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ABSTRACT

Seeking the optimal pharmaceutical formulation is considered one of the most
critical research components during the drug development stage. It is also an R&D effort
incorporating design of experiments and optimization techniques, prior to scaling up a
manufacturing process, to determine the optimal settings of ingredients so that the
desirable performance of related pharmaceutical quality characteristics (QCs) specified
by the Food and Drug Administration (FDA) can be achieved. It is widely believed that
process scale-up potentially results in changes in ingredients and other pharmaceutical
manufacturing aspects, including site, equipment, batch size and process, with the
purpose of satisfying the clinical and market demand. Nevertheless, there has not been
any single comprehensive research work on how to model and optimize the
pharmaceutical formulation when scale-up changes occur. Based upon the FDA
guidance, the documentation tests for scale-up changes generally include dissolution
comparisons and bioequivalence studies. Hence, this research proposes optimization
models to ensure the equivalent performance in terms of dissolution and bioequivalence
for the pre-change and post-change formulations by extending the existing knowledge of
formulation optimization. First, drug professionals traditionally consider the mean of a
QC only; however, the variability of the QC of interest is essential because large
variability may result in unpredictable safety and efficacy issues. In order to
simultaneously take into account the mean and variability of the QC, the Taguchi quality

loss concept is applied to the optimization procedure. Second, the standard 2x2 crossover



design, which is extensively conducted to evaluate bioequivalence, is incorporated into
the ordinary experimental scheme so as to investigate the functional relationships
between the characteristics relevant to bioequivalence and ingredient amounts. Third, as
many associated FDA and United States Pharmacopeia regulations as possible, regarding
formulation characteristics, such as disintegration, uniformity, friability, hardness, and
stability, are included as constraints in the proposed optimization models to enable the
QCs to satisfy all the related requirements in an efficient manner. Fourth, when dealing
with multiple characteristics to be optimized, the desirability function (DF) approach is
frequently incorporated into the optimization. Although the weight-based overall DF is
usually treated as an objective function to be maximized, this approach has a potential
shortcoming: the optimal solutions are extremely sensitive to the weights assigned and
these weights are subjective in nature. Moreover, since the existing DF methods consider
mean responses only, variability is not captured despite the fact that individuals may
differ widely in their responses to a drug. Therefore, in order to overcome these
limitations when applying the DF method to a formulation optimization problem, a
priority-based goal programming scheme is proposed that incorporates modified DF
approaches to account for variability.

The successful completion of this research will establish a theoretically sound
foundation and statistically rigorous base for the optimal pharmaceutical formulation
without loss of generality. It is believed that the results from this research will have the

potential to impact a wide range of tasks in the pharmaceutical manufacturing industry.



DEDICATION

This work is dedicated to my parents, Huifen Yu and Weimin Li, for their
continued support of me during my doctoral research at Clemson University. Without

their constant encouragement and support, this study would not have been completed.



ACKNOWLEDGEMENTS

| would like to express my extreme gratitude to my research advisor, Dr. Byung
Rae Cho, and co-advisor, Dr. Brian J. Melloy, for developing my research and teaching
skills and for their excellent guidance and encouragement throughout the course of my
dissertation work. Dr. Cho was always professional and willing to provide me with his
enlightening knowledge and insight, and | obtained valuable experiences in academic
pursuits as well as in life from Dr. Melloy. It has been an honor to be their Ph.D. student.
| appreciate all their contributions to make my research organized and efficient.

| would also like to thank my committee members, Dr. Mary Elizabeth Kurz and
Dr. Joel S. Greenstein, for their time and helpful comments. Moreover, my thanks go to
the Department of Industrial Engineering for providing me financial support during my
time at Clemson University.

Last but not least, | would like to deeply thank my parents whose love, caring and
support unconditionally helped me overcome the difficulties during the three years. The

success of this work belongs to them as much as anyone else.



TABLE OF CONTENTS

Page
TITLE PAGE ...ttt ettt e et et e stenbenbenraaneeneeneas [
F N S I ¥ O [P i
DEDICATION ..o tete sttt sttt ettt beebe e e e st esesbestesbeabeeneenaeneeneas iv
ACKNOWLEDGEMENTS ... .ootiteieiise ettt na s %
LIST OF TABLES ... .o oottt sttt sneana e e e X
LIST OF FIGURES ...ttt sttt Xiii
NOMENCLATURE ...ttt sttt eaneene e enne e XV
CHAPTER
1. INTRODUCTION ..ottt sttt 1
1.1 An Overview of Development Process of New Drugs ...........cccceeveunene. 2
1.2 Research Motivation and Significance ..........c.cccceveiievieiiciecce e, 6
1.2.1 Significance I: Formulation Optimization for
Scale-Up ChangesS........ccveiveieiiesieec e 7
1.2.2 Significance I1: Assessment of Similarity in
Dissolution and Bioequivalence ............cccccvvevveveieeseennenn 9
1.2.3 Significance I11: Taguchi Quality Loss Concept
and Regulatory Constraints............cccocveveveevieerecie e 11
1.2.4 Significance 1V: Modified Desirability Approach
and Goal Programming.........cccccceeveeiveieiiese e 12
1.3 RESLAICN TASKS....ueeieeeeieiiieiie ettt st 13
1.4 Outline of DiSSErtation...........ccceveriereieiiiisieiere e 15
2. LITERATURE REVIEW AND KNOWLEDGE BACKGROUND................ 16
2.1 Typical Biopharmaceutical Tests for Formulation
DEVEIOPMENT ..ot 16
2.1.1 Assessment of In Vitro Dissolution............ccccoeveniiinieeniee 17
2.1.2 Evaluation of Bioavailability Studies............cccccocervnininiiinnnnn, 22
2.1.3 Establishment of IVIVC ... 27

Vi



Table of Contents (Continued)

Page
2.2 Scale-Up Changes and Related Documentation Tests for
IR Oral DIUGS ..o 29
2.3 DOE Supports in Formulation Optimization...........cccccceveevveieieennnn, 31
2.4 Optimization Methodologies for Selecting Pharmaceutical
FOMUIALIONS. ...t 35
2.4.1 ANN Prediction TEChNIQUES ........cceeirieieieiiesie e 35
2.4.2 Common Optimization Methodologies..........ccccevvveveviievvenenne. 42
2.5 SUMMEIY ..ot 48
3. DEVELOPING THE OPTIMAL FORMULATIONS FOR NEW
TALBET DRUGS (DISSOLUTION COMPARISONS) .......ccccovvvrvnnnne 49
3.1 INErOTUCTION . ....viiiieiciece e e 49
3.2 Development of Proposed Model ...........ccoovieiiiiieniniiisseeeee, 50
3.2.1 Experimental Phase .........c.cccvoveiieieiie s 50
3.2.2 EStIMALiON PaSE ....c.eoieiiieiieie e 51
3.2.3 Optimization Phase..........ccccveveiiiie e 53
3.2.3.1 Definitions of Variables ..........ccccoveviiiiniienneieseen, 53
3.2.3.2 Development of Objective Function ............c.cccceeeenenn 54
3.2.3.3 Development of CoNStraints..........ccccoevervnencnnenienen, 55
3.3 Proposed Optimization Model ...........cccccviieiieiiiieieee e, 63
3.4 Examples for Level 2 Excipient Changes.........ccccooeverenenineniienienn, 64
3.4.1 Class 1 Drugs with Level 2 Changes.........cccccevveveevieiieveennenne 67
3.4.2 Class 2 and 3 Drugs with Level 2 Changes..........c.ccocvevviveinennn. 68
3.4.3 Sensitivity ANalYSIS.......ccceviiiiiieie e 71
3.5 CONCIUSION ...ttt 73
4.  DEVELOPING THE OPTIMAL FORMULATIONS FOR NEW
TALBET DRUGS (BIOEQUIVALENCE STUDIES) ......ccoovvviiiiene 77
4.1 INEFOAUCTION ....vviiiie sttt 77
4.2 Integration of the In Vivo Bioequivalence Study
into Experimental DeSIgNS .........cccovevieiiiiie i 78
4.2.1 Regular Bioequivalence ASSESSMENT..........ccccvrerererierenienenns 79
4.2.1.1 Continuous Computational Method
fOr ASSESSIMENT .....ovveiecie e 80
4.2.1.2 Discrete Computational Method for
ASSESSIMENT ... 83
4.2.2 Bioequivalence Assessment under the
Experimental Design Structure ..........ccocceeeveveneienneienn, 84
4.3 Proposed Optimization Model ............cccveiieiiiiiii i 88

vii



Table of Contents (Continued)

Page
4.3.1 Objective FUNCHION .......ccoveieiie e 88
4.3.2 Constraints on Excipient Changes...........cccocevevenenenenieincnnenn, 89
4.3.3 Constraints Associated with In Vivo
Bioequivalence StUdIEs .........coovvviieieieieieee 90
4.3.4 Intra-Subject Variability Constraints..........ccccccoveviveveeiieseennnnn, 90
4.3.5 Other CONSIIAINTS.....cc.ciiiiieiiiie e 91
4.4 Numerical EXamPIES.......coviiiiieieiie it 91
4.5 SenSItiVILY ANAIYSIS ....ccoeiiiieiieeeie e 101
4.6 Conclusion and Future Study.........ccccevieieiiieneese e 103
5. QUALITY BY DESIGN STUDIES ON MULTI-RESPONSE
PHARMACEUTICAL FORMULATION MODELING AND
OPTIMIZATION ..ottt et 104
5.1 INErOQUCTION . .....oiiiiiiiiiciieieie e e 104
5.2 ANAlYSIS OF DF ..o 107
5.3 Proposed Model Development..........cccccveveiieiieie e 110
5.3.1 Experimentation PNase ............ccoceiiriiieieiinenc e, 111
5.3.2 DF Prediction Phase ........cccoovviiiiininieiee s, 113
5.3.2.1 Proposed Mechanistic Desirability
MOEL....c.ooiiiiii 113
5.3.2.2 Proposed Empirical Desirability
MOEL....c.oiiiiiiice 115
5.3.2.3 Model Selection of Estimated
Empirical DFS.......ccccccoovveiiie e 117
5.3.3 Optimization PhasSe............cooceiiiiiiniiiieieieee e, 121
5.3.3.1 Proposed Optimization Model............c.cccovvvvevvenenne. 122
5.3.3.2 Comparative MOodels ..........cccovvreieniiineieecieeens 126
5.4 Numerical EXample ..o 128
5.5 CONCIUSION ....oviiieiiee et ens 134
6. CONCLUSIONS AND FUTURE RESEARCH .......ccccoviiiiiiiiiieeeeien, 139
6.1 CONLIDULIONS.......oviiiiiiiie s 140
6.1 FULUIe RESEAICH .....ooviiciieece e e 142
APPENDICES ...ttt sttt ettt re e reeneene e nes 144
1.  Mathematica Codes for the Examples in Chapter 3.........cccccooviiiiiiininnnn, 145
1.1 Estimated Response FUNCLIONS ..........cccoeiveiiieiie i 145

viii



Table of Contents (Continued)

Page
1.2 Optimization Models for Class 1 Drugs with
Level 2 Changes ........coveieieieiesie s 149
1.3 Optimization Models for Class 2 and 3 Drugs
With Level 2 Changes.......cooviieiiiieiieniesie e 150
2.  MATLAB and Mathematica Codes for the Example in
CRAPLEI 4 ... 152
2.1 MATLAB Code for Calculating Ka.......cccoovvvveiieiiiieieee e 152
2.2 Estimated Response FUNCLIONS ...........cccoieieiieienciescscseseeeeee 152
2.3 Optimization Models for Class 4 Drugs with
Level 3 Changes .......coviiiieieiesie s 154
3. Mathematica Codes for the Example in Chapter5..........cccoovevviieicieccnee, 155
3.1 Estimated Response FUNCLIONS ...........ccoveieieiieneiescieseseeeeeeen, 155
3.2 Estimated Empirical DFS........cccccoviiieii e 156
3.3 Estimated MechaniStiC DFS ........cccccoviiereiienieiiee e 157
3.4 Optimization MOUEIS ........ccoveiieireicceece e 158
REFERENCES ...ttt bbbt 160



Table

11

2.1

2.2

2.3

2.4

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

LIST OF TABLES

Page

DISSErtatioN STIUCTUIE.........oiiiiiiiiiicieee e 15
Common Excipients Used in Solid Drug Products............ccccocevininininienieniennn. 18
Regression Models for In Vitro Dissolution TestS.........ccccevvevieiieeiieciee v, 18
Scale-Up Changes and Related Tests for IR Orally

AdMINISIEIEd DIUJS ....ecvveieiecieeie et 30
Summary of the DOE Application in Formulation

Development and OptimizZation ............cccooeveiiniieieiese e, 36
General DOE FOIMAL.........cooiiiiiiieieei e 52
Proposed Constraints on Excipient Changes at Level 2 .........cccocvvvviieiiiinnen, 56
Acceptance Table for DiSSOIULION............ccoiiiiiiiiiiicee e, 57
Proposed Constraints for Single- and Two-Point

SPECIHTICALIONS .....ecviecieee et 58
Proposed Constraints for the f, Method ..., 58
Proposed Constraints 0N WV TEeSES .......coveiiiiieiicecie e 60
Proposed Estimating Equations for WV TestS.........cccccvvevviveieeve e, 60
Proposed Constraints on Friability...........ccccoviiiiiiiiiiiecc e 61
Acceptance Criteria of Level 2 Excipient Changes Based

ONTNE BCS ..o 65
Proposed Optimization Scheme for the Formulation

Optimization Problem ... 65
The Uncoded Values of FaCLOrS...........ccoeiiiiiiiiiiiecceeee e 67
Response Sets for Class L DIUQJS ...ccvveieeiieeiie et 68



List of Tables (Continued)

Table

3.13

3.14

3.15

3.16

3.17

3.18

4.1

4.2

4.3

4.4

4.5

4.6

4.7

4.8

4.9

4.10

Page

API Levels and Responses Associated with Uniformity

LI OO P URR PP 70
The Factors and Responses of the Optimal Formulation.............cccccccvvvevvennne. 71
Multi-Point DisSOIULION Data..........ccueiveirierieiiiesieseee e 72
Summary of Optimal Formulations in TWO SCENArios ..........cccccvevvevereerirernenne 73
Sensitivity Analysis for Class 1 Drugs with Level 2

CRANGES ...t 73
Sensitivity Analysis for Class 2 and 3 Drugs with

LEVEl 2 CRANGES......i ettt ettt sre s 74
2x2 Crossover Design Format for the Bioequivalence

STUAY e 79
DOE Format for the Bioequivalence Study ...........ccoceveieiinininiiieceeee, 86
Mean and Variance of Characteristics for the Test

FOMUIALION ...t 86
Mean of Characteristics for the Reference Formulation............c.ccoccoevvivnieiennen. 87
90% Confidence Interval for Assessing Bioequivalence...........ccccccevevvevivennenne. 90
Proposed Constraints for the Bioequivalence Study............ccccocveviiieiieiicieenen, 90
Plasma Concentration Data Set under a 2-Factor CCD

SETUCTUI .ttt be e b e neee e 93
The Coded CCD DesSign FOrMAL..........ccoiiiirieniiinesieiee e 98
Parameters and Responses Related to the Bioequivalence

SEUAY e 99
Optimal Settings in Both Scenarios for Bioequivalence

AASSESSIMEBNT. ...ttt 99

Xi



List of Tables (Continued)

Table

411

4.12

5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

Page

Comparisons of Scenarios 2.1 and 2.2.........cccovvviiiiiiiiiciee e, 100
Sensitivity Analysis for the Bioequivalence Studies

PIODIEM ... 102
A General Experimental FOrmat............cccooeiveiieeie i 112
Formulas for Calculating d(Yijs) «..«.eovrverereirniiieiisiseses s 117
An Extended Experimental Format Concerning Desirability............cccccoc....... 117
Subset Selection Criteria for Desirability Models with v — 1

PIEUICIONS ...ttt ee e nne s 118
Subset Selection Criteria for the Individual and Overall

DeSITaDIITY ..o 121
Proposed Optimization Scheme for the é™-Priority Individual

DS ettt 127
Comparative Optimization Schemes Using the Overall DF.............c.ccccoeen..... 127
Experimental Factor Settings and Target Dissolution Profile ...............cco...... 132
Model Selection for the Mean, Variance, Covariance, and

Individual DeSirability ..........ccoveviiiiiiecc 133
Comparison of Optimal SEttiNgS.........ccceveiieiieieie e, 134

xii



Figure
11
1.2

1.3

2.1

2.2

2.3
2.4
3.1

3.2

3.3

4.1
4.2

4.3

5.1

5.2

5.3

LIST OF FIGURES

Page

Framework for New Drug Development ... 4
2%2 Crossover Design SCREME ..........oiiiiiiiiiieec e 7
A Simplified Extended Pharmaceutical Formulation

oY =] (o] o] 1= | SR 8
A Typical Plasma Concentration-Time CUIMNVE..........ccccvevveiierieeiesee e, 23
Logarithmic Drug Plasma Concentration-Time Curve

for an Oral AdMINISTIALION..........veiieeiie e 26
A Level A Correlation of Drug DiSSOIUTION ..........ccocviiiiiiiiiieceeeeee, 28
A Typical Structure oF ANN ..o, 41
Development of Proposed Methodology ..o, 51
Response Surface Plots Showing the Effects of x; and x;

on the Objective FUNCLION..........ccoviiiccece e 74
Contour Plots of x; and x; for the Dissolution Comparison

PIODIEM ... e 75
General Shape of Q'(Ka) CUINVE........oiiiiiiiee e 82
Response Surface Plots of the TWO SCENAII0S........c.cocvvvereereiieieere e 101
Contour Plots of x; and x; for the Bioequivalence Studies

PIODIBM .. 102
Development of Proposed Optimization Scheme...........ccccocevviiiii e, 111
Flowchart for the Algorithm of the Proposed Optimization

oo [ TSP 126
Comparison of Contour Plots between Second- (---) and

Fourth-Order (—) Models for the Response Means............cccccceevveenenne, 131

Xiii



List of Figures (Continued)
Figure Page
5.4 Comparison of Contour Plots between Estimated Traditional
(---) and Proposed Empirical (—) Desirability Models
for the RESPONSE MEANS ........cviiiiiiiiiiieece e 132
5.5 Comparison of Resulting Individual Desiraiblity .........c.ccccovviviiiiiinieiienenn, 135

5.6 Impacts of Assigned Weights or Priorities on the Optimal
Desirability Settings under Different ModelS ............ccccovevvieiiececiennnn, 135

Xiv



ABE
ANN
API
BCS
CCD
Cv
DE

DF
DOE
EMEA

FDA

IVIVC
MRS
MDT
NDA
PE
QC

RSD

NOMENCLATURE

Average Bioequivalence
Artificial Neural Network

Active Pharmaceutical Ingredient
Biopharmaceutics Classification System
Central Composite Design
Coefficient of Variation
Dissolution Efficiency
Desriability Funtion

Design of Experiments

European Medicines Agency
Food and Drug Administration
Immediate-Release

In Vitro/In Vivo Correlation
Multi-Response Surface

Mean Dissolution Time

New Drug Application

Prediction Error

Quiality Characteristic

Relative Standard Deviation

XV



RSM
SD
USP
WHO
Cmax

tmax

AUC

Ti

d;

p

subscriptsRand T
A(t)

n

X

Ai(t,X)

Response Surface Methodology

Standard Deviation

The United States Pharmacopeia

World Health Organization

Maximum Plasma Concentration

Time to Reach Cpax

Area under Plasma Concentration-Time Curve
total number of runs in the experiment
experimental design matrix

matrix of data for least squares regression containing predictor
variables

pre-identified weight of the i" excipient in the reference
formulation

(i=1,2,...,6)

pre-identified weight of the i" active ingredient (i=1, 2, ..., p)
number of active pharmaceutical ingredients in the formulation
related terms for the reference and test formulations, respectively
average cumulative amount dissolved at time t;

number of time points

vector of input factors

response function of the average dissolution over time t for the i"

active pharmaceutical ingredient

target value for f,

XVi



s[+]and s’[+]

Wr

Q

ayi and ay;

t, and tg

A

7 ands
Xij
G

aij

7: (X) and si(x)

Wr(x)
D(x)

dU and d|_

sample standard deviation and variance of the characteristic of
interest

pre-identified weight of the total reference dosage form

amount of dissolved active ingredient, expressed as a percentage
of the labeled content

upper and lower bounds of a dissolution range for the i" active
pharmaceutical ingredient, respectively

predefined earlier and later time points for the dissolution
specification, respectively

upper bound of the relative standard deviation of dissolution data
acceptability constant for uniformity tests
target content per dosage expressed as a percentage

individual active pharmaceutical ingredients of the units tested
expressed as a percentage of the label claim (j=1, 2, ..., q)

number of samples for uniformity tests

sample mean and standard deviation of y;, respectively

i for the i active ingredient
upper limit of the acceptance value for uniformity tests

weight of the i" active pharmaceutical ingredient for the j"
replication

response functions of the mean and standard deviation of
(xin, xizs ---» xiq) for the i™ active pharmaceutical ingredient

response function of the weight of the total test dosage form
response function of the average disintegration time

upper and lower disintegration time limits, respectively

XVii



A2

F(x)
Cl(x)
H

Ni(X)

nui and

n; and n,

ya and yc

t;

Q»

XR,V

dy ,(x)and

CiM 0(X)

Du(x) and Dg(x)

Hy

upper bound of the relative standard deviation for disintegration
time

response function of the average mass loss
response function of the compressibility index
upper limit of the compressibility index

response functions for hardness, thickness, and degradation time,
respectively (i=1, 2, 3)

upper and lower limits for hardness, thickness, and degradation
time, respectively (i=1, 2, 3)

number of subjects within Sequences 1 and 2, respectively

upper limits of intra-subject variations for AUC and Cpax,
respectively

critical time point at which the absorption ends

pooled sample standard deviation of period differences from both
sequences

intra-subject variation

total number of parameters in a full regression model
matrix of data for the predicator variables in the full model

matrix of data for the predicator variables in the reduced model
with v—1 (1 <v < y) predictors

o™ estimated mechanistic and empirical individual DFs,
respectively

estimated mechanistic and empirical overall DFs, respectively

hat matrix for the esimated desirability model with v — 1 predictors

XViii



«

£4(x)

ot (X)

wg,s

deficiency variables associated with the underachievement of the
o™ desirability

total number of response variables

o™ response variable concerning the response mean, variance, and
covariance (w =1, 2, ..., h)

mean of the i" response at the s™ run

variance of the i"" response at the s™ run
covariance between the w" and g™ responses at the s™ run

estimated response surface function for the i response mean

estimated response surface function for the i" response variance

estimated response surface function for the covariance between the
w™ and g™ responses

XiX



CHAPTER 1

INTRODUCTION

Pharmaceutical optimization has been defined as the implementation of
systematic approach to establish the best possible settings of material and process
variables under a given set of conditions that will result in the production of a
pharmaceutical product with predetermined and specified characteristics each time it is
manufactured (Singh et al., 2005). First, formulation development, which is the process
to produce a final drug product by combining active pharmaceutical ingredients (APIS)
and inactive ingredients, makes a significant contribution to the delivery of a drug to the
body. Formulation designers seek optimal formulations in order to maximize the clinical
benefit of drug ingredients by means of delivering the right amount, at the right rate, to
the right site, at the right time (Gibson, 2001). Second, sponsors are dedicated to
optimizing the manufacturing process by taking into account both ingredients and process
parameters, so that the manufacturability and scale-up ability of drugs can be ensured.
This dissertation focuses on the formulation optimization and aims at developing
comprehensive optimization models incorporating design of experiments (DOE) and
response surface methodology (RSM) for new tablets while all related regulatory
requirements are satisfied. Hence, an overview of the development process of new drugs
is presented in Section 1.1. Research motivations and significance are provided in Section

1.2. Along with these motivations, research tasks to be conducted in this work are



introduced in Section 1.3. Finally, the organization of this dissertation is described in the

last section.

1.1 An Overview of Development Process of New Drugs

The drug can be categorized into the new and generic drugs. Developing a new
drug is an extremely expensive, time-consuming, and risky proposition. Based on a U.S.
government publication titled “Focus on: Intellectual Property Rights” (Field et al.,
2006), it is estimated that the annual cost of developing a new drug varies widely from a
low of $800 million to nearly $2 billion. Moreover, drug companies usually spend 12 to
15 years to discover and develop a new drug and have to take the risk of a low probability
of getting a payoff. It is known that only about 30 percent of new drugs actually earn
enough revenue during their product lifecycle to recover the cost of development. The
good news is that the new drug approval rate is relatively high in the United States.
According to Tsuji and Tsutani (2010), 325 out of the 398 (81.7%) new drugs were
approved from 1999 to 2007. Once a new drug is developed, the drug company receives a
drug patent which provides protection related to rights and benefits for selling the new
drug lasting around 20 years. When the patent expires, other drug companies are allowed
to start developing, manufacturing, and selling a generic version of the novel drug. Since
generic drug makers do not develop a drug from scratch but copy the content of APIs of
the new drug, the costs to bring the generic drug to market are less; therefore, generic

drugs are less expensive.



Unfortunately, the relatively higher price of new drugs alone cannot ensure their
desirable quality. Based on the report about drug recalls published weekly by the Food
and Drug Administration (FDA) (2009-2010), 58 new drugs out of 190 were recalled
because of their various quality issues from January 2009 to February 2010. Furthermore,
drug recalls usually lead to substantial economy loss. For example, the J&J’s recalling its
new children's medicines in 2010 would “shave J&J's sales by $300 million this year”, a
JP Morgan analyst Weinstein said in 2010. Therefore, in order to decrease these negative
effects on developing new drugs, the reduction of development time and costs
specifically, and continual improvement of quality in general, have recently gained more
interest in pharmaceutical industry. Formulation development significantly impacts these
costs, time and related pharmaceutical quality characteristics (QCs) throughout the
development of new drugs (Hwang & Noack, 2011).

The entire development process of new drugs can be broken into several key
stages: drug discovery, preclinical phase, investigational new drug application, clinical
phase (I, Il, 1), new drug application (NDA), FDA review, NDA approval,
manufacturing, and post-marketing surveillance. Each stage must meet the regulatory
standards regarding safety, efficacy and quality. Figure 1.1 shows the framework of
developing a new drug from Phase | to manufacture. Phase | trials are designed to learn
more about the safety of a new drug, and they may also collect some information
concerning efficacy. The purposes of these studies are the rapid elimination of potential
failures from the pipeline, definition of biological markers for efficacy or toxicity, and

demonstration of early evidence of efficacy. Phase Il studies are designed to determine



whether the new drug is effective in treating, disease or condition for which it is intended,
short-term side effects, and risks in patients. Phase Il trials, which are conducted on
larger patient populations under conditions that more closely approximate medical
practices, provide the scientific evidence required for the approval of a new drug. With
the completion of Phase Ill trials, sponsors submit NDA to the FDA for marketing
approval. Once FDA accepts NDA, FDA starts the review program. The NDA review
generally involves medical, biopharmaceutical, pharmacology, statistical, chemistry,
microbiology, labeling, and inspection of sites reviews. Drugs must be manufactured in
accordance with standards called good manufacturing practices, and the FDA inspects
manufacturing facilities before a drug can be approved. Marketing approval, when
received, the drug company is able to manufacture and market the new drug.

Phase | Phase Il Phase 111 FDA Review Launch

Time
@ Candidate Drug Substance

Biopharmaceutics

Process Feasibility
Study

Preliminary
Screening Study
Formulation
Optimization

i
Process

Optimization @ NDA Submission

\ and Review
‘ Process Scale-Up }—b Process Validation }—b Manufacture

Figure 1.1 Framework for New Drug Development
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During the period of discovery and preclinical phase, it is important to consider

the biopharmaceutical properties of the drug substance including in vivo and in vitro



dissolution performance and bioavailability profiles (Gibson, 2001). Note that dissolution
testing is a key analytical study used for characterizing how an API is extracted out of a
dosage form, while the bioavailability is associated with the rate and extent to which the
API is absorbed from a drug product and becomes available at the site of action (FDA,
2003). For the development of robust formulation and process, critical formulation issues
must be first identified from the preformulation work, such as dissolution rate, stability,
stabilization, and processing difficulties due to poor powder properties of the API (Smith
& O'Donnell, 2006). Once the critical formulation issues are identified, the target product
profile of the new drug, including the route of administration, maximum and minimum
dose, delivery requirement and appearance, is needed to be established. The target profile
serves as a guide for formulation designers to set up formulation strategies and keep
formulation effort focused and efficient (Hwang & Kowalski, 2005). The formulation
strategy is associated with a systematic approach to identifying the optimal composition
and process during the period of formulation development which includes four studies:
process feasibility, preliminary screening, formulation optimization, and process
optimization. Based on the results of preliminary screening studies, formulation scientists
seek optimal levels of selected excipients, also known as inactive ingredients, in order to
achieve the target profile of the formulation, while meeting various requirements related
to time, costs, ingredient amounts, and manufacturing feasibility. Note that excipients are
added to a formulation to enhance certain performance of a drug. After the final
formulation is determined during the stage of formulation optimization, the

manufacturing process, such as granulation, milling, drying and blending, will be



optimized by evaluating critical process parameters. Commonly, with the completion of
formulation development, the manufacturing process is scaled up from the laboratory,

through the pilot, and to the commercial production scale.

1.2 Research Motivation and Significance

In the real world, process scale-up during the development of new drugs often
results in modifications concerning ingredients, site, batch size, and manufacturing. The
FDA guidance (1995) for immediate-release (IR) solid oral dosage forms requires that
drug developers provide documentation tests so as to exclude the need for reestablishing
the drug safety and efficacy by means of submitting duplicate data to the FDA. It should
be mentioned that the pre-change formulation is chosen as a reference standard against
the test post-change one for the related tests. Documentation tests usually include in vitro
dissolution comparisons and in vivo bioequivalence studies. The former is an analytical
study that investigates the similarity of the dissolution performance between the reference
and test formulations, while the latter is conducted to compare the bioavailability
between the two formulations of a drug product with respect to the rate and extent of
absorption. It should be mentioned that the crossover design is widely utilized to
determine bioequivalence. An example template of a single-dose, two-treatment, two-
period, two-sequence (2x2) crossover design is shown in Figure 1.2. An equal number of
subjects is randomly assigned to each of the two sequences (FDA, 1995). Within the first

sequence, the reference formulation is administered to subjects first, while the test



formulation is administered first within the second one. The 2x2 crossover design is

discussed in greater detail in Chapter 4.

| Period 1  Period 2
<: Sequence 1 | Reference Test

Subject—»{ Randomization

Sequence 2 | Test Reference

Figure 1.2 2x2 Crossover Design Scheme

The basic motivation of this work is twofold. First, the formulation optimization
issue arises when scale-up changes occur, which has not been adequately addressed in the
previous investigations. Second, when dealing with multiple QCs to be optimized, the
desirability function (DF) approach can be incorporated into formulation optimization.
However, this approach has several weaknesses that affect the accuracy of optimal
solutions. The following subsections provide the research significance derived from this
motivation. Note that the oral administration route is the one most often used, and tablets
are the most popular oral dosage forms. Hence, this dissertation focuses on the tablet

formulation optimization problem.

1.2.1 Significance I: Formulation Optimization for Scale-Up Changes
As discussed earlier, formulation optimization is conducted to determine the
optimal excipient amounts of the formulation so that the target profile can be achieved. It
is also believed that formulation optimization plays a critical role during the formulation
developing process (Hwang & Kowalski, 2005; Hwang & Noack, 2011). Therefore, it is

necessary to propose a methodology that extends the application of current formulation



optimization when the excipient amounts need to be modified. That is, after the period of
formulation development, formulation optimization can be conducted so as to ensure the
equivalent performance in documentation tests between the reference and test
formulations when scale-up changes in excipients occur. Figure 1.3 describes the

extension of formulation development.

Process Preliminar Formulation Process
»  Feasibility AScreenin Stl)J/d —» Optimization —® Optimization

Study g y Study Study
Formulation Development Y

4

Process
Validation

Scale-Up
Changes

Process Scale-
Up

Figure 1.3 A Simplified Extended Pharmaceutical Formulation Development
Similar to the current formulation optimization study, many formulation factors
and responses need to be evaluated in the extended study. The factors are the excipient
amounts, while the responses are relevant to the critical pharmaceutical QCs generally
selected based on the target product profile and documentation tests, such as uniformity,
hardness, disintegration, stability, dissolution, and bioavailability performance. The DOE
technique is one of the most efficient and effective approaches to evaluate the
relationship between the response and factors. Once the relationship is identified, the
formulation can be mathematically optimized by choosing the best combination of
excipient amounts to achieve the specific goals. It is critical to mention that
1) the input factors of DOE remain the same as the decision variables of the

optimization procedure;



2) the optimization constraints are developed according to the regulatory
requirements on the responses of DOE;

3) the objective function of the current formulation optimization is to
minimize or maximize specific characteristic associated with the target
profile, while the extended optimization is to ensure the equivalent
performance in documentation tests required by the FDA.

Moreover, the extended formulation optimization procedure is able to provide
continuous improvement of product quality from the period of formulation development
to the scale-up stage. During the formulation development, formulation optimization is
performed to obtain the desirable ingredient amounts of a formulation so as to achieve the
target profile. Within the scale-up phase, scale-up changes in the ingredient amounts
potentially challenge the safety and efficacy of the changed formulation. In this case,
formulation optimization is useful to determine the optimal amounts of ingredients for
guaranteeing the equivalence with respect to safety and efficacy between the original and

new formulations.

1.2.2 Significance Il: Assessment of Similarity in Dissolution and Bioequivalence
It is necessary to integrate the regular assessment methods for the two
documentation tests into the proposed formulation optimization models. Several
approaches are available for evaluating the similarity in dissolution and bioequivalence

between formulations; however, different numerical results can be obtained depending on



the methods used. Despite the recommendations of FDA on some of these methods, there

remains no agreement over which is the best method.

e Dissolution comparisons

According to the FDA guideline (2000), the two factors f; and f, are useful to
determine if the dissolution profiles of two formulations are similar (see section titled
“Assessment of In Vitro Dissolution” of the Chapter 2). The main drawback of the
recommended evaluation methods is that they are applicable to the dissolution data with
low variability only. The variance is generally considered essential to the safety and
efficacy issues because individual subjects may differ widely in their responses to a drug.
If the variance of the test formulation is comparatively large, the safety and efficacy of
the test formulation may be questionable. In order to overcome this shortcoming, a
rigorous technique should be developed for simultaneously comparing both the mean and
variance related to the dissolution data for the reference and test formulations (see

Chapter 3).

e Bioequivalence Assessment

First, as stated earlier, the crossover design is widely conducted during the
bioequivalence study, since its main advantage is that it excludes the inter-subject
variability from the comparison between formulations. Under the proposed optimization
scheme, it is essential to incorporate this special type of experimental design into the

ordinary DOE technique so as to evaluate the relationships between the factors and
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responses associated with the characteristics of bioequivalence studies. In order words, a
crossover design is performed at each experimental run within the DOE format. Second,
a discretization method, specifically the linear trapezoidal technique, is most frequently
used to approximate the bioequivalence characteristics (FDA, 2006a) because of its
simplicity. However, the continuous methods, which involve curve fitting and more
mathematical calculations, are also applicable to the bioequivalence evaluation. Both

methods are discussed and compared in greater detail in Chapter 4.

1.2.3 Significance Il1: Taguchi Quality Loss Concept and Regulatory Constraints

When optimizing a formulation, the drug designer is typically dedicated to
optimizing the performance regarding the mean of a QC. However, the variance of a QC
is considered essential because large variance may result in safety and efficacy issues.
Based on the Taguchi quality loss concept, any deviation from target values will result in
costs and consequently quality loss. This concept appears to be appealing to drug
developers because it evaluates the deviations from target profiles of both the mean and
variance. On the other hand, although multiple regulatory constraints in the formulation
optimization problem are acknowledged, there is little formal research on integrating the
quality loss concept as well as all the related FDA requirements with scientific
formulation optimization techniques. Therefore, comprehensive optimization models
taking into consideration the Taguchi quality loss concept and as many associated

constraints as possible need to be developed in order (1) to optimize both the mean and
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variance of the QC of interest and (2) to ensure that the related QCs of the tablet

formulation satisfy all the requirements in an efficient manner.

1.2.4 Significance 1V: Modified Desirability Approach and Goal Programming

When applying RSM to the optimization of a new drug formulation, drug
designers are usually faced with multiple QCs of interest, namely, multi-response surface
(MRS) optimization problems. In this case, the DF approach can be incorporated into the
optimization where the weight-based overall DF is usually considered an objective
function to be maximized. However, this approach has a potential shortcoming: the
optimal solutions are extremely sensitive to the weights assigned and assigning these
weights is a very subjective process. Since the goal programming technique is one of the
most popular approaches to finding good solutions in a multi-objective problem (Rardin,
1998), a priority-based optimization scheme can be a more effective alternative that is
performed based upon the priority instead of the numerical weight for each individual
characteristic. Moreover, since the existing DF methods only consider the mean of a QC,
variability is not captured despite the fact that individuals may differ widely in their
responses to a drug. Finally, the commonly used RSM, which calls for the development
of linear or quadratic response surface designs in estimating the QC of interest, may be
less effective for the estimation than a higher-order model (Shaibu & Cho, 2009).
Considering that the estimation accuracy heavily impacts the effectiveness in seeking
optimal solutions, the traditional low-order response surface functions may not always be

suitable. Therefore, in order to improve the effectiveness of the traditional approach to
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formulation optimization for multiple characteristics, (1) the conventional DF method is
modified to take into consideration both the mean and variability of a QC by proposing
two separate DFs- empirical and mechanistic (see Chapter 5), (2) a priority-based goal
programming model is proposed to optimize individual desirability of the multiple
characteristics with the purpose of determining the best compromise among the
characteristics, and (3) as one of the few research attempts integrating higher-order
response surface functions into the formulation optimization procedure, the use of higher-
order (up to fourth-order) regression functions is proposed in Chapter 5 in order to
improve the estimation accuracy of response surfaces and thereby the effectiveness of the

optimization.

1.3 Research Tasks
In order to achieve the research goal, which is to develop optimization models for
the extended tablet formulation development, some of the fundamental questions should
be answered. The fundamental research questions of this work include:

Question 1:  What types of DOE and assessment methods for documentation tests
should be applied to the evalution of the response mean and varability
related to dissolution comparisons and bioequivalence studies?

Question 2:  How can we develop an optimization scheme that allows a drug designer
to minimize both deviations from the target values and variability of the

related QCs?
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Question 3:  What regulatory requirements are involved in an extended tablet

formulation optimization problem?

Question 4:  How can we validate the optimization results?

Based on the research questions above, the major research tasks to be
accomplished are presented as follows:

Task 1:  The investigations of the existing assessment methods for dissolution
comparisons and bioequivalence studies, various DOE techniques used in
formulation optimization procedure, and enhanced optimization methods
which take into consideration multiple QCs concerning the mean and
variability of the related QCs.

Task 2:  The study of all the possible related regulatory constraints for the tablet
optimization problem; the development of extended formulation optimization
models.

Task 3:  The comparisons of the existing and proposed approaches.

Task 4:  The validation of the results of the proposed optimization methodologies.

The first task is implemented in Chapter 2. The second and third tasks are
accomplished by integrating appropriate DOE, RSM, and associated assessment methods
for the documentation tests into the optimization procedure while taking into account
necessary constraints. Finally, validation studies are conducted by means of sensitivity

analysis in this work.
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The overall structure of the research is shown in Table 1.1. Chapter 1 mainly
introduces research significance and tasks. In Chapter 2, a review of the relevant research
in the literature and pertinent technological basis for the formulation optimization are
provided, including mathematical models of dissolution and bioequivalence studies,
fundamental definitions of scale-up changes, various DOE techniques, and several widely
used optimization methodologies. Chapters 3, 4 and 5 present the proposed formulation
optimization models for dissolution comparisons, bioequivalence studies, and MRS

problems, respectively. Finally, Chapter 6 includes a description of the research

1.4 QOutline of Dissertation

achievements and scope for future study.

Table 1.1 Dissertation Structure

Chapter

Feature

1

Overview of the development process of new drugs, research
motivations, significance and tasks

Literature reivew of assessment methods for dissolution and
bioequivalence testing, DOE techniques, and optimization
methodologies

A formulation optimization model for dissolution comparisons with
several proposed objective functions

A formulation optimization model for bioequivalence studies with
two assessment methods

An MRS formulation optimization model incorporating modified DF
and priority-based goal programming methods

Summary of research findings, contributions, and further work
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CHAPTER 2

LITERATURE REVIEW AND KNOWLEDGE BACKGROUND

In this chapter, an overview of the literature and knowledge basis for the
formulation modeling and optimization is presented and divided into separate sections,
namely, biopharmaceutical tests, scale-up changes for IR solid orally administered drugs,
DOE approaches, and common optimization methodologies. Section 2.1 provides a brief
review of the existing mathematical models employed to implement biopharmaceutical
supports for the formulation development. Sections 2.1.1, 2.1.2, and 2.1.3 introduce the
assessment of in vitro dissolution tests, the evaluation of in vivo bioavailability studies,
and the establishment of in vitro/in vivo correlation (IVIVC), respectively. Scale-up
changes and requirements on related documentation tests for IR oral formulations are
outlined in Section 2.2. In Section 2.3, diverse types of DOE techniques applied to the
formulation optimization problem are discussed. Several popular optimization
methodologies are presented in detail in Section 2.4. Finally, Section 2.5 is the summary

of this chapter.

2.1 Typical Biopharmaceutical Tests for Formulation Development
To investigate the clinical benefits of drug ingredients, biopharmaceutical tests
are rigorously performed from the stage of preformulation, through formulation
development, to filling FDA applications. The biopharmaceutical tests for the

formulation development, which typically include in vitro dissolution testing, in vivo
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bioavailability evaluation, and IVIC studies, are conducted to assess the in vitro impact of
physicochemical properties of drugs on the bioavailability of drugs (Shargel et al., 2004).

Following sections introduce the assessment of these studies for oral drug profiles.

2.1.1 Assessment of In Vitro Dissolution

In vitro dissolution testing of solid dosage forms is the most frequently used
biopharmaceutical test in the drug development. It is conducted from the start of dosage
form development and in all subsequent processes. Standard in vitro dissolution tests
measure the rate and extent of dissolution or release of the drug substance from a drug
product. Drug release is often determined by formulation factors such as excipients.
Excipients are inactive pharmaceutical ingredients that enhance certain performance of
the drug. According to Shargel et al. (2004), Hwang et al. (2011), and the United States
Pharmacopeia (USP) document (2009a), common excipients used in solid drugs are
summarized in Table 2.1.

Moreover, one of the most common responses measured to analyze the
dissolution performance of a formulation is the ingredient amount dissolved at a certain
point in time. Both linear and nonlinear regression models (Yuksel et al., 2000; Berry &
Likar, 2007) that evaluate the response over time can be applied to in vitro dissolution
tests, as shown in Table 2.2.

In Table 2.2, A(t) is the percent dissolved after time t, kq is the dissolution rate constant,
and z, is a rate parameter which is a scale factor of the time axis, a is scale factor, and f is

a parameter that characterizes the shape of the curve. Dave et al. (2004) indicated that the
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method developed by Bamba et al. (1979) could be adopted for selecting the most

appropriate model based on the results of F-statistics.

Table 2.1 Common Excipients Used in Solid Drug Products

Ingredient Functional Properties Examples
. . . Carboxymethylcellulose (CMC) Sodium,
Binder TO pro_wde '_che adnesion for holding the Hydroxypropyl Methylcellulose
ingredients in a tablet together. (HPMC)
Diluent To provide the bonding strength and to fill  Lactose, Dicalcium Phosphate,

Disintegrant

Lubricant

Gildant

Coating Agent

out the additional volume/weight.

To help break apart the tablet.

To increase the lubricity for manufacturing.

To enhance the flowability.

To stabilize the drug against degradation
and to make tablets easier to swallow.

Microcrystalline Cellulose (MMC)

Sodium Starch Glycolate, Crospovidone,
Starch

Magnesium Stearate, Stearic Acid, Talc
Silicon Dioxide, Talc

HPMC

Table 2.2 Regression Models for In Vitro Dissolution Tests

Function Equation

First-order (Gibaldi & Feldman, 1967) A(t) =100(1-e™")

Hixson-Crowell (Hixson & Crowell, 1931)  A(t) —100[1—(1— kt T]
’ 4.6416

Higuchi (Higuchi, 1963) A(t) =k t%°

Weibull (Langenbucher, 1976) A(t) =100[1—e’(“’f)/’]

Logistic (Romero et al., 1991)

Gompertz (Dawoodbhai et al., 1991)

At) =

A(t) =

(a+plogt)
(a+plogt)

100| &
l+e

10047&(?”'“‘)}

Another approach to obtain the parameter that describes the dissolution rate is to

use the statistical moment technique to determine the mean dissolution time (MDT) (Von
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Hattingberg, 1984). This method has the advantage of being applicable to all types of
dissolution profiles, and it does not require fitting to any regression model. However, lack
of data points close to the final plateau level will potentially affect the evaluation

accuracy of MDT (Gibson, 2001). The MDT can be computed by (Brockmeier, 1986)

ZﬁxAMi
MDT = -

> AM;
where t is the midpoint of the i time period during which the fraction, AM;, has been

released from the drug. Note that the length of each time period is given by the sampling
intervals.

Issues arise when two dissolution performances are compared. According to the
FDA guidance (1997b), for major changes concerning scale-up and post-approval
changes, a dissolution profile comparison performed under identical conditions for the
product before and after the change(s) is recommended. Dissolution profiles may be

considered similar by virtue of overall profile similarity (Moore & Flanner, 1996)

f; :(il“?l _Tt| ilRtjxlOO,

and similarity at each point in time

n -2
f2=50xlog{{1+(%j (R—Tt)z} xlOO}, (2.1)

where n is the number of points in time, and R; and T; are the cumulative amounts
dissolved at time t for the reference and test formulations, respectively. Curves can be

considered similar when f; and f, values are respectively on the intervals (0, 15) and (50,
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100). Once the similarity of dissolution curves is established, the equivalent performance
with respect to safety and efficacy of the test and reference products is ensured (FDA,
1997b). The main advantages of this method are that the f; and f, are easy to compute and
they both provide a single value to describe the extent of difference/similarity of two
dissolution profiles. Since f; and f, are mentioned for use in a number of FDA guidance,
they are considered the most popular method to compare dissolution profiles. In practice,
formulation researchers are more interested in evaluating the dissolution similarity at
each point in time with the f,.

However, Chow et al. (1997) and Polli et al. (1997) pointed out that the values of
f; and f, were sensitive to the number of points in time used. O'Hara et al. (1998) also
summarized the disadvantages of this method that the f; and f, equations did not take into
account the variability or correlation structure in the data, and the basis of criteria used to

decided on difference or similarity was unclear. Shah et al. (1998) discussed the

A

statistical properities of the estimate of f,, f,, based on sample means and concluded that

the commonly used f, was a biased and conservative estimate of .

Chow et al. (1997), Polli et al. (1997), and Yuksel et al. (2000) made significant
efforts to summarize and examine the general approaches for describing and comparing
dissolution profiles: ANOVA-based, model-dependent, and model-independent methods.
(1) The ANOVA-based method uses repeated measures designs to detect differences
between dissolution profiles. The percents dissolved are dependent variables and time is
the repeated factor. (2) For the model-dependent method, the linear or nonlinear

dissolution models presented in Table 2.2 are fitted to the test and reference dissolution
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profiles. The estimated parameters for both profiles are then employed for the pairwise
comparison using t-test (Bolton & Bon, 2009). (3) In addtion to the f; and f, method,
Rescigno (1992) introduced the Rescigno index as an alternative model-independent
method. The indices are originally used to compare blood plasma concentration profiles;
however, they do not take into account the variability or correlation related to the
dissolution data, and there are no criteria for judging difference or similarity between
dissolution profiles (O'Hara et al., 1998). The indices are denoted by & (i =1, 2) and can

be calculated by

t, _ yi
JIR T dt
g = :

T|R +T,[ dt |

0
where R; and T; are the mean values of percent dissolved for the reference and test
formulations at time t, and t, is the last point in time. When the value of & (i = 1, 2)
approaches zero, the similarity between dissolution profiles can be ensured. According to
O'Hara et al. (1998), the denominator of & can be considered a scaling factor, and the
indices & (i = 1, 2) can then be reviewed as a function of the weigthed average of the
veritical distances between the test and reference mean profiles at each point in time.
Moreover, Chow et al. (1997) proposed a method for the comparison of dissolution
profiles that can be regarded as being similar to that used in the assessment of the average
bioequivalence (ABE) for two formualtions. This method uses the concept of ‘local’ and
‘global” similarity to assess the closeness between the test and reference dissolution

profiles. The assessment of global similiarity assumes that the true relative dissolution
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rate at each location is the same for all the time, while local similarity presuppose that
each location has the same relative dissolution rate. O'Hara et al. (1998), however,
revealed that the main drawbacks of this method were that its power and Type | error
were unknown. Finally, Anderson et al. (1998) indicated that Dissolution Efficiency (DE)
(Khan, 1975) could also be used to evaluate the similarity of dissolution profiles. In
Equation (2.2), DE, defined as the area under the dissolution curve between time t; and t,,
is expressed as a percentage of the curve at maximum dissolution, yigo, Over the same

time period.

Itz ydt
=% %100%, (2.2)
Y100 (tz - tl)

where y is the percentage of dissolved.

2.1.2 Evaluation of Bioavailability Studies

Bioavailability studies are widely performed during the formulation development
to evaluate the absorption properties of a drug, establish bioequivalence between
formulations, and develop IVIVCs. In a bioavailability study, the drug plasma
concentrations after administration are followed over an appropriate time interval. The
standard bioavailability characteristics after a single-dose administration are the
maximum plasma concentration (Cmax), the time to reach Cmax (tmax), and the area under
the plasma concentration-time curve (AUC). Figure 2.1 illustrates a typical plasma

concentration profile. It should be noted that sampling is generally more frequent at time
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intervals in the ascent to the peak concentration and around the peak in order to detect the

Cmax and tmax as accurately as possible under the experimental condition.

Concentration (mg/ml)

. Time (h)
20

Figure 2.1 A Typical Plasma Concentration-Time Curve
Cmax and tyax are influenced by several pharmacokinetic properties such as the
absorption rate (K,) and the elimination rate (K.). If a drug exhibits first-order absorption,
the drug concentration (C) in the plasma at any time t can be calculated based on the

following equation (Shargel et al., 2004):

C=—o aK (e —e™). (2.3)

Correspondingly, Crmax and tmax can be obtained by (Shargel et al., 2004):

C:max — E Ka (e*Ketmax _ e’Katmax ) (24)
V, K,—K

a e

and

_In(K,/K,) In10xlog(K,/K,)
e Ka_Ke - Ka_Ke

, (2.5)
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where F is the extent of oral drug bioavailability expressed as a fraction, D is the
administered dose, K. is the first-order elimination rate constant, and Vy is the apparent
volume in the body in which the drug is dissolved. However, Cnax and tyax are single-
point characteristics, which do not take into account all data sampled during the
absorption process. According to Gibson (2001), Cmax and tnax are not useful as pure
measures of the absorption rate but can be utilized in comparisons of the test and
reference plasma concentration profiles. In addition, they cannot accurately identify the
maximum in the case of rapid dissolution processes.

AUC, on the hand, is used to evaluate the extent of absorption. Similar to Cp.x and
tmax, 1t is only of interest as a relative characteristic for comparisons of between different
profiles. Several methods exist for evaluating the AUC from time 0 to t which is denote
by AUC,.. These methods include the interpolation using the trapezoidal rule, the
Lagrange and spline methods, the use of a planimeter, the use of digital computers, and
the physical method that compares the weight of a paper corresponding to the area under
the experimental curve to the weight of a paper of known area (Chow & Liu, 2009). The
calculation of AUC is commonly determined by the linear trapezoidal rule. Yeh et al.
(1978) discussed the strengths and weaknesses of using the Lagrange and spline methods
against the trapezoidal rule in the aspect of interpolation. According to the linear
trapezoidal rule, the summation of the areas of a series of trapezoids, which are formed
between the data for two contiguous points in time, is computed. This approximate

method requires that blood sampling be frequent enough so that the curvature of the
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plasma concentrations between two data points is negligible. The area under each

segment between two data points for the linear trapezoidal is determined by

Ci + Ci+l
2

AUC(t,,t,,) :[ jx(tm—ti) , (2.6)

where C; is the plasma concentration for the sample obtained at time ti. The AUC,
however, should be calculated from zero to infinity, not just to the time of the last blood
sample, as is so often done. The AUC,.,, can be estimated by (Tozer & Rowland, 1980):

AUC, , = AUC, +%, 2.7)

where C, is the concentration at the last measured sample after drug administration, and
Ke is the elimination rate constant, which can be estimated as the slope of the terminal
portion of the log concentration-time (Shargel et al., 2004), as shown in Figure 2.2.

As stated in the FDA guidance (2003), it is recommended to perform a natural
log-transformation of Cn.x and AUC before analysis, since the transformed data are
believed to be normally distributed. No assumption checking or verification of the log-
transformation data is encouraged. On the basis of log-transformed data, the FDA (2003)
requires that both AUC and Cy,ax Of the test formulation be within 80% to 125% of those
of the reference formulation at the 90% significance level for the establishment of ABE.
However, Liu et al. (1992) studied the distribution of log-transformed pharmacokinetic
data assuming that the hourly concentrations were normally distributed. The results
indicated that the log-transformed data over time were not normally distributed under

certain conditions.
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Figure 2.2 Logarithmic Drug Plasma Concentration-Time Curve for an Oral
Administration

Moreover, it is not uncommon to pass AUC but fail Cya. In this case, ABE
cannot be claimed according to the FDA guidance on bioequivalence. According to
Hauck et al. (2001), some regulatory agencies consider a wider bioequivalence limit for
Cmax, because of the typically higher variability of Cnax compared to AUC. The European
Medicines Agency (EMEA) and World Health Organization (WHO) guidelines use a
wider equivalence standard of (70%, 133%) for Cnax. Endrenyi et al. (1991) indicated

that C,,,/AUC could be used as another bioequivalence measure between formulations.
It was also revealed that the variability of C_,/AUC was substantially decreased

compared with Cpax under most conditions (Endrenyi & Yan, 1993). However,

C.x/AUC is not currently selected as the required pharmacokinetic responses for

approval of drug products by any of the regulatory authorities in the world. On the other
hand, it is very likely that we may pass Cmax but fail AUC. In this case, it is suggested that

we may look at partial AUC as an alternative measure of bioequivalence (Chen et al.,
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2001). One of the possible reasons is that the incremental area under the plasma
concentration-time curve representing 10-30% of the total AUC may be more sensitive
than either Chax Or tnax in detecting the difference of absorption rates between

formulations (Rosenbaum et al., 1990).

2.1.3 Establishment of IVIVC

Increasing clinical or market demand for tablet drugs necessitates the expansion
of the production scale. Scale-up may encompass modifications concerning ingredients,
site, batch size and manufacturing. When any of these changes occurs, in vivo
bioequivalence studies need to be performed to prove the equivalent efficacy and safety
of the new formulation. Bioequivalence studies are generally time-consuming and costly
procedures. However, the establishment of IVIVC may minimize the need for conducting
the expensive in vivo studies. According to the FDA guidance (FDA, 1997a), IVIVC is a
predictive mathematical model describing the relationship between an in vitro property of
a formulation and a relevant in vivo characteristic. Four different types of correlation are
defined in FDA guidance (FDA, 1997a), namely, Level A, B, C, and Multiple-Level C. It
should be mentioned that the Level A correlation is the most commonly developed type
of correlation in NDAs submitted to the FDA, and Gibson (2001) pointed out that only
the Level A correlation was accepted by FDA as an evidence for eliminating in vivo
bioequivalence studies. Therefore, the focus of the following review is primarily centered

on the Level A correlation.
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A Level A correlation can be developed by a two-stage approach: (1) the in vivo
dissolution profile is estimated from the plasma concentration profiles for the test
formulation and an oral solution that is considered a reference formulation in the 1IVIVC
bioavailability study, and (2) the estimated in vivo data is correlated with the in vitro
dissolution profile. This type of correlation is generally linear in which the in vitro and in
vivo dissolution-time curves may be directly superimposable or may be made to be
superimposable by the use of a scaling factor (e.g., time scaling and a scaling of the
amount dissolved). Figure 2.3 illustrates a general Level A correlation. Once a Level A
correlation is established, the in vivo plasma concentration profile of the test formulation
can be predicted from the in vitro dissolution data and the bioavailability performance of
the oral solution and thereby the in vivo bioequivalence study for the test and reference

formulations can be substituted by the comparison of their in vitro dissolution profiles.

Fraction Dissolved
1.r

0.8}
0.6}
04L —e— [nvivo
0.2l —&— In vitro
0 : : : Time
0 5 10 15

Figure 2.3 A Level A Correlation of Drug Dissolution
A Level B correlation is developed according to the principle of statistical

moment analysis. It can be utilized when a Level A correlation is not possible. A Level C
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correlation establishes a single-point relationship between a characteristic of the in vitro
dissolution profile (e.g., amount dissolved at 1h) and a bioavailability characteristic (e.g.,
Crmax, tmax and AUC). A multiple Level C correlation takes into account multiple measures
related to the dissolution and bioavailability profiles. Since a Level B or C correlation
does not establish a point-to-point relationship, its likelihood of predicting the entire in
vivo plasma concentration profile from the in vitro dissolution data is relatively lower,
compared to a Level A correlation (Gibson, 2001; Emami, 2006). Level B or Level C

correlations, therefore, have a limited use for regulatory purpose.

2.2 Scale-Up Changes and Related Documentation Tests for IR Oral Drugs

When an oral drug undergoes scale-up changes, the documentation tests,
including the dissolution comparison and bioequivalence study, are conducted to exclude
the need for reestablishing the drug safety and efficacy by retesting the patients
administrating each formulation. Based on the FDA guidance (1995) for IR orally
administered drugs, levels of change and involved documentation tests are summarized in
Table 2.3. Under some circumstances, in vivo bioequivalence studies can be substituted
by comparing in vitro dissolution profiles of the test and reference formulations. In
addition to the establishment of IVIVC, depending on the Biopharmaceutics
Classification System (BCS), bioequivalence studies can be eliminated if the following
requirements are met: (1) APIs are classified as Class 1, (2) the test and reference
formulations have rapid dissolution profiles, and (3) the coefficient of variation (CV) of

dissolution data for the test and reference formulations should not be more than 20% at
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Table 2.3 Scale-Up Changes and Related Tests for IR Orally Administered Drugs

Level

Classification

Dissolution Documentation

Bioequivalence
Documentation

The total additive effect of
all excipient changes

None beyond application
requirements.

None.

reference and test formulations

Q should not change by more
S 3 than 5%.
S 3 The total additive effect of  The dissolution profiles of the None: if the
=1 all excipient changes reference and test formulations similarity of two
3 = Il should not be more than should be similar. dissolution profiles
g > 10%. cannot be ensured,
& 3 refer to Level 111.
= E Level 111 changes are those  The dissolution profiles of the In vivo
=] i that are Iike_ly to have a reference ar_ld test formulations bioequivalence
significant impact on should be similar. study or acceptable
formulation quality. IVIVC.
| Changes within a single None beyond application None.
facility. requirements.
1] Changes within a None beyond application None.
g I contiguous campus or requirements.
= between facilities in
i) . .
a adjacent city blocks.
& Changes in manufacturing ~ The dissolution profiles of the None.
Il site to a different campus.  reference and test formulations
should be similar.
Changes up to and None beyond application None.
© | including a factor of 10 requirements.
Q8 times the size of the pilot
g A batch.
oo Changes beyond a factor The dissolution profiles of the None.
® I of 10 times the size of the  reference and test formulations
pilot batch. should be similar.
A change to alternative None beyond application None.
m | equipment of the same requirements.
Qo design and operating
é 'g principles.
3 e A change in equipmentto  The dissolution profiles of the None.
- I a different design and reference and test formulations
operating principles. should be similar.
Such changes as mixing None beyond application None.
I times and operating speeds  requirements.
;_E’ within application limits.
2 Such changes as mixing The dissolution profiles of the None.
& I times and operating speeds  reference and test formulations
Q beyond application limits. ~ should be similar.
% Changes in the type of The dissolution profiles of the In vivo
w

process used in the
manufacture of the
product.

should be similar.

bioequivalence
study or acceptable
IVIVC.
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the earlier points in time (e.g., 10 min) and should not be more than 10% at other points
in time. Note that the BCS classifies APIs into four types: high solubility and high
permeability (Class 1), low solubility and high permeability (Class 2), high solubility and
low permeability (Class 3), and low solubility and low permeability (Class 4) (FDA,

2000).

2.3 DOE Supports in Formulation Optimization

DOE was first applied to the agricultural industry. With the spread of DOE, the
first publication for the pharmaceutical industry appeared in 1952 (Hwang, 1998). Over
the years, it has been widely acknowledged that DOE is one of the most efficient methods
for identifying the effects of ingredient amounts on critical QCs related to a
pharmaceutical formulation, such as dissolution, friability, disintegration, and hardness.
Estimated response functions can then be obtained by performing a regression analysis
based on the DOE results. In order to determine the optimal formulation, the estimated
functions are finally employed to implement the optimization procedure where they are
minimized, maximized, or ensured to be within the criteria specified by the FDA.
Additionally, suitable user-friendly software packages, such as Minitab, SAS, JMP,
NEMROD, and Design-Expert, also contribute to a quick uptake of DOE, since the
computing environments help drug designers reduce the time and materials as well as
mitigate the risk of failure (Gupta & Kaisheva, 2003).

In practice, various DOE methods, such as full or fractional factorial experimental

designs, response surface designs including central composite designs (CCDs) and Box-
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Behnken designs (Box & Behnken, 1960), mixture designs, and Taguchi designs, are
extensively applied to the formulation optimization:

e Factorial designs. Ragonese et al. (2002) and Hwang et al. (2011) indicated that
factorial designs were frequently used during the phase of preliminary screening
studies which were designed to select the excipients for the initial formulation.
Factorial designs can be divided into full factorial designs and fractional factorial
designs. In a full factorial design, each possible combination of factors is
evaluated. Hwang et al. (2001b) and Hwang et al. (2001a) used full factorial
experimental designs to evaluate the effects of diluents-related and lubricant-
related factors on the tablet characteristics, such as compression. Gohel et al.
(2004) and Patel et al. (2007) also conducted a two-factor, three-level full
factorial design to prepare and evaluate a drug formulation. The fractional
factorial design allows a large number of factors to be evaluated using a relatively
small number of experimental runs. Kincl et al. (2004) conducted a tablet
formulation optimization study in which a fractional factorial design was used to
investigate the effects of the physicochemical factors on the release performance
of a tablet drug.

e Response surface designs. Response surface designs mainly include CCDs and
Box—Behnken designs, which usually use quadratic polynomial regression
functions instead of linear equations to investigate the response surface. CCDs
combined with the RSM have been widely used in response surface modeling and

optimization, since they are systematic and efficient methods to study the effects
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of multiple factors on formulation characteristics (Abu-1zza et al., 1996). Gupta et
al. (2001) performed a CCD to study the effects of three factors of a colonic drug
delivery system on two formulation responses. lbri et al. (2002) and Singh et al.
(2006) conducted a CCD with two factors and several responses to optimize the
release performace of a tablet formulation. On the other hand, the main advantage
of Box—Behnken designs over CCDs is that they ensure that all factors are never
simultanenously set at their high levels and therefore all design points are more
likely to remain within their safe operation zones (Kincl et al., 2005). In the
literature, Sastry et al. (1997), Nazzal et al. (2002), and Kincl et al. (2005)
conducted three-factor, three-level Box-Behnken designs based on the RSM to
investigate, characterize, and optimize critical characteristics associated with
pharmaceutical formulations.

Mixture designs. Mixture designs are useful in situations where the amounts of
individual components in a formulation require optimization, but where each
individual amount is constrained by a maximum value for the overall formulation
(Gorman & Hinman, 1962). The weight percentages of ingredients are considered
input factors. In the literature, RSM-based mixture designs like simplex lattice
designs were conducted to prepare systematic formulations (Huang, Tsai, Yang,
Chang, Wu, et al., 2004, Patel et al., 2007). Campisi et al. (1998) utilized a D-
optimal mixture design to analyze the theophylline solubility in a four-component
formulation optimization problem; meanwhile, EI-Malah et al. (2006)

demonstrated that a D-optimal mixture design was effective to evaluate the effects
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of three pharmaceutical ingredients on the release profile of a formulation.
Hariharan et al. (1997) applied a four-component mixture design to optimize a
tablet formulation with the most desirable properties; however, Piepel (1999)
pointed out that they ignored the fixed components by working in terms of the
relative proportions. In order to overcome this weakness, Piepel (1999) proposed
an enhanced mixture-of-mixture design. In reality, input factors are not
constrained to the contents of a drug, because extra manufacturing processing
parameters, such as stirring speed (Bhavsar et al., 2006), may be involved. In this
case, it is difficult to apply mixture designs to the formulation optimization.

e Taguchi designs. As one of the popular DOE methods, Taguchi methods can help
formulators extract much critical information from only a few experimental trials.
Wang et al.(1996) utilized a seven-factor, three-level orthogonal Taguchi
experimental design (L,7) to find the optimal formation of chitosan. The L and the
subscript, 27, represent the Latin square and the number of experimental runs,
respectively. Varshosaz et al. (2009) applied an Lg orthogonal array design to
obtaining the optimal release system of an oral tablet with chitosan beads.
Moreover, Taguchi designs together with the overall desriability funtion (DF) can
be conducted to deal with a multi-objective formulation optimization problem
(Wang et al., 1996).

The wide application of DOE to the formulation optimization is summarized in Table 2.4,

where DCP, RSD, and TPP stand for Dibasic Calcium Phosphate, relative standard
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deviation (the ratio of the standard deviation to the mean, expressed as a percentage), and

Tripolyphosphate, respectively.

2.4 Opitmization Methodologies for Selecting Pharmaceutical Formulations

Using prospectively planned and appropriately designed DOE techniques, the
formulation comprising of several input factors and output responses can be effectively
evaluated. Generally, since the relationship between the factors and response is unknown,
enhanced estimation techniques are applied to predicting the response quantitatively from
the combination of the factors. In the literature, a twofold tendency for investigating the
relationship can be found, which includes artificial neural network (ANN) techniques and
ordinary regression approaches employing either first- or higher-order polynomial
equations. On the basis of the prediction results, optimization techniques are then applied
to determining the optimal input factor settings under a set of specified constraints.
Several optimization algorithms, including modified computer optimization methodology
(Takayama & Nagai, 1989; Takayama et al., 1999), Taguchi quadratic loss function
(Taguchi, 1985), and DF (Derringer & Suich, 1980) approaches, are typically applied in
the literature. Following subsections discuss the ANN prediction methods and three

common optimization methodologies in greater detail.

2.4.1 ANN Prediction Techniques
An ANN, as a learning system based on a computational technique, is

increasingly applied to describing the nonlinear relationship between pharmaceutical
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Table 2.4 Summary of the DOE Application in Formulation Development and Optimization

Optimization

DOE

Year Author Inactive Ingredients Factors Responses
Target Method
1996 Aub-lzzaet  Optimizing the CCDs N/A Emulsifier concentration, The time for 85% release,
al. overall properties of drug to polymer ratio, loading efficiency, yield,
a sustained-release composition of the internal  percentage of loose surface
formulation phase of emulsion crystals, overall
desirability
1996 Wangetal. Optimizing the Taguchi Disintegrant: Chitosan Concentration of Chitosan,  Percentage of particle
formulation of designs volume ratio of water and ~ numbers, drug content,
Cisplatin-loaded oil phase, stirring rate, drug trapping efficiency,
Chitosan percentage of Cisplatin, oil  overall desirability
microspheres phase type, Chitosan type,
stabilization time
1997 Hariharan et  Optimizing a Mixture Suspending agent: y- The amounts of y- The time taken to release
al. sustained-release designs carrageenan, CMC Sodium  carrageenan, CMC 80% drug, the release
tablet formulation Diluent: DCP, Lactose Sodium, Lactose, and DCP  exponent, the crushing
with the most strength
desirable properties
1997 Sastry etal.  Optimizing an Box- Suspending agent: Orifice size, coating level,  The cumulative percent of
osmotically Behnken Carbopol 934P the amount of Carbopol the drug release on time for
controlled designs 934P 10%, 25%, 50% and 75%
formulation release
1998 Campisiet  Evaluating the Mixture Humectant: Propylene The amounts of The evolution of
al. evolution of designs Glycol Polyethylene Glycol, theophylline solubility
theophylline Lubricant: Polyethylene water, Propylene Glycol,
solubility Glycol and Ethanol
Solvent: Ethanol
1998 Hwang et Optimizing a tablet  Fractional Diluents: Lactose Binder: Active ingredients particle  Percentage of blend
al. formulation factorial Avicel size, percentage of active uniformity, compression
designs Disintegrant: Starch 1500, ingredients, force RSD, ejection force,

Na Starch Glycolate
Lubricant: Magnesium
Stearate

Glidant: Talc

Lactose/Avicel ratio,
Auvicel particle size, Avicel
density, disintegrant type,
percentage of disintegrant,

tablet weight RSD, tablet
hardness, disintegration
time, percent of dissolved
at 5min
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1999

2001a

2001b

2002

2002

2003

2004

Piepel

Hwang et

al.

Hwang et
al.

Nazzal et
al.

Ibri et al.

Gupta et al.

Gohel et al.

Optimizing a
sustained-release
tablet formulation
with the most
desirable properties
Evaluating the
compression
characteristics of a
tablet

Evaluating the
compression
characteristics of a
tablet
Characterizing and
optimizing a tablet
dosage

Optimizing aspirin
extended release
tablets

Identifying optimal
preservatives for a
formulation

Evaluating the
effect of the
amounts of camphor
and Crospovidone
on the

disintegration time,

Mixture-of-
mixture
designs

Full
factorial
designs

Full
factorial
designs

Box-
Behnken
designs

CCDs

I-optimal
designs

Full
factorial
designs

Suspending agent: y-
carrageenan, CMC Sodium
Diluent: DCP, Lactose

Diluent: MCC
Lubricant: Magnesium
Stearate

Diluent: DCP, Lactose
Lubricant: Magnesium
Stearate

Diluent: Maltodextrin,
MMC

Coating agent:
Copolyvidone

Coating agent: Eudragit®
RS PO

Persevative: Benzyl
Alcohol, Chlorobutanol,
Methylparaben,
Propylparaben, Phenol, M-
Cresol

Disintegrant: Crospovidone

percentage of Talc,
percentage of Magnesium
Stearate

The amounts of y-
carrageenan, CMC
Sodium, Lactose, and DCP

Lubricant level, lubrication
time, compression speed,
particle size, particle
density

Lubricant level, lubrication
time, compression speed,

The amounts of
Copolyvidone,
Maltodextrin, and MMC

The amount of Eudragit®
RS PO, tablet hardness

Amounts of Benzyl
Alcohol, Chlorobutanol,
Methylparaben,
Propylparaben

Amounts
of Camphor and
Crospovidone

The time taken to release
80% drug, the release
exponent, the crushing
strength

Compression force RSD,
ejection force, tablet
weight RSD, hardness,
friability

Compression force RSD,
ejection force, tablet
weight RSD, hardness,
friability

Tablet weight, flowability
index, tensile strength,
percentage of friability,
disintegration time, the
cumulative percent of the
drug release after 45min
In vitro dissolution profiles
at 1h, 2h, 4h, and 8h,
release order, release
constant

Formulation stability and
antimicrobial efficacy (i.e.,
the bacterial and fungal
count)

Disintegration time,
percentage friability
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2004 Huang et al.
2004 Kincl et al.
2005 Kincl et al.
2006 El-Malah et
al.
2006 Singh et al.
2007a  Patel et al.
2007b  Patel et al.

and percentage
friability
Developing and
optimizing a
extended-release
formulation
Evaluating and
characterizing
critical parameters
which have a
significant effect on
the drug release
Characterizing and
optimizing the drug
release performance
Evaluating the
effect of three
matrix ingredients
on thephylline
release rates for a
tablet formulation
Optimizing the drug
release profile and
bioadhesion for
controlled release
tablets

Developing an
optimum drug
delivery system
containing
Carbamazepine
Developing and
optimizing a
controlled-release
multiunit floating
system with

Mixture
designs

Fractional
factorial
designs

Box-
Behnken
designs
D-optimal
mixture
designs

CCDs

Simplex
lattice
designs

Full
factorial
designs

Diluent: MCC, and Lactose
Binder: HPMC

N/A

N/A

Suspending agent:
Polyethylene Oxide,
Carbopol

Diluent: Lactose

Suspending agent: CMC
Sodium, Carbopol 934P

Alkalizing agent: Sodium
Bicarbonate

Binder: Ethylcellulose,
HPMC K4 M

Binder: Ethylcellulose

The amounts of HPMC,
MCC, and Lactose

Apparatus, rotation speeds,
pH, relative ionic strength,
salt, producer of the on-
line dissolution system

Rotation speeds, pH, and
ionic strengths of the
dissolution medium

The amounts of
Polyethylene Oxide,
Carbopol, and Lactose

The amounts of Carbopol
934P and CMC Sodium

The amounts of HPMC K4
M, Sodium Bicarbonate,
and Ethylcellulose

The
amounts of Gelucire 43/01
and Ethylcellulose

The drug release percent at
1.5, 4, 8, 14, and 24h

The percentage of the
released drug product in
2h, 4h, 6h, 8h, 10h, 12h,
and 24h

The Cumulative
percentage of the dissolved
drug in 2, 6,12,and 24h
Percent thephylline
released in 2h, and 4h,
percent amount release in
6h, 8h, and 12h, similarity
factor (f,)

Release exponent,
bioadhesive strength, the
percentage of the released
drug product at 18h, 24h,
time taken to lease 50% of
the drug

The floating lag time, the
time required for 50% and
80% drug dissolution

The percentage drug
released in
1, 5, and 10 hours
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2009

Varshosaz
et al.

desirable release
performance
Optimizing a
sustained-release
formulation

Taguchi
designs

Disintegrant: Chitosan

Chitosan weight,
concentration of Chitosan
and Sodium TPP, pH of
TPP, cross-linking time
after addition of Chitosan

The rate of drug release,
mean release time, release
efficiency, particle size of
the beads
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factors and response by means of iterative training of data obtained from a designed
experiment (Takayama et al., 2000). Figure 2.4 shows a typical structure of hierarchical
ANN which is composed of three input units (I, I, 13), three hidden units (Hi, Ho, Hs),
and two output units (O1, O,). The units in neighboring layers are fully interconnected
with links corresponding to synapses. Processing takes place in each hidden layer and
output layer, and the processing unit sums its input from the previous layer and then
utilities the sigmoidal function to compute its output to the following layer according to

the equations (Takayama et al., 1999):

1
e =2 WX, and f(y,)= T

where W, is the weight of the connection from unit p to unit g, and X, is the output value
from the previous layer. Once yq is computed, f(yg) is conducted to the following layer as
an output value varying continuously between 0 and 1. Finally, as is a parameter related
to the shape of the sigmoidal function.

Based on Armstrong (2006), iterative training should be applied to the network in
order to identify a set of weight values that minimizes the differences between the outputs
of the network and the measured response values. The weight of each transmission is
initially set as a low randomly chosen value, and then it is changed after comparing the
computed output values with the measured ones. This process will be repeated until the

differences fall in the predetermined interval.
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Qutput layer ] ) ‘

Hidden layer Hy H H;

Input layer I b I Weighted
Transmission
Figure 2.4 A Typical Structure of ANN

ANN has successful been applied to solving various problems in pharmaceutical
research such as drug product development (Hussain et al., 1991; Takahara et al., 1997a;
Takahara et al., 1997b), estimating diffusion coefficients (Jha et al., 1995), characterizing
crushing and disintegration effects (Rocksloh et al., 1999), forecasting the mechanism of
drug action (Weinstein et al., 1992), and predicting certain pharmacokinetic parameters
(Hussain et al., 1993; Smith & Brier, 1996). Fan et al. (2004) conducted a formulation
optimization procedure incorporating the RSM and compared the solutions resulting from
the ANN and second-order regression techniques. In their study, ANN was found to be
more suitable for formulating paclitaxel emulsions. Moreover, it was concluded that the
second-order polynomial equation could be less effective in expressing a nonlinear
relationship between the factors and response than ANN (Takahara et al., 1997a;
Takayama et al., 1999; Takayama et al., 2000). However, it is of importance to mention

that the RSM incorporating regression approaches may show superiority in the estimation
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of responses compared to the ANN approach, considering the robustness of the prediction

model against outliers (Bourquin et al., 1998).

2.4.2 Common Optimization Methodologies

The pharmaceutical formulation optimization can be considered a mathematical
process of minimization (or maximization) of an objective function while satisfying
various constraints. Generally, the ingredient amounts of a formulation compose the input
factor vector, which is denoted by X, and the constraints are associated with the
regulatory requirements on certain drug performance, for instance, dissolution, friability,
and stability. In the review of recent literature, the objective function is generally set up
using three methodologies including modified computer optimization techniques,

Taguchi quality loss concept, and DF approaches.

e Modified computer optimization methodology

The modified computer-based optimization approach can be divided into single-
objective and multiple-objective. Based on Takayama and Nagai (1989), the single-
objective optimization for pharmaceutical formulations can be viewed in terms of
minimization (or maximization) of the objective function, F(x), under the following

inequality and equality constraints:

G(x)>0, i=123,...
{H.(x):o, j=123..."

]
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As it is difficult to solve the constrained optimization problem described above
without any mathematical modifications, the constrained optimization problem can be

transformed to one that is unconstrained by adding a penalty function as follows:

T(xr)=F(x)+r*Yo (G (x)) +r*>{H (x)},
when Gj(x) <0, ®; = 1; when Gi(x) >0, ®; =0,

where T(x,r) is the transformed unconstrained objective function, r is a perturbation
parameter (r > 0), and @; is a step function by which the objective function is penalized.

On the other hand, when the optimization problem includes several objectives,
related multiple responses should be incorporated into a single function. Based on
Takayma et al. (1999), the generilized distance between the predicted value of each
repsonse and the optimum one that was individually calcualted using Khuri and Conlon

methods (1981) is given by

where S(x) is the distance function generalized by the standard deviation (SD), SDy, of
the observed values for each response, FD(x) is the optimum value of each response, and
FOk(x) is the estimated value of each response. Similarly, the transformed function,

T(x,r), is expressed as

FD, (x)—FO, (x)

T(x,r)_{Z{ ) } } +r @, {G, (x)}szr’lz{Hi (x)}z,

when G;j(x) <0, ®; = 1; when G;(x) > 0, ®; = 0.
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The optimum solution is estimated as the point, X (r), which results in a minimum
value of T(x,r). Based on the modified computer methodology, Takayama and Nagai
(1989) and Takayama et al. (1999) conducted formulation optimization procedures using

the regression and ANN approaches, respectively.

e Taguchi quadratic loss function

Taguchi quality philosophy emphasizes the need for concurrently investigating
the mean and variability of QCs of interest, and three categories of characteristics were
set up, namely, nominal-the-best (NTB), smaller-the-better (STB), and larger-the-better
(LTB). Any deviation from target values of the mean and variance will result in costs and
consequently quality loss. Hence, a number of quality loss functions have been developed
to relate a key characteristic of a product to its performance in terms of quality. Kailash
and Cho (1994) proposed the Laurent series expansion of the quality loss function for
LTB characteristics. Cho and Leonard (1997) presented a class of quasi-convex quality
loss functions for use in target problem research. Shaibu and Cho (2006) provided
exponential-type quality loss functions for proper applications to real-world issues.

In particular, the quadratic quality loss function for a QC proposed by Taguchi
(1985) took the form L(y) = k(y — 7)%, where L(y) is a measure of the loss in quality
related to the QC, y and z are respectively the observed and target values, and k is a
positive loss coefficient based on the magnitude of estimated losses. Moreover, it is well
known that the expected value of the univariate squared-error loss function for NTB

characteristics can be expressed as
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E(L):(y—r)2+0'2, (2.8)
where E(L), « and & denote the expected quality loss, the actual mean of the QC and the
variance of the QC, respectively. Therefore, in order to minimize the expected loss, the
mean squared error and variance need to be reduced. In the literature, however, no formal
research work integrating Taguchi loss function with scientific formulation optimization

techniques has been found.

e DF approaches

As discussed earlier, it is common that drug designers are faced with an MRS
formulation optimization problem. In the literature, researchers proposed various
scientific techniques for solving MRS problems in the past thirty years. The usage of
Taguchi’s method (1986) for designing robust products or processes prevailed among
earlier research work. Pignatiello (1993), Elsayed and Chen (1993), Vining (1998), and
Ko et al. (2005) employed the expected Taguchi quality loss function approach to
determine the optimal settings of input factors for products with multiple QCs. Some
extensions to Taguchi’s method were also made by researchers such as Chen (1997), Wu
(2002), Fung and Kang (2005), and Kovach and Cho (2008). In practice, in addition to
the approaches to MRS optimization problems mentioned above, some formulation
scientists have demonstrated the effectiveness of the DF method in MRS formulation
optimization problems (Abu-lzza et al., 1996; Paterakis et al., 2002; Rosas et al., 2011).

The DF technique is useful to convert multiple characteristics with different units

of measurement into a single commensurable objective by means of normalizing each
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estimated response variable to individual desirability, whose value varies between 0 and
1, and the response becomes desirable as its desirability approaches 1. If §, (i=1, 2, ...,

m) is the i" estimated response variable, the individual desirability for an LTB or STB

characteristic is computed by

0 y. <L 1 y. <T.
& Pi ~ )P
. y. — L N R U, -y, A
d(y. )= L L L<y<T or d(y)=q —= T <y <U., (2.9
(%) L_J <Y <T, (%) {Ui—TJ <9<V, (29)
1 y.>T 0 y. >U,

where L; and U; respectively represent acceptable minimum and maximum values, T; is
an allowable maximum or minimum value for the LTB or STB characteristic, and p; is
the shape parameter for the DF, which is determined based on how important to hit the

value T;. Similarly, if . is an NTB characteristic, its individual desirability is given by

0 Vi <L
A P
Y~ L <9y <T
N Ti_Li_
d(y,)= o , (2.10)
i) T, <9 <U,
Ui—TI_ 1 1 I
0 ¥i >U;

where T; is the target value, and the shape parameters are denoted by o and pip.
Derringer (1994) also suggested using a weighted geometric mean function to convert the
multiple individual desirability into a single measure of characteristic performance

known as the overall desirability, D. Let W; (i=1, 2, ..., m) be the pre-defined weight for

the §., D can be expressed as

DI
} . (2.11)

o-{[[a()"
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Hence, when applying the DF approach to optimizing a formulation, the overall
DF value is always maximized so that the optimal settings of the ingredient amounts can
ensure the best compromise among multiple characteristics of interest (Wang et al., 1996;
Ficarra et al., 2002; Candioti et al., 2006; Holm et al., 2006; Zidan et al., 2007; Li et al.,
2011). In this traditional way, the estimated individual and overall DF can be obtained by
fitting polynomial regression functions of x to the calculated desirability for the responses
and therefore one may estimate the desirability for the formulation determined by the
responses which in turn are at the same time determined by the factors.

Furthermore, several innovative attempts have been made to improve the
traditional DF approach. Del Castillo et al. (1996) proposed a differentiable DF method
which allowed researchers to use more efficient gradient-based optimization methods for
maximizing the overall desirability. Wu and Hamada (2000) suggested using the double-
exponential function as an alternative DF, and Wu (2004) extended the double
exponential DF based on the Taguchi’s loss function in order to optimize correlated
multiple QCs. Moreover, Bashiri and Salmasnia (2009) and Goethals and Cho (2011)
also presented new optimization procedures based on the DF method for correlated
characteristics. However, the conventional DF method does not consider the variability of
QCs, which is not adequately addressed in the literature and may affect its effectiveness
of optimizing a formulation with multiple QCs. Several researchers also revealed
additional shortcomings of the DF approach. Takayama et al. (1999) argued that one of

the weaknesses of the DF was the subjectivity in the selection of acceptable interval for
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each response. Kim and Lin (2000) pointed out that the DF value did not provide a clear

interpretation except the basic principle that a higher value of desirability is preferred.

2.5 Summary

In Chapter 2, assessment of biopharmaceutical tests, including in vitro dissolution
tests, in vivo bioavailability studies, and IVIVC, are discussed as a basis for
understanding the development of pharmaceutical formulations. The levels of scale-up
changes and required documentation tests for IR oral formulations are succinctly
summarized. Various DOE techniques and common optimization methodologies applied
to the formulation optimization are provided in detail. These investigations establish
essential foundation for assessing dissolution and bioavailability of IR oral drugs and for
developing a rigorous formulation optimization model when scale-up changes occur. The
following chapters will cover the proposed models to achieve the equivalent performance
in dissolution and bioequivalence between the pre-change and post-change formulations

while all regulatory requirements are satisfied.
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CHAPTER 3
DEVELOPING THE OPTIMAL FORMULATIONS FOR NEW TABLET DRUGS

(DISSOLUTION COMPARISONS)

3.1 Introduction

Growth in clinical or market demand for tablet drugs often provides the impetus
for increasing the scale of production. Pharmaceutical formulation optimization is
conducted initially to find the optimal combination of inactive ingredients, but changes of
formulations may occur as consequence of scale-up. In this case, in vitro dissolution
comparisons may need to be performed so as to demonstrate the equivalent safety and
efficacy of pre-change and post-change formulations. Therefore, the extended
formulation optimization is necessary to determine the levels of composition aimed at
ensuring the equivalent safety and efficacy for the changed formulation, while meeting
all related regulatory constraints. This chapter is an attempt to propose formulation
optimization models for the test formulation by incorporating all necessary FDA
requirements and USP-National Formulary (USP-NF) specifications. In Section 3.2, the
proposed optimization model is developed. Based on the FDA and USP-NF guidance,
DOE, estimation, and optimization stages are discussed in Sections 3.2.1, 3.2.2, and
3.2.3, respectively. In Section 3.3, the proposed optimization methodology is introduced.
Numerical examples and analysis are presented in Section 3.4 in order to investigate the
feasibility of the proposed methodology in solving the formulation optimization problem

for scale-up changes in composition. Moreover, possible effects of constraints boundaries
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on the behavior of the optimal input settings are studied by carrying out a sensitivity

analysis in Section 3.4. Finally, conclusions are provided in Section 3.5.

3.2 Development of Proposed Model

An optimization procedure is used to seek the best combination of excipient levels
of the test formulation in order to assure the closeness of dissolution characteristics
between the test and reference formulations, while meeting various constraints. The
following subsections are primarily centered on the development of the proposed
optimization model consisting of three phases: experimental phase, estimation phase, and
optimization phase. Furthermore, the input factors, output responses of interest, and
related specifications have been identified and serve as a prior knowledge base for the
proposed methodology. Figure 3.1 illustrates the development sequence of the proposed

model.

3.2.1 Experimental Phase
Based on the FDA guidance (1995) associated with IR solid oral dosage forms,
scale-up modifications to pharmaceutical formulations include changes in excipients
rather than active ingredients. It is indicated by the FDA guidance (1995) that the APIs
for the reference and test formulations remain the same. Consequently, for an extended
formulation optimization problem, the input factors are the excipient amounts for the test
formulation (typically measured in mg). The commonly used excipients for formulating

an IR tablet include (1) filler, (2) starch (as a disintegrant), (3) binder, (4) magnesium
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stearate (as a lubricant), (5) talc (as a glidant) and (6) film coat. Let x; (i=1, 2, ..., 6)
denote the weight of each excipient in the test formulation. Moreover, the output
responses are associated with the constraints in the optimization procedure. In the
proposed procedure, they include dissolution, uniformity, disintegration, friability,
compressibility, hardness, thickness and stability.

Replicated observations can be taken for these characteristics in the experimental
phase in order not only to evaluate the mean and variance of data in the estimation phase,
but also to comply with the FDA or USP-NF regulations. A general DOE with r

experimental runs for extended formulation optimization problems is illustrated in Table
3.1, where YR represents the replicated response, and the sample mean Y;® and variance
s?(Y,?) of Y.} can be calculated from the corresponding replicated observations at the i

runfori=1,2,...,r.

Prior Knowledge Experimental Phase
Control factors, responses, and[-~~™  Construct and perform a
specifications design of experiment
T
I AN
| N\
v v
Optimization Phase Estimation Phase
N in estim r n
Development of objective < Ob?a estimated response
. . functions for the mean and the
functions and constraints .
variance

Figure 3.1 Development of Proposed Methodology

3.2.2 Estimation Phase

During the estimation phase, response functions that relate the levels of excipients
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(x) and responses (Y®), including the sample averages and variances for the measures of
interest, are obtained using linear or nonlinear regression techniques in order to
implement the optimization phase. Generally, these experimental responses can be
divided into two classes: time-sensitive and non-time-sensitive responses. In this chapter,
the former includes dissolution data, which are related to the cumulative amounts
dissolved at predetermined points in time, while the latter refers to the other responses.

The following part focuses on the development of second-order models for time-sensitive

responses.
Table 3.1 General DOE Format
Run  Factors (x) Replicated Responses (YF) '\"6‘32 of V?):cl?(rgzce
1 Yliz Y1§ Yls Yl; Y_lR 52 (YlR)
Input YZF; ng st Yz'?n Y_zR 52 (YzR)
Factor : : . : : : : :
u Settings YROYR xR ¥R A s2(Y%)
(X) . . : . .
r Yr? YrF; o Yr\F/e o Yr; Y_rR Sz (YrR)

Referring to Table 3.1, let M = [M, M, ... M, ] be the matrix of the means of
the dissolution data, in which M, , M, , ..., and M, denote the mean vectors,
(N5, Y7, L, YR, at the k™ time point. Also let V = [V, V, ... V, ] represent the
matrix of the variances of the dissolution responses, where V, , V, , ..., and V, denote
the variance vectors, [S°(Y,?), s?(Y,}), ..., s°(Y.%) ], at the k™ time point. It is reasonable

to consider the estimated response matrices I\A/It and \A/t (t=1ty, tp, ..., t) as functions of
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the input factors, x. Additionally, the second-order polynomial model for the 6-factor
case is known to be

6 5 6 6

Y =Bt D B+, DL BXX L BX e 3.1)

i=1 i=1 j=i+l i=1

Hereafter, this equation will be referred to as Model (3.1). Hence, the predicted values at

X can be obtained by the following equations:
M, (X)=o(X) By and V,(X)=aw(X)A,

where @(X) = [1X, ... X, XX, ... XX, X ... X, ] is the vector corresponding to the Model
(3.1), and B, =(X"X)'X'M, and B, =(X"X)'X"V, are the ordinary least squares
estimators of the parameters for the mean and variance matrices, respectively. Note that
X is a matrix of data for the predictor variables; it is derived from the experimental
design matrix X. The design matrix X is the r x 6 matrix whose rows and columns
correspond to the r experimental runs and 6 factors, respectively. Finally, the functions

describing the correlations of the means and variances with x over time t can be

developed as follows:

M(t,X) =1%o X XX, o XeXg XF . Xé]x(XTX)_l X"M, and

V(%) =[1% oo X XX, oo XeXg X7 o xg]x(XTX)_l X"V,.

3.2.3 Optimization Phase
3.2.3.1 Definitions of Variables

The decision variables in the extended formulation optimization problem are the
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input factors mentioned in Section 3.2.1. In addition, the pre-identified weight of each
excipient in the reference formulation can be expressed as 7z (i = 1, 2, ..., 6), and a;
(1=1,2, .., p) is defined as the pre-identified weight of each active ingredient, where p is

the number of APIs.

3.2.3.2 Development of Objective Function

According to the FDA (1995, 2000), the equivalent safety and efficacy of the test
and reference formulations can be evaluated by conducting in vivo bioequivalence studies
or in vitro dissolution comparisons when process scale-up changes occur. It is necessary
to establish equivalence with respect to the average and variance of bioequivalence or
dissolution characteristics for the test and reference formulations. In this chapter, the
objective functions are set up based on Equation (2.8).

Assume that multiple dissolution data are observed at the same point in time for
each formulation, and let At(t) and Agr(tj) denote the average cumulative amounts
dissolved at time t; for the test and reference formulations, respectively, where
i=1,2,...,n. As stated in Chapter 2, dissolution-time curves can be considered similar
when f, values are on the interval (50,100) according to the FDA guideline. Therefore, as
proposed below, the objective function associated with dissolution comparisons

minimizes the summation of squared deviations of f, from the target value 7 for each API:

n

Minimizeizpl: 50Iog{[1+(%]Z[An (t,.) - Ay (tj,x)]zrxloo}r 2,

-1
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where Ari(t,x) and Agi(t,x) are the average dissolution functions over time t for the i API
in the test and reference formulations, respectively. Note that 7 is typically set as 100,
since two dissolution profiles become similar as r approaches 100.

However, the main shortcoming of the f, method is that it is applicable to the
dissolution data with low SDs only. In practice, because individual subjects may differ
widely in their response to the drug release, it is essential to ensure the low variability of
dissolution data. If the variability of the test formulation is relatively large, then the safety
of the test formulation may be questionable. Incorporating E(L), an alternative objective
function can be formulated to minimize the sum of the squared difference between Ax(t,x)
and Agr(t,x) and the variance of Ar(t,x) at each point in time. When the formulation

contains p APIs, our objective function becomes:

Minimize Zplzn:{[An (t;,%) - Ay (tj,x)}2 +5° [Ari (tj,x)]} .

i=1 j=1

3.2.3.3 Development of Constraints
In this chapter, the constraints for the extended formulation optimization
procedure can be divided into two classes: specific and common. The former is related to
categories of scale-up changes, dissolution comparisons, bioequivalence studies and
BCS, since a different objective function is selected, depending on the types of changes
and the category of BCS. The latter refers to process knowledge and release
characteristics. The constraints, associated with excipient changes, dissolution testing,

uniformity, disintegration, friability, hardness, thickness, stability and design space, are
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included. Recall that the BCS classifies APIs into four types: high solubility and high
permeability (Class 1), low solubility and high permeability (Class 2), high solubility and
low permeability (Class 3), and low solubility and low permeability (Class 4) (FDA,

2000).

e Constraints associated with excipient changes

The FDA guidance (1995) defined different types of scale-up changes and
different levels within each type. When a Level 1 change of any type occurs, neither in
vitro dissolution comparisons nor in vivo bioequivalence studies are required. When a
Level 2 change in excipients occurs, investigators should provide the documentation tests
related to dissolution comparisons based on the BCS. Thus, it is of importance to develop
the constraints related to excipient changes at Level 2. According to the limits on the
percentage change in excipient amounts for Level 2 (FDA, 1995), the constraints for the
test formulation are formulated in Table 3.2, where Wg represents the pre-identified
weight of the total reference dosage form, and (61, 62, 63, 64, 0s, G5) = (10%, 6%, 1%,
0.5%, 2%, 2%).

Table 3.2 Proposed Constraints on Excipient Changes at Level 2

X7hlcq, i=12..6
W,

R

6

2. X

i=1

X700 <100

R

e Constraints associated with in vitro dissolution tests and comparisons

The dissolution test is designed to determine compliance with the specific
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dissolution requirements for a tablet or capsule dosage form (USP-NF, 2009b). The
dissolution specification contains the three stages shown in Table 3.3, where the quantity,
Q, is the amount of dissolved active ingredient, expressed as a percentage of the labeled
content; the 5%, 15%, and 25% values also represent such percentages.

Table 3.3 Acceptance Table for Dissolution

Stage  Number Tested Acceptance Criteria
Sy 6 Each unit> Q + 5%
S, 6 Average of 12 units (S; + Sy) > Q, and no unit< Q — 15%

Average of 24 units (S; + S, + S3) > Q, not more than 2

S 12 units < Q — 15%, and no unit < Q — 25%

When setting dissolution specifications for a new drug, the FDA (1997b)
recommended establishing a single-point specification for Class 1 and 3 APIs and a two-
point specification for Class 2 based on the BCS. Moreover, it is appropriate to set an
upper limit on the RSD of dissolution data to substitute for the three-stage acceptance
procedure in order to ensure the small variability of dissolution data, because the RSD is
used extensively as a universal yardstick of variability (Torbeck, 2010). Therefore, the
single- and two-point specifications for the i™ API (i =1, 2, ..., p) are modeled in Table
3.4, where ay;i and a,; are defined as the upper and lower bounds of a dissolution range
for the i™ API, respectively, s[+] denotes the sample SD of the characteristic of interest,
A1 is the upper bound of the RSD of dissolution data, and Q is generally set as 80%.

When applying the f, to comparing dissolution profiles, the FDA (2000) specified
several requirements on the use of mean values. Accordingly, the constraint on the usage
of f, for each API can be expressed in Table 3.5 (i=1,2, ..., p), wherea=1,2, ..., l and

p=1+11+2, ..., n Note that t, and ts represent the predefined earlier and later time
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points, respectively, | is the demarcation point that distinguishes what is considered early
and late, and t; is usually set as 10 minutes.

Table 3.4 Proposed Constraints for Single- and Two-Point Specifications

Single-point Two-point RSD
A (8,%)
a; £——== ai
An (ta’X)ZQ+5% &, S|:Ari (tjvx)]S
&; An(tC'X)ZQ+5% ATi(tj'X)
(t, =60min) 3 (i=12,..,p; j=a,b,c)

(t, =15min, t, =30,45,0r 60min)

Table 3.5 Proposed Constraints for the f, Method

S|:Ari (ta‘x)] 0,
L A
) —S[A” (t:%)] <10%
A (tx)
3. w < 85%

1

,  50log {HGJZM (t;, %)= A (8, ,X)ﬂ2 X100} >50

j=1

e Constraints associated with uniformity acceptance criteria

Generally, two methods, content uniformity and weight variation (WV), can be
applied to testing uniformity. Since the input factors are associated with the weights of
inactive ingredients, the following part focuses on the WV tests.

The USP-NF (2009c) presents the approach to calculate acceptance value (AV)

for WV by the following equation:
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ks if 98.5% < X <101.5%
98.5%— 7 +ks if X <98.5% when T, <101.5%
7-101.5%+ks if X >101.5%

AV = : o . (32)
ks if 9850%<X<T,
98.5%— 7 +ks if X <98.5% when T, >101.5%
7-T+ks if X >T,

where Kk is the acceptability constant, and T. is the target content per dosage expressed as
a percentage, which is usually set as 100%. Let ;i (i=1, 2, ..., q) denote the individual
APIs of the units tested expressed as a percentage of the label claim, where q is the
sample size. y and s are the sample mean and SD of y;, respectively. Note that k is set as
2.4 (2.0) when the sample size equals 10 (30) based on the USP-NF guidance. The
uniformity requirements are met if the AV of the first 10 (q = 10) dosage units is no more
than G%, which is the upper limit of the AV. If the AV is greater than G%, an additional
20 units should be tested. The RSD should be no more than 2% based on the USP-NF
guideline (2009c). Moreover, the requirements usually apply individually to each active
ingredient. In our proposed optimization model, y; for the i active ingredient is
estimated by:

d & 13 :

2 (X) =3, (ij +aiJ/ai (in +Zaij], i=12,..p,

i=1 -1 473

where a; is the weight of the i" API for the j™ replication. Based on the USP-NF

requirement, the constraints for the i active ingredient are proposed in Table 3.6. 7 (X)

and s;j(x) represent the response functions for the mean and SD of (xi1, yi2, ..., xig) for the

i API, and Wy is the weight of the total test dosage form comprising the active and
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inactive ingredients. They can be calculated by the respective equations for the i™ active
ingredient presented in Table 3.7.

Table 3.6 Proposed Constraints on WV Tests

1. Weight of API > 25mg a =25 (mg)
a.
2. Ratio of API > 25% L >250%
W, (x)
s (%)
3.RSD < 2% A7 < 2%
Xi (X)

4. AV < G% (Referring to AV, (x)<G% (q=10,k =24)
Equation (3.2)) AV, (x)<G% (q=30,k=2) if AV (X)>G% (q=10k=24)

Table 3.7 Proposed Estimating Equations for WV Tests

1. 7 (x):éélu :éa‘i (ng +aij/qa1 (ng +cllzq:a”) (3.3)

i=1

q

2. S (X):[qi_lZ(lu ~Z )ZT (34)

j=1

6

3. W (x)=> % +

p
i=1 i=1

&

e Constraints associated with disintegration acceptance criteria

The disintegration time is the time taken for all six tablets to disintegrate
completely. If one or two tablets out of the six fail to disintegrate sufficiently, 12
additional tablets are tested (USP-NF, 2009a). The proposed constraints for disintegration

time are described as:

s[D()]

d <D(x)<d, and RSD=——-=<4,,

D(x)
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where D(X) is the response function that relates the average disintegration time to the set
of factors, x. dy and d. are the upper and lower disintegration time limits, respectively.
Finally, s[D(x)] and A, denote the standard deviation of D(x) and the upper bound of the

RSD, respectively.

e Constraints associated with friability acceptance criteria

Tablet friability is measured by evaluating the loss of mass for a tablet. According
to USP-NF (2009¢), the loss of mass for a single tablet should be no more than 1%. If the
weight loss is greater than 1%, the test should be repeated twice and the mean loss of
mass for the three tablets should be no more than 1%. Therefore, the constraints on
friability, under two scenarios (1.1 and 1.2), are proposed in Table 3.8, in which F(x) is
the response function that relates the average mass loss to the set of factors, x, and the
subscript i (i = 1, 2, 3) represents the individual measure for the i sample.

Table 3.8 Proposed Constraints on Friability

Scenario 1.1 R(x) <1%
W, (x)
3
; 2R (%)
Scenario 1.2 = <1% if F (%) 10
3 (x) + (x)

e Constraints associated with compressibility acceptance criteria
The compressibility index (CI) is determined by CI = 100x(Vo — Vi)/Vo, where Vq
is the unsettled apparent volume and V; is the final tapped volume (USP-NF, 2009d).

Based on the USP-NF guideline (2009d), a CI value less than 25 is considered to be



acceptable; further, a value less than 10 is regarded as excellent. Therefore, the related

constraint is developed as follows:

Vo (X)

where Vy(X) and V(x) are the response functions that relate the average volumes to the set

C|(x):1oo{1—m}s H

of factors, X, and H denotes the upper limit of CI.

e Constraints associated with hardness, thickness, and stability acceptance criteria

Hwang et al. (2011) indicated that the hardness, thickness, and stability of a tablet
were essential responses when conducting formulation optimization. Tablet hardness and
thickness are usually measured in kilopascals (kp) and millimeters (mm), respectively.
Stability usually refers to the degradation time of a tablet under certain environmental
conditions. Let Nij(x) (i = 1, 2, 3) represent the related DOE response functions and
and nui (i = 1, 2, 3) define the corresponding lower and upper limits for hardness,

thickness, and degradation time. Therefore, the constraints can be described as:

n. SNi(X)SnUi, i=123.

e Constraints associated with design space

Based on the type of DOE methods applied in the optimization procedure, the
input factors should remain within the corresponding design space. The design space is
the region explored by DOE that determines the levels of a formulation that are both

optimal and feasible. For a factorial design or a Taguchi design, the design space for each
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factor should be within the interval between the minimum and maximum coded values.
That is, -1 <x;< 1 fori=1, 2, ..., 6. For a CCD, x'x< p® where p is the distance in any
direction from the center point and is analogous to the radius of a sphere. A CCD will be
employed here since it is one of the most effective DOE methods for capturing the

quadratic effects of input factors.

3.3 Proposed Optimization Model

In this section, the formulation optimization procedure is developed on the
premises that (1) the factors, responses, and specifications of interest have been identified
prior to the optimization study; (2) 12 individual units of the test and reference
formulations, based on FDA requirements, are used in dissolution tests.

The acceptance criteria of Level 2 excipient changes for different
biopharmaceutics classes are presented in Table 3.9 (FDA, 1995). The proposed
formulation optimization involves Level 2 excipient changes for three classes of drugs.
Taking into consideration all the related acceptance criteria and constraints, the proposed
optimization procedure is described in Table 3.10. It should be mentioned that the
objective functions for Class 1 drugs exclude the term associated with the deviation from
the target value because no target values for the mean can be identified based on Table
3.9. In other words, the objective function for Class 1 drugs is established to minimize the
summation of either the variance or SD of dissolution data for each API. Ensuring either

the minimum variance or SD depends on which of the two is chosen as the response.
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Note that the second-order response functions, which estimate the correlations of the

variance and SD with the input factors, are different.

3.4 Examples for Level 2 Excipient Changes

Few formal numerical examples for the extended formulation optimization
problem can be found in the literature; therefore, simulated data are used in this section.
The data are obtained randomly using Microsoft® Excel. The statistical software used to
evaluate the experimental design results is Minitab® 16. The optimization procedure is
conducted using Wolfram Mathematica® 8. The formulation optimization procedure is
performed to seek the optimal weights (mg) of five input factors including the amounts of
filler (x1), disintegrant (x), binder (x3), lubricant (x4) and glidant (xs). A five-factor CCD
with a total of 32 (r = 32) experimental runs is used to evaluate the effects of these factors
on the responses and to optimize the formulation. The uncoded values of five levels (-2,
—1, 0, +1, +2) for each factor are provided in Table 3.11. In addition, the pre-identified
weight of each excipient in the reference formulation is (z1, 72, 73, 7, 75) = (190, 10.5, 20,
15, 2.5), measured in mgs. The number of APIs is p = 1, and the pre-identified weight of

the API is a; = 80mg. Thus, the total weight of the reference formulation turns out to be

Wr = 318mg. As for the parameters related to the USP-NF acceptance criteria, let Q

80%, 11 = 4p = 10%, G = 15,T, = 100%, d, = 10min, dy = 11.8min, 51 = 9.5kp, yu1

10.5kp, ay =50%, a, =65% and H = 25.
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Table 3.9 Acceptance Criteria of Level 2 Excipient Changes Based on the BCS

Classification

Acceptance Criteria

Class 1 Class 2 Class 3

Level 2 Excipient

Changes

Single point dissolution Multi-point dissolution ~ Multi-point dissolution

. profile should be profile should be
0,
giﬁgtfsw'thm 15 similar to the reference  similar to the reference
' one. one.

Table 3.10 Proposed Optimization Scheme for the Formulation Optimization

Problem
Minimize
1. For Class 1 drugs
@ X[ A ()]
@) Zs[ATi (t,.%)]
2. For Class 2 and 3 drugs
1) il 50log {1{%) jnl[/’m (t %)= A (t, ,x)ﬂ2 x100 -7
@ 33 {4 (0)- A, 5" A1)
Subject to

Specific constraints:
1. ForClass 1 drugs (i=12,...,p)

Avi (8. %)
a'i
2. For Class 2 and 3 drugs (i=1,2,...,p)

S[Ari (ta,X)]
A (L, X)
S[Aﬁ (tﬂ,x)J
)

(3) %b'x) <85%

(4)5010g {1{%}2“:[% (t,%) - A, (tj,x)ﬂ;xloo > 50

i=1

> 85%

) < 20%

) <10%

3. For Class 1,2, and 3 drugs
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— <10%

0 til<q, i=12,.

R

Common constraints:
1. Disintegration time criteria

S D
@d, <D(x)<d, (2 [ D (x )]s/g
2. Dissolution criteria (i =1,2,...,p)
(1) For Class 1 and 3 drugs

M2Q+5%

(2) For Class 2 drugs

Avi (t,.X)

1)au§TsaU. 2) )2Q+5%

Al'i (tc’X
8

(3) For Class 1, 2, and 3 drugs

%s& (i=abo)

3. Uniformity criteria

(M) a, >25 (mg) (2)——>25% (3) (())

3
W, (x)
AV, (x)<G% (q=10,k =2.4)
@1 Ay kot ok
((X)<G% (q=30,k=2) if AV,(Xx)>G% (q=10k=24)
4. Friability criteria
3
F (%)
F 2F F
020 2100 25 19 it B
W; (x) 3W; (x) W; (x)
5. Compressibility criteria
Cl(x)<H

6. Hardness, thickness and stability criteria
<N, (x)ani, i=123
7. Nonnegativity of regression functions
A(x)=0
where A stands for all derived response regression equations.
8. Design space

(1) For a factorial design or a Taguchi design
-1<x <1, i=12,..6

>1%

(2) ForaCCD
X'x < p?

Find Optimal solutions x*(ﬁ,x;,XQ,XZ,X;,XZ)
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Table 3.11 The Uncoded Values of Factors

Factors Levels
-2 -1 0 +1 +2
X1 160 170 180 190 200
X2 4.8 7.8 10.8 13.8 16.8
X3 15 20 25 30 35
X4 1 5 9 13 17
X5 2 6 10 14 18

3.4.1 Class 1 Drugs with Level 2 Changes

Within each experimental run, 12, 10, and 6 formulations are prepared for single-
point dissolution tests, uniformity tests, and disintegration tests, respectively, and 3
formulations for friability, compressibility and hardness tests. The means and variances
of the responses of interest are provided in Table 3.12. Moreover, in order to calculate the
responses associated with uniformity tests, replicated observations on the amount of the
API are presented in Table 3.13. Note that the responses ¥, and s; can be obtained using
Equations (3.3) and (3.4).

The optimization procedures for minimizing the variance and SD of the
dissolution data are performed; the composition and predicted responses for both
scenarios (1.3 and 1.4) are listed in Table 3.14. It is concluded that the optimal solution in
the second scenario provides a smaller s(Ar) than that in the first one. Therefore, in terms
of reducing the variability of dissolution data for the test formulation, the second scenario

optimization procedure is preferred.
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Table 3.12 Response Sets for Class 1 Drugs

Run AT(tb) SZ[ AT(tb)] S[ AT(tb)] D S(D) Cl N1 F1 Fz F3
1 67.06 28.78 5.37 10.5 0.94 343 10.3 2.7 1.9 2.0
2 64.09 14.79 3.85 11.2 1.06 15.1 10.7 2.6 1.8 2.7
3 68.13 37.60 6.13 9.8 1.07 20.9 9.9 21 2.0 2.0
4 65.88 52.52 7.25 11.9 0.96 23.1 10.9 3.7 19 2.2
5 69.68 69.92 8.36 9.4 0.86 28.3 9.0 29 2.3 3.2
6 64.62 50.52 7.11 11.5 1.23 28.5 11.6 2.6 29 34
7 71.95 101.47 10.07 9.9 1.06 34.4 10.1 35 29 1.6
8 69.94 110.05 10.49 11.8 1.17 20.2 10.5 25 2.8 29
9 68.69 16.98 412 10.8 1.15 145 8.2 2.7 19 29
10 68.16 16.72 4.09 10.0 0.86 21.7 10.2 29 31 1.9
11 70.82 12.54 3.54 9.2 0.83 141 8.1 2.6 21 3.0
12 65.98 15.67 3.96 12.0 0.98 24.0 9.7 25 3.7 29
13 64.34 20.28 4.50 9.0 0.90 175 111 1.7 1.8 2.3
14 71.90 101.34 10.07 11.0 1.03 25.9 9.7 35 1.9 25
15 70.91 32.18 5.67 10.5 0.89 10.4 11.7 21 2.7 2.2
16 69.87 48.82 6.99 10.6 0.94 32.1 10.9 25 25 2.2
17 64.74 60.36 7.77 10.8 1.17 27.2 12.0 1.9 1.6 3.0
18 66.06 15.71 3.96 9.1 0.84 18.0 10.8 24 2.7 18
19 71.23 41.10 6.41 9.1 0.75 14.8 9.2 3.2 18 1.7
20 64.49 50.32 7.09 9.3 0.96 33.6 8.2 2.9 2.3 3.2
21 67.29 54.78 7.40 9.3 0.79 30.6 11.3 29 31 33
22 66.90 54.15 7.36 10.9 0.93 27.8 11.9 3.7 2.9 2.6
23 67.12 101.36 10.07 12.4 1.00 34.8 9.4 25 2.7 34
24 68.80 38.34 6.19 10.9 1.17 30.8 8.7 24 1.6 19
25 70.27 96.79 9.84 10.3 1.09 23.2 11.8 1.6 3.1 3.2
26 71.38 32.61 571 10.7 0.99 14.9 8.8 24 3.6 2.9
27 69.38 30.81 5.55 10.4 0.95 18.1 8.7 24 35 2.2
28 66.59 99.78 9.99 12.0 1.22 16.5 11.3 24 2.9 2.9
29 66.70 11.12 3.33 9.4 1.00 24.8 8.5 3.2 2.2 35
30 68.08 29.66 5.45 10.2 1.07 13.9 9.6 2.2 21 1.7
31 64.22 69.71 8.35 10.2 1.07 243 8.5 2.0 24 2.8
32 65.98 10.88 3.30 11.4 1.21 25.3 10.6 2.9 2.9 1.6

3.4.2 Class 2 and 3 Drugs with Level 2 Changes

Similar to Section 3.4.1, the amounts of the input factors are considered as
decision variables. Assume that the observations associated with disintegration,
uniformity, friability, compressibility and hardness tests are still valid in this section. The
dissolution means and SDs derived from the 12 replicated formulations at 8 time points
are provided in Table 3.15. The output responses are simulated from 5 min to 60 min.
Further, 5 min, 8 min, and 10 min are defined as earlier time points, and the two-point
specification for dissolution performance is established at 15 min and 45 min. The

amount (mg) dissolved for the reference formulation at each time point is set as follows:
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AR(tl = 5m|n) =22 AR(tz = 8m|n) =33 AR(tg = 10m|n) =38 AR(t4 = 15m|n) =48
AR(t5 = 30m|n) =65 AR(tG = 45m|n) =74 AR(t7 = 55m|n) =77 AR(tg = 60m|n) =78

The proposed optimization procedures are performed for the two scenarios (1.5
and 1.6). In the first one, similarity factor f, with its related constraints are used.
However, the second scenario does not take f, into consideration. The optimal amounts of
ingredients in both scenarios are achieved and summarized in Table 3.16. Note that
within each scenario, there is no significant difference in the optimal settings between
Class 2 and 3 drugs. The f, value in Scenario 1.5 is greater than that in Scenario 1.6; thus,
the optimal formulation in the former scenario is better than that in the latter, with respect
to the FDA suggestion on the use of f,. However, for the test formulation, the mean of the
dissolution data at each time point in Scenario 1.6 is generally closer to the reference
value, except for Ar(ts) and Ar(t7). The dissolution rates at ts and t; decrease most sharply,
which probably leads to these relatively large deviations from the corresponding
reference values. Further investigations may be needed to penalize the dissolution data at
certain points in time that have most sharp dissolution rates by assigning weights to the
corresponding terms in the objective function. Additionally, the variability of dissolution
data at each time point in the second scenario is generally smaller, except for s(t1), s(ts)
and s(tg). It is important to mention that the differences of s(t1), s(ts) and s(ts) between
both scenarios are insignificant with p-values of 0.919, 0.859 and 0.896 greater than o =
0.05 based on the following two-sample F-test for the variance ratio fori =1, 4, 8.

Ho: §(ti, x*) under Scenario 1.5 = §(t;, x*) under Scenario 1.6
Versus

Hi: §(ti, X') under Scenario 1.5 # §(t;, X') under Scenario 1.6.
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Table 3.13 API Levels and Responses Associated with Uniformity Tests

API Levels Mean _
Run a; a, a; a, a5 A a; A A a0 aii 4 %
1 79.63 79.38 79.92 80.37 79.43 8058 79.66 80.85 7893 7991 | 79.87 0.9989 0.010
2 80.28 79.24 79.95 79.17 79.33 80.83 8046 80.05 80.02 79.16 | 79.85 0.9987 0.013
3 80.98 79.67 79.01 80.24 7946 79.27 80.36 80.63 79.15 80.88 | 79.96 0.9997 0.012
4 79.61 79.95 79.89 79.12 80.22 80.90 7957 7942 79.20 79.12 | 79.70 0.9973 0.013
5 80.74 79.99 80.51 79.32 80.68 79.77 80.93 80.33 79.60 80.26 | 80.21 1.0019 0.022
6 80.21 8098 79.19 79.23 80.77 80.33 80.82 80.37 79.74 79.10 | 80.07 1.0007 0.014
7 80.72 7898 8056 8092 79.10 79.02 79.01 80.65 79.50 80.01 | 79.85 0.9987 0.018
8 80.43 7936 79.91 80.93 7942 80.14 79.84 8050 79.08 79.93 | 79.95 0.9996 0.013
9 79.13 7950 80.71 7945 7953 79.33 7931 80.72 79.40 80.37 | 79.74 0.9977 0.020

10 80.54 80.79 7895 79.88 80.98 80.03 79.51 80.85 79.09 80.37 | 80.10 | 1.0009  0.021
11 80.07 80.20 79.27 80.23 79.29 80.65 79.50 79.77 80.28 80.77 | 80.00 | 1.0000  0.021
12 80.56 7892 7994 80.32 80.90 79.89 80.44 80.54 80.84 79.30 | 80.16 | 1.0015  0.012
13 79.72 7937 8090 80.74 7896 80.08 80.75 79.98 79.66 80.75 | 80.09 | 1.0008  0.017
14 80.19 79.66 8024 7933 7994 8079 8073 7926 7940 79.06 | 79.86 | 0.9987  0.012
15 80.98 8091 7920 7895 80.71 80.83 8012 79.76 80.08 79.68 | 80.12 | 1.0011  0.011
16 80.50 79.23 8089 7951 7993 8017 79.08 8062 7961 7928 | 79.88 | 0.9989  0.021
17 79.06 80.16 80.41 80.07 80.24 79.66 7897 80.49 7923 7935 | 79.76 | 0.9979  0.022
18 80.37 80.93 8054 80.62 79.34 79.96 8050 80.86 79.87 80.49 | 80.35 | 1.0032  0.019
19 7993 7935 7999 80.08 80.10 79.63 80.64 79.46 79.36 80.22 | 79.88 | 0.9989  0.018
20 79.36 80.70 80.28 79.89 80.20 79.19 79.43 79.44 8090 80.73 | 80.01 | 1.0001 0.014
21 79.39 80.64 79.38 80.41 8058 80.10 80.36 80.05 80.70 79.99 | 80.16 | 1.0015 0.012
22 80.36 79.01 80.75 80.77 8053 79.17 7936 7899 8043 7969 | 79.90 | 0.9991  0.011
23 79.27 79.09 80.66 80.40 80.11 79.71 79.45 79.80 7952 79.43 | 79.74 | 09976 0.014
24 79.70 8015 7995 79.81 80.00 80.09 8046 79.25 80.34 79.10 | 79.88 | 0.9989  0.017
25 79.55 79.40 79.73 80.19 8039 79.11 8094 80.40 7892 79.79 | 79.84 | 0.9985  0.022
26 80.66 80.73 80.26 80.27 79.64 7951 8054 7942 80.68 8056 | 80.23 | 1.0021  0.013
27 79.91 7952 79.65 8020 8053 79.01 79.67 80.77 79.94 8052 | 79.97 | 0.9997  0.022
28 80.35 80.71 79.18 79.02 7993 8035 8025 8001 8053 8062 | 80.09 | 1.0009 0.020
29 7894 79.15 7939 79.46 80.04 7938 8081 7894 79.85 8043 | 79.64 | 09966 0.012
30 79.85 79.65 7950 80.89 7990 7935 80.21 79.38 80.69 79.68 | 79.91 | 0.9991  0.012
31 80.54 8086 7990 80.18 8091 8064 79.17 7922 7985 7994 | 80.12 | 1.0011  0.018
32 79.05 7892 80.33 80.75 80.19 79.64 8094 80.33 79.13 79.24 | 79.85 | 0.9986 0.018

Therefore, the optimization model in Scenario 1.6 generally works better in terms of
minimizing both deviations from the target values and variances.

The three-dimensional response surfaces, shown in Figure 3.2, are drawn to
estimate the effects of the input factors on the expected quality loss. x;, X2, and the values
of the objective function in each scenario are included for each diagram. Additionally, the
contour plots illustrating the simultaneous effect of x; and x, on the objective functions
are provided in Figure 3.3. Note that in both Figures 3.2 and 3.3, X3, X4, and Xs are set at

their optimal levels.
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Table 3.14 The Factors and Responses of the Optimal Formulation

Scenario X X X X; X Ar  s(Ap) D s(D) ClI N, F AV,

1.3 173.61 13.38 1848 1524 7.06 6830 419 1149 111 2160 9.76 216 0.03
1.4 169.10 1245 20.18 1651 877 6879 397 1156 115 1730 950 191 0.04

3.4.3 Sensitivity Analysis

The behavior of the optimal solutions is further examined by varying associated
constraint boundaries in order to validate the optimization results. The boundaries which
are associated with dissolution performance, including the lower bounds of ; and f,, are
respectively altered for the sensitivity analysis on the models in Sections 3.4.1 and 3.4.2,
while additional boundaries remain the same. The results for Class 1 drugs with Level 2
changes are summarized in Table 3.17. As 4; increases from 0.2 to 0.4 with an increment
of 0.1, the optimal input settings provided by the model in Scenario 1.4 always produce a
smaller s(Ar). In other words, the conclusion that the optimization model in Scenario 1.4
IS superior in terms of minimizing the variability is consistent with that stated in Section
3.4.1. Similarly, a sensitivity analysis of the constraint boundary to the optimal solution is
performed by varying the lower bound of f, from 60 to 70 with an increment of 5, which
is shown in Table 3.18. Note that no change occurs in the optimal solutions for Scenario
1.5. Based on Table 3.18, it can be observed that (1) the means of the amounts dissolved
at ts and t; in Scenario 1.6 deviate more significantly from the corresponding reference
values, and (2) s(t1), s(ts) and s(tg) are smaller in the first scenario, while the differences
of them between both scenarios are statistically insignificant. Hence again, the optimal

solutions in the second scenario provide overall preferred outputs.
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Table 3.15 Multi-Point Dissolution Data

R ty tr 3 L=t ts te =t tz tg
un Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD
1 2275 362 33.05 594 3634 385 4855 441 66.01 6.09 7541 738 7689 7.66 7850 7.58
2 22.07 393 3299 565 38.04 370 46.34 448 6355 6.08 7272 731 7684 7.62 78.09 7.76
3 2214 371 3197 591 3721 3.89 4898 439 66.96 6.08 7349 7.37 7682 7.80 78.06 7.53
4 20.24 397 33.67 567 3748 3.86 4730 457 66.43 6.06 7504 7.21 7770 7.61 78.00 7.60
5 2040 3.77 3455 591 3897 350 4898 431 6380 6.10 7280 7.34 7785 7.78 7812 7.55
6 20.77 397 3164 597 37.26 3.60 46.03 4.44 63.79 6.14 7506 7.39 7666 7.60 78.89 7.70
7 2046 360 33.37 576 3651 371 4850 4.48 63.71 6.13 7478 740 7773 764 7896 7.34
8 21.26 401 31.74 571 36.89 3.80 46.30 4.44 6327 6.09 7452 722 7785 7.62 7893 7.71
9 21.47 398 3375 574 36.21 3.79 48.86 4.44 6371 6.02 7489 722 7774 771 7790 7.59
10 2243 390 3434 569 37.79 3.75 4896 4.47 6449 6.03 7450 7.21 7758 7.70 78.77 71.74
11 2092 379 3164 573 36.26 3.84 4666 444 6300 6.18 7496 7.39 7738 7.65 78.90 7.45
12 2098 3.76 3359 586 37.71 3.87 4823 4.40 6551 6.16 7270 7.26 7694 7.61 78.70 7.27
13 2239 3.83 3425 586 37.22 3.78 46.02 459 6337 6.09 7544 729 7691 7.72 7790 7.56
14 2268 4.04 3474 575 3865 3.64 4689 456 6547 6.02 7582 7.25 7757 7.78 78.87 7.78
15 20.80 390 3399 569 36.69 3.78 46.78 443 6390 6.19 7429 7.20 7698 7.78 78.16 7.60
16 2095 4.05 31.84 597 36.89 358 4829 449 66.62 6.05 7359 7.22 7762 773 7871 7.60
17 2263 4.07 3412 587 36.67 356 4796 440 6680 6.07 7349 739 7745 761 78.09 7.55
18 20.34 397 34.81 577 36.25 3.72 46.13 444 6563 6.06 7393 7.25 7783 7.64 7872 71.27
19 2207 381 33.82 593 3721 3.80 4880 444 6331 6.00 7243 7.23 76.67 7.60 77.90 7.31
20 2237 372 3465 563 36.14 355 4845 460 6587 6.08 7542 737 7790 7.77 78.66 7.64
21 2233 396 3195 565 36.86 390 4828 448 63.88 6.02 7452 721 7757 7.66 7887 7.46
22 20.06 401 3238 6.00 3899 3.71 4841 436 6464 6.18 7410 740 7755 761 7830 7.75
23 2245 397 3139 563 3639 390 46.65 455 6433 6.11 7279 736 7674 775 78.89 7.76
24 2030 3.74 33.09 583 36.73 3.81 4822 449 64.10 6.16 7505 7.27 7653 7.60 7811 7.38
25 2281 385 3405 564 3808 352 4758 435 6352 6.03 7544 725 7758 7.71 7821 7.56
26 2262 371 3245 565 38.02 3.69 4899 437 6479 6.20 73.07 730 7744 761 7796 7.53
27 2089 371 3172 564 3816 352 46,58 457 6345 6.14 7415 7.27 7674 7.65 7877 7.65
28 2141 375 3218 587 3658 358 47.18 4.32 6547 6.21 7425 7.32 7688 759 7826 7.78
29 2133 381 31.67 597 37.72 3.64 4898 4.47 66.34 6.12 7480 7.34 7712 758 78.66 7.39
30 2167 398 33.02 585 36.13 350 47.81 453 6587 6.18 7411 7.10 7764 7.68 78.76 7.51
31 2075 374 3484 569 3863 3.87 47.46 451 6548 6.27 7555 740 7699 7.71 7836 7.50
32 2128 394 33.06 565 3812 356 4881 4.60 6587 6.25 7541 739 7689 7.68 7854 7.20
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Table 3.16 Summary of Optimal Formulations in Two Scenarios

Scenario 1.5 Scenario 1.6
X, 178.02 190.05
X, 14.88 9.60
X, 16.82 22.16
X, 13.41 13.73
X, 8.86 4.15
f, 84.28 63.34
A(t): A (t)Es(tL) 22:19.95+3.82 21.85+3.84
A(t): A (8,)£s(t,) 33:30.49 +5.72 33.35+551
A (t): A () £s(ty) 38:36.20 + 3.90 37.26 +3.73
A (t): A (t,)£s(t,) 48 : 48.57 + 4.39 4851 +4.43
A (ts): A (t) £s(ts) 65 : 63.46 + 6.22 63.92 +6.13
A (t): A (ts)Es(ts) 74:73.94+7.35 74.51+7.22
A(t): A (L) £s(t) 77:77.28 £7.66 77.63+7.66
A (ts): A (t)£s(ty) 78:78.90 + 7.43 78.71+7.48

Table 3.17 Sensitivity Analysis for Class 1 Drugs with Level 2 Changes

J1 Scenario X X X X, X (A7)
0.2 1.3 173.71 13.39 1844 15.22 7.04 4.19
' 1.4 168.50 12.29 2040 16.66 8.90 3.95
03 1.3 173.70 13.39 1844 15.22 7.04 4.19
' 1.4 168.69 12.34 20.25 16.60 8.90 3.95
0.4 1.3 173.73 13.39 1844 15.22 7.04 4.19
’ 1.4 169.51 12.32 16.82 16.27 8.08 3.98

3.5 Conclusion

Throughout the development of a new drug, it is frequent for a new product to
encounter changes in composition due to scaling up production. In order to smooth the
scale-up and to ensure the equivalent safety and efficacy of the product, the traditional

pharmaceutical formulation optimization procedure can be extended to determine the
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Table 3.18 Sensitivity Analysis for Class 2 and 3 Drugs with Level 2 Changes

Optimal settings . f2 2 60 f2 2 65 f2 2 70
Scenario 1.5 Scenario 1.6 Scenario 1.6 Scenario 1.6

X, 178.02 190.05 190.12 186.67

X, 14.88 9.60 9.58 11.62

X, 16.82 22.16 21.82 20.58

X, 13.41 13.73 13.50 13.41

X, 8.86 4.15 4.89 5.80

f, 84.28 63.34 65.00 70.00
A (t):A(t)£s(t) 22:1995+382 21.85+385 21.67+3.86 21.04+3.83
Au(t): A (t,)£s(t,) 33:3049+572 33.35+551 3320+553 32.16+5.60
A(t): A (t)£s(t;)) 38:3620+390 37.26+373 37.21+3.72 36.86+3.76
Ac(t)): A (t,)£s(t,) 48:4857+4.39 4851+4.43 4856+4.44 48.68 +4.42
Ar(ts) A (ts)+s(ts) 65:6346+6.22 6392+6.13 64.04+6.13 64.26 +6.20
A(te): A (ts)£s(ts) 74:7394+7.35 7451+£722 7437+722 7411+7.24
A(t):A(t)£s(t,) 77:77.28+766 77.63+7.66 77.61+7.65 77.33%7.64
A(t): A (t)£s(t;) 78:7890+7.43 78.71+7.48 7873748 78.71+7.43

Scenario 1.5

Scenario 1.6

Figure 3.2 Response Surface Plots Showing the Effects of x; and x; on the Objective
Function
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Scenario 1.5 Scenario 1.6
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Figure 3.3 Contour Plots of x1 and x2 for the Dissolution Comparison Problem
optimal settings of inactive ingredients when ingredient changes occur. The proposed
optimization model can also be used to avoid duplicate submission of data to the FDA for
excipient changes. Incorporating the quality loss concept, more comprehensive quality
loss functions are developed and used as the objective functions in this chapter. The
concept of quality loss is attractive because it evaluates the deviations from target profiles
of both the mean and variance, while traditional methods only consider the mean. The
variance is generally considered essential because large variability in the dissolution
performance of the formulation may result in unpredictable safety and efficacy issues.
Furthermore, the extended formulation optimization procedure is developed by
investigating all related regulatory regulations and incorporating modern DOE and
regression techniques into the optimization methodology. The numerical examples under
different scenarios examine the feasibility of introducing the proposed approach to the

practical optimization problem. Finally, a sensitivity analysis is conducted to study the

75



behavior of optimal input factor settings for varying associated constraint boundaries. In
summary, implementing the extended formulation optimization methodology not only

minimizes the quality loss, but also potentially achieves cost savings.
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CHAPTER 4
DEVELOPING THE OPTIMAL FORMULATIONS FOR NEW TABLET DRUGS

(BIOEQUIVALENCE STUDIES)

4.1 Introduction

In the previous chapter, the extended formulation optimization procedure
associated with dissolution comparisons was developed. This chapter is a continuous
effort on optimizing pharmaceutical formulations for scale-up changes in excipients when
bioequivalence studies are carried out. If a Level 3 change in excipients for Class 4 drugs
(containing APIs with low solubility and low permeability) is detected, the FDA
guidance (1995) for IR solid oral dosage forms requires establishing bioequivalence
between the pre-change reference and post-change test formulations so as to avoid
resubmission of data for excipient changes to the FDA. Note that Level 3 changes refer to
those that are likely to have a significant impact on formulation quality. In that case, the
in vivo bioequivalence study is generally performed to compare the critical bioavailability
attributes for the two formulations. Bioavailability is a measurement of the rate and
extent of the active ingredient which is absorbed and becomes available at the site of
action (Shargel et al., 2004). Furthermore, ABE is concluded if the average
bioavailability attributes of the test formulation is within 80% to 125% of those of the
reference formulation at the 90% significance level (FDA, 2001). Additionally,

bioequivalence studies may be excluded by establishing an IVIVC.
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In order to determine the optimal setting of excipients and to ensure the
bioequivalence of the test formulation, DOE and regression techniques can be
incorporated into the optimization model. However, no formal research incorporating
bioequivalence studies into DOE techniques has been found. However, several methods
for evaluating the bioavailability characteristics for an individual profile exist in the
literature (Shargel et al., 2004; Chow & Liu, 2009). The question remains as to which
method is most appropriate for the integration of bioequivalence and DOE
methodologies. In this chapter, we shall perform the following studies:

e Describe the integration of bioequivalence studies into DOE methods, and
develop assessment methods for the bioavailability characteristics of interest,
when replicated profiles are sampled under the DOE framework.

e Propose a formulation optimization procedure to identify the optimal levels of
excipients for the test formulation, while satisfying bioequivalence criteria.

The next section incorporates the bioequivalence study into DOE methodologies
and introduces the associated methods for bioequivalence assessment. In Section 4.3, the
optimization procedure is proposed. Sections 4.4 and 4.5 respectively present a numerical
example and a sensitivity analysis for validation, and Section 4.6 finally provides

conclusions.

4.2 Integration of the In Vivo Bioequivalence Study into Experimental Designs
The in vivo bioequivalence study is conducted in order to compare a test and its

reference formulation with respect to critical bioavailability characteristics. On the other
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hand, the DOE technique requires establishing the input factor settings related to the
ingredient amounts of the test formulation. Therefore, a bioequivalence study should be
performed under each input setting when integrated into DOE. This section introduces

the bioequivalence assessment under both the standard and DOE format.

4.2.1 Regular Bioequivalence Assessment

The in vivo bioequivalence study generally utilizes a single-dose, two-treatment,
two-period, two-sequence (2x2) crossover design to compare critical bioavailability
attributes of the test and reference formulations. An equal number of subjects is randomly
assigned to each of the two sequences (FDA, 1995). Within the first sequence, the
reference formulation is administered to subjects first, while the test formulation is
administered first within the second one. The general framework of the study design is
shown in Table 4.1 (Chow & Liu, 2009), in which Y; denotes the bioavailability
characteristic, i, j and k are the numbers of subjects, periods, and sequences, respectively,
fori=1,2,...,n, jand k = 1, 2, with ng defined as the number of subjects within
sequence k. Also note that n; is always equal to n,, since both sequences have the same
number of subjects. The main advantage of crossover designs is that they exclude the
inter-subject variability from the comparison between formulations.

Table 4.1 2x2 Crossover Design Format for the Bioequivalence Study

Sequence Period 1 Period 2
1 Reference formulation: Y, Test formulation: Yj;
2 Test formulation: Y, Reference formulation: Yi,,
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The standard bioavailability responses after a single-dose administration are the
maximum plasma concentration (Cmax), the time to reach Cyax (tmax), and the area under
the plasma concentration-time curve (AUCy.) from time 0 to time t (FDA, 2003). In order
to assess the means and variances of these responses for the test and reference
formulations, while at the same time complying with the USP and FDA regulations, an
unreplicated experiment should be conducted. In other words, a single-dose 2x2

crossover design is performed at each experimental run.

4.2.1.1 Continuous Computational Method for Assessment
The continuous method refers to fitting a smooth curve to the discrete
concentration data. When drug absorption has been completed, Equation (2.3) reduces to
the following expression (Shargel et al., 2004):

_FD_ K,
Vd Ka_Ke

Creduced (t) e_Ket! t € [tz,oo) (41)

where t; is the critical time point at which absorption ends. AUC,.; can be derived by
AUC, , = I;C(t)dt , Which is clearly dependent on time t. Generally, t is set to a specific

value (denoted by ty), or infinity during the bioequivalence study. Since it has been
widely accepted that the function in Equation (2.3) is always concave with K, > Ke, Crax
and tmax exist and can be obtained by setting the rate of concentration change to zero.
Moreover, the rate of concentration change can be achieved by differentiating Equation
(2.3) with respect to t. Note that Equations (2.4) and (2.5) can be used to calculate Cpax

and tmax; neither Cpax NOr thax are functions of t. AUC,.; is given by
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where K= ——2 .
V. (K

It is important to note that the estimators of K and K, denoted respectively by K
and Ke, can be obtained by performing an ordinary linear regression analysis with the

natural logarithm transformation of Equation (4.1). The method of residuals for fitting a
curve to the experimental data of a drug can be used to estimate K, (Gibaldi & Perrier,

1982). Instead of plotting a fitted curve, we propose a method to estimate K, using

A

regression techniques. First, K and K, are substituted into Equation (2.3) as follows:
C(t)=R(e™ -e™), te[0,) 4.2)
which has only one unknown parameter, K, Subsequently, Equation (4.2) can be
simplified to
C'(t)=e",
in which C*(t) =e ™ —C(t)/K . Let [C"(t;), t;] denote the observed value of [C"(t), ] on
the i trial, where i = 1, 2, ..., n, and n is the number of time points. Thus, the estimator

for K, K, can be derived by minimizing the following equation:

Q(K,)=Y[C"(t)-e ™ T (4.3)

i=1
By differentiating Equation (4.3) with respect to K, and then setting the derivative equal

to zero, we obtain
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Q(K,)=Yte ™ [C(t)-e"* ]=o0. (4.4)

Q'(K,) can be considered a linear combination of n bi-exponential functions, so the shape

of its function curve is similar to the one shown in Figure 4.1. Additionally,

iy )~ Ste [o)-e J- Fe 0o

K=K, K
and

lim Q'(K,)=0.

Ky —0
Therefore, it is concluded that Equation (4.4) has a unigue solution on the interval

( Ke ,0); the general shape of the function Q'(Kj,) curve is illustrated in Figure 4.1.

Q' Ka

~
I

Figure 4.1 General Shape of Q'(K,) Curve
Let C = [C(ty), C(t), ..., C(tn)] and T =[ty, to, ..., t;]’ be the n x 1 vectors for the

concentration levels and time points. The matrix exponential of T, exp(T), is given by
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exp(T) = [e*, €%, ..., e" ]". Furthermore, T% denotes a diagonal matrix with dimension n

x n for the time points, where

t 0 0
L |0t 0
0 0 t

Hence, Equation (4.4) can be rewritten in matrix notation as
NN . 1 .
exp(—K,T) T¢| exp(—K.T)-=C—exp(-K,T) |=0. 4.5
p(~K.T) T exp(-K.T) - C-exp(-K,T)| 4s)

In order to solve for Ka in Equation (4.5), the bisection procedure can be applied to

iteratively converge on the solution which lies inside the interval [Ke , K]. Note that K
denotes the pre-determined upper bound of the interval. Alternatively, a numerical

computing environment, such as MATLAB® 2009, can be used to solve for Ka .

4.2.1.2 Discrete Computational Method for Assessment
In addition to the continuous method above, the FDA recommends the use of a
discretization method, specifically the linear trapezoidal technique, to approximate the
AUC. In this method, the AUC can be estimated based on Equations (2.6) and (2.7); Ke
can be obtained by using regression analysis based on Equation (4.1). Note that
Cmax = max{Cy, C,, ..., C,}, and the estimate of tmax IS established as the corresponding

point in time at which Cyax Occurs.

83



4.2.2 Bioequivalence Assessment under the Experimental Design Structure

The input factors are the amounts of excipients in the test formulation. Let x and
X denote the vector of input factors and design matrix, respectively. An unreplicated
DOE format with r experimental runs for the bioequivalence study is illustrated in Table
4.2, where YV represents the unreplicated response, and Cijknu denotes the plasma
concentration level at time point h of the ut run, withjandk=1,2,h=1,2,...,nand u
=1, 2, ..., r. Note that the subscript u denotes the characteristic of interest for the ut
design point and s’[+] is the sample variance of the characteristic of interest. Log-
transformations of Cnax and AUC,.; are recommended by the FDA, since the transformed

data appear to be approximately normally distributed and achieve a relatively

homogeneous variance (Chow et al., 1991). Hence, let INC__, and In AUC,_, , denote

the means of log-transformed Cpax and AUCq. at the u™ run, respectively. The pooled
sample SD of period differences from both sequences, denoted by & , is useful to
evaluate the 90% confidence interval (Cl) of the bioavailability characteristics

differences. According to (Chow & Liu, 2009), ¢,

u

is calculated by

2 N 2
O-u n+n_z (lku ->’

where di = (Yizw — Yiko)/2 and d,, = Zd,ku fori= ..., ngand k = 1, 2. Note that

k i=1
no specific ClI related to tmax IS provided in the FDA guidance, as tmax IS not often used

because of its high inter-individual variability (Qiu et al., 2009). Therefore, Y denotes
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either INAUC; or InCna. Moreover, the intra-subject variability between the test and

reference formulations at the u™ run, denoted by s, , can be estimated by

2 1 ii Sy 2 22: AR ZZZY?k ink
inu Ylu_ - =+ ;u’ (46)
n+n, -2l 3o a iz 2 faE N E2n
2 Ny nG& 2
where Y., =D Vi Yoo =2 Vi and Yo, =D D Y, . Again, Y is either INAUCq. or
i1 i1 il j-1

INCmax in Equation (4.6).

When multiple concentration profiles are collected at each design point under the
framework of a 2x2 crossover design, equations for calculating the sample means and
variances of AUCo., Crmax, and tmax for the test formulation at the u™ experimental run
must be developed; theses equations are listed in Table 4.3, where AUCo.t jjku, Cmaxijku, and
tmaxiju denote the corresponding bioavailability characteristic at the u™ run with i

j=1k=2
j=2,k=1'

concentration profiles, j periods, and k sequences. Moreover,u=1,2, ..., r, {
and the subscript T represents the test formulation. It should be mentioned that
characteristic variances for the reference formulation are not chosen as responses under
the DOE format, because they are not considered the target values of the variances for the
test formulation when applying the Taguchi quality loss concept to the optimization
procedure. Similarly, the mean estimators for the reference formulation at the u™ design

point are found using the formulas in Table 4.4, where the subscript R represents the

reference formulation.
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Table 4.2 DOE Format for the Bioequivalence Study

Observations Unreplicated Responses (YY)
Factors . . . . -
Concentration Variance Variance Variance of Pooled_SD Int_r a
) data Corax of C nax  oft AUCo. AUC of period  subject
il e ot differences  variance
1 Cijkhl ln Cmaxl Sz(lncmaxl) tmaxt Sz(tmaxl) In AUCO—t,l Sz(ln AUCO—t,l) &1 Siil
Input Cijkh2 In Cmaxz Sz(lncmaXZ) tma><2 Sz(tmaxz) m Sz(ln AU CO-t,Z) GAZ Si2n2
Factor : : : : : : : I :
u Seg'{r)‘gs Ciju INC_..  S2(NCrax) tmaw  SAtmw) INAUC, .,  sX(In AUCqyy) 6, s2.
r Ciijknr InC.., S°(UNCrax)  tmar  S(twax) INAUC,,,  s*(InAUCqy,) 6, s2,

Table 4.3 Mean and Variance of Characteristics for the Test Formulation

Mean Variance
In AUC L (iln AUC I
0-tTu — 0-t,i12u 2 = N
ey P 1 s*(InAUC, ,) " Zl (In AUC,_
n, -,
+> N AUC, , 1, j -InAUC, )
i-1
InCmaxTu = L ilncmaxilzu +nzzlncmaxi21u 52(|nC ):;nizonc i _InC )2
nl +n2 — — maxTu n1 +n2 _1 “ maxijku maxTu
1 n n, , 1 0, 2
Uy = n+n, (izlltmaxuzu + ;tmmzmj S (tmaxTu ) = m ; (tmaxijku _tmaxTu)

86



Table 4.4 Mean of Characteristics for the Reference Formulation

- @@ N Ny
inAUC, ., =~ ! [Zln AUC, i + 31N AUCMZZUJ
1

a + nz i=1 i=
- 1 M Ny
In CmaxRu = (Zlncmaxillu +Z|n CmaxiZZuj
n+n,\ iz i1
1 M Ny
tmaxRu - n1 + n2 (;tmaxillu +;tmaxi22u)

Additionally, for the continuous computational method, the estimation of K, K,

and K, can be achieved by extending the dimension of the matrix presented in Section

2.1.1. Let us define vectors T, K, Ke, Ka, and p as follows:

T=[1,T],
nx2
l>!§r = [Kllll ! Klel’ K3111 > 2 K1211 1 K2211’ K3211 5t K(i/2+1)121’ K(i/2+2)121’ K(i/2+3)121’
<o K(i/2+1)221’ K(i/2+2)221’ K(i/2+3)2219 ERE Kijkr]’

~ ~

Ke = [ Kellll ! Kelel ! Ke3111 5 e Kelle ’ Ke2211’ K63211 5 Ke(i/2+1)121 ’ Ke(i/2+2)121’
1x2ir

~ ~ A ~

~

Ke(i/2+3)1215 cres Ke(i/2+1)2211 Ke(i/2+2)221’ Ke(i/2+3)221: cres Keijkr]’

~ ~

Ka = [Kallll’ Ka21117 Ka31119 R Kalle’ Ka221l’ Ka32119 R Ka(i/2+1)l21’ Ka(i/2+2)121’
1x2ir

~ ~ A ~

A

Ka(i/2+3)121 >t Ka(i/2+l)221 ’ Ka(i/2+2)221 ' Ka(i/2+3)221 LIRS Kaijkr ]’

and

B =[InK, -K¢]’,

2x2ir
where the subscripts i, j, k and r denote the related parameter for the i subject, during the

j™ period, within the k™ sequence, at the r™ design point, and InK denotes the vector that
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IS obtained after taking the natural logarithm of each element of K. Moreover, the matrix

containing the concentration data from time t; to t,, denoted by Crequce, IS defined as

Clllpl C211pl C311z1 o C(i/2+1)22z1 C(i/2+2)22z1 C(i/2+3)2221 e Cijkzr
C _ Cm( p+1)1 Czu( p+1)1 C311(z+1)1 T C(i/2+l)22(z+1)1 C(i/2+2)22(z+1)1 C(i12+3)22(z+1)1 o Cijk(z+1)r
reduce = . . . . . . . . .
nx2ir
Clllnl Clenl C311n1 o C(i/2+1)22n1 C(i/2+2)22n1 C(i/2+3)22n1 o Cijknr

The regression coefficient vector, B, for the natural logarithm transformation of Equation

(4.1) can be calculated by

B=(T'T) T'Crpe.
Based on the equations above, the values of K and K, can now be determined. Moreover,
each element of the vector K, can be obtained by solving Equation (4.5), and MATLAB
code has been provided in Appendix 2.1 for this purpose.

Finally, the estimated second-order response function, shown below, can be

obtained by using the ordinary least squares method.

YO () =1%o Xg XXy oo XX X e xé]x(XTX)f1 XYY,
where X is a matrix for the predictor variables. Moreover, when the YV includes AUC.,

the estimated response function becomes

YU (6X) =1%o Xg XX, oo XX X e xg]x(XTX)fl XYY ().

4.3 Proposed Optimization Model
4.3.1 Objective Function

The Taguchi quality loss concept is the basis for the objective function, which
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ensures that the optimal solution provides minimum deviations from the target values of
bioavailability characteristics for the test formulation, including AUCg.;, Crmax and tmax.
Referring to the univariate squared-error loss function (Taguchi, 1985), the objective of
the optimization procedure is to minimize the summation of squared differences between
characteristics of interest for the test formulation and their target values. The target values
for the mean and variance are chosen as the means for the reference formulation and zero,
respectively. Although tnsx IS not a common measurement when assessing
bioequivalence, Shargel et al. (2004) indicated that drug products were generally tested in
chemically equivalent doses in bioequivalence studies, and tmax could be very useful in
comparing the respective rates of absorption of a drug from chemically equivalent drug
products. Hence, in order to capture the performance of tyna in addition to AUC,.; and

Cmax, We propose the following objective function:

[I0C e (€)1 (X) ]|+ 52 [INCoper (%) Frar (X)~ s (%) ]

Minimize ,
+52 [ toer (X) ]+ [In AUC, . ; (t,X)~In AUC,_ , t, x)} +s?[INAUC,_; (t,x)]

in which a function of x denotes the estimated response surface function for either the

mean or variance, and a function of t and x is the response function over time t.

4.3.2 Constraints on Excipient Changes
According to the FDA (1995), the ranges of Level 3 changes in the excipient are
beyond those of Level 2. Hence, the constraints on Level 3 excipient changes are
proposed by incorporating all possible combinations of the following seven inequalities,

where (61, 0, 03, 04, 0s, 06) = (10%, 6%, 1%, 0.5%, 2%, 2%).
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L1509 (i= S>10%.

R

4.3.3 Constraints Associated with In Vivo Bioequivalence Studies
Based on the FDA (2006a) and Chow and Liu (2009), the 90% CI for the
difference in means of log-transformed data is provided in Table 4.5, where Y denotes
either Crax or AUCy.. Then, constraints on the Cls for Cyax and AUC,¢ are developed,
which are shown in Table 4.6.

Table 4.5 90% Confidence Interval for Assessing Bioequivalence

VR .11
Upper bound (InYT—InYR)+tn1+n2_2’olosg =
1 2

1 1

Lower bound (InY InY) niny-20050 | —F—
nl n2

Table 4.6 Proposed Constraints for the Bioequivalence Study

Upper R 1 1 -

bcf)upnd [InYT ~InYs )] twan,O-OS"(X),faJrn_z < 25%InY, (x)
e L fl 1

ower i

bound |:InY (X) InYg (X)J n1+n2—2,0.050-(x) E+n_2 >-20%InY, (X)

Upper 1 1 -

bcf)upnd [InYT —InYg (t, x)}+tn1+n 20050 (1, X) n_1+n_2 < 25%InY, (t,X)
Y = AUC,, P

Lower .

bound [InYT (t,x)—InYq (t, X)J tnlmzfz,o_()sd(t,X) n—l+n—2 >-20%InYp (t,x)

4.3.4 Intra-Subject Variability Constraints
For a standard 2x2 crossover design, Chow and Liu (2009) pointed out that the

difference in total variability between test and reference formulations is the difference in
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intra-subject variability between the two formulations, since the crossover design
removes the inter-subject variability. However, there is no universal agreement on how

much difference in variability would be considered to be of clinically meaningful

significance. Let ya and yc be the upper limits of intra-subject variations (s> ) for AUCo.,
and Cpax, respectively. Therefore, the constraints on s’ are proposed as

i (t,x) <y, and s, (X)<y..

4.3.5 Other Constraints
Additional constraints that were developed (in Chapter 3) for disintegration time,
uniformity, friability, compressibility, hardness, thickness, stability, nonnegativity and

design space, also need to be taken into consideration in this optimization model.

4.4 Numerical Examples

The formulation optimization is performed for Class 4 Drugs with Level 3
excipient changes. Plasma concentration profiles for the bioequivalence study are
simulated under a standard 2x2 crossover design framework. The number of subjects
within each sequence for the crossover study is ny = n, = 3. The vector of points in time,
measured in hours, is setas T = [0, 0.5, 1, 1.5, 2, 3, 4, 6, 8, 10, 12]". The input factors
(treated as decision variables) include x; and X in this case; therefore, a two-factor CCD
with 13 experimental runs (i.e., r = 13) is analyzed using Minitab® 16. Table 4.7

provides the plasma concentration data under a DOE format. The uncoded values of two
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levels (—1, +1) for x; and x, are set as (170, 190) and (7.8, 13.8), respectively. The design
format with coded factor values is described in Table 4.8.

We will adopt the estimated response functions associated with disintegration,
uniformity, friability, compressibility, and hardness tests from Chapter 3, and let the
weights of x3, X4, and Xs be 20mg, 15mg, and 2.5mg, respectively. The target weight of
each excipient in the reference formulation is (71, 72) = (150, 10.5) measured in mg. The
pre-identified average weight of the API is 80mg. Therefore, the total weight of the
reference formulation is Wg = 278mg. In addition, let the upper bounds of intra-subject
variability be ya = yc = 0.1.

We compare the AUCs from time 0 to infinity, AUCy..,, for the test and reference
formulations in this numerical example. The bioavailability characteristics, tmax, Cmax,
and AUC,.,, can be derived by the discrete (Scenario 2.1) and continuous (Scenario 2.2)
methods; the results for the two scenarios are listed in Table 4.9. Note that the data
calculated by the continuous method are presented in bold in the table. Referring to
Equation (4.1), the regression coefficients of the concentration-time function were
estimated under the condition that t, = 4h.

Running a regression analysis with Minitab, we obtain the estimated response
surface functions for both scenarios, which are then used to implement the optimization
procedure with respect to the objective function and constraints. The optimal solutions

and critical characteristics which are associated with assessing bioequivalence for both
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Table 4.7 Plasma Concentration Data Set under a 2-Factor CCD Structure

. . Time point
Run Sequence Period Subject 0 05 1 G > 3p ) 5 8 10 B

1 1 1 0 8.60 1291 16.00 16.08 1431 1236 815 563 387 241

2 0 948 1296 15.73 16.42 1458 1279 853 510 4.02 2.69

3 0 9.10 1279 1527 1594 1456 1255 850 544 387 247

1 2 1 0 923 1296 1595 1561 1427 1223 819 522 375 228

2 0 9.13 1276 1532 16.23 1487 1232 8.08 504 387 284

1 3 0 9.17 1255 1556 1554 1418 1274 886 563 446 3.00
2 1 1 0 932 1291 1556 16.24 1430 12.89 888 528 400 243

2 0 924 1278 15.04 1631 1460 1277 880 537 4.03 3.00

3 0 857 1296 15.16 1577 1449 1288 861 520 393 227

2 2 1 0 8.84 1289 1516 16.27 1484 1245 895 585 3.86 246

2 0 851 1290 1549 16.34 1403 1254 823 510 385 279

3 0 8.66 1292 1586 15.88 1428 1259 848 508 405 217

1 1 1 0 9.43 1259 1546 16.35 1473 1281 894 557 443 257

2 0 8.77 1297 1540 1589 1407 12.03 838 508 388 276

3 0 8.75 1279 1512 16.47 1464 1268 820 512 360 2.95

1 2 1 0 9.04 1296 1566 15.68 14.88 1230 871 562 4.44 287

2 0 948 1280 15.01 1569 1406 1275 850 516 413 202

) 3 0 9.11 1281 1588 1597 1418 1212 824 563 394 223
2 1 1 0 9.06 1298 15.08 15.93 1458 1226 840 564 426 241

2 0 9.01 1278 1557 16.31 1499 1231 852 550 415 236

3 0 9.00 1281 1578 1631 1477 1284 899 596 403 234

2 2 1 0 8.62 1295 1517 16.04 1466 12.00 810 541 420 274

2 0 9.11 1257 15.26 16.31 1457 1241 8.64 5.00 3.96 2.61

3 0 9.05 1284 1599 1585 1492 1293 823 563 412 203

1 1 1 0 9.11 1263 15.67 15.63 14.43 1229 8.00 570 425 2.04

2 0 8.87 13.00 1585 1575 1496 1283 811 536 415 223

3 3 0 9.26 13.00 1532 1554 1430 1220 869 507 447 267
1 2 1 0 890 1272 1520 1551 1485 1268 818 570 379 228

2 0 933 1256 1531 1554 1401 1251 8.18 5.68 4.04 2.08
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3 0 9.30 1255 1574 1637 1495 1274 800 588 3.92 2.63
1 0 8.80 12.83 15.96 16.47 14.87 1226 837 521 431 231
2 0 8.66 12.86 15.18 16.38 14.12 1250 812 519 442 294
3 0 8.61 1264 15.08 16.17 1452 1278 887 500 397 2.66
1 0 8.76 12.67 1513 16.01 14.04 1233 837 512 449 269
2 0 8.86 1283 1581 16.32 1466 1246 843 594 350 2.62
3 0 911 1276 1588 16.09 1477 1279 869 537 375 2.87
1 0 8.82 1295 1551 1643 1470 1251 824 563 415 2.08
2 0 850 1297 1515 16.09 14.89 1222 859 574 405 299
3 0 9.05 1255 1509 1640 1465 1294 825 541 431 259
1 0 9.18 1295 15.02 16.42 1411 1292 890 509 425 265
2 0 9.11 1270 1522 1585 1497 1202 897 527 3.77 2.68
3 0 924 1258 1578 16.02 1461 1212 871 545 351 2.78
1 0 8.64 1279 1588 16.03 1485 1299 822 508 432 296
2 0 8.61 1255 1518 16.14 1449 1281 855 584 446 220
3 0 9.27 1296 15.03 16.19 1435 1227 830 563 376 219
1 0 942 1299 1512 1560 1495 1283 866 530 351 289
2 0 8.90 1279 1576 1598 1421 1248 844 559 384 210
3 0 8.74 1271 1529 1649 1482 1247 812 537 447 211
1 0 8.98 1281 1523 1642 1442 1213 851 572 441 298
2 0 8.65 12.71 1579 1559 1464 1220 897 558 397 2.79
3 0 8.77 1257 1525 1578 1494 1257 806 531 361 262
1 0 9.24 1295 1519 1621 1476 1238 893 556 3.66 212
2 0 8.61 1278 1557 16.47 1412 1203 872 542 416 216
3 0 8.72 1276 1552 16.34 1427 1209 821 587 424 298
1 0 933 1262 1526 1554 1434 1268 826 522 365 291
2 0 858 1270 1548 16.05 1427 1201 850 571 361 232
3 0 896 1271 1576 1592 1435 1219 860 599 372 262
1 0 9.02 1271 1508 1565 1402 1299 890 509 379 240
2 0 8.77 1291 1515 1646 1434 1272 816 528 410 288
3 0 912 1283 1546 1551 1417 1215 875 583 437 215
1 0 855 1270 15.03 16.37 1421 1248 807 518 393 210
2 0 943 1257 1560 1643 1424 1240 847 528 433 2.66
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95

3 0 8.66 12.74 1524 16.06 1406 1232 888 581 358 2.06
1 0 8.69 1266 1555 1559 1441 1273 809 569 428 294
2 0 9.15 1276 1585 16.16 1490 1292 813 569 357 299
3 0 891 1266 1533 1635 1448 1217 836 582 351 225
1 0 8.93 1276 1544 16.24 1401 1209 802 583 441 244
2 0 9.05 1298 1578 1572 1458 1295 880 570 422 2.06
3 0 8.90 1290 1516 1595 1412 1253 809 536 450 217
1 0 8.75 1287 16.00 16.23 1493 1252 851 568 377 227
2 0 8.76 1275 1597 16.38 14.88 1292 802 564 377 226
3 0 9.09 1295 1586 15.78 1454 1205 894 568 425 2.64
1 0 945 1289 1556 15.69 1454 1280 9.00 569 415 254
2 0 9.28 1250 1570 1581 1483 1238 890 524 394 261
3 0 9.01 1256 1569 16.04 1416 1268 876 594 420 280
1 0 8.87 1276 1554 1561 1493 1292 854 548 383 298
2 0 8.84 12.88 1592 1564 1488 1283 826 581 376 2.76
3 0 8.59 1272 1528 16.02 1483 12.03 820 539 434 2.00
1 0 933 1254 1596 1644 1486 1296 895 590 427 230
2 0 9.02 1251 1561 1572 1418 1247 853 524 410 293
3 0 8.79 1252 1547 1590 14.02 12.04 814 509 433 225
1 0 8.95 1295 1520 1568 1444 1246 811 577 350 2.00
2 0 9.33 1259 1503 16.28 14.12 1266 879 527 378 224
3 0 9.50 1281 1570 16.47 1469 1265 891 574 426 233
1 0 9.44 1290 1502 1557 1401 1261 878 579 423 207
2 0 8.98 1296 1593 1576 1497 1266 860 540 4.08 290
3 0 912 1277 1583 1566 14.77 1257 884 502 376 235
1 0 934 1258 1511 16.27 1497 1221 805 539 385 2.09
2 0 936 1267 1526 1595 1445 1281 824 566 449 244
3 0 8.64 1267 1505 1644 1418 1236 822 511 357 231
1 0 8.69 1296 1549 16.22 1485 1263 864 588 443 298
2 0 9.06 1284 1510 16.27 1404 1234 878 563 394 205
3 0 855 1274 1561 1566 1410 1294 808 561 3.67 248
1 0 854 1283 1504 1645 1471 1256 873 521 445 279
2 0 9.15 1266 1586 1552 1455 1243 816 559 426 252



3 0 8.60 12.87 15.60 16.24 1500 1242 823 5.03 433 290
1 0 9.09 1298 1543 16.27 1444 1223 815 514 450 2.79
2 0 8.93 1282 1522 1580 14.84 1210 892 6.00 3.86 2.09
3 0 8.56 12.77 15.76 16.41 14.44 1274 883 521 409 288
1 0 8.79 1271 1513 16.22 1487 1250 830 552 372 2.06
2 0 9.10 1264 1560 1551 14.08 1234 878 585 412 202
9 3 0 891 1282 1574 1562 1491 1204 836 522 427 2.88
1 0 9.05 1264 1516 1579 1480 1228 898 535 396 2.04
2 0 854 1261 1594 16.19 1478 1238 802 595 401 262
3 0 9.27 1296 1515 1552 1456 1264 831 587 3.87 253
1 0 921 1296 1574 16.33 1438 13.00 844 542 362 3.00
2 0 8.71 1279 1570 1646 1474 1218 9.00 595 409 232
3 0 943 1254 1510 16.10 1434 1282 811 592 392 285
1 0 929 1284 1506 1550 1484 1276 869 577 350 2.63
2 0 9.07 1289 1531 1646 1494 1238 806 513 436 2.03
3 0 9.21 1250 1534 1574 1403 1205 831 586 356 231
1 0 9.26 1286 15.06 1591 14.08 13.00 821 591 439 262
2 0 8.64 1270 1582 16.24 1427 1290 841 548 430 216
10 3 0 935 12.89 1500 16.34 1412 1230 891 534 446 2.06
1 0 9.15 1288 1513 16.07 1453 1251 848 536 444 237
2 0 884 1296 1553 1578 1485 1257 834 588 369 291
3 0 9.02 1298 1547 1597 1497 1284 812 510 372 277
1 0 855 1277 1580 16.19 1439 1289 852 512 378 2.08
2 0 8.63 1278 1589 16.24 1465 1227 848 503 396 249
3 0 881 12.67 1556 1578 15.00 1215 841 571 401 222
1 0 8.66 12.87 1582 1570 1437 1283 828 545 436 2.08
2 0 854 1263 16.00 1598 1481 1255 813 585 3.60 220
3 0 9.16 1265 1580 1574 1420 1201 832 500 389 236
1 1 0 9.21 1250 1599 1593 1460 1259 861 540 385 216
2 0 852 1285 1516 1567 1479 1265 829 531 444 208
3 0 897 1268 1569 16.09 1473 1269 868 543 414 201
1 0 924 1261 1547 16.08 1436 1226 842 594 395 258
2 0 855 1297 1564 1572 1421 1207 889 571 374 2.83
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3 0 850 12.76 1544 1561 1420 1285 811 514 424 225
1 0 931 1252 1513 1632 1475 1217 891 562 390 289
7 0 864 1270 1541 1615 1452 1256 831 567 355 251
3 0 928 1269 1535 1558 14.02 1300 8.16 577 3.86 2.05
1 0 922 1267 1587 1572 1411 1288 811 503 363 2097
2 0 945 1272 1514 1628 14.02 1254 815 531 369 260
3 0 909 1272 1566 1550 1429 1267 856 540 350 2.17
1 0 944 1274 1531 1557 1461 1216 890 514 424 231
7 0 917 1298 1554 1563 1477 1267 809 538 371 257
" 3 0 865 1262 1542 1612 1407 1203 816 584 392 295
1 0 874 1300 1502 1574 1458 1284 835 532 416 245
2 0 870 1294 1555 1587 1433 1297 888 527 419 243
3 0 910 1251 1521 16.16 14.09 1236 897 595 404 204
1 0 946 1266 1553 1551 14.98 1228 855 528 403 225
2 0 889 1271 1511 1612 1434 1271 874 500 393 237
3 0 895 1275 1594 1650 14.14 12.03 825 525 408 254
1 0 947 1282 1570 1628 1413 1229 812 518 444 281
7 0 908 1294 1585 1569 14.14 1209 806 583 3.79 248
3 0 950 1254 1502 1612 14.87 1247 890 599 370 233
1 0 869 1294 1520 1595 14.03 1206 836 585 373 261
2 0 939 1261 1528 1629 1431 1295 891 567 3.77 245
13 3 0 904 1281 1574 1650 1421 1255 881 532 401 299
1 0 946 1292 1532 1558 1497 1281 803 566 421 285
2 0 939 1255 1569 1621 1474 1239 853 500 401 235
3 0 916 1258 1578 1568 14.64 1227 804 518 418 243
1 0 897 1281 1564 1599 1470 1230 874 556 3.73 2.66
2 0 930 1276 1577 1577 1421 1250 885 506 4.07 2.96
3 0 867 1297 1579 1644 1448 1203 844 530 399 296
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Table 4.8 The Coded CCD Design Format

Factors
X1 X2
170.000 7.8000
190.000 7.8000
170.000 13.8000
190.000 13.8000
165.858 10.8000
194.142 10.8000
180.000 6.5574
180.000 15.0426
180.000 10.8000
10 180.000 10.8000
11 180.000 10.8000
12 180.000 10.8000
13 180.000 10.8000

X
c
=]

OCoOoO~NOoO Ul WNPE

scenarios are found using Mathematica; they are summarized in Table 4.10. According to
the objective function values in Table 4.10, the optimal levels of excipients in the second
scenario result in less quality loss. Based on the following two-sample t-test with
unknown population variances, the INAUC values in both scenarios are statistically
equivalent with a p-value of 0.75 (greater than a = 0.05).

Ho: InAUC Ao, X') under Scenario 2.1 = InAUC (0, X ) under Scenario 2.2
Versus

Hi: InAUC (0, X' ) under Scenario 2.1 # InAUC (0, X' ) under Scenario 2.2.
Hence, it can be concluded that the AUC is not particularly sensitive to the method used
(discrete or continuous) during the estimation phase. However, the deviations of C,x and
tmax Detween both scenarios are significant. There are two main reasons underlying
causes. First, it is observed that in Scenario 2.1 (which uses the discrete method), Cnax
and tmax are sensitive to the time at which the observation is taken. The true Cmax and tmax

can be overlooked due to a long observation interval. Second, the major advantage of the

98



Table 4.9 Parameters and Responses Related to the Bioequivalence Study
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Table 4.10 Optimal Settings in Both Scenarios for Bioequivalence Assessment

Scenario X, X, Ot\)ljslitéve INAUC;  INAUC;  InCrpr  INCroaxr tnaxk trnat
2.1 184.05 10.31 0.066 4.738 4.742 2.779 2.765 1.892 1.935
2.2 177.80 8.06 0.025 4.730 4.738 2.748 2.735 1.921 1.919
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continuous method over the discrete one is the complete smoothness of the fitted curve.
Theoretically, the existence of experimental errors will result in the discontinuity of data.
Since errors are experimentally inevitable, it is believed that the continuous method may
become less effective. Also, the estimation of K, K and K, in Scenario 2.2 only utilizes
the concentration data at the later time intervals, which potentially causes biases in these

regression coefficients and consequently in the estimated characteristics. Furthermore,
the values of X, and X, in Scenario 2.1 are greater than those in Scenario 2.2, which

potentially results in more input material costs.

Table 4.11 Comparisons of Scenarios 2.1 and 2.2

. Cl Variance
Scenario - , bt /e
ratio of AUC ratio of Cyax AUC; Crnaxt tmaxT
2.1 [99.65%, 100.50%]  [98.33%, 100.70%] 0.000 0.013  0.050 102.3%

2.2 [99.46%, 100.88%]  [98.50%, 100.50%] 0.012  0.000  0.013 99.86%

Additionally, Table 4.11 compares the bioavailability characteristics for the test
and reference formulations within both scenarios and presents the related variances for
the test formulation. Based on Table 4.11, the Cls for the ratios of AUC and Cpax Stay
strictly within the regulatory limit [80%, 125%] in both scenarios. Further, the tnax for the
test formulation in the second scenario is much closer to the reference value than that in
the first. Finally, characteristic variances for the test formulation in both scenarios are
close to zero. Note that the summation of these variances in Scenario 2.2 is even less than
that in Scenario 2.1. Figure 4.2 illustrates the response surfaces of the objective functions
in both scenarios. The contour plots depicting the effect of x; and x, on the objective

functions in the two scenarios are presented in Figure 4.3.
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In summary, the continuous computational method generally works better for this
formulation optimization problem. It turns out that the continuous method is superior in
assessing Cmax and tmax, since it results in (1) a smaller CI for the ratio of Cpax, (2) a
smaller deviation of tm., and (3) smaller variances of Cpax and tma for the test
formulation. By comparison, the discrete method produces a smaller CI for the ratio of
AUC and a reduced AUC variance for the test formulation. Additionally, the optimal
input factor amounts are less in Scenario 2.2 (which uses the continuous method), leading

to lower input costs.

Scenario 2.1 Scenario 2.2

Figure 4.2 Response Surface Plots of the Two Scenarios

4.5 Sensitivity Analysis
As presented in the previous section, the proposed approach in Scenario 2.2 is not
preferred for evaluating AUC. In order to validate this result, a sensitivity analysis of the
constraint boundary to the optimal ingredient amounts is performed by varying 7.1 from

9.7 to 10.1 with an increment of 0.2. The results are provided in Table 4.12. The same
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Figure 4.3 Contour Plots of x; and x, for the Bioequivalence Studies
Problem
Table 4.12 Sensitivity Analysis for the Bioequivalence Studies Problem
P Cl Variance
Scenario , X - - Ut /T
1 (Xl 2) ratio of AUC ratio of Cny AUCT Craar  tmar o /b
9.7 2.1 (184.06, 10.28)  [99.65%, 100.50%] [98.32%, 100.70%] 0.000 0.013 0.050 102.24%
' 2.2 (177.80,8.26)  [99.49%, 100.85%] [98.50%, 100.53%] 0.012 0.000 0.013 99.98%

0.9 2.1 (184.05, 10.32)  [99.65%, 100.50%]  [98.33%, 100.70%] 0.000 0.013 0.050 102.31%
' 2.2 (177.80,8.77)  [99.55%, 100.79%]  [98.49%, 100.59%] 0.011 0.000 0.013 100.26%
101 2.1 (184.00, 10.45)  [99.66%, 100.49%]  [98.34%, 100.71%] 0.000 0.013 0.050 102.42%
' 2.2 (177.80,9.33)  [99.61%, 100.72%]  [98.48%, 100.66%] 0.011 0.000 0.013 100.53%
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conclusion as that in Section 4.4 can be reached. That is, the discrete computational
method works better for assessing AUC, while the continuous method results in lower

input costs and more desirable performance related to Crax and tyax.

4.6 Conclusion and Future Study

In this chapter, we propose an experimental design integrating in vivo
bioequivalence studies and the formulation optimization procedure in order to seek the
optimal levels of excipients that ensure bioequivalence between formulations when Level
3 excipient changes are detected. Two bioequivalence assessment methods, designated as
continuous and discrete, are developed for this research. Furthermore, a numerical
example shows that the continuous methodology generally performs better than the
discrete one.

Finally, recall that if IVIVC is not established, then an in vivo bioequivalence
study is mandated; otherwise, a dissolution test may serve as the surrogate for this
comparatively expensive study. While the former was the subject of this chapter, the
latter has yet to be considered (to the same extent). The motivation for a future
investigation of the dissolution test is identical to that of the current study. That is, the
objective would be to determine a test formulation whose performance is deemed
equivalent to that of the reference drug, while at the same time minimizing the associated

Costs.
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CHAPTER 5
QUALITY BY DESIGN STUDIES ON MULTI-RESPONSE PHARMACEUTICAL

FORMULATION MODELING AND OPTIMIZATION

5.1 Introduction

Pharmaceutical formulation is the process that combines active and inactive
ingredients to produce a final drug product. Formulation designers seek optimal
ingredient amounts in order to maximize the clinical benefit of ingredients. Beyond its
significant role in drug delivery, formulation optimization has gained increasing attention
over the years because of the desirable benefits of building drug quality in early design
phases, in contrast to the traditional quality control philosophy of inspecting finished
products (FDA, 2006b).

It is widely acknowledged that the formulation optimization can be implemented
by the use of a combination of analytical approaches, such as DOE, RSM, and
optimization (Holm et al., 2006; Huang et al., 2009; Rosas et al., 2011). DOE combined
with RSM permits the mathematical modeling of a QC associated with the clinical
benefit, such as friability, hardness, thickness, and dissolution performance, as a function
of the ingredient amounts. Based upon the established response surface function,
optimization techniques are then utilized to determine optimal settings of the ingredients
so that the desirable performance of the characteristic can be achieved. In practice, during
the formulation optimization, designers are usually faced with multiple pharmaceutical

QCs, namely an MRS problem. In this case, it is difficult to determine the optimal factor
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settings for all the responses, because (1) these characteristics may have different scales
of measurement and different types of optimality, and (2) as one characteristic is
optimized, it is usually at the expense of one or more others (Derringer, 1994; Xu et al.,
2004). Therefore, it is necessary to develop an optimization model for pharmaceutical
formulation that simultaneously considers multiple characteristics in order to find the best
compromise among them.

Despite the existing research efforts on solving an MRS optimization problem for
formulation optimization, there remain several issues which have not been
comprehensively studied in the literature. First, in addition to the response mean,
formulation researchers need to take into account the variance, since individual subjects
may differ widely in their responses to a drug and variability may potentially lead to
safety and efficacy issues. The correlation between responses is frequently overlooked
when multiple QCs are evaluated. For instance, the optimization of the dissolution profile
is a usual routine for developing a new formulation, where the associated responses,
including the amounts dissolved at multiple points in time, are believed to be correlated
over time. Their covariance is most likely to influence the dissolution performance over
time; hence, additional response variables regarding the variance and covariance are
considered in our proposed model. Second, one of the most popular methods for solving
MRS problems is the DF approach, originally developed by Harrington (1965) and later
improved by Derringer and Suich (1980). In this chapter, the conventional DF method is
modified and incorporated into the formulation optimization as enhanced empirical and

mechanistic DF approaches. Third, the commonly-used RSM, which calls for fitting the
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response desirability or response variable to a first- or second-order polynomial
regression function to predict the response surface, may be less effective for estimation
than a higher-order model (Shaibu & Cho, 2009). Since the precision in the model fit
heavily influences the effectiveness in finding optimal factor settings, the solution
resulting from the traditional low-order response surface functions may be less accurate.
In order to improve the accuracy of the estimated response surface, we propose the use of
higher-order (up to fourth order) models, incorporating the best subsets regression
method. Finally, despite the fact that the weight-based overall DF is extensively treated
as an objective function for simultaneously optimizing multiple QCs, there are potential
shortcomings, which include the high sensitivity of the optimal solution resulting from
the weights assigned and the subjectivity in determining the weights of subjects. A
priority-based optimization scheme that is based upon a priority, rather than a numerical
weight for each individual characteristic, can be a more effective alternative. Since goal
programming is one of the most popular approaches to finding good solutions to a multi-
objective problem (Rardin, 1998), a priority-based goal programming model is proposed
to optimize individual desirability of the multiple characteristics with the purpose of
determining the best formulation.

The rest of this chapter is organized as follows. Section 5.2 provides modified
DFs as a basis of the proposed DF methods. The development of the proposed multi-
response formulation optimization model, integrated with two modified DF methods and
the well-investigated goal programming technique, is given in Section 5.3. A numerical

example to demonstrate the effectiveness of the proposed model in optimizing a
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dissolution profile and comparative conclusions are presented in Sections 5.4 and 5.5,

respectively.

5.2 Analysis of DF

In the literature, researchers proposed various scientific techniques for solving
MRS problems in the past thirty years. The usage of Taguchi’s method (1986) for
designing robust products or processes prevailed among earlier research work. Pignatiello
(1993), Elsayed and Chen (1993), Vining (1998), and Ko et al. (2005) employed the
Taguchi quality loss function approach to determine the optimal settings of input factors
for products with multiple QCs. Some extensions to Taguchi’s method were also made by
researchers such as Chen (1997), Wu (2002), Fung and Kang (2005), and Kovach and
Cho (2008). In practice, in addition to the approaches mentioned above, some
formulation scientists applied the DF method to formulation optimization for optimizing
multiple characteristics simultaneously (Abu-lzza et al., 1996; Paterakis et al., 2002;
Rosas et al., 2011).

The DF technique is useful to convert multiple characteristics with different units
of measurement into a single commensurable objective by means of normalizing each
estimated response variable to individual desirability. Its value varies between 0 and 1,
and the response becomes desirable as its desirability approaches 1. Derringer (1994) also
suggested using a weighted geometric mean function to convert multiple individual
desirability into a single measure of characteristic performance known as the overall

desirability, D. Hence, when applying the DF approach to formulation optimization, the
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overall DF value is always maximized so that the optimal settings of the ingredient
amounts can ensure the best compromise among multiple characteristics of interest
(Wang et al., 1996; Ficarra et al., 2002; Candioti et al., 2006; Holm et al., 2006; Zidan et
al., 2007; Li et al., 2011). Adopting this traditional approach, the estimated DF can be
obtained by fitting polynomial regression functions of x to the calculated desirability for
the responses. As a result, one may estimate the desirability for the formulation
determined by the h responses which in turn are at the same time determined by the k
factors.

Furthermore, several innovative attempts have been made to improve the
traditional DF approach. Del Castillo et al. (1996) proposed a differentiable DF method
which allowed researchers to use more efficient gradient-based optimization methods for
maximizing the overall desirability. Wu and Hamada (2000) suggested using the double-
exponential function as an alternative DF, and Wu (2004) extended the double
exponential DF based on the Taguchi’s loss function in order to optimize correlated
multiple QCs. Moreover, Bashiri and Salmasnia (2009) and Goethals and Cho (2011)
also presented new optimization procedures based on the DF method for correlated
characteristics. However, several researchers also revealed some shortcomings of the DF
approach. Takayama et al. (1999) argued that one of the weaknesses of DF was the
subjectivity associated with the selection of an acceptable interval for each response. Kim
and Lin (2000) pointed out that it was difficult to assign meaning to a DF value, beyond

the basic principle that a higher value of desirability is preferred.
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In this chapter, we propose a modified DF which allows the formulation designer
to incorporate correlations between QCs. Suppose that h QCs of interest concerning the
mean, variance, and covariance, denoted by 7, for = 1, 2, ..., h, are determined by a
set of k factors, X = [X1, Xa, ..., %J'. Referring to Equations (2.9) and (2.10), if the ™
response is a LTB or STB characteristic, the individual desirability is computed by the

transformation

where L,, and U,, respectively represent acceptable minimum and maximum values, T,, is
an allowable maximum or minimum value for the LTB or STB response, and p,, is the
shape parameter for the DF. p,, is determined by the importance of hitting the value T,,. If

1, IS a NTB response, its individual desirability is given by the transformation

0 7, <L,
A Po1
ﬂ.{u_La) L g al ST
A Tw_La) ¢ ¢ ¢
d(%,)= o , (5.2)
Y, -1, T, <#,<U,
Uw_Tw
0 z,>U,

where T,, is the target value, and the shape parameters are denoted by p,; and p,,. Based
upon Equation (2.11), let W, (w =1, 2, ..., h) be the predefined weight for the =,; then,

D can be expressed as
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h

o~ {[[a(z.)]" }#Z (53)

w=1
This modified DF will be the basis of the proposed mechanistic and empirical DF models

developed in the next section.

5.3 Proposed Model Development

Figure 5.1 illustrates the phases of model development. During the first phase,
DOE is performed based upon the prior knowledge of the factors, responses, and
experimental space of interest. The second phase, which incorporates higher-order
polynomial functions, least squares regression, and best subsets model selection method,
is designed to obtain estimated DFs by proposing two separate DF methods- mechanistic
and empirical. First, we develop the estimated mechanistic DF, which employs the
piecewise form of the traditional DF method utilizing the higher-order estimated response
surface function for each response variable. Second, we propose the use of least squares
method to develop estimated empirical DFs that take the higher-order polynomial form
for evaluating the response variance and covariance in addition to the mean. Finally, by
means of incorporating goal programming techniques and related constraints into the
optimization procedure, the optimal settings of ingredient amounts that minimize the
deviations of responses from their respective goals can be determined. Each phase is

discussed in greater detail in the following sections.
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Figure 5.1 Development of Proposed Optimization Scheme

5.3.1 Experimentation Phase

111

In this chapter, the ingredient amounts, X, are chosen as input factors, and the QCs
of interest, y, are the amounts or percentages dissolved at multiple points in time. Since
the dissolution data are classified as time series data, the responses are correlated over

time; the behavior of the covariance between responses is considered in the proposed




model. Commonly, factorial designs, CCDs, and mixture designs with replications can be
performed in order to evaluate the response surfaces of related characteristics in terms of
the mean, variance, and covariance. Let yjs be the jth (=12, ..., m)observation for the
i" (i = 1, 2, ..., n) characteristic (i.e., i™ point in time) on the s" (s =1, 2, ..., 1)
experimental run, then the mean and variance of the i" response as well as the covariance
between the w™ and g™ (1 <w < g < n) responses on the s™ run are respectively given by

A 1 1 & N 1 & . N
His :E;yijs' O-ii :m;(yijs — His )2’ and O—v%g,s :m;(ysz _:uws)(ygjs _/ugs)'

It should be mentioned that (1) since a small response variance is always desired,
we consider a2 to be a STB characteristic, and (2) it is also reasonable to treat 0'/‘,2[,;; asa
NTB characteristic since the covariance to be optimized should be close to its target
value. A general experimental format with r runs and m replications for each run is
provided in Table 5.1, where X is the factor settings for k factors. It can be easily shown

that the total number of response variables, h, is equal to 2n + ,Co.

Table 5.1 A General Experimental Format

! Factors | R — . — 5
RNy 0 W R I N b o} o v O-n
1 CYin e Yim Aa o2 P Ynin - Yami An a2, ‘7122,1 J(Zn—l)n,l
PViz e Yime Bz o e D Ym2eYame B 02 o Ok, e Ot
Input L ! .o | . .
factor : ; ;
S Se?;&r;gs v Yits -+ Yims Aus 0'125 boeee 0t Ynis e Yoms Ans O',%S HEETTIN 0'122,5 G(Zn—l)n,s
. ! ] = ] S =3 P
! ! Yuir -+ Yimr Har Oy 1 oo Ynir -+« Yomr Hnr Onr 1 - Oi2r Ol Dnr
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5.3.2 DF Prediction Phase

As discussed earlier, the traditional DF is implemented by plugging the response
mean into Equations (5.1) — (5.3). Alternatively, the mechanistic model can be
established by utilizing the estimated response surface function based upon the
underlying mechanism of the DF approach. Moreover, the empirical desirability model
can be developed by modifying the traditional method, which employs the variance,
covariance, and mean of the individual desirability for m observations on each of the
experimental runs. The use of higher-order regression functions is proposed for modeling
the responses and desirability; then, the best subsets model selection method is extended
to identify the estimated functions that most precisely approximate both the proposed
mechanistic and empirical desirability. Hereafter, we use the subscripts M and E to

differentiate their related terms.

5.3.2.1 Proposed Mechanistic Desiraiblity Model

In order to obtain the estimated mechanistic DFs, ordinary least squares
regression techniques are initially utilized to develop the estimated response surface
functions in terms of the mean, variance, and covariance. Hereafter, a regression function
with y parameters or w — 1 predictor variables is considered a full model,
correspondingly, a reduced model is regarded as a regrssion function containing less than
w — 1 predictors. Let ;(x) and o2(X) be the higher-order (up to fourth-order) regression
functions for the mean and variance of the i (i=1, 2, ..., h) response, respectively. Their

full models can be expressed by the following equations:
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() =[1% 0 XX e X XKy X XX e X X (XX )71XTFYi (5.4)
and

O (X)=[1% e XX oo X e XKy o X s XX e X XE ) (XEX )71XTF >, (5.5)
where Y = [fi1, fiz, ..., fir]’ 1S the vector of the i response means, and X; = [Efl, 3:22,

o2]" is the vector of the i response variances. Additionally, Xg is an r x y matrix of data

for the predicator variables in the full model:

X11 X12 Xl,l//—l XF,l
1 >(rl Xr2 Xr,y/—l XF,r

in which Xgs (s=1, 2, ..., r) is the data vector for the full model on the s™ experimental
run. In a reduced model with v — 1 (1 < v < y) predictors, the r x v data matrix for the
predictors is denoted by Xry = [Xr1v Xr2vs ---» Xrry]' In Which Xg, is the data vector
for the reduced model on the s™ experimental run; especially, X¢ = XR,,. Subsequently,
the full model for the covariance between the w" and g™ (1 <w < g < n) repsonses is

given by
Ol (X)=[1% oo X% o X XX e X X%, o XX X (XEX )71XTF >0+ (5.6)

..» 03] 18 the vector of the covariances between the w™ and

where Zug = [05, 1, 00y 25 -

g™ responses. When employing a higher-order regression model, an increase in the
number of predictors may result in multicollinearity between predictors. Variance

Inflation Factor (VIF) is widely used to diagnose the multicollinearity. The VIF is

defined as VIF: = 1/(1 — R}?), where R]? is the coefficient of multiple determination when
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the f" predictor is regressed on the v — 1 other predictors in the model (Kutner et al.,
2004). A maximum of these VIF values greater than 10 indicates that the
multicollinearity may impact the least squares estimates. In this case, the correlated
predictors can be removed from the estimated function.

If 7,(X) denotes any estimated response surface function for w =1, 2, ..., h whose
predictors are considered appropriate for the estimation of the related response variable
based upon the best subsets critieria, the estimated mechanistic individual DF, d[7,(X)],
and overall DF, Dy(X), can be finally expressed using Equations (5.4) — (5.6) under the
traditional DF mechanism. Hereafter, we use dw..(X) instead of d[#,(x)] for the sake of

simplicity; more specifically, we have

dl 4,(x)] =i
. (x)=19] o2, (%) o=n+i . (.7)

d| 0%y (X)) @=2n+12n+42,..h

5.3.2.2 Proposed Empirical Desiraiblity Model
If d(yijs) is the individual DF value for vyijs, its formulas categorized by the
characteristic type are developed in Table 5.2. The estimated empirical individual DF for
the response mean can be derived from the raw observations by using the ordinary least
squares method. Let dg . (X) (« = i) be the esimated empirical fourth-order individual DF

of x for the the »™ response mean. Then its full model can be expressed as

A

Aoy () =[1% o X% e X X% e K X% XX x(XEX ) XE,,, (5.8)
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where d,, = [dw1, dw2, ..., do]’ is the vector of the mean values for the o™ individual
desiraiblity and d,, can be calculated by d,s = —-¥'L; d(yijs) fors =1, 2, ..., r. Efforts
are also made to extend the application of Equation (5.8) for expressing the full model of
the estimated individual DFs for the response variance and covariance. If o = n + i, the
d., represents the desiraiblity of o2 that is calculated by d(c2); otherwise, it is the
desiraiblity of cr/‘,%,—g\,s that is calculated by d(a/v%g\,s). In a similar fashion, the full model of
the estimated empirical fourth-order overall DFs of x, denoted by Dg(X), is given by

D, (x):[l X, e XXy oo X2 XXy X X%, X x,f]x(XTFXF )71XTFD, (5.9)
where D = [Dy, Do, ..., Dy]’ is the vector of overall DF values. Note that Ds (s =1, 2, ...,

r) is defined as the overall desirability value on the s™ run. It is the weighted geometric

mean of d,, and can be computed by

h ]/Z[hu:lww
D, ={Hdgyg} | (5.10)
w=1

However, some of the yjjs may go beyond the allowable maximum or minimum
value of desirability potentially resulting in that the proposed d., and consequently the
overall desirability on the corresponding experimental run becomes zero. If the overall
desiraiblity for many of the runs appears to be zero, the appropriateness of using the least
squares method to obtain the estimated overall DF can be questionable. As a supplement
to Table 5.1, Table 5.3 shows an extended experimental format from the perspective of
desirability concerning the mean, variance, and covaraince of each response, in which

d.(X) denotes either the mechanistic or empirical desirability model.

116



Table 5.2 Formulas for Calculating d(yijs)

Characteristic

Type Formula
0 Yijs < L
P
Yiis — L
LTB d(y;) = {Tj_t} b= Y =T
1 Vis > Ti
1 Vis <Ti
_Ui — Yijs "
STB d (yijs) = U—Tj} T <y <Y,
0 Yis > U,
0 Yis <L
Pir
yijs ~ Li LI < Y|s STl
Ts - Ls '
NTB d(yy)= 0 N
i ~ Yis
T<vy <U
{ Ui _-l-i :| i yus i
0 Yis > U,

Table 5.3 An Extended Experimental Format Concerning Desirability

I N I N e
1 ¢ dyu) .- d@ym) v d(ni) - AWem)
2 ¢ d(yw) - d(yimg) P dOng) - dYem2)
. 2or i N £
1 o) ~ 1 » > . N >
s d(Y11s) --- d(Y1ms) N E d(Ynas) --- A(Ynms) = X ) % =

r i d(y11) .- d(Yamr) i i i d(Yn1r) -+ d(VYnme)

5.3.2.3 Model Selection of Estimated Empirical DFs
In addtion to seeking the appropriate subset of predictor variables for 7 ,(x),
which has been well studied in the literature, we focus on the identification of the proper
subsets of predictors under the empirical models for estimating DF values which

necessitates the development of different subset selection criteria. Cruz-Monteagudo et
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al. (2008) proposed the desirability’s determination coefficient, R3, and adjusted RZ (adj.

RZ) for the traditional desiraiblity method to measure the effect of a specific set of

predictors on reducing the uncertainty when predicting desirability. The both critiera as

well as three alternative criteria, including Akaike information criterion (AIC), Bayesian

information criterion (BIC), and prediction sum of squares (PRESS), need to be further

investigated for examining the estimated empirical individual and overall DFs with

different sizes of predictors. Each subset selection criterion is delineated in terms of

desirability in Table 5.4, where the subscripts d and v (1 <v < y) indicate that the statistic

is related to desirability and there are v — 1 predictor variables in the model. The

following paragraphs provide the development of these statistics.

Table 5.4 Subset Selection Criteria for Desirability Models with v — 1 Predictors

Criterion  Fomula Description
SSRyy and SSTOy denote regression sum of squares (SSR) and total sums of
R? SSRy, sgaures (SSTO) for the DF with v — 1 predictors. Large R3, values are
¢ SSTO, preferred. Rﬁ_v always increases as v increases, so it is not appropriate to
compare desirability models with different sizes.
SSE,,, denotes error sum of squares (SSE) for the DF with v — 1 predictors.
adj. R? 1_( r *lj SSE,, Large adj. R3, values are preferred. This criterion can be used to compare
¢ r—v/SSTO, desirability models with different sizes, since this criteria provides penalty for
adding predictors.
Small values of AIC, are preferred. Similar to adj. Ré‘,,, this criteria
AlCqyy rIn(SSEgyy) —rin(r) + 2v  penalizes desirability models have large numbers of predictors and can be
used to compare desirability models with different sizes.
rIn(SSEy,) — rin(r) + By analogy with AICy,, small values of BICy, are sought. However, the
BIC,, vin(r) o BIC,, gives more penalty for over-fitting than AIC,, when r > 8. This
indicates that the BIC,,, tends to favor more simple models.
5 &g iSthe s residual term and hgsy is the s diagnal element of the r x r hat
PRESSq, 2[15d;,v J matrix H, = Xz ,(X% ,Xr ) "*X5 , for the esimated desirability model with v
s=1\ +7 lssv

— 1 predictors. Desirability models with small PRESS,, values fit well in the
sense of having small prediction errors (also known as residuals).

e Analysis of variance for estimated empirical DFs

Let SSTOy,, be the SSTO of the o™ individual desirability model, which can be
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written as Equation (5.11) incorporating the unity matrix, J = 11’, and the identity matrix,

r

ssTO,, =3(d,. -4, ) =d.d —%d;adw =d;[| —%J}dw, (5.11)

w o
s=1

where d,, is the mean of d,, for s =1, 2, ..., r. Similarly, if the SSTO for the overall
desirability model is denoted by SSTOp and D is the mean of Ds, SSTOp can be

computed by

SSTOD=ZF:(DS—I5)2=D’D—%D’JD=D'[I—%J}D. (5.12)

P
Using the fact that d,, = Xg,(X%,Xgy) *X%,d, = H,d, , in which d ., =
[de.o(Xr 1), dE.o(Xr21);s ..., deo(Xrry)]' is the vector of the »™ estimated empirical DF
values at Xgsy (S=1, 2, ..., I), it can be shown that the SSE and SSR of the o™ empirical
individual desirability model with v — 1 predictors, denoted by SSEq,,, and SSRy ., are

given by
SSEd,v,a) = Z[dms - d\E,ru (XR,s,v ):|2 = [da) - Hvdw], [dw - Hvdw] = d:u [I - Hv]dm (513)
and

SSR

dv,e

=SSTOdm—SSEde=d:U[HV—£J}dw. (5.14)
' w r

In the same manner as in Equations (5.13) and (5.14), the formulas of the SSE and SSR
for the empirical overall desirability with v — 1 predictors, denoted by SSEpg, and

SSRpey, are given by

SSE,,, =[D—H,D] [D-H,D]=D'[I-H,]D (5.15)
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and
SSRDV=SSTOD—SSEDV=D’[HV—£J}D. (5.16)
, , r

Furthermore, let e,,, and e, denote the residual vectors for the o'

empirical
individual and overall desirability, then they can be developed as linear combinations of

d,, and D, respectively:

ev,a) z[éd,l,v,(o’ éd,Z,v,(o’ MRS éd,r,v,w] =(I - Hv)d(o (5'17)

and

e, =[ o1y Zo2yr - fory | =(1-H,)D, (5.18)
where €45y, and £psy correspond to the residual terms of the ™ individual DF and

overall DF with v — 1 predictors on the s™ experimental run.

e Subset selection criteria development

As shown in Table 5.5, the selection criteria for the individual and overall DFs
under empirical models can be obtained based upon Equations (5.11) — (5.18). In our
proposed model, one may need to consider more than one criterion when selecting the
ideal estimated function. Since the number of possible regression functions, 2'7
increases dramatically as v increases, it is an overwhelming task for a data analyst to
examine all possible subsets of predictors. Commonly, we use the best subsets regression
technique to simply the task. This technique requires the calculation of only a small
fraction of all the possible regression models, so that a small group of regression

functions that are considered desirable candidates according to these criteria can be
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identified. A detail examination can then be made, leading to the selection of the final
estimated DF to be employed in the optimization phase.

Table 5.5 Subset Selection Criteria for the Individual and Overall Desirability

Formula with v — 1 predictors

Criterion —
" Individual DF Overall DF
d'w[Hv—lJ}dw D’[HV—EJ}D
R? B R A I Lol
d
d’w[l—l\]}dm D’[I—EJ}D
r r
r-1)d,[1-H,]d, r-1\D[1-H,]D
dj. R? o V) I S ol ) N T
o r=v d;[l-d}dm r=v D’[I—fJ}D
r r
AIC, rin(d,[I-H,]d,) —rin(r) +2v rin(D'[I1-H,]D) —rin(r) +2v
BICq rin(d,,[1-H,]d,) —rln(r) +Vvin(r) rin(D'[1-H,]D) —rlin(r) +vin(r)
~ 2 R 2
U ot L s
PRE Md,s,v,0 MD,s,v
> ;(1 hss‘v j Szl(l hss,vj

5.3.3 Optimization Phase
At this stage, we need to solve an MRS optimization problem; namely, the
optimal settings of ingredient amounts of a pharmaceutical formulation need to be
determined in order to ensure that the dissolution data at multiple points in time have
most desirable performance referencing the target profile. Traditionally, the MRS
optimization problem can be simplified into a single-objective optimization problem in
which the overall DF is maximized subject to a rigid set of constraints. It can

alternatively be viewed as a multi-objective optimization problem.
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5.3.3.1 Proposed Optimization Model

Goal programming, as one of the most widely applied tools of multi-objective
optimization, is constructed in terms of specific goals to be achieved rather than
quantities to be maximized or minimized (Rardin, 1998). According to the basic thread of
goal programming, prior to formulating an objective function for each of the individual
DFs by means of introducing nonnegative deficiency variables to model the extent of
violation in their respective goals that need not to be rigidly enforced, a specific
numerical target is established for each of them. Since the response performance becomes
more desirable as its DF value approaches 1, the numerical target of the individual DF is
usually set to 1. Subsequently, each of the individual DFs can be expressed in an
equality-form mathematical format with the target value and deficiency variables: d_,(x)
— A} + Ay = 1, in which A and A/, are the nonnegative deficiency variables associated
with the underachievement and overachievement of the ™ desirability. Since the
allowable maximum of desirability is 1, A}, does not exist in this case and therefore the

equality reduces to

A

d,(x)+A, =1. (5.19)

In order to ensure that all desirability values are as close as possible to 1, involved
deficiency variables should be minimized. Generally, non-preemptive and preemptive
optimization schemes can be utilized to facilitate the minimization of the deficiency
variables (Hillier & Lieberman, 2001). The objective of the former is to satisfy all goals
by minimizing a weighted sum of the deficiency variables. However, it is believed that

the subjectivity in assigning the weights of subjects may impact the resulting optimal
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solution which is highly sensitive to the different weights. In the latter scheme, there is
hierarchy of priority levels for the goals, so that deficiency in the DF of primary
importance is minimized, deficiency in the DF of secondary importance is minimized
subject to an additional constraint that the first achieve its minimum, and so forth.
Therefore, with the purpose of overcoming the weaknesses of weight-based goal
programming, we propose a priority-based approach for optimizing multiple individual
DFs.

Based on the pre-identified shape parameters for the DFs, the procedural steps for
the algorithm of our proposed optimization model are illustrated in Figure 5.2 and
described below in greater detail:

(1) Determine the priority hierarchy of the « individual DFs based on importance
levels of the dissolved amounts or percentages at different points in time. For
example, the half-life of dissolution is critical to a dissolution profile because
it establishes the time to promote the dissolution of 50% of the drug (Chazel et
al., 1998); hence, the half-life dissolution performance in terms of the mean
and variance can be the highest ranked responses in the priority hierarchy.
Suppose that b, individual DFs are categorized as the &"-priority goals to be
achieved with }.:—; b = o, and & is initially set to 1.

(2) Formulate the objective function of the &™ optimization model by minimizing
the summation of b; deficiency variables in the &"_priority individual DFs

while satisfying the following constraints:
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a)

b)

d)

Let Q,, be the specification region of 7,(x) for ® = 1, 2, ..., h. For an
estimated function in terms of either the mean or covariance (NTB), the
lower and upper bounds of its specification region are the corresponding
acceptable minimum and maximum values; meanwhile, for an estimated
function related to the variance (STB), the target and acceptable maximum
values are considered the lower and upper bounds.

The input factors should remain within the design space which is explored
by DOE and ensures the optimality and feasibility of a pharmaceutical
formulation. The design space for each of the k factors should be within
the interval between the minimum and maximum coded values. That is, —1
< X1, X2, ..., Xk < 1 for a factorial design, Taguchi design, or mixture
design; x'x < p® for a CCD, where p is the distance in any direction from
the center point and is analogous to the radius of a sphere.

Nonnegativity of deficiency variables involved in the &™ optimization

model should be satisfied. It is introduced by the constraint form: Az > 0,
where A; denotes any of the involved underachievement deficiency

variables.
Referring to Equation (5.19), the constraints associated with the goals of

involved individual DFs needs to be included. For the sake of simplicity,
these constraints are established in an equality form: df(x) + A = 1,
where d;(x) represents any of the &"—priority individual DFs in the &"
optimization model.
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e) If £ > 1 and the resulting optimal solution of deficiency variables in the (¢
— Q)" optimization model is denoted by A*(‘E_O), extra constraints with the
expression of d(sc_o)(x) +A_gy=1forO=1,2,...,&—1are added to
the &M optimization model, which guarantees that all the preceding goals
are achieved in the & optimization model.

f) The values of all the estimated DFs should vary from 0 to 1, so that the
validity of these DFs can be ensured at each iteration of the proposed
optimization model.

g) Additional constraints specified by the FDA may be added to the
optimization model as appropriate, such as hardness, thickness, and
stability requirements for the formulation. Any of these estimated response
functions, denoted by A(x), can be obtained by the RSM discussed in the
previous subsections. In a similar fashion to Step (a), A(x) should remain
within the associated regulatory region, Q,.

(3) If the ¢™ optimization model vyields a unique solution, the routine is
terminated and this optimal solution vector (x;, Az)" is finalized as the most
desirable settings of both the factors and deficiency variables without
considering any lower-priority goals. Note that x; is the vector of optimal
factor settings for the &™ optimization model. Otherwise, Step (4) is executed.

(4) If (& + 1)"-priority goals exist, ¢ is increased by one and the procedure returns

to Step (2). Otherwise, we adopt the (x;, A;)" immediately.
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Figure 5.2 Flowchart for the Algorithm of the Proposed Optimization Model
Moreover, based upon Step (2), Table 5.6 outlines the proposed ¢ optimization scheme
for the priority-based goal programming methodology to the formulation optimization
problem.

5.3.3.2 Comparative models
As references for comparison with the proposed model, optimization models that
maximize the overall DF under both mechanistic and empirical models are developed in
Table 5.7, in which the optimal settings of deficiency variables under both models are

expressed as: Ay, and A¥.
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Table 5.6 Proposed Optimization Scheme for the &™-Priority Individual DFs

Minimize ZAg

Subjectto  Constraints:
1. Specification region of estimated response surface functions (w =1, 2, ..., h):
7/-i-(t)()() E Q(U
2. Design space of factors:
—1 <Xy, X ..., X< 1 (for a factorial design, Taguchi design, or mixture design)
or
x"x < p? (for a CCD)
3. Nonnegativity of deficiency variables:

Af >0
4. Goals of present individual DFs:
de(x) + A7 =1

5. Goals of preceding individual DFs (applicable if & > 1):
di_oy() +Afg_gy=1for0=1,2,..,¢-1

6. Individual DF (w=1,2, ..., h):

0<d,(x)<1

7. Additional constraints specified by the FDA:

A(x) € Q4

Find Optimal solution (xg, A%)’

Table 5.7 Comparative Optimization Schemes Using the Overall DF

Mechanistic Model Empirical Model
Maximize D, (x) D De(x)
Given Predefined weights for each individual DF

Subjectto  Common constraints:
1. Specification region of estimated response surface functions (w =1, 2, ..., h):
,(X) € Qy
2. Design space of factors:
—1 <Xy, X, ..., Xk < 1 (for a factorial design, Taguchi design, or mixture design)
or
X'x < p? (for a CCD)
3. Additional constraints specified by the FDA:
A(x) € Q4

Specific constraints: !
1. Individual DF (0 =1, 2, ..., h): ¢ 1. Overall DF:

0<d, ,(x)<1 1 0<D,(x)<1
2. Overall DF: '
0<D, (x)<1
Find Optimal solution x” Optimal solution x”
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5.4 Numerical Example

To demonstrate the effectiveness of the proposed optimization scheme and
compare its resulting performance with that of the comparative scheme using the
mechanistic and empirical desirability models, a numerical example is studied in the
following paragraphs. Employing second-order estimated response surface functions,
Huang et al. (2004) conducted a formulation optimization study to develop propranolol
extended release formulations containing two inactive ingredients: HPMC and avicel.
HPMC as a pH-independent material is widely used to prepare extended release dosage
forms while avicel incorporating with HPMC can modify the dissolution performance of
a drug. A randomized 37 full factorial design with additional two center point runs (r =
11) was performed in their experiment where two factors, including the HPMC/drug ratio
(x1) and content percentage of avicel (x;), were measured on the five output responses:
drug dissolution percentages (Y1, Y2, Y3, Y4, and ys) at 1.5, 4, 8, 14, and 24h. Note that the
center runs were primarily used to provide a measure of pure error. Furthermore, FDA
(2000) recommends the use of the equally-weighted similarity factor, f,, to evaluate the
equivalence between two dissolution profiles if the following requirements are satisfied:
(1) at least 12 units should be used for both profile determination; (2) the RSD at the
earlier point of time should not be more than 20% and at other points should not be more
than 10%; and (3) no more than 85% dissolved in 15 minutes. The f, can be calculated by
Equation (2.1). Dissolution-time curves are considered similar when f; is greater than 50,

and they become similar when f, approaches 100. The f, method is utilized as an
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additional reference for model comparison in order to validate our comparative
conclusions from the perspective of FDA suggestions.

Therefore, given the experimental data set in terms of the mean and variance
provided by Huang et al. (2004), we initially regard y; as the dissolution data at the
earlier point of time and the other four responses as those at the later points. In other
words, these response variances should meet their respective requirements on RSD
mentioned earlier. Subsequently, it is feasible and necessary to simulate normally
distributed observations with 12 replicates (m = 12) on each experimental run using
Microsoft® Excel, so that fi(x) (i=1, 2, ..., h) represents the estimated mean dissolution
of 12 units at each point of time in accordance with one of the f, requirements. The factor
settings, target dissolution profile against priority, and specifications of each variance and
covariance measures are summarized in Table 5.8. The highest priority pertaining to the
individual DFs is given to /i, and fiz along with their variances, since both points in time
are adjacent to the half-life of the dissolution; meanwhile, the second priority is assigned
for the other response means and variances and the third for the covariance terms. The
corresponding weights in the overall DF are also identified in Table 5.8 so as to
implement the comparative optimization study, and the shape parameters of the DFs are
all set to 1. Moreover, in order to obtain the best regression functions for estimating the
mean, variance, covariance, and desirability, all possible combinations of predictors up to
fourth order are examined by using the software program Minitab® 16, and only those
contributing to the regression analysis are kept for further study. In Table 5.9, a

comparison of estimated functions related to the response means is displayed, and the
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fourth-order regression functions concerning response variance, covariance, and
empirical individual desirability with the highest R* (or R3) and adj. R* (or adj. R3) are
selected out of the results of the best subsets screening. Finally, these candidate functions
are evaluated against the various selection criteria developed in the previous section.
Since the adj. R? is generally utilized to compare the regression function with different
sizes of predictors, the best models that achieve desirable values for most of the criteria
and maintain higher adj. R? or adj. RZ values are identified and given in bold in Table 5.9.
It should be noted that because the majority of Ds for s =1, 2, ..., r are equal to zero, the
D e(x) cannot be obtained in this particular example and thereby we perform the
comparative optimization scheme using the mechanistic overall desirability model. The
differences in the estimation of the response means under the second- and proposed
fourth-order models can be illustrated by the contour plots for x; and x, with
corresponding contour labels (see Figure 5.3). The contour plots, shown in Figure 5.4, are
drawn to compare the resulting estimated fourth-order DFs related to the response mean
by using the traditional and proposed empirical desirability models.

Using the results of Table 5.9, the proposed priority- and comparative overall DF-
based optimization procedures can be performed. The resulting optimal settings under the
different models along with the weighted overall desirability and f, are obtained by
Mathematica® 8.0 and summarized in Table 5.10, in which the ideal desirability and f,
values are highlighted in bold. Note that because both of the solutions to the achievement
of the 1*-priority goals using the empirical and mechanistic DF methods are unique, their

respective priority-based optimization procedures are then terminated, with (xy, x3) =
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(0.138, 1.000) and (x;, x3) = (0.589, —0.968) as the corresponding optimal factor settings.
The Mathematica programming code is provided in Appendix 3. Moreover, Figure 5.5
describes a comparison of the resulting optimal desirability against w. The impact of the
assigned weights or priorities on the optimal desirability under the associated
optimization models can be observed in Figure 5.6, which shows a comparison of the
optimal individual desirability under each of the models in Table 5.10 (solid line) and
that under the respective equally-weighted optimization model (dashed line). In Figure
5.5 and 5.6, the lines marked with e, 4, and m describe the resulting desirability under the

empirical, mechanistic, and overall DF models, respectively.

M iy

Figure 5.3 Comparison of Contour Plots between Second- (---) and Fourth-Order
(—) Models for the Response Means
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Table 5.8 Experimental Factor Settings and Target Dissolution Profile

Actual values under coded levels

Factors
-1 0 +1
X1 1:1 15:1 2:1
X 8% 14% 20%
Characteristic mﬁcicrﬁsﬁb(l(;) Target (%) m/:ficrﬁztrib(ll;; ) Priority ~ Weight
I 0 125 25 2n 10
i 35 425 50 1% 100
fis 55 62.5 70 1% 100
da 75 82.5 90 2n 10
ds 95 102.5 110 2n 10
o2 - 0 25 2™ 10
o2 - 0 25 1 100
o2 - 0 49 1 100
o? - 0 81 2" 10
ol - 0 121 2" 10
Covariance -5 0 +5 3 1
of ji,

Desirability of fi;

Desirability

Desirability of [i5

10

0.5

—osf ;

P
Ll
Vi)
,10 ' I

—LOE-

Desirability of fi5

0.0

X

-Lo -05 05 1.0

-10 —0.5 0.0 0.5

Xy

—0.5

0.0 Lo

xp

0.5

Figure 5.4 Comparison of Contour Plots between Estimated Traditional (---) and
Proposed Empirical (—) Desirability Models for the Response Means
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Table 5.9 Model Selection for the Mean, Variance, Covariance, and Individual Desirability

Estimated Response Surface Function

Estimated Empirical Individual Desirability

Characteristic v R? adj. R? AIC BIC PRESS o v R adj. R: AICq BICq PRESSq
A 3 0.607 0.508 24.64 25.83 117.38 1 3 0.382 0.228 —36.34 —35.14 0.45
o & 0> 4 0.770 0.672 26.62 28.21 143.11 2 4 0.349 0.070 —23.88 —22.89 1.83
83 A3 3 0.789 0.736 29.14 30.33 183.45 3 3 0.246 0.057 —28.92 -271.73 0.68
-2 s 4 0.764 0.662 30.34 31.92 248.26 4 4 0.112 0 —27.80 -26.21 1.18
s 5 0.710 0.517 27.29 29.27 291.94 5 5 0.653 0.422 —31.09 —29.10 1.60
. 8 0.994 0.980 —78.80 —75.62 0
I 9 0.996 0.978 -14.83 -12.44 0 1 9 0996 0978 8034 7675 0
. 6 0.973 0.947 13.33 15.72 58.38 ) 6 0.936 0.873 —45.47 —43.08 0
H2 9 0.984 0.919 8.57 12.15 0 9 0.953 0.763 —42.70 -39.12 0
A 6 0.938 0.877 21.60 23.99 102.5 3 7 0.871 0.677 —40.34 —37.55 0
3 9 0.967 0.836 20.65 24.23 0 9 0.880 0.401 -37.15 -33.57 0
A 8 0.949 0.830 21.47 24.65 0 . 7 0.871 0.678 —42.96 —40.17 0
Ha 9 0.961 0.803 20.65 24.23 0 9 0.877 0.383 —35.86 —39.44 0
A 8 0.974 0.915 6.57 9.75 0 7 0.946 0.864 —47.49 —44.71 0.19
Hs 9 0.974 0.872 8.57 12.15 0 ° 9 0.953 0.767 -45.21 -41.63 0
- 7 0.970 0.926 8.44 11.23 0 6 7 0.970 0.926 —62.38 —59.59 0
91 9 0.973 0.865 11.33 14.91 0 9 0.973 0.865 -59.48 -55.90 0
— 4 0.373 0.105 43.74 45.33 617.5 7 4 0.373 0.105 -27.08 —25.48 0.988
92 7 0.468 0 47.94 50.73 0 7 0.468 0 -22.87 —20.09 0
— 2 0.137 0.041 57.63 58.43 2243.9 8 2 0.137 0.041 —28.00 -27.20 0.93
73 8 0.272 0 67.77 70.95 0 8 0.271 0 -17.86 -14.68 0
u) - 3 0.260 0.076 59.37 60.56 2259.4 9 2 0.237 0.152 -38.95 -38.15 0.28
g %4 9 0.440 0 68.32 70.90 0 9 0.440 0 -28.35 —24.77 0
2 = 7 0.828 0.569 68.80 71.59 496.5 10 7 0.828 0.569 —61.08 -58.30 0.03
g s 8 0.830 0.433 70.90 74.08 0 8 0.830 0.433 -59.22 ~56.04 0
< — 5 0.600 0.333 0.44 2.43 0 1 4 0.612 0.446 -41.72 -40.13 0.21
z 912 9 0.670 0 0.63 421 0 9 0.630 0 -32.24 —28.66 0
3 — 8 0.965 0.884 -1.96 1.22 0 1 7 0.959 0.898 —45.75 —42.96 0.15
< 913 9 0.974 0.871 -3.22 0.36 0 9 0.961 0.807 —42.37 -38.79 0
= 4 0.739 0.627 3.68 5.27 15.75 13 6 0.803 0.607 —41.84 -39.46 0
14 9 0.818 0.008 9.72 13.30 0 9 0.842 0.210 -38.25 ~34.67 0
= 5 0.891 0.818 3.20 5.19 48.76 " 7 0.929 0.822 —42.89 —40.11 0
15 7 0.923 0.807 3.40 6.19 0 9 0.930 0.648 —39.03 —35.44 0
— 7 0.937 0.843 —6.24 -3.45 0 15 7 0.783 0.458 —46.36 -43.58 0.14
923 9 0.964 0.819 -8.27 —4.69 0 9 0.807 0.037 —43.68 —40.09 0
= 4 0.386 0.123 23.26 24.85 118.39 16 3 0.526 0.408 -29.99 -28.80 0.60
24 9 0.722 0 24.52 28.11 0 9 0.651 0 -21.37 -17.79 0
= 4 0.537 0.338 18.27 19.86 69.87 17 4 0.484 0.262 -23.52 -21.92 0.88
25 9 0.635 0 25.65 29.24 0 9 0.603 0 -16.41 -12.83 0
— 5 0.700 0.501 19.46 21.45 4471 18 5 0.663 0.438 —26.54 —2455 0.75
T34 9 0.748 0 25.56 29.146 0 9 0.721 0 -20.63 -17.05 0
2 4 0.602 0.432 19.27 20.86 54.61 19 6 0.911 0.821 -41.11 —38.72 0.31
35 9 0.674 0 27.08 30.66 0 9 0.937 0.683 -38.87 -35.29 0
= 7 0.934 0.835 6.17 8.95 10.88 20 5 0.672 0.453 -27.55 -25.56 0.67
45 8 0.934 0.782 8.08 11.27 0 9 0.806 0.028 -25.31 -21.73 0




Table 5.10 Comparison of Optimal Settings

) ) Proposed Priority-Based Optimization Comparative Model
Optimal Settings Proposed Empirical Proposed S/IFechanistic Overall DF
X (0.138, 1.000) (0.589, —0.968) (1.000, —0.799)
f, 62.71 68.88 70.63
0=1 & 0.277 0.449 0.410
2 fi2 0.796 1.000 0.714
3 s 0.815 0.632 0.988
4 fa 0.795 0.300 0.727
5 fis 0.168 0.931 0. 659
6 o2 0.370 0.997 0.956
7 o2 0.840 0.833 0.853
8 o? 0.861 0.999 0.978
9 a? 0.920 0.729 0.732
g 10 o2 0.952 0.939 0.864
g 1 g 0.563 0.993 0.990
E n g 0.047 0.660 0.721
13 o2, 0.305 0.763 0.759
14 oZ 0.600 0.995 0.990
15 o2, 0.805 0.687 0.687
16 o2, 0.506 0.897 0.653
17 0% 0.618 0.847 0.492
18 a2, 0.655 0.966 0.859
19 6% 0.873 0.801 0.428
20 aZ 0.569 0.388 0.457
Overall 0.762 0.822 0.847

5.5 Conclusion
One of the strengths of the proposed optimization model is that higher-order (up
to fourth-order) rather than second-order regression functions are combined with the best
subset approach to provide a more precise approximation to the characteristics of interest,
which is considered critical to a pharmaceutical formulation optimization problem,
because the error in estimating these characteristics may result in the additional error in

the optimal settings of ingredient amounts. In Table 5.9, the proposed higher-order
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functions fit the observation data better than the second-order since they achieve more
desirable values for the model selection criteria, including R? adj. R?, AIC, BIC, and
PRESS; meanwhile, these higher-order estimated response surface functions with
different subsets of predictors are evaluated against the criteria in order to identify the
ideal regression models that most appropriately estimate the true response mean,
variance, and covariance. Moreover, in order to solve an MRS formulation optimization
problem where multiple QCs are correlated over time, efforts are made to develop DFs
under the empirical and mechanistic models that evaluate the desirability of the response
covariance in addition to the mean and variance. It is essential to ensure small variability
of these responses, since large variability may lead to the safety and efficacy issue of the
formulation. By analogy with the ordinary model selection criteria for responses, we
propose the desirability-related criteria for screening the higher-order estimated DFs
under the empirical model with different sizes of predictors. The appropriate estimated
desirability models, which most accurately approximate the associated desirability, are
finally determined according to the proposed criteria. However, it is not necessary that
the ideal higher-order estimated function contains higher-order terms, for instance E(x)
and de g(x), both of which are the functions of x%. Considering the large number of the
candidate regression functions, the extent of enhanced accuracy in the estimation of the
response and desirability is considerably significant.

Another insight of applying our model to the formulation optimization with
multiple QCs is that we propose a priority-based optimization procedure incorporated

with the modified DF approaches. As shown in Table 5.10 and Figure 5.5, it can be
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observed that (1) the optimal factor settings of the comparative optimization model using
the mechanistic overall DF approach results in the highest weighted overall desirability
value and the highest f, value that demonstrates that the resulting equally-weighted
optimal dissolution profile is the most similar to the target profile according to the FDA
regulation; and (2) for the priority-based model using the mechanistic DF approach, the
majority of its resulting individual desirability values are larger than those of the other
models. Moreover, in Figure 5.6, the optimal solution resulting from the optimization
model using the empirical approaches significantly improves the performance of the 1°-
priority response variables compared with its equally-weighted model, which can
observed by examining the overlapping plot of desirability against w. Therefore, first, the
optimal desirability settings of the optimization model using the empirical DFs are
comparatively sensitive to the assigned priorities and less desirable than those using the
mechanistic and overall DF approaches. Despite the fact that one main advantage of the
empirical model over the others is the complete smoothness of the fitted curve, it may
lead to errors as a consequence of the discontinuity of DF that is mechanistically
expressed in a piecewise form. Recall that it may be infeasible to obtain an empirical
overall DF by using the least squares method; hence, it is believed that the empirical
model may become less effective in the optimization procedure. Second, although the
comparative model produces the most desirable f, and overall desirability, its optimal
solution appears to be sensitive to the numerical weight assigned to each of the individual
DFs (see Figure 5.6 (c)), which may also result in further errors of the solution. Third, in

this numerical example, the optimal solution of the comparative model fails to provide a
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desirable value of fi, although the heaviest weight is assigned for it in the objective
function. Finally, the priority-based optimization model integrated with the mechanistic
DF approach works best among all the models when simultaneously taking into account
the performance related to the f,, overall desirability, and sensitivity to the assigned
priorities.

In summary, the proposed priority-based optimization model is a competitive
alternative to solve an MRS problem in the formulation optimization. Higher-order
regression models combined with the best subsets technique are utilized to improve the
estimation of the response and desirability in terms of the mean, variance, and
covariance. Identified priorities can significantly reduce the potential sensitivity and
undesirable subjectivity associated with the weight-based optimization method. Based
upon the numerical example, it is concluded that by comparison the mechanistic
desirability model is the most effective method to implement the proposed priority-based
optimization procedure. Finally, a future investigation of more rigorous multi-objective
optimization techniques, such as Tchebycheff method, may be needed to develop

alternative multi-response formulation optimization models.
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CHAPTER 6

CONCLUSIONS AND FUTURE RESEARCH

Pharmaceutical formulation optimization is the area in which the optimal settings
of ingredient amounts are determined prior to scaling up a manufacturing process. The
optimal formulation is able to fulfill the desirable performance of QCs specified by the
FDA. Process scale-up always results in various modifications, such as ingredients, in
order to meet the mounting clinical and market demand. In this case, the current
formulation optimization approaches need to be extended to determine the optimal post-
change formulation which achieves the desirable performance in regulatory
documentation tests including dissolution comparisons and bioequivalence studies. The
establishment of similarity in dissolution profiles and bioequivalence for the pre-change
and post-change formulations can not only ensure the equivalent safety and efficacy of
the two formulations, but also eliminate the need for submitting the duplicate data to the
FDA for approval after the scale-up changes occur. Nevertheless, the formulation
optimization for scale-up changes is not adequately documented in the previous
investigations. Hence, the objective of this research is to improve the existing formulation
optimization techniques by expanding their ability to solve the optimization problem
when scale-up changes occur. Following a review of current formulation optimization
methods in Chapter 2, the proposed models are developed in Chapters 3, 4, and 5 with
focus on dissolution comparisons, bioequivalence studies, and MRS problems,

respectively.
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6.1 Contributions
Several academic contributions as a result of this research are summarized as
follows:

1. Traditionally, drug designers only consider the mean of a QC; however, the
variability of the QC of interest can be essential, since individual subjects may
differ widely in their responses to a drug, which may result in large variability of
the QC and thereby unpredictable safety and efficacy issue. In the proposed
models, both the mean and variability of the QCs are taken into account. The
Taguchi quality loss concept appears to be attractive because it describes the
deviations from target profiles of the mean as well as variance. In Chapters 3 and
4, the Taguchi quality loss functions for the dissolution comparison and
bioequivalence study are developed and then incorporated into the proposed
optimization models, while the current methods, such as the f, equation for
comparing dissolution profiles, do not consider the variance. Further, in Chapter
5, the traditional DF method is modified to evaluate the desirability associated
with the variance and correlation of the QCs rather than solely the mean.

2. The standard 2x2 crossover design, which is a special type of DOE and typically
performed for the evaluation of bioequivalence between formulations, is
integrated into the ordinary experimental scheme in order to estimate the
functional relationship between the ingredient amounts and the characteristic
related to bioequivalence (see Chapter 4). In addition, the traditional evaluation

method for bioequivalence is compared with the proposed method in Chapter 4,
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and it turns out that the proposed one generally performs better based upon the
numerical example and sensitivity analysis.

No formal research work for solving formulation optimization problems, where
all related FDA and USP requirements are included, can be found in the literature.
Therefore, as many regulatory regulations associated with the formulation
optimization as possible are considered and mathematically formulated as
constraints in the proposed optimization models, in an effort to enable the QCs to
satisfy all the related requirements in an efficient manner. The development of
various constraints, including disintegration, dissolution, friability, hardness,
thickness, stability, and uniformity, are offered in Chapters 3 and 4.

It is common that formulation professionals are faced with multiple characteristics
to be optimized. In the literature, the DF approach is extensively combined with
the optimization technique to seek the best compromise among multiple
characteristics. Traditionally, the weight-based overall DF is considered as an
objective function to solve the MRS problems. However, this approach has a
potential shortcoming: the optimal solutions are extremely sensitive to the weights
assigned and these weights are subjective in nature. In order to overcome this
weakness, two proposed DF approaches- mechanistic and empirical, which
consider the mean as well as the variability of a QC, are incorporated into the
priority-based goal programming procedure to solve MRS formulation
optimization problems. Moreover, efforts are made to extend the traditional

second-order estimators to higher-order in Chapter 5 as a way to reduce the error
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in the characteristic prediction and therefore improve the precision of the resulting
optimal solutions.
In summary, it is believed that the methodologies proposed in this dissertation can

provide a significant support for modeling and optimizing pharmaceutical formulations.

6.2 Future Research

As stated in Chapter 4, the proposed formulation optimization model for
bioequivalence studies relies on the assumption that the IVIVC is not established.
However, the establishment of 1VVIVC may minimize the need for conducting costly and
time-consuming bioequivalence studies. One of the motivations for a future investigation
is to relax this assumption when conducting formulation optimization. Hence, a more
comprehensive optimization procedure can be developed based upon the identified
critical characteristics relevant to the IVIVC and associated constraints. The objective
would be to seek an optimal post-change formulation whose bioequivalence studies can
be substituted by dissolution comparisons as a consequence of an acceptable IVIVC.

Moreover, although the establishment of IVIVC can save considerable costs of
developing a new drug for a drug company, it is not necessarily desirable for customers
who are exposed to the potential risk of unpredictable safety and efficacy issue due to the
relatively simple testing conducted during the R&D stage. Finding the best trade-off
regarding the costs between the drug company and customers may deserve further

considerations.
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Finally, further research into the extended formulation optimization problem
when multiple scale-up changes occur would be of great value. However, the FDA
guidance does not adequately address associated requirements for this situation. It would
be possible that dissolution comparisons and bioequivalence studies need to be performed
simultaneously as required documentation tests for multiple changes. In this case, the
existing formulation optimization methods should be further improved by expanding their

ability to solve more realistic problems.
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APPENDIX 1

Mathematica Codes for the Examples in Chapter 3

1.1 Estimated Response Functions

vara[xl X2 ,x3 x4 x5 ]=-644+8.6x1+8.2x2-12.9x3-22.3x4+21.6X5-
0.009x1*x2+0.104x1*x3+0.173x1*x4-0.124x1*x5+0.039x2*x3-
0.957x2*x4+0.555x2*x5-0.18x3*x4-0.368x3*x5-0.269x4*x5-0.0318x1*x1-
0.14x2*x2+0.037x3*x3+0.298x4*x4+0.218x5*x5

sa[x1_,x2_,x3_ x4 x5 ]=-26+0.56x1+0.18x2-1.12x3-
1.97x4+0.62x5+0.0011x1*x2+0.0076x1*x3+0.0133x1*x4-0.0033x1*x5-0.0011x2*x3-
0.0619x2*x4+0.0361x2*x5-0.006x3*x4-0.0253x3*x5-0.0221x4*x5-0.00237x1*x1-
0.0018x2*x2+0.0056x3*x3+0.0205x4*x4+0.015x5*x5

a[xl ,x2 ,x3 x4 x5 ]=28+0.84x1+1.34x2-2.02x3-3x4-0.7x5-
0.019x1*x2+0.0126x1*x3+0.021x1*x4-0.0002x1*x5+0.0389x2*Xx3-
0.031x2*x4+0.0716x2*x5-0.0239%3*x4-0.0522x3*x5-0.0077x4*X5-
0.00324x1*x1+0.0322x2*x2+0.0039x3*x3+0.0197x4*x4+0.0645x5*X5

W[X1_,x2_,x3_ x4 X5 ]=x1+x2+x3+x4+x5+80

d[x1_,x2_,x3 x4 x5 ]=-17.9+0.309x1-0.5x2-
0.24x3+0.57x4+0.22x5+0.00604x1*x2+0.00162x1*x3-0.00422x1*x4-
0.00016x1*x5+0.0063x2*x3+0.0036x2*x4-0.0057x2*x5-0.0003x3*Xx4+0.0016X3*Xx5-
0.0277x4*x5-0.00095x1*x1-0.0314x2*x2-0.00232x3*x3+0.0206x4*x4+0.0026X5*x5

sd[x1 ,x2_,x3 x4 x5 ]=-1.03+0.021x1+0.175x2-0.107x3+0.186x4-0.041x5-
0.00027x1*x2+0.000987x1*x3-0.000703x1*x4-0.000016x1*x5+0.00087x2*x3-
0.00245x2*x4-0.00078x2*x5-0.00109x3*x4+0.00266x3*x5-0.00215x4*x5-
0.000102x1*x1-0.0053x2*x2-0.00186x3*x3+0.00061x4*x4-0.00009x5*x5

xbar[x1_,x2_,x3_,x4_,x5 ]=1.04-0.00075x1+0.00157x2+0.00162x3-0.00064x4-0.00003x5-
0.000004x1*x2-0.000008x1*x3+0.000005*x1*x4+0.000002x1*X5-
0.000026x2*x3+0.000042x2*x4-0.000058x2*x5-0.000021x3*x4-
0.000005x3*x5+0.000023x4*x5+0.000003x1*x1-0.000001x2*x2+0.000008x3*x3-
0.000019x4*x4+0.000013x5*x5

s[x1_,x2_,x3_,x4_,x5_]=0.328-0.00336x1-0.00359x2+0.00441x3+0.00052x4-
0.00817x5+0.000013x1*x2-
0.000005x1*x3+0.000009%1*x4+0.000028x1*x5+0.000017x2*x3-
0.00001x2*x4+0.000156x2*x5-
0.0001x3*x4+0.000013x3*x5+0.000117x4*x5+0.000008x1*x1-0.000035x2*x2-
0.000058x3*x3-0.000028x4*x4+0.000004x5*x5
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avl[xl_,x2_x3_x4_ x5 ]=2.4*s[x1,x2,x3,x4,x5]
av2[xl ,x2_,x3_ x4 x5 ]=0.985-xbar[x1,x2,x3,x4,x5]+2.4*s[x1,x2,x3,x4,X5]
av3[x1_,x2_,x3_x4_ x5 J=xbar[x1,x2,x3,x4,x5]-1.015+2.4*s[x1,x2,x3,x4,X5]

fl[x1_,x2_,x3 x4 x5 ]=-22.9+0.298x1-0.251x2-0.131x3-0.257x4+0.259x5-0.00146X1*x2-
0.00087x1*x3+0.00328x1*x4-0.00016x1*x5-0.00042x2*x3-0.0109%2*x4+0.0255x2*X5-
0.00406x3*x4-0.00844x3*x5-0.0137x4*X5-
0.000761x1*x1+0.0165x2*x2+0.00845x3*x3-0.00007x4*x4-0.0071x5*Xx5

f2[x1_,x2_,x3 x4 x5 ]=-62.8+0.608x1+0.712x2+0.457x3-0.144x4-0.099x5-0.00125x 1 *x2-
0.00275x1*x3+0.00375x1*x4+0.00063x1*x5+0.00417x2*x3+0.00833x2*x4-
0.0188x2*x5-0.0163x3*x4+0.0025x3*x5-0.00547x4*x5-0.00151x1*x1-
0.0196x2*x2+0.00245x3*x3-0.00945x4*x4+0.0093X5*x5

f3[x1_,x2_,x3_,x4_,x5 ]=-10.1+0.173x1-0.22x2-0.345x3+0.978x4-
0.254x5+0.00271x1*x2+0.00237x1*x3-0.00516x1*x4+0.00016X1*X5-
0.0129x2*x3+0.0172x2*x4+0.0036x2*x5-0.0116x3*%4+0.00031x3*x5+0.002x4*X5-
0.00061x1*x1-0.0054x2*x2+0.00305x3*x3+0.00007x4*x4+0.00632x5*X5

ci[xl_,x2_,x3_x4 x5 ]=351-1.38x1-7.7x2-5.16x3-
25.3x4+1.87x5+0.0354x1*x2+0.0125x1*x3+0.132x1*Xx4+0.027x2*x3+0.014x2*x4+0.02
1x2*x5-0.0387x3*x4+0.0094x3*x5-0.075x4*x5-
0.0014x1*x1+0.029x2*x2+0.0606x3*x3+0.151*x4*x4-0.0639x5*X5

N[XL_x2_X3_x4 x5 ]=129-1.35x1+1.15x2-0.34x3+0.36x4-0.49x5-0.00292X1*X2-
0.00525x1*x3-0.00469x1*x4-+0.00344x1*x5+0.0108x2*x3+0.0073x2*X4-
0.0385x2*x5+0.0244x3*x4+0.0056X3*X5-0.007x4*x5+0.00427x1*x1-
0.0275x2*x2+0.0191x3*X3-0.01x4*x4+0.0095X5*X5

al[x1l_,x2_,x3 x4 x5 ]=26.8+0.055x1+0.44x2-0.792x3-1.08x4+1.03x5-
0.00381x1*x2+0.00396x1*x3+0.00448x1*x4-0.00673x1*x5+0.007x2*x3-0.0179x2*x4-
0.0266x2*x5+0.0167x3*x4-0.0008x3*x5+0.0094x4*x5-0.00029x1*x1+0.0172x2*x2-
0.00407x3*x3-0.0035x4*x4+0.0174x5*x5

s1[x1_x2_,x3_x4_x5 ]=21-0.169x1-0.041x2-0.189x3+0.248x4-
0.191x5+0.00031x1*x2+0.000637x1*x3-0.00145x1*x4+0.00105X 1 *x5+0.00062x2*X3-
0.0013x2*x4+0.00224x2*x5+0.00084x3*x4-
0.00053x3*x5+0.00059x4*x5+0.000439x1*X1-
0.00221x2*x2+0.0014x3*x3+0.00016x4*x4-0.00101X5*X5

a2[x1_,x2_,x3_,x4_,x5 ]=113-1.19x1-1.33x2+2.82x3-0.51x4+0.1x5+0.00367x1*x2-
0.013x1*x3+0.00591x1*x4+0.00059%x1*x5-0.0041x2*x3-
0.0236x2*x4+0.0103x2*x5+0.0059x3*x4-0.0135x3*Xx5-
0.0175x4*x5+0.00392x1*x1+0.0371x2*x2-0.00734x3*x3-0.0103x4*x4+0.0055x5*x5
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s2[x1 ,x2_,x3_,x4 x5 ]=20.8-0.116x1-0.176x2-0.171x3-0.253x4-
0.072x5+0.00106x1*x2+0.000788x1*x3+0.0012x1*x4+0.000453x1*X5-
0.00213x2*x3+0.00328x2*x4-
0.00234x2*x5+0.00022x3*x4+0.00197x3*x5+0.0002x4*x5+0.000186x1*x1+0.00096x2
*x2+0.000795x3*x3-0.00024x4*x4-0.00157x5*x5

a3[x1_,x2_,x3 x4 x5 ]=-61.5+0.948x1+1.05x2+1.12x3-1.08x4-0.54x5-0.00146x1*x2-
0.00587x1*x3+0.00628x1*x4+0.00138x1*X5-
0.0255x2*x3+0.001x2*x4+0.0099x2*x5+0.0029x3*x4-0.0063x3*x5+0.0095X4*X5-
0.00232x1*x1-0.0199x2*x2+0.00535x3*x3-0.013x4*x4+0.0103x5*X5

s3[x1_x2_,x3_x4_x5 ]=6.05-0.0203x1-0.02x2-
0.122x3+0.052x4+0.185x5+0.00025x1*x2+0.00005x1*x3-0.000563x 1 *X4-
0.000687x1*x5-0.00008x2*x3-0.0026x2*x4-0.00365x2*x5+0.00069X3*X4-
0.00031X3*X5-
0.00102x4*x5+0.000078x1*x1+0.00184x2*x2+0.00196x3*x3+0.00385x4*X4-
0.00006X5*X5

ad[x1_,x2_,x3_,x4_,x5 1=39.1+0.547x1-1.98x2-0.146x3-3.07x4-2.08x5+0.00706x1*x2-
0.00069x1*x3+0.0205x1*x4+0.0105x1*x5+0.0145x2*x3-0.0102x2*x4+0.0103x2*X5-
0.0105x3*x4+0.0026x3*x5-0.0024x4*x5-0.00258x1*x1+0.0152x2*x2+0.00266X3*X3-
0.0101x4*x4+0.00322X5*X5

s4[x1_x2_x3_x4_x5 ]=-3.65+0.0715x1+0.017x2+0.0437x3+0.077x4+0.103x5-
0.000083x1*x2-0.00015x1*x3-0.0005x1*x4-0.000406x1*X5-0.00025X2*X3-
0.00281x2*x4+0.00104x2*x5+0.00156x3*x4+0.00025x3*x5-0.00047X4*X5-
0.000157x1*x1+0.00104x2*x2-0.000627x3*x3+0.000582x4*x4-0.00192X5*X5

a5[x1_,x2_,x3_,x4 x5 ]=207-1.24x1-0.42x2-0.607x3-3.61x4-
1.11x5+0.00802x1*x2+0.00509%x1*x3+0.018x1*x4+0.00908x1*x5-0.0128x2*x3-
0.0064x2*x4-0.0053x2*x5+0.0345x3*x4+0.0027x3*x5-0.0136x4*x5+0.00218x1*x1-
0.021x2*x2-0.0108x3*x3-0.0177x4*x4-0.0186x5*x5

s5[x1 ,x2_,x3_,x4 x5 ]=-6.58+0.112x1+0.164x2+0.0911x3+0.0577x4+0.0876x5-
0.000396x1*x2-0.000213x1*x3-0.000297x1*x4-0.000266x1*x5-
0.000625x2*x3+0.00245x2*x4-0.0012x2*x5-0.000594x3*x4-0.000031x3*Xx5-
0.00043x4*x5-0.000272x1*x1-0.00371x2*x2-0.000736x3*x3-0.000604x4*x4-
0.000916x5*x5

ab[x1_,x2_,x3 x4 x5 ]=20.7+0.506x1+1.17x2-1.08x3+1.76x4+1.43x5-
0.00256x1*x2+0.00684x1*x3-0.00598x1*x4-0.0042x1*x5-0.0025x2*x3-0.0362x2*x4-
0.0042x2*x5+0.005x3*x4-0.0146x3*x5-0.0233x4*x5-0.00155x1*x1-0.0113x2*x2-
0.00021x3*x3-0.0064x4*x4-0.0012x5*x5

s6[x1_,x2_,x3_,x4_,x5_]=7.48-0.0065x1+0.171x2-0.0305x3-0.069x4+0.089x5-
0.000792x1*x2+0.000275x1*x3+0.000312x1*x4-0.000531x1*X5-
0.00142x2*x3+0.00167x2*x4+0.0001x2*X5-
0.00062x3*x4+0.00081x3*x5+0.00016x4*x5+0.00002x1*x1-0.00033x2*x2-
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0.000068x3*x3+0.00005x4*x4-0.00058x5*x5

a7[x1_x2_,x3_x4 x5 ]=134-0.549x1-x2-0.135x3+0.183x4-
0.406x5+0.00404x1*x2+0.00147x1*x4+0.00131x1*x5+0.00583x2*x3-
0.0143x2*x4+0.0198x2*x5-0.0075x3*x4-
0.00794x3*x5+0.0025x4*x5+0.00135x1*x1+0.00509%2*x2+0.00458%x3*x3-
0.00729%x4*x4+0.00638x5*x5

s7[x1_,x2_,x3_,x4_,x5_]=10.4-0.0123x1+0.031x2-0.0252x3-0.154x4-0.13x5-
0.000271x1*x2+0.000112x1*x3+0.000609x1*x4+0.000641x1*x5-0.00038x2*x3-
0.00078x2*x4+0.00016x2*x5+0.00122x3*x4-0.000469x3*x5+0.0009x4*Xx5-
0.000003x1*x1+0.00163x2*x2+0.000086x3*x3+0.00076x4*x4+0.000526X5*X5

a8[x1_x2_x3_x4_x5 ]=70.9+0.048x1+0.799x2-0.437x3-0.359x4+0.878X5-
0.00404x1*x2+0.00257x1*x3+0.003x1*x4-0.0035X1*X5+0.00242x2*x3+0.00354X2*X4-
0.00188x2*x5-0.009x3*x4-0.00325x3*x5-0.00195x4*x5-0.000125x 1 *x1-
0.00486x2*x2+0.0013x3*X3+0.0007x4*x4-0.00578X5*X5

s8[x1_,x2_,x3_,x4_,x5_]=5.7+0.043x1+0.117x2-0.201x3+0.073x4-0.121x5-
0.00092x1*x2+0.00065x1*x3-0.00091x1*x4+0.00072x1*x5+0.002x2*x3-
0.00177x2*x4-0.0001x2*x5+0.00206x3*x4-0.00206x3*x5+0.00172x4*x5-
0.000128x1*x1+0.00038x2*x2+0.00144x3*x3+0.0017x4*x4+0.00131x5*Xx5

vl[xl x2 ,x3 ,x4 x5 ]=150-1.33x1-0.33x2-1.49x3+1.87x4-
1.45x5+0.00244x1*x2+0.00504x1*x3-0.011x1*x4+0.00794x1*x5+0.0053x2*X3-
0.0103x2*x4+0.0176x2*x5+0.0066x3*x4-0.004x3*Xx5+0.0041x4*x5+0.00343x1*x1-
0.017x2*x2+0.0109x3*x3+0.0013x4*x4-0.0078x5*Xx5

V2[x1_x2_,x3_,x4 x5 ]=207-1.32x1-2.05x2-1.99x3-2.94x4-
0.85x5+0.0123x1*x2+0.00917x1*x3+0.0139x1*x4+0.00535x1*X5-
0.0246x2*x3+0.0384x2*x4-
0.0272x2*x5+0.0027x3*x4+0.0229x3*x5+0.0023x4*x5+0.00211x1*x1+0.0112x2*x2+0
.0093x3*x3-0.0029%x4*x4-0.0182x5*x5

v3[x1l x2 ,x3 ,x4 ,x5 ]=30.6-0.142x1-0.16x2-
0.901x3+0.37x4+1.36x5+0.00201x1*x2+0.00039x1*x3-0.00407x1*x4-0.00501x1*X5-
0.0011x2*x3-0.019%2*x4-0.027x2*x5+0.0051x3*x4-0.0024x3*x5-
0.0074x4*x5+0.00054x1*x1+0.0134x2*x2+0.0145x3*%x3+0.0285x4*x4-0.0005x5*x5

VA[X1 X2 _x3_x4 x5 ]=-53.2+0.645x1+0.15x2+0.404x3+0.687x4+0.918x5-0.00066x1*x2-
0.00138x1*x3-0.00444x1*x4-0.00361x1*x5-0.0025x2*x3-
0.0252x2*x4+0.0094x2*x5+0.014x3*x4+0.00216x3*x5-0.0041x4*x5-
0.00142x1*x1+0.0092x2*x2-

V5[x1_,x2_,x3_,x4_,x5 ]=-118+1.37x1+2.01x2+1.11x3+0.71x4+1.07x5-0.00486x1*x2-
0.00259x1*x3-0.00363x1*x4-0.00323x1*x5-0.0076x2*x3+0.0299x2*x4-0.0146X2*X5-
0.00726x3*x4-0.00042x3*x5-0.0053x4*x5-0.00334x1*x1-0.0455x2*x2-0.00904Xx3*X3-
0.00752x4*x4-0.0112x5*x5
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VvB[x1_,x2_,x3_,x4 x5 ]=55.7-0.093x1+2.51x2-0.45x3-x4+1.29x5-
0.0116x1*x2+0.00403x1*x3+0.00455x1*x4-0.00773x1*X5-
0.0206x2*x3+0.0243x2*x4+0.0015x2*x5-
0.0092x3*x4+0.0118x3*x5+0.0022x4*x5+0.00029x1*x1-0.0049x2*x2-
0.00099x3*x3+0.0006x4*x4-0.0085x5*x5

V7[x1_x2_,x3_ x4 x5 ]=101-0.189x1+0.49x2-0.39x3-2.37x4-2X5-
0.0042x1*x2+0.00173x1*x3+0.00938x1*x4+0.00988x1*x5-0.0059%x2*x3-
0.012x2*x4+0.0024x2*x5+0.0188x3*x4-0.0072x3*Xx5+0.0138x4*X5-
0.00005x1*x1+0.0251x2*x2+0.00132x3*x3+0.0117x4*x4+0.0081x5*x5

v8[x1_,x2_,x3_,x4 x5 1=27+0.65x1+1.81x2-3x3+1.09x4-1.77x5-0.0141x1*x2+0.0097x1*x3-
0.0135x1*x4+0.0106x1*x5+0.0302x2*x3-0.0268x2*%x4-0.0016x2*x5+0.0308x3*x4-
0.0309x3*x5+0.0256x4*x5-
0.00194x1*x1+0.0056x2*x2+0.0215x3*x3+0.0256x4*x4+0.0191x5*x5

1.2 Optimization Models for Class 1 Drugs with Level 2 Changes

Minimize[{sa[x1,x2,x3,x4,x5],a[x1,x2,x3,x4,x5]/80>=0.85,10<=d[x1,x2,x3,x4,x5]<=11.8,Abs[(x
1-190)/318]<=0.1,Abs[(x2-10.5)/318]<=0.06,Abs[(x3-20)/318]<=0.01,Abs[ (x4-
15)/318]<=0.005,Abs[(x5-2.5)/318]<=0.02,Abs[(x1-190)/318]+Abs[(x2-
10.5)/318]+Abs[(x3-20)/318]+Abs[(x4-17)/318]+Abs[(x5-
2.5)/318]<=0.1,sd[x1,x2,x3,x4,x5]/d[x1,x2,x3,x4,x5]<=0.1,sa[x1,x2,x3,x4,x5]/a[x1,x2,x
3,x4,x5]<=0.1,80/w[x1,x2,x3,x4,x5]>=0.25,s[x1,x2,x3,x4,x5]/xbar[x1,x2,x3,x4,x5]<=0.0
2,f1[x1,x2,x3,x4,x5]/w[x1,x2,x3,x4,x5]<=0.01,ci[x1,x2,x3,x4,x5]<=25,sd[x1,x2,X3,X4,X
5]>=0,d[x1,x2,x3,x4,x5]>=0,vara[x1,x2,x3,x4,x5]>=0,a[x1,x2,X3,x4,x5]>=0,w[Xx1,x2,X3,
x4,x5]>=0,0.985<=xbar[x1,x2,x3,x4,x5]<=1.105,0<=av1[x1,x2,x3,x4,x5]<=0.15,s[x1,x2,
x3,%4,x5]>=0,f1[x1,x2,x3,x4,x5]>=0,ci[x1,x2,x3,x4,x5]>=0,9.5<=n[x1,x2,x3,x4,x5]<=1
0.5,5a[x1,x2,%3,x4,x5]>=0,160<=x1<=200,4.8<=x2<=16.8,15<=x3<=35,1<=x4<=17,2<
=x5<=18},{x1,x2,x3,x4,x5}]

Minimize[{vara[x1,x2,x3,x4,x5],a[x1,x2,x3,x4,x5]/80>=0.85,10<=d[x1,x2,x3,x4,x5]<=11.8,Abs[
(x1-190)/318]<=0.1,Abs[(x2-10.5)/318]<=0.06,Abs[(x3-20)/318]<=0.01,Abs[ (x4-
15)/318]<=0.005,Abs[(x5-2.5)/318]<=0.02,Abs[(x1-190)/318]+Abs[(x2-
10.5)/318]+Abs[(x3-20)/318]+Abs[(x4-17)/318]+Abs[(x5-
2.5)/318]<=0.1,sd[x1,x2,x3,x4,x5]/d[x1,x2,x3,x4,x5]<=0.1,sa[x1,x2,x3,x4,x5]/a[x1,x2,x
3,x4,x5]<=0.1,80/w[x1,x2,x3,x4,x5]>=0.25,5[x1,x2,x3,x4,x5]/xbar[x1,x2,x3,x4,x5]<=0.0
2,f1[x1,x2,x3,x4,x5]/w[x1,x2,x3,x4,x5]<=0.01,ci[x1,x2,x3,x4,x5]<=25,sd[x1,x2,X3,x4,X
5]>=0,d[x1,x2,x3,x4,x5]>=0,vara[x1,x2,x3,x4,x5]>=0,a[x1,x2,%3,x4,x5]>=0,w[Xx1,x2,X3,
x4,x5]>=0,0.985<=xbar[x1,x2,x3,x4,x5]<=1.105,0<=av1[x1,x2,x3,x4,x5]<=0.15,s[x1,x2,
x3,x4,x5]>=0,f1[x1,x2,x3,x4,x5]>=0,ci[x1,x2,x3,x4,x5]>=0,9.5<=n[x1,x2,x3,x4,x5]<=1
0.5,sa[x1,x2,x3,x4,x5]>=0,160<=x1<=200,4.8<=x2<=16.8,15<=x3<=35,1<=x4<=17,2<
=x5<=18}{x1,x2,x3,x4,X5}]
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1.3 Optimization Models for Class 2 and 3 Drugs with Level 2 Changes

obj1[x1_,x2 ,x3 ,x4 x5 ]=(50*(Log[10,(1+1/8*((al[x2,x2,x3,x4,X5]-
22)"2+(a2[x1,x2,x3,x4,x5]-33)"2+(a3[x1,x2,x3,x4,x5]-38)"2+(a4[x1,x2,x3,x4,X5]-
48)"2+(ab[x1,x2,x3,x4,x5]-65)"2+(ab[x1,x2,x3,x4,x5]-74)"2+(a7[x1,x2,x3,x4,X5]-
77)"2+(a8[x1,x2,x3,x4,x5]-78)"2))"(-0.5)*100])-100)"2

Minimize[{obj1[x1,x2,x3,x4,x5],s1[x1,x2,x3,x4,x5]/al[x1,x2,x3,x4,x5]<=0.2,51[x1,x2,x3,x4,X5]
>=0,a1[x1,x2,x3,x4,x5]>=0,s2[x1,x2,x3,x4,x5]/a2[x1,x2,x3,x4,x5]<=0.2,a2[x1,x2,x3,X4,
x5]>=0,52[x1,x2,x3,x4,x5]>=0,s3[x1,x2,%3,x4,x5]/a3[x1,x2,x3,x4,x5]<=0.2,a3[x1,x2,X3,
x4,x5]>=0,s3[x1,x2,x3,x4,x5 >=0,54[x1,x2,x3,x4,x5]/a4[x1,x2,x3,x4,x5]<=0.1,54[x1,x2,
x3,x4,x5]>=0,a4[x1,x2,x3,x4,x5]>=0,s5[x1,x2,x3,x4,x5]/a5[x1,x2,x3,x4,x5]<=0.1,s5[x1,
x2,%3,x4,x5]>=0,a5[x1,x2,x3,x4,x5]>=0,s6[x1,x2,x3,x4,x5]/ab[x1,x2,%3,x4,x5]<=0.1,56[
x1,x2,x3,x4,x5]>=0,a6[x1,x2,x3,x4,x5]>=0,s7[x1,x2,x3,x4,x5]/a7[x1,x2,x3,x4,x5]<=0.1,
S7[x1,x2,x3,x4,x5]>=0,a7[x1,x2,x3,x4,x5]>=0,s8[x1,x2,x3,x4,x5]/a8[x1,x2,x3,x4,x5]<=0
.1,58[x1,x2,x3,x4,x5]>=0,a8[x1,x2,x3,x4,x5]>=0,a4[x1,x2,x3,x4,x5]/80<=0.85,sd[x1,X2,
x3,%4,x5]/d[x1,x2,x3,x4,x5]<=0.1,Abs[(x4-15)/318]<=0.005,Abs[(x1-
190)/318]<=0.1,Abs[(x2-10.5)/318]<=0.06,Abs[(x3-20)/318]<=0.01,Abs[(x5-
2.5)/318]<=0.02,Abs[(x1-190)/318]+Abs[(x2-10.5)/318]+Abs[(x3-20)/318]+Abs[(x4-
15)/318]+Abs[(x5-
2.5)/318]<=0.1,a4[x1,x2,x3,x4,x5]/80<=0.85,sd[x1,x2,x3,x4,x5]/d[x1,x2,x3,x4,x5]<=0.1,
10<=d[x1,x2,x3,x4,x5]<=11.8,sd[x1,x2,x3,x4,x5]>=0,a6[x1,x2,x3,x4,x5]/80>=0.85,80/w
[x1,x2,x3,x4,x5]<=0.25,w[x1,x2,x3,x4,x5]>=0,s[x1,x2,%3,x4,x5]/xbar[x1,x2,x3,x4,x5]<=
0.02,0.985<=xbar[x1,x2,x3,x4,x5]<=1.105,5[x1,x2,x3,x4,X5]>=0,0<=av1[x1,x2,x3,x4,X5
1<=0.15,f1[x1,x2,x3,x4,x5]>=0,ci[x1,x2,x3,x4,x5]>=0,9.5<=n[x1,x2,x3,x4,x5]<=10.5,f1[
x1,%2,x3,x4,x5])/w[x1,x2,x3,x4,x5]<=0.01,ci[x1,x2,x3,x4,x5]<=25,d[x1,x2,x3,x4,x5]>=0,
160<=x1<=200,4.8<=x2<=16.8,15<=x3<=35,1<=x4<=17,2<=x5<=18,0.50<=a4[x1,x2,x
3,x4,x5]/80<=0.65,factor[x1,x2,x3,x4,x5]>=50},{x1,x2,x3,x4,X5}]

obj2[x1_,x2_,x3 x4 x5 ]=(al[x1,x2,x3,x4,x5]-22)"2+v1[x1,x2,x3,x4,x5]+(a2[x1,x2,x3,x4,X5]-
33)"2+v2[x1,x2,x3,x4,x5]+(a3[x1,x2,x3,x4,x5]-
38)"2+v3[x1,x2,x3,x4,x5]+(a4[x1,x2,x3,x4,x5]-
48)"2+v4[x1,x2,x3,x4,x5]+(a5[x1,x2,x3,x4,x5]-
65)"2+Vv5[x1,x2,x3,x4,x5]+(a6[x1,x2,x3,x4,x5]-
T4)N2+v6[x1,x2,x3,x4,x5]+(a7[x1,x2,x3,x4,X5]-
TN2+VvT[x1,x2,x3,x4,x5]+(a8[x1,x2,x3,x4,x5]-78)"2+v8[x1,x2,x3,x4,x5]

Minimize[{obj2[x1,x2,x3,x4,x5],s4[x1,x2,x3,x4,x5]/a4[x1,x2,x3,x4,x5]<=0.1,54[x1,x2,X3,x4,X5]
>=0,a4[x1,x2,x3,x4,x5]>=0,56[x1,x2,x3,x4,x5]/a6[x1,x2,x3,x4,x5]<=0.1,56[x1,x2,X3,x4,
x5]>=0,a6[x1,x2,x3,x4,x5]>=0,Abs[(x1-190)/318]<=0.1,Abs[(x2-
10.5)/318]<=0.06,Abs[(x3-20)/318]<=0.01,Abs[(x4-15)/318]<=0.005,Abs[ (x5-
2.5)/318]<=0.02,Abs[(x1-190)/318]+Abs[(x2-10.5)/318]+Abs[(x3-20)/318]+Abs[ (x4-
7)/318]+Abs[(x5-
2.5)/318]<=0.1,sd[x1,x2,x3,x4,x5]/d[x1,x2,x3,x4,x5]<=0.1,10<=d[x1,x2,x3,x4,x5]<=11.
8,sd[x1,x2,x3,x4,x5]>=0,0.50<=a4[x1,x2,x3,x4,x5]/80<=0.65,a6[x1,x2,x3,x4,x5]/80>=0.
85,80/w[x1,x2,x3,x4,x5]>=0.25,w[x1,x2,x3,x4,x5]>=0,5[x1,x2,x3,x4,x5]/xbar[x1,x2,x3,
x4,x5]<=0.02,0.985<=xbar[x1,x2,x3,x4,x5]<=1.105,5[x1,x2,x3,x4,x5]>=0,0<=av1[x1,x2,
x3,%4,x5]<=0.15,f1[x1,x2,x3,x4,x5]>=0,ci[x1,x2,X3,x4,x5]>=0,9.5<=n[x1,x2,x3,x4,X5]<
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=10.5,f1[x1,x2,x3,x4,x5]/w[x1,x2,x3,x4,x5]<=0.01,ci[x1,x2,x3,x4,x5]<=25,d[x1,x2,x3,X
4,x5]>=0,160<=x1<=200,4.8<=x2<=16.8,15<=x3<=35,1<=x4<=17,2<=x5<=18,factor[x
1,x2,x3,x4,x5]>=50},{x1,x2,x3,x4,x5}]
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APPENDIX 2

MATLAB and Mathematica Codes for the Example in Chapter 4

2.1 MATLAB Code for Estimating K,

C=xlsread('filename’,sheet, range";
T=xlsread(‘filename’,sheet,'range’);
TD=xlsread(‘filename’,sheet,'range’);
Ke=xlsread('filename',sheet,'range’);
K=xlsread('filename',sheet, range";

%Read vectors C, T, TD, Ke and K from a Microsoft® Excel file.

syms Ka
KA=];
for m=1:1:x %x=2*i*r.
C_temp=[];
for o=1:1:y %y=n.
C_temp(0)=C(m,0);
end
C_vector=C_temp’;
fl=exp((-Ka*T).)*TD;
f2=exp(-Ke(m)*T)-C_vector/K(m)-exp(-Ka*T);
f=f1*f2;
KA(m)=solve(f,Ka);
end
KA=KA'
xIswrite(‘'filename’,KA sheet,'range’); %output vector KA into an Excel file.

2.2 Estimated Response Functions
rauc[x1_,x2_]=4.95-0.0025x1+0.0061x2-0.000091x1*x2+0.000009x1*x1+0.000503x2*x2
raucl[x1_,x2_]=5.14-0.0043x1+0.0016x2-0.000074x1*x2+0.000013x1*x1+0.000572x2*x2
tauc[x1_,x2_]=5.78-0.0094x1-0.0345x2+0.000169x1*x2+0.000021x1*x1+0.000147x2*x2
tauc1[x1_,x2_]=5.45-0.00672x1-0.0206x2+0.000095x1*x2+0.000016x1*x1+0.000112x2*x2
rtmax[x1_,x2_]=14.8-0.119x1-0.408x2+0.00208x1*x2+0.000271x1*x1+0.00069x2*x2

rtmax1[x1_,x2_]=3.71-0.0138x1-0.112x2+0.000503x1*x2+0.000025x1*x1+0.00087x2*x2

ttmax[x1_,x2_]=3.21-0.0294x1+0.232x2-0.00139x1*x2+0.000125x1*x1+0.00139x2*x2
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ttmax1[x1_,x2_]=-1.96+0.0388x1+0.0598x2-0.000289x1*x2-0.000097x1*x1-0.000329x2*x2
rcmax[x1 _,x2 ]=3.59-0.00831x1-0.0206x2+0.00012x1*x2+0.000021x1*x1-0.000079x2*x2
rcmax1[x1_,x2_]=2.61+0.0027x1-0.0245x2+0.000112x1*x2-0.00001x1*x1+0.000173x2*x2
tcmax[x1_,x2_]=4.08-0.0138x1-0.0129x2+0.000035x1*x2+0.000037x1*x1+0.000362x2*x2
tcmax1[x1_,x2_]=2.28+0.00433x1+0.0106x2-0.000058x1*x2-0.00001x1*x1-0.000024x2*x2
dauc[x1_,x2_]=1.83-0.0191x1-0.0124x2+0.00001x1*x2+0.000052x1*x1+0.000417x2*x2
demax[x1_,x2_]=-0.73+0.0063x1+0.0324x2-0.000181x1*x2-0.000012x1*x1+0.00005x2*x2
lauc[x1_,x2_]=(tauc[x1,x2]-rauc[x1,x2])-2.132*dauc[x1,x2]*Sqrt[1/3+1/3]

laucl[x1l ,x2_]=(taucl[x1,x2]-raucl[x1,x2])-2.132*dauc[x1,x2]*Sqrt[1/3+1/3]
vauc[xl_,x2_]=(tauc[x1,x2]-rauc[x1,x2])+2.132*dauc[x1,x2]*Sqrt[1/3+1/3]

uaucl[xl ,x2 J=(taucl[x1,x2]-raucl[x1,x2])+2.132*dauc[x1,x2]*Sqrt[1/3+1/3]

Icmax[x1 ,x2_]=(tcmax[x1,x2]-rcmax[x1,x2])-2.132*dcmax[x1,x2]*Sqrt[1/3+1/3]
lcmax1[x1_,x2_]=(tcmax1[x1,x2]-rcmax1[x1,x2])-2.132*dcmax[x1,x2]*Sqrt[1/3+1/3]
ucmax[x1_,x2_J=(tcmax[x1,x2]-rcmax[x1,x2])+2.132*dcmax[x1,x2]*Sqrt[1/3+1/3]
ucmax1[x1_,x2_]=(tcmax1[x1,x2]-rcmax1[x1,x2])+2.132*dcmax[x1,x2]*Sqrt[1/3+1/3]

s2auc[x1 ,x2 ]=0.0767-0.000766x1-
0.00099x2+0.000003x1*x2+0.000002x1*x1+0.000016x2*x2

s2cmax[x1_,x2_]=-0.0082+0.000068x1+0.000464x2-0.000003x1*x2-
0.00000011x1*x1+0.000003x2*x2

varauc[x1l ,x2 ]=0.0426-0.000392x1-
0.00116x2+0.000002x1*x2+0.000001x1*x1+0.000039x2*x2

varaucl[x1_,x2_]=0.0312-0.000261x1-
0.00125x2+0.000002x1*x2+0.000001x1*x1+0.000038x2*x2

vartmax[x1_,x2_]=-0.71+0.0142x1-0.0917x2+0.000556x1*x2-0.000056x1*x1-0.00062x2*x2
vartmax1[x1_,x2_]=0.137-0.0013x1-0.00249x2+0.000028x1*x2+0.000003x1*x1-0.00012x2*x2

varcmax[x1_,x2_]=0.0129-0.000177x1+0.000776x2-
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0.000005x1*x2+0.000001x1*x1+0.000003x2*x2

varcmax1[x1_,x2_]=0.0114-0.000125x1+0.0000773x2-
0.00000058x1*x2+0.00000036x1*x1+0.00000013x2*x2

2.3 Optimization Models for Class 4 Drugs with Level 3 Changes

obj1[x1_,x2_]J=(tcmax[x1,x2]-rcmax[x1,x2])"2+varcmax[x1,x2]+(ttmax[x1,x2]-
rtmax[x1,x2])"2+vartmax[x1,x2]+(tauc[x1,x2]-rauc[x1,x2])*2+varauc[x1,x2]

Minimize[{obj1[x1,x2],Abs[(x1-150)/278]>0.1,Abs[(x2-10.5)/278]<=0.06,Abs[(x1-
190)/278]+Abs[(x2-10.5)/278]<=0.1,lauc[x1,x2]>=-
0.2*rauc[x1,x2],uauc[x1,x2]<=0.25*rauc[x1,x2],Ilcmax[x1,x2]>=-
0.20*rcmax[x1,x2],ucmax[x1,x2]<=0.25*rcmax[x1,x2],0<=s2auc[x1,x2]<=0.1,0<=s2cm
ax[x1,x2]<=0.1,165.858<=x1<=194.142,6.5574<=x2<=15.0426,5[x1,x2,20,15,2.5] /xbar[
x1,x2,20,15,2.5]<=0.02,f1[x1,x2,20,15,2.5]/w[x1,x2,20,15,2.5]<=0.01,ci[x1,x2,20,15,2.5
]<=25,sd[x1,x2,20,15,2.51>=0,d[x1,x2,20,15,2.5]>=0,w[x1,x2,20,15,2.5]>=0,0.985xba
r[x1,x2,20,15,2.5]<=1.105,0<=av1[x1,x2,20,15,2.5]<=0.15,s[x1,x2,20,15,2.5]>=0,f1[x1,
x2,20,15,2.5]>=0,ci[x1,x2,20,15,2.5]>=0,9.5<=n[x1,x2,20,15,2.5]<=10.5,tcmax[x1,x2]>
=0,rcmax[x1,x2]>=0,varcmax[x1,x2]>=0,ttmax[x1,x2]>=0,rtmax[x1,x2]>=0,vartmax[x1,
x2]>=0,tauc[x1,x2]>=0,rauc[x1,x2]>=0,varauc[x1,x2]>=0},{x1,x2}]

obj2[x1_,x2_J=(tcmax1[x1,x2]-rcmax1[x1,x2])"2+varcmax1[x1,x2]+(ttmax1[x1,x2]-
rtmax1[x1,x2])"2+vartmax1[x1,x2]+(taucl[x1,x2]-raucl[x1,x2])"2+varaucl[x1,x2]

Minimize[{obj2[x1,x2],Abs[(x1-150)/278]>0.1,Abs[(x2-10.5)/278]<=0.06,Abs[(x1-
190)/278]+Abs[(x2-10.5)/278]<=0.1,lauc1[x1,x2]>=-
0.2*raucl[x1,x2],uaucl[x1,x2]<=0.25*rauc1[x1,x2],lcmax1[x1,x2]>=-
0.20*rcmax1[x1,x2],ucmax1[x1,x2]<=0.25*rcmax1[x1,x2],0<=s2auc[x1,x2]<=0.1,0<=s
2cmax[x1,x2]<=0.1,165.858<=x1<=194.142,6.5574<=x2<=15.0426,5[x1,x2,20,15,2.5]/x
bar[x1,x2,20,15,2.5]<=0.02,f1[x1,x2,20,15,2.5]/w[x1,x2,20,15,2.5]<=0.01,ci[x1,x2,20,15
,2.5]<=25,sd[x1,x2,20,15,2.5]>=0,d[x1,x2,20,15,2.5]>=0,w[x1,x2,20,15,2.5]>=0,0.985<
=xbar[x1,x2,20,15,2.5]<=1.105,0<=av1[x1,x2,20,15,2.5]<=0.15,s[x1,x2,20,15,2.5]>=0,f
1[x1,x2,20,15,2.5]>=0,ci[x1,x2,20,15,2.5]>=0,9.5<=n[x1,x2,20,15,2.5]<=10.5,tcmax1[x
1,x2]>=0,rcmax1[x1,x2]>=0,varcmax1[x1,x2]>=0,ttmax1[x1,x2]>=0,rtmax1[x1,x2]>=0,
vartmax1[x1,x2]>=0,tauc1[x1,x2]>=0,rauc1[x1,x2]>=0,varauc1[x1,x2]>=0}{x1,x2}]
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APPENDIX 3

Mathematica Codes for the Example in Chapter 5

3.1 Estimated Response Functions

y1[x1 X2 ]=25.33-4x1+Xx2+x1*x2-2.33x1*x1-
4.33x2*%2+0.5x1*x1*x2+0.5x1*x2*x2+8.33x1*x2*x2*Xx 1

y2[x1_,x2 ]=46.33-6.5x1-x2-1.25x1*x2-4.833x1*X1-
3.33x2*x2+0.75x1*Xx1*x2+0.75x1*x2*Xx2+9.083x 1 *x1*x2*x2

y3[Xx1 X2 ]=68-8x1-2x2-3.75x1*x2-5x1*x1-
AX2*Xx2+2.25X1*X1*X2+1.75X1*X2*Xx2+9.75X1*X1*X2* X2

y4[x1_,x2_]=87-7.5x1-2.5x2-5.25x1*x2-5.5x1*x1-
2.5X2*Xx2+1.75X1*X1*X2+3.75X1*X2*X2+7.75X1*X1*X2*X2

y5[x1_,x2_]=101-3.5x1-2.5%2-3.5x1*Xx2-6.83x1*x1-2.83X2*X2+2X1*X2*Xx2+7.83X1*X1*X2*X2
s1[x1 ,x2 ]=2.8-1.83x1+7.5x2+2Xx1*x2+5.7x2*X2-9.5x1*X1*X2-5.5X1*X1*X2*x2
s2[x1_,x2_]=12.667-8.667x1*x1-8.667x2*x2+8.147x1*x1*x2*x2
s3[x1_,x2_]=16-9.167x2*x2

s4[x1_,x2_]=17.4-8.667x2-4.067x2*x2

s5[x1 ,x2_]=19.667+3.333x1+8.25x1*x2-13.167x1*x1-15.667Xx2*X2-
3.75x1*x1*x2+25.917x1*x1*x2*x2

s13[x1_,x2_]=0.9083+2.1596x2-2.1464x1*x2-1.1335x1*x1+1.6509x2*x2-
1.7137x1*x1*x2+1.4781x1*x2*X2-2.724X1*X1*X2*x2

s14[x1_,x2_]=0.2912+2.6292x2-1.5448x1*x1*x2-0.9812x1*Xx1*x2*x2
s15[x1_,x2_]=0.5241+1.5428x2-1.6603x1*x2+1.4837x1*x2*x2-2.3758x1*x1*x2*x2

§23[x1_,x2_]=1.1798-2.3364x1-1.4173x1*Xx1-2.6574x2*x2-
0.4314x1*x1*x2+1.1681x1*x2*x2+2.5304X1*X1*X2*x2

s24[x1_,x2_]=0.5331-2.462x1+1.951x1*x2+2.744x1*x2*x2

§25[x1_,x2_]=-1.4572+1.2974x1*x2+2.17x2*x2+1.793x1*x1*x2
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s34[x1_,x2_]=2.3125+2.104x1+0.9361x2-2.608x1*x2*x2-4.233X1*X1*Xx2*X2
s35[x1_,x2_]=-0.064-2.672x1*x1*x2-1.056X1*X2*x2+2.29x1*X1*x2*x2

s45[x1_,x2 ]=3.0493+1.8775x1-1.5451x2-2.0523x1*x2-1.5968x1*x1-
2.6055x2*x2+2.281x1*x1*x2

3.2 Estimated Empirical DFs

d1[x1_,x2_]=0.04123+0.23612x1-0.05889x2-0.07924x1*x2+0.20266x1*x1+0.29988x2*x2-
0.02035x1*x1*x2-0.15536Xx1*x2*x2-0.463X1*X1*x2*Xx2

d2[x1_,x2_]=0.45476-0.08741x1-0.25742x1*x1+0.29891x2*Xx2+0.4471x1*X2*x2-
0.1366x1*x1*x2*x2

d3[x1_,x2_]=0.27038+0.16835x2-0.1465x1*x1+0.357x2*x2-
0.1917x1*x1*x2+0.21794x1*x2*x2-0.21x1*Xx1*x2*x2

d4[x1 ,x2 ]=0.31675+0.17898x2+0.1168x1*x2-0.1625x1*x1+0.2956X2*x2-0.2923x1*X 1 *X2-
0.206x1*x1*x2*x2

d5[x1_,x2_]=0.50795-0.17436x1-0.28947x2-0.22744x1*x2-
0.30795x1*x1+0.26476x1*x1*x2+0.3101X1*X1*x2*x2

ds1[x1_,x2_]=0.888+0.0733x1-0.3x2-0.08x1*x2-
0.228x2*x2+0.38X1*Xx1*Xx2+0.22*X1*X2*X1*x2

ds2[x1_,x2_]=0.4933+0.3467x1*x1+0.3467x2*x2-0.336 7x1*X1*x2*x2
ds3[x1_,x2_]=0.6735+0.1871x2*x2
ds4[x1_,x2_]=0.81257+0.107x2

ds5[x1_,x2_]=0.83747-0.02755x1-
0.06818x1*x2+0.10882x1*x1+0.12948x2*x2+0.03099X 1 *X1*x2-0.21419X 1 *X 1 *X2*X2

d12[x1_,x2_]=0.78905-0.23362x2+0.17063x1*x1+0.2248x1*x1*x2

d13[x1_,x2_]=0.80472+0.07446x1-0.43191x2-0.22277x1*x2+0.08768x1*x1-
0.31997x2*x2+0.6907x1*x1*x2

d14[x1_,x2_]=0.82298-0.17008x2-0.3488x2*x2+0.3058x1*x1*x2-
0.07486x1*x2*x2+0.3067X1*X1*x2*x2

d15[x1_,x2_]=0.79688-0.20242x2-
0.22856x1*x2+0.127x1*X1+0.4605X1*x1*x2+0.21986X1*x2*X2-0.21 74X 1 *X 1 *X2*X2
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d23[x1_,x2_]=0.74022-0.06442x1+0.08802x2-0.08628x1*x2-0.20751x1*x1-
0.14719x1*x1*x2+0.23363x1*x1*x2*x2

d24[x1_,x2_]=0.5617-0.24458x1-0.1614x1*x2
d25[x1_,x2 ]=0.68037-0.2417x1-0.1879x1*x2-0.1543x1*x1*x2
d34[x1_,x2_]=0.3923-0.4162x1+0.2722x2*x2+0.2186x1*x1*x2+0.3154x1*x2*x2

d35[x1_,x2 ]=0.436-0.12602x1*x2+0.3085x1*x1+0.4549x2*x2+0.35997X1*X 1 *x2-
0.6766x1*x1*x2*x2

d45[x1_,x2_]=0.5682-0.3064x1-0.1675x1*x2+0.3044x1*x1*x2+0.4389x1*x2*x2

3.3 Estimated Mechanistic DFs

dd1[x1_,x2_]=Piecewise[{{0,y1[x1,x2]<0|| y1[x1,x2]>25} {(y1[x1,x2]-0)/(12.5-
0),0<=y1[x1,x2]<=12.5} {(25-y1[x1,x2])/(25-12.5),12.5<y1[x1,x2]<=25}}]

dd2[x1_,x2_]=Piecewise[{{0,y2[x1,x2]<35|| y2[x1,x2]>50}{(y2[x1,x2]-35)/(42.5-
35),35=y2[x1,x2]<=42.5} {(50-y2[x1,x2])/(50-42.5),42.5<=y2[x1,x2]<=50}}]

dd3[x1_,x2_]=Piecewise[{{0,y3[x1,x2]<55|| y3[x1,x2]>70}{(y3[x1,x2]-55)/(62.5-
55),55<=y3[x1,x2]<=62.5},{(70-y3[x1,x2])/(70-62.5),62.5<=y3[x1,x2]<=70}}]

dd4[x1_,x2_]=Piecewise[{{0,y4[x1,x2]<75|| y4[x1,x2]>90}{(y4[x1,x2]-75)/(82.5-
75),75<=y4[x1,x2]<=82.5},{(90-y4[x1,x2])/(90-82.5),82.5<=y4[x1,x2]<=90} }]

dd5[x1_,x2_]=Piecewise[{{0,y5[x1,x2]<95|| y5[x1,x2]>110} {(y5[x1,x2]-95)/(102.5-
95),95<=y5[x1,x2]<=102.5},{(110-y5[x1,x2])/(110-102.5),102.5<=y5[x1,x2] <=110}}]

dds1[x1_,x2_]=Piecewise[{{1,s1[x1,x2]<=0},{(25-s1[x1,x2])/(25-
0),0<s1[x1,x2]<=25},{0,51[x1,x2]>25}}]

dds2[x1_,x2_]=Piecewise[{{1,52[x1,x2] <=0},{(25-s2[x1,x2])/(25-
0),0<s2[x1,x2]<=25},{0,52[x1,x2]>25}}]

dds3[x1_,x2_]=Piecewise[{{1,s3[x1,x2] <=0},{(49-s1[x1,x2])/(49-
0),0<s3[x1,x2]<=49},{0,s3[x1,x2]>49}}]

dds4[x1_,x2_]=Piecewise[{{1,54[x1,x2] <=0},{(81-s4[x1,x2])/(81-
0),0<s4[x1,x2]<=81},{0,54[x1,x2]>81}}]

dds5[x1_,x2_]=Piecewise[{{1,s5[x1,x2] <=0},{(121-s5[x1,x2])/(121-
0),0<s5[x1,x2]<=121},{0,s5[x1,x2]>121}}]
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dd12[x1_,x2_]=Piecewise[{{0,512[x1,x2]<-5|| s12[x1,x2]>5}{(s12[x1,x2]+5)/5,-
5<=512[x1,x2]<=0},{(5-s12[x1,x2])/5,0<=512[x1,x2] <=5}}]

dd13[x1_,x2 ]=Piecewise[{{0,513[x1,x2]<-5|| s13[x1,x2]>5}{(s13[x1,x2]+5)/5,-
5<=513[x1,x2]<=0},{(5-s13[x1,x2])/5,0<=s13[x1,x2] <=5}}]

dd14[x1_,x2 ]=Piecewise[{{0,514[x1,x2]<-5|| s14[x1,x2]>5}{(s14[x1,x2]+5)/5,-
5<=514[x1,x2]<=0}{(5-s14[x1,x2])/5,0<=s14[x1,x2] <=5}}]

dd15[x1_,x2 ]=Piecewise[{{0,s15[x1,x2]<-5|| s15[x1,x2]>5}{(s15[x1,x2]+5)/5,-
5<=515[x1,x2]<=0},{(5-s15[x1,x2])/5,0<=s15[x1,x2] <=5}}]

dd23[x1_,x2_]=Piecewise[{{0,523[x1,x2]<-5|| s23[x1,x2]>5} {(s23[x1,x2]+5)/5,-
5<=523[x1,x2]<=0},{(5-s23[x1,x2])/5,0<=s23[x1,x2] <=5}}]

dd24[x1_,x2_]=Piecewise[{{0,524[x1,x2]<-5|| s24[x1,x2]>5} {(s24[x1,x2]+5)/5,-
5<=524[x1,x2]<=0},{(5-s24[x1,x2])/5,0<=s24[x1,x2] <=5}}]

dd25[x1_,x2_]=Piecewise[{{0,525[x1,x2]<-5|| s25[x1,x2]>5},{(s25[x1,x2]+5)/5,-
5<=s25[x1,x2]<=0},{(5-s25[x1,x2])/5,0<=s25[x1,x2] <=5}}]

dd34[x1_,x2_]=Piecewise[{{0,534[x1,x2]<-5|| s34[x1,x2]>5},{(s34[x1,x2]+5)/5,-
5<=534[x1,x2]<=0},{(5-s34[x1,x2])/5,0<=s34[x1,x2] <=5}}]

dd35[x1_,x2_]=Piecewise[{{0,s35[x1,x2]<-5|| s35[x1,x2]>5},{(s35[x1,x2]+5)/5,-
5<=535[x1,x2]<=0},{(5-s35[x1,x2])/5,0<=s35[x1,x2] <=5}}]

dd45[x1_,x2_]=Piecewise[{{0,s45[x1,x2]<-5|| s45[x1,x2]>5}{(s45[x1,x2]+5)/5,-
5<=545[x1,x2]<=0},{(5-545[x1,x2])/5,0<=s45[x1,x2] <=5}}]

3.4 Optimization Models

o Model using proposed empirical DFs

FindMinimum[{k21+k31+ks21+ks31,d2[x1,x2]+k21==1,d3[x1,x2]+k31==1,ds2[x1,x2]+ks21==
1,ds3[x1,x2]+ks31==1,0<=y1[x1,x2]<=25,35<=y2[x1,x2]<=50,55<=y3[x1,x2]<=70,75<
=y4[x1,x2]<=90,95<=y5[x1,x2]<=110,0<=s1[x1,x2]<=25,0<=s2[x1,x2]<=25,0<=s3[ X1,
x2]<=49,0<=s4[x1,x2]<=81,0<=s5[x1,x2]<=121,-5<=512[x1,x2]<=5,-
5<=s13[x1,x2]<=5,-5<=514[x1,x2]<=5,-5<=515[x1,x2]<=5,-5<=523[x1,x2]<=5,-
5<=524[x1,x2]<=5,-5<=525[x1,x2]<=5,-5<=534[x1,x2]<=5,-5<=s35[x1,x2]<=5,-
5<=s45[x1,x2]<=5,k21>=0,k31>=0,ks21>0,ks31>=0,-1<=x1<=1,-
1<=x2<=1,0<=d1[x1,x2]<=1,0<=d2[x1,x2]<=1,0<=d3[x1,x2]<=1,0<=d4[x1,x2]<=1,0<=
d5[x1,x2]<=1,0<=ds1[x1,x2]<=1,0<=ds2[x1,x2]<=1,0<=ds3[x1,x2]<=1,0<=ds4[x1,x2]<
=1,0<=ds5[x1,x2]<=1,0<=d12[x1,x2]<=1,0<=d12[x1,x2]<=1,0<=d13[x1,x2]<=1,0<=d1
4[x1,x2]<=1,0<=d15[x1,x2]<=1,0<=d23[x1,x2]<=1,0<=d24[x1,x2]<=1,0<=d25[x1,x2]<
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=1,0<=d34[x1,x2]<=1,0<=d35[x1,x2]<=1,0<=d45[x1,x2]<=1}{x1,x2,k21,k31,ks21 ks3
1},MaxlIterations->1000]

e Model using proposed mechanistic DFs

Minimize[{k21+k31+ks21+ks31,dd2[x1,x2]+k21==1,dd3[x1,x2]+k31==1,dds2[x1,x2]+ks21==1
,dds3[x1,x2]+ks31==1,0<=y1[x1,x2]<=25,35<=y2[x1,x2]<=50,55<=y3[x1,x2]<=70,75<
=y4[x1,x2]<=90,95<=y5[x1,x2]<=110,0<=s1[x1,x2]<=25,0<=5s2[x1,x2]<=25,0<=s3[ X1,
x2]<=49,0<=s4[x1,x2]<=81,0<=s5[x1,x2]<=121,-5<=s12[x1,x2]<=5,-
5<=513[x1,x2]<=5,-5<=514[x1,x2]<=5,-5<=515[x1,x2]<=5,-5<=s23[x1,x2]<=5,-
5<=524[x1,x2]<=5,-5<=525[x1,x2]<=5,-5<=534[x1,x2]<=5,-5<=535[x1,x2]<=5,-
5<=s45[x1,x2]<=5,k21>=0,k31>=0,ks21>0,ks31>=0,-1<=x1<=1,-
1<=x2<=1,0<=dd1[x1,x2]<=1,0<=dd2[x1,x2]<=1,0<=dd3[x1,x2]<=1,0<=dd4[x1,x2]<=1
,0<=dd5[x1,x2]<=1,0<=dds1[x1,x2]<=1,0<=dds2[x1,x2]<=1,0<=dds3[x1,x2]<=1,0<=dd
s4[x1,x2]<=1,0<=dds5[x1,x2]<=1,0<=dd12[x1,x2]<=1,0<=dd13[x1,x2]<=1,0<=dd14[x1
X2]<=1,0<=dd15[x1,x2]<=1,0<=dd23[x1,x2]<=1,0<=dd24[x1,x2]<=1,0<=dd25[x1,x2]<
=1,0<=dd34[x1,x2]<=1,0<=dd35[x1,x2]<=1,0<=dd45[x1,x2]<=1}{x1,x2,k21,k31,ks21,
ks31}]

e Model using the weighted overall DF

objd[x1_,x2_]=(dd1[x1,x2]*10*dd2[x1,x2]*100*dd3[x1,x2]*100*dd4[x1,x2]*10*dd5[x1,x2]*10
*dds1[x1,x2]*10*dds2[x1,x2]*100*dds3[x1,x2]*100*dds4[x1,x2]*10*dds5[x1,x2]*10*d
d12[x1,x2]*dd13[x1,x2]*dd14[x1,x2]*dd15[x1,x2]*dd23[x1,x2]*dd24[x1,x2]*dd25[x1,
x2]*dd34[x1,x2]*dd35[x1,x2]*dd45[x1,x2])(1/470)

Maximize[{objd[x1,x2],0<=y1[x1,x2]<=25,35<=y2[x1,x2]<=50,55<=y3[x1,x2]<=70,75<=y4[x1
X2]<=90,95<=y5[x1,x2]<=110,0<=s1[x1,x2]<=25,0<=52[x1,x2]<=25,0<=s3[x1,x2]<=4
9,0<=s4[x1,x2]<=81,0<=s5[x1,x2]<=121,-5<=512[x1,x2]<=5,-5<=513[Xx1,x2]<=5,-
5<=s14[x1,x2]<=5,-5<=515[x1,x2]<=5,-5<=523[x1,x2]<=5,-5<=524[Xx1,x2]<=5,-
5<=s25[x1,x2]<=5,-5<=534[x1,x2]<=5,-5<=535[x1,x2]<=5,-5<=545[x1,x2]<=5,-
1<=x1<=1,-
1<=x2<=1,0<=d1[x1,x2]<=1,0<=d2[x1,x2]<=1,0<=dd3[x1,x2]<=1,0<=dd4[x1,x2]<=1,0
<=dd5[x1,x2]<=1,0<=dds1[x1,x2]<=1,0<=dds2[x1,x2]<=1,0<=dds3[x1,x2]<=1,0<=dds4
[x1,x2]<=1,0<=dds5[x1,x2]<=1,0<=dd12[x1,x2]<=1,0<=dd13[x1,x2]<=1,0<=dd14[x1,X
2]<=1,0<=dd15[x1,x2]<=1,0<=dd23[x1,x2]<=1,0<=dd24[x1,x2]<=1,0<=dd25[x1,x2]<=
1,0<=dd34[x1,x2]<=1,0<=dd35[x1,x2]<=1,0<=dd45[x1,x2]<=1,0<=0bjd[x1,x2]<=1}{x
1,x2}]
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