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ABSTRACT 

 

 

 Arabidopsis hexokinase1 (AtHXK1) is a moonlighting protein with roles in both 

glucose signaling and catalysis.  In this study, we first cloned and characterized the six 

HXK related genes from Arabidopsis.  Three of the six encoded proteins were shown not 

to phosphorylate hexoses and thus, are designated as hexokinase-like (HKL) proteins.  

Though they are only 50% identical to HXK1, the amino acid sequences of HKL1 and 

HKL2 both have well conserved glucose binding domains and other recognized structural 

elements.  The possible basis for their lack of catalytic activity was further probed by 

site-directed mutagenesis and ultimately was attributed to a suite of amino acid 

substitutions.  Gene expression studies showed that transcripts of HKL1 and HKL2 occur 

in most plant tissues, thus supporting the hypothesis that they have regulatory functions.    

 The function of AtHKL1 was more closely examined using a reverse genetics 

approach.  We identified a T-DNA knockout mutant for HKL1 and made HKL1 

overexpression lines in different genetic backgrounds. Their phenotypes showed that 

HKL1 is a negative regulator of plant growth.  Interestingly, many of the phenotypes 

required the presence of HXK1 protein.  Both HKL1-GFP and HXK1-GFP are expressed 

at mitochondria and both were shown to interact with each other by 

coimmunoprecipitation assays.  However, even though the HKL1 phenotypes included 

some dependence on glucose treatments, we conclude that HKL1 likely does not have a 

direct role in glucose signaling.  Instead, we found from seedling signaling assays and a 

novel root hair phenotype that HKL1 mediates plant growth responses at least in part by 
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promoting ethylene biosynthesis and/or signaling.  Overall, these studies have helped to 

identify, characterize, and define the function of non-catalytic HXKs from Arabidopsis. 



 iv 

DEDICATION 

 

 

This work is dedicated to my wife, Rucha Karve whose constant inspiration lead 

me to pursue graduate studies.  This work would not have been possible without her 

constant love and support. 

 

Thanks for everything! 



 v 

ACKNOWLEDGMENTS 

 

 I would like to thank my research advisor Dr. Brandon Moore for giving me an 

opportunity to pursue PhD in his lab and for guidance.  This work would not have been 

possible without his expertise, encouragement and enthusiasm.  

 I would like to thank my former advisory committee member, the late Dr. Shu-

Hua Cheng, for her encouragement and help.  She was an invaluable source of 

information, support and encouragement. 

 I would like to thank my advisory committee members, Dr. Albert Abbott, Dr. 

Vance Baird, Dr. Lesly Temesvari and Dr. James Morris for their constructive ideas, 

helpful discussions, and valuable suggestions. 

 Many thanks to former Moore lab members, Dr. Rajagopal Balasubramanian, Dr. 

David Weston and Ms. Helen Metters for their assistance, and a former summer 

undergraduate student Anna Pavlovskaya for the help with the promoter assays.  

 I would like to thank Xiaoxia (Penny) Xia for her tremendous help and support in 

the lab.  

 I would also like to thank my family and my in laws for their encouragement, love 

and support.  I would like to thank my friends in Clemson, Abhijit, Nikhil, Shreenivas, 

Sourabh, Santosh, Sourabh (Jr.), Namrata, Mayank and Prashant for their help and 

support.  Finally, I would like to thank my wife, Rucha Karve for her love and support 

and for patiently standing by me during this long endeavor.  



 vi 

TABLE OF CONTENTS 

 

 

Page 

 

TITLE PAGE ................................................................................................................... i 

 

ABSTRACT.................................................................................................................... ii 

 

DEDICATION ............................................................................................................... iv 

 

ACKNOWLEDGMENTS................................................................................................v 

 

LIST OF TABLES ....................................................................................................... viii 

 

LIST OF FIGURES........................................................................................................ ix 

 

CHAPTER 

 

 I. LITERATURE REVIEW...............................................................................1 

 

   Introduction ..............................................................................................1 

   Glucose sensing and signaling in yeast and mammals.............................2 

   Glucose sensing and signaling in plants...................................................5 

   Molecular mechanism of glucose regulation in plants...........................11 

   Cellular context of HXK dependent signaling .......................................13 

   Interaction of glucose signaling with other signaling pathways ............15 

   Hexokinases ...........................................................................................21 

   Non catalytic HXKs ...............................................................................24 

   References ..............................................................................................27 

 

    

 

II.  EXPRESSION AND EVOLUTIONALRY FEATURES  

   OF HEXOKINASE GENE FAMILY IN ARABIDOPSIS....................45 

 

   Abstract ..................................................................................................45 

   Introduction ............................................................................................47 

   Materials and methods…………………………………………………50 

   Results ....................................................................................................56 

   Discussion……………………………………………………………...76 

   References……………………………………………………………...83  

 

 



 vii 

 III. FUNCTION OF ARABIDOPSIS HEXOKINASE-LIKE 1 

    AS AN EFFECTOR OF PLANT GROWTH .......................................90 

    

   Abstract ..................................................................................................90 

   Introduction ............................................................................................92 

   Materials and Methods ...........................................................................95 

   Results ..................................................................................................100 

   Discussion ............................................................................................115 

   References ............................................................................................121 

 

 

IV A ROLE OF HKL1 IN MEDIATING CROSS-TALK BETWEEN 

   GLUCOSE AND ETHYLENE SIGNALING .....................................127 

 

   

   Abstract ................................................................................................127 

   Introduction ..........................................................................................129 

   Materials and methods .........................................................................132 

   Results ..................................................................................................136 

   Discussion ............................................................................................152 

   References ............................................................................................158 

 

 

IV SUMMARY ...............................................................................................163 

 

   

    

APPENDICES..............................................................................................................169 

 

 A: Domains and conserved regions of AtHXKs with respect 

   to ScHXK2 ...........................................................................................170 

 B: Sequence analysis of HXK family genes from A. lyrata ...........................172 

 C: Amino acid sequence alignment for predicted HXK family 

    proteins from A. thaliana and A. lyrata ..............................................173 

   D: Effect of ABA on seed germination of Col, hkl1-1 and abi4-1 .................175  

 E: Copyrights permission for chapter 2 ..........................................................176 

    

 

 

 

 



 viii 

LIST OF TABLES 

 

 

Table                                                                                                                               Page 

 

 2.1 Selected properties predicted for HXK family proteins 

    from A. thaliana ....................................................................................57 

 

 2.2 Comparisons of HXK amino acid sequences from  

   A. thaliana and A. lyrata ........................................................................72 



 ix 

LIST OF FIGURES 

 

 

Figure                                                                                                                             Page 

 

 1.1 Arabidopsis seedling phenotypes on high glucose medium...........................8 

 

 1.2 A model for interaction between glucose and hormone  

   signaling .................................................................................................18 

 

 2.1 Phylogenetic relationships of predicted Arabidopsis HXK 

    family proteins.......................................................................................58 

 

 2.2 Organ expression of Arabidopsis HXK family genes  

   determined by RT-PCR..........................................................................59 

 

 2.3 Sub-cellular expression of Arabidopsis HXK family proteins.....................61 

 

 2.4 Amino acid sequence alignment for predicted  

   Arabidopsis HXK family proteins..........................................................64 

 

 2.5 Glucokinase activity measured after transient expression of  

   different cDNAs in protoplasts from greening maize leaves .................67 

 

 2.6 Glucokinase activity of HXK1 and HKL1 proteins modified  

   by site directed mutagenesis...................................................................70 

 

 2.7 Sliding window analyses of KA/KS of selected HXK 

    and HKL loci.........................................................................................74 

 

 3.1 Molecular characterization of Arabidopsis HKL1 mutant  

   and transgenic lines ..............................................................................101 

 

 3.2 Growth phenotypes of HKL1 mutant and transgenic lines ........................103 

 

 3.3 Seedling hypocotyl growth of different HKL1 expression 

    lines .....................................................................................................105 

 

 3.4 Auxin induced lateral root formation in seedlings of  

   different HKL1 expression lines ..........................................................106 

 

 3.5 Glucokinase activity of different HKL1 expression lines..........................108 

 

 



 x 

List of Figures (Continued) 

 

Figure                                                                                                                             Page 

 

 3.6 Phenotypes of different HKL1 expression lines grown  

   on glucose plates ..................................................................................109 

 

 3.7 Protoplast signaling assay using WT Col or hkl1-1 ...................................111 

 

 3.8 Organ and tissue expression of pHKL1-GUS.............................................113 

 

 3.9 Effect of different plant hormones on pHKL1-GUS expression ................114 

 

4.1 Expression of glucose regulated genes ASN, GLYK,  

  and T6PSY in HKL1 transgenic and mutants lines ....................................136 

 

 4.2 Effect of ethylene on glucose sensitivity of HKL1 transgenic                               

   and mutant lines ...................................................................................138 

 

4.3 Expression of ethylene regulated genes SP2 and LRR in  

   HKL1 transgenic and mutant lines.......................................................140 

 

 4.4 The effect of glucose and ethylene on the expression of genes 

   associated with ethylene biosynthesis or signal transduction ..............141 

 

 4.5 Root hair phenotype of HKL1 overexpression lines  

   and gin2-1on different sugar plates......................................................143 

 

 4.6 Root hair morphology of actin 2-1 seedling grown  

   on different sugar plates .......................................................................145 

 

 4.7 Role of ethylene in the root hair phenotype of HKL1-HA ........................146 

  

 

 4.8 Root hair growth of ein2-1 and eto2-1 .......................................................149 

  

 4.9 Co-immunoprecipitation assay for interaction between 

   HKL1 and HXK1 .................................................................................152 

 5.1 A proposed model for HKL1 function .......................................................166 

 

 

 

 



 1 

CHAPTER ONE 

LITERATURE REVIEW 

 

Introduction 

 

 Photosynthetic fixation of carbon and light energy in energy-rich sugar substrates 

by metabolic enzymes molecules is the most important process for sustaining the life on 

this planet.  Sugars have been traditionally viewed as energy sources, as structural 

components and as food reserves.  Sugars, in addition, have acquired important 

regulatory functions even early during evolution.  Sugars are known to control 

metabolism, stress resistance, growth, and development in bacteria, yeast, plants, and 

animals.  

  In sessile organisms such as plants, the maintenance of energy homeostasis 

requires sophisticated and flexible regulatory mechanisms to account for the amazing 

physiological and developmental plasticity seen in plants.  To regulate their growth and 

development, plants need to sense, transmit and respond to sugar signals together with 

internal hormonal signals and external cues such as light, temperature, biotic stress and 

abiotic stress.  Several cross disciplinary approaches have been implemented to dissect 

the components of sugar signaling pathways in plants.  Hexokinase (HXK), the gateway 

enzyme of the glycolytic pathway, has been shown to act as a glucose (glc) sensor in 

yeast, mammals and plants.  Still, much needs to be learnt about the precise molecular 

mechanism of glc signaling in general and that of the role of HXK in particular.  In this 
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review I will first discuss the process of glc signaling in yeast and mammals.  I will then 

summarize our current understanding of plant glc signaling with an emphasis on HXK-

dependent glc signaling.  In the end I will elaborate on  functional aspects of plant HXKs. 

 

Glc sensing and signaling in yeast and mammals  

 

 Among all metabolizable sugars, glc has central metabolic importance in virtually 

all organisms, from microbes to humans.   The initial step in glc metabolism is 

phosphorylation to form glucose-6-phosphate (glc-6P), the reaction catalyzed by HXK.  

Glc-6P can have multiple metabolic fates.  Glycolytic metabolism of glc-6P is a major 

pathway for the generation of energy (ATP), and glycolytic intermediates also serve as 

precursors for the biosynthesis of other cellular constituents including amino acids and 

secondary metabolites.  Metabolism of glc-6P through the pentose phosphate pathway 

generates NADPH and precursors required for a variety of anabolic pathways.  Glc can 

itself be converted into polymeric forms used as support structures (cellulose) or 

carbohydrate reserves (starch and glycogen).  Apart from these key metabolic functions, 

the pivotal role of glc as a signaling molecule is well illustrated in unicellular organisms 

like yeast and bacteria (Rolland et al. 2002).  

 Study of glc signaling in eukaryotes has been greatly aided by developments in 

the understanding of the glc signaling pathway in baker’s yeast, Saccharomyces 

cerevisiae.  The selective and rapid changes in gene expression enable yeast to survive 

adverse fluctuation of a key nutrient source.  The process of glc sensing in yeast is 
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multifactorial, involving the role of hexose transporters (HXTs), HXK2 protein and 

signaling through cAMP (Rolland et al. 2002).  

 Among various glc-regulated genes, hexose transporter genes were found to be 

critical in glc sensing and signaling in yeast (Gancedo, 1998; Ozcan and Johnston, 1999).  

A number of yeast hexose transporters (HXTs) are transcriptionally regulated by multiple 

glc signaling pathways (Ozcan and Johnston, 1999).  At least 16 of 48 carbohydrate 

transporter-like genes have been demonstrated to have transport functions while Snf3 and 

Rgt2, have been identified as sugar sensors that can bind to glc but are unable to transport 

glc.  Upon binding to glc, the cytosolic, C terminus portions of Snf3 and Rgt2 interact 

with Yck Kinase and its substrates Mth1 and Std1, initiating a signaling cascade which 

ultimately activates transcription of target hexose transporters.  This glc-mediated 

transcriptional regulation also controls sugar uptake in yeast.  In the absence of glc, Rgt1 

works as a transcriptional repressor and the association of Rgt1 with HXT2 and HXT4 

promoter results in the repression of these HXT genes (Ozcan and Johnston, 1996).  In 

contrast, in the presence of high glc, the association of Rgt1 with target HXT promoters 

is inhibited, thereby derepressing the transcription of target genes (Flick et al. 2003).  

 Glc phosphorylation in yeast is catalyzed by three enzymes, of which  HXK2 is 

most active and is also required for glc repression of genes.  The mechanism of glc 

signaling through HXK2 is yet unclear.  There have been reports of a correlation between 

the catalytic activity and glc repression, but studies using site-directed mutations in 

HXK2 suggest that these two phenomena can be uncoupled (Hohmann et al. 1999).  

HXK2 was shown to interact with transcription factor Mig1 and thereby repress 
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transcription of target genes like  invertase (Gancedo et al. 2008).  HXK2 also is required 

for glc induction of certain glc transporter genes (Ozcan et al. 1996).   

A third, glc signaling pathway in yeast is the cAMP pathway.  In de-repressed yeast cells, 

glc triggers a rapid increase in cAMP, which initiates a protein kinase A (PKA) 

phosphorylation cascade.  The downstream targets of PKA include enzymes involved in 

carbon metabolism such as neutral trehalase (Nth1) and 6-phosphofructo-2-kinase 

(Gancedo et al. 2008).  In addition, glc induces activation of protein synthesis by PKA-

dependent induction of ribosomal protein genes (Mager and Planta, 1991).  This process 

stimulates cell growth and proliferation. 

 In mammals glc signaling is directly by hormones, unlike yeast where it is 

regulated by the metabolism.  In humans, glc regulation requires adaptation to the 

external glc environment (nutrition) and the internal glc environment (blood glc).  This is 

achieved largely by counterbalancing the secretion of glucagon and insulin by pancreatic 

α and β cells, respectively.  Secretion of glucagon from α cells is increased when blood 

glc concentration is decreased, however the exact molecular mechanism underlying the 

glucagon release is not well understood (Cabrera et al. 2008).  Pancreatic β cells respond 

to an increased  rate of glc metabolism through glucokinase (GK) by increasing the 

secretion of insulin and by increasing insulin gene expression (Tarasov et al. 2004; 

Towle, 2005).  Two transcription factors, PDX-1 and MafA, act synergistically and with 

the β-cell-specific factor BETA2 to promote insulin gene transcription (Zhao et al. 2005).  

When glc concentration is low PDX-1 is phosphorylated and moves to the nucleus 

(Macfarlane et al. 1999), similar to what occurs with the Mig1 repressor in yeast.  
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Understanding the link between changes in glc metabolism and activity of PDX-1 and 

MafA is essential for further understanding of this regulatory pathway.  

 The role of glc in altering gene transcription is understood best in the liver cells, 

where elevated glc concentrations increase the production of enzymes that are necessary 

for de novo lipogenesis (Towle, 2005).  Promoters of genes encoding several lipogenic 

enzymes have been shown to contain two 6 bp motifs termed  carbohydrate response 

elements (ChoRE).  A 100 kDa bZIP/LZ protein was shown to bind to the promoters 

containing ChoRE (Yamashita et al. 2001).  This ChoRE binding protein (ChoREBP) 

forms heterodimers with another bZIP/LZ protein Max like factorX (Mlx).  MondoA, a 

paralog of ChoREBP also forms dimers with Mlx and activates transcription of a broad 

spectrum
 
of metabolic genes, including those for the glycolytic enzymes (Sans et al. 

2006).  Interestingly, both ChoREBP and MondoA shuttle between the cytoplasm and 

nucleus in a glc dependent manner (Kawaguchi et al. 2001; Stoltzman et al. 2008).  

Nuclear translocation of MondoA depends on catalytic activity of human hexokinase 

(Stoltzman et al. 2008).  Interestingly, the ability of human GK to complement glc-

signaling defects of the yeast hxk2 mutant indicates a potential signaling function of 

mammalian GKs (Mayordomo and Sanz, 2001). 

 

Glc sensing and signaling in plants 

 

 Sugars affect plant growth and development directly by providing metabolic 

energy and indirectly by modulating other plant signal transduction pathways such as 
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those involving light, hormones, and nitrogen signaling (Smeekens, 2000; Coruzzi and 

Zhou, 2001; Leon and Sheen, 2003; Gibson, 2004).  Some examples of sugar regulation 

of plant growth include  the role of glc in cell cycle regulation (Riou-Khamlichi et al. 

2000; Lorenz et al. 2003), seed germination (Pego et al. 1999; Price et al. 2003; Dekkers 

et al. 2004), cotyledon differentiation during embryogenesis (Borisjuk et al. 2004), 

flowering time (Ohto et al. 2001), senescence (Dai et al. 1999; Fujiki et al. 2001; Pourtau 

et al. 2006) and apoptosis (Kim et al. 2006).  Before the initial observations of sugar 

regulation of gene expression in the late 1980’s sugar effects on photosynthesis, growth 

and development were presumed to be the indirect result of the metabolic state.  

However, Sheen (1990) showed that glc, sucrose or acetate applied to maize mesophyll 

protoplasts led to repression of seven photosynthetic genes.  

 Sugar sensing and regulation in multicellular plants is undoubtedly a much more 

complex phenomenon than in the unicellular yeast for several reasons (Moore and Sheen, 

1999).  First, the plants use both long distance and intra-cellular signaling mechanisms to 

co-ordinate growth programs with environmental changes.  As photosynthetic 

multicellular organisms, plants have distinct source (sugar exporting) and sink (sugar 

importing) organs.  Photosynthesis and sink demand needs to be rigorously coordinated, 

and this coordination involves both metabolic (substrate and allosteric) regulation and 

specific sugar-signaling mechanisms (Rolland et al. 2006). 

  Although sucrose is the major photosynthetic and transport sugar in plants, 

various effects of sugars on growth and development can be attributed to glc or fructose, 

or their downstream metabolic intermediates (Koch 1996).  A glc signal is generated by 
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different sources at different locations.  In photosynthetic (source) cells, photosynthate 

generated in the Calvin cycle is exported during the day as triose-phosphates, from the 

chloroplast to the cytosol, for metabolism and/or converted to sucrose for export to sink 

tissue.  In sink tissues, sucrose can be imported into cells through plasmodesmata 

(symplastic transport) or the cell wall/plasma membrane (apoplastic transport).  

Intracellular sucrose can be cleaved by cytoplasmic INV (C-INV), generating glc and 

fructose.  The imported sucrose can also be stored in the vacuole, where it is hydrolyzed 

by vacuolar INV (V-INV).  In the apoplast, extracellular sucrose is hydrolyzed by cell 

wall INV (CW-INV), generating extracellular glc and fructose, which are imported by 

hexose transporters (Rolland et al. 2006).  In plants sucrose metabolism is characterized 

by a continuous process of degradation and biosynthesis of sucrose.  This sucrose cycling 

has also been proposed to generate hexose signals (Moore et al. 1998).  Excess 

photosynthate is transiently stored as starch in the chloroplast during the day and 

exported at night as maltose (Lu and Sharkey, 2004).  This also could provide a major 

source for glc.      

  A number
 
of genetic approaches have been used to define sugar-response

 

pathways and to identify their components (Rook and Bevan, 2003; Leon and Sheen, 

2003; Gibson, 2000).  As a genetic model system,  Arabidopsis has been used to isolate 

mutants from screens  based on the observation that growth on media with high sugar 

levels can arrest seedling development. (Fig.1.1).  
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Figure 1.1  Arabidopsis seedling phenotypes on high glc medium. Wild-type (WT), glc-insensitive (gin), 

and glc-oversensitive (glo) plants were grown on 6% medium for 5 days under light (Figure was adapted 

from Rolland et al. 2002) 

 

For example, Arabidopsis seeds can be exposed to high concentrations of glc that allow 

germination, but inhibit further seeding development.  Mutants generated in this screen 

are glc insensitive (gin; Zhou et al. 1998).  In contrast, glc super sensitive (gss; Pego et al. 

1999) and glc-oversensitive (glo; Rolland et al. 2002) mutants also have been identified, 

but the affected genes in many of these cases have not been identified (Fig. 1.1).  

Similarly several mutants were identified by their phenotypic response to various other 

metabolizable sugars.  Although the use of these genetic screens has led to identification 

of various components of sugar signaling, nonetheless many independently isolated sugar 

insensitive mutants are allelic to the mutants in various hormone signaling pathways.  

 One important issue within the study of signaling by any metabolite is that it is 

hard to distinguish an indirect metabolic effect from a direct signaling effect.  As one 

approach, various sugar analogues have been used to overcome this problem.  Among 

these, mannose is an epimer of glc known to be phosphorylated by HXK, but poorly 

metabolized.  Mannose treatments have shown that glc metabolism beyond 

phosphorylation is not required to trigger sugar response genes (Graham et al. 1994; Jang 
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and Sheen 1994).  Similar results were found using 2-deoxyglucose, a glc analogue 

phosphorylated by HXK, but also poorly metabolized.  Other glc analogues, 6-

deoxyglucose and 3-O- methylglucose, are transported into the cell but are not substrates 

of HXK, but did not trigger the repression these sugar response genes.  However, 

expression of several plant genes, such as Arabidopsis patatin storage protein (Martin et 

al. 1997) is induced by sugar analogues that cannot phosphorylated.  These results using 

glc analogues suggest that glc signaling in plants involves both HXK-dependent and 

HXK-independent pathways. 

 Based on the role of HXK1, three distinct glc signal transduction pathways         

are defined in plants (Xiao et al. 2000). 

a. A HXK1- dependent pathway in which gene expression is correlated with the HXK 

mediated signaling function.  A major effect of this pathway is regulation of 

photosynthetic genes.  

b. A HXK1- independent signaling pathway.  Glc induction of CHS, PAL1 and genes 

encoding AGPase in addition to glc repression of ASN1 are observed independent of 

sense and antisense overexpression of AtHXK1 or overexpression of yeast HXK2 

c. A glycolysis dependent pathway in which gene expression is modulated by metabolites 

downstream of the sugar phosphates in glycolysis.  This pathway has been suggested to 

regulate the pathogenesis related (PR) genes. 

 There are at least two HXK-independent signaling pathways in plants.  Genetic 

and biochemical evidence supports the involvement of heterotrimeric G proteins in glc 

signaling.  Arabidopsis genome encodes for one canonical Gα subunit (AtGPA1), one Gβ 
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subunit, and two Gγ subunits, but, as yet no GPCR.  However, AtGPA1 is shown to 

interact with Regulator of G-protein signaling 1 (RGS1), an unusual hybrid seven-

transmembrane domain protein with a C-terminal RGS-box (Chen et al. 2003).  Based on 

the use of different glc analogs, it is suggested that AtRGS1 functions in an HXK 

independent glc signaling pathway (Chen and Jones, 2004).  The rgs1 mutant seedlings 

display insensitivity to the developmental arrest on 6% glc, whereas RGS1 

overexpression lines are glc hypersensitive (Johnston et al. 2007).   

 Another potential extracellular glc sensing mechanism in plants may involve 

proteins analogous to the yeast glc transporter-like sensors, Snf3 and Rgt2 (Lalonde et al. 

1999).  Monosaccharide transporters with extended cytoplasmic loops similar to 

Snf3/Rgt2 are encoded in the Arabidopsis genome, and the monosaccharide sugar 

transporter STP13 acts as a heterologous multicopy suppressor of the yeast snf4∆ mutant 

growth phenotype (Kleinow et al. 2000).  

 A regulatory role of plant HXK in glc signaling was suggested initially by testing 

the effects of a variety of sugars, glc analogs and metabolic intermediates on 

photosynthesis and the glyoxylate cycle (Graham et al. 1994; Jang and Sheen 1994).  

Jang et al. (1997) used transgenic Arabidopsis plants with altered HXK1 expression to 

further examine sugar signaling.  Plants with decreased  HXK1 (35S::antisense-HXK1) 

expression were  hyposensitive to glc induced seedling developmental arrest, whereas 

those over expressing HXK1 (35S::AtHXK1) were hypersensitive to glc induced seedling 

developmental arrest.  Furthermore, yeast HXK2 could not compensate for the signaling 
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function of AtHXK.  This indicated that the HXK catalytic and regulatory functions can 

be uncoupled (Jang et al. 1997). 

 Proof of HXK1 function as a direct glc signaling protein came from the work of 

Moore et al. (2003).  Working with two independent null mutant alleles of HXK1 (gin2-1 

and gin2-2) the authors provided evidence of HXK1 as a sugar sensor in Arabidopsis.  

The gin2 seedling could overcome glc induced seedling developmental arrest and the 

normally glc repressed photosynthetic genes CAB, CAA and SBP were derepressed in 

gin2.  In addition to overcoming the seedling developmental arrest, different phenotypes 

of gin2 also indicate that HXK1 promotes growth through interactions with hormone 

signaling pathways.  These authors made transgenic Arabidopsis in gin2-1 background 

with two catalytically inactive AtHXK1 alleles, G104D and S177A, which are deficient in 

ATP binding and phosphoryl transfer, respectively. These transgenics could sustain WT 

growth but had GK activity equal to gin2.  The G104D and S177A mutants could also 

restore photosynthetic gene repression to the levels detected in WT seedlings.  This 

complementation of gin2-1 with catalytically inactive HXK1 provided definitive proof of 

a distinct sensing function of HXK1 which is independent from its catalytic function.  

 

Molecular mechanisms of glc regulation in plants 

 

 Available evidence indicates that glc regulation of gene expression involves 

different molecular mechanisms.  Most studies on glc activation and repression of gene 

expression have emphasized the regulation of gene transcription.  Short-term treatments 
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of Arabidopsis seedlings with glc or sucrose have been shown to affect the expression of 

about 1,000–1,700 transcripts, depending on experimental conditions (Price et al. 2004; 

Osuna et al. 2007).  Studies with several maize photosynthetic gene promoters indicate 

that different regulatory elements are involved in sugar repression and negative control of 

positive cis-elements (Sheen 1990, 1999).  Many sugar-regulated genes and promoters 

have been used to screen for Arabidopsis mutants with potential defects in transcription 

control.  Baier et al. (2004) used the APL3 (ADP glc phosphorylase large subunit-3) gene 

promoter fused with firefly luciferase gene to transform Arabidopsis.  This screen based 

on the activity of a luciferase (LUC) reporter gene under the control of the APL3 

promoter yielded high sugar-response (hsr) mutants that exhibited elevated LUC activity 

and APL3 expression in response to low sugar concentrations.  Characterization of hsr 

mutants indicated that the regulation of sugar-induced and sugar-repressed processes 

controlling gene expression, growth, and development in Arabidopsis are affected in 

these mutants.  A similar approach using β glucuronidase gene expression was used by 

Martin et al. (1997) for genes specific for sink tissue.  The Arabidopsis β amylase gene is 

induced by sugars and mutants that display either increased or reduced sugar sensitivity 

have been isolated in amylase activity screens (Donggiun et al. 1998; Mita et al. 1997).  

 Different types of cis elements have been identified in sugar-regulated plant 

promoters: the SURE (sugar-responsive) (Grierson et al. 1994), SP8 (Ishiguro and 

Nakamura, 1994), TGGACGG (Maeo et al. 2001), G-box elements (Giuliano et al. 1988),  

B-box elements (Grierson et al. 1994; Zourelidou et al. 2002) and TELO motif (Li et al. 

2006).  TELO-motif was significantly enriched in the promoters of protein and nucleotide 
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synthesis genes.  The combination of TELO and TEFF motif (Tremousaygue et al. 1999) 

in front of a minimal promoter driving GUS expression conferred glc-responsive 

expression in root meristems of transgenic Arabidopsis plants (Li et al. 2006).  

 Glc not only controls gene expression at the transcriptional level, but also at a 

post transcriptional level.  In rice, glc affects α-amylase mRNA stability
 
through a 

transcription-dependent mRNA destabilization process (Sheu et al. 1996).  In 

Arabidopsis, short term treatment of seedings with glc results in disruption of F-actin fine 

filaments.  Actin disruption also blocks the repression of glc regulated promoters in 

Arabidopsis (Balasubramanian et al. 2007).  A targeted modulation of translational 

control has been proposed to play a role in this destabilization of the actin cytoskeleton 

by glc (Balasubramanian et al. 2007). 

 Protein stability and selective proteolysis have emerged as major regulatory 

mechanisms in plant signaling and development (Smalle et al. 2004).  Glc signaling 

pathways also make use of these mechanisms to regulate downstream targets.  Glc 

antagonizes ethylene signaling by enhancing proteasome-dependent degradation of the 

key downstream transcriptional regulator EIN3.  Ethylene on the other hand, enhances 

EIN3 stability.  Interestingly, this glc response is dependent on AtHXK1 (Yanagisawa et 

al. 2003). 

 

Cellular context of HXK dependent glc signaling 
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 Although it is widely accepted that HXK acts as a glc sensor in Arabidopsis, the 

cellular context of HXK dependent signaling is yet unclear (Balasubramanian et al. 

2008).  One suggestion is that HXK-dependent signaling in plants occur in an analogous 

fashion to yeast, in which nuclear localized HXK regulates transcription of target genes 

(Rolland et al. 2002).  However, in plants there are conflicting reports on the sub cellular 

locations for this glc sensor.  Heazlewood et al. (2004) reported from a proteomic 

analysis that AtHXK1 is one of 416 identified mitochondrial proteins from a dark-grown 

Arabidopsis cell culture.  When expressed in tobacco (Nicotiana tabacum) protoplasts, 

AtHXK1-GFP expression was associated only with mitochondria (Damari-Weissler et al. 

2007).  On the other hand, Yanagisawa et al. (2003) reported that based on differential 

detergent extraction, AtHXK1 occurs at least in part in the nucleus of isolated 

protoplasts.  Cho et al. (2006) using  a similar biochemical  fractionation presented 

evidence that a putative nuclear-localized AtHXK1 forms a glc signaling complex with 

two unconventional proteins,  vacuolar H
+
-ATPase B1 and a subunit of the 19S 

regulatory particle of the proteasome.  The putative nuclear HXK complex was shown by 

using ChIP assays to bind to the promoter of CAB2, a known glc response gene.  Even 

though the results of Cho et al. (2006) support a role of HXK1 as a regulator of promoter 

expression, there was no direct evidence presented to show that HXK1 does occur in the 

nucleus at anytime during plant growth.  

 Balasubramanian et al. (2007) on the other hand observed HXK1-GFP transiently 

expressed in Arabidopsis protoplasts as well as in stable transgenic lines. HXK1 was 

exclusively localized on mitochondria.  Their results were further supported by the results 
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of organelle fractionation of Arabidopsis and pea leaf tissue, in which HXK1 was found 

only in the mitochondrial fraction but not in the nucleus.  They also identified an 

interaction between HXK1 and porin, which indicates that porin is a mitochondrial 

docking protein for HXK1.  AtHXK1 has an N-terminal 24-amino acid peptide that is 

predicted to function as a targeting sequence. The results of Balasubramanian et al. 

(2007) confirmed that this peptide is both necessary and sufficient for protein targeting to 

mitochondria in transfected leaf protoplasts.  Further, unlike castor bean (Ricinus 

communis) endosperm in which mitochondrial HXK which is released by sugar 

phosphate treatment (Miernyk and Dennis, 1983), AtHXK1 did not move from 

mitochondria in response to ATP, ADP, G6P, F6P or light/dark treatments.  These 

observations suggest alternative mechanisms that might account for different aspects of 

glc signaling such as translational and post translational regulatory processes.  

 

Interaction of glucose signaling with other signaling pathways 

 

 An important factor that complicates the characterization of components of sugar 

signaling pathways is the fact that these pathways exhibit ‘cross-talk’ with many other 

plant response pathways.  Both genetic screens based on seedling developmental arrest 

on high sugar media and those based on transgenic plants containing reporter gene 

constructs have yielded a large number of mutants allelic to known hormone signaling 

related mutants, predominantly in ABA and ethylene signaling.  ABA was found to be of 

major importance for the ability of the germinating seeds to respond to sugar.  Several 
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sugar signaling mutants contain lower levels of endogenous ABA than WT plants (Leon 

and Sheen, 2003) and exogenous glc has been shown to retard the rate at which 

endogenous ABA levels decline in germinating Arabidopsis seeds (Price et al. 2003). 

  Abscisic acid insensitive4 (abi4) mutant was originally isolated because of its 

ability to germinate on ABA containing media normally inhibitory for the wild type.  The 

responsible gene was identified as an Apatela2 –transcription factor (Finkelstein et al. 

1998).   However, many of the sugar response mutants are allelic to abi4 (sun6, Huijser et 

al. 2000; sis5 Laby et al. 2000; gin6, Arenas-Huertero et al. 2000).  Several mutants 

involved in ABA biosynthesis have also been isolated in sugar response screens, most 

notably different alleles of aba2 (gin1, Zohu et al. 1998; sis4 Laby et al. 2000).  In 

addition, overexpression of Arabidopsis ABA-responsive element binding factors ABF3 

and ABF4 confers both ABA and glc oversensitive phenotypes, supporting further 

interactions between glc and ABA signaling (Kang et al. 2002).  Also, ABF2, an ABA 

response element (ABRE) binding basic leucine zipper (bZIP) TF, is an essential 

component of glc signaling (Kim et al. 2004).  These studies show that germinating 

seedlings apparently require an intact ABA signaling pathway to carry out glc signaling 

(Smeekens 2000).  

 The loci shown to be associated with both ABA and sugar response have been 

limited so far to those encoding ABA biosynthetic enzymes  (ABA1/ABA2/GIN1/SIS4) 

and ABI3/GIN5/LOS5), some ABI transcription factors (ABI4/GIN6/SIS5/SUN6) and 

related proteins (ABF3 and ABF4) (Leon and Sheen, 2003).  Among these, the ABI 

transcription factors appear to function in the same signaling pathway mediating ABA 
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response (Finkelstein et al. 2002) and their expression is induced by glc in a HXK 

dependent manner ( Leon and Sheen 2003) (Fig. 1.2).  

 Phenotypic and genetic analysis of the glc-insensitive, gin1 mutant first revealed 

the interaction between sugar and ethylene-mediated signaling pathways (Zhou et 

al.1998).  The observation that the glc insensitive phenotype can be mimicked by ACC 

treatment of WT seedlings prompted the investigation of possible interactions between 

glc and ethylene signaling (Zhou et al.1998).  Similar to gin, the constitutive ethylene 

biosynthetic mutant eto1 (ethylene overproducer) and constitutive ethylene signaling 

mutant ctr1 (constitutive triple response) were found also to be insensitive to glc induced 

developmental arrest.  In contrast, ethylene insensitive mutants, including etr1, ein2, 

ein3, and ein6 also exhibit glc hypersensitivity (Zhou et al. 1998) (Fig. 1.2).  Interestingly 

two other Arabidopsis mutants, sis1 (Gibson et al. 2001) and gin4 (Rolland et al. 2002) 

were originally identified in phenotypic screens for components of glc signaling, yet are 

allelic to ctr1 (Kieber et al. 1993).  However unlike eto1 and ctr1, gin1 does not display 

the ethylene triple response phenotype in the dark (Zhou et al. 1998).  This phenotype 

indicated that the gin1 phenotype and the triple response phenotype are uncoupled 

(Rolland et al. 2002).  Double mutant analysis also suggest that GIN1 acts downstream of 

both ETR1 and HXK1 (Zohu et al. 1998).  Further experiments have shown that gin1 is 

allelic to aba2, a gene required for ABA biosynthesis (Cheng et al. 2002).  This result 

suggests that glc can modulate ethylene signaling through the ABA pathway (Rolland et 

al. 2002).  Further, EIN3 (ethylene-insensitive3) and EIL1 (EIN3-like protein) protein 

stability is enhanced by ethylene treatment (Guo and Ecker, 2003), but reduced by glc 
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treatment (Yanagisawa et al. 2003).  In general, ABA and glc responsiveness are 

correlated, whereas ethylene acts antagonistically to these signals at germination and in 

early seedling growth.  

 

         

Figure 1.2  A Model for interaction between glc and hormone signaling. Glc signaling interacts with ABA 

ethylene, auxin and cytokinin signaling to modulate plant growth. Overall, ABA has same responses where 

as ethylene and auxin show antagonistic responses to glc signaling. [Figure was adapted from Rolland et al. 

(2006)] 

 

 Like ABA and ethylene, gibberellins are also involved in this complex web of 

sugar signaling.  For example glc can repress gibberellin induction of α-amylases in 

barley embryo (Perata et al. 1997).  Site-directed mutagenesis of the 50-bp nucleotide 

sequence from -172 to -123 of α-amylase genes in rice revealed that consensus sequences 

of G motif (TACGTA) and TATCCA T/C are responsible for its sugar repression 
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(Toyofoku et al.1998).  Lu et al. (1998) identified target sequences in the promoter of a 

rice α amylase (αAmy3) containing the GC box
 
plus, either G box or the TATCCA 

element, of which TATCCA element is a component of the GA response.  Morita et al. 

(1998) demonstrated that the gibberellin-inducible rice α-amylase gene, RAmy1A, is 

sugar repressed in rice embryos.  They also found that gibberellin-response cis-elements 

of GARE (TAACAAA) and pyrimidine box (CCTTTT) were partially involved in the 

sugar repression.  Three MYB factors that bind to the glc and gibberellin response
 

element TATCCA have recently been identified from rice (Lu et al.
 
2002). 

 The delayed leaf senescence and defects in cell expansion in gin2 also suggested a 

possible connection between glc and cytokinin signaling (Moore et al. 2003) (Fig. 1.2).  

When supplemented with cytokinin, WT Arabidopsis seedlings could overcome the 

developmental arrest induced by 6% glc (Moore et al. 2003).  Conversely, cytokinin 

signaling mutants ahk3 and cre1 are sugar hypersensitive (Franco-Zorrila et al. 2004).  

These findings suggest that glc and cytokinin signaling can be antagonistic.  However, 

HXK-dependent glc signaling also interacts with cytokinin signaling as regulatory 

components of mitosis by promoting the expression of cyclinD2 and cyclinD3, 

respectively (Riou-Khamlichi et al. 2000).  In tobacco BY-2 cells, expression of the D 

cyclins is upregulated by auxin, but differentially affected by sugars and cytokinins: 

CycD2:1 is upregulated by hexoses but downregulated by cytokinins, whereas expression 

of CycD3:1 is governed in the opposite way.  CycD3:2 is synergistically upregulated by 

all three types of signals (Hartig and Bake, 2005), indicating that the glc interaction with 

cytokinin is tissue dependent. 
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 The phytohormone auxin is a key regulator of plant growth and development.  Glc 

signaling also interacts with auxin signaling.  Moore et al. (2003) have reported a 

decreased sensitivity to auxin by gin2, despite seedlings having normal  auxin levels (Fig. 

1.2).  Furthermore, the auxin signaling mutants axr1, axr2 and tir1 are insensitive to glc-

induced developmental arrest on plates with 6% glc.  These observations support an 

interaction between glc signaling and auxin signaling, downstream of HXK1.  

 In addition to interaction with phytohormone signaling pathways, there are reports 

of cross talk between sugar-sensing and various light signals.  In the experiments by 

Thum et al. (2003), light was able to override carbon as a major regulator of ASN1
 

(asparagine synthetase) and GLN2 (glutamine synthetase) in etiolated seedlings.  By 

contrast, carbon potentiates
 
far red induction of GLN2 and ASN2 in light-grown

 
plants.  In 

a microarry analysis conducted by Thum et al. (2004), the effects of both light and sugar 

were examined.  The results reveal that the majority of affected genes are co-regulated by 

both stimuli.  

 Other than light, there are also reports of the influence of essential mineral 

nutrients such as nitrogen and phosphorus on carbohydrate metabolism and related gene 

expression.  The effects of nitrogen and a combination of both glc and nitrogen were 

analyzed by microarray analysis (Price et al. 2004).  Interestingly, most of the nitrogen 

responses seem to require the presence of a carbon source.  Karthikeyan et al. (2007) 

showed that sugar is required for Pi starvation responses, including changes in root 

architecture and expression of phosphate starvation induced (PSI) genes in Arabidopsis.  

They further investigated the role of HXK1 and found significant differences in the root 
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architecture as well as  the expression profile of PSI genes between WT and gin2-1.  All 

the PSI genes were expressed at a reduced level in gin2-1, suggesting the involvement of 

HXK-dependent glc signaling in Pi starvation. 

 

Hexokinases 

 

 HXKs are the family of enzymes that catalyze the transfer of γ-P of ATP to C6 of 

hexoses.  It is now well established that HXK is present in virtually all living organisms 

(Cardenas et al. 1998).  Glc is the preferred substrate of HXKs, but they can also 

phosphorylate other hexoses to varying degrees (Cardenas et al. 1998).  HXKs from 

different species differ in molecular mass and tissue distribution and often exist as a 

mixture of isozymes that differ in kinetic properties (Cardenas et al. 1998).  The 

molecular mass of hexokinases from different organisms follows a geometric series 

25:50:100.  

 Bacteria possess the smallest HXKs, approximately 25 kDa.  Bacteria have a 

series of HXKs, each one acting on a specific hexose.  In eukaryotes, the molecular mass 

of HXK ranges between 50-100 kDa.  The substrate specificity is often lost and in 

general non-specific HXKs are characteristic of higher eukaryotes.  

 HXKs in many species exist as a mixture of isozymes that often differ in kinetic 

characteristics.  Multiple HXKs were first demonstrated in yeast (Trayser et al. 1961).  

The yeast genome encodes for two homologous HXKs PI and PII.  Both the HXKs in 

yeast have a molecular mass of 50 kDa and can form dimers (Cardenas et al. 1998).  
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HXK PI and PII can phosphorylate both glc and fructose (Lobo and Maitra, 1977), but 

HXK PII is the predominant form in yeast grown on glc as carbon source (Gancedo et al. 

1977).  

 Based on ion exchange chromatography (Gonzalez et al. 1964) or electrophoresis 

(Katzen and Schimke, 1965) of the extracts of various mammalian tissues, HXKs can be 

classified into four different isozymes (Type I, II, III and IV).  The type I-III are 100 kDa 

molecules and where as Type IV HXK in a 50 kDa protein.  More recently a fifth HXK 

(HKDC1) has been identified and likely encodes a 100 kDa protein (Irwin and Huanran, 

2008).   

 The existence of HXKs in plants was first demonstrated by Saltman (1953) 

working with wheat germ.  Like most eukaryotic HXKs, plant HXKs can phosphorylate 

multiple hexoses including D-glc, D-fructose and D-mannose, and are often encoded by a 

modestly large gene family (Claeyssen and Rivoal, 2007).  The analysis of available 

genome sequencing data indicates that HXK is encoded by a multigene family in 

evolutionarily diverse plant species (Virnig and Moore, unpublished data).  Among the 

well studied plant species, the rice genome encodes at least ten HXKs (Cho et al. 2006), 

Arabidopsis six HXKs (Rolland et al. 2002), and tomato has at least four HXKs (Kandel-

Kfir et al. 2006).  

 Among different plant HXKs, the Km for glc is low and varies between 15-150 

µM.  In contrast, the Km for fructose is always in the mM range (Renz and Stitt, 1993, 

Martinez and Randall, 1998; Higgins and Easterby 1974; Galina et al. 1995; Giese et al. 

2005).  The Km-ATP is 50-560 µM, however some forms can use UTP (Rentz et al 1993; 
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Schnarrenberger, 1990).  Plant HXKs differ from mammalian HXKs with respect to their 

sensitivities to glc-6P.  Mammalian HK I, II, III are extremely sensitive to inhibition by 

glc-6P.  The sensitivity of plant HXKs varies with isoforms.  For example, in potato 

tubers the activity of HXK1 is inhibited by G6P where as HXK2 is insensitive to G6P 

inhibition (Rentz and Stitt, 1993).   In general, most plant HXKs are insensitive to glc-6P, 

but readily inhibited by ADP (Claeyssen and Rivoal, 2007). 

 One of the more intriguing aspects of HXK in different organisms is the different 

intracellular locations observed for diverse family members.  In yeast, HXK2 is reported 

to have dual targeting to both the nucleus and cytosol (Randez-Gil et al. 1998).  In plants, 

HXK proteins are reported to occur in the cytosol, mitochondria, plastids, nuclei, and 

Golgi and plasma membrane (Miernyk and Dennis, 1983; Schnarrenberger, 1990; da-

Silva et al. 2001; Yanasigawa et al. 2003).  The N-terminus of several plant HXKs has 

been implicated in their targeting to specific cell compartments (Wiese et al. 1999; 

Olsson et al. 2003; Giese et al. 2005; Claeyssen et al. 2006).  The HXKs have been 

classified as either type A or type B, based on the N-terminal sequence.  Type A HXKs 

are predicted to be targeted to mitochondria where as type B HXKs are targeted to the 

secretory pathway (Claeyssen and Rivoal, 2007; Olsson et al. 2003).  Some of these the 

bioinformatics predictions are supported by experimental evidence.  

 In pea (Pisum sativum) leaves, most of the HXK is associated with mitochondria 

and facilitates respiration (Dry et al. 1983).  In spinach (Spinacia oleracea) leaves, 

SoHXK1 which was initially shown to be associated with the external plastid envelope 

(Wiese et al. 1999) was later shown to be a mitochondria associated HXK (Damari-
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Weissler et al. 2007).  In moss (Physcomitrella patens), PpHXK1 is localized to the 

chloroplast stroma (Olsson et al. 2003).  Rice (Oryza sativa) has more than one cytosolic 

HXK (Cho et al. 2006).  Available evidence suggests that plastid localized HXKs might 

occur only in the stroma and possibly stromules (Kandel-Kfir et al. 2006), and might 

occur most abundantly in certain sink tissues (Giese et al. 2005).  It has also been 

hypothesized that the sub-cellular location and kinetic properties of each HXK isoform 

relates to its function.  

 HXK is best known as a glycolytic gateway enzyme.  But apart from its central 

role in metabolism it has been assigned several regulatory functions.  The role of HXK as 

a glc sensor has already been discussed.  As another function, the binding of HXK to 

mitochondria blocks apoptosis in cancer cells (Pastorino et al. 2002; Majewski et al. 

2004) and it has recently been shown that plant mitochondrial HXKs also regulate 

programmed cell death (Kim et al. 2006).  Since catalytic and regulatory functions of 

AtHXK1 are separable from each other (Moore et al. 2003), HXK1 is therefore a 

moonlighting protein with possibly novel functions yet to be discovered (Moore, 2004). 

 

Non catalytic HXKs  

 

 There are reports of non catalytic HXKs which have been assigned regulatory 

functions.  There are two hexokinase-like (HKL) proteins in S. cerevisiae (Bernardo et al. 

2007), one of which, EMI2, is required for induction of a meiosis-specific transcription 

factor (Daniel 2005).  In Aspergillus nidulans, HxkC and HxkD [earlier reported as xprF 
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by Katz et al. (2000)] encode for non catalytic HXKs and are localized to the nucleus and 

mitochondria respectively.  HxkD has a role in carbon catabolic repression of 

extracellular proteases (Katz et al. 2000) and hxkC∆ exhibits a growth phenotype similar 

to hxkD∆ (Bernardo et al. 2007).  HxkC is a negative regulator of the putative 

transcription factor, XprG, which is involved in the response to nutrient limitation and 

may have a role in the TOR-signaling pathway (Katz et al. 2006).  Kulkarni et al. (2002) 

isolated two HKL proteins from Drosophila melanogaster , namely DHK-465 

(Drosophila HKL with 465 aa residues) and DHK-453 (Drosophila HKL protein with 453 

aa residues). DHK-453 shows conservation of all the residues significant for substrate 

binding and catalysis and is proposed to have a role in cellular functions other than 

catalysis.  It is likely that these non catalytic HXKs have evolved from their catalytic 

counterparts by acquisition of a moonlighting function (Brenardo et al. 2007).  This raises 

the question of the possible functions of individual HXK isoforms.   

 The Arabidopsis genome encodes six HXK isoforms (Karve et al. 2008).  The 

goal of my research project is to understand the function of these putative HXKs.  In 

particular I am interested in understanding the role of the HXK isoform designated as 

AtHKL1 (AGI: At1g50460).  HKL1 has been found associated with mitochondria in the 

proteome analysis conducted by Giege et al. (2003).  Analysis of Arabidopsis EST 

databases by Claeyssen and Rivioal (2007), has implicated its role along with that of two 

other HXKs in stress responses.  In an attempt to characterize the function of this HXK 

gene family member, the amino acid sequences, expression features and the glucose 

phosphoryation activities of all six HXK gene family members were first characterized.  
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HKL1 is ~50% identical to HXK but did not phosphorylate glc or fructose.  However, 

HKL1 is expressed in all the tissues where HXK1 is expressed, and like HXK1, is 

localized to mitochondria.  To test whether HKL1 might have a role in regulation of plant 

growth, transgenic Arabidopsis with altered HKL1 expression were characterized.  In 

addition, HKL1 tissue expression and regulation was studied in transgenic HKL1 

promoter-GUS lines.  The phenotypes of HKL1 transgenic and mutant lines indicated a 

crucial role of HKL1 in plant growth that is dependent on HXK1.  The phenotypes of 

HKL1 transgenic and mutant lines and the promoter regulation suggested a role for 

HKL1 in mediating cross-talk with hormone signaling pathways.  The involvement of 

HKL1 in cross-talk was further examined by using a candidate gene approach and by 

characterizing additional phenotypes of HKL1 transgenic and mutant lines.  The results 

of gene expression analysis and phenotypic assays indicated that HKL1 has a role in 

mediating crosstalk with ethylene signaling.  The results of co-immunoprecipitation 

assays show that HKL1 and HXK1 can physically interact.  This interaction might be 

required for observed HKL1 phenotypes.  
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Abstract 

 

 Arabidopsis hexokinase1 (HXK1) is a moonlighting protein that has separable 

functions in glucose signaling and in glucose metabolism.  In this study, we have 

characterized expression features and glucose phosphorylation activities of the six HXK 

gene family members in Arabidopsis thaliana.  Three of the genes encode catalytically 

active proteins, including a stromal-localized HXK3 protein that is expressed mostly in 

sink organs.  We also show that three of the genes encode hexokinase-like (HKL) 

proteins, which are about 50% identical to AtHXK1, but do not phosphorylate glucose or 

fructose.  Expression studies indicate that both HKL1 and HKL2 transcripts occur in 

most, if not all, plant tissues and that both proteins are targeted within cells to 

mitochondria.  The HKL1 and HKL2 proteins have 6-10 amino acid insertions/deletions 



 46 

(indels) at the adenosine binding domain.  In contrast, HKL3 transcript was detected only 

in flowers, the protein lacks the noted indels, and the protein has many other amino acid 

changes that might compromise its ability even to bind glucose or ATP.  Activity 

measurements of HXKs modified by site-directed mutagenesis suggest that the lack of 

catalytic activities in the HKL proteins might be attributed to any of numerous existing 

changes.  Sliding windows analyses of coding sequences in A. thaliana and A. lyrata ssp. 

lyrata revealed a differential accumulation of nonsynonymous changes within exon 8 of 

both HKL1 and HXK3 orthologs.  We further discuss the possibility that the non-

catalytic HKL proteins have regulatory functions instead of catalytic functions. 



 47 

Introduction 

 

 Sugars are the primary currency in the metabolic economy of most cellular life.  

Contemporary research has revealed remarkable interconnections between the cellular 

and molecular processes that govern production or acquisition of sugars and their 

efficient utilization.  In plants, sugars regulate plant growth and development by 

interacting with many different control processes, including ones with meristematic 

functions (Smeekens 2000; Francis and Halford 2006; Rolland et al. 2006).  For example, 

in Arabidopsis both glucose and sucrose modulate the expression of nucleolin, a multi-

function regulator of ribosome synthesis (Kojima et al. 2007).  An increased amount of 

nucleolin was suggested to be a key component in the process by which sugars can 

enhance meristematic cell division activity.  Interestingly, the targeted expression of cell 

wall invertase in apical meristems of Arabidopsis was shown to influence the 

developmental transition to flowering and ultimately to increase seed yield (Heyer et al. 

2004). 

Short-term treatments of Arabidopsis seedlings with glucose or sucrose have been 

shown to affect the expression of about 1000 to 1700 transcripts, depending on 

experimental conditions (Price et al. 2004; Osuna et al. 2007).  Sugars can influence plant 

gene expression both through general metabolic effects and as signal molecules that can 

directly interact with sensor/transducer proteins (Sheen et al. 1999; Xiao et al. 2000).  

Arabidopsis hexokinase1 (HXK1) is perhaps the best characterized glucose signaling 

protein.  The isolation and characterization of a null mutant of AtHXK1, gin2-1, revealed 
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associated phenotypes including reduced shoot and root growth, reduced leaf expansion, 

increased apical dominance, delayed flowering and senescence, decreased auxin 

sensitivity, increased cytokinin sensitivity, and changes in transcript levels of several 

target genes (Moore et al. 2003).  Furthermore, complementation of these phenotypes by 

transformation of gin2-1 with a catalytically compromised HXK1 protein (S177A) 

demonstrated that the HXK metabolic function can be uncoupled from its signaling and 

related growth promoting functions.  AtHXK1 is, therefore, a moonlighting protein 

(Moore 2004).  The multi-function nature of AtHXK1 can be viewed as a novel cellular 

solution to integrate glucose metabolism with a separable glucose signal transduction 

process. 

 The biochemical basis for AtHXK1 function as a moonlighting protein has not 

been established.  Analysis of crystal structures of other moonlighting proteins has shown 

that one mechanism for acquiring a moonlighting function is the development of distinct 

surface features that mediate protein-protein interactions (Jeffrey 2004).  While a crystal 

structure of AtHXK1 is not available, much might be learned by a close inspection of its 

evolutionary heritage and of existing structural homologs.  Bork et al. (1992) suggested 

that a prokaryotic, dimeric ancestral ATPase has evolved through diverse processes into 

structurally related families of actin, hexokinase, and heat shock protein 70.  The 

relatively sugar non-specific, but ATP-dependent hexokinases are characteristic of higher 

Eukarya and are thought to have arisen from a common ~50 kDa ancestral protein 

(Cárdenas et al. 1998).  As far as is known, hexokinases are present in a given eukaryote 

as a multi-gene family.  Surprisingly, within some of these gene families, individual 
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members can have specialized non-catalytic, regulatory functions.  For example, there are 

2 described hexokinase-like (HKL) proteins in Aspergillus nidulans.  They both lack 

catalytic activity, but they are negative regulators for secretion of an extracellular 

protease in response to carbon starvation (Bernardo et al. 2007).  In this case, sequence 

analysis suggested that specific amino acid changes relative to the canonical sequence are 

responsible for the lack of catalytic activity.  It remains to be determined whether 

specialized regulatory HXKs occur within plant HXK gene families. 

 Phylogenetic analyses of a variety of plant HXKs indicate that these occur largely 

in 2 groups, ones with plastid signal peptides (Type A) and ones with N-terminal 

membrane anchors (Type B; Olsson et al. 2003).  Direct experimental evidence for 

stromal-localized HXKs have been reported from moss (Olsson et al. 2003), tobacco 

(Giese et al. 2005), rice (Cho et al. 2006a), and tomato (Kandel-Kfir et al. 2006).  

Plastidic NtHXK2 is expressed mostly in certain starch-containing sink tissues, while 

plastidic LeHXK4 occurs in both source and sink organs, including non-starch containing 

fruits.  Membrane-bound HXKs occur largely, but not exclusively, associated with 

mitochondria (Kandel-Kfir et al. 2006 and references therein; Damari-Weissler et al. 

2006).  AtHXK1 is predominantly associated with mitochondria, but also can occur in the 

nucleus (Cho et al. 2006b; Balasubramanian et al. 2007); both forms can modulate gene 

expression.  Whether the nuclear form of AtHXK1 maintains its membrane anchor is not 

clear.  Rice and maize have one or more cytosolic HXKs (da Silva et al. 2001; Cho et al. 

2006a), though these forms might occur only in monocots (Damari-Weissler et al. 2006).  

A number of different possible metabolic roles of HXKs have been recently described 
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(Claeyssen and Rivoal 2007).  Mitochondrial HXKs are thought to have preferred access 

to ATP produced in respiration for consumption by active metabolite fluxes through 

sucrose cycling, glycolysis, and sugar nucleotide syntheses (Rontein et al. 2002; Graham 

et al. 2007). 

 Among the better examined plant HXK families, rice has at least nine expressed 

HXKs (Cho et al. 2006a), tomato at least four HXKs (Kandel-Kfir et al. 2006), and 

Arabidopsis likely six HXKs (Rolland et al. 2002; Claeyssen and Rivoal 2007).  We are 

interested in the function of Arabidopsis HXKs in organismal space.  In this study, we 

describe their gene structures, their tissue and sub-cellular expressions, and we show that 

three of the six family members lack catalytic activity.  We then did a detailed amino acid 

sequence analysis to identity key amino acid differences and to test a number of possible 

mechanisms by which catalysis might be compromised.  The presence of non-catalytic 

HKL proteins in plants raises intriguing questions regarding their evolution and function.  

A comparison of HXK family coding sequences from A. thaliana and Arabidopsis lyrata 

ssp. lyrata (hereafter A. lyrata) allowed us to identify regions of some gene orthologs that 

are undergoing possible differential selection. 

 

Materials and methods 

 

Plant material and growth conditions 

 

 Seeds of Arabidopsis thaliana (L.) Heyn. Ecotype Columbia (Columbia-0) were  
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obtained from Arabidopsis Biological Resource Center (Ohio State University).  Seeds of 

maize were purchased (line FR922 X FR967, Seed Genetics, Inc. Lafayette, IN) and 

dark-grown for 9 days, followed by overnight greening (Jang and Sheen 1994).  For most 

experiments, Arabidopsis was grown in soil in a growth chamber (Balasubramanian et al. 

2007), except for collecting root tissue from plants grown by hydroponics (Tocquin et al. 

2003).  Leaf tissue from A. lyrata was kindly provided by Dr. Amy Lawton-Rauh. 

 

Cloning and plasmid constructs 

 

 AtHXK1 was previously cloned using BamH1 and Stu1 restriction sites into the 

HBT plant expression vector (Kovtun et al. 1998) followed either with a C-terminal 

double hemagglutinin (HA) tag (Moore et al. 2003) or with a C-terminal green 

fluorescent protein (GFP) fusion (Balsubramanian et al. 2007).  Leaf or seedling cDNA 

libraries (see below) were used as template for PCR amplification of AtHXK2 

(At2g19860, 5’-CGG GAT CCC GAT GGG TAA AGT GGC AGT TGC AAC G,  5’-

AAA AGG CCT ACT TGT TTC AGA GTC ATC TTC ), AtHXK3 (At1g47840, 5’-

CGG GAT CCC G AT GTC ACT CAT GTT TTC TTC CCC TGT C, 5’- AAA AGG 

CCT GTA AAT GGA GTT  AGT GGC CGC C), AtHKL1 (At1g50460, 5’-CGG GAT 

CCC GAT GGG GAA AGT GGC GGT TGC G, 5’-AAA AGG CCT TGA CTG TAA 

AGA GGC AAC GAG GAG), AtHKL2 (At3g20040, 5’-CGG GAT CCA TGG GGA 

AGG TTT TGG TGA TGT TG, 5’-AAA AGG CCT TAC GGA TGG TAT TGT TTG 

AAC AC), and AtHKL3 (At4g37840, 5’-TGC CAT GGC ATG ACC AGG AAA GAG 
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GTG GTT C, 5’-GAA GGC CTC TTG CTT TCA GAA TCT TGA TGA).  PCR products 

were then ligated into an HBT vector with the double HA tag, using the BamHI/StuI 

restriction sites for most constructs or available NcoI/StuI sites for AtHKL3.  All clones 

were validated by direct sequencing of plasmid DNA and by predicted sizes of the 

expressed proteins.  The coding sequences were then sub-cloned into the same vector, but 

with a GFP tag. 

Site-directed changes, insertions, and deletions of native sequences were all made 

by Quick Change (Stratagene).  For AtHXK1, the target amino acid changes and primers 

were as follows: N106Y (5’-GGA CCT AGG GGG GAC ATA CTT CCG TGT CAT 

GCG TG, 5’-CA CGC ATG ACA CGG AAG TAT GTC CCC CCT AGG TCC), G173A 

(5’-GGT AGA CAG AGG GAA TTA GCC TTC ACT TTC TCG TTT CC, 5’-GG AAA 

CGA GAA AGT GAA GGC TAA TTC CCT CTG TCT ACC), L251F (5’-G GAT GTT 

GTT GCT GTT ATT TTC GGC ACT GGG ACA AAC G, 5’-C GTT TGT CCC AGT 

GCC GAA AAT AAC AGC AAC AAC ATC), C159E (5’- G AAG TTT GTC GCT 

ACA GAA GAG GAA GAC TTT CAT CTT CC, 5’-GG AAG ATG AAA GTC TTC 

CTC TTC TGT AGC GAC AAA CTT C), and insert 
428

GITSGRSRSE
437

 (5’-CTG GGA 

AGA GAT ACT ACT AAA GGA ATC ACC AGC GGA AGA TCT AGA AGC GAG 

GAC GAG GAG GTG CAG AAA TCG G, 5’-C CGA TTT CTG CAC CTC CTC GTC 

CTC GCT TCT AGA TCT TCC GCT GGT GAT TCC TTT AGT AGT ATC TCT TCC 

CAG).  For AtHKL1, amino acids 
425

GITSGRSRSE
434

 were deleted similarly (5’-GAT 

AGG CCG AGA TGG AAG CAG AAG TGA AAT CCA AAT G, 5’-CAT TTG GAT 
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TTC ACT TCT GCT TCC ATC TCG GCC TAT C).  All mutations were verified by 

DNA sequencing. 

 

Analysis of mRNA expression by RT-PCR 

 

 Total RNA was prepared using the RNeasy kit (Qiagen) from 100 mg of 

corresponding plant tissue from A. thaliana.  Root tissue was collected from plants grown 

in hydroponics, while all other tissues were from soil grown plants.  One µg of total RNA 

was converted to cDNA using the Protoscript II RT-PCR kit according to the 

manufacturer’s instructions (New England BioLabs).  PCR primer sequences were 

generated using the AtRTPrimer public database (Han and Kim 2006).  Primers in all 

cases span one or more introns: AtHXK1 (5’-TGC TGC TTT CTT TGG CGA TAC 

AGT, 5’-AAA ATG GCG CTC TTT GGG TAG GTT; expected size = 505 bp), AtHXK2 

(5’- ACA AAT GCA GCC TAT GTC GAA CGT G, 5’-TGT TCG GGG TCC TTA TGA 

TGA ATG G; expected size = 316 bp), AtHXK3 (5’- TCT CGA CCA CGC TCC AAT 

TAC ATC, 5’-AAT CAC ACC GAC CAT CAC ATC CTC; expected size = 702 bp), 

AtHKL1 (5’- GTT GGA GCC TTG TCG CTT GGA TAT T, 5’-CCT GCT CTT CGT 

GTA ACC ACA TCG; expected size = 521 bp), AtHKL2 (5’- CCC AGT CAA GCA 

GAC ATC CAT CTC A; 5’-TCG CCC AGA TAC ATC CCT CCT ATC A, expected 

size = 441 bp), and AtHKL3, (5’- TGG AAA CAC ACG GTC TGA AAA TTC G; 5’- 

TCA TCA CCA AGC ATT TCC CAA ACG, expected size = 736 bp).  As a control for 

amount of tissue template, we routinely used AtUBQ5 (At3g62250, 5’-GTG GTG CTA 
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AGA AGA GGA AGA, 5’-TCA AGC TTC AAC TCC TTC TTT; expected size = 254 

bp).  For PCR, we used 0.5-0.8 µl of cDNA in 10 µl reactions to first balance UBQ 

expression for the set of tissue cDNAs, with corresponding tissue template concentrations 

used thereafter for PCR reactions of varying cycle numbers for each product. 

 

Protoplast transient expression and 
35

S-labeling 

 

 Protoplasts were isolated from Arabidopsis leaves (Hwang and Sheen 1990) or 

greening maize leaves (Jang and Sheen 1994).  These were transfected using the 

polyethylene glycol 4000 (Fluka) protocol (Yoo et al. 2007) and 6-12 µg of cesium 

chloride-purified plasmid DNA.  In some experiments, newly synthesized proteins were 

labeled with [
35
S]Met (Perkin Elmer) for 8 h, then collected from lysed protoplasts onto 

protein A agarose beads using anti-HA antibodies (Roche) as detailed previously 

(Balasubramanian et al. 2007).  Proteins were solubilized in 2X SDS treatment buffer, 

electrophoresed on 10% SDS gels, and visualized by fluorography. 

 

Enzyme activity assays 

 

 HXK was assayed largely as described by Doehlert (1989) in a medium 

containing 50 mM Bicine-KOH pH 8.5, 5 mM MgCl2, 2.5 mM ATP, 1 mM NAD, 15 

mM KCl, 2 units of glucose 6-phosphate dehydrogenase (Sigma G8404), and either 2 

mM glucose or 100 mM fructose.  The increase in A340 was monitored over a 30 min 
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interval and rates then calculated accordingly.  Transfected protoplasts from greening 

maize leaves were used in either of 2 ways as a source of possible enzyme activity.  First, 

frozen protoplast pellets were lysed by vortexing in a standard leaf extraction buffer 

containing 50 mM Hepes-KOH pH 7.5, 5 mM MgCl2, 1 mM EDTA, 15 mM KCl, 10% 

glycerol, 0.1% Triton X-100, and 1X protease inhibitor cocktail (Roche).  This extract 

was then assayed directly.  Second, HA-tagged proteins were isolated as described above.  

Thrice-washed beads were resuspended in enzyme activity assay buffer (minus sugar), 

transferred to cuvettes, and rates then measured after adding glucose or fructose.  

Immobilized protein had lower enzyme activity, but the recovery rates were very 

consistent (20 ± 2 %).  Included protoplast controls that received non-coding plasmid 

DNA had little or no background due to endogenous HXK activity that was initially 

present in the maize protoplasts.  

 

Analysis of HXK family sequences in A. thaliana and A. lyrata 

 

 We first queried the NCBI database using BLAST and specifying the A. lyrata 

WGS first draft sequence database, using the coding sequence for each of the HXK 

family member genes from A. thaliana as the query sequences.  From this, we identified 

the homologous exons, introns, and splice sites for each of the six genes from the genome 

project of A. lyrata.  To correct potential sequence errors we identified within exon 6 of 

AlHXK3, we directly sequenced the PCR product from first strand cDNA synthesis of the 
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corresponding transcript.  Otherwise, the available sequence information was robust with 

multiple reads and the splice sites were highly conserved. 

 All nucleotide and amino acid sequences were aligned manually using BioEdit 

(Hall 1999) and exported as Nexus or FASTA files.  Phylogenetic analyses of the HXK 

and HKL loci were conducted using amino acid alignments in MEGA build 4024 

(Tamura et al. 2007).  Phylogenetic trees were estimated using the neighbor-joining 

method, 1000 bootstrap replicates, and the Dayhoff substitution model.  Codon usage 

bias was examined using DnaSP v4.20.2 (Rozas et al. 2003), then calculated as effective 

number of codons (Wright 1990) and by the codon bias index (Morton 1993).  Nucleic 

acid sequence diversity was estimated using DnaSP v4.20.2 (Rozas et al. 2003) to 

calculate ω ratios (number of nonsynonymous substitutions per nonsynonymous 

site/number of synonymous substitutions per synonymous site, KA/KS), following Nei 

and Gojobori (1986), and sliding window analysis of KA/KS ratios.  All nucleotide 

sequence based analyses used paired alignments of coding sequences of A. thaliana and 

A. lyrata on a gene by gene basis. 

 

Results 

 

Gene structure of Arabidopsis HXK family 

 

 The Arabidopsis thaliana genome potentially encodes six HXK related proteins 

(TAIR).  By pair-wise Blast searches, these predicted proteins range from 45-85% 
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identical to AtHXK1 (Table 2.1).  As detailed below, we have designated these as HXK 

proteins or as hexokinase-like (HKL) proteins based, respectively, on whether they have 

apparent glucose phosphorylation activity or whether they lack catalytic activity.  For 

reference, AtHXK1 is 36% identical to yeast HXK2 and about 70% identical to rice 

HXK2 and to tomato HXK1. 

 

Table 2.1 Selected properties predicted for HXK family proteins from A. thaliana 

                

 Amino acid sequences were subjected to pair-wise Blast anaylsis, and PSORT (http://psort.nibb.ac.jp/) and 

Predotar (http://urgi.versailles.inra.fr/predotar/predotar.html) targeting analyses 

 

 

 Phylogenetic analysis of the AtHXKs reveals several interesting features (Fig.2.1 

A).  Bootstrap replicate values suggest that the gene pairs HXK1 and HXK2, and HKL1 

and HKL2 are more closely related to each other than they are to other genes in the 

family.  When analyzed with the 10 reported rice HXK family members, AtHKL1 and 

AtHKL2 form a related sub-group with OsHXK3 and OsHXK10 (Cho et al. 2006a).  

Within A. thaliana, HKL3 forms a distinct and not closely related sub-group.  AtHKL3 
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also was reported not to form any closely related phylogenetic sub-groups with rice 

HXKs (Cho et al. 2006a).  The genome structure of the AtHXKs shows that most have 9  

                 

Figure 2.1  (A) Phylogenetic relationships of predicted Arabidopsis HXK family proteins.  As described 

below, proteins with detectable catalytic activity are designated as HXK proteins.  Those without detectable 

catalytic activity are designated as HKL proteins.  HXK1 = At4g29130; HXK2 = At2g19860; HXK3 = 

At1g47840; HKL1 = At1g50460; HKL2 = At3g20040; HKL3 = At4g37840.  Phylogenetic reconstruction 

was done using MEGA4 (Tamura et al. 2007).  The scale bar = the frequency of amino acid substitutions 

per unit length.  (B) Illustrations of gene structures were determined from genomic sequence data (NCBI, 

TAIR).  Exons are indicated by rectangles, introns by lines.  The lengths of both are proportional to the 

number of nucleotides that are present. 

 

exons, except for HXK1 which has 7 and HKL3 which has 8 (Fig. 2.1 B).  Most rice 

HXKs also have 9 exons (Cho et al. 2006a).  The intron structures of AtHXKs vary 

among the different family members.  Intron1 in HXK1, HXK2, and HKL1 is relatively 

long, ranging from 625-804 nucleotides, while intron1 in HXK3, HKL2, and HKL3 is 

shorter, ranging from 72-183 nucleotides.  HKL3 has short introns throughout the gene, 

averaging 81 nucleotides. 

B 

A 
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Organ expression of AtHXKs mRNAs and cellular expression of AtHXKs proteins  

 

 We examined by semi-quantitative RT-PCR the organ expression of transcripts 

for the A. thaliana HXK gene family (Fig. 2.2).  HXK1 transcript was abundant in all 

organs examined.  HXK2 transcript was expressed to a relatively similar extent in leaves, 

but less so in sink tissues.                                  

                        

Figure 2.2  Organ expression of Arabidopsis HXK family genes determined by RT-PCR.  Ubiquitin5 

(UBQ) was amplified as a control for amount of template.  Product sizes ranged from 254-702 bp.  

Additional PCR reactions were run with all primer pairs at increased and decreased cycle numbers to 

establish reported conditions (data not shown).  YL = young leaves; ML = mature leaves; Rt = root; Fl = 

flower; Sil = silique; St = stem. 

 

HXK3 mRNA was relatively more abundant in sink tissues such as roots and siliques, but 

the increased number of PCR cycles used for its amplification indicates that it likely is 

not as abundant as is the HXK1 transcript.  HKL1 and HKL2 transcripts were not 

expressed as highly as HXK1 mRNA, but it is noteworthy that all 3 of these transcripts 

were expressed at relatively similar levels in all organs examined.  In contrast, HKL3 

mRNA was detected only in flowers and at relatively much lower amounts. 
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Proteomic analyses have indicated that most of the HXK family members are 

associated with mitochondria (Heazlewood et al. 2004).  Sequence analysis supports this 

evidence as well, indicating that HXK1, HXK2, HKL1, HKL2, and HKL3 all have 

predicted N-terminal transmembrane peptides that target to the mitochondria (Table 2.1).  

These possible targeting peptides are located upstream from the conserved large domain 

of the HXKs (Appendix A).  However, HXK3 has a putative N-terminal transit peptide, 

which indicates that it might be expressed in plastids.  We examined the subcellular 

localization of the AtHXK proteins by cloning these as C-terminal GFP fusions, followed 

by transient expression of their cDNAs in leaf protoplasts, and subsequent imaging of 

expressed fluorescence (Fig.2.3 A-I).  As shown previously (Balasubramanian et al. 

2007; Damari-Weissler et al. 2007), HXK1-GFP fluorescence occurred under these 

conditions only at the mitochondria.  HXK2, HKL1, HKL2, and HKL3-GFP fluorescence 

also was observed only at the mitochondria.  Expression of these proteins in protoplasts 

does apparently cause the mitochondria to aggregate as noted before with HXK1, but co- 

staining with MitoTracker dyes always showed their GFP fluorescence to be 

mitochondrial localized (e.g., compare fluorescence patterns in Fig.2.3 D and E).  In 

contrast, HXK3-GFP fluorescence is expressed in chloroplasts (Fig. 2.3 G, H).  In the 

presented image, much of the GFP fluorescence occurs inside the chloroplasts, but some 

also is located on the outer surface.    The latter might be due to protein accumulation at 

sites of import.  Internal accumulation of GFP was shown by using a specific band pass 

filter that excludes chlorophyll fluorescence.  In contrast to these fluorescence patterns,  

transfected yeast HXK2-GFP is expressed exclusively in the cytosol of leaf protoplasts 
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Figure2.3  Sub-cellular expression of Arabidopsis HXK family proteins.  (A-I) C-terminal GFP fusion 

proteins were cloned and expressed in leaf protoplasts, then imaged with a scanning laser confocal 

microscope.  (A) Porin-GFP, a mitochondrial marker.  (B) HXK1-GFP.  (C) HXK2-GFP.  (D) HKL1-GFP.  

(E) Protoplast in (D) showing selective staining with MitoTracker Red (pseudocolored red).  (F) HKL2-
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GFP.  (G) HXK3-GFP, showing merged GFP and chlorophyll fluorescence in lower protoplast (yellow-

orange).  The upper protoplast did not express GFP (red only).  (H) Protoplasts in (G) showing only the 

GFP channel.  (I) HKL3-GFP.  (J-K) Cellular immunolocalization of HXK in leaf mesophyll cells of young 

seedlings.  Following cryofixation and freeze substitution, cells were labeled with anti-HXK1 polyclonal 

antibody and then with secondary antibody conjugated to FITC.  Leaf cells were observed by fluorescence 

microscopy.  Images show a single optical section.  Scale bars = 10 µm.  (J) Leaf cells of Ler WT 

seedlings.  (K) Leaf cells of gin2-1 seedlings, an HXK1-null mutant. 

 

 (data not shown).  This localization is consistent with the absence of an N-terminal 

membrane anchor in ScHXK2. 

As a complementary approach to demonstrate the subcellular localization of 

AtHXKs, we have immunostained seedling leaves after their cryofixation and acetone 

freeze substitution.  First, samples were prepared from WT Ler.  These were incubated 

with a polyclonal antibody to AtHXK1, then a FITC-conjugated secondary antibody, and 

were subsequently viewed by epifluorescence (Fig. 2.3 J).  As noted previously with WT 

cells (Balasubramanian et al. 2007), we observed HXK1 antigen in numerous elongated 

shapes which appear to be mitochondria and that were often located close to chloroplasts.  

This staining likely is due to some combination of HXK1, HXK2, HKL1, and/or HKL2 

proteins.  As a comparison, we next observed HXK antigen in leaves of gin2-1 (Fig.2.3 

K), a HXK1-null mutant (Moore et al. 2003).  We observed a readily detectable, but 

much reduced level of fluorescence, again associated with elongated, apparent 

mitochondrial structures.  FITC fluorescence was not observed in the cytoplasm or 

elsewhere in either gin2-1 or Ler mesophyll cells.  Chloroplasts in these cells, however, 

were not labeled by antibody, perhaps due to the HXK3 protein being present in this 

tissue only at very low levels, if at all. 
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Protein sequence analyses of AtHXKs 

 

 The HXK tertiary structure is one of the better studied proteins from mammals 

and yeast.  HXK proteins contain a large and a small domain.  The sugar binding site is 

largely located in the small domain, with 4 additional peptide segments (Loops 1-4) that 

are induced to move upon binding the sugar ligand.  These loops both complete the sugar 

binding sites as well as “pre-form” the nucleotide binding site (Kuser et al. 2000).  In 

fact, analysis of HXK sequences from mammalian, yeast, and Arabidopsis (AtHXK1) 

using crystal structures, sequence elements, and/or space filling models indicate that most 

of the conserved amino acid residues occur at the cleft of the 2 domains and form the 

glucose and ATP binding sites (Kuser et al. 2000). In order to better associate structural 

differences of AtHXKs with their possible functional differences, we have aligned and 

analyzed their 1
o
 amino acid sequences (Fig. 2.4).  Homologous regions and residues in 

AtHXKs were assigned based on reported detailed analyses of HXK2 from 

Saccharomyces cerevisiae (Bork et al. 1990; Kuser et al. 2000).  By inspection, HXK1, 

HXK2, and HXK3 were much more similar to each other in the longer motifs designated 

phosphate 1, connect 1, phosphate 2, connect 2, and adenosine, than were HKL1, HKL2, 

and HKL3.  The relative divergence of HKL3 is particularly pronounced in the phosphate 

1 , sugar, and connect 1 motifs.  Most noticeably, both HKL1 and HKL2 have an indel 
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Figure 2.4  Amino acid sequence alignment for predicted Arabidopsis HXK family proteins.  Sequences 

were aligned using ClustalW in BioEdit (Hall 1999).  Annotations are based on regions homologous to 

yeast hexokinase II (Kuser et al. 2000).  P1 = phosphate 1; Con 1 = connect 1; P2 = phosphate 2; Con 2 = 

connect 2; C = predicted hydrophobic channel amino acid; + = predicted conserved glycine residue; * = 

other predicted conserved residues (following AtHXK1 sequence, S177, K195, D230, T253, N256, E284, 

E315, and G441). 
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of 10 and 6 amino acids, respectively, at the adenosine binding site.  These both also have 

relatively divergent phosphate 1 and connect 1 motifs.  Within the core sugar binding 

motif (LGFTFSFP--Q--L/I), the sequence is best conserved among HXK1, HXK2, and 

HXK3, with a limited divergence in HKL1 and HKL2, but extensive divergence in HKL3 

(see also Supplemental Table 1).  However, with reference to the HXK1 sequence, the 

key glucose contact residues S177, N256, E284, and E315 are conserved in all of the 

HXKs, with the single exception of T175 for S177 in HKL3.  Among the 4 key noted 

loops, loop 2 is not conserved at the level of amino acid identity between ScHXK2 and 

any of the AtHXKs, but the other 3 loops have varying levels of identity.  Loops 1, 3, and 

4 diverge substantially in HKL3, but are identical or very similar in all other AtHXKs, 

with respect to ScHXK2 (see also Appendix A).  Among the 12 hydrophobic residues 

previously assigned to a channel in the small domain, these are either conserved or 

identical in all of the AtHXKs, with the exception of 2 different ones in HKL3 at F197 

and L211 (Fig. 2.4).  Also, among 8 key glycine residues thought to be located at the end 

of α-helices or β-sheets, these are all conserved identically among HXK1, HXK2, and 

HXK3 proteins.  The HKL predicted proteins though do show some divergence in these 

features.  This includes substitutions for G103 in HKL3, for G173 and G310 in HKL1 

and HKL2, and for G479 in all 3 HKL proteins.  Finally, there are 2 recognized catalytic 

residues in HXK1, K195 and D230.  Both are conserved in all of the AtHXKs except for 

HKL3 (L194 and N230).  In summary, the amino acid sequence analysis shows a broad 

pattern of conserved key motifs and residues among HXK1, HXK2, and HXK3 predicted 

proteins.  HKL3 protein lacks many recognized residues important for sugar and 
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adenylate binding and for enzyme catalysis.  In contrast, HKL1 and HKL2 proteins have 

most of the residues known to be important for sugar binding, but they do have a few 

noted key residue changes and also have an indel at the adenosine binding domain.  

Additionally though, HKL1 and HKL2 proteins do have changes in many residues 

relative to HXK1 protein, other than those specifically noted above. 

 

Catalytic activities of native and modified AtHXK family proteins 

 

 We assessed the catalytic competency of HXK family proteins after transient 

expression of corresponding cDNAs in maize leaf protoplasts.  In these experiments, 

HXK family genes were cloned as C-terminal fusions to double HA tags.  Each HA tag is 

10 amino acids and the double tag does not appear to interfere with protein catalytic 

activity as measured with different C-terminal tags (double HA, Flag, GFP; unpublished 

data).  Protein expression first was monitored by direct labeling using 
35
S-Met (Fig. 2.5 

A) to adjust the amounts of transfected cDNAs to yield comparable amounts of expressed 

proteins for activity assays.  In one approach to assess possible protein catalytic activities, 

we measured enzyme activities from protoplasts following their transient transformation 

with selected amounts of target cDNAs and an incubation period to allow the proteins to 

accumulate (Fig. 2.5 B).  This approach was rapid, but does include as background the 

endogenous HXK activity that is present in the protoplasts.  Nonetheless, we found that 

three of the six HXK genes encode proteins with glucokinase activity.  HXK1 and HXK2 

were both shown previously to have catalytic activity (Jang et al. 1997), while the finding  
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Figure 2.5  Glucokinase activity measured after transient expression of different cDNAs in protoplasts 

from greening maize leaves.  (A) The fluorogram shows protein expression levels from all of the HXK 

cDNAs, following their labeling with 35S-Met.  In this gel image, band intensities ranged from 60% 

(HKL2) to 100% (HKL3), as measured using ImageJ software (http://rsb.info.nih.gov/ij/).  Target cDNA 

amounts were slightly adjusted for better balanced expression in subsequent transfections.  (B) Full length 

HXK-HA family proteins were expressed and assayed directly after protoplast lysis.  (C) Full length HXK-

B 

A 

C 
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HA family proteins were expressed, then immunoprecipitated after protoplast lysis, and collected onto 

Protein A agarose beads prior to assay.  Activity values are means ± SD of measured activities from 3-4 

separate protoplast transfections with each construct.  Activities are expressed as percent of HXK1.  

Notably, control values in c represent assay detection limits that are inherent when using enzyme-bound 

beads in an optical assay.  CON = control, without transfected HXKs; K1 = HXK1; K2 = HXK2; K3 = 

HXK3; L1 = HKL1; L2 = HKL2; L3 = HKL3. 

 

that HXK3 can phosphorylate glucose is novel.  The three expressed proteins that 

apparently lack catalytic activity are designated, as mentioned earlier, as HKL proteins.  

Comparable results were obtained with 0.1 M fructose or increased glucose 

concentrations in the assay medium.  That is, HXK3 can phosphorylate fructose also, 

while HKL1, HKL2, and HKL3 proteins cannot phosphorylate fructose either (data not 

shown). 

To minimize the appreciable background HXK activity that is present in the 

protoplasts, we also assayed the expressed proteins after their immunoprecipitation from 

lysed protoplasts, captured using anti-HA antibody and Protein A agarose beads (Fig. 2.5 

C).  Using the washed beads allowed us to exclude most, if not all, of the endogenous 

activity and thereby better determine whether a given construct has any measurable 

catalytic activity. As shown, HXK1, HXK2 and HXK3 again all have easily measured 

glucose phosphorylation activity, while the three HKL proteins lack any such activity.  

As before, substitution of 0.1 M fructose for 2 mM glucose in the assay gave the same 

qualitative results (data not shown).  While these protein expression assays are very 

useful for establishing whether a protein has catalytic activity, these preparations are not 

well suited for rigorous kinetic analyses. 
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The lack of glucose phosphorylation activity in the HKL proteins is not surprising 

in view of the key amino acid changes that were noted above, especially for HKL3.  

However, we asked whether the absence of catalytic activity in the HKL1 and HKL2 

proteins might require a suite of changes relative to the active enzymes or whether there 

might be one or just a few key changes that are sufficient to make the enzyme inactive.  

A further examination of the amino acid sequences revealed that the HKL1 and HKL2 

proteins have equivalent changes at 39 positions relative to conserved residues in the 3 

proteins with catalytic activity.  For example, in the core sugar binding motif, Gly173 is 

substituted with Ala in both HKL1 and HKL2.  We therefore carried out site directed 

mutagenesis of both HXK1 and HKL1 in order to test whether key amino acid changes 

might compromise catalytic activity of HXK1 or might restore activity of HKL1.  The 

target amino acids included Asn106 (located next to Loop 1), Gly173 (located within the 

sugar binding domain), Leu 251 (located within phosphate 2), insertion into HXK1 (at 

the corresponding position, K427) of the additional 10 amino acids present at the 

adenosine domain of HKL1, and removal of the 10 amino acid adenosine indel from 

HKL1.  As a possible negative control, Cys159 of HXK1 was changed to Glu.  Cys159 is 

one of only three amino acids among all six HXKs in which there is variation among 

either five or all six of the amino acids.  We also included the previously altered construct 

S177A, which has no catalytic activity (Moore et al. 2003).  In this experiment, expressed 

proteins were again collected onto agarose beads in order to minimize the background 

glucokinase activity endogenous to the protoplast.  Most of the amino acid changes did 

substantially impact the glucokinase activity (Fig. 2.6).   
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Figure 2.6 Glucokinase activity of HXK1 and HKL1 proteins modified by site directed mutagenesis.  (A) 

Modified proteins were expressed in protoplasts from greening maize leaves, then immunoprecipitated after 

protoplast lysis, and collected onto Protein A agarose beads prior to assay.  Activity values are means ± SD 

of measured activities from 3-4 separate protoplast transfections with each construct, expressed as percent 

of WT HXK1.  (B) The fluorogram shows protein expression levels following labeling with 35S-Met.  

Protein bands correspond precisely as labeled in (A).  In this gel image, band intensities ranged from 75% 

(S177A) to 100% (C159E), as measured using ImageJ software.  HXK1 + INS = HXK1 with a 10 amino 

acid insertion at the adenosine domain; HKL1 – INS = HKL1 with deleted 10 amino acid indel at the 

adenosine domain; see text for further details.   

 

Changing N106Y, G173A, and L251F reduced enzyme activity by 75, 90, and 95% 

respectively.  The 10 amino acid insertion into HXK1 reduced activity about 55%, and 

A  

B  
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removal of the indel from HKL1 did not restore any detectable activity.  Surprisingly, the 

C159E mutation stimulated activity 2-fold.  We observed the same results with all 

constructs expressed in parallel transfections in which enzyme activities were measured 

directly from the lysed protoplasts (data not shown).  From these data, we suggest that 

there likely are many non-conserved amino acids in the HKL proteins that could each 

compromise catalytic activity.  However, we cannot exclude the possibility that particular 

combinatorial changes among all of those present might have compensatory effects that 

otherwise would result with changes to single key amino acids. 

 

Comparison of HXK family sequences from A. thaliana and A. lyrata 

 

 The A. lyrata genome is currently being sequenced through the Joint Genome 

Institute of the Department of Energy (http://www.jgi.doe.gov/index.html).  The North 

American species, A. lyrata, is thought to have diverged from A. thaliana about 5 million 

years ago (Koch and Matschinger 2007).  In contrast to A. thaliana, A. lyrata is self-

incompatible and out-crossing.  We have compared the HXK family member gene 

sequences between A. thaliana and A. lyrata in order to identify possible regions of gene 

orthologs that might be undergoing differential selection.  For all of the AlHXK family 

members, the available sequence data were sufficient to enable us to identify the 

homologous exons, introns, and splice sites for each gene except AlHXK3.  In the case of 

AlHXK3 direct sequencing resolved a discrepancy in the first draft sequence within exon 

6.  The HXK gene structures are very similar in A. lyrata as 
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Table 2.2 Comparisons of HXK amino acid sequences from A. thaliana and A. lyrata 

 

      

 

compared with those in A. thaliana (Fig. 2.1, Appendix B).  For example, AlHKL3 has 

many short introns, as does AtHKL3.  The most notable difference in overall gene 

structure is that intron 1 of AlHKL1 is about 200 nucleotides shorter than intron 1 of 

AtHKL1. 

The shared predicted amino acid identities were generally very high between all 

of the orthologues (e.g. > 97%) except for HXK3 and HKL3 (Table 2.2, Appendix C).  

For example, the predicted HKL1 and HKL2 proteins from A. lyrata have exactly the 

same indels at the adenosine binding domain as the othologous proteins from A. thaliana.  

In contrast, the HXK3 and HKL3 gene pairs have lower percent identity values of 89 and 

93, respectively, and have some gaps in their aligned sequences.  A phylogenetic tree 

based on all 12 genes indicates that the orthologous genes are much more related to each 

other, than to other family members (Appendix B).   These relationships also support a 

previous more global phylogenetic analysis that includes additional plant HXK sequences 
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(Cho et al. 2006a).  Notably, the HXK1 and HXK2 protein homologs have accumulated 

fewer amino acid changes from the nearest common ancestral sequence than have the 

HKL1 and HKL2 protein homologs.  

One approach to test for possible differential rates of sequence evolution within a 

gene pair is to compare rates of synonymous and nonsynonymous nucleotide 

substitutions.  Because of multiple indels particularly in the 3’ end of the HKL1 and 

HKL2 genes, analyses of genomic DNA sequences were only possible for comparing 

specific A. thaliana and A. lyrata orthologs (for example, AtHKL1 versus AlHKL1).  

Although it would be informative to consider divergence of the sequences coding for 

exons plus introns between the two species, the presence of non-triplet indels made this 

not feasible using the polymorphism and divergence analyses of DnaSP since any non-

triplet indels lead to false reading frames in the sequence containing the possible 

sequence deletion.  For example, the HKL1 and HKL2 genes have 13 indels total, of 

which only 1 is a triplet, though all of the indels do occur in groups that add up to a 

triplet.  After analyzing the coding sequences for possible codon usage bias (none 

detected, data not shown), exon sequences for gene orthologs were then examined.  

To test for the potential contribution of selection on sequence divergence between 

species and genes, the rates and patterns of sequence divergence of each member of the 

HXK family of genes were tested between A. thaliana and A. lyarata (Fig. 2.7).  KA/KS 

ratios of less than 1 indicate coding regions that are selectively constrained (purifying 

selection with higher rates of synonymous versus nonsynonymous mutation).  Regions 
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Figure 2.7  Sliding window analyses of KA/KS of selected HXK and HKL loci.  Analyses were done using 

DnaSP (Rozas et al. 2003) as described further in “Materials and methods”. (A) HXK1. (B) HXK2.  (C) 

HXK3. (D) HKL1. (E) HKL2.  (F). HKL3.  Inserted exon bars correspond in length to predicted numbers 

of amino acids.  bp = base pairs.  Undefined estimates of KA/KS (because KS = 0 at these sites) occurred in 

B 

C 

D 

E 

F 

A 
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the following sliding windows: HXK1 (at midpoints 710, 730, 750, 1170, 1310, 1330, 1350, 1370, 1390, 

and 1410 bp), HXK2 (at midpoint 630 bp), HXK3 (at midpoints 216, 236, 256,276, 336, 356, 376, 396, 

736, 916, 936, 1196, and 1422 bp), HKL1 (at midpoints 490, 1070, and 1090 bp), HKL2 (at midpoints 510 

and 1230 bp), and HKL3 (at midpoint 757 bp) 

 

with values similar to 1 indicate neutral evolution.  Regions having ratios greater than 1 

indicate a higher rate of nucleotide substitutions that change the amino acid sequence 

versus synonymous mutations (adaptive selection; for further descriptions see Parmley 

and Hurst 2007).  All HXK family genes have consistently low KA and KS values and 

most have KA/KS values much lower than 1:  HKL1 and HKL2 have overall ratios of 0.08 

and 0.05, respectively; HXK1 and HXK2 have ratios of 0.09 and 0.06, respectively; 

HKL3 has a ratio of 0.12; and, HXK3 has a higher ratio of 0.44.  These overall low 

values indicate that all members of the HXK gene family are active in these two sister 

Arabidopsis species and are being selectively constrained to their current amino acid 

sequences.  To further extend this analysis, sliding windows of KA/KS were calculated 

using window sizes of 60 nucleotides and a step size of 20 nucleotides (Fig. 2.7).  The 

window size roughly correlates with the size of some structural elements of the proteins.  

Most regions of the presented genes are constrained to 0 across much of the gene and 

only short regions have increased KA/KS ratios.  The primary exception is a large peak in 

KA/KS value that corresponds to exon 8 in both HKL1 and HXK3.  This region is 

somewhat upstream of the noted large indel of HKL1, but in exon 8 there are no apparent 

functional protein motifs or key amino acids that have been described.  KA/KS ratios of 

the HXK2 gene pair were similar in profile to HXK1, while analysis of HKL3 showed a 

prominent peak in KA/KS in exon 1.  
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Discussion 

 

 In this study, we have reported expression characteristics of the six HXK family 

members of A. thaliana.  Among the HXK proteins that have hexose phosphorylation 

activity, AtHXK3 has not been previously recognized.  We have shown that AtHXK3 is a 

stromal-localized protein (Figs. 2.3), likely expressed at low abundance primarily in 

roots, stems, and siliques (Fig. 2.2).  As noted with other plastid HXKs (Cho et al. 2006a; 

Kandel-Kfir et al. 2006), the presence of the transit peptide in AtHXK3 might have led to 

this protein not being identified in a previous complementation study of yeast cells 

deficient in glucose phosphorylation activity, using Arabidopsis cDNAs (Jang et al. 

1997).  The organ distribution of AtHXK3 is similar to that observed for tobacco plastid 

NtHXK2 from promoter-GUS studies (Giese et al. 2005).  NtHXK2 expression was 

further shown to be localized in specialized tissues such as guard cells, root tips, xylem 

parenchyma and the vascular starch sheath.  Accordingly, NtHXK2 was suggested to 

function primarily in starch degradation (Giese et al. 2005).  On the other hand, LeHXK4 

expression in plastids is perhaps relatively more wide-spread among different tomato 

tissues and its expression in fruits is not associated with starch degradation (Kandel-Kfir 

et al. 2006).  As noted in both of these studies and elsewhere (Olsson et al. 2003), plastid 

HXKs can have an important function also in metabolizing imported glucose for 

production of erythrose 4-phosphate to supply the shikimic acid pathway for synthesis of 

some 2
o
 metabolites.  Since AtHXK3 mRNA is expressed mostly in sink tissues (Fig. 
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2.2), we suggest that this protein might have a more pronounced role in phosphorylating 

glucose that is imported into the plastid for biosynthetic processes. 

 Three of the six HXK family genes in A. thaliana encode proteins that do not 

phosphorylate glucose or fructose (Figs. 2.2, 2.5).  Therefore we suggest that non-

catalytic HXKs most likely do exist in plants and that particular HKL proteins might 

occur in most tissues.  Their lack of catalytic activity would account for these also not 

being identified in the previous yeast complementation study by Jang et al. (1997).  All 

three encoded HKL proteins are about 50% identical to HXK1 and they do cross-react 

well with a polyclonal anti-HXK1 antibody (Karve and Moore, unpublished data).  The 

observed presence of HXK1-related antigen in leaves of gin2-1 (Fig. 2.4) supports our 

suggestion that the HKL proteins might be expressed in leaves and elsewhere in 

Arabidopsis. 

Several of the reported expression characteristics of HKL1 and HKL2 proteins 

indicate they might have a regulatory function in A. thaliana.  First, transcripts for both 

genes were present at similar levels in all organs examined (Fig. 2.2).  Function in a 

broad tissue context could be important if these proteins somehow affect HXK-dependent 

glucose signaling or possibly other wide-spread regulatory processes.  Second, both HKL 

proteins are targeted to mitochondria, as predominantly is the case for AtHXK1 (Fig. 

2.3).  We have previously shown that mitochondrial targeted HXK1 can bind to porin in 

the outer membrane and can mediate at least some aspects of glucose signaling 

(Balasubramanian et al. 2007).  In this regard, it will be important to establish whether 

these proteins might interact with AtHXK1.  A third important finding is that AtHXK1 
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catalytic activity is readily compromised by any of a number of single amino acid 

changes (Fig. 2.6, Moore et al. 2003).  Since there are possibly many such changes in the 

1
o
 amino acid sequences of the HKL proteins (Fig. 2.4, Appendix A), we surmise that the 

presence of catalytically defective HXKs is not simply the result of a chance mutation.  

Yet to be established is whether these proteins can bind glucose and with what affinity.  

On the one hand, the G173A change in the sugar binding domain of AtHKL1 and 

AtHKL2 could impact their ability to bind glucose, since the corresponding change in 

AtHXK1 did substantially reduce catalytic activity (Fig. 2.6).  However, in the absence of 

a detailed structure analysis or ligand binding assays, one cannot rule out that glucose or 

even other sugars might bind with sufficient affinity in the HKL proteins as to be 

biologically relevant.   From their primary sequence analysis, we predict that both HKL1 

and HKL2 proteins do have extensive conformational flexibility as inferred by the 

presence of conserved key loop motifs and most of the important glycine residues at the 

ends of structural elements (Appendix A).  That is, the primary recognized elements 

required for a glucose-dependent conformational change in protein structure are largely 

conserved and could be exploited by cell regulatory mechanisms.  The described 

expression and sequence characteristics support the hypothesis that the HKL1 and HKL2 

proteins might affect glucose signaling or related processes. 

 The AtHKL3 protein has quite different expression and sequence characteristics 

from the other two non-catalytic AtHXKs.  Among plant organs that we examined, 

HKL3 mRNA expression was restricted only to flowers (Fig. 2.2).  This finding largely 

supports the conclusion by Claeyssen and Rivoal (2007) from a survey of transcriptional 
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profiling experiments, that AtHKL3 is expressed most abundantly in male reproductive 

parts of the flower.  Interestingly, among rice HXKs, OsHXK10 is expressed in pollen, 

but only there (Cho et al. 2006a).  Our analysis of the predicted amino acid sequence of 

AtHKL3 (Fig. 2.4, Appendix A) indicated that it would not likely bind glucose or ATP as 

substrates, in contrast to other HXK family proteins, and that it does not have the 

conserved mobile loops or elements required for structural flexibility that are 

characteristic for this family of proteins.  We suggest that this protein might have been 

recruited by evolutionary processes to have a much different function than those of other 

family members.  Notably, cluster analysis of amino acid sequences of rice and 

Arabidopsis HXKs, indicate that the AtHKL3 protein occurs as an isolated group 

established prior to the separation of monocots and dicots (Cho et al. 2006a). 

 Non-catalytic HXKs have been identified in a variety of fungi including 

Saccharomyces cerevisiae and A. nidulans (Katz et al. 2000; Bernardo et al. 2007), in 

Drosophila melanogaster (Kulkarni et al. 2002), and now in A. thaliana.  Previous 

phylogenetic analysis suggests that the non-catalytic HXKs evolved independently in 

different lineages (Bernardo et al. 2007).  Nonetheless, there are some intriguing 

comparisons in the primary sequences of these proteins.  The fungal and fly HKL 

proteins were noted as having a number of altered residues in the sugar binding domain, 

as well as many of the fungal proteins having an indel of about 20-25 amino acids at the 

adenosine domain (Bernardo et al. 2007).  Arabidopsis HKL1 and HKL2 proteins have 

much better conserved sugar binding domains (one or two substitutions) and have a 

similarly positioned indel of 6-10 amino acids in the adenosine domain.  The predicted 
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adenosine domain in the Arabidopsis catalytic HXKs extends eight amino acids towards 

the N-terminus relative to the adenosine domain in yeast HXK2 (Kuser et al. 2000).  The 

prominent indels in the AtHKL1 and AtHKL2 proteins occur within this extension and 

are located four amino acids to the N-terminal side of the corresponding indel in A. 

nidulans HXKC and HXKD proteins.  Whether these indel sequences in AtHKL1 and 

AtHKL2 actually function in adenosine binding is uncertain.  Alternatively, these indels 

might be important for possible regulatory functions of the non-catalytic HXKs.  Among 

the rice HXK family, all 9 expressed members are thought to have catalytic activity, 

based on their ability to complement the HXK-deficient, triple mutant of yeast (Cho et al. 

2006a).  However, OsHXK3 and OsHXK10 do form a distinct phylogenetic group with 

AtHKL1 and AtHKL2 proteins (Cho et al. 2006a).  Upon sequence inspection, both rice 

proteins also contain a similar indel of nine amino acids at the same aligned position near 

the beginning residue of the predicted adenosine domain (data not shown).  The sugar 

binding domains of OsHXK3 and OsHXK10 do not have the homologous substitution of 

A for G as do AtHKL1 and AtHKL2 (LAFTFSFP--Q), though these domains do have 1 

or 2 changes elsewhere. 

The different expressed features within the HXK family of a given plant or fungal 

species reflect some remarkable apparent evolutionary trends.  In both A. thaliana and S. 

cerevisiae, there occurs at least one moonlighting HXK which has separable functions as 

both a metabolic catalyst and a glucose sensor/transducer (Moreno and Herrero 2002; 

Moore et al. 2003).  Additionally, there occur proteins within the families that have 

apparent specialized metabolic roles or specialized regulatory roles.  The metabolic only 
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catalysts include yeast HXK1 and glucokinase1 (Santangelo 2006), and we suggest might 

also include plant plastid HXKs.  Among non-catalytic HKL proteins, there are two HKL 

proteins in S. cerevisiae (Bernardo et al. 2007), one of which, EMI2, is required for 

induction of a meiosis-specific transcription factor (Daniel 2005).  In A. nidulans, the 

non-catalytic proteins AnHXKC and AnHXKD both are thought not to have a role in 

glucose signaling, but genetic evidence indicates that instead both are negative regulators 

for a secreted extracellular protease during carbon starvation (Bernardo et al. 2007).  

AnHXKC is associated with mitochondria, while AnHXKD is present in the nucleus.  As 

noted above, it is yet to be demonstrated whether the Arabidopsis HKL proteins do have 

specialized regulatory functions.  Notably, AnHXKD is transcriptionally induced by 

carbon starvation, yet neither AtHKL1 nor AtHKL2 are apparently induced by starvation 

conditions (see Supplementary Tables in Baena-González et al. 2007). 

While non-catalytic HXKs are present in the relatively distant lineages of fungi 

and at least Arabidopsis, we also interrogated the HXK nucleotide sequences of A. 

thaliana and A. lyrata to test for possible different relative rates of evolution among the 

respective orthologs.  HXK3 has a higher KA/KS value than do all the other loci 

examined.  This indicates those amino acids sequences are less constrained overall for 

accumulating changes.  Notably, the divergence in amino acid sequences between 

AtHXK3 and AlHXK3 orthologs also is greater than for the other catalytic HXKs (Table 

2.2).  We suggest that the HXK3 gene is evolving at an increased rate relative to the other 

genes for the catalytic HXK proteins and for the HKL proteins.  In contrast, among the 

orthologs for HXK1, HXK2, HKL1, and HKL2, the genes are evolving overall at similar 
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rates.  However, both HKL1 and HXK3 orthologs have a pronounced peak of KA/KS ratio 

within exon 8 (Fig. 2.7).  This indicates a possible adaptive selection process for these 

sequences.  The significance of this observation is not yet clear, but does warrant 

investigation. 

 For the global plant HXK gene family, it will be interesting to establish whether 

the noted indel that occurs in Arabidopsis HKL1 and HKL2 might be useful as a 

molecular marker for phylogeny studies.  To that end, it is important to verify if OsHXK3 

and OsHXK10 actually do have catalytic activity as suggested (Cho et al. 2006a), since 

their sequences also contain a similar indel at the homologous position as occurs in the 

reported non-catalytic HKL proteins. 
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CHAPTER THREE 

 

FUNCTION OF ARABIDOPSIS HEXOKINASE-LIKE 1 AS AN EFFECTOR OF 

PLANT GROWTH 

Abhijit Karve and Brandon Moore 

Department of Genetics and Biochemistry, Clemson University 

 

Abstract 

 

 A recent analysis of the hexokinase (HXK) gene family from Arabidopsis has 

revealed that three of the six genes encode proteins that lack catalytic activity.  In this 

study a reverse genetics approach was used to understand the function of hexokinase-like 

1 (HKL1), one of the three non catalytic HXKs from Arabidopsis.  HKL1 overexpression 

in Ler (HKL1-HA) resulted in severe reduction in rosette size under long photoperiod, 

decreased growth of seedling hypocotyls, a reduced seedling sensitivity to growth on 

plates with 6% glucose, and a reduced sensitivity to auxin induced lateral root formation.  

Conversely a HKL1 knockout, hkl1-1, had reduced rosette size under short photoperiod, 

longer seedling hypocotyls, and increased seedling sensitivity to growth on plates with 

6% glucose.  The phenotypes of HKL1-HA were mostly similar to those reported for a 

hexokinase null mutant, gin2-1.  HKL1 overexpression in gin2-1, however, did not 

generally affect the phenotypic responses of the parental line.  Therefore, we suggest that 

HKL1 is a negative regulator of plant growth, but that its effect largely depends on 

presence of HXK1.  
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Since by protoplast assays, HKL1 did not affect the activity of glucose regulated 

promoters we conclude that HKL1 likely is not directly involved in glc signaling.  The 

expression and regulation of HKL1 was also investigated by analysis of pHKL1-GUS 

transgenic plants.  HKL1 promoter was strongly expressed in vascular tissue and was 

responsive to ABA, ethylene and cytokinin.  Combining the results of phenotypic assays 

and promoter regulation, we suggest that HKL1 somehow mediates cross talk between 

glc and other plant hormone response pathways. 
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Introduction  

 

 To respond to environmental and metabolic cues, complex regulatory networks 

have evolved in all living organisms which enable them to sense nutrient status and 

regulate their gene expression.  Glucose (glc) is one example of an important metabolic 

intermediate that functions also as a signaling molecule to regulate gene expression in a 

variety of organisms (Towle 2005; Rolland et al. 2006; Gancedo 2008).   In the case of 

plants, glc affects the expression of more than 1000 genes (Price et al. 2004; Osuna et al. 

2007), many of which influence phytohormone response pathways that control plant 

growth (e.g., Gibson 2004).  In fact, many mutants of plant glc signaling are alleles of 

genes with defined roles in ABA or ethylene biosynthesis and/or their signaling networks 

(Leon and Sheen 2003; Rognoni et al. 2007). 

 Genetic and biochemical evidence supports independent roles in plant glc sensing 

and phytohormone responses for both hexokinase (HXK) and the plant regulator of G-

protein signaling (RGS; Rolland et al. 2006).  Arabidopsis HXK1 functions as a glc 

sensor and modulates plant growth at many different developmental stages (Moore et 

al.2003).  For example, AtHXK1 mediates cell cycle arrest in seedlings grown in the 

presence of high levels of exogenous glc (Jang et al. 1997) by a process not dependent on 

enzyme catalytic activity (Moore et al. 2003).  Null mutants of AtHXK1 have reduced 

shoot and root growth, increased apical dominance, delayed flowering, and altered 

sensitivity to both auxin and cytokinin (Moore et al. 2003).  Arabidopsis RGS1 is an 

atypical RGS protein having both a 7-transmembrane domain as well as a functional 
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GTPase activation domain (Chen et al. 2003; Johnston et al. 2007).  AtRGS1 is suggested 

to function as a glc binding protein that can attenuate cell division in primary root apical 

meristems by activating the GTPase activity of GPA1 (Chen et al. 2006).  However, even 

though seedlings of null mutants of AtRGS1 and AtHXK1 both show a similar glc-

dependent developmental arrest, their hypocotyl elongation response to light or dark are 

opposite to each other (Chen et al. 2003; Moore et al. 2003).  Similar to HXK1 though, 

plant heterotrimeric G-proteins also affect a diverse array of developmental and hormone 

responses (Perfus-Barbeoch et al. 2004).  

 Plant HXKs are encoded by a modest family of about 5-10 genes (Claeyssen and 

Rivoal, 2007).  HXK proteins are reported to occur in the cytosol, mitochondria, plastids, 

nuclei and Golgi (Balasubramanian et al. 2007; and, references therein).  AtHXK1 is 

predominantly associated with the mitochondria, but also reportedly can occur in the 

nucleus (Cho et al. 2006b).  There is evidence that from both locations, AtHXK1 can 

regulate gene and/or protein expression, but there are questions regarding both scenarios 

(see Balasubramanian et al. 2008).  All three Arabidopsis HXK-like proteins (HKL) were 

shown to be associated with mitochondria (Heazelwood et al. 2004; Karve et al. 2008).  

 A recent analysis of the Arabidopsis HXK gene family revealed that three of the 

six members lack catalytic activity when assayed with varying concentrations of glc or 

fructose (Karve et al. 2008).  Sequence analysis further showed that the three HKL 

proteins are about 50% identical to HXK1, with many distributed amino acid changes.  In 

AtHKL3, sequence divergence among key domains and other functional residues is so 

extensive that the protein is thought not to bind either glc or ATP.  However, recognized 
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functional motifs are much better conserved in AtHKL1 and AtHKL2, and their glc 

binding domains are predicted to be functional (Karve et al. 2008).  The basis for the lack 

of catalytic activity in these proteins was attributed to any of a number of changes 

throughout the primary sequences, and not with a specific single amino acid change 

(Karve et al. 2008). 

 Non-catalytic HXKs have been reported in fungi and likely occur commonly 

among higher plants (Virnig and Moore, unpublished data).  The fungal HKL proteins 

have divergent roles including one as a meiosis-specific transcription factor in 

Saccharomyces cerevisiae (Daniel 2005) and others as regulators of the carbon starvation 

response in Aspergillus nidulans (Bernardo et al. 2007).  Despite the reports of the 

presence of HKL proteins in evolutionarily diverse species, their lack of catalytic activity 

and possibly low level of expression, at least in plants (Karve et al. 2008), has led to a 

general lack of understanding of their functions.  In this study, we have used a reverse 

genetics approach to ask whether AtHKL1 might have a role in plant growth, perhaps in a 

fashion related to that of the primary glc sensor protein, AtHXK1.  We have therefore 

examined phenotypes from gain-of-function Arabidopsis plants, from an identified 

mutant line with a T-DNA insertion in HKL1, and from HKL1 promoter-GUS transgenic 

lines.  We show that AtHKL1 does have a substantial role in plant growth that is largely 

dependent on the presence of AtHXK1.  Furthermore, the HKL1 promoter is strongly 

expressed in vascular tissues and is responsive to multiple plant hormones.   The 

observed growth and glc response phenotypes indicate that AtHKL1 has a crucial role in 

plant growth and development, but an indirect role in glc signaling. 
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Materials and methods 

 

Plant material and growth conditions 

 

 Seeds of Arabidopsis thaliana ecotype Columbia (Col-0), ecotype Landsberg 

erecta (Ler), and a Col line with a T-DNA insertion within the HKL1 locus 

(WISCDSLOX383A5, hkl1-1) were obtained from the Arabidopsis Biological Resource 

Center (Ohio State University); gin2-1, HXK1-HA, HXK1-FLAG, and tir1 were as  

previously described (Moore et al. 2003).  Lines homozygous
 
for the T-DNA insertion in 

the HKL1 gene (AGI code, At1g50460)
 
were selected by PCR genotyping using the 

following primers: p745 (5’AAC GTC CGC AAT GTG TTA TTA AGT TG3’) and 

HKL1 A5RP (5’CCG TGT TAT CTG AGC CTT ACG 3’) for the T-DNA insertion 

allele; and, HKL1 A5LP (5’ TGC AAA CAA ATT TAA CGG CTC 3’) and HKL1 

A5RP for the WT allele.  The insertion position in the hkl1-1 mutant was mapped by 

sequencing the PCR product obtained by the primers L1 WLP (5’TGC AAA CAA ATT 

TAA CGG CTC 3’) and L1 WRP (5’ CCG TGT TAT CTG AGC CTT ACG 3’), using 

hkl1-1genomic DNA as template.  Seeds of maize (Zea mays L.) were purchased (Seed 

Genetics). 

 Arabidopsis seeds were surface sterilized and stratified for 2 days at 4 
0
C as in 

Jang et al. (1997) and grown either in soil in a growth chamber (12 h photoperiod, 125 

µmol m
-2

s
-1 

at 22 
o
C/20 

o
C day/night temperature) or on 1X MS agar plates (modified 

basal medium with Gamborg vitamins; PhytoTechnology Laboratories) containing 0.7% 
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phytagar (Caisson Laboratories), pH 5.7, under constant light (30 µmol
 
m

-2
s

-1
).  

Hypocotyl elongation assays were done as described earlier (Moore et al. 2003).  In one 

experiment, plants were chamber grown under either short day (SD, 8 h) or long day (LD, 

16 h) photoperiods. 

 For assay of auxin induced lateral root formation, Arabidopsis seeds were grown 

on 1X MS plates supplemented with 5 µM 1-naphthylphthalamic acid (NPA) for 5 d and 

then were transferred to MS plates ± 0.1 µM naphthalene acetic acid (NAA), as in Chen 

et al. 2003.  For glc repression assays, seedlings were grown on 1X MS plates 

supplemented with 3, 4, 5, 6, or 7% glc or 6% mannitol for 7 d under constant light. 

 

Plasmid and transgenic constructs 

 

RBCS-LUC, ASN1-LUC, and UBQ10-GUS constructs were described previously 

(Schaffner and Sheen, 1991; Balasubramanian et al. 2007).  The previous clone of HKL1 

with a  double hemoagglutinin (HA) tag (Karve et al. 2008) was subcloned with a C 

terminal FLAG tag into a HBT vector (Moore et al. 2003), then transferred into pCB302 

binary vector (bar selection marker; Xiang et al. 1999) using Bam HI and PstI cloning 

sites.  For cloning the HKL1 promoter, a 3098 bp fragment upstream of the start codon 

was PCR amplified using the following primers: L1pGUSFP (5’ CCC AAG CCT GGG 

CAG CGA GCT GTC AAA CTG GGG A 3’) and L1PGUSRP (5’ GCT CTA GAT GCC 

CCA AAA CAG AAC CAA AAA GAC A 3’). The promoter was cloned into the binary 

vector pSMAB704 (bar selection marker; Igasaki et al. 2002), using HindIII and SmaI 
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cloning sites upstream of the β-glucoronidase (GUS) gene.  The identities of all clones 

were verified by DNA sequencing. 

 Binary constructs were introduced into Agrobacterium tumifaciens GV3101 by 

electroporation.  Arabidopsis plants of Col-0, Ler or gin2-1 were transformed with 

Agrobacterium using the floral dip method (Clough and Bent
 
1998).  Transformants were 

selected for herbicide resistance (200 µM glufosinate ammonium, Rely 200, Bayer Crop 

Science).  Seeds of transgenic lines segregating 3:1 for herbicide resistance in the T2 

generation were selected for isolating homozygous lines.  Seeds from two or more T3 

lines homozygous for the single insert were used for subsequent experiments. 

 

RT-PCR analysis, immunoblots, and gluokinase activity assays 

 

 Total RNA was isolated from whole seedlings using the RNeasy plant kit 

(Qiagen).  One µg of total RNA was converted to cDNA using the Protoscript II RT-PCR 

kit (New England BioLabs) according to the manufacturer’s instructions.  PCR primer 

sequences for the HXK1, HKL1 and UBQ5 were described previously (Karve et al. 2008).  

The templates amounts were first titrated to balance the UBQ5 expression and 

corresponding template amounts were used thereafter with varying PCR cycle numbers.  

 Total soluble proteins were extracted as described before (Karve et al. 2008).  The 

protein concentration in the leaf extracts was measured by Coomassie blue (BioRad). 

Equal amounts of proteins were electrophorsed by SDS-PAGE and transferred on to 

Immobilon-P (Millipore) membrane.  The membranes were probed with monoclonal anti-
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HA (Roche) or anti-FLAG M2 (Sigma-Aldrich) or polyclonal anti-HXK1 (Moore et al. 

2003) antibodies, followed by incubation with HRP conjugated secondary antibody, and 

detection by chemiluminescence (SuperSignal West Pico, Pierce Biotechnology).  

Glucokinase activity was measured directly from leaf extracts or from lysates of 

transfected maize protoplasts (Karve et al. 2008). 

 

Protoplast transient expression assays 

 

 Leaves of greening maize seedlings or Arabidopsis plants (Col or hkl1-1) were 

used as a source of protoplasts for protein expression and signaling assays (Jang and 

Sheen, 1994; Hwang and Sheen, 2001).  Protoplasts were transfected using polyethylene 

glycol (Yoo et al. 2007), with promoter constructs for RBCS-LUC (4 µg), ASN1-LUC (6 

µg), or UBQ10-GUS (2 µg) as in Balasubramanian et al. (2007).  Protoplasts were co-

transfected as indicated with effectors HKL1-HA (8 µg) and/or HXK1-HA (6 µg).  An 

empty vector was included to maintain a balanced concentration of DNA during 

transfections.  Transfection efficiencies were routinely > 60% as determined using 

WRKY-GFP (Balasubramanian et al. 2007).  Following transfection, protoplasts were 

incubated in the dark for 90 min, then treated with 2 mM glc and incubated in the light 

for 6-8 h at 30 µmol m
-2

s
-1

.  Protoplasts were collected by low speed centrifugation.  

After resuspending in lysis buffer, GUS and LUC activities were measured as described 

previously (Balasubramanian et al. 2007).  Promoter activities are expressed as relative 

LUC/GUS values normalized to non-glc treated control samples. 
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Histochemical GUS staining and fluorometric GUS assays 

 

 Histochemical staining of transgenic Arabidopsis plants containing pHKL1-GUS 

fusion constructs was performed as described by Crone et al. (2001).  The plant tissue 

was incubated in GUS staining buffer containing 25 mg ml
-1

 of X-Glc (Gold 

BioTechnology) for 2-4 h and destained with 95% ethanol for 6-8 h.  For measuring total 

extractable GUS activity, tissues were ground in extraction buffer containing 50 mM 

NaH2PO4 (pH 7.0), 10 mM EDTA, 0.1% Triton X-100, 0.1% sodium lauryl sarcosine, 

and 10 mM β-mercaptoethanol.  The fluorogenic reaction was carried out in 100 µl of 

extraction buffer plus 1 mM 4-methyl umbelliferyl glucuronide (MUG, Sigma-Aldrich) 

at 37 
o
C for indicated times, before stopping with 300 µl of 0.2 M Na2CO3.  Fluorescence 

was measured in a 96-well microtiter plate format using a GENios spectrophotometer 

(Phenix Research Products) at 360 nm excitation wavelength and 465 nm emission 

wavelength.  A standard curve was made using 0.1-1 µM 4-methyl-umbelliferone 

(Sigma-Aldrich) and used to determine sample GUS activity.  

 In one experiment, transgenic seeds of pHKL1-GUS expression were grown on 

1X MS plates for 7 d, then transferred to liquid MS medium for 4 h with 10 µM 

indoleacetic acid (IAA), 1 µM abscisic acid (ABA), 50 µM 1-aminocylcopropane-1-

carboxylic acid (ACC), or 10 µM zeatin (hormones from Sigma-Aldrich).  Both treated 

and control seedlings were analyzed for GUS staining and extractable GUS activity as 

described above.  
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Light microscopy 

 

 Light microscopy was used to view and capture images for some routine seedling 

pictures as well as for the GUS stained seedlings or tissues, using a Nikon SMZ1500 

stereo microscope with a MicroPublisher CCD cooled color camera and Image Pro Plus 

v5.0 software. 

 

Results 

 

Molecular characterization of HKL1 knockout and overexpression lines 

 

 To understand the biological role of AtHKL1, a functional genomics approach 

was used by examining phenotypes of transgenic and mutant lines with altered HKL1 

protein expression.  Seeds of a putative T-DNA insertion line for AtHKL1 were obtained 

from the Arabidopsis Biological Resource Center (WISCDSLOX383A5).  Homozygous 

knockout plants with a single insert were identified by PCR amplification from genomic 

DNA using one T-DNA-specific primer and two gene-specific primers.  Using the insert 

specific primer, the T-DNA insertion site was mapped to exon VI of HKL1 (Fig. 3.1 A). 

Transcript analyses of seedling cDNA using semi-quantitative RT-PCR showed that the 

mutant line has no detectable HKL1 transcript (Fig.3.1 D) and was thus designated as 

hkl1-1.  

 Transgenic Arabidopsis plants were made by constitutively expressing HKL1 in 
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Figure 3.1.  Molecular characterization of Arabidopsis HKL1 mutant and transgenic lines.  (A) Schematic 

showing the gene structure of HKL1.  Exons are indicated by grey rectangles, introns are indicated by lines.  

The location of the T-DNA insertion in hkl1-1 is shown with the open triangle. (B,C) Design of plasmid 

constructs used to transform Arabidopsis lines.  HKL1-HA was used to transform Ler and HKL1-FLAG 

was used to transform gin2-1.  Boxes are not drawn to scale.  35S = CaMV promoter; NOS = nopaline 

synthetase terminator.  (D) Expression of HKL1 and HXK1 transcripts in parental lines and the 

corresponding mutant or transgenic lines: Col and hkl1-1; Ler and HKL1-HA overexpression line 52; and, 

gin2-1 and HKL1-FLAG overexpression line 79.  UBQ5 mRNA was used as a control for amount of 

template.  PCR cycle numbers for HKL1, HXK1 and UBQ 5 were, respectively, 33, 30 and 30.  (E) 

Immunoblot analysis of 1 µg protein from leaf extracts of two HKL1-HA overexpression lines, using anti-

HA antibody.  Shown also is extracted protein from an HXK1-S177A-HA transgenic line, used as a 

positive control.   (F) Immunoblot analysis of 1 µg protein from leaf extracts of two HKL1-FLAG 

overexpression lines, using anti-FLAG M2 antibody.  Shown as well is extracted protein from HXK1-

FLAG line 29 (Moore et al. 2003), also expressed in the gin2-1 background and used herein as a positive 

control. 
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different genetic backgrounds either in Ler as HKL1-HA or in gin2-1 as HKL1-FLAG 

(Fig. 3.1 B, C).  Three independent homozygous lines were obtained for HKL1-HA 

transformants and seven lines for HKL1-FLAG transformants.  The HKL1 mRNA level 

in the transgenic lines was assessed by semi-quantitative RT-PCR.  Both HKL1-HA and 

HKL1-FLAG transformants had substantially increased HKL1 transcript relative to their 

respective parental lines (Fig. 3.1 D).  Notably, the HXK1 mRNA abundance was not 

altered in hkl1-1 or in transgenic lines expressing HKL1-HA (Fig. 3.1 D).  In contrast, the 

HKL1-FLAG lines did not have any detectable HXK1 transcript (Fig. 3.1 D), consistent 

with their parental background being gin2-1. 

 Western blot analysis of leaf extracts was carried out using either antibodies to the 

introduced epitope tag or a polyclonal antibody to AtHXK1 (Moore et al. 2003).  All of 

the transgenic lines expressed the corresponding tagged protein, while the parental lines 

did not (Fig. 3.1 E, F).  Positive controls included available transgenic lines that 

expressed either HA- or FLAG-tagged variants of HXK1 protein. From these assays, two 

indicated lines expressing each construct were selected for further phenotypic analyses, 

with data presented for HKL1-HA line 52 and for HKL1-FLAG line 79. 

  

Growth phenotypes of HKL1 knockout and overexpression lines 

 

 To test whether the HKL1 protein has a discernable function in plant growth, 

corresponding parental, transgenic, and mutant lines were grown under different 

conditions. When grown on 1X MS agar plates with 0.5% sucrose, gin2-1 seedlings were  
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Figure 3.2  Growth phenotypes of HKL1 mutant and transgenic lines.  (A) Seven d old seedlings from the 

different lines on 1X MS plates + 0.5% Suc.  (B) Plants after 30 d in a growth chamber under 8 h (SD) or 

16 h (LD) photoperiods.  (C) Leaf number per plant, as influenced by photoperiod.  (D) Average rosette 

diameter, as influenced by photoperiod.  Values for (C) and (D) are means ± 1 SD (n=10).   
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somewhat smaller in size compared to Ler (Fig. 3.2 A), as previously observed (Moore et 

al. 2003).  Interestingly, HKL1-HA seedlings were also smaller than Ler and resembled 

gin2-1 seedlings on sucrose plates.  However, overexpression of HKL1 in the gin2-1 

background had little affect on seedling growth. Also, growth of hkl1-1 seedlings 

resembled growth of the control Col seedlings.  These results indicate that HKL1 might 

be a negative regulator of plant growth, but only if HXK1 is present. 

 Transgenic and mutant lines also were grown in soil and examined for possible 

differences in their response to photoperiod or light intensity.  When grown under SD 

conditions, both HKL1 overexpression lines had no substantial growth differences, when 

compared to control plants (Fig. 3.2 B, D).  However, under SD conditions the hkl1-1 

plants were somewhat smaller than control plants, with rosettes about 20% smaller in 

diameter (Fig. 3.2 B, D).  Under LD conditions, the growth of both overexpression lines 

was notably reduced.  The rosette diameter of HKL1- HA plants was 50% less than that 

of Ler plants, and the diameter of HKL1-FLAG plants was reduced by 25% compared to 

gin2-1 plants.  However, under LD conditions growth of the hkl1-1 plants was similar to 

controls.  The observed reductions in rosette sizes were not associated with a change in 

leaf numbers among the different genotypes at the time of flowering (Fig. 3.2 C).  Also, 

the transgenic and mutant lines did not show any significant change in time to flowering 

under either photoperiod (data not shown).  The latter indicates that the overall 

developmental program has not changed due to changes in HKL1 protein expression.  

Notably, while the HKL1 overexpression phenotypes depend largely on the presence of 

HXK1, they do not always have the same characteristics as those of gin2-1.  
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Modulation of HKL1 expression affects elongation of seedling hypocotyls 

 

 Seedling hypocotyl growth is highly influenced by diverse factors that regulate 

cell elongation in plants, including light, hormones and temperature.  For our hypocotyl 

growth assay, HKL1 transgenic and mutant seedlings were grown vertically on agar 

plates under constant low light conditions and hypocotyl lengths were measured after 7 d.  

The average hypocotyl length of gin2-1 seedlings was about 45% less than for Ler 

seedlings (Fig. 3.3).    Interestingly, the hypocotyl length of HKL1-HA seedlings was  

about 50% shorter than for Ler seedlings (Fig. 3.3).  On the other hand, hkl1-1 seedlings 

                           

Figure. 3.3  Seedling hypocotyl growth of different HKL1 expression lines.  Seedlings were grown for 7 d 

on 1/5X MS plates under constant light (15 µmol m-2 s-1) at 22 oC.  Values are mean hypocotyl lengths ± 1 

SD (n=15).   
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had a 40% increase in hypocotyl length relative to Col seedlings (Fig. 3.3).  However, 

HKL1-FLAG seedlings did not show any significant change in hypocotyl growth when 

compared with the parental genotype, gin2-1.  These data indicate that HKL1 acts as a 

negative regulator of seedling hypocotyl growth, but only if HXK1 is present. 

 

HKL1-HA is insensitive to auxin induced lateral root initiation 

 

 The reduced hypocotyl elongation of gin2-1 seedlings was previously linked to its 

being relatively insensitive to auxin (Moore et al. 2003).  Since HKL1-HA seedlings                          

                                 

                                   

Figure 3.4  Auxin induced lateral root formation in seedlings of different HKL1 expression lines.  The 

number of lateral roots were measured 5 d after transfer from plates with 5 µM NPA to plates ± 0.1µM 

NAA (see Materials and methods).  Values are average lateral root numbers ± 1 SD (n=10). 
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resembled gin2-1 in the hypocotyl growth assay, transgenic and mutant lines were also             

characterized by an auxin response assay.  In this assay, seedling growth in the presence 

of the auxin transport inhibitor NPA greatly reduces the number of lateral roots (Himanan 

et al. 2002).  Lateral root formation then can be initiated after seedling transfer to plates 

with auxin.  By this assay, both Col and Ler seedlings showed a robust auxin induction of 

lateral root formation, increasing 5-fold and 4-fold, respectively, after transfer to plates 

with NAA (Fig. 3.4).  Seedlings of hkl1-1 showed a similar increase in the number of 

lateral roots relative to Col seedlings.  However, auxin treatment induced relatively few 

lateral roots in gin2-1, HKL1-HA and HKL1-FLAG seedlings (about 2- fold).  As a 

control for this assay, auxin treatment of the receptor mutant tir1 did not result in 

appreciable lateral root formation.  These data indicate that the HKL1 protein acts as a 

negative regulator of auxin-induced lateral root formation, again depending on the 

presence of HXK1.  

 

HKL1 mutants and transgenics have altered glc dependent phenotypes 

 

 The described growth phenotypes of the HKL1 transgenic and mutant lines in 

principle could be due to an influence of HKL1 protein on HXK1 protein catalytic 

activity, signaling function, or neither.  To test for the possible influence of HKL1 protein 

on glc phosphorylation activity, rate measurements were carried out using leaf extracts 

from the different lines.  There was no significant difference for enzyme activity between 
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the transgenic lines and their respective parental lines (Fig. 3.5 A).  As reported 

previously (Moore et al. 2003), HXK enzyme activity in gin2-1 is about(Moore et al. 

2003), HXK enzyme activity in gin2-1 is about half of that in Ler.  These results support 

the Western analyses (Fig. 3.1 G), in which HXK1 protein levels were comparable 

among corresponding lines.  The possible inhibition of HXK1 by HKL1 was also tested    

 

Figure 3.5  Glucokinase activity of different HKL1 expression lines.  (A) Clarified leaf extracts of 

greenhouse grown plants were assayed directly for enzyme activity.  Values are means ± 1 SD (n=3 

biological replicates).  (B) Maize protoplast extracts were assayed directly for enzyme activity after 

expression of HXK1-HA and/or HKL1-HA cDNAs.  Protein expression was routinely monitored by 

labeling with [35S]-methionine as previously described for these constructs (Karve et al., 2008).  Values are 

means ± 1 SD from 3 separate transfections, expressed relative to control, untransfected protoplasts. 

 

directly by transiently expressing HXK1-HA and HKL1-HA in maize protoplasts.  

HKL1-HA did not have any glc phosphorylation activity, as previously  reported (Karve 

et al. 2008).  When co-transfected with HXK1-HA, HKL1 protein did not affect  
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Figure 3.6.  Phenotypes of different HKL1 expression lines grown on glc plates. (A) Images are of 

representative seedlings grown 7 d on 1X MS plates with varying concentrations of glc (3-7%).  (B) 

Percentage of seedlings from plates in (A) that had green cotyledons.  Values are expressed relative to the 

total number of germinated seedlings and are means ± 1 SD (n=3 plate replicates).  (C) Images of 

representative 7 d old seedlings grown on 1X MS plates with 6% mannitol. 

 

measured glucokinase activity (Fig. 3.5 B).   

 Since HKL1 lacks glucokinase activity despite having a largely conserved glc 

binding domain, it is possible that the protein affects glc or other unknown cellular 

signaling activities.  A widely used phenotypic screen to identify mutants in sugar 
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signaling is based on the ability of some mutants to develop normally on otherwise 

inhibitory concentrations of exogenous glc (Rolland et al. 2006).  Therefore, seedling 

growth of the different lines was assessed in the presence of varying glc concentrations 

(Fig. 3.6 A, B).  At relatively high glc levels, Col and Ler seedlings underwent 

developmental arrest, with much reduced root and shoot growth, and did not accumulate  

chlorophyll.  The hkl1-1 seedlings were hypersensitive to developmental arrest, showing 

substantial repression even at 4% glc.  In contrast, the HKL1-HA seedlings were glc 

insensitive relative to the Ler parental line, with >90% of seedlings having green 

cotyledons when grown on 6% glc.  The responses of HKL1-FLAG seedlings were 

comparable to those of gin2-1 seedlings, but were not synergistic (data not shown).  

When grown instead on MS plates with 6% mannitol, all lines had similar growth, albeit 

with somewhat smaller roots (Fig. 3.6 C).  Therefore, the observed developmental arrest 

on glc plates is not a result of osmotic stress.  The glc hypersensitive phenotype of the 

hkl1-1 mutant along with the glc insensitive phenotype of the HKL1-HA line indicates 

that HKL1 could be a negative regulator of glc signaling. 

 

HKL1 protein might not regulate glc responsive promoters 

 

 To test whether HKL1 might affect the expression of glc responsive genes, 

protoplast transient expression assays were done using pRBCS-LUC and pASN1-LUC as 

established reporters of HXK1 signaling (Balasubramanian et al. 2007).  LUC activities 

were normalized for possible variations in transfection efficiency by including a control                                    
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Figure 3.7  Protoplast signaling assay using WT Col or hkl1-1.  Arabidopsis leaf mesophyll protoplasts 

were co-transfected with RBCS-LUC and UBQ10-GUS, plus or minus effectors HXK1-HA and/or HKL1-

HA. Protoplast conditions are without glc (control), with 2 mM glc, with  2 mM glc + HXK1-HA (Glc + 

K1), with 2 mM glc + HKL1-HA (Glc+ L1), and with 2 mM glc + HXK1-HA + HKL1-HA (Glc + K1+ 

L1).  Values are means of 3 replicate assays ± 1 SD, after normalizing the relative LUC units with respect 

to GUS activity.  GUS activity was not affected by the presence of glc or either effector.   

 

promoter construct pUBQ10-GUS.  Leaf protoplasts of Col and hkl1-1 plants were used 

in independent assays.  Relative RBCS-LUC activity in both protoplast types was 

reduced by 25% with 2 mM glc.   In both cases, co-transfection with HXK1 plus 

treatment with 2 mM glc reduced the reporter activity by about 55% (Fig. 3.7).  In 

contrast, transfected HKL1 did not affect the relative RBCS-LUC activity with glc alone 

or with HXK1 plus glc, using protoplasts from either genotype.  Similar results were 

obtained for the relative activity of ASN1-LUC in the wt Col protoplasts (data not 

shown).  Notably, in all cases the expression of UBQ10-GUS was not affected by co-

transfection of HXK1, HKL1 and/or by addition of 2 mM glc.  The lack of any defect in 
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glc repression of expressed RBCS-LUC in hkl1-1 protoplasts, plus the lack of response 

by the RBCS and ASN promoters to HKL1 transfection, both indicate that AtHKL1 likely 

does not directly affect HXK1-dependent glc signaling. 

 

HKL1 promoter directs tissue specific GUS expression and is regulated by plant 

hormones 

 

 As an alternative approach to characterize HKL1 function, transgenic Arabidopsis 

plants were made that express an HKL1 promoter-GUS fusion construct (pHKL1-GUS).  

Three independent homozygous transgenic lines were then examined, first by 

histochemical GUS staining.  At early stages of seedling development, GUS activity was 

detected mainly in the root, particularly towards the root tip (Fig. 3.8A).  With increased 

seedling growth, staining was progressively localized to the vascular tissues of roots and 

cotyledons (Fig. 3.8 B).  GUS activity was relatively strong in the root and shoot 

meristems (Fig. 3.8 C), but not in leaf primordia.  In adult plants, GUS expression was 

highest in the root and leaf vascular tissue and in the emerging lateral roots (Fig. 3.8 D, 

E, F).  In stem cross-sections, GUS staining was observed in the phloem.  In flowers, 

GUS staining was observed in the anther filaments, but not in the pistils (Fig. 3.8 G, H).  

Staining was also observed in the vasculature of developing siliques, localizing to the 

funiculi of developing seeds (Fig. 3.8 I).  Since HKL1 overexpression reduced the 

sensitivity of seedlings to auxin dependent lateral root formation (Fig. 3.4) and reduced 
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Figure 3.8  Organ and tissue expression of pHKL1-GUS.  (A) Seedlings grown 3 d on 1X MS plates.  (B) 

Seedlings grown 7 d.  (C) Leaf from a 21 d old plant.  (D) Shoot of a 5 d old seedling, with arrow pointing 

to specific staining in the meristem.  (E) Stem cross section, with arrow pointing to phloem.  (F) Root of a 

10 d old seedling.  Note staining at the site of lateral root initiation.  (G) Opened flower.  (H) Anthers and 

filaments.  (I) Developing silique, with insert showing a mature silique and arrow pointing to the funiculus 

of a developing seed.  

 

the sensitivity of seedlings to glc repression of development (Fig. 3.6), the influence of 

several different hormones on the expression of pHKL1-GUS fusion was examined in the 

transgenic seedlings.  The seedlings were grown on agar plates for 7 d, and then 

transferred for 4 h to liquid medium containing indicated hormone additions (Fig. 3.9).  

The effect of the hormone treatments was examined visually by GUS staining 
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Figure 3.9  Effect of different plant hormones on pHKL1-GUS expression.  Seedlings of pHKL1-GUS 

lines were grown 7 d on 1X MS plates, then transferred to liquid MS medium for 4 h with different plant 

hormones: 10 µM IAA, 1 µM ABA, 50 µM ACC, and 10 µM zeatin.  (a) Seedlings stained for GUS 

activity.  (b) Time course for the activity assay after extraction of control seedlings.  (c) GUS activity over 

a 2 h assay following extraction of treated seedlings.  Values are means of 3 independent samples ± 1 SD.  

 

and quantitatively after extraction and direct assay of GUS activity.  Initial assays in the 

absence of added stimuli established that a 2 h reaction time with seedling extracts was 

within the linear range of activity. 

 IAA or GA3 treatments did not induce pHKL1-GUS expression or activity (Fig. 

3.9 A, C; GA3 treatment not shown).  However, ABA treatment greatly reduced seedling 
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GUS staining and reduced the extractable GUS activity by 50% (Fig. 3.9 A, C).  On the 

other hand, zeatin or ACC treatments induced GUS expression throughout the seedling 

and not just in the vascular tissues (Fig. 3.9 A).   Correspondingly, the extracted GUS 

activities following those treatments was up to 2-fold higher than in the control seedlings 

(Fig. 3.9 C). The results of the GUS assays indicate that the HKL1 gene is regulated by 

multiple plant hormones and could play a crucial role in plant growth and development. 

 

Discussion 

 

 In Arabidopsis, HXKs exist as a family of six genes.  As an enzyme catalyst, 

HXK1 is required for glc phosphorylation.  As a glc sensor protein, HXK1 is required for 

normal plant growth and development, in part by influencing other hormone signaling 

pathways (Moore et al. 2003).  Much of the related previous research on glc signaling by 

HXK1-dependent processes have focused on identifying downstream components and 

mechanisms (e.g., Ho et al.. 2001; Yanasigawa et al. 2003; Cho et al. 2006b; 

Balasubramanian et al. 2007).  However, AtHXK2 also functions as a glc 

sensor/transducer (Jang et al. 2007), and other members of the gene family, including 

some of the non-catalytic proteins, might have related roles as well. 

 Elucidating functions of non-catalytic proteins can be challenging.  Examining the 

tissue expression pattern of a gene can provide clues for function.  HKL1 transcript was 

previously shown to be expressed in principal plant organs (Karve et al.  2008).  These 

observations  were extended in this study by demonstrating that pHKL1-GUS activity 



 116 

occurs predominantly in vascular tissues of roots, stems, young leaves, stamen filaments 

and developing embryos (Fig. 3.8).  In stem cross-sections, staining was most apparent in 

phloem tissue.  HKL1 expression also was strong in root tips and in lateral root 

primordia.  While we are not aware of any HXK family members having been reported in 

surveys of the phloem proteome, nonetheless, many phytohormones and a number of 

signaling proteins have been detected in phloem sap (e.g., Giavalisco et al. 2006). 

 Phenotypes of AtHKL1 knockout mutant and overexpression lines provide 

evidence that a major function of the HKL1 protein is to modulate plant growth.  HKL1 

overexpression in Ler (HKL1-HA) resulted in several distinct phenotypes, including 

reduced seedling growth on sucrose plates (Fig.3 2), reduced hypocotyl elongation under 

low light conditions (Fig. 3.3), severe reduction in rosette size under LD conditions (Fig. 

3.2), and seedling growth tolerance on agar plates with 6% glc (Fig. 3.6).  The HKL1 

knockout line, hkl1-1, did not show significant growth differences from the WT on 

sucrose plates, but mutant plants did have contrasting phenotypes to the overexpression 

lines by having increased hypocotyl growth at low light, reduced rosette size under SD 

conditions, and hypersensitivity to growth on agar plates with glc (Figs. 3.2, 3, 6).  Many 

of the phenotypes of HKL1-HA transgenic plants are similar to those previously reported 

for the HXK1 null mutant, gin2-1 (Moore et al. 2003).  These phenotypes indicate that 

HKL1 is a negative regulator of plant growth.  In an initial recent report, some rice HXK 

family members also are noted as being apparent negative regulators of seedling growth 

(Yu and Chiang, Plant Biology 2008). 
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 Interestingly, phenotypes of HKL1 overexpression lines in the gin2-1 background 

were generally the same as the parental line.  That is, HXK1 protein was required for 

most of the examined phenotypes associated with altered expression of HKL1 protein.  

Activity assays, Western blots, and analysis of HXK1 mRNA levels (Fig. 3.1, 5) rule out 

the possibility that HKL1 overexpression in the transgenic lines might somehow have 

decreased the expression of HXK1 protein.  Also, even when HKL1 is transiently 

expressed at relatively high amounts in protoplasts, accumulated protein did not affect 

either glc phosphorylation or glc signaling activities of co-transfected HXK1 (Figs. 3.5, 

7).  Therefore the observed phenotypes for the HKL1-HA lines could be associated with 

an “indirect” signaling function of HXK1 that might involve other hormones.  For 

example, since mutants of Arabidopsis with constitutive ethylene signaling activity are 

tolerant to growth on plates with 6% glc (Zhou et al.1998), HKL1 overexpression could 

somehow promote ethylene signaling or tissue sensitivity.  Since both HXK1 and HKL1 

are targeted to mitochondria (Heazelwood et al. 2004; Karve et al. 2008), the two 

proteins might interact and thereby influence a number of related growth processes.  On 

the other hand, there are some different phenotypes among lines with altered expression 

of HXK1 and HKL1 proteins.  In contrast to the influence of photoperiod on growth of 

HKL1-HA and hkl1-1 lines, plant growth of gin2-1 was minimally affected by 

photoperiod (Fig. 3.2).  Also, while growth of  gin2-1 plants is repressed at relatively 

high light intensity (Moore et al. 2003), the different HKL1 expression lines do not show 

reduced growth under the same high light conditions (data not shown).  Thus, these data 
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suggest that functions of HXK1 and HKL1 might converge downstream of the primary 

sensor protein HXK1. 

 Seedling hypocotyl growth by cell elongation is strongly influenced by many 

factors including light, temperature, nutrients, and plant hormones such as auxin, 

cytokinin, ethylene, gibberellins and brassinosterioids (Collet et al. 2000; Vandenbussche 

et al. 2005).  In gin2-1, reduced hypocotyl growth has been attributed to its possible 

insensitivity to auxin signaling (Moore et al. 2003).  Similar to gin2-1, HKL1-HA 

seedlings also have shorter hypocotyls (Fig. 3.3).  Since hkl1-1 seedlings have longer 

hypocotyls, we speculate that the HKL1 protein might be a negative regulator of cell 

expansion.  Interestingly, ethylene also can repress hypocotyl elongation in seedlings 

grown under conditions similar to those in our experiment (Smalle et al., 1997).  

Therefore, altered seedling responses to either ethylene or auxin might account for the 

observed HKL1-dependent hypocotyl growth phenotypes. 

 Since HKL1-GUS activity was observed at sites of lateral root formation, we also 

examined related transgenics for their sensitivity to auxin-induced lateral root formation.  

As with other phenotypes described above, the HKL1 protein is a negative regulator of 

root formation, HXK1 is a positive regulator, and the HKL1 phenotype is not additive in 

the absence of HXK1 (Fig. 3.4).  While lateral root formation does require auxin 

synthesis, transport, and/or signaling, enhanced ethylene signaling has recently been 

shown to repress lateral root formation by modulating auxin transport (Negi et al. 2008).  

Thus, this observed HKL1 phenotype also might be associated with enhanced ethylene 

signaling, as suggested above for plant growth under LD conditions.  
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 In addition to the possible role of HKL in mediating cross-talk with some 

phytohormone dependent processes, promoter expression analysis suggests a further 

possible inter-connection between hormone signaling and HKL1 functions.  The HKL1 

promoter is repressed by ABA and induced by both ACC and cytokinin, but IAA 

treatment had little effect.  The ABA repression is consistent with the repression of 

HKL1 transcript by salt and osmotic stress (Claeyssen and Rivoal, 2007), processes in 

part regulated by ABA.  The HKL1 promoter does have two ABA response elements and 

one ethylene response element (Molina and Grotward 2005; Obayashi et al. 2007).  

Further analysis is needed to confirm the role of these elements.  However, the HXK1 

and HKL1 promoter sequences are not likely to be co-regulated (Weeder Web interface; 

Pavesi et al. 2004), consistent with the premise that these proteins do have some different 

affects on plant growth.  

 Non-catalytic HXKs have been experimentally identified as regulatory proteins in 

fungi including S. cerevisiae and A. nidulans (Daniel 2005; Bernardo et al. 2007).  The 

extent to which non-catalytic homologs are present in other protein families with known 

enzymes is not clear.  The Arabidopsis glutathione transferase family does include both 

non-catalytic as well as catalytic forms, though their relative distribution between groups 

apparently has not been strictly determined (Dixon et al. 2003).  Recently, β-amylase4 

(BAM4) of Arabidopsis was shown to lack apparent catalytic activity, yet to somehow 

facilitate starch breakdown (Fulton et al. 2008).  BAM4 is one of perhaps four 

chloroplastic isoforms within Arabidopsis.  Protein annotations from genome sequencing 

projects are often done according to general homology to a protein with known function.  
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However, estimates are that homologs of catalytic proteins require >75% amino acid 

sequence identity to transfer all 4 digits of an EC number at an error rate below 10% 

(Rost et al. 2003).  Therefore, we speculate that non-catalytic enzyme homologs might 

occur relatively often within plant gene families, since sequence divergence levels are 

often >25%.  Among Arabidopsis HXKs, four of the six members show about 50% 

sequence identity to HXK1, and three of those lack catalytic activity (Karve et al. 2008).  

In the present study, our results indicate that the non-catalytic HKL1 protein can 

substantially influence plant growth, likely by somehow influencing ethylene and/or 

auxin response pathways. 
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Abstract 

 

 The initial characterization of HKL1 transgenic and mutant lines revealed that 

HKL1 has a crucial role in plant growth, but perhaps only an indirect role in glucose 

signaling.  We therefore measured the transcripts of known glucose repressed genes in 

HKL1 transgenics and mutants.  Our results show that HKL1 does not affect the 

expression of these target genes and further establish that HKL1 does not have a direct 

role in glucose signaling.   Since growth phenotypes of plants with altered HKL1 

expression might be associated with plant ethylene signaling, we used seedling growth 

and gene expression assays to test for HKL1 function in ethylene responses.  HKL1 was 

found not to affect the classic seedling triple response, which is mediated by ethylene.  

However, treatment with ethylene precursor did not overcome the glucose-dependent 

developmental arrest in hkl1-1, in contrast to wild type seedlings.  Furthermore, HKL1 is 

required for ethylene-dependent regulation of some ethylene response genes and for 

glucose-dependent regulation of some ethylene biosynthesis genes.  We also discovered a 



 128 

conditional root hair phenotype in HKL1 overexpression lines and gin2-1, a null mutant 

of hexokinase1.  Seedlings of these lines produced bulbous root hairs upon transfer to 

agar plates with 6% glucose.  In HKL1-HA seedlings, the bulbous root hairs were also 

observed upon transfer to ACC plates, but not in gin2-1.  Using known ethylene 

biosynthesis and response mutants, we showed that the root hair response depends on 

ethylene biosynthesis.  We also found that many of the HKL1 phenotypes require 

hexokinase1 protein and that both proteins can physically interact.  Therefore, we suggest 

that HKL1 mediates cross-talk between glucose and ethylene signaling. 
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Introduction 

 

 

 To regulate growth and development, plants need to sense, transmit and respond 

to internal hormonal signals and external stimuli such as nutrients, light, temperature and 

biotic and abiotic stresses.  In plants, sugars generated through photosynthesis not only 

act as central energy molecules, but also act as hormone-like signaling molecules that 

modulate other plant signal transduction pathways such as light, hormone, and nitrogen 

signaling (Smeekens 2000; Coruzzi and Zhou 2001; Leon and Sheen 2003; Gibson 

2004).  

Genetic and molecular analyses of sugar response mutants have shown that sugar 

signaling in plants is closely associated with plant hormone biosynthesis and signaling, 

particularly with abiscisic acid (ABA) and ethylene (Leon and Sheen 2003).  Several 

ABA deficient mutants such as abi4 and aba2 have been identified as sugar insensitive in 

different phenotypic screens (Dekkers et al. 2008; and references therein).  This has led to 

the suggestion that glucose (glc) signaling in Arabidopsis seedlings requires an intact 

ABA signaling pathway (Smeekens 2000).  In addition, the overexpression of some 

Arabidopsis ABA-response element binding factors (ABF3 and ABF4) confers both 

ABA and glc oversensitive phenotypes.  This further indicates that prominent interactions 

do occur between glc and ABA signaling (Kang et al. 2002).   

The addition of the ethylene precursor ACC (1-aminocyclopropane-1-carboxylic 

acid) alleviates glc-induced inhibition of seedling development in Arabidopsis (Zhou et 

al. 1998).  Interestingly, both a constitutive ethylene biosynthetic mutant, eto1, and a 
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constitutive ethylene signaling mutant, ctr1, are insensitive to glc-induced seedling 

developmental arrest.  In contrast, ethylene insensitive mutants such as etr1, ein2, ein3 

and ein6 exhibit glc hypersensitivity (Zhou et al. 1998).  These responses indicate that an 

antagonistic interaction occurs between glc and ethylene signaling.  The cross talk 

between ethylene and glc signaling is also evident from a DNA microarray analysis 

following a short term treatment of Arabidopsis seedlings with glc (Price et al. 2004).  

This study found that several ethylene biosynthesis and signaling genes are repressed by 

glc, including CTR1 and genes associated with ethylene metabolism.  

Arabidopsis hexokinase1 (HXK1) is probably the best characterized glc sensor in 

plants and modulates plant growth at different developmental stages, in part through 

interaction with other hormone signaling pathways (Moore et al. 2003).  The Arabidopsis 

genome encodes three hexokinase (HXK1, HXK2 and HXK3) and three hexokinase-like 

(HKL1, HKL2 and HKL3) genes.  Out of the three HKLs, HKL1 and HKL2 are ~50% 

identical to HXK1 and lack any detectable catalytic activity (Karve et al. 2008).  Both 

HKL1 and HKL2 have similar tissue expression and sub-cellular localization as does 

HXK1 and have mostly conserved glc binding domain.  These expression features and 

structural characteristics indicate that HKL1 and HKL2 might have a glc-dependent, 

regulatory role in Arabidopsis.  

 Our initial characterization of HKL1 transgenic and mutant lines revealed that 

HKL1 has a crucial role in plant growth, but apparently only an indirect role in glc 

signaling (Chapter 3).  Changing the amount of HKL1 expression affected seedling and 

hypocotyl growth, plant growth under different photoperiods, seedling sensitivity to glc 
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induced developmental arrest, and sensitivity to auxin induced lateral root initiation. 

Many of the phenotypes of transgenic overexpression line, HKL1-HA in Ler background, 

were similar to those reported for an HXK1 null mutant, gin2-1 (Moore et al. 2003), 

indicating that HKL1 acts as a negative regulator of plant growth.  Moreover, 

overexpression of HKL1 in gin2-1 did not affect the phenotypic responses of gin2-1, 

indicating that HXK1 protein is required for most of the examined phenotypes associated 

with HKL1.  The observed growth phenotypes of HKL1 indicated that HKL1 influences 

some phytohormone dependent processes.  In addition to the growth phenotypes, a 

possible interconnection between hormone signaling and HKL1 function was revealed by 

the observation that the HKL1 promoter is repressed by ABA, but is induced by ethylene 

and cytokinin.     

 To understand if HKL1 has a role in mediating cross-talk between glc and 

ethylene signaling, a candidate gene approach was used.  We studied the transcript levels 

of genes that are known targets of glc and ethylene signaling, as well as genes that are 

involved in ethylene biosynthesis or signaling, but are known to be regulated by glc.   

The results of our gene expression analysis show that HKL1 does not have a direct role in 

glc signaling.  However, HKL1 was shown to have a role in mediating glc responses to 

several genes in ethylene biosynthesis and signaling.  In this study, we also have 

identified a novel ethylene dependent root hair phenotype which is associated with HKL1 

expression.  Our results reveal novel interactions between glc and ethylene signaling 

pathways during root hair development and show that HKL1 has a role in this process. 
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Materials and methods 

 

 

Plant material  

 

 Seeds of Arabidopsis thaliana ecotype Columbia (Col), ecotype Landsberg erecta 

(Ler), ecotype Wassilewskija (Ws) and hkl1-1 knockout line in Col  background 

(WISCDSLOX383A5) were obtained from the Arabidopsis Biological Resource Center 

(Ohio State University); gin2-1 was as  previously described (Moore et al. 2003).  The 

HKL1-HA and HKL1-FLAG homozygous transgenic lines were generated in Ler and 

gin2-1 backgrounds, respectively.  As described in the previous chapter.  Two 

independent transgenic lines of each type were used in all the experiments.  Seeds of 

eto2-1 and ein2-1 were from Dr. J-C. Jang (Ohio State University) and seeds of act2-1 

were from Dr. Richard Meagher (University of Georgia).  Seeds of maize (Zea mays L.) 

were purchased (Line FR922 X FR967, Seed Genetics).   

 

Plant growth conditions 

 

 Arabidopsis seeds were surface sterilized and stratified for 2 days at 4 
o
C as in 

Jang et al. (1997) and usually were grown on 1X MS agar plates (modified basal medium 

with Gamborg vitamins; PhytoTechnology Laboratories) containing 0.7% phytagar 

(Caisson Laboratories), pH 5.7, under constant light (30 µmol
 
m

-2
s

-1
).  For glc repression 

assays, seedlings were grown on 1X MS plates supplemented with 6% glc ± 50 µM  ACC 

(Sigma-Aldrich) for 7 d under constant light.   
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  To monitor glc and ethylene dependent regulation of candidate gene expression, 

seeds were grown in liquid culture.  In this case, 15-20 seeds were put into 125 ml flasks 

containing 50 ml 1/2X MS basal medium supplemented with 1% sucrose (suc). Seedlings 

were grown on a rotary shaker with constant agitation at 250 rpm under constant light (70 

µmol m
-2

s
-1

) at 22º C for 7 d.  Seedlings were washed and incubated with sugar-free 

1/2XMS medium for 24 h in the dark with shaking and then were transferred to fresh 

sugar free medium (control) or supplemented with 2% glc or 50 µM ACC.  Seedlings 

were treated under constant light with shaking for 8 h, and then harvested by quickly 

drying on filter paper before freezing in liquid N2. 

 

Root hair development assay 

 

  Seedlings were grown vertically for 7 d on 1/2X MS plates with 0.5% suc or 2% 

glc under constant light (30 µmol m
-2

s
-1

).  Seven day old seedlings were transferred to 

agar plates with 6% glc +/- 5 µM silver thiosulfate (STS; PhytoTechnology 

Laboratories), +/- 1 µM aminoethoxyvinylglycine (AVG; Fluka) or with 6% mannitol, or 

were transferred to respective sugar plates + 5 µM ACC (0.5% suc + ACC, or 2% glc + 

ACC).  In another experiment, eto2-1 and Col seedlings were transferred from plates with 

2% glc to plates with 6, 7 or 8% glc +/- 0.1 µM, 0.25 µM and 1 µM AVG.  Seedling root 

hairs were imaged directly from the agar plates 4-6 d after transfer, using a Nikon 

SMZ1500 stereo microscope with a MicroPublisher CCD cooled color camera and Image 

Pro Plus v5.0 software. 
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RNA isolation and RT- PCR analysis 

 

 Total RNA was isolated from whole seedlings using the RNeasy plant kit 

(Qiagen).  One µg of total RNA was converted to cDNA using the Protoscript II RT-PCR 

kit (New England BioLabs) according to the manufacturer’s instructions.  The PCR 

primer sequences for the candidate genes were generated PCR primer sequences were 

generated using the AtRTPrimer database (Han and Kim 2006): ACCOX (ACC oxidase 

family protein, At5g58660; 5’-TTA ACC ATG CTC GAA GGT TTC AAC G-3’, 5’- 

CAT CGC TTA TGG CCT GCA TCA TAT C-3’;expected size = 466 bp); ACCS (ACC 

synthetase family protein, At5g26740; 5’-TGC TTT CCG CCT TTA ACA CTG GAC-3’, 

5’-AAC ATT GGC ACC AGC ATA CTC CTT G-3’; expected size = 468 bp  ); PEROX 

(peroxidase, At1g49570; 5’-TCC GTG GAT TCG AAG TCA TTG AAG-3’, 5’- GCA 

GCC GTA GGA TCT GTC ATT AGG G-3’; expected size = 556 bp); SP2 (sodium 

symporter family protein, At4g22840; 5’-GGA TCG AGG AAT TTG TGG CGT AGA-

3’, 5’-GGT GCG ATT ACA ACC TGA AGA ATG C-3’; expected size = 625 bp); LRR 

(leucine-rich repeat protein kinase, At2g26730; 5’-AAC CGG CGG GAG TAG CTA 

CAA GGA-3’, 5’-CCT CTC GCT GCA GTT ATC GCT ATT C-3’; expected size = 496 

bp); ASN1 (asparagine synthetase1, At3g47340; 5’-TGA TTC TCA GGC CAA GAG 

AGT TCG T-3’, 5’-CCC AAC CAA TGT AGA GCG AAG TGA C-3’; expected size = 

413 bp); T6PSY (trehalose-6 phospahte synthetase, At1g61800; 5’-GGC AAA ATG CGG 

TTT CTC AAG TCG-3’, 5’- TCC TCC CCG GCT ACT CTT TTG TTA G-3’; expected 
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size = 626 bp), GLYK (glycerate kinase, At1g80380; 5’-TTG GTG CGA AGA TCA 

GAT TGC TTT G-3’, 5’-GGA GAC AGC ATC GCA TTA GTT TGC- 3’; expected size 

= 544 bp) and UBQ5 (ubiquitin5, At3g62250; 5’- GTG GTG CTA AGA AGA GGA 

AGA-3’, 5’- TCA AGC TTC AAC TCC TTC TTT-3’; expected size = 254 bp).  All the 

primers were designed to span one or more introns such that the amplicon size from 

cDNA is different than from genomic DNA. The template amounts were first titrated to 

balance the UBQ5 expression in different samples and corresponding template amounts 

were used thereafter, while varying PCR cycle numbers.  

 

35
S- labeling and co-immunoprecipitation 

 

 As previously described (Yoo et al. 2007),  protoplasts from greening maize 

leaves were transfected with 6–10 µg of cesium chloride-purified plasmid containing  

HKL1-GFP, HXK1-HA, and yeast HXK2-HA (YHK2; Moore et al. 2003; Karve et al. 

2008).  Following transfection, protoplasts were incubated in the dark for 90 min, then 

[
35

S] Met (25 µCi; Perkin-Elmer) was added for 8 h.  Transfection efficiencies were 

routinely > 60% as determined using WRKY-GFP (Balasubramanian et al. 2007).  

Harvested protoplasts were lysed and resuspended as described previously 

(Balasubramanian et al. 2007).  Anti-HA (Roche) or anti-GFP (Sigma-Aldrich) 

antibodies were used with protein A agarose beads (Roche) for immunoprecipitation.  

The beads were resuspended in 2X SDS sample buffer, electrophoresed on 10% SDS 

gels, and visualized by fluorography.  
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Results 

 

HKL1 does not modulate the expression of known glucose response genes 

 

 

 Our previous results from seedling glc tolerance assays (Fig 3.6) and from 

protoplast signaling assays (Fig. 3.7) indicated that HKL1 likely does not have a direct 

role in glc signaling.  The potential role of HKL1 in glc signaling was further analyzed by 

studying the transcript levels of candidate genes in seedlings of HKL1 transgenic and 

mutant lines grown in liquid culture. 

                   

Figure 4.1  Expression of glc regulated genes ASN, GLYK and T6PSY in HKL1 transgenic and mutant 

lines.  Semi quantitative RT-PCR was used to determine the transcript levels of ASN, GLYK and T6PSY.  

The Col, hkl1-1, Ler, HKL1-HA, gin2-1 and HKL1-FLAG seedlings were grown in MS liquid medium as 

described in Materials and methods with or without  2% glc for 8h. UBQ5 was amplified as an internal 

control for the amount of template.  Cycle numbers refer to number of PCR reaction to amplify each cDNA 

 

 In Arabidopsis, ASN1, GLYK and T6PSY are transcriptionally repressed by glc 

(Price et al. 2004).  In our assay all three of these were repressed in WT seedlings after 

glc treatment(Fig. 4.1).  In contrast to the response of WT Ler, the transcripts of GLYK 
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and T6PSY were not repressed in gin2-1 seedling after glc treatment.  However, the 

transcript of ASN1 was repressed after glc treatment in gin2-1seedlings.  Therefore, 

GLYK and T6PSY are regulated by HXK1-dependet glc signaling, where as ASN1 is 

regulated by a glc signaling pathway that is independent of HXK1.  To test whether 

HKL1 modulates the expression of these glc response genes, we examined their transcript 

levels genes in seedlings of the HKL1 transgenic and mutant lines following glc 

treatment.  The transcripts of ASN1, GLYK and T6PSY were repressed by glc treatment in  

Col, hkl1-1 and HKL1-HA seedlings (Fig. 4.1).  HKL1-FLAG expression in gin2-1 

background did not restore glc sensitivity to either GLYK or T6PSY.  These data extend 

and support our previous suggestion that HKL1 does not affect glc regulation of HXK1 

target genes.  

 

HKL1 might mediate cross talk between ethylene and glucose signaling  

 

 Since ethylene and glc can have antagonistic roles in signaling, we tested whether 

ACC treatment affects glc tolerance or the developmental repression response of 

seedlings with altered HKL1 expression.  For this experiment, seedlings were grown on 

6% glc plates, with or without 50 µM ACC.  The seedlings of wild type Col and Ler 

grown only on 6% glc underwent developmental arrest with indicators such as reduced 

cotyledon expansion and greening (Fig. 4.2).  However, when grown on plates with 6% 

glc + ACC, the growth repression phenotype of the WT seedlings was not observed, as 

reported previously (Zhou et al. 1998).   The hkl1-1 seedlings also underwent 
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developmental arrest on 6% glc plates.  However, in this case, ACC treatment could not 

overcome the  

         

Figure 4.2  Effect of ethylene on glc sensitivity of HKL1 transgenic and mutant lines.  Glucose induced 

developmental arrest was examined in the 7d old seedlings grown on MS medium containing 6% glc, with 

or without 50µM ACC.  

 

developmental arrest (Fig. 4.2).  Seedlings of gin2-1 and HKL1 overexpression lines (in 

either background) were insensitive to seedling developmental arrest and produced green 

cotyledons on 6% glc plates, as observed previously (Fig. 3.6; Moore et al. 2003).  ACC 

treatment did not affect this response but did substantially increase radial expansion of 

the hypocotyl, while reducing the root length and size of the cotyledons in the HKL1 
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overexpression lines and in gin2-1(Fig. 4.2).  These effects were more pronounced in the 

treated HKL1-HA seedlings.  The observed insensitivity of hkl1-1 seedlings and 

hypersensitivity of HKL1 overexpression lines to the ACC treatment indicates that HKL1 

might mediate cross-talk between some aspects of ethylene and glc signaling, at least 

during seedling development.   

 In response to exogenously applied ethylene or its precursor ACC, etiolated WT 

Arabidopsis seedlings show a characteristic triple response: (1) inhibition of hypocotyl 

and root elongation, (2) swelling of the hypocotyl, and (3) exaggerated tightening of the 

apical hook (Guzman and Ecker, 1990).  All of our HKL1 transgenic lines and mutant 

also showed a normal ethylene triple response when grown in the dark in the presence of 

ACC (data not shown).  This indicates that HKL1 expression likely does not affect 

related responses to ethylene.  

 

HKL1 expression affects expression of some ethylene response and biosynthesis genes 

 

 

 To further define whether HKL1 might have a role in ethylene signaling or how it 

might affect cross-talk with glc signaling, we examined the transcript levels of two 

ethylene response marker genes, SP2 and LRR (Nemhauser et al. 2005) in the HKL1 

transgenic and mutant lines following short term treatment with ACC or glc ( Fig. 4.3 A, 

B).  The SP2 and LRR transcripts were repressed after ACC treatment in Ler, gin2-1, and 

both the HKL1 overexpression lines.  While the repression of SP2 was similar among the 

different genotypes, the repression of LRR was greater in HKL1-HA and HKL1-FLAG 

seedlings compared to their respective parental lines.  ACC treatment also repressed the 
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transcripts of SP2 and LRR in Col seedlings.  However, in hkl1-1 seedlings, the SP2 and 

LRR transcripts were not appreciably repressed after ACC treatment.  The absence of the  

                    

                   

                         

Fig 4.3  Expression of ethylene regulated genes SP2 and LRR in HKL1 transgenic and mutant lines.  Semi 

quantitative RT-PCR was used to determine the transcript levels of SP1 and LRR seedlings treated for 8h 

with 50 µM ACC (A) or 2% glc (B).  Seedlings were grown in liquid MS medium as described in Materials 

and methods with or without 2% glc for 8h.  UBQ5 was amplified as a control for the amount of template.  

Cycle numbers refer to number of PCR reaction to amplify each cDNA. 

 

gene repression response in hkl1-1 indicates that HKL1 might be required for ethylene 

dependent regulation of the SP2 and LRR genes.  

A 

B 
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  On the other hand, treatment with glc repressed SP2 transcript levels, but not LRR 

transcript levels in all of the genotypes studied (Fig. 4.3B).  Glc repression of SP2 is 

therefore not dependent on HXK1 or HKL1, and perhaps correspondingly, this repression 

likely is not antagonistic to ethylene.  Notably as well, the role of HKL1 for ACC 

dependent regulation of SP2 and LRR also does appear to be antagonistic. 

 

Figure 4.4  The effects of glc and ethylene on the expression of genes associated with ethylene 

biosynthesis or signal transduction.  Semi-quantitative RT-PCR was used to determine the transcript levels 

of PEROX, ACCOX and ACCOS from Col and hkl1-1 seedlings treated for 8h with 2% glc (A) or 50 µM 

ACC (B).  The seedlings were grown in liquid MS medium as described in Materials and methods.  UBQ5 

was amplified as a control for the amount of template.  Cycle numbers refer to number of PCR reaction to 

amplify each cDNA. 

 

 In Arabidopsis, glc represses expression of many genes involved in ethylene 

biosynthesis and signaling (Price et al. 2004).  We therefore compared the transcript 

levels of ACCOX, ACCS and PEROX genes in seedlings of HKL1 transgenic lines and 

mutant with or without glc and ACC treatments.  ACCOX and ACCS encode enzymes in 
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the biosynthesis of ethylene and these specific family members are reported to be 

repressed by glc (Price et al. 2004).  PEROX encodes a putative peroxidase involved in 

oxidative stress responses and is induced by ACC treatment (Nemhauser et al. 2005), but 

is not an apparent target of glc signaling.  In our hands, glc treatment of Col seedlings 

also did not affect the transcript of PEROX, but it did repress the ACCS mRNA strongly 

and the ACCOX mRNA weakly.  In hkl1-1 seedlings also, the expression of PEROX was 

not affected by glc treatment.  However, in contrast to WT Col seedlings, the transcripts 

of ACCS and ACCOX were not repressed by glc in hkl1-1 seedlings (Fig 4.4 A).   

 ACC treatment induced the transcript of PEROX but did not alter the expression 

levels of ACCOX and ACCS (Fig. 4.4 B), in both Col and hkl1-1 seedlings.  The RT-PCR 

results of Ler, HKL1-HA, gin2-1, and HKL1-FLAG from both glc and ACC treatment 

were not consistent in all the replicates, hence are not shown here.  However, the results 

of hkl-1 indicate that HKL1 is somehow required for the glc dependent repression of 

ACCS and ACCOX; however, it is not required for the induction of PEROX by ethylene. 

 

 

HKL1 overexpression lines and gin2-1 have a glucose dependent root hair phenotype 

 

 

 In plants, seedling root hairs are an excellent system to study cell growth and 

development as they are easily accessible, single celled, and can be microscopically 

analyzed without disturbing the surrounding tissue.  In addition to the growth phenotypes 

of the HKL1 transgenic lines and mutants reported earlier (Chapter 3), we also observed 

a conditional root hair phenotype in seedlings of HKL1 overexpression lines and in gin2-

1.  In this experiment, 7 d old seedlings grown on 0.5% suc or 2% glc were transferred to 
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6% glc plates and the root hair morphology was examined thereafter.  Col and Ler 

seedlings grown on 0.5% suc or 2% glc plates produced slender and tubular root hairs 

without any observable defects.  Seedling transfer from 2% to 6% glc or 0.5% suc to 6%  

 

 

Figure 4.5  Root hair phenotypes of HKL1 overexpression lines and gin2-1 on different sugar plates.  The 

root hairs of Col, hkl1-1, Ler, HKL1-HA, gin2-1 and HKL1-FLAG seedlings grown under differ growth 

conditions.  (A) Seedling grown on plates with 0.5% suc plates.  (B)  Seedling transferred from plates with 

0.5% suc to 6% glc plates. (C) Seedlings grown on 2% glc plates.  (D)  Seedlings transferred from plates 

with 2% glc to plates with 6% glc.  (E) Seedlings transferred from 2% glc plates to plates with 6% 

mannitol.  Seedlings were grown vertically under constant light (30 µmol m-2s-1).  At least 10 seedlings of 

each genotype grown for 7 d on 0.5% suc or 2% glc plates were used for the transfer in three separate 

experiments. 

 

glc also did not alter the root hair morphology of WT seedlings (Fig. 4.5 B, D).  

Seedlings of hkl1-1 produced root hairs which were morphologically similar to WT Col 
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on 0.5% suc and 2% glc, or upon transfer from either condition to 6% glc.  Seedling root 

hairs of HKL1-HA, gin2-1 and HKL1-FLAG lines grown on 0.5% suc plates also were 

normal (Fig 4.5A).  However, when these lines were grown on 2% glc, the root hairs 

were often thicker than normal, with a small bulge at the base of (Fig 4.5 C).  Even more 

strikingly, HKL1-HA, gin2-1 and HKL1-FLAG seedlings transferred from 2% to 6% glc 

produced abnormally thick and bulbous root hairs, which were not observed in 

transferred WT or hkl1-1 seedlings (Fig 4.5 B, D).    The HKL1-HA, gin2-1 and HKL1-

FLAG seedlings transferred from the 0.5% suc plates to 6% glc, also produced bulbous 

and thick root hairs.  However, seedlings transferred from suc plates showed a 1-2 d 

delay in developing this phenotype.  In contrast, seedlings of all the genotypes transferred 

from 0.5% suc or 2% glc to 6% mannitol did not produce root hairs with any growth 

abnormalities (Fig 4.5 E).  This indicates that bulbous root hairs are not due to the 

osmotic stress, but are in response to increased levels of glc.                     

 Mutations in the vegetative ACTIN2 (ACT2) cause a hairless or short root hair 

phenotype, with a bulge at the base of the root hairs (Gilliland et al. 2002; Nishimura et 

al. 2003).  Since glc has been shown to modulate the actin cytoskeleton 

(Balasubramainan et al. 2007), we therefore screened act2-1 seedlings under the 

conditions that produced bulbous root hairs in HKL1 overexpression lines and in gin2-1.  

The act2-1 seedlings had fewer root hairs than WT Ws seedlings on 0.5% suc, 2% glc, or 

6% glc (Fig. 4.6).  However, act2-1 seedlings did not show the bulbous root hair 

phenotype upon transfer from 0.5% suc to 6% glc (data not shown) or from 2% glc to 6% 

glc (Fig. 4.6), as otherwise observed in the HKL1 overexpression lines and in gin2-1 
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Figure 4.6  Root hair morphology of act2-1 seedlings grown on different sugar plates.  Seedlings of WT 

Ws and act2-1 were grown on different sugar plates or transferred from 2% glc plates to 6% glc plates.  At 

least 10 seedlings of each genotype grown for 7 d on were used for the transfer in three separate 

experiments. 

 

 (Fig. 4.5).  These results suggest that the phenotypic response in HKL1 overexpression 

lines and gin2-1 might not be directly due to disruption of the actin cytoskeleton. 

 

Ethylene has a role in the bulbous root hair phenotype of HKL1-HA  

 

 In Arabidopsis root hair development and growth is controlled by multiple plant 

hormones, including ethylene (Zhu et al. 2005).  The phenotypes and the transcript data 

suggested that HKL1 might mediate cross-talk between ethylene and glc signaling.  

Therefore, we tested whether ethylene also has role in the glc-dependent root hair 

phenotype of HKL1 overexpression lines and gin2-1 seedlings.  Seedlings of HKL1 

transgenic lines and mutants were grown on 0.5% suc or 2% glc for 7 d and then 

transferred to MS plates containing 0.5% suc + 5 µM ACC and to plates with 2% glc + 5 
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µM ACC, respectively.  The Col and Ler seedlings grown on 0.5% suc or 2% glc with 

ACC produced significantly more root hairs (Fig. 4.7 A, B) compared to control plates 

without ACC (Fig. 4.5 A, C).  This proliferation response was previously observed by 

Tanimoto et al. (1995) for Col seedlings on suc plates with ACC.  The hkl1-1seedlings 

were less responsive to ACC treatment and produced fewer root hairs on ACC plates 

 

Figure 4.7  Role of ethylene in the root hair phenotype of HKL1-HA. (A) The root hairs of the Col, hkl1-1, 

Ler, HKL1-HA, gin2-1 and HKL1-FLAG seedlings after transferred from  0.5% plates suc plates to 0.5% 

suc plates supplemented with  5µM ACC.  (B)  Root hairs of seedlings in A transferred from 2% glc plates 

to 2% glc plates with 5µM ACC.  (C) Root hairs of seedling transferred from 2% glc plates to 6% glc plates 

with 1µM AVG.  At least 10 seedlings of each genotype were used for the transfer in three separate 

experiments.  

 

compared to WT Col seedlings.  This is consistent with the observed insensitivity of 

hkl1-1 to ACC previously observed on glc plates (Fig. 4.2).  Interestingly, seedlings of 

HKL1-HA, produced bulbous root hairs upon transfer to 0.5% suc and 2% glc plates with 

ACC (Fig 4.7 A, B), as observed in  the HKL1-HA seedlings transferred from 0.5% suc 

or 2% glc to  6% glc plates (Fig. 4.5 B, D).  However, seedlings of gin2-1 and HKL1-

FLAG did not produce any bulbous root hairs upon transfer to ACC plates (Fig. 4.7A, B).  
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These results indicate that ethylene can produce a similar phenotypic response as glc in 

HKL1 overexpression lines, but only if HXK1 is present. 

 Since ethylene is involved in the root hair phenotype of HKL1-HA seedlings 

grown on plates with high glc, we tested whether blocking ethylene biosynthesis might 

rescue the phenotype.  For this experiment, the seedlings grown on 2% glc plates were 

transferred to 6% glc plates with the ethylene biosynthesis inhibitor, 

aminoethoxyvinylglycine (AVG).  The AVG treatment did not alter the root hair 

morphology of Col, Ler and hkl1-1 seedling (Fig. 4.7 C, D).  The seedlings on these 

plates produced slender and tubular root hair similar to the ones observed on plates 

without AVG (Fig. 4.5 C).  Interestingly, in HKL1-HA seedlings transferred to 6% glc 

plates with AVG the bulbous root hair phenotype was greatly attenuated.  Instead of 

forming bulbous root hairs, these seedlings produced slender root hairs similar to WT Ler 

seedlings on 6% glc (Fig. 4.7 D).  In contrast, seedlings of gin2-1 and HKL1-FLAG 

transferred to AVG plates produced similar bulbous root hairs as observed on control 

plates with 6% glc (Fig. 4.5 B, D).   The response of HKL1-HA to AVG indicates that the 

bulbous root hair phenotype of HKL1-HA might be due to increased seedling ethylene 

production.   

 

Ethylene overproduction mutant eto2-1 shows altered root hair morphology 

 

 To further test the involvement of ethylene in the root hair phenotype, we 

examined root hairs of two ethylene mutants, a strong ethylene signaling mutant ein2-1 
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(Alonso et al. 1999) and an ethylene overproduction mutant eto 2-1 (Vogel et al. 1998).  

Seedlings of ein2-1 when grown on plates with 0.5% suc and 2% glc (Fig. 4.8 A) 

produced hardly any root hairs.  Seedlings of eto2-1 on the other hand produced a 

significantly greater number of root hairs compared to WT Col seedling on 0.5% suc or 

2% glc,  but similar to WT Col grown on plates with ACC ( Fig. 4.8 B, compare with Fig.  

4.5 A, C and Fig 4.7 A).  This is consistent with the enhanced root hair production by WT 

seedlings treated with ACC (Fig. 4.7 A).  However, the root hair morphology was not 

affected in either ein2-1 or eto2-1 seedlings grown continuously on 0.5% suc or 2% glc 

plates (Fig 4.8 A, B).  When seedlings grown on 2% glc were transferred to 6% glc 

plates, the ein2-1 seedlings produced root hairs with normal root hair morphology.  

Interestingly, eto2-1 seedlings transferred to 6% glc plates produced some bulbous root 

hairs (Fig 4.8 B).  This root hair phenotype of eto2-1 was somewhat different from that of 

the HKL1-HA seedlings transferred to 6% glc plates.  In HKL1-HA root hairs, the bulge 

was localized more towards the base of the root hair (Fig. 4.5 D), while in eto2-1, the 

bulge was more towards the tip of the root hairs.  To further study the role of glc in the 

root hair phenotype of eto2-1 we observed the root hairs of the eto2-1 and WT Col 

seedlings transferred to MS plates containing even higher concentrations of glc after 

initial growth on 2% glc plates.  In the presence of 7% glc, eto2-1 seedlings produced 

short and bulbous root hairs not observed in Col (Fig. 4.8 C).  Further increase in glc 

concentration to 8% did not alter the root hair morphology of Col seedlings.  However, 

eto2-1 seedlings transferred to 8% glc produced short and bulbous root hairs similar to 

the ones observed in the seedlings of HKL1 overexpression lines or gin2-1 (Fig. 4.8 C).   
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Figure 4.8  Root hair growth of ein2-1 and eto2-1. (A) Seedlings of ein2-1grown continuously on 0.5% suc 

plates, 2% glc plates and transferred from 2% glc to 6% glc plates.   (B) Seedling of eto2-1 grown 

continuously on 0.5% suc plates, 2% glc plates, and seedlings transferred from 2% glc to 6% glc with or 

without 1µM AVG  (C) Seedlings of Col and eto2-1 transferred from 2% glc plates to 7% and  8% glc 

plates (D) Seedlings of Col and eto2-1 transferred from 2% glc plates to 6% glc plates supplemented with  

0.01µM, 0.1 µM, 0.25 µM AVG.  At least 10 seedlings of each genotype were used for the transfer in three 

separate experiments. 
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These results indicate that the bulbous root hairs observed in eto2-1 are also regulated at 

least in part by both glc and ethylene.    

 Since eto2-1 seedlings produce 10- 40 fold more ethylene than WT seedlings 

(Chae et al. 2003) we further examined whether blocking ethylene biosynthesis would 

rescue the bulbous root hair phenotype of eto2-1 seedlings.  The eto2-1 seedlings 

transferred to 6% glc plates with 1 µM AVG produced fewer roots than seedling on 6% 

glc alone.  Furthermore, seedlings on AVG produced normal root hairs without the bulge 

at the root hair tips (Fig. 4.8 B), indicating that ethylene does have a role in forming 

bulbous root hairs observed in eto2-1.  Next, we studied the response of varying AVG 

concentration on the bulbous root hair phenotype.  The WT Col seedlings produced fewer 

root hairs on 6% glc plates with 0.001, 0.1 and 0.25 µM AVG, but their root hair 

morphology was not altered due to AVG treatment (Fig 4.8 D).   In eto2-1, bulbous root 

hairs were produced in the seedlings transferred to plates with 0.001 and 0.1 µM AVG 

but not on the plates with 0.25 µM AVG (Fig. 4.8 D).  These results of AVG treatment 

indicate that the bulbous root hairs observed in eto2-1 on glc plates are associated with 

enhanced ethylene biosynthesis. 

 Taken together these root phenotypes reveal a novel interaction between glc and 

ethylene in regulating root hair growth.  Based on the described root hair phenotypes we 

surmise that such an interaction is functionally relevant.     
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HKL1 interacts with HXK1 in co-immunoprecipitation assay.   

 

 

In contrast to responses of the HKL1-HA line, the bulbous root hair phenotype could not 

be induced by ethylene or suppressed by AVG in the HKL1-FLAG line which lacks 

HXK1.  The growth phenotypes of HKL1 transgenic lines and mutant indicate that HKL1 

acts as a negative regulator of plant growth when HXK1is present (Chapter3; Fig. 3.2-

3.6).  Both HXK1 and HKL1 are localized on mitochondria (Heazelwood et al. 2004; 

Karve et al. 2008).  Therefore, we tested whether HKL1 and HXK1 can interact with 

each other and therefore might form a functional complex.  To do this, we carried out co- 

immunoprecipitation assays after transiently expressing HXK1-HA plus or minus 

transfected HKL1-GFP in maize mesophyll protoplasts.  Since HXK1 and HKL1 are both 

~50 kD in size, addition of the GFP tag helped in size separation of the proteins on the 

SDS gels.   In control assays, anti-HA antibody did not capture HKL1-GFP protein and 

anti-GFP antibody did not capture HXK1-HA protein (Fig. 4.9).  However, anti-HA 

antibody did pull down HXK1-GFP from protoplasts that transiently expressed both 

HXK1-HA and HKL1-GFP.  Similarly, anti-GFP antibody could pull down HXK1-HA 

from the protoplasts that expressed both HXK1-HA and HKL1-GFP (Fig. 4.9).  As a 

possible control, we did comparable assays between co-transfected YHK2-HA, and 

HKL1-GFP.  The anti-HA antibody did precipitate YHK2-HA, but when both the 

proteins were expressed did not pull down HKL1-GFP (Fig. 4.9).  These results indicate 

that Arabidopsis HKL1 and HXK1 can interact.  Based on the described phenotypes of 

the HKL1 transgenic lines and mutants, we surmise that such an interaction is 

functionally relevant. 
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Figure 4.9  Co-immunoprecipitation assay for interaction between HKL1 and HXK1 after their transient 

expression in maize mesophyll protoplasts.  Protoplasts were transfected with HKL1-GFP (L1 GFP) and/or 

HXK1-HA (K1 HA), and/ or YHK2-HA (YHK2HA) and labeled with [35S]Met.  Pulldown assays were 

done using anti-HA antibody (H) or anti-GFP antibody (G). Control, untransfected protoplasts.    

 

 

Discussion 

 

 Previous characterization of HKL1 transgenic and mutant lines has shown that 

even though HKL1 is a non catalytic protein, its expression influences plant growth 

(Chapter 3).  In HKL1, the glc binding domain and other structural features required for 

binding to glc are largely conserved.  Some of the HKL1 associated phenotypes are glc 
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dependent but these were suggested not to be due to altered glc signaling.  These 

observations were extended in the present study by demonstrating that the repression 

response of known glc response genes, ASN1, GLYK and T6PSY was not affected in 

transgenic and mutant lines with altered HKL1 protein expression.  Among these 3 genes, 

ASN1 was repressed in gin2-1 whereas other two were not repressed.  Therefore we 

conclude that HKL1 likely does not affect glc-dependent regulation of genes by either 

HXK1-dependent or independent signaling processes.  

 These results however do not explain the altered glc sensitivity of HKL1 

transgenic and mutant lines.  As one possible factor, we examined the role of ethylene in 

some of the glc responses of the HKL1 transgenic and mutant lines.  Interestingly, the 

hkl1-1 mutant was found to be relatively ethylene insensitive while the HKL1-HA line 

was relatively hypersensitive to ethylene.  For example, in WT Arabidopsis ACC 

treatment can overcome the seedling developmental arrest induced by glc (Fig 4.2; Zhou 

et al. 1998).  Seedlings of hkl1-1, however, were insensitive to the ACC.  On plates with 

6% glc + ACC seedlings of HKL1-HA had reduced root length, cotyledon growth and 

increased root swelling.   

 In Arabidopsis, the glc response phenotypes of other transgenic and mutants have 

often been linked to cross-talk with other hormone signaling pathways (Gibson, 2004).  

Analysis of the glc insensitive mutant gin1 originally revealed that cross-talk occurs 

between glc and ethylene signaling (Zhou et al. 1998). GIN1 was later found to be allelic 

to aba2, which encodes a short-chain alcohol dehydrogenase involved in ABA 

biosynthesis (Cheng et al. 2002).  Interestingly, hkl1-1 is relatively hypersensitive to 
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ABA inhibition of seed germination (Appendix D).  It would be interesting to know 

whether HKL1 transgenic lines also have altered responses to ABA.  

 To test whether HKL1 can influence expression of known ethylene response or 

biosynthesis genes, we measured the transcript levels of SP2 and LRR genes in seedlings 

of HKL1 transgenic and mutant lines after ACC and glc treatments.  The transcripts of 

SP2 and LRR have been shown to be induced and repressed, respectively, by ethylene 

treatment (Nemhauser et al. 2005).  However, in our experiment both transcripts were 

repressed by ACC treatment (Fig. 4.3).  This might be due to the small differences in the 

experimental design and treatments.  We treated seedlings for a relatively longer time (8 

h vs 30 min) and with a relatively higher ACC concentration (50 µM vs 10 µM), similar 

to what was used in the glc repression assays.  Importantly, SP2 and LRR transcripts were 

not repressed in hkl1-1seedlings by ACC treatment.  We also found that SP2 transcript 

was glc repressed in WT seedlings, but was not repressed in hkl1-1 seedlings.  

Furthermore, that glc dependent repression of two ethylene biosynthesis genes (ACC 

synthetase and ACC oxidase) also was not affected in hkl1-1.  Therefore, we conclude 

that HKL1 is required for ethylene regulation of certain target genes and is required for 

glc regulation of at least some genes associated with ethylene metabolism.    

 In this study we also describe a novel root hair phenotype not previously seen 

with other transgenic or mutant lines associated with glc or ethylene responses.  In the 

described assay, gin2-1 and both of the HKL1 overexpression lines produced root hairs 

with a bulbous swelling at the base when grown on plates with 6% glc (Fig. 4.5).  

Furthermore, the root hair phenotype of HKL1-HA could be phenocopied by ACC and 
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blocked by AVG (Fig. 4.7).  Ethylene acts as a positive regulator of root hair formation 

(Tanimoto et al. 1995).  The hkl1-1 showed a relative insensitivity to ACC induced root 

formation in the root hair response assay.  Since HKL1-HA also produced shorter roots 

and cotyledons compared to gin2-1 or HKL1-FL on 6% glc plates with ACC, the root 

hair phenotype of HKL1-HA might be due to the observed ethylene hypersensitivity.   

Ethylene has been shown to modulate the growth of root hairs and epidermal cells (Zhu 

et al. 2006).  The bulbous root hairs were also seen in gin2-1 or HKL1 overexpression in 

gin2-1 on glc plates (Fig. 4.5). However, in this case the phenotype could not be rescued 

by blocking ethylene biosynthesis.  Therefore, this response, like several other 

phenotypes of HKL1, is also dependent on HXK1 protein.   

  Using known ethylene biosynthesis and response mutants, we have established 

that this novel root hair response depends as well on ethylene biosynthesis. The absence 

of the bulbous root hairs in seedlings of ethylene overproducing line eto2-1 grown on suc 

plates and the observed glc-dependent formation of bulbous root hairs (Fig. 4.8) indicate 

that glc and ethylene are both involved this response. Since AVG blocked the bulbous 

root hair phenotype in both HKL1-HA and eto2-1, it is possible that glc acts in this 

process by modulating ethylene biosynthesis. Transcripts of several genes involved in 

ethylene biosynthesis and signaling have been shown to be regulated by glc treatment 

(Price et al. 2004).  The application of exogenous ethylene has been shown to suppress 

aberrant root hair development in rhd1 (Seifert et al. 2004) and der8 (Ringli et al. 2005).  

Both of these mutants produce bulbous root hair on suc plates in the absence of ethylene, 
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but produced normal root hairs on plates with ACC.  Our results show that ethylene in 

combination with glc can stimulate the formation of aberrant root hairs.   

 Root hair growth is a dynamic process and requires a well organized network of 

actin filaments and microtubules.  In general, actin filaments are involved in root hair 

expansion and microtubules are required for the directional orientation of the root hair 

(Sieberer et al. 2005).  One possibility is therefore that the observed bulbous root hairs 

are associated with the cytoskeleton of the root hair.  However, in this study we did not 

observe the bulbous root hair phenotype in act2-1.  Interestingly, glc disrupts 

organization of actin filaments (Balasubramanian et al. 2007) and it might lead to the 

rearrangements of the actin cytoskeleton in root hairs in HKL1-HA, HKL1-FL and gin2-

1 seedlings.  Therefore the observed bulbous root hair phenotype can possibly affected by 

the HXK1 and HKL1 through interaction with F-actin in a glc dependent manner.  

 In addition to the role of plant hormones, reactive oxygen species (ROS) also play 

a critical role in root hair growth (Carol and Dolan, 2006).  Tip localization of ROS and 

ROP2, a member of Rho GTPase, is required for the normal root hair growth (Carol et al 

2005).  Furthermore, ROP2 is involved in polarized growth of root hairs by coordinating 

actin and microtubule organization (Yang et al. 2007).  In Arabidopsis, regulation of cell 

elongation by ethylene is dependent on ROS accumulation (De Cnodder et al. 2005). 

Recently, it has been the shown that glucoseamine induced accumulation of ROS is 

repressed in gin2-1 (Ju et al. 2008).  Interestingly we observed reduced expression of 

PEROX which encodes a putative peroxidase involved in generating of ROS in gin2-1, 

and PEROX was repressed by glc treatment in both the HKL1 overexpression lines (data 
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not shown).  It is therefore possible that glc and ethylene treatment somehow regulate the 

generation of ROS in the root hair which in turn regulate the root hair growth phenotype.  

  Most of the observed growth phenotypes of HKL1 reported previously (Chapter 

3) were dependent on the presence of HXK1 protein.  In this regard, we have shown that 

by co-immunoprecipitation assay, HKL1 can specifically interact with HXK1.  HXK 

isoforms have been shown to form dimers and oligomers in humans, yeast and recently in 

Trypanosomes.  In Trypnasoma bruci, catalytically inactive HXK2 exhibits activity in a 

complex with catalytically active HXK1 (Chambers et al. 2008).  We did not see any 

change of activity by expressing HKL1 and HXK1 cDNA in different ratios in leaf 

protoplasts (Karve and Moore, unpublished data).  However the growth phenotypes of 

HKL1 transgenic lines support the idea that the interaction between HKL1 and HXK1 

has a regulatory significance and might be essential for the function of HKL1. So far, we 

have shown by various phenotypic assays and gene expression analysis that HKL1 

regulates plant growth at least in part by interaction with ethylene signaling, and it 

possibly mediates glc responses to some of the ethylene biosynthesis and signaling genes.  

However, we still do not know whether HKL1 can bind to glc or to any other hexose 

sugars. Further biochemical analysis of will therefore help in establishing the regulatory 

role of this non catalytic HXK from Arabidopsis.   
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SUMMARY 

 

 

 

Hexokinase (HXK) catalyzes the first step in glucose utilization, the conversion of glc to 

glc 6-P.  In addition to its role in catalysis, HXK acts as a glc sensor and regulates plant 

growth and development.  The Arabidopsis thaliana genome encodes six HXK genes, of 

which HXK1 and HXK2 have been shown previously to function as catalytically active 

proteins and also as glc sensors.  The other four HXK gene family members are ~50% 

identical at the amino acid level with HXK1.  When expressed in maize protoplasts, one 

of the four (HXK3) was found to be catalytically active for hexose phosphorylation.  

However, the other three were designated as hexokinase-like (HKL) proteins since they 

lack glucokinase activity (HKL1, HKL2 and HKL3).  In this study we examined the 

characteristics and function of HKL1.   

 An analysis of the amino acid sequences showed a broad pattern of conserved key 

motifs and residues among HXK1, HXK2, and HXK3 predicted proteins.  In contrast, 

HKL1 and HKL2 proteins had most of the residues known to be important for sugar 

binding, but they did have a number of residue changes throughout the protein and also 

had an indel at the adenosine binding domain.  HKL3 protein, on the other hand, lacked 

many recognized residues important for sugar and adenylate binding and for enzyme 

catalysis.  To explore how these differences between HXK1 and HKL1 might affect 

catalysis, we employed site-directed mutagenesis to change key amino acids in HXK1 

relative to corresponding residues in HKL1.  The glucokinase activity of HXK1 was 

largely compromised by most of the amino acid changes.  However, based on the primary 
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amino acid sequence, HKL1 was predicted to bind glc and to have the flexibility required 

to undergo a glc dependent conformational change, as observed in HXKs with catalytic 

activity.  These results indicate that HKL1 might be involved in some alternate glc 

dependent functions such as glc signaling. 

 To understand the function of HKL1 in organismal space, a reverse genetics 

approach was used.  Transgenic Arabidopsis plants that overexpress epitope tagged 

HKL1 were generated in WT Ler background (HKL1-HA) as well as in HXK1 null 

mutant, gin2-1 background (HKL1-FLAG).  We also identified a loss of function T-DNA 

knockout line in WT Col background (hkl1-1).  Modulating HKL1 expression severely 

affected plant growth.  For example, HKL1 overexpression in Ler resulted in a severe 

reduction in rosette size under a long photoperiod and decreased growth of seedling 

hypocotyls.  Conversely, the hkl1-1 line had reduced rosette size under a short 

photoperiod and longer seedling hypocotyls.  The phenotypes of HKL1-HA were mostly 

similar to those reported for gin2-1.  HKL1 overexpression in gin2-1, however, did not 

generally affect the phenotypic responses of the parental line.  Based on these results, we 

suggest that HKL1 is a negative regulator of plant growth, but that its effect largely 

depends on the presence of HXK1.  These growth phenotypes indicated that HKL1 

possibly influences other hormone signaling pathways.  HKL1 promoter expression 

analysis indicated further possible interconnections between hormones and HKL1 

functions.  In particular, HKL1 promoter activity was induced by treatment with ethylene 

precursor, ACC, and by cytokinin, but it was repressed by ABA.  
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 A possible regulatory role of HKL1 in glc signaling was tested first by growing  

seedlings on agar plates with 6% glc.  In contrast to growth responses of their parental 

background lines, seedlings of the HKL1-HA line were glc tolerant, whereas those of 

hkl1-1 were hypersensitive to glc induced developmental arrest.  Seedlings of HKL1-

FLAG were also glc tolerant, as were parental gin2-1 seedlings.  These responses 

indicated that HKL1 might be a negative regulator of glc signaling, depending on the 

presence of HXK1.  We then tested whether the promoter activity of pRBCS-LUC, which 

is a known target of HXK1-dependent glc signaling, is affected by altering HKL1 

expression in Arabidopsis protoplasts.  However, changing HKL1 expression did not 

affect signaling to pRBCS.  As an alternative approach, semi quantitative RT-PCR was 

used to measure glucose regulated transcripts of ASN, GLYK and T6PSY from seedlings 

grown in liquid culture.  However, glc repression of these genes was not affected in 

seedlings of the HKL1 transgenic lines and mutant.  Therefore, while HKL1 acts 

genetically downstream of HXK1 to block seedling developmental arrest, HKL1 has no 

direct function in glc signaling.  

 There is much evidence which indicates that glc signaling can affect plant growth 

by modulating other hormone signaling pathways.  For example, an antagonistic 

interaction between ethylene and glc signaling has been shown previously based on the 

observation that WT Arabidopsis seedlings can overcome the seedling developmental 

arrest induced by 6% glc when grown in the presence of ACC.  To test whether HKL1 

has a role in glc and ethylene cross-talk, seedlings of HKL1 transgenic lines and mutant 

were grown on 6% glc plates with ACC.  Interestingly, ACC treatment could not 
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overcome the developmental arrest response of hkl1-1seedlings.  In contrast, seedlings of 

HKL1-HA, HKL1-FLAG and gin2-1 showed signs of ethylene hypersensitivity based on 

reduced primary root growth and radial swelling of the hypocotyl.  These results 

indicated that HKL1 mediates cross-talk between ethylene and glc signaling during 

seedling development and might modulate some aspects of seedling ethylene sensitivity. 
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Figure 5.1  A proposed model for HKL1 function.  HKL1 acts as a negative regulator of glc dependent 

developmental processes such as seedling and root hair development downstream of HXK1.  Since both 

seedling development and root hair development are affected in HKL1 transgenic lines and mutant by 

blocking ethylene biosynthesis, HKL1 facilitates cross-talk between glc and ethylene signaling pathways.  

HKL1 is required for regulation of some of the ethylene response genes as well for glc repression of 

ethylene biosynthesis genes ACCS and ACCOX .  Because precise convergence points for ethylene 

signaling and glc signaling are currently unknown, HKL1 has been shown to act possibly at multiple 

locations in the model. ABA2- ABA synthase 2; ABI3- ABA insensitive 3; ACCOX- ACC oxidase; 

ACCS- ACC synthase, HXK1- hexokinase 1; HKL1- hexokinase-like 1. 
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 In Arabidopsis, glc has been shown to regulate the expression of genes involved 

in ethylene biosynthesis and signaling.  However, glc dependent repression of ethylene 

biosynthesis genes ACCS and ACCOX was not observed in hkl1-1 seedlings.  These 

results indicate that HKL1 is somehow required for the glc repression of these genes.  

Based on the observed dependence on HXK1 for many of the HKL1 growth phenotypes, 

we speculate that HXK1 is also involved in this process, though that remains to be 

determined.  

 In addition to the seedling growth arrest phenotype, a role of HKL1 in mediating 

cross-talk between glc and ethylene signaling was revealed by a bulbous root hair 

phenotype.  HKL1 overexpression lines and gin2-1 produced bulbous root hairs when 

transferred to plates with 6% glc after initial growth on plates with sucrose or 2% glc.  

Interestingly, transfer to plates with ACC also resulted in bulbous root hairs in the 

seedlings of HKL1-HA, but not in gin2-1 or HKL1-FLAG.  These results indicate that 

HXK1 is a positive regulator of root hair development on glc plates, and that HKL1 acts 

as a downstream negative regulator.  Similar bulbous root hairs were also observed in the 

ethylene overproducing mutant eto2-1 when grown on glc plates.  These results indicate 

that root hair development in Arabidopsis is regulated by a complex interaction between 

glc and ethylene, and that HKL1 likely is a component of this signaling cross-talk.   

 Based on the available experimental evidence, we propose a model to describe the 

functions of HKL1 (Fig. 5.1).  We have shown that HKL1 acts as a negative regulator of 

glc dependent seedling arrest and root hair development, and that HKL1 functions 

downstream of HXK1.  However, HKL1 likely is not a component of the HXK1-
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dependent pathway that is involved in the regulation of glc response genes.  Based on the 

responses of HKL1 transgenic lines and mutant to ACC, HKL1 likely mediates cross-talk 

between glc and ethylene signaling pathways.  This role of HKL1 is also evident by its 

requirement for glc repression of some ethylene biosynthesis genes.  Furthermore, HKL1 

was shown to be involved in regulation of some ethylene response genes.  However, 

these genes are likely not regulated by the main ethylene signaling pathway, which 

regulates the triple response phenotype.  The triple response phenotypes are largely 

unaffected in HKL1 transgenic lines and mutant. 

 Many of the observed growth phenotypes of HKL1 transgenic lines and mutant 

were dependent on the presence of HXK1.  Both HXK1 and HKL1 showed a similar 

diverse tissue expression pattern.  When expressed in Arabidopsis protoplasts, both 

HXK1 and HKL1 were localized to mitochondria.  We also showed by co-

immunoprecipitation assay that HXK1 and HKL1 proteins can physically interact.  

Although we predict that HKL1 is expressed at a relatively lower level compared to 

HXK1, the interaction between HXK1 and HKL1 appears to be essential for HKL1 

function. 
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APPENDIX A 

 

 

Domains and conserved region of AtHXKs with respect to ScHXK2 
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APPENDIX B 

 

Sequence analyses of HXK family genes from A. lyrata 

 

 
(A) Illustrations of gene structures were determined from genomic sequence data.  Exons are indicated by 

rectangles, introns by lines.  The lengths of both are proportional to the number of nucleotides that are 

present. (B) Phylogenetic relationships of predicted HXK family proteins from A. thaliana and A. lyrata.  

Phylogenetic reconstruction was done using MEGA4 (Tamura et al. 2007).  The scale bar = the frequency 

of amino acid substitutions per unit length. 
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APPENDIX C 

 

 

Amino acid sequence alignment for predicted HXK family proteins from A. thaliana and 

A. lyrata. 
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APPENDIX D 

 

Effect of ABA on seed germination  

 

 
 

 
Seeds of Col, hkl1-1 and abi4-1 3 were surface sterilized and stratified for 2d at 4oC.  At least 30 seeds of 

each genotype were germinated on 0.1, 0.3, 0.7, 1.0 µM ABA and germination count was taken 3d after 

planting. Error bars represent SE.   
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APPENDIX E 

Copyrights permission for chapter 2 
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