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ABSTRACT 
 
 

Today’s interconnected power system is deregulated for wholesale power 

transfers. In 1996 Federal Energy Regulatory Commission provided open access of the 

transmission network to utilities. Since then utilities are transferring power over long 

distances to bring reliable and economical electric supply to their customers. As the 

number of wholesale power transactions taking place over an interconnected system are 

increasing, system operators in control areas are forced to monitor the grid on a large 

scale to operate it reliably. Before scheduling such a large scale power transactions, it is 

necessary to make sure that such transaction will not violate system operating steady state 

security limits such as transmission line-flow limits and bus voltage limits. The ideal 

solution to this problem is to consider entire interconnected system as one system to 

monitor it. However, this solution is technically expensive if not impossible and hindered 

by confidentiality issues.  

This research aims to develop tools that help the system operators to operate the 

deregulated power grid reliably. State estimation is the tool used by today’s energy 

control centers to develop a base case of the system in real-time, which is further used to 

study the impact of disturbances and power transactions on static and dynamic security 

limits of the system. In order to monitor the deregulated power system, a wide area state 

estimator is required. In this dissertation a two-level approach to achieve such a solution 

is presented. This way, individual areas are allowed to run their own state estimator, 

without exchanging any real-time data with neighbor areas. The central coordinator then 

coordinates state estimator results available from individual areas to bring them to a 
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global reference. This dissertation also presents the application of measurements from 

GPS synchronized phasor measurement units to improve accuracy of two-level state 

estimator.  

In addition to monitoring, system operators also need to determine that if they can 

allow the scheduled transaction to take place. This requires them to determine transfer 

capability of the system in real-time. This dissertation presents new iterative transfer 

capability algorithm which can be used in real-time. As an interconnected system is 

deregulated and the power transactions are taking place through many control areas, a 

system wide solution of transfer capability is required. This dissertation presents a two-

level framework similar to one used for state estimation to achieve multi-area transfer 

capability solution.  In general, the research work carried out would help in improving 

power system reliability and operation.   
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CHAPTER ONE 
 

INTRODUCTION 
 

1.1 Motivation 

The electric power industry is undergoing multiple changes and restructuring 

towards deregulation. As the restructuring is happening profits are less guaranteed and 

some electric power utilities are increasing the loads on the grid to generate more 

revenue. This creates the need for system operators to know the exact operating state of 

the system in real-time.  

In 1996, Federal Energy Regulatory Commission (FERC) issued Order No. 888 

[1], which opened wholesale electric power sales to competition. FERC provided a non 

discriminatory open access of the transmission system to all utilities. Since then increase 

in wholesale power transactions is observed and are expected to grow in future as well. 

Today’s interconnected power system is divided into many control areas; each controlled 

by their own control center and is deregulated.  

The northeast blackout of 2003 was in part caused by the national electric grid 

being pushed past its limits and the operators not detecting that the grid was in a critical 

state [2, 3]. If the operators of the electric grid in Ohio had been able to detect that several 

areas of their grid were in critical states, they might have been able to prevent the 

cascading events which followed in neighboring states of Michigan, Pennsylvania, New 

York, Vermont, Massachusetts, Connecticut, New Jersey and the Canadian state of 

Ontario. The total estimated losses were between 4 to 10 billion dollars.  
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As the number of wholesale power transactions taking place over an 

interconnected system, which may involve more than just buyer and seller areas, are 

increasing, system operators in control areas are forced to monitor the grid on a large 

scale to operate it reliably. Before scheduling such a large scale power transactions, it is 

necessary to make sure that such transaction will not violate system operating steady state 

security limits such as transmission line-flow limits and bus voltage limits. Also it is 

necessary to make sure that large disturbances such as faults, loss or acquisition of 

generation, loss or acquisition of loads etc will not result into power system instability.  

So it is very important that not only the buyer and seller of the transaction but each area 

involved with the transaction ensures that the execution of the transaction occurs within 

the limits of not only static security limits but also the dynamic security limits.  

The cascading event in power systems is usually divided into three steps: 

initiating event, slow progression and fast progression. The initiating event is usually a 

random event and is a failure of one or more component (transmission line, generator, 

and transformer) of the power system happening at different times. The failure of system 

components during the initiating event may cause rest of the system components to 

overload to meet the load demand. As a result of overload, those components eventually 

will trip out and push the rest of the components beyond their capacity. This is called a 

slow progression of a cascading event. Until up to a point when transmission system 

cannot supply the demand and run into either voltage instability or angular instability, 

which is referred as fast progression and thereby will take down the entire system in very 

short time. Figure 1.1 presents the initiating event, slow progression and fast progression 
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of the August 14, 2003 blackout [3]. Initiating events and slow progression are the time 

periods in which operators in control center can take corrective actions to avoid or at least 

reduce the impact of cascading failure on the system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.1: Initiating events, slow and fast progression of August 14, 2003 blackout 

 

This research aims to develop tools that help the system operators to operate the 

deregulated power grid reliably. Indirectly, it should also help operators to identify the 

happening of cascading failure during the very early stages. State estimation is the tool 

used by today’s modern energy control centers to develop a base case of the system in 

real-time, which is further used to study the impact of disturbances and power 

1. 12:05 Conesville Unit 5 (rating 375MW)

2. 1:14 Greenwood Unit 1 (rating 785MW)

3. 1:31 Eastlake Unit 5 (rating 597MW)

4. 2:02 Stuart – Atlanta 345kV line

5. 3:05 Harding – Chamberlain 345kV line

6. 3:32 Hanna – Juniper 345kV line

7. 3:41 Star – South Canton 345kV line

8. 3:45 Canton Central – Tidd 345kV line

9. 4:05 sammis – Star 345kV line

10. 4:08:58 Galion – Ohio Central – Muskingum 345kV line

11. 4:09:06 East Lima – Fostorio Central 345kV line

12. 4:09:23 - 4:10:27 Kinder Morgan (rating 500MW)

13. 4:10 Harding – Fox 345kV line

14. 4:10:04 - 4:10:45 20 generators along lake Erie in Ohio, 2174 MW

15. 4:10:37 West – East Michigan 345kV line

16. 4:10:38 Midland generation, 1265 MW

17. 4:10:38 Perry – Ashtabula – Erie west  345kV line

18. 4:10:40 - 4:10:44 4 lines disconnect between Pennsylvania and New York

19. 4:10:41 2 lines disconnect and 2 gens trip in North Ohio, 1868 MW

20. 4:10:42 - 4:10:45 3 lines disconnect in North Ontario, New Jersey, isolates 

NE part of Eastern Interconnection, 1 Unit trips, 820MW

21. 4:10:46 - 4:10:55 New York splits east-to-west. New england and Maritimes separate

from New York

22. 4:10:50 - 4:11:57 Ontario separates from New York

SW. Connecticut separates from New York
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Event

Slow
Progression

Fast 
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transactions on static and dynamic security limits of the system. State estimation is 

considered a backbone of real-time security analysis. Figure 1.2 refers to the applications 

of state estimator in control center. 
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Figure1.2: Applications of state estimator in control center 

 

The raw information available as measurements from the system through 

Supervisory Control and Data Acquisition (SCADA) are processed by the state estimator, 

which provides the best estimate of the operating state of the system. In order to monitor 

the large scale power transactions taking place over an interconnected system, a Wide 

Area State Estimator (WASE) is required. There are mainly two approaches to implement 

wide area state estimation.  
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1. By modeling the neighbor utilities in detail and accurately in one’s own state 

estimation – External Network Modeling (ENM). 

2. To get the output of state estimators from each area and to coordinate them to a 

global reference – Variant of Hierarchical State Estimation (HSE) or Two-Level 

State Estimation (TLSE).  

External network modeling requires a great deal of effort in maintaining a huge 

measurement set and topology information. The basic idea is to collect real-time 

measurements and topology information from each area and run state estimator for the 

entire interconnected area on one computer [4-7]. The topology of the system is dynamic 

as there are transformer and line changes due to both forced and maintenance outages on 

a minute to minute basis. Also the system model changes because of addition or 

retirement of equipments in the system. Because of the effort in maintaining and ensuring 

the data quality to the state estimator, there is a tendency to minimize the data used from 

neighboring systems in the state estimator. Also, most of the utilities are reluctant to 

share their real-time data with neighbor utilities because of confidentiality issues. Loss of 

significant data from any part of observed interconnected system can result in the failure 

of state estimator for the entire interconnected system. This problem was experienced 

during August 14, 2003 blackout [2, 3]. At 14:02 EDT, Dayton Power & Light’s (DPL) 

Stuart-Atlanta 345-kV line tripped due to a tree contact, which did affect Midwest 

Independent System Operator’s (MISO’s) performance as reliability coordinator. MISO’s 

state estimator was unable to assess system conditions for most of the period between 

12:15 and 15:34 EDT, due to a combination of human error and the effect of the loss of 
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DPL’s Stuart-Atlanta line on other MISO lines as reflected in the state estimator’s 

calculations. Without an effective state estimator, MISO was unable to perform 

contingency analysis of generation and line losses within its reliability zone. Because of 

disadvantages mentioned, generally network modeling is not a recommended method for 

wide area state estimation.  

The second approach overcomes these disadvantages as it requires a central 

coordinator to assemble the state estimator outputs from each area to achieve wide area 

state estimation, widely known as two-level state estimation [8-10]. This approach has 

been investigated in the past for the purpose of reducing computational time, memory 

requirements and amount of data exchange. There are several issues, which need to be 

addressed for this approach to work. Some of the issues can be resolved by establishing 

procedures for each area to follow while others require new analysis methods. The first 

issue is that of overlap. Each area uses a state estimator model which includes their 

external network. Mostly, the external network is the reduced model of their neighbor 

utilities, which should be removed for this approach. The second issue is time 

synchronization of the data. The overall solution of the wide area state estimator can be 

improved if all individual areas agree to run their local state estimator at the same clock 

time. Measurements available from GPS synchronized Phasor Measurement Units 

(PMUs) can also be used to improve the accuracy of the state estimator [11]. The final 

question needs to be addressed is that what happens when an individual area state 

estimator fails to converge. In this case, the wide area state estimator may continue to 

converge with the area missing. If for any reason, wide area state estimator doesn’t 
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converge without the missing area, then it may be possible to use the model of the 

missing area from the last converged case, which would allow the wide area state 

estimator to converge. However, this may produce inaccurate estimate of the states near 

the boundaries of the missing area.    

As mentioned earlier, in 1996 since FERC provided open access of the 

transmission network [1], large scale power transactions between utilities have increased 

and will increase more in future, in order to provide reliable and economical electric 

supply. For example, hydroelectric power generated in Canada can be transferred to 

consumers and industry in Los Angeles using the high voltage transmission system. In 

large networks, this may involve more than one control area. In such situations, system 

operators need answer to a question, “How much power can be transmitted reliably 

between two buses of an interconnected system?” Available Transfer Capability (ATC) 

and Total Transfer Capability (TTC) can provide system operators useful information 

regarding the total power transfer possible between two nodes without hindering the 

reliability of the system.  

The Federal Energy Regulatory Commission requires that the available transfer 

capability information should be made available on a publicly accessible Open Access 

Information Sharing System (OAISS) on a real-time basis [12]. ATC is defined as a 

measure of the transfer capability, in the physical transmission network, for transfer of 

power over and above already committed uses. According to North American Electric 

Reliability Corporation’s (NERC) definition, total transfer capability indicates the 

amount of power that can be transferred between two buses (or groups of buses) in the 
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system in a reliable manner in a given time frame [12, 13]. The total transfer capability is 

the largest flow for which there are no thermal overloads, voltage limit violations, voltage 

collapse and/or any other system security problems such as transient stability. The TTC 

minus the base case flow and appropriate transmission margin is the ATC. The base case 

used to calculate ATC may be obtained from real-time state estimator or the contingency 

case. The ATC problem is the determination of the largest additional amount of power 

above some base case value that can be transferred in a prescribed manner between two 

sets of buses: the source, in which power injections are increased, and the sink, in which 

power injections are decreased by same amount.   

The existing methods for ATC calculations are based on DC/AC-Power Transfer 

Distribution Factors (PTDFs) [14-15], Continuation Power Flow (CPF) [16-17] or 

Optimal Power Flow (OPF) [18-19]. The detailed review of these methods is presented in 

chapter 3.  

To summarize, DC-PTDFs are based on system topology only and hence do not 

produce accurate ATC results. AC-PTDFs are based on current operating state of the 

system, but they do not consider either generator limits or bus voltage limits while 

calculating ATC. CPF based methods require repeated solution of power flow and hence 

they are very slow and cannot be used in real-time. OPF based methods are also slow as 

an optimization problem becomes very time consuming for large systems. Because of the 

limitations of the existing methods, none of them are suitable for ATC calculation in real-

time basis. Hence, there is a need to develop new algorithm for ATC calculation which is 

fast and accurate and can be used in real-time.  
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In today’s deregulated interconnected system, operators are required to calculate 

ATC of an interconnected system instead of just for their own area. To keep the data 

exchange minimum, there is a need to develop an ATC calculation algorithm based on 

hierarchical structure. This concept is new for ATC calculation but is similar to two-level 

state estimator.  At the first level, individual areas calculate their own ATC value for the 

given system conditions and transfer the results to central coordinator. Central 

coordinator then coordinates the results obtained from each area and issues ATC value 

for an interconnected system for a given power transaction.  

 

1.2 Research Objectives/Contributions 

This research aims to developing new algorithms for wide area state estimation 

and available transfer capability calculations for an interconnected power system 

consisting of many control areas. Two-level hierarchical approach is adopted for both as 

it has many advantages for today’s deregulated power system. The primary motives are 

as follows.  

1. Development of two-level state estimation algorithm to achieve wide area state 

estimation of an interconnected power grid.  This way, individual areas are 

allowed to run their own state estimator, without exchanging any real-time data 

with neighbor areas. The central coordinator then coordinates state estimator 

results available from individual areas to bring them to a global reference. 

Generally, use of boundary injection measurements at coordinator level requires 

some real-time exchange between individual areas and coordinator other than just 
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state estimator results. The use of modified power injections at coordinator level 

is proposed and implemented to increase the redundancy and hence accuracy of 

coordinator level.    

  

2. Development of a state estimator to include the measurements available from 

GPS synchronized PMUs to increase the accuracy of estimation. Existence of 

short or low impedance transmission lines in a boundary network introduces 

errors in estimation results of two-level state estimator. PMU measurements are 

used at those boundary buses to reduce the estimation errors.  

  

3. Development of an accurate and fast method to calculate available transfer 

capability of the power system. Existing ATC calculation methods either uses 

AC/DC-PTDFs or OPF and CPF, which are not accurate and slow respectively. 

The proposed iterative method is accurate compared to methods based on 

AC/DC-PTDFs and faster compare to OPF or CPF based methods.     

  

4. Development of two-level transfer capability algorithm to achieve ATC of an 

interconnected power system. As explained for wide area state estimator, 

individual areas calculates ATC of their own system for a given power 

transaction. Central coordinator then coordinates results of each area to obtain 

multi-area ATC value. The developed method uses REI-equivalents to keep the 

data exchange minimum between control areas.  
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CHAPTER TWO 

MULTI-AREA STATE ESTIMATION 

 
This chapter presents mathematical background of state estimation and proposes a 

new algorithm based on two-level state estimator to achieve wide area state estimation. 

The use of measurements from Phasor Measurement Units (PMUs) is becoming very 

common to the power system for various applications. They can also be used for state 

estimation. This chapter presents and discusses methods to include PMU measurements 

in state estimator. The use of PMU measurements to improve the accuracy of Wide Area 

State Estimator (WASE) is also presented. Finally, this chapter also shows the effect of 

system decomposition on Two-Level State Estimation (TLSE). 

 

2.1 Power System State Estimation 

State estimation in power system is used to build realistic and reliable real-time 

model of the power network. It is the backbone of online security analysis in energy 

control centers. It acts like a filter between the raw information received from the system 

and all application functions that need the reliable data of the current state of the system.  

In power systems, the measurements are collected using Supervisory Control and 

Data Acquisition (SCADA) system. These measurements are not always complete and 

accurate. Sometimes, there is also a possibility of bad measurement and hence the real-

time AC power flow cannot be extracted from these measurements. The state estimation 

uses the available measurements from SCADA as well as the circuit breaker status, tap 
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positions of transformers, parameters of transmission lines, transformers, shunt reactors 

and capacitors to estimate the best state of the system [20, 21]. The state variables in this 

process are the voltage magnitudes and relative phase angles at each bus of the power 

system. The commonly used measurements for state estimation are as follows: 

1. Power flows: real and reactive power flow through the transmission line. 

2. Power injections: real and reactive power injected at the buses. 

3. Voltage magnitude: voltage magnitude measurements at the system buses. 

4. Current magnitude: current magnitude flowing through the transmission lines. 

5. Synchronized Phasor Measurements: they can be in form of voltage phasors and 

current phasors.  

The measurements in the system are assumed to have the errors which have a 

Gaussian distribution with zero mean. These measurements can be expressed as 

 

( )= +
m m m

z h x e       (2.1) 

 

where, 
 
zm  measured value of the ith measurement. 

hm(x)    non-linear function relating error free measurement to the state vector 

em        random measurement error 

 
The state vector generally includes voltage magnitudes and angles of all system 

buses except the reference bus angle. Hence for the ‘n’ bus system, the total number of 

state variables is (2n-1).  

 

1 2 2 1
[ , ,....., ]

−
=T

n
x x x x     (2.2)     
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Because the measurement errors are independent and assumed to have a normal 

distribution with zero mean,  

 

2 2 2

1 2

( ) 0

(  ) { , ,...., }σ σ σ

=

= =T

m

E e

E e e R diag

 

 

where, σi is the standard deviation of ith measurement.  

 

The Weighted Least Square (WLS) state estimator will minimize the following 

objective function.  

 

2

1

1

( ) ( ( )) /

         [ ( )] [ ( )]

=

−

∑= −

= − −

m

i i ii
i

T

J x z h x R

z h x R z h x

   (2.3) 

 

In order to solve the above equation, the first order optimality conditions will 

have to be satisfied. These can be expressed as 

  

1( )
( ) 2 ( ) [ ( )]TJ x

g x H x R z h x
x

−∂
= = − −

∂
   (2.4) 

 

where, 

( )
( )

∂
=

∂

h x
H x

x

 

 

Using Newton’s method to make g(x) equal to zero.  

 

1( )
[ ] [ ( )]

g x
x g x

x
∆ −∂

= −
∂

     (2.5) 
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The Jacobin of g(x) is calculated by treating H(x) as a constant matrix, which is 

true for a given state vector x. Substituting 2.4 into 2.5.  

 

1 1 1[ ( ) ( )] ( ) [ ( )]T T
x H x R H x H x R z h x∆ − − −= −   (2.6) 

 

The above non-linear equation can be solved using iterative Newton method until 

�x is very small and tends to zero. .  

 

1 1[ ( )] ( )k k k k
x x G x g x

+ −= + ∗     (2.7) 

 

where, 

k is the iteration index 

x
k is solution vector at iteration k and  

 

1

1

( )
( ) ( ) ( )

( ) ( ) [ ( )]

k

k T k k

k T k k

g x
G x H x R H x

x

g x H x R z h x

−

−

∂
= =

∂

= −

 

 

G(x) is called the gain matrix. If the system is fully observable, the gain matrix 

will be positive definite and symmetric.  

 

2.2 Accuracy Test Matrices 

Following test metrics are used to determine the performance of state estimation 

results. These metrics are developed by KEMA and are recommended to determine the 

performance of state estimator [22].  
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( )
1/2

2

2 1

nbus
true est

V error j j
j

Macc V V V
=

∑= = −
� � �    (2.8) 

1
1

 
nbranch

true est

error j j
j

P P P
=

∑= −     (2.9) 

j=1....nbranch
max true est

error j j
P P P

∞
= −     (2.10) 

where, 

nbus         total number of buses in the system 

nbranch   total number of branches in the system 

Pj              active power flow in jth branch 

j
V
�                complex phasor voltage of jth bus  

 

Equation (2.8) represents the second norm of the complex phasor voltage 

estimation error. It is important that the same reference bus be used for both ‘true’ and 

‘estimated’ voltages. Equation (2.9) is the 1-norm of the estimation error for active power 

flows and is proportional to the average error in branch flow estimation. Equation (2.10) 

is the infinity norm of the estimation error and represents the worst case error. It is 

important to know that metrics shown in equation (2.9) and (2.10) are sensitive to model 

of the system, but they are useful to compare different algorithms for a fixed network 

model. All three metrics seem reasonable and larger values indicate worse performance.  
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2.3 Application of PMU Measurements in State Estimation 

GPS synchronized phasor measurement units are not new to the power system. 

The advancements in recent communication technology have made the use of PMU 

measurements in power system very common. The measurements obtained using PMUs 

are considered to be highly accurate with the accuracy level of 0.01% for magnitude 

measurements and 0.02 degrees for angle measurements. Also, these measurements are 

taken at the same time stamp so they do not have errors introduced due to time skewness. 

Generally, PMUs are synchronized to within 0.2 micro-second and are available with the 

reliability of 99.87% [23].   

 

Figure 2.1: Block Diagram of PMU 
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Figure 2.1 shows the functional block diagram of the PMU. The GPS receiver 

provides the synchronization signal to A/D transformer, and the voltage or current analog 

signals are input into A/D transformer through an anti-aliasing and surge filter. The 

microprocessor determines the phasor of the voltage or current with respect to the 

reference according to the digital signal from the A/D transformer. 

Recent papers have indicated that the state estimator performance can be 

improved significantly, if PMU measurements are used in state estimator [11, 24-25]. 

The traditional approach to use PMU measurements in state estimation is to input the 

SCADA measurements and PMU measurements together in state estimator. However, 

there are two disadvantages of this approach. One is that if the number of PMU 

measurements is very small compare to traditional SCADA measurements then state 

estimator results would not really reflect the advantage of using PMU measurements. 

Second issue is that current existing state estimation programs in energy control centers 

are not designed to handle the PMU measurements. These programs either needs 

upgrading or needs to be replaced by the newer ones to incorporate PMU measurements 

into state estimator.  

The second approach avoids the necessity of changing the existing state 

estimation program in energy control centers. The approach is such that it will allow 

traditional state estimator to function just as before. The output of the traditional state 

estimator is processed by another linear estimator to incorporate PMU data and is then 

put back in the same format as that produced by the traditional state estimator to be used 

by rest of the control center applications. In this approach, PMU measurements are 
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excluded from a traditional state estimator, but they are integrated with traditional state 

estimator results by means of linear state estimation. Because the second step is linear 

state estimator, it is fast and does not add any significant time delay. Figure 2.2 describes 

the hybrid state estimator. 

  

PMU Data Concentrator

SCADA EMS State Estimator

SCADA Measurements

Linear State Estimator

Applications

 

 

Figure 2.2: Hybrid State Estimator 

 

2.3.1 Simulation Results – IEEE 118-Bus System 

IEEE 118-bus system is used as the test system. The traditional measurements 

used are voltage magnitudes, power flows and power injections from throughout the 

system and it is assumed that these measurements have a standard deviation of 1.0%, 

1.5% and 3.0% respectively. Besides, 20 buses of the system are assumed to have PMUs 
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installed, which can provide voltage and current phasors as measurements with the 

standard deviation of 0.01%. Table 2.1 presents the simulation results for traditional state 

estimator with and without PMU measurements and hybrid state estimator.  

 

Table 2.1 Comparison of State Estimator Performance                                                       
in presence of PMU Measurements 

 

 Traditional SE 

without PMU 

Measurements  

Traditional SE 

with PMU 

Measurements 

Hybrid SE  

with PMU 

Measurements 

Maccv 0.0017 PU 0.0011 PU 0.0010 PU 

||Perror||1 2.8117 MW 2.7271 MW 2.7521 MW 

||Perror||∞ 0.0709 MW 0.0623 MW 0.0611 MW 

 

 

The simulation results show that the use of PMU measurements in state estimator 

improves its accuracy, regardless of which approach is used to process the PMU 

measurements. However, the results of traditional and hybrid state estimators are 

comparable. The hybrid state estimation results are only slightly better than traditional 

state estimator results. But the difference in accuracy of results may become significant if 

fewer PMU measurements are used. The flexibility offered by hybrid state estimator 

makes it more favorable over traditional state estimator as it does not require making 

changes to existing state estimators.  
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2.4 Two-Level State Estimation 

In today’s interconnected power system, the number of power transactions taking 

place over large distances, which involves many control areas has increased and are 

expected to grow in future [1]. In this situation, the operators in control centers are forced 

to monitor the grid on a large scale to operate it reliably. In energy control centers the raw 

measurements obtained through the SCADA system from the grid are processed by the 

state estimator, which provides the estimate of the operating state of the system. In order 

to monitor the large scale power transactions taking place over many areas, a wide area 

state estimator is required. 

There are mainly two approaches to carry out wide area state estimator. First of 

these, is to model the neighboring utilities in detail and accurately in one’s own state 

estimator. Second, is to obtain the state estimation outputs from each area and convert 

them to a global reference, known as the hierarchical state estimation. The first approach 

requires a great deal of effort in maintaining a huge measurement set and topology 

information. Also, the loss of data from any observed part of the system will result into a 

total failure of state estimation, which was the case during the august 14, 2003 blackout 

[2, 3]. This approach also fails when the utilities are reluctant to share their real-time 

information with neighboring utilities. The second approach overcomes these 

disadvantages as it requires a central coordinator to assemble the state estimation output 

from each utility to achieve wide area state estimator. 

This kind of hierarchical approach has been investigated in the past with the 

objective of reducing computational time, memory requirements and amount of data 
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exchange. The to-date proposed schemes can be classified broadly as two categories: sub-

optimal methods and optimal methods. The sub-optimal methods are those in which the 

overall system is physically parsed into a number of smaller sub-systems each assigned a 

control center, where in each the state estimation is solved independently. The central 

computer is mainly used for co-ordination. These methods fit well with the strategies of 

hierarchical and decentralized control of power systems [8-11, 25-29]. The data 

transmission involved with these methods is minimal between local and central 

computers. Depending upon the decomposition strategy adopted in the algorithm, 

boundary injections and tie-line measurements are ignored at either level of the 

algorithm. This may introduce high errors in the estimates of the boundary bus states.  

The second category of methods is one which determines the state of the system 

by applying some form of decomposition to the overall system state estimation problem 

and is known as optimal methods. It parses the overall state estimation problem into a 

number of sub-problems. Each of these sub-problems is solved using local computers. 

The intermediate results are sent to the central computer to complete the state estimation 

process [30-33]. These methods do involve very large amount of data transmission 

between the local and central computers which somewhat limits their applicability. In 

today’s deregulated power system, utilities are reluctant to share their real-time data with 

each other as they are part of competitive wholesale power market, which makes optimal 

approach for wide area state estimation unacceptable.  

Van- Cutsem et al [10, 26] proposed several sub-optimal hierarchical state 

estimation algorithms. They suggested a two-level state estimation algorithm by dividing 
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the system into ‘k’ non overlapped areas which are connected through tie-lines. In lower 

level, each area performs state estimation independently with respect to the local 

reference. In the upper level, the boundary bus states are re-estimated and all the phase 

angles are coordinated to a global reference. Kobayashi et al [27] proposed the two-level 

state estimation algorithm based on model coordination method for a system decomposed 

into ‘k’ non-overlapped areas connected through tie-lines. Kurzyn [8] proposed an 

algorithm for ‘k’ non-overlapped systems which at the second level does not re-estimate 

the boundary bus states. Wallach, Handschin and bongers [9] proposed the one level state 

estimation. The decomposition of the system is done in such a way that the areas are 

overlapped.  

In the previous work, mentioned above, they have difficulty using the boundary 

injection measurements in the state estimation. Zhao [11] proposed an algorithm in which 

the boundary injection measurements can be used by using the overlapped areas. The 

algorithm also proposed detection of any bad boundary injection measurements in upper 

level if it is not possible to identify them in the lower level because of low redundancy of 

boundary measurements. But this requires transferring the topology of transmission lines 

connected to the boundary buses to the central entity, so that injection measurements can 

be used in the upper level of the algorithm. 

 

2.4.1 System Decomposition 

 Consider an interconnected system with N areas shown in Fig. 2.3. Individual 

areas are connected to each other through the tie-line network and the areas are 
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considered to be overlapping, i.e., Area 1 will not restrict its model to buses A1-1 and 

A1-2, but will also include buses A2-2 and AN-2 from Areas 2 and N respectively, which 

is shown in Fig. 2.3. All the area follow similar scheme. The buses in each area can be 

categorized as internal buses, internal boundary buses and external boundary buses. For 

example, in Area 1, A1-1 is internal bus, A1-2 is internal boundary bus and A2-2 and 

AN-2 are external boundary buses. 

 

 

 

 

 

 

 

 

 

Figure 2.3: System Decomposition - Overlapped Systems 

 

2.4.2 Individual Area State Estimator 

 It is assumed that each area performs a state estimation using its own 

measurements. Also, each area can use any special state estimation algorithm as they do 

not interact with each other. However, individual area state estimators are responsible for 

detecting and identifying any bad measurements present in their own measurement set. 
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For simulation it is assumed that each area uses the typical weighted least square 

estimation algorithm. The commonly used measurements for state estimation are power 

flows and injections, voltage magnitudes and current magnitudes. Based on system 

decomposition, the state vector for individual area ‘i’, at the first level, can be written as 

 

int int

, ,
[ , , ]=T ext

i i i b i b
x x x x      (2.11) 

where, 

xi
int   internal bus states of the ith area 

xi,b
int   internal boundary bus states of the ith area 

xi,b
ext   external boundary bus states of the ith area 

 

2.4.3 Wide Area State Estimator 

 The primary function of the central entity is to collect the state estimation results 

from each participating area and to find the estimate of an interconnected system with 

respect to one global reference. In this process, the central entity can use the 

measurements available from the boundary network such as tie-line power flows, 

boundary bus injections, boundary bus voltages etc. The central entity also uses the 

boundary bus states available from individual area state estimators as pseudo 

measurements to increase the redundancy. Though, the use of boundary bus injection 

measurements requires each area to transfer the topology and line data information of the 

lines connected to the boundary buses to the central entity. For example, to use the 

injection measurement of bus A1-2 in Fig. 2.3, area 1 has to transfer the topology and 

line data information of the line from A1-1 to A1-2 to the central coordinator. To 
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overcome this issue, a use of modified power injection measurement is suggested at the 

second stage. For bus A1-2, the modified active power injection measurement can be 

written as,  

 

mod

1 2 1 2 1 2, 1 1− − − −
= −act estimated

A A A A
P P P     (2.12) 

 

The modified power injection is basically the power injected into the boundary 

network. In addition to coordinating the state estimation results from each area, the 

central entity also re-estimates the boundary bus states. This is essential to detect and 

identify any bad data present in the boundary network, which may have gone undetected 

at the first level because of low redundancy of measurements near the boundary buses. In 

this case, the state vector of the central coordinator is defined as  

 

[ , ]= T T

C b
x U x    (2.13) 

where, 

2 3

1, 2, ,

[ , ,...., ]

[ , ,...., ]

=

=

T

N

T

b b b N b

U u u u

x x x x

 

 

  ui is the phase angle of ith area reference bus with respect to the global reference. 

Area 1 reference bus is arbitrarily chosen as the global reference bus.  The measurement 

set available for the central coordinator is given as 

 

int[ , , ]ˆ ˆ= ext

C b b b
z z x x    (2.14) 
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where, 

int int int int

1, 2, ,

1, 2, ,

[ , ,...., ]ˆ ˆ ˆ ˆ

[ , ,...., ]ˆ ˆ ˆ ˆ

=

=

b b b N b

ext ext ext ext

b b b N b

x x x x

x x x x

    

 

zb is the set of boundary measurements which may include tie-line power flows, 

modified injection and voltage measurements at the boundary buses. The corresponding 

measurement model is  

 

( )= +
C C C C

z h x e     (2.15) 

( ) 0       ( )= =T

C C C C
E e E e e R    (2.16)  

 

where,  

hc  non-linear function of xc; 

ec  error vector of measurements; 

 

The second level of the algorithm requires minimizing following objective 

function.  

 

1[ ( )] [ ( )]−= − −T

C C C C C C C C
J z h x R z h x    (2.17) 

 

As the boundary bus states from each area are used as pseudo-measurements at 

the second level, each individual area is also required to transfer the state covariance 

matrix along with the boundary bus states to the coordinator. Figure 2.4 represents the 

block diagram of the algorithm. 
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Figure 2.4: Block Diagram of Two-Level State Estimator 

 

2.4.4 Simulation Results IEEE 30-Bus System 

IEEE 30-bus system is partitioned into two areas for the simulation purposes. 

Area 1 consists of buses 1-15 and area 2 consists of buses 16-30. There are 13 boundary 

buses in total out of which 5 belongs to area 1 and 8 belongs to area 2. In both of the 

following cases, 7 voltage, 16 pair of power injections and 41 pair of power flow 

measurements are used. The total number of states at the first level is (2*15-1) = 29 for 

both areas. At the second level, the total number of states is 1 + 2*13 = 27, which 

corresponds to 13 boundary bus states and area 2 slack bus. Area 1 slack bus is chosen as 

a global reference.  

 

Case 1: All the measurements used for state estimation are added with random errors 

with zero mean and a standard deviation of 0.5% for voltage measurements, 1.0% for 
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power flow measurements and 1.5% for power injection measurements. Table 2.2 shows 

the results obtained by integrated and two-level state estimators obtained for the same 

measurement set.  

 

Table 2.2 SE Results with 0.5%, 1.0% & 1.5% Standard Deviation for Voltage,       
Power Flow & Power Injection Measurements Respectively 

 Integrated Two-Level 

Maccv 0.0016 PU 0.0023 PU 

||Perror||1 0.4683 MW 0.9579 MW 

||Perror||∞ 0.06868 MW 0.0986 MW 

 

 

Case 2: The meters are connected to the secondary of the current transformers (CT) and 

potential transformers (PT). Even though, one uses highly accurate digital meters, 

measurements are erroneous due to errors introduced by CTs and PTs. The errors added 

to the measurements in Case 1 are quite small for realistic studies. In this case, the 

measurements are added with random errors with zero mean and a standard deviation of 

1.0% for voltage measurements, 1.5% for power flow measurements and 3.0% for power 

injection measurements. Table 2.3 shows the results obtained by integrated and two-level 

state estimators. 
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Table 2.3 SE Results with 1.0%, 1.5% & 3.0% Standard Deviation for Voltage,        
Power Flow & Power Injection Measurements Respectively 

 Integrated Two-Level 

Maccv 0.0020 PU 0.0025 PU 

||Perror||1 0.6066 MW 1.0504 MW 

||Perror||∞ 0.0991 MW 0.1120 MW 

 

2.4.5 Simulation Results 1896-Bus Real World System 

1896-bus system consists of 4 areas. Following is the brief description of the system.  

 

• Total number of branches: 2832 

• Total number of tie-lines: 60 

• Total number of boundary buses: 85 

 
Table 2.4 1896-Bus System Information 

 

Area Number of 
Buses 

Number of 
Boundary 

Buses 

1 759 19 

2 376 29 

3 492 19 

4 269 18 

 

Case 1: All the measurements used for state estimation are added with random errors 

with zero mean and a standard deviation of 0.5% for voltage measurements, 1.0% for 

power flow measurements and 1.5% for power injection measurements. Table 2.5 shows 

the results obtained by the integrated and two-level state estimators obtained for the same 

measurement set. 
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Table 2.5 SE Results with 0.5%, 1.0% & 1.5% Standard Deviation for Voltage,       
Power Flow & Power Injection Measurements Respectively 

 Integrated Two-Level 

Maccv 0.0022 PU 0.0023 PU 

||Perror||1 36.6056 MW 49.0618 MW 

||Perror||∞ 0.3502 MW 4.0476 MW 

 

 

Case 2: The measurements are added with random errors with zero mean and a standard 

deviation of 1.0% for voltage measurements, 1.5% for power flow measurements and 

3.0% for power injection measurements. Table 2.6 shows the results obtained by the 

integrated and two-level state estimators. 

Table 2.6 SE Results with 1.0%, 1.5% & 3.0% Standard Deviation for Voltage,       
Power Flow & Power Injection Measurements Respectively 

 Integrated Two-Level 

Maccv 0.02138 PU 0.05505 PU 

||Perror||1 42.2460 MW 677.3479 MW 

||Perror||∞ 0.6593 MW 134.633 MW 

 

 

2.4.6 Discussion 

Simulation results of IEEE 30-bus system indicate that for both cases, the results 

of integrated and two-level state estimator are comparable. But the same is not true for 

1896-bus system simulation results. Investigating for the source of error in two-level state 

estimator reveals that high MW mismatch is observed between the estimated and actual 

active power flow in some internal short or low impedance transmission lines connected 



 31

to the boundary buses in all areas. This is the reason for one norm and infinity norm of 

the estimation norm for active power flow being very high when using two-level state 

estimation. As we know the boundary bus states are re-estimated at the coordinator level 

in this algorithm. The small variation in boundary bus states from first level to second 

level, because of re-estimation, causes a high power mismatch in short or low impedance 

transmission lines. The transmission lines with active power flow mismatch of 10 MW or 

more is listed in table 2.7. The bus numbers which are shown in bold are the internal 

boundary buses of one of the four areas. The rest of the buses are internal buses of one of 

the four areas. 

 

Table 2.7 Short or Low Impedance Transmission Lines with                                     
Active Power Flow Mismatch of 10 MW or More 

From 

Bus 

To 

Bus 

Estimated 

Flow (MW) 

Actual 

Flow (MW) 

Absolute 

Mismatch (MW) 

Resistance R 

(PU) 

Reactance 

X (PU) 

75 448 -4.6384 20.0420 24.6804 0.0001 0.0002 

789 791 -80.0519 -131.887 51.8355 0.00009 0.0008 

1028 1029 54.6807 14.7487 39.9319 0.00016 0.00129 

1028 1030 25.1645 13.1397 12.0248 0.00051 0.00442 

1221 1466 94.0353 -40.5984 134.633 0.00008 0.00043 

1233 1236 570.350 554.0378 16.3121 0.00019 0.00496 

1252 1275 1130.065 1119.530 10.5352 0.000143 0.00159 

1629 1668 91.5297 128.1376 36.6078 0.00008 0.00073 

1644 1645 11.1863 0.00 11.1863 0.00 0.0001 

1236 1277 -113.95 -102.397 11.5532 0.00007 0.007 
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2.5 Application of PMU Measurements in Two-Level State Estimation 

To increase the accuracy of the boundary bus states, especially to which the short 

transmission lines are connected, it is required to increase the measurement redundancy 

and to use the more accurate measurements. The measurements provided by phasor 

measurement units are more accurate compared to the conventional measurements. Table 

2.8 shows the list of phasor measurement units that are assumed to exist in 1896-bus 

system. The measurements available from synchronized PMUs are assumed to have a 

standard deviation of 0.01%. Table 2.9 shows the results of integrated and two-level state 

estimators with the synchronized PMU measurements along with the conventional 

measurements. The conventional measurements are added with random errors with zero 

mean and standard deviations described in case 2. 

Table 2.8 Available PMU Measurements on 1896-Bus System 

 Bus Number Location 

1 667 Area 1 slack bus 

2 1051 Area 2 slack bus 

3 1227 Area 3 slack bus 

4 1863 Area 4 slack bus 

5 75 Area 1 

6 789 Area 2 

7 1028 Area 2 

8 1466 Area 3 

9 1236 Area 3 

10 1275 Area 3 

11 1629 Area 4 

12 1644 Area 4 
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Table 2.9 SE Results with Synchronized PMU Measurements                         
Incorporated in Measurement Set 

 Integrated Two-Level 

Maccv 0.0194 PU 0.0362 PU 

||Perror||1 39.786 MW 66.0645 MW 

||Perror||∞ 0.5680 MW 11.1863 MW 

 

The results shown in table 2.9 indicate that the impact of synchronized phasor 

measurements on integrated state estimator is not very significant but it improves the 

results of two-level state estimator significantly, especially lowering the errors in short or 

low impedance transmission lines. PMU measurements are used in both levels of two-

level state estimation. Because, PMU measurements are assumed to have an accuracy of 

0.01%, both levels of state estimator gives very high weight to it. Hence, there is not 

significant variation in boundary bus state estimates from one level to another, which 

helps reducing the error in estimation of active power flow in low impedance or short 

transmission lines. The errors observed in two-level state estimator can be reduced 

further if PMU measurements can be made available from each boundary bus.  

 

2.6 Effect of System Decomposition on TLSE 

In this section, several two-level state estimation methods based on overlapped 

and non-overlapped system decomposition are presented and their performances are 

compared with the integrated state estimator. Depending on system decomposition, the 

state vector of central coordinator may include boundary bus states. Ideally, it is 

beneficial if the systems are overlapped, as it increases redundancy in boundary networks 
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and hence increases the accuracy of boundary bus states at the individual level. At the 

coordination level, it is important to re-estimate the boundary bus states as it allows 

detection of any bad measurement, which may have gone undetected at the individual 

level because of low redundancy. Hence, an overlapped system with re-estimation of 

boundary bus states at coordination level is an ideal option for wide area state estimator.  

 

2.6.1 Non-Overlapped Systems 

Consider an interconnected system with N areas shown in Fig. 2.5. Individual 

areas are connected to each other through the tie-line network. In this section, the areas 

are considered to be non-overlapping, i.e., Area 1 will restrict its model to buses A1-1 

and A1-2. All the area follow similar scheme.  

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: System Decomposition - Non-Overlapped Systems 
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The buses in each area can be categorized as internal buses and internal boundary 

buses. For example, in Area 1, A1-1 is internal bus and A1-2 is internal boundary bus.  

Based on system decomposition, the state vector for individual area ‘i’ can be written as 

 

int int

,
[ , ]=T

i i i b
x x x      (2.11) 

 

where, 

xi
int   internal bus states of the ith area 

xi,b
int   internal boundary bus states of the ith area 

 

Case 1: In this case, the boundary bus states are not re-estimated at the second stage of 

the algorithm but are used as the parameters. Hence the state vector of the central 

coordinator is defined as  

 

[ ]= T

C
x U    (2.12) 

 

where, 

2 3
[ , ,...., ]= T

N
U u u u     

  

            ui is the phase angle of ith area reference bus with respect to the global reference. 

Here, area 1 reference bus is arbitrarily chosen as the global reference bus.  The 

measurement vector in this case includes only the tie-line flows.  
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Case 2: In this case, the boundary bus states of each area are re-estimated at the 

coordinator stage. Hence the state vector of the central coordinator is defined as  

 

[ , ]= T T

C b
x U x    (2.13) 

 

where, 

2 3

1, 2, ,

[ , ,...., ]

[ , ,...., ]

=

=

T

N

T

b b b N b

U u u u

x x x x
 

 

The measurement vector in this case can be written as,  

 
int[ , ]ˆ=

C b b
z z x    (2.14) 

 

where, 

int int int int

1, 2, ,
[ , ,...., ]ˆ ˆ ˆ ˆ=

b b b N b
x x x x  

 

zb is the set of boundary measurements which may include tie-line power flows 

and voltage measurements of the boundary buses. The boundary bus states of each area 

from individual area state estimators are used as the pseudo measurements at the second 

level.  

 

2.6.2 Overlapped Systems 

Consider an interconnected system with N areas shown in Fig. 2.6, which is 

identical to the one shown in Fig. 2.3. Individual areas are considered to be overlapping 
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and the buses in each area can be categorized as internal buses, internal boundary buses 

and external boundary buses.  

 

 

 

 

 

 

 

 

 

 

Figure 2.6: System Decomposition - Overlapped Systems 

  

Based on system decomposition, the state vector for individual area ‘i’, at the first 

level, can be written as 

 

int int

, ,
[ , , ]=T ext

i i i b i b
x x x x      (2.15) 

 

where, 

xi
int   internal bus states of the ith area 

xi,b
int   internal boundary bus states of the ith area 

xi,b
ext   external boundary bus states of the ith area 

 

Case 3: As case 1, the boundary bus states are not re-estimated at the second level in this 

case, but are used as the parameters. Hence the state vector of the central coordinator is 

defined as  
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[ ]= T

C
x U    (2.16) 

 

where, 

2 3
[ , ,...., ]= T

N
U u u u  

 

The measurement vector in this case includes only the tie-line flows.  

 

Case 4: As Case 2, the boundary bus states of each area are re-estimated at the 

coordinator stage in this case. Hence the state vector of the central coordinator is defined 

as  

 

[ , ]= T T

C b
x U x    (2.17) 

 

where, 

2 3

1, 2, ,

[ , ,...., ]

[ , ,...., ]

=

=

T

N

T

b b b N b

U u u u

x x x x

 

 

The measurement set available for the central coordinator is given as 

 

int[ , , ]ˆ ˆ= ext

C b b b
z z x x    (2.18) 

 

where, 

int int int int

1, 2, ,

1, 2, ,

[ , ,...., ]ˆ ˆ ˆ ˆ

[ , ,...., ]ˆ ˆ ˆ ˆ

=

=

b b b N b

ext ext ext ext

b b b N b

x x x x

x x x x

    

 



 39

The boundary bus states from individual area state estimator are used as pseudo-

measurements at the coordinator level. In this case, it is possible that each boundary bus 

has two pseudo measurements, one from the area to which the bus is internal boundary 

bus and another from the area to which the bus is external boundary bus, which is usually 

the neighbor system. 

 

2.6.3 Simulation Results 1896-Bus Real World System 

All four algorithms are tested on a real world 1896 bus system, which consists of 

four areas. The results obtained are compared with the results obtained by integrated state 

estimator. All the measurements used for state estimation are added with random errors 

with zero mean and a standard deviation of 0.5% for voltage measurements, 1.0% for 

power flow measurements and 1.5% for power injection measurements. The power 

injection measurements at the boundary buses are not considered at the second level in 

any of the algorithm, as they requires to transfer the topology and line information of the 

internal transmission lines connected to the boundary buses. Table 2.10 summarizes the 

simulation results obtained on 1896-bus real world system.  

 
Table 2.10 Simulation Results for 1896-Bus System 

 

 ISE Case 1 Case 2 Case 3 Case 4 

Maccv 0.0022 PU 0.0026 PU 0.0026 PU 0.0025 PU 0.0027 PU 

||Perror||1 36.60 MW 155.26 MW 213.99 MW 58.44 MW 116.07 MW 

||Perror||∞ 0.35 MW 24.77 MW 29.34 MW 2.80 MW 16.45 MW 
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The results indicate that case 3 gives the best results out of all four cases, compare 

to the integrated state estimator. Case 3 uses the overlapped system decomposition and do 

not re-estimate the boundary bus states at the co-ordination level. Cases 1 & 2, uses the 

non-overlapped system decomposition and shows much higher error compared to the 

integrated state estimation. Case 3 gives the best results; however, because it does not re-

estimate the boundary bus states at the co-ordination level, it is not possible to detect any 

bad data present in the measurement set, which may have gone undetected in the first 

level because of low redundancy or criticality. Hence, it is necessary to re-estimate the 

boundary bus states at the co-ordination level, which makes case 4 more favorable. To 

improve the accuracy of results of case 4, it is important to use boundary injection 

measurements at coordination level. The simulation results presented in previous and this 

section reveals that it is important to use overlapped systems and to re-estimate boundary 

bus states at second level. It is also observed that the performance of two-level state 

estimator can be significantly increased by using boundary injection measurements at 

second level.  

 

2.7 Conclusion 

This chapter investigates the two-level state estimation algorithm for a multi-area 

interconnected power system. The traditional state estimator is not suitable for multi-area 

network because it requires a large amount of real-time data exchange between utilities. 

The utilities are reluctant to share real-time data because of confidentiality and security 

reasons. The two-level state estimator requires the individual areas to share their state 
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estimator results only to the central coordinator, who will coordinate and bring them to a 

global reference. In this chapter, a scheme is proposed which can utilize the boundary 

injection measurements at the second level without exchanging the topology data of 

internal transmission lines connected to boundary buses. The use of synchronized phasor 

measurements is justified and implemented to increase the accuracy of the two-level state 

estimator. Simulation results obtained for the IEEE 30-bus system and 1896-bus real 

world system shows that fast and accurate wide area state estimation is possible using 

two-level state estimation approach. This chapter also presents the effect of system 

decomposition on the performance of two-level states estimator and discusses pros and 

cons of each.  
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CHAPTER THREE 

AVAILABLE TRANSFER CAPABILITY 

 This chapter presents a new iterative method to calculate Available transfer 

capability (ATC) of power system. Available transfer capability is the additional power 

that can be transferred between two nodes of the system without hitting thermal, voltage 

and transient stability limits. Existing linear ATC calculation methods are either based on 

DC or AC Power Transfer Distribution Factors (PTDFs). These methods are fast but do 

not consider control changes such as generator reactive limits and bus voltage limits 

while calculating ATC. Optimal Power Flow (OPF) and Continuation Power Flow (CPF) 

can produce accurate ATC values but can be very time consuming and cannot be used in 

real-time operations environment.  The method proposed in this chapter aims to 

overcome all these dis-advantages. It does not require repeated solution of power flow 

and also considers the control changes of the system with the increase in transfer limit. 

 

3.1 Available Transfer Capability 

In 1996, since Federal Energy Regulatory Commission (FERC) provided open 

access of the transmission network to utilities, large scale power transactions between 

utilities have increased in order to provide reliable and economical electric supply. For 

example, hydroelectric power generated in Canada can be transferred to consumers and 

industry in Los Angeles using the high voltage transmission system. In large 

interconnected power networks, there may be multiple control areas with system 

operators responsible for different areas. The system operators must have some procedure 
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for exchanging information and making decisions that affect the patterns of use across 

grid. With the competitive market, system operators face the need to monitor and 

coordinate power transactions taking place over long distances in different areas. In such 

situations, system operators need answer to a question, “How much power can be 

transmitted reliably between two buses of an interconnected system?” Available transfer 

capability and Total Transfer Capability (TTC) can provide system operators useful 

information regarding the total power transfer possible between two nodes without 

hindering the reliability of the system.  

The Federal Energy Regulatory Commission requires that the available transfer 

capability information should be made available on a publicly accessible Open Access 

Information Sharing System (OAISS) on the real-time basis [12]. ATC is defined as a 

measure of the transfer capability, in the physical transmission network, for transfers of 

power over and above already committed uses. According to North American Electric 

Reliability Corporation’s (NERC) definition, total transfer capability indicates the 

amount of power that can be transferred between two buses in the system in a reliable 

manner in a given time frame [12-13]. The total transfer capability is the largest flow for 

which there are no thermal overloads, voltage limit violations, voltage collapse and/or 

any other system security problems such as transient stability. The ATC can be defined as 

“A measure of transfer capability in the physical transmission network for further 

commercial activity over and above already committed uses”. This definition can be 

formulated as following equation,  

ATC = TTC – CBM – TRM – “Existing Transmission Commitments” 
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Where,  

CBM: Capacity Benefit Margin 

TRM: Transmission Reliability Margin 

  

The ATC problem is the determination of the largest additional amount of power 

above some base case value that can be transferred in a prescribed manner between two 

sets of buses: the source, in which power injections are increased, and the sink, in which 

power injections are decreased by same amount. Increasing the power transfer, increases 

the loading in the network and at some point causes an operational or physical limit to be 

reached that prevents further increase. The largest value of power transfer that causes no 

limit violations, with or without a contingency, is used to compute the ATC. The problem 

can be formulated as: 

 

 ( , )Maximize J f x u=     (3.1) 

 

Subject to, 

( , ) 0g x u =  

min max( , )h h x u h≤ ≤  

 

Where, u and x are the control and state vectors respectively. g(x,u) is the power 

flow equality constraints shown in equation (3.2).  
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Where, Pi & Qi are net active and reactive power injections at bus ‘i’. 
i i

V θ∠ is the 

voltage at bus ‘i’ and (Gij + j Bij) is corresponding element from bus admittance matrix.    

  

h(x,u) is the inequality constraint function and is shown in equation (3.3). 
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                                              (3.3) 

 

where,  

R: set of all generator buses 

S: set of all buses in system 

T: set of all transmission lines of system 

 

3.2 Methods to Calculate ATC 

There are three basic methods that can be used for transfer capability calculations. 

The fastest method is based on DC load flow model and it uses linear power transfer 

distribution factors to determine transfer capability in the system [14-15, 34]. The fact 

that distribution factors are easy to calculate and can give quickly rough figures of 

transfer capability made them attractive. Since those factors are based on DC load flow 

ignoring voltage and reactive power effects as well as system nonlinearity, they might 
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lead to unacceptable error especially in a stressed system with insufficient reactive power 

support and voltage control. Still PTDF can be used to update transfer capability in some 

systems where voltage problems are not pronounced [14]. Recently a use of AC power 

transfer distribution factors for transfer capability calculation is investigated [35, 36]. 

Generally, AC-PTDFs are derived at base case load flow result. They are also easy and 

quick to calculate transfer capability of the network. However, the results are not as 

accurate as repeated power flow.  These limitations of using DC/AC-PTDFs in 

computing transfer capability can be avoided by using the Repeated Power Flow (RPF) 

[37]. 

Another popular approach for transfer capability calculation is the continuation 

power flow [38-41]. From the solved base case, power flow solutions are sought for 

increasing amounts of transfer in the specified direction. The quantity of the transfer is a 

scalar parameter which can be varied in the model. The amount of transfer is gradually 

increased from the base case until a binding limit is encountered. This continuation 

process requires a series of power flow solutions to be solved and tested for limits. 

Because CPF considers system non-linearity and voltage-reactive power aspects, the 

transfer capability results are significantly accurate. But it ignores optimal distribution of 

generation and loading and hence may lead to a conservative transfer value. Also, system 

reactive power optimization and voltage control are usually not considered in CPF, which 

might have significant impacts on system transfer capability. 

The last approach recently used for transfer capability calculations is optimal 

power flow. OPF has been investigated extensively in the past three decades [18-19]. 
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OPF techniques are quite mature and have recently found some applications in transfer 

capability studies [42, 43]. All of these works share the common theme that they 

formulate an optimization problem in which the dominant elements are the equality 

constraints arising from the power flow. OPF methods can also play an important role in 

the current deregulated environment as it has the potential to distribute the resources 

optimally. Furthermore, OPF can model the system constraints including ac load flow 

equations, transmission line thermal limits and voltage limits in both transfer capability 

and economic dispatch studies.  

Studies have indicated that CPF and OPF are accurate methods for transfer 

capability calculations but they are very time consuming. It is almost impossible to justify 

the use of CPF and OPF based methods for transfer capability calculations in real-time. 

For example, if we want to calculate ATC by incrementing the transfer, resolving the 

power flow and iterating in that manner and if it takes 10 iterations to calculate ATC and 

there are 600 contingencies to be considered, we have 6000 power flows to solve. If it 

takes 30 seconds to solve a power flow, which is a reasonable guess, then it will take 50 

hours to obtain ATC value for each contingency. In case of OPF, it may take anywhere 

from few minutes to an hour to obtain the solution of one power flow. Hence, CPF and 

OPF are good methods for off-line use for planning. In today’s deregulated power 

system, we need a ATC calculation method which is fast and accurate and can also be 

applied for multi-area ATC calculations.  This chapter presents a new iterative ATC 

calculation method, which does not require a solution of power flow repeatedly and is 

more accurate compared to using DC/AC-PTDF to calculate ATC.  
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3.3 Power Transfer Distribution Factors 

3.3.1 DC - Power Transfer Distribution Factors 

The problem of studying thousands of possible power transfers and outages 

becomes very difficult to solve if it is required to present results quickly. One of the 

easiest ways to provide a quick calculation is to use linear sensitivity factors or DC-

PTDFs. These factors show the approximate change in line flows for changes in 

generation on the network and are derived from DC load flow. Consider a bus m and a 

line joining buses i and j.  

 

,

ij

ij m

m

P
PTDF

P

∆
=

∆
                                  (3.4) 

where,  

ij
P∆ = change in real power flow on line ij for a change of 

m
P∆ occurs at bus m. 

m
P∆ =  change in generation at bus m.  

 

The PTDF from injection at bus m to flow over the transmission line connecting 

bus i and bus j is written as  

,

im jm

ij m

ij

X X
PTDF

x

−
=     (3.5) 

 

Where, xij is the reactance of the transmission line connecting bus i and bus j; Xim 

and Xjm are the elements of bus reactance matrix. 
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From the power flow point of view, a transaction is a specific amount of power 

that is injected into the system at one bus m by a generator and removed at another bus by 

a load at another bus n. In this case, the PTDF for injection at bus m and withdrawal at 

bus n to flow on the line connecting bus i and bus j can be written as  

 

,

im jm in jn

ij mn

ij

X X X X
PTDF

x

− − +
=    (3.6) 

 

ATC is limited by the maximum power flow of any one transmission line of the 

system. To determine the ATC it is necessary to compute the maximum power transfer, 

Tl,mn for each line of the system in turn assuming it is the limiting line.  

 

,

,

l l
l mn

l mn

Max P
T

PTDF

−
=     (3.7) 

 

The smallest Tl,mn identifies the most constraining branch and thus gives the 

maximum power transfer. Hence, ATC can be written as  

 

,min{ }
l mn

ATC T=     (3.8)   
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3.3.2 AC - Power Transfer Distribution Factors 

The linear DC power transfer distribution factors based on DC power flow 

method are widely used to allocate MW flows on the lines for a transaction in the system. 

However, because they are only depended on topology of the system, they do not produce 

accurate results. For accurate AC analysis, one needs a PTDF which is also based on an 

operating point of the system in addition to system topology. [47-48] presents such      

AC-PTDFs, which are derived from a Jacobin matrix of an operating point load flow. 

Consider that the base case load flow result at the operating point is available; hence the 

Jacobin matrix can be written as 

 

[ ]
1

0

P
J

V Q

δ −∆ ∆   
=   

∆ ∆   
     (3.9) 

 

Now for a given transaction of ∆T MW between seller bus ‘m’ and buyer bus ‘n’, 

only following two entries in the mismatch vector of RHS of the above equation will be 

non-zero.  

;     ;  
m n

P T P T∆ = ∆ ∆ = −∆  

With the above mismatch vector elements, the change in voltage angle and 

magnitude at all the buses can be computed and hence the new voltage profile can be 

calculated. The new line flows can be calculated using new voltage profile and also the 

change in line flows.  Once the change in line flows is calculated for a given transaction 

of ∆T, AC-PTDFs can be obtained using following equation.  
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,

ij

ij mn

P
PTDF

T

∆
=

∆
     (3.10) 

 

These AC-PTDFs, which are computed at a base case operating point, can be used to 

calculate ATC for a given transaction as explained using DC-PTDFs. The basic steps 

used to calculate AC-PTDF for a given transaction are summarized below: 

o Run a base case load flow  

o Form a full Jacobin to include all buses except the slack bus and invert it.  

o For each transaction,  

� Identify the selling bus and buying bus 

� Assume positive injection change at selling bus and negative 

injection change at buying bus 

� Compute the change in voltage magnitudes and angles and update 

the voltages 

� Calculate new transmission line flows and hence the AC-PTDFs. 

 

AC-PTDFs are quite accurate in modeling the impact of contingencies and power 

transfers. However, they only use derivatives around the present operating point. Thus, 

control changes as you ramp out to the transfer limit are not modeled. The possibility of 

generators participating in the transfer hitting limits is not modeled.  
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3.4 Iterative Method for ATC Calculation 

Among the existing methods of ATC calculations, PTDF based method is fastest. 

But DC-PTDFs are depended only on system topology and AC-PTDFs uses derivatives 

around the operating point only. Control changes are not modeled when using either 

PTDFs as you ramp out to the transfer limit. Hence, using PTDFs for ATC calculations 

do not produce accurate results. Studies have indicated that CPF and OPF are accurate 

methods for determining transfer capability calculations but they are very time 

consuming. It is almost impossible to justify the use of CPF and OPF based methods for 

ATC calculations in real-time.  

 

The proposed iterative method for ATC calculation overcomes disadvantages of 

existing methods and can be used in real-time. The main characteristics of the proposed 

method are: 

• It is based on current operating state of the system. 

• It does not require sequential power flow solution and hence is faster than OPF 

and CPF based methods.  

• It takes into account generator limits and bus voltage limits in addition to 

transmission line thermal limits, which are usually neglected in PTDF based 

methods.  

The proposed method uses the base case load flow solution and the sensitivity 

properties of the Newton-Raphson Load Flow (NRLF) Jacobin matrix. NRLF involves 

iterative solution of linear equations, with the state vector computed and updated in each 
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iteration for a small change in power injections. The linear equation is shown is equation 

(3.11).  

[ ]
1

0

P
J

V Q

δ −∆ ∆   
=   

∆ ∆   
                                            (3.11) 

The iterative procedure stops when the change in the state vector between 

successive iterations is smaller than a specified value. Thus the Jacobin calculated after 

the last load flow run is available for use.  The proposed method uses the Jacobin 

obtained at base case load flow to calculate the change in voltage magnitudes and angles 

for a power transaction between two buses. The transaction amount is kept small to keep 

the iterative solution accurate. Thus, for the specific transfer, only two entries are non-

zero in the RHS vector of the equation (3.11). After the change in voltage magnitudes 

and angles is obtained, they are superimposed on the base case complex voltages, to 

obtain new complex voltages. Linearization over such a small interval does not introduce 

significant amount of error and hence the computation of complex bus voltages is 

feasible and accurate. New bus voltages are compared with their respective limits and if 

they are not violated, new transmission line flows, bus injections and generator quantities 

are calculated. These quantities are then compared with their respective limits. If none of 

the limits are violated then the new Jacobin is calculated at the current state and the 

transaction is increased by small amount to repeat the above procedure. The procedure is 

repeated until at least either of transmission line thermal limit, generator limit or voltage 

limit is not violated.  Figure (3.1) shows the flowchart of proposed method. The method 
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assumes that system has large dynamic stability margin and the bus voltage limit is 

reached before system loses voltage stability.  

 

Start with Base Case Condition

Obtain Power Flow Solution

Obtain Jacobin at Power Flow Solution

Set initial value of transfer

Calculate change in voltage angles and 

magnitude using equation (3.11)

Update system voltages

Calculate new transmission quantities

Check for 

Inequality 

constraints of 

equation (3.4). 

Any Violations?

Have all 

contingencies 

been

Considered?

Conclude ATC

NO

YES

Calculate Jacobin 

using updated voltages

Increase the transfer

NO

YES

Select another contingency

Flag this transfer as a ATC candidate

 

Figure 3.1: Flowchart of proposed method 
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3.5 Simulation Results 

The proposed method is tested on IEEE 6-bus and 39-bus systems. ATC values 

are presented for two power transactions for each system and it is assumed that only two 

contingencies are present in the contingency list to consider.  Results are also presented at 

80% and 120% of base case loading for each system. ATC results obtained using the 

proposed method is compared with the results obtained using DC-PTDFs, AC-PTDFs 

and repeated AC Load Flow (ACLF).  

 

3.5.1 IEEE 6-Bus System 

ATC results for power transactions between buses 2-3 and 1-5 are presented in 

Table 3.1 and 3.2 respectively. For the transfer from bus 2 to bus 3, in base case 

condition, line 2-3 reaches the limit for a transfer of 214.50 MW. This is the actual ATC 

value as it is calculated using repeated ACLF. The ATC value calculated using DC and 

AC PTDFs is 245.50 MW and 225.04 MW, which represents 14.5% and 4.91% error 

respectively. ATC amount calculated using proposed method is 215.75 MW, which is 

comparable with actual ATC amount.  The same can be concluded for a power transfer 

from bus 1 to bus 5. The proposed method predicts same limiting factor as predicted by 

repeated ACLF method for both transactions.  The limiting factors predicted by PTDFs 

based methods are not same as predicted by proposed or ACLF based method, especially 

for the transfer from bus 2 to 3.  
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Table 3.1: ATC for transfer from Bus 2 to 3 

 

 
DCPTDF based 

method 

ACPTDF based 

method 
Proposed Method 

Repeated ACLF 

Method 

 
ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

Base Case 245.50 Line 2-3 225.04 Line 2-3 215.75 Line 2-3 214.50 Line 2-3 

Line 1-5 out 210.10 Line 2-6 197.46 Line 2-6 188.75 Line 2-3 188.00 Line 2-3 

Line 2-6 out 160.70 Line 2-3 139.76 Line 2-3 135.50 Line 2-3 134.50 Line 2-3 

 

 

Table 3.2: ATC for transfer from Bus 1 to 5 

 

 
DCPTDF based 

method 
ACPTDF based method Proposed Method 

Repeated ACLF 

Method 

 
ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

Base Case 164.30 Line 1-5 146.39 Line 1-5 141.50 Line 1-5 140.50 Line 1-5 

Line 1-5 out 94.70 Line 1-4 72.71 Line 1-4 66.25 Line 1-4 66.50 Line 1-4 

Line 2-6 out 147.50 Line 1-5 132.21 Line 1-5 124.75 Line 1-5 125.10 Line 1-5 

 

 

Table 3.3: ATC (MW) for transfer from Bus 2 to 3                                                             

at different loading conditions 

 

% of Base Case 
AC-PTDF based 

method 
Proposed method 

Repeated ACLF 

method 

80 238.41 219.00 218.00 

100 225.04 215.75 214.50 

120 200.52 185.50 184.00 
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Table 3.3 shows the ATC values calculated at 80%, 100% and 120% of base case 

loading. AC-PTDFs used to calculate ATC are obtained at 100% of base case loading. 

Results shown in Table 3.3 indicates that error introduced in ATC values calculated by 

AC-PTDFs at 80% and 120% of base case loading is higher compared to error observed 

for 100% of base case loading. Proposed method does predict ATC value very close to 

one obtained using repeated ACLF regardless of the operating point.  

 

 

3.5.2 IEEE 39-bus system 

ATC results for power transactions between buses 32-39 and 36-38 are presented 

in Tables 3.4 and 3.5 respectively. The results indicate that ATC value calculated using 

proposed method closely matches with the one calculated using repeated AC load flow 

method and both methods also predict the same limiting factor. It is important to note that 

in few cases presented here, DC and AC-PTDFs based methods do not predict the same 

limiting factor as predicted by proposed or repeated ACLF method.  

 

Table 3.4: ATC for transfer from Bus 32 to 39 

 

 
DC-PTDF based 

method 

AC-PTDF based 

method 
Proposed Method 

Repeated ACLF 

Method 

 
ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

Base Case 200.49 Line 6-11 239.09 Line 6-11 231.50 Line 6-11 230.50 Line 6-11 

Line 5-6 out 327.40 Line 4-14 286.24 Line 13-14 278.50 Line 13-14 277.50 Line 13-14 

Line 17-18 out 151.38 Line 6-11 192.96 Line 6-11 184.00 Line 6-11 184.00 Line 6-11 

 



 58

Table 3.5: ATC for transfer from Bus 36 to 38 

 

 
DC-PTDF based 

method 

AC-PTDF based 

method 
Proposed Method 

Repeated ACLF 

Method 

 
ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

ATC 

(MW) 

Limiting 

Factor 

Base Case 472.75 Line 16-17 512.55 Line 16-17 493.75 Line 16-17 495.00 Line 16-17 

Line 5-6 out 437.57 Line 16-17 488.34 Line 16-17 465.50 Line 16-17 465.10 Line 16-17 

Line 17-18 out 495.80 Line 16-17 541.04 Line 23-24 525.75 V24 Limit 525.50 V24 Limit 

 

 

Table 3.6 represents the ATC amounts at new operating points with -20% and 

+20% variation of generation and load at each bus. AC-PTDFs method uses the PTDFs 

calculated at base case to calculate ATC at new operating points. Results indicate that 

error observed in ATC value calculated by AC-PTDFs is higher for 80% and 120% of 

base case loading compared to at 100% base case loading. Results also indicate that there 

is no effect of system loading condition on ATC values calculated by proposed method as 

they are comparable with the one obtained using repeated ACLF.  

 

Table 3.6: ATC (MW) for transfer from Bus 32 to 39                                                             

at different loading conditions 

 

% of Base Case 
AC-PTDF based 

method 
Proposed method 

Repeated 

ACLF method 

80 346.18 342.50 344.00 

100 239.09 231.50 230.50 

120 132.01 123.25 122.80 
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3.6 Conclusion 

This chapter proposed a new iterative method for ATC calculation. The DC-

PTDFs based method for ATC calculation is fast but do not produce accurate results as it 

is only based on system topology. AC-PTDFs based method for ATC calculation is also 

fast but it does not take into account generator limits and bus voltage limits. OPF and 

CPF based methods are accurate but they are very time consuming and cannot be used in 

real-time. This chapter introduced a new iterative method, which does not require a 

repeated solution of power flow and also takes into account generator limits and bus 

voltage limits. Because it doesn’t require a solution of repeated power flow, it can be 

used in real-time in control center to calculate ATC.  
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CHAPTER FOUR 

MULTI-AREA TRANSFER CAPABILITY 

  

Nowadays, utilities are transferring power over long distances to provide reliable 

and economical electricity to their customers. In such situations, utilities are required to 

evaluate the reliability and security of an interconnected system on multi-area basis. 

Calculation of Available Transfer Capability (ATC) is one of the few important factors 

used to evaluate static security of the system before committing to transfer power 

between two nodes of the system. This chapter presents a two-level approach to calculate 

ATC of a multi-area interconnected power system. The basic idea of the proposed 

method consists of exchanging just enough data so that each area can evaluate the ATC 

for given transfer between any two nodes of the system considering limiting factors of 

their own area. The central coordinator coordinates the ATC results obtained by each area 

to calculate ATC of an interconnected system.  

 

4.1 Problem Definition 

In today’s interconnected power system, calculation of ATC has become very 

challenging for the transfers taking place all over the interconnection. A multi-area 

interconnected power system is shown in figure 4.1. Let us adopt the view point of area 

1. When area 1 runs the ATC calculation for a transfer within its network, the results are 

based on the limiting factors from its own area. Area 1 will not consider limiting factors 

of neighbor utilities. But it is possible that for a transfer within area 1, an element such as 
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transmission line, transformer etc. of neighbor system is reaching its threshold. For a case 

with transfer between areas, it becomes difficult to calculate ATC if each participating 

area don’t have complete model of each others system and of areas via whom the actual 

transfer is going to take place. For example, power transfer from area 1 to area 4 of a 

system shown in figure 4.1 takes place through area 2 and area 3. In such situation, entity 

calculating ATC should have complete model of all four areas. The ideal solution to this 

problem is to share complete real-time model and allow each area to run ATC using the 

complete model of an interconnected system. However, this solution is technically 

expensive if not impossible and hindered by confidentiality issues.  

 

 

 

 

 

 

 

 

 

Figure 4.1: Multi-Area Interconnected Power System 

An alternative method is based on a two-level multi-area coordinated solution 

which is similar to one used to achieve wide area state estimation. The main idea is to 

distribute the computations into individual areas and then coordinate their solutions in 

Area 1 Area 2

Area 3 Area 4

Area 1 Area 2

Area 3 Area 4
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order to reach the system-wide solution. The objective is to compute an ATC value, 

which is very close to the ATC that would be calculated if the entire system information 

was available to a single central operator. Such a two-level hierarchical approach for 

calculating ATC for interconnected power system is presented in [44-45] and is based on 

power transfer distribution factors. In [46], Bender decomposition is used to calculate the 

ATC, where the base case security constraints are treated as the high level problem. Two-

level approach based on continuation power flow is presented in [47], which requires 

updating continuation parameter to ensure synchronized calculation in each area. 

 

4.2 Equivalent Model of Neighbor Systems 

In a multi-area system, it is assumed that each area operates autonomously by its 

own independent operator. Each area carries out its own ATC calculation and maintains 

its own detailed system model. To set up a base case operating point for ATC calculation, 

each area needs the model of neighbor systems. A theoretical solution to this problem is 

to use the complete real-time model of an interconnected system to calculate ATC.  This 

is not possible because utilities are reluctant to share their real-time data due to security 

and confidentiality issues. The objective of the proposed framework is to rely on the 

exchange of minimal amount of information, while still achieving the above 

requirements. Therefore, instead of using detailed model requiring detailed data 

exchange, why not use the equivalent model? For the purpose of static security 

assessment, an equivalent model of an area is a black-box model of the voltage-current 

relationship at the receiving ends of the interconnections of that area, which can be 
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plugged into a power flow computation. Hence, each area uses network equivalents to 

represent the system in other areas except for the boundary buses, the seller bus and the 

buyer bus whose identities are maintained by excluding them from the equivalents. A two 

area interconnected system is shown in figure 4.2 as an example. From a view point of 

area 1, the system can be divided into three parts: 1) internal system; 2) boundary 

network, which includes boundary buses of internal and external system and tie-lines 

connecting them; and 3) external system. Considering area 1 operation, the external 

system excluding the boundary buses to which the tie-lines to area 1 are connected needs 

to be reduced to equivalent model.  

 

 

 

 

 

 

 

Figure 4.2: Two Area System 

 

Among many equivalent techniques that appeared in the literature [48], Radial 

Equivalent Independent (REI) type equivalent is chosen here. REI-type equivalents are 

developed by Dimo [49], and later introduced to the U.S by Tinney and Powell in [50]. In 

Area 1 Area 2

Boundary Network

To be retained
System to be reduced 
to Equivalent Model

External System

Modeled in Detail

Internal System

Area 1 Area 2

Boundary Network

To be retained
System to be reduced 
to Equivalent Model

External System

Modeled in Detail

Internal System
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general, the REI network is a lossless network representation of a set of base case 

injections. The REI equivalent aggregates the injections of a group of buses into a single 

bus and distributes it into the system via a radial network.  The key benefits of REI type 

equivalents are mentioned below.  

 

1. The ability to eliminate all physical nodes, expect those which are the terminal 

nodes of the tie-lines or other key transmission lines whose identity is to be 

retained. 

2. The generation and load buses are represented in an aggregate from by REI 

equivalents.  

3. The reactive power can be provided by the equivalents more accurately especially 

around the base case operation.  

 

The procedure of obtaining an REI equivalent shown in figure 4.3 is as follows: 

 

1. The net complex power injection SR can be presented as 
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3. Dimo always assumed the voltage VG = 0. So the branch admittances are 
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4. The final step in the process is to eliminate buses 1, 2, . . . , N and bus G by Kron 

reduction and obtain the equivalent network model. 

 

 

 

 

 

 

 

 

Figure 4.3: REI Network Configuration 

 

Figure 4.4 represents the REI equivalent of area 2 connected to area 1. Savulescu 

[51] presented the use of REI equivalents for security analysis of power systems. Oatts et 
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al [52] presented the application of REI equivalents in operations planning to study the 

impact of scheduled interchanges on the system. 

 

 

 

 

 

 

 

 

 

Figure 4.4: Area 2 presented by REI equivalent 

 

4.3 Multi-Area ATC Calculation 

The proposed two-level model assumes that each area calculates the ATC for a 

given power transaction by itself. In this process it uses the REI equivalent of neighbor 

utilities obtained from central coordinator to set up an operating case. Each area then 

sends the results to central coordinator, who coordinates them together and selects the 

minimum value of ATC for a given transaction, which is the ATC between buyer and 

seller bus with violating any thermal or voltage limits in any area of an interconnected 

power system. If buying or selling bus falls into particular area, it can not be reduced in 
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equivalent for use by other areas. Following is the summary of functions performed by 

central coordinator and individual areas respectively.   

 

• Central Coordinator 

– Makes the list of transactions to be studied and sends them to participating 

areas. 

– Receives REI Equivalent from each area and re-distributes it to neighbor 

areas. 

– Compares the value of ATC obtained from each area and finds the 

smallest one. This is the ATC value for that transaction of an 

interconnected system. Central coordinator informs participating areas 

with ATC results.  

• Each Control Area 

– Provides REI equivalent of own system to central coordinator.  

– Receives REI equivalent of neighbor systems from central coordinator and 

list of transactions to be studied.  

– Calculates ATC between the specified buyer and seller buses and sends 

the results to central coordinator.  

 

Following is the sequence of work performed by central coordinator and each 

participating area.  
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1. Central coordinator distributes the list of transactions to be studied to participating 

areas.  

2. Each area sends its equivalent model to central coordinator.  

3. Each area receives equivalent models of their neighbor systems from central 

coordinator.  

4. Each area calculates ATC for a list of transactions considering limiting factors of 

its own system and sends them to central coordinator.  

5. Central coordinator compares the value of ATC obtained from each area and finds 

the smallest one. This is the ATC of an interconnected system which is sent back 

to each participating areas.  

 

4.4 Simulation Results 

The proposed two-level multi-area ATC calculation method is implemented on 

IEEE 39-bus system. This system is divided into three areas as shown in figure 4.5. The 

base case of the IEEE 39-bus system is used as the reference loading. Table 4.1 presents 

ATC values for transfer from bus 39 to bus 15. Area 1 calculates that 393MW of 

additional power can be transferred from bus 39 to bus 15 before hitting the thermal limit 

of line from bus 2 to 3. The limiting constraints for Area 2 and Area 3 are lines from bus 

2 to 3 and bus 14 to 15 for an ATC of 1075MW and 653MW respectively. The 

coordinator selects the smallest transfer amount, which is 393MW as a multi-area ATC 

solution. The results obtained using integrated and multi-area solutions are comparable. It 
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is important to note that the limiting factors predicted by integrated and multi-area 

solutions are also same.   

 

Figure 4.5: IEEE 39-Bus System 
 
 

Table 4.1 ATC for transfer from bus 39 to 15 
 

 ATC (MW) Limiting Factor 

Integrated System 395 Line 2 – 3 

Area 1 393 Line 2 – 3 

Area 2 1075 Line 14 – 15 

Area 3 653 Line 15 – 16 

Multi-Area System 393 Line 2 – 3 
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Table 4.2 and 4.3 presents ATC results for transfer from bus 35 to bus 17 and bus 

32 to bus 15 respectively. The results obtained using integrated and multi-area solutions 

are comparable for both of these transfers.  

 
Table 4.2 ATC for transfer from bus 35 to 17 

 

 ATC (MW) Limiting Factor 

Integrated System 428 Line 16 – 21 

Area 1 444 Line 16 – 17 

Area 2 727 Line 13 – 14 

Area 3 430 Line 16 – 21 

Multi-Area System 430 Line 16 – 21 

 
 
 

Table 4.3 ATC for transfer from bus 32 to 15 
 

 ATC (MW) Limiting Factor 

Integrated System 401 Line 6 – 11 

Area 1 650 Line 3 – 18 

Area 2 400 Line 6 – 11 

Area 3 820 Line 14 – 15 

Multi-Area System 400 Line 6 – 11 

 

 The transfers studied so far are inter-area transfers. For example, transfer from 

bus 39 to bus 15 is taking place between area 2 and 3. Table 4.4 presents the results for 

transfer from bus 39 to bus 4, which is the transfer within area 2. The interesting fact here 

is that even though the transfer is taking place within area 2, the limiting factor for this 

transfer is in area 1, which is the thermal limit of line from bus 2 to bus 3. So actually the 



 71

ATC value calculated by area 1 is the smallest one, which is also a multi-area ATC 

solution and is comparable to the solution obtained by integrated system.  

 

Table 4.4 ATC for transfer from bus 39 to 4 
 

 ATC (MW) Limiting Factor 

Integrated System 355 Line 2 – 3 

Area 1 356 Line 2 – 3 

Area 2 1010 Line 4 – 5 

Area 3 1050 Line 3 – 4 

Multi-Area System 356 Line 2 – 3 

 

4.5 Conclusion 

This chapter presented a new method based on hierarchical structure to solve for 

ATC problem of a multi-area power system. The proposed method is such that minimal 

data exchange is required between areas making it very suitable for deregulated power 

system in which areas are reluctant to share their real-time data. In the proposed method, 

individual areas calculate ATC for a given power transaction considering limiting factors 

of their own area using REI equivalents of neighbor areas. Central entity coordinates the 

results obtained by individual areas to determine the ATC value of an interconnected 

power system. Simulation results obtained using IEEE 39-bus system validates that ATC 

values determined using integrated and proposed multi-area method are comparable.  
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CHAPTER FIVE 

SUMMARY AND FUTURE RESEARCH  

5.1 Summary 

 An attempt has been made in this dissertation to develop tools that can help 

operators in energy control centers to operate the grid reliably and securely. With the 

deregulation of power systems, the large scale power transactions between utilities have 

increased drastically. In this situation, operators in control room do need to monitor an 

interconnected grid on a wide area basis. The tools developed as a part of this research 

will also help operators to detect the large scale cascading failure of the system during the 

slow progression phase in which they can take corrective actions to avoid or reduce the 

impact of it. Among various tools used in control centers to study and operate the grid, 

state estimator and transfer capability calculator are the vital tools in evaluating the static 

security of the system. In order to monitor the large scale power transactions taking place 

over an interconnected system, a wide area state estimator and transfer capability 

calculator are required. But because of competitive wholesale market of power and for 

security reasons, utilities are reluctant to share data among each others to achieve such a 

wide area solution of state estimator and transfer capability. The algorithms developed in 

this dissertation to achieve wide area state estimator and transfer capability calculator are 

such that minimal data exchange is required between utilities and that they can be used in 

real-time.  

In first part of dissertation, a new method based on two-level state estimation is 

presented to achieve wide area state estimation of an interconnected power grid.  This 
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way, individual areas are allowed to run their own state estimator, without exchanging 

any real-time data with their neighbor areas. The central coordinator then coordinates 

state estimator results available from individual areas to bring them to a global reference. 

Generally, use of boundary injection measurements at coordinator level requires some 

real-time data exchange between individual areas and coordinator other than just state 

estimator results. The use of modified power injections at coordinator level is proposed 

and implemented to minimize the real-time data exchange. The use of measurements 

available from Phasor Measurement Units (PMUs) in state estimation is getting a lot of 

attention in the industry nowadays. This dissertation presented two methods to 

incorporate PMU measurements in state estimation. The use of PMU measurements is 

proposed and implemented to improve the accuracy of two-level state estimator in 

presence of short or low impedance transmission lines around the boundary network.  

In second part of dissertation, a new iterative method is presented to calculate the 

transfer capability of power system that can be used in real-time. The limitations of 

existing transfer capability calculation methods are either they are very slow or not 

accurate making them unsuitable for real-time application. The new proposed method 

overcomes all these disadvantages and can be used in real-time. Lastly, a two-level 

transfer capability algorithm was presented to achieve available transfer capability of an 

interconnected power system. As explained for wide area state estimator, individual areas 

calculates transfer capability of their own system for a given power transaction. Central 

coordinator then coordinates results of each area to obtain multi-area ATC value. The 
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developed method uses REI-equivalents to keep the data exchange minimum between 

control areas.  

5.2 Future Research 

 The research presented in this dissertation can be a good reference for some of the 

possible future work listed below.  

• The hierarchical structure used in this dissertation can also be applied to study 

voltage and transient stability of an interconnected system.  

• More work is needed to study optimal placement of PMUs on the system to 

improve the redundancy and accuracy of the state estimator.  

• More work is needed to study application of PMU measurements for real-time 

operations such as transient and voltage stability studies, automatic generation 

control, automatic voltage control and special protection schemes.  

• Transfer capability calculation in this dissertation only focused on static security 

limits. The algorithm presented can be expanded to include transient and voltage 

stability limits.  
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Appendix A 

Flowchart of Multi-Area State Estimation 

 

Each area collects SCADA measurements and topology from the system 

and runs its own state estimator

Each area sends its state estimator results along with covariance of state 

vector to central coordinator

Central coordinator collects measurements from boundary network and 

state estimator  outputs from each area 

Central coordinator coordinates the results of state estimator from each 

area and brings them to a global reference

Central coordinator sends the results of multi-area state estimator back to 

each area to study steady state security of the system

Start

Stop
 

Figure A.1: Flowchart of Multi-Area State Estimation 
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Appendix B 

Flowchart of Multi-Area ATC Calculation Method 

 

Central coordinator distributes the list of transfers to be studied to each 

participating areas 

Each area sends its REI-equivalent model to Central Coordinator

Central coordinator distributes equivalent models of each neighbor systems 

to each area

Each area calculates ATC for listed transfers considering the limiting 

factors of its own area and sends results to Central Coordinator

Central coordinator compares the value of ATC obtained from each area 

and finds the ATC of an interconnected system.

Start

Stop
 

Figure B.1: Flowchart of Multi-Area ATC Calculation Method 
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Appendix C 

MATLAB Program for State Estimation 

RUNSE.m 

 
clear all; 
 
time = cputime; 
 
% Reading the power flow result for the given system. 
PF_result_30;   
 
% forming the Ybus 
Ybus26;  
Ybus = sparse(Ybus); 
 
nbus = length(Ybus(:,1)); % Total number of buses in system 
 
nsv = 2*nbus-1; %Total number of State Variables in system 
 
% Searching for the refenece bus 
for n = 1:nbus 
    if bus(n,2)==3 
        rbus = n; 
    end 
end 
rangle = bus(rbus,9)/57.32;  % Refernce bus angle 
 
% Initializing the state vector Xs for flat start 
for n = 1:nbus-1 
    Xs(n,1) = 0;    % Initial Angles 
end 
for n = nbus:2*nbus-1 
    Xs(n,1) = 1;    % Initial voltages 
end 
 
% Transferring from state vraibles to angles and voltages of the system.  
for n=1:nbus 
    if n<rbus 
        ang(n,1)=Xs(n,1); 
        else if n==rbus 
            ang(n,1)=rangle; 
            else 
                ang(n,1) = Xs(n-1,1); 
            end 
    end 
end 
 
for n=1:nbus 
    V(n,1) = Xs(nbus+n-1,1); 
end 
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% forming the measurements 
 
nmmt = 0; % Total number of measurements 
 
% Extracting voltage from the power flow results 
 
m = 0; 
for n=1:nbus 
    mmt(m+1,1)=0; 
    mmt(m+1,2)=n; 
    mmt(m+1,3)=0; 
    mmt(m+1,4)=bus(n,8); 
    m = m + 1; 
end 
 
nmmt=m;  
 
% Extracting Bus Angles from Power Flow Results 
 
m = 0; 
for n=1:nbus 
    if n ~= rbus 
        mmt(m+1+nmmt,1)=5; 
        mmt(m+1+nmmt,2)=n; 
        mmt(m+1+nmmt,3)=0; 
        mmt(m+1+nmmt,4)=bus(n,9); 
        m = m +1; 
    end 
end 
 
nmmt = nmmt + m; 
 
%Extracting Power Injections from Power Flow Result 
 
ngen = length(gen(:,1));  % Number of generators 
 
for n=1:nbus 
    PL(n,1) = bus(n,3); 
    QL(n,1) = bus(n,4); 
    PG(n,1) = 0; 
    QG(n,1) = 0; 
end 
 
for n=1:ngen 
    PG(gen(n,1),1) = gen(n,2); 
    QG(gen(n,1),1) = gen(n,3); 
end 
 
for n=1:nbus 
    QG(n,1)=QG(n,1)+bus(n,6); 
end 
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m=0; 
 
for n=1:nbus 
        m=m+1; 
        mmt(m+nmmt,1)=3; 
        mmt(m+nmmt,3)=0; 
        mmt(m+nmmt,4)=PG(n,1)-PL(n,1); 
        mmt(m+nmmt,2)=n; 
end 
 
nmmt = nmmt + m; 
 
m = 0; 
 
for n=1:nbus 
        m=m+1; 
        mmt(m+nmmt,1)=4; 
        mmt(m+nmmt,2)=n; 
        mmt(m+nmmt,3)=0; 
        mmt(m+nmmt,4)=QG(n,1)-QL(n,1); 
end 
nmmt = nmmt + m; 
 
% Extracting Power Flows from the Power Flow Result 
 
nbranch = length(branch(:,1));  % Number of branches 
 
% Extracting Active Power Flow 
 
for n=1:nbranch 
    mmt(nmmt+n,1)=1; 
    mmt(nmmt+n,2)=branch(n,1); 
    mmt(nmmt+n,3)=branch(n,2); 
    mmt(nmmt+n,4)=branch(n,12); 
end 
 
nmmt=nmmt+n; 
 
for n=1:nbranch 
    mmt(nmmt+n,1)=1; 
    mmt(nmmt+n,2)=branch(n,2); 
    mmt(nmmt+n,3)=branch(n,1); 
    mmt(nmmt+n,4)=branch(n,14); 
end 
 
nmmt=nmmt+n; 
 
% Extracting Reactive Power Flow 
 
for n=1:nbranch 
    mmt(nmmt+n,1)=2; 
    mmt(nmmt+n,2)=branch(n,1); 
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    mmt(nmmt+n,3)=branch(n,2); 
    mmt(nmmt+n,4)=branch(n,13); 
end 
 
nmmt=nmmt+n; 
 
for n=1:nbranch 
    mmt(nmmt+n,1)=2; 
    mmt(nmmt+n,2)=branch(n,2); 
    mmt(nmmt+n,3)=branch(n,1); 
    mmt(nmmt+n,4)=branch(n,15); 
end 
 
nmmt=nmmt+n; 
 
 
% Getting rid of Parallel Lines 
 
for n = 1:nmmt 
    if mmt(n,1)==1 | mmt(n,1)==2 
        if mmt(n,2)==mmt(n-1,2) & mmt(n,3)==mmt(n-1,3) 
            mmt(n-1,4) = mmt(n,4)+mmt(n-1,4); 
            mmt(n,1) = 6;                       % This is the dummy Variable 
        end 
    end 
end 
 
temp = mmt; 
clear mmt; 
m=1; 
for n = 1:nmmt 
    if temp(n,1)~= 6 
        mmt(m,:)=temp(n,:); 
        m = m + 1; 
    end 
end 
clear temp;  
nmmt = length(mmt); 
 
 
mvabase = 100; 
d = mmt(:,1); 
nl = mmt(:,2); 
nr = mmt(:,3);  
zm = mmt(:,4);     
        
 
for i=1:nmmt 
    if d(i)==0 
        zm(i) = zm(i); 
        else if d(i)==5; 
            zm(i) = zm(i)/57.32; 
            else 
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                zm(i) = zm(i)/mvabase; 
         end 
    end 
end 
 
% Initializing Weight matrix for Internal System 
 
W = sparse([]); 
 
W(nmmt,nmmt)=0; 
 
for i=1:nmmt 
        if d(i)==0   % for voltage measurements 
            W(i,i) = 1/(0.01*0.01); 
        end 
        if d(i)==5  % for angle measurements 
            W(i,i) = 1/(0.001*0.001);   
        end 
        if d(i)==1   % for active power flow measurements 
            W(i,i) = 1/(0.015*0.015); 
        end 
        if d(i)==2   % for reactive power flow measurements 
            W(i,i) = 1/(0.015*0.015);     
        end     
        if d(i)==3   % for active power injection measurements 
            W(i,i) = 1/(0.03*0.03); 
        end     
        if d(i)==4   % for reactive power injection measurements 
            W(i,i) = 1/(0.03*0.03); 
        end 
end 
 
 
%***************************************************************% 
%% STARTING THE MAIN LOOP %% 
%***************************************************************% 
 
for iter=1:15 
     
    % Forming the Jacobian Matrix %  
     
    % Intializing the Jacobian Matrix to zero 
 
    H(nmmt,2*nbus-1)=0; 
    T(nmmt,2*nbus)=0; 
     
    for i=1:nmmt 
     
        if d(i)==0  
            for j =nbus:2*nbus-1 
                if j==nbus+nl(i)-1 
                    H(i,j) = 1; 
                else 
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                    H(i,j) = 0; 
                end 
            end 
        end 
             
        if d(i)==5  
             for j=1:nbus-1 
                 if nl(i)<rbus 
                     if j == nl(i) 
                         H(i,j) = 1; 
                     else 
                         H(i,j) = 0; 
                     end 
                 end 
                 if nl(i)>rbus 
                     if j==nl(i)-1 
                        H(i,j) = 1; 
                     else 
                        H(i,j) = 0; 
                     end 
                 end 
             end 
         end 
     
         
        if d(i)==1 
            for j=1:nbus 
                if j==nl(i) 
                   if A(nl(i),nr(i))~=0 
                        T(i,j) = A(nl(i),nr(i))*A(nr(i),nl(i))*(V(nl(i))*V(nr(i)))*[g(nl(i),nr(i))*sin(ang(nl(i))-
ang(nr(i))) - b(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))]; 
                    else  
                        T(i,j) = (V(nl(i))*V(nr(i)))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - 
b(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))]; 
                    end 
                end     
                if j==nr(i) 
                    if A(nl(i),nr(i))~=0 
                        T(i,j) = -(V(nl(i))*V(nr(i)))*A(nl(i),nr(i))*A(nr(i),nl(i))*[g(nl(i),nr(i))*sin(ang(nl(i))-
ang(nr(i))) - b(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))]; 
                    else  
                        T(i,j) = -(V(nl(i))*V(nr(i)))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - 
b(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))]; 
                    end     
                end     
            end 
 
            for j=nbus+1:2*nbus 
                if j==nbus+nl(i) 
                    if A(nl(i),nr(i))~=0 
                        T(i,j) = -V(nr(i))*A(nl(i),nr(i))*A(nr(i),nl(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-
ang(nr(i)))]+2*A(nl(i),nr(i))*A(nl(i),nr(i))*(g(nl(i),nr(i))+gs(nl(i)))*V(nl(i)); 
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                    else  
                        T(i,j) = -V(nr(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-
ang(nr(i)))]+2*(g(nl(i),nr(i))+gs(nl(i)))*V(nl(i)); 
                    end    
                end     
                if j==nbus+nr(i) 
                    if A(nl(i),nr(i))~=0 
                        T(i,j) = -V(nl(i))*A(nl(i),nr(i))*A(nr(i),nl(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
                    else  
                        T(i,j) = -V(nl(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-
ang(nr(i)))]; 
                    end   
                end 
            end 
 
            for j=1:2*nbus-1 
                if j<rbus 
                    H(i,j) = T(i,j); 
                else 
                    H(i,j) = T(i,j+1); 
                end 
            end 
        end 
         
        if d(i)==2 
            for j=1:nbus 
                if j==nl(i) 
                    if A(nl(i),nr(i))~=0 
                        T(i,j) = -V(nl(i))*V(nr(i))*A(nl(i),nr(i))*A(nr(i),nl(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
                    else  
                        T(i,j) = -V(nl(i))*V(nr(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
                    end  
                end 
                 
                if j==nr(i) 
                    if A(nl(i),nr(i))~=0     
                        T(i,j) = V(nl(i))*V(nr(i))*A(nl(i),nr(i))*A(nr(i),nl(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
                    else         
                        T(i,j) = V(nl(i))*V(nr(i))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))+b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
                    end 
                end 
            end 
             
            for j=nbus+1:2*nbus 
                if j==nbus+nl(i) 
                    if A(nl(i),nr(i))~=0 
                        T(i,j) = -V(nr(i))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - b(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))]-2*V(nl(i))*A(nl(i),nr(i))*A(nl(i),nr(i))*[b(nl(i),nr(i))+bs(nl(i))]; 
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                    else 
                        T(i,j) = -V(nr(i))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - b(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))]-2*V(nl(i))*[b(nl(i),nr(i))+bs(nl(i))]; 
                    end 
                end 
                 
                if j==nbus+nr(i) 
                    if A(nl(i),nr(i))~=0    
                        T(i,j) = -V(nl(i))*A(nl(i),nr(i))*A(nr(i),nl(i))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - 
b(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))]; 
                    else 
                         T(i,j) = -V(nl(i))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - b(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i)))]; 
                    end 
                end 
            end 
             
            for j=1:2*nbus-1 
                if j<rbus 
                    H(i,j) = T(i,j); 
                else 
                    H(i,j) = T(i,j+1); 
                end 
            end 
        end 
         
        if d(i)==3 
            for j=1:nbus 
                if j==nl(i) 
                   T(i,j) = -V(j)*V(j)*B(j,j); 
                   for k = 1:nbus 
                       T(i,j) = T(i,j) + V(j)*V(k)*[-G(j,k)*sin(ang(j)-ang(k))+B(j,k)*cos(ang(j)-ang(k))]; 
                   end 
                else 
                    T(i,j) = V(nl(i))*V(j)*[G(nl(i),j)*sin(ang(nl(i))-ang(j))-B(nl(i),j)*cos(ang(nl(i))-ang(j))]; 
                end 
            end 
            for j=nbus+1:2*nbus 
                if nl(i)+nbus==j 
                    T(i,j) = V(nl(i))*G(nl(i),nl(i)); 
                    for k=1:nbus 
                        T(i,j) = T(i,j) + V(k)*[G(nl(i),k)*cos(ang(nl(i))-ang(k))+B(nl(i),k)*sin(ang(nl(i))-ang(k))]; 
                    end 
                else 
                    T(i,j) = V(nl(i))*[G(nl(i),j-nbus)*cos(ang(nl(i))-ang(j-nbus))+B(nl(i),j-nbus)*sin(ang(nl(i))-
ang(j-nbus))]; 
                end 
            end 
            for j=1:2*nbus-1 
                if j<rbus 
                    H(i,j) = T(i,j); 
                else 
                    H(i,j) = T(i,j+1); 
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                end 
            end 
        end 
         
        if d(i)==4 
            for j=1:nbus 
                if j==nl(i) 
                   T(i,j) = -V(j)*V(j)*G(j,j); 
                   for k = 1:nbus 
                       T(i,j) = T(i,j) + V(j)*V(k)*[G(j,k)*cos(ang(j)-ang(k))+B(j,k)*sin(ang(j)-ang(k))]; 
                   end 
                else 
                    T(i,j) = V(nl(i))*V(j)*[-G(nl(i),j)*cos(ang(nl(i))-ang(j))-B(nl(i),j)*sin(ang(nl(i))-ang(j))]; 
                end 
            end 
            for j=nbus+1:2*nbus 
                if nl(i)+nbus==j 
                    T(i,j) = -V(nl(i))*B(nl(i),nl(i)); 
                    for k=1:nbus 
                        T(i,j) = T(i,j) + V(k)*[G(nl(i),k)*sin(ang(nl(i))-ang(k))-B(nl(i),k)*cos(ang(nl(i))-ang(k))]; 
                    end 
                else 
                    T(i,j) = V(nl(i))*[G(nl(i),j-nbus)*sin(ang(nl(i))-ang(j-nbus))-B(nl(i),j-nbus)*cos(ang(nl(i))-
ang(j-nbus))]; 
                end 
            end 
            for j=1:2*nbus-1 
                if j<rbus 
                    H(i,j) = T(i,j); 
                else 
                    H(i,j) = T(i,j+1); 
                end 
            end 
        end 
    end  
 
% Final End of the Jacobian Loop 
 
    HT = transpose(H); 
    Gain = (HT*W*H); 
 
% Finding error for internal Measurements 
     
    zx = zeros(nmmt,1); 
    error = zeros(nmmt,1); 
     
 
    for i=1:nmmt 
        if d(i)==0 
           zx(i,1) = V(nl(i)); 
           error(i,1) = zm(i)-zx(i,1); 
        end 
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        if d(i)==5 
           zx(i,1) = ang(nl(i)); 
           error(i,1) = zm(i)-zx(i,1); 
        end 
         
        if d(i)==3 
           for j=1:nbus 
               zx(i,1) = zx(i,1) + V(nl(i))*V(j)*[G(nl(i),j)*cos(ang(nl(i))-ang(j))+B(nl(i),j)*sin(ang(nl(i))-
ang(j))]; 
           end 
           error(i,1) = zm(i)-zx(i,1); 
        end 
     
        if d(i)==4 
           for j=1:nbus 
               zx(i,1) = zx(i,1) + V(nl(i))*V(j)*[G(nl(i),j)*sin(ang(nl(i))-ang(j))-B(nl(i),j)*cos(ang(nl(i))-
ang(j))];  
           end 
           error(i,1) = zm(i)-zx(i,1); 
        end 
 
       if d(i)==1 
          if A(nl(i),nr(i))~=0 
             zx(i,1) = [V(nl(i))*A(nl(i),nr(i))]^2*[g(nl(i),nr(i))+gs(nl(i),nr(i))]-
((V(nl(i))*V(nr(i)))*A(nl(i),nr(i))*A(nr(i),nl(i)))*[g(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i))) + 
b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
          else 
             zx(i,1) = [V(nl(i))]^2*[g(nl(i),nr(i))+gs(nl(i),nr(i))]-
(V(nl(i))*V(nr(i)))*[g(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i))) + b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
          end 
          error(i,1) = zm(i) - zx(i,1); 
       end 
 
       if d(i)==2 
          if A(nl(i),nr(i))~=0 
             zx(i,1) = -[V(nl(i))*A(nl(i),nr(i))]^2*[b(nl(i),nr(i))+bs(nl(i),nr(i))]-
((V(nl(i))*V(nr(i)))*A(nl(i),nr(i))*A(nr(i),nl(i)))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - 
b(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))]; 
          else 
             zx(i,1) = -[V(nl(i))]^2*[b(nl(i),nr(i))+bs(nl(i),nr(i))]-
(V(nl(i))*V(nr(i)))*[g(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i))) - b(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i)))]; 
          end 
          error(i,1) = zm(i) - zx(i,1); 
       end 
    end 
     
    BB = HT*W*error; 
    delx = Gain\BB; 
     
 %     U = chol(Gain);   
 %     L = transpose(U); 
 %     col = 1; 
 %     row = length(BB(:,1)); 
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 %      
 %     % Solving using forward solution 
 %     for j =1:col 
 %         Y(1,j)=BB(1,j)/L(1,1); 
 %         for i =2:row 
 %             sum = 0; 
 %             for k = 1:i-1 
 %                 sum = sum + L(i,k)*Y(k,j); 
 %             end 
 %             Y(i,j)=(BB(i,j)-sum)/L(i,i); 
 %         end 
 %     end 
 %        
 %     % Solving using backward solution 
 %     for j =1:col 
 %         x(row,j)=Y(row,j)/U(row,row); 
 %         for i=row-1:-1:1 
 %             sum =0; 
 %             for k = i+1:row 
 %                 sum = sum + U(i,k)*x(k,j); 
 %             end 
 %             x(i,j)=(Y(i,j)-sum)/U(i,i); 
 %         end 
 %     end 
 %          
 %     delx = x; 
 
    if max(abs(delx))<0.0001  % Criteria to stop the iteartions of the SE 
       break; 
    end 
           
    Xs = Xs + delx;   % State after each iteration 
     
    % Assigning the state variables to Voltages and Angles. 
     
    for n=1:nbus 
        if n<rbus 
           ang(n,1)=Xs(n,1); 
           else if n==rbus 
                   ang(n,1)=rangle; 
           else 
               ang(n,1) = Xs(n-1,1); 
           end 
         end 
    end 
 
    for n=1:nbus 
        V(n,1) = Xs(nbus+n-1,1); 
    end 
     
    %clear U L Y  ;  
     
end % END of Iterative loop 
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time = cputime - time; 
 
for n=1:nbus 
    perdelV(n,1) = ((V(n,1)-bus(n,8))/bus(n,8))*100; 
end 
 
for n=1:nbus 
    if rbus==n; 
        perdelANG(n,1)=0; 
    else 
    perdelANG(n,1) = ((ang(n,1)*57.32-bus(n,9))/bus(n,9))*100; 
    end 
end 
 
 
mmt(:,5) = zx(:); 
 
for n=1:nmmt 
    if mmt(n,1)==0 
        mmt(n,5) = mmt(n,5); 
    else 
        mmt(n,5) = mmt(n,5)*100; 
    end 
end 
 
% Variance of the Estimate Vector 
 
Rrhat = inv(Gain); 
 
PF_RESULT_30.m 

 
% Power flow result in a form of MATLAB file 
%%-----  Power Flow Data  -----%% 
%% system MVA base 
baseMVA = 100; 
 
%% bus data 
% bus_i type Pd Qd Gs Bs area Vm Va baseKV zone
 Vmax Vmin 
bus = [ 
 1 3 0 0 0 0 1 1 0 135 1
 1.05 0.95; 
 2 2 21.7 12.7 0 0 1 1 -0.41549072 135
 1 1.1 0.95; 
 3 1 2.4 1.2 0 0 1 0.98313829 -1.5220739
 135 1 1.05 0.95; 
 4 1 7.6 1.6 0 0 1 0.980093 -1.7947277
 135 1 1.05 0.95; 
 5 1 0 0 0 0.19 1 0.9824062 -1.8638227
 135 1 1.05 0.95; 
 6 1 0 0 0 0 1 0.97318402 -2.2669567
 135 1 1.05 0.95; 
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 7 1 22.8 10.9 0 0 1 0.96735545 -2.6518368
 135 1 1.05 0.95; 
 8 1 30 30 0 0 1 0.96062371 -2.7257694
 135 1 1.05 0.95; 
 9 1 0 0 0 0 1 0.98050612 -2.9969331
 135 1 1.05 0.95; 
 10 1 5.8 2 0 0 3 0.9844043 -3.3749359
 135 1 1.05 0.95; 
 11 1 0 0 0 0 1 0.98050612 -2.9969331
 135 1 1.05 0.95; 
 12 1 11.2 7.5 0 0 2 0.98546832 -1.5369116
 135 1 1.05 0.95; 
 13 2 0 0 0 0 2 1 1.4761633 135
 1 1.1 0.95; 
 14 1 6.2 1.6 0 0 2 0.97667683 -2.3080354
 135 1 1.05 0.95; 
 15 1 8.2 2.5 0 0 2 0.98022903 -2.3118354
 135 1 1.05 0.95; 
 16 1 3.5 1.8 0 0 2 0.97739566 -2.6444862
 135 1 1.05 0.95; 
 17 1 9 5.8 0 0 2 0.97686541 -3.3923392
 135 1 1.05 0.95; 
 18 1 3.2 0.9 0 0 2 0.96844033 -3.4783877
 135 1 1.05 0.95; 
 19 1 9.5 3.4 0 0 2 0.96528704 -3.9582047
 135 1 1.05 0.95; 
 20 1 2.2 0.7 0 0 2 0.96916635 -3.8710243
 135 1 1.05 0.95; 
 21 1 17.5 11.2 0 0 3 0.9933833 -3.4883933
 135 1 1.05 0.95; 
 22 2 0 0 0 0 3 1 -3.392729 135
 1 1.1 0.95; 
 23 2 3.2 1.6 0 0 2 1 -1.5892279 135
 1 1.1 0.95; 
 24 1 8.7 6.7 0 0.04 3 0.9885663 -2.6314615
 135 1 1.05 0.95; 
 25 1 0 0 0 0 3 0.99021484 -1.6899889
 135 1 1.05 0.95; 
 26 1 3.5 2.3 0 0 3 0.97219415 -2.139346
 135 1 1.05 0.95; 
 27 2 0 0 0 0 3 1 -0.82843932 135
 1 1.1 0.95; 
 28 1 0 0 0 0 1 0.9747149 -2.2659286
 135 1 1.05 0.95; 
 29 1 2.4 0.9 0 0 3 0.9795967 -2.1284982
 135 1 1.05 0.95; 
 30 1 10.6 1.9 0 0 3 0.96788288 -3.0415236
 135 1 1.05 0.95; 
]; 
 
%% generator data 
% bus Pg Qg Qmax Qmin Vg mBase status Pmax Pmin 
gen = [ 
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 1 25.9738 -0.998484 150 -20 1 100 1 80 0; 
 2 60.97 31.999 60 -20 1 100 1 80 0; 
 22 21.59 39.57 62.5 -15 1 100 1 50 0; 
 27 26.91 10.5405 48.7 -15 1 100 1 55 0; 
 23 19.2 7.95095 40 -10 1 100 1 30 0; 
 13 37 11.3529 44.7 -15 1 100 1 40 0; 
]; 
 
%% branch data 
% fbus tbus r x b rateA rateB rateC ratio angle status
 Pf Qf Pt Qt 
branch = [ 
 1 2 0.02 0.06 0.03 130 130 130 0 0 1
 10.8906 -5.0864 -10.8643 2.1652; 
 1 3 0.05 0.19 0.02 130 130 130 0 0 1
 15.0832 4.0879 -14.9565 -5.5730; 
 2 4 0.06 0.17 0.02 65 65 65 0 0 1
 16.0673 5.2062 -15.8893 -6.6624; 
 3 4 0.01 0.04 0 130 130 130 0 0 1
 12.5565 4.3730 -12.5382 -4.2998; 
 2 5 0.05 0.2 0.02 130 130 130 0 0 1
 13.7919 4.5059 -13.6816 -6.0299; 
 2 6 0.06 0.18 0.02 65 65 65 0 0 1
 20.2751 7.4217 -19.9859 -8.5011; 
 4 6 0.01 0.04 0 90 90 90 0 0 1
 22.4991 11.3848 -22.4329 -11.1200; 
 5 7 0.05 0.12 0.01 70 70 70 0 0 1
 13.6816 6.2133 -13.5614 -6.8753; 
 6 7 0.03 0.08 0.01 130 130 130 0 0 1
 9.2700 3.1671 -9.2386 -4.0247; 
 6 8 0.01 0.04 0 32 32 32 0 0 1
 24.8223 24.4281 -24.6942 -23.9158; 
 6 9 0 0.21 0 65 65 65 0 0 1
 5.7890 -3.3563 -5.7890 3.4556; 
 6 10 0 0.56 0 32 32 32 0 0 1
 3.3080 -1.9179 -3.3080 2.0044; 
 9 11 0 0.21 0 65 65 65 0 0 1
 0.0000 0.0000 0.0000 0.0000; 
 9 10 0 0.11 0 65 65 65 0 0 1
 5.7890 -3.4556 -5.7890 3.5076; 
 4 12 0 0.26 0 65 65 65 0 0 1
 -1.6716 -2.0225 1.6716 2.0411; 
 12 13 0 0.14 0 65 65 65 0 0 1
 -37.0000 -9.2558 37.0000 11.3529; 
 12 14 0.12 0.26 0 32 32 32 0 0 1
 5.3878 0.8791 -5.3510 -0.7993; 
 12 15 0.07 0.13 0 32 32 32 0 0 1
 9.4770 -1.0634 -9.4115 1.1851; 
 12 16 0.09 0.2 0 32 32 32 0 0 1
 9.2636 -0.1010 -9.1841 0.2777; 
 14 15 0.22 0.2 0 16 16 16 0 0 1
 -0.8490 -0.8007 0.8522 0.8036; 
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 16 17 0.08 0.19 0 16 16 16 0 0 1
 5.6841 -2.0777 -5.6534 2.1506; 
 15 18 0.11 0.22 0 16 16 16 0 0 1
 9.1646 0.7597 -9.0678 -0.5661; 
 18 19 0.06 0.13 0 16 16 16 0 0 1
 5.8678 -0.3339 -5.8457 0.3818; 
 19 20 0.03 0.07 0 32 32 32 0 0 1
 -3.6543 -3.7818 3.6632 3.8026; 
 10 20 0.09 0.21 0 32 32 32 0 0 1
 5.9156 4.6248 -5.8632 -4.5026; 
 10 17 0.03 0.08 0 32 32 32 0 0 1
 3.3700 8.0130 -3.3466 -7.9506; 
 10 21 0.03 0.07 0 32 32 32 0 0 1
 -2.2338 -11.6670 2.2775 11.7689; 
 10 22 0.07 0.15 0 32 32 32 0 0 1
 -3.7548 -8.4827 3.8170 8.6159; 
 21 22 0.01 0.02 0 32 32 32 0 0 1
 -19.7775 -22.9689 19.8706 23.1551; 
 15 23 0.1 0.2 0 16 16 16 0 0 1
 -8.8053 -5.2484 8.9147 5.4671; 
 22 24 0.12 0.18 0 16 16 16 0 0 1
 -2.0976 7.7989 2.1758 -7.6815; 
 23 24 0.13 0.27 0 16 16 16 0 0 1
 7.0853 0.8838 -7.0191 -0.7462; 
 24 25 0.19 0.33 0 16 16 16 0 0 1
 -3.8568 1.7668 3.8918 -1.7060; 
 25 26 0.25 0.38 0 16 16 16 0 0 1
 3.5464 2.3705 -3.5000 -2.3000; 
 25 27 0.11 0.21 0 16 16 16 0 0 1
 -7.4382 -0.6645 7.5007 0.7840; 
 28 27 0 0.4 0 65 65 65 0 0 1
 -6.1130 -6.0848 6.1130 6.3980; 
 27 29 0.22 0.42 0 16 16 16 0 0 1
 6.1739 1.6840 -6.0838 -1.5120; 
 27 30 0.32 0.6 0 16 16 16 0 0 1
 7.1224 1.6746 -6.9511 -1.3534; 
 29 30 0.24 0.45 0 16 16 16 0 0 1
 3.6838 0.6120 -3.6489 -0.5466; 
 8 28 0.06 0.2 0.02 32 32 32 0 0 1
 -5.3058 -6.0842 5.3414 4.3300; 
 6 28 0.02 0.06 0.01 32 32 32 0 0 1
 -0.7704 -2.6998 0.7716 1.7547; 
]; 
 
 
YBUS26.m 

 
% This program is to form the Ybus 
 
j=sqrt(-1); i = sqrt(-1); 
nl = branch(:,1); nr = branch(:,2); R = branch(:,3); 
X = branch(:,4); Bc = j*branch(:,5)/2; a = branch(:, 9); 
nbr=length(branch(:,1)); nbus = max(max(nl), max(nr)); 
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A = ones(nbus); 
for n=1:nbr 
    if branch(n,9)~=0 
        if  A(nl(n),nr(n)) == 1 
            A(nl(n),nr(n)) = 1/branch(n,9); 
        else 
            A(nl(n),nr(n)) =  (A(nl(n),nr(n))+(1/branch(n,9)))/2; 
        end 
    end 
end 
 
Z = R + j*X; y= ones(nbr,1)./Z;        %branch admittance 
% Admittance of each branch 
for n =1:nbus            % initialize Ybus to zero 
        for m =1:nbus 
            g(n,m)=0;b(n,m)=0;gs(n,m)=0;bs(n,m)=0; 
        end 
    end 
 
for n=1:nbr 
    if b(nl(n),nr(n))==0 
        g(nl(n),nr(n)) = real(y(n)); 
        g(nr(n),nl(n)) = real(y(n)); 
        b(nl(n),nr(n)) = imag(y(n)); 
        b(nr(n),nl(n)) = imag(y(n)); 
    else  
        g(nl(n),nr(n)) = g(nl(n),nr(n))+real(y(n)); 
        g(nr(n),nl(n)) = g(nr(n),nl(n))+real(y(n)); 
        b(nl(n),nr(n)) = b(nl(n),nr(n))+imag(y(n)); 
        b(nr(n),nl(n)) = b(nr(n),nl(n))+imag(y(n)); 
    end 
end 
 
for n=1:nbr 
   if b(nl(n),nr(n))==0  
        gs(nl(n),nr(n)) = real(Bc(n)); 
        gs(nr(n),nl(n)) = real(Bc(n)); 
        bs(nl(n),nr(n)) = imag(Bc(n)); 
        bs(nr(n),nl(n)) = imag(Bc(n)); 
    else 
        gs(nl(n),nr(n)) = gs(nl(n),nr(n))+real(Bc(n)); 
        gs(nr(n),nl(n)) = gs(nr(n),nl(n))+real(Bc(n)); 
        bs(nl(n),nr(n)) = bs(nl(n),nr(n))+imag(Bc(n)); 
        bs(nr(n),nl(n)) = bs(nr(n),nl(n))+imag(Bc(n)); 
    end 
end 
%gs = real(Bc); bs = imag(Bc); 
for n = 1:nbr 
    if a(n) <= 0   
        a(n) = 1;  
    end 
end 
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Ybus=zeros(nbus,nbus);     % initialize Ybus to zero 
               % formation of the off diagonal elements 
    for k=1:nbr 
        Ybus(nl(k),nr(k))=Ybus(nl(k),nr(k))-y(k)/a(k); 
        Ybus(nr(k),nl(k))=Ybus(nl(k),nr(k)); 
    end 
 
 
 % formation of the diagonal elements 
for  n=1:nbus 
     for k=1:nbr 
         if nl(k)==n 
         Ybus(n,n) = Ybus(n,n)+y(k)/(a(k)^2) + Bc(k); 
         elseif nr(k)==n 
         Ybus(n,n) = Ybus(n,n)+y(k) +Bc(k); 
         else, end 
     end 
end 
Ybus = sparse(Ybus); 
g = sparse(g); 
b = sparse(b); 
gs = sparse(gs); 
bs = sparse(bs); 
 
G = real(Ybus); 
B = imag(Ybus); 
clear Pgg 
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Appendix D 

MATLAB Program for Available Transfer Capability Calculation 

CalculateATC.m 

 
clear all;  
 
basemva = 100; 
 
%Input the system data file 
 
PF_result_39; 
 
x=0; 
 
Ybus26; % forming the Ybus 
 
nbus = length(Ybus(:,1));  
 
dp1 = 0.10; % Incremental Active Power 
dp2 = 0.01; 
 
% Searching for the refenece bus 
for n = 1:nbus 
    if bus(n,2)==1 
        rbus = n; 
    end 
end 
 
V = bus(:,8); 
ang = bus(:,9); 
 
ang = ang/57.2958; 
 
dp = 0.10; 
 
% Calculating Pre-Transfer Power Flow 
 
nl = branch(:,1); 
nr = branch(:,2); 
 
for i=1:length(branch) 
          
     if A(nl(i),nr(i))~=0 
        pf(i,4) = [V(nl(i))*A(nl(i),nr(i))]^2*[g(nl(i),nr(i))+gs(nl(i),nr(i))]-
((V(nl(i))*V(nr(i)))*A(nl(i),nr(i))*A(nr(i),nl(i)))*[g(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i))) + 
b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
     else 
        pf(i,4) = [V(nl(i))]^2*[g(nl(i),nr(i))+gs(nl(i),nr(i))]-(V(nl(i))*V(nr(i)))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i))) + b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
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     end 
     
end 
 
pf(:,1) = branch(:,1); 
pf(:,2) = branch(:,2); 
pf(:,3) = branch(:,7); 
pf(:,4) = pf(:,4)*100; 
 
clear nl nr; 
 
c =1; 
 
for n=1:nbus 
    if bus(n,2)==0 | bus(n,2)==2 
        mmt(c,1)=3; 
        mmt(c,2)=n; 
        mmt(c,3)=0; mmt(c,4)=0; 
        c=c+1; 
    end 
end 
for n=1:nbus 
    if bus(n,2)==0  
        mmt(c,1)=4; 
        mmt(c,2)=n; 
        mmt(c,3)=0; mmt(c,4)=0; 
        c=c+1; 
    end 
end 
 
     
for mm = 1:30 
 
d = mmt(:,1); 
nl = mmt(:,2); 
nr = mmt(:,3);  
zm = mmt(:,4); 
 
%Calculating Jacobin Matrix 
     
for i = 1:length(mmt) 
    if d(i)==3 
            for j=1:nbus 
                if j==nl(i) 
                   T(i,j) = -V(j)*V(j)*B(j,j); 
                   for k = 1:nbus 
                       T(i,j) = T(i,j) + V(j)*V(k)*[-G(j,k)*sin(ang(j)-ang(k))+B(j,k)*cos(ang(j)-ang(k))]; 
                   end 
                else 
                    T(i,j) = V(nl(i))*V(j)*[G(nl(i),j)*sin(ang(nl(i))-ang(j))-B(nl(i),j)*cos(ang(nl(i))-ang(j))]; 
                end 
            end 
            for j=nbus+1:2*nbus 
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                if nl(i)+nbus==j 
                    T(i,j) = V(nl(i))*G(nl(i),nl(i)); 
                    for k=1:nbus 
                        T(i,j) = T(i,j) + V(k)*[G(nl(i),k)*cos(ang(nl(i))-ang(k))+B(nl(i),k)*sin(ang(nl(i))-ang(k))]; 
                    end 
                else 
                    T(i,j) = V(nl(i))*[G(nl(i),j-nbus)*cos(ang(nl(i))-ang(j-nbus))+B(nl(i),j-nbus)*sin(ang(nl(i))-
ang(j-nbus))]; 
                end 
            end 
        end 
         
        if d(i)==4 
            for j=1:nbus 
                if j==nl(i) 
                   T(i,j) = -V(j)*V(j)*G(j,j); 
                   for k = 1:nbus 
                       T(i,j) = T(i,j) + V(j)*V(k)*[G(j,k)*cos(ang(j)-ang(k))+B(j,k)*sin(ang(j)-ang(k))]; 
                   end 
                else 
                    T(i,j) = V(nl(i))*V(j)*[-G(nl(i),j)*cos(ang(nl(i))-ang(j))-B(nl(i),j)*sin(ang(nl(i))-ang(j))]; 
                end 
            end 
            for j=nbus+1:2*nbus 
                if nl(i)+nbus==j 
                    T(i,j) = -V(nl(i))*B(nl(i),nl(i)); 
                    for k=1:nbus 
                        T(i,j) = T(i,j) + V(k)*[G(nl(i),k)*sin(ang(nl(i))-ang(k))-B(nl(i),k)*cos(ang(nl(i))-ang(k))]; 
                    end 
                else 
                    T(i,j) = V(nl(i))*[G(nl(i),j-nbus)*sin(ang(nl(i))-ang(j-nbus))-B(nl(i),j-nbus)*cos(ang(nl(i))-
ang(j-nbus))]; 
                end 
            end 
        end 
end 
 
for i = 1:length(mmt) 
    if d(i)==3 
        H(:,i) = T(:,nl(i)); 
    end 
    if d(i)==4 
        H(:,i) = T(:,nl(i)+nbus); 
    end 
end 
  
% Finished calculating Jacobin 
 
% Calculating change in Voltage Magnitudes and Angles 
 
deltaT = zeros(length(mmt),1); 
 
for n=1:length(mmt) 
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    if mmt(n,1)==3 & mmt(n,2) == 32 
        deltaT(n,1) = dp1; 
    end 
    if mmt(n,1)==3 & mmt(n,2) == 39 
        deltaT(n,1) = -dp1; 
    end 
end 
 
dx = inv(H)*deltaT; 
 
clear H T; 
 
% Updating Voltage Magnitudes & Angles 
 
for i = 1:length(mmt) 
    if d(i)==3 
        ang(nl(i),1) = ang(nl(i),1) + dx(i,1); 
    end 
    if d(i)==4 
        V(nl(i),1) = V(nl(i),1) + dx(i,1); 
    end 
end 
 
 
clear nl nr;  
 
nl = branch(:,1); 
nr = branch(:,2); 
 
for i=1:length(branch) 
          
     if A(nl(i),nr(i))~=0 
        pf(i,5) = [V(nl(i))*A(nl(i),nr(i))]^2*[g(nl(i),nr(i))+gs(nl(i),nr(i))]-
((V(nl(i))*V(nr(i)))*A(nl(i),nr(i))*A(nr(i),nl(i)))*[g(nl(i),nr(i))*cos(ang(nl(i))-ang(nr(i))) + 
b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
     else 
        pf(i,5) = [V(nl(i))]^2*[g(nl(i),nr(i))+gs(nl(i),nr(i))]-(V(nl(i))*V(nr(i)))*[g(nl(i),nr(i))*cos(ang(nl(i))-
ang(nr(i))) + b(nl(i),nr(i))*sin(ang(nl(i))-ang(nr(i)))]; 
     end 
     
end 
 
pf(:,5) = pf(:,5)*100; 
 
 
for i=1:length(pf) 
    if abs(pf(i,5))>pf(i,3) 
        x=1;i 
    end 
end 
 
for i=1:length(pf) 
    if pf(i,3)-abs(pf(i,5)) < 5 
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        dp1 = 0.0025; 
    end 
end 
 
dp = dp+dp1; 
 
if x==1   % To break the loop 
    break; 
end 
 
clear nl nr; 
 
end 
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