
Clemson University
TigerPrints

All Dissertations Dissertations

12-2009

Real-Time Vehicle Parameter Estimation and
Adaptive Stability Control
John Limroth
Clemson University, limroth@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Operations Research, Systems Engineering and Industrial Engineering Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Limroth, John, "Real-Time Vehicle Parameter Estimation and Adaptive Stability Control" (2009). All Dissertations. 494.
https://tigerprints.clemson.edu/all_dissertations/494

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Clemson University: TigerPrints

https://core.ac.uk/display/268634351?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/305?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/494?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F494&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


 

 
 
 
 
 
 
 

REAL-TIME VEHICLE PARAMETER ESTIMATION 
AND ADAPTIVE STABILITY CONTROL 

 
 

A Dissertation 
Presented to 

the Graduate School of 
Clemson University 

 
 

In Partial Fulfillment 
of the Requirements for the Degree 

Doctor of Philosophy 
Automotive Engineering 

 
 

by 
John Limroth 

December 2009 
 
 

Accepted by: 
Dr. Thomas R. Kurfess, Committee Chair 

Dr. E. Harry Law 
Dr. Beshahwired Ayalew 

Dr. Timothy B. Rhyne 
 

  



 ii



 iii

ABSTRACT 
 
 

This dissertation presents a novel Electronic Stability Control (ESC) strategy that 

is capable of adapting to changing vehicle mass, tire condition and road surface 

conditions.  The benefits of ESC are well understood with regard to assisting drivers to 

maintain vehicle control during extreme handling maneuvers or when extreme road 

conditions such as ice are encountered.  However state of the art ESC strategies rely on 

known and invariable vehicle parameters such as vehicle mass, yaw moment of inertia 

and tire cornering stiffness coefficients.  Such vehicle parameters may change over time, 

especially in the case of heavy trucks which encounter widely varying load conditions.  

The objective of this research is to develop an ESC control strategy capable of identifying 

changes in these critical parameters and adapting the control strategy accordingly. 

An ESC strategy that is capable of identifying and adapting to changes in vehicle 

parameters is presented.  The ESC system utilizes the same sensors and actuators used on 

commercially-available ESC systems.  A nonlinear reduced-order observer is used to 

estimate vehicle sideslip and tire slip angles.  In addition, lateral forces are estimated 

providing a real-time estimate of lateral force capability of the tires with respect to slip 

angle.  A recursive least squares estimation algorithm is used to automatically identify 

tire cornering stiffness coefficients, which in turn provides a real-time indication of axle 

lateral force saturation and estimation of road/tire coefficient of friction.  In addition, the 

recursive least squares estimation is shown to identify changes in yaw moment of inertia 

that may occur due to changes in vehicle loading conditions.  An algorithm calculates the 

reduction in yaw moment due to axle saturation and determines an equivalent moment to 
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be generated by differential braking on the opposite axle.  A second algorithm uses the 

slip angle estimates and vehicle states to predict a Time to Saturation (TTS) value of the 

rear axle and takes appropriate action to prevent vehicle loss of control.  Simulation 

results using a high fidelity vehicle modeled in CarSim show that the ESC strategy 

provides improved vehicle performance with regard to handling stability and is capable 

of adapting to the identified changes in vehicle parameters. 
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NOTATION 
 
 

Subscripts 

Subscripts are used to indicate a quantity that is “per axle” or “per wheel.” 
 

A single number in the subscript indicates a per axle variable: 
• 1: Front axle 
• 2: Rear axle 

A subscript number immediately followed by a letter “L” or “R” indicates a per wheel 
variable: 
• 1L: Front left wheel 
• 1R: Front right wheel 
• 2L: Rear left wheel 
• 2R: Rear right wheel 

Variables in bold indicate either a matrix (upper case letter) or vector (lower case letter). 
 
The hat symbol ^ above a variable indicates an estimated state or parameter. 
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CHAPTER ONE  
 

INTRODUCTION 
 
 

1.1 Motivation 

A study by the Insurance Institute for Highway Safety on all types of road 

vehicles has found that Electronic Stability Control (ESC) systems “could prevent nearly 

one-third of all fatal crashes and reduce the risk of rolling over by as much as 80 percent 

[1].”  In light of these benefits, NHTSA has issued Federal Motor Vehicle Safety 

Standard 126 which mandates that all new light vehicles include ESC systems as standard 

equipment by September 2011 [2].  While the inclusion of ESC on heavy trucks is not yet 

mandated, increasingly the cost benefits of such systems are being emphasized by 

suppliers and it is believed that legislation mandating ESC systems on heavy trucks is on 

the horizon. 

A study by Wang and Council [3] determined that there are approximately 4,500 

to 5,000 truck rollovers on ramps per year in the U.S.  In addition to potential injury and 

loss of life, rollover accidents can also be very expensive to vehicle operators.  According 

to Sampson and Cebon [4], the average cost of heavy truck rollover incidents in the 

United Kingdom is estimated to be between $120,000 and $160,000.  Heavy truck ESC 

systems can be an effective measure at reducing the number of rollover and other 

incidents.  Bendix, a commercial truck ESC system supplier, reports that the addition of 

ESC to commercial vehicles results in a 10-60% reduction in incidents such as rollover, 

jackknifing or loss of control [5]. 
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1.2 Problem Statement 

Current state of the art ESC systems utilize the well-known bicycle handling 

model as the basis for determining expected vehicle response with regard to driver 

steering input.  Commonly state variable feedback designs are used where measured 

vehicle states are compared to the theoretical vehicle states predicted by the bicycle 

model simulated as part of the control system.  Unfortunately the applicability of the 

bicycle handling model, and hence the control system,  is restricted by the accuracy of 

vehicle parameters such as mass, yaw moment of inertia, center of gravity (CG) 

longitudinal location and tire cornering stiffness coefficients. 

Commercial trucks have loading conditions that vary in both magnitude and load 

distribution from trip to trip.  In addition, even passenger cars which have less variation 

in loading conditions may have worn tires or replacement tires which have different 

handling properties. These changes that may occur in fundamental vehicle parameters 

motivate the need for a stability control system that can identify the parameter changes 

and adapt the control strategy accordingly. 

1.3 Objectives 

The fundamental objective of this thesis is the development of an ESC system that 

is capable of identifying changes in relevant vehicle and environment parameters and 

adapting the control strategy to these changes.  The system should identify changes in tire 

lateral cornering stiffness that may occur over time due to tire wear or replacement.  The 

system should also compensate for changes in vehicle mass and/or yaw moment of inertia 

that may occur due to passenger or freight loading.  In addition, the system should 
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automatically identify the current road/tire coefficient of friction.  The control strategy 

itself should be robust with respect to changes in these parameters and be capable of 

adapting the strategy as needed to compensate for the changes.  The system should be 

capable of accomplishing these objectives using current state of the art ESC sensors and 

actuators and possible additional sensors that add only marginal cost and complexity.  In 

addition the parameter identification and adaptive stability control algorithms should be 

of a reasonable complexity for implementation on modern vehicle electronic control 

units. 

1.4 Contributions 

The fundamental contributions of this research are as follows: 

1. A novel nonlinear reduced-order vehicle lateral velocity observer that 

accurately tracks lateral velocity during non-linear handling events, but is 

robust with respect to measurement noise and/or bias. 

2. A method of estimating lateral forces and lateral force potential of each 

wheel. 

3. Real-time identification of axle linear cornering stiffness coefficients and 

vehicle yaw moment of inertia, which enables adaptation of the control 

strategy to changes in tire cornering stiffness or vehicle loading condition. 

4. Estimation of axle lateral force saturation when the estimated lateral force 

magnitude falls below that predicted by the current linear cornering 

stiffness coefficient and slip angle estimates. 
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5. Estimation of road/tire coefficient of friction from saturated axle lateral 

force and normal force. 

6. An “equivalent moment” stability control strategy that uses differential 

braking to generate a yaw moment equal to the reduction in moment of the 

saturated axle, while considering the interaction of lateral and longitudinal 

forces on the actuated wheel. 

7. A “Time to Saturation” predictive control strategy capable of applying 

front axle differential braking prior to saturation of the rear axle lateral 

force to maintain vehicle stability. 

8. An advanced Anti-lock Braking System (ABS) strategy that adapts 

longitudinal slip targets to account for road/tire coefficient of friction and 

interaction of longitudinal and lateral slip of the wheels. 

1.5 Dissertation Overview 

In Chapter 2 a review of relevant literature on state of the art ESC strategies, 

vehicle state estimation methods and vehicle parameter identification methods is 

presented.  Subsequent Chapters 3-6 outline the various components of the parameter 

identification and ESC strategies developed.  The general structure of the developed 

strategy and organization of these chapters is shown in Figure 1.1. 

Chapter 3 presents a survey of approaches to estimating vehicle lateral velocity, 

including the nonlinear reduced-order kinematic observer developed for this work.  The 

use of the estimated lateral velocity to generate estimates of axle slip angles is also 

discussed. 
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Figure 1.1: Organization of Dissertation Chapters 3-6 on ESC Strategy 

In Chapter 4 estimates of axle lateral forces are determined from the ESC sensor 

values by inversion of the linear force and angular momentum equations.  This chapter 

also explains the determination of axle lateral force saturation and estimation of road/tire 

coefficient of friction.  Chapter 5 shows how the estimated axle slip angles and lateral 

3: Vy and α
Estimation

4: Fz, Fy, Fx
Estimation

4: Axle Saturation 
and µ Estimation
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forces may be used with a recursive least squares algorithm to estimate cornering 

stiffnesses and yaw moment of inertia.  The ESC algorithm is presented in Chapter 6, 

including an equivalent moment differential braking strategy employed when axle 

saturation is detected and a predictive Time To Saturation (TTS) algorithm that takes 

corrective action when impending rear axle saturation is detected.  This chapter also 

describes the Anti-Lock Braking (ABS) algorithm used to control braking of individual 

wheels. 

The remaining chapters summarize the results of simulations of the designed ESC 

strategy.  Chapter 7 presents results of co-simulation of the adaptive ESC strategy and a 

high-fidelity vehicle model in CarSim.  Finally conclusions and ideas for future work are 

provided in Chapter 8. 

  



 7

CHAPTER TWO  
 

BACKGROUND 
 
 

This section provides an overview of the current literature relevant to this project.  

First an overview of ESC systems for passenger vehicles is provided.  Then methods of 

vehicle state and parameter estimation in the literature are presented. 

2.1 Electronic Stability Control Algorithms 

Electronic stability control is currently implemented in many production 

passenger vehicles to prevent spin-out and to match the vehicle yaw rate response to the 

intent of the driver [6, 7].  The fundamental concept of current ESC systems is the use of 

differential braking to apply a yaw moment to the vehicle in order to ensure the vehicle 

follows the path indicated by the driver steering input.  Actuation is accomplished by the 

use of hydraulic or pneumatic valves in the braking system which are also used for Anti-

lock Braking System (ABS) functionality [8-12].  Sensors used by theses systems 

typically include a steering wheel angle sensor, individual wheel speed sensors, lateral 

accelerometer and yaw rate sensor [12]. 

It should be noted that ESC affects both vehicle handling stability and 

responsiveness, and often the design of the system involves a trade-off between the two 

[13].  One objective of this research is to match the model used for determining driver 

intent to the actual physical system in order to reduce the compromise in vehicle 

responsiveness due to the ESC system. 
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Figure 2.1: Typical ESC State Feedback Control Strategy 

The general form of a typical ESC control scheme is shown in Figure 2.1.  The 

current state vector x of the vehicle is determined from the measurements of the set of 

sensors described above.  Some states such as vehicle lateral velocity cannot be measured 

directly, and instead must be estimated from the various sensor values.  Approaches to 

addressing this and other problems are described below in section 2.3.2 Estimation From 

Lateral Dynamics. 

The desired states are typically determined from the measured steering wheel 

angle and vehicle forward velocity using either a linear state space dynamic model or a 

steady state model of the vehicle [6, 10].   The dynamic model typically used is the 

classic bicycle handling model [14].  This model is called the bicycle model since 

differences in force generation between left and right wheels on an axle are ignored and 

may thus be approximated by a single wheel at the center of the axle. The bicycle model 

is depicted graphically in Figure 2.2 with a top view of the vehicle. 
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Figure 2.2: Bicycle Dynamic Handling Model 

The total vehicle center of gravity is located a distance a behind the front axle and 

a distance b in front of the rear axle.  The vehicle velocity at the center of gravity is 

separated into longitudinal vx and lateral vy components.  The vehicle yaw rate r is also 

indicated at the vehicle center of gravity.  The bicycle model assumes a constant forward 

velocity vx, therefore the two states of the model are lateral velocity vx and yaw rate r.  

The velocity vector of each axle vi is indicated at the virtual wheel located at the center of 
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each axle.  The model depicted assumes steering of the front wheels only through a road 

wheel steer angle δ.  The angle between the axle longitudinal axis and the axle velocity 

vector is defined as the slip angle αi, which is negative in the direction shown for both 

axles in Figure 2.2.  The bicycle modal assumes a linear lateral force response with 

respect to slip angle.  The linear lateral force gain is defined as the axle cornering 

stiffness Ci.  A longitudinal braking force in the axle –x direction may also be present at 

each axle as shown in the figure. 

The resulting linear bicycle model is second order with vehicle states of lateral 

velocity (or alternatively sideslip angle) and yaw rate. 

 

1 2 1 2 1

2 2
11 2 1 2
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x xy y

x x
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mv mvv v m

r r aCaC bC a C b C
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δ

+ − +⎡ ⎤ ⎡ ⎤− −⎢ ⎥ ⎢ ⎥⎡ ⎤ ⎡ ⎤⎢ ⎥= + ⎢ ⎥⎢ ⎥ ⎢ ⎥⎢ ⎥− + +⎣ ⎦ ⎣ ⎦ ⎢ ⎥−⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

  (2.1) 

Here the longitudinal brake forces of the steered axle are not included in the model, and 

m is the total vehicle mass and J the yaw moment of inertia.  Lookup tables are typically 

used to vary the matrix entries with vehicle speed vx. 

 The desired states determined from the bicycle model are compared to the 

measured and estimated states.  Typically a deadband function is employed to ensure that 

activation of the system only occurs when there is significant deviation between the 

desired and the measured state values [10].  Some form of transfer function may then be 

applied to the error signal to determine the demanded moment to the lower-level system 

that implements differential braking.  For example in the case of full-state feedback 

control, this transfer function is simply a set of gains applied to the error signal [15, 16].  
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The output is generally either a differential braking pressure [6] or desired slip value for a 

brake controller to be applied at a specific wheel [16]. 

One common form of feedback control for ESC is the full-state feedback Linear 

Quadratic Regulator (LQR)  [15, 16].  Such a design automatically places the poles of the 

closed loop system such that a cost function with weighted Q and R matrices to be 

applied to the state errors and control outputs respectively is minimized.  Alternatively if 

only a single variable is used for feedback such as yaw rate, a simple PD controller may 

be used to place the closed loop poles at a desired location [6]. 

One approach applied by Anwar [17] is a model-predictive controller for yaw 

control.  Another optimization-based approach is described by Eslamian [18].  This 

approach uses an optimization to design a non-linear controller for sideslip regulation.  

Sliding mode control is yet another approach that has been used to address the stability 

control problem [19-21]. 

It should be noted that differential braking has been employed on passenger 

vehicles for functions other than yaw rate and sideslip tracking.  Wielenga [22] has 

proposed an “anti-rollover braking” scheme which uses differential braking to avoid 

rollover in vehicles with a relatively high center of gravity.  In high sideslip conditions, 

such a vehicle is prone to rollover instead of spinning out as would a normal passenger 

car.  Braking applied to the front outside wheel in such a condition will slow the vehicle 

and provide moment to reduce the vehicle sideslip.  It should be noted however that while 

such a system might mitigate the risk of rollover, the vehicle will not necessarily track the 

direction intended by the driver and may still leave the roadway and result in an accident. 
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A common feature of the ESC strategies found in current literature is the use of 

errors in the measured or estimated states of the model to determine the control law.  For 

example understeer or oversteer conditions are detected by errors in yaw rate.  However, 

the saturation of lateral force generated by each axle, which causes the understeer or 

oversteer condition, is not identified.  The goal of this work is to develop a strategy that 

will identify the lateral force saturation of each axle and take control action accordingly.  

As a result the controller may take appropriate actions when both axles are saturated in 

lateral force as opposed to only one axle in saturation.  The ESC control strategies 

presented in this section are not able to make such a distinction since the physical cause 

of the vehicle instability is not identified. 

2.2 Vehicle Lateral Velocity Estimation Methods 

Estimators are often employed in automotive applications to determine vehicle 

states that cannot be measured directly.  Specifically the vehicle lateral velocity (or 

equivalently vehicle sideslip angle) is of critical importance to the ESC control strategies 

described in the previous section, as well as to the adaptive ESC strategy presented in this 

dissertation.  In general there are three approaches that have been applied to determining 

vehicle lateral velocity: direct measurement using cameras or Global Positioning Satellite 

(GPS) units, estimation using physical model based observers and estimation using 

kinematic model based observers.  Some of the approaches presented below combine 

elements of several of these approaches in an attempt to overcome limitations of each.  In 

fact the lateral velocity estimator described in this dissertation is an observer that 

dynamically combines elements of the physical and kinematic models. 
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While direct sensing of lateral velocity using cameras or GPS units has been 

demonstrated, these approaches generally suffer from low data throughput and are 

prohibitively expensive to implement in passenger vehicles [23].  One approach is the use 

of GPS and inertial navigation system (INS)  rate sensors combined with a planar vehicle 

model [24].  However, such an approach does not address out-of-plane motion or rate 

gyrometer sensor bias [25].  More recently the use of two-antenna GPS for direct vehicle 

roll and heading measurement for improved sideslip estimation has been proposed [26].  

Other approaches combine the use of GPS sensors with lateral velocity observer 

techniques described below.  For example GPS velocity measurements have been 

combined with a model-based Kalman filter observer to improve estimates of vehicle 

sideslip [27, 28].  In addition GPS measurements have also been combined with a 

kinematic observer for the same purpose [25].  Note however while these techniques may 

prove to enhance the estimation capability of the observers alone, the cost of the GPS 

units themselves still prevents their use in commercial applications. 

A variety of observer structures have been proposed to estimate lateral velocity 

from the sensor signals commonly available in ESC systems: usually lateral acceleration 

and yaw rate.  These are typically Luenberger observers based on either a physical 

vehicle model such as equation (2.1) above or a kinematic equation.  The general form of 

a full state observer based on the bicycle model is: 
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The matrix K is the observer feedback gain matrix, and may be designed by 

several different methods.  As shown in section 3.1.2 Full-Order Observer, the observer 

dynamic matrix is A-KC, and the gains may be selected to produce desired eigenvalues 

of this matrix using pole placement methods.  Alternatively, the system of equation (2.2)

may be treated as a stochastic system and a Kalman filter may be designed to produce the 

observer feedback matrix.  In general, lateral velocity observers designed using physical 

models produce estimates with low noise, but are sensitive to vehicle parameters and 

produce good results only in the linear handling range [27]. 

Hac and Simpson developed a model based full-order observer for both lateral 

velocity and yaw rate from steering and lateral acceleration measurements [29].  The 

physical model includes a nonlinear model of tire force characteristics as well as an 

estimation of  road/tire coefficient of friction 

Another example of a model based lateral velocity observer is presented by Liu 

and Peng [30].  This method simultaneously estimates lateral velocity and tire cornering 

stiffnesses as described in section 2.3.2 Estimation From Lateral Dynamics.  This method 

was compared to others by Ungoren, et. al., and found to have slow convergence of the 

state and parameter estimations [31]. 
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Farrelly and Wellstead showed how a steady state Kalman filter could be 

designed for the physical model based observer, and showed an alternative gain design 

that is insensitive to the rear axle cornering stiffness parameter [27].  However such an 

observer cannot be designed to be insensitive to all parameters of the physical model that 

may change over time and thus influence the accuracy of the observer.  Deng and Haicen 

implemented a model based Luenberger observer with feedback gains designed to 

produce desired observer eigenvalues [23].  As discussed in section 2.3.2 Estimation 

From Lateral Dynamics, they also implemented cornering stiffness parameter estimation 

for both axles to reduce the sensitivity of the lateral velocity observer to changes in 

vehicle parameters. 

Non-linear physical models may be incorporated into the estimation the by the use 

of the extended Kalman filter [32, 33].  In addition to the extended Kalman filter, [33] 

examines the use of a non-linear observer for vehicle velocity estimation based on 

advanced friction models and compares the result to that of the extended Kalman filter.  

Such extended Kalman filter approaches require linearization of the nonlinear equations 

at each time step, and therefore may not be practical for implementation in commercial 

applications. 

As an alternative to physical model based observer, the kinematic relationships of 

the vehicle states may be exploited to design a lateral velocity observer.  The most 

commonly used relationship is that of the lateral acceleration assuming constant forward 

velocity. 

  y y xa v v r= +   (2.3) 
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Thus the lateral acceleration and yaw rate sensor values provide a means of 

computing the time derivative of lateral velocity directly, which may be integrated over 

time to develop an estimate of lateral velocity.  Such kinematic model based observers 

are not sensitive to vehicle parameter changes and accurately estimate in the nonlinear 

handling range, but may produce noisy estimates and large estimation errors in the 

presence of any sensor bias [27].  A variety of approaches have been used to overcome 

these challenges with the kinematic model. 

An observer based on longitudinal and lateral kinematics was also presented by 

Farrelly and Wellstead [27].  The observer has a nonlinear feedback gain that is a 

function of yaw rate.  However, this observer develops large errors when the yaw rate 

goes to zero.  This method was extended by Ungoren, et. al., to include a correction when 

yaw rate is small using a model based observer [31].  In this case a hard switch between 

models is made based on yaw rate, which will result in discontinuities in the rate of 

change of estimated lateral velocity.  This approach is similar to that used in this work 

described in section 3.1.6 Nonlinear Reduced-Order Observer, however smooth 

switching functions for the observer gain are used to avoid such discontinuities. 

Several successful approaches to lateral velocity estimation incorporate both the 

physical model and kinematic model in the observer structure.  Fukada describes the 

Toyota ESC system in which sideslip is estimated from a combination of a model based 

observer and integration of the kinematic equation [34].  In addition to estimating lateral 

velocity, axle lateral forces are also estimated from lateral acceleration and yaw angular 

acceleration by inverting the lateral force and moment equations.  This same approach is 
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used in this work, as described in section 4.1 Lateral Force Estimation.  Fukada shows 

that the substitution of these direct lateral force estimates into the physical model based 

observer of equation (2.2) results in the kinematic model based observer.  The physical 

model is incorporated by using a weighted average of the directly estimated forces and 

forces estimated from a nonlinear tire model.  The relative weighting is determined by a 

nonlinear function of yaw rate deviation from a determined reference value.   When yaw 

rate deviation is small, the lateral force estimate of the physical tire model is weighted 

more heavily in order to correct integration errors of the kinematic model integration. 

Nishio, et. al., also proposed a combination of physical model based observer and 

kinematic based observer by executing both in parallel and switching between estimates 

based on a spinout detection algorithm [35].  The spinout detection is computed from tire 

models and measured lateral acceleration.  Integration errors that arise due to sensor drift 

are corrected by artificially driving estimated sideslip to zero when the sideslip angular 

velocity (i.e. derivative of lateral velocity) is “extremely small” [35].  Note however that 

this may cause problems when sideslip peaks during highly nonlinear, transient 

maneuvers. 

Another example of a combination of physical and kinematic models for lateral 

velocity estimation is the strategy used by the Ford vehicle stability system, presented by 

Tseng, et. al. [7].  This strategy uses an integration of the physical bicycle model with an 

observer feedback correction based on the kinematic model. 

  ( )
0

ˆ ˆ ˆ
t

y y x y yv a v r k a a dt⎡ ⎤= − + −⎣ ⎦∫   (2.4) 



 18

Here the observer gain k is in the range 0 1k< ≤  and ˆ ya  is the lateral acceleration 

computed using the output equation of the bicycle model described in equation (2.2).  

(Note that this equation has been corrected to the coordinate system used in this 

dissertation since Tseng, et. al., defines a left-handed coordinate system [7].)  If k = 1, the 

result is a direct integration of the kinematic equation while if k = 0 then the physical 

bicycle model is simulated.  Tseng, et al., explain that the observer gain may be adapted 

with the “behavior of vehicle dynamics” but provide no strategy for adaptation [7, 36].  

The approach used in this research described in section 3.1.6 Nonlinear Reduced-Order 

Observer is equivalent to equation (2.4).  The fundamental difference in the 

implementation is that this work uses an adaptive observer gain as a function of yaw rate 

and forward velocity to correct errors of integration of the kinematic equation when the 

vehicle dynamics are stable. 

A similar approach also developed at Ford is also described in U.S. Patent 

6,671,595 [37].  The integration of the kinematic equation is filtered with an “Anti-

Integration-Drift” high-pass filter and the physical model based estimate is filtered using 

a “Steady-State-Recovery” low-pass filter.  The two estimates are summed to realize the 

lateral velocity estimate.  Thus, the steady state estimate is assumed to not contribute 

significantly much during non-linear events.  However it is not clear that there will not be 

high-frequency content in the linear range, nor low-frequency content in the non-linear 

range.  For example a vehicle sliding laterally on ice may be well into the nonlinear range 

of tire forces, yet the vehicle states may be changing slowly. 
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One challenge to estimating sideslip is that the road bank angle causes a bias in 

the lateral accelerometer measurement.  One algorithm for estimating road bank angle 

and compensating the lateral acceleration measurement is proposed in Tseng [7].  Fukada 

corrects the lateral force estimation for bank angle by correcting the reference yaw rate 

by the measured lateral acceleration [34].  Other methods are included as part of 

identification schemes described in the next section.  Note that in this research work, the 

vehicle is assumed to operate on a level planar surface.  Bank angle estimation is not 

included since it is beyond the scope of this work and methods for addressing this issue 

have been described in the literature. 

2.3 Real-time Vehicle Parameter Identification Methods 

In addition to identifying unmeasureable vehicle states, estimation methods may 

be employed to identify unknown vehicle parameters.  A number of system identification 

methods are available in the literature for automatic determination of system parameters.  

These methods are often extended to enable the real-time online parameter estimation 

that will identify changes in system parameters as they happen.  Several of these methods 

have been applied to vehicle parameter estimation, including [38]: 

• Least squares 

• Extended Kalman filter 

• Maximum likelihood 

• Recursive prediction error 

All of these methods rely on a model of the vehicle in order to yield a specific set 

of vehicle parameters.  Often the vehicle model relates only to the vertical ride motion of 
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the vehicle or the longitudinal or lateral dynamics of the vehicle.  For example, in [39] 

various vehicle and suspension parameters are identified using the vertical motions of the 

vehicle.  An observer based identification method is used to identify the unsprung mass, 

pitch moment of inertia and suspension parameters using a “half-car” model of the pitch 

and heave motions.  This method has been shown to be successful to identify nonlinear 

system parameters such as the nonlinear damping coefficients of the suspension model. 

Examples of estimation of relevant vehicle parameters from the longitudinal and 

lateral vehicle dynamics are discussed in the following subsections. 

2.3.1 Estimation From Longitudinal Dynamics 

Estimation of vehicle parameters such as total mass have been successfully 

estimated directly from measured vehicle longitudinal dynamics [40-43].  In theory the 

vehicle mass can be readily identified from the measured longitudinal acceleration if the 

traction and braking forces are known.  However, lateral accelerometer sensors on board 

the vehicle are biased due to gravity on a road with a non-zero bank angle.  Therefore the 

primary problem is resolving the effect of the vehicle inertial mass from that of the road 

grade angle. 

On approach to solving this problem is to use additional information from GPS 

sensors as demonstrated in [40].  Two different approaches are examined.  In the first, 

two sensors are used to directly determine the road grade and correct the lateral 

acceleration measurement.  In a second approach also discussed in [40], a single GPS 

sensor is used to determine the relative vertical and horizontal velocities and thus an 

estimate of road grade is obtained. 
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Other  approaches using information available from standard vehicle sensors have 

been proposed by Vahidi [42].  In the first approach an observer is used, while in the 

second a recursive time-varying least square method with forgetting is used.  Both 

methods rely on the engine speed and engine output torque to determine mass and road 

grade angle.  Simulation results show both approaches to be successful. 

In [41], two different applications of Kalman filtering to determine vehicle mass 

and road grade angle are presented.  In the first approach an extended Kalman filter is 

applied in the case that vehicle speed is measured, but engine traction force at the wheels 

is not known.  In the case where propulsion force may be determined from engine speed 

and amount of fuel injected in the engine, a simple filter is found to be sufficient to 

estimate vehicle mass and road grade angle. 

Yet another approach to estimating vehicle mass is presented in [43].  In this case 

the mass is estimated from the longitudinal dynamics, the lateral dynamics and the 

vertical dynamics.  The longitudinal dynamics are used to estimate mass via a recursive 

least square with the disturbance observer technique.  A Kalman filter is used to estimate 

mass from the lateral dynamics.  Finally a dual recursive least square algorithm is used on 

the vertical motions of the vehicle to estimate mass.  Integration of all three techniques is 

shown to provide a means of mass estimation under arbitrary vehicle maneuvers. 

2.3.2 Estimation From Lateral Dynamics  

As described above, the vehicle mass may be estimated from the lateral dynamics 

[43].  Other parameters of interest including yaw moment of inertia and center of gravity 

height may also be estimated from the lateral dynamics.  Time-varying parameters such 
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as road bank angle may be estimated to remove bias in the lateral accelerometer 

measurement used for vehicle sideslip estimation. 

Deng and Haicen use a Recursive Least Squares with exponential forgetting 

factor approach to estimate tire cornering stiffness coefficients from vehicle lateral 

dynamics [23].  The estimates of cornering stiffness are used in turn to update the 

physical model that serves as a basis for a lateral velocity observer.  Since the cornering 

stiffness estimation depends on the lateral velocity estimate, an interdependency between 

the observer and the parameter estimator exists and logic and data sanity checks are 

employed to ensure stability of the combined system. It should be noted that this work 

uses the same RLS algorithm for cornering stiffness estimation as described in section 5.1 

Axle Cornering Stiffness Identification.  However the problems due to interdependency 

of the lateral velocity observer and parameter estimator are avoided since the lateral 

velocity observer is based primarily on the kinematic model rather than the physical 

model. 

Liu and Peng [30] present a scheme for estimating unknown system states and 

unknown parameters simultaneously.  The scheme re-parameterizes signals into a 

regression form and a least squares error scheme is applied to estimate unknown 

parameters.  An example application presented includes a handling example in which the 

bicycle model system matrix parameters are estimated from the vehicle lateral dynamics. 

GPS sensors combined with standard vehicle sensors may be used to estimate 

vehicle states and parameters.  Specifically GPS and inertial sensors are used by Ryu [44] 

to identify tire cornering stiffnesses, weight distribution and yaw moment of inertia.  
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Both the least squares method and total least squares method are used.  In addition the 

same sensors are used to distinguish suspension roll and road bank angle.  The road band 

bank angle has a bias effect on the lateral accelerometer measurement just as the road 

grade angle does on the longitudinal acceleration.  Ryu [44] also provides a good 

discussion of the importance of excitation signals necessary for parameter convergence 

and the resulting errors produced when sufficient excitation is not available. 

A means of automatically identifying the vehicle center of gravity location is 

described in [45].  Both the center of gravity longitudinal position and height are 

determined directly from the vehicle lateral dynamics.  The Multiple Model Switching 

and Tuning (MMST) method is used to successfully identify these parameters.  While 

simulation results show successful parameter estimation, the computational requirements 

for such a scheme may make the method prohibitive in commercial applications. 

An additional important time varying parameter that may need to be identified is 

the road friction coefficient µ.  A combination of lateral and longitudinal dynamics has 

been used to successfully estimate vehicle motion, tire forces and road friction coefficient 

in Ray [46, 47].  A five degree-of-freedom model and a basic tire model are used in an 

extended Kalman filter to perform the identification.  Successful identification of these 

parameters has been demonstrated via simulation and via field testing on an actual 

vehicle [47]. 

Chapter Summary 

This chapter provided a review of current literature on passenger car ESC 

systems, vehicle lateral velocity estimation techniques and approaches to real-time 
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vehicle parameter identification.  The classical bicycle handling model was presented as a 

typical approach of traditional ESC control strategies for determining desired vehicle 

response to steering input.  ESC strategies in the literature were shown to compare the 

determined desired states to measurements and estimates of actual vehicle states.  These 

errors in vehicle states are typically used in feedback control strategies such as PID or 

state feedback control. 

Approaches to estimating vehicle lateral velocity using observers based upon both 

kinematic models and physical models were presented.  Some strategies in the literature 

combine both models in the observer with the goal of realizing the benefits of each 

simultaneously.  Finally a variety of strategies to identifying vehicle parameters from 

both vehicle longitudinal and lateral dynamics were reviewed.  Most strategies employ 

some form of recursive least squares estimation or extended Kalman filter. 
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CHAPTER THREE  
 

SLIP ANGLE ESTIMATION 
 
 

The ESC algorithm presented in this dissertation relies on an estimation of lateral 

slip angle for each axle.  The vehicle lateral velocity is required to estimate slip angle of 

the axles, and this value must be estimated as described below since it cannot be 

measured directly.  The estimation of lateral velocity and slip angles is therefore a critical 

part of the ESC strategy as shown in Figure 1.1.  A detailed view of this portion of the 

control strategy is shown in Figure 3.1.   

 

 

Figure 3.1: Role of Slip Angle Estimation in ESC Strategy 

The vehicle sensor values are used in the estimation of lateral velocity and 

calculation of slip angles as described below in this chapter.  The resulting estimated axle 
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slip angles are subsequently used by the ESC algorithm in both the determination of axle 

saturation and the online identification of vehicle parameters. 

The axle slip angles may be calculated from the vehicle forward velocity, lateral 

velocity, yaw rate and front road wheel steer angle.  The forward velocity is commonly 

estimated from wheel speeds and is an integral part of the ABS braking system.  The 

front road wheel steer angle may be determined from the measured steering wheel angle 

and a model of the steering system dynamics.  Alternatively a separate sensor may be 

used for road wheel steer angle, however this is typically prohibitively expensive.  Since 

the estimation of the road wheel steer angle from steering system dynamics is common to 

all ESC systems, the road wheel angle value is used directly from the vehicle model for 

simulation.  Yaw rate is measured directly, however lateral velocity must be estimated. 

A survey of approaches to estimating lateral velocity is presented in this chapter, 

as well as a novel nonlinear reduced-order observer developed for this work.  

Additionally the estimation of slip angle along with a lag model for tire relaxation effect 

is presented. 

3.1 Vehicle Lateral Velocity Estimation 

3.1.1 Direct Observer 

The measured lateral acceleration and yaw rate sensor values of the ESC system 

may be considered outputs of the bicycle model described in equation (2.1).  In this case 

the complete state space bicycle model is: 

 
δ
δ

x = Ax + B
y = Cx + D

  (3.1) 
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In this case there are two state variables to be observed and two system outputs.  

Therefore the output equation may be inverted to directly observe the states of the bicycle 

model.  Note that this is possible because the C matrix is nonsingular due to its structure. 

  [ ]1ˆ δ−=x C y - D   (3.3) 

As a result, this direct observer makes an estimation of lateral velocity based on 

measurements of steering angle, lateral acceleration and yaw rate.  Figure 3.2 shows the 

observed lateral velocity for a double lane change maneuver simulated in CarSim at 60 

kph.  The plot shows that there is good agreement between the actual value from CarSim, 

the linear model response to the steering input and the value of the direct observer.  
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Although they are not plotted here, there is also very good agreement between CarSim 

and the linear model in the lateral acceleration and yaw rate outputs. 

 

 

Figure 3.2: Double Lane Change 60 kph, Yaw Velocity Direct Observer 
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seen to show good performance initially, but develops significant error at ~3 seconds.  At 

this point the lateral acceleration and yaw rate of the linear model deviates significantly 

from the CarSim model.  The reason is that at this speed there is significant lateral load 

transfer at both axles.  The nonlinearity of the cornering stiffness as a function of vertical 

load in the tire model causes a net reduction in axle cornering stiffness for this lateral 

load transfer.  Since the linear model states are in error at this point, the direct observer 
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observer is not able to accurately track vehicle lateral velocity when the extreme vehicle 

handling behavior deviates from the linear response predicted by the bicycle model.  In 

addition, the direct observer is prone to significant error if any vehicle parameters of the 

model itself are in error. 

 

 

 

Figure 3.3: Double Lane Change 120 kph, Steering and Lateral Acceleration 
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Figure 3.4: Double Lane Change 120 kph, Direct Observer 

3.1.2 Full-Order Observer 

A traditional full-order observer may be designed using the pole placement 

method. 
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Figure 3.5: Double Lane Change 120 kph, Full-Order Observer, λd1,2 = -50 
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pole locations since the linear model and CarSim model are in good agreement at this 

speed. 

As seen in Figure 3.5, at 120 kph the full-state observer estimated lateral velocity 

tracks that of the direct observer.  This is because the fast poles of the observer result in 

large observer gain and thus the observer minimizes error in model outputs very quickly.  

The result is effectively the same as that of the direct observer. 

Figure 3.6 shows the full-state observer response with the observer poles placed at 

1,2 10dλ = − ,  much closer to the system poles.  In this case the gain matrix is very small 

and essentially the observer is running an open-loop model in parallel with the actual 

system.  As a result the estimated states track very closely to the linear model states as 

seen in the figure.  Other gains designed with the observer poles at different real locations 

or as complex conjugate pairs exhibited similar behavior.  Essentially the pole location 

results in a trade-off between tracking either the direct observer or the linear model states, 

both of which are in significant error during high lateral acceleration in the maneuver. 
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Figure 3.6: Double Lane Change 120 kph, Full-Order Observer, λd1,2 = -10 
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both 2, n = p and an alternative approach to designing a reduced order observer must be 

developed.  In this case since the yaw rate is measured directly, the reduced-order 

observer may be designed using an alternative system model that treats the yaw rate as an 

input: 
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The result is a first order observer for the estimated lateral velocity: 
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Figure 3.7: Double Lane Change 120 kph, Reduced-Order Observer, λd = -10 
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As with the full state observer, setting the observer pole at 11 11 50d a kcλ = − = −  

results in an observer that directly tracks the state of the direct observer.  Also similar to 

the full state observer, setting the observer pole at -10 results in an observer that tracks 

the linear model as seen in Figure 3.7.  There is more deviation from the linear model 

than was observed with the full-state observer, however this can be attributed to the fact 

that the yaw rate is forced to be the same as that of the simulated vehicle. 

An interesting phenomenon is observed when the observer pole is set to zero, 

resulting in an observer gain k = 1.  In this case, the reduced-order observer yields a 

lateral velocity estimate that exactly matches the actual value of the simulated vehicle as 

seen in Figure 3.8. 

 

 

Figure 3.8: Lane Change 120 kph, Reduced-Order Observer, λd = 0 
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Note that for the vehicle model: 
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Therefore when k = 1: 
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This is simply a restatement of the kinematic relationship y y xa v v r= + .  

Unfortunately, however, the result is that the observer is simply an open-loop integrator 

and therefore any measurement error such as noise or especially bias will result in an 

incorrect estimate of lateral velocity.   

 

 

Figure 3.9: Lane Change 120 kph, Reduced-Order Observer, λd = 0, ay Measurement Bias of 0.01 g 
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Simulation results with a bias of 0.01 g added to the lateral acceleration value are 

shown in Figure 3.9.  However, this kinematic relationship is the motivation for an 

alternative reduced-order observer developed in the following section. 

3.1.4 Kinematic Reduced-Order Observer 

The idea behind the second approach to a reduced-order observer is to combine 

the kinematic relationship y y xa v v r= +  with the output feedback correction of an 

observer structure.  As seen in the previous section integrating the lateral acceleration to 

get lateral velocity is prone to substantial error due to measurement noise and bias.  

However adding an output feedback correction can help limit the amount of error 

introduced during integration. 
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Therefore the observer gain may again be designed by placement of the observer 

pole at 11 10d kcλ = − = − .  The estimation of this observer is identical to that of the 

physical model-based reduced-order observer shown in Figure 3.7.  Note that if the first 

lateral acceleration ay term in equation (3.9) is replaced with the physical model output 

ay’ of equation (3.5), the result is equivalent to the physical model-based observer 

presented in equation (3.6).  As a result, the two reduced-order observers produce similar 

results for the same designed pole location, even though the actual value of observer gain 

is different for each observer. The two forms of reduced-order observers thus produce 

equivalent results with the same tradeoff in gain selection. 
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3.1.5 Steady State Gain Kalman Filter 

The linear bicycle model may be reformulated as a stochastic model with zero-

mean process random noise w(t) and measurement random noise v(t). 

 
( )
( )
t
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δ
δ
+
+

x = Ax + B w
y = Cx + D v

  (3.10) 

In this case the Kalman filter can be used to implement an optimal observer with 

respect to the noise characteristics of w(t) and v(t).  To implement the Kalman filter, the 

auto-covariance matrices of w(t) and v(t) must be specified: 
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  (3.11) 

In theory the process noise and measurement noise would be measured and the 

auto-covariances computed directly.  In practice this is very difficult to do, especially for 

the process noise w(t) as this often cannot be measured directly.  As a result the Q and R 

matrices may be considered to be tuning parameters for the Kalman filter. 

In order to evaluate the behavior of the Kalman filter for observing the vehicle 

state variables, a steady state Kalman gain was designed and implemented using the 

LabVIEW Control Design and Simulation module functions.  The Q and R matrices were 

specified as diagonal matrices with equal values along the diagonal of each. 

 
Q
R

=
=

Q I
R I

  (3.12) 

This simplistic approach was used to “tune” the Kalman filter by the relative 

weighting of the scalar values Q and R.  The response to the double lane change 

maneuver with Q weighted more than R by two orders of magnitude may be seen in 
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Figure 3.10.  Note that zero-mean white noise was added to the measured lateral 

acceleration and yaw rate signals obtained from the vehicle simulation.  The more heavily 

weighted Q matrix indicates low confidence in the underlying model, but greater 

confidence in the output measurements.  As a result the estimated lateral velocity is very 

close to that determined by the direct observer, seen in Figure 3.4. 

 

 

 

Figure 3.10: Lane Change 120 kph, Kalman Filter, Q = 100, R = 1 
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The results of a second simulation of the Kalman filter with R weighted two 

orders of magnitude higher than Q is shown in Figure 3.11.  In this case the weighting 

indicates high confidence in the process model but low confidence in the measured 

outputs.  As a result the model very closely tracks the linear model response.   

 

 

 

Figure 3.11: Lane Change 120 kph, Kalman Filter, Q = 1, R = 100 
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Although the Kalman filter provides the optimal observer gain with respect to the 

noise models, the actual implementation involves the same trade-offs with regard to 

model accuracy as with the other observer models. 

3.1.6 Nonlinear Reduced-Order Observer 

A number of approaches have been employed to estimate vehicle lateral velocity.  

One approach is to use the kinematic relationship between rate of change of lateral 

velocity, lateral acceleration and yaw rate assuming constant vehicle forward velocity 

[10]: 

  ˆy y xv a v r= −   (3.13) 

Since the lateral acceleration and yaw rate are measured directly, the lateral 

velocity may be found by directly integrating the kinematic relationship. 

  ( )
0

ˆ
t

y y xv a v r dt= −∫   (3.14) 

However, the resulting estimate is prone to significant error should there be any 

sensor bias or noise, as demonstrated above.  To prevent this buildup of error, the use of a 

feedback term to correct the estimated lateral velocity from any sensor bias error has been 

suggested [7].  The implementation in this research is similar but has a slightly different 

form with emphasis placed on integration of the kinematic relationship. 

  ( )
0

ˆ ˆ
t

y y x y yv a v r k a a dt⎡ ⎤= − + −⎣ ⎦∫   (3.15) 

The parameter k is the observer feedback gain and is in the range 1 0k− ≤ ≤ .  The 

estimated lateral acceleration is determined from the measured states and the bicycle 

model, thus comprising a reduced-order observer: 
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Note that if the feedback gain k is 0, the result is the open loop integrator of 

equation (3.14).  The advantage of this approach is that the kinematic relationship is 

independent of the vehicle model and any modeling errors, and produces accurate lateral 

velocity estimates even when the vehicle is operating beyond the linear range of the 

model.  The disadvantage is that the estimate is prone to errors in sensor bias and noise as 

previously discussed.  If the feedback gain is -1, the state estimate is simply that of the 

reduced-order observer. 

Since most non-linear handling events take place over short time durations, the 

integration errors will be minimal if an accurate lateral velocity is known at the beginning 

of the event.  Since most driving is done at very low lateral acceleration, the feedback 

gain term may be utilized to correct any previous integration errors.  Thus the desired 

non-linear observer uses a switching scheme with the feedback gain set to -1 at low 

lateral acceleration and set to 0 at high lateral acceleration: 

  ( )1 arctan 10 0.2 0.5xk v r
π

⎡ ⎤= − −⎣ ⎦   (3.17) 

A lateral acceleration of 0.2 m/s2 is chosen as most non-linear handling events 

happen when lateral acceleration is above this value.  The longitudinal velocity is 

multiplied by yaw rate instead of using the direct lateral acceleration measurement to 

ensure that non-linear behavior during a complete loss of traction is still captured (e.g. a 

spinout). 
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The resulting nonlinear reduced-order observer has the desirable property of 

accurately tracking lateral velocity during transient handling events that occur at high 

lateral acceleration.  However since such events typically happen only over short time 

durations, the observer is able to avoid integration bias errors.  An example of the lateral 

velocity estimation is shown in Figure 3.12.  The simulated maneuver is a high speed 

double lane change.  At 3.5 to 4 seconds in the simulation, the vehicle states exceed the 

linear range of the bicycle model, and therefore a traditional observer would produce 

errors in lateral velocity estimation. 

 

 

 

Figure 3.12: Nonlinear Reduced-Order Lateral Velocity Observer Estimate in Double Lane Change 
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Note that the results shown in Figure 3.12 utilize the nonlinear gain function 

shown in equation (3.17).  The arctangent function is used to ensure a smooth switching 

behavior, however a simpler function or lookup table could also be used for actual 

implementation in a controller with limited computing resources.  For the ESC control 

system developed, a simple piecewise linear function was used for the feedback gain k: 

 
1, 0.2

0.2
0, 0.2

x
x

x

v r
v r

k
v r

⎧
− <⎪= ⎨

⎪ ≥⎩

  (3.18) 

While the modified feedback gain function does not provide the smooth behavior 

of the arctangent function, the modified function is more realistic for implementation on a 

vehicle Electronic Control Unit (ECU).  This modified piecewise linear feedback gain 

function was used in the ESC controller described in subsequent chapters.  

3.2 Axle Slip Angle Estimation 

Once the vehicle lateral velocity has been estimated using the nonlinear reduced 

order observer described, the axle slip angles may be calculated directly from kinematic 

relationships [14]. 
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  (3.19) 

Tire forces do not respond to changes in slip angle immediately, but rather 

develop shear forces as the tire deforms.  For this reason, a first order lag is often used to 

model shear forces [49]. 
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  (3.20) 

Here vyi and vxi are the coordinates of the velocity vector of the wheel resolved on 

the wheel reference frame.  Lyi is the tire relaxation length for tires on axle i, resulting in 

a first order lag with time constant yi
i

xi

L
v

τ = .  Finally, αLi is the lagged slip angle that may 

subsequently be correlated with lateral force and compared to the theoretical tire lateral 

force characteristics. 

For the two axle vehicle with steering on the front wheel only these vectors are as 

follows: 
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Since the ESC control system should restrict the slip angles to relatively small 

values, linearized equations for the lagged axle slip angles may be used to reduce the 

computational burden.  Note that since typically ( )x yv v ar δ+ , the second term in the 

equation for vx1 may be neglected. 
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The results are linear first order equations in slip angle for each axle.  Note that 

the absolute value of velocity used in the CarSim model is dropped since the ESC system 

is only considered for forward vehicle velocities. 
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The tire models used in CarSim simulations in this work have a tire relaxation 

length of 0.565 m.  As a result the lagged slip angles have a time constant of ~20 

milliseconds at 100 kph and ~40 milliseconds at 50 kph.  Since driver steer input may 

change rapidly, time constants of this order are significant when the axle slip angles are 

compared to axle lateral forces as discussed in Chapter Four.  Therefore the lagged axle 

slip angle model is used in the developed ESC control strategy. 

Chapter Summary 

This chapter presented a novel nonlinear reduced-order lateral velocity observer 

used in the estimation of axle slip angles.  First a review of different approaches to 

estimating vehicle lateral velocity was presented and the relative merits of each approach 

examined with a simulated double lane change maneuver.  The nonlinear reduced-order 

observer with dynamic adaptation of feedback gain was shown to accurately track lateral 

velocity during transient nonlinear maneuvers, yet eliminate sensor noise and bias 

integration errors over time.  The estimated lateral velocity was used to estimate slip 

angle of each axle, and a first-order slip angle lag model was used to account for tire 

relaxation effects.  
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CHAPTER FOUR  
 

LATERAL FORCE AND FRICTION ESTIMATION 
 
 

The ESC algorithm utilizes an estimation of lateral force for each axle, which is 

determined using linear force and angular momentum equations.  The estimated axle slip 

angles and lateral forces are used to determine axle lateral force saturation and also 

provide a means of estimating coefficient of friction.  These components of the complete 

ESC strategy are shown in Figure 1.1.  A detailed view of axle force estimation portion of 

the control strategy is shown in Figure 4.1.  Normal, lateral and longitudinal forces are 

estimated from vehicle sensor measurements as described below in 4.1 Lateral Force 

Estimation. 

 

 

Figure 4.1: Role of Axle Lateral Force Estimation in ESC Strategy 
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The estimation of axle lateral force may also make use of the vehicle yaw moment 

of inertia Jz identified by the real-time parameter identification approach described in 

Chapter Five.  From the force estimates the lateral force potential of each axle is 

determined as described in 4.2 Estimation of Lateral Force Potential. 

Once the axle slip angle and lateral force estimates are known, axle saturation 

may be detected by examination of the lateral force characteristic curve.  A detailed view 

of axle saturation and coefficient of friction estimation portion of the control strategy is 

shown in Figure 4.2. 

 

 

Figure 4.2: Role of Axle Saturation and Coefficient of Friction Estimation in ESC Strategy 
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The theoretical linear lateral force response of the axles are computed from the 

estimated axle slip angles α1,2 described in Chapter Three and identified axle cornering 

stiffness coefficients C1,2 described in Chapter Five.  The actual lateral force potential of 

each axle is compared to the theoretical linear lateral force response to determine axle 

saturation.  When saturation is detected, the road/tire coefficient of friction may also be 

estimated.  The detection of axle saturation and estimation of coefficient of friction is 

described in 4.3 Axle Saturation and Friction Estimation.  The axle lateral force 

saturation and estimated coefficient of friction are then used in the ESC strategy 

described in Chapter Six. 

4.1 Lateral Force Estimation 

The linear force equation in the lateral direction and the angular moment equation 

together provide a unique solution for the lateral force values of the two axles.  The 

equations result directly from a summation of forces in the lateral direction and 

summation of yaw moments, resulting in a system of linear equations. 

 
1

1
2

cos1 1 1
sinyy

x
y

Fma
F

FJr a b a
δ

δ
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= −⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦
  (4.1) 

While the vehicle lateral acceleration is available directly from a sensor, the yaw 

angular acceleration must be found either by numerically differentiating the yaw rate 

signal or from an additional angular accelerometer.  Note that here positive Fx1 is the 

braking force of the front axle in the –x direction, therefore a negative sign is used where 

normally positive Fx would add to lateral force. 
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Inverting the system of equations (4.1) results in a direct estimation of axle lateral 

forces.  Note that this same approach for axle lateral force estimation was proposed by 

Fukada [34]. 
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The force balance equations must also include any additional forces and moments 

generated from longitudinal drive traction or braking forces at the wheels.  The drive and 

traction forces of the front wheels contribute to the lateral force of the steered wheels, and 

any ESC differential braking produces an additional moment that must be included in the 

moment equation. 

In order to calculate the longitudinal forces at each wheel, the individual wheel 

dynamics must be considered.  In order to determine brake force due to braking, the 

wheel-end brake chamber pressure commanded by the ABS system is used.   

 

 

Figure 4.3: Brake Force Estimation without Wheel Dynamics 
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 If wheel dynamics are ignored, the longitudinal brake force of the tire is directly 

proportional to the brake pressure applied.  However, as seen in Figure 4.3 ignoring the 

wheel dynamics leads to significant errors in brake force estimation. 

4.1.1 Non-Driven Wheel Braking Dynamics 

The torques and forces acting on a wheel in the spin direction are shown in Figure 

4.4.  Tb is the applied brake torque on the wheel, Td is the drive torque applied to wheels 

of driven axles, ω is the wheel angular spin velocity and r is the effective rolling radius of 

the wheel which is assumed to be a known constant parameter. 

 

 

Figure 4.4: Wheel Braking Dynamics 

For non-driven wheels, the wheel dynamics due to braking may be modeled as: 

 
w x b
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  (4.3) 

Therefore if wheel spin acceleration is measured or wheel spin speed is measured 

and acceleration determined by numerical differentiation, the braking force may be 

determined as: 

x
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  w b
x b

I kF P
r r
ω= +   (4.4) 

Here the brake pressure must be estimated by applying an appropriate first order 

model of the braking system to the brake pressure command output of the ABS 

controller.  Figure 4.5 shows the estimation of brake force with the wheel dynamics 

included.  Note that the rear wheel brake force is correctly estimated, however the front 

wheel longitudinal force estimation still shows large errors because drivetrain dynamics 

are not included in the model. 

 

 

Figure 4.5: Brake Force Estimation with Wheel Dynamics 

4.1.2 Driven Wheel Braking Dynamics 

Note also that for the driven wheels, the drive torque and drivetrain inertia must 

also be added to the relationship provided in equation (4.3)  [10].  The wheel dynamics 

due to braking and drive traction of the driven wheels may be modeled as: 
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Here Td is the drive traction from the differential.  From a simple model of an 

open differential, the drive torque to either of the drive wheels may be modeled as a 

function of torque generated at the transmission output: 

  ,
1
2dL R trans diff diffT T N E=   (4.6) 

Ndiff is the differential gear ratio and Ediff is the differential efficiency ratio.  Note 

that the transmission output torque is normally available from the powertrain controller 

since the engine torque output is estimated and the transmission gear ratios are known. 

Ieff is the effective combined inertia of all drivetrain components from the engine 

output to the wheels.  For a simple model including only transmission inertia and wheel 

inertia: 

  21
2eff w trans diffI I I N= +   (4.7) 

Therefore if wheel spin acceleration is measured or wheel spin speed is measured 

and acceleration determined by numerical differentiation, the braking force may be 

determined from: 

 
1
2

eff b
x b trans diff diff

I kF P T N E
r r r
ω= + −   (4.8) 

Figure 4.6 shows the estimation of brake forces for all four wheels.  The brake
 

force of the front wheels is not estimated correctly with the inclusion of the drivetrain 

dynamics. 

Note that there is a slight offset between actual and estimated longitudinal forces.  

This is due to the rolling resistance of the tires which is not modeled in the force 



 54

estimation.  This could be included based on a simple tire model, however this is a minor 

effect on longitudinal force and in general applies evenly to tires on both sides of the 

vehicle and thus contributes no additional yaw moment. 

 

 

Figure 4.6: Brake Force Estimation with Wheel and Drivetrain Dynamics 

Once the longitudinal braking forces for each wheel have been estimated, their 

contribution to the lateral force and yaw moment equations may be included.  The 

contribution of longitudinal braking force to vehicle yaw moment may be defined: 
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Note that the front axle lateral force terms are neglected in the moment 

contribution of longitudinal force since they are multiplied by the sine of the steer angle, 

and since they cancel moments when the left and right lateral forces are equal.  The 

complete force and moment equations are then: 
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  (4.10) 

The mass matrix may be inverted to allow direct calculation of the axle lateral 

forces. 
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  (4.11) 

Note that here the cosine and sine functions of the road steer angle are used, 

however these could be replaced with linear approximations to reduce the computational 

burden of the controller. 

4.2 Estimation of Lateral Force Potential 

Due to longitudinal forces, the actual lateral force generated by the tires will be 

less than theoretically possible at the given slip angle when no longitudinal force is 

present.  This must be accounted for if the lateral force characteristics of the tire are to be 

estimated.  Otherwise the ESC control scheme will produce positive feedback: ESC 

braking will result in reduced lateral force and hence further axle saturation if this effect 

is not compensated. 

The normal loads on each tire may be estimated by ignoring suspension roll and 

tire deflection dynamics and solving the static lateral load transfer for the measured 

lateral acceleration.  Note that future work could incorporate a model of roll dynamics for 

a better estimation of normal loads.  The longitudinal force is estimated from the wheel 
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braking dynamics described above.  However, only the per-axle lateral forces are known 

from the estimation from force and moment balance equations.  The per wheel lateral 

force must be determined in order to use the friction ellipse model to estimate lateral 

force potential – that is the lateral force generation possible at the given slip angle 

without longitudinal force. 

As an approximation of the interaction of the wheel longitudinal and lateral 

forces, the “friction ellipse” may be used [14]: 

 

2 2

* * 1y x

y x

F F
F F

⎛ ⎞ ⎛ ⎞
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  (4.12) 

The concept of the friction ellipse is also shown graphically in Figure 4.7.  Fy
* is 

the lateral force potential of the wheel at the given state, and represents the lateral force 

that the wheel would generate at the current slip angle if the wheel did not have any 

longitudinal slip.  Conversely Fx
* is the longitudinal force potential and represents the 

longitudinal force that would be generated with the current wheel slip if the slip angle 

was zero.  The longitudinal force potential is the peak longitudinal force and is equal to 

the coefficient of friction multiplied by the tire normal force.  For any state of combined 

longitudinal force Fx and lateral force Fy, the approximate relationship of equation (4.12) 

is assumed to hold.  Therefore the resultant force vector must lie on the ellipse as shown 

in Figure 4.7. Note that typically the maximum possible lateral force potential is 

*
y,max zF Fμ= , the same as that of the longitudinal force potential.  In this case the shape of 

the ellipse is circular, resulting in the commonly-known “friction circle” or “traction 

circle.” 
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Figure 4.7: Tire Friction Ellipse for Constant Slip Angle 

For each wheel, the friction ellipse is then: 
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Here FyL,R
* is the theoretical lateral force potential of the specific wheel.  In 

addition to wheel longitudinal forces, the individual wheel normal forces are also 

estimated.  The estimate is based on a steady state lateral load transfer due to lateral 

acceleration of the vehicle CG.  The actual normal forces will vary during transient roll 

response to lateral forces, however the static approximation was found to be sufficient for 

use in the ESC algorithm in simulation testing. 
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If there were no longitudinal forces present, then the wheel lateral forces could be 

estimated from the axle lateral force: 
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Therefore: 
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Or rearranged: 
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Finally the actual lateral force generated by each wheel must sum to the estimated 

axle lateral force. 
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  (4.17) 

Note that the friction ellipse approximation is valid only when the longitudinal 

slip is below that of the peak Fx.  Beyond this point the longitudinal force is saturated and 

the friction ellipse fails because the Fx begins to decrease before Fy goes to zero.  This 

causes a problem with the algorithm above because the actual Fx on the curve could lead 

to two possible Fy values, the one corresponding to the ellipse (longitudinal slip not 

saturated) and one corresponding to a greatly reduced Fy (longitudinal slip saturated).  To 

avoid this problem, the ABS controller must ensure that the longitudinal slip stays below 

the peak value.  This is done in this application be scaling the slip ratio targets for ABS 

activation by the estimated friction coefficient µ.  Thus on a low friction surface the slip 

ratio is maintained at a lower range to prevent saturation. 

Note also that the coefficient of friction estimated for the front axle is used as the 

estimate for both axles.  This is because if only one axle has saturated, the coefficient of 

friction of the other axle is unknown until it is saturated.  In general, the front axle 

saturates before the rear axle does, therefore this value may be assumed to apply to both.  

Even if a transition is made from a high friction surface to a low friction surface at 60 
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kph, the time between axles is only 167 milliseconds.  Therefore it is not practical to try 

to maintain separate estimates of friction coefficient for each axle. 

 

 

Figure 4.8: Real-Time Lateral Force Estimation in High Speed Double Lane Change 

With estimates of axle slip angle and lateral force, the per-axle lateral force 

characteristic curve may be generated in real-time while driving.  An example of a trace 

of lateral force and slip angle during a high speed double lane change maneuver is shown 

in Figure 4.8. 
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cornering stiffness value, this parameter is estimated in real-time from the lateral force 

response at low slip angle as described below. 

 

 

Figure 4.9: Axle Lateral Force Saturation Detection 

Figure 4.9 shows the approach for detection of axle lateral force saturation from 
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between the theoretical lateral force and the estimated lateral force is subsequently used 

by the equivalent moment generation algorithm of the ESC controller described below. 

The axle lateral force saturation detection can be used directly to calculate an 

estimate of road/tire coefficient of friction.  In general, the peak lateral force will be equal 

to the axle normal load multiplied by the coefficient of friction.  The assumption of the 

estimation is that if saturation of the axle lateral force is detected, the estimated lateral 

force must be at or very near the peak lateral force capability of the tires on that axle.  

This is evident for values of lateral force below the saturation limit shown in Figure 4.9.  

The coefficient of friction may then be directly estimated: 

  , ,ˆ ,      if  y
y y sat y deadzone

z

F
F F C F

F
μ α= < = − −   (4.18) 

An example of estimated coefficient of friction on a simulated road surface with 

mu of 0.2 is shown in Figure 4.10.  The rear axle did not saturate during this maneuver, 

therefore the estimated coefficient of friction remains at the initial assumed value.  This 

motivates the need to use the front axle value as the assumed friction coefficient for both 

axles as simulation results show that the front axle generally saturates before the rear 

axle.  The variations in estimated coefficient of friction in the front axle occur as the axle 

lateral force changes during saturation.  Periods of constant estimated coefficient of 

friction occur because estimation is suspended when the axle lateral force is not saturated. 
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Figure 4.10: Estimated Coefficient of Friction on Low Friction Surface 

Chapter Summary 

In this chapter a method of estimating lateral force potential was presented and 
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characteristics will be used to identify vehicle parameters.  When lateral force saturation 

is detected, the ESC control strategy will be used to provide additional yaw moment to 

restore vehicle stability. 
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CHAPTER FIVE  
 

REAL-TIME VEHICLE PARAMETER IDENTIFICATION 
 
 

When an axle of the vehicle is not saturated in lateral force capability, the 

estimated lateral force and slip angle provide an opportunity to identify critical vehicle 

parameters in real-time.  This capability enables the ESC strategy to adapt to identified 

changes in these vehicle parameters.  The role of vehicle parameter identification in the 

ESC strategy is shown in Figure 1.1 and in greater detail in Figure 5.1. 

 

 

Figure 5.1: Role of Vehicle Parameter Identification in ESC Strategy 
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The estimated axle slip angles described in Chapter Three and the estimated axle 

lateral force potentials described in Chapter Four are used to identify vehicle parameters 

when the slip angles are relatively small.  Identified axle cornering stiffness coefficients 

may be used in the detection of axle lateral force saturation as described in 4.3 Axle 

Saturation and Friction Estimation.  The identified yaw moment of inertia Jz may be used 

in the estimation of axle lateral forces described in Chapter Four and in the predictive 

ESC strategy described in 6.2 Time To Saturation (TTS) Predictive ESC Control. 

A recursive least squares with exponential forgetting factor algorithm is used to 

identify the linear cornering stiffness coefficient for each axle in real-time.  Since only 

vehicle motion is measured and not forces, it is not possible to estimate vehicle mass 

directly.  However when the axle cornering stiffnesses are identified, a change in vehicle 

mass will appear as a corresponding change in cornering stiffness.  In this manner the 

ESC algorithm is capable of adapting to changes in both tire properties and vehicle mass. 

In addition to estimating lateral cornering stiffnesses, yaw moment of inertia may 

be identified by using recursive least squares estimation on the system of lateral force 

equations.  This approach is very advantageous since mass and center of gravity 

longitudinal location may be measured directly using scales under the axles or on-vehicle 

load pressure sensors at the axles.  However, yaw moment of inertia is a very difficult 

quantity to measure.  Total vehicle mass may also be determined from longitudinal 

driving dynamics, thus obviating the need for load sensors at each axle.  Therefore, it is 

desirable to also estimate center of gravity longitudinal location.  However, testing results 

show that the recursive least squares estimation is not capable of separating the effects of 
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relative front/rear distribution of cornering stiffness and center of gravity longitudinal 

location. 

5.1 Axle Cornering Stiffness Identification 

The cornering stiffness of the tires on an axle may change over time due to wear, 

road condition or other factors.  In addition replacement tires may be of a different make 

and/or model than the original tires and may have different handling properties.  For 

these reasons the cornering stiffness is estimated directly from the estimated lateral force 

characteristics when the lateral force is not saturated. The simple linear model for axle 

lateral force generation serves as the model for identification. 
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A Recursive Least Squares (RLS) with exponential forgetting factor algorithm is 

used for estimation of cornering stiffness for each axle [50].  This approach is the same as 

that proposed by Deng and Haicen, except that here the front and rear cornering stiffness 

equations have been decoupled since front and rear lateral forces and slip angles have 

already been estimated [23].  As a result simple RLS estimates can be computed for each 

axle cornering stiffness at each sample n: 
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Seeding P0 with an initial large value of 1000 ensures fast convergence of the 

cornering stiffness estimates.  The forgetting factor λ is given a value of 0.9999.  Since 

the ESC controller has a time step of 1 millisecond, a step change in cornering stiffness 

will result in a 50% change in the estimated value in ~7 seconds.  Both front and rear axle 

cornering stiffnesses are initialized with a value of 200,000 N/rad.  The actual cornering 

stiffness of the front axle is much higher than that of the rear axle due to the weight bias 

towards the front of the test vehicle.  Note that the estimation is suspended for an axle 

when the side slip angle exceeds 1 degree in magnitude.  Above this range nonlinearities 

are evident in the lateral force characterstic curve due to secondary effects. 

 

 

Figure 5.2: Estimated Lateral Force Characteristic Response of Nominal Vehicle 
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wheel angle) and with frequency increasing from 0.2 Hz to 0.6 Hz at 100 kph.  The 

results for the nominal test vehicle are shown in Figure 5.2 and Figure 5.3. 

Although both axles were initialized with the same cornering stiffness, the 

estimation algorithm quickly converged on a higher cornering stiffness for the front axle.  

For reference the theoretical combined cornering stiffness values of the loaded tires on 

each axle are also provided on the plot.  As can be seen in Figure 5.3, the actual cornering 

stiffnesses are lower than the theoretical values due to other effects such as roll steer and 

compliance steer.  The final estimate values agree with a manual linear least squares fits 

of the lateral force characteristic data output from CarSim. 

 

 

Figure 5.3: Axle Cornering Stiffness Estimation of Nominal Vehicle 
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Again the cornering stiffness estimation algorithm was initialized with cornering stiffness 

values of 200,000 N/rad. 

The lateral force characteristics estimation and cornering stiffness estimation are 

shown in Figure 5.4 and Figure 5.5. 

 

 

Figure 5.4: Estimated Lateral Force Characteristic Response of Oversteering Vehicle 
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Figure 5.5: Axle Cornering Stiffness Estimation of Oversteering Vehicle 

It should be noted that such RLS estimations require input signals that are 

persistently exciting.  If the estimated forces and slip angles remain small for extended 

periods of time, significant estimation errors may develop.  When such a condition is 

encountered or signal quality is deemed to be poor, the forgetting factor may be adjusted 

closer to 1 such that the previous estimation value is retained [23].  The simple examples 

here provide sufficient signal excitation, therefore such a correction is not employed.  

However, this would need to be considered for any practical application of the method. 

5.2 Indirect Vehicle Mass Identification 

Although forces are not measured and therefore vehicle mass cannot be identified 

directly, a change in vehicle mass will manifest itself as an apparent change in cornering 

stiffness to the control system.  Note that if the yaw moment of inertia of the vehicle is 

240000

120000

140000

160000

180000

200000

220000

Time (sec)
10.00.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0 8.0 9.0

C_1_hat

C_1

C_2_hat

C_2



 72

assumed to have a constant radius of gyration, then the inertia will scale linearly with 

total vehicle mass. 

  2
zJ mR=   (5.3) 

In this case the lateral force and moment equations (4.11) may be rewritten: 
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In the case where the axle is not in saturation, the linear lateral force model is 

assumed to hold. 
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  (5.5) 

It is clear from this formulation of the equations that the identification process is 

actually identifying cornering force per unit mass.  For example a doubling of vehicle 

mass (assuming all other vehicle parameters unchanged) should result in an identified 

cornering stiffness of one half of the original value.  In actuality, a number of vehicle 

parameters change with vehicle mass.  For example compression of the tires leads to 

kinematic and compliance effects in both wheel toe and camber.  More importantly, tire 

cornering stiffness itself generally increases with increasing normal load.  The tire 

cornering stiffness as a function of normal load for the tires used for simulation studies in 

this work are shown in Figure 5.6. 
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Figure 5.6: Simulated 215/75 R17 Tire Cornering Stiffness as a Function of Normal Load 

For the vehicle model used in simulations, the nominal front tire load is 4425 N 

and the nominal rear tire load is 3079 N.  For tire loads below these nominal values, it is 

clear from Figure 5.6 that the cornering stiffness scales linearly with vehicle load. 

Therefore if the cornering stiffness identification is carried out assuming the 
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when the actual vehicle mass is decreased.  The decreased mass results in decreased tire 
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vehicle mass.  As a result, the identification algorithm which assumes nominal vehicle 

mass should converge to lower than normal values of cornering stiffness. 

A simulation was conducted with an increased vehicle mass of 50% in both the 

sprung and unsprung masses.  The moments of inertia where also increased 50% 

assuming a constant radius of gyration (i.e. a consistent distribution of mass throughout 

the vehicle bodies).  Due to the increase in mass the wheel loads increased by 50% and 

the tire cornering stiffnesses increased according to the relationship in Figure 5.6.  The 

increases mass and corresponding increase in axle cornering stiffness may also be seen in 

Table 5.1.   As a result of the nonlinear relationship for cornering stiffness, the cornering 

stiffness normalized by vehicle mass actually decreased by 7% in the front axle and by 

2% in the rear. 

 

Table 5.1: Theoretical Axle Cornering Stiffness from Tire Model 

  Vehicle 
mass, m 
(kg) 

Tire normal load, Fz 
(N) 

Axle Cornering 
Stiffness, C (N/rad) 

C/m 
(N/(rad*kg)) 

Front  Rear  Front  Rear  Front  Rear 
Nominal  1530  4425  3079  244,100  172,900  159.5  113.0 
Loaded  2295  6638  4619  340,600  254,100  148.4  110.7 
%  150%  150%  150%  140%  147%  93%  98% 

 

 

The simulation of the sine sweep input was conducted again with the heavy 

vehicle.  As can be observed in Figure 5.7 the cornering stiffnesses identified are lower 

than those of the nominal vehicle seen in Figure 5.3.   
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Figure 5.7: Axle Cornering Stiffness Estimation of 150% Mass Vehicle 

Table 5.2 shows that the identified cornering stiffness of the front axle decreased 

by 9% while the rear axle decreased by 8%.  As expected the magnitude of the decrease 

is close to the decrease of the theoretical normalized cornering stiffnesses in table.  These 

results do not match exactly as the cornering stiffness is not the only parameter that 

changes with increasing vehicle mass; compression of the suspension leads to additional 

changes in the kinematics and compliance effects on the wheels. 

 

Table 5.2: Identified Axle Cornering Stiffness from Simulation 

  Axle Cornering 
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Front  Rear 
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The results of the estimation in Figure 5.7 do show however that the parameter 

identification does identify the net change in normalized axle cornering stiffness.  As a 

result the ESC control system is therefore able to adapt to the change in vehicle mass via 

the change in axle cornering stiffness. 

5.3 Vehicle Yaw Moment of Inertia Identification 

Equation (5.1) enabled separate recursive least squares estimations of the 

cornering stiffnesses of each axle.  Each estimation used one lateral force equation with a 

single regression variable αi and a single observed variable Fyi.  This resulted in the 

simple recursive least squares estimation of equation (5.2).  By rearranging equation 

(4.11), a system of equations may be realized for recursive least squares estimation of 

both axle cornering stiffnesses and vehicle yaw moment of inertia. 
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(5.6) 

The vector of cornering stiffness values and yaw moment of inertia are the 

parameters to be identified.  For recursive least squares, the variables of the matrix 

premultiplied by the parameter vector are the regressors and the variables of the vector on 

the right-hand side are the outputs. 
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The recursive least squares with exponential forgetting algorithm may then be 

applied to the system of equations [50]: 
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The results of estimation for the sine sweep steer input simulation are shown in 

Figure 5.8.  The final value of identified yaw inertia is 4820 kg*m2, where theoretical 

model value is 4606 kg*m2.  The difference may be related to the vehicle roll and other 

compliances that make the vehicle appear slow in response to yaw moment input.  

Simulation of a vehicle with very high roll stiffness and minimal compliances results in 

an identified yaw moment of inertia very close to the theoretical value.  These effects 

may also explain the slightly lower estimated cornering stiffness values as well. 
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Figure 5.8: RLS Estimation of Axle Cornering Stiffnesses and Yaw Moment of Inertia 
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these changes may be detected by sensors such as load sensors in the axle suspensions, 

and therefore these parameters are used in the RLS estimation algorithm. 

 

 

 

Figure 5.9: RLS Estimation of Axle Cornering Stiffnesses and Yaw Moment of Inertia for Loaded 
Vehicle 
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changes in nominal axle cornering stiffnesses and yaw moment of inertia due to the 

additional loading can be seen in Table 7.10.   

The identified cornering stiffnesses are again lower than the nominal computed 

cornering stiffnesses in the loaded condition, which are also shown in Figure 5.9.  This is 

especially true for the rear axle, which in the heavily loaded condition would be expected 

to have even more secondary effects on cornering stiffness due to kinematic and 

compliance effects of the suspension as well as lateral load transfer.  The final value of 

identified yaw moment of inertia is 6,060 kg*m2, which is in very close agreement with 

the theoretical value of 6,122 kg*m2. 

5.4 Vehicle Center of Gravity Longitudinal Location Identification 

If total vehicle mass is estimated from longitudinal driving dynamics, then sensors 

are not needed at each axle to measure normal loads.  However, information on center of 

gravity longitudinal location is not known without these sensors.  Therefore it is desirable 

to estimate this location directly from the vehicle handling.  If a constant radius of 

gyration for yaw moment of inertia is assumed, then this parameter may be estimated 

from the identified vehicle mass.  The problem then is to estimate axle cornering 

stiffnesses and center of gravity longitudinal location.  As in section 5.3 Vehicle Yaw 

Moment of Inertia Identification, the lateral force equations may be rearranged in a form 

suitable for recursive least squares estimation.  Note that the wheelbase l a b= +  is 

substituted in the equations such that the only parameter to be identified is the distance 

from the front axle to the center of gravity, a . 
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Figure 5.10: RLS Estimation of Axle Cornering Stiffnesses and Center of Gravity Longitudinal 
Location 
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The results of estimation for the sine sweep steer input simulation are shown in 

Figure 5.10.  Note that the final estimated center of gravity longitudinal location is ~1.38 

m, which is half of the vehicle wheelbase of 2.776 m.  In addition, the identified 

cornering stiffnesses are approximately equal.  The results seem to indicate that there is 

not enough information contained in the system model to differentiate between CG 

longitudinal location and differences in front and rear cornering stiffnesses. 

Chapter Summary 

This chapter presented a method of vehicle parameter identification using 

recursive least squares to identify axle cornering stiffness coefficients and vehicle yaw 

moment of inertia.  The lateral force and yaw moment balance equations were rearranged 

into a linear regression form assuming linear lateral force response of the tires.  A 

forgetting factor was used to ensure that sudden changes in vehicle parameters may be 

detected quickly.  The identification of cornering stiffness coefficients was shown to 

provide a means of adapting to changes in vehicle mass.  Two vehicle loading conditions 

were used to validate the parameter identification strategy.  In addition, another 

identification strategy to identify center of gravity longitudinal location along with 

cornering stiffness coefficients was examined.  However, this approach failed to 

accurately identify the vehicle parameters, thus indicating that the simple force and 

moment model is insufficient without including further dependencies among these 

parameters.  The identification axle cornering stiffness coefficients and vehicle moment 

of inertia will be shown to enable the ESC control strategy to adapt to changes in these 

parameters.  
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CHAPTER SIX  
 

ADAPTIVE ELECTRONIC STABILITY CONTROL 
 
 

Once axle lateral force saturation is detected, an ESC control strategy is used to 

maintain yaw stability of the vehicle.  Two separate control strategies described below 

are used to determine a commanded brake force for each wheel of the vehicle.  An ABS 

controller is then used to modulate wheel brake pressures to maintain stable longitudinal 

wheel slip.  The roles of the ESC algorithms and ABS controller in the complete system 

are shown in Figure 6.1.  The ESC algorithms compensate for the detected axle lateral 

force saturation described in 4.3 Axle Saturation and Friction Estimation.  The ESC 

algorithms in turn produce desired longitudinal braking targets for the ABS controller.  

The ABS controller modulates wheel-end brake pressures to maintain longitudinal slip 

ratio of each wheel within a determined target range. 

The ESC control strategy is comprised of two basic algorithms.  The primary 

algorithm determines the reduction in yaw moment due to lateral force saturation of an 

axle and then generates an equivalent moment via differential braking of the opposite 

axle.  The second algorithm predicts Time to Saturation (TTS) of the rear axle and 

applies differential braking of to the front axle before saturation occurs and stability is 

lost.  The predictive TTS algorithm is given priority over the equivalent moment 

algorithm.  This chapter discusses both ESC control strategies as well as the details of the 

ABS strategy. 
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Figure 6.1: Role of ESC Algorithms and ABS Controller in Complete System 
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sensor values and modulates brake pressure through a simple switching strategy to 

maintain wheel slip around a desired target value.  For this research the ABS controller 

also takes advantage of the coefficient of friction estimated by the ESC controller to 

adapt slip targets.  In addition the controller adjusts longitudinal slip targets to 

appropriate targets when slip angle is present using a simple model of combined slip. 

The idea behind the equivalent moment control is that the reduced yaw moment 

of the saturated axle can be compensated by differential braking on the non-saturated 

axle.  The reduction in yaw moment is due to the difference in lateral force generation 

between the linear model and the actual force generated at the axle.  To compensate, 

differential braking may be used on the unsaturated axle, however the longitudinal 

braking force at one wheel will result in a corresponding reduction in lateral force 

generated by that wheel.  Although this reduction is desirable since the reduction in 

lateral force of the braked wheel also helps compensate for the reduced yaw moment of 

the saturated axle, it must be accounted for when determining the braking force to apply 

to generate a net equivalent yaw moment on the vehicle.  The concept of the friction 

ellipse is again employed to model the interaction of lateral and longitudinal forces as 

described in section 4.2 Estimation of Lateral Force Potential and illustrated in Figure 

4.7. 

6.1.1 Case 1: Front Axle Saturation in Left Turn 

The linear lateral force model predicts a yaw moment as a function of the slip 

angles at the front and rear axles. 

  , 1, 2, 1 1 2 2
1,2

zi p y p y p
i

M F a F b C a C bα α
=

= − = − +∑   (6.1) 
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The actual moment generated due to the lateral forces of the wheels is: 

  * *
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Note that here the theoretical lateral force potential of each axle is estimated from 

the estimated lateral and longitudinal forces.  If the front axle is saturated, then 

*
1 1 1yF Cα< −  and there is a corresponding reduction in yaw moment generated: 

  *
1 , 1 1 1 1z z p z y yM M M C a F a F aαΔ = − = − − = Δ∑ ∑   (6.3) 

 

 

Figure 6.2: Missing Yaw Moment Due to Front Axle Lateral Force Saturation 

*
1y RF

1z RFμ

1R

*
2y RF

2z RFμ

2R

2 ,R uF

1L

1z LFμ

*
1y LF

1 1RC α−1 1LC α−

1y RFΔ1y LFΔ

1zMΔ

2L

2z LFμ

*
2y LF

2 ,L uF



 87

The concept of the missing yaw moment is illustrated graphically in Figure 6.2.  

The figure shows the idealized lateral and longitudinal tire forces at each wheel of the 

vehicle viewed from above.  The condition indicated is a left-hand turn with lateral force 

saturation of the front axle.  The actual lateral forces of each wheel are indicated with 

solid vector arrows while the theoretical linear lateral force response 1 1jC α−   of each tire 

is indicated with dashed arrow vectors.  The resulting missing moment is indicated at the 

vehicle center of gravity with a dashed arrow.  

 

 

Figure 6.3: Yaw Moment Contribution of Left Rear Wheel Without ESC Differential Braking 
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To compensate for the reduced yaw moment, the left rear wheel may be braked to 

help induce the desired yaw motion of the vehicle.  In this case there will be a net change 

in moment generated by this wheel due to changes in both lateral and longitudinal forces 

generated.  Figure 6.3 shows the contribution of the left rear wheel resultant force to the 

yaw moment of the vehicle without controlled ESC braking.  In this case the wheel forces 

are shown with an initial small amount of longitudinal force that may be present from 

sources such as driver braking or tire rolling resistance.  As indicated in the figure, the 

uncontrolled moment contribution of this wheel Mz2L,u is opposing the desired vehicle 

yaw motion in a left hand turn. 

Since this wheel may already be braked due to ESC, the lateral and longitudinal 

forces that would be generated without braking must be estimated.  The opposite wheel 

on the axle can be used to approximate the braking force that would be present at the 

current wheel without ESC intervention. 

  2 , 2x L u x RF F=   (6.4) 

Here Fx2L,u is the hypothetical longitudinal force that would be generated by the wheel if 

brake force due to ESC differential braking were not applied. 

Since the lateral force potential of the actuated wheel is known, the corresponding 

unbraked lateral Fy2L,u force may be determined using the friction ellipse. 
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When additional longitudinal braking is applied to this wheel by the ESC system 

brake actuation, there is a change in yaw moment contribution as shown in Figure 6.4.  

The additional longitudinal brake force is seen to change the direction of the yaw moment 

contribution of this wheel, thus with ESC braking this wheel now contributes to the 

desired yaw motion of the vehicle in the left hand turn.  The Equivalent Moment ESC 

strategy takes advantage of this change in yaw moment contribution of the left rear wheel 

to compensate for the missing yaw moment due to lateral force saturation of the front 

wheels. 

 

Figure 6.4: Yaw Moment Contribution of Left Rear Wheel With ESC Differential Braking 
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The net change in moment due to differential braking will be the difference 

between the braked and unbraked moment generation: 
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In these equations the subscripts “c” and “u” are used to indicate conditions with 

controlled ESC braking and without ESC braking, respectively. 

The equivalent moment principal dictates that the yaw moment due to the 

differential braking on the controlled axle must be equal to the reduction in yaw moment 

due to the saturated axle. 
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As described above, the lateral and longitudinal forces at the left rear wheel are 

related by the friction ellipse during braking: 
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Here Fx
* has been replaced by the normal force times the peak friction coefficient 

since this is the maximum longitudinal force that can be generated.  In addition, the 

lateral force potential Fy2L
* as described above is used to determine the maximum 

potential lateral force when no braking is applied. 



 91

Substituting for Fy2L,c from the moment equation results in a quadratic equation in 

Fx2L,c: 
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Rearranged in standard quadratic form: 
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  (6.10) 

A solution to the quadratic equation exists only if 2 4 0B AC− > .  If this condition 

is not met, then a different method must be employed to determine the appropriate brake 

force to use for differential braking.  As the vehicle is in a left hand turn, Fy2L
* will 

normally be positive.  In this case increasing the braking force on the left rear wheel also 

decreases the lateral force.  Both of these actions act to increase the desired negative yaw 

moment.  Therefore the maximum yaw moment is induced when full braking is applied 

and the only way that the quadratic equation may not be solved is if the desired yaw 

moment is higher than can be realized by braking this wheel.  In this case the brake force 

may simply be set to the maximum possible brake force.  The ABS controller will ensure 

that the wheel does not slip excessively when high brake pressure is applied to achieve 

the high longitudinal braking force. 
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  2 , 1 2 , 2 ,
2 2

x L c y y L u x L uF F a F b F
t t

= Δ − +   (6.11) 

However, the case when Fy2L
* is negative must be considered as this situation is 

possible during transient maneuvers.  In this case the negative lateral force contributes to 

the desired yaw moment of the vehicle.  Increasing brake force will reduce the lateral 

force, which will reduce the contribution of the wheel lateral force to the desired negative 

moment.  At some particular brake force less than the maximum possible, the maximum 

possible yaw moment in the negative direction may be realized.  If the desired yaw 

moment exceeds this maximum possible value, the quadratic equation cannot be solved 

and the brake force should be set to the value corresponding to maximum yaw moment.  

This brake force that maximizes the yaw moment may be found by setting the derivative 

of the moment equation equal to zero. 
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  (6.12) 

Taking the derivative with respect to Fx2L,c: 
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  (6.13) 

This equation may be solved for the longitudinal braking force. 
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Note that this formulation ensures that the square root function must only consider 

the range of input and output from 0 to 1 for ease of computation. 

6.1.2 Case 2: Front Axle Saturation in Right Turn 

A strategy for braking of the right rear wheel during front axle saturation in a 

right-hand turn may be derived similarly to the left rear wheel strategy.  In this case the 

nominal longitudinal brake force of the right rear wheel without ESC intervention is 

assumed to be the same as that of the left rear wheel. 

  2 , 2x R u x LF F=   (6.15) 

The net change in moment due to differential braking is therefore: 

  2 , 2 , 2 , 2 , 2 ,2 2z R c y R c x R c y R u x R u
t tM F b F F b FΔ = − − + +   (6.16) 

The equivalent moment principal dictates that the yaw moment due to the 

differential braking on the controlled axle must be equal to the reduction in yaw moment 

due to the saturated axle. 
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  (6.17) 

Again the assumption of the friction ellipse may be used to develop an equation 

quadratic in Fx2R,c that may be solved to yield the desired longitudinal brake force. 
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  (6.18) 

Again the brake force may be determined directly from the solution of the 

quadratic equation if the condition 2 4 0B AC− >  holds.  Otherwise the longitudinal brake 

force corresponding to the maximum yaw moment must be applied.  The solution in this 

case depends on the direction of the rear axle lateral brake force.  If this lateral force is 

negative as it would normally be in a right hand turn, the brake force should be set to the 

maximum possible. 

  2 , 1 2 , 2 ,
2 2

x R c y y R u x R uF F a F b F
t t

= − Δ + +   (6.19) 

Otherwise if the rear axle lateral force is in the positive direction, the brake force 

yielding maximum possible moment must be found by differentiating the moment 

equation, setting this equation equal to zero and solving for the brake force. 
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  (6.20) 

6.1.3 Case 3: Rear Axle Saturation in Left Turn 

A strategy for braking of the right front wheel during rear axle saturation in a left-

hand turn may be derived similarly to the strategy for the front wheels.  Note that the 
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difference in this case is that the longitudinal and lateral tire forces are in the wheel 

coordinate system and should be resolved onto the vehicle coordinate system due to steer 

angle.  However if the steer angle is assumed to be small the two coordinate systems may 

be confused.  Testing has shown that the simplified equations derived here assuming no 

steer angle of the front wheels produce acceptable ESC system performance. 

If the rear axle is saturated, then *
2 2 2yF C α< −  and there is a corresponding 

reduction in yaw moment generated. 

  ( )*
, 2 2 2 2z z p z y yM M M C b F b F bαΔ = − = − − = −Δ∑ ∑   (6.21) 

In this case the nominal longitudinal brake force of the right front wheel without 

ESC intervention is assumed to be the same as that of the left front wheel. 

  1 , 1x R u x LF F=   (6.22) 

The net change in moment due to differential braking is therefore: 

  1 , 1 , 1 , 1 , 1 ,2 2z R c y R c x R c y R u x R u
t tM F a F F a FΔ = − − +   (6.23) 

The equivalent moment principal dictates that the yaw moment due to the 

differential braking on the controlled axle must be equal to the reduction in yaw moment 

due to the saturated axle. 
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  (6.24) 

Again the assumption of the friction ellipse may be used to develop an equation 

quadratic in Fx1R,c that may be solved to yield the desired longitudinal brake force. 
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  (6.25) 

Again the brake force may be determined directly from the solution of the 

quadratic equation if the condition 2 4 0B AC− >  holds.  Otherwise the longitudinal brake 

force corresponding to the maximum yaw moment must be applied.  The solution in this 

case depends on the direction of the front axle lateral brake force.  If this lateral force is 

positive as it would normally be in a left hand turn, the brake force should be set to the 

maximum possible. 

  1 , 2 1 , 1 ,
2 2

x R c y y R u x R uF F b F a F
t t

= Δ − +   (6.26) 

Otherwise if the rear axle lateral force is in the negative direction, the brake force 

yielding maximum possible moment must be found by differentiating the moment 

equation, setting this equation equal to zero and solving for the brake force. 
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6.1.4 Case 4: Rear Axle Saturation in Right Turn 

A strategy for braking of the left front wheel during rear axle saturation in a right-

hand turn may be derived similarly to the strategy for the right front wheel.  In this case 
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the nominal longitudinal brake force of the left front wheel without ESC intervention is 

assumed to be the same as that of the right front wheel. 

  1 , 1x L u x RF F=   (6.28) 

The net change in moment due to differential braking is therefore: 

  1 , 1 , 1 , 1 , 1 ,2 2z L c y L c x L c y L u x L u
t tM F a F F a FΔ = + − −   (6.29) 

The equivalent moment principal dictates that the yaw moment due to the 

differential braking on the controlled axle must be equal to the reduction in yaw moment 

due to the saturated axle. 
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  (6.30) 

Again the assumption of the friction ellipse may be used to develop an equation 

quadratic in Fx1L,c that may be solved to yield the desired longitudinal brake force. 
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  (6.31) 

Again the brake force may be determined directly from the solution of the 

quadratic equation if the condition 2 4 0B AC− >  holds.  Otherwise the longitudinal brake 

force corresponding to the maximum yaw moment must be applied.  The solution in this 
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case depends on the direction of the front axle lateral brake force.  If this lateral force is 

negative as it would normally be in a right hand turn, the brake force should be set to the 

maximum possible. 

  1 , 2 1 , 1 ,
2 2

x L c y y L u x L uF F b F a F
t t

= − Δ + +   (6.32) 

Otherwise if the rear axle lateral force is in the positive direction, the brake force 

yielding maximum possible moment must be found by differentiating the moment 

equation, setting this equation equal to zero and solving for the brake force. 
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6.1.5 Case 5: Saturation of Both Axles 

Special consideration must be given to the case when both axles are saturated in 

lateral force generation.  In cases of large saturation such as driving on ice, the driver 

may input large steering input to the front wheels to overcorrect for the lateral force 

saturation.  Applying differential braking to the rear axle would enable the vehicle to yaw 

in the direction desired by the driver.  However if the rear axle is already saturated as 

well, the yaw motion would further saturate both axles and could lead to a spinout 

condition.  In addition, even if complete control of the vehicle is not lost, to recover from 

the turn, the vehicle would need to travel back through the developed yaw angle before 

straightening or beginning a turn in the opposite direction.  In this case the excessive 

buildup of yaw rate could lead to further instability or loss of control. 
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For these reasons, priority is given to rear axle saturation when saturation of both 

axles is detected.  Differential braking is applied to the front axle to restore the rear axle 

slip angle to the usable range.  While some loss of cornering capability occurs because of 

differential braking on the front axle, vehicle stability is maintained by minimizing slip 

angle of the rear axle. 

6.2 Time To Saturation (TTS) Predictive ESC Control 

Often by the time rear axle saturation is detected, the vehicle has significant 

angular momentum.  Differential braking applied after axle saturation is detected is often 

insufficient to overcome this angular momentum.  Therefore to maintain stability of the 

vehicle a control strategy that anticipates rear axle saturation and applies differential 

braking before this situation occurs is desired.  The strategy here compares a computed 

Time To Saturation (TTS) and a Time To Recover (TTR) and applies maximum 

differential braking when TTS TTR≤ . 

6.2.1 Time To Saturation Calculation 

The linearized equation of the slip angle for the rear axle is 

  2 arctan y y

x x

v br v br
v v

α
− −⎛ ⎞

= ≈⎜ ⎟
⎝ ⎠

  (6.34) 

Considering a right hand turn, slip angle of the rear axle is generally positive.  

The risk of rear axle saturation occurs when the slip angle corresponding to maximum 

lateral force is realized.  For an ideal tire model, this saturation would occur when the 

linear cornering stiffness is equal to the maximum traction force available. 
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α =   (6.35) 
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For real tires, the actual slip angle at saturation is considerably higher than this 

ideal value since lateral force deviates from the linear curve at relatively low slip angles.  

For the tire models used for the simulated sedan for evaluation of the ESC algorithm, the 

peak lateral force occurs at a value of slip angle approximately 2.3 times that of the 

idealized value. 
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2.3 z
sat

F
C
μ

α =   (6.36) 

Assuming that the vehicle speed is constant, the rate of change or rear slip angle is 
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−

≈   (6.37) 

If this value is positive during a right hand turn, then the vehicle is oversteering 

and there is a risk that there is impending saturation of the rear axle.  In this case both 

yaw rate and yaw acceleration are negative.  If the rate of change of vehicle sideslip and 

rate of change of yaw rate are assumed to be constant, then the slip angle increases 

linearly over time. 
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  (6.38) 

Therefore the Time To Saturation (TTS) can be calculated directly from this 

relationship. 



 101

 

2 2,

,2
2,0

2

,2
2,0

2

,2
2,0

2

( )

2.3

2.3

2.3

sat sat

y z
sat

x

y z
sat

x

zx
sat

y

t
v br F

t
v C

v br F
t

v C

Fvt
v br C

α α

μ
α

μ
α

μ
α

=

−
+ =

−
= −

⎛ ⎞
= −⎜ ⎟− ⎝ ⎠

  (6.39) 

Note that this TTS value may be computed directly as the vehicle lateral velocity 

observer computes the rate of change of lateral velocity directly and the force observer 

computes the yaw acceleration.  The current slip angle and static axle normal load are 

also known. 

Note that the assumption that the rate of change of lateral velocity and yaw 

acceleration are constant may not be true over the period of time until the axle is 

saturated.  However if control action of the ESC controller is assumed to limit the 

amplitude of these values to their current value or less, then the estimate of TTS 

represents the minimum time to saturation (i.e. worst case). 

6.2.2 Time To Recover Calculation 

The time required to for the ESC differential braking to stop the increase in rear 

axle slip angle is referred to as the time to recover.  This value represents the time 

required to stop the increase in rear axle slip angle if maximum available differential 

braking is applied to the front axle and maintained. 

In order to stop further increase in rear axle slip angle, the rate of change of this 

angle must be zero. 
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0yv br
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− =

  (6.40) 

Therefore slip angle will be stabilized if both lateral velocity and yaw rate are 

stabilized.  The rate of change of lateral velocity is related to lateral acceleration and yaw 

rate by the kinematic relationship used by the lateral velocity observer. 

  y y xv a v r= −   (6.41) 

Therefore if yaw rate is held constant at the value that makes this expression zero, 

the rear slip angle value will be stabilized. 
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Given the current yaw rate and the desired yaw rate for recovery, the following 

equation based on impulse and momentum principles applies. 

  0 0
( )rect

z recJr M t dt Jr+ =∫   (6.43) 

The moment applied to the vehicle will have contributions from differential 

braking as well as the lateral forces generated at both axles. 

  0 , 1 20 0
( ) ( ) ( )rec rect t

z c y y recJr M t dt aF t bF t dt Jr+ + − =∫ ∫   (6.44) 

If the max differential braking is applied to the front axle during this time, the 

moment contribution will be approximately constant.  The lateral forces generated by 

both axles however will not be constant as the slip angles will be changing.  However at 

or very near axle saturation, the lateral force generation of the axles will be limited by the 

normal loads and the coefficient of friction. 
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Although for the TTS calculation the slip angle is assumed to increase linearly, 

such an assumption of linear increase in lateral force generated cannot be made.  In order 

to accurately predict the behavior of the lateral force over time, an axle lateral force 

model would need to be incorporated.  In addition, the solution of the impulse and 

momentum equation would require forward simulation to solve since a closed form 

solution would not be possible. 

For these reasons, an approximation of lateral force is made.  The lateral forces 

are assumed to linearly increase from the present value to the saturation value at the time 

of recovery.  In this manner the average lateral force is then 
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Assuming these average values of lateral force and a constant differential braking 

force, the time to recover may be calculated directly from the impulse and momentum 

relationship. 
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Rearranging, 
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Note that the approximation in axle lateral force assumed may result in a negative 

time to recover since the moment due to differential braking may be insufficient to 

overcome the moment due to axle lateral forces.  However simulations have shown this 

to occur only during initial transients in which lateral force is significant in the front axle 

before it has had a chance to develop in the rear axle.  Although the negative time is an 

anomaly and slightly delays ESC intervention, it may prevent unnecessary intervention 

during transient maneuvers.  In addition the ESC control with TTS is found to only have 

a delay of ~0.1 seconds when time to recover is negative, resulting in satisfactory 

performance in stabilizing an oversteering vehicle. 

6.3 Anti-Lock Braking System Control 

The ABS controller monitors wheel speed sensor values and modulates brake 

pressure through a simple switching strategy to maintain wheel slip around a desired 

target value.  For this research the ABS controller also takes advantage of the coefficient 

of friction estimated by the ESC controller to adapt slip targets.  In addition the controller 

adjusts longitudinal slip targets to appropriate targets when slip angle is present using a 

simple model of combined slip. 
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6.3.1 Basic ABS Slip Controller 

Wheel speeds are measured by commercially available sensors.  It is assumed that 

the vehicle forward velocity vx can be determined by the ABS controller from wheel 

speeds.  There are a number of approaches to estimating longitudinal velocity in the 

literature, and the focus of this research is on the ESC algorithm.  Slip ratio is maintained 

within a nominal range of 0.07 to 0.10, where slip ratio is defined as: 

  1 i

x

r
v
ωκ = −   (6.49) 

The controller simulates a valve that enables and disables a brake pressure to each 

wheel.  The brake pressure is the maximum of the ESC command pressure and the driver 

brake pedal pressure realized at the master cylinder.  It is assumed that the brake system 

is capable of supplying an ESC commanded brake pressure up to 15 MPa.  The master 

cylinder brake pressure has a bias to the front such that the brake pressure at the rear 

wheels is only 40% of the full master cylinder pressure which is delivered to the front 

wheels.  Note that simulations were not conducted with driver braking applied for this 

research. 

The slip ratio controller uses a simple threshold with a hysteresis to maintain 

wheel slip in the desired range.  Brake pressure is applied until the wheel slip exceeds the 

upper target, at which point no further brake pressure is applied.  The brake pressure is 

then withheld until the slip value is less than the lower target value.  At this point full 

brake pressure is applied again and the cycle is repeated.  Combined with the brake and 

wheel dynamics, the simulated ABS system and vehicle model in CarSim result in an 

on/off cycling at around 10Hz, which is a rate typical of an actual vehicle. 
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The slip targets are established to try to maintain maximum tractive force, 

however with a bias towards the lower slip values.  The tire model used in CarSim 

achieves maximum longitudinal force at a slip value of 0.12.  The slip values are 

maintained below this maximum for two reasons.  First the wheel dynamics become 

unstable at slip values above maximum longitudinal force slip value since increasing slip 

results in reduced longitudinal force.  It is very difficult for the controller to prevent 

wheel lock (100% slip) in this case as this happens very quickly due to the unstable wheel 

dynamics.  Second, the higher the longitudinal slip, the less lateral force generation is 

possible.  Therefore to prevent wheel dynamics instability and provide a compromise 

between longitudinal and lateral force generation, the slip is maintained at values less 

than the slip value corresponding to maximum longitudinal force. 

6.3.2 Coefficient of Friction Compensation of Slip Targets 

 Longitudinal force generation is greatly affected by the friction generated 

between the road and the tire.  Environmental conditions such as rain, ice or snow can 

greatly reduce the coefficient of friction of the tire on the road [14].  When the coefficient 

of friction is reduced, the maximum longitudinal force potential and the value of slip at 

which the maximum force is generated are both reduced significantly.  Therefore target 

values of slip for the ABS controller may actually be too high in the case of reduced 

coefficient of friction and may actually attempt to maintain slip at values well above that 

of the maximum longitudinal force slip. 

CarSim simulates uses a method referred to as similarity to adjust the tire data 

provide in tables of longitudinal force versus slip [51]. 
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( , )x zF FX F μμ κ
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=   (6.50) 

Here “FX” is a two-dimensional lookup table of longitudinal force for given tire normal 

load and longitudinal slip.  μ is the current road/tire coefficient of friction, while μ0 is the 

nominal coefficient of friction defined for the look-up table data. 

Since the value of coefficient of friction is estimated by the ESC controller, this 

value is available and may be used by the ABS controller to adapt longitudinal slip 

targets to appropriate values.  The ABS controller thus modifies the upper and lower slip 

targets by: 
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  (6.51) 

κUL and κLL are the upper and lower slip ratio target limits after compensating for 

coefficient of friction, while κUL,0 and κLL,0 are the nominal slip ratio targets assuming 

high coefficient of friction μ0. 

This ensures that longitudinal slip is maintained below the value of slip 

corresponding to the maximum possible longitudinal braking force at the current 

coefficient of friction. 

6.3.3 Combined Lateral/Longitudinal Slip Compensation of Slip Targets 

A combined slip model may be used to determine the lateral and longitudinal tire 

forces when both longitudinal slip and slip angle are nonzero.  This theory ensures that 

the total combined wheel slip does not exceed the maximum possible slip, and attempts 

to determine realistic force generation corresponding to the combined slip [14].  As a 
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result, the longitudinal force curves as a function of slip angle not only change in 

magnitude, they also change in shape.  These curves for the sedan tire model used in 

simulations are shown for values of slip angle ranging from 0 to 20 deg are shown in 

Figure 6.5. 

 

 

Figure 6.5: Combined long/lat slip for 215/55R17 tire model with Fz = 4,125 N 

Clearly from these curves, a target longitudinal slip value of 0.085 used by the 

ABS controller will result in a significant reduction in longitudinal force generation.  The 

actual values of longitudinal force and their percentage of longitudinal force with no slip 

angle are shown in Table 6.1.  Such high slip angles may occur when high rates of 

steering wheel angle are input by the driver in obstacle avoidance maneuvers or on low 

friction surfaces.  The reduction in longitudinal force generation will severely limit the 

corrective action of the ESC system in such conditions. 
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Table 6.1: Reduction in Tire Longitudinal Force with Slip Angle 

Slip angle, α 
(deg) 

Longitudinal Force, 
Fx(κ=0.085,α ) 
(N)  

% Longitudinal Force 
at Fx0(κ=0.085, α=0) 

0  3890  100% 
4  3267  84.0% 
8  2042  52.5% 
12  1370  35.2% 
16  1024  26.3% 
20  814  20.9% 

 

In addition to the reduction in force as slip angle increases, Figure 6.5 shows that 

the slip ratio corresponding to maximum longitudinal force increases significantly.  In 

fact for slip angles greater than ~10 deg, the maximum longitudinal force corresponds to 

the longitudinal force of pure sliding (100% slip) and occurs at a slip ration of 1. 

In the combined slip theory, the change in magnitude comes primarily from a 

scaling of the force generation by the ratio of slip to combined slip [14]. 
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Therefore 
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This accounts for the large reduction in longitudinal force generation when slip 

angle is high, as seen in table.  To account for this, the slip ratio targets for the ABS 

controller may be adjusted accordingly to maintain a compromise between lateral and 

longitudinal force generation.  For example if the slip ratio is equal to the tangent of the 

slip angle, then both forces will be approximately 70% of their nominal values.  Note that 

this is only a rough approximation, as the complete combined slip theory actually 

changes the shape of the force curves as seen above. 

As the ESC algorithm includes an estimate of axle slip angle for each axle, the 

target slip ratio for the ABS controller may be modified as: 
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Values of corresponding longitudinal and lateral forces are shown in Table 6.2 

and Table 6.3 for a nominal slip ratio target of 0.085.  The longitudinal force generated at 

high slip angles is seen to be as much as three times that of the slip ratio target without 

modification.  As desired the target slip ratio yields a reasonable compromise between 

lateral and longitudinal force generation.  Note that although value of Fx at α = 20 deg is 

only 62% of the longitudinal force at κ = 0.085, α = 0 deg, this value is ~80% of the Fx of 

3000 N at pure sliding (i.e. κ = 1).   
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Table 6.2: Compensated Longitudinal Slip Ratio Target Effect on Longitudinal Force 

Slip angle, α 
(deg) 

tan(α)  Longitudinal slip, 
κ = max[0.085,tan(α)] 

Longitudinal Force, 
Fx(κ,α ) 
(N)  

% Longitudinal Force 
at Fx0(κ=0.085, α=0) 

0  0  0.085  3890  100% 
4  0.07  0.085  3267  84.0% 
8  0.14  0.14  2708  69.6% 
12  0.21  0.21  2516  64.7% 
16  0.29  0.29  2467  63.4% 
20  0.36  0.36  2406  61.9% 

 

Table 6.3: Compensated Longitudinal Slip Ratio Target Effect on Lateral Force 

Slip angle, α 
(deg) 

Lateral Force, 
Fy0(α,κ=0.085) 
(N) 

Longitudinal slip, 
κ = max[0.085,tan(α)] 

Lateral Force, 
Fy(α,κ) 
(N) 

% Lateral Force 
at Fy0(α,κ=0.085) 

4  2694  0.085  2694  100% 
8  3380  0.14  2719  80.4% 
12  3426  0.21  2547  74.3% 
16  3457  0.29  2440  70.6% 
20  3488  0.36  2432  69.7% 

 

Chapter Summary 

This chapter presented the core ESC and ABS strategies developed for this 

research work.  The ESC strategy consists of two algorithms: Equivalent Moment and 

Time to Saturation.  The Equivalent Moment strategy uses the friction ellipse 

approximation on the braked wheel to ensure that yaw moment developed by differential 

braking compensates for the moment lacking due to lateral force saturation of the 

opposite axle.  When saturation of both axles are detected, differential braking on the 

front axle is used to prevent loss of control of the vehicle from rear axle saturation.  The 

predictive Time to Saturation strategy enables differential braking to be applied before 
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saturation of rear axle lateral force occurs.  This strategy simultaneously calculates an 

estimate of recovery time with differential braking and applies the braking when the time 

to recover is less than or equal to the estimated time to saturation.  The Time to 

Saturation strategy is given priority over the Equivalent Moment strategy in order to 

ensure vehicle stability. 

In addition, a basic ABS strategy to prevent wheel slip was presented.  The need 

to adapt longitudinal slip ratio targets under low coefficient of friction conditions was 

explained.  The friction estimate provided by the axle lateral force saturation detection 

enabled this adaptation.  In addition, the need to adapt longitudinal slip ratio targets in the 

presence of high slip angle was discussed.  The change in shape of the longitudinal force 

response to slip ratio when slip angles are large motivates a significant increase in slip 

ratio targets under these conditions. 
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CHAPTER SEVEN  

 
ESC SYSTEM SIMULATION RESULTS 

 
 

In order to test the adaptive ESC control strategy, co-simulation of the algorithm 

with a high fidelity vehicle model was conducted as illustrated in Figure 7.1.  The vehicle 

parameter estimation and adaptive ESC strategy was implemented in LabVIEW using the 

LabVIEW Control Design and Simulation Module.  A model of a typical D-class sedan 

was used in CarSim together with a simple driver model to follow various designed test 

maneuvers. 

 

 

Figure 7.1: ESC Software Co-Simulation 

Vehicle model

ESC algorithm

Simulated sensor 
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Simulated actuator 
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At each simulated controller timestep of 1 millisecond, the simulated brake 

actuator pressures were sent from the controller to the CarSim model, and simulated 

sensor values were sent to the controller in LabVIEW.  The LabVIEW model also 

included a simple first-order model of the brake hydraulic dynamics as the actuator signal 

sent to CarSim is the actual wheel-end brake pressure. 

7.1 Test Vehicle Configurations 

A nominal vehicle configuration simulating a typical D-class sedan was used with 

identical tire models on all four wheels.  The ESC strategy utilizes the parameters of the 

nominal test vehicle shown in Table 7.1.  The nominal axle cornering stiffness values are 

shown, however the ESC system is capable of estimating these values from the vehicle 

response as described above. 

 

Table 7.1: Nominal Test Vehicle Parameters 

Parameter  Value  Units 
Mass, m  1530  kg 
Yaw moment of inertia, J  4607  kg*m2 
CG long. distance to front axle, a  1.139  m 
CG long. distance to rear axle, b  1.637  m 
Track width, t  1.55  m 
Nominal front axle cornering stiffness, C1  238,300  N/rad 
Nominal rear axle cornering stiffness, C2  173,500  N/rad 
CG height from ground, hG  0.519  m 

 

 

From these basic parameters the bicycle model can be used to determine theortical 

values of basic vehicle handling parameters.   
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The theoretical understeer gradient can be calculated [14]: 
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  (7.1) 

For the nominal vehicle configuration, the understeer gradient is 0.00165 or 

0.0944 deg/G.  Therefore the nominal vehicle is an understeering vehicle with a 

characteristic speed of 463 kph.  It should be noted that this is only an ideal value.  The 

actual vehicle understeer gradient depends on many additional factors such as lateral load 

transfer and kinematic and compliance effects. 

In order to characterize the vehicle handling response four performance 

parameters have been proposed: yaw rate steady state gain, yaw rate natural frequency, 

yaw rate damping ratio and lateral acceleration phase delay at 1 Hz [52, 53].  The 

theoretical ideal values may be calculated by hand [14, 52], or by simulation analysis in 

CarSim.  The ideal values may be computed as follows. 

Stability factor [14]: 
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Yaw rate gain [14, 52]: 
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Yaw rate natural frequency [14, 52]: 
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Yaw rate damping ratio [14, 52]: 
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Lateral acceleration phase delay at 1 Hz [52]: 
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The test vehicle was characterized for understeer behavior by simulating a 

constant radius test in CarSim with slowly increasing vehicle speed.  The result of this 

test is indicated as the “Nominal Sedan” in Figure 7.2.  The oversteering sedan indicated 

in the figure is described as a second vehicle configuration below.  From this test the 

simulated response understeer gradient shown in Table 7.2 was determined. 
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Figure 7.2: Constant Radius Circle Test Understeer Gradient Results 

To evaluate the other four handling parameters, a simulation was conducted with 

an open-loop steer input of an exponential sine sweep from 0.02 to 20 Hz.  A handwheel 

angle amplitude of 17 deg was used as this generates approximately 3 m/s2 of steady state 

lateral acceleration at 100 kph.  The yaw rate gain, natural frequency and yaw rate 

damping ratio were determined by using LabVIEW System Identification Toolkit 

functions to fit a second order transfer function to the yaw rate response data.  The 

numerator order selected for identification was one while the denominator order was two 

according to the yaw rate response model of the bicycle model [14]. 
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The simulation response for lateral acceleration phase delay at 1 Hz was 

determined from a frequency response function (FRF) analysis in CarSim of the sine 
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sweep simulation results.  The value reported is an approximate value since no model 

was fit to the data and the FRF data exhibits some noise. 

 

Table 7.2: Handling Parameters of Nominal Vehicle Model 

Handling Parameter  Theoretical  Simulation Response 
Understeer gradient, deg/G  0.094  0.50 
Yaw rate steady state gain, s‐1  0.565  0.382 
Yaw rate natural frequency, Hz  1.25  1.81 
Yaw rate damping ratio  1.00  0.939 
Lateral acceleration phase delay at 1 Hz, deg  16.1  ‐59 

 

 

A second vehicle was configured for testing to simulate the conditions of worn 

tires on the rear axle of the vehicle.  This was realized by replacing the rear tires of the 

nominal vehicle model with tires that have 80% of the capacity of the nominal tires with 

respect to lateral force, longitudinal force, aligning moment and camber thrust.  As a 

result the vehicle parameters are identical to those of the nominal vehicle model, except 

that the nominal rear axle cornering stiffness is 138,800 N/rad.  Thus this vehicle tends to 

oversteer in extreme handling maneuvers and thus is more prone to spinout and loss of 

vehicle control. 

The resulting vehicle has an understeer gradient of -0.00723 or -0.414 deg/G, and 

thus exhibits oversteering behavior.  This vehicle has a critical speed of 221 kph. Table 

shows the results of the theoretical values as well as the values determined from the same 

simulations as those executed for the nominal vehicle. 
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Table 7.3: Handling Parameters of Oversteering Vehicle Model 

Handling Parameter  Theoretical  Simulation Response 
Understeer gradient, deg/G  ‐0.0072  ‐0.05 
Yaw rate steady state gain, s‐1  0.743  0.468 
Yaw rate natural frequency  0.971  1.87 
Yaw rate damping ratio  1.16  1.24 
Lateral acceleration phase delay at 1 Hz, deg  13.7  ‐72 

 

 

7.2 Test Maneuvers 

Vehicle simulations were conducted using a variety of test maneuvers and test 

conditions.  The ISO 3888-2 severe lane change was tested with both vehicle 

configurations on a high friction surface.  The ISO 3888-1 high-speed double lane change 

was used to evaluate simulation performance of both vehicles on a low friction surface.  

Finally a fishhook maneuver was used to evaluate the propensity for spinout of the 

oversteering vehicle on a high friction surface. 

7.2.1 Severe Double Lane Change Simulation 

In order to evaluate the performance of the ESC control system in a real-world 

evasive action scenario, the ISO 3888-2 severe lane change maneuver was used [14, 54].  

The standard defines cones for a two lane changes over a short distance and calls for an 

initial speed of 80 kph with no throttle applied during the maneuver.  To successfully 

pass the test, a vehicle must proceed through the course without touching any cones 

marking the lanes. 

To evaluate the vehicle performance with and without ESC, simulations of the 

severe lane change course were conducted using the CarSim driver model.  A desired 
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vehicle path through the cones was developed and optimized to maximize the speed at 

which the vehicle without ESC could successfully navigate the course. 

Plots of several different vehicle states for a severe double lane change maneuver 

are shown in Figure 7.3 through Figure 7.7.  In Figure 7.3, the simulation with equivalent 

moment ESC enabled can be observed to follow the designed target path for the 

maneuver more closely than the simulation without ESC. 

 

 

Figure 7.3: Tracking Results for Nominal Vehicle Severe Double Lane Change at 62 kph 
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Figure 7.4: Steering Wheel Angle for Nominal Vehicle Severe Double Lane Change at 62 kph 

 

Figure 7.5: Lateral Acceleration for Nominal Vehicle Severe Double Lane Change at 62 kph 

Figure 7.6 shows the longitudinal brake force of each wheel during the maneuver 

with ESC enabled.  During the initial lane change to the left, lateral force saturation of the 

front axle is detected and the left rear wheel is braked to help initiate the turn.  Almost 

immediately lateral force saturation of the rear axle is detected and the front right wheel 



 122

is braked to prevent vehicle oversteer.  Then again as the vehicle is steered to the right to 

settle the vehicle in the left lane and begin the transition back to the right lane, the right 

rear wheel is braked to correct for understeer.  This braking is alternated with front left 

wheel wheel braking as rear axle lateral force saturation is detected and corrected.  By the 

transition back to the right lane at the end of the maneuver the ESC system has reduced 

vehicle speed such that the final turn does not require ESC system intervention. 

 

 

Figure 7.6: Wheel Longitudinal Force for Nominal Vehicle Severe Double Lane Change at 62 kph 
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Figure 7.7: Lateral Force Characteristics for Nominal Vehicle Severe Double Lane Change at 62 kph 

Figure 7.7 shows the axle lateral force plotted against the axle slip angle.  Note 

that front axle lateral force saturates both with ESC enabled and disabled, however with 

ESC the maximum axle slip angle is reduced from roughly 15 deg to 10 deg. 

Various metrics are used to quantify  the performance of the ESC controller [55, 

56].  These metrics are cost functions that can be compared for the same test conditions 

of the severe lane change maneuver executed with ESC enabled and with ESC disabled.  

The task performance may be evaluated by integrating the square of the lateral offset of 

the vehicle from the desired path [55]. 
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The physical workload of the driver may be evaluated by integrating the square of 

the steering wheel angle [55]. 
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Finally the mental workload of the driver may be evaluated by integrating the 

square of the steering wheel rate [56]. 
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Table 7.4 show the values of these three cost functions for the severe lane change 

at 62 kph, both with ESC enabled and disabled.  Although the vehicle successfully 

navigates the cones defining the lanes in both simulations, the vehicle with ESC enabled 

follows the desired path much closer.  This can be seen in the task performance metric JT, 

as well as observed in Figure 7.3. The physical workload of the driver was also 

significantly reduced, as evidenced by the physical workload metric JP and Figure 7.4.  

The mental workload metric JM was also reduced by almost half when the ESC system 

was enabled. 

 

Table 7.4: Performance Metrics for Nominal Vehicle Severe Double Lane Change at 62.2 kph 

Metric  ESC Off  ESC On  % Improvement 
Task Performance, JT  (m

2s)  0.389  0.101  74% 
Physical Workload, JP (rad

2s)  28.5  15.3  46% 
Mental Workload, JM (rad

2/s)  209  105  50% 
 

 

Table 7.5 shows the performance metrics for the oversteering vehicle in the same 

course.  Note that the improvement in task performance is considerably less than that of 

the nominal understeering vehicle.  This is because at the lower initial speed of 55.4 kph, 
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the vehicle is much better able to navigate the course than the nominal vehicle at 62.2 

kph.  This is evidenced by the fact that the task performance metric seen in Table 7.4 for 

the nominal vehicle is a full order of magnitude higher than that of Table 7.5 for the 

oversteering vehicle.  The oversteering vehicle tends to hit the cones due to swing out of 

the rear of the vehicle, causing it to have a much lower speed through the course. 

 

Table 7.5: Performance Metrics for Oversteering Vehicle Severe Double Lane Change at 55.4 kph 

Metric  ESC Off  ESC On  % Improvement 
Task Performance, JT  (m

2s)  0.0292  0.0266  9% 
Physical Workload, JP (rad

2s)  11.1  5.4  51% 
Mental Workload, JM (rad

2/s)  76.7  37.3  51% 
 

The ESC control makes only a marginal increase in track following performance 

since the primary benefit is reduced swing out of the rear of the vehicle.  As before the 

physical and mental workload metrics are reduced in half by the ESC sytem intervention.  

Note that at the low speeds through 3888-2, the TTS control is not triggered and therefore 

makes no change in performance metrics. 

Another metric selected to evaluate ESC system performance is the maximum 

speed at which the vehicle was able to successfully navigate the course.  The simulations 

were repeated with increasing vehicle speed in 0.1 kph increments until the vehicle failed 

to successfully navigate the course.  These tests were conducted for both the nominal 

vehicle configuration and the oversteering vehicle with reduced cornering stiffness on the 

rear tires.  Table 7.6 shows the results for both vehicles with ESC off, with ESC on with 
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the Equivalent Moment control only (EM) and with ESC on with both Equivalent 

Moment and Time To Saturation control (EM+TTS). 

 

Table 7.6: Maximum Entry Speed for Severe Double Lane Change 

Vehicle  Max speed, 
no ESC 
(kph) 

Max speed w/ESC 
(kph) 

% improvement w/ ESC 

EM  EM+TTS  EM  EM+TTS 
Nominal  62.2  64.8  64.8  4.2%  4.2% 
Oversteering  55.4  59.4  59.8  7.2%  7.9% 
 

 

Note that the improvement in course speed for the oversteering vehicle is 

significantly higher than that for the nominal vehicle.  This is because the nominal 

vehicle is fairly well balanced and therefore performs reasonably well at the limits of 

traction.  The ESC system does, however, enable the nominal vehicle to reach an initial 

speed 4% higher than without ESC control.  The performance improvement of the 

oversteering vehicle is substantially higher because the ESC system is able to correct the 

rear axle saturation problems of the vehicle.  The TTS algorithm provides substantial 

improvement by taking corrective action before the rear axle reaches saturation. 

7.2.2 Low Friction Double Lane Change Simulation 

The ISO 3888-1 double lane change course is intended to simulate a high speed 

overtaking maneuver.  This maneuver was used to test the ESC performance on a low 

friction surface.  Again vehicle speed was increased in 0.1 kph increments until the 

vehicle could no longer successfully navigate the course.  In this test the driver attempts 
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to maintain the entry speed throughout the maneuver.  Similar improvements in target 

speed were observed for the low friction double lane change as with the severe double 

lane change, as seen in Table 5.1.  Again the ESC system with TTS enabled and TTS 

disabled produced the same performance metric values at these relatively low speeds. 

 

Table 7.7: Performance Metrics for Nominal Vehicle Double Lane Change Low µ at 57.2 kph 

Metric  ESC Off  ESC On  % Improvement 
Task Performance, JT  (m

2s)  0.0259  0.0025  90% 
Physical Workload, JP (rad

2s)  2.34  0.96  59% 
Mental Workload, JM (rad

2/s)  11.0  4.0  64% 
 

 

Again note that the task performance metric for the oversteering vehicle seen in 

Table 7.8 is an order of magnitude lower than that of the nominal vehicle.  Therefore the 

improvement due to ESC is substantially lower.  However, the driver physical and mental 

workloads are again reduced by 40-50%. 

 

Table 7.8: Performance Metrics for Oversteering Vehicle Double Lane Change Low µ at 51.9 kph 

Metric  ESC Off  ESC On  % Improvement 
Task Performance, JT  (m

2s)  0.0023  0.0022  4% 
Physical Workload, JP (rad

2s)  1.17  0.70  40% 
Mental Workload, JM (rad

2/s)  5.7  2.6  54% 
 

 

The maximum speed through the course for the double lane change on the low 

friction surface is shown in Table 7.9.  For both vehicles the percentage improvement in 
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target speed is 4-5%.  This is observed for the ESC system both with TTS is enabled and 

disabled. 

 

Table 7.9: Maximum Target Speed for Double Lane Change on Low Friction Surface 

Vehicle  Max speed, 
no ESC 
(kph) 

Max speed w/ESC 
(kph) 

% improvement w/ ESC 

EM  EM+TTS  EM  EM+TTS 
Nominal  57.2  60.0  59.6  4.9%  4.2% 
Oversteering  51.9  54.5  54.5  5.0%  5.0% 

 

 

Tests were also conducted of both vehicles on the high-speed ISO 3888-1 double 

lane change course with a high friction surface.  However the vehicles were generally 

able to navigate the course without saturating lateral force.  The ESC system on the 

oversteering vehicle did not intervene at all as desired.  The ESC system on the nominal 

understeering detected slight axle saturation: first a brief saturation of the front axle and 

then a brief saturation of the rear axle.  Therefore minimal differential braking was 

applied in this case.  As a result in this case the rear axle had a slight reduction in lateral 

force due to the braking and swung out slightly.  The top speed through the course was 

reduced from 96.8 to 96.5 kph – only a marginal change.  

7.2.3 Fishhook Maneuver Simulation 

Finally a standard fishhook maneuver was used to evaluate the propensity for 

spinout both with and without ESC.  For this test the oversteering vehicle configuration 

was used as the understeering vehicle does not spin out at high speed.  The test is 
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conducted at a constant target vehicle speed.  The steering wheel is quickly ramped to 

294 degrees and held briefly before being ramped back through 0 deg at 1 second.  The 

steering wheel continues to be quickly ramped to -294 deg, at which is held for the 

remainder of the test.  While this test is typically used for testing rollover propensity of 

trucks and SUVs, it may also induce spinout in a passenger car and is thus suitable for 

ESC testing as well. 

The target speed of the vehicle was increased in 0.5 kph increments until vehicle 

spin out was observed.  For this test vehicle spin out was defined as reaching a vehicle 

slip angle greater than or equal to 90 deg.  On a high friction surface, the oversteer 

vehicle without ESC reached a maximum target speed of 72 kph without spinning out.  

However with the ESC system enabled, the same vehicle remained very stable with a 

maximum slip angle of <5 deg for this test.  The vehicle sideslip angle for both tests can 

be seen in Table 7.9. 

 

 

Figure 7.8: Fishhook Maneuver of Oversteering Vehicle at 72 kph 
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Tests were repeated with the ESC system enabled in an attempt to find the 

maximum target speed before spin out was induced.  However, even at a target speed of 

110 kph, the ESC system was able to bring the vehicle to a complete stop before the 

vehicle slip angle reached 90 degrees.  By braking the front left wheel, the ESC system 

prevented vehicle oversteer throughout the maneuver. 

7.3 ESC System Robustness Test Results 

In order to test the robustness of the ESC system, the severe lane change 

maneuvers were again tested with a test vehicle configuration to simulate the test sedan 

fully loaded at Gross Vehicle Weight Rating (GVWR).  The nominal sedan model was 

used with a 450 kg load placed in the trunk, 3.2 m behind the front axle of the vehicle.  

Note that the nominal sedan model is assumed to include a 75 kg driver, therefore the 

load simulates a maximum payload of 525 kg, which would be typical for this class of 

sedan. 

The relevant vehicle parameters of the loaded vehicle are compared to the 

nominal vehicle in Table 5.1.  The addition of the load in the trunk shifted the total 

vehicle center of gravity almost 0.5 m towards the rear of the vehicle.  The change in load 

also significantly increased rear axle cornering stiffness while decreasing front axle 

cornering stiffness slightly.  The yaw moment of inertia also increased substantially with 

the added load. 
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Table 7.10: Loaded Test Vehicle Parameters 

Parameter  Units  Nominal  Loaded  Net Change 
Mass, m  kg  1530  1980  +450 
Yaw moment of inertia, J  kg*m2  4607  6122  +1515 
CG long. distance to front axle, a  m  1.139  1.607  +0.468 
CG long. distance to rear axle, b  m  1.637  1.169  ‐0.468 
Nominal front axle cornering stiffness, C1  N/rad  238,300  226,300  ‐12,000 
Nominal rear axle cornering stiffness, C2  N/rad  173,500  301,000  +127,500 
CG height from ground, hG  m  0.519  0.560  +0.041 

 

 

To test the loaded vehicle, the ISO 3888-1 severe double lane change maneuver 

described in 7.2.1 Severe Double Lane Change Simulation was used.  The maximum 

speed that the loaded test vehicle was able to successfully complete the maneuver was 

reduced from 62.2 kph to 56.0 kph as shown in Table 7.11.  The table also shows the 

maximum speed of the loaded test vehicle with two ESC configurations: one in which the 

ESC system assumes the parameters of the nominal unloaded vehicle and one that uses 

the actual parameters of the loaded vehicle.  The first simulates an ESC system without 

adaptation, while the second simulates the ESC system utilizing the identified loaded 

vehicle parameters in the estimation of axle slip angles, lateral forces and saturation.  

Note that in order to identify these changes, the system would need to detect the changes 

in mass and center of gravity longitudinal location using sensors such as load sensors in 

the suspension of each axle.  The changes in axle cornering stiffnesses and total vehicle 

yaw moment of inertia may then be identified automatically using the recursive least 

squares algorithm presented in section 5.3 Vehicle Yaw Moment of Inertia Identification. 

. 
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Table 7.11: Maximum Entry Speed for Loaded Vehicle Severe Double Lane Change 

Vehicle  Max speed, no ESC 
(kph) 

Max speed w/ESC, 
nominal vehicle params
(kph) 

Max speed w/ESC, 
loaded vehicle params 
(kph) 

Nominal  62.2  64.8     
Loaded  56.0  58.2  60.5 

 

 

The results of table show that even when the ESC system did not adapt to the 

changed vehicle parameters, it was still able to improve vehicle performance through the 

maneuver.  In this case the system still applied appropriate differential braking to help 

maintain control of the vehicle through the maneuver.  However, due to the errors in 

assumed vehicle parameters, the system tended to overestimate rear axle saturation and 

applied excessive differential braking to the front axle.  This in turn reduced the front 

axle lateral force and thus the cornering ability of the vehicle as it tried to navigate the 

course.  However, when the ESC system assumed the changed parameters of the loaded 

vehicle, the maximum speed through the course was improved by 8% to 60.5 kph. 

The results show that the ESC strategy is robust with respect to significant change 

in vehicle parameters due to loading at GVWR.  However the results also show that the 

performance of the ESC system may be improved significantly by adapting the vehicle 

parameters used by the algorithm to the changes automatically identified using the 

strategies described in this research. 
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Chapter Summary 

This chapter showed the results of simulations used to evaluate the performance 

of the parameter identification and ESC strategies presented.  Co-simulations of the ESC 

strategy implemented in LabVIEW and a high-fidelity model of a sedan in CarSim were 

used in the evaluations.  Standard ISO double lane change simulations with a simple 

driver steering model in CarSim demonstrated the improvement in performance with the 

ESC system.  Notably, the driver physical and mental effort was shown to be reduced in 

half at the limits of vehicle handling with the ESC system enabled.  An oversteering 

vehicle with reduced rear tire cornering stiffness exhibited significant improvement in 

performance with the predictive Time to Saturation algorithm enabled.  Simulations on 

both high friction and low friction road surfaces demonstrated the ability of the system to 

identify and adapt to changing environmental conditions.  A fishhook steering maneuver 

was used to demonstrate the ability of the ESC system to prevent spinout of an 

oversteering vehicle. 

Finally, robustness of the ESC system was tested by changing adding 450 kg at 

the rear of the vehicle to simulate an extreme loading condition.  The designed ESC 

system based on the nominal vehicle parameters was shown to be robust and still yielded 

performance improvements when implemented on the loaded vehicle.  Further 

improvement in system performance was demonstrated when the ESC strategy was 

adapted to use the changed vehicle parameters detected by the parameter identification 

strategy. 

 



 134

  



 135

CHAPTER EIGHT  
 

CONCLUSION 
 
 

8.1 Summary of Findings 

This dissertation presented a novel scheme for estimating relevant vehicle states 

and parameters, as well as a novel ESC strategy.  The proposed system utilizes the same 

sensors and actuators employed in current production passenger car ESC systems.  A 

novel nonlinear reduced-order lateral velocity observer was employed to aid in the 

estimation of axle slip angles.  The designed lateral velocity observer has a dynamic 

feedback gain that is adapted based on current vehicle state.  As a result the lateral 

velocity observer uses the kinematic model-based estimate to accurately track lateral 

velocity during transient nonlinear maneuvers, yet corrects estimates for sensor bias and 

noise errors during normal stable driving conditions.  The estimated lateral velocity was 

used in turn with other vehicle states to estimate slip angle at each axle.  The axle slip 

angle estimation also included a first-order lag model to account for tire relaxation length 

effects and aid in the subsequent time correlation of slip angles with estimated axle lateral 

forces. 

The lateral force at each axle was estimated by inverting the lateral force and yaw 

moment equations.  These relationships allowed the lateral force to be directly calculated 

from the measured lateral acceleration and the measured or calculated yaw angular 

acceleration.  Since lateral force generation may be reduced due to tire longitudinal forces 

from braking or drive traction, the lateral force potential of each axle was calculated in 

order to estimate the lateral force that would be generated in the absence of longitudinal 
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forces.  The slip angles together with estimated lateral forces enable the real-time 

detection of axle lateral force saturation.  When axle lateral force saturation is detected, 

the road coefficient of friction is estimated using the axle lateral and normal forces. 

When the axle lateral forces are not saturated, the estimated states are used in a 

recursive least squares algorithm to identify axle cornering stiffness coefficients and total 

vehicle yaw moment of inertia.  The parameter identification approach was shown to 

accurately identify changes in these parameters during normal driving conditions.  In 

addition, the identification of axle cornering stiffness coefficients was shown to enable 

the control strategy to adapt to changes in total vehicle mass.  An attempt to identify 

center of gravity longitudinal location using a similar technique proved to be 

unsuccessful.  Future work could possibly investigate this issue further and employ other 

techniques to successfully identify center of gravity location. 

During axle lateral force saturation, the Equivalent Moment ESC controller 

applies differential braking to generate a moment equivalent to the difference in moment 

that would be generated by the saturated axle if it had perfectly linear cornering stiffness 

capability.  A key advantage to this approach over other ESC strategies is that the case of 

lateral force saturation of both axles can be detected and handled explicitly by the control 

strategy.  In addition to the Equivalent Moment strategy, the predictive Time to 

Saturation algorithm was used to anticipate rear axle lateral force saturation and take 

corrective action in advance.  Finally the ABS braking strategy was presented in which 

the longitudinal slip ratio target ranges were adapted to compensate for current estimates 

of coefficient of friction and axle slip angle. 
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The ESC system was shown by simulation to significantly improve vehicle 

stability and controllability while reducing driver physical and mental workload.  The 

maximum speed at which a virtual driver could navigate various double lane change 

maneuvers was shown to be increased significantly using the described ESC strategy.  

The Time to Saturation algorithm was shown to improve performance significantly of the 

oversteering vehicle configuration with reduced rear tire cornering stiffness.  The 

robustness of the ESC system was also demonstrated by simulating a heavily loaded 

vehicle configuration with the nominal vehicle parameters.  The benefit of the adaptive 

control strategy was also demonstrated by the improved performance of the ESC control 

system with the oversteering vehicle when the changes in vehicle parameters detected by 

the parameter identification strategy were incorporated into the ESC controller. 

One key feature of the equivalent moment ESC algorithm is that it does not 

require tuning of controller gains for successful implementation.  Conventional ESC 

systems employ a state feedback controller for which feedback gains must be tuned to 

produce the desired response.  In addition, these systems rely on the bicycle model with 

accurate vehicle parameters to generate desired vehicle states.  While the equivalent 

moment algorithm does utilize some vehicle parameters for estimation, key parameters 

such as axle cornering stiffness and vehicle yaw moment of inertia are estimated and thus 

the controller automatically adapts to changes.  The identification of cornering stiffness 

was also shown to enable adaptation of the ESC control system to changes in vehicle 

mass.  Changes in vehicle mass or tire cornering stiffnesses are reflected in the estimated 
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cornering stiffness values, in turn allowing the accurate detection of axle lateral force 

saturation and adaptation of the ESC strategy. 

8.2 Future Work 

It should be noted that the current system is designed to function properly even 

when the driver is applying brakes or drive traction commanded from the throttle pedal, 

even though these scenarios were not investigated in the simulation results of this 

dissertation.  However, the current system only considers the use of braking force beyond 

the current brake pressure applied by the driver to apply a corrective moment to the 

vehicle.  Future work could be done to investigate the possibility of releasing brake 

pressure on individual wheels to affect a yaw moment when the driver is applying brake 

force from the master cylinder.  The use of other actuation devices such as active 

drivetrain torque distribution could utilize the same strategies presented here. 

In addition, the estimation and control strategies could be further improved by 

incorporating longitudinal dynamics into the calculations.  The addition of a longitudinal 

accelerometer would enable estimation of lateral force distribution between the front and 

rear wheels.  In addition the kinematic interactions of the lateral and longitudinal 

dynamics could be incorporated to improve accuracy during transient maneuvers. 

The models could be extended to incorporate roll dynamics of the sprung mass 

and possibly the axles.  Currently the lateral load transfer of the wheel normal forces 

assumes a static model with no roll.  While this was found to produce acceptable 

estimates for use in the ESC system, the estimates could be greatly improved during 

transient maneuvers when the vehicle experiences significant roll motion.  In addition, 
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the inclusion of roll could enable the active roll control in addition to yaw stability 

control.  A nonlinear observer scheme similar to the one used for lateral velocity could be 

used to estimate roll angle from integrated roll angle sensor data, with correction from a 

nonlinear observer feedback term when lateral acceleration is small.  With the roll 

estimate, a predictive scheme similar to the Time To Saturation scheme of the ESC 

system could be used to estimate time to vehicle rollover for trucks or SUVs with higher 

center of gravity.  Vehicle braking could be used to slow the vehicle before 

unrecoverable rollover conditions are realized. 

While a sedan was used for simulation testing in this research, the methods would 

be directly applicable to straight trucks.  The trucks could especially benefit from the 

parameter identification and controller adaptation since they have varying loading 

conditions between trips. 

In addition, the stability concepts presented here could be extended to articulated 

tractor/semi-trailer combination vehicles.  Stability control systems are commercially 

available today for both tractors and trailers and may include sensors for lateral 

acceleration and yaw rate on both units.  If trailer sensor data were to be communicated 

to the tractor stability control system, many of the method presented here could be 

extended to the articulated combination vehicle.  For example, a similar nonlinear 

reduced order observer could be used to estimate trailer articulation angle by integrating 

the difference between the tractor and trailer yaw rate sensors.  The observer could use a 

nonlinear feedback term to correct integration errors using a second kinematic 

relationship or an articulated bicycle dynamic model.  Forces could be estimated by using 
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the same inverse dynamic relationship.  Assuming that a single lateral force could be 

used for all tractor drive axles and a single lateral force for all trailer axles, the unknown 

lateral forces would be these two, the steer axle lateral force and the lateral force 

transmitted at the hitch kingpin.  The lateral force and angular momentum balance 

equations could then be solved for the four unknown lateral forces.  The ESC controller 

could be extended to the complete combination vehicle.  The two-axle vehicle considered 

three possible axle saturation conditions: front axle only, rear axle only or both axles.  

Treating the combination tractor/semi-trailer as a three axle vehicle, there would be seven 

possible axle saturation combinations, and appropriate control strategies would need to be 

developed for each. 
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