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ABSTRACT

The research work presented in this dissertation focuses on the development and

application of optimization and geometric algorithms to packing and layout optimization

problems. As part of this research work, a compact packing algorithm, a physically-based

shape morphing algorithm, and a general purpose constrained multi-objective optimiza-

tion algorithm are proposed. The compact packing algorithm is designed to pack three-

dimensional free-form objects with full rotational freedom inside an arbitrary enclosure

such that the packing efficiency is maximized. The proposed compact packing algorithm

can handle objects with holes or cavities and its performance does not degrade significantly

with the increase in the complexity of the enclosure or the objects. It outputs the location

and orientation of all the objects, the packing sequence, and the packed configuration at

the end of the packing operation. An improved layout algorithm that works with arbitrary

enclosure geometry is also proposed. Different layout algorithms for the SAE and ISO

luggage are proposed that exploit the unique characteristics of the problem under consid-

eration. Several heuristics to improve the performance of the packing algorithm are also

proposed. The proposed compact packing algorithm is benchmarked on a wide variety of

synthetic and hypothetical problems and is shown to outperform other similar approaches.

The physically-based shape morphing algorithm proposed in this dissertation is specifically

designed for packing and layout applications, and thus it augments the compact packing

algorithm. The proposed shape morphing algorithm is based on a modified mass-spring

system which is used to model the morphable object. The shape morphing algorithm mim-

ics a quasi-physical process similar to the inflation/deflation of a balloon filled with air.
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The morphing algorithm starts with an initial manifold geometry and morphs it to obtain

a desired volume such that the obtained geometry does not interfere with the objects sur-

rounding it. Several modifications to the original mass-spring system and to the underlying

physics that governs it are proposed to significantly speed-up the shape morphing process.

Since the geometry of a morphable object continuously changes during the morphing pro-

cess, most collision detection algorithms that assume the colliding objects to be rigid cannot

be used efficiently. And therefore, a general-purpose surface collision detection algorithm is

also proposed that works with deformable objects and does not require any preprocessing.

Many industrial design problems such as packing and layout optimization are computa-

tionally expensive, and a faster optimization algorithm can reduce the number of iterations

(function evaluations) required to find the satisfycing solutions. A new multi-objective opti-

mization algorithm namely Archive-based Micro Genetic Algorithm (AMGA2) is presented

in this dissertation. Improved formulation for various operators used by the AMGA2 such

as diversity preservation techniques, genetic variation operators, and the selection mech-

anism are also proposed. The AMGA2 also borrows several concepts from mathematical

sciences to improve its performance and benefits from the existing literature in evolution-

ary optimization. A comprehensive benchmarking and comparison of AMGA2 with other

state-of-the-art optimization algorithms on a wide variety of mathematical problems gleaned

from literature demonstrates the superior performance of AMGA2. Thus, the research work

presented in this dissertation makes contributions to the development and application of

optimization and geometric algorithms.
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Chapter 1

PREFACE

Optimization as a discipline finds applications in almost all branches of science,

engineering, and commerce. Many real-world design problems involve posing and solving

an optimization problem. The term optimization refers to the process of narrowing down to

a solution (or a set of solutions) from a large pool of potential candidate solutions, such that

the chosen solution(s) is/are better than the rest in certain respects. Optimization therefore

comes into existence in any scenario where a choice has to be made. Often, the choices are

made without explicitly resorting to specialized optimization methods and tools. In such

a case, the process of optimization is implicit, and the decisions are made based on the

intuition, expertise, and knowledge of the designer. In engineering problems such as packing

and layout optimization (also referred to as configuration design), implicit optimization is

not possible. This is due to the fact that either the set of potential candidate solutions

is too large, or it is extremely difficult to efficiently explore a good representation of the

entire search space. And thus, to solve this problem, specialized optimization methods and

tools are required. The geometry is an important aspect in the design of components, sub-

systems, and systems. Many design optimization problems involve some form of geometric

optimization. To find a better optimized solution for such problems, integration of geometric

and optimization algorithms is required. The integration of geometric algorithms can not

only improve the quality of the obtained solutions but is also sometimes necessary to perform
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optimization [1, 2]. Thus geometric algorithms also act as enablers in the design process.

In this dissertation, the integration of geometric algorithms with an optimization algorithm

is presented in the context of layout design. When solving an engineering optimization

problem, the users often start from an existing optimization algorithm and customize it

for the specific problem instead of developing a new algorithm from scratch. The existence

of general purpose high-performing optimization algorithms thus provides a good starting

point for the customization and application. It is thus desirable to develop high-performing

generic optimization algorithms that can be easily customized if desired.

This dissertation is a compilation of three journal papers that deal with geometric

and optimization algorithms. The three algorithms presented in this dissertation are as

follows.

1. A compact packing algorithm: This algorithm is designed to compactly pack free-

form objects with full rotational freedom inside an arbitrary enclosure. It has several

modules which are: an optimization algorithm, CAD algorithms, and layout heuristics.

It also requires integrating all the modules together to accomplish the packing process.

The publications related to this research are: [3], [4], and [5].

2. A physically-based shape morphing algorithm: This algorithm is designed to modify

the shape of the deformable objects to achieve a desired volume. It is a free-form

mesh-based shape morphing algorithm that works with arbitrary manifold geome-

tries. It is fully automated and does not require any human intervention during the

morphing process. This algorithm is specifically designed for layout optimization and

thus incorporates features to avoid interference with the surrounding objects during

the morphing process. It can be integrated with layout algorithms to obtain a better

solution [6]. This algorithm is described in [7].

3. A general-purpose constrained multi-objective optimization algorithm: This is a new

algorithm designed to solve an arbitrary constrained multi-objective optimization

problem. It is based on evolutionary principles and also benefits from the existing

2



literature on optimization. It incorporates several novel concepts to achieve fast and

reliable convergence on large optimization problems. It is a general-purpose optimizer

that can be easily customized (if required) for a given engineering problem. The

publications related to this research are: [8], [9], and [10].

1.1 Dissertation Outline

In this first chapter, a brief description of the three algorithms included in this

dissertation is provided. The second chapter contains a description of the compact pack-

ing algorithm. In chapter 3, the physically-based shape morphing algorithm suitable for

packing and layout applications is described. In the next chapter, the archive-based micro

genetic algorithm (AMGA2) is presented. Finally, in chapter 5, concluding remarks, list of

contributions, and suggestions for future research are presented.
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Chapter 2

A FAST AND EFFICIENT

COMPACT PACKING

ALGORITHM FOR SAE AND

ISO LUGGAGE PACKING

PROBLEMS

2.1 Introduction

Packing problems are widely studied by various researchers primarily because of

their importance in many real-world applications. In several industrial applications such

as the packaging industry and automotive luggage loading, it is required to pack a set of

objects in a prescribed volume such that the total area or volume of the encompassing region

is minimized. Also, it is often required to determine a subset of objects that can be packed

inside a given volume to achieve the highest packing efficiency. Compactness therefore

is one of the objectives encountered in many packing optimization problems. It involves
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minimizing the void space between the objects (this form of packing is often referred to as

dense packing) and/or the wasted space (empty space not necessarily in between the packed

objects). There could be several constraints on the relative placement of objects in a packing

problem. These constraints are imposed by the specific type of problem under investigation.

One obvious constraint that all packing problems must include is that there should be no

overlap between the packed objects and that no object or portion of an object can lie outside

the container. In [4], we proposed an algorithm to pack three dimensional free-form objects

(with cavities and holes) inside an arbitrary enclosure such that the packing efficiency is

maximized. In this paper, we propose several improvements to the proposed algorithm and

extend it to solve the ISO luggage packing problem [11]. We also present a faster layout

algorithm for the case of ISO luggage packing, and a heuristics based packing algorithm

for large problem instances. The compact packing algorithms presented in this paper can

assist a designer in determining the cargo volume of an automobile trunk.

The trunk of a typical automobile is often designed to hold as many objects of the

largest size as possible. The auto manufacturers report the trunk capacity using one of two

published standards for the cargo volume which can be considered as specializations of the

general 3D packing problem. The two widely used standards are the SAE J1100 standard

[12] (for the USA) and the DIN 70020 standard [11] (for the European Union). The DIN

70020 is identical to the ISO 3832 standard.

• SAE J1100 : The SAE standard comprises a set of distinct objects, a subset of which

can be packed inside the trunk. The optimization task in this case is to determine

the subset of objects which will maximize the packing efficiency.

• ISO 3832/DIN 70020 : The DIN standard comprises identical prismatic objects (1

liter boxes of dimension 200× 100× 50 mm3) that are to be placed inside the trunk.

The optimization task in this case is to find the maximum number of such boxes that

can be placed inside the trunk.

In both cases, it is also required to find the orientation and the location of every object that
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is placed inside the trunk. In most cases, a physical luggage packing is done to determine

the trunk capacity of an automobile. However, a compact packing algorithm may be used

to guide the physical packing process. The trunk packing problem is a general case of the

three-dimensional rectangular packing problem. The difficulties associated with the trunk

packing problem are summarized below [1].

• The trunk-packing problem is highly multi-modal and therefore has multiple isolated

local optima.

• The problem does not have a mathematical formulation and therefore a closed form

solution does not exist.

• Because the packing procedure is computationally expensive, performing a large num-

ber of iterations to find the optimum solution becomes impractical.

• The size of the search space increases exponentially with the number of objects to be

packed.

• The placement of objects requires computationally expensive collision detections.

The remainder of this paper is organized as follows. In section 2, a brief survey of

the current literature in packing optimization is presented. Section 3 describes the packing

algorithm proposed in [4] which is suitable for the SAE luggage problem. Section 3 also

discusses the proposed improvements to the packing algorithm. In section 4, the modified

layout algorithm for the ISO luggage problem and a heuristics based packing algorithm are

presented. Section 5 contains a description of the test problems and lists the simulation

results. In section 6, a discussion of the simulation results is presented. Section 7 presents

a brief conclusion of the study.

2.2 Literature Review

Extensive research has been done into the development of packing algorithms both

for the case of two [13, 14, 15, 16, 17, 18, 19, 20] and three dimensions [21, 1, 22, 23, 24, 25,
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26, 27, 28]. A survey of various computational approaches to perform layout optimization

can be found in [1]. A description of various encodings used to represent the solution to a

packing problem can be found in [3]. A review of current literature on packing optimization

reveals that the two standards ISO 3832 and SAE J1100 require different solution approaches

to determine the best packing efficiency for a given trunk. Eisenbrand et al. [25, 27] have

proposed an algorithm to find the maximum number of identical boxes that can be placed

inside a given automobile trunk. They have also shown that the packing problem is NP-

complete [29] and thus have proposed an approximate solution procedure. Voxel based

representation is used by Eisenbrand et al. [25, 27] to represent the geometry of the trunk

and the identical boxes. The approach proposed by Eisenbrand et al. handles only one

object type and therefore cannot be used to determine the packing efficiency for the SAE

J1100 standard. In [22] and [23], a packing algorithm based on extended pattern search

is proposed to find the best packing efficiency using the SAE J1100 standard. In [22]

and [23], the geometry of the objects and the trunk is represented using an octree [30]

based data structure. In [26], a sequential heuristic-based layout algorithm is proposed to

solve the rectangular packing problem. The solution approach proposed in [26] introduces

the concept of meta-boxes which is similar to a branch and bound strategy. In [26], the

packing volume is divided into smaller sub-volumes and a heuristic-based layout algorithm

is used to pack the sub-volumes. While such an approach breaks a bigger problem into

several smaller sub-problems, it introduces new optimization variables that describe the

partitioning to create the meta-boxes. The most recent approach to compute the maximum

packing efficiency for the SAE J1100 standard is proposed by Althaus et al. [28]. In [28],

a branch and bound algorithm is proposed to determine the maximum packing efficiency.

In this paper, we present 3D packing algorithms to solve both the SAE and ISO luggage

packing problem.

The description of the SAE luggage set and the suggested procedure for evaluating

the trunk capacity can be found in the SAE standard J1100 [12]. The SAE luggage set

has a total of 8 distinct objects, each of which have multiple copies resulting in a total of
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38 objects. The ISO luggage set consists of 1 liter (200 × 100 × 50 mm3) boxes. Since

the packing optimization algorithm has been proven to be NP-complete, researchers have

proposed approximate solution approaches to compute the packing efficiency in a reasonable

amount of time. It should also be noted that none of the algorithms proposed [23, 27, 26, 28]

for the packing problem can guarantee a globally optimal solution in a finite time except

for the case of orthogonal rectangular packing. The definition of orthogonal rectangular

packing can be found in [3]. In [15], an efficient packing algorithm for two dimensions has

been proposed. The proposed approach is based on the bottom-left strategy [18] for the

placement of an object. A layout algorithm based on the bottom-left strategy cannot fill the

voids created by placing relatively large objects. An improved heuristic for two dimensions,

namely bottom-left-fill (BLF), is proposed in [16]. BLF heuristic can be used to fill the

voids and hence generate a denser packing. The packing algorithm proposed by Dowsland

et al. [15] requires the computation of the no-fit-polygon [31]. Since it is computationally

expensive to compute the no-fit-polyhedron in three dimensions, we use an iterative scheme

to find the best location to place an object. Our approach uses a generalization of the BLF

heuristic in three dimensions to pack the objects inside the container. The 3D version of

the BLF heuristic is referred to as the BLBF (bottom-left-back-fill) heuristic in this paper.

For the case of ISO luggage involving identical objects, the layout algorithm is modified to

not attempt to fill the voids, and therefore the associated layout heuristic is referred to as

BLB (bottom-left-back) heuristic in this paper.

2.3 Description of the Packing Algorithm for the SAE Lug-

gage

This section contains the description of the packing algorithm proposed in [4]. This

algorithm is designed to determine the maximum packing efficiency for the general 3D con-

tainer packing problem. The general container packing problem places free-form objects

with full rotational freedom inside an arbitrary enclosure such that the volume of the ob-
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jects inside the enclosure is maximized. Thus, the objective for the packing problem is to

maximize the packing efficiency. The packing efficiency is defined as the fraction of total

volume of the container that is occupied by the packed objects. Since, the packing problem

is NP-complete, it is not possible to perform an optimal packing in polynomial time (as a

function of the number of objects). The approach used to solve this problem is therefore

motivated from the human (or robot) packing of objects inside a container. The objects

to be packed are placed sequentially inside the container one after the other in a specified

orientation. The optimization task, therefore, is to find the optimal packing sequence and

orientations of all objects. Given the packing sequence and orientations, an algorithm is

required to perform the packing and compute the packing efficiency. Thus, the general

packing problem can be broken into two sub-problems.

1. The optimization algorithm: Design an optimization algorithm capable of generating

an optimal packing, thereby determining the optimal packing sequence (or position

in 3D space) and the optimal orientation of every object.

2. The layout algorithm: Given the packing sequence (or position in 3D space) and the

orientation of every object, develop a layout algorithm that can pack free-form objects.

The algorithm should be able to pack the objects according to the provided sequence,

ensure that no objects collide with each other, determine which objects can be placed

inside the enclosure in the specified orientation in the remaining volume, and compute

the packing efficiency.

The conceptual sketch of the proposed solution strategy is shown in Figure 2.1. The solution

to both sub-problems is presented. We first discuss the optimization algorithm.

2.3.1 The Optimization Algorithm

The proposed optimization algorithm is an evolutionary algorithm and is coupled

with layout heuristics to improve its effectiveness and performance. Evolutionary algorithms

(EAs) are nature inspired adaptive search techniques [32, 33] which base their working
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Generate the packing
sequence and the
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object

every object
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Output the packing

Given the packing sequence
and orientation for every
object, perform the packing
and report the packing
efficiency

(rotation and translation)

Output the packed
configuration with every
object placed inside the container

Input CAD data

Optimization algorithm

Figure 2.1: Conceptual flowchart of the proposed solution strategy

principle on Darwin’s theory of the survival-of-the-fittest. EAs are flexible and powerful

optimizers which do not impose any restriction on the optimization problem. EAs can

efficiently deal with problems having discreteness and multi-modality in the search space.

EAs do not require the optimization problem to have a functional form and do not rely on

the gradients of objectives and constraints. Genetic algorithms (GA) [34, 35, 36, 37] are one

class of the evolutionary techniques that have been successfully used as an optimization tool.

Since a GA can work with almost any kind of solution representation (so long as suitable

genetic variation operators are provided), it facilitates designing optimization algorithms for

a wide class of single and multi-objective optimization problems. The generalized packing

problem is modeled as a single objective optimization problem where the packing efficiency
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is to be maximized. The working principle of the proposed single-objective optimization

algorithm is based on the steady-state [38] genetic algorithm. The proposed optimization

algorithm also borrows concepts from several existing single-objective genetic algorithms.

Some of the notable efforts in designing single-objective optimization algorithms are: Simple

Genetic Algorithm (SGA) by Holland and Goldberg [35], Evolution Strategies by Schwefel

and Rechenburg [39], Genitor (a steady state GA) by Whitley [40], CHC (cross-elitist

generation, heterogeneous recombination, cataclysmic mutation) by Eshelman [41], and

Covariance Matrix Adaptation (CMA) by Hansen and Ostermeier [42].

Since the solution to the optimization problem is a packing sequence of oriented ob-

jects, the packing optimization problem is modeled as a combinatorial optimization problem

with a suitable encoding of the sequence and orientations. The solution set is represented

as a permutation of objects which defines the packing sequence. The orientation of ob-

jects is modeled using mixed variables. A pre-defined set of rules are used to decode the

chromosome. The pseudo-code of the proposed genetic algorithm is as follows.

The optimization algorithm

1 Begin

2 Generate the initial population randomly.

3 Evaluate the initial population.

3 Repeat

4 Choose two random parents.

5 Create one offspring from the two parents using the genetic variation

operators.

6 Evaluate the offspring solution.

7 Choose a solution randomly from the population.

8 Compare the offspring against the chosen solution; if the offspring

has better packing efficiency, then replace the chosen solution with

the offspring.

9 Compute the diversity in the population.
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10 If the diversity in the population is lost, then store the best

solution and regenerate the remaining population.

11 Until(100 % packing efficiency is reached or number of function

evaluations is exhausted).

11 End

Thus, the proposed optimization algorithm is an elite preserving steady-state genetic

algorithm and incorporates an explicit diversity preserving mechanism. The algorithm does

not have very high selection pressure (it does not follow the best solution at every iteration)

which makes it more resilient to premature convergence. The genetic variation operators

used to create the offspring solution depend upon the solution representation. Since the

proposed algorithm solves a single objective optimization problem, the phenomenon of

genetic drift drives the entire population towards a single point which often results in the

loss of diversity. The algorithm therefore incorporates a diversity preservation operator. The

diversity is computed in the variable space. Representation of the optimization variables

(chromosome) is described next.

2.3.1.1 Description of the optimization variables

The choice and representation of optimization variables has significant impact on

the performance of the optimization algorithm. The optimization variables consist of two

parts.

• The packing sequence: Since combinatorial optimization is performed, the packing

sequence is represented by a permutation of object numbers.

• The orientations: The orientation of objects is represented using a multi-parity bit

representation.
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2.3.1.2 The packing sequence

Let there be N objects that are to be packed inside a container. A permutation

(packing sequence) for N objects is a sequence of the form π = π(1), π(2), π(3), ..., π(N),

where π(i) (i = 1; 2; . . . N) denotes the index of an object. Also π(i) 6= π(j) for i 6= j. The

object with index π(1) is packed first. Then the object with index π(2) is packed and so

on. For N distinct objects, the number of permutations = N ! which also represents the

size of the sequence search space. If there are k1 objects of the first type, k2 objects of the

second type and so on, then the size of the search space S for M distinct types is given by

Equation 2.1.

S =
(
∑M

k=1 ki)!∏M
i=1(ki!)

(2.1)

2.3.1.3 The orientations

The orientation variables cannot be represented with real numbers since they are

a circular entity (0◦ and 360◦ are same). The genetic operators designed to work with

real numbers (non-circular) will not reflect the circular property of rotation. Also, for

prismatic and free-form objects, the number of possible orientations is different, both for

the orthogonal case and for the continuous case. The desired characteristics of a good

representation follow.

1. It should preserve the circular property of the rotation.

2. It should have minimal redundancy in the representation.

3. All orientations should be equally probable.

4. It should not impose any pseudo-ordering on the rotation variables.

The representation of orientation variables depends upon the complexity of the objects and

the desired rotational freedom. An overview of each case follows next.
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X

YZ
1. l−b−h

4. b−h−l

2. l−h−b

5. h−l−b

3. b−l−h

Figure 2.2: Orthogonal orientations for a prismatic object

2.3.1.4 Scheme 1: prismatic objects with orthogonal orientations

Let the dimensions of the object be (l×b×h), then the six possible orientations (span

along x, y, and z directions) are 1. l-b-h, 2. l-h-b, 3. b-l-h, 4. b-h-l, 5. h-l-b, and 6. h-b-l.

The six possible orthogonal orientations for a prismatic object are depicted in Figure 2.2.

Any of the three edges (l, b, h) may be oriented along x, either of the two remaining edges

may be oriented along y, and the remaining edge must then be oriented along z. A single bit

with a parity of 6 is used for every prismatic object for which only orthogonal orientations

are desired. This representation satisfies all the desirable characteristics mentioned above.

Since there are 6 possible choices; for N objects, there are 6N different combinations.

2.3.1.5 Scheme 2: free-form objects with orthogonal orientations

Consider a cuboid with all the dimensions different, and faces marked as (1, 2, 3,

4, 5, 6). In this case, the opposite faces are different (marked) and hence for every state

mentioned above, there are sub-states. Consider Case-1 from Figure 2.2. (l - b - h). The X-

normal face can be represented by either of the two opposite faces (the faces are now marked

and hence they are different) and the Y-normal face can also be represented by either of
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X
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Figure 2.3: Four possible orientations for the same bounding box

the two opposite faces (a different pair). Once the first two positions are fixed, the Z-face

is automatically fixed. Hence for every state mentioned above, there are 4 sub-states. The

four possible orientations for Case 1 are depicted in Figure 2.3. Hence in this particular

case, there are a total of 24 distinct orientations for an object. The representation for

Scheme 1 can be extended to accommodate this case by adding one extra bit for every free-

form object with orthogonal orientation (the bit will have a parity of 4). In this particular

case, orientation is represented using two bits. Mutating the first bit (parity 6) changes the

bounding box of the object (large change), whereas mutating the second bit only changes

the profile visible on every face of the bounding box (small change). With this scheme,

there is no redundancy or pseudo-ordering and no explicit handling of the circular property

is required. For N free-form objects, there are 24N possible combinations.

2.3.1.6 Scheme 3: free-form objects with full rotational freedom

For free-form objects with full rotational freedom, a perturbation of θ, where −45◦ ≤
θ ≤ 45◦, can be added to the rotation of the objects in each dimension. The perturbation

does not represent the orientation but the difference in orientation. Three real variables are

added for every object that has full rotational freedom. The size of the search space in this

case is infinite. Thus, a complete chromosome for the case of three free-form objects with
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full rotational freedom looks like:

• 3, 2, 1 (object permutation);

• 6, 1, 5 (prismatic orientation - parity 6);

• 2, 4, 3 (facial orientation - parity 4);

• 15◦, 23◦, −12◦, (rotational perturbation about x)

• 21◦, 13◦, −34◦, (rotational perturbation about y)

• 22◦, 35◦, −1◦ (rotational perturbation about z).

The genetic algorithm needs crossover and mutation operators for each variable type

in the chromosome. For permutation variables, order-based crossover [43] is used. Mutation

for permutation variables is modeled using the swap operator. For multi-parity bits, one-

point crossover is used and mutation is modeled using bit flipping. For real variables,

simulated binary crossover [44] is used. Polynomial mutation [45] for real variables is used

to maintain diversity in the population.

2.3.2 The Layout Algorithm

The layout algorithm receives the packing sequence and orientation for every object

from the optimization algorithm and communicates with the CAD algorithms to generate

the packed configuration. Following are the sequence of steps performed by the layout

algorithm.

1. Receive the packing sequence and the orientation of every object from the optimization

algorithm.

2. Construct the rotation matrix for every object.

3. Use the CAD algorithms to rotate every object (in triangulated form).
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4. Request the CAD algorithms to voxelize all the objects whose bounding box could fit

inside the bounding box of the container.

5. Pick the objects in the order of the packing sequence and pack them using the BLBF

heuristic.

6. Compute the packing efficiency based on the volume of the objects inside the container.

7. Report the packing efficiency to the optimization algorithm.

The layout algorithm can be further broken down into two parts.

1. CAD algorithms: The CAD algorithms process the 3D CAD data, perform geometric

transformations, collision detection, boolean operations etc.

2. Layout heuristics: The layout heuristics consist of a set of rules that specify the

movement of an object until a suitable location for it is found. The layout heuristics

query the CAD algorithms for geometric operations.

We first discuss the CAD algorithms required by the layout heuristics.

2.3.3 The CAD Algorithms

The CAD algorithms are primarily required to handle the 3D CAD data. The

geometry of the container and the objects to be packed is provided in the form of STL

(Stereolithography) files. The STL format is an industry standard for rapid prototyping and

is based on tessellation. STL is a neutral file format. Most CAD models can be converted

into STL format. The STL format describes the geometry in terms of triangular facets and

does not contain the connectivity information. The CAD algorithms require that all the

input geometries must represent manifold objects. A very important operation required by

the packing algorithm is collision detection. Collision detection (overlap computation) for

the case of compact packing is tricky (and involved) since the objects have to be placed

such that they are touching each other. With non-convex objects having cavities and holes,
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it is extremely expensive (and often impossible) to compute penetration depth and the

direction of movement. To overcome this limitation, the objects are voxelized (fragmented

into a large number of small identical cubes lying on an ordered three dimensional grid)

and then the collision detection and boolean operations are performed. Voxelization of the

objects helps in performing extremely fast collision detections, unions, intersections etc. It

also provides an opportunity for code optimization to extract maximum performance. For

performing the packing using voxels, several algorithms were developed and implemented.

The specific voxel algorithms developed are:

• Surface voxelization: The surface voxelization engine takes a binary STL file (CAD

data in triangular format) and generates the corresponding voxel data. The conceptual

procedure for surface voxelization is as follows.

1. Compute the bounding box of the object.

2. Construct the three dimensional matrix which circumscribes the bounding box

of the object.

3. Determine the bounding box for every facet of the triangulated object.

4. For every cell of the bounding matrix, perform a triangle-box overlap computa-

tion. If the facet intersects the cell, mark the cell as non-empty. The triangle-box

intersection method proposed in [46] is used for this purpose.

• Voxel inversion: Voxel inversion is used to extract the inner volume of the container.

A voxel is assumed to be inside a container, if it cannot be reached from outside

the container. To determine which voxels are inside the container, parallel rays are

dropped from all the six faces of the bounding box, all the voxels that get illuminated

are either on the surface or outside the container. To detect the voxels that may

still be outside but are not illuminated by the rays, diffusion is used. The diffusion

of light rays guarantees that all the voxels that can be reached from the outside

of the container are identified. The voxels that are inside the container will not
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be illuminated by the light rays since they will be obstructed at the surface of the

container. To perform voxel inversion, all the voxels that are outside the container or

on the surface of the container are marked. All the remaining voxels constitute the

inside of the container. Note that the volume obtained using voxel inversion is almost

always a complete subset of the actual inner volume. Thus, this approximation gives

a conservative packing.

• Volume voxelization: Volume voxelization converts surface voxel data to volume voxels

using ray tracing. This is in contrast to the voxel inversion in that the rays are stopped

as soon as they touch the surface voxels. The surface voxels are not assumed to be

illuminated by the rays. All the voxels that are not outside the object are assumed

to be either inside or on the surface of the object and thus constitute the volume of

the object.

• Overlap computation: To detect if two objects are overlapping, the physical coordi-

nates (matrix indices) for the bottom-left-back corner are determined. Accordingly,

the coordinates (indices) of all the cells in the matrix are determined. Thus, for the

two objects, the physical location of all the cells is known. Based on the physical

location, the relative index of all the cells (as compared to the entire voxel grid) is

determined. The global matrix is parsed to determine if any voxel is occupied by the

two objects; If a voxel is occupied by the two objects, they overlap with each other.

Some sample voxelized objects are shown in Figure 2.4. Several auxiliary routines

are also required to implement the complete packing algorithm. With voxels, intersection

and union operations are trivial. Emptying the grid involves marking/unmarking of voxels.

Since the voxel data is linear and ordered, any voxel inside the matrix can be accessed in

constant time if its location is known. If the location is not known, a binary search on the

voxel indices can be performed to locate the requisite voxel. Further, the ordering of voxels

allows for jumping inside the voxel matrix and the data can be accessed in any fashion

desired. This flexibility allows for designing faster parsing/decoding algorithms and also
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Figure 2.4: Sample voxelized objects

provides an opportunity for code optimization.

Overlap computation is the most expensive part of the entire packing algorithm. It

is also the most frequent operation performed by the packing algorithm and as such almost

90% of the total time is consumed by the overlap computation routines. To speed-up the

collision detection algorithm, the following heuristics are proposed.

• If two objects overlap with each other, then their bounding boxes intersect. When

two objects overlap, then either one object is completely inside the other, or their

surfaces intersect. The bounding box check can be used to determine if one object

is completely inside the other and thus this operation can be performed in constant

time. If bounding boxes do not intersect, the objects do not intersect. Thus, the voxel

matrix is parsed only in the case when the bounding boxes intersect and the bounding

box of either object is not inside the bounding box of the other object.

• Since the voxel matrix is parsed only when the surfaces of the two objects intersect,

we only need to parse the surface voxels. It should be noted that the voxel matrix

is always axis aligned but the objects themselves need not be aligned with the axis.
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The parsing starts from the outermost layer of the voxel matrix. If no collision is

found in the outermost layer, the next inner layer is parsed and so on. This strategy

significantly reduces the number of checks required to detect a collision.

• The size of the voxels is significantly smaller than the size of the objects. This implies

that the contact region where the overlap occurs consist of multiple voxels. Therefore,

instead of linearly parsing the voxels consecutively, voxels with odd indices are parsed

before the voxels with the even indices (the parsing algorithm jumps inside the voxel

matrix). This strategy helps in detecting the overlap quickly and is applied to all the

three indices corresponding to the three coordinate directions.

The heuristics described above can speed-up the overlap computation by up to eight

times as compared to a strictly linear parsing of the voxel matrix and also guarantee an

exhaustive search in that if a collision occurs between two manifold objects, it will be

detected by the overlap computation algorithm.

2.3.4 The Layout Heuristics

The layout heuristics consist of a set of rules which are used to determine the

location of an object. The layout heuristics also determine if an object can be placed inside

the container. The layout heuristic proposed here is an extension of the original bottom-left-

fill (BLF) heuristic to three dimensions and is referred to as bottom-left-back-fill (BLBF)

heuristic. The BLBF heuristic is as follows.

• Step 1: Place the object with index π(1) at the bottom-left-back corner.

• Step i: Locate the bottom-most location where the object with index π(i) can be

placed. If there are multiple such locations, find the left-most location, if there are

multiple left-most locations, find the back-most location. There cannot be more than

one location after the last search. Place the object with index π(i) at the location

found. If no such location is found, then the object cannot be placed inside the

container.
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Figure 2.5: Sample trunk geometry Figure 2.6: Trunk with patches marked

To implement the BLBF heuristic, the motion is started from the bottom-left-back

position instead of the top-right-front position. The motion is continued until a position

with no overlap with either the container or already placed objects is found. Such a strat-

egy ensures that every object is placed at the bottom-left-back-most position available.

The BLBF heuristic generates a denser packing and attempts to fill the holes and cavities

wherever possible. The computational complexity of the BLBF heuristic varies as a cubic

function of the grid resolution used for packing.

2.3.5 Patch Alignment

Consider the trunk shown in Figure 2.5. The trunk geometry does not have smooth

surfaces. There are small deviations between neighboring facets. In order to correctly align

the objects with the trunk surface, and make the packing look intuitively correct, patch

aligned orientations are introduced. These orientations are treated similar to orthogonal

orientations and as such do not account for full rotational freedom. In practice, many

objects will be aligned with the surface of the trunk and so it is desirable to explore all such

possible orientations. Following is the sequence of steps performed to get patch aligned

orientations.
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1. Connectivity information for all the facets is generated. The connectivity information

gives the three neighbors of a triangle.

2. All facets with downward pointing normals (−Z direction) are reflected about the

origin. From a packing standpoint, the facets that have 180◦ difference in their orien-

tation are identical so far as alignment is concerned.

3. To generate an almost flat surface patch; an arbitrary facet is chosen, then its three

neighbors are checked if they have similar orientation to the arbitrarily chosen facet.

A user specified parameter that gives the allowed tolerance between the facets is

used to compare the alignment of neighboring facets. If the difference in the normal

directions is less than the user specified parameter, the facets are assumed to have

similar orientation. Amongst the three neighbors, the ones with similar orientation

are pushed onto a stack. An element (facet) is popped from the stack and its neighbors

are checked. If the neighbors have similar orientation, they are pushed onto the stack.

The process is repeated unless the stack gets empty. All the facets that were pushed

onto the stack constitute an almost flat connected patch. This process is repeated

unless all the facets of the trunk geometry are classified into different surface patches.

4. The patches are then pruned based on the total surface area. A user defined parameter

is used as a threshold for the minimum allowed surface area of a patch. The patches

which have a surface area greater than or equal to the user specified threshold are

selected for generating orientations.

An advantage of using the above approach for patch alignment is that the trunk

(relatively large flat faces) need not be axis aligned. It can have any arbitrary orientation,

and the packing algorithm will suitably align the objects with the trunk surface. Also,

it is not required to explicitly generate the orthogonal orientations; if the trunk geometry

has orthogonally aligned patches, the orientations corresponding to those patches will be

automatically generated. The surface of the trunk (container) after the facets are classified

into patches is shown in Figure 2.6.
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2.3.6 Additional Heuristics

Thus, the complete packing algorithm consists of i) an optimization algorithm, ii)

layout heuristics, and iii) CAD algorithms. To further improve the performance of the

packing algorithm, the following rules are proposed.

• Only those objects whose bounding box dimensions (in the given orientation) are less

than the corresponding dimensions of the bounding box of the container are attempted

by the layout algorithm.

• If two identical objects in the same orientation are present in a solution, and if one of

them could not be placed inside the container, the other is not attempted. Further, if

one of them could be placed inside the container, the placement for the other starts

at a location right after the last identically placed object.

• If the remaining volume inside the container is less than the volume of the object,

then the placement of that object is not attempted.

• Because voxelization of an object increases its volume (Figure 2.7), the objects are

scaled-down before voxelization is performed. The objects are scaled by an amount

equal to the size of a single voxel.

• For objects with orthogonal or patch-aligned orientation, all possible configurations

(6 for prismatic objects and 24 for free-form objects) are pre-generated and voxelized.

Thus, during the iteration of the optimization algorithm, rotation and voxelization of

such objects is not required.

• If an object is placed in the void space generated due to packing a larger object, the

chromosome (packing sequence) is updated to reflect this change.

• For small problem instances involving large number of function evaluations, it is possi-

ble that identical chromosomes are generated during the later stages of the evolution.
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Figure 2.7: Increase in area/volume due to voxelization

Also since the optimization problem has a single objective, as the population ap-

proaches the optimum, the probability of generating identical copies of a solution

significantly increases. To prevent the redundant evaluation of identical solutions, a

binary search tree (BST) is implemented. The BST stores all the generated solutions

(chromosomes). Whenever a new solution is generated by the GA, it is first checked

for its presence in the BST. If it is already present, it is discarded and a new solution

is generated. If it is not present, it is inserted into the tree and is evaluated. Use

of a BST allows for adding/searching a solution in logarithmic time. Lexicographic

ordering of the chromosome is used by the BST for sorting and searching.

2.4 Description of the Packing Algorithm for the ISO Boxes

The ISO standard for the cargo volume of a trunk concerns with determining the

number of 1 liter (200 × 100 × 50 mm3) boxes that can be placed inside the trunk. For

the trunk of an automobile, the number of such boxes that can be placed inside typically

ranges from 300 to 600. There are two major difficulties associated with this problem.
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1. The size of the search space for a problem with n prismatic objects having only or-

thogonal orientation is: n!× 6n which is extremely large for n in the range of 300 to

600. For more general cases, the size of the search space increases further. An opti-

mization algorithm would require a proportionate increase in the number of function

evaluations to find a near-optimal solution. Since the packing problem is computa-

tionally expensive, it is not possible to perform that many function evaluations in

a reasonable amount of time. Hence, an optimization algorithm cannot be used to

obtain good solutions.

2. The empty space remaining inside the trunk after the packing can be categorized

into two types. There is empty space between the packed objects and empty space

between the packed objects and the trunk surface. As the size of the objects grows

smaller in comparison to the size of the trunk, the proportion of empty space between

the objects and the trunk grows smaller. Also, as the number of objects increase,

the proportion of empty space in between the packed objects increases. Hence, most

of the empty space is due to the gaps in between the packed objects. It is therefore

imperative to design a packing algorithm that attempts to minimize the empty space

in between the packed objects.

It is comparatively easy to eliminate the empty space in between the packed objects

if the packed objects are prismatic and are stacked together. Stacking the prismatic boxes

together eliminates the empty space in between the packed objects. It can also be noted

that if the objects being packed are identical and have identical orientation, hole filling is

not required. Thus, the layout algorithm can be modified to not attempt the hole filling.

Thus, the modified layout algorithm for the ISO boxes is computationally faster than the

BLBF heuristic for the general case. It should also be noted that, since all the boxes are

identical, any packing sequence will give the same result, hence it is no more required.

Owing to these facts, and an emphasis on reducing the empty space in between the packed

objects, the following packing heuristic is proposed.
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Figure 2.8: Orientations of an ISO-box corresponding to a surface patch

Using the patch alignment technique discussed in the previous section, all such

patches that contribute to orientations are determined. Typically the number of such

patches vary in between 3 and 6. For every surface patch, six orientations of the ISO

box are generated. The six orientations of the ISO box corresponding to an arbitrarily ori-

ented surface patch is shown in Figure 2.8. It should be noted that if the inclination between

two surface patches is orthogonal (90o or its multiple), they will result in the same set of

orientations. Hence, all redundant patches are removed before determining the orientations.

Let the total number of patches be m. Then there are (6m)! possible permu-

tations of the orientations. A packing is attempted for each permutation and the cor-

responding packing efficiency is reported. Let one such permutation be given by π =

π(1), π(2), π(3), ..., π(m). Here π(i) corresponds to the ith orientation. The Iso-box in the

orientation π(1) is chosen and the modified BLB (bottom-left-back) layout algorithm is used

to pack as many copies of the ISO-box as possible. Then the ISO-box in the orientation

π(2) is chosen and the modified BLB layout algorithm is applied. The process is repeated

unless all orientations in that permutation are attempted. We now discuss the modified

BLB (bottom-left-back) heuristic.

• Step 1: Place the ISO-box in the given orientation at the bottom-left-back corner.
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Figure 2.9: Packing the trunk in two different orientations

• Step i: Starting from the bottom-left-back corner of the previously placed ISO-box,

determine the next bottom-left-back-most location where the ISO-box can be placed.

If no such location is found, the layout process is finished. If a location is found, place

the ISO-box and repeat this step.

The proposed BLB heuristic is faster than the BLBF heuristic because, the search

for the next feasible location starts right after the currently placed object.

Another important consideration is the orientation of the container itself. For a

given orientation of an ISO-box, the packing is started from the bottom-left-back corner

of the trunk. If the trunk is rotated by a multiple of 90o, the geometry at the bottom-

left-back corner would change which may change the obtained packing efficiency. This

effect is demonstrated in Figure 2.9. The two orientations of the trunk result in different

packing efficiency for the same set of orientations for the ISO-box (horizontal orientation

is attempted before the vertical orientation in Figure 2.9). Such an effect may be observed

only on non-prismatic trunk geometry. It is therefore important to choose an appropriate

orientation for the trunk. There are eight corners in the bounding box of the trunk and

therefore eight possible starting locations. For a given corner, the trunk may be further

oriented such that the profile visible along each of the coordinate directions is different.

For a given corner, there are three possible choices. Thus, a general trunk can have 24

possible orientations; each of which may potentially result in a different packing efficiency
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for the same orientation of the ISO boxes. For an exhaustive search therefore, all 24 possible

orientations of the trunk corresponding to a surface patch are attempted by the packing

algorithm.

2.5 Simulation Results

Simulation results on synthetic and hypothetical packing problems are presented

in this section. In the following sub-sections, success rate is defined as the number of

times 100 % packing efficiency is obtained out of 99 packing simulation runs starting with

different random seeds. To make the packing algorithm easy to use, all the optimization

tuning parameters are hard-coded and the only tuning parameter exposed is the number of

iterations. For all the simulation results reported in this paper, the probability of crossover

is set to 1.0, and the probability of mutation is set to 1/N , where N is the number of objects

to be packed. In order to determine a suitable population size, rigorous benchmarking was

done with the 8-box packing problem. The plot of success rate versus population size is

shown in Figure 2.10 for 1,000 iterations. It is evident from the Figure 2.10 that in general,

the success rate reduces with increase in the population size. Similar trends were observed

for the 34-box packing problem. Thus, it is suggested to set the population size for the

genetic algorithm equal to the number of objects to be packed. All the simulations were

performed on a computer with 2 GB DDR2 667 MHz RAM and 2 GHz Intel Core 2 Duo

processor.

2.5.1 8-box packing problem

This is an orthogonal rectangular packing problem. If properly placed, all 8 boxes

fit perfectly inside the container and 100% packing efficiency is possible. The dimensions of

the container are 100×100×100. The dimensions of the 8 boxes are 25×70×75, 55×70×75,

30×75×80, 20×75×100, 25×35×55, 25×35×45, 25×45×65, and 25×55×65. The grid res-

olution used for the voxel matrix is 5×5×5. The simulation results for the 8-box packing
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Figure 2.10: Success rate vs population size for the 8-box packing problem

Table 2.1: Simulation results: 8-box packing problem

Iterations Success Rate
500 22

1,000 47
1,500 66
2,000 75

problem are given in Table 2.1. The packed configuration is shown in Figure 2.11. Simula-

tion time for this problem for 2000 iterations (function evaluations) is less than 1 second.

2.5.2 34-box packing problem

This is an orthogonal rectangular packing problem involving selection. 17 out of 34

boxes fit perfectly inside the bin and 100% packing efficiency is possible for this problem.

The dimension of the container is 13×11×9. The dimensions of the boxes are (number of

copies given in parenthesis): 9×6×4 (2), 7×6×5 (2), 6×6×4 (2), 6×5×4 (2), 5×4×4 (2),
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Figure 2.11: 8-box packing problem

Figure 2.12: 34-box packing problem

Table 2.2: Simulation results: 34-box packing problem

Iterations Success Rate Time (seconds)
5,000 19 4

10,000 33 8
15,000 42 12
20,000 52 15

6×4×3 (2), 5×4×3 (6), 6×5×2 (2), 5×3×3 (4), 5×3×2 (4), 5×2×2 (4), and 5×3×1 (2).

The simulation results for the 34-box packing problem are given in Table 2.2. The packed

configuration is shown in Figure 2.12.

2.5.3 SAE luggage set (38 objects)

The SAE luggage packing problem involves placing objects of various shapes and

sizes with handles into a hypothetical trunk. A full description of the SAE luggage set

can be found in [22]. A sample packed configuration is shown in Figure 2.13. Again, 99

packing simulations are performed starting with different random seeds. Highlights of the
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simulation results follow.

• Number of function evaluations: 10,000

• Grid resolution used: 10×10×10 (mm3)

• Number of voxels: 124×133×55 = 907,060

• Best packing efficiency: 72.95 %

• Number of objects corresponding to the best packing efficiency: 21

• Median packing efficiency: 69.74 %

• Execution time (for single simulation): 1 hr 8 mins approx

In [23], the best packing efficiency reported is 65% with an octree level of 6. Since

the trunk used in our simulation has dimensions 1302.02×1210.07×524.55 mm3, and the

grid resolution used is 10 mm, the equivalent octree level is log2(1302.02/10) ≈ 7. In [23],

the execution time with octree levels 4, 5, and 6 is 0.9, 5.7, and 47.5 minutes respectively.

Thus, the proposed algorithm is significantly faster in terms of execution time. It should

however be noted that part of this speed-up is due to a faster CPU. In [28], for a large

trunk, the maximum volume occupied by the packed objects is 0.359 m3 (without using

the H boxes). The packing efficiency has not been reported in [28]. The trunk used for

our simulation has a volume = 0.51 m3. For 72.95 % packing efficiency, the volume of

the objects inside the trunk is approximately equal to 0.37 m3. It should be noted that

in general, larger trunks have larger maximum packing efficiency. The packing efficiency

increases with increase in volume of the trunk because the fraction of space not utilized due

to the trunk geometry reduces. It is not possible to directly compare the simulation results

with other approaches since the two simulations use different trunk geometry and possibly

different representations for the packed objects.
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Figure 2.13: SAE luggage set

2.5.4 Completely general problem

This is a hypothetical packing problem similar to the SAE luggage packing problem.

This problem has 40 complex free-form objects with cavities and holes. The simulation

results on this problem are reported merely to demonstrate the generality and effectiveness

of the proposed packing algorithm. We use the same trunk as in the SAE luggage packing

problem. The packed configuration is shown in Figure 2.14. Highlights of 99 packing

simulations follow.

• Number of function evaluations: 10,000

• Grid resolution used: 10×10×10 (mm3)

• Number of voxels: 124×133×55 = 907,060

• Best packing efficiency: 30.85 %

• Number of objects corresponding to the best packing efficiency: 30

• Median packing efficiency: 28.9 %
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Figure 2.14: Completely General Problem

• Execution time (for single simulation): 4 hrs approx

2.5.5 ISO-box packing problem

The ISO box packing problem involves packing as many 1 liter boxes as possible

in a given volume. The trunk geometry used for examples C. and D. is also used for this

simulation. The packed configuration is shown in Figure 2.15. Highlights of the simulation

results follow.

• Deterministic packing algorithm (single simulation required)

• Grid resolution used: 5×5×5 (mm3)

• Number of voxels: 246×264×108 = 7,013,952

• Number of surface patches = 1

• Number of function evaluations = 1× 24× 6! = 17, 280
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Figure 2.15: ISO-box packing problem

• Best packing efficiency: 81.87 %

• Number of ISO-boxes inside the trunk = 417

• Total execution time = 4 hrs, 48 minutes approx.

The volume of the trunk used is 508,692,398.82 mm3, which is equivalent to 509 ISO

boxes. In [27], for trunks with equivalent volumes of 951 and 1201 ISO boxes, the reported

packing efficiency is 67.4% and 67.5% respectively. The packing efficiency increases with

the increase in size of the trunk due to the fact the fraction of unoccupied volume reduces.

Thus, the results for the ISO-box packing reported in this paper are better than reported in

the literature. It should be noted that this comparison is not completely accurate because

of the difference in the trunk geometry used for the simulation.

2.5.6 ISO-box packing problem with a simpler trunk

This is a hypothetical problem similar to the ISO-box but with a simpler trunk

which has large flat surface patches. The presence of such flat patches results in a large

number of possible orientations for the ISO boxes. The packed configuration is shown in

Figure 2.16. Highlights of the simulation results follow.
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Figure 2.16: ISO-box packing problem with a simpler trunk geometry

• Deterministic packing algorithm (single simulation required)

• Grid resolution used: 5×5×5 (mm3)

• Number of voxels: 257×141×188 = 6,812,556

• Number of surface patches = 4

• Number of function evaluations = 4× 24× 6! = 69, 120

• Best packing efficiency: 87.99 %

• Number of ISO-boxes inside the trunk = 340

• Total execution time = 19 hrs, 15 minutes approx.

2.6 Discussion

As is evident from the simulation results on the completely general problem, the

proposed algorithm is capable of packing free-form objects inside an arbitrary enclosure.
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On the 8-box and 34-box synthetic problems, 100% packing efficiency is obtained. Thus, the

proposed packing algorithm can perform exact packing for orthogonal rectangular packing

problems like the 8-box and 34-box. The proposed algorithm is computationally faster and

requires fewer function evaluations to achieve results similar to those reported in [23], [26],

[28], and [27]. Similarly for the same number of function evaluations, the proposed algorithm

obtains a higher packing efficiency. The proposed algorithm is thus an improvement in

the current state-of-the-art in packing optimization. From the simulation results on the

completely general problem, it becomes evident that the performance of the algorithm is

not drastically affected if the packed objects have complex geometry. It can also be inferred

from the simulation results on the ISO-box packing problem with simpler trunk geometry

that exploiting patch aligned orientations results in a higher packing efficiency. Although the

simulation results are better than those reported in the literature, the proposed algorithm

has some limitations.

• Significant distortion in the shape of objects occurs if low grid resolution is used.

• The memory requirement varies as a cubic function of the grid resolution.

• With the proposed encoding scheme, the size of the search space increases exponen-

tially as a function of the number of objects.

• The packing efficiency obtained with full rotational freedom is poor and also consumes

more time. Assigning arbitrary orientations disturbs the staggering of the objects

causing large voids to appear in between the packed objects.

The limitations of the proposed algorithm provide us an opportunity for further

improvement.

2.7 Conclusion

In this paper, an algorithm for packing free-form objects inside an arbitrary en-

closure is proposed. Separate packing algorithms for the SAE and ISO luggage set are
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proposed. The proposed packing algorithm consists of an optimization algorithm, a layout

algorithm, and CAD algorithms. The packing problem is modeled as a single objective

optimization problem and the objective for maximization is the packing efficiency. The

geometric data for the container and the objects are represented using voxels. The packing

optimization algorithm is designed to be highly resilient to premature convergence. For the

ISO packing with an extremely large number of objects, a purely heuristic-based packing

algorithm is used. Since the enclosure is a freeform object, and a denser packing is desired,

the BLBF heuristic in three dimensions is proposed for the general case. To further im-

prove the performance of the packing algorithm, several heuristics are proposed. For the

case of ISO-boxes, the fact that all the objects being packed are identical is exploited to

design a faster layout algorithm. The simulation results clearly demonstrate the superior

performance of the proposed packing algorithm. There is opportunity for improvement to

the proposed approach, which shall be undertaken in future work.
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Chapter 3

A PHYSICALLY BASED SHAPE

MORPHING ALGORITHM FOR

PACKING AND LAYOUT

APPLICATIONS

3.1 Introduction

The packing or layout problem (also referred to as configuration design) is concerned

with the placement of components in 3D space such that they satisfy a set of constraints and

meet or exceed a set of criteria. These problems are often encountered in industries such

as luggage and container loading, stock cutting, electronics circuit board layout, factory

layout/piping, and mechanical component layout etc. Broadly speaking, the layout design

deals with methods and processes to determine the arrangement of a set of components to

achieve a set of objectives without violating spatial or performance constraints. A com-

prehensive survey of various types of packing and layout problems and associated solution

procedures can be found in [3, 21, 1, 22, 24, 26, 27, 28]. Traditionally, the algorithms pro-
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posed to solve the layout problem assume the components to be rigid and do not attempt

to modify their shape. The feasible layout (placement) of components depends on their

shape and size apart from other problem specific factors. In many applications however,

modifying the shape and the size of some of the components during the layout process can

result in a more efficient layout or placement. One such application is the design of reser-

voirs that hold fluids. During the layout design of an automobile, the fuel tank and other

reservoirs that hold specific fluids are designed to have a specified volume. These compo-

nents are designed to occupy a certain location whilst simultaneously satisfying constraints

like ground clearance, no interference with the surrounding components, and assembly and

manufacturability requirements. The morphing algorithm presented in this paper is ideally

suited for the design of such components. It also is a first step in performing system design

considering geometric integration as part of the design of individual components.

The current practice in industry is to design such components manually using CAD

software. The designer interactively issues the instructions to the CAD software to gener-

ate the geometry of such components. After the components are designed, they are then

integrated (brought) into the overall vehicle model and subsequent design and analysis is

performed. This process is iterated until a suitable design is obtained. The shape morphing

algorithm presented in this paper is an attempt to automate this step of the design process

by automatically generating the geometry of such components. It is designed to generate

an accurate representation of the geometry of the components whose shape is primarily

governed by their location and the available empty space at that location. The proposed

morphing algorithm is fully automated and does not require any human intervention during

the morphing process. Thus it can be directly incorporated as part of the layout design

process where the geometry of a morphable component can be automatically generated and

fine-tuned to improve the performance characteristics of an automobile. The use of the

shape morphing algorithm also significantly reduces the time to design such components

thereby speeding up the layout process.

There exist many shape morphing methods in the computer graphics industry
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[47, 48, 49, 50, 51, 52, 53] but most of them are not applicable to layout design. Most

of these methods morph one shape into another; i.e. the initial and final shapes are known,

and the morphing algorithm generates smooth interpolating frames. In the case of lay-

out design, the final shape of a component is not known a priori. Furthermore, many of

these methods require human assistance during the morphing process, a time consuming

characteristic for the layout design. A morphing method is suitable for layout design if

it generates a manifold geometry and takes into account the spatial constraints imposed

by the surrounding components. Also, it should not make any assumption about the final

shape of the morphable component. Additionally, the typical components used in an au-

tomobile are free-form and therefore parameterized morphing methods are unsuitable. A

free-form morphing method, while more difficult, has the potential to achieve better perfor-

mance characteristics. The geometric representation of an object directly affects the choice

of the morphing algorithm. In this paper, a mesh-based surface representation satisfying

the manifold condition is used to represent the geometry of the morphable object. This sur-

face representation is used to generate the mass-spring model with a mass at every nodal

point and a spring at every edge. The mass-spring model is then subjected to a physical

process which is akin to inflating a balloon by blowing air inside it. The applied physical

phenomenon subjects the mass points to various forces which cause the nodes to move.

The collision of the mass points and the connecting edges with the surrounding objects and

their subsequent response prevents any interference. Thus, the physically-based mass-spring

model guides the morphing process to generate a satisfycing geometry.

The remainder of this paper is organized as follows. In section 2, a survey of different

morphing methods is presented along with a discussion of their strengths and drawbacks.

In section 3, the special requirements imposed by the layout problem on the morphing

methods are discussed, and a set of conditions are laid out that must be satisfied by the

morphing method. Section 4 contains the description of the shape morphing method and

the modifications done to it to make it suitable for layout design applications. In section

5, illustrative examples that demonstrate the use of the proposed morphing algorithm are
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presented. Finally, section 6 concludes the paper and presents possible future work.

3.2 Survey of Shape Morphing Methods

Shape morphing is a non-affine transformation operation that changes the shape

and/or size of an object. It is performed in many fields such as computer animation,

structural design, aircraft/automobile external shape design, and mechanical component

design. For the case of layout design, the task of the morphing process is to determine a

shape that is optimal for some specified objectives whilst satisfying the volume constraints

and preventing any interference with the surrounding objects. Modifying the shape of the

objects during the layout process is a relatively new concept and only a few examples that

incorporate this idea exist in the literature. In [54] and [55], the layout design of a VLSI

circuit board is described in which the size parameters of the rectangular L-shaped and T-

shaped micro-cells are changed during the floor planning stage so as to minimize the overall

size of the circuit board. This approach has been referred to as soft or flexible block method

by the researchers in [55]. The modification of geometry has also been incorporated in the

layout design of the cross-section of an automatic transmission of a motor vehicle [56]. The

automatic transmission system described in [56] consists of a set of clutches and a planetary

gear train. The shape of the clutches is modified and the octree [23] representation is used

to perform the morphing of the components in [56]. In [57], a bi-level layout optimization

approach has been proposed. At the top (system) level, the rectangular blocks are moved

to maximize the compactness, and at the component level, the dimension of the rectangular

blocks is modified (parametric morphing) to minimize the overlap between the components.

In [58], a 2D compact packing algorithm is described where the shape of the objects to be

packed is slightly modified to achieve a higher packing efficiency. The morphing examples

discussed above are in two dimensions and work with relatively simple geometry. A search

of the existing literature for 3D free-form mesh-based morphing for layout and packaging

applications did not yield any suitable examples. Thus, the application of shape morphing
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during the layout design is a relatively new concept. However, there exist various types of

morphing methods which are discussed next.

3.2.1 Parametrization-based Morphing

Parametrization-based morphing is based on the boundary representation of the ge-

ometry. It is realized by altering the parameters that define the geometry of the object.

Usually, the boundary is defined via some geometric form (e.g. a set of splines), and the

parameters associated with this form are changed. In addition to the boundaries, certain

features on the object are also identified and the associated parameters are manipulated

during the morphing process. Most commercial CAD systems support some form of para-

metric shape morphing. This process is relatively straightforward and very convenient since

the geometry can be modified by manipulating a small number of parameters that define

the shape of the object. However, parametric approaches make strong assumptions on the

shape of the object which limit their scope and may not always result in an optimal shape.

Hence, this method is suitable for problems in which the designer already has an idea of the

final shape [59]. Another limitation of this approach is that the volume cannot be expressed

analytically especially if the boundary is represented using splines. Keeping the volume of

the object at a specified value during the morphing process would then require solving a

non-linear set of equations at every iteration. Parametrization based morphing is widely

used in the aircraft industry for aerodynamic shape optimization [60, 61]. It is also widely

used in structural design [62, 63] and automotive design [64, 65].

3.2.2 Scaling Coupled with Boolean Differences

This process is not exactly a morphing method, but it has the potential to generate

a desired geometry. The underlying assumption in this method is that it is possible to

achieve a desired volume by scaling an object. The basic idea is to scale the object by

an arbitrary factor such that it is larger/smaller than the desired volume. For the case of

scaling up to increase the volume, the morphable object may overlap with the surrounding
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objects. A Boolean difference of all the surrounding objects that overlap with the scaled

object is performed to obtain the desired shape. The entire process is as follows.

• Assume that the initial size of the object corresponds to a scaling factor of 1.

• Scale up/down the object by an arbitrary factor f such that the obtained volume is

larger/smaller than the desired volume after performing the Boolean difference with

the overlapping objects.

• Since, the increase/decrease in volume varies monotonically with the scaling even in

the presence of Boolean differences with surrounding objects, the exact scaling factor

can be determined using any zero-finding method.

This method is computationally inexpensive as compared to free-form mesh-based

morphing methods and requires fewer iterations. However, the primary drawback of this

method is the manufacturability aspect of the obtained geometry. Due to the Boolean op-

erations, the obtained geometry has unnecessary artifacts (complex features) on its surface

and undesired protrusions. This drawback is pictorially depicted in Figure 3.2 for the case

of two dimensions. As is evident from Figure 3.2, there are unnecessary protrusions in the

obtained shape. It can be observed from the Figure 3.2 that the obtained shape has an

exact imprint of the surrounding geometries which may not always be desirable and may

unnecessarily complicate the manufacturing process. Another disadvantage of the Boolean

operation is that it may split the scaled object into multiple separate components which is

undesirable.

3.2.3 Octree and Voxel Based Morphing

In the octree representation, octrees are generated from the base geometry of the

morphable components. Each octree has a local coordinate system attached to it and a 3-D

vector is associated with it. Morphing is realized by scaling the octree model along a local

axis. Yin et al. [56] studied a 2-D transmission layout problem with shape-able components

based on an octree representation. In [56], the shapes of the transmission components are
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morphed by scaling the cells. With octrees, the shape morphing ability is very limited

since only the scaling of individual cells is performed. It is relatively difficult to control the

scaling operation with the octree since the typical objects encountered in industry when

converted to an octree based representation contain a huge number of cells. Additionally

the scaling of different cubes in the octree hierarchy needs to be coordinated to obtain a

valid geometry. Voxel-based morphing can be interpreted as a special case of octree-based

morphing where all the blocks (cubes) are of the same size. Instead of scaling the cubes as

in octree, the cubes are added/removed as desired to morph the shape of the object.

3.2.4 Mesh-based Morphing

Mesh-based morphing is by far the most common and robust free-form shape morph-

ing method found in the literature. Mesh-based morphing is supported by both the surface

and volumetric mesh representations. The two primary mesh-based morphing methods are

geometric and physical methods.

3.2.4.1 Geometric Methods

Geometric methods rely purely on geometric constructs to modify the surface or

volumetric mesh. Some of the widely used geometric methods to morph a tessellated surface
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involve i) directly moving the vertices of the surface mesh, ii) warping the triangles [49], and

iii) using mesh transformation operators such as swap, collapse, and split [66]. A common

method to morph a volume mesh is based on the extended direct surface manipulation

technique [48]. Chen et al. [67] use this method to morph a CAE mesh of an automobile

structure and its underlying components. In this case, the depth function [48] is used to

account for the volume of the morphable components.

In mesh based morphing with geometric techniques, the variables are the coordinates

of vertices of the mesh. The use of the vertices provides great flexibility to change the shape

of an object when compared with parametrization based morphing. However, the morphing

process is hard to control since there are a large number of design variables (coordinates).

Generally, the morphing using geometric techniques is performed interactively, and the

designer knows how to transform the shape. A drawback of the mesh-based techniques is

their tendency to generate wiggly shapes [68]. A post-processing step usually consisting of

smoothing [69] is required to achieve the desired surface quality. Often, the geometry based

techniques do not involve the volume of the object as one of the considerations.

3.2.4.2 Physically-based Morphing Methods

Instead of using purely geometric techniques, the computer graphics community has

also explored physically-based morphing methods for modeling the deformation of objects.

Physically based methods are typically based on a tessellated representation or volumetric

finite element mesh. The mass-spring system is one of the physical models that has been

used for modeling deformable objects [47, 70, 71, 50, 72, 51]. In the mass-spring system,

an object is modeled as a collection of mass points (located at the mesh nodes) connected

with springs (located on the edges of the mesh). The spring forces can be linear or non-

linear depending on the kind of behavior to be simulated. The motion of the mass points

is governed by Newton’s Second Law. There are many successful applications of the mass-

spring model to represent physical objects. The mass-spring model has been used to model

the motion of a fabric [72], facial simulation [51], and tissue deformation in surgery [70].
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A primary advantage of mass-spring based morphing methods is that they are gen-

erally easy to implement and can be adapted for various applications. Since the model is

physically-based, many different physical phenomena can be simulated to achieve the de-

sired morphing behavior. The mass-spring model does not place any assumption on the

final shape of the morphed components, and there is no need to explicitly specify the de-

formations. The deformations are governed by the physical phenomenon being simulated.

One of the major drawbacks of the mass-spring system is that the computational mod-

els used to simulate the physical phenomenon do not often converge or require very high

spatial and temporal resolution to ensure stability and accuracy of the obtained solutions.

Another limitation of the mass-spring models is that the system tends to oscillate due to

its iterative nature [50]. We propose a modification to the mass-spring model that reduces

this oscillatory behavior. The oscillation is primarily due to the mass (inertia) of the nodes.

Temporarily adjusting the velocity of the mass points to zero when at equilibrium reduces

the oscillatory behavior. This modification however causes the mass-spring model to de-

viate from the real physics and thus the mass-spring model discussed in this paper can

be considered as a quasi-physical model. It also does not accurately follow the governing

physical laws in order to reduce the computational cost. The obtained geometry thus may

not be exactly accurate from a physics stand-point using the proposed mass-spring model,

however visually there is no noticeable difference in the obtained surface mesh. The volume

control during the morphing process is achieved by controlling specific physical properties

such as spring constants and the pressure [71].

3.2.4.3 Mesh-based Morphing Software

There also exist several mesh-based morphing software. Most commercial mesh-

based morphing software are based on geometric techniques and involve a high level of

interactivity. As discussed above, the common methods used for morphing the mesh in this

case include moving vertices (nodes), warping of triangles, transformation operators (swap,

collapse, and split), and using external geometries as drivers in the morphing process.
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Some CAE pre and post-processing software that incorporate morphing capability are:

HyperMorph (Altair Corp.), ANSA (Beta CAE Systems Inc.), and Meshworks/Morpher

(DEP Inc.). These software support direct morphing (direct manipulation of vertices) as

well as parameterized morphing which can be user defined. The ANSA from Beta CAE

systems is one of the more advanced morphing software and is discussed next.

ANSA is a pre-processing tool for finite element analysis. The “Morphing Tool” in

ANSA is used for the morphing process. The software modifies the shape of a 3D mesh-

based model by creating special geometric entities referred to as “Morphing Boxes” (see

Figure 3.3). The Morphing Box is the basic entity of the Morphing Tool. The Morphing

Box can include elements such as lines, shells, solids, and any combination thereof. Changing

the shape of the Morphing Box morphs the elements inside the box. The elements inside

the Morphing Box follow the motion/deformation of the box. The shape of the Morphing

Box is controlled by the “Control Points” (shown in red color in Figure 3.3) located at its

corners and edges. Thus, the morphing parameters can be specified in terms of translation

of the Control Points. There are some limitations of the commercial morphing software. For

example, for morphing with ANSA, the designer has to create the Morphing Boxes, define

Control Points, and specify the translation of those Control Points. Thus, the designer must

know which portions of the deformable object to morph and how to morph to achieve the

desired shape and volume. Additionally, the morphing process is manual and the designer

has to operate the software interactively in the visual mode to accomplish the morphing

process. Thus, with ANSA, the shape morphing is limited and determined by the definition

of control points and the morphing actions from the designer. Furthermore, this morphing

technique is only suitable for small tweaks and cannot be used to make dramatic changes

to the geometry, i.e. this technique cannot be used to generate desired geometries from a

simple starting shape such as a sphere. The “Morphing Box” approach limits the degree

of change since it does not allow the mesh elements that are inside the bounding box to go

outside. Alternatively, if a significantly large “Morphing Box” is chosen to effect dramatic

changes in shape and volume, the mesh quality significantly deteriorates.
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Figure 3.3: Morphing Box in ANSA (taken from [73])

To summarize, the parametrization based shape morphing method is straightfor-

ward and easy to control, but has strong assumptions on the form of the final shape. It

is suitable for morphing objects when their final approximate shape is known. The mesh

based method is much more flexible and has the potential to dramatically change the geom-

etry. When this method relies on purely geometric techniques to accomplish the morphing,

it is performed interactively, and the huge number of control points are typically very hard

to control. When using a physical model with mesh based morphing, there is no need to

explicitly specify the deformations of the mesh, and the motion of nodes is governed by

physical principles. The solution to the equations describing the physical principles predict

the motion of the node points. However, the physical system must be integrated with the

mass-spring model and very small time-steps need to be used to ensure the stability and

convergence of the solution. For the parametric mesh morphing with commercial software,

the morphing freedom is confined by how the control points are defined and by user-defined

morphing actions. Also, only small changes are allowed by the commercial morphing soft-

ware. Obviously, no morphing technique outperforms all others on all aspects; the choice

of the morphing method is dependent on the application.
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3.3 Shape Morphing for Layout Design

This section discusses the aspects of morphing specific to layout design. Shape

morphing for layout design is an exercise in modifying the form to fit the function(s). This

type of morphing is functionally different than the ones typically used in the computer

graphics industry in that, the shape of the object is governed by aspects such as spatial

occupancy, dynamics, manufacturability, assembly requirements, and other domain specific

constraints. There are three types of components typically encountered in layout design.

• Fixed Shape Components: The components such as engine, transmission, and axles

do not change their shape during the layout process. The shape and size of these

components is predetermined based on their functional requirements which are often

external to layout design. However, during the initial phase of the design process, some

approximate measure of their shape, size, and, location is used to guide the layout

process. The redesign of such components is a major undertaking and therefore is

done offline and not in tandem with the layout process.

• Parametrically Morphable Components: Certain components can only be morphed

by modifying their control parameters. These components have limited morphing

freedom and their shape cannot be adjusted arbitrarily. For example, the radiator

assembly in an automobile could be modified during the layout design to maximize

the cooling; but it has to satisfy certain operational characteristics which dictate its

morphability. Such components are not necessarily designed offline, but are modified

parametrically to better accomplish their desired function.

• Freeform Components: Components such as fluid reservoirs, fuel tank, and casings

that hold components together can be morphed to any shape so long as it is easy to

manufacture and assemble them. Their primary function is dictated by the compo-

nent layout. Fluid reservoirs are typically designed to occupy a specified volume whilst

preventing interference with neighboring components. The casings that hold the com-

ponents together are designed to provide mount points and their shape is determined
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based on the geometry of components contained inside. There is no assumption on

the final shape of these components. The morphing algorithm presented in this paper

is designed for this category of components. The geometry of such components can

be accurately determined and optimized during the layout design process.

For a morphing method to be applicable to layout design, it must also incorpo-

rate collision detection and collision response to prevent interference with the surrounding

components. Also, since the layout process is performed automatically with optimization

algorithms, it is desirable that the shape morphing be done automatically through pro-

gramming or scripting. User interaction therefore cannot be used to assist the morphing

process during the layout design. The following conditions must be satisfied by the morph-

ing method for it to be applicable to layout design problems.

1. There should be no assumption on the initial or the final shape of the morphable

components.

2. The morphing method should be able to effect dramatic and significant changes to

the shape of the components (infinitesimal changes will not suffice).

3. The morphing process should be automatic, robust, and should not require any user

interaction during the morphing process.

4. There should be a way to control the volume of the morphable object.

5. The morphing method should be capable of working with any manifold geometry and

also must output a manifold geometry.

6. The morphing method must not make any assumption about the constraint geometries

(surrounding objects). The constraint geometries need not be manifold.

7. Since it is possible during the layout design process that multiple morphable com-

ponents are present in the close vicinity of each other, the morphing method should

allow simultaneous morphing of multiple interacting components.
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3.4 Proposed Shape Morphing Method

Having laid out the requirements for the morphing process in the previous section,

we now discuss the modified mass-spring based shape morphing method. We modify the

original mass-spring model to emulate a quasi-physical process resembling the inflation of

a balloon. The modifications to the original mass-spring model are performed to speed-up

the morphing process. The surface of the deformable object is modeled as a collection

of mass points (located at the nodes of the surface mesh) connected with tension springs

(located at the edges of the surface mesh). It is proposed to inflate the deformable surface to

occupy a desired volume. The mass points forming the surface nodes are subjected to spring

forces, pressure force, and contact forces upon collision with the surrounding components.

Newton’s second law of motion governs the motion of mass points and is used to compute

the acceleration of the mass points. The set of equations describing the acceleration of mass

points are integrated with respect to time to obtain the updated position of mass points.

The motion of the mass points constitutes the morphing process.

In order to prevent the interference of the morphable object with the surrounding

objects, collision detection is required. Most general purpose collision detection algorithms

[74, 75, 76, 77] are designed to work only with rigid objects undergoing affine transfor-

mations. Since, in the present case this assumption is not true for the morphable object,

most collision detection algorithms proposed in the literature cannot be efficiently used to

determine the interference between the morphable object and the constraint objects. One

way to use existing collision detection algorithms is to re-initialize the collision detection

engine at every iteration of the morphing process. This would require pre-processing of the

morphable object at every iteration which will make the collision detection computation-

ally very expensive. We propose a simple surface-based collision detection algorithm that

does not require preprocessing of the CAD data and works with deformable geometries.

The proposed collision detection algorithm can perform Yes/No type queries and can also

give all pairs of colliding facets if desired. Additionally, the proposed collision detection
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algorithm can work with arbitrary geometries and does not require the colliding objects

to be manifolds. It is easily parallelizable and thus is ideally suited for multi-core and/or

multi-processor systems. Once the pair of colliding facets are obtained, the next step is to

determine the vertices of the colliding facets that penetrate the surface of the constraint ob-

jects. The motion of the mass points on the deformable object after the collision is modified

to prevent any interference with the surrounding objects. We now discuss the mass-spring

model in detail.

3.4.1 The Mass-spring Model

In the mass-spring system, an object is modeled as a collection of mass points

(located at the mesh nodes) and connected with springs (located at the edges of the mesh)

as shown in the Figure 3.4. The connection only exists between neighboring mass points.

A linear spring is used to model a perfectly elastic object, while non-linear springs are

used to model an object such as human skin that exhibits inelastic behavior. Since the

objects involved in the layout design are artificially morphed, the linear spring model is

appropriate to simulate their behavior during the morphing process. To control the volume

of the object, gauge pressure is introduced. If the gauge pressure is zero and the compressive

spring forces are nonzero, then deflation (reduction in volume) can occur. If it is desired to

keep the volume at a constant value, an appropriate gauge pressure is introduced [71]. In

the present case, it is proposed to continuously increase the gauge pressure until a specific

target volume is achieved. The motion of the mass points is governed by the forces acting

on it. A simple algorithm to generate the mass-spring model from an arbitrary manifold

geometry is discussed next.

3.4.1.1 Generation of the mass-spring model

A valid mass-spring model can only be generated from a manifold geometry. Any

real-world object is a manifold. Let there be Nf facets on the surface of the morphable

object. Each facet has exactly three edges and each edge is shared by exactly two facets,
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Figure 3.4: Mass-spring model in 2D

hence the number of springs Ns in the mass-spring model is given by Equation 3.1. Since Ns

is an integer, it is concluded that a manifold geometry contains an even number of facets.

The number of mass points cannot be computed from the number of facets, since a vertex

is shared by an arbitrary number of facets.

Ns = 3Nf/2 (3.1)

Before the generation of the mass-spring model, all the nodes in the surface mesh

are assigned a unique index which identifies the node. Once the nodes are numbered, the

mass-spring model is generated by parsing the surface mesh. Since each edge is shared

by two facets, it is encountered twice while parsing the surface mesh one facet at a time.

Suppose a facet has vertices v1, v2, and v3 in the counter-clockwise direction as shown in

Figure 3.5. Then it contains edges (v1, v2), (v2, v3), and (v3, v1). When these edges are

parsed in the counter-clockwise direction from the neighboring triangles, the vertices will

be visited in the opposite order (Figure 3.5). Since we want to include an edge only once,

it is suggested to add a spring corresponding to an edge if the index of the second vertex is

higher than the first vertex. This simple rule will ensure that springs corresponding to all

the edges are included exactly once in the mass-spring model.
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Figure 3.5: Vertices in the counter-clockwise direction

3.4.1.2 Forces acting on mass points

Once the mass-spring model is created, forces acting on the mass points can be

computed. The mass points are located at the vertices of the surface mesh and are subjected

to the force of gravity (~G), elastic spring force ( ~Fs), and internal pressure force ( ~Fp) as

depicted in Figure 3.6. The formulation for each force term is discussed next.

pF
�

sF
���

G
��

sF
���

Figure 3.6: Forces acting on a mass point

Gravity Force: The mass points experience the force of the gravity. However, this

force is not relevant for layout purposes since the actual object is a rigid body and gravity

does not play any significant role in the morphing process. Hence, the gravity force is
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assumed to be zero.

~G = mg = 0 (3.2)

Spring Force: The spring force acts along the edges between two vertices connected

by an edge. The formulation for the spring force is taken from [51]. The spring is assumed

to have linear elastic and damping response. The spring force is given by Equation 3.3.

In Equation 3.3, ~Fs is the spring force, ks is the elastic spring constant, kd is the linear

damping constant, s is the original length of the spring, and d is the position vector of the

mass point. The position vector d is computed using the coordinates Vi and Vi+1 of mass

points as given by Equation 3.4.

~Fs = −
(

ks (|d| − s) + kd
dḋ

|d|

)
d

|d| (3.3)

d = Vi+1 − Vi

ḋ = V̇i+1 − V̇i

|d| = |Vi+1 − Vi|

(3.4)

The subscript i in Equation 3.4 denotes the index of the vertices (mass points).

Pressure Force: To increase the volume of the object, the pressure is artificially

increased (equivalent to adding additional moles of gas) by a small amount at every iteration.

This disturbs the equilibrium of the mass points since the pressure force now exceeds the

spring forces. This increase in the pressure force causes the object to inflate. During the

inflation process (iteration), both the pressure and the volume continuously change. In

the original formulation [71], the inflation process obeys the ideal gas law. The pressure

is updated at every iteration to reflect the change in the volume. Hence, as the volume

increases, the pressure drops and vice versa. The reduced pressure reduces the rate at

which the object expands. In this paper, the ideal gas law is not followed to update the

value of the pressure. The pressure is artificially kept at a constant value or its value is
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incremented by a small amount at every iteration. Since, the pressure force is the driver

behind the morphing process, this modification speeds up the morphing process.

The pressure force acts on the facets of the surface mesh. The magnitude of the

pressure force on a facet is proportional to its area. The pressure force acts in the direction

of the outward normal of that facet. The direction of the pressure force is depicted in the

Figure 3.7. The pressure force ~Fp is given by Equation 3.5. In Equation 3.5, p is the gauge

pressure, A is the area of facet under consideration, and n̂ is a unit vector directed towards

the outward normal of the facet.

Figure 3.7: Pressure force directed towards outward normals

~Fp = pAn̂ (3.5)

The pressure force ~Fp as given by Equation 3.5 acts on the facets and is assumed to

be equally distributed between the three vertices (mass points). It should be noted that the

assumption of equal distribution is invalid for a true physically based system. To obtain the

actual pressure force acting on each node of the facet, the pressure force ~Fp has to be written

as the sum of the unknown forces acting on each node. The force equilibrium equation for

each node then must be written in terms of the unknown pressure forces. Since the mass-

spring system is statically indeterminate, the deformations must also be taken into account

to solve for the pressure forces. Since the nodes interact with each other, the forces on a

node cannot be determined independently, rather the complete system has to be formulated
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as a set of matrix equations and has to be solved simultaneously. Since this step is extremely

computationally expensive, the pressure force is simply divided equally between the three

nodes of a triangular facet. Since most of the facets form almost equilateral triangles and

the surface mesh is reasonably smooth, this approximation does not induce significant error

in the mass-spring model.

The volume of the object is computed using the tessellated formulation. The volume

computation assumes that the object is a manifold. Let the vertices of the facet i be vi1,

vi2, and vi3 in CCW order (as seen from the outward normal). Then, the volume of the

object is given by Equation 3.6, where N is the number of facets.

V =
1
6

N∑

i=1

(vi1x + vi2x + vi3x)




(vi2y − vi1y)(vi3z − vi1z)−
(vi2z − vi1z)(vi3y − vi1y)


 (3.6)

3.4.1.3 Motion of mass points

The motion of the mass points is computed based on the forces acting on them. The

acceleration of the mass points is directly computed from the forces as given by Equation 3.7.

ai(t) =
d2~ri

dt2
=

~Fi

mi
(3.7)

It is desired to determine ~ri(t) for each mass point. The initial value (original

configuration) of the position vector ~r0(t) is known. The first order approximation (Euler

method) is used to solve the ODE described by Equation 3.7. The Taylor series expansion

for r(t + ∆t) approximated to the first term is given by Equation 3.8.

r(t + ∆t) = r(t) + ṙ(t)∆t + Θ(∆t)2 (3.8)

Hence, the error in the above approximation is of the order Θ(∆t)2. It is thus

recommended to use a very small step size to reduce the error. The error in the value of

~ri(t) accumulates over time, and the value of ~ri(t) may diverge if a suitably small step size
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is not used. With this approximation, the ~ri(t + ∆t) is given by the set of equations 3.9.

ai(t) = Fi(t)
mi

vi(t + ∆t) = vi(t) + ai(t)∆t

ri(t + ∆t) = ri(t) + vi(t)+vi(t+∆t)
2 ∆t

(3.9)

3.4.2 Collision Detection and Response

Till now, the surrounding objects have not yet been introduced into the morphing

process. The morphable object under the influence of pressure and spring forces continues

to morph until it collides with surrounding objects. When the morphable object collides

with the surrounding objects, the mass points that interfere with the surrounding objects

need to be identified and retracted. The prevention of interference between the morphable

object and the surrounding objects is modeled as a two-step process. In the first step,

for every constraint object that collides with the morphable object, all the colliding pairs

of facets on both the objects are identified. In the second step, for every facet on the

morphable object that interferes with any of the constraint objects, the mass points that

interfere the constraint objects are identified and retracted. The mass points are retracted

back to coincide with the surface of the constraint objects. Their velocity is also adjusted

so as to prevent subsequent interference during the morphing process.

3.4.2.1 Proposed Surface Collision Detection Algorithm

Several collision detection algorithms that work with non-convex mesh-based models

have been proposed in the recent past [74, 75, 76, 77]. These collision detection algorithms

employ temporal and spatial coherency to significantly speed-up the collision detection.

Some of the popular collision detection algorithms are VCollide (an N -body collision detec-

tion system containing the Rapid collision detection engine [76]), Proximity Query Package

(PQP) [75], Solid [78], and Swift++ [74]. Some collision detection algorithms like Proximity

Query Package (PQP) [75] can additionally report all the pair of colliding facets. All these
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collision detection algorithms preprocess the input mesh to generate additional information

that is exploited during the collision detection process. Depending on the collision detection

algorithm, the preprocessing step generates axis-aligned or object-aligned bounding boxes,

and a hierarchical K-d tree [79] of such boxes. These collision detection algorithms assume

the colliding objects to be rigid and only allow affine transformations. If the geometry of an

object is modified, then that object must be preprocessed again. Hence, use of these collision

detection algorithms for interference detection requires the preprocessing of the morphable

object at every iteration of the morphing process. Invoking the preprocessing at every step

makes the collision detection extremely expensive and time consuming. We propose a sim-

ple surface collision detection algorithm using axis-aligned bounding boxes (AABB) that

requires minimal preprocessing and thus is ideally suited for the current problem.

The proposed surface collision detection algorithm can work with arbitrary trian-

gulations; i.e. it does not make any assumption about the triangular mesh. It can perform

Yes/No type queries and additionally can identify all pairs of colliding facets between two

objects. It makes use of the fast triangle-box [46] and triangle-triangle [80] intersection

algorithms. Consider two objects A and B between which interference checking is to be

performed. Suppose the object A is the morphable object, and object B is the constraint

object. Suppose that the objects A and B have NA and NB facets respectively. The fol-

lowing is the sequence of operations performed to identify all the pairs of colliding facets at

each iteration.

1. The axis-aligned bounding box of the object A is determined. This steps takes Θ(NA)

time. Since the object B is rigid, its bounding box need not be determined at every

iteration.

2. The box-box overlap computation between bounding boxes of A and B is performed.

Since the boxes are axis-aligned, the box-box overlap computation requires six com-

parisons in the worst possible case. Let (xA1, yA1, zA1) and (xA2, yA2, zA2) be the

coordinates of the two diagonally opposite corners of the bounding box of object A
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such that xA1 < xA2, yA1 < yA2, and zA1 < zA2. Similarly let (xB1, yB1, zB1) and

(xB2, yB2, zB2) be the coordinates for the object B. Then the objects A and B do

not collide if any of the following six comparisons are satisfied. The six comparisons

are xA2 ≤ xB1, yA2 ≤ yB1, zA2 ≤ zB1, xA1 ≥ xB2, yA1 ≥ yB2, and zA1 ≥ zB2. The

objects potentially collide if none of the six comparisons are true. This steps takes

constant time.

3. If the bounding boxes of the objects A and B collide, then the collision check between

each facet of object A and the bounding box of B (and vice versa) is performed.

The triangle-box intersection [46] test is used to detect all the colliding facets. The

computational complexity of this step is Θ(NA +NB) , where each operation amounts

to a triangle-box intersection test. If at least one facet on object A is found to collide

with the bounding box of the object B, then the two objects potentially collide. In

this step, the list of all facets on each object that collide with the bounding box of

the other object is built. These facets lie in the intersection of the bounding boxes

of both objects A and B. Only the facets contained in this potential intersection list

need to be considered to determine the interference between the two objects.

4. For every facet of object A in the potential intersection list, a triangle-triangle intersec-

tion test [80] is performed with all the facets of object B in the potential intersection

list. It is possible that the bounding boxes of the two objects collide, but the actual

objects do not. If at least one pair of colliding facets is found, then the objects A

and B collide. If a Yes/No type query is performed, the process may be terminated

as soon as the first pair of colliding facets is found. If all the pairs of colliding facets

is desired, the process is simply continued until all facets have been checked. The

worst case computational complexity of this step is Θ(NANB), where each operation

amounts to a triangle-triangle intersection test.

All the pairs of colliding facets can be determined by just performing step 4 of

the above algorithm. The first three steps are designed to reduce the number of triangle-
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triangle intersection tests (most expensive operation) needed to check interference detection.

The above implementation was found to be faster than an established collision detection

algorithm like PQP for the case of morphing. The PQP was slower primarily because

preprocessing was performed at every step of the morphing process. It should be noted that

the collision detection algorithm discussed above will be easily outperformed by specialized

algorithms like Swift++ and PQP if the colliding objects are assumed to be rigid and only

affine transformations are performed.

3.4.2.2 Collision Response

Once all the pairs of colliding facets are identified, the vertices on the morphable

object that penetrate the constraint object are determined and retracted. Let ~X be the

position vector of the vertex to be checked for interference, ~P be any vertex on the colliding

facet of the constraint object, and n̂ be the outward unit normal of the colliding facet on

the constraint object, then the mass point represented by vertex ~X penetrates the surface

of the constraint object if the following condition is satisfied.

( ~X − ~P ) · n̂ < 0 (3.10)

The vertices ~P and ~X and the normal vector n̂ are pictorially depicted in Figure 3.8.
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Figure 3.8: Interference of nodes

It should be noted that the above test is valid only if the two facets are known to

be colliding. The above test may give false positives in the case the facets do not collide.

Once all the vertices that interfere with the surface of the constraint object are identified,

62



the next step is to retract those vertices to remove any interference.

Retracted Position: The nodes are retracted right onto the surface of the constraint

object as shown in Figure 3.9. Their velocity is updated to prevent subsequent interference.

Apart from adjusting the velocity, an additional reaction force is applied to the mass points

to prevent the vertices from future interference with the constraint objects. Hence, this

step also involves updating the resultant force on the mass points that interfere with the

constraint objects. The collision check is performed at each iteration of the morphing

process, and the position, velocity, and contact force is updated for each mass point that

interferes with the constraint objects. The vertex is retracted from the position X(tcollision)

which is inside the constraint object to the position X ′(tcollision) which is on the surface of

the constraint object.

X(tinitial)

X ′(tcollision)

X(tcollision)

Figure 3.9: Retraction of the mass points onto the surface of the constraint object

The retraction distance d is shown in Figure 3.10. In Figure 3.10, the initial and

final position of the vertex is denoted by P and P ′ respectively. The outward unit normal

is n̂. Let one of the vertices on the constraint facet be Q. Then the distance d is the length

of the projection of the vector ~P − ~Q along the unit normal n̂. Thus the distance d is given

by Equation 3.11. The final location P ′ of P is given by Equation 3.12.

d = |(~P − ~Q)× n̂| (3.11)
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P ′ = P + dn̂ (3.12)
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Figure 3.10: Retraction distance

Velocity of the mass points after collision: The velocity after the collision depends

on the physical collision model simulated. For the purpose of morphing, a purely inelastic

collision model is used. The velocity V of the node is resolved into the tangential component

Vt and the normal component Vn. In perfectly inelastic collision, there is complete loss of

kinetic energy, hence the normal velocity Vn is set to zero after the collision. The tangential

velocity Vt is left unchanged. Thus, the mass points after the collision continue to move in

a direction tangential to the surface of the constraint object. Thus, this modification to the

velocity allows the morphable object to conform to the contour of the constraint objects

without colliding.

Updated force on the mass points: If the force acting on the mass points is left

unchanged after the collision, it will continue to have non-zero acceleration along the normal

to the surface of the constraint object. When the acceleration, velocity, and position are

updated in the next iteration, the mass points will again interfere with the constraint object.

To reduce the probability of this event, a reaction force is added that counters the normal

component of the resultant force due to the pressure and the springs. Let the resultant of

64



the pressure and spring force be ~F , and let the unit normal to the colliding facet of the

constraint object be n̂. Then, the updated force on the mass point is given by Equation 3.13.

~Fupdated = ~F − (~F · n̂)n̂ (3.13)

Thus, the force update is similar to the velocity update. The tangential component

remains unchanged and the normal component is assigned a value of zero.

3.4.3 Flowchart of the Morphing Process

The complete flowchart of the morphing process is given in Figure 3.11.

3.5 Demonstration of the Morphing Algorithm

We present two case studies to demonstrate the morphing process. The following

simulation parameters are used for reporting the results.

• Spring constant (ks) = 755 N/m

• Damping constant (kd) = 35 N-s/m

• Time step (∆t) = 0.01 seconds

• Mass = 1.0 kg

• Change in pressure = 0.5 N/m2

3.5.1 Sphere inside an arbitrary enclosure

In the first case study, a sphere is contained inside an arbitrary enclosure and is

morphed to fill the space inside it. This case study demonstrates the morphing process

when the morphable object is contained inside an enclosure. The initial configuration is

shown in Figure 3.12. The final configuration is shown in Figure 3.13. The sphere and the
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Compute the force on each mass point
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End
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YES
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Figure 3.11: Flowchart of the Morphing Process
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outer enclosure have approximately 500 and 5,000 facets respectively. The total time taken

by the morphing algorithm is approximately 1 minute.

Figure 3.12: Case study 1: initial configuration

3.5.2 Multiple constraint objects

The second case study demonstrates the morphing process in the presence of multiple

constraint objects. The initial and final configurations are shown in Figures 3.14 and 3.15

respectively. There are six constraint objects. The morphable object and the constraint

objects have approximately 5,000 to 15,000 facets each. The constraint objects are non-

convex and free-form. The constraint objects need not be manifolds. Two of the constraint

objects are planar sheet bodies with one of them only partially obstructing the morphable

object thus forcing the morphable object to follow the edges of the sheet body. The total

time taken by the morphing algorithm is approximately 25 minutes.

The morphed object is shown in Figures 3.16 and 3.17 respectively. It is evident

from Figures 3.16 and 3.17 that the surface of the morphed object is not smooth and has
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Figure 3.13: Case study 1: final configuration

Figure 3.14: Case study 2: initial configuration
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Figure 3.15: Case study 2: final configuration

many undesirable artifacts. To obtain a smooth geometry without any noise and kinks in

the surface, a feature-preserving smoothing algorithm [69] is applied as a post-processing

step. The smoothing is desired from a manufacturability and aesthetics stand-point. The

morphed object after denoising is shown in Figures 3.18 and 3.19.

It should be noted that the proposed shape morphing method does not give the final

geometry of the component, rather it gives an accurate representation of the boundary of

the component. The desired features such as mount points etc. have to be added to obtain

the final geometry.

3.6 Conclusion and Future Work

In this paper, a physically based shape morphing algorithm suitable for layout de-

sign is proposed. The proposed morphing algorithm is based on a mass-spring model and

the morphing process is governed by physical equations. We have proposed several modi-

fications to the mass-spring model to make it faster and more efficient. A general purpose

surface collision detection algorithm is also proposed. The proposed surface collision de-
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Figure 3.16: Case study 2: morphed object

Figure 3.17: Case study 2: morphed object
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Figure 3.18: Case study 2: morphed object after denoising

Figure 3.19: Case study 2: morphed object after denoising
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tection algorithm does not require any pre-processing and is ideally suited for morphing

applications. An algorithm to generate the mass-spring model from an arbitrary manifold

is also proposed. The proposed morphing algorithm incorporates volume control and does

not require any user interaction during the morphing process, and thus is fully automated.

The proposed algorithm therefore can be easily integrated with an automatic layout design

process. The morphing method discussed in this paper is ideally suited for generating and

optimizing the geometry of components which do not have any restriction on their shape

and require volume control.

There is significant scope for improvement of the proposed morphing algorithm. The

mesh quality deteriorates during the morphing process, especially in cases where significant

changes occur in the geometry. To obtain a geometry that accurately captures the surface

profile of constraint objects, a very fine mesh is needed. This would however increase the

computational time required for morphing. It is therefore suggested to incorporate adaptive

mesh refinement during the morphing process. To obtain a correct manifold geometry, the

morphing algorithm requires the use of very small time steps. The inaccuracy in the physical

mass-spring model is primarily due to the first order approximation used to compute the

motion of mass points. Use of a higher order method will reduce the accumulated error

thus allowing larger time steps. The proposed algorithm is capable of performing multi-

body morphing but this case has not been demonstrated in this paper. The multi-body

morphing requires synchronization of time steps and coordinated update of position and

force terms. The use of the proposed morphing algorithm for multi-body morphing shall

be investigated in the future.
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Chapter 4

AMGA2: IMPROVING THE

PERFORMANCE OF THE

ARCHIVE-BASED MICRO

GENETIC ALGORITHM FOR

MULTI-OBJECTIVE

OPTIMIZATION

4.1 Introduction

Multi-objective optimization has become main-stream in recent years and several

algorithms to solve multi-objective optimization problems have been suggested. The use of

multi-objective optimization in industry has been accelerated by the availability of faster

processing units and the computational analysis models for various engineering problems

and disciplines. Very often, the computation analysis models under consideration are suf-
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ficiently difficult and cannot be solved to optimality by most classical (gradient-based)

optimization algorithms. The difficulty associated with most optimization problems can be

attributed to factors such as simultaneous optimization of multiple objectives, multi-modal

function profiles, non-convex and discontinuous search spaces, and mixed representation of

optimization variables. To alleviate the difficulties faced by the gradient-based optimization

algorithms, several non-traditional optimization algorithms that can handle such difficul-

ties effectively have been proposed in the recent past. Additionally, most non-traditional

algorithms do not impose any extraneous conditions on the optimization problem such as

the convexity of the objectives and constraints and existence of the derivatives. Evolution-

ary algorithms are one of the non-traditional methods that have seen wide acceptability

because these algorithms can handle the difficulties outlined above with relative ease. Fur-

thermore, most engineering problems are NP-hard [29] and therefore a quick computation

of approximate solutions is often desirable. Evolutionary algorithms (EAs) are adaptive

search techniques inspired from nature and their working principle is based on the Dar-

win’s theory of the survival-of-the-fittest [32, 33, 34]. The adaptive nature of EAs can be

exploited to design optimization algorithms by designing suitable variation operators and

an appropriate fitness function. During the optimization process, the fitness is adapted

as the evolution proceeds. The Genetic Algorithm (GA) [35, 36, 81, 82, 83] is one of the

evolutionary techniques that has been successfully used as an optimization tool. Typically

a GA works with a population (a set of solutions) instead of a single solution (individual).

This property of a GA makes it an ideal candidate for solving multi-objective optimization

problems where the outcome (in most cases) is a set of solutions rather than a single solu-

tion. The population approach of a GA also makes it resilient to premature convergence,

thereby making it a powerful tool for handling highly non-linear and multi-modal functions.

In this paper, an improved version of the Archive-based Micro Genetic Algorithm [8]

for constrained multi-objective optimization is proposed. The improved version is referred

to as AMGA2 in this paper. The design of AMGA2 is primarily motivated by the fact that

in most optimization scenarios, almost the entire time is spent by the analysis routines and
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the user does not have the computational resources to perform a large number of function

evaluations. The actual time spent by the optimization algorithm in performing selection,

crossover, mutation, and diversity assessment is often negligible compared to the total sim-

ulation time. Another important guiding principle that has shaped the design of AMGA2

is the fact that, the user is often satisfied if a good enough non-dominated solution set is

obtained. In most engineering applications, once a reasonable solution quality is achieved, a

global optimizer (e.g. a genetic algorithm) is replaced by a local optimizer (e.g. a gradient-

based method) which has a faster local convergence rate and can generate solutions with

higher accuracy. Often the desired function value is not known; in such cases, the global

optimizer is terminated when the convergence rate falls below a certain threshold, or after a

prescribed number of function evaluations is reached, or there is no noticeable improvement

in the obtained solution set. Another motivating factor behind the design of AMGA2 is

that most optimization users may not be able or willing to accurately fine-tune the param-

eters of an optimization algorithm. The AMGA2 therefore uses a set of rules (heuristics)

to choose suitable tuning parameters automatically. The only optimization tuning parame-

ters that are exposed to the user are the maximum allowed number of function evaluations

and the number of solutions desired at the end of the optimization. The remaining tuning

parameters are chosen by the AMGA2 based on the problem size, the number of function

evaluations allowed, and the desired number of solutions. The AMGA2 also benefits from

the existing literature in that it borrows several concepts like formulation for crossover,

mutation, two-tier fitness assignment mechanism, ranking strategy, preservation of elite

and diverse solutions etc. from the existing evolutionary optimization algorithms. We also

propose several modifications and improvements to the genetic variation operators and di-

versity assessment techniques discussed in the literature. As is the hallmark of evolutionary

algorithms, the AMGA2 does not impose any extraneous condition on the optimization

problem. The AMGA2 can also be used to solve single-objective optimization problems

without any modification; however it might exhibit poor performance on such problems. It

can also be used to solve constraint satisfaction problems where the aim is to find a feasi-
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ble solution to the optimization problem. The AMGA2 also obeys one of the fundamental

constraints of solving any real engineering optimization problem. It does not require or use

the value of the objectives if a solution is infeasible. Thus, it is suggested to evaluate the

constraints before the objectives, and if the constraints are violated, the objectives need

not be evaluated. The formal statement for the optimization problem that the AMGA2

attempts to solve is stated in Equation 4.1.

Minimize (f1(x), f2(x), . . . , fM (x))

Subject to gj(x) ≤ 0, j = 1, 2, . . . , J

hk(x) = 0, k = 1, 2, . . . ,K

x
(L)
i ≤ xi ≤ x

(U)
i , i = 1, 2, . . . , N

(4.1)

Unless otherwise stated, the concept of Pareto domination [84] is used for comparing

two solutions. The usual definition of Pareto-domination [84] that is used in the present

context is as follows: A feasible solution a dominates another feasible solution b for a

M -objective minimization problem, if the following conditions are met:

1. fa
i ≤ fb

i for all i = 1, 2, . . . , M ,

2. fa
i < fb

i for at least one i ∈ {1,M}.

Additionally, a feasible solution is always preferred to (dominates) an infeasible

solution. If two solutions being compared are infeasible, then the solution with a smaller

value for the overall constraint violation is preferred. The overall constraint violation for a

solution s is given by Equation 4.2.

CV(s) =
J∑

j=1

〈gj(s)〉+
K∑

k=1

|hk(s)|, (4.2)

The remainder of this paper is organized as follows. In section II, a brief survey of

the relevant literature on multi-objective optimization is presented. Section III contains the

description of the proposed optimization algorithm. In section IV, benchmark problems,
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algorithm tuning parameters, and simulation results are presented. Section V discusses

the obtained simulation results and section VI concludes this study. The ideas for future

research and possible future improvements to AMGA2 are proposed in section VII.

4.2 Current State-of-the-art

Much of the current research in the development of optimization algorithms focuses

on achieving faster convergence on uni-modal problems, and efficiently and reliably solving

multi-modal problems. To gain a better understanding of different optimization algorithms

and to understand the reasons behind their design, it is important to study the nature and

types of difficulties encountered while solving most optimization problems. The difficulties

associated with solving an optimization problem can be attributed to factors such as the

type of search space (discontinuous, discrete, non-convex), non-linearity and multi-modality

of objectives and constraints, ratio of feasible to infeasible search space, and the size of the

optimization problem (number of variables, objectives, and constraints). In the recent past,

evolutionary algorithms have been used with an increased degree of success to solve multi-

objective and multi-modal problems. The evolutionary optimization algorithms rely on

finding the globally optimal solutions by chance, and incorporate methods (heuristics) to

reduce the possibility of getting trapped inside a locally optimal basin. Some of the notable

efforts in designing multi-objective evolutionary algorithms (MOEAs) are Strength Pareto

Evolutionary Algorithm (SPEA2) [85], Pareto-Envelope Based Selection Algorithm (PESA-

II) [86], Non-dominated Sorting Genetic Algorithm (NSGA-II) [87], Neighborhood Cultiva-

tion Genetic Algorithm (NCGA) [88], Intelligent Multi-Objective Evolutionary Algorithm

(IMOEA) [89], ε-Multi-objective Evolutionary Algorithm (ε-MOEA) [90], Omni-Optimizer

(OmniOpt) [91], and Fast Pareto Genetic Algorithm (FPGA) [92]. A historical and com-

prehensive survey of MOEAs can be found in [81]. A survey of the current evolutionary

algorithms proposed for constrained multi-objective optimization reveals the following key

concepts employed in their design.
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• Population Approach: Recent trends in the use of population focus on aspects such as

dynamic population sizing used in the FastPGA [92], use of a very small population

size (a micro genetic algorithm) [93], and the use of an external archive [85] that stores

the best found approximation to the Pareto-optimal front. Use of a dynamic or a very

small population size helps to reduce the number of function evaluations required to

obtain the desired convergence whilst an external archive can store a large number

of non-dominated solutions to accurately approximate the Pareto-optimal front. It

should be possible to combine both these approaches into a single optimization algo-

rithm.

• Selection Mechanism: The two most popular techniques to perform the selection

operation are the non-dominated sorting [87] and the strength Pareto approach [85].

An improvement to the strength Pareto approach is proposed in FastPGA which

takes into account not only the number of solutions an individual dominates, but also

the number of solutions it is dominated by. Further, since the domination principle

alone cannot classify all the solutions, multi-level fitness mechanisms are used for the

classification. Generally, the primary fitness is based on the domination level, and the

secondary fitness is based on some measure of a solution’s diversity. Emphasizing the

domination level (rank) over the diversity may not always be a good idea - especially

for multi-modal problems.

• Diversity Assessment : There exist a large number of methods to assess the diversity

of a solution. Some of these techniques that have been successfully used to assess the

diversity are the fitness-sharing [94, 95], crowding distance metric [87, 91, 96], K-mean

clustering [97], ε-domination [90], cell-based (hyper-grid) methods [86, 98, 99], and

fast pruning of crowded solutions using efficient nearest neighbor search [100, 101]. A

metric like crowding distance can be used to assign a quantitative measure of diversity

to a solution, whereas methods based on pruning of crowded solutions cannot. An

evolutionary algorithm may require more than one measure of diversity depending
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upon the context. We propose improvements to the crowding distance metric as well

as to the pruning method based on efficient nearest neighbor search and use them in

the AMGA2 for assessing the diversity of a solution.

• Variation Operators: Some of the desired characteristics of a genetic variation opera-

tor are: parent-centric property, self-adaptivity, invariance to affine transformations of

the search space, and disruptiveness to impart random behavior and resilience to pre-

mature convergence. The crossover operators such as unimodal normal distribution

crossover [102], simulated binary crossover [44], and parent-centric crossover [103] are

designed to work with real variables and have some kind of parent-centric property.

These crossover operators however lack self-adaptability (cannot automatically adjust

their step size depending on the problem and the distribution of the population). The

differential evolution (DE) [104, 105, 106] operator exhibits excellent self-adaptive

characteristics and in our tests was found to consistently outperform other crossover

operators. The DE operator has been combined with traditional genetic algorithms

[107] in the past. Traditionally the parents for use with the DE are chosen randomly

[106]. The choice of the parents used with the DE operator has a significant impact

on the performance of the algorithm. We propose a new selection strategy to suit-

ably choose the parents for use with the DE which is the crossover operator used in

AMGA2. The AMGA2 uses the modified formulation for the polynomial mutation

proposed in [91] for its high disruptiveness. The probability of mutation is adapted

using the method proposed in [108].

• Knowledge Integration: We use the phrase Knowledge Integration to refer to borrow-

ing and incorporating concepts and ideas from domains external to the evolutionary

optimization literature. Customizing optimization algorithms by developing special-

ized representation for the genotypes is an effective method to exploit the problem

information. Such customizations however are problem specific and cannot be used

in a general purpose optimizer. Hybridization of evolutionary algorithms by coupling
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mathematical programming techniques [109, 110, 111, 112] is a widely used method

to improve the performance of an optimization algorithm. Such algorithms are often

referred to as memetic algorithms in the optimization literature. Other examples of

knowledge integration are the use of Covariance Matrix Adaptation to adapt the muta-

tion step of an evolution strategy [42], incorporating model building (meta-modeling,

estimation of distribution) as part of the optimization process [113, 114], and biasing

the search process using human decision makers (interactive evolutionary algorithms)

[115, 116].

A more comprehensive survey and references on evolutionary optimization can be

found in [117] and [82] respectively. The Archive-based Micro Genetic Algorithm version 2

(AMGA2) proposed in this paper attempts to combine the best features and practices found

in the literature and incorporates improvements to existing selection, diversity assessment,

and genetic variation operators.

4.3 Description of the AMGA2

The AMGA2 proposed in this paper is a significant improvement over the original

Archive-based Micro Genetic Algorithm [8], but shares the same basic flowchart for the

generation scheme. The generation scheme of AMGA2 can be classified as generational since

during a particular iteration (generation), only the solutions created before that iteration

take part in the selection process. The AMGA2 works with a very small population size and

maintains a large external archive of good solutions obtained. Using an external archive that

stores a large number of solutions provides useful information about the search space as well

as tends to generate a large number of Pareto points at the end of the simulation. At every

iteration, a small number of solutions are created using the genetic variation operators.

The newly created solutions are then used to update the archive. The strategy used to

update the archive relies on the domination level and the diversity of the solutions, and the

current size of the archive, and is based on the non-dominated sorting concept borrowed
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from NSGA-II. This process is repeated until the allowed number of function evaluations is

exhausted.

AMGA2 uses a two-tier fitness assignment mechanism; the primary fitness is the

domination rank of the solution in the population, and the secondary fitness is the diversity

measure of the solution in the population. Both the rank and the diversity measure are

used by AMGA2 whilst updating the archive and during the creation of the parent popula-

tion. During the archive update, AMGA2 performs iterative pruning of the most crowded

solutions using the efficient nearest neighbor search strategy. During the creation of the

parent population however, a numerical measure of the diversity is needed, and the crowd-

ing distance metric is used for this purpose. The mating pool for AMGA2 is created using

the parent population as well as the external archive. The AMGA2 uses the concept of pri-

mary parent and auxiliary parents. The primary parents comprise the parent population,

whereas the auxiliary parents are selected randomly from the archive. During the initial

stages of the search, most solutions present in the archive are dominated and therefore very

few solutions from the archive are included in the parent population. Similarly, during the

later stages of the search, most solutions present in the archive are non-dominated, and

only few solutions which are very diverse (have large gaps around them) are included in

the parent population. This reduces the number of function evaluations required to find

a good approximation to the Pareto-optimal front. The design of AMGA2 is independent

of the solution representation, and thus it can work with almost any kind of optimization

variables so long as suitable genetic variation operators are provided to it. The pseudo-code

of the AMGA2 is as follows.

The AMGA2 procedure:

1 Begin

2 Generate initial population.

3 Evaluate initial population.

4 Update the archive (using the initial population).

5 repeat
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6 Create parent population from the archive.

7 Create mating pool from the parent population and the archive.

8 Create offspring population from the mating pool by crossover

followed by mutation.

9 Evaluate the offspring population.

10 Update the archive (using the off-spring population).

11 until (termination)

12 Report desired number of solutions from the archive.

13 End

The above mentioned pseudo-code of AMGA2 clearly separates all the conceptual

steps of the algorithm. The pseudo-code can also be viewed as a functional decomposition of

the AMGA2, and every step of the AMGA2 can be designed, fine-tuned, and benchmarked

separately. It facilitates using the best concepts and ideas proposed in literature to accom-

plish each of the tasks. It also encapsulates the working of multi-objective optimization

algorithms like NSGA-II and SPEA2 in that, both of these algorithms can be constructed

by choosing suitable techniques for each step. We now discuss each step in the pseudo-code

of the AMGA2 in more detail.

4.3.1 Generation of the initial population (step 2)

The initial population (P0) can be generated in multiple ways. It can be either gen-

erated randomly such that all the variables are inside the search space or can be uniformly

sampled. We choose to create the initial population using Latin hypercube (LH) sampling

[118] coupled with unbiased Knuth shuffling since it gives a good overall random (unbiased)

distribution of the population in the genotypic (variable) space and does not require any

objective or constraint function evaluation. The LH sampling process generates solutions

randomly inside identical sized bins which span the entire search space. Let the size of the

initial population be N0. Let the lower bound of variable i be li and the upper bound be

ui. To generate a LH sample, the variable range is divided into N0 equal segments of size
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ui−li
N0

each, and a real random number is generated in every segment. The random number

generator used must generate the random numbers with uniform probability distribution.

Then a random permutation of integers from 1 to N0 is generated and the individual with

index i is assigned a value located at π(i)th position in the permutation. This process is

repeated for all the variables. This ensures that the resultant population spans the entire

genotypic space, is sufficiently random and is free from any bias. In order to generate a

random permutation, unbiased Knuth shuffling is iteratively applied for each variable on

the same sequence. Omni-optimizer [91] also uses the same strategy to generate the initial

population.

In step 3, the initial population is evaluated. Initially, the archive is empty, and

in the step 4 of AMGA2, the initial population is simply copied to the archive. Steps 6

through 10 form the main iteration loop of the AMGA2.

4.3.2 Creation of the parent population from the archive (step 6)

This is an important step of the AMGA2 since the size and choice of the parent

population has a significant impact on the performance of the algorithm. To illustrate a

key concept used in the generation of parent population from the archive, we refer to the

two-objective problem ZDT4 [36]. This problem has 100 distinct Pareto-optimal fronts out

of which only one is globally Pareto-optimal. The plot of the objective space for the ZDT4

function after the first generation is shown in Figure 4.1. Only 6 solutions out of the 100

belong to the first rank. In a given population (archive), it may not be worthwhile to include

every solution in the parent population. Significant number of function evaluations can be

saved if only the solutions in the first rank are chosen for the parent population. It is thus

noted that a reduction in number of function evaluations can be obtained if a small number

of better solutions are included in the parent population. Furthermore, during the later

stages of evolution, when most solutions belong to rank 1, only the most diverse solutions

should be included in the parent population so that the exploration of the region around

those solutions is facilitated. In the case of AMGA2, the size of the parent population
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(≈4) is much smaller than the size of the archive (≈100). Unless the problem is highly

multi-modal, the parent population almost exclusively contains solutions belonging to rank

1. Also, the size of the parent population must be greater than or equal to the number

of objectives for AMGA2. The following procedure to generate the parent population is

suggested.

f1

f2

 60

 100

 140

 180

 220

 0  0.2  0.4  0.6  0.8  1

Figure 4.1: Objective space plot for the zdt4 test problem

The parent population is created from the archive. Let the desired size of the parent

population be Np. All the solutions in the archive belonging to rank 1 are identified (call this

the set S and let its size be Ns). If Ns ≥ Np, then the parent population can be generated

from the set S. If Ns < Np, then solutions belonging to rank 2 are extracted from the

archive and added to the set S. This process is repeated until Ns ≥ Np. The solutions in

the set S that have the minimum value for any objective function are extracted and copied

to the parent population. The number of such solutions will always be less than or equal

to the number of objectives. Let the number of such solutions be Ne. Then, Np −Ne slots

in the parent population remain vacant. To fill these slots, the crowding distance metric is
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used. Since the set S may potentially contain solutions belonging to more than one rank,

the crowding distance measure as proposed in NSGA-II [87] cannot be used. In the Omni-

optimizer [91], a modification to the crowding distance assignment mechanism is proposed

that works with the solutions belonging to multiple ranks. In the original AMGA [8], two

improvements to the crowding distance measure were suggested which are described next

with a slight modification. We first present the modification.

In the original AMGA, the extreme solutions were assigned a diversity of ∞. With

the AMGA2, the extreme solutions belonging to rank 1 are already extracted from the

set S and included in the parent population. Hence, the extreme solutions in the remain-

ing set S are not the true extrema of the current population, and hence are assigned the

crowding measure based on their nearest neighbors corresponding to every objective. This

modification (deliberate inclusion of all the extreme solutions in the parent population) is

done because in the original AMGA, each solution took part in exactly one binary tourna-

ment selection, and the binary tournament selection operator could compare two extreme

solutions (with ∞ diversity) and may inadvertently remove one of those extreme solutions

from the mating pool (which would amount to not exploring one of the extremes of the

Pareto-optimal front). The modification proposed in this paper guarantees the inclusion of

extreme solutions in the parent population and the mating pool. The improvements to the

crowding distance measure are discussed next.

Consider Figure 4.2. Suppose that solution B has left and right neighbors A and C

respectively. The usual formulation (proposed in NSGA-II) for the crowding distance (CD)

measure gives CD(B) = l1 +r1 + l2 +r2. Larger the value of CD(B), the more diverse is the

solution. It should be noted that CD(B) depends only on the location of A and C and does

not depend on the location of B. B can be anywhere inside the bounding box defined by its

neighbors A and C. Ideally, it is desirable that solution B lies at the center of the bounding

box for good diversity. It is also desirable that larger the dimension of the bounding box,

larger the value of CD(B). We thus need a formulation for CD which is maximized if the

dimension of the bounding box is maximized, or for a given size of the bounding box, CD
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Figure 4.2: Depiction of crowding distance computation

is maximized if the solution B lies at the center of its bounding box. We thus propose the

modified formulation for crowding distance computation as given in Equation 4.3.

CD(B) =
M∑

i=1

liri (4.3)

In Equation 4.3, M is the number of objectives. The product liri is maximized for

a constant size of the bounding box if li = ri; i.e. if B lies at the center of its neighbors.

Also, as the size of the bounding box grows, the value of the product increases. Thus,

the formulation given by Equation 4.3 more accurately captures the diversity of B. The

extreme solutions will have only left or right neighbor, but not both. If a solution has only

a left neighbor for a specific objective, then the quantity l2i corresponding to that objective

is added; similarly if only the right neighbor is present, the quantity r2
i is added.

The above formulation has a potential shortcoming. What if there is a solution B′

identical to B. In that case, the formulation described by Equation 4.3 would give a value

of zero for diversity for both B and B′ since distance to the nearest neighbor is zero in all

directions (since at least one of li or ri would evaluate to zero). The original formulation
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(as proposed in NSGA-II) would give non-negative values to both B and B′. Depending

upon their actual position in the sorted array, the crowding distance for solutions B and B′

would evaluate to one of the values from (l1 + l2, l1 + r2, r1 + l1, r1 + r2). This situation also

is not desirable, since the obtained values do not accurately reflect the diversity of the two

solutions. We therefore propose further modification which can be applied to the original

as well as proposed crowding distance formulation. We suggest that all (but one) copies

of an identical solutions be removed and assigned a value of zero for crowding distance

before applying the formulation given in Equation 4.3. All identical copies can be removed

in Θ(N log N) time if there are N solutions in a non-dominated set. Thus the proposed

refinements do not alter the complexity of the crowding distance computation proposed in

[87].

4.3.3 Creation of the mating pool (step 7)

In the original AMGA [8], the mating pool was created from the parent population

using the binary tournament selection. The AMGA2 does not use binary tournament

selection and the mating pool comprises solutions from the parent population as well as the

archive. The creation of the mating pool must take into account the crossover operator used

with the optimization algorithm. We use the Differential Evolution (DE) as the crossover

operator. The DE crossover operator takes 4 (1 primary and 3 auxiliary) parents and creates

one offspring. The solutions in the parent population comprise the primary parents. For

each primary (index) parent, three solutions from the archive are chosen randomly such that

they are not identical to the index parent and are mutually different. In the literature [106],

all the four parent solutions are chosen randomly, however with AMGA2, only auxiliary

parents are chosen randomly. In our tests, it was found that choosing the index parents

based on the domination level and diversity consistently outperformed the random selection.

This is expected since the DE is a self-adaptive crossover operator, and enabling it to inherit

from a potentially better solution increases the probability of discovering better solutions.

87



4.3.4 Genetic variation operators (step 8)

The mating pool contains the index parents and the auxiliary parents. If the size

of the parent population is Np, then the number of auxiliary parents is 3Np. To create

the offspring population, the crossover operator is applied to the mating pool followed by

the mutation of the offspring solutions. There exist several crossover operators designed to

work with real variables [44, 103, 102]. The performance of the simulated binary crossover

(SBX) [44], parent-centric crossover (PCX) [103], and the DE operator [106] was compared

and it was observed that the DE operator consistently outperformed the other two. The

DE operator has the additional advantage of not requiring a distribution index and it is

self-adaptive in that the step size is automatically adjusted depending upon the distribution

of the solutions in the search space. The following formulation (taken from [106]) for the

DE operator is used with the AMGA2. Let the index parent be pi, and let the auxiliary

parents be a1, a2, and a3. Let the number of variables be N , and let jr be a random number

(uniformly distributed) between 1 and N . The DE operator uses two tuning parameters

F = 0.1 and CR = 0.5. Let uj be a uniformly distributed random number in [0, 1]. Let

the offspring solution be o and the subscript j denote the jth variable, then o is given by

Equation 4.4.

oj =





(a3)j + CR((a1)j − (a2)j) if uj < F or j = jr

(pi)j otherwise
(4.4)

Thus, we get an offspring corresponding to each index parent. Hence, the size of the

offspring population is the same as the size of the parent population. The offspring popu-

lation is mutated before evaluation. The modified polynomial mutation operator proposed

in [91] is used for this purpose. The modification proposed in [91] improves the resilience

to premature convergence. The following formulation (taken from [91]) for the polynomial

mutation is used with AMGA2. Let lj and uj be the lower and upper bound of the variable

j. Let xj and x
′
j be the value of variable j before and after the mutation. Let rj be a uni-

formly distributed random number in [0, 1]. Let ηm be the distribution index for mutation,
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then x
′
j is given by the set of Equations 4.5.

δ1 =
xj − lj
uj − lj

δ2 =
uj − xj

uj − lj

δq =





[
2rj + (1− 2rj)(1− δ1)ηm+1

] 1
ηm+1 − 1,

if rj ≤ 0.5

1− [
2(1− rj) + 2(rj − 0.5)(1− δ2)ηm+1

] 1
ηm+1 ,

otherwise

x
′
j = xj + δq(uj − lj)

(4.5)

The tuning parameter ηm can be set by the user. After rigorous benchmarking on

a wide variety of test problems, the vale of ηm is set to 15. This value is used to report all

the simulation results in this paper. The mutation operator also requires a probability of

mutation. The default value of the probability of mutation is the standard heuristic 1/N ,

where N is the number of optimization variables. In [108], it has been shown and argued

that the standard heuristic 1/N may not always be the best choice. The ideal value of

the probability of mutation depends upon the landscape of the optimization problem and

the rank of the solution in the population, and that it may not be constant during the

optimization process. We use the formulation proposed in [108] to compute the probability

of mutation for every solution. The following formulation to compute the probability of

mutation (taken from [108]) is used with AMGA2. Let the size of the archive be Na, and

let the rank of a given parent solution in the archive be Rp, then the probability of mutation

for the corresponding offspring is given by Equation 4.6.

p = pmin + (pmax − pmin) ∗ (Rp − 1)/(Na − 1) (4.6)

In Equation 4.6, the pmin and pmax are the minimum and maximum probabilities

of mutation respectively. Since the rank of a solution is always greater than or equal to 1
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and Rp ≤ Na, the probability of mutation always lies in [pmin, pmax]. In [108], pmin = 0.0

and pmax = 1.0 is suggested. With this value of pmin, if the rank of a solution is 1, then the

probability of mutation for that solution is 0, and hence that solution does not undergo any

mutation. There are two differences as compared to [108] in the way the above formulation

is applied to AMGA2.

1. Unless the problem is highly multi-modal, most solutions in the parent population

belong to rank 1, and hence would not undergo any mutation if pmin = 0. Using

pmin = 0 is akin to not using mutation at all, which affects the performance of

AMGA2. We use pmin = 1/N , where N is the number of optimization variables.

With this value of pmin, the solutions belonging to rank 1 (elite solutions) have the

default probability of mutation, and the inferior solutions (rank 2 and beyond) have

a higher probability of mutation which favors the optimization process.

2. The mutation is applied to the offspring obtained after the crossover operation. In

[108], the offspring are evaluated after the crossover operation, then their rank is

determined, and based on their rank, the probability of mutation is computed. Eval-

uating the offspring after the crossover and again after the mutation operation would

effectively double the number of function evaluations. In the case of AMGA2, it is

assumed for the purpose of computing the probability of mutation that the offspring

has an identical rank to that of its parent. Hence, the rank of its parent is used in

Equation 4.6.

Some of the above mentioned modifications to the crossover and mutation opera-

tors were performed based on the empirical simulation results on a set of carefully chosen

benchmark problems. In step 9, the obtained offspring population is evaluated.

4.3.5 Archive update (step 10)

The archive maintains a pool of good solutions obtained during the search process.

The offspring population is used to update the archive. Initially the archive is empty, and
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in step 4, the initial population is copied to the archive. At every iteration, the offspring

population is simply added to the archive unless the number of empty slots in the archive

population is less than the size of the offspring population. If the size of the initial population

is the same as the archive, then in step 10, the archive is already filled, if not, the archive gets

filled during the first few generations. The non-dominated sorting [87] procedure is employed

to update the archive once the offspring population cannot be completely accommodated

in the archive. The archive and the offspring are combined and non-dominated sorting is

performed on the combined population. When the solutions of a particular rank cannot

be included in the archive, then a pruning method proposed in [101] is used to remove

the crowded solutions. In [101], the authors have proposed a novel method for pruning of

crowded solutions based on the efficient nearest neighbor search method. At every iteration,

two nearest neighbors are found. The solution which has the least value for the second

nearest neighbor is deleted. If the second nearest neighbors also have the same Euclidean

distance, third nearest neighbors (and so on) are searched. In practice, it is sufficient to

search for two nearest neighbors. If one of the solutions from the nearest neighbor pair

happens to be a solution on the boundary of the Pareto-optimal front, then the other one

is deleted from the set. The process is repeated unless the combined population is trimmed

to the maximum allowed size for the archive. This strategy for archive update is similar to

(but faster than) the environmental selection procedure proposed in [85].

This archive update strategy favors the domination level (rank) over the diversity. A

potential limitation of this approach is exposed when all the solutions in the archive and the

offspring population occupy a region in the search space which points to a locally optimal

front. The phenomenon of genetic drift will then guide the search towards that locally

optimal frontier. Unless, the crossover and mutation operators create a solution that lies

inside the globally optimal basin and also belongs to the first rank, the search would lead to

a premature convergence. It is practically impossible to detect this phenomenon since the

only information available about the search space is contained in the archive which now has

all the solutions that belong to a locally optimal basin. Further, it can never be guaranteed
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that with the proposed (or any other optimization) algorithm, the global convergence would

be achieved. The proposed scheme relies on the discovery of at least one solution in the

globally optimal basin which also happens to belong to the first rank (if it does not belong

to the first rank, it may be removed whilst updating the archive). There always exists

a trade-off between the selection pressure and the diversity required by an evolutionary

optimization algorithm. From the rigorous benchmarking conducted, it was concluded that

the method proposed in this paper performs better overall on the problems chosen for the

benchmark study.

4.3.6 Worst case complexity of AMGA2

Let the size of the initial, parent, and the archive populations be Ni, Np, and Na

respectively. The size of the mating pool and the offspring population would then be 4Np

and Np respectively. Let the total number of function evaluations be T and the number of

objectives be M . Steps 2, 3, and 4 of AMGA2 take Θ(Ni) time each. Step 6 of the AMGA2

involves creation of the parent population from the archive. The solutions belonging the

best rank can be extracted in Θ(MN2
a ) time. The crowding distance assignment for the

parent population takes Θ(MNp log Np) time. Since Np ¿ Na, the complexity of step 6

is Θ(MN2
a ). Each of the steps 7, 8, and 9 take Θ(Np) time. In step 10, archive update

is performed using non-dominated sorting and pruning based on efficient nearest neighbor

search. The complexity of step 10 is Θ(N2
a log Na) assuming log Na > M [101]. Thus step

10 is the most time consuming step of the algorithm. Hence, the per iteration complexity of

AMGA2 is Θ(N2
a log Na). For T function evaluations, the number of generations of AMGA2

is (T−Ni)
Np

. In general, Ni ¿ T , hence the number of generations is T
Np

. If the desired number

of solutions is Nd(< Na), then step 12 takes Θ(N2
a log Na) time in the worst case. Hence

the overall complexity of AMGA2 is Θ(TN2
a log Na

Np
).

4.3.7 Differences between AMGA and AMGA2

Following is the list of differences between AMGA (earlier version) [8] and AMGA2.
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• Parent population: In AMGA, the parent population was selected from the archive

purely based on the diversity, whereas in AMGA2, the parent population is selected

based on the domination level (rank) as well as the diversity.

• Creation of the mating pool : In AMGA, the mating pool is created from the parent

population using binary tournament selection, whereas AMGA2 does not use binary

tournament selection. In AMGA2, the mating pool contains solutions from the parent

population as well as the archive. All the solutions in the parent population are

included in the mating pool in the case of AMGA2. The primary (index) parents

are from the parent population and auxiliary parents are selected randomly from the

archive.

• Composition of the mating pool : AMGA2 ensures that the extreme solutions belonging

to rank 1 are always included in the mating pool, whereas AMGA does not. The

binary tournament selection in AMGA can compare two extreme solutions and thus

eliminate one of them.

• Population sizes: In AMGA, the size of the offspring population is half the size of

the parent population, whereas in AMGA2, the size of the parent and the offspring

population is the same.

• Diversity assessment : The crowding distance formulation used in AMGA assumes

that all the solutions for which the crowding distance metric is being computed have

identical rank, whereas in AMGA2, it does not make such an assumption and allows

the solutions to have separate ranks.

• Phenotypic versus genotypic niching: AMGA uses diversity assessment in both the

genotypic and phenotypic space. In AMGA, the archive update was performed using

diversity assessment in the phenotypic space, whereas during the selection of the

parent population from the archive, the diversity assessment in the genotypic space

was used. AMGA2 always performs diversity assessment in the phenotypic space.
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• Genetic variation operators: AMGA uses the simulated binary crossover (SBX) op-

erator, whereas AMGA2 uses the differential evolution (DE) operator for crossover.

• Probability of mutation: In AMGA, the probability of mutation is user-specified (the

default value is based on the 1/N heuristic), whereas in AMGA2, the probability of

mutation is based on the rank of the parent solution and is not constant. In AMGA2,

the probability of mutation is always greater than or equal to 1/N .

4.4 Simulation Results

To assess the relative performance of AMGA2, it is benchmarked against some of

the state-of-art multi-objective optimization algorithms. The performance of AMGA2 is

compared with the AMGA [8], NSGA-II [87], FastPGA [92], MOEA/D [119], and GDE3

[106]. It has been shown in several studies that NSGA-II and SPEA2 have similar perfor-

mance characteristics [87, 85, 90] and therefore SPEA2 is not included in this benchmark

study. The primary reason why these algorithms were chosen for the benchmark study is

their superior performance and public availability in the form of jMetal [120] optimization

software. The performance of an algorithm depends significantly on the quality of im-

plementation. It is therefore important to choose high quality reference implementations.

jMetal [120] is a JAVA based library that provides implementations of the above mentioned

algorithms. It has been shown in [120] that the performance of jMetal is similar to the

original implementations by the authors of the aforementioned algorithms. Table 4.1 lists

the test problems chosen for this study. In Table 4.1, Feval refers to number of function

evaluations and | | refers to dimensionality.

The description of the test problems follows next.
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Table 4.1: Test Problems

Name Feval |x| |f| |g| Remarks
FON [36] 5,000 10 2 0 Skewed
HOLE [121] 2,000 2 2 0 Non-convex
OSY [36] 5,000 6 2 6 Constrained
TNK [36] 2,000 2 2 2 Constrained
ZDT1 [36] 5,000 30 2 0 Convex
ZDT2 [36] 5,000 30 2 0 Non-convex
ZDT3 [36] 5,000 30 2 0 Discontinuous
ZDT4 [36] 10,000 10 2 0 Multi-modal
ZDT6 [36] 5,000 10 2 0 Skewed
DTLZ1 [122] 20,000 7 3 0 Multi-modal
DTLZ2 [122] 5,000 12 3 0 Convex
DTLZ3 [122] 20,000 12 3 0 Multi-modal
DTLZ4 [122] 5,000 12 3 0 Non-convex
DTLZ5 [122] 5,000 12 3 0 Non-convex
DTLZ6 [122] 20,000 12 3 0 Skewed

4.4.1 Test Problems

Test Problem FON

Variable bounds: −4 ≤ xi ≤ 4 ∀ i ∈ {1, . . . , n}

f1(x) = 1− exp

(
−∑n

i=1

(
xi − 1√

n

)2
)

f2(x) = 1− exp

(
−∑n

i=1

(
xi +

1√
n

)2
) (4.7)

Test Problem HOLE

Variable bounds: −1 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , n}
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Problem parameters: h = 2, α = π/4, p = 2, q = 0.2, d0 = 0.02

δ = 1− 1/sqrt(2)

x′ = x1 + δ

y′ = x2 − δ

x′′ = x′ cos(α) + y′ sin(α)

y′′ = −x′ sin(α) + y′ cos(α)

x′′′ = πx′′

y′′′ = πy′′

u = sin(x′′′/2)

v = sin2(y′′′/2)

u′ =





uh if u ≥ 0

−(−u)h otherwise

v′ = v1/h

t = u′

a = 2pv′

b =





(p− a)eq if a ≤ p

0 otherwise

d = d0 + aq/2

c = q/d2

f1 = (t + 1)2 + a + be−c(t−d)2

f2 = (t− 1)2 + a + be−c(t+d)2

(4.8)

Test Problem OSY

Range of variables 1, 2, and 6: [0, 10]

Range of variables 3 and 5: [1, 5]

Range of variable 4: [0, 6]
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f1(x) = −(25(x1 − 2)2 + (x2 − 2)2 + (x3 − 1)2 + (x4 − 4)2 + (x5 − 1)2)

f2(x) = x2
1 + x2

2 + x2
3 + x2

4 + x2
5 + x2

6

c1(x) = x1 + x2 − 2 ≥ 0

c2(x) = 6− x1 − x2 ≥ 0

c3(x) = 2 + x1 − x2 ≥ 0

c4(x) = 2− x1 + 3x2 ≥ 0

c5(x) = 4− (x3 − 3)2 − x4 ≥ 0

c6(x) = (x5 − 3)2 + (x6 − 4) ≥ 0

(4.9)

Test Problem TNK

Variable bounds: −π ≤ xi ≤ π ∀ i ∈ {1, . . . , 2}

f1(x) = x1

f2(x) = x2

c1(x) = x2
1 + x2

2 − 1− 0.1 cos
(

16 tan−1 x1

x2

)
≥ 0

c2(x) = (x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

(4.10)

Test Problem ZDT1

Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 30}

f1(x) = x1

g(x) = 1 +
9

n− 1
∑n

i=2 xi

f2(x) = g

(
1−

√
f1

g

) (4.11)

Test Problem ZDT2
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Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 30}

f1(x) = x1

g(x) = 1 +
9

n− 1
∑n

i=2 xi

f2(x) = g

(
1−

(
f1

g

)2
) (4.12)

Test Problem ZDT3

Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 30}

f1(x) = x1

g(x) = 1 +
9

n− 1
∑n

i=2 xi

f2(x) = g

(
1−

√
f1

g
− f1

g
sin(10πf1)

) (4.13)

Test Problem ZDT4

Range of variable 1: 0 ≤ x1 ≤ 1

Range of other variables: −5 ≤ xi ≤ 5 ∀ i ∈ {2, . . . , 10}

f1(x) = x1

g(x) = 1 + 10(n− 1) +
∑n

i=2

(
x2

i − 10 cos(4πxi)
)

f2(x) = g

(
1−

√
f1

g

) (4.14)

Test Problem ZDT6

Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 10}

f1(x) = 1− exp(−4x1) sin6(6πx1)

g(x) = 1 + 9
(∑n

i=2 xi

9

)0.25

f2(x) = g

(
1−

(
f1

g

)2
) (4.15)

Test Problem DTLZ1
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Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 7}

g =
7∑

i=3

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

)

g′ = 100(g + 5)

f1 = 0.5x1x2(1 + g′)

f2 = 0.5x1(1− x2)(1 + g′)

f3 = 0.5(1− x1)(1 + g′)

(4.16)

Test Problem DTLZ2

Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 12}

g =
12∑

i=3

(xi − 0.5)2

f1 = cos(x1π/2) cos(x2π/2)(1 + g)

f2 = cos(x1π/2) sin(x2π/2)(1 + g)

f3 = sin(x1π/2)(1 + g)

(4.17)

Test Problem DTLZ3

Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 12}

g =
12∑

i=3

(
(xi − 0.5)2 − cos(20π(xi − 0.5))

)

g′ = 100(g + 10)

f1 = cos(x1π/2) cos(x2π/2)(1 + g′)

f2 = cos(x1π/2) sin(x2π/2)(1 + g′)

f3 = sin(x1π/2)(1 + g′)

(4.18)

Test Problem DTLZ4
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Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 12}

g =
12∑

i=3

(xi − 0.5)2

f1 = cos(
xα

1 π

2
) cos(

xα
2 π

2
)(1 + g)

f2 = cos(
xα

1 π

2
) sin(

xα
2 π

2
)(1 + g)

f3 = sin(
xα

1 π

2
)(1 + g)

(4.19)

Test Problem DTLZ5

Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 12}

g =
12∑

i=3

(xi − 0.5)2

θ1 =
π(1 + 2gx1)

4(1 + g)

θ2 =
π(1 + 2gx2)

4(1 + g)

f1 = cos(θ1π/2) cos(θ2π/2)(1 + g)

f2 = cos(θ1π/2) sin(θ2π/2)(1 + g)

f3 = sin(θ1π/2)(1 + g)

(4.20)

Test Problem DTLZ6

Variable bounds: 0 ≤ xi ≤ 1 ∀ i ∈ {1, . . . , 12}

g =
12∑

i=3

x0.1
i

θ1 =
π(1 + 2gx1)

4(1 + g)

θ2 =
π(1 + 2gx2)

4(1 + g)

f1 = cos(θ1π/2) cos(θ2π/2)(1 + g)

f2 = cos(θ1π/2) sin(θ2π/2)(1 + g)

f3 = sin(θ1π/2)(1 + g)

(4.21)
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4.4.2 Performance Indicators

Two unary performance indicators are used for the comparison of different algo-

rithms. The two performance indicators are the delineation metric and the hypervolume

metric. In order to use these performance indicators, the true Pareto-optimal front must be

known. A smaller value for a performance indicator implies a better solution set. Ideally if

the original Pareto optimal front is used as the solution set, all the performance indicators

should evaluate to zero. Since a finite number of points (approximately 1,000 and 10,000

points for the case of two and three objectives respectively) are used to represent the true

Pareto-optimal frontier, a value of 0.01 or less for a performance indicator implies that the

obtained solution set is virtually indistinguishable from the Pareto optimal front. If the

value of the performance indicator is 0.1 or more, it implies that an acceptable solution

set was not obtained. All the objectives are normalized (the Pareto-optimal front for the

problem is mapped to the range [0, 1]) before the performance indicators are computed.

Only the non-dominated solutions belonging to rank 1 are considered for computing the

performance indicators. For the purpose of computing the hypervolume metric, the nadir

objective vector for all the problems is taken as [1.1, 1.1] and [1.1, 1.1, 1.1] for two and

three objectives respectively. Any solution that is dominated by the nadir objective vector

is not included in the computation of the performance indicators. For constrained problems,

only the feasible solutions are considered for computing the performance indicators. If in a

solution set, there are no points that dominate the nadir objective vector, all performance

indicators are assigned a value of 1.0 for that set. A brief description of each performance

indicator follows next.

Delineation Metric: This metric measures “how well is the Pareto-optimal front

represented by the obtained solution set”. To quantify this information, a large set of

evenly spaced points on the Pareto-optimal front is generated. Let the size of this set be

H. The minimum Euclidean distance of each point in this set from the obtained solution

set is computed. Let this distance be li for the ith element of the Pareto-optimal set. Then
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the delineation metric is given by Equation 4.22.

Delineation metric =
1
H

H∑

i=1

li (4.22)

The delineation metric for the case of two objectives is pictorially depicted in Fig-

ure 4.3.

f2

f1

2l

1l

Hl

Figure 4.3: Delineation Metric

Hypervolume Metric: This metric measures the fraction of the search space not

dominated by the obtained solution set in comparison to the true Pareto-optimal set. It

is the ratio of the areas/volumes dominated by the obtained solution set and the Pareto

optimal set subtracted from 1. Let the area dominated by the Pareto-optimal set be A1

and the area dominated by the obtained solution set be A2. Then the hypervolume metric

is given by Equation 4.23.

Hypervolume Metric = 1− A2

A1
(4.23)

The hypervolume metric for the case of two objectives is pictorially depicted in

Figure 4.4. The area A1 is the combined area A2 and A3 in Figure 4.4.
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Figure 4.4: Hypervolume Metric

Both of the above mentioned metrics measure the convergence (proximity to the

Pareto-optimal front) and the spread of the obtained solution set.

4.4.3 Simulation Parameters

Identical parameter settings (wherever possible) are used for all the algorithms. The

parameter settings used for each algorithm are as follows.

Common parameter settings for all the algorithms:

• Size of initial population = 100

• Crossover probability = 1.0

• Mutation probability = 1/N , where N is the number of variables

• Crossover distribution index = 15.0

• Mutation distribution index = 20.0

For FastPGA, AMGA, and AMGA2, the maximum population size and the size of

the archive is set to 100. The size of the parent population for the case of AMGA is set to
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8 and 12 for two and three objectives respectively. For the case of AMGA2, the size of the

parent population is set to 2M , where M is the number of objectives. GDE3, MOEA/D,

and AMGA2 use the DE operator. The parameters CR and F for the DE operator are set

to 0.1 and 0.5 respectively. For the case of AMGA2, the number of solutions desired as the

outcome of the optimization process is set to 100.

4.4.4 Results in tabulated format

30 random simulations are performed for each test problem. Tables 4.2, 4.3, and

4.4 give the mean, median, and standard deviation (s.d.) of the delineation metric, and

Tables 4.5, 4.6, and 4.7 give the hypervolume metric.

Table 4.2: The Delineation Metric (FON, HOLE, OSY, TNK)

Problem Algorithm Mean Median S.D.

FON

NSGA-II 0.033328 0.033423 0.004882
FastPGA 0.038495 0.035410 0.011395
MOEA/D 0.009778 0.009759 0.001526
GDE3 0.035392 0.036432 0.007791
AMGA 0.091890 0.093707 0.013160
AMGA2 0.019208 0.019038 0.002042

HOLE

NSGA-II 0.018750 0.017917 0.003473
FastPGA 0.027980 0.025792 0.008890
MOEA/D 0.013574 0.013771 0.001036
GDE3 0.025673 0.026131 0.002410
AMGA 0.084684 0.086311 0.016726
AMGA2 0.031642 0.031468 0.004848

OSY

NSGA-II 0.056680 0.042740 0.034848
FastPGA 0.122845 0.103005 0.081251
MOEA/D 1.000000 1.000000 1.000000
GDE3 0.080992 0.073561 0.037653
AMGA 0.066301 0.048541 0.046777
AMGA2 0.068687 0.042963 0.074098

TNK

NSGA-II 0.019581 0.019182 0.002851
FastPGA 0.023293 0.022671 0.004973
MOEA/D 0.948530 0.948530 0.000000
GDE3 0.029341 0.029218 0.003866
AMGA 0.048896 0.048223 0.013248
AMGA2 0.034625 0.033944 0.004420
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Table 4.3: The Delineation Metric (ZDT1 to ZDT6)

Problem Algorithm Mean Median S.D.

ZDT1

NSGA-II 0.124241 0.115124 0.028282
FastPGA 0.070746 0.068536 0.024201
MOEA/D 0.957797 0.960316 0.178803
GDE3 0.177899 0.178106 0.016735
AMGA 0.005664 0.005625 0.000709
AMGA2 0.004329 0.004342 0.000168

ZDT2

NSGA-II 0.336245 0.292257 0.157124
FastPGA 0.596523 0.525064 0.381111
MOEA/D 1.872206 1.899713 0.168253
GDE3 0.313339 0.315867 0.040313
AMGA 0.005544 0.005501 0.000704
AMGA2 0.004425 0.004388 0.000215

ZDT3

NSGA-II 0.068866 0.068499 0.014277
FastPGA 0.060136 0.054861 0.026190
MOEA/D 0.609860 0.613550 0.093892
GDE3 0.122049 0.125044 0.021497
AMGA 0.003910 0.003652 0.000521
AMGA2 0.004601 0.004423 0.000646

ZDT4

NSGA-II 0.583238 0.554355 0.280825
FastPGA 0.306142 0.252223 0.208404
MOEA/D 14.927236 14.787940 4.113457
GDE3 0.964375 0.905508 0.254419
AMGA 0.155994 0.135525 0.116532
AMGA2 0.019508 0.005786 0.033344

ZDT6

NSGA-II 1.495550 1.508978 0.206766
FastPGA 0.612522 0.635897 0.146051
MOEA/D 2.074136 2.104987 0.827680
GDE3 0.007958 0.007516 0.002246
AMGA 0.013612 0.014033 0.003160
AMGA2 0.003913 0.003879 0.000136

The two-objective test problem ZDT4 is multi-modal and therefore different algo-

rithms achieve different levels of convergence. The obtained solution set for all the 30 runs

is plotted for all the algorithms in Figures 4.5 to 4.10. Similarly, the three objective test

problem DTLZ6 has a heavily biased distribution of points in the objective space and thus

there is a wide difference in performance of different algorithms. The plots of the obtained

solution set for all the 30 runs for all the algorithms are shown in Figures 4.11 to 4.16.
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Table 4.4: The Delineation Metric (DTLZ1 to DTLZ6)

Problem Algorithm Mean Median S.D.

DTLZ1

NSGA-II 0.518550 0.604787 0.402408
FastPGA 0.389875 0.095852 0.438646
MOEA/D 0.555108 0.377047 0.307625
GDE3 0.048683 0.049002 0.001231
AMGA 0.459413 0.127564 0.488491
AMGA2 0.041199 0.041032 0.000871

DTLZ2

NSGA-II 0.073785 0.073363 0.004181
FastPGA 0.070218 0.070212 0.002842
MOEA/D 0.472554 0.477116 0.020505
GDE3 0.062893 0.063201 0.002238
AMGA 0.309295 0.333152 0.067378
AMGA2 0.054588 0.054468 0.000792

DTLZ3

NSGA-II 16.552686 15.784300 6.284219
FastPGA 9.319947 8.842502 4.895225
MOEA/D 8.996618 3.529262 15.477025
GDE3 0.258066 0.061528 0.463700
AMGA 7.440907 7.502221 3.466576
AMGA2 0.207031 0.058179 0.334602

DTLZ4

NSGA-II 0.082297 0.069592 0.066827
FastPGA 0.269045 0.071456 0.316734
MOEA/D 0.656529 0.823565 0.176036
GDE3 0.099036 0.078760 0.046190
AMGA 0.073391 0.074372 0.005672
AMGA2 0.067973 0.055246 0.069276

DTLZ5

NSGA-II 0.010143 0.010337 0.000863
FastPGA 0.007949 0.007805 0.000729
MOEA/D 0.018428 0.018320 0.000985
GDE3 0.011636 0.011324 0.002268
AMGA 0.081682 0.065278 0.045547
AMGA2 0.006802 0.006852 0.000327

DTLZ6

NSGA-II 1.814110 1.797024 0.083191
FastPGA 1.542518 1.540620 0.149125
MOEA/D 0.015706 0.015704 0.000005
GDE3 0.005289 0.005286 0.000082
AMGA 4.455544 4.426605 0.240810
AMGA2 0.004928 0.004926 0.000030
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Table 4.5: The Hypervolume Metric (FON, HOLE, OSY, TNK)

Problem Algorithm Mean Median S.D.

FON

NSGA-II 0.126551 0.127475 0.013365
FastPGA 0.133967 0.139028 0.021580
MOEA/D 0.040839 0.039281 0.009361
GDE3 0.133323 0.133761 0.019887
AMGA 0.295983 0.299912 0.042073
AMGA2 0.064552 0.064344 0.006502

HOLE

NSGA-II 0.023394 0.021343 0.004891
FastPGA 0.029900 0.029046 0.007229
MOEA/D 0.014406 0.014231 0.002116
GDE3 0.033702 0.032436 0.004099
AMGA 0.139212 0.134561 0.037726
AMGA2 0.041974 0.041331 0.007571

OSY

NSGA-II 0.052178 0.049751 0.018146
FastPGA 0.143545 0.075790 0.145632
MOEA/D 1.000000 1.000000 1.000000
GDE3 0.116113 0.082553 0.166879
AMGA 0.215348 0.068164 0.317091
AMGA2 0.098435 0.048474 0.131722

TNK

NSGA-II 0.060300 0.058698 0.007167
FastPGA 0.064440 0.062455 0.011430
MOEA/D 1.000000 1.000000 1.000000
GDE3 0.091830 0.090822 0.012842
AMGA 0.145134 0.143252 0.039542
AMGA2 0.100375 0.101111 0.009048
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Figure 4.5: NSGA-II on ZDT4
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Figure 4.6: FastPGA on ZDT4
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Table 4.6: The Hypervolume Metric (ZDT1 to ZDT6)

Problem Algorithm Mean Median S.D.

ZDT1

NSGA-II 0.207196 0.208715 0.052790
FastPGA 0.117291 0.116519 0.040817
MOEA/D 0.977323 1.000000 0.054455
GDE3 0.280129 0.297759 0.053907
AMGA 0.010508 0.010402 0.001683
AMGA2 0.006276 0.006363 0.000359

ZDT2

NSGA-II 0.700448 0.663080 0.154196
FastPGA 0.786750 0.889481 0.238002
MOEA/D 1.000000 1.000000 1.000000
GDE3 0.694884 0.704786 0.076690
AMGA 0.016070 0.015647 0.002930
AMGA2 0.010135 0.010158 0.000744

ZDT3

NSGA-II 0.178085 0.183334 0.036314
FastPGA 0.154901 0.140984 0.054652
MOEA/D 0.891509 0.909226 0.068592
GDE3 0.245671 0.248364 0.062358
AMGA 0.006140 0.005838 0.001183
AMGA2 0.004233 0.004096 0.000694

ZDT4

NSGA-II 0.692898 0.752109 0.268926
FastPGA 0.455393 0.390064 0.262794
MOEA/D 1.000000 1.000000 1.000000
GDE3 0.932448 0.987881 0.121536
AMGA 0.253258 0.218962 0.187481
AMGA2 0.032322 0.011197 0.052631

ZDT6

NSGA-II 1.000000 1.000000 1.000000
FastPGA 0.922934 0.960403 0.081214
MOEA/D 0.993003 1.000000 0.037678
GDE3 0.016311 0.015345 0.004043
AMGA 0.039509 0.040341 0.009272
AMGA2 0.008426 0.008035 0.000937
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Table 4.7: The Hypervolume Metric (DTLZ1 to DTLZ6)

Problem Algorithm Mean Median S.D.

DTLZ1

NSGA-II 0.580963 0.822832 0.387997
FastPGA 0.431443 0.116650 0.392443
MOEA/D 0.709326 0.611224 0.187369
GDE3 0.045040 0.045144 0.003155
AMGA 0.448058 0.127742 0.447200
AMGA2 0.031655 0.031526 0.000987

DTLZ2

NSGA-II 0.157148 0.156651 0.011779
FastPGA 0.143555 0.143509 0.010360
MOEA/D 0.639878 0.641498 0.031353
GDE3 0.126472 0.125976 0.006174
AMGA 0.729883 0.789439 0.204085
AMGA2 0.076977 0.076616 0.002352

DTLZ3

NSGA-II 1.000000 1.000000 1.000000
FastPGA 1.000000 1.000000 1.000000
MOEA/D 0.943981 1.000000 0.089959
GDE3 0.278921 0.112272 0.342319
AMGA 1.000000 1.000000 1.000000
AMGA2 0.239726 0.079818 0.338699

DTLZ4

NSGA-II 0.159517 0.149807 0.051814
FastPGA 0.293693 0.149202 0.263984
MOEA/D 0.630743 0.690828 0.073948
GDE3 0.135246 0.118175 0.049836
AMGA 0.087014 0.086678 0.004098
AMGA2 0.088922 0.077942 0.062460

DTLZ5

NSGA-II 0.033578 0.033758 0.003757
FastPGA 0.024866 0.024442 0.003078
MOEA/D 0.070690 0.068854 0.007149
GDE3 0.037275 0.037967 0.006106
AMGA 0.293194 0.237189 0.155638
AMGA2 0.019995 0.020155 0.001289

DTLZ6

NSGA-II 1.000000 1.000000 1.000000
FastPGA 1.000000 1.000000 1.000000
MOEA/D 0.043718 0.043718 0.000030
GDE3 0.011717 0.011704 0.000249
AMGA 1.000000 1.000000 1.000000
AMGA2 0.011432 0.011411 0.000145
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Figure 4.7: MOEA/D on ZDT4
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Figure 4.8: GDE3 on ZDT4
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Figure 4.9: AMGA on ZDT4
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Figure 4.10: AMGA2 on ZDT4
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Figure 4.11: NSGA-II on DTLZ6
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Figure 4.12: FastPGA on DTLZ6
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Figure 4.13: MOEA/D on DTLZ6
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Figure 4.14: GDE3 on DTLZ6
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Figure 4.15: AMGA on DTLZ6
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Figure 4.16: AMGA2 on DTLZ6
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The hypervolume measure captures the convergence, the spread, and the uniformity

of the points along the Pareto-optimal frontier. Thus, it is a good metric to compare different

algorithms. In Tables 4.5, 4.6, and 4.7, the mean, median, and standard deviation of 30

simulation runs are reported. To gain more confidence in the values of the hypervolume

metric, a statistical analysis using ANOVA (analysis of variance) [123] is presented. There

are six algorithms and 15 test problems, thus we have six groups, each with a sample size of

15. The mean value of the hypervolume metric is used to assess the confidence level in the

obtained performance metrics. The single factor ANOVA is used to determine if there is

a statistically significant difference between the six algorithms. The significance level used

for this test is 0.05 (i.e. 5 % probability that the statement “means are equal” is true). The

P-value obtained after the single factor analysis is 0.0001112, which is significantly smaller

than the significance level of 0.05. Thus, it can be concluded that the probability of means

being equal is negligible. Hence, the mean values for the hypervolume metric reported in

Tables 4.5, 4.6, and 4.7 are statistically different.

4.5 Observations and Inferences

As is evident from the simulation results, the AMGA2 has better performance on the

ZDT and DTLZ set of test problems. On the test problems FON and OSY, its performance

is similar to the best performing algorithm. On the test problems HOLE and TNK, which

have two variables, the AMGA2 does not perform as well as the others. The test problems

used in this study offer a variety of function landscapes and varying levels of difficulty to an

optimization algorithm. Still, these problems represent only a small subset of problems that

may be encountered in practice. The test problems ZDT4, DTLZ1, and DTLZ3 are multi-

modal, whereas the test problems FON, ZDT6, and DTLZ6 have a highly skewed search

space and thus challenge an optimization algorithm’s ability to find the global Pareto-

optimal frontier. Hence, the test problems FON, ZDT4, ZDT6, DTLZ1, DTLZ3, and

DTLZ6 are considered to be good benchmark problems, and it is suggested to use these

112



problems to compare different algorithms.

AMGA2, GDE3, and MOEA/D use the DE operator to create new solutions. These

three algorithms in general have superior performance as compared to NSGA-II, FastPGA,

and AMGA. We can thus infer from the simulation results that the DE operator is a robust

and reliable crossover operator to create the offspring population. In AMGA2, the parent

population is selected based on the domination level and diversity whereas in the literature

[106], the DE operator is fed with randomly selected parents. It was observed during the

development and testing of AMGA2 that the choice of the parent population has a significant

impact on the performance of the algorithm. Further, during the initial stages of the search

when the population is still moving towards the Pareto-optimal frontier, using a large parent

population tends to waste function evaluations. During the later stages of the search, when

the population is very close to the Pareto-optimal frontier, exploring the neighborhood of

all the solutions in the archive also wastes function evaluations. Only those solutions which

have relatively large gaps around them need to be explored. It was observed that using a

very small parent population greatly speeds up the search process. Decreasing the size of

the parent population beyond a threshold also hampers the performance of the algorithm.

In our simulation results, setting the size of the parent population to be the twice of number

of objectives yielded an optimum balance between convergence rate and robustness of the

AMGA2. On multi-modal problems ZDT4 and DTLZ3, it was observed that using the

rank-based mutation probability [108] improved the performance of AMGA2. On DTLZ1

(which is also multi-modal) and other problems which are not multi-modal, no noticeable

improvement was observed. For heavily multi-modal problems, during the search process,

individuals with multiple ranks are present in the archive. Some of these individuals not

belonging to rank 1 when included in the parent population are mutated with a higher

probability which adds to the disruptiveness of the search process; a feature desired for

multi-modal problems. With the exception of DTLZ1, this observation is in accordance

with the expected benefits of using rank-based mutation probability as stated in [108].

It was also observed that if the maximum number of function evaluations is sig-
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nificantly increased (≈ 100,000), the MOEA/D eventually outperforms other algorithms.

However, in most real-world optimization scenarios, the computational resources are limited

and therefore AMGA2 may be a better choice since it has a much faster convergence rate.

Also, for very large number of function evaluations (≈ 100,000), it was observed that NSGA-

II, FastPGA, GDE3, AMGA, and AMGA2 have nearly identical performance. It can be

attributed to that fact that full convergence was achieved and the algorithms had sufficient

function evaluations at their disposal to find a good distribution along the Pareto-optimal

frontier.

AMGA2 places a high emphasis on the diversity aspect during the selection of solu-

tions for inclusion in the parent population. The binary tournament selection emphasizes

the domination level (primary fitness) over diversity (secondary fitness), and may compare

two extreme solutions thereby eliminating one of them. The AMGA2 gets rid of the binary

tournament selection and thus exercises full control over the selection of the parent popu-

lation. It reduces the randomness in the search process which might not be desirable. To

mitigate this issue, the AMGA2 selects auxiliary parents randomly. The auxiliary parents

seed the change in the optimization variables during the DE based crossover. The effect of

such a strategy is to enable AMGA2 to continuously try to stretch the approximation to the

Pareto-optimal front in all directions and to enable it to place more emphasis on filling the

gaps in the Pareto-optimal front. The diversity operator used in AMGA2 is of Θ(N2
a log Na)

complexity and thus increasing the size of the archive significantly increases the execution

time. A faster yet equally efficient diversity preservation technique can help in reducing the

computational complexity of AMGA2. Further, in most MOEAs, increasing the population

size while keeping the number of generations constant increases the total number of function

evaluations. AMGA2 removes this coupling and thus facilitates independent tuning of the

population size (size of the archive) and the number of function evaluations.
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4.6 Conclusion

In this paper, an improved version of the Archive-based Micro Genetic Algorithm

(referred to as AMGA2) is proposed. The AMGA2 incorporates several modifications and

improvements to the AMGA, and has significantly better performance on the problems

chosen for the benchmark study. It benefits from the existing literature in that it borrows

(and improves upon) several novel concepts from existing algorithms. Thus, it is also an

exercise in combining the best features and concepts into a single optimization algorithm.

Based on the design of AMGA2, simulation results obtained, and our observations and

inferences from those results, the following conclusions can be drawn from this study.

• Micro-genetic algorithms working with a very small population size tend to reduce

the number of function evaluations required to achieve similar results.

• The differential evolution operator is the most robust and high-performing recom-

bination operator tested in this study. It clearly outperforms SBX [44] and PCX

[103].

• Instead of using a universal heuristic (1/N) for the probability of mutation, using a

rank-based mutation probability [108] is suggested. It can have significant impact on

the performance especially on the multi-modal problems.

• The diversity aspect is very crucial and important to the performance of AMGA2. It

also is the most computationally expensive operation performed by AMGA2.

• The pseudo-code for the AMGA2 proposed in this paper functionally decomposes all

the conceptual steps of an evolutionary multi-objective optimization algorithm. The

pseudo-code can be used as a recipe to create customized optimization algorithms. It

is also possible to automate the creation of new optimization algorithms using a set

of rules.

• Use of an external archive to store good solutions, and a separate parent population

which is gleaned from the archive decouples the allowed number of function evaluations
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and the desired elite size. AMGA2 can report a significantly larger non-dominated

set (thereby artificially inflating its performance characteristics) for the same number

of function evaluations.

Another design goal of AMGA2 was to automatically fine-tune all the tuning pa-

rameters (except the number of function evaluations and the desired number of solutions)

required by the optimization algorithm. AMGA2 achieves this goal by using the prob-

lem size as the metric to determine the suitable values of the tuning parameters. All the

simulation results in this paper are reported using the automatic tuning feature of AMGA2.

4.7 Ideas for Future Research

There exists significant scope for future improvement of AMGA2. A faster diversity

assessment operator can significantly speed-up its execution time. The AMGA2 does not

make use of any explicit knowledge integration characteristics like use of meta-modeling

and estimation of distribution as part of the optimization process, and use of correlations

and past search history to predict the step sizes and the preferred search directions. Not

every modification/idea attempted improved the performance of AMGA2. The following

is a list of some of the concepts that were implemented but did not yield any noticeable

improvement in the performance of AMGA2.

• Excessive emphasis on diversity : Whilst updating the archive, the diversity of the

solutions can be further increased by choosing solutions that belong to rank 2 and

beyond such that they are farthest from the solutions in rank 1. To achieve this, after

the solutions belonging to rank 1 are identified, the pruning method can be modified

such that if the pair of closest neighbors contains a solution belonging to rank 1, the

other is removed. With this modification, only those inferior solutions will be included

in the archive that are very far away from the best solutions. This strategy however

inhibits the convergence rate and stalls the search process.
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• Explicit handling of infeasible solutions: All the optimization algorithms used in this

study work under the assumption that any feasible solution is better than any in-

feasible solution. While this property may be desired whilst reporting the final set

of solutions, during the optimization, such a strategy is not always desirable. For

constrained test problems which have a portion of their Pareto-front on a constraint

boundary, a solution that is infeasible but is very close to the boundary has a higher

probability of generating a better offspring than a solution that is feasible but is

very far from the Pareto-optimal front. Because of this reason, very often during

the search process, evolutionary algorithms find it difficult to obtain a fine-grained

fitness along the portion of the Pareto-optimal front that lies on the constraint bound-

ary. To remedy this behavior, a tolerance in the constraint violation was introduced

which treated infeasible solutions as feasible if the constraint violation was less than a

specified threshold. Since the objective values of infeasible solutions are not available

(cannot be used), the diversity assessment in the decision space was done. It had the

effect of distributing the solutions along the entire constraint boundary (portions of

which were far away from the Pareto-optimal front). Since the objective values for

infeasible solutions are not available, it is very difficult to predict which portions of

constraint boundary should be favored. Improved constraint handling in evolutionary

multi-objective optimization algorithms can significantly improve their performance

on constrained test problems.

• Explicit regeneration: In the case of multi-modal problems, the evolution often stalls

and gets stuck at a local optimum. The AMGA2 can detect if the search has stalled

(number of solutions belonging to rank 1 do not increase/no solutions belonging to

rank 1 are demoted/the diversity measure does not improve when all the solutions in

the archive belong to rank 1). If there was no improvement for a given number of

generations, the entire population was regenerated and/or the entire population was

mutated. These modifications however resulted in a population which was generally

inferior to the existing best solutions. Through the phenomenon of genetic drift,
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the non-dominated solutions guide the search towards themselves which leads the

population into the same locally optimal basin. After regeneration, if the existing

set of best solutions are not used to guide the search process, it would be akin to

performing a new optimization.

These issues outlined above need further investigation and are the focus of continuing

future research.
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Chapter 5

CONCLUSION

5.1 Concluding Remarks

In this dissertation, we have presented three algorithms and demonstrated their ap-

plication on suitable hypothetical and real-world problems. The body of research presented

in this dissertation (compact packing and shape morphing) focuses on the integration of

geometric and optimization algorithms with the available information about the packing

and layout problem. This knowledge infusion is an important concept used in many ap-

plications of optimization to configuration design [124, 125, 73, 126]. A careful analysis of

these examples reveals the following common characteristics about knowledge infusion.

1. In each case, the solution representation was customized. The customization of the

solution representation consisted of designing a suitable encoding to represent the

solution set and a set of rules to manipulate/interpret the encoding.

2. The customization of the solution representation lead to a reduction in the size of the

search space. It also significantly increased the ratio of feasible to infeasible search

space. Thus, this customization made the original problem easier to solve.

3. In certain cases [124, 4, 126], the customized solution representation allowed for arti-

ficial correction of the solution during the evaluation process. This modification made
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many infeasible solutions feasible and also improved the performance of the solution.

4. It was also observed that the working principle of the optimizer was not modified in

any of the examples. The optimizer retained its global and local search characteristics.

The above mentioned characteristics could potentially be used to guide future at-

tempts at solving configuration design problems for various industrial applications. It has

been shown in [73] that the integration of the shape morphing algorithm with the layout

algorithm helps in improving the performance (design objectives) of the generated layout.

The shape morphing is a geometric algorithm and thus its application further exemplifies

the importance of integrating geometric and optimization algorithms.

The review of the existing literature on optimization algorithms and the design and

development of the general-purpose optimizer AMGA2 and its subsequent benchmarking

leads to the following desirable features that should be present in a high-performing opti-

mization algorithm.

1. Its applicability should not be limited to a specific class of problems; i.e., it should

perform consistently on a wide variety of test problems.

2. It should incorporate explicit mechanisms to detect and mitigate premature conver-

gence.

3. It should not require parameter tuning for different problems. It should have self-

adaptive operators which can automatically adjust themselves based on the problem

size and the objective and constraint function profiles.

4. It should not impose any conditions such as continuity, differentiability, and convexity

etc. on the optimization problem or make any assumptions about it.

5. It should be able to monitor its convergence rate and modify its working principle

accordingly. This feature is especially desired for the algorithms that are to be used

with problems offering varying levels of difficulty.
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6. It should facilitate easy customization of the solution representation, and such a

customization should not significantly affect its performance. The compact pack-

ing problem is a practical engineering application that requires the customization of

the optimization algorithm, and thus it is desirable that the optimization algorithm

is amenable to modifications.

The AMGA2 partially exhibits some of the above mentioned characteristics. It does

not impose any conditions or make any assumptions about the optimization problem. It has

a highly disruptive mutation operator to reduce the probability of premature convergence.

It uses DE which is self-adaptive and does not require parameter tuning. The probability

of mutation in AMGA2 is computed based on the rank of its parent solution and thus

AMGA2 monitors its convergence rate (change in the rank of the solutions). Hence, it can

be concluded that the AMGA2 is a high-performing optimization algorithm.

5.2 Summary of Contributions

The research work presented in this dissertation has made the following contribu-

tions to the existing state-of-the-art in geometric and optimization algorithm development

and their integration to solve packing and layout problems.

1. An algorithm to compactly pack three-dimensional free-form objects with full rota-

tional freedom inside an arbitrary enclosure.

(a) A complete voxel-based CAD engine that can perform surface and volume vox-

elization, Boolean operations, ray tracing, and ISO-surface extraction.

(b) A Bottom-Left-Back-Fill (BLBF) heuristic that works with arbitrary enclosure

geometry and also attempts to fill the voids created by placing relatively large

objects.

2. A physically-based free-form shape morphing algorithm to generate a geometry with

a desired volume whilst taking into account the spatial constraints.
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(a) A general purpose surface collision detection algorithm that works with arbitrary

triangulations and deformable geometries. It does not require any preprocessing

and can perform Yes/No type queries and also report all the pairs of colliding

facets if desired.

(b) An algorithm to automatically generate the mass-spring model from an arbitrary

manifold geometry.

3. A fast and efficient constrained multi-objective optimization algorithm AMGA2

(a) A new selection mechanism to create the parent population

(b) An improved formulation for the crowding distance operator

(c) An improved polynomial mutation operator

5.3 Suggestions for Future Work

Related future work for each of the algorithms presented in this dissertation is

described in their respective chapters. In this dissertation, the aspect of integration has

only been examined in the context of configuration design (packing and layout problems).

It is suggested to explore other diverse avenues for the integration of geometry, optimization,

and problem-specific information. The useful information gleaned from a large set of diverse

application studies can be used to propose a formalism for knowledge infusion, which can

then be applied to solve other similar problems. In particular, it is suggested to explore

different kinds of integration techniques dealing with different representations and identify

the common principles involved. The configuration design problems are encountered in

many industrial applications (trunk loading, shipping, containerization etc.) and therefore

many potential applications of the algorithms described in this dissertation exist. It is

suggested to explore potential applications that can benefit from the algorithms presented

in this dissertation. These applications will further increase the value and usefulness of the

research work presented here. The shape morphing can not only be used with layout design,

122



but also for the automated design of freeform components. It is thus suggested to explore

potential applications that can be automated using the shape morphing algorithm. The

general purpose optimizer AMGA2 presented in this dissertation is shown to be faster on a

set of hypothetical test problems gleaned from the literature. It has not been benchmarked

on practical engineering problems. Conducting a benchmark study involving real-world

examples will further increase the confidence in the performance of the AMGA2. It is also

suggested to perform a more rigorous analysis of the obtained performance metrics using

formal statistical tools. The use of such tools will provide greater insight and confidence into

the values of the reported metrics and will further increase the credibility of the benchmark

study. These and other suggestions are the focus of continuing future research into geometric

and optimization algorithms.

To summarize, the research work presented in this dissertation makes useful con-

tributions to the broad area of optimization and geometric algorithms. It also is an effort

towards the integration of geometric and optimization algorithms especially in the context

of packing and layout design. The author’s hope in writing this manuscript is that this col-

lection of work will benefit the optimization and design community, and will spawn future

research towards a formalism for the integration of geometry, optimization, and available

design domain knowledge.
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