower 

retardation in xylem than does Pu (conversely Pu undergoes slightly greater 

sorption in the shoot tissues than Fe).  Second, proportionally more Fe transits 

through the root than does Pu since ~ 9% of the total plant Fe activity was in the 

shoot versus ~1% of the Pu.  This plant tissue activity distribution is complicated 

by the observation that overall ~6 times more Pu activity was found in the root 

than 59Fe activity.  Since both the 59Fe and the Pu were excluded from the xylem 

and the root, it is difficult to interpret this observation.  Perhaps the Fe moves 

much more freely through the root and a significant portion of the Fe was 

removed during the root sample processing step by rinsing the roots in water.  It 

is possible that the Pu was either immobilized or so much less mobile in the root 

tissues that it was preferentially retained in the plant root.  Irrespective of the 
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meaning of the relative activities found in the roots, in a gross sense, Fe does not 

appear to interfere with the uptake of Pu.  Under Fe/Pu solution molar ratios 

ranging from 0-2.2 x 105, the proportion of Pu concentrated in the roots relative to 

the solution concentrations remained nearly constant.  Potential interference 

between plant uptake of Fe and Pu deserves further study due to the uncertainty 

about the actual Fe content in the root tissue discussed earlier.  Since plants 

have no known biological need for Pu, it appears that Pu is taken into plants 

based on similarities between Pu and Fe.  However, Pu is less effective than Fe 

at crossing through the root which suggests that a portion of it may be localized 

in the root tissues.  This root localization could be a contributing factor (among 

several other factors) in the wide range of plant bioaccumulation factors reported 

in the literature. 
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CHAPTER SEVEN 

ADDITIONAL FINDINGS 

 

7.1 Introduction 

The broad objective of the research reported in this dissertation was to 

provide experimental support for the hypothesis that plants can play a significant 

role in the upward transport of Pu in the vadose zone.  The major findings are 

reported in Chapters 4-6, which are complete or longer versions of publication-

formatted articles.  Presented in this chapter are three additional findings that 

provide important insights into certain aspects of plant transport. They are only 

loosely related to of one another but are too short to be separate chapters.  

Rather, they are presented as independent sections in this chapter. 

The first section is an analysis of the discrimination of Pu by the root.  The 

data come from these experiments and from the literature. The second section is 

focused on the basic upward transport models described in Chapter 2 and their 

transport parameters.   The third section contains the results of batch sorption 

tests with xylem and cellulose.   

7.2 Pu Discrimination by Roots 

7.2.1 Data from this research 

This work has been focused on the movement of Pu into and through plants 

by studying velocity, retardation, and discrete spatial distribution from a transport 

perspective.  As mentioned previously, the principal focus of related research by 

others on phytoremediation and bioaccumulation focused primarily on the 
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concentration or accumulation of contaminants in the above ground plant tissues.  

No studies exist which can be directly compared to our root exclusion data, 

therefore the analysis below is conducted by presenting our data in both a 

straightforward manner and in such a way that comparisons can be made with 

data of other studies.  In particular, the translocation data of phytoremediation 

studies conducted with plants in solution media and the bioaccumulation data of 

Pu in root vegetables may be helpful to better understand the nature of Pu 

movement through plant roots. 

Evidence of root exclusion is seen in Table 6.4, which contains  a comparison 

of the activities in the root and shoot and the activities contained in each plant’s 

transpiration volume.  These data show Pu is excluded from the root at the 

exodermis and then some of the Pu which enters the exodermis does not transit 

all the way through the root cortex to enter the xylem.  Figure 7.1 is a diagram of 

a corn plant root with a single root magnified to illustrate that the soluble Pu must 

cross through the exodermis (1) and the root cortical cells (2) to enter the xylem 

wherein upward transport may occur.    
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Figure 7.1 A diagram depicts the uptake and upward transport process in detail.  
The main object is a corn plant root.  For upward transport in plants to occur, the 
roots must nearly intercept the soil containing Pu, and the Pu in the soil water 
must cross the epidermis (1) and root cortical tissues (2) to reach xylem for long 
distance upward transport in plants in the root zone.  (Corn root xylem is not 
arranged exactly as illustrated in the enlargement; it has been simplified for 
clarity.)  (Corn root image adapted from photograph taken by Craig Mehaffy of 
Clemson University, Clemson, SC 2009) 
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Table 7.1 contains the results of several experiments in which the root and 

total shoot activities were carefully determined.  It includes the number of plants 

in an experimental set, plant age at the end of exposure, exposure time, mean 

transpiration volume, mean shoot and root masses, mean shoot and root activity 

fractions and the standard deviation associated with each plant set, and the ratio 

of shoot concentration to root concentration.  The data are from experiments with 

23 to 25 d old plants (26 total plants) arranged by increasing exposure time.   

These data show that irrespective of the experimental conditions, the Pu activity 

distribution was about 2.4% in the shoots and 97.6% in the roots. Unfortunately, 

due to the paucity of similar Pu shoot-root activity distribution data in the 

literature, the only data available for comparison are from the hydroponic study of 

Lee et al. (2002), who report the ratio of shoot to root concentration.  

Consequently, this ratio is also presented in Table 7.1 and comparisons with Lee 

et al. are made in a subsequent section.  The ratios vary between 0.0009 – 

0.0038 and are roughly an order of magnitude lower than activity fractions due to 

the differences in shoot and root masses. 
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Table 7.1 The Partitioning of Pu In the Roots and Shoots of Corn Plants 
. 

LR9 Experimental Set n Age Time Trans mass Activity 1SD CRs 

Mean Plant Data   d d mL g Fraction   CRr 
1d Shoot (Transpiration) 4 25 1 142 4.869 0.0298 0.0175 0.0020 

1d Root 0.372 0.9702 0.0175 
 2d Shoot (Dual labeled) 3 23 2 92 3.127 0.0104 0.0048 0.0009 

2d Root 0.266 0.9889 0.1826 
 2d Shoot (0x, 10x Fe) 10 23 2 128 3.619 0.0241 0.0298 0.0012 

2d Root 0.318 0.9759 0.6247 
 3d Shoot (Shoot-Root) 3 23 3 128 2.364 0.0171 0.0048 0.0014 

3d Root 0.198 0.9829 0.0028 
 7d Shoot  (Shoot-Root) 3 23 7 421 2.223 0.0234 0.0102 0.0019 

7d Root 0.291 0.9766 0.0134 
 10d Shoot  (Shoot-Root) 3 23 10 475 3.063 0.0407 0.0168 0.0038 

10d Root         0.301 0.9593 0.0169   
Overall mean 0.0243 shoot 
Overall mean 0.9756 root 

 
CRs/CRr is concentration ratio in the shoot divided by concentration ratio in the 
root which reduces to the shoot concentration divided by the root concentration. 
 
 

The mean xylem, shoot, and root solution concentration ratios (CRs = (Bq/g)/ 

(Bq/cm3) solution) are presented as plots versus time in Figures 7.2, 7.3, and 7.4 

respectively.  The xylem concentration is calculated by dividing the shoot activity 

by the transpiration volume.  The shoot and root concentration ratios are 

calculated by dividing the shoot or root concentration by the solution 

concentration, respectively.   In general, both shoot and root concentrations are 

expected to increase with time.  In Figure 7.2, the xylem concentration ratios 

show no clear trend with time.  This may be an indication that there is no time 

trend or that the data represent the fluctuations in transpiration of a particular set 

of plants.  The xylem CR at 1d is considerably lower than at later times.  Since 

the xylem CR is calculated by dividing the shoot activities by the transpiration 

volumes, the 1d data are likely to be lower because of the relatively larger 
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transpiration volume.  The utility of the 1d data will be seen in Figures 7.3 and 

7.4.   

 

 
 

Figure 7.2 The ratios of xylem concentration to solution concentration are plotted 
as a function of exposure time.  No trend is evident with time and the data are 
scattered about the mean value of 0.00148.   
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Figure 7.3 shows the shoot CRs data as a function of time.  As expected from 

prior discussion, the shoot CRs values increase with increasing exposure time.  

The CRs data of days 1 – 3 increase in a fairly linear fashion, but by 7d and to a 

greater extent by 10d the rate of increase in the shoot CRs values is lower.   

 

 

Figure 7.3 The ratios of shoot concentration to solution concentration are plotted 
versus exposure time.  An increase in the ratios is seen with time, although the 
relative increase is smaller between 7 and 10d.  
 

In Figure 7.4 the root CRs data increase linearly 1 – 3d, however between 3d 

and 7d the increase is no longer linear and at 10d, the CRs value is less than 

those at 3d and 7d.  The time trend of the root CRs data suggest that the roots 

may have become saturated with Pu between days 3 and 10.  Comparing 

Figures 7.3 and 7.4, the time trends are similar; however, the root values are 

about 250-1000 times greater than those of the equivalent shoots.  The 
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translocation of Pu from the roots to the shoots continues to increase, albeit to a 

lesser degree.  It is important to notice that in both Figures 7.3 and 7.4, the data 

from two different experimental sets of 2d exposures are consistent for the 

shoots and the roots.   

 

 

Figure 7.4 The root CRs are plotted versus exposure time.  Similar to the shoot 
CRs data, the root CRs are linear over the first three days.  The rate of root CRs 
increase is smaller between 3d and 7d, and by 10d, the root CRs is less than the 
7d value.  This may indicate that Pu saturation occurred in the root tissues.  The 
mean root masses of the 7 and 10d plants are very similar at 0.29 and 0.30 g. 
 
7.2.2 Plant root data from other hydroponic studies of actinide uptake 

Lee et al. (2002) transferred the hyperaccumulating plants Indian mustard 

(Brassica juncea) and sunflower (Helianthus annuus) into 239Pu(NO3)4 labeled 

nutrient solutions for 7 d beginning when the plants were ~10 cm in shoot height.  
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The objective of the study was to determine conditions which would maximize 

shoot uptake.  Table 7.2 is adapted from their 35 Bq/mL data at various 

concentrations of DTPA.   It shows the activity fractions and the concentrations in 

the shoots and roots.  The maximum fraction of Pu activity in the shoots was 

about 73 and 67% for Indian mustard and sunflower, respectively.  These 

compare with a shoot activity fraction average of 2.5% and maximum of <5% in 

corn.  The corn data in Table 7.1 originated from uptake experiments of Pu 

complexed with DFOB at 9.8x10-5 M.  Preliminary experiments of Pu complexed 

with 8x10-5 M DTPA or DFOB showed that shoot Pu uptake was 2-4 times 

greater with Pu complexed DFOB than with DTPA.  The Lee et al. (2002) data 

indicate that maximal root uptake occurred at 0 DTPA concentrations in both 

plants.   

 
Table 7.2  Pu tissue activity fraction and concentration data of Lee et al (2002) 
 

Plant  DTPA fraction 
activity 

fraction 
activity Shoot Root CRs Root 

  (Mol/L) shoot root (Bq/g) (Bq/g) CRr Root (0) 

Indian mustard 0 0.025 0.975 94.6 24785 0.004 1.000 
(Brassica 
juncea) 1.3E-05 0.283 0.717 731.1 7811 0.094 0.315 

 2.5E-05 0.591 0.409 1699.1 6610 0.257 0.267 

 1.3E-04 0.733 0.267 1305.4 4399 0.297 0.177 

        Sunflower 0 0.012 0.988 66.8 20612 0.003 1.000 
(Helianthus 
annuus) 1.3E-05 0.474 0.526 255.8 1183 0.216 0.057 

 2.5E-05 0.526 0.474 211.1 725.6 0.291 0.035 

 1.3E-04 0.669 0.331 206.3 582.4 0.354 0.028 

 
 

The ratio of the shoot concentration to the root concentration is presented as 

a qualitative way to compare different studies.  A check between Tables 7.1 and 
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7.2 shows that under the conditions of the Lee et al. (2002) experiments, the 

Indian mustard and sunflower plants translocate much more Pu into their shoots 

than corn.  Lee et al. (2002) selected those plants as hyperaccumulating species 

whereas in our study corn was selected because of its similarity to the annual 

grasses in the Savannah River Site lysimeters.    

Ruggiero et al. studied hydroponic plant U uptake and distribution in barley 

(Hordeum vulgare).  Table 7.3 shows their shoot and root concentrations and the 

ratio of shoot concentration to root concentration at three Fe concentrations.  

Irrespective of the Fe concentration, the ratio of shoot to root concentrations 

suggests that the vast majority of the U remained in the roots.  Similarly, Laroche 

et al. (2005) studied the uptake and distribution of 233U in the common bean 

(Phaseolus vulgaris) using short-term (5 h) and long-term (3 d) root exposure to 

labeled nutrient solutions at pH 4.9, 5.7, and 7.0.  They varied the concentrations 

of U ligands and competitive ions and used speciation models to examine the 

solution chemistry in detail.  They exposed bean plants as juvenile seedlings and 

at the flowering stage of development.  Under all conditions, 99% of the U was 

found in the root tissue.   

 
Table 7.3  Hydroponic Barley Uptake of U (adapted from Ruggiero et al. 2004) 

 

Fe (ppm) Shoot (ppm) Root (ppm) 
CRs 
CRr 

0 105 15000 0.0070 
7.5 105 18500 0.0057 
100 20 26000 0.0008 
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7.2.3 Field studies of Pu uptake in root vegetables 

Root vegetable uptake studies may be helpful to understand how Pu transits 

the root tissues, even though those plants are dissimilar to grasses because root 

vegetables have taproots and grass plants have fibrous roots.  Taproot plant 

roots are much thicker and have larger cortical areas than fibrous plant roots.  

The root vegetable studies discussed below were conducted with plants exposed 

to Pu in soil and grown to maturity.  Corey et al. (1983) suggested that the 

adherence of surface particles accounted for ≥ 93% of Pu in carrots (Daucus 

carota), turnips (Brassica rapa), potatoes (Solanum tuberosum), and sweet 

potatoes (Ipomoea batatas).  After peeling the vegetable samples, only turnips 

had detectable Pu concentrations in the root.  A more detailed study by Adriano 

et al. (2000) focused on the influence of culinary preparation on the radionuclide 

content in root vegetables.  The nuclides studied were 90Sr, 137Cs, 234U, 238U, and 

239Pu and the vegetables studied were red beet (Beta vulgaris), carrot (Daucus 

carota), and turnips (Brassica rapa).  Vegetable samples were processed by light 

washing, scrubbing, or peeling to test the effect of different preparations on the 

radionuclide concentration in the foods.  Light washing was defined as vigorous 

hand washing until the “surface cleanliness visually resembled those available in 

the supermarket”, scrubbing removed all surface particulates using a kitchen 

brush, and peeling removed the exodermis.   

Table 7.4 shows the Pu concentration ratios of beet, carrot, and turnip under 

the various sample treatments of Adriano et al. (2000).  The position of the Pu 

activity in the root vegetables can be approximated by comparing the data from 
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different treatments and assuming that changes in the sample mass from the 

treatments are small relative to the total sample mass.  Using light wash data as 

the total activity (the root sample includes the surface, exodermis, and interior), 

the approximate activity fractions due to the various treatments are calculated as: 

• Interior  = [peeled / total] 

• Exodermis = [(scrubbed – peeled) / total] 

• Exterior = [(total – scrubbed) / total] 

Over a growing season, 3-9% of the Pu was transported into the interior root 

tissues.  Roughly 4-15% of the Pu was found in the exodermis.  The exterior 

fraction contained 76-93% of the Pu.  Although this is not a precise quantitative 

way to compare Pu uptake, it is clear from the relative positions of Pu that most 

of it did not enter the root.  For comparison, 70-90% of both 90Sr and 137Cs and 

~10-50% of the U isotopes were found in the interior, respectively. 

 
Table 7.4 Pu Root Vegetables CR from Adriano et al. (2000) and Approximate 
Pu Fractions of the Interior, Exodermis, and Exterior  
 

Plant 
Light 
Wash 
(Total) 

Scrubbed Peeled Interior 
Fraction 

Exodermis  
Fraction 

Exterior 
Fraction  

Beet 0.00230 0.00028 0.00006 .03 .09 .88 
Carrot 0.00300 0.00020 0.00008 .03 .04 .93 
Turnip 0.00058 0.00014 0.00005 .09 .15 .76 

 
The light wash data are taken as total values with differences between scrubbed 
and light wash treatment termed surface Pu, and differences between peeled 
and scrubbed treatments termed exodermis. 

 
With the exception of hyperaccumulating plants, most Pu does not completely 

transit the root and enter the xylem of the plants discussed.  The amount of Pu 

which crosses through the root tissue is dependent upon the type of plant, the 
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presence of complexing agents such as siderophores, possibly the availability of 

Fe in the soil, and other factors.  The upward Pu transport in plants requires that 

Pu enter the xylem to be transported.  In the reactive transport simulations of the 

SRS lysimeter study, Demirkanli et al. (2009) utilized an uptake efficiency 

variable and set the efficiency equal to one.  Strictly speaking this means that all 

of the Pu intercepted by the roots would enter the xylem (although due to the 

retardation being greater than one, some of the Pu would sorb to the root and 

shoot xylem tissue as the water moved upward).  Although our data were 

generated in short term experiments in comparison to a growing season, 

extrapolations of the corn shoot and root concentrations over a longer growth 

period (data not shown) still predict that the majority of the Pu would be located 

in the roots.  Based on this, the uptake efficiency parameter should be adjusted; 

however, our data are applicable to too short of a growth period to suggest an 

appropriate uptake efficiency factor.  A longer term study would be required to 

accurately determine uptake efficiency or a root exclusion factor.  Since most 

studies are concerned with the resultant plant concentrations in food or 

hyperaccumulating plants, this level of detail at the root interface is not available 

in the literature. 

7.3 Evaluation of Basic Upward Transport Models 

7.3.1 Introduction 

In Chapter 2, two zero-dimensional approximations - instantaneous 

partitioning and steady-state advection - were developed to describe the upward 

transport observed in the Savannah River Site lysimeters.  They were based on a 
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simple conceptual model in which the lysimeter system is represented by two 

homogeneous regions: a source zone where the soil is considered to be 

contaminated solely by the Pu source and a root zone where the soil is 

considered to be contaminated solely by transport through roots which penetrate 

the source zone.  Both approximations provide a means of calculating the ratio of 

Pu concentration in the root zone to that in the source zone: Cs/C0.  In this 

section, the body of Cs/Co data from the lysimeters is used to evaluate the 

efficacy of the approximations. 

7.3.2 Instantaneous Partitioning Approximation 

The instantaneous partitioning (Eqn. 2.5) is 

0

s r
r

b

C
N CR

C

ρ

ρ
= ⋅ ⋅

        Eqn. 7.1
 

For the lysimeters, N is11 years, ρr is 0.070 g/cm3, and ρb is 1.5 g/cm3.  Root 

density is the geometric mean of calculated root densities for the SRS soil from 

0-20 cm in 1 cm increments and bulk soil density is from Demirkanli et al. (2009).  

Root density results were obtained using Demirkanli et al. (2009) root density 

with depth equation [RD(z)]: 

RD(z) =0.136●e-0.06646●z       Eqn. 7.2 

The sole transport parameter in this approximation is concentration ratio for 

roots.  Presented in Table 7.5 are predictions of Cs/C0 based on selected values 

of Pu concentration ratios from Table 2.2.  Calculations are not shown for 

Nisbet and Shaw (1994) cabbage plants because they indicated that the outer 

leaves may have been contaminated from the soil Pu and for Druteikiene et. al. 

(1999) because they sampled only the top shoots of the grass plant, which may 
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have introduced bias into their results due to the relative increase in the 

concentration of Pu in upper shoots.  Where a range of values are listed, the 

geometric mean values were used in the calculations. 

 
Table 7.5  Pu Soil Transport Parameters Calculated from Concentration Ratios 
 

Plant CR (literature) C/C0 log10 C/C0 
bean1 3.60E-04 1.68E-05 -4.77 
corn1 2.90E-04 1.35E-05 -4.87 
beet2 2.30E-03 1.07E-04 -3.97 
turnip2 6.00E-04 2.80E-05 -4.55 
carrot2 3.00E-03 1.40E-04 -3.85 
carrot3 3.40E-03 1.59E-04 -3.80 

barley straw3 2.20E-04 1.03E-05 -4.99 
grass4 (0.005 – 0.03) 5.72E-04 -3.24 

all plants5 (0.003 – 0.17) 1.05E-03 -2.98 
RAIS 5.00E-03 2.33E-04 -3.63 

RESRAD 2.50E-04 1.17E-05 -4.93 
 
Concentration ratio (data are on a dry mass basis) sources include 1-Whicker et 
al. (1999), 2-Adriano et al. (2000), 3-Nisbet and Shaw (1994), 4-Sokolik et al. 
(2004), and 5-Lux et al. (1995).  Studies 1 and 2 were conducted over a single 
growing season.  Study 3 was conducted over 5y and is averaged data of loamy 
and sandy soils.  Study 4 determined “meadow grass” plant concentration ratios 
in the contamination zone 15y after the Chernobyl nuclear power plant accident.  
Study 5 is a compilation of different plant species sampled from contaminated 
forest soils 6y after the Chernobyl accident.  The entries for RAIS (Risk 
Assessment Information System, U.S. EPA) and RESRAD (Residual Radiation 
Assessment Software Package) are composite values which were determined 
from the data of many Pu plant uptake studies. 

 
The Cs/C0 predictions are compared to the lysimeter data in Figure 7.5.   The 

horizontal lines are the mean (black solid) and one standard deviation about the 

mean (black dashed) of the log10 transformed data from the top 20 cm of the 

SRS lysimeters.  The predictions are in very good agreement with the data with 

two of eleven values lying outside one standard deviation from the mean.  The 

mean of the predicted values shown as a bright green dashed line (-4.11) is quite 
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similar to the mean of the data (-4.45).  The cohesiveness of the predictions and 

the agreement between the predictions and the data are surprising given the 

diversity of the concentration ratios, which represent field studies of shoot and 

root vegetables (studies 1 – 3), native species (studies 4 and 5), and default 

values used for risk assessment.  A possible implication of the agreement 

between the predictions and the data seen in Figure 7.5 is that Pu may interact 

similarly with many different plants even though the uptake, net transport, 

effective distances, and dynamics of translocation may differ greatly among 

different plants.  However, even if this broader implication does not hold, the 

comparison in Figure 7.5 provides a basis for using Equation 2.5 in risk 

assessments involving the upward migration pathway.   

 
 
 
 
 
 
 
 



 

Figure 7.5 The logarithm10 of SRS Pu C/C
line) and 1 standard deviations about the mean (dashed black lines).  Literature concentration ratio predictions of Pu C/C
(in Table 7.5) are plotted with the mean and standar
root vegetables, native grasses, and two reference composite values.  The short dashed green line is the mean of the 
field C/C0 predictions.  The RAIS and RESRAD CR values are 5 x 10
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of SRS Pu C/C0 data from the top 20 cm of lysimeter soil are plotted as the mean (solid black 
line) and 1 standard deviations about the mean (dashed black lines).  Literature concentration ratio predictions of Pu C/C
(in Table 7.5) are plotted with the mean and standard deviations for the lysimeter soil.  The field data include shoot and 
root vegetables, native grasses, and two reference composite values.  The short dashed green line is the mean of the 

predictions.  The RAIS and RESRAD CR values are 5 x 10-3 and 2.5 x 10-4 respectively. 
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data from the top 20 cm of lysimeter soil are plotted as the mean (solid black 
line) and 1 standard deviations about the mean (dashed black lines).  Literature concentration ratio predictions of Pu C/C0 

d deviations for the lysimeter soil.  The field data include shoot and 
root vegetables, native grasses, and two reference composite values.  The short dashed green line is the mean of the 
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7.3.3 Steady-State Advection Approximation 

The steady state advection (SSA) (Eqn. 2.15) is  

0

s Pu x x

Ds b s

C R A
N

C K A

η

ρ
=

       Eqn. 7.4 

This equation has two transport parameters, Pu retardation factor in plants and 

soil-water distribution coefficient in the source zone.  Measurement of retardation 

factor was one of the objectives of this dissertation (Chapter 4 & 5) and is treated 

as one of the known parameters in the right hand side of Equation 7.4.  The 

known parameter values are given in Table 7.6.  The Pu retardation factor in 

plants is an approximate midpoint value for the measured retardation discussed 

in Chapters 4 and 5.  The exposure time is the lysimeter time in the field (Kaplan 

et al. (2006)), the xylem porosity and bulk soil density were obtained in 

Demirkanli (PhD Dissertation, Clemson University, Clemson, SC 2006), and the 

xylem area to soil area ratio is the geometric mean of the SRS soil sample 

depths from 0-20 cm in the lysimeters, calculated using: 

Ax/As = 0.000134●e-0.06646●z      Eqn. 7.5 

 
Table 7.6  Parameters utilized for the calculation of Kds 
 

RPu N ηx ρb Ax/As (0-20) 
3 10.75 0.6 1.5 6.24E-05 

 

Since data that account for the effect of siderophores and other plant exudates 

on the availability of nutrients or contaminants sorbed to soil are not available, 
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the soil distribution coefficient is treated as an unknown in Equation 7.4.  Rather, 

values were back calculated from C/C0 measurements for the top 20 cm of the 

lysimeters.  Presented in Table 7.7 are the minimum and maximum Kd values 

along with the mean and standard deviation.   These back calculated Kds are 

less than those obtained in batch sorption experiments using SRS sediments in 

which 5950 is the best combined Kd value for reduced and oxidized Pu species 

(In Press, Daniel Kaplan, Savannah River National Laboratory, Aiken, SC).  This 

is reasonable given the discussion above regarding the impact of plants on 

nutrient availability.   

Table 7.7 Kds Calculated from Lysimeter C/C0 Data Using the Steady State 
Advection Model 

Minimum Mean Maximum 
0.10 23.0 1006 

 

7.4 Plutonium Plant Distribution Coefficient Experiments 

7.4.1 Introduction 

A key transport parameter in advective models is the retardation factor of Pu 

in plants, RPu.  The physical interpretation of retardation factor is the ratio of 

contaminant velocity to water velocity in a porous medium, and it quantifies the 

impact of contaminant sorption to the solid phase on its mobility.  The 

measurements in this dissertation are based on the physical definition.  However, 

the fundamental mathematical definition of retardation factor comes from the 

derivation of the reactive transport model, in which the distribution coefficient is 
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used to account for partitioning of contaminant between the aqueous and solid 

phases.  The mathematical definition (Equation 2.11) as applied to xylem is  

1 x dx
Pu

x

K
R

ρ

η
= +

 Eqn. 7.6 

where ρx is xylem density [kgx/mx
3], Kdx is distribution coefficient for Pu in xylem 

[mw
3/kgx], and ηx is xylem porosity [mw

3/mx
3]. 

Thus, an alternative approach to obtaining Pu retardation factor in living 

plants is through batch sorption experiments of Kd.  Consequently, short term 

batch sorption experiments were performed using plant xylem and cellulose 

contacted with Pu (IV) at pH 1.0 or 6.0 or pre-complexed Pu2(DTPA)3 or 

Pu(DFOB) at pH 6.0 

Plant xylem is not commercially available, yet plant cellulose is.  Thus the 

xylem must be collected from suitable sources.  Grass species are unsuitable as 

xylem donors because their small xylem tissue size and vascular bundle 

distribution makes xylem collection highly impractical (Figure 5.6).  The xylem in 

woody plants is much more distinct and convenient for collection than that of 

herbaceous plants.  Cotton (Gossypium hirsutum) is a perennial shrub and an 

excellent xylem donor because its woody stem has a radial architecture with 

distinct tissues.    

7.4.2 Materials 

Clemson University grows cotton for crop research at Clemson University’s 

Edisto Research Campus in Blackville, SC.  Two dozen cotton plants 
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(Gossypium hirsutum cv. Delta Pine 164 Bollgard II) planted on May 19, 2008 

were collected by Richard Reeves, Jr. in July 2008 when the plants were 50-60 

cm tall and six weeks old.  The fresh cotton plant samples were cleaned and 

placed in refrigerated storage at 4° C for eight weeks.   They were stripped of 

their leaves, branches, and thick basal stalk leaving stem sections 25-30 cm 

long.  Using a high speed rotary tool, the epidermis and cortical tissues were 

removed from the stem which was sectioned into ~5 cm pieces and split, 

exposing the pith.  The pith was then removed with the rotary tool.  Care was 

exercised to ensure the removal of all cortical and pith tissues from the xylem 

leaving woody xylem and phloem tissues.   The pieces were then coarsely 

ground in a coffee grinder. The ground pieces were flash frozen with liquid 

nitrogen and reduced to a 20 mesh powder by cutting twice in a Wiley mill and 

drying at 75 °C for two days.  Seventy-two g of unpr ocessed cotton stem tissue 

resulted in ~ 19 g of final product, henceforth described as xylem or xylem solid.   

Cellulose procured from Ward Scientific (Rochester, NY) was manufactured 

by FMC Biopolymer (Newark, DE).  As a plant-derived solid for comparison to 

cotton xylem, the cellulose manufactured and sold as Avicel® microcrystalline 

cellulose is a partially depolymerized alpha cellulose derived from softwood pulp, 

typically hemlock (Tsuga sp.) or spruce (Picea sp.).  The product procured from 

Ward Scientific is advertised as bulk alpha-cellulose however their supplier states 

that the microcrystalline cellulose is a food grade product.  This means it is 
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processed to homogenize its particle size and mixing properties and to remove 

functional groups and other biological entities averse to human consumption.   

7.4.3 Methods 

The xylem samples were contacted with de-ionized water twice to reduce any 

ionic salts adsorbed to the xylem surface during drying, vacuum filtered with a 

Whatman #40 paper filter, and delivered into individual reaction vessels moist.  

The cellulose was processed in the same manner.  The porosity was determined 

by measurement of wet and dry masses of 10 mL sample volumes.  Moist solid 

phase samples equivalent to 0.1 – 0.25 g dry were transferred into the top 

sections of Pall MicroSep centrifugal chambers with a 3.5 mL total volume and a 

30,000 molecular weight cut-off value.  The chambers had been pre-conditioned 

with 0.5 mL of the applicable Pu solution to eliminate loss of Pu onto the 

separation device prior to contact with the solid phase.  The pre-conditioning 

solution was discarded and 2.0 mL of Pu solution was pipetted into the top of the 

chambers with the weighed solids.  Preliminary sorption tests spanning 1 – 24 h 

showed that a batch contact time of 6 h was sufficient to determine sorption.  

During contact, the samples were gently shaken at 30 cycles/ min.  Samples 

were centrifuged at 7000 RPM for 20 min to separate the liquid and solid 

fractions.  A minimum of duplicate samples were prepared for each treatment.  

Plutonium content was analyzed in 2 dram plastic scintillation vials with 1 mL 

sample added to 5 mL of Ultima Gold AB cocktail via liquid scintillation using a 

Wallac Model 1409 liquid scintillation counter. 
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The distribution coefficients were calculated by: 
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        Eqn. 7.7 

where V is total solution volume (including the water in the wet solid), Ms is the 

dry solid mass, C0 and Ct are the initial and final activities (Bq/mL) in the solution. 

7.4.4 Results and Discussion 

Table 7.8 lists the Kd and R data of Pu as Pu(IV), Pu(DFOB), and Pu2(DTPA)3 

in contact with plant xylem or cellulose.  In all solutions, the sorption of Pu to 

cellulose was much lower than its sorption to xylem.  For both solid phases, the 

Kd data trend: 

Pu(DFOB) > Pu(IV) @ pH 6.0 > Pu(IV) @ pH 1.0 > Pu2(DTPA)3 

The Pu(IV) and Pu(DFOB) Kd values are approximately one to two orders of 

magnitude greater for xylem than for cellulose.  For Pu2(DTPA)3, the xylem Kd is 

seven times the cellulose Kd.  The retardation data follow the same trend as the 

Kd data.  The bulk densities of the xylem and cellulose were 0.32 and 0.43 g/cm3, 

respectively and their respective porosities were about 0.74 and 0.38.   
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Table 7.8  Distribution Coefficients and Retardation Factors of 238Pu (IV) and 
complexed 238Pu in Contact with Cotton Xylem or Cellulose 
 

Batch Contact pH Kd R 
Xylem Pu (IV) 1.0 22.9 10.9 
Xylem Pu (IV) 6.0 275 120 
Xylem Pu(DFOB) 6.0 426 176 
Xylem Pu(DTPA) 6.0 3.08 2.3 
Cellulose Pu(IV) 1.0 2.77 4.1 
Cellulose Pu(IV) 6.0 3.42 4.9 
Cellulose Pu(DFOB) 6.0 14.2 17.1 
Cellulose Pu(DTPA) 6.0 0.44 1.5 

 
 

In nature, the Pu in plant xylem has been transported across the root and 

inside the plant in the transpiration fluid.  It is not known whether sorption test 

results accurately represent the uptake and distribution behavior of Pu in living 

plants since the structure of xylem in live plants could be significantly altered in 

the excising, drying and tissue processing steps.   Our retardation factors from 

live corn plants range from 1-10.  In general retardation factors calculated from 

the cellulose Kd data are agree more closely with the live plant data than do the 

cotton xylem data.  However, there are inconsistencies between our live plant 

data and these sorption test results.  First, our live plant uptake experiments 

which compared the uptake of Pu complexed with DFOB and DTPA showed that 

Pu(DFOB) is taken up in greater concentrations than Pu2(DTPA)3 whereas the 

sorption results indicate that the retardation of Pu(DFOB) is one to two orders of 

magnitude greater than that of Pu2(DTPA)3.  It is suggested that part of the 

effectiveness of a Pu complexant in increasing plant uptake is in its ability to 
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transport Pu through the root tissues.  In any case, the live plant Pu(DFOB) 

retardation factors are significantly less than those inferred from the equivalent 

sorption tests.   
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CHAPTER EIGHT 

CONCLUSIONS 

 

8.1 Significant research findings 

This dissertation addresses the hypothesis that root uptake and transport in 

plants can influence the mobility of Pu in the vadose zone.  The overarching goal 

was to provide experimental support for reactive transport modeling of root 

uptake and xylem transport and for a connection between Pu uptake and the 

plant’s nutritional requirement for Fe.   The objectives were to: (1) quantify 

complexed Pu retardation in graminaceous plants and to quantify complexed Pu 

sorption to plant xylem, (2) characterize the distribution and accumulation of 

complexed Pu in plants, and (3) compare correlations between plant uptake of 

complexed Pu and Fe.  In addition, a couple of simple models for predicting Pu 

transport by roots were examined. 

With respect to the first objective, the retardation factor of Pu in live plants 

was estimated experimentally to be 1-10, with the variability due mainly to water 

velocity uncertainty.   This range is fairly consistent with a Pu retardation factor of 

9 calculated from the Pu-plant Kd value reported in Demirkanli et al. (2009).  The 

batch Kd experiments of Pu in contact with cotton vascular tissue and cellulose 

gave mixed results.  Retardation factors from Pu-cellulose Kd data were 1.5 and 

17 and the Pu-cotton xylem data were 2 and 176, with each pair representing 

Pu2(DTPA)3 and Pu(DFOB), respectively.  The cellulose results were similar to 
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those of living corn plants; however, the cotton xylem results differed by up to two 

orders of magnitude.   Also, the Kd values are much larger for Pu(DFOB) than for 

Pu2(DTPA)3 which results in larger retardation factors (1 to 2 orders of magnitude 

larger for cellulose and cotton xylem, respectively).  This finding is in opposition 

to uptake study results (Figure 5.2) which showed that the uptake of Pu in corn 

was greater as Pu(DFOB) than as Pu2(DTPA)3.  The Pu retardation results from 

living plants are likely a better representation of plant interactions because 

sorption tests of Pu and materials removed from plants do not account for the 

natural physiology and structural differences between xylem in vivo and xylem or 

cellulose as an extracted plant material. 

The Pu retardation factor from the live plant studies supports the case that 

upward Pu transport in the Savannah River Site lysimeters occurred through 

plants.  Considering the lysimeter data, the transport simulation results, the 

isotopic measurements indicating that the surface Pu originated from the 

sources, and these Pu plant study results, a logical conclusion is that upward 

transport and redistribution of Pu occurred in the SRS lysimeter plants. 

With respect to the second objective, analysis of the spatial distribution of Pu 

in corn indicated that discrimination occurs at the exodermis and in root tissues, 

most of the Pu in the plant was retained in the roots, and the fraction of Pu that 

entered the xylem was rapidly transported upward.  In these experiments, an 

overall average of greater than 97% of the Pu was found in the roots with the 

remainder in the shoots.  The maximum shoot activity fraction (the fraction of 
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total plant activity found in the shoot) was approximately four per cent for plants 

exposed continuously for 10 d.  The activity fraction in the shoots increased with 

increasing exposure time but did not reach a steady state during the relatively 

short exposure periods of this study.  Profiles of Pu tissue concentration versus 

shoot length showed that Pu tended to concentrate in the upper shoots.   

Analysis and comparison of the distribution of Pu in the roots and shoots in 

this and other studies suggest that the majority of Pu remains outside the xylem 

of most plants.  This finding may be most applicable to phytoremediation efforts; 

however, transport modeling of Pu involving its uptake in plants should account 

for root exclusion.  It is possible that Pu which becomes adsorbed to a root 

surface would be available for uptake by the roots of other plants at a later time. 

With respect to the third objective, several findings are of interest.  The 

averaged plant uptake of Pu remained unchanged for Fe: Pu ratios ranging from 

0 - 2.2 x 105.  Large changes in Fe concentrations did not inhibit or enhance 

plant uptake of Pu.  Comparisons of the distribution profiles of Pu, 59Fe, stable 

Fe, and several other nutrient elements showed that Pu was distributed very 

much like 59Fe in the shoot.  However six times as much Pu was found in the root 

than 59Fe, and 40% more 59Fe was found in the shoot than Pu.  The shoot 

distribution data strongly suggest that upon entering the xylem, Pu and Fe are 

physiologically treated in a highly similar manner.  Clearly, Pu is simultaneously 

taken up with Fe.  These findings are consistent with the bacterial uptake and 

distribution study of John et al. (2001), which showed that more Fe was 
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transported into the bacterial cells and that less Pu passed through the cell wall 

(analogous to the plant root tissue).  This is the first study to report the plant 

uptake of Pu involving complexation with a siderophore which is produced to 

sequester Fe.  These Fe and Pu correlations are consistent with a small but 

growing body of evidence that plants, bacteria, and possibly other organisms 

which require Fe can and do also incorporate Pu.   

In addition, two simple transport approximations - instantaneous partitioning 

and steady-state advection - were developed to predict transport from the 

lysimeter source zone soil upward to the plant root zone soil.  Using the 

instantaneous partitioning model, comparisons were remarkably consistent 

between the soil concentration data of the SRS lysimeters and predictions using 

concentration ratios derived from field studies involving different plants, soils, and 

experimental conditions.  The steady-state advection model predicted Kd values 

for Pu and plant root zone soil that are much lower than batch sorption 

determinations.  This is consistent with enhanced mobility of sorbed Pu by 

siderophores or other plant exudates.   

8.2 Limits of the research 

A logical way to demonstrate the impact plants have on the subsurface 

transport of Pu is to conduct controlled field experiments designed to quantify 

both the Pu distribution in soil and in discrete plant tissues.  It is known that Pu is 

transferred from the soil to plants from field uptake studies, yet those studies 

were focused on the bulk transference of Pu from the soil into plants and not the 
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movement and transport of Pu in the subsurface due to interactions with plants.  

The scope, costs, permissions and time required to execute such a study are not 

realistic for a single dissertation research topic. 

In order to measure Pu retardation, the experimental design must introduce 

sufficient Pu to the plants in a controlled and quantifiable manner to allow for the 

measurement of Pu and of water which moved through the plants.  Using pre-

complexed Pu in solution is ideal for keeping Pu soluble and for accurate 

quantification of the Pu in the solution and the plants, however it does not allow 

for the process of desorption of Pu from the soil.   

It is well known that plants, microbes, and fungi utilize several types of 

complexing agents, such as simple organic molecules and siderophores to 

gather metal nutrients.  The use of the bacterial siderophore DFOB as a 

complexant instead of natively-produced phytosiderophores may affect the 

incorporation and final distribution of elements in the plants.  Comparative 

studies of plant uptake of Fe complexed with different siderophores indicate that 

both the amount and rate of uptake is significantly influenced by the siderophore.  

Plants are more efficient at utilizing naturally-produced phytosiderophores than 

other substances. 

8.3 Suggestions for future research 

It would be convenient to measure Pu retardation through the simultaneous 

determination of Pu and the water in xylem.  The availability of tracers which 

could be precisely conservative with water flow is problematic due to their 
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volatility in the rigorous digestion process required for Pu analysis (i.e., labeled 

water would evaporate, Br or Cl would volatilize, and an element of heavier mass 

such as Rb would very likely not be conservative with water).  In lieu of this, if 

desired, then more accurate estimation of the retardation can be obtained using 

the methods of this study with two adjustments.  First, analogous to these Pu 

velocity experiments, plants could be exposed and collected at finer time 

intervals.  Second, the xylem areas at more discrete intervals could be collected 

and measured to obtain a more accurate plant water velocity.  As a word of 

caution, plant transpiration is highly sensitive to the environment, therefore to 

obtain accurate retardation data, the water velocity plants and the Pu velocity 

plants should be the same age, of similar size, and in precisely similar 

environments so that the resulting data can be correlated.  Conducting these 

experiments in a growth chamber which is designed to minimize variations in 

experimental conditions may be helpful.  

Soil uptake experiments (not designed for retardation) conducted at longer 

exposure times should allow quantification of desorption of Pu from soil, root 

uptake efficiency, and steady-state partitioning between roots and shoots.   To 

quantify desorption from soil, well characterized homogenous Pu in soil could be 

presented to plant roots in an arrangement that would maximize the root contact 

yet permit the roots sufficient room for growth, allow for accurate determination of 

soil moisture, and allow for excellent separation of the root tissues and the soil 

after the contact period.  Similarly, to perform a detailed examination of the root 
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tissue, then the relative amounts of Pu in the root and external to the roots 

(surface Pu) could be characterized.  Care should be taken to ensure that Pu 

adsorbed to the surface of roots, such as fine roots and root hairs is not included 

in the soil fraction. As discussed above, due to the bioaccumulation study 

designs, field plant roots and shoots have rarely, if ever, been carefully sampled 

to determine the total content in the entire root versus the shoot. 

Research involving the use of natively-produced phytosiderophores with Pu 

may provide better insight into the relative amounts and the mechanisms of Pu 

transport into plants. 
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Appendix A.  Liquid Scintillation Data 

Guidance for liquid scintillation data tables: MP is midpoint distance of a particular shoot section, SQPE is Spectral 
Quench Parameter External (essentially constant efficiency above ~640), cpm is raw data in counts per minute (in 
the region of interest), net cpm is blank subtracted data, Bq & C and Bq/g & C are the activity and concentration 
data including control contributions, and (Pu or Fe) Bq and Bq/g are 238Pu and 59Fe activities and concentrations in 
each tissue section.  Root data have negligible control activities, thus are uncorrected.  For example, the activity 
and concentration data in the right section columns (Pu Bq, Fe Bq, etc.) were used to generate the graphs of 
activity or concentration versus shoot length throughout the dissertation. 
 

Table A.1 LR9 Dual Labeled Pu and Fe 

 

Plant Section Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Pu Bq Bq/g Fe cpm net cpm Bq & C Bq/g & C Fe Bq Bq/g
7 GNS Blank A 725.71 10.5 31.3
7 GNS Blank B 729.18 9.2 28.1

Mean 9.85 0 0.00 29.7 0 0.00
PuFe 0.1 ml SSA 729.91 14754 14744 245.73 11536 11506 191.76
PuFe 0.1 ml SSB 728.9 14727 14718 245.29 11478 11449 190.81

Mean 14741 14731 245.51 11507 11477 191.29

Exposure time (min) 1680
PuFe A R0 (root) 18 0.29 702.6 47922.1 47912 798.54 2754 5619.8 5590 93.17 321.27
PuFe A RS 9 18 0.0445 727.83 10.7 1 0.01 0.32 50.1 20 0.34 7.64
PuFe A AR1 NA NA 0.291 715.08 42 32 0.54 1.84 69.2 40 0.66 2.26
PuFe A AR2 NA NA 0.286 708.12 12.9 3 0.05 0.18 55.3 26 0.43 1.49
PuFe A AR sum 0.577 35.2 0.59 1.02 65.1 1.09 1.88
PuFeA S1 5 10 0.538 697.28 30.6 20.8 0.35 0.64 0.18 0.38 108.7 79 1.32 2.45 0.39 1.08
PuFeA S2 15 20 0.474 689.67 31.3 21.5 0.36 0.75 0.18 0.60 102.9 73.2 1.22 2.57 0.42 2.05
PuFeA S3 25 30 0.499 684.69 166.4 156.6 2.61 5.23 2.49 4.99 133.4 103.7 1.73 3.46 1.18 2.35
PuFeA S4 35 40 0.467 706.6 68.7 58.9 0.98 2.10 0.89 1.99 137.4 107.7 1.80 3.84 1.46 3.64
PuFeA S5 45 50 0.43 670.31 90.2 80.4 1.34 3.11 1.28 3.03 158.6 128.9 2.15 5.00 1.96 4.94
PuFeA S6 55 60 0.356 667.04 127.1 117.3 1.95 5.49 1.91 5.40 245.8 216.1 3.60 10.12 3.77 10.82
PuFeA S7 65 70 0.233 717.37 74.4 64.6 1.08 4.62 1.05 4.57 170.8 141.1 2.35 10.09 2.35 10.61
PuFeA S8 75 80 0.139 704.23 45.7 35.9 0.60 4.30 0.59 4.26 125.7 96 1.60 11.51 1.62 12.13
PuFeA S9 85.5 91 0.0571 710.03 19.3 9.5 0.16 2.76 0.16 2.75 65.5 35.8 0.60 10.45 0.59 11.22
PuFeA >40cm total 51 1.2151 307.5 5.12 4.22 4.99 4.15 617.9 10.30 8.48 10.29 8.87
Sum Shoot 91 91 3.1931 565.05 9.42 2.95 8.72 2.81 981.5 16.36 5.12 13.74 4.84
Sum Plant 109 4.6816 48,513 808.56 172.71 807.86 172.57 6,657 110.95 23.70 119.23 25.56
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Table A.1 LR9 Dual Labeled Pu and Fe (continued) 

 

Plant Section Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Pu Bq Bq/g Fe cpm net cpm Bq & C Bq/g & C Fe Bq Bq/g
Exposure time (min) 1680
PuFe B R0 18 0.221 691.66 58746.6 58737 978.95 4430 12191.6 12162 202.70 917.19
PuFe B RS 0.0209 703.55 53.7 44 0.73 34.97 71.2 42 0.69 33.09
PuFe B AR1 0.353 693.37 18.9 9 0.15 0.43 52.6 23 0.38 1.08
PuFe B AR2 0.28 705.3 19.1 9 0.15 0.55 53.2 24 0.39 1.40
PuFe B AR sum 0.633 18.3 0.31 0.48 46.4 0.77 1.22
PuFeB S1 5 10 0.587 699.77 41.1 31.3 0.52 0.89 0.35 0.63 102.7 73.0 1.22 2.07 0.28 0.67
PuFeB S2 15 20 0.495 715.92 29.3 19.5 0.32 0.65 0.15 0.50 94.3 64.6 1.08 2.18 0.26 1.60
PuFeB S3 25 30 0.458 688.18 37.7 27.9 0.46 1.01 0.35 0.77 93.3 63.6 1.06 2.31 0.43 2.58
PuFeB S4 35 40 0.417 691.77 48.8 39.0 0.65 1.56 0.56 1.45 104.2 74.5 1.24 2.98 0.85 2.67
PuFeB S5 45 50 0.337 666.28 67.2 57.4 0.96 2.84 0.90 2.75 108.2 78.5 1.31 3.88 1.02 3.69
PuFeB S6 55 60 0.273 706.2 98.1 88.3 1.47 5.39 1.42 5.30 150.8 121.1 2.02 7.39 2.00 7.78
PuFeB S7 65 70 0.168 695.86 98.8 89.0 1.48 8.82 1.46 8.77 181.4 151.7 2.53 15.05 2.55 16.14
PuFeB S8 76.5 83 0.0679 717.32 73 63.2 1.05 15.50 1.04 15.46 167.5 137.8 2.30 33.82 2.39 37.02
PuFeB >40cm total 43 0.8459 297.7 4.96 5.87 4.96 6.93 489.1 8.15 9.64 7.89 10.16
Sum Shoot 83 83 2.8029 415.2 6.92 2.47 6.78 2.42 764.8 12.75 4.55 9.71 4.20
Sum Plant 101 4.3108 59,232 987.21 229.01 986.51 228.85 13,015 216.91 50.32 237.39 55.24

Exposure time (min) 1680
PuFe C R0 (root) 18 0.287 679.93 69625.8 69616 1160.27 4043 8855.6 8826 147.10 512.54
PuFe C RS 0.0234 726.94 8.6 -1 -0.02 -0.89 37.3 8 0.13 5.41
PuFe C AR1 0.395 624.42 9.8 0 0.00 0.00 55.4 26 0.43 1.08
PuFe C AR2 0.297 685.04 34.2 24 0.41 1.37 50.2 21 0.34 1.15
PuFe C AR sum 0.692 24.3 0.41 0.59 46.2 0.77 1.11
PuFeC S1 5 10 0.719 682.57 119.5 109.7 1.83 2.54 1.66 2.28 135.4 105.7 1.76 2.45 0.88 1.09
PuFeC S2 15 20 0.482 677.91 59.7 49.9 0.83 1.72 0.65 1.57 118.8 89.1 1.49 3.08 0.72 2.61
PuFeC S3 25 30 0.463 694.5 64.6 54.8 0.91 1.97 0.79 1.73 113.2 83.5 1.39 3.01 0.80 3.35
PuFeC S4 35 40 0.391 678.71 80.8 71.0 1.18 3.02 1.09 2.91 136 106.3 1.77 4.53 1.44 4.41
PuFeC S5 45 50 0.446 668.56 153.6 143.8 2.40 5.37 2.34 5.29 210.8 181.1 3.02 6.77 2.93 6.91
PuFeC S6 55 60 0.362 673.74 207.1 197.3 3.29 9.08 3.24 9.00 279.7 250 4.17 11.51 4.40 12.37
PuFeC S7 65 70 0.266 684.41 202.8 193.0 3.22 12.09 3.19 12.04 289.6 259.9 4.33 16.28 4.56 17.52
PuFeC S8 75 80 0.157 704.51 152.3 142.5 2.37 15.12 2.36 15.08 219.8 190.1 3.17 20.18 3.36 21.80
PuFeC S9 84.5 89 0.0475 720.73 35.1 25.3 0.42 8.86 0.42 8.85 98.4 68.7 1.15 24.11 1.21 26.45
PuFeC >40cm total 49 1.2785 701.7 11.69 9.15 11.56 7.15 949.8 15.83 12.38 16.46 13.23
Sum Shoot 89 89 3.3335 986.9 16.45 4.93 15.75 4.73 1334.4 22.24 6.67 20.30 6.57
Sum Plant 107 5.0279 70625.9 1177.10 234.11 1176.40 233.97 10,214 170.24 33.86 185.34 36.89
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Table A.1 LR9 Dual Labeled Pu and Fe (continued) 

 

 

Plant Section Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Pu Bq Bq/g Fe cpm net cpm Bq & C Bq/g & C Fe Bq Bq/g
Mean Data (n=3 LR9 A,B,C)
Exposure time (min) 1680
PuFe R0 (root) 18 0.2660 58764.8 58755 979.25 3681 8855.6 8826 147.10 553.00
PuFe RS 0.0296 24.3 14.5 0.24 8.16 52.9 23.2 0.39 13.04
PuFe AR1 0.3463 23.6 13.7 0.23 0.66 59.1 29.4 0.49 1.41

PuFe AR2 0.2877 22.1 12.2 0.20 0.71 52.9 23.2 0.39 1.34
PuFe AR sum 0.6340 Rel Mass 25.9 0.43 0.68 52.6 0.88 1.38
PuFe S1 5 10 0.6147 0.1966 63.7 53.9 0.90 1.36 0.73 1.10 115.6 85.9 1.43 2.32 0.52 0.94
PuFe S2 15 20 0.4837 0.1547 40.1 30.3 0.50 1.04 0.33 0.89 105.3 75.6 1.26 2.61 0.47 2.09
PuFe S3 25 30 0.4733 0.1514 89.6 79.7 1.33 2.74 1.21 2.50 113.3 83.6 1.39 2.93 0.80 2.76
PuFe S4 35 40 0.4250 0.1359 66.1 56.3 0.94 2.23 0.85 2.12 125.9 96.2 1.60 3.78 1.25 3.57
PuFe S5 45 50 0.4043 0.1293 103.7 93.8 1.56 3.77 1.51 3.69 159.2 129.5 2.16 5.22 1.97 5.18
PuFe S6 55 60 0.3303 0.1056 144.1 134.3 2.24 6.65 2.19 6.57 225.4 195.7 3.26 9.67 3.39 10.33
PuFe S7 65 70 0.2223 0.0711 125.3 115.5 1.92 8.51 1.90 8.46 213.9 184.2 3.07 13.81 3.16 14.76
PuFe S8 76 80 0.1213 0.0388 90.3 80.5 1.34 11.64 1.33 11.60 171.0 141.3 2.36 21.84 2.46 23.65
PuFe S9 85 89 0.0523 0.0167 27.2 17.4 0.29 5.81 0.29 5.80 82.0 52.3 0.87 17.28 0.90 18.84
PuFe >40cm total 49 1.1306 0.3615 441.4 7.36 6.51 7.22 6.44 703.0 11.72 10.36 10.64 9.84
Sum Shoot 88 76 3.1273 1.0000 661.5 11.02 3.53 10.33 3.39 1044.3 17.41 5.57 13.37 4.79

Sum Plant 94 4.6909 AR rt 59456.9 990.95 211.25 990.26 211.10 9,946 165.77 35.34 180.66 38.51

PuFe A R0 18 0.29 702.6 47922.1 47912 798.54 2753.58 5619.8 5590 93.17 321.27
PuFe B R0 18 0.221 691.66 58746.6 58737 978.95 4429.62 12191.6 12162 202.70 917.19
Pu Fe C R0 18 0.287 679.93 69625.8 69616 1160.27 4042.74 8855.6 8826 147.10 512.54

Control Data (PuFe) MP cm section mass (g) SQPE Pu cpm net cpm Bq Bq/g Fe cpm net cpm Bq Bq/g
Exposure time (min) 0
root 18
CS1-2 (100) 5 10 0.656 686.41 9.7 10.2 0.17 0.26 62.2 58.1 0.97 1.48
CS2 (100) 15 20 1.14 683.66 15.4 10.6 0.18 0.15 84.8 50.4 0.84 0.74
CS3-2 (100) 25 30 0.495 693.2 8.4 7.1 0.12 0.24 54.9 40.4 0.67 1.36
CS4 (100) 35 40 0.832 683.49 10.3 5.5 0.09 0.11 63.4 29 0.48 0.58
Cs5 (100) 45 50 0.69 645.24 8.3 3.5 0.06 0.08 58 23.6 0.39 0.57
CS6 (100) 55 60 0.543 696.54 7.6 2.8 0.05 0.09 47.9 13.5 0.23 0.41
CS7 (100) 65 70 0.417 707.61 6.1 1.3 0.02 0.05 48.8 14.4 0.24 0.58
CS8 (100) 75 80 0.24 718.72 5.4 0.6 0.01 0.04 43.5 9.1 0.15 0.63
CS9 (100) 87 95 0.164 719.22 4.9 0.1 0.00 0.01 38.2 3.8 0.06 0.39
Ctl >40cm total 55 2.054 8.30 0.14 0.07 64.40 1.07 0.52
Sum Shoot 95 95 5.177 41.73 0.70 0.13 242.29 4.04 0.78
Sum Plant 113 5.177 41.73 0.70 0.13 242.29 4.04 0.78
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Table A.2 Data for Pulse Shape Analysis of Dual Labeled Pu and Fe  

The data are the results of series of simultaneous alpha and beta analyses 
performed at stated pulse shape discrimination settings.  In general, lower 
settings adjust the pulse timing to favor maximizing beta counts and higher 
settings favor maximizing alpha counts.  Optimum settings were 50 for beta only 
(59Fe), 100 for both beta and alpha, and 150 for alpha only (238Pu).  Cross a to b 
means the alpha counts which were lost to the beta classification, similarly cross 
b to a means the beta counts which were lost and classified as an alpha count.  
The data/optimum refers to the factor or percentage difference between a 
particular count rate and the optimum rate as described above. 
 
 

 

  

Sample ID PSA Alpha Beta Cross a→b Cross b→a Alpha Beta 

cpm cpm cpm cpm optimum optimum

59Fe only mean 25 0.75 15255.7 NA NA 0.1 101.5%

Fe only Optimum 50 13.95 15026.2 NA 0 1.0 100.0%

75 93.2 14952.5 NA 74 6.7 99.5%

100 467.15 14201.6 NA 825 33.5 94.5%

125 1073.45 13019 NA 2007 76.9 86.6%

150 1635.5 11673.9 NA 3352 117.2 77.7%

1:1 Fe:Pu 25 8.5 12253.3 6764 NA 0.1% 177.7%

50 4479.35 8955.3 2293 NA 66.1% 129.9%

75 6544.15 7221.95 229 NA 96.6% 104.8%

1:1 Fe:Pu Optimum 100 6772.8 6893.9 0 0 100.0% 100.0%

125 7112.45 6278.85 NA 615 105.0% 91.1%

150 7393.25 5682.9 NA 1211 109.2% 82.4%

1:1 Fe:Pu 70 6467.9 7237.8 336 NA 95.1% 106.0%

Finer PSA grid 80 6636.5 7096.55 167 NA 97.5% 103.9%

90 6730.75 6992.7 73 NA 98.9% 102.4%

1:1 Fe:Pu Optimum 100 6803.95 6828.1 0 0 100.0% 100.0%

110 6842.6 6520.75 NA 307 100.6% 95.5%

120 7049.05 6306.2 NA 522 103.6% 92.4%

130 7121.35 6093.85 NA 734 104.7% 89.2%

QC duplicates 100 6788.38 6861.00 Mean

1:1 Fe:Pu 0.2% 0.5% RPD
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Figure A.1 Spectra of 59Fe and of 59Fe and 238Pu at PSA settings of 50, 100, and 
150.  Red data indicate alpha spectra and blue data indicate beta spectra. 

 
Fe-59 only PSA 50  
13 cpm alpha, 15070 cpm beta  

 
 
Fe-59 only PSA 100   
441 cpm alpha, 14241 cpm beta 

 
 
Fe-59 only PSA 150 
1619 cpm alpha, 11709 cpm beta 

 

 
1:1 59Fe: 238Pu PSA 50 
4440 cpm alpha, 8921 cpm beta 

 
 
 
1:1 59Fe: 238Pu PSA 100 
6813 cpm alpha, 6875 cpm beta 

 
 
1:1 59Fe: 238Pu PSA 150 
7448 cpm alpha, 5651 cpm beta 
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Figure A.2 Sample spectra of 59Fe and 238Pu analyzed using PSA setting of 100. 
Count rates are indicated for each spectrum. 

 
Fe-59 and Pu-238 Sample Spectrum #1  235 cpm alpha, 360 cpm beta 

 
 

Fe-59 and Pu-238 Sample Spectrum #2  31 cpm alpha, 80 cpm beta 

 
 

LSA Blank Sample Spectrum 5 cpm alpha, 36 cpm beta 
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Table A.3 LR9 & LR8 Pu with 0x, 10x Fe in Solution 

  

LR9 No (0x) Fe in GNS MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g

0x Fe A * R0 (root) 18 0.14 717.71 88340.9 88330 1472.2 10515.4 1471.3 10511.2

0x FeA S1 5 10 0.495 681.25 54.6 43 0.7 1.5 0.4 1.0
0x FeA S2 15 20 0.413 685.5 78.5 67 1.1 2.7 0.8 2.3
0x FeA S3 25 30 0.341 669.78 105.5 94 1.6 4.6 1.3 4.3
0x FeA S4 35 40 0.262 682.05 134.2 123 2.1 7.8 1.8 7.5
0x FeA S5 45 50 0.188 701.24 219.5 208 3.5 18.5 3.3 18.1
0x FeA S6 57 64 0.106 716.53 172.8 162 2.7 25.4 2.6 25.2
0x Fe A >40cm total 24 0.294 370 6.2 21.0 5.9 20.1
Sum Shoot 64 1.805 698 11.6 6.4 10.3 5.7
Sum Plant 82 1.945 89028 1483.8 762.9 1482 762

0x Fe B * R0 (root) 18 0.0345 722.74 7234.3 7223 120.4 3489.4 119.5 3485.1
0x FeB S1 5 10 0.317 704.46 49.1 38 0.6 2.0 0.3 1.6
0x FeB S2 15 20 0.265 703.95 45.3 34 0.6 2.1 0.3 1.7
0x FeB S3 25 30 0.221 710.42 40.5 29 0.5 2.2 0.2 1.9
0x FeB S4 35 40 0.212 711.82 51.1 40 0.7 3.1 0.4 2.8
0x FeB S5 45 50 0.149 714.4 46.9 36 0.6 4.0 0.4 3.7
0x FeB S6 62 74 0.0757 719.72 50.2 39 0.7 8.6 0.6 8.4
0x Fe B >40cm total 34 0.2247 75 1.2 5.5 1.0 4.4
Sum Shoot 74 1.2397 216 3.6 2.9 2.2 1.8
Sum Plant 92 1.2742 7439 124.0 97.3 122 96

LR8 No (0x) Fe in GNS MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
0 Fe A * R0 (root) 18 0.385 726.04 8660 8649 144.1 374.4 143.3 370.1
0-Fe A S1 5 10 1.376 703.89 83.9 73 1.2 0.9 0.9 0.5
0-Fe A S2 15 20 1.002 706.99 59.7 49 0.8 0.8 0.5 0.4
0-Fe A S3 25 30 0.84 683.26 80.2 69 1.2 1.4 0.9 1.0
0-Fe A S4 35 40 0.781 701.47 92.4 81 1.4 1.7 1.1 1.4
0-Fe A S5 45 50 0.739 640.38 247.2 236 3.9 5.3 3.8 5.0
0-Fe A S6 55 60 0.58 704.68 381.2 370 6.2 10.6 6.1 10.4
0-Fe A S7 65 70 0.264 680.16 303.2 292 4.9 18.4 4.8 18.3
0-Fe A S8 78.5 87 0.164 707.05 119.8 109 1.8 11.0 1.8 10.9
0-Fe A >40cm total 47 1.747 1007 16.8 9.6 16.5 9.4
Sum Shoot 87 5.746 1278 21.3 3.7 19.9 3.5
Sum Plant 105 6.131 9927 165.4 27.0 163 27

0 Fe B * R0 (root) 18 0.381 727.05 25881 25870 431.2 1131.7 430.3 1127.4
0-Fe B S1 5 10 1.196 683.26 166.3 155 2.6 2.2 2.2 1.7
0-Fe B S2 15 20 0.771 692.06 68.6 57 1.0 1.2 0.7 0.8
0-Fe B S3 25 30 0.711 672.64 101.2 90 1.5 2.1 1.2 1.8
0-Fe B S4 35 40 0.53 708.28 91.4 80 1.3 2.5 1.1 2.2
0-Fe B S5 45 50 0.424 685.38 187.9 177 2.9 6.9 2.8 6.6
0-Fe B S6 55 60 0.243 708.12 175.4 164 2.7 11.3 2.7 11.1
0-Fe B S7 69 78 0.134 713.95 153.5 142 2.4 17.7 2.3 17.6
0-Fe B >40cm total 38 0.801 483 8.1 10.1 7.8 9.7
Sum Shoot 78 4.009 866 14.4 3.6 13.0 3.3
Sum Plant 96 4.39 26736 445.6 101.5 443 101

0 Fe C R0 (root) 18 0.653 694.22 60030 60019 1000.3 1531.9 999.5 1527.6
0-Fe C S1 5 10 1.002 713.62 68.6 57 1.0 1.0 0.6 0.5
0-Fe C S2 15 20 0.651 674.26 54 43 0.7 1.1 0.4 0.7
0-Fe C S3 25 30 0.67 694.96 69.6 58 1.0 1.5 0.7 1.1
0-Fe C S4 35 40 0.578 678.25 96.9 86 1.4 2.5 1.2 2.1
0-Fe C S5 45 50 0.536 678.37 166.9 156 2.6 4.8 2.4 4.5
0-Fe C S6 55 60 0.397 698.98 247 236 3.9 9.9 3.9 9.7
0-Fe C S7 65 70 0.269 702.48 182.1 171 2.8 10.6 2.8 10.4
0-Fe C S8 80 90 0.166 698.13 40.5 29 0.5 2.9 0.5 2.8
0-Fe C >40cm total 50 1.368 592 9.9 7.2 7.1 5.2
Sum Shoot 90 4.269 836 13.9 3.3 12.5 2.9
Sum Plant 108 4.922 60855 1014.3 206.1 1012 206
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Table A.3 LR9 & LR8 Pu with 0x, 10x Fe in Solution (Continued) 

 
 

  

LR9 10x Fe in GNS MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
10 Fe A (root) 18 0.108 709.86 31699.9 31689 528.15 4890 527.3 4886.0
10x FeA S1 5 10 0.353 714.07 33.7 23 0.38 1.1 0.0 0.6
10x FeA S2 15 20 0.329 705.98 46.8 36 0.59 1.8 0.3 1.4
10x FeA S3 25 30 0.275 717.76 71.2 60 1.00 3.6 0.7 3.3
10x FeA S4 35 40 0.189 706.03 84.4 73 1.22 6.5 1.0 6.1
10x FeA S5 45 50 0.0811 719.84 54.3 43 0.72 8.9 0.5 8.5
10x FeA S6 53 56 0.0131 729.85 12.3 1 0.02 1.4 -0.1 1.2
10x Fe A >40cm total 26 0.0942 44 0.7 7.8 0.5 5.2
Sum Shoot 56 1.3482 236 3.9 2.9 2.6 1.9
Sum Plant 74 1.3482 31924 532.1 394.7 530 393

10 Fe B (root) 18 0.108 711.65 41856.8 41846 697.43 6458 696.6 6453.4
10x FeB S1 5 10 0.453 691.32 47.6 36 0.61 1.3 0.3 0.9
10x FeB S2 15 20 0.325 713.95 59.6 48 0.81 2.5 0.5 2.1
10x FeB S3 25 30 0.302 698.7 78.6 67 1.12 3.7 0.9 3.4
10x FeB S4 35 40 0.23 692.23 120 109 1.81 7.9 1.6 7.6
10x FeB S5 45 50 0.103 708.9 94.6 83 1.39 13.5 1.2 13.2
10x FeB S6 58 66 0.0466 719.16 36.6 25 0.42 9.1 0.3 8.9
10x Fe B >40cm total 26 0.1496 109 1.8 12.1 1.6 10.5
Sum Shoot 66 1.4596 370 6.2 4.2 4.8 3.3
Sum Plant 84 1.5676 42215 703.6 448.8 701 447

LR8 10x Fe in GNS MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
10 Fe A (root) 18 0.305 722.46 39204 39193 653.22 2142 652.4 2137.4
10-Fe A S1 5 10 1.089 699.71 29.4 18 0.30 0.3 0.0 -0.1
10-Fe A S2 15 20 0.76 690.64 40.5 29 0.49 0.6 0.2 0.2
10-Fe A S3 25 30 0.675 681.94 44.6 33 0.56 0.8 0.3 0.5
10-Fe A S4 35 40 0.599 675.48 55.1 44 0.73 1.2 0.5 0.9
10-Fe A S5 45 50 0.527 713.06 78.9 68 1.13 2.1 1.0 1.8
10-Fe A S6 55 60 0.457 680.5 139.4 128 2.14 4.7 2.1 4.5
10-Fe A S7 65 70 0.328 708.9 161.4 150 2.50 7.6 2.5 7.5
10-Fe A S8 80 90 0.163 694.84 51.4 40 0.67 4.1 0.6 4.0
10-Fe A >40cm total 50 1.475 386 6.4 4.4 5 3.5
Sum Shoot 98 90 4.903 511 8.5 1.7 7 1
Sum Plant 108 4.903 39704 661.7 135.0 659 135

10 Fe B (root) 18 0.451 709.46 27942 27931 465.52 1032 464.7 1027.9
10-Fe B S1 5 10 0.981 673.1 71.1 60 1.00 1.0 0.7 0.6
10-Fe B S2 15 20 0.724 685.55 49.6 38 0.64 0.9 0.4 0.5
10-Fe B S3 25 30 0.669 676.58 66.7 56 0.93 1.4 0.7 1.0
10-Fe B S4 35 40 0.571 672 77.1 66 1.10 1.9 0.9 1.6
10-Fe B S5 45 50 0.548 693.2 179.5 168 2.81 5.1 2.6 4.8
10-Fe B S6 55 60 0.398 690.64 387.3 376 6.27 15.7 6.2 15.5
10-Fe B S7 65 70 0.207 705.08 305.7 295 4.91 23.7 4.9 23.6
10-Fe B S8 78 86 0.11 709.58 143.3 132 2.20 20.0 2.2 19.9
10-Fe B >40cm total 46 1.263 971 16.2 12.8 13 10.5
Sum Shoot 86 4.208 1191 19.8 4.7 18 4
Sum Plant 104 4.659 29122 485.4 104.2 483 104

10 Fe C (root) 18 0.618 721.35 60900 60889 1014.81 1642 1014.0 1637.8
10-Fe C S1 5 10 1.371 702.6 117.9 107 1.78 1.3 1.4 0.9
10-Fe C S2 15 20 1.044 691.49 132.2 121 2.02 1.9 1.7 1.5
10-Fe C S3 25 30 0.834 701.8 231.8 221 3.68 4.4 3.4 4.1
10-Fe C S4 35 40 0.74 698.36 401.5 390 6.51 8.8 6.3 8.5
10-Fe C S5 45 50 0.608 696.2 688.9 678 11.30 18.6 11.1 18.3
10-Fe C S6 55 60 0.573 726.38 891.7 881 14.68 25.6 14.6 25.4
10-Fe C S7 65 70 0.373 707.55 1632.3 1621 27.02 72.4 27.0 72.3
10-Fe C S8 80.5 91 0.206 715.69 277.4 266 4.44 21.5 4.4 21.4
10-Fe C >40cm total 51 1.76 3446 57.4 32.6 46 26.1
Sum Shoot 91 5.749 4284 71.4 12.4 70 12
Sum Plant 109 6.367 65173 1086.2 170.6 1084 170
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Table A.3 LR9 & LR8 Pu with 0x, 10x Fe in Solution (Continued) 

 

 

 

  

Averaged LR9 & 8 0x Fe Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
0 Fe Mean Root 18 0.3187 717.6 38029.3 38018.1 633.6 3408.6 632.8 3404.3
0-Fe S1 5 10.0 0.877 697.3 84.5 73.3 1.2 1.5 0.9 1.1
0-Fe S2 15 20.0 0.620 692.6 61.2 50.0 0.8 1.6 0.5 1.2
0-Fe S3 25 30.0 0.557 686.2 79.4 68.2 1.1 2.4 0.9 2.0
0-Fe S4 35 40.0 0.473 696.4 93.2 82.0 1.4 3.5 1.1 3.2
0-Fe S5 45 50.0 0.407 684.0 173.7 162.5 2.7 7.9 2.5 7.6
0-Fe S6 57 63.6 0.280 709.6 205.3 194.1 3.2 13.2 3.2 12.9
0-Fe S7 66 72.7 0.222 698.9 212.9 201.7 3.4 15.6 3.3 15.4
0-Fe S8 79 88.5 0.165 702.6 80.2 69.0 1.1 7.0 1.1 6.9
0-Fe >40cm total (large variance) 46.6 1.075 505.2 8.4 10.7 7.7 7.1
Sum Shoot 78.6 3.602 778.7 13.0 4.0 11.6 3.4
Sum Plant 96.6 3.920 38797 647 239 644 238

Averaged LR9 & 8 10x Fe Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
10 Fe Mean Root 18 0.318 714.96 40320.6 40309.4 671.8 3232.8 671.0 3228.5
10-Fe S1 5 10.0 0.849 696.16 59.9 48.7 0.81 1.0 0.5 0.6
10-Fe S2 15 20.0 0.636 697.52 65.7 54.5 0.91 1.5 0.6 1.1
10-Fe S3 25 30.0 0.551 695.36 98.6 87.4 1.46 2.8 1.2 2.4
10-Fe S4 35 40.0 0.466 688.82 147.6 136.4 2.27 5.3 2.1 4.9
10-Fe S5 45 50.0 0.373 706.24 219.2 208.0 3.47 9.6 3.3 9.3
10-Fe S6 55 60.4 0.298 709.31 293.5 282.3 4.70 11.3 4.6 11.1
10-Fe S7 65 70.0 0.303 707.18 699.8 688.6 11.48 34.6 11.4 33.3
10-Fe S8 80 89.0 0.160 706.70 157.4 146.2 2.44 15.2 2.4 15.1
10x Fe >40cm total 39.8 1.133 1068.3 16.5 13.9 13.3 11.2
Sum Shoot 77.8 3.636 1318.2 22.0 5.2 20.6 4.6
Sum Plant 95.8 3.954 47147 694 251 692 250
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Table A.3 LR9 & LR8 Pu with 0x, 10x Fe in Solution (Continued) 

  

Control Plant Data (Pu) LR9 MP cm section mass (g) SQPE Pu cpm net cpm Bq Bq/g (Compared to LR8)
C R0 18 0.201 715.41 62.8 51.6 0.86 4.28
C RS 0.0257 713.34 7.2 -4.0 -0.07 -2.59
C AR 1.006 697.28 86.5 75.3 1.26 1.25 Bq Bq/g
C S1 23 10 0.821 680.79 32.1 20.9 0.35 0.42 0.14 0.10
C S2 33 20 0.687 700.96 28.4 17.2 0.29 0.42 -0.20 -0.01
C S3 43 30 0.734 689.95 26.4 15.2 0.25 0.35 0.07 -0.03
C S4 total 53 40 0.668 13.2 0.22 0.33 -0.05 0.00
C S5 63 50 0.532 662.52 21.5 10.3 0.17 0.32 -0.03 0.03
C S6 73 60 0.375 702.93 15.9 4.7 0.08 0.21 -0.04 -0.02
C S7 86 70 0.215 714.52 13.1 1.9 0.03 0.15 -0.07 -0.10
C S8 Interpolated (for Transpiration)93 80 0.02 0.10
C S9 Interpolated 103 90 0.01 0.05
C S10 Interpolated 110 97 0.00 0.00
C >40cm total 57 1.122 17 0.28 0.25 0 -0.1
Sum Shoot 97 5.038 159 2.65 0.53 0 0
Sum Plant 115 5.2647 206 3.44 0.65 0 0

C S4-1 53 40 0.394 689.72 19.3 8.1 0.14 0.34 0.14 0.34
C S4-2 53 40 0.274 698.41 16.3 5.1 0.09 0.31 0.09 0.31

Control Plant Data (Pu) LR8 MP cm section mass (g) SQPE Pu cpm net cpm Bq Bq/g
CS1-2 (150) 23 10 0.656 686.58 21.2 12.7 0.21 0.32
CS2 (150) 33 20 1.14 684.35 37.6 29.1 0.48 0.42
CS3-2 (150) 43 30 0.495 692.74 19.8 11.3 0.19 0.38
CS4 (150) 53 40 0.832 684.29 25 16.5 0.27 0.33
CS5 (150) 63 50 0.69 644.23 20.8 12.3 0.20 0.30
CS6 (150) 73 60 0.543 696.37 15.9 7.4 0.12 0.23
CS7 (150) 83 70 0.417 708 14.7 6.2 0.10 0.25
CS8 (150) 93 80 0.24 718.72 11.6 3.1 0.05 0.21
CS9 (150) 105 95 0.164 718.83 9.8 1.3 0.02 0.13
C >40cm total 65 2.054 30 0.50 0.24 0 0.0
Sum Shoot 105 5.177 87 1.45 0.28 0 0
Sum Plant 123 5.177 99 1.66 0.32 0 0
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Table A.4 LR9 3-10d Exposure Data 

 

  

3 d Exposure MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
3dA R0 18 0.196 681.82 27961.8 27950 465.8 2376.7 465.0 2372.5 0.98695 5.7E-02 500
3dA RS 0.031 729.24 10 -1 -0.02 -0.78 0.05 1.98 0.00010 5.7E-06 Trans mL
3dA AR1 0.426 706.6 20.8 9 0.16 0.37 0.00000 0.0E+00 130
3dA AR2 0.363 718.21 21.4 10 0.17 0.46 0.00000 0.0E+00 Bq Trans
3dA AR 0.789 19 0.32 0.41 -0.93 -0.84 -0.00197 -1.1E-04 2140
3dA S1 23 10 0.867 676.06 54.7 43 0.72 0.83 0.38 0.41 0.00080 4.6E-05 P Act/ BqTr
3dA S2 33 20 0.674 608.26 29.3 18 0.30 0.44 0.02 0.03 0.00003 1.8E-06 0.220
3dA S3 43 30 0.588 680.21 88.1 77 1.28 2.17 1.03 1.83 0.00218 1.2E-04
3dA S4 53 40 0.451 671.65 167.3 156 2.60 5.76 2.39 5.44 0.00506 2.9E-04
3dA S5 63 50 0.229 691.09 175.4 164 2.73 11.93 2.57 11.62 0.00544 3.1E-04
3dA S6 73 60 0.054 718.83 55.5 44 0.73 13.60 0.66 13.40 0.00140 8.0E-05 Bq Eq/Trn Bq
3dA >40cm total 20 0.283 208 3.5 12.2 3.2 11.4 0.00685 3.9E-04 0.2173
Sum Shoot 60 2.863 502 8.4 2.9 7.0 2.5 0.01492 8.5E-04 0.0033
Sum Plant 78 4.668 28489 474.8 101.7 471 101 1.00000 5.7E-02 0.2202

3dB R0 18 0.247 722.97 7534.2 7523 125.4 507.6 124.5 503.4 0.98140 1.5E-02 Total mL
3dB RS 0.0208 727.67 22.1 11 0.18 8.53 0.25 11.29 0.00196 3.0E-05 500
3dB AR1 0.271 708.45 21 10 0.16 0.59 0.00000 0.0E+00 Trans mL
3dB AR2 0.196 712.44 18.9 7 0.12 0.63 0.00000 0.0E+00 162
3dB AR 0.467 17 0.28 0.61 -0.97 -0.64 -0.00763 -1.2E-04 Bq Trans
3dB S1 23 10 0.76 663.99 42.1 31 0.51 0.67 0.17 0.25 0.00131 2.0E-05 2666
3dB S2 33 20 0.554 696.77 47.6 36 0.60 1.09 0.32 0.68 0.00252 3.9E-05 P Act/ BqTr
3dB S3 43 30 0.434 675.83 54.7 43 0.72 1.66 0.47 1.32 0.00372 5.7E-05 0.048
3dB S4 53 40 0.357 693.42 63.2 52 0.86 2.42 0.65 2.10 0.00513 7.9E-05
3dB S5 63 50 0.231 685.09 65.1 54 0.89 3.87 0.73 3.56 0.00573 8.8E-05
3dB S6 75 65 0.121 700.79 60.5 49 0.82 6.76 0.74 6.56 0.00586 9.0E-05 Bq Eq/Trn Bq
3dB >40cm total 25 0.352 103 1.7 4.9 1.5 4.2 0.01159 1.8E-04 0.0467
Sum Shoot 65 2.457 265 4.4 1.8 3.1 1.3 0.02427 3.7E-04 0.0012
Sum Plant 83 3.6588 7832 130.5 35.7 127 35 1.00000 1.5E-02 0.0476

3dC R0 18 0.152 725.09 9817.8 9806 163.4 1075.3 162.6 1071.0 0.98512 2.0E-02 Total mL
3dC RS 0.0094 728.62 8.7 -3 -0.05 -4.88 0.03 -2.12 0.00015 3.0E-06 500
3dC AR1 0.309 721.29 30.4 19 0.32 1.02 0.00000 0.0E+00 Trans mL
3dC AR2 0.289 703.33 35.1 24 0.39 1.36 0.00000 0.0E+00 91
3dC AR 0.598 43 0.71 1.19 -0.54 -0.06 -0.00328 -6.6E-05 Bq Trans
3dC S1 23 10 0.524 710.64 50.5 39 0.65 1.24 0.31 0.82 0.00186 3.7E-05 1498
3dC S2 33 20 0.393 717.43 48.4 37 0.62 1.57 0.33 1.16 0.00202 4.1E-05 P Act/ BqTr
3dC S3 43 30 0.346 709.35 54.5 43 0.72 2.07 0.47 1.73 0.00284 5.7E-05 0.110
3dC S4 53 40 0.28 699.6 65.1 54 0.89 3.19 0.68 2.88 0.00414 8.3E-05
3dC S5 63 50 0.163 703.78 65.3 54 0.90 5.51 0.73 5.19 0.00442 8.9E-05
3dC S6 77 68 0.0649 710.76 42.9 31 0.52 8.08 0.45 7.88 0.00273 5.5E-05 Bq Eq/Trn Bq
3dC >40cm total 28 0.2279 85 1.4 6.2 1.2 5.2 0.00715 1.4E-04 0.1086
Sum Shoot 68 1.7709 258 4.3 2.4 3.0 1.7 0.01800 3.6E-04 0.0020
Sum Plant 86 3.1283 10147 169.1 54.1 165 53 1.00000 2.0E-02 0.1102

Averaged 3 d Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
3d R0 18 0.1983 710 15105 15093 252 1320 251 1316 0.9856 3.0E-02 500
3d RS 0.0204 729 25.1 13.7 0.23 0.82 0.11 3.72 0.0004 1.3E-05 Trans mL
3d AR 0.6180 26.3 0.44 0.73 -0.81 -0.51 -0.0032 -9.9E-05 128
3d S1 23.0 10.0 0.7170 683.56 49.1 37.7 0.63 0.92 0.28 0.50 0.0011 3.4E-05 Bq Trans
3d S2 33.0 20.0 0.5403 674.15 41.8 30.3 0.51 1.03 0.22 0.62 0.0009 2.7E-05 2101
3d S3 43.0 30.0 0.4560 688.46 65.8 54.3 0.91 1.97 0.66 1.63 0.0026 8.0E-05 P Act/ BqTr
3d S4 53.0 40.0 0.3627 688.22 98.5 87.1 1.45 3.79 1.24 3.47 0.0049 1.5E-04 0.126
3d S5 63.0 50.0 0.2077 693.32 101.9 90.5 1.51 7.10 1.34 6.79 0.0053 1.6E-04
3d S6 75.0 64.3 0.0800 710.13 53.0 41.5 0.69 9.48 0.62 9.28 0.0024 7.5E-05 Bq Eq/Trn Bq
3d >40cm total 24.3 0.288 132 2.2 7.6 1.96 6.8 0.0077 2.4E-04 0.1193
Sum Shoot 64.3 2.364 341 5.7 2.4 4.36 1.8 0.0171 5.3E-04 0.0021
Sum Plant 82.3 3.200 15475 257.9 80.6 254.35 79 1.0000 3.1E-02 0.1211
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Table A.4 LR9 3-10d Exposure Data (Continued) 

 

  

7 d Exposure MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
7dA R0 18 0.107 696.77 27962 27950 465.8 4353.6 465.0 4349.4 0.98460 5.7E-02 1000
7dA RS 0.0471 725.93 108.4 97 1.62 34.31 1.69 37.06 0.00357 2.0E-04 Trans mL
7dA AR 0.6 681.19 32.9 21 0.36 0.60 -0.89 -0.65 -0.00189 -1.1E-04 245
7dA S1 23 10 0.639 648.14 57.8 46 0.77 1.21 0.43 0.79 0.00091 5.2E-05 Bq Trans
7dA S2 33 20 0.518 689.55 72.1 61 1.01 1.95 0.73 1.54 0.00154 8.9E-05 4032
7dA S3 43 30 0.503 685.21 93.4 82 1.37 2.72 1.12 2.38 0.00236 1.4E-04 P Act/ BqTr
7dA S4 53 40 0.423 676.17 121.8 110 1.84 4.35 1.63 4.03 0.00345 2.0E-04 0.117
7dA S5 63 50 0.248 685.55 108.1 97 1.61 6.50 1.44 6.18 0.00306 1.8E-04
7dA S6 74 62 0.109 712.89 84 73 1.21 11.09 1.14 10.90 0.00240 1.4E-04 Bq Eq/Trn Bq
7d A >40cm total 22 0.357 169 2.8 7.9 2.6 7.2 0.00546 3.1E-04 0.1153
Sum Shoot 62 2.44 469 7.8 3.2 6.5 2.7 0.01372 7.9E-04 0.0016
Sum Plant 80 3.1941 28537 475.6 148.9 472 148 1.00000 5.7E-02 0.1171

7dB R0 18 0.316 709.18 12950 12938 215.6 682.4 214.8 678.1 0.96479 2.6E-02 Total mL
7dB RS 0.0333 717.93 108 97 1.61 48.32 1.68 51.08 0.00755 2.0E-04 1000
7dB AR1 0.266 707.22 71.2 60 1.00 3.74 0.00000 0.0E+00 Trans mL
7dB AR2 0.524 711.15 54 43 0.71 1.35 0.00000 0.0E+00 528
7dB AR 0.79 102 1.71 2.16 0.45 0.91 0.00204 5.5E-05 Bq Trans
7dB S1 23 10 0.77 32 0.54 0.69 0.19 0.28 0.00086 2.3E-05 8690
7dB S2 33 20 0.654 678.83 61.2 50 0.83 1.27 0.55 0.86 0.00246 6.6E-05 P Act/ BqTr
7dB S3 43 30 0.604 643.64 73.4 62 1.03 1.71 0.78 1.37 0.00352 9.5E-05 0.026
7dB S4 53 40 0.5 670.6 90.4 79 1.32 2.63 1.10 2.31 0.00496 1.3E-04
7dB S5 63 50 0.394 641.69 122.2 111 1.85 4.68 1.68 4.37 0.00754 2.0E-04
7dB S6 73 60 0.25 709.75 61.6 50 0.84 3.34 0.76 3.15 0.00342 9.3E-05
7dB S7 85 74 0.093 698.41 51.5 40 0.67 7.18 0.64 7.05 0.00287 7.8E-05 Bq Eq/Trn Bq
7d B >40cm total 24 1.237 201 3.3 2.7 3.1 2.5 0.01384 3.7E-04 0.0247
Sum Shoot 74 3.265 424 7.1 2.2 5.7 1.7 0.02563 6.9E-04 0.0007
Sum Plant 92 5.1943 13663 227.7 43.8 223 43 1.00000 2.7E-02 0.0256
7dB S1-1 23 10 0.424 692.51 30.1 19 0.31 0.73
7dB S1-2 23 10 0.346 692.57 24.9 13 0.22 0.65

7dC R0 18 0.451 680.62 22082 22071 367.85 816 367.0 811.4 0.95898 4.5E-02 Total mL
7dC RS 0.04 727.5 215.2 204 3.40 84.90 3.47 87.65 0.00906 4.2E-04 1000
7dC AR1 0.464 701.41 25 14 0.23 0.49 0.00000 0.0E+00 Trans mL
7dC AR2 0.381 724.42 23.8 12 0.21 0.54 0.00000 0.0E+00 491
7dC AR 0.845 26 0.43 0.51 -0.82 -0.73 -0.00214 -1.0E-04 Bq Trans
7dC S1 23 10 0.821 677.04 74.3 63 1.05 1.28 0.70 0.86 0.00184 8.5E-05 8081
7dC S2 33 20 0.715 673.28 98 87 1.44 2.02 1.16 1.61 0.00303 1.4E-04 P Act/ BqTr
7dC S3 43 30 0.588 660.28 135.1 124 2.06 3.50 1.81 3.17 0.00473 2.2E-04 0.047
7dC S4 53 40 0.455 637.24 150 139 2.31 5.08 2.10 4.76 0.00548 2.5E-04
7dC S5 63 50 0.321 676.98 228.2 217 3.61 11.25 3.45 10.94 0.00900 4.2E-04
7dC S6 73 60 0.174 682.69 169.8 158 2.64 15.17 2.57 14.97 0.00670 3.1E-04
7dC S7 83 70 0.048 716.7 89.1 78 1.29 26.96 1.27 26.83 0.00331 1.5E-04 Bq Eq/Trn Bq
7 d C>40cm total 30 0.543 453 7.5 13.9 7.3 13.4 0.01901 8.8E-04 0.0454
Sum Shoot 70 5.303 864 14.4 2.7 13.0 2.5 0.03410 1.6E-03 0.0016
Sum Plant 88 5.303 23191 386.5 72.9 383 72 1.00000 4.7E-02 0.0474

Averaged 7 d Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
7d R0 18 0.2913 696 20998 20986 349.77 1950.55 349 1946 0.9714 4.2E-02 1000
7d RS 0.0401 724 144 132 2.21 55.84 2.28 58.60 0.0063 2.8E-04 Trans mL
7d AR 0.7450 681 33 50 0.83 1.09 -0.42 -0.16 -0.0012 -5.1E-05 421
7d S1 23.0 10.0 0.7433 663 66 47 0.79 1.06 0.44 0.64 0.0012 5.4E-05 Bq Trans
7d S2 33.0 20.0 0.6290 681 77 66 1.09 1.75 0.81 1.33 0.0023 9.9E-05 6934
7d S3 43.0 30.0 0.5650 663 101 89 1.49 2.64 1.24 2.30 0.0034 1.5E-04 P Act/ BqTr
7d S4 53.0 40.0 0.4593 661 121 109 1.82 4.02 1.61 3.70 0.0045 2.0E-04 0.063
7d S5 63.0 50.0 0.3210 668 153 141 2.36 7.48 2.19 7.16 0.0061 2.7E-04
7d S6 73.3 60.7 0.1777 702 105 94 1.56 9.87 1.49 9.67 0.0041 1.8E-04
7d S7 84.0 72.0 0.0705 708 70 59 0.98 17.07 0.95 16.94 0.0027 1.2E-04 Bq Eq/Trn Bq
7d >40cm total 25.3 0.248 294 4.9 19.7 4.31 17.4 0.0120 5.2E-04 0.0503
Sum Shoot 68.7 2.223 558 9.3 4.2 8.41 3.8 0.0234 1.0E-03 0.0012
Sum Plant 86.7 4.042 21774 362.9 89.8 359.19 89 1.0000 4.4E-02 0.0518
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Table A.4 LR9 3-10d Exposure Data (Continued) 

 

  

10 d Exposure MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
10dA R0 18 0.384 714.24 18416.7 18405 306.8 798.8 305.9 794.6 0.95275 3.7E-02 1500
10dA RS 0.0353 727.95 37.1 26 0.43 12.11 0.50 14.87 0.00155 6.1E-05 Trans mL
10dA AR1 0.277 711.65 29 18 0.29 1.06 0.00000 0.0E+00 490
10dA AR2 0.286 711.99 26.6 15 0.25 0.88 0.00000 0.0E+00 Bq Trans
10dA AR 0.563 33 0.55 0.97 -0.71 -0.28 -0.00220 -8.6E-05 8064
10dA S1 23 10 0.87 136 2.27 2.60 1.92 2.18 0.00598 2.3E-04 P Act/ BqTr
10dA S2 33 20 0.685 135 2.24 3.27 1.96 2.86 0.00610 2.4E-04 0.040
10dA S3 43 30 0.509 714.63 185.4 174 2.90 5.70 2.65 5.36 0.00825 3.2E-04
10dA S4 53 40 0.362 697.34 163.6 152 2.54 7.01 2.32 6.69 0.00724 2.8E-04
10dA S5 63 50 0.266 691.49 213.8 202 3.37 12.68 3.21 12.36 0.00998 3.9E-04
10dA S6 77 68 0.144 688.75 215.1 204 3.39 23.57 3.32 23.37 0.01034 4.0E-04 Bq Eq/Trn Bq
10dA >40cm total 28 1.281 406 6.8 5.3 6.5 5.1 0.02032 7.9E-04 0.0379
Sum Shoot 68 2.836 1003 16.7 5.9 15.4 5.4 0.04790 1.9E-03 0.0019
Sum Plant 86 4.3813 19499 325.0 74.2 321 73 1.00000 3.9E-02 0.0398
10dA S1-1 23 10 0.46 717.6 88.1 77 1.28 2.8 0.9 2.4
10dA S1-2 23 10 0.41 723.53 70.7 59 0.99 2.4 0.7 2.0
10dA S2-1 33 20 0.454 703.72 87 76 1.26 2.8 1.0 2.4
10dA S2-2 33 20 0.231 720.67 70.4 59 0.98 4.3 0.8 3.9

10dB R0 18 0.32 711.49 16436.8 16425 273.76 855 272.9 851.2 0.94520 3.3E-02 Total mL
10dB RS 0.0388 727.55 50 39 0.64 16.56 0.71 19.32 0.00247 8.7E-05 1500
10dB AR1 0.296 710.53 21 10 0.16 0.54 0.00000 0.0E+00 Trans mL
10dB AR2 0.312 694.5 25.6 14 0.24 0.76 0.00000 0.0E+00 639
10dB AR 0.608 24 0.40 0.65 -0.86 -0.59 -0.00296 -1.0E-04 Bq Trans
10dB S1 23 10 0.923 704.29 83.2 72 1.20 1.30 0.85 0.88 0.00295 1.0E-04 10517
10dB S2 33 20 0.759 703.78 87.2 76 1.26 1.66 0.98 1.25 0.00339 1.2E-04 P Act/ BqTr
10dB S3 43 30 0.626 705.53 154.2 143 2.38 3.80 2.13 3.46 0.00738 2.6E-04 0.027
10dB S4 53 40 0.504 667.04 210.7 199 3.32 6.59 3.11 6.27 0.01077 3.8E-04
10dB S5 63 50 0.352 688.98 241.4 230 3.83 10.89 3.67 10.57 0.01269 4.5E-04
10dB S6 73 60 0.204 690.18 201.3 190 3.16 15.51 3.09 15.31 0.01070 3.8E-04
10dB S7 84 73 0.0905 715.13 141.4 130 2.17 23.93 2.14 23.80 0.00741 2.6E-04 Bq Eq/Trn Bq
10-Fe B >40cm total 33 0.6465 550 9.2 14.2 8.9 13.8 0.03080 1.1E-03 0.0259
Sum Shoot 73 3.4585 1039 17.3 5.0 16.0 4.6 0.05529 1.9E-03 0.0015
Sum Plant 91 5.0333 17551 292.5 58.1 289 57 1.00000 3.5E-02 0.0275

10dC R0 18 0.2 721.96 21817.5 21806 363.4 1817.2 362.6 1812.9 0.97744 4.4E-02 Total mL
10dC RS 0.025 728.23 33.9 22 0.37 14.97 0.45 17.72 0.00120 5.4E-05 1500
10dC AR1 0.684 575.41 14 3 0.04 0.06 0.00000 0.0E+00 Trans mL
10dC AR2 0.501 659.68 42.4 31 0.52 1.03 0.00000 0.0E+00 296
10dC AR 1.185 34 0.56 0.47 -0.69 -0.77 -0.00187 -8.4E-05 Bq Trans
10dC S1 23 10 0.916 704.06 70.9 59 0.99 1.08 0.65 0.66 0.00174 7.9E-05 4872
10dC S2 33 20 0.611 709.46 53.1 42 0.69 1.14 0.41 0.72 0.00111 5.0E-05 P Act/ BqTr
10dC S3 43 30 0.526 681.65 125.6 114 1.90 3.62 1.65 3.28 0.00446 2.0E-04 0.076
10dC S4 53 40 0.378 696.6 156.2 145 2.41 6.38 2.20 6.07 0.00593 2.7E-04
10dC S5 63 50 0.212 703.1 174.4 163 2.72 12.81 2.55 12.50 0.00687 3.1E-04
10dC S6 75 64 0.0713 711.21 85.3 74 1.23 17.26 1.16 17.06 0.00312 1.4E-04 Bq Eq/Trn Bq
10-Fe C >40cm total 24 0.2833 237 3.9 13.9 3.7 13.1 0.00999 4.5E-04 0.0744
Sum Shoot 64 2.7143 597 9.9 3.7 8.6 3.2 0.02323 1.0E-03 0.0018
Sum Plant 82 5.3093 22492 374.9 70.6 371 70 1.00000 4.5E-02 0.0761

Averaged 10 d Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
10d R0 18 0.301 716 18890 18879 314.65 1157.17 313.79 1152.91 0.9599 3.8E-02 1500
10d RS 0.033 728 40 29 0.48 14.55 0.55 17.30 0.0017 6.7E-05 Trans mL
10d AR 0.785 30 0.50 0.70 -0.75 -0.55 -0.0023 -9.1E-05 475
10d S1 23.0 10.0 0.903 704 89 1.48 1.66 1.14 1.24 0.0035 1.4E-04 Bq Trans
10d S2 33.0 20.0 0.685 707 84 1.40 2.02 1.12 1.61 0.0034 1.4E-04 7818
10d S3 43.0 30.0 0.554 701 108 144 2.39 4.37 2.14 4.03 0.0066 2.6E-04 P Act/ BqTr
10d S4 53.0 40.0 0.415 687 141 165 2.76 6.66 2.54 6.34 0.0078 3.1E-04 0.048
10d S5 63.0 50.0 0.277 695 153 198 3.31 12.13 3.14 11.81 0.0096 3.8E-04
10d S6 75.0 64.0 0.140 697 164 156 2.60 18.78 2.52 18.58 0.0077 3.1E-04
10d S7 84.0 73.0 0.091 715 141 130 2.17 23.93 2.14 23.80 0.0065 2.6E-04 Bq Eq/Trn Bq
10d >40cm total 33 0.5069 484 8.1 15.9 6.37 12.6 0.0195 7.7E-04 0.0401
Sum Shoot 73 3.0633 966 16.1 5.3 13.32 4.3 0.0407 1.6E-03 0.0017
Sum Plant 91 4.1830 19904 331.7 79.3 326.91 78 1.0000 4.0E-02 0.0418
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Table A.5  LR9 Transpiration Test Data 

 

  

LR9 Transpiration - no fan MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
T-A R0 18 0.462 726.77 12306.7 12293.8 204.90 443 204.0 439.2 500
T-A S1 23 10 1.154 700.62 99.1 86.2 1.44 1.24 1.09 0.82 Trans mL
T-A S2 33 20 0.758 711.09 60.7 47.8 0.80 1.05 0.51 0.63 156
T-A S3 43 30 0.656 687.27 62.5 49.6 0.83 1.26 0.57 0.92 Bq Trans
T-A S4 53 40 0.589 683.66 83.4 70.5 1.18 1.99 0.96 1.67 11355
T-A S5 63 50 0.492 696.54 99.7 86.8 1.45 2.94 1.28 2.62 P Act/ BqTr
T-A S6 73 60 0.402 695.47 152.8 139.9 2.33 5.80 2.25 5.59 0.019
T-A S7 83 70 0.298 709.97 205 192.1 3.20 10.74 3.17 10.60
T-A S8 93 80 0.174 723.81 47.6 34.7 0.58 3.32 0.56 3.22
T-A S9 (1) 105 95 0.055 718.72 58.4 45.5 0.76 13.79 0.75 13.74
T-A >40 cm total 55 1.421 499 8.32 5.85 8.01 5.63 0.03720 2.2E-04
Sum Shoot 95 4.578 753 12.55 2.74 11.13 2.43 0.05173 3.1E-04
Sum Plant 113 5.04 13047 217.45 43.14 215.17 42.69 1.00000 5.9E-03

Total mL
T-B R0 18 0.406 707.22 8775.9 8763 146.05 360 145.2 355.5 500
T-B S1 23 10 0.841 718.21 22.4 9.5 0.16 0.19 -0.19 -0.24 Trans mL
T-B S2 33 20 0.729 707.95 36.6 23.7 0.40 0.54 0.11 0.12 177
T-B S3 43 30 0.701 709.8 38.9 26 0.43 0.62 0.18 0.27 Bq Trans
T-B S4 53 40 0.601 716.03 31.7 18.8 0.31 0.52 0.09 0.19 12883
T-B S5 63 50 0.564 708.73 55.1 42.2 0.70 1.25 0.53 0.92 P Act/ BqTr
T-B S6 73 60 0.466 691.77 79.6 66.7 1.11 2.39 1.03 2.18 0.012
T-B S7 83 70 0.375 704.57 133.2 120.3 2.01 5.35 1.97 5.20
T-B S8 93 80 0.172 713.73 102.8 89.9 1.50 8.71 1.48 8.61
T-A S9 (2) 106 96 0.093 720.4 25.4 12.5 0.21 2.24 0.20 2.19
T-B >40 cm total 56 1.67 332 5.53 3.31 5.22 3.12 0.03463 1.4E-04
Sum Shoot 96 4.542 410 6.83 1.50 5.41 1.19 0.03590 1.5E-04
Sum Plant 114 4.948 9173 152.88 30.90 150.60 30.44 1.00000 4.1E-03

LR9 Transpiration with fan MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g f Plt Act f Tot Act Total mL
T+A R0 18 0.239 720.12 13555.3 13542.4 225.71 944 224.8 940.1 500
T+A S1 23 10 0.952 712.89 101.4 88.5 1.48 1.55 1.13 1.13 Trans mL
T+A S2 33 20 0.707 702.82 67.2 37.3 0.62 0.88 0.34 0.46 79
T+A S3 43 30 0.676 709.41 95.9 34.1 0.57 0.84 0.32 0.50 Bq Trans
T+A S4 53 40 0.581 711.88 46.3 24 0.40 0.69 0.18 0.36 5750
T+A S5 63 50 0.485 702.31 125.5 31.8 0.53 1.09 0.36 0.77 P Act/ BqTr
T+A S6 73 60 0.417 719.56 125 25.4 0.42 1.02 0.35 0.81 0.040
T+A S7 83 70 0.244 702.48 142.9 25.9 0.43 1.77 0.40 1.62
T+A S8 96 86 0.114 715.41 54.4 22.9 0.38 3.35 0.36 3.25
T+A >40 cm total 46 1.26 106 1.77 1.40 1.47 1.16 0.00642 4.0E-05
Sum Shoot 86 4.176 290 4.83 1.16 3.42 0.82 0.01499 9.4E-05
Sum Plant 104 4.415 13832 230.54 52.22 228.27 51.70 1.00000 6.3E-03

Total mL
T+B R0 18 0.379 700.34 23447.1 23434.2 390.57 1031 389.7 1026.2 500
T+B S1 23 10 1.385 681.48 74.5 61.6 1.03 0.74 0.68 0.32 Trans mL
T+B S2 33 20 0.87 686.3 54.5 41.6 0.69 0.80 0.41 0.38 156
T+B S3 43 30 0.816 658.21 46.5 33.6 0.56 0.69 0.31 0.34 Bq Trans
T+B S4 53 40 0.745 708.96 39.7 26.8 0.45 0.60 0.23 0.27 11355
T+B S5 63 50 0.685 689.04 56.5 43.6 0.73 1.06 0.56 0.74 P Act/ BqTr
T+B S6 73 60 0.581 702.03 72.4 59.5 0.99 1.71 0.91 1.50 0.035
T+B S7 83 70 0.506 712.61 82 69.1 1.15 2.28 1.12 2.13
T+B S8 93 80 0.334 698.07 132.6 119.7 2.00 5.97 1.98 5.87
T+B S9 103 90 0.187 710.36 33.5 20.6 0.34 1.84 0.33 1.79
T+B S10 118 110 0.072 725.26 12.8 -0.1 0.00 -0.02 0.00 -0.02
T+B >40 cm total 70 2.365 312 5.21 2.20 4.90 2.07 0.01235 1.3E-04
Sum Shoot 110 6.181 476 7.93 1.28 6.51 1.05 0.01644 1.8E-04
Sum Plant 128 6.56 23910 398.50 60.75 396.22 60.40 1.00000 1.1E-02
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Table A.6  LR8 Dual Labeled Pu and Fe Scoping Test Data 

 

Plant Section Data MP cm section mass (g) SQPE Pu cpm net cpm cpm/g minutes cpm-cntl conc-cntl Fe cpm net cpm cpm/g cpm-cntl conc-cntl
PuFe A R0 (root) 18 0.479 711.54 15202 15193 31718 1478.6 1442 3010
PuFeA S1-(1+2) 23 10 1.017 711.88 93.8 84.9 83.4 140.1 103.35 101.6
PuFeA S1-(3) 23 10 0.442 722.46 44.1 35.2 79.5 87.9 51.15 115.7
PuFeA S1 (total) 23 10 1.459 120.0 82.2 109.8 74.8 154.5 105.9 96.4 63.5
PuFeA S2 33 20 1.069 710.48 75.6 66.7 62.3 56.1 53.0 151.1 114.35 107.0 64.0 62.8
PuFeA S3 43 30 0.988 696.54 133.3 124.4 125.9 117.3 118.6 186.4 149.65 151.5 109.3 110.1
PuFeA S4 53 40 0.86 691.66 237.8 228.9 266.1 223.4 259.5 266.5 229.75 267.2 200.8 232.3
PuFeA S5 63 50 0.61 692.12 430.8 421.9 691.6 418.4 686.5 545.4 508.65 833.9 485.1 799.6
PuFeA S6 73 60 0.328 724.87 235.4 226.5 690.4 223.7 685.2 359.8 323.05 984.9 309.6 960.0
PuFeA S7 86 76 0.169 709.18 176.5 167.6 991.4 166.3 988.3 388.4 351.7 2080.8 337.3 2046.2
PuFeA >40cm total 36 1.107 815.9 737.0 1440 808.3 665.8 1183.4 1069.0 1131.9 1022.4
Sum Shoot 76 76 6.942 1427.3 1475.7 212.6 1440 1314.7 189.4 1831.6 263.8 1602.2 230.8
Sum Plant 94 7.421 16,629 16,669 2,246 1440 1314.7 177.2 3,273 441 1602.2 215.9

PuFe B R0 18 0.217 720.95 50743.3 50734 233799 2736.9 2700 12443
PuFeB S1 23 10 1.13 671.82 20.5 11.6 10.2 1.3 2.8 123.8 87.1 77.0 28.9 34.7
PuFeB S2 33 20 0.859 715.47 18.2 9.3 10.8 -1.4 1.5 92.2 55.5 64.6 5.1 20.3
PuFeB S3 43 30 0.797 694.39 20.6 11.7 14.6 4.6 7.3 82.5 45.8 57.4 5.4 16.0
PuFeB S4 53 40 0.7 700.39 30.9 22.0 31.4 16.5 24.7 80.0 43.3 61.8 14.3 26.9
PuFeB S5 63 50 0.751 716.59 47.7 38.8 51.6 35.3 46.5 111.2 74.5 99.1 50.9 64.9
PuFeB S6 73 60 0.499 713.67 38.4 29.5 59.0 26.7 53.9 119.1 82.4 165.0 68.9 140.2
PuFeB S7 83 70 0.311 715.47 11.6 2.7 8.5 1.4 5.4 60.7 24.0 77.0 9.6 42.5
PuFeB >40cm total 50 1.561 70.9 45.4 1440 63.3 29.1 180.8 115.8 129.3 82.8
Sum Shoot 103 90 5.047 187.9 125.3 24.8 1440 84.2 16.7 412.3 81.7 182.9 36.2
Sum Plant 108 5.264 50,931 50,860 9,662 1440 84.2 16.0 3,112 591 182.9 34.7

PuFe A R0 18 0.479 711.54 15202 15193 31718 1478.6 1442 3010
PuFe B R0 18 0.217 720.95 50743.3 50734 233799 2736.9 2700 12443
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Table A.7  LR8 Fe Velocity Data 
 

   

Plant Section Data MP cm section mass (g) SQPE Fe cpm net cpm cpm/g min cpm-cntl conc-cntl cpm-cntl conc-cntl
root 18
5 m S1 23 10 1.204 723.08 225.3 184.1 152.9 110.3 99.1 108.0 93.3
5 m S2 33 20 0.779 700.05 155.7 114.5 147.0 48.9 89.4 43.4 78.3
5 m S3 43 30 0.674 663.22 123.9 82.7 122.7 31.3 69.9 30.6 63.3
5 m S4 53 40 0.55 714.35 92.6 51.4 93.5 12.0 46.1 9.9 42.4
5 m S5 63 50 0.395 667.21 72.5 31.3 79.2 2.4 37.4 0.1 34.0
5 m S6 73 60 0.382 709.01 69.2 28.0 73.3 6.8 34.3 4.4 28.4
5 m S7 83 70 0.225 720.9 54.6 13.4 59.6 -9.5 4.6 -7.5 5.2
5 m S8 103 90 0.098 705.98 49.4 8.2 83.7 -4.3 31.6 -5.5 31.6
5 m >40cm total 50 1.1 72.7 66.1 5 -4.6 24.6 -8.4 22.6
Sum Shoot 103 90 4.307 843.2 513.6 119.2 5 197.9 45.9 183.4 42.6

root 18
10 m S1 23 10 1.13 688.41 108 66.8 59.1 -7.0 5.3 -9.3 -0.5
10 m S2 33 20 0.859 669.67 99.1 57.9 67.4 -7.7 9.9 -13.2 -1.2
10 m S3 43 30 0.797 697.62 87.1 45.9 57.6 -5.5 4.7 -6.2 -1.8
10 m S4 53 40 0.7 696.37 77.5 36.3 51.9 -3.1 4.5 -5.2 0.8
10 m S5 63 50 0.751 693.2 76.4 35.2 46.9 6.3 5.0 4.0 1.6
10 m S6 73 60 0.499 689.04 63.4 22.2 44.5 1.0 5.4 -1.4 -0.4
10 m S7 83 70 0.311 726.6 56.5 15.3 49.2 -7.6 -5.7 -5.6 -5.1
10 m S8 103 90 0.167 715.92 50 8.8 52.7 -3.7 0.6 -4.9 0.6
10 m >40cm total 50 1.728 72.7 42.1 10 -4.0 0.6 -7.8 -0.5
Sum Shoot 103 90 5.214 618 288.4 55.3 10 -27.3 -5.2 -41.8 -8.0

root 18
20 m S1 23 10 1.19 710.87 108.2 67.0 56.3 -6.8 2.5 -9.1 -3.3
20 m S2 33 20 0.883 715.24 98.4 57.2 64.8 -8.4 7.2 -13.9 -3.9
20 m S3 43 30 0.941 707.55 96.1 54.9 58.3 3.5 5.5 2.8 -1.0
20 m S4 53 40 0.709 693.82 81 39.8 56.1 0.4 8.8 -1.7 5.0
20 m S5 63 50 0.668 687.5 77.7 36.5 54.6 7.6 12.8 5.3 9.4
20 m S6 73 60 0.56 709.35 74.9 33.7 60.2 12.5 21.1 10.1 15.3
20 m S7 83 70 0.348 699.83 61.1 19.9 57.2 -3.0 2.3 -1.0 2.9
20 m S8 103 90 0.214 707.83 53.7 12.5 58.4 0.0 6.3 -1.2 6.3
20 m >40cm total 50 1.79 102.6 57.3 20 17.1 15.8 13.3 4.7
Sum Shoot 103 90 5.513 651.1 321.5 58.3 20 5.8 1.1 -8.7 -1.6

root 18
40 m S1 23 10 1.081 690.07 123 81.8 75.7 8.0 21.9 5.7 16.1
40 m S2 33 20 0.783 684.01 112.5 71.3 91.1 5.7 33.5 0.2 22.4
40 m S3 43 30 0.802 687.55 111.3 70.1 87.4 18.7 34.6 18.0 28.0
40 m S4 53 40 0.708 683.95 106.9 65.7 92.8 26.3 45.4 24.2 41.7
40 m S5 63 50 0.588 663.69 101.3 60.1 102.2 31.2 60.3 28.9 57.0
40 m S6 73 60 0.449 718.32 119.1 77.9 173.5 56.7 134.5 54.3 128.6
40 m S7 83 70 0.329 689.27 112.4 71.2 216.4 48.3 161.5 50.3 162.1
40 m S8 103 90 0.239 688.18 93.2 52.0 217.6 39.5 165.5 38.3 165.5
40 m >40cm total 50 1.605 261.2 162.7 40 175.7 121.2 171.9 79.9
Sum Shoot 103 90 4.979 879.7 550.1 110.5 40 234.4 47.1 219.9 44.2

root 18
80 m S1 23 10 1.23 666.39 114.6 73.4 59.7 -0.4 5.9 -2.7 0.1
80 m S2 33 20 1.021 683.2 101.6 60.4 59.2 -5.2 1.6 -10.7 -9.5
80 m S3 43 30 1.001 700.68 97.8 56.6 56.5 5.2 3.7 4.5 -2.8
80 m S4 53 40 0.867 675.25 99.4 58.2 67.1 18.8 19.8 16.7 16.0
80 m S5 63 50 0.619 690.75 86.8 45.6 73.7 16.7 31.8 14.4 28.4
80 m S6 73 60 0.417 661.34 108.5 67.3 161.4 46.1 122.3 43.7 116.5
80 m S7 83 70 0.204 710.76 67.8 26.6 130.4 3.7 75.5 5.7 76.1
80 m S8 103 90 0.041 721.46 49.2 8.0 195.1 -4.5 143.0 -5.7 143.0
80 m >40cm total 50 1.281 139.5 108.9 80 62.0 67.4 58.2 71.0
Sum Shoot 103 90 5.4 725.7 396.1 73.4 80 80.4 14.9 65.9 12.2
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Table A.8  LR7 & LR6 Pu Velocity Data 

 

 

  

Plant Section Data MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
load data (root) 18 1
10A1 23 10 1.019 39.7 30.3 0.50 0.49 0.08 0.06
10A2 33 20 0.579 25.2 15.8 0.26 0.45 -0.07 0.03
10A3 43 30 0.438 21.5 12.1 0.20 0.46 -0.05 0.05
10A4 53 40 0.417 20 10.6 0.18 0.42 -0.02 0.11
10A >40cm total 72 82 0.664 22.9 13.5 0.22 0.34 -0.33 0.02
Sum Shoot 91 82 3.117 129.3 82.05 1.37 0.44 -0.39 0.07
Sum Plant 82 4.117 129.3 82.05 1.37 0.33 -0.39 -0.01

load data (root) 18 1
10B1 23 10 0.933 45.6 36.2 0.60 0.65 0.18 0.21
10B2 33 20 0.774 38.4 29.0 0.48 0.62 0.15 0.20
10B3 43 30 0.726 32.1 22.7 0.38 0.52 0.12 0.11
10B4 53 40 0.66 30.5 21.1 0.35 0.53 0.15 0.22
10B >40(a+b) 72 1.051 37.5 28.1
10B >40(c+d) 72 0.806 30.3 20.9
10B >40cm total 72 82 1.857 48.9 0.82 0.44 0.26 0.12
Sum Shoot 91 82 4.95 214.4 157.7 2.63 0.53 0.87 0.16
Sum Plant 82 5.95 214.4 157.7 2.63 0.44 0.87 0.10
*
ST1R0 (root) 15.8 0.233 2350.8 2342.2
ST1S1 LR6 10 min 20.8 10 0.574 32.5 23.9 0.40 0.69 -0.02 0.26
ST1S2 30.8 20 0.406 26.8 18.2 0.30 0.75 -0.02 0.32
ST1S3 40.8 30 0.359 21.3 12.7 0.21 0.59 -0.04 0.18
ST1S4 50.8 40 0.323 18.6 10 0.17 0.52 -0.03 0.21
ST1S > 40cm 63.3 55 0.239 14.9 6.3 0.11 0.44 -0.45 0.12
Sum Shoot shoot 1.901 114.1 71.1 1.19 0.62 -0.57 0.26
Sum Plant total 2.134 2464.9 2413.3 40.22 18.85 38.47 18.51

Mean 10 minute MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
S1 22.3 10 0.842 30.1 0.50 0.60 0.08 0.16
S2 32.3 20 0.586333 21.0 0.35 0.60 0.02 0.17
S3 42.3 30 0.507667 15.8 0.26 0.52 0.01 0.11
S4 52.3 40 0.466667 13.9 0.23 0.50 0.03 0.19
> 40cm 69.1 55 0.92 22.9 0.38 0.41 -0.17 0.09
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Table A.8  LR7 & LR6 Pu Velocity Data (Continued) 

 

 

 

  

Plant Section Data MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
load data (root) 18 1
20A1 23 10 0.903 45.4 36.0 0.60 0.66 0.18 0.23
20A2 33 20 0.641 41.2 31.8 0.53 0.83 0.20 0.40
20A3 43 30 0.592 36.1 26.7 0.44 0.75 0.19 0.34
20A4 53 40 0.511 28.9 19.5 0.32 0.63 0.13 0.33
20A >40(a+b) 72 0.809 50.6 41.2
20A >40(c+d) 72 0.638 48.5 39.1
20A >40cm total 72 82 1.447 80.2 1.34 0.92 0.78 0.60
Sum Shoot 91 82 4.094 250.7 194 3.23 0.79 1.48 0.42
Sum Plant 100 5.094 250.7 194 3.23 0.63 1.48 0.30
*
load data (root) 18 1
20B1 23 10 0.861 54.4 45.0 0.75 0.87 0.33 0.43
20B2 33 20 0.781 42.3 32.9 0.55 0.70 0.22 0.28
20B3 43 30 0.646 39.1 29.7 0.49 0.76 0.24 0.35
20B4 53 40 0.69 42.4 33.0 0.55 0.80 0.35 0.49
20B >40(a+b) 72 0.876 53.2 43.8
20B >40(c+d) 72 0.935 101.8 92.4
20B >40cm total 72 82 1.811 136.1 2.27 1.25 1.72 0.93
Sum Shoot 91 82 4.789 333.2 276.5 4.61 0.96 2.85 0.60
Sum Plant 18 5.789 333.2 276.5 4.61 0.80 2.85 0.46

ST2R0 (root) 16 0.1187 1863.7 1855.1
ST2S1 LR6 20 min 21 10 0.309 22 13.4 0.22 0.72 -0.20 0.28
ST2S2 31 20 0.244 19.2 10.6 0.18 0.72 -0.15 0.30
ST2S3 41 30 0.228 20.5 11.9 0.20 0.87 -0.06 0.46
ST2S4 51 40 0.213 18.5 9.9 0.17 0.77 -0.03 0.47
ST2S > 40 cm 63.5 55 0.161 18 9.4 0.16 0.97 -0.10 0.60
Sum Shoot 55 1.155 98.2 55.2 0.92 0.80 -0.84 0.43
Sum Plant 71 1.274 1961.9 1910.3 31.84 25.00 30.08 24.66

Mean 20 minute MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
S1 22.3 10 0.691 31.4 0.52 0.76 0.10 0.32
S2 32.3 20 0.555 25.1 0.42 0.75 0.09 0.33
S3 42.3 30 0.489 22.7 0.38 0.78 0.13 0.36
S4 52.3 40 0.471 20.8 0.35 0.73 0.15 0.43
> 40cm 69.2 55 1.140 75.2 1.25 1.10 1.06 0.79
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Table A.8  LR7 & LR6 Pu Velocity Data (Continued) 

 

Plant Section Data MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
load data (root) 18 1
40A1 23 10 0.987 53.3 43.9 0.73 0.74 0.31 0.30
40A2 33 20 0.918 47.9 38.5 0.64 0.70 0.31 0.28
40A3 43 30 0.799 28.3 18.9 0.31 0.39 0.06 -0.02
40A4 53 40 0.68 44.7 35.3 0.59 0.86 0.39 0.56
40A >40(a+b) 72 0.746 72.8 63.4
40A >40(c+d) 72 0.8 106.9 97.5
40A >40cm total 72 82 1.546 160.8 2.68 1.73 2.13 1.41
Sum Shoot 91 82 4.93 353.9 297.2 4.95 1.00 3.20 0.64
Sum Plant 18 5.93 353.9 297.2 4.95 0.84 3.20 0.50
*
load data (root) 18 1
40B1-1 23 10 0.514 22.7 13.3
40B1-2 23 10 0.704 25.1 15.7
40B2-1 33 20 0.396 21.7 12.3
40B2-2 33 20 0.379 22.2 12.8
40B3-1 43 30 0.375 21.4 12.0
40B3-2 43 30 0.402 24.9 15.5
40B4-1 53 40 0.398 21.6 12.2
40B4-2 53 40 0.391 19.9 10.5
40B >40(a+b) 72 0.864 54.5 45.1
40B >40(c+d) 72 1.093 64.4 55.0
40B1 total 23 10 1.218 47.8 28.9 0.48 0.40 0.06 -0.04
40B2  " 33 20 0.775 43.9 25 0.42 0.54 0.09 0.12
40B3  " 43 30 0.777 46.3 27.4 0.46 0.59 0.20 0.18
40B4  " 53 40 0.789 41.5 22.6 0.38 0.48 0.18 0.17
40B >40cm total 72 82 1.957 118.9 100.0 1.67 0.85 1.11 0.53
Sum Shoot 91 82 5.516 298.4 203.9 3.40 0.62 1.64 0.25
Sum Plant 18 6.516 298.4 203.9 3.40 0.52 1.64 0.18

ST3R0 (root) 16.2 0.184 12483.5 12474.9
ST3R1 LR6 40 min 8.1 0.0096 25.6 17
ST3R2 8.1 0.0488 9.9 1.3
ST3 EXTRA ROOT (root) 16.2 0.0438 12.9 4.3
ST3S1 21.2 10 0.46 36 27.4 0.46 0.99 0.03 0.55
ST3S2 31.2 20 0.354 33.7 25.1 0.42 1.18 0.09 0.76
ST3S3 41.2 30 0.327 38.2 29.6 0.49 1.51 0.24 1.10
ST3S4 51.2 40 0.296 48.9 40.3 0.67 2.27 0.47 1.96
ST3S > 40 cm 63.7 55 0.296 90.1 81.5 1.36 4.59 0.81 4.27
Sum Shoot 55 1.733 246.9 203.9 3.40 1.96 1.64 1.59
Sum Plant 71.2 2.019 12778.8 12701.4 211.69 104.84 209.93 104.50

Mean 40 minute MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
S1 22.4 10 0.888 33.4 0.56 0.63 0.13 0.19
S2 32.4 20 0.682 29.5 0.49 0.72 0.16 0.30
S3 42.4 30 0.634 25.3 0.42 0.66 0.17 0.25
S4 52.4 40 0.588 32.7 0.55 0.93 0.35 0.62
> 40cm 69.2 55 1.266 114.1 1.90 1.50 1.65 1.13

ST4R0 (root) 16.5 0.192 3094.4 3085.8
ST4R1 LR6 80 min 8.2 0.0067 36.5 27.9
ST4R2 8.3 0.0285 10.7 2.1
ST4S1 21.5 10 0.545 34.5 25.9 0.43 0.79 0.01 0.35
ST4S2 31.5 20 0.39 28.2 19.6 0.33 0.84 0.00 0.42
ST4S3 41.5 30 0.321 24.5 15.9 0.27 0.83 0.01 0.41
ST4S4 51.5 40 0.292 29.8 21.2 0.35 1.21 0.15 0.90
ST4S > 40 cm 64 55 0.287 26.2 17.6 0.29 1.02 -0.26 0.70
Sum Shoot 55 1.835 190.4 130.2 2.17 1.18 0.41 0.82
Sum Plant 71.5 2.062 3284.8 3216 53.60 25.99 51.84 25.65
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Table A.9  LR7 Pu Velocity-Accumulation Data 
 

 

Plant Section Data MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
load data (root) 18 1
120A1 23 10 0.719 39.3 29.9 0.50 0.69 0.07 0.25
120A2 33 20 0.591 37.2 27.8 0.46 0.78 0.13 0.36
120A3 43 30 0.559 30.3 20.9 0.35 0.62 0.09 0.21
120A4 53 40 0.529 34.1 24.7 0.41 0.78 0.21 0.47
120A5 63 50 0.396 33.2 23.8 0.40 1.00 0.14 0.63
120A6 73 60 0.268 32.7 23.3 0.39 1.45 0.22 1.11
120A7 83 70 0.161 24.9 15.5 0.26 1.60 0.18 1.39
120A8 94.5 83 0.129 16.1 6.7 0.11 0.86 0.07 0.57
120A >40cm total 73.75 83 0.954 69.1 1.15 1.21 0.60 0.89
Sum Shoot 94.5 83 3.352 247.8 172.2 2.87 0.86 1.11 0.49
Sum Plant 101 4.352 247.8 172.2 2.87 0.66 1.11 0.32

(root) 18 1
120B1 23 10 0.694 43.5 34.1 0.57 0.82 0.14 0.38
120B2 33 20 0.534 33.4 24.0 0.40 0.75 0.07 0.33
120B3 43 30 0.527 41.3 31.9 0.53 1.01 0.28 0.60
120B4 53 40 0.487 52.3 42.9 0.71 1.47 0.52 1.16
120B5 63 50 0.414 69.4 60.0 1.00 2.41 0.74 2.04
120B6 73 60 0.277 81.4 72.0 1.20 4.33 1.03 3.99
120B7 83 70 0.151 47.2 37.8 0.63 4.17 0.55 3.95
120B8 95.5 85 0.045 14.3 4.9 0.08 1.80 0.04 1.50
120B >40cm total 74.25 85 0.887 174.5 2.91 3.28 2.36 2.96
Sum Shoot 95.5 85 3.129 382.8 307.2 5.12 1.64 3.36 1.27
Sum Plant 103 4.129 382.8 307.2 5.12 1.24 3.36 0.90

(root) 18 1
360A1 23 10 0.954 50.1 40.6 0.68 0.71 0.25 0.27
360A2 33 20 0.722 45.9 36.5 0.61 0.84 0.28 0.42
360A3 43 30 0.661 49.1 39.7 0.66 1.00 0.41 0.59
360A4 53 40 0.643 60.6 51.1 0.85 1.33 0.65 1.02
360A5 63 50 0.561 88.0 78.6 1.31 2.33 1.05 1.96
360A6 73 60 0.502 243.0 233.5 3.89 7.75 3.72 7.42
360A7 83 70 0.373 91.9 82.4 1.37 3.68 1.30 3.47
360A8 93 80 0.209 61.7 52.3 0.87 4.17 0.83 3.88
360A9 105.5 95 0.089 24.5 15.0 0.25 2.81 0.24 2.68
360A >40cm total 79.25 95 1.734 461.8 7.70 4.44 7.14 4.12
Sum Shoot 105.5 95 4.714 714.7 629.7 10.49 2.23 8.74 1.86
Sum Plant 113 5.714 714.7 629.7 10.49 1.84 8.74 1.50

(root) 18 1
360B1 23 10 1.313 50.2 40.8 0.68 0.52 0.26 0.08
360B2 33 20 1.022 58.3 48.9 0.81 0.80 0.49 0.37
360B3 43 30 0.879 50.2 40.8 0.68 0.77 0.43 0.36
360B4 53 40 0.7 65.5 56.1 0.93 1.33 0.74 1.03
360B5 63 50 0.376 36.2 26.8 0.45 1.19 0.19 0.81
360B6 74.5 63 0.111 16.5 7.1 0.12 1.06 -0.05 0.72
360B >40cm total 63.75 63 0.487 33.8 0.56 1.16 0.01 0.84
Sum Shoot 74.5 63 4.401 276.9 220.2 3.67 0.83 1.91 0.47
Sum Plant 81 5.401 276.9 220.2 3.67 0.68 1.91 0.34
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Table A.9  LR7 Pu Velocity-Accumulation Data (Continued) 
 

 

 

  

Plant Section Data MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
(root) 18 0.899

1400A1 23 10 1.564 56.4 47.0 0.78 0.50 0.36 0.06
1400A2 33 20 0.1234 54.5 45.1 0.75 6.08 0.42 5.66
1400A3 43 30 1.067 77.5 68.1 1.13 1.06 0.88 0.65
1400A4 53 40 0.854 84.1 74.7 1.24 1.46 1.05 1.15
1400A5 63 50 0.67 142.9 133.5 2.22 3.32 1.97 2.95
1400A6 73 60 0.545 86.9 77.5 1.29 2.37 1.12 2.03
1400A7 83 70 0.404 261.3 251.9 4.20 10.39 4.12 10.18
1400A8 93 80 0.245 132 122.6 2.04 8.34 2.00 8.04
1400A9 105.5 95 0.111 54.5 45.1 0.75 6.76 0.74 6.63
1400A >40cm total 79.25 95 1.975 630.4 10.51 5.32 9.95 5.00
Sum Shoot 105.5 95 5.5834 950.1 865.1 14.42 2.58 12.66 2.22
Sum Plant 113 6.4824 950.1 865.05 14.42 2.22 12.66 1.89

(root) 18 0.244
1400B1 23 10 0.918 67.6 58.2 0.97 1.06 0.55 0.62
1400B2 33 20 0.706 40.1 30.7 0.51 0.72 0.18 0.30
1400B3 43 30 0.58 50.2 40.8 0.68 1.17 0.43 0.76
1400B4 53 40 0.458 38.3 28.9 0.48 1.05 0.28 0.74
1400B5 63 50 0.289 50.2 40.8 0.68 2.35 0.42 1.98
1400B6 73 60 0.173 33.8 24.4 0.41 2.35 0.24 2.01
1400B7 84 72 0.057 16.9 7.5 0.12 2.18 0.05 1.97
1400B >40cm total 68.5 72 0.519 72.6 1.21 2.33 0.66 2.01
Sum Shoot 84 72 3.181 297.1 231.0 3.85 1.21 2.09 0.84
Sum Plant 90 3.425 297.1 230.95 3.85 1.12 2.09 0.79

Control Plant Data MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
LR7 and 6 (n=3) 18
1 23 10 (0-40 sections All 3) 25.4 0.42 0.44 0.00 0.00
2 33 20 19.7 0.33 0.42 0.00 0.00
3 43 30 15.2 0.25 0.41 0.00 0.00
4 53 40 11.9 0.20 0.31 0.00 0.00
5 63 50 (50 + sections LR7) 15.3 0.25 0.37 0.00 0.00
6 73 60 10.2 0.17 0.34 0.00 0.00
7 83 70 4.7 0.08 0.21 0.00 0.00
8 95.3 80 2.5 0.04 0.29 0.00 0.00
9 104 90.5 0.5 0.01 0.13 0.00 0.00
Control Mn >40cm 72.417 50.5 1.727 33.2 0.55 0.32 0.00 0.00
Sum Shoot 104 90.5 4.790 0.0 105.4 1.76 0.37 0.00 0.00
Sum Plant Max 108.5 5.205 0.0 105.4 1.76 0.34 0.00 0.00
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Table A.10 LR6 Pu Accumulation Data 

 

Plant Section Data MP cm section mass (g) Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
1R0 DFOB 1d (root) 17 0.0941 2744.7 2736.1 45.60 484.61 45 482
1S1 DFOB 1d 22 10 0.305 32.2 23.6 0.39 1.29 0.11 0.79
1S2 32 20 0.24 28.4 19.8 0.33 1.38 0.19 0.98
1S3 42 30 0.201 38.9 30.3 0.51 2.51 0.35 2.03
1S4 52 40 0.199 54.8 46.2 0.77 3.87 0.68 3.59
1S5 62 50 0.123 56.4 47.8 0.80 6.48 0.75 6.22
1S6 72 60 0.0572 33.9 25.3 0.42 7.37 0.40 7.11
Sum Shoot 72 60 1.1252 244.6 193 3.22 2.86 2.48 2.20
Sum Plant 60 1.2193 2989.3 2929.1 48.82 40.04 47.68 39.10

3R0 DFOB 2d 18 0.0707 4982.9 4974.3 82.91 1172.63 83 1170
3S1 DFOB 2d 23 10 0.409 37 28.4 0.47 1.16 0.19 0.66
3S2 33 20 0.28 33.2 24.6 0.41 1.46 0.27 1.07
3S3 43 30 0.275 62.6 54 0.90 3.27 0.74 2.79
3S4 53 40 0.242 106.2 97.6 1.63 6.72 1.54 6.44
3S5 63 50 0.164 87.2 78.6 1.31 7.99 1.27 7.73
Sum Shoot 63 50 1.37 326.2 283.2 4.72 3.45 4.00 2.92
Sum Plant 50 1.4407 5309.1 5257.5 87.63 60.82 86.51 60.04

5R0  DFOB 4d 17 0.1714 15369 15360.7 256.01 1493.65 256 1491
5S1 DFOB 4d 22 10 0.432 92 83.4 1.39 3.22 1.10 2.72
5S2 32 20 0.363 159.4 150.8 2.51 6.92 2.37 6.53
5S3 42 30 0.328 227.2 218.6 3.64 11.11 3.48 10.62
5S4 52 40 0.279 372.1 363.5 6.06 21.71 5.97 21.43
5S5 62 50 0.186 328.8 320.2 5.34 28.69 5.29 28.43
5S6 72 60 0.0774 258.6 250 4.17 53.83 4.15 53.57
Sum Shoot 72 60 1.6654 1438.1 1386.5 23.11 13.88 22.37 13.43
Sum Plant 77 1.8368 16807 16747.2 279.12 151.96 277.98 151.34

4R0 DTPA 1d 16.8 0.1579 2885.9 2877.3 47.96 303.70 48 302
4S1 DTPA 1d 21.8 10 0.318 33.9 25.3 0.42 1.33 0.14 0.83
4S2 31.8 20 0.222 26.5 17.9 0.30 1.34 0.16 0.95
4S3 41.8 30 0.213 31.9 23.3 0.39 1.82 0.23 1.34
4S4 51.8 40 0.183 38 29.4 0.49 2.68 0.40 2.40
4S5 61.8 50 0.0718 21 12.4 0.21 2.88 0.16 2.62
Sum Shoot 61.8 50 1.0078 151.3 108.3 1.81 1.79 1.09 1.08
Sum Plant 66.8 1.1657 3037.2 2985.6 49.76 42.69 48.64 41.73

C1R0 DTPA 2d 16.6 0.1367 5998.5 5989.9 99.83 730.30 99 728
C1S1 DTPA 2d 21.6 10 0.328 39.8 31.2 0.52 1.59 0.23 1.09
C1S2 31.6 20 0.242 32.7 24.1 0.40 1.66 0.26 1.26
C1S3 41.6 30 0.241 40.6 32 0.53 2.21 0.37 1.73
C1S4 51.6 40 0.193 58.2 49.6 0.83 4.28 0.74 4.00
C1S5 64.1 55 0.192 125 116.4 1.94 10.10 1.90 9.84
Sum Shoot 64.1 55 1.196 296.3 253.3 4.22 3.53 3.50 2.93
Sum Plant 71.6 1.3327 6294.8 6243.2 104.05 78.08 102.93 77.24

7R0 DTPA 4d 16 0.1016 9540.4 9531.8 158.86 1563.62 158 1561
7S1 DTPA 4d 21 10 0.326 24.9 16.3 0.27 0.83 -0.02 0.34
7S2 31 20 0.283 32.4 23.8 0.40 1.40 0.26 1.00
7S3 41 30 0.282 30.2 21.6 0.36 1.28 0.20 0.79
7S4 51 40 0.253 54.7 46.1 0.77 3.04 0.68 2.76
7S5 61 50 0.202 84.1 75.5 1.26 6.23 1.21 5.97
7S6 71 60 0.164 156.8 148.2 2.47 15.06 2.45 14.80
Sum Shoot 71 60 1.51 383.1 331.5 5.53 3.66 4.79 3.17
Sum Plant 76 1.6116 9923.5 9863.3 164.39 102.00 163.25 101.30

STC1R0 Control (root) 16 0.186 32.6 24 0.40 2.15 0 0
STC1S1 21 10 0.578 25.8 17.2 0.29 0.50 0.00 0.00
STC1S2 31 20 0.357 17.1 8.5 0.14 0.40 0.00 0.00
STC1S3 41 30 0.331 18.2 9.6 0.16 0.48 0.00 0.00
STC1S4 51 40 0.309 13.8 5.2 0.09 0.28 0.00 0.00
STC1*S5 (w 0.67) 61 50 0.16683 8.4 2.6 0.04 0.26 0.00 0.00
STC1*S6 (w 0.33) 63.5 55 0.08217 4.1 1.3 0.02 0.26 0.00 0.00
STC1S > 40 cm 63.5 55 0.249 12.5 3.9 0.07 0.26 0.00 0.00
Sum Shoot 63.5 55 1.824 87.4 44.4 0.74 0.41
Sum Plant 71 2.01 120 68.4 1.14 0.57
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Table A.11  LR5 Pu(DFOB) Characterization 

 

  

LR5 Plant Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
DFOB by time

Pu(DFOB) 2h (root) 17.5
(LR5) 1R0 0.162 726.6 838.8 831.7 13.9 85.6 13.47 84.32
1s1 22.5 10 0.465 680.33 69 61.9 1.03 2.22 0.60 1.54
1s2 32.5 20 0.351 719.72 62.2 55.1 0.92 2.62 0.52 1.75
1s3 42.5 30 0.38 708.9 31.1 24 0.40 1.05 0.12 0.33

1s5 57.5 50 0.362 719.72 49.9 42.8 0.71 1.97 0.52 1.34

1s7 77.5 70 0.233 716.42 34 26.9 0.45 1.92 0.35 1.33
1s8 92.5 80 0.16 716.53 19.6 12.5 0.21 1.30 0.14 0.59
1s9 102.5 90 0.0588 728.68 46.1 39 0.65 11.05 0.59 10.46
1s10 113.5 102 0.0305 726.27 46 38.9 0.65 21.26 0.61 20.44
Sum Shoot 113.5 102 2.0403 301.1 5.02 2.46 3.45 1.69
Sum Plant 2.2023 1132.8 18.88 8.57 16.92 7.68

Pu(DFOB) 4h  (6.9Bq Eq., 3.8g) (root) 17.5
4s1-1 10 0.441 723.02 49.4 42.3 95.9
4s1-2 10 0.346 698.87 54 46.9 135.5
4s2-1 20 0.226 728.34 56.4 49.3 218.1
4s2-2 20 0.336 705.7 37.5 30.4 90.5
4R0 0.308 725.87 5168.8 5161.7 86.0 279.3 85.63 278.07
4S1 total 22.5 10 0.787 103.4 96.3 1.61 2.04 1.17 1.36
4S2 total 32.5 20 0.562 93.9 86.8 1.45 2.57 1.05 1.71
4s3 42.5 30 0.549 719.56 53.1 46 0.77 1.40 0.49 0.67
4s4 52.5 40 0.534 707.05 52.5 45.4 0.76 1.42 0.52 0.77
4s5 62.5 50 0.523 700.62 59 51.9 0.87 1.65 0.67 1.02
4s6 72.5 60 0.428 685.38 39.6 32.5 0.54 1.27 0.36 0.53
4s7 82.5 70 706.65 60.7 53.6 0.89 0.80 -0.60
4s8 92.5 80 0.228 706.99 57.6 50.5 0.84 3.69 0.78 2.98
4s9 102.5 90 0.104 710.7 40.3 33.2 0.55 5.32 0.50 4.72
4s10 115.25 105.5 0.0418 722.86 42.2 35.1 0.59 14.00 0.55 13.18
Sum Shoot 115.25 105.5 3.7568 531.3 8.86 2.36 6.87 1.83
Sum Plant 4.0648 5693.0 94.88 23.34 92.50 22.76

Pu(DFOB) 8h  (7.3Bq Eq., 2.8g) (root) 16.5
2s1-1 10 0.335 683.15 69.9 62.8 187.5
2s1-2 10 0.261 678.31 61.4 54.3 208.0
2R0 0.262 722.8 2384.6 2377.5 39.6 151.2 39.23 150.00
2S1 total 21.5 10 0.596 131.3 124.2 2.07 3.47 1.64 2.79
2s2 31.5 20 0.505 660.63 79.8 72.7 1.21 2.40 0.81 1.53
2s3 41.5 30 0.505 706.2 51.3 44.2 0.74 1.46 0.46 0.73
2s4 51.5 40 0.46 677.79 55.6 48.5 0.81 1.76 0.57 1.11
2s5 61.5 50 0.372 696.71 114.5 107.4 1.79 4.81 1.59 4.18
2s6 76.5 70 0.315 715.92 121.5 114.4 1.91 6.05 1.73 5.31

2s8 93.5 84 0.0582 626.92 42.8 35.7 0.60 10.22 0.53 9.51
Sum Shoot 93.5 84 2.8112 547.1 9.12 3.24 7.32 2.61
Sum Plant 3.0732 2924.6 48.74 15.86 46.55 15.15
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Table A.11  LR5 Pu(DFOB) Characterization (Continued) 

 

 

 

  

LR5 Plant Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
Pu(DFOB) 12h (root) 16.7

3s1-1 10 0.508 718.83 47.2 40.1 78.9
3s1-2 (projected) 10 0.539 50.1 42.5 78.9
3s2-1 20 0.324 692.8 33.1 26 80.2
3s2-2 20 0.265 716.36 23.7 16.6 62.6
3s3-1 30 0.313 718.38 25.7 18.6 59.4
3s3-2 30 0.261 716.08 41.7 34.6 132.6
3R0 0.443 715.24 11791.1 11784 196.4 443.3 196.01 442.10
3S1 total 21.7 10 1.047 97.3 90.2 1.50 1.44 1.07 0.76
3S2 31.7 20 0.589 56.8 49.7 0.83 1.41 0.43 0.54
3S3 41.7 30 0.574 67.4 60.3 1.01 1.75 0.72 1.02
3s4 51.7 40 0.555 705.24 66.3 59.2 0.99 1.78 0.75 1.13
3s5 61.7 50 0.513 713.28 40.6 33.5 0.56 1.09 0.36 0.46

3s7 76.7 70 0.433 727.78 36.7 29.6 0.49 1.14 0.40 0.54
3s8 91.7 80 0.198 716.76 39.9 32.8 0.55 2.76 0.48 2.05
3s9 103.45 93.5 0.071 722.13 27.8 20.7 0.35 4.86 0.29 4.26
Sum Shoot 103.45 93.5 3.98 376.0 6.27 1.57 4.50 1.13
Sum Plant 4.423 12159.98 202.67 45.82 200.50 45.33

Pu(DFOB) 24h (root) 15.9
6s1-1 10 0.496 720.62 30.3 23.2 46.8
6s1-2 10 0.571 727.83 38.3 31.2 54.6
6s2-1 20 0.426 728.39 34 26.9 63.1
6s2-2 (projected) 20 0.311 24.8 19.6 63.1
6s3-1 30 0.368 728.9 39 31.9 86.7
6s3-2 (projected) 30 0.36 723.36 38.2 31.2 86.7
6s4-1 40 0.366 709.24 52.9 45.8 125.1
6s4-2 (projected) 40 0.307 701.8 44.4 38.4 125.1
6s5-1 50 0.268 706.93 47 39.9 148.9
6s5-2 (projected) 50 0.341 59.8 50.8 148.9
6R0 total 0.736 11454.7 11447.6 190.8 259.2 190.40 257.99
6s1 total 20.9 10 1.067 68.6 61.5 1.03 0.96 0.59 0.28
6S2 total 30.9 20 0.737 58.8 51.7 0.86 1.17 0.46 0.30
6S3 total 40.9 30 0.728 77.2 70.1 1.17 1.60 0.89 0.88
6S4 total 50.9 40 0.673 97.3 90.2 1.50 2.23 1.26 1.59
6S5 total 60.9 50 0.609 106.8 99.7 1.66 2.73 1.46 2.10
6s6 70.9 60 0.459 702.88 104.6 97.5 1.63 3.54 1.44 2.80
6s7 80.9 70 0.351 699.83 132.3 125.2 2.09 5.94 1.99 5.35
6s8 90.9 80 0.224 725.99 164.5 157.4 2.62 11.71 2.56 11.00
6s9 100.65 89.5 0.048 727.67 36.4 29.3 0.49 10.17 0.43 9.58
Sum Shoot 100.65 89.5 4.896 782.5 13.04 2.66 11.09 2.27
Sum Plant 5.632 12230.15 203.84 36.19 201.49 35.78
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Table A.12  LR5 Pu(DTPA) Characterization 

 

 

  

LR5 Plant Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
DTPA  4h a (root) 17.2

11s1-1 10 0.483 687.61 30 22.9 47.4
11s1-2 (projected) 10 0.226 21.3 14.2 62.8
11R0 17.2 0.258 675.36 3122.3 3115.2 51.9 201.2 51.53 200.00
11S1 total 22.2 10 0.709 51.3 44.2 0.74 1.04 0.30 0.36
11s2 32.2 20 0.495 692.4 35.5 28.4 0.47 0.96 0.08 0.09
11s3 42.2 30 0.542 675.83 32 24.9 0.42 0.77 0.13 0.04
11s4 52.2 40 0.506 647.43 40.5 33.4 0.56 1.10 0.32 0.46
11s5 62.2 50 0.45 645.42 26.5 19.4 0.32 0.72 0.13 0.09
11s6 72.2 60 0.325 692.91 28.8 21.7 0.36 1.11 0.18 0.37
11s7 82.2 70 0.207 716.98 21.6 14.5 0.24 1.17 0.14 0.57
11s8 92.2 80 0.0828 719.22 48.2 41.1 0.69 8.27 0.62 7.56
11s9 102.7 91 0.0243 731.31 10.1 3.0 0.05 2.06 -0.01 1.46
Sum Shoot 102.7 91 3.3411 230.6 3.84 1.15 1.89 0.57
Sum Plant 3.5991 3345.79 55.76 15.49 53.42 14.84

DTPA  4h b (root) 17.7
12s1-1 10 0.454 727.22 20.2 13.1 28.9
12s1-2 10 0.497 699.21 26.1 19 38.2
12s2-1 20 0.381 710.19 25.5 18.4 48.3
12s2-2 20 0.22 694.16 20.9 13.8 62.7
12s3-1 30 0.196 716.03 13 5.9 30.1
12S3-2 (projected) 40 0.391 11.8 30.1
12s4-1 40 0.387 708.34 22.6 15.5 40.1
12S4-2 (projected) 40 0.193 7.7 40.1
12s5-1 50 0.32 723.42 20.1 13 40.6
12s5-2 (projected) 50 0.23 9.3 40.6
12R0 17.7 0.494 698.7 1995.3 1988.2 33.1 67.1 32.74 65.84
12S1 total 22.7 10 0.951 46.3 39.2 0.65 0.69 0.22 0.01
12S2 total 32.7 20 0.601 46.4 39.3 0.66 1.09 0.26 0.22
12S3 total 42.7 30 0.587 17.7 0.29 0.50 0.01 -0.22
12S4 total 52.7 40 0.58 23.2 0.39 0.67 0.15 0.02
12S5 total 62.7 50 0.55 22.3 0.37 0.68 0.17 0.05
12s6 72.7 60 0.439 691.94 33.1 26.0 0.43 0.99 0.25 0.25
12s7 82.7 70 0.318 713.9 32.5 25.4 0.42 1.33 0.33 0.73
12s8 92.7 80 0.171 719.84 18.4 11.3 0.19 1.10 0.12 0.39
12s9 104.2 93 0.052 728.73 14.2 7.1 0.12 2.28 0.06 1.68
Sum Shoot 104.2 93 4.249 211.5 3.53 0.83 1.58 0.37
Sum Plant 4.743 2199.744 36.66 7.73 34.32 7.24

DTPA  8h a (root) 16.8
8S1-1 10 0.395 723.53 31.2 24.1 61.0
8S1-2(projected) 10 0.359 21.9 61.0
8R0 16.8 0.391 720.34 419.8 412.7 6.9 17.6 6.48 16.35
8s1 total 21.8 10 0.754 31.2 24.1 0.40 0.53 -0.03 -0.15
8s2 31.8 20 0.498 713.95 43.5 36.4 0.61 1.22 0.21 0.35
8s3 41.8 30 0.502 677.96 46 38.9 0.65 1.29 0.37 0.56
8s4 51.8 40 0.481 730.64 41.8 34.7 0.58 1.20 0.34 0.56
8s5 61.8 50 0.466 704.34 49.9 42.8 0.71 1.53 0.52 0.90
8s6 71.8 60 0.375 709.63 56.2 49.1 0.82 2.18 0.64 1.44
8s7 81.8 70 0.222 729.29 48.9 41.8 0.70 3.14 0.60 2.54
8s8 93.8 84 0.088 731.82 30.5 23.4 0.39 4.43 0.33 3.72
Sum Shoot 93.8 84 3.386 291.2 4.85 1.43 2.96 0.87
Sum Plant 3.777 703.9 11.73 3.11 9.45 2.50
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 Table A.12  LR5 Pu(DTPA) Characterization (Continued)  

 

LR5 Plant Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
DTPA  8h b (root) 16.5

9s1-2 10 0.397 711.15 32.7 25.6 64.5
9s1-1 (projected) 10 0.414 34.1 26.7 64.5
9s2-2 20 0.175 729.97 26.8 19.7 112.6
9s2-1 (projected) 20 0.453 69.4 51.0 112.6
9s3-1 30 0.458 706.37 33.2 26.1 57.0
9s3-2 (projected) 30 0.16 11.6 9.1 57.0
9s4-1 40 0.41 691.43 33 25.9 63.2
9S4-2 (projected) 40 0.174 14.0 11.0 63.2
9R0 16.5 0.188 718.88 20992.5 20985.4 349.8 1860.4 349.36 1859.17
9S1 total 21.5 10 0.397 66.8 59.7 1.00 2.51 0.56 1.83
9S2 total 31.5 20 0.628 96.2 89.1 1.48 2.36 1.09 1.50
9S3 total 41.5 30 0.618 44.8 37.7 0.63 1.02 0.35 0.29
9S4 total 51.5 40 0.584 47.0 39.9 0.67 1.14 0.43 0.50
9s5 61.5 50 0.503 669.08 41.6 34.5 0.58 1.14 0.38 0.51
9s6 71.5 60 0.404 726.71 45.3 38.2 0.64 1.58 0.46 0.84
9s7 81.5 70 0.277 726.43 36.9 29.8 0.50 1.79 0.40 1.20
9s8 91.5 80 0.105 728.96 23.3 16.2 0.27 2.57 0.21 1.86
9s9 101.5 90 0.0201 729.29 22 14.9 0.25 12.35 0.19 11.76
Sum Shoot 101.5 90 3.5361 360.0 6.00 1.70 4.05 1.15
Sum Plant 3.7241 21345.38 355.76 95.53 353.41 94.90

DTPA 12h a (root) 16.7
10s1-1 10 0.487 707.72 28.2 21.1 43.3
10S1-2 (projected) 10 0.436 25.2 18.9 43.3
10s2-1 20 0.467 710.31 29.7 22.6 48.4
10S2-2 (projected) 20 0.282 17.9 13.6 48.4
10s3-1 30 0.479 714.4 29.4 22.3 46.6
10S3-2 (projected) 30 0.241 14.8 11.2 46.6
10s4-1 40 0.485 711.21 28.4 21.3 43.9
10S4-2 (projected) 40 0.182 10.7 8.0 43.9
10R0 16.7 0.384 724.59 4568.7 4561.6 76.0 198.0 75.63 196.74
10S1 total 21.7 10 0.923 53.4 46.3 0.77 0.84 0.34 0.16
10S2 total 31.7 20 0.749 47.6 40.5 0.68 0.90 0.28 0.04
10S3 total 41.7 30 0.72 44.2 37.1 0.62 0.86 0.34 0.13
10S4  total 51.7 40 0.667 39.1 32.0 0.53 0.80 0.29 0.16
10s5 61.7 50 0.532 644.17 40.3 33.2 0.55 1.04 0.36 0.41
10s6 71.7 60 0.432 618.6 57.4 50.3 0.84 1.94 0.66 1.20
10s7 81.7 70 0.303 680.39 37.3 30.2 0.50 1.66 0.41 1.06
10s8 91.7 80 0.128 716.98 19.1 12.0 0.20 1.56 0.14 0.85
10s9 103.7 94 0.0717 724.98 12.1 5.0 0.08 1.16 0.03 0.57
Sum Shoot 103.7 94 4.5257 286.6 4.78 1.06 2.83 0.63
Sum Plant 4.9097 4848.231 80.80 16.46 78.46 15.98

DTPA 12h b (root) 16.2
7s1-1 10 0.365 728.68 40.1 33 90.4
7s1-2 (projected) 10 0.209 23.0 18.9 90.4
7R0 16.2 0.262 713.62 24863.1 24856 414.3 1581.2 413.87 1579.93
7S1 total 21.2 10 0.574 63.1 56.0 0.93 1.62 0.50 0.95
7s2 31.2 20 0.385 717.99 41.9 34.8 0.58 1.51 0.18 0.64
7s3 41.2 30 0.401 707.44 41.2 34.1 0.57 1.42 0.29 0.69
7s4 51.2 40 0.376 727.39 37.3 30.2 0.50 1.34 0.27 0.70
7s5 61.2 50 0.329 691.43 36.6 29.5 0.49 1.49 0.29 0.86
7s6 71.2 60 0.283 730.53 35.5 28.4 0.47 1.67 0.29 0.93
7s7 81.2 70 0.203 728.68 37.7 30.6 0.51 2.51 0.41 1.92
7s8 91.2 80 0.0927 728.62 28.7 21.6 0.36 3.88 0.30 3.17
7s9 101.95 91.5 0.0311 730.13 23.4 16.3 0.27 8.74 0.22 8.14
Sum Shoot 101.95 91.5 2.6748 281.5 4.69 1.75 2.74 1.03
Sum Plant 2.9368 25137.46 418.96 142.66 416.61 141.86
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Table A.13  LR4, LR5, and LR6 Control Data 

 

 

Control Data MP cm section mass (g) SQPE Pu cpm net cpm Bq & C Bq/g & C Bq Bq/g
Control (LR5) (root) 17

5S1-1 10 0.336 707.27 19 11.9 0.20 0.59
5S1-2 10 0.401 681.82 21.9 14.8 0.25 0.62
5R0 17 0.318 724.25 30.8 23.7 0.40 1.24
5 S1 total 22 10 0.737 40.9 26.7 0.45 0.60
5S2 32 20 0.46 669.78 31 23.9 0.40 0.87
5S3 42 30 0.424 698.75 23.5 16.4 0.27 0.64
5S4 52 40 0.395 689.15 21.6 14.5 0.24 0.61
5S5 62 50 0.325 689.55 18.1 11 0.18 0.56
5S6 72 60 0.208 716.59 14.9 7.8 0.13 0.63
5S7 82 70 0.102 717.37 10.5 3.4 0.06 0.56
5S8 93 82 0.026 728.23 9.3 2.2 0.04 1.41
Sum Shoot 93 82 2.677 105.9 1.77 0.66
Sum Plant

Control (LR4) (root) 15.3
LR4 Control 10S1 20.3 10 0.538 705.92 32.4 25.3 0.42 0.78
Missing 10S2
10S3 40.3 30 0.349 698.07 24.4 17.3 0.29 0.83
10S4 50.3 40 0.346 697.28 21.2 14.1 0.24 0.68
10S5 60.3 50 0.305 684.06 19.9 12.8 0.21 0.70
10S6 70.3 60 0.281 676.12 21 13.9 0.23 0.82
10S7 80.3 70 0.225 666.16 15.4 8.3 0.14 0.61
10S8 90.3 80 0.155 691.94 12.6 5.5 0.09 0.59
10S9 100.3 90 0.095 703.67 10.4 3.3 0.06 0.58
10S10 112.3 104 0.045 717.26 11.2 4.1 0.07 1.52
Sum 112.3 104 2.339 79.3 1.32 0.57

Mean Control 4, 5, & 6 29 d mass (g) SQPE Pu cpm net cpm Bq Bq/g
5R0 0.318 724.25 0.40 1.24
S1 21.77 0.638 0.43 0.68
S2 LR5 only 32.50 0.460 0.40 0.87
S3 41.77 0.387 0.28 0.73
S4 51.77 0.371 0.24 0.64
S5 61.77 0.315 0.20 0.63
S6 71.77 0.245 0.18 0.74
S7 81.77 0.164 0.10 0.60
S8 92.10 0.091 0.06 0.71
S9 103.28 0.095 0.06 0.60
S10 LR4 only 112.30 0.045 0.04 0.81
Sum 112.30

Control (LR6) (root) 18 29 d Control Conc
Sample ID MP cm section mass (g) SQPE Pu cpm net cpm Bq Bq/g aliquot LR6 MP cm
1.0 mL NS 726.83 8.6 10 cm eq
29 d Control Conc Bq/g (root)
6S1 20.5 5 0.717 699.38 23.4 14.8 0.25 0.34 1.000 0.31 23
6S2* 25.5 10 0.537 725.26 16.6 9.1 0.15 0.28 0.875 0.37 33
6S3 30.5 15 0.455 715.86 18.9 10.3 0.17 0.38 1.000 0.27 43
6S4* 35.5 20 0.446 726.15 17.1 9.7 0.16 0.36 0.875 0.28 53
6S5 40.5 25 0.459 713.79 18.6 10.0 0.17 0.36 1.000 0.23 63
6S6* 45.5 30 0.446 730.86 13.5 5.6 0.09 0.21 0.875 0.22 73
6S7 50.5 35 0.421 707.1 16.8 8.2 0.14 0.32 1.000 0.16 83
6S8* 55.5 40 0.378 709.58 13.3 5.4 0.09 0.24 0.875 0.12 93
6S9 60.5 45 0.376 699.88 14.5 5.9 0.10 0.26 1.000 -0.02 106.25
6S10* 65.5 50 0.357 704.4 12.5 4.5 0.07 0.21 0.875
6S11* 73 60 0.519 711.88 14.7 7.0 0.12 0.22 0.875
6S12* 83 70 0.412 725.09 12 3.9 0.06 0.16 0.875
6S13 93 80 0.236 714.85 10.3 1.7 0.03 0.12 1.000
6S14 106.25 96.5 0.0726 726.99 8.5 -0.1 0.00 -0.02 1.000
Sum 106.25 96.5 5.8316 95.9 1.60 0.27
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Figure A.3  23 d Control Plant Shoot Concentration Data 

  

Figure A.4  23, 28, and 29 d Control Plant Shoot Concentration Data 
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Appendix B. Plant Water and Transpiration Data 

 

Table B.1  LR9 Plant Water and Transpiration Data 

 

  

Top solution watering volumes (all plants)
Date 10-Sep 12-Sep 14-Sep 16-Sep 18-Sep 21-Sep 23-Sep Total mL
Vol (mL) 50 50 60 60 70 80 100 470

Vol (mL) for each plant from reservoir
Exper. Group Control
Plant Number 1 2 3 4 5 7 7 8 11 18 19 20 21 C1 17 14 9 15 12 16 10
Plant ID 10d A 10d B 10d C 7d A 7d B 7d C 3d A 3d B 3d C PuFe A PuFe B PuFe C 0 Fe A 0 Fe B 10 Fe A 10 Fe B T - A T - B T + A T + B Control
Plant FW (g) 27.5 29.0 17.0 19.0 26.5 26.5 21.5 22.5 13.0 28.5 26.0 32.0 13.5 10.5 8.0 10.5 37.0 38.0 34.0 55.0 39.5
Shoot cm 68 73 64 62 74 70 60 65 68 91 83 89 64 74 56 66 95 96 86 110 76
Exposure Date 14-Sep 14-Sep 14-Sep 17-Sep 17-Sep 17-Sep 21-Sep 21-Sep 21-Sep 22-Sep 22-Sep 22-Sep 22-Sep 22-Sep 22-Sep 22-Sep 23-Sep 23-Sep 23-Sep 23-Sep 23-Sep
Exposure Time 18:45 18:45 18:45 17:30 17:30 17:30 16:30 16:30 16:30 15:45 15:45 15:45 14:45 14:45 14:45 14:45 11:00 11:00 11:00 11:00 11:00
11-Sep 26 4 6 24 39 7 2 22 27 7 19 19 20 30 16 23 6 6 17 13 6
14-Sep 24 82 38 46 55 32 26 18 30 22 34 63 36 31 12 33 28 37 42 51 46
17-Sep 87 112 75 61 116 82 71 72 31 59 84 112 46 26 13 26 81 100 70 108 78
21-Sep 223 266 164 140 258 279 230 181 98 188 170 215 147 57 22 81 242 244 117 201 128
22-Sep 56 32 56 25 8 2 18
9/24/2009 '23 d old 180 261 57 105 270 212 130 162 91 77 102 98 52 30 18 49
25-Sep 211 177 170 294 172
9/26/2009 '25 d old 156 177 79 156 128

Subtotal (n=21) 540 725 340 376 738 612 459 455 277 409 441 563 326 182 83 230 724 741 495 823 558
& Top 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470 470
Sum Total 1010 1195 810 846 1208 1082 929 925 747 879 911 1033 796 652 553 700 1194 1211 965 1293 1028
Difference Mean 118 303 82 46 316 190 37 33 145 13 19 140 96 240 339 192 56 73 173 155 110
Percent Diff 28% 72% -19% -11% 75% 45% 9% 8% -34% -3% 4% 33% -23% -57% -80% -46% 8% 11% -26% 23% -16%
Rank (nearest Mn) 8 14 6 5 15 11 4 3 10 1 2 9 7 13 16 12 1 2 5 4 3
Condition

Total Transpiration Figure
LR9 23 d plants Mean min max 1 SD  1SD/Mn Mean min max 1 SD  1SD/Mn LR9 25 d plants Mean min max 1 SD  1SD/Mn
Reservoir total 422 83 738 185 44% 319 83 563 166 52% Reservoir total 668 495 823 136 20%

Transpiration

 Smaller Plants 37000 Bq/plant

Root/shoot 10 d Root/shoot 7 d Root/shoot 3 d Pu Fe Dual Pu with 0 Fe, 10 Fe

25 d old plants: 9,10,12,15,16Pu(DFOB) ~8284 Bq/plant 1:1 Pu:Fe Activity
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Table B.2  LR8 Plant Water and Transpiration Data 

 

 

Top solution watering volumes (all plants)
Date 13-Jul 15-Jul 17-Jul 19-Jul 21-Jul 23-Jul 25-Jul 27-Jul Total mL
Vol (mL) 50 50 60 60 80 80 80 90 550

Vol (mL) for each plant from reservoir

Exper. Group
Plant Number 10 13 15 9 18 20 2 19 21 14 16 12 11 17
Plant FW (g) 42.0 34.5 34.0 33.0 29.0 40.0 48.5 20.5 38.0 43.5 46.5 42.5 46.5 46.5
Shoot cm 87 78 90 90 86 91 76 74.5 95
Date _ Start Times 10:33 10:34 10:36 10:40 10:42 10:44 10:12 10:14 12:27 12:27 12:27 12:27 12:27 12:27
17-Jul 32 17 23 43 129 68 33 32 167 95 107 69 126 29
20-Jul 71 42 57 45 75 83 64 60 152 139 126 96 139 69
23-Jul 121 90 162 95 120 156 87 31 206 213 215 230 228 197
27-Jul 235 255 340 221 182 291 373 211 366 446 440 362 444 435
29-Jul 213 135 128 152 156 213 237 105 213 225 300 217 240 281
Use during 24 h * 248 147 136 164 184 251 139 54 NR NR NR NR NR 300

Subtotal (n=16) 672 539 710 556 662 811 794 439 1104 1118 1188 974 1177 1011
& Top 550 550 550 550 550 550 550 550 550 550 550 550 550 550
Sum Total 1222 1089 1260 1106 1212 1361 1344 989 1654 1668 1738 1524 1727 1561
Difference Mean 168 301 130 284 178 29 46 401 264 278 348 134 337 171
Percent Diff -20% -36% -15% -34% -21% -3% -5% -48% 31% 33% 41% 16% 40% 20%
Rank (nearest Mn) 5 11 3 10 7 1 2 14 8 9 13 4 12 6
Plant ID 0X Fe A 0X Fe B 0X Fe C 10X Fe A 10X Fe B 10X Fe C PuFe A PuFe B 5 min 10 min 20 min 40 min 80 min Control
Treatment Group 0 Fe in GNS 1.07 E-4 M Fe in GNS 1:1 Pu:Fe Activity 2 MicroCurie /plant No Fe, Pu

LR8 23 d plants Mean min max 1 SD  1SD/Mn
Reservoir total 840 439 1188 254 30.29%
* During exposure lights were the entire 24 h = 1440 minutes.  NR - Not Recorded
10X Fe C had second root .   All 10X Fe solutions slight orange tinge on preparation Fe & DFOB, All Bright Yellow after exposure to plants.

Transpiration During Exposure
Trans while exposed 248 147 136 164 184 251 139 54 Mean min max 1 SD  1SD/Mn
Plant FW mass 42.0 34.5 34.0 33.0 29.0 40.0 48.5 20.5 188 136 251 50 27%

24 h Pu, No-Fe 24 h Pu, 10X-Fe 24 h Pu +59Fe

24 h Pu, No-Fe 24 h Pu, 10X-Fe 24 h Pu +59Fe 59Fe Velocity (No Pu)

Abnormal Growth
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Table B.3  LR7 Plant Water and Transpiration Data 

 

 

 

Top solution watering volumes (all plants)
Date 3-May 5-May 7-May 9-Mar 11-Mar 13-May 15-May 17-May Total mL
Vol (mL) 50 50 60 60 60 70 70 80 500

Vol (mL) for each plant from reservoir short Big Ctl short
Plant Number 10* 13 12 4 6 1 15 8* 11 7 2 9* 3 18 5 19*
Plant FW (g) 40.0 45.5 23.5 43.0 40.0 43.0 43.0 48.5 33.0 31.0 38.5 31.5 47.5 19.5 47.5 47.5
Sht Length (cm) 89 92 83 85 95 63 95 72 83.5 NA
Date (ID) Control 1Control 2 10A 10B 20A 20B 40A 40B 120A 120B 360A 360B 1400A 1400B Alternate Alternate
6-May 57 13 7 29 74 33 27 24 53 38 114 23 29 43 69 10
8-May 45 16 11 33 49 25 40 38 37 39 52 18 56 32 64 19
11-May 173 88 70 146 105 108 196 243 123 99 205 100 179 94 238 111
14-May 187 225 160 228 183 171 208 254 139 127 231 121 286 89 267 158
17-May 248 272 356 355 310 270 364 315 144 155 325 241 391 138 374 176
18-May 130 129 55 168 127 144 114 167 74 65 129 50 118 16 138 56

12 8 68 28 142 35
Subtotal (n=16) 840 743 659 959 848 751 949 1041 570 523 1056 553 1059 412 1150 530
& Top 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500 500
Sum Total 1340 1243 1159 1459 1348 1251 1449 1541 1070 1023 1556 1053 1559 912 1650 1030
Difference Mean 50 47 131 169 58 39 159 251 220 267 266 237 269 378 360 260
Percent Diff 6.3% -6.0% -16.6% 21.4% 7.3% -5.0% 20.1% 31.7% -27.9% -33.8% 33.6% -30.0% 34.0% -47.9% 45.5% -32.9%
Rank (near Mn) 3 2 5 7 4 1 6 10 8 13 12 9 14 16 15 11
Plant ID Control 1Control 2 10A 10B 20A 20B 40A 40B 120A 120B 360A 360B 1400A 1400B Alternate Alternate

LR7 23 d plants Mean min max 1 SD  1SD/Mn LR7 Transpiration During Exposure Is Not Comparable Due to the Wide Variation In Time
Reservoir total 790 412 1150 231.32 29%

LR7 Transpiration by Mass Measurement Transpiration Rates (g/d) Water Loss Rates (through air portal) (g/d) Loss Fraction
Plant ID 10* 13 Time 10* 13 Mn Rate ID Loss 1 Loss 2 0.00195
5/18/09 10:20 1491.9 1462.6 0 mass rate mass rate 239.8 5/15/09 14:15 625.0 632.6
5/19/09 10:20 1266.2 1208.8 0:00:00 225.7 225.7 253.8 253.8 RPD 5/17/09 11:54 622.8 631.1

5.9% Time (d) Loss 1 Loss 2
0 mass rate mass rate Mn Rate RPD

1.90 2.2 1.2 1.5 0.8 1.0 18.9%
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Table B.4  LR6 Plant Water and Transpiration Data 

 

 

 

 

Top solution watering volumes (all plants)
Date 28-Feb 1-Mar 3-Mar 7-Mar 9-Mar 11-Mar Total mL 13-Mar Total mL
Vol (mL) 50 50 60 70 70 80 380 80 460

Vol (mL) for each plant from reservoir
Vel Cntl

Plant FW (g) 10.5 11 17 10.5 12.5 14.5 51 47.5
Date Control1 ST 10 min ST 20 min ST 40 min ST 80 min 1d 2d 4d 1d 2d 4d #6 C2
4-Mar 27 62 53 18 24 12 9 11 6 7 12 27 22
7-Mar 43 47 55 34 36 15 26 37 11 28 40 91 66
10-Mar 117 115 67 107 136 75 83 41 55 66 23 142 166
11-Mar 25 31
12-Mar 77 92 55 61 112 16 64 159 22 64 136
13-Mar 202 347
16-Mar 231 269
Subtotal 264 316 230 220 308 143 182 248 125 165 211 693 870
& Top 380 380 380 380 380 380 380 380 380 380 380 460 460
Sum Total 644 696 610 600 688 523 562 628 505 545 591 1153 1330

LR6 23 d plants Mean min max 1 SD SD/Mn (%)23 d plant Mean min max 1 SD SD/Mn (%)
Reservoir total 219 125 316 62.67 29% FW (g) 12.7 10.5 17.0 2.62 21%

LR6 23d : LR5 28d solution 0.309 total water 0.454 FW 0.363

LR5 Transpiration by Mass Measurement Transpiration Rates (g/d)
Plant ID 2 5 Time 2 5 Mn Rate
2/4/09 9:35 1524.5 1591.6 0 mass rate mass rate 137.9
2/4/09 17:16 1475.3 1554.1 7:41:00 49.2 153.7 37.5 117.1 RPD
2/5/09 9:21 1470.7 23:46:00 - 120.9 122.1 11.5%

29 d Control

28 d ControlDFOB-Pu DFOB-Pu DTPA-Pu
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Table B.5  LR5 Plant Water and Transpiration Data 

 

 

 

 

 

Top solution watering volumes (all plants)
Date 18-Jan 19-Jan 21-Jan 23-Jan 26-Jan 28-Jan 30-Jan 2-Feb Total mL
Vol (mL) 50 50 50 50 80 70 70 80 500

Vol (mL) for each plant from reservoir

Date 1 2 3 4 5 6 7 8 9 10 11 12
19-Jan 73 68 76 78 6 57 55 45 53 15 43 8
22-Jan 37 62 80 79 53 77 32 57 72 51 45 40
26-Jan 82 96 122 172 105 137 43 80 132 157 78 108
29-Jan 49 112 170 195 133 149 77 131 117 232 140 132
2-Feb 132 191 353 310 251 271 178 247 236 303 186 308

2/4/2009 * 80 78 142 112 110 141 83 72 120 121 92 167
Subtotal 453 607 943 946 658 832 468 632 730 879 584 763
& Top 500 500 500 500 500 500 500 500 500 500 500 500
Sum Total 953 1107 1443 1446 1158 1332 968 1132 1230 1379 1084 1263

LR5 Mean min max 1 SD SD/Mn (%)
Reservior total 708 453 946 176.96 25%

Plant FW (g) 26.5 29 40.5 40.5 27.5 43.5 28 30 38.5 40 32.5 39
Shoot length (cm) 102 84 93.5 105.5 82 89.5 91.5 84 90 94 91 93

Plant FW (g) Mean min max 1 SD SD/Mn (%) Shoot length (cm) Mean min max 1 SD SD/Mn (%)
35 27 44 6.25 18% 92 82 106 6.93 7.6%

DFOB-Pu DTPA-Pu
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Appendix C. Corn Xylem Dimensional Data 

 

Table C.1  First Corn Xylem Area Data from LR6 
 

 
 
 

S Thompson LR6 Corn Experimental data

Corn Xylem area to Total Area measurement with Ian Stocks, Clemson Entomology

samples n
(mm2) 9

0.037 mean
0.031 0.0357
0.037 1 stdev
0.031 0.0073
0.038 area SD
0.045 20.5%
0.037 xylem/bundle
0.044 0.3

0.021 xylem mm2 

0.0107

Bundles xylem area Total Area
55 0.5885 32.32

Xylem/Total
0.0182
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Table C.2  Second Corn Xylem Area Data from LR7 
 

S Thompson 5/28/2009 LR7 Corn xylem dimension measurement data

Plant Section Diam (cm) Area (cm2) Vascular Bundle Dimensions and Stats
Control 1 20 cm ND 1.016 C1 at 20 cm Area (mm2) Proportion bundle area

5cm ND ND n=7 20 per 0.25 (mm2)
root top 0.1434 0.016151 0.019 80 0.019 mean

root bot mn 0.0812 0.005178 0.023 Bundle Area 0.006 std dev
bottom 1 0.0904 0.022 1.5164 0.3163 1 sd/mn
bottom 2 0.072 0.025

0.009
Transpire (cc/h) mass t0 1491.6 0.022

24 mass t24 1266.2 0.013
net 225.4 Mean 0.019

Min 0.009
Max 0.025
Sum 0.133

Std.Dev. 0.006

Control 2 20 cm ND 0.767 C2 at 5 cm Area (mm2) Proportion bundle area
5cm ND 1.078 n=8 30 per 0.25 (mm2)

root top 0.1215 0.011594 0.042 120 0.041 mean
root bot mn 0.085 0.005675 0.042 Bundle Area 0.008 std dev

bottom 1 0.0794 bottom 0.046 4.9391 0.1913 1 sd/mn
bottom 2 0.0906 bottom 0.049

0.025

Transpire (cc/h) mass t0 1462.6 0.037

24 mass t24 1208.8 0.041

net 253.8 0.049

Mean 0.041

Min 0.025

Max 0.049

Sum 0.329

Std.Dev. 0.008

C2 at 20 cm Proportion
21 per 0.25
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Appendix D.  ICP-MS Data 

 

Table D.1  ICP-MS of Dual Labeled Pu and Fe  

 

 

ID mass (g) cm 24Mg 39K 44Ca 56Fe 96Mo 98Mo mass fraction 24Mg f 39K f 44Ca f 56Fe f 96Mo f

10dA R0    10/14/2009 6:16:55 PM0.384 1.11E+07 1.85E+07 6.03E+07 1.22E+05 1.04E+04 1.04E+04 39.1% 74.8% 16.7% 84.2% 10.5% 35.1%

10dA RS    10/14/2009 6:21:07 PM0.0353 1.01E+06 9.44E+06 1.86E+06 2.55E+05 8.12E+03 1.01E+04 3.6% 6.8% 8.5% 2.6% 21.9% 27.6%

10dA AR1    10/14/2009 6:25:19 PM0.277 1.32E+06 4.02E+07 4.55E+06 3.38E+05 4.22E+03 4.45E+03 28.2% 8.9% 36.4% 6.4% 29.0% 14.3%

10dA AR2    10/14/2009 6:29:32 PM0.286 1.40E+06 4.24E+07 4.89E+06 4.49E+05 6.79E+03 6.90E+03 29.1% 9.4% 38.3% 6.8% 38.6% 23.0%

Σ root 0.98 1.48E+07 1.11E+08 7.16E+07 1.16E+06 2.95E+04 3.19E+04 100.0% 100.0% 100.0% 100.0% 100.0% 100.0%

PFA R0    10/14/2009 6:42:08 PM0.29 9.91E+04 2.80E+05 4.02E+05 2.88E+03 5.03E+01 5.74E+01 33.4%

PFA AR1    10/14/2009 6:46:19 PM0.291 2.75E+03 2.20E+05 1.06E+04 3.45E+02 5.13E+01 2.92E+01 33.6%

PFA AR2    10/14/2009 6:50:30 PM0.286 1.28E+06 4.42E+07 4.62E+06 3.59E+05 6.62E+03 6.79E+03 33.0%

Σ root 0.87 1.38E+06 4.47E+07 5.03E+06 3.63E+05 6.72E+03 6.87E+03 100.0%

PFA S1    10/14/2009 6:54:41 PM0.538 5 3.77E+06 7.00E+07 7.60E+06 5.33E+04 2.49E+03 2.50E+03 1.5164 1.3751 1.4191 1.0584 0.4772 0.3868

PFA S2    10/14/2009 6:58:53 PM0.474 15 2.36E+06 7.50E+07 4.39E+06 5.50E+04 2.75E+03 2.73E+03 1.3360 0.8596 1.5192 0.6115 0.4923 0.4270

PFA S3    10/14/2009 7:03:05 PM0.499 25 2.38E+06 5.66E+07 4.66E+06 7.16E+04 3.64E+03 3.71E+03 1.4065 0.8677 1.1462 0.6493 0.6411 0.5647

PFA S4    10/14/2009 7:15:42 PM0.467 35 2.34E+06 5.07E+07 5.37E+06 9.43E+04 4.41E+03 4.47E+03 1.3163 0.8514 1.0281 0.7480 0.8437 0.6837

PFA S5    10/14/2009 7:19:55 PM0.43 45 2.73E+06 4.28E+07 6.44E+06 1.31E+05 5.93E+03 5.99E+03 1.2120 0.9950 0.8682 0.8972 1.1735 0.9189

PFA S6    10/14/2009 7:24:08 PM0.356 55 2.23E+06 3.79E+07 6.71E+06 1.36E+05 6.93E+03 7.01E+03 1.0034 0.8126 0.7686 0.9335 1.2125 1.0747

PFA S7    10/14/2009 7:28:22 PM0.233 65 2.33E+06 3.76E+07 6.31E+06 1.12E+05 7.48E+03 7.70E+03 0.6567 0.8474 0.7623 0.8784 0.9981 1.1608

PFA S8    10/14/2009 7:32:36 PM0.139 75 2.97E+06 3.54E+07 8.93E+06 1.40E+05 8.98E+03 9.39E+03 0.3918 1.0834 0.7178 1.2430 1.2528 1.3924

PFA S9    10/14/2009 7:36:50 PM0.0571 84.5 3.59E+06 3.80E+07 1.42E+07 2.13E+05 1.54E+04 1.64E+04 0.1609 1.3078 0.7706 1.9806 1.9088 2.3911

Σ Shoot 3.19 2.47E+07 4.44E+08 6.46E+07 1.01E+06 5.80E+04 5.99E+04 1.0000 9.0000 9.0000 9.0000 9.0000 9.0000

Mean 9 2.74E+06 4.93E+07 7.18E+06 1.12E+05 6.45E+03 6.66E+03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table D.1  ICP-MS of Dual Labeled Pu and Fe (Continued) 

 

ID mass (g) cm 24Mg 39K 44Ca 56Fe 96Mo 98Mo mass fraction 24Mg f 39K f 44Ca f 56Fe f 96Mo f

PFB R0    10/14/2009 7:41:03 PM0.221 5.03E+06 4.76E+07 2.15E+07 4.02E+05 4.91E+03 5.61E+03 25.9%

PFB AR1    10/14/2009 7:45:14 PM0.353 1.26E+06 4.27E+07 5.04E+06 1.51E+05 3.63E+03 3.80E+03 41.3%

PFB AR2    10/14/2009 7:49:26 PM0.28 1.35E+06 3.95E+07 6.01E+06 3.47E+05 5.70E+03 5.88E+03 32.8%

Σ root 0.85 7.63E+06 1.30E+08 3.25E+07 9.00E+05 1.42E+04 1.53E+04 100.0%

PFB S1    10/14/2009 7:53:38 PM0.587 5 2.14E+06 6.64E+07 7.14E+06 4.65E+04 2.34E+03 2.31E+03 1.6754 1.3411 1.4080 1.0466 0.3504 0.3800

PFB S2    10/14/2009 7:57:49 PM0.495 15 1.62E+06 6.25E+07 6.20E+06 5.08E+04 2.54E+03 2.51E+03 1.4128 1.0132 1.3237 0.9094 0.3829 0.4131

PFB S3    10/14/2009 8:02:01 PM0.458 25 1.24E+06 5.48E+07 5.08E+06 8.04E+04 3.36E+03 3.35E+03 1.3072 0.7778 1.1619 0.7451 0.6055 0.5455

PFB S4    10/14/2009 8:14:37 PM0.417 35 1.42E+06 4.94E+07 6.52E+06 1.25E+05 5.39E+03 5.47E+03 1.1902 0.8854 1.0469 0.9561 0.9402 0.8764

PFB S5    10/14/2009 8:18:49 PM0.337 45 1.38E+06 4.23E+07 5.39E+06 1.30E+05 5.69E+03 5.77E+03 0.9619 0.8611 0.8974 0.7908 0.9808 0.9252

PFB S6    10/14/2009 8:23:02 PM0.273 55 1.31E+06 3.29E+07 5.99E+06 1.29E+05 6.35E+03 6.51E+03 0.7792 0.8206 0.6968 0.8774 0.9706 1.0325

PFB S7    10/14/2009 8:27:15 PM0.168 65 1.61E+06 3.54E+07 8.06E+06 2.79E+05 1.02E+04 1.04E+04 0.4795 1.0042 0.7509 1.1814 2.0978 1.6517

PFB S8    10/14/2009 8:31:29 PM0.0679 76.5 2.07E+06 3.37E+07 1.02E+07 2.22E+05 1.34E+04 1.41E+04 0.1938 1.2966 0.7144 1.4933 1.6717 2.1755

Σ Shoot 2.80 1.28E+07 3.78E+08 5.46E+07 1.06E+06 4.92E+04 5.04E+04 1.0000 8.0000 8.0000 8.0000 8.0000 8.0000

Mean 8 1.60E+06 4.72E+07 6.82E+06 1.33E+05 6.15E+03 6.30E+03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

ID mass (g) cm 24Mg 39K 44Ca 56Fe 96Mo 98Mo mass fraction 24Mg f 39K f 44Ca f 56Fe f 96Mo f

PFC R0    10/14/2009 8:44:05 PM0.287 5.29E+06 4.21E+07 2.78E+07 4.39E+05 3.07E+03 3.60E+03 29.3%

PFC AR1    10/14/2009 8:48:16 PM0.395 1.34E+06 3.66E+07 5.57E+06 5.14E+05 5.06E+03 5.14E+03 40.3%

PFC AR2    10/14/2009 8:52:29 PM0.297 1.49E+06 3.46E+07 6.14E+06 3.00E+05 4.56E+03 4.68E+03 30.3%

Σ root 0.98 8.12E+06 1.13E+08 3.96E+07 1.25E+06 1.27E+04 1.34E+04 100.0%

PFC S1 0.719 5 2.85E+06 6.66E+07 7.43E+06 7.24E+04 2.60E+03 2.47E+03 1.9412 1.8199 1.2634 1.1491 0.4188 0.4273

PFC S2    10/14/2009 9:00:52 PM0.482 15 1.69E+06 7.97E+07 5.46E+06 6.40E+04 2.42E+03 2.26E+03 1.3013 1.0766 1.5118 0.8445 0.3701 0.3987

PFC S3    10/14/2009 9:05:04 PM0.463 25 1.56E+06 6.62E+07 4.82E+06 7.15E+04 2.67E+03 2.53E+03 1.2500 0.9943 1.2566 0.7452 0.4136 0.4389

PFC S4    10/14/2009 9:17:39 PM0.391 35 1.35E+06 5.76E+07 4.90E+06 1.06E+05 3.35E+03 3.42E+03 1.0556 0.8615 1.0934 0.7571 0.6152 0.5513

PFC S5    10/14/2009 9:21:52 PM0.446 45 1.32E+06 5.10E+07 5.75E+06 1.60E+05 4.67E+03 4.69E+03 1.2041 0.8435 0.9675 0.8888 0.9263 0.7681

PFC S6    10/14/2009 9:26:05 PM0.362 55 1.23E+06 4.03E+07 5.84E+06 2.02E+05 5.89E+03 5.91E+03 0.9774 0.7856 0.7648 0.9027 1.1710 0.9686

PFC S7    10/14/2009 9:30:18 PM0.266 65 1.32E+06 3.76E+07 6.97E+06 2.38E+05 7.50E+03 7.65E+03 0.7182 0.8438 0.7141 1.0785 1.3752 1.2347

PFC S8    10/14/2009 9:34:32 PM0.157 75 1.48E+06 3.85E+07 9.49E+06 2.59E+05 1.02E+04 1.04E+04 0.4239 0.9474 0.7310 1.4678 1.5014 1.6727

PFC S9    10/14/2009 9:38:46 PM0.0475 85.5 1.29E+06 3.68E+07 7.54E+06 3.82E+05 1.54E+04 1.64E+04 0.1282 0.8273 0.6975 1.1663 2.2085 2.5396

Σ Shoot 3.33 1.41E+07 4.74E+08 5.82E+07 1.56E+06 5.47E+04 5.58E+04 1.0000 9.0000 9.0000 9.0000 9.0000 9.0000

Mean 9 1.57E+06 5.27E+07 6.47E+06 1.73E+05 6.08E+03 6.20E+03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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Table D.1  ICP-MS of Dual Labeled Pu and Fe (Continued) 

 

 

  

Mean PuFe LR9 Data

ID mass (g) cm 24Mg 39K 44Ca 56Fe 96Mo 98Mo mass fraction 24Mg f 39K f 44Ca f 56Fe f 96Mo f

PuFe R0 0.266

PuFe AR1 0.346

PuFe AR2 0.297

Σ root

PuFe S1 0.615 5.0 2.92E+06 6.77E+07 7.39E+06 5.74E+04 2.48E+03 2.42E+03 1.7110 1.5121 1.3635 1.0847 0.4155 0.3980

PuFe S2 0.482 15.0 1.69E+06 7.97E+07 5.46E+06 6.40E+04 2.42E+03 2.26E+03 1.3013 1.0766 1.5118 0.8445 0.3701 0.3987

PuFe S3 0.473 25.0 1.73E+06 5.92E+07 4.85E+06 7.45E+04 3.22E+03 3.20E+03 1.3212 0.8799 1.1882 0.7132 0.5534 0.5164

PuFe S4 0.425 35.0 1.70E+06 5.26E+07 5.60E+06 1.08E+05 4.38E+03 4.45E+03 1.1874 0.8661 1.0561 0.8204 0.7997 0.7038

PuFe S5 0.404 45.0 1.81E+06 4.54E+07 5.86E+06 1.40E+05 5.43E+03 5.49E+03 1.1260 0.8999 0.9110 0.8589 1.0268 0.8708

PuFe S6 0.330 55.0 1.59E+06 3.70E+07 6.18E+06 1.56E+05 6.39E+03 6.48E+03 0.9200 0.8063 0.7434 0.9045 1.1181 1.0253

PuFe S7 0.222 65.0 1.75E+06 3.69E+07 7.11E+06 2.09E+05 8.38E+03 8.57E+03 0.6181 0.8985 0.7424 1.0461 1.4904 1.3491

PuFe S8 0.121 75.5 2.18E+06 3.59E+07 9.54E+06 2.07E+05 1.08E+04 1.13E+04 0.3365 1.1091 0.7211 1.4014 1.4753 1.7469

PuFe S9 0.052 85.00 2.44E+06 3.74E+07 1.09E+07 2.97E+05 1.54E+04 1.64E+04 0.1446 1.0675 0.7340 1.5735 2.0586 2.4653

Σ Shoot 3.11 1.72E+07 4.32E+08 5.91E+07 1.21E+06 5.40E+04 5.54E+04 1.0000 8.6667 8.6667 8.6667 8.6667 8.6667

Mean 9 1.97E+06 4.97E+07 6.82E+06 1.39E+05 6.23E+03 6.38E+03 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Molar 7.16E-04 1.11E-02 1.34E-03 2.16E-05 5.62E-07 5.65E-07

Ratio 6.5E-02 1.0E+00 1.2E-01 1.9E-03 5.1E-05

Concentration Concentration Fraction
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Appendix E. Plant Growth and Tissue Processing Information 

 
 

Figure E.1  Transfer of the seedling from germination paper to the long root 
growing system.  The image at left shows a corn seedling that was grown for 7d 
in germination paper until the root was longer than 15 cm.  The seedling root was 
inserted into the tube under running water, and then the tube and a paper filter 
were placed at the bottom of a soil pot.  The tube was held in place while potting 
soil was placed in the pot around the tube, wetted and compressed, and filled 
nearly to the top.  While holding the seedling, the tube was withdrawn through a 
hole in the bottom of the pot.  The soil was gently packed around the seedling, 
additional soil was added at the top, the plant was watered, and the root was 
inspected prior to placing the potted plant on top of a nutrient solution container.  
If the root was broken or damaged, then the plant was discarded.  Once 
transferred, the plants were arranged under the lights and aerated continuously. 
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Figure E.2   A flow diagram showing plant tissue digestion steps for the analysis 
of P, K, Ca, Mg, Zn, Mn, Cu, Fe, S, Mo and Pu.  The digested tissue samples are 
suitable for analysis via liquid scintillation or ICP-MS.

1.  Measure → cut to length → chop finely → dry overnight @ 75 °C → record mass 

4.  Pre-digest in 

hood for 30 min 

or longer 

3.  Add 5 

mL conc. 

HNO3 

5.  Shake hard to 

solubilize plant 

tissue matrix 

2.  Transfer known mass 

sample (< 0.6 g) into 

labeled digestion tube 

6.  Place up to 10 

tubes on heating 

block at 110-120 °C 

7.  Watch carefully, 

sample may rise 

before decomposition 

8.  Shake 

and tamp to 

tube 

bottom 

9.  Place on 

block @ 125 °C 

for 90 min 

17.  Transfer to labeled vials for analysis 

10.  Remove 

and let cool a 

few minutes 

11.  Add 3 mL 30% 

H2O2 slowly, rinsing 

sides of tube down 

12.  Allow frothing 

to settle.  Place on 

block @125 C for 

1h 

13.  Repeat step 

10-12 twice or 

until colorless 

14.  Increase heat to 

150-160 °C, heat 

overnight to dryness 

15.  Removed from heat, 

let cool, add 4 mL 0.1 M 

HNO3, let sit 15 min 

16.  Rinse with 4 ml 0.1M 

HNO3, stopper and shake 

vigorously 
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