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Abstract

This thesis is motivated by the question, how does computer-related technologi-

cal change affect the individual’s incentive to acquire specialized knowledge? Specifically,

will the impact of technological change be homogeneous for all workers regardless of their

idiosyncratic characteristics such as educational attainments or occupation? If not, then

how do the heterogeneous effects from advances in computer-related technology change the

labor market? Based on the related theoretical frameworks from the literature, Chapter

2 focuses on the empirical implementations of heterogeneous impacts of information and

communication technology on between-occupation wage differentials and within-group wage

differentials, and Chapter 3 examines the impact of computerization on labor productivity

and on demand shifts for different types of skilled workers.

Chapter 2 re-investigates the skill-biased technological change puzzle through a dif-

ferent view of technological change. Garicano (2000) and Garicano and Rossi-Hansberg

(2006) separate comprehensive skill-biased technological change into information and com-

munication technological changes, which have qualitatively different characteristics. Based

on this distinction, I try to show that advances in information and communication technol-

ogy raise wage differentials between problem solvers and production workers. In contrast,

for within-group wage differentials, information technology has homogeneous positive ef-

fects on within-group wage differentials for problem solvers and production workers, while

communication technology has a heterogeneous impact on the within wage differentials: a

positive effect for problem solvers and a negative effect for production workers. Furthermore,

empirical analyses based on wage differentials between four occupational layers provide an
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important direction for solving the skill-biased technological change puzzle questioned by

Card and DiNardo (2002) with different growth rates of information and communication

technology.

To explain strong increases in productivity growth across industries in the late 1990s,

Chapter 3 suggests that large investments in computer-related capital resulted in the U.S.

productivity revival. It also shows that rapid adoption of computer-based assets is a driving

force for polarization trends in employment. This is due to heterogeneous demand shifts

for different types of skilled workers, accompanied by diverging wage inequality between

top-half and bottom-half wage distribution. The implications are based on the theoretical

frameworks from Autor, Levy, Murnane (2003) and Autor, Katz, and Kearney (2006) in

which (i) price declines in computer-related capital raise relative wages for nonroutine cog-

nitive tasks and nonroutine manual tasks to routine tasks. Thus, middle workers for routine

tasks increase their labor supply toward nonroutine cognitive tasks and nonroutine manual

tasks through a self-selection process. And (ii) since demand for routine tasks are increased

due to cheaper computerization costs, routine tasks, which were performed by middle-skilled

workers, are carried out by computer-related capital. Empirical applications in Chapter 3

provide evidence for increasing demand shifts of high-skilled workers and low-skilled workers

with the U.S. productivity gains and decreasing demand shifts for middle-skilled workers

due to increasing investment for computerization as predicted in the theoretical framework.
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Chapter 1

Introduction

Rosen (1983) claimed that Adam Smith’s beginning The Wealth of Nations with di-

vision of labor is not an accident. The rate of returns of specialized knowledge increases with

utilization in the specific skills, so that division of labor, specialization in a narrow range of

knowledge, and production by the principle of comparative advantage are attributable to

the increasing returns of utilization in human capital. Rosen also pointed out that techno-

logical advances or new knowledge increase specific knowledge available in the society. The

second point implicitly emphasizes that technological change eliminates the constraint of

relevant market size for specialized knowledge, which is limited by transaction costs, and

thus technological advances increase utilization of specialized human capital.

Associated with the positive impact of technological change on the utilization of spe-

cialized knowledge, Chapter 2 explores whether the increased utilization due to technological

advances will be homogeneous for all workers, given their different types of knowledge, and

if not homogeneous, how technological advances affect rate of returns of specialized knowl-

edge for the heterogeneous workers. Specifically, it focuses on the impact of advances in

information and communication technology on incentives for knowledge acquisition among

the workers with different types of human capital in the knowledge-based hierarchy. Then,

Chapter 2 illustrates how workers’ proportionate changes in compensation, which are ac-

companied by knowledge acquisition changed due to information and communication tech-
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nological change, affect between-occupational layers wage differentials and within-group

wage differentials in the labor market.

As a related work, Garicano (2000) studies how faster and easier ways in communi-

cation and knowledge acquisition change workers’ incentive to acquire specialized knowledge

based on a knowledge hierarchy. To explain the theoretical framework briefly, production

requires two inputs, physical capital and knowledge about how to produce. Garicano claims

that when there is a matching problem who knows how to solve the problem is unknown,

organizing workers based on their knowledge (knowledge-based hierarchy) is the best way

to solve the matching problem and use the workers’ specialized knowledge optimally. In the

knowledge hierarchy, knowledge required for the most common and easiest problem is on

the production floor, while knowledge for exceptional and complex problems is located on

the top layer. The production worker on the floor can ask workers in the next level of the

hierarchy for a solution to a problem he can’t solve. Thus, the unsolved problem sets from

lower layers will be transferred upward through the hierarchy until they are solved.

Decreasing knowledge acquisition costs and cheaper communication costs due to

advances in information and communication technology influence workers’ incentive for

knowledge acquisition. The lower knowledge acquisition cost resulting from advances in

information technology creates an incentive for all workers to acquire more knowledge.

For production workers on the production floor, however, cheaper communication costs

generate a negative incentive for knowledge acquisition. When production workers confront

problems beyond their knowledge, asking for solutions from workers in the higher layer is

much easier than before. Thus, advanced methods for communication among workers lead

production workers to make less of an effort to acquire knowledge. In contrast, advances in

communication technology increase utilization of specialized knowledge, so that increasing

rate of returns of specific knowledge for problem solvers lead them to acquire knowledge

more.

Based on this theoretical framework, Chapter 2 investigates whether the implications

derived from the theory are consistent with the real world. In addition, heterogeneous

2



impacts of information and communication technology on between-group wage differentials

provide an important key to solve the skill-biased technological change puzzle that increasing

growth rate of overall wage inequality has decreased in the 1990s regardless of continuous

advances in computer-based technology.

Chapter 3 begins with stylized facts characterizing the recent U.S. labor market:

polarization trends in the employment share and diverging wage evolution between upper-

tail and lower-tail wage differentials. Since the late 1990s, there has been a rapid growth

rate in the demand shifts for low-skilled workers and high-skilled workers relative to middle-

skilled workers. In addition, the U.S. wage structure indicates that with a decreasing growth

rate of overall wage differential, wage differential from the top-half wage distribution (wage

differential between the 90th and the 50th percentile) has increased continuously, while wage

differential from the bottom-half (wage differential between the 50th and the 10th percentile)

has decreased. While Chapter 2 investigates the impact of technological change on workers’

incentive for knowledge acquisition and on relative rate of returns among different types

of skilled workers, Chapter 3 focuses on the relationship between workers’ occupational

choices by self-selection process and rapid adoptions of computer-related capital. Chapter

3 first presents the theoretical framework for explaining what mechanisms change demand

for three skill-types of workers. Then it examines whether these implications are consistent

with the stylized facts in the U.S. labor market.

The theoretical framework illustrates that rapid adoption of computerization assets

due to the decreasing price of computer-based technology increases relative demand for pro-

duction inputs of routine tasks such as middle-skilled workers and computer-related capital,

and increases relative wages of high-skilled workers for nonroutine cognitive tasks and of

low-skilled workers for nonroutine manual tasks. Thus, marginal middle-skilled workers at

both ends in the routine tasks reallocate their labor supply toward nonroutine cognitive

tasks and nonroutine manual tasks, so that cheaper computerization assets will replace the

middle-skilled workers in routine tasks. Consistent with the theoretical framework, Chap-

ter 3 suggests that heterogeneous demand shifts for different types of skilled workers and
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replacement of middle-skilled workers from routine tasks due to decreasing computerization

costs cause the following observations in the U.S. labor market: first, the polarization trend

in employment, based on increasing growth rates of employment shares for both high-skilled

and low-skilled workers with a decreasing growth rate of employment share for middle-skilled

workers, and, second, the polarization pattern of divergent wage trends between increasing

upper-tail wage differential and decreasing lower-tail wage differential.
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Chapter 2

Skill-Biased Technological Change Puzzles on

Wage Differentials Revisited based on Information

and Communication Technology

2.1 Introduction

An increase in relative demand for skilled workers across industries has led to an

increase in wage differential between skilled workers and unskilled workers in the U.S. labor

market since the late 1970s. Considering the decreasing growth rate of the relative supply of

college-graduate workers and labor market institutional changes, much research has focused

on skill-biased technological change to explain the increasing wage differential. Until the

mid-1990s, it was considered an established fact that increasing relative demand for skilled

workers, caused by such technological changes as computer development, raises wage dif-

ferentials between different types of skilled workers. Card and DiNardo (2002), however,

argued that, since the evidence in the inequality literature linking skill-biased technological

change to increasing wage differentials is weak, skill-biased technological change hypothesis

should be re-evaluated to clarify the real factors of increasing wage differentials in U.S. labor

market.

Two figure sets associated with overall wage differentials and skill-biased techno-
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logical changes over 29 industries are used to represent these disagreements between skill-

biased technological change hypothesis and Card and DiNardo (2002). Figures 2.1 to 2.5

show trends in overall wage differentials, measured by wage gaps between the 90th and the

10th percentiles, and evolution of skill-biased technological change, based on information

and communication technology. Second, Figures 2.22 to 2.26, which can be found in the

Appendix, illustrate growth rates of skill-biased technological change and changes in overall

wage differentials, the differences in wage gaps between the 90th and the 10th percentiles

at two time points. As Card and DiNardo point out, for most of the 29 industries, growth

rates of skill-biased technology in the late 1990s were higher than in the early 1990s. At the

same time, except for such industries as metal, retail trade, and business services, changes

in overall wage differentials decreased in the late 1990s, which is the opposite direction from

the prediction of skill-biased technological change hypothesis.

Based on these inconsistent stylized facts, Chapter 2 focuses on the main skill-

biased technological change (henceforth, SBTC) puzzle that the growth rate of overall wage

inequality has not continued to rise in the late 1990s despite continued advances in computer-

related technology. This essay presumes that the disagreement between SBTC hypothesis

and Card and DiNardo (2002) might have originated from broad classifications of skill-biased

technological changes. That is, various types of computer-related technological changes

such as mainframes, data storage devices, computing programs, terminals, tape drives,

the Internet, communication devices, and network technology have all been categorized as

skill-biased technological change in the literature regardless of the qualitatively different

characteristics of these technologies.

Johnson (1997) classifies skill-biased technological changes into intensive skill-biased

technological change, extensive skill-biased technological changes, and skill-neutral techno-

logical change. The basic assumption for these distinctions is that technological change

influences demand for different types of workers heterogeneously, so that relative demand

shifts depend on which types of workers will be more productive in what kinds of jobs.

Johnson claims that widespread adoptions of computer-related technology such as personal

6
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Figure 2.1: Trends in Skill-biased Technological Change and Overall Wage Differentials I
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Figure 2.2: Trends in Skill-biased Technological Change and Overall Wage Differentials II
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Figure 2.3: Trends in Skill-biased Technological Change and Overall Wage Differentials III
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Figure 2.4: Trends in Skill-biased Technological Change and Overall Wage Differentials IV
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Figure 2.5: Trends in Skill-biased Technological Change and Overall Wage Differentials V

computers definitely increase productivity of workers, especially those whose jobs have a

complementary relationship with computer-related technology. Thus, intensive skill-biased

technological change increases relative demand for skilled workers, since they will be more

productive in their jobs due to advances in technology.

As an example of extensive skill-biased technological change, Johnson (1997) fo-

cuses on the use of robotics in the manufacturing industry. The adoption of robots in the

manufacturing industry yields two opposite impacts on the demand for workers. A more

complicated manufacturing process using robotics increases the demand for skilled workers

such as engineers or computer scientists, while the efficiency in the automatic production

process caused by newly adopted robotic equipment decreases the demand for unskilled

workers. On the other hand, skill-neutral technological changes increase productivity for all

workers by the same percentage, so that there are no changes in relative demand for skilled

workers to unskilled workers. These classifications suggest that technological advances gen-
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erate different implications for wage differentials and marginal productivity depending on

skill types of the workers. In the SBTC literature, the second classification, extensive skill-

biased technological change, has been regarded as the primary skill-biased technological

change to explain the increasing relative demand for skilled workers and wage differentials

between skilled workers and unskilled workers. However, Johnson’s distinctions between

intensive and extensive technological changes do not indicate which types of technology

should be classified as intensive or extensive technological change.

Garicano and Rossi-Hansberg (2006) separate comprehensive skill-biased technolog-

ical change into information technology and communication technology. They propose that

informational technological change, such as development of computing equipment, reduces

the cost of knowledge acquisition and information processing, and communicational tech-

nological change decreases communication costs among workers due to advances in network

technology such as e-mail and mobile communication devices. In a knowledge hierarchy in

which workers are defined by cognitive skill, so the least skilled workers are assigned to the

least skilled tasks and the most skilled workers are assigned to the most complex jobs1, a de-

crease in communication cost makes communication between skilled and unskilled workers

easier and faster.

When unskilled workers confront difficult problems, improved communication meth-

ods lead them to ask for answers from skilled workers instead of acquiring the knowledge

required to solve the problems themselves. Also, since rate of returns of specialized knowl-

edge is an increasing function of utilization of the knowledge, increasing utilization of skilled

workers’ knowledge due to advances in communication technology lead problem solvers to

acquire knowledge more. Thus, these different incentives for knowledge acquisition due

to cheaper communication costs yield the Superstar effect of Rosen (1981) by increasing

the concentration of solving complex problems toward skilled workers at top layers of the

1Johnson (1997) also assumes that all tasks can be ranked from the most complex (i.e., neurosurgeon)
to the least complex (i.e., ditch digger) in his distinction between intensive skill-biased technological change
and extensive skill-biased technological change, claiming “if a skilled worker has a comparative advantage in
the more complex jobs and an unskilled worker has a comparative advantage in the less complex jobs, then
unskilled workers will fill the less complex jobs and skilled workers will fill the rest.”
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knowledge hierarchy. The wage differential between the most skilled and the least skilled

workers increases with advances in communication technology. By contrast, since advances

in information technology lead the workers, regardless of their skills, to acquire knowledge

more easily than before, knowledge acquisition and decentralization of problem solving in-

crease with decreasing knowledge acquisition costs. However, since problem solvers have

a comparative advantage of knowledge acquisition, decreasing knowledge acquisition costs

increase wage differentials between workers in the knowledge hierarchy as well.

Rather than using comprehensive skill-biased technological change, separating skill-

biased technological change into information technology and communication technology

helps better explain the wage structure trend in the U.S. labor market. To explain the

differences between the separated skill-biased technological change used here and the com-

prehensive skill-biased technological change applied in wage inequality literature, this essay

uses the simplified SBTC framework from Card and DiNardo (2002), which is primarily

used in empirical earning inequality literature such as Bound and Johnson (1992), Berman,

Bound and Griliches (1994), Autor, Katz, and Krueger (1998), and Autor, Katz, and Kear-

ney (2005). A constant elasticity of substitution production function for the simplified

SBTC framework can be written as

Y = A[θ(ηsNs)
σ−1

σ + (1 − θ)(ηuNu)
σ−1

σ ]
σ

σ−1 (2.1)

where Y represents the value of output; Ns and Nu the labor supplies of skilled workers

and unskilled workers, respectively; ηs and ηu the labor augmenting technological changes

for skilled workers and unskilled workers; θ and (1 − θ) the technology parameters for

skilled workers and unskilled workers, which could be interpreted as the share of skilled

and unskilled workers in the work place, respectively; and σ represents the elasticity of

substitution between skilled workers and unskilled workers, which is assumed to be larger

than one in this paper. From Equation (2.1), the marginal productivity of skilled workers
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and of unskilled workers, respectively, can be derived as

MPs = Aθηs(ηsNs)
−1
σ [θ(ηsNs)

σ−1
σ + (1 − θ)(ηuNu)

σ−1
σ ]

1
σ−1 (2.2)

MPu = A(1 − θ)ηu(ηuNu)
−1
σ [θ(ηsNs)

σ−1
σ + (1 − θ)(ηuNu)

σ−1
σ ]

1
σ−1 (2.3)

By taking the logarithm of the ratio between marginal productivity of skilled workers and

of unskilled workers, Π =
(

θ
1−θ

)(

ηs

ηu

)1− 1
σ
(

Ns

Nu

)
−1
σ , relative wage between skilled workers and

unskilled workers can be written as

ln
(ws

wu

)

= ln
( θ

1 − θ

)

+
σ − 1

σ
ln

( ηs

ηu

)

−
1

σ
ln

(Ns

Nu

)

(2.4)

where ws and wu represent wage for skilled workers and unskilled workers, respectively.

Equation (2.4) shows that the relative wage between skilled workers and unskilled workers

is a function of technological change and change in the relative labor supply. Thus, without

considering the relative labor supply of different types of skilled workers, technological

changes become the only way to change the relative wage between skilled workers and

unskilled workers.

Card and DiNardo (2002) argue that when the relative labor supply between skilled

and unskilled workers is exogenously given, relative wage change will take place only through

skill-biased technological change, which involves either an increase in θ or an increase in ηs

relative to ηu. As they pointed out, although both types of skill-biased technological change

increase the relative wage of skilled workers by increasing relative marginal productivity

of skilled workers, each skill-biased technological change - either an increase in θ or an

increase in ηs relative to ηu - involves a different mechanism for increasing the relative

wage of skilled workers. First, an increase in θ raises the marginal productivity of skilled

workers based on Equation (2.2). Since it simultaneously decreases (1 − θ), the increase

in θ decreases the marginal productivity of unskilled workers as well. Second, an increase

in ηs relative to ηu affects relative marginal productivity between skilled and unskilled

workers, Π, through a mechanism whereby a relative increase in ηs raises the marginal

12



productivity of skilled workers without necessarily decreasing the marginal productivity

of unskilled workers. Thus, the implications of increasing θ and relatively increasing ηs

are consistent with extensive skill-biased technological change and intensive skill-biased

technological change from Johnson (1997), respectively.

Based on the SBTC framework, separating skill-biased technological change into in-

formation and communication technology involves both an increase in θ and an increase in

ηs relative to ηu. Advances in communication technology increase the marginal productivity

of skilled workers and decrease the marginal productivity of unskilled workers simultane-

ously, as explained by the implications of the increase in θ and the extensive skill-biased

technological change of Johnson (1997). That is, due to advances in communication tech-

nology such as e-mail or mobile devices, communication among all workers is more efficient,

so cheaper communication costs compel unskilled workers to ask for a solution from skilled

workers when they confront complex problem sets, instead of acquiring the required knowl-

edge themselves. Due to the decreased incentive for knowledge acquisition of less skilled

workers, dependency of unskilled workers on skilled workers and a centralization toward top

problem solvers in the knowledge hierarchy becomes larger. Thus, the impact of advances

in communication technology on between-group wage differentials is similar to the effects of

the increase in θ and the decrease in (1−θ), which cause simultaneously decreasing marginal

productivity of unskilled workers and increasing marginal productivity of skilled workers.

In addition, advances in information technology have the same implication from an

increase in ηs relative to ηu as in the intensive skill-biased technological change of Johnson

(1997). Widespread adoptions of computers in the workplace due to advances in informa-

tion technology increase marginal productivity of all workers, though these positive effects

are biased toward skilled workers in the knowledge hierarchy. Thus, decreasing knowledge

acquisition costs increase relative marginal productivity of skilled workers. This is the same

result of intensive skill-biased technological change, in that intensive SBTC increases the

marginal productivity of skilled workers without necessarily decreasing the marginal produc-

tivity of unskilled workers. Therefore, based on the implications described above, this paper
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posits that separating skill-biased technological change into information and communica-

tion technological changes involves both intensive and extensive skill-biased technological

change via an increase in ηs relative to ηu and an increase in θ, respectively, which generates

homogeneously positive effects and heterogeneous effects on the marginal productivity of

skilled workers and unskilled workers.

The organization of Chapter 2 is as follows. Section 2.2 discusses the theoretical

model and comparative statics from Garicano (2000) and Garicano and Rossi-Hansberg

(2006). Then, Section 2.3 introduces data sources and key facts in the U.S. wage struc-

ture from 1968 to 2007 and presents empirical models and estimation results concerning

heterogeneous impacts of information and communication technology on wage differentials

between occupational layers and within-group wage differentials based on four occupational

layers. Section 2.4 concludes with summarizing empirical evidence and findings.

2.2 Theoretical Model

Garicano (2000) studies how advances in information and communication technology

affect workers’ incentive for specialized knowledge acquisition. Based on Hayek’s (1945)

optimal uses of available knowledge in society, Garicano claims that knowledge hierarchy is

the best way to acquire specialized knowledge when who knows how to solve a problem is

unknown. In this knowledge hierarchy, workers on the production floor acquire knowledge

about the most common or the least complex problems. When they are confronted with

difficult problems, they ask for a solution from the workers in the next layer who deal with

more complex problems.

This essay is based primarily on the theoretical frameworks and implications from

Garicano (2000) and Garicano and Rossi-Hansberg (2006). In those models, production

requires two inputs: physical capital and production knowledge. If communication among

workers is available, the efforts to acquire more knowledge for production decrease with

production workers acquiring only basic relevant knowledge for their tasks. When workers
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confront more complex problems, they refer the problems to workers in the higher layer.

Since workers have only a narrow range of specialized knowledge and the knowledge involves

a tacit characteristic, classifying workers by their specialized knowledge or production know-

how is not easy.

Garicano suggests that organizing workers based on the knowledge the worker has

solves this matching problem. In the knowledge hierarchy, knowledge for the most common

and the easiest problem is found on the production floor while knowledge for exceptional

and complex problems is located at the top layer of the knowledge hierarchy. The produc-

tion worker on the floor asks workers in the next level of the hierarchy for a solution to

a problem. Unsolved problem sets are transferred up the hierarchy until they are solved.

In this structure, informational technological changes and communicational technological

changes, which directly affect knowledge acquisition costs and communication costs, influ-

ence workers’ incentive to acquire knowledge.

That is, due to advances in information technology, a decrease in knowledge acquisi-

tion cost generates an incentive to acquire more knowledge for all workers. Thus, production

workers refer unsolved problems to the workers in the higher layers less and the discretion

of a worker in the production process will be increased. However, if communication costs

decrease by advances in communication technology, production workers choose the easier

way, asking someone else, instead of acquiring more complex knowledge themselves. Thus,

as production workers’ dependency on specialized problem solvers increases, so does the

centralization of problem solvers at the top of the knowledge hierarchy.

2.2.1 Knowledge Acquisition for Production

In the knowledge hierarchy, production procedure requires both physical and knowl-

edge inputs. However, unlike the general concept of the production process, this model

regards the production procedure as a problem solving process for each worker, so that a

production worker should use his knowledge to solve a problem set with his physical capital.

Suppose Ω ⊂ R+ is the set of all possible problems for the workers in the knowledge hier-
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archy, and K ⊂ Ω is defined as the problem set a worker can solve with his knowledge set.

Production occurs when problem set S ∈ Ω is drawn and solved. Thus, when the problem

set S ∈ Ω, which follows a continuous distribution, satisfies the following condition, S ∈ K,

the problem set is solved and production for a worker feasible. Garicano normalizes the

density of the problems distribution so that the drawn problems are ordered from the least

complex to the least common problems with the density of the problem set assumed to be

nonincreasing.

When the time spent for production is defined as tp, expected output for a worker

with constant returns to scale in the production process is written as E[x] = tp
∫

K
dF (S).

In this model, a worker obtains answers for problem sets when he refers complex problem

sets to problem solvers at the higher levels. He assumes that learning cost of an interval

S for a problem set is proportional to the problem set’s interval, which is the Lebesgue

measure of the interval S, µ(S). Therefore, for a constant unit learning cost α, the learning

cost for a problem set [0, Sj ] can be written as αSj , and the expected net output per unit

of time for a worker can be defined as

E[y] = Pr(S < Sj) − αSj =

∫ Sj

0
f(φ)dφ − αSj (2.5)

The workers choose their optimal knowledge acquisition ranges to maximize their expected

net output per unit of time. The first order condition, f(φ) = α, from Equation (2.5)

shows that the marginal benefit of knowledge acquisition is equal to the marginal learning

cost. As this analysis suggests, a decrease in knowledge acquisition cost due to advances

in information technology leads to an increase in incentive for workers to acquire more

knowledge.

2.2.2 Communication in the Knowledge Hierarchy

In this structure, workers at different layers acquire different ranges of knowledge, so

that utilization rates of acquired knowledge for solving problems increase with communica-
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tions among the workers. Garicano (2000) introduces two costs into his models: matching

a problem set with the worker who knows how to solve it and communicating with workers

for the answers. In this model, matching problems to workers who know how to solve them

is unknown, and until the problems are completely solved or they are named as puzzles, the

unsolved problem set will be transferred to problem solvers in the higher layers. Based on

information processing literature, Garicano assumes that, instead of the production workers

who are asking for answers from the next higher layer, the receivers who are being asked

should pay for the communication costs. That is, communicating or explaining how to solve

the problem sets decreases the time available for problem solvers.

The knowledge hierarchy has M layers of size βj , where
∑

βj = 1, and each layer

can be defined as having the following characteristics: (i) a knowledge set for layer j is

Kj ⊂ Ω, which overlaps layers, (ii) each layer has a list of layers, lj, whom workers in level

j can ask for answers, in which the first layer to be asked by layer j is the layer j itself,

and (iii) a time unit, tc, for a worker in layer j to communicate with workers in lower layers

and a time unit, tp, to engage in production for layer j, where tc + tp ≤ 1. In this model,

the time spent in communication, asked by the βj members in layer j of the βi workers in

layer i, depends on the available knowledge from all layers h, previously asked, with h ≺j i

representing all classes h, which precede class i in layer j’s help list. Thus, with the helping

cost for problem solvers defined as γ, the time spent by workers in layer i for communicating

with other classes can be defined as

βit
i
h =

∑

j: i∈lj

βjt
j
h

(

1 − F
(

⋃

h≺j i

Kh

))

γ (2.6)

Since output for each class j depends on the (i) probability that βj members in class j can

obtain a solution from at least one layer in class j’s help list, (ii) time spent for production

by βj members in class j, and (iii) knowledge acquisition costs for βj in layer j, the total
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output for the knowledge hierarchy can be written as

y =
M
∑

i=0

(

βit
i
p F

(

⋃

h∈li

Kh

)

− αKiβi

)

(2.7)

To maximize the total output of the knowledge hierarchy using two constraints, the

time constraint tc + tp ≤ 1 and the size constraint
∑

βj = 1, the hierarchy chooses the

size of each class, βi; the knowledge for each class, Ki; a list in each class, li; and the time

assignment to communication and production. Garicano (2000) shows that any arbitrary

initial allocations associated with knowledge of workers and communication among workers

can be improved in the knowledge hierarchy, and in the optimum the knowledge hierarchy

has four important characteristics:

(1) Specialization: All members in each class specialize either in production or in

problem solving. Based on the range of specialization, production workers are characterized

by specializing in production, in other words, in drawing problem sets. All other classes

concentrate on problem solving and transferring the solution sets to the production workers.

(2) Non-overlapping Knowledge: Since all workers are specialized in each narrow

problem set, different classes in the hierarchy have different knowledge sets. When Si−1

and Si are endpoints of the problem sets in class (i − 1) and class i, the specialized range

for class (i − 1) can be defined as si−1 = Si−1 − Si−2, and the specialized range for class i

can be written as si = Si − Si−1 where Si =
∑i

h=0 sh.

(3) Organization by Frequency: Production workers on the floor acquire knowledge

for solving the easiest problems, and problems solvers at the top layers learn knowledge

to deal with exceptional matters. Thus, information associated with answers always flows

from top to bottom in the knowledge hierarchy, minimizing communication costs.

(4) Pyramidal Organization: The knowledge hierarchy has a pyramidal structure in

which the lowest layer is larger in size than each successive layer.

Based on these characteristics, when all members in the knowledge hierarchy are
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given one unit of time, total output from Equation (2.7) can be written as

y = F

( M
∑

i=0

si

)

β0 −

M
∑

i=0

αβisi (2.8)

where si is the specialized range for class i, which can be defined as Si − Si−1, and βi is

the proportion of workers in layer i. Here all members in each class have one unit of time.

From Equation (2.6), as a constraint the time spent by workers in class i communicating

with workers in lower layers can be written as

βi = β0γ
(

1 − F
(

i−1
∑

j=0

sj

))

(2.9)

Under the assumption that the problem set for production, S ∈ Ω, follows an

exponential distribution, the hierarchy’s problem from Equation (2.8) can be defined as

max
si,βi

lim
M→∞

[

F

( M
∑

i=0

si

)

β0 −

M
∑

i=0

αβisi

]

(2.10)

If the cumulative distribution function of exponential distribution, F (x;λ) = 1 − exp−λx,

where x ≥ 0, is applied to Equation (2.9), the time constraint can be changed to

βi = β0γ
(

exp
(

− λ

i−1
∑

j=0

sj

))

(2.11)

By substituting the time constraint from Equation (2.11) and the size constraint,
∑M

j=0 βj =

1, into Equation (2.10) for βi and for β0, respectively, the maximization problem of the

knowledge hierarchy for total output can be defined as

y = max
si

F
(
∑

∞

i=0 si

)

− αs0 −
∑

∞

i=1 αsi exp
(

− λ
∑i−1

j=0 sj

)

γ

1 +
∑

∞

i=1 exp
(

− λ
∑i−1

j=0 sj

)

γ
(2.12)

where β0 =
(

1 +
∑M

i=1 exp
(

− λ
∑i−1

j=0 sj

)

γ
)

−1
can be derived from the size constraint,
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β0 = 1 −
∑M

j=1 βj .

The first-order condition for the knowledge set for the production worker, s0, which

can be derived from Equation (2.12), can be written as

1

σ
f

( ∞
∑

i=0

si

)

−
α

σ
+

λαγ

σ

∞
∑

i=1

si exp

(

− λ
i−1
∑

j=0

sj

)

+
y

σ
γλ

∞
∑

i=1

exp

(

− λ
i−1
∑

j=0

sj

)

= 0 (2.13)

where σ =
(

1+
∑

∞

i=1 exp
(

−λ
∑i−1

j=0 sj

)

γ
)

from β0; and from Equation (2.12), the first-order

condition for problem solvers in class h to find optimal knowledge set sh, where h > 0 in

the knowledge hierarchy, can be written as

1

σ
f

( ∞
∑

i=0

si

)

−
αγ

σ
exp

(

− λ

h−1
∑

j=0

sj

)

+
λαγ

σ

∞
∑

i=h

si+1 exp

(

− λ

i
∑

j=0

sj

)

=

−
yγλ

σ

∞
∑

i=h

exp

(

− λ

i
∑

j=0

sj

)

(2.14)

Therefore, the optimal specialized range for a production worker, s∗0, and the optimal ranges

of problem solvers in class j, s∗j , from Garicano (2000) are derived as

s∗o =
1

λ
ln

(γλ

α
− γ ln γ

)

(2.15)

s∗j =
1

λ
ln

(λ

α
− ln γ

)

(2.16)

Based on the derived optimal specialized ranges for production workers and problem solvers,

a decrease in communication cost, γ, increases the optimal solvable range for problem

solvers while a decrease in communication cost decreases the specialized problem range

for production workers2. A decline in knowledge acquisition cost, α, increases the optimal

solvable ranges for all production workers and problem solvers3.

Testable implications about between-group wage differentials can be derived from

2 ∂s∗j
∂γ

= −1
λγ

1
(

λ
α
−ln γ

) < 0 and
∂s∗o
∂γ

= 1
λ

1
(

γλ
α

−γ ln γ

)

(

λ
α
− ln γ − 1

)

> 0

3 ∂s∗j
∂α

= −1
α2

1
(

λ
α
−ln γ

) < 0 and
∂s∗o
∂α

= −γ

α2

1
(

γλ
α

−γ ln γ

) < 0
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these frameworks. First, the decreased incentive to acquire knowledge about how to solve

problems for the production workers leads to an increase in the wage differentials between

production workers and problem solvers in different layers. Since the workers choose to

ask someone else instead of acquiring more knowledge when they face a difficult problem

set, the production workers become increasingly dependent on problem solvers, especially

the problem solvers of exceptional problem sets, widening the wage differential between

production workers and problem solvers. That is, wage differentials between production

workers at the bottom layer of the knowledge hierarchy and problem solvers at the top

layers will be raised as a result of advances in communication technology.

Second, decreasing knowledge acquisition costs by advances in information technol-

ogy lead all workers to acquire knowledge more. Based on the principle of comparative

advantage of problem solvers on knowledge acquisition, however, wage differentials between

problem solvers and production workers increase due to decreasing knowledge acquisition

costs with increasing wage differentials between two occupational layers tending to be larger

at the higher layers of the knowledge hierarchy. These implications about between-group

wage differentials form the basis for the first part of empirical analysis about whether the

derived comparative statics from the theoretical frameworks are consistent with real-world.

Meanwhile, an important key to solving SBTC puzzles questioned by Card and DiNardo

(2002) will be illustrated.

In addition, based on Garicano and Rossi-Hansberg (2006), workers’ different in-

centive changes for knowledge acquisition caused by cheaper communication costs would be

similarly applied to within-problem solvers wage differentials and within-production work-

ers wage differentials. The positive effect of communication technology on incentive to

acquire knowledge increases within-group wage differentials for problem solvers, but the

negative effect of cheaper communication cost on the incentive decreases within-group wage

differentials for production workers. That is, for within-problem solvers wage differential,

although increasing utilization and rate of returns for knowledge lead problem solvers to ac-

quire knowledge more, there are still differences of comparative advantages among problem
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solvers even in the same group. Also, decreasing communication costs for production work-

ers due to easier and faster communication methods make production workers’ knowledge

in the same group homogeneous. Therefore, implications for within-group wage differentials

that within-group wage differentials for problem solvers increase with advances in commu-

nication technology, while within-group wage differentials for production workers decreases

with cheaper communication costs will be the second basis for the empirical analysis.

2.3 Empirical Application

To see whether the predictions about the impact of information and communication

technology on wage differentials from the frameworks are consistent with real patterns in the

U.S. labor market, this paper focuses on between-group wage differentials and within-group

wage differentials based on four occupational layers: managers, professionals, middle work-

ers, and lower workers. Here the lower workers are assumed to be isolated from advances

in information and communication technology measured by rapid adoptions of computing

equipment, software and communication devices. Although information and communica-

tion technology impacts on wage differentials between lower workers and the other three

occupational layers; managers, professionals, and middle workers, respectively, will be pri-

marily based on direct impacts of information and communication technology on each three

occupational layers, for comprehensive analysis, lower workers will not be excluded in the

between-occupations wage differentials analysis.

For between-occupational layer wage differentials, relative wages between two occu-

pational layers are calculated using data on full-time and full-year workers age 17-65 from

the IPUMS CPS. Log real weekly earnings are regressed for each year separately on such

variables as years of schooling, experience, experience squared, metro area, gender, white,

occupation, and industry. The mean log real weekly wage for each occupational layer used

here is the predicted log real weekly wage from these regressions, evaluated at the sample

mean only for white and male in a given year. For within-occupational layer wage differen-
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Table 2.1: Descriptive Statistics for EU KLEMS Growth and Productivity: 1970-2005

Variables Observations Mean Std. Dev. Min Max

Computing Equipment 1044 609.63 2155.38 0.03 26946.68
Communication Equipment 1044 1414.77 4304.16 0.01 54521.07
Software 1044 2798.89 6625.73 1.19 62077.94
Transport Equipment 1044 3898.03 6802.73 95.63 47974.20
Information and Communication† 1044 3902.28 9851.04 0.55 103127.30
Total Capital Asset 1044 47545.98 95128.05 1763.69 789081.50
Number of Employees 1044 4602.26 7298.44 115.00 51069.46
Real Gross Output 1044 428550.70 421881.60 47372.75 3031866.00

† Information and communication technology capital investment such as computing equipment, communica-
tion equipment, and software. All capital assets are measured by real gross fixed capital formation in 2005
dollars from EU KLEMS Growth and Productivity Accounts during the periods from 1970 to 2005. (in
millions of U.S. dollars) Real Gross outputs are measured in millions of U.S. dollars and total number of
employees are measured in thousands units.

tials, the residual wage differential for each group is calculated by wage residuals from the

regressions above of log real weekly earnings on education, experience, experience squared,

metro area, gender, white, occupation, and industry.

2.3.1 Data and Stylized Facts

Before investigating the impact of information technology and communication tech-

nology on wage differentials, this section analyzes the U.S. wage structural changes including

data descriptions over the last four decades. For the paper, this information comes from

two sources, the IPUMS Current Population Survey and the EU KLEMS Growth and Pro-

ductivity Accounts. The IPUMS Current Population Survey data for full-time, full-year

wage/salary workers age 17-65 with 0 to 58 years of potential labor market experience dur-

ing the period from 1968 to 2007 (covering earnings years 1967 to 2006 for workers age 16-64

in earnings years) are used to calculate wage differentials between groups and wage differ-

entials within a group. Full-time workers are defined as those who work 35 hours or more

per week, and full-year workers worked forty-plus weeks in the previous year. All earnings

are deflated by the Personal Consumption Expenditure Price Index (PCEPI). A worker’s

log real weekly earning is calculated as the logarithm of real annual earnings divided by
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Figure 2.7: Years of Schooling from Utilities to Health Services: 1968-2007

the weeks the worker worked during the prior year. Workers earning less than 67 dollars

per week in 1982 dollars (below 112 dollars per week in 2000 dollars or below 125 dollars

per week in 2005 dollars) are excluded. All calculations are weighted using CPS sampling

weight, person weight. Observations for top-coded earnings are multiplied by 1.5 based on

Katz and Murphy (1992) and Autor, Katz, and Kearney (2008).

The 29 broad industry classifications of IPUMS CPS are recategorized to reconcile

with industry classifications based on the EU KLEMS Growth and Productivity Dataset. In

addition, to measure wage differentials between groups and wage differentials within group,
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Figure 2.8: Weekly Earnings from Agriculture to Misc. Manufacturing: 1968-2007
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Figure 2.9: Weekly Earnings from Utilities to Health Services: 1968-2007

there are four occupational layers: the higher layer, the middle layer, the lower layer, and

one independent layer. Among the 11 occupation classifications of IPUMS Current Popula-

tion Survey, the manager, officials, and proprietors classifications are considered the higher

layer; clerical and kindred, sales workers, craftsmen, farmers, and operatives are regarded as

occupations in the middle layer; and service workers and laborers are considered the lower

layer. Since the professional and technical (technicians) occupations have independent oc-

cupational characteristics, this paper places them in the independent layer located between

the higher and the middle layers. Figures 2.6 to 2.11 illustrate the years of schooling and
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Figure 2.11: Descriptive Statistics for Weekly Earnings of Occupational Layers: 1968-2007

weekly earnings by industry and by occupational layer from the IPUMS Current Population

Survey Data. More specific descriptive statistics from the IPUMS CPS Data by industry

can be found in the Appendix.

For the measures of information and communication technology, the real gross fixed

capital formation data (RGFCF) by industry come from the second data source, the EU

KLEMS Growth and Productivity Accounts, for the period from 1970 to 2005 at 2005

dollars. Here, capital investment in computing equipment is used as information technol-

ogy, and software and communication equipment are used as communication technology.
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Figure 2.12: Log Real Weekly Earnings Changes over Wage Percentile from 1968 to 2007 I

Since this paper focuses on the impact of computer-related technological changes on wage

differentials, only three categories of capital investments - computing equipment, software

and communication equipment - are used from the total capital assets, which also includes

non-residential structure investments or other machinery and equipment. Furthermore, to

eliminate heterogeneity based on industry size, all measurements for information and com-

munication technology are converted into share-type variables divided by total number of

employees and real gross output for each industry.

To show the wage structural changes during the last four decades in the U.S. la-

bor market, this section presents two figure sets: (i) the log weekly earnings changes for

the period from 1968 to 2007 by wage percentiles from the 3rd to the 97th and (ii) di-

vergent patterns of between-group wage differentials such as increasing wage differentials

between managers and middle workers; increasing wage differentials between professionals

and middle workers; and decreasing wage differentials between middle and lower workers.
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Figure 2.13: Log Real Weekly Earnings Changes over Wage Percentile from 1968 to 2007 II
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Figure 2.14: Log Real Weekly Earnings Changes over Wage Percentile from 1968 to 2007 III
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Figure 2.15: Log Real Weekly Earnings Changes over Wage Percentile from 1968 to 2007 IV
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Figure 2.16: Log Real Weekly Earnings Changes over Wage Percentile from 1968 to 2007 V
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The first figure set, Figures 2.12 to 2.16, represents changes in log real weekly

earnings by industry over wage percentiles from the 3rd to the 97th during the four periods,

1968 to 1990, 1968 to 1995, 1968 to 2000, and 1968 to 2007, using data on full-time and

full-year workers age 17 to 65 from the IPUMS Current Population Survey. As these figures

showing U.S. wage structural changes by industry indicate, most of the 29 industries exhibit

large wage differentials over the last four decades. For example, wage differentials between

the 90th and the 10th percentiles have increased by 48.68 log points in textiles, 34.08 log

points in wood, 31.86 log points in business activities, and 18.20 log points in finance during

the period from 1968 to 2007. Furthermore, log weekly earnings for various lower percentile

earners have dropped significantly for the same time period. That is, in 2007 the log weekly

earnings below the 18th percentile in food, below the 25th percentile in textiles, below the

10th percentile in metal, below the 10th percentile in the construction, and below the 18th

percentile in the retail trade are lower than the log weekly earnings in 1968 for the same

percentile and the same industry.

In addition, as Figures 2.12 to 2.16 show, more than two-thirds of the industries

indicate homogeneous shocks for all workers in wage distribution from 1995 to 2007 in two

patterns, 1968-1995 and 1968-2007, indicating monotone increasing trends over the wage

percentiles from the 3rd to the 97th. However, nine industries, including textiles, paper

and pulp, chemical, rubber, glass, machinery, miscellaneous manufacturing, utilities, and

transport, indicate that log weekly earnings have changed heterogeneously. And overall

wage differentials calculated using the wage gaps between the 90th and the 10th percentiles

for sub-periods indicate sharply increasing trends of overall wage differentials in the 1980s

and decreasing overall wage differential trends since then. Most of the industries as seen in

Table 2.10, except for petroleum and communication, recorded the highest wage differentials

during the period from 1981 to 1990, but since 1990 overall wage differentials have reported

smaller wage differentials than in the previous periods.

The figure sets in Figures 2.17 to 2.21 show three trends in wage differentials between

occupational layers: between the managers and the middle layers, between the professionals
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Figure 2.17: Wage Gaps between Managers and Middles and between Middles and Lowers I
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Figure 2.18: Wage Gaps between Managers and Middles and between Middles and Lowers II
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Figure 2.19: Wage Gaps between Managers and Middles and between Middles and Lowers III
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Figure 2.20: Wage Gaps between Managers and Middles and between Middles and Lowers IV
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Figure 2.21: Wage Gaps between Managers and Middles and between Middles and Lowers V

and the middle layers, and between the middle layers and the lower layers. All industries,

except for the agriculture industry, indicate increasing wage differential patterns between

higher layers and middle layers relative to wage differentials between middle workers and

lower workers, although higher layers are measured by managers class and professionals

class separately. These diverging trends between wage differentials are consistent with the

divergence trends between the upper-tail wage inequality measured by the 90th and the

50th percentiles and the lower-tail wage inequality measured by the 50th and the 10th

percentiles in Autor, Katz, and Kearney (2008).
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2.3.2 Wage Differentials between Occupations

To estimate the effects of information and communication technology on the wage

differential between occupational layers, the first empirical model can be written as

ln
( ωj

ωj′

)

it
= β0 + β1 ln(CompEq)it + β2 ln(Software)it + β3 ln(CommEq)it (2.17)

+β4 ln(RelLabSup)st + β5LPit + β6(K/Y )it + β7(K/N)it + εit

where i indicates the 29 industries with indexes of occupations j and j′, managers, profes-

sionals, middle layer, and lower layer, and ωijt the wage in the jth occupational layer of

industry i at time t. For industry i at time t, CompEqit represents investment in computing

equipment, Softwareit the investment in software, CommEqit the communication equip-

ment investment, RelLabSupst the relative labor supply between occupational layers j and

j′ in sector s4, LPit real gross output per worker, (K/Y )it the ratio between total capital

assets and real gross output, and (K/N)it the capital-employment intensity measured by

total capital assets divided by total number of employees. In literature, computing equip-

ment is defined as computer hardware, including mainframes, personal computers, direct

access and other storage devices, printers, terminals, tape drives, and integrated systems.

Software is defined as prepackaged, custom, and own-account software (Stiroh, 2002).

Tables 2.2 to 2.5 illustrate the impact of information and communication technology

on between wage differentials among the four occupational layers: managers, professionals,

middle workers, and lower workers. For the between-occupation wage differentials analysis,

this section uses two empirical specifications. First, based on the empirical specification with

three types of investments for information and communication technology from Equation

(2.17), two-way fixed effect regressions with 29 industry dummies and year dummies from

1970 to 2005 are used. Here, investment for computing equipment is considered information

4(i) First sector: Agriculture, Mining, Food, Textile, Wood, Paper and Pulp, Petroleum, Chemicals, Rub-
ber, Glass, Metals, Machinery, Electrical Machinery, Transport Equipment, Miscellaneous Manufacturing;
(ii) Second sector: Utilities, Construction, Motor Vehicle Sales, Wholesale Trade, Retail Trade, Transport
and Storage, and Communication and Post; and (iii) Third sector: Finance, Real Estate, Business Services,
Personal Services, Public Administration, Education, Health Service.
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technology, and software and communication equipment investment are regarded as com-

munication technology. However, since the estimation results shown in Tables 2.2 and 2.3

indicate the impact of software and communication equipment on between-occupation wage

differentials is similar to the finding seen in Tables 2.4 and 2.5, the second empirical specifi-

cation with a broad measure of communication technology based on investments in software

and communication equipment can be defined as

ln
( ωj

ωj′

)

it
= β0 + β1 ln(CompEq)it + β2 ln(SoftCommEq)it + β3 ln(RelLabSup)st (2.18)

+β4LPit + β5(K/Y )it + β6(K/N)it + εit

where SoftCommEqit represents the combined investments for software plus communica-

tion equipment of industry i at time t. Only computing equipment investment is defined

as information technology, while combined investments for software plus communication

equipment are considered communication technology. To consider the heterogeneous size

of the 29 industries, investments in information and communication technology for both

empirical specifications are divided by real gross output and total number of employees in

each industry, respectively.

Tables 2.2 and 2.3 show that (i) information technology, which is measured by

computing equipment, and two measurements of communication technology - software and

communication equipment - have different impacts on between wage differentials depending

on the comparison sets, and (ii) for the same comparison set each technological change -

informational technological change or communicational technological change - has a het-

erogeneous impact on between wage differentials. For information technology, decreasing

knowledge acquisition costs have a positive effect on four between wage differentials: man-

agers and professionals, managers and middle workers, managers and lower workers, and

middle workers and lower workers. As shown in Tables 2.2 and 2.3, regression (1) shows that

a one percent increase in information technology measure leads to increased wage differen-

tials between managers and professionals by 0.0215 percent and 0.0209 percent, respectively.
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Table 2.2: The Effect of Information and Communication Technology on Wage Differentials among
Four Occupations based on Log ICT Capitals-Real Gross Output Intensity I: 1970-2005

Dependent Variable: Log Wage Gaps Among Four Occupation Layers

Variables
(1) (2) (3) (4) (5) (6)

Log Computing Intensity 0.02145∗∗ 0.00434 0.00637 −0.01912∗∗∗ −0.01588 0.00008
(0.008) (0.008) (0.007) (0.005) (0.011) (0.010)

Log Software Intensity −0.02267∗∗ −0.00499 0.00083 0.01872∗∗∗ 0.02353∗ 0.00756
(0.010) (0.011) (0.008) (0.006) (0.013) (0.012)

Log Communication Intensity −0.00147 0.00081 0.00267∗∗ 0.00268∗∗ 0.00344 0.00358∗

(0.002) (0.002) (0.001) (0.001) (0.003) (0.002)
Log Relative Labor Supply 0.04366 0.01192 0.01183 −0.04725 −0.01401 0.10148∗∗∗

(0.026) (0.029) (0.037) (0.029) (0.033) (0.036)
Output per Worker 0.00423∗ 0.00488∗∗ 0.01503∗∗∗ 0.00226 0.01158∗∗∗ 0.01178∗∗∗

(0.002) (0.002) (0.004) (0.002) (0.004) (0.003)
Capital-Output Intensity 0.00006 0.00004 −0.00003 −0.00001 −0.00008 −0.00007

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Capital-Employment Intensity −0.00002 −0.00002∗ −0.00001 −0.000004 0.000002 0.000005

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 0.16020∗∗∗ 0.48479∗∗∗ 0.71785∗∗∗ 0.19637∗∗∗ 0.53440∗∗∗ 0.07281

(0.036) (0.078) (0.053) (0.053) (0.058) (0.087)

Industry Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
R-squared 0.3285 0.6988 0.5426 0.7513 0.5776 0.1212
Observations 1044 1044 1044 1044 1044 1044

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Capital investments for information and communication technology are measured by real gross
fixed capital formation (flow) in 2005 prices from the EU KLEMS Growth and Productivity Accounts from
1970 to 2005. Capital-output intensity is defined as total capital assets divided by real gross output, and
capital-employment intensity is also measured by total capital assets divided by total number of employees.
The data associated with wage differentials are from the IPUMS Current Population Survey for full-time
and full-year workers age 17-65 from 1968 to 2007. The first three columns show wage differentials
between managers and the three layers of professionals, middle workers, and lower workers,
respectively, and the next two columns are based on wage differentials between professionals
and the two layers of middle workers and lower workers. Thus, regression (1) is based on
wage differential between managers and professionals, regression (2) between managers and
middle workers, and regression (3) the wage differential between managers and lower workers.
Regression (4) is based on the wage differential between professionals and middle workers and
regression (5) the wage differential between professionals and lower workers. The last column,
regression (6), is based on the wage differential between middle workers and lower workers.

Regression (3) shows that a one percent increase in computing equipment increases wage

differentials between managers and lower workers by 0.0064 percent and 0.0058 percent,

respectively. In the other two comparison sets, between the professionals and the mid-

dle workers and between the professionals and the lower workers, advances in information
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Table 2.3: The Effect of Information and Communication Technology on Wage Differentials among
Four Occupations based on Log ICT Capitals-Total Number of Employees Intensity I: 1970-2005

Dependent Variable: Log Wage Gaps Among Four Occupation Layers

Variables
(1) (2) (3) (4) (5) (6)

Log Computing Intensity 0.02089∗∗ 0.00426 0.00581 −0.01856∗∗∗ −0.01614 0.00031
(0.008) (0.008) (0.007) (0.005) (0.010) (0.009)

Log Software Intensity −0.02254∗∗ −0.00510 −0.00202 0.01876∗∗∗ 0.02060 0.00513
(0.010) (0.010) (0.008) (0.006) (0.013) (0.011)

Log Communication Intensity −0.00161 0.00079 0.00244∗ 0.00286∗ 0.00333 0.00365
(0.002) (0.002) (0.001) (0.001) (0.003) (0.002)

Log Relative Labor Supply 0.04423 0.01182 0.00752 −0.04887 −0.01454 0.10343∗∗

(0.026) (0.028) (0.036) (0.031) (0.033) (0.038)
Output per Worker 0.00476∗∗ 0.00483∗∗ 0.01269∗∗ 0.00185 0.00894∗∗ 0.00924∗∗

(0.002) (0.002) (0.005) (0.002) (0.004) (0.004)
Capital-Output Intensity 0.00005 0.00004 −0.00002 −0.00001 −0.00007 −0.00006

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Capital-Employment Intensity −0.00002 −0.00002 −0.00001 −0.000004 0.000004 0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 0.15392∗∗∗ 0.48344∗∗∗ 0.70161∗∗∗ 0.20039∗∗∗ 0.52259∗∗∗ 0.06495

(0.038) (0.078) (0.051) (0.048) (0.057) (0.087)

Industry Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
R-squared 0.3286 0.6988 0.5404 0.7514 0.5755 0.1167
Observations 1044 1044 1044 1044 1044 1044

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Capital investments for information and communication technology are measured by real gross
fixed capital formation (flow) in 2005 prices from the EU KLEMS Growth and Productivity Accounts from
1970 to 2005. Capital-output intensity is defined as total capital assets divided by real gross output, and
capital-employment intensity is also measured by total capital assets divided by total number of employees.
The data associated with wage differentials are from the IPUMS Current Population Survey for full-time
and full-year workers age 17-65 from 1968 to 2007. The first three columns show wage differentials
between managers and the three layers of professionals, middle workers, and lower workers,
respectively, and the next two columns are based on wage differentials between professionals
and the two layers of middle workers and lower workers. Thus, regression (1) is based on
wage differential between managers and professionals, regression (2) between managers and
middle workers, and regression (3) the wage differential between managers and lower workers.
Regression (4) is based on the wage differential between professionals and middle workers and
regression (5) the wage differential between professionals and lower workers. The last column,
regression (6), is based on the wage differential between middle workers and lower workers.

technology show a negative impact on the wage differentials. Regression (4) in Tables 2.2

and 2.3 shows that a one percent increase in the information technology measure leads to a

decrease in wage differentials between professionals and middle workers by 0.0191 percent

and 0.0186 percent, respectively.
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For communication technology, the impacts of cheaper communication costs on be-

tween wage differentials are not homogeneous. As shown in Tables 2.2 and 2.3, communica-

tion technology has a positive effect on three between wage differentials; professionals and

middle workers, professionals and lower workers, and middle workers and lower workers;

a negative effect on the wage differential between managers and professionals; and mixed

effects on wage differentials between managers and middle workers and between managers

and lower workers. For example, regression (4) shows that a one percent increase in the

communication technology measure raises the wage differential between professionals and

middle workers by 0.0187 percent and 0.0188 percent for software and by 0.0027 percent

and 0.0029 percent for communication equipment. By contrast, regression (1) indicates

that a one percent increase in communication technology leads to a decrease in the wage

differential between managers and professionals by 0.0227 percent and 0.0225 percent for

software and by 0.0015 percent and 0.0016 percent for communication equipment.

These results allow me to summarize two important implications about impacts

of information and communication technology on wage differentials between occupational

layers. First, these estimation results support the comparative statics in Garicano (2000)

and in Garicano and Rossi-Hansberg (2006), which suggest that advances in both informa-

tion technology and communication technology increase wage differentials between problem

solvers and production workers but through different mechanisms. Through advances in

information technology, decreasing knowledge acquisition cost leads to increased marginal

productivity for all workers in the knowledge hierarchy, both problem solvers and produc-

tion workers. However, due to the problem solvers’ comparative advantage in knowledge

acquisition, wage differentials between problem solvers and production workers should in-

crease with decreasing knowledge acquisition costs. Except for wage differentials between

professionals and middle workers and between professionals and lower workers, these results

show that decreasing knowledge acquisition costs raise wage differentials between problem

solvers at different layers and production workers.

Unlike increasing relative marginal productivity of problem solvers without neces-
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Table 2.4: The Effect of Information and Communication Technology on Wage Differentials among
Four Occupations based on Log ICT Capitals-Real Gross Output Intensity II: 1970-2005

Dependent Variable: Log Wage Gaps Among Four Occupation Layers

Variables
(1) (2) (3) (4) (5) (6)

Log Information Intensity† 0.00822∗∗ 0.00038 0.00354 −0.00947∗∗∗ −0.00534 0.00219
(0.004) (0.003) (0.004) (0.003) (0.005) (0.003)

Log Communication Intensity† −0.00997 0.00013 0.00725∗ 0.01146∗∗∗ 0.01737∗∗ 0.00897
(0.007) (0.006) (0.004) (0.003) (0.008) (0.006)

Log Relative Labor Supply 0.03574 0.01190 0.00024 −0.03471 −0.01446 0.08240∗∗

(0.024) (0.028) (0.035) (0.028) (0.033) (0.030)
Output per Worker 0.00518∗ 0.00527∗∗ 0.01569∗∗∗ 0.00149 0.01114∗∗∗ 0.01146∗∗∗

(0.003) (0.002) (0.004) (0.002) (0.003) (0.003)
Capital-Output Intensity 0.00007 0.00004 −0.00003 −0.00003 −0.00010 −0.00008

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Capital-Employment Intensity −0.00002 −0.00002 −0.00001 −0.000001 0.00001 0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 0.09791∗∗∗ 0.46110∗∗∗ 0.69166∗∗∗ 0.26005∗∗∗ 0.58025∗∗∗ 0.10483∗

(0.030) (0.075) (0.034) (0.051) (0.033) (0.056)

Industry Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
R-squared 0.3220 0.6983 0.5427 0.7493 0.5774 0.1188
Observations 1044 1044 1044 1044 1044 1044

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Capital investments for information and communication technology are measured by real gross
fixed capital formation (flow) in 2005 prices from the EU KLEMS Growth and Productivity Accounts from
1970 to 2005. Capital-output intensity is defined as total capital assets divided by real gross output and
capital-employment intensity is measured by total capital assets divided by total number of employees. †Log
information intensity is measured by the log ratio between computing equipment and real gross output,
and the log communication intensity is also defined as the log ratio of the software plus commmunication
equipments divided by real gross output. The data associated with the wage differentials are from the
IPUMS Current Population Survey for full-time and full-year workers age 17-65 during the period from
1968 to 2007. The first three columns show the wage differentials between managers and the
three layers of professionals, middle workers, and lower workers, respectively, and the next
two columns are based on the wage differentials between professionals and the other two layers
of middle workers and lower workers. Thus, regression (1) is based on the wage differential
between managers and professionals, regression (2) between managers and middle workers,
and regression (3) between managers and lower workers. Regression (4) shows the wage
differential between professionals and middle workers, and regression (5) the wage differential
between professionals and lower workers. The last column, regression (6), is based on the wage
differential between middle workers and lower workers.

sarily decreasing marginal productivity of production workers by advances in information

technology, advances in communication technology increase problem solvers’ marginal pro-

ductivity, and reduce production workers’ marginal productivity. That is, faster and easier

communication methods lead production workers to acquire less of the knowledge required
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Table 2.5: The Effect of Information and Communication Technology on Wage Differentials among
Four Occupations based on Log ICT Capitals-Total Number of Employees Intensity II: 1970-2005

Dependent Variable: Log Wage Gaps Among Four Occupation Layers

Variables
(1) (2) (3) (4) (5) (6)

Log Information Intensity† 0.00763∗ 0.00013 0.00142 −0.00896∗∗∗ −0.00686 0.00072
(0.004) (0.003) (0.004) (0.003) (0.005) (0.003)

Log Communication Intensity† −0.01051 −0.00008 0.00540 0.01197∗∗∗ 0.01602∗ 0.00771
(0.007) (0.006) (0.005) (0.003) (0.009) (0.007)

Log Relative Labor Supply 0.03611 0.01175 −0.00258 −0.03579 −0.01492 0.08360∗∗

(0.024) (0.027) (0.035) (0.029) (0.034) (0.030)
Output per Worker 0.00546∗∗ 0.00513∗ 0.01323∗∗ 0.00117 0.00845∗∗ 0.00898∗∗

(0.002) (0.003) (0.005) (0.002) (0.004) (0.004)
Capital-Output Intensity 0.00007 0.00004 −0.00002 −0.00003 −0.00009 −0.00007

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Capital-Employment Intensity −0.00002 −0.00002 −0.00001 −0.000001 0.00001 0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 0.09035∗∗ 0.45795∗∗∗ 0.66741∗∗∗ 0.26483∗∗∗ 0.56392∗∗∗ 0.08697

(0.033) (0.073) (0.030) (0.046) (0.035) (0.058)

Industry Dummies yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes
R-squared 0.3222 0.6983 0.5401 0.7494 0.5753 0.1139
Observations 1044 1044 1044 1044 1044 1044

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Capital investments for information and communication technology are measured by real gross
fixed capital formation (flow) in 2005 prices from the EU KLEMS Growth and Productivity Accounts from
1970 to 2005. Capital-output intensity is defined as total capital assets divided by real gross output and
capital-employment intensity is also measured by total capital assets divided by total number of employees.
†Log information intensity is measured by the log ratio between computing equipment and total number
of employees, and the log communication intensity is also defined as the log ratio of the software plus
commmunication equipments divided by total number of employees. The data associated with the wage
differentials are from the IPUMS Current Population Survey for full-time and full-year workers age 17-65
during the period from 1968 to 2007. The first three columns show the wage differentials between
managers and the three layers of professionals, middle workers, and lower workers, respectively,
and the next two columns are based on the wage differentials between professionals and the
other two layers of middle workers and lower workers. Thus, regression (1) is based on the
wage differential between managers and professionals, regression (2) between managers and
middle workers, and regression (3) between managers and lower workers. Regression (4) shows
the wage differential between professionals and middle workers, and regression (5) the wage
differential between professionals and lower workers. The last column, regression (6), is based
on the wage differential between middle workers and lower workers.

for their tasks and to refer to problem solvers at the higher layer more frequently. Thus,

based on these different mechanisms, wage differentials between problem solvers and pro-

duction workers should increase with cheaper communication costs.

Regression results in Tables 2.2 to 2.5 support the suggestions from the theoretical
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framework that advances in communication technology raise wage differentials between

problem solvers and production workers. Although wage differentials between managers

and middle workers and between managers and lower workers show mixed effects, except for

the comparison set between managers and professionals, the other comparison sets among

the four occupational layers partially support the comparative statics in Garicano (2000)

and Garicano and Rossi-Hansberg (2006). In addition, even though lower workers in the

hierarchy are assumed to be isolated from advances in information and communication

technology, increasing relative marginal productivities of managers, professionals and middle

workers to marginal productivity of lower workers should increase wage differentials between

managers and lower workers, between professionals and lower workers, and between middle

workers and lower workers. Therefore, the increased relative marginal productivities would

be indirect evidence supporting the positive impact of cheaper communication costs on

between wage differentials.

Second, these estimation results show that, depending on the comparison sets, de-

creasing knowledge acquisition costs and cheaper communication costs have heterogeneous

impacts. In addition, even for the same comparison set, two technological changes generate

different effects on wage differentials between occupational layers. For regression (6), both

information and communication technology have a positive impact on wage differentials

between middle workers and lower workers. However, the regression sets between profes-

sionals and middle workers and between professionals and lower workers in regression (4)

and regression (5) show a negative impact for information technology and a positive effect

for communication technology. By contrast, a regression set between managers and profes-

sionals indicates a positive effect for decreasing knowledge acquisition costs, but a negative

impact for cheaper communication costs.

The qualitatively different impacts of information and communication technology

on wage differentials appear to be significant in solving the skill-biased technological change

hypothesis puzzle. In the literature, skill-biased technological change has been regarded as

a comprehensive computer-related technological change without distinction between infor-
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mation technological change and communication technological change. The belief that tech-

nological changes such as the computer revolution and computer-related technology have

caused an increasing relative demand for skilled workers with increasing wage differentials

between skilled workers and unskilled workers was supported in earning inequality literature

until the mid-1990s. However, based on the observation that overall wage inequality has not

continued to increase in the late 1990s in spite of continuous advances in computer-related

technology, Card and DiNardo (2002) questioned the inconsistency of previous evidence in

favor of skill-biased technological change, requiring re-evaluation of the empirical evidence

associated with the SBTC hypothesis and the increasing wage differential. Thus far, these

questions have not been fully answered.

Table 2.6 shows the evolutions of the growth rates for each investment in information

and communication technology. The average annual growth rate of computing equipment

decreased sharply in the early 1990s, and increased in the late 1990s. For communication

technology, the annual growth rate of software equipment investment experienced a decrease

in the early 1990s but recovered to the previous level of growth rates after 1995. The

average annual growth rate of communication equipment showed similar trends in software

investment. Three factors - the decrease in the growth rate of computing equipment, the

recovered growth rate of software, and the increase in the growth rate of communication

equipment in the late 1990s - help provide an answer to the question posed by Card and

DiNardo (2002) about the SBTC puzzles with heterogeneous characteristics of information

and communication technology.

Focusing on the comparison sets - wage differentials between managers and profes-

sionals, between managers and middle workers, and between managers and lower workers -

increasing forces from advances in information technology on these wage differentials might

be attenuated by decreasing forces of advances in communication technology, especially

due to the sharp increase in the growth rates of communication equipment plus software

in the late 1990s, on between wage differentials for the three comparison sets. Thus, the

explanation for why comprehensive skill-biased technological change decreased overall wage
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Table 2.6: Information and Communication Technological Changes over All Industries: 1970-2005

Annual Growth Rates of Information and Communication Technology

Variables
1970-1980 1981-1990 1991-1995 1996-2000 2001-2005

Computing Equipment 0.1401 0.1561 0.0527 0.0861 0.0103
Communication Equipment 0.1205 0.0925 0.0422 0.0762 0.0168
Software 0.1521 0.1621 0.1074 0.1501 0.0493
Software and Communication 0.1259 0.1021 0.0601 0.1160 0.0224
ICT Investment† 0.1239 0.1050 0.0508 0.0858 0.0119
Non−ICT Investment‡ 0.1134 0.0615 0.0465 0.0491 0.0625
Total Investment 0.1152 0.0628 0.0404 0.0213 0.0355

† ICT in investments include information and communication technology such as computing equipment,
software investments, and communication equipment. ‡ Non−ICT in investments include non-information
and communication technology such as transport equipment, other machinery and equipments, total
non-residential investments, residential structures, and other assets. Capital investments are measured by
real gross fixed capital formation (flow) in 2005 prices from the EU KLEMS Growth and Productivity
Accounts from 1970 to 2005.

inequality in the late 1990s despite advances in computer-related technology derives from

the separation of skill-biased technological change into information technological change

and communication technological change, each exhibiting different growth rates of invest-

ment patterns over the past decades. If these technological changes and their heterogeneous

impacts on wage differentials between occupational layers are regarded as a comprehensive

information technological change and a homogeneous impact on the wage differentials con-

tinuously, the relationship between increasing computer-related skill-biased technological

change and slightly decreasing wage inequality in the late 1990s should remain an unsolved

puzzle.

2.3.3 Within Wage Differentials

This section explores the impact of information and communication technology

on within wage differentials based on Garicano (2000) and Garicano and Rossi-Hansberg

(2006). To calculate within-group wage differentials, standard deviations of wage residuals,

residual wage differential between the 90th and the 10th percentiles, residual wage differen-

tial between the 90th and the 50th percentiles, and residual wage differential between the
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90th and the 75th percentiles are used.5 Wage residuals are calculated from the regressions

of log real weekly earnings on years of schooling, experience, experience squared, metro

area, gender, white, occupation, and industry for a given year. In addition, consistent with

the theoretical framework, this section focuses primarily on wage differentials within top

managers and wage differentials within production workers with supplementary analysis

for within professionals wage differential. Since it is assumed that the lower worker class

is isolated from information and communication technological change, the fourth group in

this section is not considered.

The empirical methodology used here is a two-way fixed effect regression with 29

industry dummies and year dummies from 1970 to 2005. Information and communica-

tion technology are measured through three capital investments: computing equipment

for information technology and software and communication equipment for communication

technology. To consider different characteristics for each industry, technological change

measures are converted into share-type variables based on real gross output and total num-

ber of employees. The empirical specification for within wage differentials based on four

occupational layers can be written as

Γijt = β0 + β1(Comp)it + β2(SofCom)it + β3LPit + β4(K/Y )it + β5(K/N)it + εit (2.19)

where i indicates 29 industries with indexes of three occupational classes, j and j′, man-

agers, professionals, and middle layer,6 while Γijt represents the wage differentials within

group j in industry i at time t. For industry i at time t, (Comp)it represents information

5For robust measurements of top problem solvers and production workers, general measurements such
as standard deviations from wage residuals and residual wage differential between the 90th and the 10th
percentiles and specific measurements such as residual wage differential between the 90th and the 50th
percentiles and residual wage differential between the 90th and the 75th percentiles are applied for within
wage differential analyses.

6This section assumes that there are four occupational layers among 11 occupations from the IPUMS
Current Population Survey: (1) the higher layer such as managers, (ii) the independent layer including
professionals, (iii) the middle layer of clerical, sales workers, craftsmen, operatives and farmers, and (iv) the
lower layer including service workers and laborers. Although professionals could be classified in the same
layer as managers, due to the independent characteristics of professional occupations, the professional class
is a separate occupational layer, which is located between the higher layer and the middle layer.
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technology, which is measured by investment in computing equipment; (SofCom)it indi-

cates communication technology measured by investment in software plus communication

equipment; (LP )it indicates real gross output per worker; (K/Y )it is the ratio between

total capital assets and real gross output; and (K/N)it is the capital-employment intensity

measured by total capital assets divided by total number of employees.

Table 2.7 shows that information technology measurements from regression (1) to re-

gression (8) and communication technology measurements from regression (2) to regression

(8) have a positive impact on within wage differentials for managers. When top problem

solvers are generally defined as managers, the broad measurements of wage differentials

within this group, such as standard deviation of wage residuals and residual wage differen-

tials between the 90th and the 10th percentiles within managers, support the implications

from the theoretical framework about positive impact of information and communication

technology on within wage differentials. Also, the specific measurements for within wage

differentials for top problem solvers, such as residual wage differentials between the 90th and

the 50th percentiles and between the 90th and the 75th percentiles, support the comparative

statics in Garicano (2000) and Garicano and Rossi-Hansberg (2006).

However, unlike this positive impact of information and communication technology

on within wage differentials for top managers, advances in information technology and in

communication technology have the opposite effect on within wage differentials for produc-

tion workers. That is, decreasing knowledge acquisition costs increase within-group wage

differentials for all occupational layers, while advances in communication technology act as

an equalizer for wage distribution among production workers in that cheaper communication

costs reduce the incentive to acquire knowledge for production workers. Instead, since pro-

duction workers ask for solutions from problem solvers when faced with difficult problems,

decreasing incentive for knowledge acquisition and increasing dependency of production

workers on problem solvers, especially top problem solvers who deal only with exceptional

matters and the most complex problems, lead to a decrease within wage differentials for

production workers and to an increase between production workers and problem solvers.
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Table 2.7: Effects of Information and Communication Technology on Residual Wage Differentials Within Managers: 1970-2005

Real Gross Output Intensity Total Number of Employees Intensity

Variables
(1) (2) (3) (4) (5) (6) (7) (8)

Information Technology Intensity 0.07304∗∗∗ 0.17881∗∗∗ 0.13373∗∗∗ 0.07487∗∗∗ 0.02997∗∗∗ 0.01294 0.01842 0.00947
(0.018) (0.044) (0.037) (0.023) (0.011) (0.052) (0.037) (0.022)

Communication Technology Intensity −0.00294 0.00014 0.00349 0.00376 0.00047 0.00619 0.00277 0.00115
(0.002) (0.008) (0.006) (0.005) (0.001) (0.004) (0.002) (0.001)

Output per Worker 0.00187 0.00337 0.00478 0.01507∗∗∗ −0.00594 −0.01189 −0.00618 0.00943∗

(0.008) (0.024) (0.007) (0.003) (0.009) (0.020) (0.006) (0.005)
Capital-Output Intensity −0.00010 0.00011 −0.00015 −0.00008 −0.00010∗ 0.00014 −0.00010 −0.00005

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Capital-Employment Intensity −0.00003∗∗ −0.00014∗∗∗ −0.00006∗ −0.00004 −0.00004∗∗∗ −0.00016∗∗∗ −0.00007∗∗ −0.00005

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 0.51089∗∗∗ 1.15406∗∗∗ 0.62077∗∗∗ 0.30137∗∗∗ 0.52363∗∗∗ 1.17606∗∗∗ 0.63685∗∗∗ 0.30950∗∗∗

(0.019) (0.048) (0.022) (0.016) (0.019) (0.039) (0.018) (0.016)

Industry Dummies yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes
R-squared 0.2478 0.1414 0.1045 0.0710 0.2490 0.1338 0.0940 0.0650
Observations 1044 1044 1044 1044 1044 1044 1044 1044

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Capital investments for
information and communication technology are measured by the real gross fixed capital formation (flow) in 2005 prices from the EU KLEMS
Growth and Productivity Accounts from 1970 to 2005. The capital-output intensity is defined as total capital assets divided by real gross output,
and the capital-employment intensity is measured by total capital assets divided by total number of employees. Associated with wage differentials,
the IPUMS Current Population Survey data for full-time, full-year wage/salary workers age 17-65 from 1968 to 2007 (covering earnings year 1967
to 2006 for workers age 16-64 in earnings years) are used. In the first set from regression (1) to regression (4), information technology
is calculated as the investment in computing equipment divided by real gross output and communication technology is defined
as investments in software plus communication equipment divided by real gross output. In the second set from regression
(5) to regression (8), information technology is measured by the investment in computing equipment per worker, and
communication technology is measured by investments in software and communication equipments per worker. Within-group
wage differentials are determined by four measurements: standard deviations from wage residuals, wage residuals between
the 90th and the 10th percentiles, wage residuals between the 90th and the 50th percentiles and wage residuals between the
90th and the 75th percentiles within managers from regression (1) to (4) in the first set and from regression (5) to (8) in the
second set, respectively.
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Table 2.8: Effects of Information and Communication Technology on Residual Wage Differentials Within Middle Workers: 1970-2005

Real Gross Output Intensity Total Number of Employees Intensity

Variables
(1) (2) (3) (4) (5) (6) (7) (8)

Information Technology Intensity 0.02809∗∗ 0.06658∗∗ 0.04130 0.03399∗ 0.01987∗∗∗ 0.04221∗∗∗ 0.03552∗∗∗ 0.02229∗∗

(0.013) (0.026) (0.026) (0.019) (0.005) (0.010) (0.010) (0.009)
Communication Technology Intensity −0.00431∗∗ −0.00614 −0.00390 −0.00521∗∗ −0.00179∗∗∗ −0.00264∗ −0.00376∗∗∗ −0.00291∗∗∗

(0.002) (0.004) (0.002) (0.002) (0.001) (0.002) (0.001) (0.001)
Output per Worker 0.00720 0.02723∗∗ 0.00447 −0.00023 0.00564 0.02182∗ 0.00221 −0.00078

(0.004) (0.011) (0.006) (0.003) (0.005) (0.011) (0.007) (0.004)
Capital-Output Intensity −0.00002 0.00011 −0.00009 −0.00007∗ −0.00003 0.00011 −0.00009 −0.00007∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Capital-Employment Intensity 0.00001 −0.00001 0.00001 −0.000004 0.000005 −0.00001 0.00001 −0.00001

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 0.36360∗∗∗ 0.85475∗∗∗ 0.41072∗∗∗ 0.20219∗∗∗ 0.36608∗∗∗ 0.86372∗∗∗ 0.41464∗∗∗ 0.20269∗∗∗

(0.010) (0.026) (0.013) (0.007) (0.011) (0.025) (0.014) (0.008)

Industry Dummies yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes
R-squared 0.6682 0.5858 0.6001 0.4294 0.6711 0.5880 0.6073 0.4333
Observations 1044 1044 1044 1044 1044 1044 1044 1044

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Capital investments for
information and communication technology are measured by the real gross fixed capital formation (flow) in 2005 prices from the EU KLEMS
Growth and Productivity Accounts from 1970 to 2005. The capital-output intensity is defined as total capital assets divided by real gross output,
and the capital-employment intensity is measured by total capital assets divided by total number of employees. Associated with wage differentials,
the IPUMS Current Population Survey data for full-time, full-year wage/salary workers age 17-65 from 1968 to 2007 (covering earnings year 1967
to 2006 for workers age 16-64 in earnings years) are used. In the first set from regression (1) to regression (4), information technology
is calculated as the investment in computing equipment divided by real gross output and communication technology is defined
as investments in software plus communication equipment divided by real gross output. In the second set from regression
(5) to regression (8), information technology is measured by the investment in computing equipment per worker, and
communication technology is measured by investments in software and communication equipments per worker. Within-group
wage differentials are determined by four measurements: standard deviations from wage residuals, wage residuals between
the 90th and the 10th percentiles, wage residuals between the 90th and the 50th percentiles and wage residuals between the
90th and the 75th percentiles within middle workers from regression (1) to (4) in the first set and from regression (5) to (8)
in the second set, respectively.
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All regression sets in Table 2.8 are consistent with the predication suggested by

the theoretical framework. In the first regression set based on real gross output intensity,

information technology measurements show positive coefficients for within wage differentials

for production workers. For example, there is a 0.0666 in regression (2) and a 0.034 in

regression (4). On the other hand, communication technology measurements exhibit a

negative impact on within wage differentials. For example, there is a -0.0043 in regression (1)

and a -0.0039 in regression (3). In addition, based on total number of employees intensity,

the second regression set shows the positive impact of decreasing knowledge acquisition

costs and the negative effect of cheaper communication costs on within wage differentials

for middle workers. For example, a one unit increase in the information technology measure

leads to a 0.0199 unit increase wage differential within-middle workers in regression (5),

while a one unit increase in communication technology decreases wage differentials within-

middle workers by a 0.0018 unit in regression (5).

Table 2.9 shows the effect of information and communication technology on within

wage differentials for professionals. Based on the positive coefficients of information tech-

nology measurements from regression (1) to (8) and the negative coefficients from commu-

nication technology in regression (1) to regression (8) except for regression (5), one can see

that decreasing knowledge acquisition costs raise wage differentials within professionals, but

cheaper communication costs act as a wage equalizer among professionals. Therefore, the

within wage differentials analysis presented in Tables 2.7 to 2.9 supports the comparative

statics in Garicano (2000) and Garicano and Rossi-Hansberg (2006), showing that decreas-

ing knowledge acquisition costs from advances in information technology raise within wage

differentials for three occupational layers - managers, middle workers, and professionals

- while cheaper communication costs from advances in communication technology raises

within wage differentials for managers, but decreases within wage differentials for middle

workers and professionals.
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Table 2.9: Effects of Information and Communication Technology on Residual Wage Differentials within Professionals: 1970-2005

Real Gross Output Intensity Total Number of Employees Intensity

Variables
(1) (2) (3) (4) (5) (6) (7) (8)

Information Technology Intensity 0.02099 0.03079 0.02873 0.02560 0.00702 0.01888 0.03360∗∗ 0.03245∗∗

(0.013) (0.033) (0.023) (0.017) (0.008) (0.015) (0.015) (0.013)
Communication Technology Intensity −0.00052 −0.01383 −0.00392 −0.00913∗∗ 0.00090 −0.00192 −0.00347∗∗ −0.00472∗∗∗

(0.003) (0.010) (0.005) (0.004) (0.001) (0.002) (0.001) (0.001)
Output per Worker −0.00193 0.00829 0.00231 0.00329 −0.00495 0.00813 0.00034 0.00390

(0.003) (0.006) (0.007) (0.006) (0.004) (0.005) (0.005) (0.004)
Capital-Output Intensity −0.00012∗∗ 0.00009 0.00007 0.00023∗∗∗ −0.00012∗∗ 0.00005 0.00007 0.00022∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Capital-Employment Intensity 0.000003 −0.00005 0.00001 −0.00002 0.000001 −0.00005 0.00001 −0.00002

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)
Intercept 0.40320∗∗∗ 0.92530∗∗∗ 0.43081∗∗∗ 0.19644∗∗∗ 0.40822∗∗∗ 0.92475∗∗∗ 0.43457∗∗∗ 0.19536∗∗∗

(0.013) (0.039) (0.031) (0.025) (0.014) (0.038) (0.030) (0.024)

Industry Dummies yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes
R-squared 0.2780 0.2122 0.1219 0.0678 0.2788 0.2114 0.1232 0.0692
Observations 1044 1044 1044 1044 1044 1044 1044 1044

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Capital investments for
information and communication technology are measured by the real gross fixed capital formation (flow) in 2005 prices from the EU KLEMS
Growth and Productivity Accounts from 1970 to 2005. The capital-output intensity is defined as total capital assets divided by real gross output,
and the capital-employment intensity is measured by total capital assets divided by total number of employees. Associated with wage differentials,
the IPUMS Current Population Survey data for full-time, full-year wage/salary workers age 17-65 from 1968 to 2007 (covering earnings year 1967
to 2006 for workers age 16-64 in earnings years) are used. In the first set from regression (1) to regression (4), information technology
is calculated as the investment in computing equipment divided by real gross output and communication technology is defined
as investments in software plus communication equipment divided by real gross output. In the second set from regression
(5) to regression (8), information technology is measured by the investment in computing equipment per worker, and
communication technology is measured by investments in software and communication equipments per worker. Within-group
wage differentials are determined by four measurements: standard deviations from wage residuals, wage residuals between
the 90th and the 10th percentiles, wage residuals between the 90th and the 50th percentiles and wage residuals between the
90th and the 75th percentiles within professionals from regression (1) to (4) in the first set and from regression (5) to (8) in
the second set, respectively.
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2.4 Concluding Remarks

Incorporating empirical methods in the theoretical framework from Garicano (2000),

this paper looked for consistency between comparative statics from theoretical models and

real world data and attempted to solve the SBTC puzzle, posed by Card and DiNardo (2002)

regarding skill-biased technological change. For the SBTC puzzle, this paper adopts the

practice of separating skill-biased technological changes into information and communica-

tion technology and points out the broad classification problem of skill-biased technological

change. Since skill-biased technological change is assumed to be a comprehensive computer-

based technological change in the literature, advances in comprehensive computer-related

technology are predicted to have a positive impact on wage inequality homogeneously. How-

ever, as theoretical frameworks suggest, separating skill-biased technological changes into

information and communication technology uncovers qualitatively different characteristics,

so that advances in information and communication technology will have heterogeneous

impacts on workers’ marginal products depending on their occupational characteristics.

Based on the estimation results from between-group wage differentials, advances in

information technology measured by computing equipment raise wage differentials between

managers and professionals, between managers and middle workers, between managers and

lower workers, and between middle workers and lower workers. The increasing wage dif-

ferentials between managers and the other three occupations support the implication from

Garicano (2000) and Garicano and Rossi-Hansberg (2006) about the positive effect of de-

creasing knowledge acquisition costs on wage differentials between problem solvers and

production workers. For advances in communication technology, which are measured by

software and communication equipment, the positive impacts on between wage differentials

support the comparative statics from theoretical framework that cheaper communication

costs increase wage differentials between problem solvers and production workers partially.

In addition, the negative impact on wage differentials between managers and professionals

and the mixed effect between managers and middle workers from cheaper communication
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costs provide important information for solving the SBTC puzzle. The sharp increase in

investments in communication equipment and software in the late 1990s and the correspond-

ing estimation results on between managers and professionals and between managers and

middle workers lead me to propose that the negative impact of communication technology

on the comparison sets may suppress the positive impact of information technology on these

wage differentials. Thus, contracted wage differentials by the cheaper communication costs

in the late 1990s would affect decreasing overall wage differential measured by wage gaps

between the 90th and the 10th percentiles.

For within-group wage differentials, this paper supports the predictions from Gar-

icano (2000) and Garicano and Rossi-Hansberg (2006) concerning the impact of informa-

tion and communication technology on within-group wage differentials as well. Advances

in information technology raise within-group wage differentials for managers representing

top problem solvers and middle workers representing production workers homogeneously.

Cheaper communication costs, however, raise within-group wage differentials for managers,

while lead to a decrease within-group wage differentials for middle-workers.

In sum, this paper provides empirical evidence supporting the comparative statics in

Garicano (2000) and Garicano and Rossi-Hansberg (2006). First, advances in information

and communication technology raise wage differentials between problem solvers and produc-

tion workers. Second, for information technology, decreasing knowledge acquisition costs

increase within-group wage differentials for each occupational layer. Finally, for commu-

nication technology, available cheaper communication costs act as a wage equalizer among

production workers but raise wage differentials within top problem solvers, who deal only

with exceptional problems. The first and third implications present a Superstar effect in

Rosen (1981) in that production workers acquire only the basic knowledge required for

the task, due to cheaper communication costs, and instead of acquiring more knowledge,

they ask for solutions from the problem solvers when they face difficult problems. The

reduced incentive for knowledge acquisition due to advances in communication technology

increases the dependency of production workers on problem solvers, and thus centralization
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of problem solvers toward the top of the knowledge hierarchy should increase. Therefore,

advances in communication technology increases wage differentials between problem solvers

and production workers and within-group wage differentials for top problem solvers in the

knowledge hierarchy.

Furthermore, since distinguishing between information technological change and

communication technological change does not generate the same effects on all comparison

sets, previously assumed comprehensive skilled-biased technological change may provide

misleading implications about wage differentials. In addition, due to different growth rates

of capital investments in computing equipment, software and communication equipment

over the last decades as presented in Table 2.6,7 realized patterns of wage differentials could

be different from the predictions of comprehensive skill-biased technological change. These

misguided conjectures based on comprehensive skill-biased technological change were not

consistent with the phenomenon that although computer-related technological changes have

continued in the late 1990s, the increasing growth rate of overall wage differential has slowed

down. Thus, this phenomenon, prior to the separation of skill-biased technological change

into information and communication technology, was considered a skill-biased technological

change puzzle. With the heterogeneous effects of separated information and communication

technology, this paper provides a key to solving the SBTC puzzle in that increasing wage

differentials between managers and professionals, between managers and middle workers,

and between managers and lower workers due to advances in information technology might

be attenuated by suppressing forces from advances in communication technology in the late

1990s, which have negative impacts on these between-occupational wage differentials.

7In Table 2.6, each capital investment in computing equipment, software, or communication equipment
has a different time period recording the highest investment growth rates among sub-periods from 1970 to
2005. Moreover, growth rates for each capital investment over time are different from the growth rates of in-
vestment for information and communication technology, which would be a proxy variable for comprehensive
skill-biased technological change.
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2.5 Appendix
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Figure 2.22: Growth rates of Skill-biased Technological Change and Differences in Wage Gaps I
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Figure 2.23: Growth rates of Skill-biased Technological Change and Differences in Wage Gaps II
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Figure 2.24: Growth rates of Skill-biased Technological Change and Differences in Wage Gaps III
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Figure 2.25: Growth rates of Skill-biased Technological Change and Differences in Wage Gaps IV
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Figure 2.26: Growth rates of Skill-biased Technological Change and Differences in Wage Gaps V
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Table 2.10: Overall Wage Differentials by Industry over Five Sub-periods from 1968 to 2007

Wage Differentials between 90th and 10th Percentile: 1968-2007

Industry
1968-1980 1980-1990 1990-1995 1995-2000 2000-2007 1968-2007

Agriculture, Hunting, Forestry, and Fishing 0.0704 0.2286 0.1009 0.1859 −0.1142 0.4716
Mining and Quarrying 0.1170 0.1499 0.1101 0.0051 −0.0649 0.3172
Food, Beverages and Tobacco 0.0781 0.1657 0.1132 0.0704 0.0085 0.4357
Textiles, Textile, Leather and Footwear 0.0367 0.1411 0.1070 0.0983 0.1037 0.4868
Wood and of Wood and Cork 0.0047 0.1281 0.1165 −0.0829 0.1744 0.3408
Pulp, Paper, Printing and Publishing 0.0505 0.1483 0.0192 0.0142 0.0437 0.2759
Coke, Refined Petroleum and Nuclear Fuel −0.0106 0.0620 0.2377 −0.2962 0.2280 0.2209
Chemicals and Chemical Products 0.0433 0.1231 0.0490 −0.0577 0.1507 0.3085
Rubber and Plastics −0.0499 0.1524 0.1129 0.0504 −0.2458 0.0200
Other Non-Metallic Mineral 0.0384 0.1576 0.1440 −0.0301 −0.0821 0.2277
Basic Metals and Fabricated Metal 0.0716 0.1724 0.0090 0.0769 0.0488 0.3786
Machinery, Nec 0.0650 0.1774 0.0132 0.0301 0.0714 0.3572
Electrical and Optical Equipment 0.0696 0.1527 0.0329 −0.0168 0.0372 0.2758
Transport Equipment 0.0445 0.1694 0.0509 0.0260 0.0424 0.3331
Manufacturing, Nec and Recycling 0.1304 0.1499 0.0821 0.0339 0.1032 0.4995
Electricity, Gas and Water Supply 0.0888 0.0828 0.0059 0.0615 0.0905 0.3296
Construction 0.0161 0.1829 0.0180 0.0592 0.0218 0.2980
Sales and Maintenance of Motor Vehicles and Motorcycles 0.0098 0.1079 0.0060 −0.0456 0.0993 0.1773
Wholesale Trade and Commission Trade† 0.0116 0.0989 0.0693 0.0008 0.0261 0.2067
Retail Trade, except of Motor Vehicles and Motorcycles 0.0650 0.1393 0.0221 0.0839 0.0507 0.3610
Transport and Storage 0.0380 0.1177 0.0274 −0.0049 0.0108 0.1890
Post and Communication 0.0006 0.0650 0.0821 0.0343 0.0653 0.2474
Financial Intermediation −0.0059 0.1127 −0.0228 0.0203 0.0777 0.1820
Real Estate Activities −0.0414 0.1593 −0.0523 0.0467 0.0080 0.1204
Renting and Other Business Activities 0.0578 0.1269 0.0325 0.0708 0.0306 0.3186
Community Social and Personal Services 0.0436 0.1503 0.0375 0.0373 0.0093 0.2781
Public Administration, Defense, Compulsory Social Security 0.0151 0.1111 0.0327 0.0384 0.0205 0.2177
Education −0.0384 0.0890 0.0280 0.0004 −0.0129 0.0661
Health and Social Work 0.0063 0.1072 0.0257 0.0398 0.0170 0.1960
Mean 0.0354 0.1355 0.0555 0.0190 0.0352 0.2806
Standard Deviations 0.0440 0.0371 0.0584 0.0799 0.0890 0.1162

† Wholesale Trade and Commission Trade, excluding Motor Vehicles and Motorcycles. These values are calculated as those in Figures 2.12
to 2.16 based on log real weekly earning changes over wage percentiles during the period from 1968 to 2007.
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Table 2.11: Descriptive Statistics by Industry from IPUMS CPS Data I: 1968-2007

Agriculture Observations Mean Std. Dev. Min Max

Weekly Earnings 31819 512.23 500.27 125.00 9396.55
Annual Earnings 31819 26095.90 25833.37 5000.00 479224.00
Total Weeks Worked Last Year 31819 50.70 2.96 40.00 52.00
Years of Schooling 31819 10.90 3.89 0.00 16.00
Age 31819 37.42 12.10 17.00 65.00
Experience 31819 19.54 13.13 0.00 58.00
Year 31819 1989.89 11.62 1968.00 2007.00

Mining Observations Mean Std. Dev. Min Max

Weekly Earnings 18725 951.65 614.74 125.18 10661.88
Annual Earnings 18725 48636.68 31921.35 5361.71 554417.50
Total Weeks Worked Last Year 18725 50.94 2.58 40.00 52.00
Years of Schooling 18725 12.26 2.76 0.00 16.00
Age 18725 39.16 11.30 17.00 65.00
Experience 18725 19.90 11.96 0.00 58.00
Year 18725 1987.34 10.96 1968.00 2007.00

Food Observations Mean Std. Dev. Min Max

Weekly Earnings 39916 666.96 479.89 125.02 11300.19
Annual Earnings 39916 34163.30 24894.04 5001.26 587609.81
Total Weeks Worked Last Year 39916 51.03 2.34 40.00 52.00
Years of Schooling 39916 11.42 3.07 0.00 16.00
Age 39916 39.46 11.75 17.00 65.00
Experience 39916 21.04 12.56 0.00 58.00
Year 39916 1986.95 11.82 1968.00 2007.00

Textiles Observations Mean Std. Dev. Min Max

Weekly Earnings 41693 485.38 434.46 125.00 11369.53
Annual Earnings 41693 24654.89 22413.37 5014.59 545737.56
Total Weeks Worked Last Year 41693 50.52 2.78 40.00 52.00
Years of Schooling 41693 10.51 3.17 0.00 16.00
Age 41693 40.38 12.35 17.00 65.00
Experience 41693 22.87 13.31 0.00 58.00
Year 41693 1983.46 10.85 1968.00 2007.00

Wood Observations Mean Std. Dev. Min Max

Weekly Earnings 25262 595.49 449.51 125.00 10003.08
Annual Earnings 25262 30344.13 23179.05 5044.89 490151.00
Total Weeks Worked Last Year 25262 50.81 2.62 40.00 52.00
Years of Schooling 25262 11.06 3.08 0.00 16.00
Age 25262 38.47 11.88 17.00 65.00
Experience 25262 20.42 12.74 0.00 58.00
Year 25262 1987.68 11.66 1968.00 2007.00
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Table 2.12: Descriptive Statistics by Industry from IPUMS CPS Data II: 1968-2007

Paper and Pulp Observations Mean Std. Dev. Min Max

Weekly Earnings 44577 780.63 593.66 125.02 11439.42
Annual Earnings 44577 40145.23 30818.18 5035.37 594849.63
Total Weeks Worked Last Year 44577 51.28 2.01 40.00 52.00
Years of Schooling 44577 12.72 2.46 0.00 16.00
Age 44577 39.47 11.65 17.00 65.00
Experience 44577 19.75 12.20 0.00 58.00
Year 44577 1987.79 11.30 1968.00 2007.00

Petroleum Observations Mean Std. Dev. Min Max

Weekly Earnings 4670 1006.57 647.07 128.85 8131.73
Annual Earnings 4670 51820.07 33617.78 5797.01 422850.00
Total Weeks Worked Last Year 4670 51.33 1.77 40.00 52.00
Years of Schooling 4670 13.03 2.46 0.00 16.00
Age 4670 41.30 11.36 18.00 65.00
Experience 4670 21.27 11.97 0.00 58.00
Year 4670 1984.51 11.57 1968.00 2007.00

Chemicals Observations Mean Std. Dev. Min Max

Weekly Earnings 30098 950.12 703.92 125.02 9411.24
Annual Earnings 30098 49001.65 36561.78 5850.88 489384.53
Total Weeks Worked Last Year 30098 51.43 1.72 40.00 52.00
Years of Schooling 30098 13.11 2.60 0.00 16.00
Age 30098 40.51 11.06 17.00 65.00
Experience 30098 20.41 11.58 0.00 58.00
Year 30098 1988.18 11.96 1968.00 2007.00

Rubber Observations Mean Std. Dev. Min Max

Weekly Earnings 5697 736.29 494.18 126.98 7984.47
Annual Earnings 5697 37781.48 25709.21 5586.95 415192.25
Total Weeks Worked Last Year 5697 51.15 2.07 40.00 52.00
Years of Schooling 5697 11.89 2.70 0.00 16.00
Age 5697 39.96 11.42 17.00 65.00
Experience 5697 21.07 11.97 0.00 55.00
Year 5697 1985.51 11.51 1968.00 2007.00

Glasses Observations Mean Std. Dev. Min Max

Weekly Earnings 13089 717.68 460.26 125.18 11204.05
Annual Earnings 13089 36659.95 23755.12 5363.97 515386.38
Total Weeks Worked Last Year 13089 50.95 2.38 40.00 52.00
Years of Schooling 13089 11.61 2.85 0.00 16.00
Age 13089 40.00 11.59 17.00 65.00
Experience 13089 21.40 12.32 0.00 57.00
Year 13089 1985.95 11.67 1968.00 2007.00
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Table 2.13: Descriptive Statistics by Industry from IPUMS CPS Data III: 1968-2007

Metals Observations Mean Std. Dev. Min Max

Weekly Earnings 52403 759.33 499.97 125.02 11439.42
Annual Earnings 52403 38855.40 25893.42 5191.72 594849.63
Total Weeks Worked Last Year 52403 51.04 2.22 40.00 52.00
Years of Schooling 52403 11.68 2.80 0.00 16.00
Age 52403 40.50 11.83 17.00 65.00
Experience 52403 21.82 12.56 0.00 58.00
Year 52403 1984.89 11.77 1968.00 2007.00

Machinery Observations Mean Std. Dev. Min Max

Weekly Earnings 50582 852.04 608.61 125.03 12253.78
Annual Earnings 50582 43732.84 31503.83 5695.85 550010.56
Total Weeks Worked Last Year 50582 51.18 2.10 40.00 52.00
Years of Schooling 50581 12.56 2.55 0.00 16.00
Age 50582 39.58 11.53 17.00 65.00
Experience 50582 20.02 12.11 0.00 57.00
Year 50582 1986.17 11.19 1968.00 2007.00

Electrical Machinery Observations Mean Std. Dev. Min Max

Weekly Earnings 57847 822.32 672.42 125.02 11439.42
Annual Earnings 57847 42261.07 34864.34 5009.99 594849.63
Total Weeks Worked Last Year 57847 51.20 2.08 40.00 52.00
Years of Schooling 57847 12.74 2.62 0.00 16.00
Age 57847 39.77 11.39 17.00 65.00
Experience 57847 20.04 11.92 0.00 57.00
Year 57847 1986.68 11.45 1968.00 2007.00

Transport Equipment Observations Mean Std. Dev. Min Max

Weekly Earnings 50418 898.62 544.97 125.18 9766.81
Annual Earnings 50418 45995.25 28295.54 5579.40 507874.03
Total Weeks Worked Last Year 50418 51.03 2.29 40.00 52.00
Years of Schooling 50418 12.49 2.58 0.00 16.00
Age 50418 40.76 11.24 17.00 65.00
Experience 50418 21.28 11.75 0.00 58.00
Year 50418 1986.98 11.76 1968.00 2007.00

Miscellaneous Manufacturing Observations Mean Std. Dev. Min Max

Weekly Earnings 19531 644.68 574.68 125.02 14085.22
Annual Earnings 19531 33013.21 29519.51 5278.86 563408.75
Total Weeks Worked Last Year 19531 51.00 2.42 40.00 52.00
Years of Schooling 19531 11.75 2.93 0.00 16.00
Age 19531 38.74 11.81 17.00 65.00
Experience 19531 20.00 12.42 0.00 57.00
Year 19531 1987.95 11.09 1968.00 2007.00

59



Table 2.14: Descriptive Statistics by Industry from IPUMS CPS Data IV: 1968-2007

Utilities Observations Mean Std. Dev. Min Max

Weekly Earnings 33200 873.64 549.16 125.89 10601.03
Annual Earnings 33200 45090.30 28396.30 5476.14 485500.91
Total Weeks Worked Last Year 33200 51.54 1.53 40.00 52.00
Years of Schooling 33200 12.66 2.47 0.00 16.00
Age 33200 41.12 11.01 17.00 65.00
Experience 33200 21.47 11.62 0.00 57.00
Year 33200 1988.17 11.52 1968.00 2007.00

Construction Observations Mean Std. Dev. Min Max

Weekly Earnings 121917 769.67 585.54 125.00 14859.65
Annual Earnings 121917 38915.86 30059.26 5000.00 713263.00
Total Weeks Worked Last Year 121917 50.43 3.16 40.00 52.00
Years of Schooling 121916 11.81 2.77 0.00 16.00
Age 121917 38.09 11.48 17.00 65.00
Experience 121917 19.29 12.02 0.00 58.00
Year 121917 1990.29 11.99 1968.00 2007.00

Motor Vehicle Sales Observations Mean Std. Dev. Min Max

Weekly Earnings 38169 736.13 601.47 125.02 9218.29
Annual Earnings 38169 37827.61 31165.21 5033.08 440255.41
Total Weeks Worked Last Year 38169 51.24 2.11 40.00 52.00
Years of Schooling 38169 12.42 2.21 0.00 16.00
Age 38169 38.04 11.78 17.00 65.00
Experience 38169 18.63 12.14 0.00 55.50
Year 38169 1989.02 11.68 1968.00 2007.00

Wholesale Trade Observations Mean Std. Dev. Min Max

Weekly Earnings 76523 841.30 722.80 125.02 11439.42
Annual Earnings 76523 43303.31 37421.19 5033.08 594849.63
Total Weeks Worked Last Year 76523 51.33 1.99 40.00 52.00
Years of Schooling 76523 12.92 2.49 0.00 16.00
Age 76523 39.22 11.44 17.00 65.00
Experience 76523 19.30 11.84 0.00 58.00
Year 76523 1988.98 11.33 1968.00 2007.00

Retail Trade Observations Mean Std. Dev. Min Max

Weekly Earnings 217491 550.29 511.39 125.00 12101.52
Annual Earnings 217491 28212.40 26487.53 5000.00 629279.13
Total Weeks Worked Last Year 217491 51.05 2.43 40.00 52.00
Years of Schooling 217491 12.40 2.47 0.00 16.00
Age 217491 36.68 12.38 17.00 65.00
Experience 217491 17.31 12.81 0.00 58.00
Year 217491 1989.87 11.76 1968.00 2007.00
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Table 2.15: Descriptive Statistics by Industry from IPUMS CPS Data V: 1968-2007

Transport and Storage Observations Mean Std. Dev. Min Max

Weekly Earnings 75241 805.70 551.49 125.02 12253.78
Annual Earnings 75241 41254.26 28426.48 5147.43 587609.81
Total Weeks Worked Last Year 75241 51.09 2.35 40.00 52.00
Years of Schooling 75241 12.31 2.46 0.00 16.00
Age 75241 40.39 11.27 17.00 65.00
Experience 75241 21.09 11.91 0.00 58.00
Year 75241 1988.62 11.73 1968.00 2007.00

Communications and Postal Observations Mean Std. Dev. Min Max

Weekly Earnings 45663 878.20 514.00 125.00 11300.19
Annual Earnings 45663 45301.29 26657.44 5083.50 587609.81
Total Weeks Worked Last Year 45663 51.50 1.57 40.00 52.00
Years of Schooling 45663 13.11 1.83 0.00 16.00
Age 45663 40.59 10.83 17.00 65.00
Experience 45663 20.49 11.15 0.00 53.50
Year 45663 1987.66 11.58 1968.00 2007.00

Finance Observations Mean Std. Dev. Min Max

Weekly Earnings 105130 895.22 950.76 125.02 12253.78
Annual Earnings 105130 46162.45 49222.99 5166.51 594849.63
Total Weeks Worked Last Year 105130 51.43 1.82 40.00 52.00
Years of Schooling 105130 13.83 1.87 0.00 16.00
Age 105130 37.94 11.39 17.00 65.00
Experience 105130 17.13 11.54 0.00 58.00
Year 105130 1990.12 11.38 1968.00 2007.00

Real Estate Observations Mean Std. Dev. Min Max

Weekly Earnings 26269 857.87 953.21 125.00 14859.65
Annual Earnings 26269 44096.40 49247.45 5001.26 713263.00
Total Weeks Worked Last Year 26269 51.26 2.14 40.00 52.00
Years of Schooling 26269 13.14 2.62 0.00 16.00
Age 26269 41.76 11.74 17.00 65.00
Experience 26269 21.62 12.25 0.00 58.00
Year 26269 1991.06 11.11 1968.00 2007.00

Business Services Observations Mean Std. Dev. Min Max

Weekly Earnings 103402 853.61 848.68 125.00 11653.44
Annual Earnings 103402 43861.52 43892.27 5001.26 587609.81
Total Weeks Worked Last Year 103402 51.18 2.37 40.00 52.00
Years of Schooling 103402 13.32 2.52 0.00 16.00
Age 103402 37.47 11.13 17.00 65.00
Experience 103402 17.16 11.44 0.00 58.00
Year 103402 1993.11 10.78 1968.00 2007.00

61



Table 2.16: Descriptive Statistics by Industry from IPUMS CPS Data VI: 1968-2007

Personal Services Observations Mean Std. Dev. Min Max

Weekly Earnings 111208 785.74 874.78 125.00 14389.67
Annual Earnings 111208 40375.70 45213.03 5103.07 748263.00
Total Weeks Worked Last Year 111208 51.15 2.34 40.00 52.00
Years of Schooling 111207 13.13 2.81 0.00 16.00
Age 111208 38.74 11.69 17.00 65.00
Experience 111208 18.62 12.30 0.00 58.00
Year 111208 1991.60 11.40 1968.00 2007.00

Public Administration Observations Mean Std. Dev. Min Max

Weekly Earnings 117604 824.08 466.86 125.00 12253.78
Annual Earnings 117604 42562.81 24209.00 5388.54 594849.63
Total Weeks Worked Last Year 117604 51.57 1.52 40.00 52.00
Years of Schooling 117604 13.67 2.09 0.00 16.00
Age 117604 41.37 10.92 17.00 65.00
Experience 117604 20.70 11.29 0.00 58.00
Year 117604 1989.34 11.56 1968.00 2007.00

Education Services Observations Mean Std. Dev. Min Max

Weekly Earnings 168252 722.79 476.39 125.00 15505.72
Annual Earnings 168252 36661.67 24358.79 5000.00 713263.00
Total Weeks Worked Last Year 168252 50.72 3.05 40.00 52.00
Years of Schooling 168252 14.70 2.17 0.00 16.00
Age 168252 41.72 11.17 17.00 65.00
Experience 168252 20.02 11.60 0.00 58.00
Year 168252 1989.83 11.75 1968.00 2007.00

Health Services Observations Mean Std. Dev. Min Max

Weekly Earnings 196859 741.86 825.41 125.00 13716.60
Annual Earnings 196859 38201.62 42621.95 5001.26 713263.00
Total Weeks Worked Last Year 196859 51.36 1.99 40.00 52.00
Years of Schooling 196859 13.59 2.34 0.00 16.00
Age 196859 40.25 11.49 17.00 65.00
Experience 196859 19.68 11.94 0.00 58.00
Year 196859 1991.12 11.34 1968.00 2007.00

1. Agriculture :: Agriculture, Hunting, Forestry, and Fishing; 2. Mining :: Mining and Quarrying; 3. Food
:: Food, Beverages and Tobacco; 4. Textiles :: Textiles, Textile, Leather and Footwear; 5. Wood :: Wood
and of Wood and Cork; 6. Paper & Pulp :: Pulp, Paper, Printing and Publishing; 7. Petroleum :: Coke,
Refined Petroleum and Nuclear Fuel; 8. Chemicals :: Chemicals and Chemical Products; 9. Rubber ::
Rubber and Plastics; 10. Glass :: Other Non-Metallic Mineral; 11. Metals :: Basic Metals and Fabricated
Metal; 12. Machinery :: Machinery, Nec; 13. Electrical Machinery :: Electrical and Optical Equipment;
14. Transport Equipment :: Transport Equipment; 15. Misc. Manufacturing :: Manufacturing, Nec
and Recycling; 16. Utilities :: Electricity, Gas and Water Supply; 17. Construction :: Construction; 18.
Motor Vehicle Sales :: Sales and Maintenance of Motor Vehicles and Motorcycles; 19. Wholesale Trade ::
Wholesale Trade and Commission Trade, except of Motor Vehicles and Motorcycles; 20. Retail Trade ::
Retail Trade, except of Motor Vehicles and Motorcycles; 21. Transport & Storage :: Transport and Storage;
22. Communications & Postal :: Post and Communication; 23. Finance :: Financial Intermediation; 24.
Real Estate :: Real Estate Activities; 25. Business Services :: Renting and Other Business Activities;
26. Personal Services :: Community Social and Personal Services; 27. Public Administration :: Public
Administration, Defense, Compulsory Social Security; 28. Education Services :: Education; and 29. Health
Services :: Health and Social Work.
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Chapter 3

Computerization, Productivity and Polarization in

Skill Demands: How does the smart machine

change the U.S. labor market?

3.1 Introduction

What computers do to the workplace - how computers affect a worker’s productivity

or how computers change the required skills for the tasks and eventually how computeri-

zation causes wage differentials among different skill-types of workers - has been the focus

of much research. The positive correlation between computer-related technological changes

and widening overall wage differential, caused by relatively increasing demand for skilled

workers, has been regarded in the literature as evidence of skill-biased technological change

(Katz and Murphy, 1992; Autor, Katz and Krueger, 1998; Card and Lemieux, 2001; Ace-

moglu, 2002). In addition, the sharply increasing growth rate of labor productivity in

the U.S. economy in the late 1990s, which was stimulated by increasing investments in

computer-related capital and known as the U.S. productivity revival, supports the positive

impact of computers on worker’s productivity (Stiroh, 2002).

Since the 1990s, however, the U.S. wage structure has shown different wage inequal-

ity trends from the previous decade. The growth rate of overall wage differentials, measured
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by the wage gap between the 90th percentile and the 10th percentile, has decreased in the

1990s. With the decreasing growth rate of the overall wage differential, growth rates of

wage gaps between different types of workers - based on their educational attainments or

their occupations - have also decreased in the 1990s. Especially, the decreasing growth rate

of overall wage inequality in the l990s has occurred through two disparate trends. The wage

differential in the upper half of the wage distribution, measured by the wage gap between

the 90th percentile and the 50th percentile, has increased continuously. In contrast, the

wage differential in the lower half of the wage distribution, measured by the wage gap be-

tween the 50th percentile and the 10th percentile, has shown a decreasing pattern (Autor,

Levy and Murnane, 2003; Autor, Katz and Kearney, 2006).

The U.S. productivity revival and the divergent wage inequality trends of upper-

tail and lower-tail wage distributions with increasing investments in computerization lead

us to think about the impact of computer-related technology on labor productivity and

on the demands for different types of skilled workers. That is, if computerization requires

one specific type of skilled worker more and other types of skilled workers less, then which

types of workers will be benefited and which types of workers will be disadvantaged by

computer-related investments. Associated with these questions, this paper examines (i)

whether computerization adopted by industry contributes to the U.S. productivity revival

and heterogeneous demand shifts for different types of skilled workers and (ii) how strong

investments in computer-based technology affect the U.S. labor market phenomena in the

late 1990s. For the labor market phenomena, I will focus on (1) the polarization pattern in

employment, as coined by Goos and Manning (2003), to illustrate the much faster growth

rates of employment in tasks for high-skilled workers and for low-skilled workers relative

to middle-skilled workers, and (2) the polarization trend in wage structure, implying the

divergent trends of upper-half wage inequality and lower-half wage inequality.

Table 3.15 in the Appendix shows different types of descriptive statistics concerning

the labor productivity growth from 1970 to 2005. The period 1995-2000 records the highest

annual growth rate of any other sub-periods, 2.72 percent, over a total of 29 industries.
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Although labor productivity growth rates vary across industries, ranging from -0.86 percent

in wood to 15.93 percent in electrical and optical equipment, 26 industries show positive

growth rates in labor productivity in this period. Similarly, Table 3.16, which can be found

in the Appendix, presents summary statistics concerning computerization from 1970 to

2005, where the largest investments in computerization assets occurred in the period from

1995 to 2000 with highest annual growth rate, 19.85 percent, and a range from 9.87 percent

(petroleum and nuclear fuel) to 35.17 percent (renting and other business activities).

For both increases in growth rates of labor productivity and computerization invest-

ments in the late 1990s, much research documents the possible link between two defining

characteristics in the U.S. economy (Jorgenson and Stiroh, 2000; Oliner and Sichel, 2000;

Jorgenson, 2001). These papers show that, based on aggregate growth accounting, strong

investments in computer-related assets were a driving force behind U.S. productivity growth

in this period. Instead of aggregate growth accounting technique, which would miss the vari-

ation in productivity gains across industries, Stiroh (2002) investigates the resurgence of the

U.S. productivity growth in the late 1990s by industry level, focusing on the link between

computerizations and labor productivity gains. Based on Stiroh’s disaggregated analysis,

this paper, first, focuses on productivity gains by industry level to find relationships between

strong investments in computerization and the rapid growth rate of labor productivity.

Second, associated with trends in the U.S. labor market, Autor, Katz and Kearney

(2006) claim that overall wage inequality in the top half of wage distribution has recorded a

secular rise, while overall wage inequality in the bottom half of wage distribution has ceased

since the late 1980s. Although Autor, Levy, and Murnane (2003) focus on employment

shifts and wage changes only between high-skilled workers and middle-skilled workers and

Autor, Katz, and Kearney (2006) investigate those relationships only between middle-skilled

workers and low-skilled workers, two papers provide similar implications for understanding

U.S. labor market patterns. They argue that, due to decreasing computerization costs,

wages of high-skilled workers and low-skilled workers increased relative to middle-skilled

workers. Thus, middle-skilled workers move from routine tasks toward nonroutine cognitive
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tasks, usually performed by high-skilled workers, or nonroutine manual tasks, usually carried

out by low-skilled workers. In addition, since decreasing computer prices raise demand for

routine tasks, computerization assets, which are close substitutes for middle-skilled workers

in the routine tasks, will displace the middle-skilled workers in the routine cognitive and

routine manual tasks.

Furthermore, due to the complementary relationship between nonroutine cognitive

tasks and routine tasks (routine cognitive and routine manual tasks), increasing invest-

ments for computerization capital raise wage of high-skilled workers in nonroutine cognitive

tasks, so that the wage differential between high-skilled and middle-skilled workers increases.

Based on these frameworks, they claim that the divergent trends of wage inequality in the

U.S. labor market should be accompanied by employment polarization, which is caused by

movements of middle-skilled workers with decreasing the price of computer-related tech-

nology. Therefore, based on these implications for the U.S. labor market, this paper also

investigates employment polarization trends and divergent wage evolution of the U.S. wage

structure between upper-tail wage distribution and lower-tail wage distribution with in-

creasing investments in computerization assets.

For the polarization trends in employment as the first characteristic in the U.S.

labor market, Figures 3.1 to 3.5 plot growth rates of employment shares for four periods,

1980-1990, 1990-1995, 1995-2000 and 2000-2005, based on three types of skilled workers’

employment shares during the period from 1970 to 2005. In the period from 1980 to 1990,

growth rates of the employment share for high-skilled workers are the highest among these

three types of workers for 27 industries.1 Also, growth rates of employment share for low-

skilled workers are the lowest among these three skill-types of workers and below zero for

all industries in the 1980s.

In the period from 1990 to 1995, the growth rates of the employment share for high-

skilled workers show a generally decreasing trend in more than 20 industries. The growth

rate of high-skilled worker’s share in total employment increased only in the industries of

1The wood and glass industries do not follow this trend.
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Figure 3.1: Annual Growth Rates of Employment Share among Three Types of Workers I
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Figure 3.2: Annual Growth Rates of Employment Share among Three Types of Workers II
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Figure 3.3: Annual Growth Rates of Employment Share among Three Types of Workers III
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Figure 3.4: Annual Growth Rates of Employment Share among Three Types of Workers IV
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Figure 3.5: Annual Growth Rates of Employment Share among Three Types of Workers V

agriculture, food, textile, paper and pulp, petroleum, chemicals and rubbers. However,

except wood, metal, construction, motor vehicle sales, wholesale trade, retail trade, and

business services, the growth rates of employment share for high-skilled workers of the other

industries were highest among the three skill-types of workers. The trends from these seven

industries, which show a reverse v-shape, are mainly caused by decreasing growth rates of

employment share of the high-skilled workers, not by increasing demands for middle-skilled

workers. In this period, the growth rates of employment share for low-skilled workers are

still lower than the previous period, excepting for food, textile, wood, electrical machinery,

utilities, wholesale trade, business, and education.

The third period (1995 to 2000) is a transition one. Some industries, such as wood,

glass, motor vehicle sales, utilities, wholesale trade, retail trade, communication and post,

finance, and business services, show the earlier polarization trends in employment during

this period. However, for most industries, the growth rates of the employment share for

high-skilled workers did not increase, while growth rates for low-skilled worker employment
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shares increased significantly relative to the period from 1980 to 1990. Thus, the earlier

polarization in employment was caused primarily by sharp increases in the growth rate of

employment share for low-skilled workers. Except for the mining industry, the growth rates

of employment share for middle-skilled workers either decreased relative to the 1980s or

remained similar to the growth rates for the first period.

In the period from 2000 to 2005, the employment polarization trends by industry

level are consistent with the polarization trend in the U.S. economy from Autor et al. (2006).

It seems that three factors caused polarization patterns in employment across industries:

recovered growth rates of the employment share for high-skilled workers, increased growth

rates of the employment share for low-skilled workers, and decreased growth rates for middle-

skilled workers in employment share. However, some industries showing polarization trends

in the late 1990s, such as utilities, wholesale trade, retail trade, communication and post and

finance, do not exhibit polarizations in employment continuously in this period, with sharply

decreasing growth rates in low skilled workers’ employment share. Similarly, Figures 3.17

to 3.21 in the Appendix, all of which are based on the 3 sub-periods 1980-1988, 1988-1996,

and 1996-2005, indicate polarization trends in employment share during the period from

1996 to 2005 except for the food, petroleum, rubber, and health services industries. In these

industries, rapid growth rates in the employment share of low-skilled workers occurred, but

as shown in the earlier polarization trends in Figures 3.1 to 3.5, the growth rates for high-

skilled workers’ employment share do not exhibit increasing trends.

For diverging wage differential trends as the second labor market phenomenon, an

increasing pattern of upper-tail wage distribution and a decreasing pattern of lower-tail wage

distribution in the U.S. labor market can be found in the industry analysis. Figures 3.6

to 3.10 present wage inequality between the 90th and the 50th percentiles and wage inequal-

ity between the 50th and the 10th percentiles for each industry2. Among the 29 industries,

2For these figures, log weekly earnings from the 90th, 50th and 10th percentiles were calculated for each
industry and for each year using data for full-time, full-year wage/salary workers age 25-55 with 2 to 48
years of potential labor market experiences during the period from 1968 to 2007 (covering earnings year
1967 to 2006 for workers age 24-54 in earnings years) from the IPUMS Current Population Survey data.
Here full-time and full-year workers are considered as those who worked more than 35 hours per week and
forty-plus weeks in the prior year.
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Industry: Agriculture to Paper and Pulp (1968−2007)

Figure 3.6: Wage Differentials between 90th and 50th and between 50th and 10th percentiles I
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Figure 3.7: Wage Differentials between 90th and 50th and between 50th and 10th percentiles II
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Figure 3.8: Wage Differentials between 90th and 50th and between 50th and 10th percentiles III
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Industry: Wholesale Trade to Real Estate (1968−2007)

Figure 3.9: Wage Differentials between 90th and 50th and between 50th and 10th percentiles IV
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Figure 3.10: Wage Differentials between 90th and 50th and between 50th and 10th percentiles V

17 industries, including mining, paper and pulp, metals, transport equipment, utilities, and

transport & storage, exhibit divergent patterns in wage equality between upper-tail and

lower-tail wage distribution as shown in Autor, Katz and Kearney (2006), whose work is

based on the total economy3

This paper is organized as follows. Section 3.2 explains the theoretical framework

applied in this chapter. Section 3.3 introduces data sources and presents empirical appli-

cations - difference-in-difference approach and share equation estimation methods for the

growth rate of labor productivity and demand shifts for three types of skilled workers based

on the employment shares and wage bill shares. Section 3.4 concludes with the implications

and findings from this paper.

3Industries such as food, textile, miscellaneous manufacturing and communication & post show parallel
increases in wage inequality between the top half and the bottom half wage distribution, and in industries
such as education and health service, increasing trends of wage inequality below the 50th percentile are more
sharply defined than the increasing trends above the 50th percentile.
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3.2 Theoretical Framework

3.2.1 Skill Demands for Four Tasks

Autor, Levy, and Murnane (2003) and Autor, Katz, and Kearney (2006) assume that

there are four categories of workplace tasks: nonroutine cognitive tasks, routine cognitive

tasks, routine manual tasks, and nonroutine manual tasks. The routine tasks are those

accomplished through explicit programmed rules and as such could be done by machines

following these programmed instructions exactly. By contrast, nonroutine tasks can not be

sufficiently understood or handled by completely coded instructions or exact formulas for

accomplishing the tasks. For example, nonroutine cognitive tasks include problem solving,

forming and testing hypotheses, medical diagnosis, or managing multiple analytic tasks. As

Polanyi (1966) posited, these types of tasks require tacit knowledge, obtained only by the

perceptions or practical skills of individuals, so that workers can accomplish such tasks only

when the required knowledge is embedded in the workers.

A worker’s occupational choice will be determined by his self-selection process based

on comparative advantage as in the Roy model (1951). There are three different types of

workers based on education levels: high-skilled workers, middle-skilled workers, and low-

skilled workers4. Autor, Levy, Murnane (2003) and Autor, Katz, and Kearney (2006)

document polarization in skill demands for three types of skilled workers based on four ob-

servations: (1) computer capital substitutes for workers in tasks having explicit programmed

instructions such as routine cognitive and routine manual tasks; (2) production inputs for

routine tasks, which are computerization assets or human labor in efficiency units, comple-

ment workers for abstract tasks such as nonroutine cognitive tasks; (3) workers involved in

nonroutine manual tasks such as janitors or waiters are isolated from advances in computer-

related technology; (4) the occupational choices of workers are partially dependent on their

4High-skilled workers, who have 16 years of schooling and more, can choose nonroutine cognitive tasks
or routine tasks such as routine cognitive tasks and routine manual tasks through self-selection. Similarly,
middle-skilled workers, who have from 12 to 15 years of schooling, can choose all four categories: nonroutine
cognitive tasks; routine cognitive tasks; routine manual tasks; and nonroutine manual tasks. Low-skilled
workers, who have less than 12 years of education, can choose routine tasks and nonroutine manual tasks
based on their comparative advantages.
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educational attainments.

However, Autor, Levy, Murnane (2003) focus only on skills demand changes between

nonroutine cognitive tasks and routine tasks such as routine cognitive and routine manual

tasks without considering the isolated nonroutine manual tasks from computerization. And

Autor, Katz, and Kearney (2006) investigate the heterogeneous shifts of skill demands only

between routine tasks and nonroutine manual tasks with the limitation that among the

three types of skilled workers only high-skilled workers could choose nonroutine cognitive

tasks. Thus, this paper removes the limitation of occupational choice for middle-skilled

workers from routine tasks to nonroutine cognitive tasks and integrates these theoretical

frameworks to present the real patterns of the U.S. labor market based on three types of

skilled workers.

Before the empirical analysis of how computerization affects the U.S. labor market,

polarization trends in employment and wages, this section illustrates the integrated theo-

retical model. Four tasks – nonroutine cognitive tasks, N ; routine tasks, R, which include

routine cognitive and routine manual tasks; and nonroutine manual tasks, M – are used to

produce output, Q, which sells at unity, in the form of the Cobb-Douglas function:

Q = NαRφMσ (3.1)

where 0 < α,φ, σ < 1 and α+ φ+ σ = 1; N,R, and M represent nonroutine cognitive tasks,

routine tasks for both routine cognitive tasks and routine manual tasks, and nonroutine

manual tasks, respectively. Nonroutine cognitive tasks will be performed by high-skilled

workers and middle-skilled workers; routine tasks by middle-skilled workers in the efficient

units or computer-related assets; and nonroutine manual tasks by middle-skilled workers

and low-skilled workers. The production function in Equation 3.1 can also be written, based

on production inputs, as

Q = Lα
N (LR + K)φLσ

M (3.2)

75



where LN , LR, and LM are production labor inputs for nonroutine cognitive tasks N , both

routine cognitive and routine manual tasks R, and nonroutine manual tasks M , respectively;

K represents computer-based assets as a production capital input for routine task R; and

the computerization assets will be supplied elastically in the market at price µ.

This model assumes that all skilled workers have different productivity endowments

in that a high-skilled worker has nj efficiency units for nonroutine cognitive tasks and rj

efficiency units for routine tasks; a middle-skilled worker has nj, rj, and mj efficiency units

for nonroutine cognitive tasks, routine tasks, and nonroutine manual tasks, respectively;

and a low-skilled worker has rj efficiency units for routine tasks and mj efficiency units for

nonroutine manual tasks, with 0 < nj, rj ,mj ≤ 1, ∀j. Thus, a high-skilled worker can choose

to supply nj efficiency units for nonroutine cognitive tasks, rj efficiency units for routine

tasks, or a convex combination Lh
j = [λjnj, (1−λj)rj ], where0 ≤ λj ≤ 1 for both nonroutine

cognitive tasks and routine tasks. A middle-skilled worker can supply either nj, rj, or mj

efficiency units for nonroutine cognitive tasks, routine tasks, and nonroutine manual tasks

or a convex combination Lm
j = [κjnj, χjrj, (1 − κj − χj)mj ], where 0 ≤ κj , χj ≤ 1. And

a low-skilled worker also can choose to supply rj efficiency units for routine cognitive and

rountine manual tasks or mj efficiency units for nonroutine manual tasks with combined

labor supply Ll
j = [δjrj , (1 − δj)mj], where 0 ≤ δj ≤ 1 for routine tasks and nonroutine

manual tasks.

From Autor, Levy, Murnane (2003), three primary conditions for market equilibrium

are that (i) due to perfect substitutability between human labor for routine tasks and

computer-related capital, the wage per efficiency unit for routine tasks, which is equal

to marginal productivity, should be the same as the price of computer-related capital,

µ; (ii) workers’ occupational choice through self-selection clears the labor market; and

(iii) the economy operates on the demand curve of the aggregate production function.

Associated with the labor supply, the relative efficiency unit of individual j for routine tasks

to nonroutine manual tasks and the relative efficiency unit of individual j for nonroutine

cognitive tasks to routine tasks are defined as Ej =
rj

mj
and Sj =

nj

rj
, respectively. Between
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routine tasks and nonroutine manual tasks, individual j chooses nonroutine manual tasks

if Ej < E∗ and chooses routine tasks, otherwise. In addition, individual j chooses routine

tasks if Sj < S∗ and nonroutine cognitive tasks if Sj > S∗ for her occupational choice

between nonroutine cognitive tasks and routine tasks. Here E∗ and S∗ are relative efficiency

units between routine tasks and nonroutine manual tasks and between nonroutine cognitive

tasks and routine tasks at labor market equilibrium, respectively.

Thus, when E∗ is equal to ωM

ωR
and S∗ to ωR

ωN
, marginal workers from each side with

relative efficiency units of E∗ and S∗ will choose their potential tasks indifferently. That is,

marginal workers will choose routine tasks and nonroutine manual tasks indifferently if E∗

is equal to ωM

ωR
. And marginal workers will choose nonroutine cognitive tasks and routine

tasks indifferently when S∗ is equal to ωR

ωN
. Thus, all labor supplied in efficiency units for

nonroutine cognitive tasks, routine tasks and nonroutine manual tasks are calculated by

LN (S∗) =
∑

j nj · I[Sj > S∗] , LR(S∗, E∗) =
∑

j rj · I[Sj < S∗] +
∑

j rj · I[Ej > E∗] and

LM (E∗) =
∑

j mj · I[Ej < E∗] with an indicator function I[·].

Based on the third condition that for market equilibrium the economy operates on

the demand curve of the aggregate production function, production efficiency requires for

nonroutine cognitive tasks, routine tasks and nonroutine manual tasks

ωN =
∂Q

∂LN
= αLα−1

N (LR + K)φLσ
M (3.3)

ωR =
∂Q

∂LR
= φLα

N (LR + K)φ−1Lσ
M (3.4)

ωM =
∂Q

∂LM
= σLα

N (LR + K)φLσ−1
M (3.5)

and the relative efficiency unit between routine tasks and nonroutine manual tasks, E∗, and

the relative efficiency unit for nonroutine cognitive tasks and routine tasks such as routine
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cognitive and routine manual tasks, S∗, can be written as

E∗ =
ωM

ωR
=

σ

φ

LR(E∗, S∗) + K

LM (E∗)
(3.6)

S∗ =
ωR

ωN
=

φ

α

LN (S∗)

LR(E∗, S∗) + K
(3.7)

The following comparative statics of relative efficiency units for routine tasks, E∗,

and for nonroutine cognitive tasks, S∗, with a decreasing price of computer-based capital,

µ, show that, first, increasing adoption of computer-related technology raises the relative

demand for routine tasks to nonroutine manuals tasks, LR(E∗, S∗)+K
LM (E∗) . It leads to an increase

in the relative wage for nonroutine manual tasks to routine tasks and simultaneously raises

the relative efficiency unit between routine tasks and nonroutine manual tasks, represented

as E∗ = ωM

ωR
. Subsequently, the decreasing price of computer-related assets leads to an

increase in the relative demand for routine tasks to nonroutine cognitive tasks, LR(E∗,S∗)+K
LN (E∗) .

Thus, it increases in the relative wage of nonroutine cognitive tasks to routine tasks, while it

decreases the relative efficiency unit between nonroutine cognitive tasks and routine tasks,

S∗ = ωR

ωN
.

Due to perfect substitutability between computerization assets and middle-skilled

workers for routine tasks, the decline in price of computer-related capital leads to a decrease

in wage for middle-skilled workers by a one-for-one ratio, ∂ lnωR

∂ lnµ
= 1. Using this one-for-one

response, comparative statics results can be written as5

∂ ln(LR(E∗, S∗)+K
LM (E∗) )

∂ ln µ
=

1

φ − 1
< 0 and

∂ ln(ωM

ωR
)

∂ lnµ
=

1

φ − 1
< 0 (3.8)

∂ ln( LN (S∗)
LR(E∗, S∗)+K

)

∂ lnµ
=

1

1 − φ
> 0 and

∂ ln( ωR

ωN
)

∂ ln µ
=

1

1 − φ
> 0 (3.9)

It implies that, since workers for routine tasks and nonroutine manual tasks make their occu-

pational choices based on the self-selection process, from increasing adoption of computer-

5For relative demand and relative efficiency unit between routine tasks and nonroutine manual tasks

and, use ωR = φ
(

LN

LM

)α(

LR(E∗, S∗)+K

LM

)φ−1
, and ωR = φ

(

LM

LN

)σ(

LN

LR(E∗, S∗)+K

)1−φ
for relative demand and

relative efficiency unit between nonroutine cognitive tasks to routine tasks.
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based capital, an increased relative efficiency unit between routine tasks and nonroutine

manual tasks, E∗, leads the middle-skilled workers, especially marginal workers below-

average for routine tasks, to allocate their labor supply from routine tasks to nonroutine

manual tasks. Similarly, a decreased relative efficiency unit between nonroutine cognitive

tasks and routine tasks, S∗, moves marginal workers above-average from routine tasks to-

ward nonroutine cognitive tasks.

The increasing demands for the production input of routine tasks and displacement

of middle-skilled workers from routine tasks toward nonroutine tasks support increasing use

of computer-related capital for routine tasks. Consistent with Autor, Levy and Murnane

(2003) and Autor, Katz, and Kearney (2006), (i) the decline in price of computer-related

capital raises the wages for nonroutine manual tasks and nonroutine cognitive tasks relative

to routine tasks, (ii) marginal workers among middle-skilled workers, those below-average

and above-average for routine tasks, increase their labor supply toward nonroutine manual

workers and nonroutine cognitive tasks, respectively, (iii) computer-related assets will carry

out routine tasks which were previously performed by middle-skilled workers, and it raises

the wages for high-skilled workers for nonroutine cognitive tasks due to complementarity.

These conclusions could be a rationalization for the empirical analysis explaining the char-

acteristics of the U.S. labor market, i.e., polarization patterns in employment share changes

and wage differentials.

3.2.2 Skill Demands at Industry Level

The framework of skill demands for three types of workers with four tasks can be

applied to production functions of industry i. From Equation 3.2, the production function

for industry i with three production inputs can be written as

qi = nαi

i rφi

i mσi

i (3.10)
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where 0 < αi, φi, σi < 1 and αi + φi + σi = 1; αi, φi, and σi denote industry-specific factors

for each production input; ni, ri, and mi represent production inputs, respectively, for non-

routine cognitive tasks, routine tasks (routine cognitive tasks and routine manual tasks),

and nonroutine manual tasks with high-skilled workers for nonroutine cognitive and rou-

tine tasks, middle-skilled workers for all four tasks, low-skilled workers for middle-skilled

workers and low-skilled workers, and computer-related capital assets, which are perfectly

substitutable for labor production inputs for the routine tasks.

Following Autor, Levy and Murnane (2003), consumer preferences, which are pre-

sented with a Dixit-Stiglitz utility function, can be defined as

U(q1, q2, . . . , qi, . . . , qz) =
(

z
∑

i

q1−v
i

)
1

1−v
(3.11)

where 0 < v < 1. When the product price for each industry is inversely related to the

quantity produced from industry i, represented as pi(qi) = q−v
i , the profit maximization

for industry i can be written as

max
ni,ri,mi

Π = q1−v
i − ωNni − ωRri − ωMmi (3.12)

and the first-order conditions for production inputs, ni, ri, and mi, for nonroutine cognitive

tasks, routine tasks (routine cognitive and routine manual tasks), and nonroutine manual

tasks, respectively, can be derived as

ωN = αi(1 − v) n−αiv+αi−1
i r−φiv+φi

i m−σiv+σi

i (3.13)

ωR = φi(1 − v) n−αiv+αi

i r−φiv+φi−1
i m−σiv+σi

i (3.14)

ωM = σi(1 − v) n−αiv+αi

i r−φiv+φi

i m−σiv+σi−1
i (3.15)

Thus, based on the first-order conditions, the derived production input demands for non-

routine cognitive tasks, routine tasks, and nonroutine manual tasks in industry i can be
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written as
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(3.18)

The comparative statics from the derived demands for production inputs of non-

routine cognitive tasks, routine tasks (routine cognitive and routine manual tasks), and

nonroutine manual tasks consistently presents that decreasing prices in computer-related

capital increase the demand for all four types of tasks - nonroutine cognitive tasks, routine

cognitive tasks, routine manual tasks, and nonroutine manual tasks - for each industry

i. Thus, at the industry level increasing demands for production inputs in routine tasks

will be replaced by cheaper computer-related capital in response to middle-skilled workers’

movement from routine tasks toward nonroutine cognitive and nonroutine manual tasks.

∂ ln ni

∂ lnωR
=

−φi(1 − v)

v
< 0 (3.19)

∂ ln mi

∂ lnωR
=

−φi(1 − v)

v
< 0 (3.20)

∂ ln ri

∂ lnωR
=

(1 − v)(1 − φi) − 1

v
< 0 (3.21)

3.3 Empirical Implementation

3.3.1 Data

The primary data source used is EU KLEMS Growth and Productivity Accounts,

measuring labor productivity, computerization intensity, and skill demand shifts for three

different types of skilled workers during the period from 1970 to 2005. The growth rates

of labor productivity, which is calculated as real gross output divided by total number of

employees, in Table 3.15 are averaged annual growth rates for each sub-period. Similar
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Figure 3.12: High-Skilled Workers’ Share from Utilities to Health Service: 1970-2005

calculation methods are applied to the growth rate of computerization in Table 3.16, mea-

sured by three capital investments of computing equipment, software and communication

equipment based on the real gross fixed capital formation data by industry. In the EU

KLEMS Growth and Productivity Accounts, high-skilled workers are defined as those who

have 16 years of schooling or more; middle-skilled workers have 12 years of schooling, in-

cluding those with some college education, for a total of 12 to 15 years of schooling; and

low-skilled workers have less than 12 years of schooling. Demand shifts for these three types

of skilled workers are measured by each type of the skilled workers’ employment share and
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Figure 3.14: Middle-Skilled Workers’ Share from Utilities to Health Service: 1970-2005

wage bill share. More detailed descriptive statistics for each industry are presented in the

Appendix.

To present the diverging wage inequalities between top-half and bottom-half wage

distributions in Figures 3.6 to 3.10, IPUMS Current Population Survey data are used as well.

The industry classifications from the IPUMS Current Population Survey are recategorized

into much broader classifications, 29 industries, to reconcile to industry classifications in the

EU KLEMS Accounts. As described above, log real weekly wages for each year are regressed

separately on variables of years of schooling, experience, experience squared, metro area,
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Figure 3.16: Low-Skilled Workers’ Share from Utilities to Health Service: 1970-2005

gender, white, occupation, and industry using data on full-time, full-year wage workers

age 25-55 with 2 to 48 years of potential labor market experience during the period from

1968 to 2007. Full-time and full-year workers are defined as those who worked 35 hours

or more per week and forty-plus weeks in the previous year, respectively. A worker’s log

real weekly earnings are calculated as the logarithm of real annual earnings divided by the

weeks worked during the previous year, and all earnings of workers are deflated by the

Personal Consumption Expenditure Price Index (PCEPI). Earnings below 67 dollars per

week in 1982 dollars (or below 125 dollars per week in 2005 dollars) are eliminated. The
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Table 3.1: Descriptive Statistics for EU KLEMS Growth and Productivity: 1970-2005

Variables Observations Mean Std. Dev. Min Max

Computerization Investment 1044 3902.28 9851.04 0.55 103127.28
Computerization Stocks 1044 12455.40 31320.24 1.02 269639.50
High-Skilled Employment Share 1044 21.01 13.31 2.81 69.02
Middle-Skilled Employment Share 1044 60.86 9.53 28.59 82.65
Low-Skilled Employment Share 1044 18.13 12.19 1.31 61.53
High-Skilled Worker Wage Share 1044 29.63 16.99 4.57 79.06
Middle-Skilled Worker Wage Share 1044 55.82 11.51 17.88 79.46
Low-Skilled Worker Wage Share 1044 14.55 11.40 0.72 55.88
Numbers of Employees 1044 4602.26 7298.44 115.00 51069.46
Real Gross Output 1044 428550.70 421881.60 47372.75 3031866.00

The data are from EU KLEMS Growth and Productivity Accounts from 1970 to 2005 and especially, com-
puterization investment uses real gross fixed capital formation in 2005 dollars from EU KLEMS Database and
computerization stocks are measured by real fixed capital stock in 2005 dollars from EU KLEMS Growth and
Productivity Account during the period from 1970 to 2005. (in millions of U.S. dollars) Real Gross outputs are
measured in millions of U.S. dollars and total number of employees are measured in thousands units. Demand
shifts for different skill-types of workers are measured by employment share and wage share in which employ-
ment share is a share of a specific skill-type of workers in total number of employees and wage share means a
share of a specific type of skilled workers in total wage bill.

CPS sample weight, which is person weight, is used for this analysis and observations for

top-coded earners are multiplied by 1.5 following Katz and Murphy (1992) and Autor, Katz,

and Kearney (2008).

3.3.2 Difference-in-Difference Estimates

In the late 1990s, rapid growth of computerization, strong productivity gains, and

polarization patterns in employment and wage structure occurred simultaneously in the U.S.

labor market, although there are variations across industries associated with their timing.

To see whether increasing investments for computer-related assets affect large labor pro-

ductivity gains and the polarization trends, the difference-in-difference empirical approach

is used following Stiroh (2002). Based on industry level, this section investigates how indus-

try characteristics associated with computerization affect the U.S. productivity revival and

demand shifts for different skill-types of workers in the late 1990s. Then, based on Berman,

Bound, and Griliches (1994) and Goldin and Katz (1996), the share equation for three types

of skilled workers - high-skilled workers, middle-skilled workers, and low-skilled workers - is
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estimated using two-way fixed effect regressions over three different sub-periods.

3.3.2.1 Growth Rate of Labor Productivity

Even though descriptive statistics in Table 3.15 indicate a strong increase in the

growth rates of labor productivity for the period from 1995 to 2000, the first empirical

model illustrates the U.S. productivity revivals across industries in the post-1995 period by

using difference-in-difference methods. Thus, the simple empirical model with the post-1995

dummy can be defined as

d ln LPit = β0 + β1Φ + εit (3.22)

where d ln LPit is the annual growth rate of labor productivity in industry i at time t,

and LP is calculated by real gross output divided by total number of employees. Φ is a

post-1995 dummy indicating whether the observed period is prior to or post 1995. If the

period is before 1995, then Φ is equal to zero; otherwise, it equals one. β0 indicates annual

growth rate of labor productivity in the period prior to 1995, β1 indicates additional growth

rate of labor productivity in the post-1995 period relative to before 1995. Since the error

term εit can be heteroskedastic and correlated across industries, fixed effect regressions for

heteroscedastic and correlated error term are used in the regression models from (3) to

(6). For difference-in-difference estimates, since annual growth rates of computerization

investment after 1995 increase sharply as shown in Table 3.16, the break point for the

analysis is determined at 1995 following Stiroh (2002).

The next empirical specification is used to investigate the potential links between

the fast growth rates of labor productivity in the late 1990s and the strong computer-

related investments across industries. The main assumption applied is that if increasing

investment for computerization assets is a driving force of large productivity gains in the late

1990s, industries with strong investment for computer-related assets should exhibit larger

productivity gains than other industries, which are less computerized industries. Thus, the
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second empirical model showing the connection between computerization investments and

labor productivity gains can be written as

d ln LPit = β0 + β1Φ + β2Γ + β3ΦΓ + εit (3.23)

where Γ is a dummy for computerization-intensified. β0 indicates the growth rate of labor

productivity for non-computerized industry in the period prior to 1995. Since β1 represents

additional growth rate of labor productivity for the non-computerized industry in the post-

1995 period relative to prior to 1995, β0 + β1 indicates the growth rate of productivity

for non-computerized industries in the post-1995 period. Furthermore, β2 represents the

additional growth rate of labor productivity in the period prior to 1995 for computerized

industry. Thus, β0 + β2 represents the growth rate of labor productivity for computer-

intensified industry in the period before 1995 and β0 + β1 + β2 + β3 indicates the labor

productivity growth rate for computerized industry in the period after 1995.

Here investments for computerization assets are measured by three capital assets -

computing equipment, software, and communication equipment. The computerized indus-

try is defined based on the growth rate of computerization-real gross output intensity in

1995. That is, if the growth rate of computerization investment-output intensity in 1995 for

an industry is larger than the median growth rate of the computerization investment-output

intensity in 1995 over 29 industries, then Γ is equal to 1, indicating it is a computerization-

intensified industry. The first and second empirical specifications use 6 estimation methods:

OLS regression weighted by total number of employees in the regression model (1); OLS

regression weighted by real gross output in the regression model (2); Fixed-effect regression

weighted by total number of employees for heteroscedasticity in the regression model (3);

Fixed-effect regression weighted by real gross output for heteroscedasticity in the regression

model (4); Fixed-effect regression weighted by total number of employees for correlation

in the regression model (5); and Fixed effect regression weighted by real gross output for

correlation in the regression model (6)6.

6Since there are variations across industries, all regressions with two different weights, total number of
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Table 3.2: Acceleration of Annual Growth of Labor Productivity in the Post-1995 Period

Dependent variable: Annualized Growth of Labor Productivity

Variables
(1) (2) (3) (4) (5) (6)

Post-1995 Dummy 0.0066∗∗∗ 0.0121∗∗∗ 0.0083∗∗ 0.0083∗∗∗ 0.0066∗ 0.0121∗∗∗

(0.002) (0.002) (0.004) (0.003) (0.004) (0.004)
Intercept 0.0095∗∗∗ 0.0116∗∗∗ 0.0089∗∗∗ 0.0131∗∗∗ 0.0095∗∗∗ 0.0116∗∗∗

(0.001) (0.002) (0.001) (0.001) (0.002) (0.002)

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0094 0.0232 0.2158 0.2798 0.0084 0.0212
Observations 1015 1015 1015 1015 1015 1015

Post-1995 Dummy 0.0023 0.0115∗∗∗ 0.0039 0.0052∗∗ 0.0023 0.0115∗∗∗

(0.003) (0.003) (0.003) (0.002) (0.003) (0.003)
Computerization Intensity −0.0044∗ −0.0058∗ 0.0000 0.0000 −0.0044 −0.0058∗

(0.003) (0.003) (0.003) (0.003)
Post-1995*Computerization 0.0127∗∗∗ 0.0015 0.0132∗ 0.0079 0.0127∗∗ 0.0015

(0.004) (0.005) (0.007) (0.005) (0.005) (0.005)
Intercept 0.0109∗∗∗ 0.0139∗∗∗ 0.0088∗∗∗ 0.0131∗∗∗ 0.0109∗∗∗ 0.0139∗∗∗

(0.002) (0.002) (0.001) (0.001) (0.002) (0.002)

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0172 0.0275 0.2241 0.2821 0.0162 0.0256
Observations 1015 1015 1015 1015 1015 1015

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Regressions (1) and (2) are estimated by ordinary least square with two weights: total number
of employees and real gross output, respectively. Regressions (3) and (4) considers heteroskedasticity over
industries based on fixed effect regression, while Regressions (5) and (6) are based on fixed effect regressions with
correlated error structure. Regressions (1) to (6) are also estimated by two weights: total number of employees
and the real gross output. This difference-in-difference estimation for growth rate of labor productivity is based
on EU KLEMS Growth and Productivity Accounts from 1970 to 2005.

The upper panel of Table 3.2, illustrating the first empirical model with only a

time dummy, shows annual growth rates for labor productivity increased from 0.66 percent

to 1.21 percent in the post-1995 period. The bottom panel in Table 3.2, based on the

employees weight and real gross output weight, are applied here following Kahn and Lim (1998).
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second empirical model, presents estimation results about the link between computerization

and labor productivity growth. A comparison of non-computerized industry in the period

prior to 1995 with non-computerized industry in the period post-1995 indicates that time

effect for non-computerized industry is β1. The comparison of prior and post 1995 in the

computerized industry indicates that time effect for the computerized industry is β1 +

β3. These comparisons suggest that the coefficient of interaction term by the post-1995

dummy and the computerization dummy, β3, indicates an additional growth rate in labor

productivity due to computerization characteristics of industry in the post-1995 period. It

explains the link between increasing computerization and faster productivity growth.

For example, the bottom panel shows that additional acceleration in productivity

growth rate, β3, due to computerization, is 0.83 percent as a mean value with a range

from 0.15 percent to 1.27 percent. Specifically, the estimations weighted by employment

present significantly larger values than the regressions weighted by real gross output. In

the post-1995 period, the model (3) shows the largest acceleration productivity growth

rate due to computerization, 1.32 percent, and the model (1) and the model (5) show a

1.27 percent increase in labor productivity growth rate in computerized industry relative

to non-computerized industries. Therefore, Table 3.2 shows that computerized industries

experienced increases in labor productivity relative to non-computerized industries after the

1995 period, indicating there is a positive relationship between computerization and U.S.

productivity revivals.

3.3.2.2 Demand Shifts for Different Skill-types of Workers

Observations from the U.S. labor market during the last decade show that with

increasing computerization across industries demand shifts measured by employment share

and wage bill share for high-skilled workers and for low-skilled workers have increased, while

middle-skilled workers’ shares have decreased. These key facts are consistent with the the-

oretical framework that when there are three types of skilled workers and four types of

tasks (nonroutine cognitive tasks, which could be performed by high-skilled workers and
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middle-skilled workers; routine tasks such as routine cognitive tasks and routine manual

tasks, which can be carried out by middle-skilled workers and computerization assets; non-

routine manual tasks, which are performed by low-skilled workers) marginal workers from

both edges in routine tasks switch their labor supply toward nonroutine cognitive tasks and

nonroutine manual tasks with decreasing computerization cost.

Due to the decreasing price of computerization capital, increasing demand for pro-

duction inputs of routine tasks, which are middle-skilled workers or computer-related cap-

ital, leads to an increase in the replacement of middle-skilled workers by computerization

assets for routine cognitive and routine manual tasks. Therefore, with increasing invest-

ments in computerization, employment and wage bill shares of three different skill-types of

workers should move toward polarization patterns such as increasing shares for high-skilled

workers and for low-skilled workers and decreasing share of middle-skilled workers.

To see the impact of computerization on the labor market phenomena, relationships

between computerization and increasing shares for high-skilled workers, decreasing shares

for middle-skilled workers, and increasing shares for low-skilled workers will be analyzed

respectively. For demand shifts of three types of skilled workers across industries in the late

1990s, the empirical model with the post-1995 dummy can be written as

dESit = β0 + β1Φ + εit (3.24)

where dESit represents demand shifts for three types of skilled workers: high-skilled workers,

middle-skilled workers, and low-skilled workers, in industry i at time t. Φ is a post-1995

dummy indicating whether the observed period is prior to or post 1995. Thus, if the period

is prior to 1995, then Φ equals zero; otherwise, Φ is one. Similarly, β0 indicates a demand

shift for each type of skilled-worker in the period prior to 1995, and β1 is an additional share

change for high-skilled, middle-skilled, and low-skilled workers in the post-1995 relative to

the previous period.

To see how employment share and wage bill share for each skill-type of worker in the
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late 1990s change with increasing computerization assets, the same break point for the time

period in 1995 is used. In addition, to find whether there are possible connections between

skill demand changes and large investments for computerization assets across industries

after 1995, the second empirical model can be written as

dESit = β0 + β1Φ + β2Γ + β3ΦΓ + εit (3.25)

where Γ is a dummy for computerization-intensity. β0 indicates demand shifts for different

types of skilled workers in non-computerized industry during the period prior to 1995. Since

β1 presents an additional share change for non-computerized industry in the post-1995

period relative to prior to 1995, β0 + β1 indicates demand shifts for high-skilled workers,

middle-skilled workers, and low-skilled workers in a non-computerized industry in the post-

1995 period. Also, since β2 is the additional share change for j type of workers in the period

prior to 1995 due to computerization characteristic for industry, β0 + β2 equals the share

shifts for three types of skilled workers for a computer-intensified industry in the period

before 1995. Thus, β0 + β1 + β2 + β3 indicates demands shifts, measured by share changes

in total employment and total wage bill, for high-skilled, middle-skilled, and low-skilled

workers in computerized industry during the period post-1995.

Table 3.3 and Table 3.4, based on the employment share’s change and the wage

bill share’s change, respectively, present the estimation results for demand shifts for high-

skilled workers. Each table consists of two panels: the first empirical specification with

only a time dummy and the second empirical specification with time and computerization

dummies. Both the upper panels in Table 3.3 and Table 3.4 show that demand for high-

skilled workers has decreased since 1995. The lower panels, however, indicate that in the

post-1995 period, computerized industry has experienced increasing demand for high-skilled

workers, measured by employment share and wage bill share, and the increasing demand

shift for high-skilled worker due to computerization are clearly presented in Table 3.4.

Second, for middle-skilled workers’ demand shifts, which are also measured by em-
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Table 3.3: Changes of Employment Share for High-Skilled Workers in the Post-1995 Period

Dependent variable: Demand Shifts for High-Skilled Workers

Variables
(1) (2) (3) (4) (5) (6)

I. Time Dummy
Post-1995 Dummy −0.0948 −0.1174 −0.0906∗∗∗ −0.1489∗∗∗ −0.0948 −0.1174

(0.065) (0.074) (0.031) (0.048) (0.151) (0.136)
Intercept 0.4790∗∗∗ 0.5071∗∗∗ 0.4776∗∗∗ 0.5194∗∗∗ 0.4790∗∗∗ 0.5071∗∗∗

(0.038) (0.046) (0.011) (0.019) (0.087) (0.083)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0021 0.0025 0.0219 0.0251 0.0005 0.0006
Observations 1015 1015 1015 1015 1015 1015

II. Time and Computerization

Post-1995 Dummy −0.1001 −0.1072 −0.0972∗∗∗ −0.1543∗∗ −0.1001 −0.1072
(0.080) (0.095) (0.031) (0.065) (0.210) (0.186)

Computerization Intensity −0.0953 −0.0801 0.0000 0.0000 −0.0953 −0.0801
(0.081) (0.095) (0.136) (0.114)

Post-1995*Computerization 0.0203 −0.0290 0.0194 0.0136 0.0203 −0.0290
(0.136) (0.152) (0.074) (0.096) (0.238) (0.187)

Intercept 0.5104∗∗∗ 0.5391∗∗∗ 0.4776∗∗∗ 0.5195∗∗∗ 0.5104∗∗∗ 0.5391∗∗∗

(0.046) (0.060) (0.011) (0.019) (0.120) (0.115)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0040 0.0040 0.0219 0.0251 0.0023 0.0022
Observations 1015 1015 1015 1015 1015 1015

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Regressions (1) and (2) are estimated by ordinary least square with two weights: total number of
employees and real gross output, respectively. Regressions (3) and (4) consider heteroskedasticity over industries
based on the fixed effect regression, while regressions (5) and (6) are based on the fixed effect regressions with a
correlated error structure. Regression (1) to regression (6) are also estimated by two weights: total number of
employees and real gross output. The upper panel entitled ‘I. Time dummy’ shows the first empirical estimation
results with only a time dummy and the lower panel entitled ‘II. Time and Computerization’ presents the second
empirical estimation results with time and computerization dummies.

ployment share and wage bill share, the top panels in Table 3.5 and in Table 3.6 show

that decreasing demand for middle-skilled workers is much larger than decreasing demand

for high-skilled workers, with mean values being -0.5607 for employment share and -0.4652

for wage bill share with a range from -0.5491 to -0.5757 for the middle-skilled workers’
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Table 3.4: Changes of Wage Bill Share for High-Skilled Workers in the Post-1995 Period

Dependent variable: Demand Shifts for High-Skilled Workers

Variables
(1) (2) (3) (4) (5) (6)

I. Time Dummy
Post-1995 Dummy −0.0553 −0.1290 −0.0472 −0.1685∗∗ −0.0553∗∗∗ −0.1290∗∗∗

(0.098) (0.115) (0.053) (0.071) (0.002) (0.003)
Intercept 0.5794∗∗∗ 0.6550∗∗∗ 0.5766∗∗∗ 0.6705∗∗∗ 0.5794∗∗∗ 0.6550∗∗∗

(0.058) (0.072) (0.018) (0.028) (0.001) (0.002)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0003 0.0012 0.0173 0.0159 0.0003 0.0012
Observations 1015 1015 1015 1015 1015 1015

II. Time and Computerization

Post-1995 Dummy −0.0680 −0.1313 −0.0551 −0.1880∗ −0.0680 −0.1313
(0.121) (0.148) (0.046) (0.098) (0.303) (0.302)

Computerization Intensity 0.0698 0.0114 0.0698 0.0114
(0.123) (0.148) (0.197) (0.194)

Post-1995*Computerization 0.0330 0.0063 0.0234 0.0491 0.0330 0.0063
(0.207) (0.236) (0.135) (0.140) (0.341) (0.316)

Intercept 0.5564∗∗∗ 0.6504∗∗∗ 0.5765∗∗∗ 0.6707∗∗∗ 0.5564∗∗∗ 0.6504∗∗∗

(0.070) (0.093) (0.018) (0.028) (0.173) (0.185)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0010 0.0012 0.0173 0.0159 −0.0001 −0.0001
bservations 1015 1015 1015 1015 1015 1015

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Regressions (1) and (2) are estimated by ordinary least square with two weights: total number of
employees and real gross output, respectively. Regressions (3) and (4) consider heteroskedasticity over industries
based on the fixed effect regression, while regressions (5) and (6) are based on the fixed effect regressions with a
correlated error structure. Regression (1) to regression (6) are also estimated by two weights: total number of
employees and real gross output. The upper panel entitled ‘I. Time dummy’ shows the first empirical estimation
results with only a time dummy and the lower panel entitled ‘II. Time and Computerization’ presents the second
empirical estimation results with time and computerization dummies.

employment share and a range from -0.3942 to -0.4996 for the wage bill share’s change

of middle-skilled workers. In the bottom panels, the changes of share in employment and

wage bill for middle-skilled workers due to computerization are on average -0.2482 with a

range from -0.2256 to -0.2646 and on average -0.2470 with a range from -0.2295 to -0.2603,
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Table 3.5: Changes of Employment Share for Middle-Skilled Workers in the Post-1995 Period

Dependent variable: Demand Shifts for Middle-Skilled Workers

Variables
(1) (2) (3) (4) (5) (6)

I. Time Dummy
Post-1995 Dummy −0.5712∗∗∗ −0.5757∗∗∗ −0.5491∗∗∗ −0.5212∗∗∗ −0.5712∗∗∗ −0.5757∗∗∗

(0.076) (0.086) (0.051) (0.068) (0.158) (0.159)
Intercept 0.2745∗∗∗ 0.2772∗∗∗ 0.2669∗∗∗ 0.2558∗∗∗ 0.2745∗∗∗ 0.2772∗∗∗

(0.045) (0.054) (0.018) (0.027) (0.093) (0.100)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0530 0.0421 0.0987 0.0869 0.0529 0.0421
Observations 1015 1015 1015 1015 1015 1015

II. Time and Computerization

Post-1995 Dummy −0.4839∗∗∗ −0.4848∗∗∗ −0.4647∗∗∗ −0.4184∗∗∗ −0.4839∗∗ −0.4848∗∗

(0.093) (0.110) (0.056) (0.082) (0.214) (0.195)
Computerization Intensity 0.2541∗∗∗ 0.2762∗∗ 0.2541 0.2762∗

(0.095) (0.110) (0.164) (0.151)
Post-1995*Computerization −0.2646∗ −0.2256 −0.2490∗∗ −0.2598∗ −0.2646 −0.2256

(0.160) (0.176) (0.106) (0.130) (0.278) (0.240)
Intercept 0.1909∗∗∗ 0.1667∗∗ 0.2676∗∗∗ 0.2550∗∗∗ 0.1909 0.1667

(0.054) (0.070) (0.017) (0.025) (0.124) (0.123)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0597 0.0481 0.1009 0.0889 0.0596 0.0481
Observations 1015 1015 1015 1015 1015 1015

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Regressions (1) and (2) are estimated by ordinary least square with two weights: total number of
employees and real gross output, respectively. Regressions (3) and (4) consider heteroskedasticity over industries
based on the fixed effect regression, while regressions (5) and (6) are based on the fixed effect regressions with a
correlated error structure. Regression (1) to regression (6) are also estimated by two weights: total number of
employees and real gross output. The upper panel entitled ‘I. Time dummy’ shows the first empirical estimation
results with only a time dummy and the lower panel entitled ‘II. Time and Computerization’ presents the second
empirical estimation results with time and computerization dummies.

respectively.

Third, the upper panels in Tables 3.7 and 3.8 show that since 1995 demand for

low-skilled workers has increased, which is measured by employment share in Table 3.7 and

wage bill share in Table 3.8. The lower panels present that change of employment share
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Table 3.6: Changes of Wage Bill Share for Middle-Skilled Workers in the Post-1995 Period

Dependent variable: Demand Shifts for Middle-Skilled Workers

Variables
(1) (2) (3) (4) (5) (6)

I. Time Dummy
Post-1995 Dummy −0.4996∗∗∗ −0.4602∗∗∗ −0.4773∗∗∗ −0.3942∗∗∗ −0.4996∗∗∗ −0.4602∗∗

(0.099) (0.116) (0.063) (0.081) (0.193) (0.201)
Intercept 0.0807 0.0538 0.0730∗∗∗ 0.0279 0.0807 0.0538

(0.058) (0.073) (0.022) (0.032) (0.114) (0.123)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0247 0.0152 0.0618 0.0510 0.0247 0.0152
Observations 1015 1015 1015 1015 1015 1015

II. Time and Computerization

Post-1995 Dummy −0.4126∗∗∗ −0.3680∗∗ −0.3946∗∗∗ −0.2922∗∗∗ −0.4126 −0.3680
(0.122) (0.149) (0.048) (0.099) (0.263) (0.262)

Computerization Intensity 0.1844 0.2570∗ 0.1844 0.2570
(0.123) (0.149) (0.184) (0.190)

Post-1995*Computerization −0.2603 −0.2295 −0.2443∗ −0.2581 −0.2603 −0.2295
(0.208) (0.238) (0.139) (0.156) (0.315) (0.306)

Intercept 0.0200 −0.0490 0.0737∗∗∗ 0.0271 0.0200 −0.0490
(0.071) (0.094) (0.019) (0.030) (0.151) (0.160)

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0270 0.0181 0.0631 0.0521 0.0270 0.0181
Observations 1015 1015 1015 1015 1015 1015

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Regressions (1) and (2) are estimated by ordinary least square with two weights: total number of
employees and real gross output, respectively. Regressions (3) and (4) consider heteroskedasticity over industries
based on the fixed effect regression, while regressions (5) and (6) are based on the fixed effect regressions with a
correlated error structure. Regression (1) to regression (6) are also estimated by two weights: total number of
employees and real gross output. The upper panel entitled ‘I. Time dummy’ shows the first empirical estimation
results with only a time dummy and the lower panel entitled ‘II. Time and Computerization’ presents the second
empirical estimation results with time and computerization dummies.

for low-skilled workers due to computerization in the post-1995 period is on average 0.2456

with a range from 0.2296 to 0.2546 and the wage bill share’s change for low-skilled workers

is on average 0.2218 with a range from 0.2089 to 0.2273.

These estimation results from Tables 3.3 to 3.8 imply that computerized industries
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Table 3.7: Changes of Employment Share for Low-Skilled Workers in the Post-1995 Period

Dependent variable: Demand Shifts for Low-Skilled Workers

Variables
(1) (2) (3) (4) (5) (6)

I. Time Dummy
Post-1995 Dummy 0.6660∗∗∗ 0.6931∗∗∗ 0.6397∗∗∗ 0.6701∗∗∗ 0.6660∗∗∗ 0.6931∗∗∗

(0.055) (0.063) (0.057) (0.064) (0.149) (0.147)
Intercept −0.7536∗∗∗ −0.7843∗∗∗ −0.7445∗∗∗ −0.7752∗∗∗ −0.7536∗∗∗ −0.7843∗∗∗

(0.033) (0.040) (0.020) (0.025) (0.088) (0.094)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.1250 0.1062 0.1650 0.1358 0.1227 0.1037
Observations 1015 1015 1015 1015 1015 1015

II. Time and Computerization

Post-1995 Dummy 0.5840∗∗∗ 0.5920∗∗∗ 0.5619∗∗∗ 0.5727∗∗∗ 0.5840∗∗∗ 0.5920∗∗∗

(0.068) (0.081) (0.049) (0.050) (0.140) (0.137)
Computerization Intensity −0.1588∗∗ −0.1962∗∗ −0.1588∗ −0.1962∗

(0.069) (0.081) (0.096) (0.111)
Post-1995*Computerization 0.2442∗∗ 0.2546∗∗ 0.2296 0.2462∗ 0.2442 0.2546

(0.117) (0.129) (0.144) (0.140) (0.159) (0.175)
Intercept −0.7013∗∗∗ −0.7058∗∗∗ −0.7452∗∗∗ −0.7745∗∗∗ −0.7013∗∗∗ −0.7058∗∗∗

(0.040) (0.051) (0.020) (0.023) (0.083) (0.088)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.1303 0.1116 0.1683 0.1389 0.1280 0.1092
Observations 1015 1015 1015 1015 1015 1015

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Regressions (1) and (2) are estimated by ordinary least square with two weights: total number of
employees and real gross output, respectively. Regressions (3) and (4) consider heteroskedasticity over industries
based on the fixed effect regression, while regressions (5) and (6) are based on the fixed effect regressions with a
correlated error structure. Regression (1) to regression (6) are also estimated by two weights: total number of
employees and real gross output. The upper panel entitled ‘I. Time dummy’ shows the first empirical estimation
results with only a time dummy and the lower panel entitled ‘II. Time and Computerization’ presents the second
empirical estimation results with time and computerization dummies.

experienced increasing demands for high-skilled workers and for low-skilled workers and

decreasing demand for middle-skilled workers relative to other less computerized industries

in the post-1995 period. It supports the implications from the combined theoretical frame-

work that due to cheaper computerization costs, middle-skilled workers are displaced from
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Table 3.8: Changes of Wage Bill Share for Low-Skilled Workers in the Post-1995 Period

Dependent variable: Demand Shifts for Low-Skilled Workers

Variables
(1) (2) (3) (4) (5) (6)

I. Time Dummy
Post-1995 Dummy 0.5549∗∗∗ 0.5892∗∗∗ 0.5245∗∗∗ 0.5628∗∗∗ 0.5549∗∗∗ 0.5892∗∗∗

(0.059) (0.066) (0.057) (0.059) (0.139) (0.141)
Intercept −0.6601∗∗∗ −0.7088∗∗∗ −0.6496∗∗∗ −0.6984∗∗∗ −0.6601∗∗∗ −0.7088∗∗∗

(0.034) (0.041) (0.020) (0.023) (0.083) (0.090)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0812 0.0739 0.1381 0.1186 0.0794 0.0717
Observations 1015 1015 1015 1015 1015 1015

II. Time and Computerization

Post-1995 Dummy 0.4806∗∗∗ 0.4994∗∗∗ 0.4497∗∗∗ 0.4802∗∗∗ 0.4806∗∗∗ 0.4994∗∗∗

(0.072) (0.084) (0.051) (0.053) (0.117) (0.112)
Computerization Intensity −0.2542∗∗∗ −0.2684∗∗∗ −0.2542∗∗ −0.2684∗∗

(0.073) (0.084) (0.100) (0.114)
Post-1995*Computerization 0.2273∗ 0.2232∗ 0.2209∗ 0.2089∗ 0.2273 0.2232

(0.123) (0.134) (0.121) (0.118) (0.164) (0.179)
Intercept −0.5764∗∗∗ −0.6014∗∗∗ −0.6502∗∗∗ −0.6977∗∗∗ −0.5764∗∗∗ −0.6014∗∗∗

(0.042) (0.053) (0.017) (0.020) (0.069) (0.072)
Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Fixed Effect yes yes yes yes
Heteroskedastic yes yes
Correlated yes yes
R-squared 0.0921 0.0834 0.1410 0.1208 0.0903 0.0813
Observations 1015 1015 1015 1015 1015 1015

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant
at 1% level. Regressions (1) and (2) are estimated by ordinary least square with two weights: total number of
employees and real gross output, respectively. Regressions (3) and (4) consider heteroskedasticity over industries
based on the fixed effect regression, while regressions (5) and (6) are based on the fixed effect regressions with a
correlated error structure. Regression (1) to regression (6) are also estimated by two weights: total number of
employees and real gross output. The upper panel entitled ‘I. Time dummy’ shows the first empirical estimation
results with only a time dummy and the lower panel entitled ‘II. Time and Computerization’ presents the second
empirical estimation results with time and computerization dummies.

routine tasks by computerized assets, and demand shifts for high-skilled workers and for

low-skilled workers, measured by changes in employment share and in wage bill share, have

increased due to increasing movements of middle-skilled workers from routine tasks toward

nonroutine cognitive tasks and nonroutine manual tasks.
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3.3.3 Share Equation Estimates for Three Types of Skilled Workers

This section tries to show how demand for different skill-types of workers changes

due to increasing computerization using share equation estimates, derived from translog

cost function for high-skilled workers, middle-skilled workers, and low-skilled workers. It

is based on skill upgrading literature within industry, which shows variations of nonpro-

duction workers’ share within-industry in the manufacturing industries due to labor-saving

technological change, capital-skill complementarity hypothesis, or skill-biased technological

change (Berman, Bound, Griliches, 1994; Goldin and Katz, 1996; Machine and Van Reenen,

1998).

Following Goldin and Katz (1996), the empirical specification for demand shifts for

three types of skilled workers can be written as

dSit = β0 + β1d ln Cit + β2d ln(RelWage)it + εit (3.26)

where i is an indicator of industry with i = 1, 2, . . . , 29; dSit represents a change of each

skill-type of workers’ employment share or wage bill share; Cit indicates computerization

intensity in the industry i at time t, which is calculated by two measurements: (i) computer-

related capital stocks divided by total number of employees and (ii) computer-based capital

stocks divided by real gross output. The relative wage term, (RelWage)it, can be used

for this empirical model, but it will be dropped since this term is likely to be endogenous.

Instead, Yit, which is real gross output of industry i at time t, is included. Thus, the

empirical model for share equation estimates can be defined as

dSit = β0 + β1d ln Cit + β2d ln Yit + εit (3.27)

Tables 3.9 to 3.14 present six estimation results for computerization impacts on

the changes of each skilled worker’s shares in total employment and total wages. As mea-

surements of computerization, computer-related assets such as computing equipment, soft-
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Table 3.9: Computerization Impact on Demand Shifts Measured by Employment Share for High-Skilled Workers: 1970-2005

Fixed-Effect Regression Fixed-Effect Regression with Weights

Variables
70-80 80-95 95-05 70-80 70-80 80-95 80-95 95-05 95-05

I. Total Number of Employment

Computerization Intensity 0.2116 0.7753∗∗ 0.3658 0.3400 0.2990 1.0045 0.7534 −1.1926 0.2501
(0.236) (0.337) (1.685) (0.289) (0.314) (0.596) (0.455) (1.592) (2.448)

Real Gross Output −3.5641∗∗∗ 1.3953 −2.5478 −4.2959∗∗∗ −4.3326∗∗∗ −1.3127 −0.0776 −1.6505 −3.3600
(0.914) (1.257) (2.725) (0.998) (1.092) (1.542) (1.491) (2.939) (2.074)

Intercept 0.7884∗∗∗ 0.6845∗∗∗ 0.7947∗∗∗ 0.7583∗∗∗ 0.5833∗∗∗ 0.0978 0.5300∗ 0.8610∗∗∗ 0.8038∗∗

(0.174) (0.188) (0.250) (0.098) (0.134) (0.283) (0.291) (0.277) (0.349)
R-squared 0.1727 0.1175 0.0527 0.2815 0.2275 0.2434 0.2041 0.1784 0.1289
Observations 290 464 319 290 290 464 464 319 319

II. Real Gross Output

Computerization Intensity 0.2604 0.7120∗ 0.3300 0.1468 0.2047 0.7876 0.5986 −1.8970 0.0247
(0.258) (0.394) (1.888) (0.343) (0.368) (0.545) (0.427) (1.720) (2.490)

Real Gross Output −3.3774∗∗∗ 1.8085 −2.3173 −4.2780∗∗∗ −4.2389∗∗∗ −0.9303 0.2369 −2.6488 −3.3096
(0.934) (1.275) (2.926) (0.999) (1.117) (1.565) (1.493) (3.164) (2.497)

Intercept 0.7819∗∗∗ 0.7011∗∗∗ 0.7979∗∗∗ 0.7767∗∗∗ 0.5965∗∗∗ 0.1337 0.5560∗ 0.9536∗∗∗ 0.8304∗∗

(0.176) (0.204) (0.261) (0.100) (0.126) (0.284) (0.295) (0.272) (0.350)
R-squared 0.1731 0.1171 0.0527 0.2798 0.2268 0.2419 0.2032 0.1818 0.1288
Observations 290 464 319 290 290 464 464 319 319

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Industry Dummies yes yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes yes

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Computerization assets are
measured by real fixed capital stocks at 2005 prices from the EU KLEMS Growth and Productivity Accounts from 1970 to 2005. The two computerization
intensity variables are measured by (i) computerization divided by total number of employees for computerization-employment intensity in the upper
panel and (ii) computerization divided by real gross output for computerization-output intensity in the bottom panel. Specification I in the upper panel
uses computerization-employment intensity and specification II in the bottom panel uses computerization-output intensity. Based on three different time
periods; 1970-1980, 1980-1995, and 1995-2005, all estimations used two-way fixed effect regressions without weights and with two weights of total number
of employees and real gross output.
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Table 3.10: Computerization Impact on Demand Shifts Measured by Wage Bill Share for High-Skilled Workers: 1970-2005

Fixed-Effect Regression Fixed-Effect Regression with Weights

Variables
70-80 80-95 95-05 70-80 70-80 80-95 80-95 95-05 95-05

I. Total Number of Employment

Computerization Intensity 0.9609∗∗ 0.9410 −0.4965 0.8669 1.3933∗∗ 0.6562 0.3686 −0.2740 0.7297
(0.396) (0.695) (2.631) (0.584) (0.554) (0.590) (0.577) (1.714) (3.559)

Real Gross Output −4.8733∗∗∗ −0.4608 2.2349 −6.0802∗∗∗ −5.7643∗∗∗ −4.8267∗∗ −3.6437 3.0574 1.8200
(1.546) (2.193) (3.838) (1.575) (2.001) (2.157) (2.234) (3.749) (3.911)

Intercept 0.9000∗∗∗ 0.7686∗∗ 0.5473 0.6405∗∗∗ 0.7012∗∗ −0.0378 0.6137 0.5328 0.2702
(0.269) (0.300) (0.475) (0.144) (0.279) (0.372) (0.423) (0.398) (0.624)

R-squared 0.2517 0.1346 0.0893 0.3257 0.2939 0.2878 0.2402 0.1125 0.1002
Observations 290 464 319 290 290 464 464 319 319

II. Real Gross Output

Computerization Intensity 1.1523∗∗ 1.1268 0.0743 0.6269 1.2661∗∗ 0.4114 0.3993 −1.9970 0.5970
(0.447) (0.885) (2.919) (0.654) (0.594) (0.573) (0.650) (1.981) (3.693)

Real Gross Output −4.0544∗∗ 0.3019 2.2613 −5.7774∗∗∗ −5.0102∗∗ −4.6853∗∗ −3.3764 2.1994 2.2438
(1.553) (2.385) (3.396) (1.514) (1.996) (2.216) (2.342) (3.676) (2.814)

Intercept 0.8730∗∗∗ 0.7205∗∗ 0.4722 0.6616∗∗∗ 0.7316∗∗ 0.0082 0.6038 0.7353∗ 0.2830
(0.268) (0.302) (0.495) (0.152) (0.267) (0.359) (0.408) (0.374) (0.622)

R-squared 0.2540 0.1357 0.0892 0.3233 0.2917 0.2873 0.2403 0.1147 0.1001
Observations 290 464 319 290 290 464 464 319 319

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Industry Dummies yes yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes yes

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Computerization assets are
measured by real fixed capital stocks at 2005 prices from the EU KLEMS Growth and Productivity Accounts from 1970 to 2005. The two computerization
intensity variables are measured by (i) computerization divided by total number of employees for computerization-employment intensity in the upper
panel and (ii) computerization divided by real gross output for computerization-output intensity in the bottom panel. Specification I in the upper panel
uses computerization-employment intensity and specification II in the bottom panel uses computerization-output intensity. Based on three different time
periods; 1970-1980, 1980-1995, and 1995-2005, all estimations used two-way fixed effect regressions without weights and with two weights of total number
of employees and real gross output.
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ware, and communication equipment are divided by total number of employees and real

gross output for each industry. The estimation results for each computerization intensity,

computerization-employment intensity and computerization-output intensity, are presented

in the top panel and bottom panel, respectively. In addition, to investigate demand shifts

for three types of skilled workers over the period from 1970 to 2005 due to increasing com-

puterization, the entire period was divided into three sub-periods; the period from 1970 to

1980, the period from 1980 to 1995, and the period from 1995 to 2005.

For high-skilled workers, the estimation results from the first period (1970 to 1980)

and the second period (1980 to 1995) in Table 3.9 and Table 3.10 show that computerization

intensity has a positive effect on demand for high-skilled workers measured by employment

share and wage bill share. However, in the period from 1995 to 2005, both computerization

intensities of fixed effect regressions with weights and without weights show mixed effects

on the demand shifts for high-skilled workers. From fixed effect regression without weights,

computerization intensity has a positive impact on employment share for high-skilled work-

ers but mixed effects on wage bill share for high-skilled workers. In addition, regressions

weighted by total number of employees show that computerization intensity has a negative

effect on employment share and on wage bill share, while computerization increases the de-

mand shifts for high-skilled workers based on the estimation results with real gross output

weight in Table 3.9 and Table 3.10.

Second, estimation results for middle-skilled workers in Tables 3.11 and 3.12 present

mixed effects of computerization on changes in employment share and wage bill share for

middle-skilled workers depending on the time period. In the period from 1970 to 1980, all

regressions exhibit a mixed effect of computerization on the demand shift for middle-skilled

workers. For demand shifts measured by the employment share, computerization shows a

mixed impact but a negative impact on wage bill share for middle-skilled workers in the

1970s. In the period from 1980 to 1995, both computerization intensities have a negative

impact on employment share for middle-skilled workers, but they show positive effects on

demand shifts measured by wage bill share for middle-skilled workers. The fixed-effect
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Table 3.11: Computerization Impact on Demand Shifts Measured by Employment Share for Middle-Skilled Workers: 1970-2005

Fixed-Effect Regression Fixed-Effect Regression with Weights

Variables
70-80 80-95 95-05 70-80 70-80 80-95 80-95 95-05 95-05

I. Total Number of Employment

Computerization Intensity 0.0289 −0.3274 −0.8851 −0.0763 0.0919 −0.6858 −0.8114∗∗ 0.6716 −2.0445
(0.397) (0.432) (2.090) (0.405) (0.426) (0.423) (0.377) (1.761) (2.987)

Real Gross Output 2.9205∗∗ −0.0705 3.4994 3.6028∗∗∗ 2.9265∗ 1.5301 −0.4275 3.1427 3.9118∗

(1.105) (1.350) (2.915) (1.123) (1.531) (1.065) (1.372) (3.404) (2.245)
Intercept 0.0665 1.0163∗∗∗ −0.7623∗∗ 0.3149∗∗∗ 1.0445∗∗∗ 1.1978∗∗∗ 0.9369∗∗∗ −0.9850∗∗∗ −0.7882∗

(0.235) (0.231) (0.343) (0.105) (0.359) (0.194) (0.249) (0.278) (0.398)
R-squared 0.0659 0.1000 0.0969 0.2860 0.2375 0.2643 0.2141 0.1372 0.1373
Observations 290 464 319 290 290 464 464 319 319

II. Real Gross Output

Computerization Intensity −0.0440 −0.2640 −1.4306 0.0911 0.0591 −0.6041 −0.6853∗∗ 1.1557 −1.6908
(0.404) (0.407) (2.103) (0.464) (0.571) (0.400) (0.327) (1.721) (2.806)

Real Gross Output 2.8692∗∗ −0.2085 2.5310 3.7250∗∗∗ 2.9513∗ 1.1992 −0.8095 3.7401 2.7146
(1.140) (1.371) (2.941) (1.332) (1.666) (1.050) (1.340) (3.337) (2.585)

Intercept 0.0726 0.9998∗∗∗ −0.6844∗ 0.2981∗∗∗ 1.0489∗∗∗ 1.1879∗∗∗ 0.9175∗∗∗ −1.0474∗∗∗ −0.8217∗∗

(0.234) (0.236) (0.359) (0.107) (0.366) (0.200) (0.259) (0.261) (0.374)
R-squared 0.0660 0.0999 0.0982 0.2860 0.2375 0.2640 0.2135 0.1383 0.1363
Observations 290 464 319 290 290 464 464 319 319

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Industry Dummies yes yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes yes

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Computerization assets are
measured by real fixed capital stocks at 2005 prices from the EU KLEMS Growth and Productivity Accounts from 1970 to 2005. The two computerization
intensity variables are measured by (i) computerization divided by total number of employees for computerization-employment intensity in the upper
panel and (ii) computerization divided by real gross output for computerization-output intensity in the bottom panel. Specification I in the upper panel
uses computerization-employment intensity and specification II in the bottom panel uses computerization-output intensity. Based on three different time
periods; 1970-1980, 1980-1995, and 1995-2005, all estimations used two-way fixed effect regressions without weights and with two weights of total number
of employees and real gross output.
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Table 3.12: Computerization Impact on Demand Shifts Measured by Wage Bill Share for Middle-Skilled Workers: 1970-2005

Fixed-Effect Regression Fixed-Effect Regression with Weights

Variables
70-80 80-95 95-05 70-80 70-80 80-95 80-95 95-05 95-05

I. Total Number of Employment

Computerization Intensity −0.4264 0.1319 −0.2628 −0.5691 −0.8974 0.1271 0.0478 −0.2612 −2.3493
(0.472) (0.560) (2.954) (0.440) (0.550) (0.481) (0.443) (1.730) (3.972)

Real Gross Output 2.7023∗ 1.9504 −2.6848 2.6368 2.5659 4.7214∗∗∗ 2.7286 −2.4175 −1.9126
(1.470) (1.572) (4.133) (1.986) (2.024) (1.661) (1.680) (4.051) (4.156)

Intercept 0.0476 1.0359∗∗∗ −0.4138 0.2997∗∗∗ 0.6762 1.2526∗∗∗ 0.9392∗∗∗ −0.5294 −0.1115
(0.299) (0.272) (0.547) (0.100) (0.403) (0.277) (0.310) (0.378) (0.666)

R-squared 0.0962 0.1079 0.0697 0.2496 0.2236 0.2464 0.1886 0.0994 0.1083
Observations 290 464 319 290 290 464 464 319 319

II. Real Gross Output

Computerization Intensity −0.5357 0.0519 −1.5965 −0.2971 −0.9524 0.1480 0.0086 1.0420 −2.3051
(0.463) (0.555) (3.023) (0.515) (0.707) (0.434) (0.412) (1.961) (3.941)

Real Gross Output 2.3155 1.9519 −3.7335 2.5545 1.9407 4.8206∗∗∗ 2.7172∗ −2.0493 −3.4793
(1.469) (1.530) (3.569) (2.080) (2.180) (1.570) (1.567) (3.898) (3.014)

Intercept 0.0617 1.0567∗∗∗ −0.2320 0.2742∗∗ 0.6702 1.2466∗∗∗ 0.9471∗∗∗ −0.6783∗ −0.1052
(0.295) (0.270) (0.549) (0.104) (0.415) (0.276) (0.309) (0.354) (0.648)

R-squared 0.0967 0.1079 0.0710 0.2485 0.2239 0.2464 0.1886 0.1000 0.1086
Observations 290 464 319 290 290 464 464 319 319

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Industry Dummies yes yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes yes

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Computerization assets are
measured by real fixed capital stocks at 2005 prices from the EU KLEMS Growth and Productivity Accounts from 1970 to 2005. The two computerization
intensity variables are measured by (i) computerization divided by total number of employees for computerization-employment intensity in the upper
panel and (ii) computerization divided by real gross output for computerization-output intensity in the bottom panel. Specification I in the upper panel
uses computerization-employment intensity and specification II in the bottom panel uses computerization-output intensity. Based on three different time
periods; 1970-1980, 1980-1995, and 1995-2005, all estimations used two-way fixed effect regressions without weights and with two weights of total number
of employees and real gross output.
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regressions without weight and with real gross weight indicate that both computerization-

employment intensity and computerization-output intensity have a negative impact on de-

mand shifts for middle-skilled workers in the period from 1995 to 2005.

Table 3.13 and Table 3.14, third, show computerization impact on demand shifts

for low-skilled workers for which these shifts are measured by employment share changes

and wage bill changes in three different time periods; 1970-1980, 1980-1995, and 1995-

2005. For the first period (1970 to 1980), all estimation results from fixed effect regressions

without weights and with weights show a positive impact of computerization intensity on

employment share change and wage bill share change for low-skilled workers. Even though

the period from 1980 to 1995 presents a mixed effect on demand shifts for low-skilled

workers - a positive effect on the employment share for low-skilled workers only in the

fixed regression weighted by the real gross output -, the other estimation results support

the negative impact of computerization on the demand shifts for low-skilled workers. By

contrast, in the post-1995 period, the estimation results show that both computerization

intensities have a positive effect on employment share change and wage bill share change

for low-skilled workers.

In the share equation estimates seen in Tables 3.9 to 3.14, computerization impacts

on demands shifts from high-skilled workers and middle-skilled workers do not show clear

trends of increasing demand for high-skilled workers and decreasing demand for middle-

skilled workers. However, computerization effects on the demand shifts for low-skilled

workers clearly present that in the prior to 1995 period computerization growth decreased

employment share and wage bill share for low-skilled workers, but after 1995 increasing

computerization raised the demand shift for low-skilled workers, measured by employment

share change and wage bill share change.

The regression results focusing on low-skilled workers provide empirical evidence

supporting the comparative statics from the theoretical framework. Cheaper computeriza-

tion costs and increasing relative wages of nonroutine tasks (nonroutine cognitive tasks and

nonroutine manual tasks) led marginal workers from both edges, above-average and below-

104



Table 3.13: Computerization Impact on Demand Shifts Measured by Employment Share for Low-Skilled Workers: 1970-2005

Fixed-Effect Regression Fixed-Effect Regression with Weights

Variables
70-80 80-95 95-05 70-80 70-80 80-95 80-95 95-05 95-05

I. Total Number of Employment

Computerization Intensity −0.2404 −0.4479 0.5194 −0.2637 −0.3909 −0.3187 0.0580 0.5210 1.7944∗∗

(0.378) (0.406) (0.788) (0.525) (0.410) (0.477) (0.288) (0.712) (0.862)
Real Gross Output 0.6436 −1.3248 −0.9516 0.6932 1.4061 −0.2174 0.5051 −1.4922 −0.5517

(1.094) (1.104) (1.514) (0.859) (1.272) (1.043) (1.100) (1.567) (1.288)
Intercept −0.8549∗∗∗ −1.7008∗∗∗ −0.0325 −1.0732∗∗∗ −1.6278∗∗∗ −1.2956∗∗∗ −1.4669∗∗∗ 0.1241 −0.0156

(0.219) (0.194) (0.220) (0.134) (0.351) (0.196) (0.152) (0.123) (0.151)
R-squared 0.0970 0.1535 0.1788 0.3325 0.2401 0.2762 0.2090 0.1468 0.1453
Observations 290 464 319 290 290 464 464 319 319

II. Real Gross Output

Computerization Intensity −0.2164 −0.4480 1.1006∗∗ −0.2379 −0.2638 −0.1835 0.0867 0.7413 1.6660∗∗

(0.341) (0.420) (0.535) (0.546) (0.474) (0.482) (0.334) (0.628) (0.625)
Real Gross Output 0.5081 −1.6000 −0.2137 0.5530 1.2876 −0.2689 0.5726 −1.0913 0.5950

(1.127) (1.248) (1.614) (1.011) (1.323) (1.199) (1.218) (1.563) (1.517)
Intercept −0.8545∗∗∗ −1.7009∗∗∗ −0.1135 −1.0748∗∗∗ −1.6454∗∗∗ −1.3216∗∗∗ −1.4735∗∗∗ 0.0937 −0.0087

(0.217) (0.209) (0.220) (0.133) (0.359) (0.203) (0.165) (0.119) (0.142)
R-squared 0.0968 0.1535 0.1808 0.3323 0.2395 0.2757 0.2090 0.1478 0.1452
Observations 290 464 319 290 290 464 464 319 319

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Industry Dummies yes yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes yes

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Computerization assets are
measured by real fixed capital stocks at 2005 prices from the EU KLEMS Growth and Productivity Accounts from 1970 to 2005. The two computerization
intensity variables are measured by (i) computerization divided by total number of employees for computerization-employment intensity in the upper
panel and (ii) computerization divided by real gross output for computerization-output intensity in the bottom panel. Specification I in the upper panel
uses computerization-employment intensity and specification II in the bottom panel uses computerization-output intensity. Based on three different time
periods; 1970-1980, 1980-1995, and 1995-2005, all estimations used two-way fixed effect regressions without weights and with two weights of total number
of employees and real gross output.
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Table 3.14: Computerization Impact on Demand Shifts Measured by Wage Bill Share for Low-Skilled Workers: 1970-2005

Fixed-Effect Regression Fixed-Effect Regression with Weights

Variables
70-80 80-95 95-05 70-80 70-80 80-95 80-95 95-05 95-05

I. Total Number of Employment

Computerization Intensity −0.5345 −1.0728∗ 0.7593 −0.2978 −0.4960 −0.7832 −0.4164 0.5352 1.6197∗∗

(0.433) (0.555) (0.613) (0.622) (0.479) (0.510) (0.449) (0.707) (0.716)
Real Gross Output 2.1710∗ −1.4896 0.4499 3.4434∗∗∗ 3.1984∗∗ 0.1053 0.9151 −0.6399 0.0927

(1.167) (1.431) (1.338) (1.170) (1.214) (1.299) (1.402) (1.435) (1.045)
Intercept −0.9476∗∗∗ −1.8045∗∗∗ −0.1335 −0.9402∗∗∗ −1.3774∗∗∗ −1.2148∗∗∗ −1.5529∗∗∗ −0.0034 −0.1588

(0.193) (0.227) (0.181) (0.157) (0.336) (0.218) (0.200) (0.101) (0.120)
R-squared 0.1500 0.2146 0.1323 0.3406 0.2839 0.2742 0.2376 0.1359 0.1295
Observations 290 464 319 290 290 464 464 319 319

II. Real Gross Output

Computerization Intensity −0.6167 −1.1787 1.5222∗∗∗ −0.3298 −0.3137 −0.5593 −0.4079 0.9551∗ 1.7081∗∗∗

(0.431) (0.744) (0.384) (0.608) (0.576) (0.536) (0.536) (0.559) (0.493)
Real Gross Output 1.7389 −2.2538 1.4723 3.2228∗∗ 3.0695∗∗ −0.1353 0.6592 −0.1501 1.2355

(1.209) (1.701) (1.373) (1.339) (1.297) (1.497) (1.636) (1.332) (1.190)
Intercept −0.9347∗∗∗ −1.7772∗∗∗ −0.2403 −0.9359∗∗∗ −1.4018∗∗∗ −1.2548∗∗∗ −1.5509∗∗∗ −0.0570 −0.1778∗

(0.186) (0.215) (0.162) (0.155) (0.345) (0.215) (0.193) (0.090) (0.098)
R-squared 0.1505 0.2158 0.1358 0.3407 0.2830 0.2724 0.2376 0.1379 0.1318
Observations 290 464 319 290 290 464 464 319 319

Weight by Employment yes yes yes
Weight by Real Gross Output yes yes yes
Industry Dummies yes yes yes yes yes yes yes yes yes
Year Dummies yes yes yes yes yes yes yes yes yes

Standard errors in parentheses; and * significant at 10% level, ** significant at 5% level, and *** significant at 1% level. Computerization for information
and communication technology is measured by real fixed capital stocks at 2005 prices from the EU KLEMS Growth and Productivity Accounts
from 1970 to 2005. The two computerization intensity variables are measured by (i) computerization divided by the total number of employees for
computerization-employment intensity in the upper panel and (ii) computerization divided by the real gross output for computerization-output intensity
in the bottom panel. Specification I in the upper panel uses computerization-employment intensity, and specification II in the bottom panel uses
computerization-output intensity. Based on three different time periods; 1970-1980, 1980-1995, and 1995-2005, all estimations used two-way fixed effect
regressions without weights and with the two weights of the total number of employees and the real gross output.
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average, in the routine tasks (routine cognitive tasks and routine manual tasks) to move

toward nonroutine cognitive tasks and nonroutine manual tasks. In addition, the decreasing

price of computerization assets increases relative demand for production inputs of routine

tasks to nonroutine tasks, so cheaper computerization assets replace middle-skilled workers

for routine tasks. Therefore, strong investments in computer-based technology across indus-

tries in the late 1990s led to increased productivity growth across industries; employment

polarization with increasing demand shifts for high-skilled workers and low-skilled workers

and decreasing demand shifts for middle-skilled workers; and diverged evolutions of wage

inequalities between top-half wage distribution and bottom-half wage distribution in U.S.

labor market.

3.4 Concluding Remarks

In the late 1990s, a strong increase in U.S. productivity and divergent wage inequal-

ities emerged between upper-tail wage distribution and lower-tail wage distribution across

industries. For the U.S. productivity revival, Stiroh (2002) shows that strong investments

in computer-related assets brought sharp increases in productivity growth over industries in

the late 1990s. Also, associated with two phenomena in the U.S. labor market - polarization

trends in employment and wage structure - Autor, Katz, and Kearney (2006) argue that

heterogeneous demand shifts for different skill-types of workers, due to the decreasing price

of computer-related capital, are key factors in the new wage structure such as a secular rise

in top-half wage inequality and compression in bottom-half wage inequality over the total

economy during the last 15 years.

This paper documents, first, the stylized facts of polarization trends in employment,

based on growth rates of employment shares for three different types of skilled workers

across industries, and divergent wage evolution between the top-half and the bottom-half

wage distribution by industry level. Then, to discover the mechanism beneath these labor

market observations, combined theoretical framework, which is built on the theoretical
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frameworks in Autor, Katz, and Kearney (2006) and Autor, Levy and Murnane (2003),

shows how rapid adoptions of computerization affect the demand shifts for three different

skill-types of workers and how these demand shifts are accompanied by wage polarization

trends in the wage differentials of upper-tail and lower-tail wage distribution.

Based on the integrated theoretical framework, empirical analysis in this paper

provides the empirical evidence that strong investment in computer-related technology is a

driving force for large increases in productivity growth and employment polarization pattern

with divergent wage inequality in the U.S. labor market. That is, as predicted in the

theoretical framework, due to increasing computerization, middle-skilled workers have been

replaced from routine tasks, so that two measurements of demand shifts, employment share

and wage bill share, of high-skilled workers for nonroutine cognitive tasks and of low-skilled

workers for nonroutine manual tasks have increased, while demand shifts for middle-skilled

workers have decreased. These heterogeneous demand changes for different types of skilled

workers explain the polarization patterns in employment and in wage inequality: increasing

wage inequality in the upper-tail wage distribution and decreasing wage inequality in the

lower-tail wage distribution in the U.S. labor market.
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3.5 Appendix
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Figure 3.17: Annual Growth Rates of Employment Share among Three Types of Workers I
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Figure 3.18: Annual Growth Rates of Employment Share among Three Types of Workers II
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Figure 3.19: Annual Growth Rates of Employment Share among Three Types of Workers III
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Figure 3.20: Annual Growth Rates of Employment Share among Three Types of Workers IV
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Industry: Electronic Machinery to Motor Vehicle Sales (1970−2005)

Figure 3.24: Trends in Information and Communication Technology and Wage Differentials III
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Figure 3.25: Trends in Information and Communication Technology and Wage Differentials IV
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Figure 3.26: Trends in Information and Communication Technology and Wage Differentials V
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Table 3.15: Labor Productivity Growth Rates and Differences Focusing on Period Prior to 1995 and Post-1995 Period at Industry Level

Annualized Growth Rates Differences

Industry
1970-1995 1995-2000 2000-2005 1995-2005 1970-2000† 1970-2005‡

Agriculture, Hunting, Forestry, and Fishing 0.0112 0.0044 0.0254 0.0149 −0.0067 0.0038
Mining and Quarrying 0.0023 0.0280 −0.0088 0.0096 0.0258 0.0074
Food, Beverages and Tobacco 0.0230 0.0152 0.0185 0.0168 −0.0078 −0.0061
Textiles, Textile, Leather and Footwear 0.0304 0.0533 0.0180 0.0357 0.0230 0.0053
Wood and of Wood and Cork 0.0174 −0.0086 0.0109 0.0012 −0.0260 −0.0163
Pulp, Paper, Printing and Publishing 0.0132 0.0181 0.0197 0.0189 0.0049 0.0057
Coke, Refined Petroleum and Nuclear Fuel 0.0239 0.0403 0.0133 0.0268 0.0164 0.0029
Chemicals and Chemical Products 0.0208 0.0220 0.0228 0.0224 0.0012 0.0016
Rubber and Plastics 0.0265 0.0271 0.0290 0.0281 0.0005 0.0015
Other Non-Metallic Mineral 0.0166 0.0411 0.0231 0.0321 0.0245 0.0156
Basic Metals and Fabricated Metal 0.0157 0.0352 0.0226 0.0289 0.0195 0.0132
Machinery, Nec 0.0162 0.0349 0.0508 0.0428 0.0187 0.0267
Electrical and Optical Equipment 0.0755 0.1593 0.0627 0.1110 0.0838 0.0355
Transport Equipment 0.0254 0.0530 0.0375 0.0452 0.0276 0.0198
Manufacturing, Nec and Recycling 0.0190 0.0432 0.0464 0.0448 0.0242 0.0258
Electricity, Gas and Water Supply 0.0029 0.0332 −0.0003 0.0164 0.0303 0.0135
Construction −0.0059 −0.0079 0.0017 −0.0031 −0.0020 0.0028
Sales and Maintenance of Motor Vehicles and Motorcycles 0.0178 0.0328 0.0337 0.0332 0.0151 0.0155
Wholesale Trade and Commission Trade 0.0289 0.0228 0.0244 0.0236 −0.0061 −0.0053
Retail Trade, except of Motor Vehicles and Motorcycles 0.0028 0.0282 0.0436 0.0359 0.0254 0.0331
Transport and Storage 0.0138 −0.0016 0.0219 0.0101 −0.0154 −0.0036
Post and Communication 0.0441 0.0156 0.0911 0.0534 −0.0284 0.0093
Financial Intermediation 0.0264 0.0558 0.0118 0.0338 0.0294 0.0074
Real Estate Activities 0.0064 0.0045 0.0214 0.0130 −0.0019 0.0065
Renting and Other Business Activities −0.0171 0.0080 0.0257 0.0168 0.0251 0.0339
Community Social and Personal Services 0.0054 0.0069 0.0046 0.0057 0.0014 0.0003
Public Administration, Defense, Compulsory Social Security 0.0093 0.0078 −0.0034 0.0022 −0.0015 −0.0071
Education 0.0039 0.0026 0.0026 0.0026 −0.0013 −0.0013
Health and Social Work −0.0052 0.0121 0.0160 0.0140 0.0173 0.0192
Mean 0.0162 0.0272 0.0237 0.0254 0.0109 0.0092
Median 0.0162 0.0228 0.0219 0.0224 0.0151 0.0065
Standard Deviation 0.0171 0.0312 0.0209 0.0220 0.0217 0.0130

Labor productivity is defined as real gross output divided by the total numbers of employees from 1970 to 2005 using data from EU KLEMS Growth
and Productivity Accounts. †Differences for 1970-2000 are calculated using the annualized growth rate for 1995-2000 minus the growth rate for
1970-1995. ‡Similarly, differences for 1970-2005 are measured by the growth rate for 1995-2005 minus the growth rate for 1970-1995.
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Table 3.16: Growth Rates of Computerization and Differences Focusing on Period Prior to 1995 and Post-1995 Period at Industry Level

Annualized Growth Rates Differences

Industry
1970-1995 1995-2000 2000-2005 1995-2005 1970-2000† 1970-2005‡

Agriculture, Hunting, Forestry, and Fishing 0.2214 0.1665 0.1503 0.1584 −0.0549 −0.0630
Mining and Quarrying 0.1808 0.1223 0.1407 0.1315 −0.0585 −0.0493
Food, Beverages and Tobacco 0.1394 0.1734 0.0996 0.1365 0.0340 −0.0029
Textiles, Textile, Leather and Footwear 0.1445 0.1464 0.0331 0.0897 0.0019 −0.0548
Wood and of Wood and Cork 0.1587 0.1271 0.0970 0.1121 −0.0316 −0.0467
Pulp, Paper, Printing and Publishing 0.1500 0.1906 0.0482 0.1194 0.0406 −0.0306
Coke, Refined Petroleum and Nuclear Fuel 0.1050 0.0987 0.2228 0.1608 −0.0063 0.0558
Chemicals and Chemical Products 0.1782 0.1678 0.0758 0.1218 −0.0103 −0.0564
Rubber and Plastics 0.1469 0.2006 0.0802 0.1404 0.0537 −0.0065
Other Non-Metallic Mineral 0.1455 0.2139 0.0626 0.1383 0.0684 −0.0072
Basic Metals and Fabricated Metal 0.1263 0.1478 0.0637 0.1057 0.0216 −0.0205
Machinery, Nec 0.1359 0.2410 0.0439 0.1424 0.1050 0.0065
Electrical and Optical Equipment 0.1260 0.1922 −0.0103 0.0909 0.0662 −0.0350
Transport Equipment 0.1576 0.1555 0.0542 0.1048 −0.0021 −0.0528
Manufacturing, Nec and Recycling 0.1695 0.1887 0.0966 0.1427 0.0192 −0.0269
Electricity, Gas and Water Supply 0.1442 0.2035 0.0969 0.1502 0.0592 0.0060
Construction 0.2001 0.2253 0.0969 0.1611 0.0252 −0.0390
Sales and Maintenance of Motor Vehicles and Motorcycles 0.1998 0.1971 0.0842 0.1407 −0.0026 −0.0591
Wholesale Trade and Commission Trade 0.2254 0.2159 0.1355 0.1757 −0.0095 −0.0497
Retail Trade, except of Motor Vehicles and Motorcycles 0.2026 0.2025 0.1052 0.1539 −0.0001 −0.0487
Transport and Storage 0.1706 0.2193 −0.0047 0.1073 0.0487 −0.0633
Post and Communication 0.0560 0.2507 −0.0786 0.0861 0.1947 0.0301
Financial Intermediation 0.1725 0.2522 0.0980 0.1751 0.0797 0.0026
Real Estate Activities 0.0249 0.3248 0.1673 0.2460 0.2999 0.2211
Renting and Other Business Activities 0.1637 0.3517 0.0991 0.2254 0.1879 0.0617
Community Social and Personal Services 0.1315 0.1892 0.0941 0.1417 0.0577 0.0102
Public Administration, Defense, Compulsory Social Security 0.1377 0.1760 0.0702 0.1231 0.0382 −0.0146
Education 0.1423 0.2116 0.0871 0.1493 0.0693 0.0070
Health and Social Work 0.1385 0.2046 0.1430 0.1738 0.0661 0.0353
Mean 0.1516 0.1985 0.0846 0.1415 0.0469 −0.0100
Median 0.1469 0.1971 0.0941 0.1407 0.0382 −0.0205
Standard Deviation 0.0425 0.0535 0.0575 0.0363 0.0757 0.0568

Computerization is defined as three capital investments associated with computer-based technology, computing equipment, software and communi-
cation equipment for 1970 to 2005 using data from EU KLEMS Growth and Productivity Accounts. †Differences for 1970-2000 are calculated by
annualized growth rate for 1995-2000 minus the growth rate for 1970-1995. ‡Similarly, differences for 1970-2005 are measured by growth rate for
1995-2005 minus the growth rate of 1970-1995.
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Table 3.17: Descriptive Statistics by Industry from EU KLEMS Accounts I: 1970-2005

Agriculture Observations Mean Std. Dev. Min Max

Computerization Stocks 36 402.27 601.34 1.02 2205.42
Computerization Investment 36 151.64 226.86 0.55 847.11
High-Skilled Employment Share 36 11.08 4.10 3.03 17.10
Middle-Skilled Employment Share 36 55.34 7.65 36.04 64.44
Low-Skilled Employment Share 36 33.57 11.55 21.79 60.90
High-Skilled Wage Share 36 17.68 6.32 5.89 27.40
Middle-Skilled Wage Share 36 55.31 5.14 45.21 64.40
Low-Skilled Wage Share 36 27.01 10.86 12.45 48.89
Numbers of Employees 36 1915.89 232.76 1535.00 2341.00
Real Gross Output 36 272347.97 64929.28 179905.25 400809.88

Mining Observations Mean Std. Dev. Min Max

Computerization Stocks 36 2405.43 2605.62 25.11 9844.86
Computerization Investment 36 828.70 1007.10 11.84 4052.76
High-Skilled Employment Share 36 17.34 3.97 9.37 23.56
Middle-Skilled Employment Share 36 59.91 6.04 44.53 69.63
Low-Skilled Employment Share 36 22.76 9.53 11.72 46.10
High-Skilled Wage Share 36 26.17 5.41 17.02 34.09
Middle-Skilled Wage Share 36 54.11 6.49 37.77 66.25
Low-Skilled Wage Share 36 19.72 10.73 6.69 42.29
Numbers of Employees 36 722.00 175.64 533.00 1160.00
Real Gross Output 36 173996.45 6877.45 164107.45 191955.45

Food Observations Mean Std. Dev. Min Max

Computerization Stocks 36 2392.69 2940.10 72.77 10143.04
Computerization Investment 36 854.08 1062.87 28.37 3620.44
High-Skilled Employment Share 36 12.72 3.76 5.91 18.40
Middle-Skilled Employment Share 36 59.57 5.03 47.83 65.31
Low-Skilled Employment Share 36 27.71 8.58 18.94 46.25
High-Skilled Wage Share 36 20.41 6.93 9.56 31.37
Middle-Skilled Wage Share 36 57.80 3.20 49.67 62.41
Low-Skilled Wage Share 36 21.79 8.81 12.41 40.77
Numbers of Employees 36 1751.67 64.00 1647.00 1909.00
Real Gross Output 36 402167.91 69413.30 284491.78 515913.03

Textiles Observations Mean Std. Dev. Min Max

Computerization Stocks 36 552.04 620.68 14.70 1857.48
Computerization Investment 36 184.67 208.17 6.60 599.96
High-Skilled Employment Share 36 7.80 3.45 2.81 13.97
Middle-Skilled Employment Share 36 52.32 8.04 35.66 61.25
Low-Skilled Employment Share 36 39.88 11.07 28.82 61.53
High-Skilled Wage Share 36 15.79 7.50 5.43 28.68
Middle-Skilled Wage Share 36 51.66 6.25 38.70 59.51
Low-Skilled Wage Share 36 32.55 12.66 18.56 55.88
Numbers of Employees 36 1921.06 578.04 734.00 2747.00
Real Gross Output 36 138955.56 16631.89 99036.40 165079.25
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Table 3.18: Descriptive Statistics by Industry from EU KLEMS Accounts II: 1970-2005

Wood Observations Mean Std. Dev. Min Max

Computerization Stocks 36 251.30 308.69 6.45 1046.61
Computerization Investment 36 91.09 110.86 2.24 396.93
High-Skilled Employment Share 36 6.97 1.70 3.41 9.24
Middle-Skilled Employment Share 36 58.71 10.16 37.88 69.81
Low-Skilled Employment Share 36 34.32 11.66 22.33 58.11
High-Skilled Wage Share 36 11.48 3.85 4.57 18.17
Middle-Skilled Wage Share 36 58.70 9.11 43.01 69.38
Low-Skilled Wage Share 36 29.82 12.65 15.42 52.42
Numbers of Employees 36 744.53 64.03 570.00 857.00
Real Gross Output 36 97001.81 15866.11 66081.40 118995.03

Paper and Pulp Observations Mean Std. Dev. Min Max

Computerization Stocks 36 4172.28 4796.67 86.99 15500.91
Computerization Investment 36 1438.65 1629.18 36.44 5106.32
High-Skilled Employment Share 36 21.60 6.96 8.76 32.26
Middle-Skilled Employment Share 36 62.03 2.51 55.20 65.92
Low-Skilled Employment Share 36 16.36 8.41 7.78 36.04
High-Skilled Wage Share 36 28.96 9.18 12.53 42.77
Middle-Skilled Wage Share 36 57.92 2.83 52.37 62.84
Low-Skilled Wage Share 36 13.12 7.97 4.85 31.52
Numbers of Employees 36 2043.72 196.69 1730.00 2294.00
Real Gross Output 36 311027.47 56370.47 205902.64 386600.50

Petroleum Observations Mean Std. Dev. Min Max

Computerization Stocks 36 1138.03 1361.07 85.47 5796.93
Computerization Investment 36 443.91 589.15 37.46 2776.61
High-Skilled Employment Share 36 25.46 5.43 15.62 33.48
Middle-Skilled Employment Share 36 62.59 1.41 59.50 65.80
Low-Skilled Employment Share 36 11.95 5.35 6.68 23.20
High-Skilled Wage Share 36 33.95 7.59 20.65 45.01
Middle-Skilled Wage Share 36 56.41 2.51 51.34 60.39
Low-Skilled Wage Share 36 9.64 5.71 3.56 20.89
Numbers of Employees 36 162.89 28.87 115.00 205.00
Real Gross Output 36 145056.42 16990.20 112337.91 173316.91

Chemicals Observations Mean Std. Dev. Min Max

Computerization Stocks 36 5185.13 6728.02 63.14 21416.63
Computerization Investment 36 1918.81 2436.89 23.09 7654.83
High-Skilled Employment Share 36 31.11 8.51 20.18 45.30
Middle-Skilled Employment Share 36 55.67 3.17 49.18 60.86
Low-Skilled Employment Share 36 13.22 6.58 5.43 26.13
High-Skilled Wage Share 36 41.81 10.84 26.90 59.81
Middle-Skilled Wage Share 36 48.30 5.57 37.43 55.26
Low-Skilled Wage Share 36 9.89 6.17 2.76 22.61
Numbers of Employees 36 1041.39 46.65 930.00 1117.00
Real Gross Output 36 318077.28 57998.66 206957.17 416880.19
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Table 3.19: Descriptive Statistics by Industry from EU KLEMS Accounts III: 1970-2005

Rubber Observations Mean Std. Dev. Min Max

Computerization Stocks 36 585.82 799.02 12.40 2638.50
Computerization Investment 36 219.89 294.64 5.87 940.54
High-Skilled Employment Share 36 11.42 3.15 5.00 16.47
Middle-Skilled Employment Share 36 66.59 3.93 59.35 71.58
Low-Skilled Employment Share 36 21.99 6.95 13.60 35.65
High-Skilled Wage Share 36 18.03 5.99 5.52 27.34
Middle-Skilled Wage Share 36 64.19 2.16 60.43 67.27
Low-Skilled Wage Share 36 17.78 7.60 8.63 32.42
Numbers of Employees 36 834.92 114.74 625.00 1018.00
Real Gross Output 36 107394.46 41114.08 47372.75 169259.17

Glasses Observations Mean Std. Dev. Min Max

Computerization Stocks 36 831.81 860.67 16.08 2985.10
Computerization Investment 36 285.85 303.73 6.31 1051.35
High-Skilled Employment Share 36 11.07 3.12 5.03 15.87
Middle-Skilled Employment Share 36 61.49 8.94 42.76 71.80
Low-Skilled Employment Share 36 27.43 11.85 15.15 51.90
High-Skilled Wage Share 36 16.70 5.54 5.95 25.32
Middle-Skilled Wage Share 36 59.65 6.82 46.36 68.90
Low-Skilled Wage Share 36 23.65 12.05 10.01 47.70
Numbers of Employees 36 577.22 45.29 514.00 679.00
Real Gross Output 36 75286.34 13900.40 57259.54 104050.16

Metals Observations Mean Std. Dev. Min Max

Computerization Stocks 36 2724.68 2931.86 118.59 9608.21
Computerization Investment 36 943.21 1030.36 45.89 3421.39
High-Skilled Employment Share 36 10.46 2.61 5.54 14.39
Middle-Skilled Employment Share 36 64.22 7.68 48.27 73.44
Low-Skilled Employment Share 36 25.32 10.07 14.23 45.25
High-Skilled Wage Share 36 16.22 4.06 9.56 23.30
Middle-Skilled Wage Share 36 62.85 6.43 47.23 71.80
Low-Skilled Wage Share 36 20.93 10.01 9.14 41.58
Numbers of Employees 36 2294.23 339.83 1779.79 2913.74
Real Gross Output 36 355139.66 46204.03 280384.09 452344.09

Machinery Observations Mean Std. Dev. Min Max

Computerization Stocks 36 5370.03 6713.51 139.56 21287.38
Computerization Investment 36 1927.65 2436.48 61.62 7663.29
High-Skilled Employment Share 36 13.53 4.70 6.87 25.59
Middle-Skilled Employment Share 36 68.35 5.07 56.15 75.10
Low-Skilled Employment Share 36 18.11 8.65 7.19 36.98
High-Skilled Wage Share 36 20.32 7.11 10.94 38.20
Middle-Skilled Wage Share 36 64.87 4.10 55.81 71.64
Low-Skilled Wage Share 36 14.81 8.32 4.56 33.03
Numbers of Employees 36 1815.66 221.20 1329.63 2281.59
Real Gross Output 36 242071.91 39316.44 179577.45 327567.22
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Table 3.20: Descriptive Statistics by Industry from EU KLEMS Accounts IV: 1970-2005

Electrical Machinery Observations Mean Std. Dev. Min Max

Computerization Stocks 36 11579.48 12236.59 1073.96 36371.76
Computerization Investment 36 3832.36 4287.17 194.56 13531.86
High-Skilled Employment Share 36 26.29 8.68 13.29 43.88
Middle-Skilled Employment Share 36 59.58 3.16 50.45 64.55
Low-Skilled Employment Share 36 14.13 7.25 5.67 29.61
High-Skilled Wage Share 36 37.64 11.25 20.79 57.48
Middle-Skilled Wage Share 36 51.89 5.27 39.65 58.89
Low-Skilled Wage Share 36 10.46 6.77 2.78 24.25
Numbers of Employees 36 2842.15 321.83 2261.84 3359.49
Real Gross Output 36 456478.00 410678.72 73749.98 1.34e+06

Transport Equipment Observations Mean Std. Dev. Min Max

Computerization Stocks 36 6483.67 7586.15 120.54 23303.28
Computerization Investment 36 2297.01 2633.45 52.64 7856.29
High-Skilled Employment Share 36 19.43 6.11 9.35 29.11
Middle-Skilled Employment Share 36 63.66 3.12 55.28 68.11
Low-Skilled Employment Share 36 16.91 8.58 7.18 35.26
High-Skilled Wage Share 36 28.32 9.02 15.11 45.86
Middle-Skilled Wage Share 36 58.53 3.20 50.00 62.98
Low-Skilled Wage Share 36 13.15 7.91 3.93 29.53
Numbers of Employees 36 1839.54 128.85 1592.27 2067.00
Real Gross Output 36 419612.81 123256.38 247819.78 649173.75

Miscellaneous Manufacturing Observations Mean Std. Dev. Min Max

Computerization Stocks 36 1194.04 1528.64 14.77 5245.22
Computerization Investment 36 440.74 565.03 6.77 1951.35
High-Skilled Employment Share 36 11.62 3.65 5.84 17.71
Middle-Skilled Employment Share 36 57.72 8.06 39.01 66.93
Low-Skilled Employment Share 36 30.66 11.56 17.79 55.15
High-Skilled Wage Share 36 19.52 6.63 9.52 30.72
Middle-Skilled Wage Share 36 55.19 6.22 41.06 62.28
Low-Skilled Wage Share 36 25.29 12.50 11.21 49.41
Numbers of Employees 36 897.19 43.85 816.00 967.00
Real Gross Output 36 92868.09 24304.51 61012.77 143601.48

Utilities Observations Mean Std. Dev. Min Max

Computerization Stocks 36 6171.89 6214.58 161.07 22407.31
Computerization Investment 36 1916.90 2224.43 49.30 8221.18
High-Skilled Employment Share 36 20.82 6.80 8.27 32.18
Middle-Skilled Employment Share 36 70.40 2.70 64.90 75.22
Low-Skilled Employment Share 36 8.78 6.17 2.92 23.50
High-Skilled Wage Share 36 26.16 8.71 11.15 42.90
Middle-Skilled Wage Share 36 66.26 4.38 54.98 72.44
Low-Skilled Wage Share 36 7.58 5.89 2.01 21.22
Numbers of Employees 36 816.28 72.19 682.35 939.74
Real Gross Output 36 289008.06 23819.41 226872.53 320800.09
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Table 3.21: Descriptive Statistics by Industry from EU KLEMS Accounts V: 1970-2005

Construction Observations Mean Std. Dev. Min Max

Computerization Stocks 36 5148.65 8680.00 30.21 29357.11
Computerization Investment 36 1916.33 3001.68 10.23 10012.18
High-Skilled Employment Share 36 9.30 2.33 3.74 12.16
Middle-Skilled Employment Share 36 64.45 6.73 44.59 71.44
Low-Skilled Employment Share 36 26.25 8.97 17.92 51.68
High-Skilled Wage Share 36 12.79 3.86 5.04 18.75
Middle-Skilled Wage Share 36 64.71 6.30 46.79 71.44
Low-Skilled Wage Share 36 22.50 9.95 12.63 48.13
Numbers of Employees 36 5145.17 1148.56 3675.00 7540.00
Real Gross Output 36 708633.19 117094.73 521879.88 962976.88

Motor Vehicle Sales Observations Mean Std. Dev. Min Max

Computerization Stocks 36 3620.23 4673.57 36.34 16322.52
Computerization Investment 36 1229.40 1612.75 8.89 5523.62
High-Skilled Employment Share 36 8.19 1.95 4.35 11.41
Middle-Skilled Employment Share 36 71.16 4.07 60.50 76.75
Low-Skilled Employment Share 36 20.65 5.86 14.41 34.63
High-Skilled Wage Share 36 10.70 3.22 5.70 16.99
Middle-Skilled Wage Share 36 71.21 3.50 63.37 76.48
Low-Skilled Wage Share 36 18.08 6.37 10.52 30.22
Numbers of Employees 36 1856.40 557.66 1054.15 2703.87
Real Gross Output 36 145232.17 61328.54 70143.05 280713.84

Wholesale Trade Observations Mean Std. Dev. Min Max

Computerization Stocks 36 10454.90 14865.02 27.98 55528.49
Computerization Investment 36 3765.78 5506.87 13.45 22002.81
High-Skilled Employment Share 36 22.65 4.89 12.02 29.74
Middle-Skilled Employment Share 36 63.76 1.78 60.33 66.39
Low-Skilled Employment Share 36 13.59 5.61 7.78 26.58
High-Skilled Wage Share 36 31.85 7.55 16.46 44.30
Middle-Skilled Wage Share 36 58.07 3.07 50.19 63.22
Low-Skilled Wage Share 36 10.08 5.48 4.32 23.03
Numbers of Employees 36 5800.33 908.78 4089.00 7113.00
Real Gross Output 36 498508.75 209156.38 196513.70 861159.38

Retail Trade Observations Mean Std. Dev. Min Max

Computerization Stocks 36 7631.61 9984.16 57.51 36136.12
Computerization Investment 36 2622.37 3529.98 16.42 12262.52
High-Skilled Employment Share 36 14.69 3.74 7.10 20.29
Middle-Skilled Employment Share 36 68.93 3.02 59.57 72.65
Low-Skilled Employment Share 36 16.38 6.26 10.82 33.33
High-Skilled Wage Share 36 21.80 6.54 10.94 34.13
Middle-Skilled Wage Share 36 65.24 2.93 58.91 69.68
Low-Skilled Wage Share 36 12.95 6.01 6.96 29.07
Numbers of Employees 36 11608.53 2187.34 7742.49 14652.30
Real Gross Output 36 445470.38 135389.38 269425.69 783885.56
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Table 3.22: Descriptive Statistics by Industry from EU KLEMS Accounts VI: 1970-2005

Transport and Storage Observations Mean Std. Dev. Min Max

Computerization Stocks 36 24444.21 32989.21 583.47 105111.69
Computerization Investment 36 6557.37 8579.21 77.31 24146.77
High-Skilled Employment Share 36 13.22 4.51 4.57 18.54
Middle-Skilled Employment Share 36 67.04 5.88 53.53 74.96
Low-Skilled Employment Share 36 19.73 10.18 9.27 41.32
High-Skilled Wage Share 36 17.01 6.25 5.54 26.53
Middle-Skilled Wage Share 36 65.19 4.35 54.59 70.82
Low-Skilled Wage Share 36 17.80 10.08 7.21 38.31
Numbers of Employees 36 3446.33 670.07 2656.00 4589.00
Real Gross Output 36 369753.00 105451.85 220174.91 562097.50

Communications and Postal Observations Mean Std. Dev. Min Max

Computerization Stocks 36 92873.82 68886.71 24456.77 237029.31
Computerization Investment 36 18446.36 17005.64 4544.94 68939.44
High-Skilled Employment Share 36 25.39 9.93 7.39 42.04
Middle-Skilled Employment Share 36 70.25 7.80 56.43 82.65
Low-Skilled Employment Share 36 4.37 2.49 1.52 10.99
High-Skilled Wage Share 36 30.91 12.57 11.31 54.38
Middle-Skilled Wage Share 36 65.55 10.67 44.47 79.46
Low-Skilled Wage Share 36 3.54 2.36 0.97 9.88
Numbers of Employees 36 1331.67 140.07 1123.00 1700.00
Real Gross Output 36 241035.94 115704.45 80836.98 512855.19

Finance Observations Mean Std. Dev. Min Max

Computerization Stocks 36 23163.96 32182.45 238.95 114714.87
Computerization Investment 36 8979.60 12490.55 103.13 44325.28
High-Skilled Employment Share 36 32.64 8.24 18.23 44.35
Middle-Skilled Employment Share 36 63.72 6.11 53.91 72.24
Low-Skilled Employment Share 36 3.64 2.45 1.31 10.16
High-Skilled Wage Share 36 46.80 10.80 27.16 62.73
Middle-Skilled Wage Share 36 50.60 8.97 36.39 64.38
Low-Skilled Wage Share 36 2.61 2.10 0.72 8.45
Numbers of Employees 36 4938.39 1094.29 2994.00 6462.00
Real Gross Output 36 649491.94 334261.03 223294.50 1.31e+06

Real Estate Observations Mean Std. Dev. Min Max

Computerization Stocks 36 3137.36 3685.82 913.66 14674.21
Computerization Investment 36 942.69 1487.32 57.56 5671.66
High-Skilled Employment Share 36 30.34 5.75 17.09 38.12
Middle-Skilled Employment Share 36 58.18 1.44 54.03 61.44
Low-Skilled Employment Share 36 11.48 6.19 5.45 28.88
High-Skilled Wage Share 36 42.13 8.81 25.16 53.99
Middle-Skilled Wage Share 36 50.27 4.17 43.58 57.68
Low-Skilled Wage Share 36 7.60 4.93 2.43 18.99
Numbers of Employees 36 1251.69 290.29 714.00 1750.00
Real Gross Output 36 854906.63 269583.06 439058.94 1.44e+06
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Table 3.23: Descriptive Statistics by Industry from EU KLEMS Accounts VI: 1970-2005

Business Services Observations Mean Std. Dev. Min Max

Computerization Stocks 36 45771.53 74557.63 562.11 269639.50
Computerization Investment 36 18231.42 29002.40 174.84 103127.28
High-Skilled Employment Share 36 41.12 5.17 30.11 48.57
Middle-Skilled Employment Share 36 49.65 1.75 45.38 53.05
Low-Skilled Employment Share 36 9.22 3.85 5.61 18.70
High-Skilled Wage Share 36 56.23 8.30 41.35 68.09
Middle-Skilled Wage Share 36 38.06 4.83 29.56 46.71
Low-Skilled Wage Share 36 5.71 3.64 2.31 14.05
Numbers of Employees 36 8765.71 4399.81 2893.17 15724.96
Real Gross Output 36 843892.50 408378.63 384378.69 1.66e+06

Personal Services Observations Mean Std. Dev. Min Max

Computerization Stocks 36 49048.04 59345.86 3115.55 210038.75
Computerization Investment 36 17005.80 21450.75 631.64 73238.45
High-Skilled Employment Share 36 34.08 5.06 23.33 41.74
Middle-Skilled Employment Share 36 54.49 1.89 50.69 57.23
Low-Skilled Employment Share 36 11.43 6.20 5.26 25.97
High-Skilled Wage Share 36 47.93 5.34 37.66 56.49
Middle-Skilled Wage Share 36 44.86 1.73 41.02 47.86
Low-Skilled Wage Share 36 7.21 4.65 2.49 18.22
Numbers of Employees 36 37613.84 7453.66 26853.63 51069.46
Real Gross Output 36 2.07e+06523577.63 1.31e+06 3.03e+06

Public Administration Observations Mean Std. Dev. Min Max

Computerization Stocks 36 22680.15 26538.89 1149.94 89850.66
Computerization Investment 36 7905.56 9352.44 268.04 30841.17
High-Skilled Employment Share 36 23.17 5.44 12.18 31.24
Middle-Skilled Employment Share 36 67.04 2.03 62.99 70.17
Low-Skilled Employment Share 36 9.80 6.72 3.08 24.82
High-Skilled Wage Share 36 31.34 5.36 19.56 39.32
Middle-Skilled Wage Share 36 60.90 1.53 58.41 64.29
Low-Skilled Wage Share 36 7.77 5.62 2.10 21.11
Numbers of Employees 36 11517.43 923.03 10015.74 12951.42
Real Gross Output 36 711029.38 111099.64 528321.06 871424.81

Education Services Observations Mean Std. Dev. Min Max

Computerization Stocks 36 10599.96 14099.47 445.82 48920.63
Computerization Investment 36 3901.14 5221.46 103.51 17239.86
High-Skilled Employment Share 36 63.99 2.78 58.70 69.02
Middle-Skilled Employment Share 36 29.99 1.19 28.59 33.05
Low-Skilled Employment Share 36 6.01 3.21 2.20 12.63
High-Skilled Wage Share 36 76.42 1.63 72.92 79.06
Middle-Skilled Wage Share 36 20.01 1.49 17.88 24.18
Low-Skilled Wage Share 36 3.57 1.96 1.35 7.51
Numbers of Employees 36 9203.89 2035.61 6094.00 12969.00
Real Gross Output 36 403426.69 101387.65 245344.75 590425.88
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Table 3.24: Descriptive Statistics by Industry from EU KLEMS Accounts VII: 1970-2005

Health Services Observations Mean Std. Dev. Min Max

Computerization Stocks 36 11191.46 14203.50 681.49 53685.24
Computerization Investment 36 3887.27 5368.60 96.29 19435.68
High-Skilled Employment Share 36 31.80 5.17 20.68 39.50
Middle-Skilled Employment Share 36 58.22 1.29 55.83 60.70
Low-Skilled Employment Share 36 9.98 5.38 4.53 22.38
High-Skilled Wage Share 36 54.07 5.72 45.45 64.13
Middle-Skilled Wage Share 36 40.56 3.15 33.85 47.22
Low-Skilled Wage Share 36 5.37 3.29 1.80 12.22
Numbers of Employees 36 8765.81 2729.56 4035.51 13282.57
Real Gross Output 36 593722.06 195728.25 297807.78 990330.69

1. Agriculture :: Agriculture, Hunting, Forestry, and Fishing; 2. Mining :: Mining and Quarrying; 3. Food ::
Food, Beverages and Tobacco; 4. Textiles :: Textiles, Textile, Leather and Footwear; 5. Wood :: Wood and
of Wood and Cork; 6. Paper & Pulp :: Pulp, Paper, Printing and Publishing; 7. Petroleum :: Coke, Refined
Petroleum and Nuclear Fuel; 8. Chemicals :: Chemicals and Chemical Products; 9. Rubber :: Rubber and
Plastics; 10. Glass :: Other Non-Metallic Mineral; 11. Metals :: Basic Metals and Fabricated Metal; 12.
Machinery :: Machinery, Nec; 13. Electrical Machinery :: Electrical and Optical Equipment; 14. Transport
Equipment :: Transport Equipment; 15. Misc. Manufacturing :: Manufacturing, Nec and Recycling; 16.
Utilities :: Electricity, Gas and Water Supply; 17. Construction :: Construction; 18. Motor Vehicle Sales
:: Sales and Maintenance of Motor Vehicles and Motorcycles; 19. Wholesale Trade :: Wholesale Trade and
Commission Trade, except of Motor Vehicles and Motorcycles; 20. Retail Trade :: Retail Trade, except of
Motor Vehicles and Motorcycles; 21. Transport & Storage :: Transport and Storage; 22. Communications
& Postal :: Post and Communication; 23. Finance :: Financial Intermediation; 24. Real Estate :: Real
Estate Activities; 25. Business Services :: Renting and Other Business Activities; 26. Personal Services ::
Community Social and Personal Services; 27. Public Administration :: Public Administration, Defense,
Compulsory Social Security; 28. Education Services :: Education; and 29. Health Services :: Health and
Social Work.
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Chapter 4

Conclusions

As introduced in Chapter 1, Rosen (1983) emphasizes that rate of returns of spe-

cialized knowledge increases with utilization of the skills, and technological changes increase

relevant market size for the specialized knowledge. Specialization and production by the

principle of comparative advantage, thus, originate from the increasing returns of utilization

for the specialized knowledge. Chapter 2 suggests that heterogeneous impacts of informa-

tion and communication technology on knowledge acquisition and utilization, which also

effect the rate of returns for specific knowledge, are biased in the knowledge-based hierar-

chy, so that incentives for knowledge acquisition for workers are differentiated depending

on specialized knowledge the worker has.

Chapter 2, first, presents between-group wage differentials among four occupational

layers - managers, professionals, middle workers, and lower workers - with information and

communication technological change. For advances in information technology, empirical

analysis supports the comparative statics from theoretical framework hypothesizing that

decreasing knowledge acquisition cost raises wage differentials between problem solvers and

production workers such as managers and professionals, managers and middle workers,

managers and lower workers, and middle workers and lower workers. Estimation results

suggest advances in communication technology increase between-group wage differentials,

managers and lower workers; professionals and middle workers; professionals and lower
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workers; and middle workers and lower workers. These results support the implications

from theoretical frameworks that cheaper communication costs lead to an increase wage in

differentials between problem solvers an production workers as well.

Moreover, decreasing wage differentials between managers and professionals and be-

tween managers and middle workers - though mixed - from advances in communication

technology have an important implication for solving the SBTC hypothesis puzzle. Based

on the sharp increases in investment for communication equipment and software in the

late 1990s, which had a negative impact on wage differentials between managers and pro-

fessionals and a mixed effect on wage differentials between managers and middle workers,

cheaper communication costs might suppress the positive effect from investments in com-

puting equipment on these two wage differentials. Therefore, the overall wage differential,

which is measured by the wage differential between the 90th and the 10th percentiles,

might be attenuated by decreasing wage differentials between managers and professionals

and between manager and middle workers.

Second, Chapter 2 examines the predictions from the theoretical frameworks about

impacts of information and communication technology on within-group wage differentials.

Estimation results associated with information technology, wage differentials within man-

agers as top problem solvers and within middle workers for production workers provide

empirical evidence that decreasing knowledge acquisition costs increase within wage differ-

entials for all workers based on four measurements of residual wage differentials for each

group. For communication technology, Chapter 2 shows that advances in communication

technology lead to a decrease within wage differentials for middle workers as production

workers, while cheaper communication costs raise wage differentials within managers as

problem solvers. These findings are consistent with the implications that cheaper commu-

nication cost acts as a wage equalizer among production workers, while it increases within

wage differentials for top problem solvers due to the increasing returns of specialization.

Therefore, Chapter 2 supports the implications of Garicano (2000) and Garicano and

Rossi-Hansberg (2006) that (i) decreasing knowledge costs raise wage differentials between
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problem solvers and production workers and within wage differentials for all occupational

layers, (ii) advances in communication technology also increase between-group wage differ-

entials, and (iii) cheaper communication cost acts as a wage equalizer among production

workers but raises wage differentials within top problem solvers. The second and third

implications illustrate the Superstar effect in Rosen (1981) in that due to available cheaper

communication costs production workers acquire only basic knowledge and ask for solutions

from the problem solvers when they confront difficult problems. The reduced incentive for

knowledge acquisition due to advances in communication technology increases the depen-

dency of production workers on problem solvers and thus leads to a centralization of top

problem solvers in the knowledge hierarchy. Therefore, advances in communication tech-

nology increase wage differentials between problem solvers and production workers and

within-group wage differentials for top problem solvers in the knowledge hierarchy.

Associated with specialization, Chapter 3 discusses workers’ occupational choices

for specialized knowledge among four types of workplace tasks: nonroutine cognitive tasks,

routine cognitive tasks, routine manual tasks, and nonroutine manual tasks. Large in-

vestments for computerization caused by the decreasing price of computer-related capital

change the workers’ occupational choices and also demand for three different types of skilled

workers: high-skilled, middle-skilled and low-skilled workers. When middle-skilled workers

make their occupational choices between routine tasks and nonroutine manual tasks based

on self-selection, the decreasing price of computerization and resulting increased relative

efficiency unit between routine tasks and nonroutine manual tasks lead the middle-skilled

workers, especially marginal workers below-average for routine tasks, to allocate their labor

supply toward nonroutine manual tasks from routine tasks. Also, for middle-skilled work-

ers between routine tasks and nonroutine cognitive tasks, the decreased relative efficiency

unit between nonroutine cognitive tasks and routine tasks by decreasing computerization

costs makes marginal workers above-average from routine tasks move toward nonroutine

cognitive tasks.

Thus, due to increasing demand for production inputs for routine tasks with the
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price decline of computer-based capital and displacement of middle-skilled workers from

routine tasks toward two nonroutine tasks, nonroutine cognitive and nonroutine manuals

tasks, routine tasks will be carried out by computer-related capital more. Based on the

combined theoretical frameworks from Autor, Katz, and Kearney (2006) and Autor, Levy

and Murnane (2003), Chapter 3 empirically shows that rapid adoption of computer-related

capital is a driving force of the U.S. productivity revival, employment polarization toward

low-skilled workers and high-skilled workers, and divergent wage evolution between top-

half and bottom-half wage differentials. First, difference-in-difference estimation methods

show that computerized industries exhibit larger labor productivity gains than other less

computerized industries. In addition, the increasing growth rate of computerization as-

sets is positively related to demand shifts for high-skilled workers and low-skilled workers,

but inversely related to demand shifts for middle-skilled workers, which are measured by

employment share and wage bill share.

Second, share equation estimates for three types of skilled workers provide support-

ive empirical evidence for Autor, Katz, and Kearney (2006) and Autor, Levy and Murnane

(2003) that due to increasing investments in computer-related capital, middle-skilled work-

ers have been replaced from routine cognitive tasks and routine manual tasks, and employ-

ment share and wage bill share of high-skilled workers for nonroutine cognitive tasks and

low-skilled workers for nonroutine manual tasks have been increased. These heterogeneous

demand changes for different skill-types of workers corresponded well with the polarization

patterns in employment share and the polarization trends in wage inequality.
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