
Clemson University
TigerPrints

All Dissertations Dissertations

8-2010

A Computational Framework to Support the
Automated Analysis of Routine
Electroencephalographic Data
William Pressly, jr.
Clemson University, wbspresslyjr@gmail.com

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Pressly, jr., William, "A Computational Framework to Support the Automated Analysis of Routine Electroencephalographic Data"
(2010). All Dissertations. 604.
https://tigerprints.clemson.edu/all_dissertations/604

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F604&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F604&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/604?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F604&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A Computational Framework to Support the Automated
Analysis of Routine Electroencephalographic Data

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

William Buck Sparkman Pressly, Jr.

August 2010

Accepted by:

Brian C. Dean, Ph.D., Committee Chair

James M. Westall, Ph.D.

James J. Martin, Ph.D.

Feng Luo, Ph.D.

Jonathan J. Halford, M.D.

Abstract

Epilepsy is a condition in which a patient has multiple unprovoked seizures which are not

precipitated by another medical condition. It is a common neurological disorder that afflicts 1%

of the population of the US, and is sometimes hard to diagnose if seizures are infrequent. Routine

Electroencephalography (rEEG), where the electrical potentials of the brain are recorded on the

scalp of a patient, is one of the main tools for diagnosing because rEEG can reveal indicators of

epilepsy when patients are in a non-seizure state. Interpretation of rEEG is difficult and studies

have shown that 20-30% of patients at specialized epilepsy centers are misdiagnosed [18, 73]. An

improved ability to interpret rEEG could decrease the misdiagnosis rate of epilepsy.

The difficulty in diagnosing epilepsy from rEEG stems from the large quantity, low signal

to noise ratio (SNR), and variability of the data. A usual point of error for a clinician interpreting

rEEG data is the misinterpretation of PEEs (paroxysmal EEG events) – short bursts of electrical

activity of high amplitude relative to the surrounding signals that have a duration of approximately

.1 to 2 seconds [4]. Clinical interpretation of PEEs could be improved with the development of

an automated system to detect and classify PEE activity in an rEEG dataset. Systems that have

attempted to automatically classify PEEs in the past have had varying degrees of success [47]. These

efforts have been hampered to a large extent by the absence of a “gold standard” data set that EEG

researchers could use.

In this work we present a distributed, web-based collaborative system for collecting and

creating a “gold standard” dataset for the purpose of evaluating spike detection software. We hope

to advance spike detection research by creating a performance standard that facilitates comparisons

between approaches of disparate research groups. Further, this work endeavors to create a new,

high performance parallel implementation of ICA (independent component analysis), a potential

preprocessing step for PEE classification. We also demonstrate tools for visualization and analysis

ii

to support the initial phases of spike detection research.

These tools will first help to develop a standardized rEEG dataset of expert EEG interpreter

opinion with which automated analysis can be trained and tested. Secondly, it will attempt to create

a new framework for interdisciplinary research that will help improve our understanding of PEEs in

rEEG. These improvements could ultimately advance the nuanced art of rEEG interpretation and

decrease the misdiagnosis rate that leads to patients suffering inappropriate treatment.

iii

Dedication

This work is dedicated to my wife, Amber. Her love, support, and patience enabled me to

undertake and complete this work.

iv

Acknowledgements

I would like to acknowledge the people listed below. This research effort would not be

possible without their efforts:

1. Brian C. Dean, my advisor. He is a tremendously brilliant and patient individual who I am

deeply indebted to for such a rewarding time in graduate school.

2. Jon Halford, the “brains” behind our research project, for giving me the opportunity to work

on such an interesting and profound project (and paying my bills).

3. My committee, for their guidance and insight in this research project.

4. Zach Jones and Jay Steele, for all of the assistance and companionship they provided.

5. The technical and administrative staff at the School of Computing, for all of the work they

did on my behalf.

6. My Mom and Dad, for always believing in me despite the times that they maybe shouldn’t

have.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . viii

List of Figures . ix

1 Introduction . 1
1.1 Routine EEG (rEEG): An Introduction . 5
1.2 The Precedent of ECG . 7
1.3 Organization of the Research Project and this Document 10

2 Background . 13
2.1 Developing EEG Testing and Training Datasets . 13
2.2 Signal Processing of EEG . 14
2.3 High Performance Computing and ICA/mBSSS . 24
2.4 rEEG Visualizations . 27

3 Collection and Analysis of Expert Opinion . 29
3.1 The Process For Collecting Expert Opinion . 29
3.2 Clustering Algorithms for Determining Scorer Agreement 30
3.3 Results of Expert Opinion Collection . 35

4 eegNet, A Web-Based Software Platform . 41
4.1 First Version . 41
4.2 Current Version . 48

5 A GPU implementation of ICA based on Renyi’s Entropy 58
5.1 ICA based on Renyi’s Entropy Overview . 58
5.2 Algorithmic Enhancements . 61
5.3 OpenCL Overview . 63
5.4 GPU decomposition of Renyi’s Entropy based ICA 64
5.5 Results . 65

6 Conclusion . 69
6.1 Future Directions . 69
6.2 Concluding Thoughts . 71

vi

Bibliography . 72

vii

List of Tables

3.1 Total number of annotations per scorer and the mean. 36
3.2 Annotation agreement between scorers, shown as a table of F-scores. 36
3.3 Classification counts for all classifications, subjects 1-40. 37
3.4 Pairwise Cohen of scorer classifications, Datasets 1-40. 37
3.5 Pairwise Cohen of scorer classifications, epileptiform or non-epileptiform, only sub-

jects 1-40. 37
3.6 Total number of annotations per scorer and the mean. 39
3.7 Number of clusters of size 1. . .7. 39
3.8 Annotation correlation between scorers, subjects 1-100. 39
3.9 Intra-rater reliability over the scorers, from their two annotation passes in subjects

1-40. 40

4.1 Composite lines of code of whole system, latest version. This does not include prior
versions, or scrapped earlier designs. 48

5.1 The machines we used to run the tests. 66
5.2 Timing Results between non-GPU Renyi and GPU Renyi code. 66
5.3 Timing results between regular Infomax ICA and GPU Renyi code. 67
5.4 Timing results of the Renyi GPU code on the two GPUs we tested on. 68

viii

List of Figures

1.1 This is a screen capture from a clinical rEEG system called XLTek Neuroworks. This
data contains a transient waveform that is positively indicative of epilepsy. 2

1.2 This is the same screen capture as Figure 1.1 with circles around the epileptiform
PEEs. 3

1.3 Positions of rEEG electrodes according to the Note that the first letter of the channel
name indicates the region of the brain it is over, the even or oddness of the number of
the channel indicates if the channel is on the right or left of the scalp respectively, and
the magnitude of the number indicates distance from the center line. These images
are reproduced from [44]. 6

1.4 Montage examples. These are screen captures of different montages applied to the
same location in a dataset. 8

1.5 The structure to the ECG signal, allowing it to be broken down into well-defined
pieces and characterized well as a low-dimensional feature vector. 9

2.1 The characteristics of EEG datasets compiled in Halford 2009, [47]. 15
2.2 Spike detection research and the approach used and characteristics from [47] 17
2.3 The independent components of the EEG signals and their scalp distributions. Image

generated by EEGLab. [1] . 28

3.1 A histogram of the similarity score obtained by multiplying together two random
vectors. This provides insight in where we should set the clustering cutoff parameter
∆ for our clustering algorithm. 33

3.2 A screen capture of a clustering result. Yellow boxes are ones that are associated with
more than one cluster. Boxes of matching colors (non-yellow) represent a cluster. An
X across an annotation means that it is a cluster center. 34

3.3 All classifications by scorers. A row in this matrix represents an annotation. A
column represents a scorer. The classifications map to the following colors: green =
artifactual, blue = normal electrocortical, red = abnormal electrocortical epileptiform,
and purple = abnormal electrocortical non-epileptiform 38

4.1 The original architecture of the backend for the scoring software system. The only
change for the current system is that the Web server is now a CentOS 5.4 Linux
system. This is done to prevent licensing costs. 42

4.2 The main Windows-based client in Phase 1 (Selection) mode. Note the preview pane
on the right. This pane allowed the user to see a thumbnail preview of the annotation
(these previews are created at annotation time). To get to any point in the dataset, the
scorer would click on one of the annotations in this panel. This panel was ultimately
of little use as it took up too much “screen real estate” and was phased out by the
new, Web 2.0 version. 43

4.3 The main Windows-based client in Phase 2 (Classification) mode. The scorers were
presented the classifications in a random order from the dataset of subjects. 44

ix

4.4 The main permissions system. This allowed a user to use a particular dataset in one
particular mode only. 45

4.5 The first-generation view of the annotations selected by the first-generation clustering
algorithm. The administrator of the system would run the clustering algorithm and
manually upload the result into this system for visualization. 46

4.6 The first-generation cluster viewer. It used thumbnails captured at annotation-time
to preview the annotations. 46

4.7 The first-generation scorer comparison view. The agreement numbers in this view
were all näıve percent agreements. 47

4.8 The current design of the database for the annotation software. The abstraction of
trials allows for users to mark annotations in different datasets in different modes and
different studies. 49

4.9 The current annotation client, based on open web standards, including HTML5,
Javascript, and CSS. 51

4.10 Administrative screens. Clockwise from top left: (1) Summary information on trials
and datasets along with quick overviews, (2) dataset administration, (3) user admin-
istration, and (4) trial administration. 52

4.11 The progress viewer in the administrative tool. This is taken at the start of a new
classification pass (The scorer’s annotations have been clustered and presented back
to them for classification). 53

4.12 The clustering visualizations. 54
4.13 Analysis and Visualization tools . 56
4.14 Some contentious PEEs. In this overlay, each annotation is colored in strips according

to how each scorer classified it. These annotations are particularly interesting in that
the scorers were evenly split on if the PEEs were epileptiform or not. 57

5.1 An illustration of the 2D memory layout over which the main kernel function is
applied. dNe16 denotes N rounded up to the next highest multiple of 16. 65

5.2 An illustration of the function of the aggregate kernel for summing the L columns of
the A matrix. 65

5.3 The performance curves of the non-GPU and GPU versions of the Renyi’s entropy
ICA code. The y-axis is in milliseconds, while the x-axis is sizes of L. 67

x

Chapter 1

Introduction

Epilepsy is a condition in which a patient has multiple unprovoked seizures that are not

precipitated by another medical condition. It is a common neurological disorder that afflicts 1-2%

of the population of the US, and is sometimes hard to diagnose if seizures are infrequent. Routine

Electroencephalography (rEEG), in which the electrical potentials of the brain are recorded on the

scalp of a patient, is one of the main tools for diagnosing epilepsy because rEEG can reveal indicators

of epilepsy when patients are in a non-seizure state. Approximately 20-30% of patients at specialized

epilepsy centers are misdiagnosed [18, 73]. This is because the subtle indicators of epilepsy are not

always present on EEG and it may take several EEGs to detect the evidence of epilepsy. This is

also because EEG is difficult to interpret and sometime EEGs are interpreted as indicating epilepsy

when they do not. An improved ability to interpret rEEG could decrease the misdiagnosis rate of

epilepsy.

The difficulty in diagnosing epilepsy from rEEG stems from the large quantity, low signal to

noise ratio (SNR), and high variability of the data. A usual point of error for a clinician interpreting

rEEG data is the misinterpretation of PEEs (paroxysmal EEG events) – short bursts of electrical

activity of higher amplitude relative to the surrounding baseline signals that have a duration of

approximately .1 to 2 seconds [4]. PEEs which are due to normal brain activity are misinterpreted

as indicating that the patient has epilepsy. To illustrate the challenging nature of PEE classification,

consider the screen capture from clinical rEEG software in Figure 1.1 as it contains an epileptiform

PEE (indicator of epilepsy). To the layperson looking at this data, his or her first inclination might

be that the waveforms of large amplitude on the extreme right of the image in the channels labeled

1

Figure 1.1: This is a screen capture from a clinical rEEG system called XLTek Neuroworks. This
data contains a transient waveform that is positively indicative of epilepsy.

2

Figure 1.2: This is the same screen capture as Figure 1.1 with circles around the epileptiform PEEs.

T3-T5 and T5-O1 might be the abnormal epileptiform PEE. It turns out that this PEE is likely

the first one that an experienced clinician would dismiss as an artifact, likely an eye blink or some

voluntary muscle movement. The actual epileptiform PEE is circled in Figure 1.2. Here is the

reasoning, from Dr. Jonathan Halford, our collaborator on this project from the Medical University

of South Carolina: “There is a burst of spike-wave activity lasting for 2-3 seconds. Each spike (most

visible on F3-C3, C3-P3, and F7-T3 channels) is followed by a slow-wave. There are some slow

waves that do not have spikes associated with them and this is confusing. Also, due to the scalp

distribution of the burst, the same burst is seen in two different locations on the page even though

it is just one location on the scalp.”

This exercise well illustrates the nuanced and subtle characteristics of interpretation of rEEG

and why it is perhaps not surprising that there is significant disagreement between diagnoses of even

experienced rEEG interpreters [84, 79]. There are many factors that make rEEG data challenging

3

to interpret: the electrical signals of the brain (1) are on the order of microvolts, and (2) are subject

to many noise sources in the clinical setting since they are recorded on the scalp, and (3) are sub-

ject to changes in morphology due to variation in electrode placement and grounding. In addition,

the number of original source signals of the brain are very complex and contain a wide variation

of waveform morphologies. The nuanced art of interpreting the subtle clues in rEEG that could

be indicative of epilepsy makes the problem extremely challenging not only for humans, but also

machines. Systems that have attempted to automatically classify PEEs in the past have had varying

degrees of success [47]. These efforts have been hampered to a large extent by the absence of a “gold

standard” dataset that EEG researchers could use to train and test automated rEEG interpretation

algorithms. Effective machine-assisted interpretation of rEEG remains an elusive, yet highly desir-

able goal. It is the objective of this research to develop a framework of computational

tools that support this long-term goal of machine analysis of rEEG, ultimately leading

to a decrease in the misdiagnosis rate of epilepsy and other neurological disorders due

to misreading of rEEG studies.

In this work we present a distributed, web-based collaborative system for collecting and

creating a correctly annotated dataset of expert opinion for the purpose of evaluating spike de-

tection software. We hope that this will further spike detection research by creating a standard

for correctness of results and improve the ability to compare the algorithms of disparate research

groups. Further, this work endeavors to create a new, high performance parallel implementation of

ICA (independent component analysis), a technique that shows promise as a useful preprocessing

step for PEE classification, but that currently involves excessive computational demands. We have

also developed tools for visualization and analysis to support the initial phases of spike detection re-

search. These tools will first help to develop a standardized rEEG dataset of expert EEG interpreter

opinion with which automated spike detection algorithms can be trained and tested. Secondly, it

will attempt to create a new framework for interdisciplinary research that will help improve our

understanding of PEEs in rEEG.

In the remainder of this Chapter, we will explore methods for rEEG clinical data acquisi-

tion, use in practice, channel display and nomenclature, and methods of visualization. Also, as a

major focus of this work will be the creation of gold standard dataset of rEEG for spike detection

research, we will frame this work in the context of a larger preceding project that focused on ECG

(Electrocardiography – monitoring the electrical signals of the heart) which set precedent in estab-

4

lishing a standardized clinical biomedical dataset which has been used successfully for ECG research

for almost 30 years [85].

1.1 Routine EEG (rEEG): An Introduction

rEEG is a clinical diagnostic tool that is commonly employed to help diagnose neurological

disorders. It involves the recording of electrical potential over time from a number of electrodes

(typically 22-25, but there can be many more in higher resolution systems) placed on the scalp in

a specific topographic arrangement. The electrodes are attached to differential amplifiers and are

amplified to about 60-100 dB of gain (about 1,000-100,000 times). As is typical, both signal and

noise are amplified, so some basic filtering is used such as a notch filter (to filter out the electrical

power line artifact) and both high and low pass filters for decreasing the amplitude of movement

and muscle artifacts. This amplified signal is acquired at a sampling rate of 256-512Hz, for a typical

recording length of 20-30 minutes. The number and placement of the electrodes and the resulting

nomenclature of the electrodes is important for understanding of the rEEG signal as it relates to the

spatial positioning of the electrical source signals in the brain. The standard placement for clinical

rEEG both nationally and internationally is the International 10-20 System [54] which is illustrated

in Figure 1.3. In this system, electrodes are placed along arcs radiating from the center of the scalp

out to the temple in intervals of 20% and 10% of the length of certain scalp measurements, defining a

grid over the entire scalp. Each electrode name is composed of a letter (or upper-case and lower-case

letter combination) and a number, for instance: Fp2, O2, etc. The letter combination represents

a part of the brain: Frontral pole (Fp), Frontal (F), Central (C), Parietal (P), Occipital (O), and

Auricular (A, the ear electrode). The number that follows indicates two properties of the channel:

the parity indicates which side of the brain the electrode is over (even numbers are on the right

and odd numbers are on the left), and the magnitude of the number indicates distance from the

centerline [44].

Since the rEEG signal is always acquired as a potential difference between two electrodes,

there are many potential formats for viewing rEEG electrode data which are called montages. A

montage is a collection of channels of a specific spatial pattern. The two most common types of

montages are bipolar and referential. In bipolar montages adjacent channels are compared. An

example of a bipolar montage is the “Bipolar AP Typical” montage (see upper left of Figure 1.4),

5

Figure 1.3: Positions of rEEG electrodes according to the Note that the first letter of the channel
name indicates the region of the brain it is over, the even or oddness of the number of the channel
indicates if the channel is on the right or left of the scalp respectively, and the magnitude of the
number indicates distance from the center line. These images are reproduced from [44].

6

typically referred to as the “double banana” for the two banana shapes the montage traces over

each half of the brain. For the sake of comparison, the “Bipolar Transverse” montage (upper right

in Figure 1.4) is much like the “double banana” rotated 90 degrees from top view. A referential

montage is one where all of the channels are differentially compared against a single common channel.

Examples include the “Referential Cz” montage (all electrodes compared to the electrode on the

center of the scalp, lower right in Figure 1.4) and the “Referential Ipsi-Ear” montage (lower left in

Figure 1.4).

1.2 The Precedent of ECG

Electrocardiography (ECG) is the recording of the electrical activity of the heart through

sensors placed on the skin. By contrast, the electrical signals recorded by ECG are approximately

1000 times stronger than that of EEG and less easily obscured by artifact [53]. ECG has a rich history

as it was the first signal from the human body to be processed by a machine, around the beginning of

the 20th century. In 1924, Einthoven received the Nobel Prize in Medicine for his work interpreting

ECG features of cardiovascular disorders. Over time, ECG features became well understood and

were decomposed into a feature vector (see Figure 1.5). Automated ECG interpretation software

was developed and has been shown to be as good at interpreting the signal as human interpreters

in many cases [39].

Automated ECG interpretation software was developed in Europe in the late 20th century.

In 1976, the European Community Committee for Monitoring the Seriously Ill recommended that

researchers in the field of ECG combine their efforts and create a standardized clinical ECG dataset.

This project was called “Common Standards for Quantitative Electrocardiography” (CSE) and was

launched in 1978 [85]. It progressed in two phases over a the better part of a decade. In the

first phase, which lasted 3 years, a database of 500 ECGs was collected and reviewed by a panel

of five cardiologists in an iterative four round process. This database was divided into training

and testing sets [82] and 19 computer algorithms were compared for their ability to measure ECG

waves [81]. The object of the second phase, which began in 1985, was to study the performance

of ECG interpretation. Another round of data collection resulted in a database of 1220 ECGs

from adult patients in 5 different European centers. This data was reviewed by nine cardiologists

who correctly classified 96% of the studies compared to fifteen computer programs which correctly

7

Bipolar AP Typical Bipolar Transverse

Referential Ipsi-Ear Referential Cz

Figure 1.4: Montage examples. These are screen captures of different montages applied to the same
location in a dataset.

8

Figure 1.5: The structure to the ECG signal, allowing it to be broken down into well-defined pieces
and characterized well as a low-dimensional feature vector.

classified 91.3% of the studies. There was 10%-23% variability among the cardiologists and the

variability of the computer programs was even higher, although it was clear that the best computer

programs performed as well as the best cardiologists [80]. The data collected and annotated from

this project is still the gold standard used in automated ECG interpretation research today and can

be downloaded for free from a website [86].

The interpretation of rEEG is more difficult than that of ECG, but the CSE project pro-

vides an excellent precedent and roadmap for how to proceed with developing automated analysis

tools for rEEG. The CSE project gathered the best minds in the ECG research field together from

25 European, 6 North American, and 1 Japanese research institute and provided a structure for

their collaboration. What turned out to be a key feature in enabling the success of this project was

its “neutral” position in terms of algorithms development, in that the focus was not on developing

automated ECG interpretation algorithms. The project instead focused on providing a framework

of tools and standardized datasets to allow private companies to continuously improve algorithms in

the field [35]. Similarly, a project that focuses on providing a framework of tools and standardized

datasets for the analysis of rEEG could encourage the development of better algorithms and systems

for automated rEEG interpretation. In light of the maturity of many algorithmic and signal pro-

cessing techniques and the emergence of powerful new architectures for parallel development such as

9

cell processors and general purpose computing on graphics cards (GPGPU), a framework that can

address the unique challenges of rEEG interpretation has a better chance of success now than ever.

1.3 Organization of the Research Project and this Document

As stated above, the objective of this project is to develop a computational framework for

improving the automated analysis of rEEG. Our plan to accomplish this goal requires unique work

from each member of our research team, which consists of Dr. Jonathan Halford of the Medical

University of South Carolina, Dr. Brian C. Dean of Clemson, and the author of this dissertation.

Dr. Halford’s role is to gather the rEEG data from patients at the Medical University of South

Carolina and recruit other academic neurologists for classification of the rEEG data. Dr. Dean’s

work is focused on analysis of the data from the scoring trials, and the signal processing techniques

applied to the data. The author’s work is dedicated to implementing systems to collect and analyze

the data from the selections and classification of the neurologist scorers. Systems have also been

implemented conduct this research, including systems to compare the scorers, to note their progress

annotating the data, to assimilate the disparate annotations of the scorers, and to assess and visualize

the accuracy of our tools.

At a high level, the way we envision this project proceeding is in two large phases. In

the first phase, in which we collect data, Dr. Halford will gather a large initial rEEG dataset from

clinical patients at the Medical University of South Carolina. While this data is collected, we develop

software to allow neurologists around the country to help analyze this data. We will then request

a group of collaborating neurologists to volunteer their time to annotate the rEEG data using the

software we have developed. (We are also seeking funding from the National Institutes of Health –

a portion of which we will use to compensate the reviewers for their time). At the end of this data

collection cycle, we will analyze the annotations of the scorers and the performance of our tools so

that we might be able to enhance our methods for subsequent data collection cycles.

In the second phase, which can be thought of as the analysis phase, we will use the data

collected – which at this point will be a database of rEEG data with all of the paroxysmal activity

(the PEEs) contained in it marked and classified appropriately – to develop a system to measure

the variability of waveform morphology of the PEEs in the database. It is important to note

that we are not attempting to classify the PEEs at this point in the project, but we are trying

10

to create a framework in which detecting and visualizing these PEEs is efficient and intuitive. A

technique we employ to help expose these PEEs is called Independent Component Analysis (ICA),

explained in Section 2.2.2. ICA is a powerful family of signal processing algorithms that are not

commonly employed in clinical rEEG research because ICA is highly computationally expensive and

a theoretically complex method that is overly complicated for many researchers. In this phase of

the project, we will develop a highly parallel and efficient implementation of ICA.

The first phase of the project started in September of 2008. Dr. Halford collected clips of

rEEG data from 40 patients. The software was developed by the author and was used by 7 certified

neurologists. From this first trial, we learned how to instruct the scorers on what we were looking

to classify, and we learned a great deal about the functionality and usability of the software. After

reviewing those first results and receiving feedback from the scorers, we decided to re-engineer the

expert opinion collection software using open web standards (including HTML5). In April of 2010,

the scorers re-annotated the first 40 patients worth of data and a new, additional 60 patients worth

of data. In the following months, we completed many administrative, analysis, and visualization

tools to run our system and measure its correctness. Further, we completed the parallelization of a

computationally expensive ICA algorithm based on Renyi’s entropy.

The remainder of this document will be organized as follows:

• In Chapter 2, we review the relevant background literature including references on spike detec-

tion in rEEG, the concept of building “gold” datasets, Independent Component Analysis, some

high performance computing implementations of interest, and some resources on visualization

of rEEG data.

• In Chapter 3, we will discuss the methods we have used to build a dataset of expert opinion.

Topics covered will include the overall process, clustering annotations from the users to produce

an “intersection set”, notes on our comparison techniques, and results concerning our clustering

algorithm and inter-rater and intra-rater reliability from analysis of the expert opinion.

• In Chapter 4, our web-based software infrastructure is described. Systems for the scorers

to annotate the datasets, administration functions for conducting the rEEG studies, and vi-

sualizations for assessing the performance of our tools and the relationships in our data are

reviewed.

• In Chapter 5, we will explore in depth the problem of parallelizing a computationally intensive

11

Independent Component Analysis algorithm on a GPU (Graphics Processing Unit). Items

covered in this chapter will be analysis of an ICA algorithm based on Renyi’s entropy, the

decomposition of this algorithm on the GPU, its performance against other implementations

of Renyi’s entropy ICA and Infomax ICA, and an interesting visualization of the results of the

ICA algorithm.

• In Chapter 6, we will conclude with some future work beyond the scope of this dissertation

and some final remarks.

12

Chapter 2

Background

This background literature review has been accumulated while preparing several documents,

posters, presentations, and grant applications related to this project. Portions of this chapter are

reproduced from an unpublished manuscript and an NSF grant proposal developed in collaboration

with Dr. Dean and Dr. Halford.

2.1 Developing EEG Testing and Training Datasets

Developing training and testing datasets for automated rEEG interpretation software is

a very expensive and time consuming affair, as the time of clinical neurologists is expensive and

in-demand and the data can be challenging to interpret. In routine clinical practice of an rEEG

study, an rEEG interpreter visually inspects 1-20 seconds of an EEG recording at a time, while

scrolling through a typical recording length of 20-25 minutes per patient [47]. It is known that rEEG

interpreters do not always mark the same events as abnormal epileptiform PEEs – an example in

the literature states that with 50 rEEGs and 5 scorers, the average correlation between scorers was

0.68 [84] with similar results in [49, 16, 6, 79]. This indicates two things: (1) that many scorers be

used to establish a consensus, standardized dataset, and (2) the dataset must be correlated over all

of the scorers (see Chapter 3 for a description of how we approach this problem). Webber et al. [79]

state that you need at least 3 scorers to draw a meaningful consensus. In his recent review paper,

Halford [47] indicates that the great variability of morphology of abnormal and normal waveforms

necessitates that the number EEG of datasets must be large if it is to be representative of the

13

population. He goes on to state that different datasets should be used for algorithm training and

testing. Thus, for the reasons mentioned above, if a researcher wants to compile EEG datasets for

training and testing of spike detection algorithms, he or she must: (1) make the method of acquiring

these datasets simple to use so as to be considerate of the clinician’s time, (2) get several clinicians

to score the data so a consensus can be drawn, and (3) use many subjects in the dataset so that

they will be representative of the population and encompass the variability of normal and abnormal

waveforms in humans.

There are several examples of developing these datasets in the EEG literature. For an

excellent summary of these see [47]; a table of the characteristics of these studies is included in

Figure 2.1. These studies used between 5 and 91 subjects and between 1 and 8 scorers. One study

included 521 EEGs, but no individual PEEs were marked – only if the whole EEG showed evidence of

PEEs [6]. In another study by Benlamri et al. [5], the authors used a total of 137 EEG subjects, but

only one human interpreter. Halford states that most studies control costs by limiting the number

of EEG scorers or by not using separate training and testing datasets. In our project where we will

be creating a new dataset of 100 patients reviewed by 7 human interpreters.

2.2 Signal Processing of EEG

2.2.1 Spike Detection

Given a particular source signal, we typically wish to detect whether a PEE is present in

the signal, and if so, the next task is to characterize the nature of the PEE: normal or epileptiform.

The term epileptiform means that presence of the PEE in the rEEG recording strongly suggests

that the patient has epilepsy. Another term for an epileptiform PEE is a “spike”. A significant

amount of work appears in the literature for both the detection and characterization problems (also

commonly called spike detection problems); many authors address both problems simultaneously.

For the scope of this project, we focus on the simpler detection problem.

PEE detection (and classification) algorithms fall into two broad categories: those that

attempt to perform pattern matching based on a specifically chosen model of PEE morphology, and

those that automatically learn the characteristics of PEEs with no a priori specification of their

features. A thorough survey of these methods appears in a recent paper by Wilson and Emerson

[83], in a textbook chapter by Lopes da Silva [14], and in a survey paper by Halford [47]. The

14

Figure 2.1: The characteristics of EEG datasets compiled in Halford 2009, [47].

15

findings with regard to spike detection techniques from the final paper by Halford are summarized

in Figure 2.2.

The most common type of learning algorithm applied to clinical EEG research is the ar-

tificial neural network (ANN). ANNs have been used to categorize a sample of raw EEG data as

normal or abnormal based on a training signal from human experts in the studies of routine clini-

cal EEG interpretation and paroxysmal event (spike) classification [30, 66, 33, 58]. Different types

of transformed EEG data have also been used as inputs to ANNs including half-wave attributes

[33, 48], instantaneous power [29], and wavelet transforms [45, 25]. Various types of ANN inputs for

EEG PEE detection have been compared using a limited dataset [20]. The advantage of an ANN

approach is that it does not require an a priori specification of the characteristics of the PEEs to be

analyzed and does not limit the data features that can be used for analysis. The algorithm learns

to render an appropriate binary clinical judgment based on a training set of rEEG recordings. The

disadvantage is that this method does not improve the general knowledge about the characteristics

of PEE morphology or provide a quantification of PEE occurrence. Algorithms that look for PEEs

matching a specific morphology model improve our general understanding of PEE signals and pro-

vide quantification of PEEs, but are highly-reliant on a priori PEE morphology specification, and

their performance is easily degraded by the low SNR of the typical rEEG recording. Many methods

of this flavor have been proposed in the literature. For example, the local context is used to label

PEEs based on how much they stand out from the EEG waves that precede and follow them using

various methods including decomposition into half-waves [33, 40, 19], the standard deviation of the

local context amplitude [15] or windowed average baseline activity [31]. The overall shape of the

PEE can be used to determine if it is an abnormal using half-wave attributes combined with its

second derivative (i.e., spikiness) [40, 32, 28], measures of non-stationarity [72], Hilbert transform

power [29] or wavelet transform output [38, 27, 60, 75]. A field criteria specifies that a spike must be

detected in at least two electrodes to be classified as a clinically significant [31, 37]. Artifact rejection

can be included a first stage, which prevents events from being labeled as abnormal if morphology

features [40, 15, 31, 41] or dipole modeling [23] indicates that the event is artifactual. Finally, the

larger context or state of EEG activity (either wake, drowsy, or sleep) during which the event occurs

is taken into account in determining if the event is abnormal [42].

An ideal PEE detection algorithm would incorporate the best of both approaches above.

It would not be heavily-reliant on an a priori specification of spike morphology, it would perform

16

Figure 2.2: Spike detection research and the approach used and characteristics from [47]

well is a dataset with low SNR, and it would provide quantitative measures of the morphology and

frequency-of-occurrence of PEEs.

2.2.2 Independent Component Analysis (ICA)

Part of the difficulty in analyzing EEG data is that each electrode typically records a mixture

of different fundamental “source” signals from different regions in the brain. A potentially useful

preprocessing step in EEG analysis is blind signal source separation (BSSS), the process of isolating

individual source signals from a mixture of signals. The classic description of how BSSS works is the

“cocktail party problem”, in which BSSS analysis is able to reconstruct the voices of N stationary

17

speakers in a cocktail party based on N stationary microphones placed throughout the room [7].

More formally, let S be an N × L matrix whose N rows s1 . . . sN give the signals produced by the

speakers, and let X be an N × L matrix whose N rows x1 . . . xN give the signals recorded by the

microphones. Based on its location relative to the speakers, each microphone is assumed to record

a linear combination of the speaker signals. We can therefore relate S and X using the matrix

equation X = AS, where A is an N × N mixing matrix describing the proportion of each speaker

that contributes to each microphone. Given only the microphone recordings X, the goal of the BSSS

problem is to factor X into A and S to recover the original speaker signals. Since there is generally

no unique solution to this problem, we typically try to find a set of si’s that are as statistically

independent as possible, a process known as independent component analysis (ICA).

BSSS algorithms such as ICA are quite useful in analyzing EEG data because the signal-

to-noise ratio (SNR) of EEG is low (by contrast, the electrical signals recorded by ECG are ap-

proximately 1000 times stronger than that of EEG and less easily obscured by artifact [53]). BSSS

algorithms provide a degree of separation of electrocortical from artifactual signals (eye movements,

electromyographic signals, electrode signals), which can effectively boost the SNR [74]. The main

application for ICA in EEG research to date has been the removal of signal artifacts. However, some

clinical neurophysiology researchers have begun using BSSS as a preprocessing step in their pattern

recognition algorithms [74, 61], with the hope that the improved SNR of the ICA-processed EEG

data will improve the ability of computers to recognize signal patterns such as PEEs. It has been

shown that the performance of pattern recognition algorithms can be improved by first applying

BSSS to the neurophysiology datasets before a pattern recognition algorithm is applied [88].

There are three main obstacles to applying BSSS analysis to rEEG data, due to fundamental

underlying assumptions imposed by the BSSS / ICA problem:

1. Stationarity. One of the assumptions of ICA is that the distances between the source gen-

erators and the recording devices do not change (are “stationary”) during the time period

of analysis. By analogy, in the cocktail party problem, we assume the speakers at the party

are stationary, rather than walking around the room. Although the source locations for brain

activity are anatomically fixed, the sequential activations of interconnected neurons which oc-

cur during brain activations frequently cause non-stationarity in measured rEEG signals [21].

Non-stationarity in the dataset can render the results of ICA analysis unreliable [21].

18

2. Source Number Determination. Conventional ICA algorithms assume that the number of

source generators is equal to the number of observed source signals. This is often not the case in

neurophysiologic recordings [21]. In short datasets acquired with high-density neurophysiologic

recording devices such as MEG, the number of observed source signals can greatly outnumber

the number of generators, causing distortion in the ICA results [50] – this is termed the “overfit”

problem of ICA [53]. If there are substantially more source signals then there are recording

electrodes, as in rEEG recordings, important source generators may not be resolved [21] – this

is termed the “over-completeness” problem of ICA. Most researchers currently applying ICA

do not attempt to determine source number before running ICA analysis [21], and a mismatch

between the number of recording sources and the number of source generators can render ICA

analysis unreliable.

3. Independent Component Selection. The output of ICA analysis is a set of N indepen-

dent component (IC) signals of the same temporal length as the original EEG segment, each

with associated scalp distribution vectors (SDVs) that describe the geometric configuration of

recording electrodes from which the IC signal was recorded (these correspond to the rows of

the ICA mixing matrix). Once a segment of EEG has been analyzed with ICA, there is no ac-

cepted system for interpreting the results. Selection of which IC is representative of the source

signal of interest is currently based on subjective perception of relevance by the investigator

and measures of IC signal variance [53].

A variety of different algorithmic approaches for ICA have been proposed in the literature, including

Infomax ICA [3], FastICA [51], joint approximate diagonalization of eigenmatrices (JADE) [68], and

second-order blind identification (SOBI) [10]. Although somewhat more computationally intensive,

a recent algorithm of Principe et al. [87, 52] based on Renyi’s entropy has been shown to exhibit

somewhat stronger performance than these others; this is the approach we study in detail later in

this work (Chapter 5), since it is well-suited for parallel implementation.

Recall the goal of BSSS: given a matrix X whose rows x1 . . . xN describe mixtures of signals,

we wish to compute a factorization X = AS, where A is a mixing matrix and the rows s1 . . . sN

correspond to source signals. Re-phrasing, we want to find an N × N de-mixing matrix W such

that Y = WX contains in its rows a set of unmixed signals that are as statistically independent as

possible (ideally, W = A−1, giving Y = S). As an optimization problem, we wish to maximize some

19

function f(Y) reflecting the statistical independence of the rows of Y over all choices of de-mixing

matrices W , so we are performing optimization over the N2 decision variables Wij for 1 ≤ i, j ≤ N .

The process of whitening is common preprocessing step before ICA. A matrix M containing

signal data in its rows is said to be “whitened” if MMT = I; that is, each signal is normalized to have

unit variance, and all pairs of different signals are uncorrelated with each-other. If Q = Λ−1/2V T ,

where Λ is a diagonal matrix containing eigenvalues of XXT and V is an orthonormal matrix

containing the eigenvectors of XXT in its columns, then we can whiten the signal mixture matrix

X by the linear transformation X̂ = QX. This is possible because the transformed signal matrix

X̂ = QX = QAS satisfies

X̂X̂T = QXXTQT = Λ−1/2V TXXTV Λ−1/2 = Λ−1/2V TV ΛV TV Λ−1/2 = I,

because of the standard factorization XXT = V ΛV T that diagonalizes XXT in terms of its eigen-

values and eigenvectors.

The primary benefit of whitening is that if our matrix of mixed signals X has been whitened

(an assumption we make henceforth), then an ICA algorithm only needs search for a factorization

Y = WX where the de-mixing matrix W has orthonormal columns. To see this, let X denote our

original matrix of mixed signals, with X̂ = QX = QAS being the matrix of whitened mixtures.

Since we assume our original sources are independent and hence uncorrelated (SST = I), the new

mixing matrix QA for obtaining the whitened mixtures from the original signals satisfies

I = X̂X̂T = (QAS)(QAS)T = QASSTATQT = QAATQT = (QA)(QA)T .

While it generally takes N2 variables to specify an N × N matrix, there are only
(
N
2

)
degrees of

freedom in an orthonormal N × N matrix, roughly halving the number of decision variables we

must consider in our search for the best de-mixing matrix W . The fact that W is constrained to be

orthonormal also allows us to represent W as a product of
(
N
2

)
rotation matrices, one within each

2D plane formed by a pair of dimensions. This equivalent formulation gives us a different set of(
N
2

)
decision variables (the angles used in each of the rotation matrices) over which we will optimize

later in our parallel implementation of the Renyi’s entropy ICA algorithm of Principe et al. [87, 52].

This also gives a nice geometric interpretation of ICA: letting X be our whitened mixture matrix,

20

we can plot each of its L columns as a point in N -dimensional space. The orthonormal de-mixing

transformation Y = WX then rotates these points to express them in a new basis (with the new

points being the columns of Y), so that the marginal distributions obtained by projection onto the

new basis vectors (the rows of Y) correspond to distributions that are as statistically independent

as possible. To solve this optimization problem,

max
W orthonormal

f(Y = WX),

several reasonable objective functions f have been proposed in the literature. Most of these are based

on the principle (due to the law of large numbers) that mixtures of signals tend to have Gaussian-

shaped histograms, while source signals tend to have non-Gaussian histograms. Letting y1 . . . yN

denote the rows of Y , we can therefore try to maximize an objective f(Y) = g(y1) + . . . + g(yN),

where g(v) is some function that measures the amount of “non-Gaussianity” of its vector argument

v. Perhaps the simplest choice for g is the absolute value of kurtosis (this is often referred to as

excess kurtosis), defined as follows assuming ||v|| = 1 and
∑

i vi = 0:

g(v) = | kurt(v)| =

∣∣∣∣∣∣
L∑

j=1

v4i − 3

∣∣∣∣∣∣ .
If v’s entries follow a Gaussian distribution, kurtosis is zero; non-Gaussian distributions usually

result in non-zero values for kurtosis. Another common choice for g is to measure the similarity to

a prototypical non-Gaussian probability distribution. This is typically done by maximizing the en-

tropy of the histogram we get when the entries of v are mapped according to the inverse cumulative

density function of the target distribution (since ideally, this mapping should result in a uniform

distribution if our source signal matches the target distribution exactly, and the uniform distribu-

tion has maximum possible entropy). Equivalently, one can minimize the Kullback-Leibler (KL)

divergence between the source signal and target distributions (KL divergence is a common “distance

measurement” between two probability distributions). This choice of objective is commonly used as

part of the widely used Infomax ICA algorithm [3].

Another popular class of objective for ICA is to minimize the mutual information between

y1 . . . yN , which (assuming whitening has been applied) is shown in [9] to be mathematically equiv-

alent to maximizing g(y1) + . . .+ g(yN) where g(v) gives the entropy of the probability distribution

21

implicitly described by the entries of v. To estimate the shape of this probability distribution, one

typically uses kernel density estimation based on Parzen windows — superimposing small Gaussian

“kernels” centered on each sample point from v to obtain a smooth estimate of the probability dis-

tribution these points represent. The Shannon entropy of such an estimate can be computed using

the following estimator [52]:

g(v) =
−1

L

L∑
i=1

log
1

L

L∑
j=1

G(vi − vj , σ2),

where G(x, σ2) is the Gaussian function evaluated at point x with variance σ2, and σ represents the

standard deviation of the Gaussian kernel we are using for density estimation. At O(L2) time per

evaluation, this estimator is quite computationally expensive to use. An alternative proposed in [22]

gives an estimator of Renyi’s entropy at α = 21 that can be evaluated in only O(L) time

− log
1

L

L∑
j=1

G(vj − vj−1, 2σ2).

By biasing this estimate using the sign of the Kurtosis of v (so it is maximized by vectors v with

entries distributed in a Gaussian manner), [52] shows that minimization of the objective f(Y) =

g(y1) + . . .+ g(yN) appears to outperform most other prominent ICA objectives through empirical

testing, where

g(v) = − sgn(kurt(v)) log
1

L

L∑
j=1

G(vj − vj−1, 2σ2).

It is this objective we use for the parallel ICA implementation we describe later in this dissertation.

There are two prominent methods used for solving the maximization problem inherent in

ICA. The first, sometimes known as projection pursuit, identifies source signals one at a time, by

finding successive one-dimensional projections of the mixed signals whose histograms are as far from

Gaussian as possible. After finding a vector onto which a good projection exists, this projection

is subtracted out of the dataset via Gram-Schmidt orthogonalization and we begin searching for

a new direction on a reduced dataset of one lower dimension (this approach is sometimes known

as “deflation” in the linear algebra literature). Other ICA algorithms optimize over the entire de-

1Renyi’s entropy is actually a family of entropy functions parameterized on a value α; for α = 1, it reduces to
Shannon’s entropy. In [52], it is shown that Renyi’s entropy for α = 2 works quite well for ICA, and moreover (as we
see above) it is algorithmically well-behaved in allowing a fast estimator.

22

mixing matrix W at once, identifying all unmixed signals y1 . . . yN simultaneously rather than one

at a time. In either case, optimization is typically performed either by gradient descent, or by fixed

point iteration (an approach known as the FastICA algorithm [51]).

2.2.3 mBSSS

For analyzing a typical half-hour rEEG recording with ∼20 channels, an ICA computation

applied to the entire input set will often encounter serious problems due to over-completeness (since

we usually encounter far more than ∼20 individual source signals over the duration of the recording)

and non-stationarity (since source signals often migrate over time). To mitigate these issues, a

common approach is to apply ICA multiple times within a short (say, ∼10 second) sliding window

that moves through the dataset. Each invocation of ICA produces a set of independent components

(ICs) which are then further analyzed to detect the presence of PEEs, and finally there is a correlation

phase where the PEEs produced during each invocation are compared to eliminate duplicates (since

now the same PEE can be discovered multiple times if several instances of the sliding window

contain the PEE). Let us call this generic approach sliding window blind signal source separation

(swBSSS). One inherent difficulty with swBSSS is the choice of window size: we want windows

that are sufficiently large to capture all PEEs of interest and to avoid convergence issues with ICA

algorithms (FastICA in particular tends to have difficulty converging on windows of small size; in our

preliminary tests of 19-electrode recordings sampled at 256 Hz, convergence improved dramatically

once window sizes reached 5. . .6 seconds in length). However, window sizes must be small enough

to avoid problems with over-completeness and non-stationarity. In order to address the difficulty

of choosing a single fixed window size, Halford recently proposed a new approach called multitaper

blind signal source separation (mBSSS) [46], in which ICA calculations are performed in a multitaper

pattern using windows of various lengths throughout the EEG dataset, and the resultant ICs are

collectively analyzed to detect PEEs just as before. This approach allows for the detection of

an unlimited number of PEEs without pre-specifying length, timing, signal morphology or scalp

distribution, and in addition provides a possible method for overcoming the non-stationarity and

over-completeness problems.

The mBSSS algorithm generates a set of BSSS windows according to four parameters:

minimum and maximum window lengths Wmin and Wmax, an expansion factor We, and an overlap

factor W0. For each window length k ∈ {Wmin(1 +We)
p | p = 0, 1, 2, . . .} less than Wmax, we solve

23

an ICA problem on windows of length k starting at positions 0, k(1W0), 2k(1W0), etc., across the

entire dataset. In our present computational tests, we set Wmin and Wmax so that our windows

range in length from 0.5 seconds to 12 seconds, we set We = 0.2 so each successive window length

is 20% larger than the previous length, and we set W0 0.50 so consecutive windows overlap by

roughly 50% of their length. Note that we can describe the set of windows generated by the simpler

swBSSS approach in the same framework (since swBSSS is a special case of mBSSS), by setting

Wmin = Wmax.

We can think of swBSSS and mBSSS as meta-algorithms in the sense that any specific

implementation for a blind signal source separation algorithm can be plugged in for use with the

individual window computations. Hence, swBSSS and mBSSS provide a means of generalizing any

approach for BSSS via computation across multiple windows in order to mitigate the problems of

non-stationarity and over-completeness. Since mBSSS causes BSSS calculations to be performed

in windows of many different sizes that include the time-of-occurrence of a given PEE, it becomes

unlikely that all such windows will be over-complete with respect to the target PEE, even if the

target PEE has a very unique signal morphology and scalp distribution in comparison to all other

PEEs in the rEEG dataset. For the same reason, mBSSS also helps to overcome the stationarity

problem. If a PEE source signal (or signals) are non-stationary, the output of the mBSSS analysis

of single PEE can provide some measure of this by producing a list of successive ICs (and their

associated scalp distributions), possibly of various lengths, that track the movement of the source

signals during the time-of-occurrence of the PEE. Some authors have recently tried to develop more

sophisticated BSSS models that can handle certain types of non-stationarity [10, 2, 34, 67, 68]; by

way of comparison, we can think of the mBSSS algorithm as a simple approach for generalizing any

standard BSSS algorithm (at the expense of significant extra processing time) to achieve robustness

in the presence of non-stationarity.

2.3 High Performance Computing and ICA/mBSSS

A number of different computing environments are suitable for implementation of the

ICA/mBSSS algorithm. We can separate these at a high level into tightly-coupled parallel envi-

ronments in which we have either shared memory or a very fast interconnection between processors,

versus distributed environments in which processors are spread throughout a slower or higher-latency

24

network. The primary challenge inherent in parallel or distributed implementation of any embar-

rassingly parallel algorithm is to schedule tasks across processors in a manner that ensures balanced

utilization. For mBSSS, this task will be non-trivial, due to the heterogeneous task sizes arising

from ICA computation on windows of different lengths. Note that the problem is even hard for

swBSSS, since it is hard to predict the duration of an ICA calculation simply from the size of a

window; one can experience fast convergence on large windows and also slow convergence on small

windows. Another challenging problem (especially in the distributed case) is the efficient distribu-

tion of input data to parallel processors, and subsequent the accumulation of the output of each

window computation back to a centralized location.

Although we can treat the windows generated by mBSSS in a completely independent fash-

ion, gains in efficiency may be possible by saving some state between successive window computa-

tions. For example, the ICA unmixing matrix computed for one specific window may provide a good

starting point that would lead to accelerated convergence for ICA computation on nearby windows.

Finally, we may be able to prune certain windows from consideration in an adaptive fashion for

example, it may be possible to exclude consideration of a large window if no paroxysmal activity is

observed in any of its smaller subwindows. These dependencies between tasks will complicate our

load balancing calculations in a distributed setting.

2.3.1 Graphics Processing Units (GPUs)

Graphics Processing Units (GPUs) found on inexpensive video cards have recently surged

past traditional CPUs in terms of computing power. For roughly the same price, one can now

purchase a graphics card that outperforms the fastest Intel desktop CPUs by more than an order of

magnitude, in terms of raw floating point operations (flops). This extra speed is not quite as easy

to harness, due to the highly specialized architecture of the GPU. Nevertheless, the potential for

such a significant speedup using inexpensive commodity hardware has ignited a tremendous interest

in the use of GPUs for general purpose computation of all sorts. For an extensive survey of recent

results related to general-purpose GPU (GPGPU) programming, please see [26].

The GPU is a special-purpose processor that does not support many of the common opera-

tions of a traditional CPU. For instance, GPUs are not adept at executing code that makes significant

use of conditional branching (e.g.,“if a < 0, then do X else do Y). Another drawback for the GPU

is that its manipulation of double precision variables is very slow compared to its performance with

25

single precision floating points; however, we do not expect this limitation to affect our calculations

in a meaningful way.

On the positive side, the GPU is extremely fast at certain types of operations. For example,

it is ideal for performing stream computation, where we envision a sequence of input numbers

passing through a processing unit that performs some simple operation (e.g., filtering out certain

numbers, accumulating a running sum, scaling or translating the numbers by a fixed amount, etc.).

A typical GPU contains dozens of processor cores, each of which can process its own stream of

input elements independent of the others. As a result, we can achieve impressive speedups for many

primitive mathematical operations, particularly those from linear algebra such as vector addition,

vector rescaling, vector norms, inner products between vectors, matrix-vector multiplication, matrix-

matrix addition and multiplication, and many more. Since the iterative update rules in the FastICA,

Infomax, and Renyi’s entropy ICA algorithms consist primarily of these types of operations (see

previous sections), we expect the GPU to offer a significant improvement in performance. Even the

evaluation of a hyperbolic tangent (one of the update steps for both FastICA and Infomax ICA)

can be done quickly in parallel on a GPU. Until recently, the task of writing code for a single GPU-

equipped machine was a somewhat daunting endeavor. However, new programming languages such

as CUDA and OpenCL, new tools, and new debuggers, have been recently introduced to make this

job somewhat simpler (although still far from trivial); see [26, 65, 8, 43] for a detailed summary of

these developments.

2.3.2 Implementations of ICA

There are two prominent serial implementations of ICA in existence. FastICA is featured

in the prominent IT++ signal processing library, which is free software and written in C++. And

Infomax ICA, available in MATLAB and C implementations that accompany EEGLab [1], which

are available for free from the Schwartz Center of Computational Neuroscience at UCSD.

Several parallel ICA implementations have been described previously in the literature. Dedi-

cated hardware implementations using analog Complementary Metal Oxide Semiconductor (CMOS)

circuits [13] as well Field Programmable Gate Arrays (FPGAs) [17]. For standard multiprocessor

systems, a C++ library for ICA computation known as HiPerSAT [24] has been developed using

the Message Passing Interface (MPI), a standard specification for communication between paral-

lel processes. HiPerSAT implements both FastICA and Infomax ICA, and it presently requires a

26

shared-memory parallel environment (e.g., a multi-core processor), as opposed to a distributed grid

environment with processors connected over a slower network, in order to achieve good performance,

due to the large amount of communication required between processes. The HiPerSAT implementa-

tion of FastICA performs quite well, with nearly linear speedup in the number of processors available.

On the other hand, the performance of Infomax ICA was somewhat less impressive, with speedups

around 3.3x on both an 8-processor and 16-processor system; the authors attribute this to greater

proportion of sequentially-executed code in the Infomax algorithm [24].

2.4 rEEG Visualizations

Visualization of rEEG is a well studied field with many results. Much of the work focuses

on the localization and visualization of the raw rEEG signal in 2 or 3 dimensional space. rEEG is a

ideal candidate for this kind of localization because of the spatial relationships between the electrodes

of the recording system. There are many different techniques to perform this localization. In the

2 dimensional case, there are results using graph-based approaches [77], and fast implementations

using a “tiled” coordinate system [76]. In the 3 dimensional case, results employ Topographic Maps

[70, 55, 71] , Genetic Algorithms [62], and Bayesian networks [69]. In the case of these 3 dimensional

visualizations with Topographic maps and Bayesian networks, there are some very interesting freely

available, open source implementations of these called “TEMPO” [55, 71] and “BrainStorm” [69].

A large focus of our work deals with the notion of first detecting the independent components

of the source signal prior to searching for PEEs. Thus, visualization of the relationships between

PEEs and their independent components and original source signals are of great interest. An example

in the literature of such a visualization is the 2 dimensional spatial visualization of independent

components in EEGLab [1], as illustrated in Figure 2.3.

27

Figure 2.3: The independent components of the EEG signals and their scalp distributions. Image
generated by EEGLab. [1]

28

Chapter 3

Collection and Analysis of Expert

Opinion

3.1 The Process For Collecting Expert Opinion

As described in Section 2.1, there are certain guidelines that should be followed to success-

fully create an EEG training and testing dataset: (1) it should simple to do so as to be considerate

of the clinician’s time, (2) several clinicians should score the data so a consensus can be drawn, and

(3) the dataset should contain many subjects so that it will be representative of the population and

encompass the variability of normal and abnormal waveforms in humans.

The process we developed for creating the training and testing datasets was this:

1. Dr. Halford gathers the clinical data – more specifically, 30 second clips from subjects with and

without epilepsy. He then de-identifies it and sends it to Clemson to upload into the database

for the annotation software.

2. In a first pass, neurologist scorers log into the software1 and select areas of the rEEG data

that they think are paroxysmal (i.e. PEEs). For the sake of future discussion, we will refer

to these selections as the annotations. Each annotation is a contiguous region of time high-

lighted on a single channel in any montage of the scorer’s choosing. If a PEE is evident across

multiple channels, scorers are instructed to highlight it once on the single channel they feel

1All software is described in detail in Chapter 4.

29

displays it best. In this pass, the annotations are not classified. Seven American Board of Clin-

ical Neurophysiology-certified EEG interpreters (Drs. Benbadis, Edwards, Halford, Pritchard,

Tatum, Turner, and Arain) participated in this study.

3. When the neurologists have completed their first pass, we process their annotations with

clustering software to choose the “consensus set” obtained by “intersecting” their annotations.

This is a critical step in that there are many ways in which annotations from different users can

be describing the same event, such as selecting the same waveform in two different montages,

or having the annotations nested or overlapping. Only events indicated by the annotations of

two or more scorers will be included in the final result set.

4. In a second pass, the scorers are presented the output of the clustering algorithm for clas-

sification. This is done using a different mode of the same software used for marking the

annotations. The scorers now classify the consensus annotations into 3 categories: artifactual,

normal electrocortical, or abnormal electrocortical epileptiform. For the sake of future discus-

sion, we will refer to these as classifications. For these first 100 subjects, the same 7 scorers

participated.

5. We analyze the results of the classification pass, and seek consensus in the classifications. Much

of this analysis is dependent on visualization tools we developed, mentioned in Chapter 4.

The remainder of this chapter contains detailed methods and results from analyzing the expert

opinion.

3.2 Clustering Algorithms for Determining Scorer Agree-

ment

3.2.1 First Generation Clustering Algorithm

The scorers selected annotations in the first phase of the dataset collection. Since they

could select any region of the waveforms they found interesting. It has earlier been stated that it is

common for scorers to mark different regions of EEG as indicative of the same PEEs [84]. We need

to be able to determine the distinct annotations from the scorers, as their annotations might be of

different lengths and in different channels or montages. Therefore we implemented software that

30

looked at every annotation from the first pass of the scorers and clustered the annotations temporally

while assuring that the signal morphology of similar annotations could be clustered together (as in

the case of annotations in different montages or different, adjacent channels). The input for the

program was a clustering score threshold ∆, the annotations from all of the scorers, and the rEEG

data itself. The clustering cutoff ∆ is a measure of minimum similarity that determines if two

annotations should belong to a common cluster. The value of this cutoff falls in the range [0,1], and

for the first datasets, we used an empirically observed value of ∆ = .75.

To compute the correlation between annotations x and y, we first zero-pad them both so

they share a common start and end time. We then regard the signal data in x and y as vectors vx

and vy of the same length and compute their correlation

C(x, y) = v̂x · v̂y,

where v̂ = v/||v|| denotes the normalized vector v. Observe that the formula for C(x, y) is nothing

more than the standard Pearson product-moment correlation formula applied to the vectors vx and

vy and falls in the range [-1, 1].

Given a clustering coefficient threshold ∆, we construct a graph G whose nodes are the

annotations, in which an edge connects any pair of annotations (x, y) for which C(x, y) ≥ ∆. The

connected components of this graph are our clusters. For each cluster, we elect one of its constituent

annotations as its “representative”, or “center” by assigning each annotation x a centrality score

centrality(x) =
∑
y

C(x, y),

and choosing the annotation of highest centrality to be the representative of a cluster. We argue

that this is a sensible method for cluster center selection, due to its strong connection with cluster

center selection in the prominent k-means clustering technique. In k-means clustering, if we have a

cluster containing points v1 . . . vn (in some high-dimensional space), then we must assign a “center”

point p to this cluster minimizing

d(p) =

n∑
i=1

||p− vi||2.

If p is allowed to be any point in space, the optimal solution of this problem is to simply set

p = 1
n

∑
vi as the average of the n points. However, we are often constrained to choose a point

31

from our data set as a center, in which case we simply choose whichever of the vi’s minimizes d(vi).

We note that this is exactly the same process as our method above for choosing a representative

element of a cluster, since if we let v1 . . . vn denote vectors representing the n annotations x1 . . . xn

in a single cluster (zero padded so they all share the same start and end time, and hence have the

same length), then

d(v̂i) =

n∑
j=1

(v̂i − v̂j) · (v̂i − v̂j) =

n∑
j=1

(2− v̂i · v̂j) = 2n− 2

n∑
j=1

C(vi, vj) = 2n− 2centrality(xi),

so selecting an annotation xi of maximum centrality exactly corresponds to the selection of a k-means

cluster center minimizing d(v̂i).

The output of this program is a set of distinct annotations (cluster centers) along with

pairwise correlations of all pairs of temporally-overlapping annotations. These pair-wise correlations

can then be visualized in a web-based system described in the following Chapter (see Figure 3.2).

3.2.2 Second-Generation Clustering Algorithm

The clustering algorithm above presented several problems. Recall that when calculating

correlation in the first generation clustering algorithm, we take the dot product of the overlapping

part divided by the Euclidean length of each annotation. The rationale behind dividing by the length

was to decrease the similarity between two annotations that barely overlap (we refer to this as a

“length penalty”). This length penalty unfortunately caused many annotations not to be clustered

together that should have. A simple illustration of this would to consider two annotations in the

same channel where one annotation is very large and overlapping an annotation that is a fraction of

the larger one’s size. The smaller annotation could be almost fully overlapped (90% of its length, for

example), but the huge difference in their lengths would cause their correlation score to fall below

the cutoff.

Another problem with this clustering algorithm was the case where one annotation com-

pletely contained one or more other annotations. The scorers were instructed by Dr. Halford to mark

the individual bursts of a sequence of back-to-back bursts of paroxysmal activity present in the data.

Unfortunately, some of the scorers would mark the whole sequence with one large annotation. This

would result in potentially all of the annotations becoming their own clusters as well as the large

containing annotation, and yielding the highly undesirable result of nested cluster centers.

32

In considering these issues, we realized that the similarity of two annotations is really a two

dimensional problem where one must concern both the morphological similarity and the temporal

overlap of two annotations independently. In light of this, we devised a new algorithm to mitigate

these issues. In this algorithm there is still a cluster cutoff ∆ to decide when to cluster two an-

notations, but we introduce another parameter in the overlap threshold, Ω. The overlap threshold

for two annotations is defined as the percentage of the smaller of the two annotations that must be

overlapped by the larger for the two to be considered part of the same cluster. We use ∆ = 0.35 and

Ω = 0.50 for the values of these parameters. As a justification for ∆ = 0.35, it should be observed

that the probability of multiplying two random vectors and obtaining a similarity score of more than

0.35 is highly unlikely, as illustrated in Figure 3.1. This would suggest that any cutoff above .35

would probably be suitable in that it would not likely be satisfied due to chance.

Figure 3.1: A histogram of the similarity score obtained by multiplying together two random vectors.
This provides insight in where we should set the clustering cutoff parameter ∆ for our clustering
algorithm.

The modified correlation function we use in the second-generation algorithm computes the

correlation C ′(x, y) between annotations x and y by truncating them to only the region of time over

which they directly overlap, so they share a common start and end time. We then represent the

truncated annotations x and y by vectors vx and vy, and again set their correlation to C ′(x, y) =

v̂x · v̂y, using the Pearson product-moment correlation formula.

The algorithm starts with a first pass that marks all of the annotations that contain other

annotations with a flag to ignore them during the clustering pass (in order to prevent creation

of nested cluster centers). After this, our clustering algorithm is similar to the first-generation

33

Figure 3.2: A screen capture of a clustering result. Yellow boxes are ones that are associated with
more than one cluster. Boxes of matching colors (non-yellow) represent a cluster. An X across an
annotation means that it is a cluster center.

algorithm. Given a clustering coefficient threshold ∆ and an overlap threshold Ω, we form a graph

G whose nodes are the annotations with ignore flags set to false, in which a pair of annotations

(x, y) is connected by an edge if C ′(x, y) ≥ ∆ and at least an Ω fraction of the smaller annotation

is covered by the larger annotation. At this point, the connected components in G give us our

initial set of clusters. Next, we re-examine each annotation with its ignore flag set to true. If this

annotation, added to our graph, only contains edges to one single cluster, we add the annotation

to that cluster. Any annotations that remain unclustered can now be viewed as multiply-clustered.

These annotations will count towards the total agreement of the scorers, but will not be counted as

a member of any particular cluster. We again choose the annotation x of maximum centrality(x) in

each cluster to be the cluster center (here, we use the original formula for centrality, based on the

correlation measurement C rather than C ′, since this makes more sense for centrality computation

due to its relationship with k-means clustering).

For an example result of this clustering algorithm in a very challenging location in the data,

see Figure 3.2.

34

3.3 Results of Expert Opinion Collection

3.3.1 Our Evaluation Techniques

In this section, we will briefly mention the techniques we use to compare the annotation

and classification sets.

Precision and recall are two concepts that come from the field of Information Retrieval (IR),

a well studied field that involves searching for data in some large repository. We believe IR is a good

model for our problem if you view two annotations as analogous to two documents that you might

search for in an the IR context. The problem of measuring the degree of similarity between two sets

of annotations, A and B, where A and B are the annotations marked by two different scorers, is

naturally formulated in an IR context as:

precision(A,B) =
#annotations in A with an edge in G to some annotation in B

total annotations in A

recall(A,B) =
#annotations in B with an edge in G to some annotation in A

total annotations in B

where the graph G is defined as in the previous section. In a document retrieval system, precision

measures the fraction of documents returned in response to a query that are in fact relevant to

the query, and recall measures the fraction of all relevant documents in the repository that are

successfully returned by the query. In the context above, we regard the set B of annotations as

the relevant documents (i.e., as if they were scored by a complete expert), and we are measuring

the quality of the set A with respect to B. Due to the interpretation of B as ground truth, these

measurements should be appropriate to use for expert-novice comparison as well as for eventually

comparing the annotations output of a machine learning algorithm to our gold standard dataset.

Note that the definitions of precision and recall above are completely symmetric if we ex-

change the roles of A and B. If we want a single number that serves as an undirected measurement

of similarity between two sets of annotations (so it does not matter if we compare A against B or

vice versa), the option we find most is the F-score the harmonic mean of precision and recall:

F-score(A,B) =
1

1/precision(A,B) + 1/recall(A,B)

F-score is perhaps the most common method used in the IR literature to distill precision

35

and recall down to a single number reflecting agreement between A and B. [64].

Kappa statistics are a widely used measure to assess the inter-rater agreement of some num-

ber of subjects assigning dichotomous, ordinal, nominal (our classifications fall under this category),

or Likert-like values to data. There are different formulations of the Kappa statistics for various

scenarios. In our case, when we are comparing the scorers to each other in a pairwise fashion, we

use Cohen’s Kappa [12]. In the case of accessing overall agreement over all of our scorers, we use

the Fleiss Kappa [36]. The values of Kappa scores are generally regarded to fall into the following

ranges: < 0 as indicating no agreement, 0 − .20 as slight, .21 − .40 as fair, .41 − .60 as moderate,

.61− .80 as substantial, and .81− 1 as almost perfect agreement [59].

3.3.2 First Trial, Subjects 1-40

In February of 2009, the scorers annotated and classified 30-second clips from 40 subjects.

In this first study, the scorers marked 3810 annotations. The breakdown of how many annotations

there were for each scorer is shown in Table 3.1. Note that there was both a high outlier and a low

outlier. The F-score of the agreement of the scorers is show in Table 3.2.

Scorer 1 2 3 4 5 6 7 Mean
632 786 320 693 216 729 434 544

Table 3.1: Total number of annotations per scorer and the mean.

Scorer 2 3 4 5 6 7
1 0.62 0.70 0.69 0.56 0.66 0.63
2 0.55 0.71 0.44 0.70 0.53
3 0.62 0.56 0.58 0.62
4 0.49 0.73 0.61
5 0.43 0.62
6 0.55

Table 3.2: Annotation agreement between scorers, shown as a table of F-scores.

Using the first-generation clustering algorithm, these annotations were clustered into 828

clusters. As described above in Section 3.1, the scorers were presented with the output of the

clustering algorithm and asked to classify each cluster center. The overall results for how many of

each class each scorer classified is shown in Table 3.3.

In this first time we conducted the classification study, we had a total of four classifications,

36

Classification 1 2 3 4 5 6 7 Totals
Artifactual 363 350 359 335 390 374 425 2596

Normal Electrocortical 410 383 396 273 360 396 397 2615
Abnormal Electrocortical Non-Epileptiform 30 73 42 153 54 40 1 393

Abnormal Epileptiform 25 22 31 67 24 18 5 192

Table 3.3: Classification counts for all classifications, subjects 1-40.

the fourth being “Abnormal Electrocortical Non-Epileptiform”. Due to inconsistent application of

this class of PEEs, we dropped it in subsequent classification studies. The scorers demonstrated

moderate to substantial agreement in classifying with all 4 classes, as shown in Table 3.4.

Scorer 2 3 4 5 6 7
1 0.7695 0.7712 0.6099 0.7458 0.7532 0.7235
2 0.7339 0.6293 0.7150 0.7514 0.6448
3 0.5830 0.7061 0.6939 0.6781
4 0.5849 0.5719 0.5063
5 0.7461 0.6747
6 0.6883

Table 3.4: Pairwise Cohen of scorer classifications, Datasets 1-40.

The overall agreement using all four classes is substantial, as the Fleiss kappa score was

0.67597. An interesting “mile high” visualization of this agreement across all classifications is in-

cluded in Figure 3.3. When the classifications are interpreted as only epileptiform or not, agreement

drops a bit as illustrated by Table 3.5, where the pairwise Cohen scores indicate agreement ranging

from poor to substantial. The Fleiss kappa score of 0.43439 (moderate agreement) upholds this as

well.

Scorer 2 3 4 5 6 7
1 0.7591 0.6305 0.4088 0.6425 0.4990 0.3266
2 0.5132 0.4031 0.5081 0.5390 0.3641
3 0.3547 0.5677 0.3914 0.2702
4 0.4375 0.3300 0.1291
5 0.5117 0.3382
6 0.4294

Table 3.5: Pairwise Cohen of scorer classifications, epileptiform or non-epileptiform, only subjects
1-40.

37

Figure 3.3: All classifications by scorers. A row in this matrix represents an annotation. A column
represents a scorer. The classifications map to the following colors: green = artifactual, blue =
normal electrocortical, red = abnormal electrocortical epileptiform, and purple = abnormal electro-
cortical non-epileptiform

38

3.3.3 Second Trial, Subjects 1-100

In late April of 2010, the scorers annotated and classified 100 subjects, the first 40 of which

were the same as before, with 60 new subjects. In this second study, the scorers marked 9319

annotations. The breakdown of how many annotations there were for each scorer is shown in Table

3.6. Note that the low outlier is still a low outlier. Using the new algorithm, these annotations were

Scorer 1 2 3 4 5 6 7 Mean
1191 1039 1622 1439 494 2233 1301 1331

Table 3.6: Total number of annotations per scorer and the mean.

clustered into 3452 clusters. The numbers of clusters along with how many scorers marked them is

shown in Table 3.7. The F-score of the agreement of the scorers is shown in Table 3.8.

Cluster Sizes 1 2 3 4 5 6 7
881 829 527 388 308 274 245

Table 3.7: Number of clusters of size 1. . .7.

Scorer 2 3 4 5 6 7
1 0.55 0.60 0.64 0.48 0.54 0.55
2 0.55 0.62 0.39 0.45 0.51
3 0.66 0.40 0.56 0.54
4 0.44 0.65 0.60
5 0.36 0.45
6 0.48

Table 3.8: Annotation correlation between scorers, subjects 1-100.

3.3.4 Datasets 1-40, Intra-Rater Reliability

In light of the fact that we had the scorers pass through the datasets twice (subjects 1-40,

in both cases), we could assign a measure of intra-rater reliability. In this sense, we are seeing if the

scorers are seeing the same PEEs in the data that they saw a year before. These results are shown

in Table 3.9 using F-scores.

39

Scorer Reliability
1 0.69
2 0.60
3 0.62
4 0.74
5 0.58
6 0.72
7 0.55

Table 3.9: Intra-rater reliability over the scorers, from their two annotation passes in subjects 1-40.

40

Chapter 4

eegNet, A Web-Based Software

Platform

The purpose of this chapter is to review the design and function of the components of our

software infrastructure for rEEG analysis. An earlier version of the software will be summarized

and contrasted against the current system to communicate lessons learned from the development

and evolution of the system. Following that summary, we will explore the new software platform

and how it helps streamline every aspect of our rEEG research.

4.1 First Version

4.1.1 System Description

Our original application was a Windows binary that downloaded data over the internet from

a database at Clemson University and allowed the scorers to annotate and classify those annotations

(see Figure 4.1). It was based on previous work by the author in a TabletPC based system for

collaboration on generic time series data [56]. This front-end application was written in C# for

execution in the Windows .NET 3.5 environment, and hence only ran on a Windows operating

system.

The software allowed for typical tasks involved with viewing rEEG, such as adjusting the

gain of the EEG data and changing montages. Interpreters could annotate the location of paroxysmal

41

Figure 4.1: The original architecture of the backend for the scoring software system. The only
change for the current system is that the Web server is now a CentOS 5.4 Linux system. This is
done to prevent licensing costs.

activity in multiple montages and classify it as belonging to one of four categories: artifactual, normal

electrocortical, abnormal electrocortical epileptiform, or abnormal electrocortical nonepileptiform.

The system had two operating modes:

1. Selection Mode, where scorers worked independently, marking and classifying single-channel

EEG signal fragments (see Figure 4.2).

2. Classification Mode, where scorers annotated independently and then classified the same se-

quence of randomly selected, uniqueEEG signal fragments combined with some redundant

EEG signal fragments to test intra-scorer reliability (see Figure 4.3).

In addition to the Windows client, we developed a set of interactive web-based tools for

visualization, analysis and administration. These web tools were very primitive, and of limited

utility – but they provided the basis for the current system. The tools included were:

1. The user permissions system, shown in Figure 4.4, this system allowed the administrator to

set permissions for the scorers on the different datasets of subjects. A drawback of this initial

design is that it only allowed a scorer to work in one dataset of subjects in a certain mode.

2. The first-generation clustering algorithm selections viewer, shown in Figure 4.5, was a simple

view of the output of the clustering algorithm where a yellow box highlighted a cluster center

42

Figure 4.2: The main Windows-based client in Phase 1 (Selection) mode. Note the preview pane on
the right. This pane allowed the user to see a thumbnail preview of the annotation (these previews
are created at annotation time). To get to any point in the dataset, the scorer would click on one of
the annotations in this panel. This panel was ultimately of little use as it took up too much “screen
real estate” and was phased out by the new, Web 2.0 version.

and a blue box simply indicated non-selected. This view did not communicate why the clus-

tering decision was made. The process for using this system was to have the administrator

run the clustering algorithm and manually upload it to this visualization.

3. The cluster correlations viewer, shown in Figure 4.6, was a visualization we built to help us

understand why certain clustering decisions were made, and to prove to us that the clustering

algorithm was doing something reasonable. Clicking on a row in the left column would bring

up all annotations overlapping the selected one in the right column. Green annotations are

above the clustering threshold, ∆, while red are below it. These thumbnails were not terribly

informative, as they had no context, and the user of the system could not resize them.

4. The first-generation classification comparison visualization, shown in Figure 4.7, captured

a great deal of information about the first classification pass. It featured a matrix of all

43

Figure 4.3: The main Windows-based client in Phase 2 (Classification) mode. The scorers were
presented the classifications in a random order from the dataset of subjects.

of the classifications in which a row was a single classification and a column was a single

scorer. This allowed the administrator to easily view classifications that were contentious.

The summary statistics were näıve pairwise percent-agreement scores. This was a problem

because the metrics were not symmetric because they assumed that one of the scorers was the

“ground truth”.

4.1.2 Problems with the First Version

The first large problem we observed with using the Windows-based front-end software plat-

form was that change management and version management of the scorer’s Windows executables

quickly became a problem. When a bug would be detected, back end changes often could not be

made until all of the users upgraded to the new code base. Also, the version of the .Net platform

required the users to make a one-time, lengthy .Net 3.5 version installation. Using Windows Server

in the backend also meant a significant licensing cost for anyone wishing to deploy this system in

the future.

44

Figure 4.4: The main permissions system. This allowed a user to use a particular dataset in one
particular mode only.

The analysis and visualization tools mentioned above were fairly primitive and narrowly

focused. For the most part, they did not integrate with each other and all resided in different web

pages across several web servers. The decentralized nature of the tools made them cumbersome to

use.

Lastly, as the analytical needs of our system grew and evolved, this system was shown not

to be very robust. One of the single largest problems we saw with this system occurred when we

decided that the notion of intra-rater reliability (see Section 3.3.4) was interesting to explore. The

database design at the time supported no method of conducting separate studies that involve the

same datasets. For example, it was difficult to answer questions such as “how are the annotations

from the first annotation phase in 2008 differentiated from the annotations in subsequent studies?”,

or “how do we perform analysis and visualization on just one study?”. Further, if the administrator

of the system wanted to conduct two different studies at once, it was impossible to distinguish the

45

Figure 4.5: The first-generation view of the annotations selected by the first-generation clustering
algorithm. The administrator of the system would run the clustering algorithm and manually upload
the result into this system for visualization.

Figure 4.6: The first-generation cluster viewer. It used thumbnails captured at annotation-time to
preview the annotations.

46

Figure 4.7: The first-generation scorer comparison view. The agreement numbers in this view were
all näıve percent agreements.

47

annotations of one study from another. It became apparent that this was a large design flaw in the

original system.

4.2 Current Version

We learned a great deal in the process of developing the first generation of tools. In rewriting

the tools, it became clear that all of the functionality of the Windows client could be provided using

new Web standards, and that this would be a compelling change from the Windows application

model. Accordingly, the current version of this system is largely a Web 2.0/Rich Internet Application

(RIA) and leverages the languages of open standard Web development (Javascript, HTML, CSS,

PHP). There are also back-end applications that are written in C and linked to the MySQL database

backend. A count of the lines of code for the current version in each language is in Table 4.1.

This move to the Web vastly simplifies many of the deployment and versioning challenges that we

Language Count
javascript 11686

php 5144
c 3187

css 270
html 137

PERL 23
Total 20447

Table 4.1: Composite lines of code of whole system, latest version. This does not include prior
versions, or scrapped earlier designs.

experienced in the Windows version since the back end and the front end are deployed in the same

fashion over the web. This is a vast improvement over an independent windows binary that might

be incompatible with the current back end. Access to the latest code changes now require nothing

more than a browser page refresh.

A design objective of this new software was that it should be a well integrated system – that

the administrator or scorer did not have to go to many different places to use the system. Further,

one of the most important lessons of that development cycle was that “screen real estate is king” –

meaning that visually inspecting these large and noisy datasets requires that as much of the interface

as possible is dedicated to rendering the rEEG data. This data-centric design quickly became an

ethos that defined the rest of the tool set. The whole system is designed now to quickly provide rich

48

and meaningful data in an easily accessible way over the Web.

The last issue mentioned in the previous section was the problem that the first-generation

software does not support the concept of different studies. In the new version of the software, we

introduce the idea of a trial to map to the concept of a study. A trial is an abstraction that represents

a set of scorers making a pass through a set of subjects in a certain mode. This abstraction can be

easily implemented in the database by adding intermediate many-to-many tables that map datasets,

annotations, classifications, and users to different trials, as illustrated in the latest entity relationship

diagram (ERD) in Figure 4.8. This allows for many users to participate in several trials using the

Figure 4.8: The current design of the database for the annotation software. The abstraction of trials
allows for users to mark annotations in different datasets in different modes and different studies.

same or different datasets in different modes. The operations an administrator can perform on a trial

are the following: create the trial; assign the trial properties (mode,users, datasets, and annotations);

49

open a trial; close a trial; and delete a trial. This system of trials overcomes all of the problems

mentioned in the previous section and further allows for better organization and segregation of data

and access to appropriate data by the analysis and visualization tools.

4.2.1 Annotation Functions

The new software is shown in Figure 4.9. The function of the annotation software still

allows the user to draw a box around an interesting region of data, and to classify it into the three

categories mentioned in Section 3.1. There are four different modes supported by the software:

1. Annotation Mode. In Annotation mode, the scorers can only create annotations in a partic-

ular trial. They cannot classify them as anything other than unclassified (yellow). The focus

of this type of trial is solely to mark rEEG signals that the scorers think are PEEs – not to

make a judgement about what the PEE represents.

2. Classification Mode. In this mode, all scorers in the trial are presented the same set of

classifications (starting in the unclassified, yellow state). The scorers select an annotation by

clicking on it, and then press a keystroke to classify it into one of the 3 categories mentioned

in Section 3.1. The users cannot delete or create annotations.

3. Annotation and Classification Mode. This mode is the same as Annotation Mode, with

the exception that a scorer can classify it as they create the annotations.

4. Patient Classification Mode. In this mode, the scorer classifies the entire 30 second clip of

the patient as one of the categories mentioned in Section 3.1.

There are several new features of the annotation software, as well. A new addition to the

software is that it now has better support for random access through the dataset of subjects. This

function is accomplished by adding a “playback bar” in the lower portion of the screen that jumps

to the appropriate position in the data. This can be seen in Figure 4.9. Note that the preview panel

that was on the right in the original client is gone as it is deprecated in function by the playback bar,

and to make more room for the rEEG viewer. The annotation client also has built in documentation

that hovers over the rEEG viewer for a “quick reference”; again, this can be seen in Figure 4.9.

Individual channel gains can be set in the rEEG viewer.

50

Figure 4.9: The current annotation client, based on open web standards, including HTML5,
Javascript, and CSS.

4.2.2 Administration Functions

The administrative functions of the system are all now contained in one page on four tabs.

The tabs for each of the administrative functions are shown in Figure 4.10 and include:

1. The summary tab (upper left in Figure 4.10) provides a summary of all of the annotations,

datasets of subjects, users, etc. on the system. On this summary, an administrator can view

a “mile-high” view of the trial that can be used to gauge the progress of the scorers through

the trial. For an example, see Figure 4.11.

2. The datasets maintenance tab (upper right in Figure 4.10) allows the administrator to

add, edit, and delete datasets.

3. The trials maintenance tab (lower right in Figure 4.10) allows the user to add, edit, and

delete trials. Trial creation is more complicated than user or dataset creation because certain

system modes (described in Section 4.2.1) take different inputs. For example, a classification

mode trial takes as input a saved clustering analysis (described in the following section) to

get the list of annotations included in the trial. This interface handles all of these cases in a

51

Figure 4.10: Administrative screens. Clockwise from top left: (1) Summary information on trials
and datasets along with quick overviews, (2) dataset administration, (3) user administration, and
(4) trial administration.

seamless fashion.

4. The users maintenance tab (lower left in Figure 4.10) allows the administrator to add,

edit, and delete users.

4.2.3 Visualization And Analysis Functions

The visualizations included in eegNet are highly interactive and informative. They currently

include the following.

The clustering visualization. In this visualization (top of Figure 4.12), yellow boxes

are multiply-included annotations, while all other colors represent a single cluster. An X over the

annotation means that it is a cluster center. Clicking on any annotation will bring up the correlation

detail window, where the administrator can explore why the clustering decision was made based on

52

Figure 4.11: The progress viewer in the administrative tool. This is taken at the start of a new
classification pass (The scorer’s annotations have been clustered and presented back to them for
classification).

the pairwise correlations of all of the annotations that overlap it, and their centralities. Clicking

on the top row of this detail view will bring up a view where two waveforms may be overlaid

(the currently selected annotation from the detail window and whatever row the mouse is over).

Summary statistics on the clustering result can be show from a panel that overlays the rEEG signal.

The summary dialog can be seen in the bottom of Figure 4.12. Statistics it tracks are: number of

clusters (total and per scorer), number of annotations (total and per scorer), average cluster sizes of

users, and scorer-cluster participation histograms. A clustering result can be created in an interface

on this page by specifying a trial, the users and datasets of subjects to include from the trial, and

the parameters for the clustering ∆ and Ω. The clustering algorithm is then invoked on the web

server and the clustering result is rendered in the browser. A clustering result can also be saved for

later viewing, or loading into a classification trial.

The classification analysis tools and visualizations. As seen in the top of Figure 4.13,

the classification analysis tool shows the classification Kappa scores for an input annotation trial.

The visualization in Figure 4.14 overlays the classifications of all of the scorers in the trial over the

53

The cluster viewer.

Cluster summary data.

Figure 4.12: The clustering visualizations.

54

original annotation. This view allows for easily discovering and analyzing contentious classifications,

as shown in the figure.

The split-view ICA visualization. Shown in the bottom of Figure 4.13, this view features

a screen split into two halves, each showing the same region of the signals, with the exception that the

blue box shows the independent components of the yellow box. When the yellow box is highlighted,

the browser requests the back end to perform Renyi’s entropy ICA on that region of the signal and

return the result.

55

The classification comparison tool. It shows the how many classifications of each type the scorer
classified, the pairwise Cohen’s kappa scores of agreement, and the overall Fleiss kappa agreement.
It also allows quick access to the most problematic classifications.

The ICA split-screen viewer. The screen is split into two halves, each showing the same region of
the signals,with the exception that the blue box shows the independent components of the yellow
box.

Figure 4.13: Analysis and Visualization tools

56

Figure 4.14: Some contentious PEEs. In this overlay, each annotation is colored in strips according
to how each scorer classified it. These annotations are particularly interesting in that the scorers
were evenly split on if the PEEs were epileptiform or not.

57

Chapter 5

A GPU implementation of ICA

based on Renyi’s Entropy

In this chapter we will discuss Renyi’s entropy ICA, an algorithm that has been shown to

produce some of the best results when compared to other ICA algorithms [52]. We will first explore

how to apply Renyi’s entropy to a BSSS algorithm. Next, we will introduce some novel algorithmic

contributions to improve the base algorithm described in the first section. We will then provide a

brief overview of the pertinent architectural and procedural details for using OpenCL to leverage

GPUs. Next, we describe the GPU decomposition of the Renyi’s entropy algorithm, as described

in the first section of this chapter. Lastly, we will review the results of speed testing our Renyi’s

entropy GPU code against a non-GPU version and Infomax [3].

5.1 ICA based on Renyi’s Entropy Overview

Recall the goal of the Renyi entropy ICA algorithm of [87, 52]: given a whitened N × L

matrix X whose N rows contains mixtures of signals, we seek to compute an N × N orthonormal

de-mixing matrix W such that the rows y1 . . . yN of Y = WX minimize f(Y) = g(y1) + . . .+ g(yN),

where

g(v) = − sgn(kurt(v)) log
1

L

L∑
j=1

G(vj − vj−1, 2σ2).

58

Knowing that the de-mixing matrix W is orthonormal gives us a convenient alternative means of

representation: we can write W is a product of
(
N
2

)
rotations along each pair of coordinate axes —

a rotation of angle θ12 in the plane spanning dimensions 1 and 2, a rotation of angle θ13 in the plane

spanning dimensions 1 and 3, and so on. If we define the Givens rotation matrix Rij as the N ×N

identity matrix with its (i, j) submatrix (that is, the 2× 2 submatrix containing only the entries in

the ith and jth rows and columns) set to

 cos θij sin θij

− sin θij cos θij

 ,
then the product Rijx enacts a rotation of the vector x by the angle θij within the plane spanned

by dimensions i and j. We can now write the de-mixing matrix W as

W =
∏
i<j

Rij

for an appropriate set of
(
N
2

)
decision variables θij . Our approach to ICA using Renyi’s entropy will

use this representation for W . Therefore, our goal will be to learn the best possible settings of the

θij decision variables so that we minimize f(Y) = g(y1) + . . .+ g(yN) for Y = WX.

The following algorithmic observations will be helpful concerning the Rij rotation matrices

defined above.

• If A is any N×N matrix, we can compute ARij in only O(N) time by simultaneously replacing

the ith column Ai of and the jth column Aj of A with new columns:

A′i = Ai cos θij −Aj sin θij A′j = Ai sin θij +Aj cos θij .

Similarly, if A is any N×N matrix, we can compute RijA in only O(N) time by simultaneously

replacing the ith row Ai of A and the jth row Aj with new rows:

A′i = Ai cos θij +Aj sin θij A′j = −Ai sin θij +Aj cos θij .

• The inverse R−1ij is a matrix of the same form as Rij , except we replace θij with −θij . Hence,

we can multiply any N ×N matrix on the left or right by R−1ij in O(N) time.

59

• The matrix-vector product Rijx takes only O(1) time to compute, as it changes only the ith

and jth entries of x to:

x′i = xi cos θij + xj sin θij x′j = −xi sin θij + xj cos θij .

• The derivative (with respect to θij) of multiplication by Rij is multiplication by a matrix R′ij

of the same form as Rij with θij replaced by θij + π/2, and with all 1’s removed from the

diagonal. Hence, if A is an N ×N matrix, we can compute AR′ij and R′ijA both in only O(N)

time, and moreover these product matrices will only contain two nonzero columns or rows,

respectively. In addition, we can compute the matrix-vector multiplication R′ijx in only O(1)

time, and the output of this operation will be a vector with only two nonzero entries.

In particular, these facts allow us to compute W by multiplying together all
(
N
2

)
individual

Rij matrices in only O(N3) total time, much faster than one would normally be able to compute a

product of a quadratic number of matrices.

At a high level, we minimize f(Y) using gradient descent. Starting with a vector Θ con-

taining our
(
N
2

)
decision variables θij , we repeatedly apply the update rule

Θ′ = Θ− α∇f,

where α is some specified step size. It would be possible to adjust α in an adaptive fashion, however,

our implementation simply uses a fixed constant step size of α = 0.1. Each component

∂f

∂θij

∣∣∣∣
Y

in the gradient vector ∇f is slightly daunting to write down as a single formula (see [87] for a

page-width formula). Hence, we show how to build up this quantity in a step-by-step manner

that will also highlight how we construct this quantity in parallel on a GPU. Consider a specific

length-n column of the original X matrix – say, the pth column, which we denote x(p). We also

let ∆x(p) = x(p) − x(p − 1) denote the difference between this column and the previous column.

For just this column, we describe shortly how to compute three length-N vectors a(p), b(p), and

k(p). These vectors are then respectively summed across all columns p = 1 . . . L to obtain length-N

60

vectors a, b, and k, after which we have

∂f

∂θij

∣∣∣∣
Y

=

N∑
r=1

sgn(kr)ar/br.

The components of k will represent kurtosis estimates for the signals y1 . . . yN , and the components

of a and b will represent the numerators and denominators in formula we get by differentiating the

Renyi entropy estimator stated above. To compute the vectors a(p), b(p), and k(p) based on x(p)

and ∆x(p), we do the following:

1. Compute y(p) = Wx(p), where W =
∏

(u<v)Ruv as defined above.

2. Compute ∆y(p) = W∆x(p).

3. Compute ∆y′(p) = ∇ijW∆x(p), where ∇ijW denotes the derivative of the linear transforma-

tion W with respect to θij , computed by taking the product
∏

u<v Ruv but with the matrix

Rij replaced by R′ij .

4. Set k(p) = [y(p)]4 − 3 (that is, we take all entries in y(p) raised to the fourth power, and

subtract 3 from them).

5. Set b(p) = G(∆y(p), 2σ2) (again, doing all operations component-wise, so we compute a Gaus-

sian function on every component of the vector ∆y(p).

6. Set a(p) = b(p)∗∆y(p)∗∆y′(p)/σ2, where ∗ denotes component-wise multiplication of vectors.

This concludes the mathematical description of our implementation of the Renyi entropy

ICA algorithm.

5.2 Algorithmic Enhancements

Let us now focus on computational efficiency. Before applying steps 1-6 above, we first

compute the matrices W and ∇ijW , both of which require O(N3) time to compute using the

observations above about the special structure of the Rij matrices. Steps 1, 2, and 3 each require

a matrix-vector multiply, running in O(N2) time, and steps 4, 5, and 6, each require only O(N)

time. Since these steps are performed for every value of p = 1 . . . L, this gives a running time of

O(N3 +N2L) for computing a single entry ∂f/∂θij |Y in ∇f |Y . To compute all
(
N
2

)
of these entries,

61

it would therefore seem we need to spend O(N5 + N4L) time. However, observe that the work we

do in steps 1-6 above for different values of p is more or less independent, so parallelism will help

reduce the O(N4L) part of the running time.

To further improve the running time above, both for serial and parallel implementations,

we propose the following algorithmic enhancements. We note that W only needs to be computed

once over the entire process of computing ∇f , so we can afford to do this in O(N3) time. However,

computing each of the ∇ijW matrices currently takes
(
N
2

)
·O(N3) = O(N5) time. To decrease this,

we maintain extra state in order to compute each successive ∇ijW matrix more quickly. Recall that

∇ijW is obtained by multiplying together the sequence of all Ruv matrices, with Rij replaced by

R′ij . Let Pij denote the “prefix” of this matrix product up to but not including R′ij , and let Sij

denote the suffix of this product after R′ij :

∇ijW =

 R12


 R13

 · · ·
︸ ︷︷ ︸

Pij

 R′ij

 · · ·
 RN−1,N


︸ ︷︷ ︸

Sij

Our approach maintains Pij , R
′
ij , and Sij as we compute each successive term ∂f/∂θij |Y in ∇f |Y .

We never need to explicitly multiply Pij , R
′
ij , and Sij together to obtain ∇ijW , since all we ever do

with ∇ijW is a matrix-vector multiplication ∆y′(p) = ∇ijW∆x(p) in step 3, which can be written

as

∆y′(p) = ∇ijW∆x(p) = Pij(R
′
ij(Sij∆x(p))).

Parenthesized this way, we compute y′(p) in only O(N2) time (the same as before) but using three

matrix-vector multiplies instead of one. However, we can now maintain Pij and Sij efficiently as

we loop over all entries ∂f/∂θij |Y in ∇f |Y . Initially, Pij = I and Sij = W . In each iteration, we

update Pij by multiplying on the right by Rij (which takes only O(N) time), and we update Sij by

multiplying on the left by R−1ij (which also takes only O(N) time). Hence, the total time to maintain

Pij and Sij is only O(N3) over the entire computation of ∇f |Y , lowering our total running time to

O(N3 +N4L) (with the N4L term subject to further reduction due to parallelism).

We can reduce our running time yet further by carefully examining once again the update

62

taking place in step 3,

∆y′(p) = Pij(R
′
ij(Sij∆x(p))),

which currently takes O(N2) time. Suppose we maintain in memory the vector Sx(p) = Sijx(p).

To update this in each iteration, we need only left-multiply by R−1ij in O(N) time (O(N3L) over the

entire gradient computation). Hence, let us consider the following modified version of step 3:

∆y′(p) = Pij(R
′
ijSx(p)).

Since R′ij is extremely sparse, the multiplication R′ijSx(p) takes only O(1) time and produces as

output a vector with only two nonzero components. Multiplying this by Pij therefore only takes

O(N) time, since this involves taking a linear combination of only two of Pij ’s columns. Hence, we

can reduce the total effective running time of step 3 to O(N), or O(N3L) over the entire algorithm.

Steps 1 and 2 still take O(N2) time, but these only need to be applied once at the beginning of

the gradient computation, rather than for every pair (i, j). As a result, we can lower the sequential

running time for computing ∇f |Y to only O(N3 + N3L), where the O(N3L) part will decompose

further due to parallelization.

5.3 OpenCL Overview

OpenCL is an emerging open standard for parallel programming over heterogenous systems

[57]. It allows for developers to simultaneously leverage all computing resources on a system, such

as the CPU and the GPU in one program. It accomplishes this by providing an API that abstracts

away the particulars of the hardware, such as the number of cores.

At the heart of an OpenCL program is its kernel. The kernel is a set of instructions that

the developer wishes to execute in parallel over the heterogenous hardware available in the system.

This may sound fairly simple; however, developing an OpenCL application is far more nuanced

than simply inserting all of your code in a kernel. For instance, there is a complex and hierarchal

memory architecture between the program and the computing resources of the GPU, and there are

constraints about how processes can intercommunicate. Understanding and leveraging this memory

architecture is very important for achieving good performance.

Kernels are executed on workitems that are grouped into of workgroups. Workgroups have

63

access to fast, shared local memory and all the workitems within it are allowed to synchronize. It is

important to note that this synchronization does not occur across workgroups. Further, all of the

workitems (each running a kernel) in a workgroup are executed in simultaneous blocks of threads

called warps. If threads in a warp all read or write to sequential locations in a contiguous block

of memory at the same time, these memory accesses are “coalesced” and executed in parallel for

dramatic speed increases. To make GPU-based code run as fast as possible, one must ensure that

as many memory accesses are coalesced as possible and one should minimize costly host to device

memory transfers. For further examples of optimization strategies and best practices for developing

GPU applications, see [57].

5.4 GPU decomposition of Renyi’s Entropy based ICA

The structure of the Renyi’s entropy ICA algorithm mentioned in Section 5.1 lends itself

especially well to development in OpenCL. As mentioned in the previous section, read/write coa-

lescing is a very important optimization strategy for developing on the GPU. Thus, our GPU task

parallelization should make every attempt to organize the memory it manipulates in way that will

be easily coalesced by the thread warps. Our main code does this prior to the host to device memory

transfer by storing our data in column major format. It also stores this memory aligned to 16 word

boundaries to align properly with the memory reads from a warp.

There are two main kernels that we use in the code. The first kernel, the main body of

the Renyi entropy ICA calculation, is task parallelized as working on each element of the input

matrix, an illustration of this is in Figure 5.1. Thus, our workitems are individual locations in

the signal matrix, and our workgroups are the columns. This design was chosen due to the need

for coordination of data across columns (e.g. during matrix-vector multiplies), as we compute the

vectors a(p), b(p), and k(p) for the pth column according to the six-step algorithm from section 5.1.

The second kernel then aggregates the results of the first in a logarithmic fashion illustrated by

Figure 5.2.

64

N 16

L

Workgroup

item

Work

Figure 5.1: An illustration of the 2D memory layout over which the main kernel function is applied.
dNe16 denotes N rounded up to the next highest multiple of 16.

A:

+ ++ + + + + +

+ + ++

+ +

+

Phase 1:

Phase 2:

Phase log L:

...

Figure 5.2: An illustration of the function of the aggregate kernel for summing the L columns of the
A matrix.

5.5 Results

Our methods for empirical performance testing were as follows: We tested 3 ICA programs.

These included our C implementation of Renyi’s entropy ICA (non-GPU), our OpenCL implemen-

tation of Renyi’s entropy ICA, and the Infomax ICA implementation included in EEGLab [1, 3].

We tested on four different machines, the relevant properties of which are listed in Table 5.1. The

GPU code was only executed on the GPU capable machines, A and D. Each test consisted of 10

averaged iterations using a specific value of L. The values of L that we used in each of the tests were

[100,200,500,1000,2000,5000,10000]. For the results we present here, we picked the fastest result set

for each ICA program. Listed here: Infomax ran best on Machine B because MATLAB is multi-

threading capable, Renyi non-GPU ran best on Machine C because it had the fastest clock speed,

65

and Renyi GPU ran best on Machine A because it had the best GPU.

Machine Processor Video Card OS
A Core i7 980 (6 Core) @ 3.3GHz GeForce GTX 480 Fedora 13
B Dual Quad Xeon @ 2.33GHz Not Used CentOS 5.3
C Intel Core2 Duo @ 2.6GHz Not Used Mac OS X 10.6.4
D AMD Opteron @ 1GHz GeForce 8800 GTX CentOS 5.5

Table 5.1: The machines we used to run the tests.

The first result that we will cover is the speedup between our Renyi’s entropy ICA imple-

mentation on the CPU and our Renyi’s entropy ICA implementation on the GPU. This result is

summarized in Table 5.2. The GPU version of the code displays a 22x speedup in the largest value

of L tested, L = 10000. The timing of the two versions appears to grow linearly in L as shown

in Figure 5.3. This result follows from the fact that the GPU is using 480 cores to perform its

calculations, where the non-GPU version is only using 1.

L GPU Version non-GPU Version Speedup Factor
100 750 ms 881 ms 1.17x
200 793 ms 1737 ms 2.19x
500 910 ms 4379 ms 4.81x
1000 1063 ms 8707 ms 8.19x
2000 1431 ms 17552 ms 12.27x
5000 2388 ms 43094 ms 18.05x
10000 3843 ms 85800 ms 22.33x

Table 5.2: Timing Results between non-GPU Renyi and GPU Renyi code.

The next result is from comparing Infomax [3, 1] to our Renyi entropy GPU code. This

result, shown in Table 5.3, our GPU of Renyi’s Entropy ICA version beats Infomax for tested values

of L > 1000. This result could be further improved by changing the number of iterations that our

algorithm runs. There were many times during our testing of the Renyi GPU code, that we noted

that the quality of the result was very high in half to a third of the total iterations. Reducing the

number of iterations could easily reduce our timing results or expand them, if more iterations are

deemed necessary.

For completeness, Table 5.4 shows the head-to-head performance differences of the two

graphics cards we used. The Fermi card (an GeForce GTX 480) is the latest hardware version of

NVIDIA’s architecture and boasts 480 GPU cores. The GeForce 8800 GTX card is a much older

hardware version and only has 128 cores. We observed a speedup of close to 2 times from using the

66

Figure 5.3: The performance curves of the non-GPU and GPU versions of the Renyi’s entropy ICA
code. The y-axis is in milliseconds, while the x-axis is sizes of L.

newer hardware architecture.

L Renyi’s Entropy ICA GPU Infomax Speedup Factor
100 750 ms 255 ms 0.34x
200 793 ms 67 ms 0.08x
500 910 ms 433 ms 0.48x
1000 1063 ms 838 ms 0.79x
2000 1431 ms 2881 ms 2.01x
5000 2388 ms 8034 ms 3.36x
10000 3843 ms 7280 ms 1.89x

Table 5.3: Timing results between regular Infomax ICA and GPU Renyi code.

67

L GeForce GTX 480 GEForce 8800GTX Speedup Factor
100 750 ms 1066 ms 1.42x
200 793 ms 1149 ms 1.45x
500 910 ms 1325 ms 1.46x
1000 1063 ms 1612 ms 1.52x
2000 1431 ms 2174 ms 1.52x
5000 2388 ms 3848 ms 1.61x
10000 3843 ms 6533 ms 1.70x

Table 5.4: Timing results of the Renyi GPU code on the two GPUs we tested on.

68

Chapter 6

Conclusion

6.1 Future Directions

The work described in this dissertation constitutes the first steps in a large-scale collabora-

tive research effort envisioned by Dr. Halford and Dr. Dean. Some of the more long term objectives

that are not included in the scope of this dissertation are listed in this final chapter. We also briefly

review how each of these objectives can be beneficial to the continued development of EEG research.

6.1.1 Spike Detection/Classification

Having a computer automatically classify any PEEs present in an EEG dataset is one of

the main goals for computational EEG research. As stated in Chapter 1 and Section 2.2, this is

a very difficult problem and the purpose of the system developed here is to build a computational

framework that supports this ultimate goal. To this end, we believe that the future of the project

will include a computational research portal (described in the next section) where users will be able

to upload a specification of their spike detection algorithm and run that against the gold-standard

datasets. Such a specification might be similar to a script for Condor, a cycle-scavenging cluster

system [78], where the user would specify a binary to execute, the input data for the problem,

and architectural details of both the binary and the cluster resources needed. This last point is

particularly difficult and intriguing considering the vast differences in algorithmic approaches taken

(see Section 2.2) and the architectures that they may be conceivably need to exploit (e.g. grids,

69

MPI-based systems, GPUs).

6.1.2 mBSSS

Due to the embarrassingly parallel nature of mBSSS, grid architectures seem well suited for

it. We have already implemented a baseline solution for the mBSSS algorithm leveraging the OSG

(Open Science Grid) interface here at Clemson University. The system, as implemented, created the

datasets as needed and transferred them to the client machines with a windows binary for execution

of the ICA algorithm. The clients then returned the results to the dispatching machine. This

approach was not very sophisticated in its management of resources and the performance increase

from this approach was minimal (28% faster). This drives home the point that the success of a

coarse-grained parallelization will depend heavily on the transfer time of the binaries and data to

the worker machines as well as the use of a smart, high-throughput dispatch mechanism for this

data (e.g. a hierarchal approach). Also, optimization of selection of data (such that each worker

can calculate several adjacent windows and return them) sent to the workers will help this system

out greatly. mBSSS can also be implemented using our Renyi’s entropy GPU system, described

in Chapter 5, working over clusters of GPUs. When mBSSS can be performed efficiently, we can

then assess its usefulness in helping alleviate the problems inherent in standard sliding window ICA

approaches to EEG analysis as mentioned in Section 2.2.2.

6.1.3 EEG Computing Portal and Pedagogy

Ultimately, we would like to create a interactive public research portal where EEG re-

searchers can collaborate. There are many Computational Neuroscience centers, such as the Swartz

Center for Computational Neuroscience at University of California, San Diego (one of their chief

contributions to the field is the excellent MATLAB program EEGLab [1]). However, these centers

do not host collaborative portals for EEG research – currently, spike detection research is carried out

in independent labs using different datasets with very little direct comparison to other researchers

[47].

We would like this portal to accomplish such tasks as: uploading datasets, annotating new

training sets, downloading existing training sets, and most ambitiously, running arbitrary spike

detection algorithms on the datasets. There is precedent for this kind of system/portal in other

70

domains such as Machine Learning. For example, Percy Liang, describes the MLComp.org system

he has developed as follows: “The goal of mlcomp is two-fold: (1) to objectively evaluate and compare

different machine learning methods; and (2) help practitioners quickly try out many different machine

learning methods. Here’s how it works: (1) you upload programs and/or datasets; (2) programs are

run on datasets; (3) various performance metrics are reported on these runs. An important aspect

of mlcomp is that it is collaborative: each person can upload just one program or dataset, but the

collective contribution yields a vast infrastructure that everyone can benefit from.” [63]

Among the benefits of the system that we are describing, one of the more obvious ones is

the application in the pedagogy of EEG analysis. A portion of the portal we intend to develop might

be dedicated to interactive training for the purposes of educating students of EEG and remediating

the faults of existing practitioners. In the future, a certification system could arise around such a

system and prove to be very valuable to the field.

6.2 Concluding Thoughts

The automatic interpretation of EEG is a very difficult problem that has eluded a well-

accepted solution so far. It is the purpose of this dissertation proposal to create a computational

framework that helps work toward that solution. By creating software for collaborating on building

new datasets against which researchers can measure correctness of their spike detection algorithms

(and therefore have a basis of comparison with others) and providing a new parallel, high performance

implementation of ICA (a computationally intensive preprocessing step) on a GPGPU, this project

will add great value to the study of EEG. As the area of intersection between neuroscience and

computer science grows, this framework may be employed to build the future algorithms that can be

of great assistance in helping decrease the 20%-30% misdiagnosis rate of epilepsy [18, 73] in rEEG

and help bring a better quality of life to sufferers of epilepsy.

71

Bibliography

[1] S Makeig A Delorme. EEGlab: an open source toolbox for analysis of single-trial EEG dynamics.
Journal of Neuroscience Methods, 134:9–21, 2004.

[2] W. Addison and S. Roberts. Blind source separation with non-stationary mixing using wavelets.
In 6th International Conference on Independent Component Analysis and Blind Source Separa-
tion., 2006.

[3] A.J. Bell and T.J. Sejnowski. An information-maximization approach to blind separation and
blind deconvolution. Neural Computing, 7:1129–1159, 1995.

[4] S.R. Benbadis and W.O. Tatum. Overinterpretation of EEGs and misdiagnosis of epilepsy.
Journal of Clinical Neurophysiology, 20:42–44, 2003.

[5] R. Benlamri, M. Batouche, S. Rami, and C. Bouanaka. An automated system for analysis and
interpretation of epileptiform activity in the EEG. Comput Biol Med, 27:129–139, 1997.

[6] M.A. Black, R.D Jones, G.J Carroll, A.A. Dingle, I.M. Donaldson, and P.J. Parkin. Real-time
detection of epileptiform activity in the EEG: a blinded clinical trial. Clin Electroencephalogr,
31:122–130, 2000.

[7] G.D. Brown, S. Yamada, and T.J. Sejnowski. Independent component analysis at the neural
cocktail party. Trends in Neurosciences, 24:54–63, 2001.

[8] I. Buck, T. Foley, D. Horn, J. Sugerman, K. Fatahalian, M. Houston, and P. Hanrahan. Brook
for gpus: Stream computing on graphics hardware. ACM Trans. on Graphics, 23(3):777–786,
August 2004.

[9] J.F. Cardoso. Blind signal separation: statistical principles. Proc. IEEE, 86(1):2009–2025,
1998.

[10] S.J. Choi, A. Cichocki, and A. Beloucharni. Second order nonstationary source separation.
Journal of VLSI Signal Processing Systems for Signal Image and Video Technology, 32:93–104,
2002.

[11] Robert Cochran and Jay Steele. Second-order illumination in real-time (student paper). In
ACM-SE 45: Proceedings of the 45th annual southeast regional conference, pages 13–18, New
York, NY, USA, 2007. ACM.

[12] J. Cohen. A Coefficient of Agreement for Nominal Scales. Educational and Psychological
Measurement, 20(1):37, 1960.

[13] M.H. Cohen and A.G. Andreou. Analog CMOS integration and experimentation with an autoad-
aptive independent component analyzer. Ieee Transactions on Circuits and Systems Ii-Analog
and Digital Signal Processing, 42:65–77, 1995.

72

[14] Lopes da Silva. Computer-Assisted EEG Diagnosis: Pattern Recognition and Brain Mapping,
in Electroencephalography: Basic Principles, Clinical Applications, and Related Fields, E. Nie-
dermeyer and F. Lopes da Silva, Editors. Lippincott Williams and Wilkins, Philadelphia, 2005.

[15] P. Guedes de Oliveira, C. Queiroz, and F. Lopes da Silva. Spike detection based on a pattern
recognition approach using a microcomputer. Electroencephalography and Clinical Neurophysi-
ology, 56:97–103, 1983.

[16] C.A. Van Donselaar, R. Schimsheimer, A.T. Geerts, and A.C. Declerck. Value of the electroen-
cephalogram in adult patients with untreated idiopathic first seizure. Arch Neurol, 49:231–237,
1992.

[17] H. Du and H. Qi. An FPGA implementation of parallel ICA for dimensionality reduction
in hyperspectral images. In IEEE International Geoscience and Remote Sensing Symposium
(IGARSS)., 2004.

[18] A. ZaidiA et al. Misdiagnosis of epilepsy: Many seizure-like attacks have a cardiovascular cause.
Journal of the American College of Cardiology, 36:2000, 2000.

[19] B. L. Davey et al. Expert system approach to detection of epileptiform activity in the EEG.
Medical and Biological Engineering and Computing, 27:365–370, 1989.

[20] C.C.C. Pang et al. A comparison of algorithms for detection of spikes in the electroencephalo-
gram. IEEE Transactions on Biomedical Engineering, 50:521–525, 2003.

[21] C.P. Unsworth et al. Redundancy of independent component analysis in four common types of
childhood epileptic seizure. Journal of Clinical Neurophysiology, 23:245–253, 2006.

[22] D. Erdogmus et al. On-line entropy manipulation: stochastic information gradient. IEEE Signal
Processing Letters, 10(8):242–245, 2003.

[23] D. Flanagan et al. Improvement in the performance of automated spike detection using dipole
source features for artifact rejection. Clinical Neurophysiology, 114:38–49, 2003.

[24] D.B. Keith et al. Parallel ICA methods for EEG neuroimaging. In IEEE Parallel and Distributed
Processing Symposium (IPDPS), 2006.

[25] H.S. Park et al. Detection of epileptiform activities in the EEG using neural network and expert
system. Medinfo, 9 pt 2:1255–1259, 1998.

[26] J.D. Owens et al. A survey of general-purpose computation on graphics hardware. Computer
Graphics Forum, 26:80–113, 2007.

[27] L. Senhadji et al. Wavelet analysis of EEG for three-dimensional mapping of epileptic events.
Annals of Biomedical Engineering, 23:543–552, 1995.

[28] M. Ajouadi et al. Detection of interictal spikes and artifactual data through orthogonal trans-
formations. Journal of Clinical Neurophysiology, 22:53–64, 2005.

[29] M. Feucht et al. Simultaneous spike detection and topographic classification in pediatric surface
EEGs. Neuroreport, 8:2193–2197, 1997.

[30] N. Acir et al. Automatic detection of epileptiform events in EEG by a three-stage procedure
based on artificial neural networks. IEEE Transactions on Biomedical Engineering, 52:30–40,
2005.

73

[31] S.B. Wilson et al. Spike detection II: automatic, perception-based detection and clustering.
Clinical Neurophysiology, 110:404–411, 1999.

[32] T. Sugi et al. Adaptive EEG spike detection: determination of threshold values based on
conditional probability. Frontiers of Medicine, Biology, and Engineering, 11:261–277, 2002.

[33] W.R. Webber et al. Practical detection of epileptiform discharges (EDs) in the EEG using an
artificial neural network: a comparison of raw and parameterized EEG data. Electroencephalog-
raphy and Clinical Neurophysiology, 91:194–204, 1994.

[34] R. Everson and S. Roberts. Blind source separation for non-stationary mixing. Journal of VLSI
Signal Processing Systems for Signal Image and Video Technology, 26:15–23, 2000.

[35] J. Fayn, P. Rubel, and P.W. Macfarlane. Can the lessons learned from the assessment of
automated electrocardiogram analysis in the common standards for quantitative electrocardio-
graphy study benefit measurement of delayed contrast-enhanced magnetic resonance images?
J Electrocardiol, 40:246–250, 2007.

[36] J.L. Fleiss et al. Measuring nominal scale agreement among many raters. Psychological Bulletin,
76(5):378–382, 1971.

[37] A.J. Gabor and M. Seyal. Automated interictal EEG spike detection using artificial neural
networks. Electroencephalography and Clinical Neurophysiology, 83:271–280, 1992.

[38] H. Goelz, R.D. Jones, and P.J. Bones. Wavelet analysis of transient biomedical signals and its
application to detection of epileptiform activity in the EEG. Clinical Electroencephalography,
31:181–191, 2000.

[39] S. Goodacre, A. Webster, and F. Morris. Do computer generated ECG reports improve in-
terpretation by accident and emergency senior house officers? Postgraduate Medical Journal,
77:455–457, 2001.

[40] J. Gotman and P. Gloor. Automatic recognition and quantification of interictal epileptic activity
in the human scalp EEG. Electroencephalography and Clinical Neurophysiology, 41:513–529,
1976.

[41] J. Gotman, J.R. Ives, and P. Gloor. Automatic recognition of inter-ictal epileptic activity in
prolonged EEG recordings. Electroencephalography and Clinical Neurophysiology, 46:510–520,
1979.

[42] J. Gotman and L.Y. Wang. State-dependent spike detection: concepts and preliminary results.
Electroencephalography and Clinical Neurophysiology, 79:11–19, 1991.

[43] N. Govindaraju, J. Gray, R. Kuman, and D. Manocha. Gputerasort: High performance graphics
co-processor sorting for large database management. In Proc. ACM SIGMOD, pages 325–336,
June 2006.

[44] Larry Greischar. Brain imaging workshop. http://psyphz.psych.wisc.edu/∼greischar/BIW12-
11-02/EEGintro.htm, 2002.

[45] I. Guler and E.D. Ubeyli. Adaptive neuro-fuzzy inference system for classification of EEG
signals using wavelet coefficients. Journal of Neuroscience Methods, 148:113–121, 2005.

[46] J.J. Halford. Detection of paroxysmal EEG discharges using multi-taper blind signal source
separation. Lecture Notes in Computer Science, 4666:601–608, 2007.

74

[47] J.J. Halford. Computerized epileptiform transient detection in the scalp electroencephalogram:
Obstacles to progress and the example of computerized ECG interpretation. Clinical Neuro-
physiology, 120:1909–1915, 2009.

[48] G. Hellmann. Multifold features determine linear equation for automatic spike detection ap-
plying neural non interictal ECoG. Clinical Neurophysiology, 110:887–894, 1999.

[49] W.E. Hostetler, H.J.Doller, and R.W. Homan. Assessment of a computer program to detect
epileptiform spikes. Electroencephalogr Clin Neurophysiol, 83:1–11, 1992.

[50] A. Hyvarinen, J. Karhunen, and E. Oja. Independent Component Analysis. Wiley, New York,
revised second edition, 2001.

[51] A. Hyvarinen and E. Oja. A fast fixed-point algorithm for independent component analysis.
Neural Computation, 9:1483–1492, 1997.

[52] Kenneth E. Hild II, Deniz Erdogmus, and Jose C. Principe. An analysis of entropy estimators
for blind source separation. Signal Processing, 86(1):182 – 194, 2006.

[53] C.J. James and C.W. Hesse. Independent component analysis for biomedical signals. Physio-
logical Measurement, 26:15–39, 2005.

[54] H.H. Jasper. Appendix to report to committee on clinical examination in EEG: the ten-twenty
electrode system of the international federation. Electroencephalography Clinical Neurophysiol-
ogy, 10:371–375, 1958.

[55] E. Jovanov, D. Starcevic, V. Radivojevic, A. Samardzic, and V. Simeunovic. Perceptualization
of biomedical data. an experimental environment for visualization and sonification of brain
electrical activity. Engineering in Medicine and Biology Magazine, IEEE, 18(1):50–55, Jan.-
Feb. 1999.

[56] William B. S. Pressly Jr. Tspad: A Tablet-PC Based application for annotation and collabora-
tion on time series data. In Proc. of the 46th Annual ACM SE Conf., pages 166–171, Auburn,
Alabama, March 2008.

[57] Khronos Group. Opencl introduction and overview. http://www.khronos.org/opencl, June
2010.

[58] C. Kurth, F. Gilliam, and B.J. Steinhoff. EEG spike detection with a kohonen feature map.
Annals of Biomedical Engineering, 28:1362–1369, 2000.

[59] J. R. Landis and G. G. Koch. The measurement of observer agreement for categorical data.
Biometrics, 33(1):159–174, March 1977.

[60] M. Latka and Z. Was. Wavelet analysis of epileptic spikes. Physical Review, 67:1–4, 2003.

[61] P. LeVan, E. Urrestarazu, and J. Gotman. A system for automatic artifact removal in ic-
tal scalp eeg based on independent component analysis and bayesian classification. Clinical
Neurophysiology, 117:912–927, 2006.

[62] P.S. Lewis and J.C. Mosher. Genetic algorithms for neuromagnetic source reconstruction. In
Acoustics, Speech, and Signal Processing, 1994. ICASSP-94.,, volume v, pages V/293–V/296
vol.5, Apr 1994.

[63] Percy Liang. Mlcomp. http://mlcomp.org/, 2009.

75

[64] J. Makhoul, F. Kubala, R. Schwartz, and R. Weischedel. Performance measures for information
extraction. In Proceedings of the DARPA Broadcast News Workshop, 1999.

[65] NVIDIA Corp. Nvidia CUDA programming guide, version 2.1.
http://www.nvidia.com/object/cuda get.html, December 2008.

[66] O. Ozdamar and T. Kalayci. Detection of spikes with artificial neural networks using raw EEG.
Computers and Biomedical Research, 31:122–142, 1998.

[67] W.D. Penny, R.M. Everson, and S.J. Roberts. Hidden markov independent component analy-
sis. In M. Girolami, editor, Advances in independent component analysis, page 279. Springer:
London, New York, 2000.

[68] D.T. Pham and J.F. Cardoso. Blind separation of instantaneous mixtures of nonstationary
sources. IEEE Transactions on Signal Processing, 49:1837–1848, 2001.

[69] J.W. Phillips, R.M. Leahy, J.C. Mosher, and B. Timsari. Imaging neural activity using MEG
and EEG. Engineering in Medicine and Biology Magazine, IEEE, 16(3):34–42, May/Jun 1997.

[70] A.B. Samardzic, E. Jovanov, and D.B. Starcevic. 3d visualization of brain electrical activity.
In Engineering in Medicine and Biology Society, 1996. Bridging Disciplines for Biomedicine.
Proceedings of the 18th Annual International Conference of the IEEE, volume 5, pages 2273–
2274 vol.5, Oct-3 Nov 1996.

[71] Aleksandar B. Samardzic, Emil S. Jovanov, and Dusan B. Starcevic. Real-time visualization of
brain electrical activity. Real-Time Imaging, 6(1):69 – 76, 2000.

[72] R. Sankar and J. Natour. Automatic computer analysis of transients in EEG. Computers in
Biology and Medicine, 22:407–422, 1992.

[73] B. Scheepers, P. Clough, and C. Pickles. The misdiagnosis of epilepsy: findings of a population
study. Seizure, 7:403–406, 1998.

[74] A. Snellings, D.J. Anderson, and J.W. Aldridge. Improved signal and reduced noise in neu-
ral recordings from close-spaced electrode arrays using independent component analysis as a
preprocessor. Journal of Neuroscience Methods, 150:254–264, 2006.

[75] A. Subasi and E. Ercelebi. Classification of EEG signals using neural network and logistic
regression. Computer Methods and Programs in Biomedicine, 78:87–99, 2005.

[76] Michael ten Caat, Natasha M. Maurits, and Jos B.T.M. Roerdink. Design and evaluation
of tiled parallel coordinate visualization of multichannel EEG data. IEEE Transactions on
Visualization and Computer Graphics, 13(1):70–79, 2007.

[77] Michael ten Caat, Natasha M. Maurits, and Jos. B.T.M. Roerdink. Data-driven visualization
and group analysis of multichannel EEG coherence with functional units. IEEE Transactions
on Visualization and Computer Graphics, 14(4):756–771, 2008.

[78] Douglas Thain, Todd Tannenbaum, and Miron Livny. Distributed computing in practice: the
condor experience. Concurrency - Practice and Experience, 17(2-4):323–356, 2005.

[79] W.R.S. Webber, B. Litt, R.P. Lesser, R.S. Fisher, and Bankman. I. automatic EEG spike detec-
tion: what should the computer imitate? Electroencephalography and Clinical Neurophysiology,
87:364–373, 1993.

76

[80] J.L. Willems, C. Abreau-Lima, P. Arnaud, J.H. Van Bemmel, C. Brohet, and R. Degani et al.
The diagnostic performance of computer programs for the interpretation of electrocardiograms.
New England Journal of Medicine, 325:1767–1773, 1991.

[81] J.L. Willems, P. Arnaud, J.H. Van Bemmel, P.J. Bourdillon, C. Brohet, and S. Dalla Volta
et al. Assessment of the performance of electrocardiographic computer programs with the use
of a reference data base. Circulation, 71:523–524, 1985.

[82] J.L. Willems, P. Arnaud, J.H. Van Bemmel, R. Degani P.W. Macfarlane, and C. Zywietz.
Common standards for quantitative electrocardiography: goals and main results. Methods Inf
Med, 29:263–271, 1990.

[83] S.B. Wilson and R. Emerson. Spike detection: a review and comparison of algorithms. Clinical
Neurophysiology, 113:1873–1881, 2002.

[84] S.B. Wilson, R.N. Harner, F.H. Duffy, B.R. Tharp, M.R. Nuwer, and M.R. Sperling. Spike
detection. I. correlation and reliability of human experts. Electroencephalography and Clinical
Neurophysiology, 98:186–198, 1996.

[85] CSE Workgroup. Common standards for quantitative electrocardiography: the CSE pilot study.
In Medical informatics Europe 81: third congress of the European federation of medical infor-
matics, pages 319–326, 1981.

[86] CSE Workgroup. CSE data. http://CSE.insa-lyon.fr, 1981.

[87] Dongxin Xu, Jose C. Principe, John Fisher, III, John Fisher Iii, and Hsiao-Chun Wu. A novel
measure for independent component analysis (ica). pages 1161–1164.

[88] H. Zhang, M.O. Balaban, and J.C. Principe. Improving pattern recognition of electronic nose
data with time-delay neural networks. Sensors and Actuators B: Chemical, 96:385–389, 2003.

77

	Clemson University
	TigerPrints
	8-2010

	A Computational Framework to Support the Automated Analysis of Routine Electroencephalographic Data
	William Pressly, jr.
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Routine EEG (rEEG): An Introduction
	The Precedent of ECG
	Organization of the Research Project and this Document

	Background
	Developing EEG Testing and Training Datasets
	Signal Processing of EEG
	High Performance Computing and ICA/mBSSS
	rEEG Visualizations

	Collection and Analysis of Expert Opinion
	The Process For Collecting Expert Opinion
	Clustering Algorithms for Determining Scorer Agreement
	Results of Expert Opinion Collection

	eegNet, A Web-Based Software Platform
	First Version
	Current Version

	A GPU implementation of ICA based on Renyi's Entropy
	ICA based on Renyi's Entropy Overview
	Algorithmic Enhancements
	OpenCL Overview
	GPU decomposition of Renyi's Entropy based ICA
	Results

	Conclusion
	Future Directions
	Concluding Thoughts
	Bibliography

