
Clemson University
TigerPrints

All Dissertations Dissertations

8-2011

MODELING OF STRAIN EFFECT ON
THERMAL AND ELECTRICAL TRANSPORT
PROPERTIES OF SI/GE NANOCOMPOSITES
AND ITS APPLICATIONS
Yaoyao Xu
Clemson University, yxu@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Nanoscience and Nanotechnology Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Xu, Yaoyao, "MODELING OF STRAIN EFFECT ON THERMAL AND ELECTRICAL TRANSPORT PROPERTIES OF SI/GE
NANOCOMPOSITES AND ITS APPLICATIONS" (2011). All Dissertations. 778.
https://tigerprints.clemson.edu/all_dissertations/778

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/778?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F778&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu


MODELING OF STRAIN EFFECT ON

THERMAL AND ELECTRICAL TRANSPORT

PROPERTIES OF SI/GE NANOCOMPOSITES

AND ITS APPLICATIONS

A Thesis

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Mechanical Engineering

by

Yaoyao Xu

August 2011

Accepted by

Dr. Gang Li, Committee Chair

Dr. Sherrill B. Biggers

Dr. Paul F. Joseph

Dr. Lonny L. Thompson



ABSTRACT

Nanocomposites are composite materials which incorporate nanosized particles,

platelets or fibers. The addition of nanosized phases into the bulk matrix can lead

to significantly improved material properties compared to their macrocomposite

counterparts. Due to their extraordinary properties, nanocomposites promise new

applications in many fields such as ultra-high strength and ultra-light automotive

parts, nonlinear optics, biomedical applications, sensors and actuators, and

thermoelectric devices. The design and fabrication of nanocomposite structures,

devices and systems can be accelerated by developing accurate and efficient

computational tools that can describe the properties and behavior of the

nanocomposites. However, the development of such tools is challenging due to the

multi-scale nature of the materials. In addition, many devices where

nanocomposites are employed are multi-physics systems with interactions of the

mechanical, thermal and electrical energy domains. In such systems, while

mechanical deformation is dependent on the temperature change, the thermal and

electrical transport properties are functions of mechanical strain. In this work, we

develop theoretical and computational models to address these issues and

investigate the strain effect on the thermal and electrical transport properties in

Si/Ge nanocomposites.
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We model strain effect on the phonon thermal conductivities in the Si/Ge

nanocomposite materials by combining the strain dependent lattice dynamics and

the ballistic phonon Boltzmann transport equation (BTE). The Seebeck coefficient

and electrical conductivity of the Si/Ge nanocomposites are calculated by using an

analytical model derived from the BTE under the relaxation time approximation.

The effect of strain is incorporated into the analytical model through strain induced

energy shift and effective mass variation calculated from the deformation potential

theory and a degenerate k · p method at the zone-boundary X point. By using the

models, strain effect on the thermoelectric figure of merit is investigated for n-type

Si/Ge nanocomposite materials. Our calculations reveal that in the 300-800 K

temperature range, uniaxial tensile strain along 〈100〉 direction increases

dimensionless figure of merit parallel to the tension, and biaxial tensile strain along

[100] and [010] directions decreases it at low temperatures and increases it at high

temperatures in the tension directions. Shear strain and compressive uniaxial and

biaxial strains decrease the figure of merit. At 800 K with an electron concentration

of 1019/cm3, 1% uniaxial tensile strain can increase the figure of merit of Si0.8Ge0.2

nanocomposites by as much as 14%.

In light of nanocomposites’ high electrical to thermal conductivity ratio, we

propose to use Si/Ge nanocomposite materials to improve the performance of micro

thermal actuators. The high electrical to thermal conductivity ratio of Si/Ge

nanocomposites is utilized to facilitate a rapid temperature change within a short

distance, enabling a high temperature increase in a large region of the actuator

beams. The total structural thermal expansion and consequently the actuation

distance can be increased significantly. A top-down quasicontinuum multi-scale

model is presented for computational analysis of the nanocomposite based thermal
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actuators. Numerical results indicate that incorporating Si/Ge nanocomposites in

thermal actuators can significantly increase their energy efficiency and mechanical

performance. In addition, parametric studies show that the size of the

nanocomposite region and atomic percentage of the material components have

significant effects on the overall performance of the actuators.
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CHAPTER 1

INTRODUCTION

In the past decade, synthesis and processing techniques have been developed to

create nanostructured materials with highly controlled material composition,

structures and related physical properties [1, 2, 3, 4]. Examples of the engineered

nanostructures include nanotubes, quantum dots, superlattices, thin films and

nanocomposites. Nanocomposites are composite materials which incorporate

nanosized particles [5] or contain fibers with at least one dimension in the

nano-scale [6]. Figure 1.1 shows a diagram of the above two different

nanocomposites, of which (a) is the nanocomposite with nanoparticles embedded in

a host material and (b) is the nanocomposite with nanowires embedded in a host.

In general, a nanocomposite can be regarded as a solid combining a bulk matrix and

nano-scale phases. The phases can be nanoparticles, nanowires, nanoplatelets, fibers

and etc.

The addition of nanosized phases into the bulk matrix causes the exceptionally

high surface to volume ratio, leading to significantly different material properties

compared to their macrocomposite counterparts, which include mechanical

1



Si nanoparticleGe host 

Figure 1.1: A diagram of nanocomposite materials: (a) the nanocomposite
with nanoparticles embedded in a host material. (b) The nanocomposite with
nanowires embedded in a host.

strength [7, 8], toughness, optical properties, electrical conductivity and thermal

conductivity [9]. For example, Haque et al. showed that by dispersing 1% by weight

nanosilicates, S2-glass/epoxy-clay nanocomposites exhibit about 44%, 24% and 23%

improvement in interlaminar shear strength, flexural strength and fracture

toughness, respectively, in comparison to conventional S2-glass/epoxy composites.

These improvements of mechanical properties are attributed to increased interfacial

surface areas, improved bond characteristics and intercalated/exfoliated morphology

of the epoxyclay nanocomposites [10]. Kim and Jeong discovered that

polylactide/exfoliated graphite nanocomposites had enhanced thermal stability,

mechanical modulus, and electrical conductivity compared to microsized

polylactide/natural graphite [11]. Poudel et al. measured a p-type nanocrystalline

bismuth antimony telluride bulk alloy and found that it had a significantly lower

thermal conductivity than the state of the art p-type BiSbTe alloy ingot due to

increased phonon scattering by grain boundaries and defects [12].
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Figure 1.2: Application of nanocomposites in automotive parts [13]: (a) M-Van step
Assist: 1st commercial launch. (b) Impala: 2nd nanocomposite application.

Because of these extraordinary properties, nanocomposites promise new

applications in many fields such as ultra-high strength and ultra-light automotive

parts [13], nonlinear optics, biomedical applications [14, 15], sensors and

actuators [16], and thermoelectric devices [17]. For example, Figure 1.2 shows an

application of nanocomposites in the construction of high-strength lightweight

automotive parts [13]. Figure 1.3 illustrates a schematic test configuration of a

multi-layered nanocomposite electrochemical actuator [18]. The ply actuator uses a

carbon nanotube epoxy composite material to enhance the elastic modulus and

strength of the actuator structure.

The design and fabrication of nanocomposite structures, devices and systems can

be accelerated by developing accurate and efficient computational tools. Such design

and analysis tools require theoretical and computational models that can describe

the properties and behavior of the nanocomposite materials. However, there are two

major challenges in the modeling and simulation of nanocomposites.

First, nanocomposites are inherently multi-scale systems. Figure 1.4 shows the

3



Figure 1.3: A test configuration of a multi-layered nanocomposite actuator [18].

hierarchy of key length scales in a polymer matrix nanocomposite [19]. Due to the

small size of the nanoparticles (a few to tens of nanometers), nano-scale effects, such

as size effects, material defects, surface effects and carrier transport scattering effects

become significant. Classical theories based on continuum assumptions may not be

directly applicable. On the other hand, although the characteristic length of the

nanoparticles is on the order of nanometers, the entire structure could still be on

the order of micrometers or larger and contain a huge number of atoms, as shown in

Fig. 1.4. In this case, molecular dynamics and ab initio calculations, which can be

employed for accurate analysis of systems comprising of several hundreds of atoms,

are computationally impractical for real nanocomposites.
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Figure 1.4: Multiple length scales in the analysis of polymer matrix
nanocomposites [19].
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Second, many devices where nanocomposites can be employed are multi-physics

systems with interactions of the mechanical, thermal and electrical energy domains.

Taking thermal actuators as an example: actuator beams are heated by electric

current causing a thermal expansion induced mechanical deformation. While the

mechanical deformation is dependent on the temperature change, the beam’s

thermal conductivity and electrical conductivity are both functions of mechanical

strain and the temperature. Design and analysis of such multi-physics

nanocomposite material systems requires theoretical and computational models that

can describe the interactions between these different energy domains.

The objectives of this research are to: (1) model strain effect on thermal and

electrical transport properties in Si/Ge nanocomposite materials; (2) study strain

effect on the performance of Si/Ge nanocomposite materials, devices and systems

(in particular, Si/Ge nanocomposite thermoelectric materials); (3) perform

computational analysis and design of nanocomposite based multi-physics devices

and systems (in particular, nanocomposite-based thermal actuators). The research

work can be divided as the following four parts.

1. Modeling phonon thermal transport in Si/Ge nanocomposites under

deformation. In this part, we present a model that combines lattice dynamics

and the phonon Boltzmann transport equation to analyze strain effect on the

cross-plane phonon thermal conductivity of Si wire-Ge host nanocomposites.

For a given strain condition, mechanical strain is translated to crystal lattice

deformation by using the Cauchy-Born rule. Strain dependent phonon thermal

properties of Si and Ge obtained from lattice dynamics with Tersoff empirical

interatomic potential are then incorporated into the BTE, in which ballistic

transport within one material and diffuse scattering between Si-Ge interface
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are employed. The strain dependent BTE is solved numerically on an

unstructured triangular mesh by using a finite volume method.

Nanocomposites with different Si nanowire cross-sections are also investigated.

2. Modeling electrical transport properties in Si/Ge nanocomposites under

deformation. We again utilize the Cauchy-Born rule to calculate the variation

of the electronic band structure on deformed crystal lattices. The energy shift

and effective masses variation can be obtained as functions of externally

applied strains by the deformation potential theory and a degenerate k · p

method at the zone-boundary X point. By using the obtained energy gap and

effective masses, the electrical conductivity and Seebeck coefficient can be

calculated from an analytical formula based on the BTE under relaxation time

approximation. For doped bulk Si and Ge, ionized impurity and phonon

deformation potential scatterings have been included in the model. For Si/Ge

nanocomposites, in addition to ionized impurity and phonon deformation

potential scatterings, grain boundary scattering (interface scattering) is also

included. Matthiessen’s rule is used to obtain the total relaxation time

accounting for all the scattering mechanisms.

3. Investigating the strain effect on the performance of nanocomposite

thermoelectric materials and devices based on previous results. Thermoelectric

materials and devices have promising applications in power generation, cooling

systems and waste heat recovery [22, 23, 24, 25, 26]. For example, as shown in

Fig. 1.5, the Cassini spacecraft of NASA carries 12 instruments powered by

three radioisotope thermoelectric generators and has run successfully for more

than 10 years. BMW tried to make use of wasted heat from cars to generate

electrical energy, as shown in Fig. 1.6. The efficiency of thermoelectric devices
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Figure 1.5: The Cassini spacecraft of NASA uses thermoelectric
devices to generate power [20].

Figure 1.6: BMW’s thermoelectric generators for its next-
generation efficient dynamics system [21].
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are determined by the dimensionless figure of merit ZT = S2σT/kt, where T is

the temperature, S is the Seebeck coefficient, σ is the electrical conductivity,

S2σ is called power factor and kt is the thermal conductivity, which includes

the contribution of phonon thermal conductivity kp and electron thermal

conductivity ke [27]. Increasing ZT is the key but challenging point in

thermoelectrics research [28]. It has been shown recently that the phonon

thermal conductivity can be reduced significantly in nanocomposites due to

the increase of phonon interface scattering, while the electron performance can

be maintained or improved [29, 30]. Significant increases in ZT values with

nanocomposites have been reported [31, 32]. In this part, we study the

influence of uniaxial strain, biaxial strain and shear strain on ZT of

nanocomposite thermoelectric materials.

(a) (b)

(c)

Figure 1.7: Thermal actuators: (a) U-shaped thermal actuator [33]. (b) V-shaped
thermal actuator [34]. (c) Contoured V-shaped thermal actuator [35].
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4. In this part, we propose to use Si/Ge nanocomposite materials to improve the

performance of micro thermal actuators (TAs) as shown in Fig. 1.7. We show

that nanocomposites with a high electrical to thermal conductivity ratio can

facilitate a rapid temperature change within a short distance, enabling a high

temperature increase in a large region of the actuator beams. The total

structural thermal expansion and consequently the actuation distance can be

increased significantly. Combining the above multi-scale model for computing

the thermal conductivity of nanocomposites, the analytical model for

calculating the electrical conductivity of the material and the continuum

theory of thermomechanics, we perform computational analysis of this

multi-physics system.

The rest of this thesis is organized as follows: strain effect on the phonon thermal

conductivity of Si/Ge nanocomposites is investigated in Chap. 2. Chapter 3 discusses

the model studying strain effect on electron transport properties of nanocomposites

and explores strain effect on the figure of merit of nanocomposite thermoelectric

materials based on the above models. Chapter 4 describes the computational analysis

of nanocomposite-based thermal actuators. Chapter 5 summaries the whole work.

10



CHAPTER 2

STRAIN EFFECT ANALYSIS ON

PHONON THERMAL

CONDUCTIVITY OF SI/GE

NANOCOMPOSITES

2.1 Introduction

Thermal conductivity measures a material’s ability to conduct heat. In macro

and micro-scale, thermal conductivity is usually used in Fourier’s Law to describe heat

conduction. However, nano-scale heat transfer may differ significantly from that in

macro and micro-scales. Mean free path and wavelength of heat carriers (electrons,

photons, phonons, and molecules) are usually on the order of tens or hundreds of

nano-meters. In nano-scale devices or structures, their characteristic length scales

are comparable to mean free path of heat carriers. Size effects become important and
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the classical Fourier law is no longer valid to predict the heat conduction process or

the effective thermal conductivity of nano-scale structures. In metals, freely moving

electrons are the main carrier for heat energy. However, in non-metals such as Si

and Ge, elastic vibrations of the lattice (phonons) play a major role in heat transfer

process.

Recently various models, such as molecular dynamics (MD), Monte Carlo (MC)

method, analytical formula and BTE, have been proposed to predict the phonon

thermal conductivity of nanocomposites [36, 9, 37, 38]. It has been shown that the

phonon thermal conductivity can be reduced significantly in nanocomposites due to

the increased phonon interface scattering [29, 30]. A few other applications utilizing

nanocomposites to enhance thermal conductivity have been reported, such as

packaging materials of microelectronic circuits and chips [39] and conducting

polymer nanocomposites [40]. While the size and volume fraction effects on the

thermal conductivity of nanocomposites have been extensively investigated using

computational analysis techniques, strain effect which falls in a broader category of

mechanical effects, has not attracted much attention in the design of nanocomposite

materials. Computational analysis of strain effect on the phonon thermal

conductivity could introduce additional dimensions to the design space of

nanocomposites for various applications.

Thermal conductivity of doped semiconductors under uniaxial stress at low

temperatures is relatively well understood [41, 42, 43, 44]. Recently, residual strain

in nanocomposite materials has been studied by several groups. Borca-Tasciuc et al.

measured thermal conductivity in the cross-plane direction of symmetrically

strained Si/Ge superlattices [45]. Abramson et al. studied interfacial strain on

phonon transport and thermal conductivity of heterostructures around Debye
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temperature by MD study [36]. Picu et al. have also employed MD to study the

residual strain effect on heat transport in nanostructures by using a Lennard-Jones

solid at low temperatures and concluded that tensile (or compressive) strain led to a

reduction (or enhancement) of the lattice thermal conductivity [46]. While these

studies have shown the significance of strain on the nano-scale thermal transport,

they are limited to single crystal materials or the residual strain effect at the

interface of two different materials. Thermal conductivity variation of

nanocomposite materials due to externally applied mechanical strain has not been

studied. In addition, either analytical or pure atomistic methods such as MD were

employed in previous studies of strain effect. In strained nanocomposites, it is

difficult to study the strain effect by using analytical approaches due to multiple

material phases and complex geometry of the inclusion phase. Although lattice

strain can be accommodated in MD calculations, the size of the system is limited

due to the computational cost. For nanocomposites with characteristic length larger

than a few nanometers, MD simulations would become very inefficient. Another

nano-scale thermal transport analysis approach is based on the BTE [47]. This

approach provides greater computational flexibility and efficiency. It has been

successfully applied to compute the effective thermal conductivity of complex

materials including nanocomposites [9]. However, this approach does not include

mechanical variables such as strain in the model.

In this chapter, we present an approach that enables the calculation of thermal

conductivity of strained nanocomposite materials. The main idea is combining the

lattice dynamics for phonon dispersion change (i.e. wave effects) due to strain with

the BTE for interface scattering of phonons (i.e. particle effects). Several strain

dependent phonon scattering properties of the materials are used to link the lattice
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dynamics and the BTE. In this approach, there is no fitting parameter in the

calculation. In addition, the finite volume solution of BTE over unstructured meshes

allows thermal transport analysis of nanocomposites with complex geometries. In

this work, we focus on the calculation of the cross-plane thermal conductivity of a

Si0.2Ge0.8 composite with Si wires embedded in Ge host under tensile and

compressive hydrostatic and uniaxial strain conditions, as depicted in Fig. 2.1. For

comparison, the thermal conductivity variation of Si/Ge composites corresponding

to square, circular and diamond-shaped Si wire cross-sections is also calculated.

circularsquare diamond

unit cell

Strain

Si wires Ge host

Figure 2.1: Si0.2Ge0.8 nanocomposite material with applied strain.

2.2 Theoretical Model and Computational

Procedure

Figure 2.2 illustrates the theoretical model of the analysis. In this approach,

atomic interactions are described by using interatomic potentials. Mechanical

strains are translated to crystal lattice deformation by applying the Cauchy-Born
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rule. For the deformed crystal lattice, we employ the lattice dynamics theory to

compute the strain dependent phonon scattering properties for both Si and Ge,

including the group velocity, specific heat and phonon mean free path. The strain

dependent phonon scattering properties are then incorporated into the BTE to

describe the thermal transport with interface scattering in the strained

nanocomposites. Along with the BTE, a diffuse mismatch model is adopted for the

Si-Ge interface. In the numerical solution of BTE, a unit cell of the nanocomposite

material is taken as the computational domain with a periodic boundary condition.

The unit cell is discretized into unstructured triangular volumes. The BTE is solved

over the unstructured mesh by using a finite volume formulation. Heat flux and

effective temperature are calculated for the volumes and faces from the intensity

solution of the BTE. The strain dependent effective thermal conductivity can then

be obtained.

Figure 2.2: Theoretical model for the analysis of strain effect on the phonon thermal
conductivity of Si/Ge nanocomposites.

Several assumptions are implied in the theoretical model described above: (1)

Strain is assumed to be uniformly distributed throughout the nanocomposites, and

residual strain is not considered between Si-Ge interfaces; (2) the BTE model employs
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a “gray” assumption with a single group velocity and single relaxation time [48]; (3)

three phonon scattering dominates the thermal transport within each material, and

phonon scattering due to defects and/or impurities is neglected; (4) the scattering

between Si-Ge interface is assumed to be diffuse.

2.2.1 Strain dependent lattice dynamics

At the atomistic level, interaction between atoms in diamond crystal lattices

can be described by empirical interatomic potentials such as the Tersoff [49],

Brenner [50] and Stillinger-Weber [51] potentials. Tersoff empirical interatomic

potential is employed in this work for Si and Ge. Typically, the total potential

energy U of a N-atom system is given by

U =
∑

α

Uα =
1

2

∑

α 6=β

Vαβ (2.1)

where α and β are the atoms of the system and Vαβ is the bond energy between atoms

α and β given by

Vαβ = fC(rαβ) [aαβfR(rαβ) + bαβfA(rαβ)] (2.2)

where rαβ is the distance between α and β, fR and fA denote the repulsive and

attractive pair potentials defined as

fR(r) = Ae−λ1r (2.3)

fA(r) = −Be−λ2r (2.4)
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respectively, and fC(rαβ) is a smooth cutoff function going from 1 to 0 in a small range

around the cutoff distance Rc, which is chosen to include only the first-neighbor shell

for most structures of interest. fC(r) is defined as

fC(r) =























1 r < Rc − D

1
2
− 1

2
sin

(

π(r−Rc)
2D

)

Rc − D ≤ r ≤ Rc + D

0 r > Rc + D

(2.5)

In Eq. (2.2), aαβ is taken to be 1.0 for both Si and Ge, bαβ is a measure of the bond

order given by

bαβ =
(

1 + µnζn
αβ

)−1/2n
, (2.6)

ζαβ =
∑

κ 6=α,β

fC(rακ)g(θαβκ)exp
(

λ3
3(rαβ − rακ)

3
)

, (2.7)

g(θαβκ) = 1 + c2/d2 − c2/
[

d2 + (h − cosθαβκ)
2
]

(2.8)

where κ denotes an atom, and θαβκ is the bond angle between the bonds αβ and ακ.

All remaining variables are constant parameters. For Si, the constants are summarized

in the 3rd column of Table I in Ref. [49]. For Ge, the constants are adopted from

Table I in Ref. [52].

In the classical lattice dynamics, by using the periodicity of the crystal structure,

the phonon frequency spectrum can be obtained by computing the eigenvalues of the

dynamical matrix D(k) for each wave vector k in the first Brillouin zone, i.e. [53],

D(k) =
1

M











∑

β

Φ11
j,k(α, β)eik·(x0

β
−x0

α)
∑

β

Φ12
j,k(α, β)eik·(x0

β
−x0

α)

∑

β

Φ21
j,k(α, β)eik·(x0

β
−x0

α)
∑

β

Φ22
j,k(α, β)eik·(x0

β
−x0

α)











j, k = 1, 2, 3 (2.9)
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where α and β denote the atoms in the unit cell, M is the mass of atom, k is wave

vector, x0
α and x0

β are the equilibrium positions of atom α and β, respectively, and

Φpq
j,k(α, β) is force constant defined by

Φpq
j,k(α, β) =

∂2U(x)

∂xαj∂xβk









x=x0,α∈Bp,β∈Bq

j, k = 1, 2, 3 p, q = 1, 2, (2.10)

where xαj and xβk are the jth and the kth component of the position of atoms α

and β, respectively. Bp and Bq are Bravais lattices p and q, respectively. Note that

we choose α to be the center atom and loop atom β over all the atoms in the crystal

lattice. The phonon frequencies can be calculated by ωsk =
√

λsk, where λsk are the

eigenvalues of the 6×6 dynamical matrix D(k) and s is the index of the polarization.

When there is an applied strain, to relate the continuum level description of

deformation to displacements of the atoms in the crystal lattice as shown in Fig. 2.3,

we employ the hypotheses of the Cauchy-Born rule [54] which states that the crystal

lattice is homogeneously distorted according to the deformation gradient. For Si/Ge

crystal, there exist additional inner displacements between the two Bravais lattices.

The Cauchy-Born rule gives

x0
β − x0

α = F
(

X0
β − X0

α

)

+ ξ (2.11)

where F is the deformation gradient of the Bravais lattice, X0
α and X0

β are the

equilibrium positions of atom α and β in the undeformed configuration, respectively,

and ξ is the inner displacement of the two FCC Bravais lattices. In the reciprocal

lattice of a Bravais lattice, from Eq. (2.11), it is easy to show that, a given wave

vector k0 in the undeformed configuration of the lattice deforms to k in the
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deformation gradient F

Figure 2.3: Atom configuration and deformation for a diamond lattice.

deformed configuration with the relation

k = F−Tk0 (2.12)

Substituting Eqs. (2.11, 2.12) into Eq. (2.9), the strain dependent dynamical matrix

can then be written as [53]

D(k) =
1

M











∑

β

Φ
11
jk(α, β)eik0·(X0

β
−X0

α)
∑

β

Φ
12
jk(α, β)eik0·(X0

β
−X0

α−F−1ξ)

∑

β

Φ
21
jk(α, β)eik0·(X0

β
−X0

α+F−1ξ)
∑

β

Φ
22
jk(α, β)eik0·(X0

β
−X0

α)











α = 1, j, k = 1, 2, 3 (2.13)

where

Φ
pq

j,k(α, β) =
∂2U(x)

∂xαj∂xβk









x=x0(X0,F,ξ),α∈Bp,β∈Bq

j, k = 1, 2, 3 p, q = 1, 2 (2.14)
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and F−1 is the inverse of F. The phonon frequencies of the strained bulk crystal

Si and Ge, ωsk(F, ξ), can be obtained by computing the eigenvalues of Eq. (2.13).

After the phonon frequency spectrum is obtained, the Helmholtz free energy A of the

system can be calculated by

A = U(X0,F, ξ) +
1

2

∑

k

6
∑

s=1

~ωsk(F, ξ)

+kBT
∑

k

6
∑

s=1

ln

(

1 − e
−

~ωsk(F,ξ)

kBT

)

(2.15)

where U(X0,F, ξ) is the total potential energy of the system at the deformed

equilibrium position, ~ is the reduced Planck’s constant, kB is the Boltzmann

constant and T is temperature. For a given deformation gradient F, the inner

displacement ξ can be determined by minimizing the Helmholtz free energy, i.e.,

∂A

∂ξ
= 0 (2.16)

In this work, we impose uniaxial strains from -2% (compressive) to 2% (tensile) in

the x-direction, which gives a maximum of 2% change of the crystal volume. This

range of the strain are achievable with moderate external loadings. In terms of the

deformation gradient, the uniaxial strains are corresponding to F11 = [0.98, 1.02],

F22 = F33 = 1.0 and Fij = 0, i 6= j. With the maximum strain in one direction

fixed, hydrostatic strains are applied. For the hydrostatic strains, Fii = [0.98, 1.02],

i = 1, 2, 3 and Fij = 0, i 6= j. Note that, for hydrostatic and uniaxial deformations,

ξ = 0 due to the symmetry of the lattice deformation.
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2.2.2 Strain dependent thermodynamic and phonon

scattering properties

For a given deformation gradient F, we compute the phonon frequency spectrum

of Si and Ge lattices by sampling the k points in the first Brillouin zone. Once

the phonon frequency spectrum is obtained, the bulk thermodynamic and phonon

scattering properties of Si and Ge can be calculated. Of particular interest are the

specific heat, the average phonon group velocity and the average phonon mean free

path. As will be described in Chap. 2.2.3, they are the physical variables used in

the BTE for the analysis of thermal transport in the Si/Ge nanocomposites. To

compute these thermodynamic and phonon scattering properties, we first compute

the bulk thermal conductivity of Si and Ge as a function of F by using the Slack

relation [55, 56]. The Slack relation is suitable for calculating the thermal conductivity

of nonmetallic crystals at high temperatures (above 1/5 of the Debye temperature)

where heat is mainly carried by acoustic phonons and the scattering is mainly intrinsic

three phonon process. The bulk thermal conductivity is given by [55, 56]

kb =
3.1 × 107 〈M〉 δT 3

D

T 〈γ2〉N2/3
c

(2.17)

where 〈M〉 is the average atomic mass of the crystal, δ3 is the average volume per

atom, Nc is the number of atoms in a primitive cell and TD is high temperature limit

of the Debye temperature defined by

T 2
D =

5h2
∫ ∞

0
ω2Dp(ω)dω

3k2
B

∫ ∞

0
Dp(ω)dω

(2.18)
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where h is Planck’s constant, ω is the frequency and Dp(ω) is phonon density of

states. 〈γ2〉 is mode averaged square of the Grüneisen parameter given by

〈

γ2
〉

=
1

C

∑

k

6
∑

s=1

(γsk)
2Csk (2.19)

where the Grüneisen parameter γsk for the s-th mode of a given wave vector k is

defined as

γsk = −∂ ln ωsk

∂ ln V
, (2.20)

where V is the volume per atom, Csk is the phonon specific heat given by

Csk = kB

(
~ωsk

kBT
)2e

~ωsk
kBT

(e
~ωsk
kBT − 1)2

, (2.21)

and C is the total specific heat given by

C =
∑

k

6
∑

s=1

Csk. (2.22)

Note that, since the phonon frequencies ωsk(F, ξ) depend on the applied strain,

thermodynamic properties such as TD, γ, C and kb are all functions of strain. For

the simplicity of notation, “(F, ξ)” is not shown explicitly for these quantities.

The acoustic phonon group velocity for sth polarization of wavevector k is

calculated by

vsk =

∣

∣

∣

∣

∂ωsk

∂k

∣

∣

∣

∣

. (2.23)
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Then the average phonon group velocity can be obtained by

v =

∑

k

3
∑

s=1

Cskvsk

Ca
s ∈ acoustic phonon branches, (2.24)

with Ca being the average acoustic phonon specific heat obtained by summing Csk

over the acoustic branches

Ca =
∑

k

3
∑

s=1

Csk s ∈ acoustic phonon branches. (2.25)

After the bulk thermal conductivity kb, the average acoustic specific heat Ca and

the average phonon group velocity v are obtained, the average phonon mean free path

(MFP) can be calculated from approximated Kinetic theory by [57]

Λ ≈ 3kb

Cav
, (2.26)

Note that, in Eqs. (2.24), (2.25) and (2.26), only the acoustic branches of the

phonon dispersion are included. The optical phonons are excluded for a better

approximation of the average phonon MFP since they contribute little to the

thermal conductivity around room temperature for Si and Ge due to their small

group velocities. More detailed justification for this choice can be found in Refs.

[58, 57]. Again, the phonon scattering properties Λ, v and Ca are all functions of

the strain.
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2.2.3 Boltzmann transport equation model for

nanocomposites

Once the strain dependent phonon thermal properties of the bulk Si and Ge are

obtained, the effective thermal conductivity of nanocomposites can then be

calculated by using a thermal transport model. Among various models that can be

used to predict the thermal conductivity of nanocomposites [36, 37, 38], BTE based

thermal modeling approaches have been developed and applied to thermal transport

analysis in various applications with demonstrated accuracy and efficiency (see [48]

for a review). Among the BTE models, the “gray” BTE approach, which assumes

all phonons have the same average group velocity and relaxation time, is adopted in

this work. Published work has shown that frequency independent group velocity

and relaxation time is a good approximation for the calculation of cross-plane

phonon thermal conductivity [57]. By applying strain dependent thermal properties

into BTE, the strain dependent thermal conductivity can be calculated.

x

y

z

s

r

Figure 2.4: Directional phonon intensity.
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In this work, we adopt the “gray” BTE approach for the computational thermal

transport analysis of Si/Ge nanocomposites. The BTE model under “gray”

assumption can be expressed in terms of total phonon intensity as [59, 60]

∇ · (I(r, s) · s) = −I(r, s) − I0(r)

Λ
(2.27)

where I(r, s) is the total phonon intensity at a spatial position r = {x, y, z} over a

path length ds in the direction of unit vector s. As shown in Fig. 2.4, s is defined by

s = sinθcosφex + sinθsinφey + cosθez (2.28)

where θ ∈ [0, π] and φ ∈ [0, 2π] represent polar and azimuthal angles, respectively,

and ex, ey and ez are the unit vectors in the x, y and z directions, respectively. I0(r)

is the equivalent equilibrium phonon intensity which is given by

I0(r) =
1

4π

∫ 2π

0

∫ π

0

I(r, s)sinθdθdφ (2.29)

Assuming a uniform distribution of the Si nanowires, the BTE can be solved in

a 2-D unit cell of the nanocomposite material as shown in Fig. 2.5. The edge length

of the unit cell is denoted as L. The phonon intensities in the Si-Ge domains are

determined by the BTE. Periodic boundary conditions are employed on the outer

boundary of the unit cell. The phonon scattering at the Si-Ge interface is assumed to

be diffuse. In this work, the boundary and interface models developed by Yang and

Chen [9] for nanocomposites are adopted and implemented using the finite volume

method. The boundary and interface conditions are briefly summarized as follows.

For the top (y = L) and bottom (y = 0) edges, the periodic boundary condition can
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Figure 2.5: Unit cell of the Si/Ge nanocomposite
material.

be written as

I(x, L, s) = I(x, 0, s), (2.30)

for all x and s, which implies that phonons coming in equal phonons going out for a

given x and s. For the right (x = 0) and left (x = L) edges, the periodic boundary

condition implies that the difference between the phonon intensities in any given

direction at the right and left edges is independent of y. This constant difference is

imposed by a temperature drop, ∆T , between the left and right edges. The magnitude

of ∆T , however, does not affect the result of the thermal conductivity. The periodic
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boundary condition is given by

I(0, y, s) − I(L, y, s) =
vGeC

a
Ge∆T

4π
, (2.31)

where vGe and Ca
Ge denote the group velocity and acoustic specific heat of Ge,

respectively. The diffuse interface scattering is represented by a simple diffuse

mismatch model which assumes, at the interface, part of the phonons are

transmitted through and the rest are reflected back. The transmitted and reflected

phonons are evenly distributed across all angles on each side of the interface, as

shown in Fig. 2.5. From energy conservation, the relation of reflectivity R and

transmissivity T is given by

TGS = RSG = 1 − TSG, (2.32)

where the subscript GS denotes from Ge into Si and vise versa, and TGS is given

by [57]

TGS =
Ca

SivSi

Ca
GevGe + Ca

SivSi

. (2.33)

By solving the BTE in both Si and Ge domains with the boundary and

interface conditions, the phonon intensity I(x, y, s) can be obtained. It is then

straightforward to calculate the effective temperature distribution, heat flux and

thermal conductivity. Note that, since the local thermal equilibrium condition

breaks down in nanostructures, an effective temperature is used to represent the
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local energy density, i.e.,

T (x, y) =
4πI0(x, y)

Cav
(2.34)

The average temperature at each y-z plane along the x-direction is then obtained as

T̄ (x) =
1

L

∫ L

0

T (x, y)dy (2.35)

The heat flux in the x-direction, qx, is computed by integrating the x-component of

the phonon intensity over the entire solid angle

qx(x, y) =

∫ 2π

0

∫ π

0

I(x, y, s)sin2θcosφdθdφ (2.36)

The effective phonon thermal conductivity is then calculated by using Fourier’s law.

kp =

∫ L

0
qx(x, y)dy

T̄ (0) − T̄ (L)
(2.37)

Note that kp is guaranteed to be constant along the x-axis by the periodic boundary

conditions imposed by Eq. (2.30).

2.2.4 Finite volume solution of BTE

Due to the similarity between the thermal radiative transfer equation (RTE)

and the BTE, numerical methods for solving RTE are often applicable to BTE.

Among a variety of numerical methods that are used to solve the RTE, the discrete

ordinates method (DOM) and the finite volume method (FVM) are most popular.

The DOM is known for its simplicity and efficiency. However, like the finite
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difference method, the DOM typically requires a structured grid, which imposes a

major difficulty for problems involving complex geometries. In comparison, the

FVM can be easily applied to unstructured meshes. Thus it provides greater

flexibility in treating complex geometries. In addition, integration over the control

angles is calculated exactly and heat flux in control volumes is automatically

conserved in FVM [61]. Due to these attractive properties, the FVM has been

employed for radiative thermal transport analysis in various

applications [62, 63, 64, 65]. It has also been applied to obtain BTE solution for

heat transfer analysis of submicron structures [66]. In this work, as the Si/Ge

nanocomposites to be investigated contain Si nanowires with different shaped

cross-sections as shown in Fig. 2.1, the FVM is employed in the computational

analysis. One difficulty in the FVM solution of the BTE on an unstructured mesh is

that the control angles may overlap with the control volume boundaries. In such

cases, the overlapping control angle contains both the outgoing and incoming

phonons. Several authors have addressed this issue for radiative heat transfer

problems [63, 64, 67]. We employ an exact treatment proposed in Ref. [67]. This

treatment is found to be effective to resolve the problem for our calculations.

As shown in Fig. 2.6, the 2-D domain of the Si-Ge unit cell is discretized into

non-overlapping triangular volumes (or elements). The volume of a given triangular

element is denoted as ∆V . The length of the edges is denoted as ∆Ai, i = 1, 2, 3.

Within each triangular volume, the phonon intensity is defined on the center node of

the triangular volume. The total solid angle, 4π, of the center node is discretized into

Nθ × Nφ control angles along θ and φ directions. The control angles are denoted as

∆Ωmn (1 ≤ m ≤ Nθ, 1 ≤ n ≤ Nφ) with the polar and azimuthal angles spanning from

θm to θm+1 and φn to φn+1, respectively, as shown in Fig. 2.6. Within each control

29



Heat

periodic boundary

periodic boundary

Si

Ge

Figure 2.6: Spatial and angular discretization.

volume and control angle ∆Ωmn, the phonon intensity is assumed to be constant and

denoted as Imn. For each control volume and control angle, the governing BTE, Eq.

(2.27), is integrated over ∆V and ∆Ωmn to yield

∫

∆Ωmn

∫

∆V

∇ · (Is) dV dΩ =

∫

∆Ωmn

∫

∆V

(−I − I0

Λ
) dV dΩ (2.38)

Applying the divergence theorem, Eq. (2.38) can be rewritten as

∫

∆Ωmn

∫

∆A

Is · n dA dΩ =

∫

∆Ωmn

∫

∆V

(−I − I0

Λ
) dV dΩ (2.39)

For a given triangular control volume with a center node P , the phonon intensity in

the control angle ∆Ωmn is denoted as Imn
P . Assuming that for a given control angle,
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facial intensities are constant on each boundary face of the volume, the following

finite volume formulation can be obtained from Eq. (2.39) as

∑

i=1,2,3

Imn
i ∆AiD

mn
Ci =

1

Λ
(−Imn

P + (Imn
0 )P )∆V ∆Ωmn, (2.40)

where Imn
i is the facial intensity on ∆Ai, i = 1, 2, 3, and the directional weight Dmn

Ci

is given by

Dmn
Ci =

∫ θm+1

θm

∫ φn+1

φn

(s · ni)sinθdθ dφ, i = 1, 2, 3, (2.41)

where s is given by Eq. (2.28), ni is the outward normal of the i-th face of the control

volume. For 2-D problems, Dmn
Ci can be obtained as

Dmn
Ci =

[

∆θ

2
− 1

4

(

sin2θm+1 − sin2θm
)

]

×
[

nx

(

sinφn+1 − sinφn
)

− ny

(

cosφn+1 − cosφn
)]

(2.42)

where nx and ny are the x- and y-components of ni. In Eq. (2.41), the sign of Dmn
Ci

(or equivalently, the sign of s · ni) determines whether the phonons are incoming or

outgoing across the faces of control volume.

The facial intensity Imn
i is then related to the nodal intensity by a step scheme

assuming a downstream facial intensity is equal to the upstream nodal intensity. For

example, as shown in Fig. 2.7, for face 2 of the control volume of node P , if the

azimuthal angle of s is between φ2 and φ3, one obtains s · n2 > 0, i.e., phonons are

outgoing and P is the upstream node. Therefore, Imn
i=2 = Imn

P . If s is between φ4 and

φ5, then s · n2 < 0 and the node I of the neighbor control volume is the upstream

node. Therefore, Imn
i=2 = Imn

I . However, as shown in Fig. 2.7, the control angle from
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Figure 2.7: Step scheme for the facial
intensity.

φ3 to φ4 overlaps with the face and contains both incoming and outgoing phonons.

It is more involved to determine the facial intensity in this situation. The solution to

this control angle overlap problem has been summarized in Ref. [63]. In this work, we

employ an exact treatment described in Ref. [67] which splits the control angle into

[φ3, φ′] and [φ′, φ4] as shown in Fig. 2.7, and integrates the two resultant control angle

separately. The facial intensity can be expressed by the following general expression

as

Imn
i Dmn

ci = Imn
P Dmn

ci,out + Imn
I Dmn

ci,in (2.43)

where, for a non-overlapping control angle, if s · ni > 0, then

Dmn
Ci,out =

∫ θm+1

θm

∫ φn+1

φn

(s · ni)sinθdθ dφ, Dmn
Ci,in = 0, (2.44)
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and if s · ni < 0, then

Dmn
Ci,in =

∫ θm+1

θm

∫ φn+1

φn

(s · ni)sinθdθ dφ, Dmn
Ci,out = 0. (2.45)

For an overlapping control angle, without loss of generality, assuming s · ni > 0

in [φn, φ′] and s · ni < 0 in [φ′, φn+1], we have

Dmn
Ci,out =

∫ θm+1

θm

∫ φ′

φn

(s · ni)sinθdθdφ, (2.46)

Dmn
Ci,in =

∫ θm+1

θm

∫ φn+1

φ′

(s · ni)sinθdθ dφ. (2.47)

When a control volume face is on the Si-Ge interface, the interface condition given in

Eq. (2.32) is applied by replacing Imn
I in Eq. (2.43) with

Imn
I =

RPI

π

∑

mn

Imn
P Dmn

Ci,out −
TIP

π

∑

mn

Imn
I Dmn

Ci,in (2.48)

where RPI is the reflectivity from medium of node P to the medium of node I, and

TIP is the transmissivity from medium of node I to the medium of node P . It should

be noted that the interface condition only modifies Imn
I in Eq. (2.43) and Imn

P remains

the same. Otherwise, the transmission and reflection of the phonons would be double

counted and the energy conservation condition would be violated. Substituting Eq.

(2.43) into Eq. (2.40), the finite volume formulation of the BTE for each control

volume and control angle can be obtained as

(
∑

i

∆AiD
mn
Ci,out +

∆V

Λ
∆Ωmn − ∆V

4πΛ
(∆Ωmn)2)Imn

P

= −
∑

i

∆AiD
mn
Ci,inI

mn
I +

∆V

4πΛ
(

∑

m′n′ 6=mn

Im′n′

P ∆Ωm′n′

) ∆Ωmn (2.49)

33



For the global system, there are a total of NV ×Nφ ×Nθ equations, where NV is the

number of control volumes. This set of equations are solved iteratively by using the

Gauss-Seidel method. Note that, like the DOM, in Gauss-Seidel iterations, the nodal

intensities are calculated in each control volume and control angle by using the values

obtained from the last iteration. No global matrix storage is required. The iteration

stops when the following convergence condition is reached:

max(
∣

∣Imn
P − (Imn)old

P

∣

∣ /Imn
P ) ≤ 10−6. (2.50)

Note that, while in this work we investigate the thermal conductivity of composite

materials with periodic nanostructures, the approach presented is not limited to

periodic systems. For non-periodic systems, the analysis procedure remains the

same with the periodic boundary conditions (Eqs. (2.30, 2.31)) changing to

temperature [68], diffuse [69] or other appropriate boundary conditions.

2.3 Results and Discussion

2.3.1 Strain effect on thermodynamic properties of bulk Si

and Ge

In this section, we investigate the strain effect on thermodynamic properties of

bulk Si and Ge. From the lattice dynamics with Tersoff potential, various

thermodynamic properties of bulk Si and Ge can be calculated. A few

thermodynamic properties that are used in the calculation of the thermal

conductivity are first calculated under unstrained condition. These results are

compared with the experimental data and other theoretical results. Table 2.1 lists
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the specific heat (C), Debye temperature (TD), Grüneisen parameter (γ),

longitudinal acoustic group velocity at Γ point in the first Brillouin zone (vΓ
LA),

transverse acoustic group velocity at Γ point (vΓ
TA), longitudinal acoustic group

velocity at X point (vX
LA), and the bulk thermal conductivity (kb) of Si. The

comparison shows that the Tersoff potential gives reasonable estimates to the

thermodynamic properties, including the bulk thermal conductivity.

Table 2.1: Room temperature thermodynamic properties of bulk Si

C( J
m3K

) TD(K) γ vΓ
LA(m

s
) vΓ

TA(m
s
) vX

LA(m
s
) kb(

W
mK

)

1.59 × 106 720 0.79 8705 5470 4540 167.6

1.65 × 106[70] 645[71] 0.8[72] 8480[73] 5860[73] 4240[73] 156[74]

As mentioned in Chap. 2.2.1, we considered a maximum of 2% strain in every

direction caused by four types of strains: hydrostatic compressive, hydrostatic tensile,

uniaxial compressive and uniaxial tensile, as shown in Fig. 2.8. In the following

discussion, if not otherwise specified, the strains are corresponding to a 2% strain,

i.e., Fii = 0.98, i = 1, 2, 3 and Fij = 0, i 6= j for hydrostatic compressive strain,

Fii = 1.02, i = 1, 2, 3 and Fij = 0, i 6= j for hydrostatic tensile strain, F11 = 0.98, F22 =

F33 = 1.0 and Fij = 0, i 6= j for uniaxial compressive strain, and F11 = 1.02, F22 =

F33 = 1.0 and Fij = 0, i 6= j for uniaxial tensile strain.

Figure 2.9 shows the dispersion relations of Si for different strain conditions

calculated from Eq. (2.13). Figure 2.9 (a) is for unstrained case and the dots in it

are experimental data from [75]. The phonon dispersion calculated from our lattice

dynamics model matches well with experimental data. Figure 2.9 (b) and (c)
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(a) (b)

(c) (d)
Figure 2.8: Strains considered: (1) hydrostatic compressive. (2) Hydrostatic
tensile. (3) Uniaxial compressive. (4) Uniaxial tensile.

respectively show dispersion relation of Si when 2% hydrostatic compressive and

hydrostatic tensile strains are applied. By comparison of Fig. 2.9 (a)-(c), we find

that compressive strain increases phonons frequencies while tensile strain decreases

them. Figure 2.9 (d) is the dispersion relation for 2% uniaxial tensile strain.

Comparing (c) and (d) we find that hydrostatic strains has a larger influence on

phonon frequencies than uniaxial strains. Strain effect on the dispersion relation of

Ge is observed to be similar.

After frequency spectrum is known, other scattering properties can be calculated.

Figure 2.10 shows the strain effect on the phonon density of states (PDOS) of Si under

hydrostatic compressive and tensile strains. A direct sampling method is used in the

calculation of PDOS, which generates 100× 100× 100 uniformly distributed k-points

36



0 100 200 300 400 500 600
0

2

4

6

8

10

12

14

16

18

F
re

qu
en

cy
 (

T
H

z)

k points

(a). No strain
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(b). Hydrostatic compressive strain
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(c). Hydrostatic tensile strain
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(d). Uniaxial tensile strain

Figure 2.9: Dispersion relation of Si at 0 K for different strain conditions: (1)
unstrained (dots are experimental data). (2) Hydrostatic compressive strain. (3)
Hydrostatic tensile strain. (4) Uniaxial tensile strain.
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Figure 2.10: Strain dependent phonon density of state of Si at
300 K.

in the first Brillouin zone and approximates the PDOS by a normalized histogram.

It is shown that a shift of optical phonons to the left occurs when the tensile strain

is applied, while a shift to the right occurs for the compressive strain. In other

words, compared to the unstrained case, most optical phonons will be at a lower

(or higher) energy when tensile (or compressive) strain is applied. Note that there

are similar peak shifts for longitudinal acoustic (LA) phonons, indicating that the

hydrostatic strain has a significant effect on them as well. Variations of transverse

acoustic phonons are also observed, although not equally significant compared to the

LA and optical phonons. Similar behavior of the PDOS is observed for Ge under

strain (not shown). The different frequency shift direction of the PDOS is largely due

to the change of the stiffness of the atomic bonds which is represented by the force

constants given in Eq. (2.14), i.e., a compressive (tensile) strain increases (decreases)
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the force constants and consequently increases (decreases) the vibration frequencies

of the atoms. Figure 2.11 shows the overall Grüneisen parameter under hydrostatic

strain at different temperatures. It’s shown that Grüneisen parameter increases when

temperature increases and when tensile strain is applied. Again, similar behavior of

the Grüneisen parameter of Ge is observed.
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Figure 2.11: Strain dependent Grüneisen parameter of Si with
respect to temperature.

Figure 2.12 shows the Debye temperature of bulk Si crystal under hydrostatic

compressive, uniaxial compressive, hydrostatic tensile and uniaxial tensile strains at

the temperature range 200-500 K comparing to the results of the unstrained case.

The Debye temperature is almost independent of temperature but shows a strong

dependence on strains. Debye temperature’s increase with compressive strains and

its decrease with the tensile strains can be explained from the PDOS variation shown

in Fig. 2.10. In addition, it’s shown in the figure that with the same 2% strain,

hydrostatic strains produce a larger effect on TD than the uniaxial strains.
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Figure 2.12: Strain dependent Debye temperature of Si between
200-500 K.

With the decrease in Grüneisen parameter and the increase in Debye

temperature for compressive strains, the Slack relation given in Eq. (2.17) predicts

a increase in bulk phonon thermal conductivity. Similarly, a reduction of thermal

conductivity is predicted for tensile strains. Same conclusions can be obtained for

Ge. Figure 2.13 shows the bulk thermal conductivity of Si with respect to

temperature and strain. In Ref. [55], Slack has qualitatively explored the strain

effect on bulk thermal conductivity of crystalline solids by assuming possible

changes in Debye temperature and Grüneisen parameter due to strain. Our

calculations have confirmed his prediction quantitatively. Figure 2.13 shows that

hydrostatic strains have a stronger effect on bulk thermal conductivity than the

uniaxial strains. The stars in the figure show the experiment data of unstrained

bulk Si taken from Table I of Ref. [74]. The calculated unstrained bulk thermal

conductivities are higher than experiment results but in reasonable agreement.
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Figure 2.13: Strain dependent bulk thermal conductivity of Si
between 200-500 K.

Figure 2.14 shows the contribution of optical phonons to the overall specific heat.

It is shown that, at low temperatures (T < 100K), acoustic phonons are the major

contributors to specific heat but at high temperatures (T > 400K), optical phonons

contribute about half of the total specific heat. Similar results have been obtained

in Ref. [57]. Since the optical phonons contribute little to heat transfer due to their

small group velocities, it is justifiable to exclude the optical phonons in the calculation

of the phonon mean free path and average group velocity as shown in Eqs. (2.26,

2.24). MD data taken from Fig. 10 of Ref. [53] and experiment data taken from Fig.

1 of Ref. [76] are also shown in Fig. 2.14. The strain and temperature dependence of

the acoustic specific heat is shown in Fig. 2.15, where a compressive strain decreases

the specific heat and a tensile strain increases it. Once again, the results for Ge are

similar. The results are not shown for the sake of brevity.

41



0 200 400 600 800 1000
0

0.5

1

1.5

2

2.5

3

Temperature (K)

S
p

e
c
if
ic

 H
e

a
t*

1
e

6
 (

J
/(

m
3
K

))

 

 

Unstrained with only acoustic phonons
Unstrained with all phonons
MD
experiment

Figure 2.14: Specific heat of Si between 50-1000 K.
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Figure 2.15: Strain effect on acoustic specific heat of Si between
200-500 K.

42



0.98 0.985 0.99 0.995 1 1.005 1.01 1.015 1.02
3120

3125

3130

3135

3140

3145

3150

3155

3160

L/L
0

G
ro

up
 V

el
oc

ity
 (

m
/s

)

 

 
Hydrostatic strain
Uniaxial strain

Figure 2.16: Average group velocity of Si as a function of strain
in one direction (L0 is the undeformed length).
.

Figure 2.16 shows the variation of average group velocity with respect to strain.

For the small strains considered here, the group velocity shows a nearly linear

dependence on the strain, for both hydrostatic and uniaxial cases. For the same 2%

strain, hydrostatic strain leads to a larger variation than uniaxial strain. The group

velocities of unstrained Si and Ge at room temperature are calculated to be

3143 m/s and 2233 m/s, respectively. In Ref. [9], the group velocities of Si and Ge

were calculated by approximating the phonon dispersion using a simple sine

function. The results are 1804 m/s for Si and 1042 m/s for Ge. It should be noted

that this discrepancy is largely due to the differences in the phonon dispersion and

the PDOS given by the Tersoff potential and the sine function.

Figure 2.17 shows phonon mean free path of Si with respect to strain. Bulk

thermal conductivity of Si decreases with increasing temperature, further decreases
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Figure 2.17: Strain dependent phonon mean free path of Si
between 200-500 K.

with tensile strain applied. Acoustic specific heat increases with temperature and

further increases with tensile strain applied. Strain and temperatures shows limited

influence on average group velocity. Hence, from kinetic theory, phonon mean free

path of Si should show the same dependence on temperature and strain as bulk

thermal conductivity. Figure 2.17 confirms this prediction.

2.3.2 Strain dependent thermal conductivity of Si0.2Ge0.8

nanocomposites

Having calculated the thermal properties of bulk Si and Ge as functions of strain,

the effective thermal conductivity is computed for the Si/Ge nanocomposites on unit

cells as shown in Fig. 2.18 by using the FVM and solving the BTE over unstructured

triangle meshes as shown in Fig. 2.6. The atomic percentage of Si is fixed at 20%, i.e.,
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the nanocomposites are all Si0.2Ge0.8. In all calculations, θ is discretized uniformly

into 12 angles from 0 and π while φ is discretized into 24 angles from 0 and 2π.

(b) circular(a) square (c) diamond

Figure 2.18: Unit cells with different cross-section shapes for Si0.2Ge0.8

nanocomposites: square, circular and diamond-shaped. LSi is the
characteristic length of the Si nanowire.

Figure 2.19 shows the size and temperature effects on phonon thermal

conductivity of the Si0.2Ge0.8 nanocomposite with square-cross-section Si nanowires.

The x-coordinate is the characteristic length of the Si nanowire, denoted as LSi,

which is the width of the square cross-section, as shown in Fig. 2.18 (a). Thermal

conductivity of the nanocomposite decreases when the temperature increases or

when size decreases. The large reduction of the thermal conductivity with the

decreasing characteristic length is due to the dominance of the interface scattering

over the ballistic transport in nanocomposites [9]. Figure 2.19 shows that this

interface scattering induced thermal conductivity reduction holds over a wide range

of temperatures while the effect is more significant at low temperatures.

The heat flux in the x-direction of the unstrained Si0.2Ge0.8 nanocomposite with
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Figure 2.19: Phonon thermal conductivity of Si0.2Ge0.8

nanocomposites with respect to size and temperature (square
Si nanowire cross-section).

10 nm × 10 nm Si nanowire at 300 K is shown in Fig. 2.20. The low heat flux

along the path blocked by the Si wire is clearly due to the phonon scattering at

the Si-Ge interface. The effect of strain along with the size effect on the effective

thermal conductivity is shown in Figs. 2.21 and 2.22. It is shown that strain has a

significant effect on the thermal conductivity of the nanocomposite. Depending on the

characteristic length of the Si nanowire, with a strain of 2%, an applied hydrostatic

tensile or compressive strain can reduce or increase the thermal conductivity up to

15%, while uniaxial tensile or compressive strain can reduce or increase the thermal

conductivity by as much as 8%. More importantly, the strain effect on the thermal

conductivity of bulk materials is largely preserved in the composite configuration

over all the sizes. This result shows that the mechanical effect can be combined
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Figure 2.20: Heat flux profile of unstrained Si0.2Ge0.8 at 300 K
(Si nanowire with 10 nm × 10 nm square cross-section).

with structural effects such as size and composition effects to further manipulate and

control the thermal conductivity of nanomaterials and nanostructures.

If we fix the characteristic length of Si nanowire to be 10 nm but change the length

of the unit cell L, we can study the content effect on phonon thermal conductivity. At

300 K, with the increase of the atomic percentage of Si, L decreases, which increases

interface scattering, leading to reduced phonon thermal conductivity , as shown in

Fig. 2.23.

Keeping the atomic percentage of the Si nanowire at 20%, we change the cross-

sectional shape of the Si nanowire to be circular and diamond-shaped. Note that, for

circular cross-sections, the characteristic length LSi is the diameter and for diamond-

shaped cross-sections, the characteristic length LSi is the length of the edges, as shown
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Figure 2.21: Phonon thermal conductivity of Si0.2Ge0.8 under
hydrostatic strain at 300 K (square Si nanowire cross-section).
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Figure 2.22: Phonon thermal conductivity of Si0.2Ge0.8 under uniaxial
strain at 300 K (square Si nanowire cross-section).
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Figure 2.23: Content effect on phonon thermal conductivity of SixGe1−x

at 300 K (square Si nanowire cross-section).

in Fig. 2.18 (b) and (c). Same set of calculations are performed to obtain the strain

and size effects on the effective thermal conductivity. The heat flux profiles for the

diamond-shaped and circular cross-sections are shown in Figs. 2.24 and 2.25. The

difference in the heat flux profiles is obvious, especially the shape of the low heat flux

regions (the light colored regions).

In order to better understand the influence of cross-section shapes, we plot the

effective temperature distribution for the three different unit cells, as shown in Fig.

2.26. Here effective temperature is a representative of local energy. We can clearly

see jumps at the interfaces, which means local energy is not continuous at interfaces.

Again, the shape of the local energy is related to their nanowire cross-section shapes.
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Figure 2.24: Heat flux profile of unstrained Si0.2Ge0.8 at
300 K (diamond-shaped Si nanowire cross-section with the
characteristic length of 10 nm).
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Figure 2.25: Heat flux profile of unstrained Si0.2Ge0.8 at 300 K
(circular Si nanowire cross-section with the characteristic length
of 10 nm).
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Figure 2.26: Effective temperature distribution of unstrained Si0.2Ge0.8 at 300 K
(LSi = 10nm). From top to bottom: square cross-section, diamond-shaped cross-
section and circular cross-section for Si nanowire.
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Figure 2.27: Phonon thermal conductivity of Si0.2Ge0.8 with different
cross-section shapes of Si nanowire under hydrostatic strains at 300 K.

However, it is observed that the curves of the effective thermal conductivity are

very similar to those shown in Figs. 2.21 and 2.22, except at the lower limit of the

characteristic length. Figure 2.27 shows the thermal conductivities for the three

types of Si nanowires at the characteristic length of 10 nm under hydrostatic strains

at 300 K. The strain effect is almost the same for the three nanocomposites. The

circular and square cases have very close thermal conductivities, with or without

strain. The magnitude of the thermal conductivity for diamond-shaped cross-section

is appreciably lower (about 5%). Figure 2.28 shows the difference in thermal

conductivity for diamond-shaped and square cross-sections over the characteristic

length from 10 nm to 200 nm. The thermal conductivity difference between the two

nanocomposites drops exponentially. These results show that, with the same atomic

percentage of Si, the cross-sectional shape makes little difference when the
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characteristic length increases. However, for very small systems (e.g., characteristic

length < 10nm), the cross-sectional shape starts to play a role.
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Figure 2.28: Difference in phonon thermal conductivity between
diamond-shaped and square cross-sections as a function of
characteristic length.

Compared with nanocomposites with square cross-section Si nanowire,

corresponding nanocomposites with diamond-shaped cross-section of Si nanowire

have lower phonon thermal conductivities. If we choose the diagonal length of the

diamond to be the characteristic length and use the same LSi and L, as shown in

Fig. 2.29, another set of phonon thermal conductivities can be compared.

Figure 2.30 shows phonon thermal conductivities of the unit cells described in

Fig. 2.29 with LSi/L to be the same as in Si0.2Ge0.8 nanocomposites with square

cross-section Si nanowire. No strain is applied and the temperature is 300 K. In this

case, phonon thermal conductivities of nanocomposites with diamond-shaped

cross-section nanowire are larger than corresponding values of nanocomposites with
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(a) square (b) diamond
Figure 2.29: Unit cells with square and diamond cross-section
shapes of Si nanowires.
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Figure 2.30: Phonon thermal conductivity of unstrained SiGe
nanocomposites with square and diamond cross-section shapes
of Si nanowire at 300 K.
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square cross-section shape. This is because in the former one, the atomic percentage

of Si is much less than 20%, resulting in smaller interface scattering and larger

phonon thermal conductivity.

2.3.3 Strain dependent phonon thermal conductivity of

porous nanostructures

Figure 2.31: Mesh of the unit cell of a porous material.

Other than the Si/Ge nanocomposites, the BTE solver we developed can also

be used to calculate phonon thermal conductivity of other materials, such as nano-

porous materials. Figure 2.31 shows a mesh of the unit cell of a nano-porous material,

where the center region is a nano-sized cavity. For the sake of simplicity, we use Lp

to represent the characteristic length of the cavity and L to stand for the length of
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the edge of the unit cell. On the boundary of the cavity, diffuse reflection of the

phonons is assumed, i.e., all phonons are reflected and evenly distributed across all

angles on the material side of the interface. Using the BTE solver, thermal transport

properties are calculated. Figure 2.32 shows the heat flux and effective temperature

distribution profiles for a nano-porous Ge material at 300 K with Lp equal to 10 nm

and Lp/L equal to LSi/L in the Si0.2Ge0.8 nanocomposite case. Comparing this figure

with Fig. 2.20, it is shown that the heat flux along the path is more heavily blocked

by the cavity. Compared with the Si/Ge nanocomposite with square nanowire cross-

section shown in Fig. 2.26, the temperature drop in x direction across the cavity is

slightly larger than that across the Si-Ge interfaces. The heat flux and temperature

results imply a lower phonon thermal conductivity in the nano-porous material.
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Figure 2.32: Heat flux and effective temperature distribution profiles of unstrained
porous Ge at 300 K (square cross-section with the characteristic length of the cavity
being 10 nm).

Figure 2.33 shows the size and temperature dependent phonon thermal

conductivity of the nano-porous Ge material. Similar to Si0.2Ge0.8 nanocomposites,

phonon thermal conductivity increases with size and decreases with temperature.
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Figure 2.33: Phonon thermal conductivity of nano-porous Ge
with respect to size and temperature.

Compared to those of Si0.2Ge0.8 nanocomposites shown in Fig. 2.19, phonon thermal

conductivities of the nano-porous Ge materials are only about half of their

counterparts. Figure 2.34 shows the different phonon thermal conductivities of

porous Ge, porous Si and Si0.2Ge0.8 nanocomposites for different sizes at 300 K.

Porous Si have a much larger phonon thermal conductivity compared to porous Ge

with the same size. This is mostly attributed to the higher thermal conductivity of

Si than that of Ge. In addition, porous Si have larger phonon thermal conductivities

than corresponding Si0.2Ge0.8 nanocomposites at large sizes. This is because when

the size is small, scattering due to porous and interfaces dominant but when size

increases, Si’s larger bulk thermal conductivity than Ge makes their difference clear.

57



0 50 100 150 200
0

10

20

30

40

50

60

70

80

90

L
p
 (nm)

P
ho

no
n 

th
er

m
al

 c
on

du
ct

iv
ity

 (
W

/(
m

K
))

 

 

Porous Ge nanostructure
Porous Si nanostructure
Si

0.2
Ge

0.8
 nanocomposites

Figure 2.34: Phonon thermal conductivity of nano-porous Si and
Ge compared to that of Si/Ge nanocomposites at 300 K.

2.4 Summary

A modeling and analysis approach to investigate the strain effect on the

thermal transport in 2-D Si/Ge nanocomposites has been developed. Strains are

incorporated into the lattice dynamics by using the Cauchy-Born rule. Thermal

properties calculated from strain dependent lattice dynamics are then used in the

phonon BTE for the thermal transport analysis of nanocomposites. A finite volume

method is employed to solve the BTE over unstructured meshes. Our results show

that the phonon thermal conductivity of the nanocomposites can be significantly

decreased (or increased) by a tensile (or compressive) strain. With the same strain

change, hydrostatic strain produces a larger variation in phonon thermal
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conductivity than uniaxial strain. Depending on the size and shape of the

embedded Si nanowire, a hydrostatic tensile strain of 2% can reduce the thermal

conductivity of Si0.2Ge0.8 by as much as 15%, while a uniaxial tensile strain of 2%

gives a maximum reduction of 8%. The shape effect on the thermal conductivity is

also studied, it is found that with the same atomistic percentage, the cross-sectional

shape makes little difference to the effective thermal conductivity except at very

small characteristic lengths.
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CHAPTER 3

STRAIN EFFECT ON

ELECTRON TRANSPORT

PROPERTIES AND ENERGY

CONVERSION EFFICIENCY OF

SI/GE NANOCOMPOSITES

3.1 Introduction

As discussed in Chap. 1, thermoelectric materials and devices have many

promising applications [22, 23, 24, 25, 26]. They have several attractive properties,

such as being pollution-free since they do not generate any harmful emissions, silent

and reliable because they do not have any moving parts or vibrations, and highly

portable due to their scalable modules. However, they are currently only in limited
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use due to their relatively low energy conversion efficiency.

The state of the art thermoelectric cooling materials are based on alloys of

Bi2Te3 with Sb2Te3 and Bi2Te3 with Bi2Se3, which can give a ZT of about 1 at

room temperature [77]. State of the art thermoelectric power generation materials

are PbTe and Si0.8Ge0.2, which have been used in space radioisotope thermoelectric

power generators that operate at about 900 degrees with a maximum efficiency of

about 7% [28]. However, ZT ≈ 4 is required to match a conventional refrigerator for

cooling and ZT ≈ 2 is required to efficiently recover waste heat.

As already mentioned in Chap. 1, the efficiency of thermoelectric materials is

evaluated by the dimensionless figure of merit defined by ZT = S2σT/kt, where S,

σ and T respectively denote the Seebeck coefficient, electrical conductivity and

absolute temperature, while kt represents the thermal conductivity, including

contributions from phonons and electrons [27]. The key goal at thermoelectrics

research is to increase ZT , but this is a challenging process because adjustment of

one parameter unavoidably involves variations of others [28]. Recently, it has been

reported that ZT values can be significantly improved in nanocomposites due to the

largely increased interfaces, which strongly scatter phonons but only slightly

influence the charge carrier transport, leading to significantly reduced phonon

thermal conductivity and maintained or improved power factor S2σ [31, 32].

Compared to one of the state of the art thermoelectric power generation material,

Si0.8Ge0.2 alloy, nanostructured Si/Ge bulk alloy leads to larger figure of merits due

to the decreased phonon thermal conductivity [5, 78]. This method and others are

being used to attempt to increase ZT values and create more universally viable

thermoelectric nanocomposite materials. Nevertheless, in spite of these efforts,

increasing ZT by a factor of 4 is still a great challenge today.
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Strain can be introduced into nanocomposite materials under several conditions,

such as phonon-induced lattice vibrations, lattice mismatch in nanocomposite growth

and applied external mechanical force. We have performed strain analysis on phonon

thermal conductivity of Si0.2Ge0.8 nanocomposites and found that tensile strain can

significantly decrease the phonon thermal conductivity and shear strain has little

influence. When the width of Si nanowire is 200 nm, a 2% hydrostatic tensile strain

can reduce the thermal conductivity by as much as 15%, while a 2% uniaxial tensile

strain gives a maximum reduction of 8% [79]. Strain effects on electron transport in

Si and Ge semiconductor devices have been extensively studied and results show that

strain can cause a considerable change in electron mobility [80, 81]. Carrier transport

properties of nanostructured Si/Ge bulk alloys have been measured and analytically

modeled [5, 78, 82]. However, to the best of our knowledge, the strain effect on electron

transport properties of Si/Ge nanocomposites has not been investigated. In addition,

the power factor and the thermal conductivity of Si and Ge respond differently to

strain due to the different transport mechanisms of electrons and phonons. Since ZT

is a combination of these physical quantities, how ZT of nanocomposites is going to

respond to external strain is in fact unknown. Investigating the strain effect on ZT

of nanocomposites will not only help understanding the behavior of nanocomposite

thermoelectric materials under strain but also benefit the design and manufacturing

of such materials.

In this chapter, we seek to investigate the influence of mechanical deformation

on the electrical transport properties and the dimensionless figure of merit of Si/Ge

nanocomposite thermoelectric materials. We focus on studying the effect of externally

applied strains on σ, S, kt and ZT of n-type Si0.8Ge0.2 nanocomposites. The strain

dependent Seebeck coefficient and electrical conductivity of the Si/Ge nanocomposites
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are calculated from analytical formulas derived from the BTE under the relaxation-

time approximation with strain induced energy shift and effective mass variation,

which are computed from the deformation potential theory and a two band degenerate

k ·p method. The strain effect on phonon thermal conductivity in the nanocomposite

material is computed by using the model discussed in Chap. 2. Electronic thermal

conductivities are calculated from electrical conductivities by the Wiedemann-Franz

law. Then, by combining the strain effect models (phonon and electron), the strain

effect on ZT of the nanocomposite materials is obtained.

3.2 Theory

It has been widely accepted that the enhancement of electrical conductivity of

semiconductors under strain can be attributed to two mechanisms [83, 84]: (1) the

average conductivity effective mass is reduced by carrier re-population and band

warping; (2) the intervalley scattering rate is suppressed by subband splitting and

change in the electron density of states (DOS). In this work, the modeling of the

strain effect on the electrical conductivity of Si/Ge nanocomposites is based on the

above principles.

3.2.1 The Miller index notation

The orientation and planes in crystal (Bravais) lattices can be conveniently

described via Miller indices [85, 71]. The Miller indices uses three integers h, k and l

to determine a family of lattice planes. The Miller indices can be determined as the

inverse intercepts along the lattice vectors. To obtain the Miller index of a plane,

one first defines the three lattice vectors a1, a2 and a3 and determines the ratio
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between the points that intercept the plane and the chosen crystal lattice vectors,

then calculates the reciprocals of these numbers and chooses the smallest three

integers (hkl) that have a greatest common divisor of one. The result, then enclosed

in brackets, is the index of the plane. Equivalently, (hkl) describes a plane

intercepting the three points a1/h, a2/k, and a3/l, or some multiple thereof.

Another way to define Miller indices is via a point in the reciprocal lattice. Define

the three primitive reciprocal lattice vectors b1, b2 and b3. Then the three Miller

indices h, k, l in (hkl) denote planes orthogonal to the reciprocal lattice vector:

ghkl = hb1 + kb2 + lb3. (3.1)

If the plane is parallel to the respective axis, a Miller index 0 is chosen. If a plane

cuts an axis on the negative side of the origin, a negative index is used, indicated

with a minus sign over or in front of the index.

Different brackets further distinguish their meanings. Round brackets, (hkl),

stand for a certain plane or the vector perpendicular to the plane. Curly brackets,

{hkl}, represent all planes that are equivalent to (hkl) due to the symmetry of the

crystal. Square brackets, [hkl] denote a given direction in the crystal. Generally,

it is not perpendicular to the (hkl) plane except in cubic crystals. Similar to curly

brackets, angle brackets, 〈hkl〉 mean all directions that are equivalent to the direction

[hkl]. For example, in cubic crystals, 〈100〉 includes equivalent directions [100], [010],

[001], [1̄00], [01̄0], and [001̄]. Figure 3.1 describes planes (100), (110) and (111) in a

cubic crystal.
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(a) (100) plane (c) (111) plane (b) (110) plane 

Figure 3.1: Miller indices for a cubic crystal.

3.2.2 Band structure of Si and Ge

To evaluate strain effect on electron transport in Si/Ge nanocomposites, it is first

necessary to study band structures of Si and Ge under different strain conditions.

Traditionally, an energy band structure is illustrated by plotting the E-k

diagram in the first Brillouin zone, where E is the electron energy and k is a wave

vector. Geometrically, the first Brillouin zone is a primitive cell of the reciprocal

lattice. Conventionally, it is defined as the smallest volume entirely enclosed by the

perpendicular bisecting planes of the reciprocal lattice vectors drawn from the

origin. As shown in Fig. 2.3, Si and Ge have diamond crystal structures, whose

space lattices are face-centered cubics (FCC). The reciprocal space of FCC is a

body-centered cubic (BCC) lattice and the first Brillouin zone for a FCC lattice is a

truncated octahedron, as shown in Fig. 3.2. The band structure, i.e., the E-k

diagram, describes the relation between the electron energy and wave vector k from

the origin of the Brillouin zone to the zone edge. There are three important minima

in the conduction band of Si: Γ point located at k = 0, L point along 〈111〉
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directions at the boundary of the first Brillouin zone and a third one near the zone

boundary along 〈100〉 directions. The lines connecting Γ and ÃL points are usually

denoted by Λ. The point along 〈100〉 directions at the boundary is called X point

and the line connecting Γ and X is called ∆-line, as displayed in Fig. 3.2.

X

L

Figure 3.2: First Brillouin zone for Si and Ge.

Taking Si as an example, in unstrained n-type Si, electrons fill ∆ valleys before Λ

valleys. Generally, the Λ valleys can be ignored for electron transport simulations in

Si at relatively low temperatures. In an unstrained Si crystal, there are six degenerate

∆ valleys with the same minimum energy located near the X point at the conduction

band. The distribution of electrons in these valleys can be considered the same.

This is because in cubic semiconductors such as Si and Ge, the x, y, z directions are

equivalent in the Brillouin zone, therefore, the energy diagrams along these directions
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are the same.

However, advantageous strain reduces the symmetry of those valleys, which

changes the relative population of electrons, causing subband splitting. In addition,

strains along a low-symmetry axis further break crystal symmetry and result in the

warping of the energy surface of subbands, leading to the effective mass variation.

In short, mechanical strains cause band energy splitting and warping, resulting in

the variation of the conduction band minima and effective mass, thus leading to

changes on transport properties. Figure 3.3 gives a diagram of band structure

change under uniaxial stress for bulk n-type Si. Figure 3.3 (a) shows the conduction

band at unstrained condition. All six subbands are equivalent. Figure 3.3 (b) shows

band splitting under 〈100〉 uniaxial tensile strain. The longitudinal tensile strain

causes the ∆4 subband to shift down and the ∆2 to shift up, leading to electron

re-population from the ∆2 valleys to the ∆4 valleys. Figure 3.3 (c) describes band

splitting under 〈110〉 uniaxial tension. This kind of strain makes the ∆2 subband to

shift down and the ∆4 to shift up, resulting in electron re-population from the ∆4

valleys to the ∆2 valleys. In addition to carrier re-population, uniaxial tension along

〈110〉 directions usually causes band warping, leading to changes of effective mass.

In unstrained Ge, the lowest conduction bands lie at L point along Λ valleys with

four degenerate valleys. However, for Si1−xGex alloys, generally the band structure

and electronic properties can be modeled as Si-like with the lowest conduction minima

near the X-point in the Brillouin zone for x < 0.85 and as Ge-like with conduction

band minima at the L-point for x > 0.85 [86]. Further, in highly strained Ge grown on

Si1−xGex with x < 0.40, the conduction band minimum locates on the ∆ valleys [87].

Here we assume that the lowest conduction band of Si0.8Ge0.2 nanocomposites lies at

the 0.85X points of ∆ valleys, the same as that in Si.
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(a) Unstrained (c) <110> uniaxial tension
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(b) <100> uniaxial tension
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Figure 3.3: Simplified band structure change under uniaxial strain for bulk n-type Si:
(a) unstrained. (b) Uniaxial 〈100〉 tension. (3) Uniaxial 〈110〉 tension.

In the calculation of electron transport properties, three coordinate systems are

defined as shown in Fig. 3.4: the ellipsoidal coordinate system (ECS), the crystal

coordinate system at undeformed configuration (CCSU) and the crystal coordinate

system at deformed configuration (CCSD). The ECS is spanned by three unit vectors

k̂l, k̂t1 and k̂t2 chosen along the principal axes of each energy ellipsoid. CCSU

consists of lattice basis vectors k̂1, k̂2 and k̂3, oriented along the three orthogonal

〈100〉 crystallographic directions of the underlying material. The basis for CCSD is

represented by three vectors k̂′
1
, k̂′

2
and k̂′

3
along with the three deformed axes of

CCSU. Note that, the basis for CCSD is no longer unit vectors. The three coordinate

systems are related to each other. The CCSU can be mapped to the CCSD by

the deformation gradient F tensor and the CCSU can be related to the ECS in the

reciprocal space. In all our simulations, the CCSU is fixed in real space, the ECS

depends on the specific material and is unique to each ellipsoid, and the CCSD is

unique for a given deformation gradient F.
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deformation gradient 

Figure 3.4: Coordinate systems: ellipsoidal coordinate system (ECS), crystal coordinate system at undeformed
configuration (CCSU) and crystal coordinate system at deformed configuration (CCSD).
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The total energy of an electron in a semiconductor, Et, is the sum of the carrier’s

potential energy, EC , and kinetic energy, E:

Et = EC + E, (3.2)

where EC is the conduction band minima and E is defined by

E(1 + αE) =
~

2k2
l

2ml

+
~

2k2
t1

2mt1

+
~

2k2
t2

2mt2

, (3.3)

in the ECS. In this equation, the nonparabolicity and anisotropicity have been

accounted to increase the accuracy, ~ is the reduced Planck’s constant, and kl/kt are

longitudinal/transverse component of the wave vector.

As discussed earlier, strain usually introduces band shift and effective mass

variation. Deformation potential theory was developed to describe energy shift

introduced by strain. The energy shift of the n-th conduction band valley due to

applied strain, ∆En
C , is given by [88],

∆En
C = Ξd · (εxx + εyy + εzz) + Ξu · (k̂ · εij · k̂) , (3.4)

where Ξd and Ξu are the dilation and uniaxial-shear deformation potential of the

conduction band, respectively, which can be calculated from theoretical methods or

fitted by experimental results. Some of the reported values in the literature for

nearly pure Si are Ξd,100 = 2.2± 0.3eV, Ξu = 9.2± 0.3eV at 295 K [88] and Ξd,100 =

2.5eV, Ξd,111 = 5.7eV, Ξu = 9.5eV [89], where the subscript refers to a particular

crystal direction. In Eq. (3.4), n refers to one of the six valleys, i and j represent x,

y, z and k̂ is the unit vector parallel to the valley n. Note that Eq. (3.4) holds for
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arbitrary stress/strain conditions. However, because the ∆ valleys are along 〈100〉

direction, the effect of shear strains is lost in Eq. (3.4). In order to account for energy

shift due to shear strain, we follow a degenerate k · p theory at the zone-boundary X

point proposed by Ungersboeck et al. [90]. Note that an x-y plane shear strain εxy

only shifts the band energy of z-direction valleys with the value [90],

∆E±z
C,shear =











−κ2ε2
xy∆/4 , κ |εxy| < 1

−(2κ |εxy| − 1)∆/4 , κ |εxy| > 1
, (3.5)

where ∆ is the band separation between the two lowest conduction bands of the

unstrained lattice at the X point, and κ = 4Ξu′/∆ with Ξu′ being the deformation

potential responsible for the band splitting of the two lowest conduction bands at the

zone boundary.

From full band calculations, the effect of normal stress on effective masses can

be ignored but the shear strain εxy will affect the effective masses of valleys in z-

directions (Figs. 11-13 of [91]). This is because the energy surface of two-fold valleys

in z-directions is warped due to εxy ( Fig. 14 of [91] and Fig. 2 of [92]), which has

been experimentally demonstrated using UTB (ultrathin-body) FETs (Field-effect-

transistors) [91]. From the same degenerate two band k · p theory, we have [90]

ml,[001]/m
∗
l =











(1 − κ2ε2
xy)

−1 , κ |εxy| < 1

(1 − 1/κ |εxy|)−1 , κ |εxy| > 1
, (3.6)

mt,[110]/m
∗
t =











(1 + ηκεxy)
−1 , κ |εxy| < 1

(1 + ηsgn(εxy))
−1 , κ |εxy| > 1

, (3.7)

mt,[1̄10]/m
∗
t =











(1 − ηκεxy)
−1 , κ |εxy| < 1

(1 − ηsgn(εxy))
−1 , κ |εxy| > 1

. (3.8)
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Here sgn denotes the signum function, ml/mt are electron longitudinal/transverse

effective mass with strain, m∗
l /m

∗
t are electron longitudinal/transverse effective mass

without strain, and η ≈ 1 − m∗
t /m0 [93] with m0 being the free electron mass. Note

that, when there is no shear strain, ml = m∗
l and mt = m∗

t .

In addition, the nonparabolicity coefficient in the two valleys along z-direction is

also influenced by εxy, i.e. [92],

α±z = α0
1 + 2(ηκεxy)

2

1 − (ηκεxy)2
(3.9)

where α0 is the nonparabolicity coefficient when no strain is applied, which is chosen

to be 0.5eV −1 for intrinsic Si and 1.5eV −1 for Si0.8Ge0.2 nanocomposites when doping

density is 10−19cm−3.

Once again, εxy only introduces band shift, effective masses variation and

nonparabolicity coefficient change of valley pairs along [001] and [001̄]. Similarly, εyz

and εzx only influence band dispersion relations for valley pairs along [100]/[1̄00]

and [010]/[01̄0] respectively.

In order to show shear strain effect on subband dispersion, the in-plane energy

contour of z-direction subband (solid line) with 1% of εxy shear strain is shown in

Fig. 3.5. In comparison, energy contour of unstrained subbands (dashed line) is also

shown here. The spacing between lines is 10 meV. It is shown that after shear strain

is applied, the energy contour for z-direction subbands becomes an ellipse. Effective

masses are no longer equal in [100] and [010] directions.
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Figure 3.5: Energy contour of the Si out-of-plane subbands with 1% of shear
strain (solid line) and no strain (dashed line).

3.2.3 Strain effect on electron transport of Si/Ge

nanocomposites

The change of dispersion relation changes electron transport properties. The

i direction electrical conductivity of the n-th valley σn
i can be calculated from an

analytical model based on BTE under relaxation-time approximation [94]:

σn
i = −e2

3

∫ ∞

0

τn(E)[υn
i (E)]2

∂fn(E,EF )

∂E
gn(Ep)dE, (3.10)
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where e is the electrical carrier charge, τ is the momentum relaxation time, and υn
i

is the group velocity of charge carriers in i direction defined by [95]

υn
i =

√

2E(1 + αnE)√
mn

i (1 + 2αnE)
, (3.11)

with mn
i the i-direction effective mass of n-th valley. In Eq. (3.10), f is the Fermi-

Dirac distribution function defined by

f =
[

e(E+EC−EF )/kBT + 1
]−1

, (3.12)

where EF is the Fermi level calculated from [95]

N =
∑

n

∫ ∞

0

gn(E)fndE, (3.13)

with gn(E) being the density of states(DOS) for the n-th valley given by [96]

gn(E) = 2
√

E(1 + αnE)(1 + 2αnE)(mn
d1)

3/2/(π2
~

3). (3.14)

where md1 is DOS effective mass for valley n [96]:

mn
d1 = (mlmt1mt2)

1/3(1 + 2αnE). (3.15)

Here doped Si/Ge nanocomposites are assumed to be n-type with a carrier

concentration N = 1e19cm−3. The total relaxation time is calculated by using

Matthiessen’s rule to combine the influences from the ionized impurity, phonon

deformation potential and grain boundary (interface) scatterings mechanisms.
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Ionized impurity scattering rate is calculated from [97]

τ−1
II =

Ne4H(1 + 2αE)

16π
√

2md1ε2 [E(1 + αE)]2/3
, (3.16)

with

γ = 4k∗2L2
D, (3.17)

and

H = ln(1 + γ) − γ

1 + γ
, (3.18)

where k∗ is effective wave vector defined by [96]

k∗ =

√

2md1E(1 + αE)

~
, (3.19)

and LD is screening length obtained from [98],

LD =
(π)2/3 ε1/2

~

(3N)1/6 m
1/2
d1 e

. (3.20)

For electron-phonon DP scattering rate, we used a model proposed in [96],

τ−1
DP = τ−1

0

{

[

1 − αE

1 + 2αE

(

1 − Dv

Dc

)]2

− 8

3

αE(1 + αE)

(1 + 2αE)2

Dv

Dc

}

, (3.21)

with

τ−1
0 =

π kBT D2
c g(E)

~ K
. (3.22)
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For grain boundary scattering rate, a model proposed in [82] is used, i.e.,

τ−1
GB = 8π2U2

0 z2
0r

4
0g(E)NgI/~, (3.23)

with number density of interface Ng being Ng = 4 LGe/(π r2
0 L2

Si) and I being Eq.

(22) in reference [82]. Other parameters can be found in Table 3.1.

Table 3.1: Parameters used to calculate electron transport properties for n-type Si
and Si1−xGex nanocomposites.

m∗
l /m

[86]
0 0.92(1 − x) + 0.80x − 0.183(1 − x)x

m∗
t /m

[86]
0 0.19(1 − x) + 0.20x − 0.183(1 − x)x

E
[86]
d 1.1 + 3.4x(eV )

E
[86]
u 9.29 + 0.71x(eV )

E
[86]
u′ 7.0 + 11.5x(eV )

∆[90] 0.53(eV )

Low frequency permittivity[86] ε = (11.7 + 4.5x)ε0
‡

Electron/hole deformation potential[97] Dc = 9.0eV, Dv = 5.0eV

Bulk modulus[86] K = 97.9 − 22.8x(GPa)

Grain boundary potential parameters[82] U0 = 45meV, z0 = 2.0nm, r0 = 1.0nm

‡ ε0: vacuum permittivity .

The conductivity calculated in the valley ECS has to be transformed to the CCSD

by a transformation matrix C with the relation k̂D = Cnk̂n

E
, where k̂D = (k̂′

1
k̂′

2
k̂′

3
)T

and k̂n

E
= (k̂l k̂t1 k̂t2)

T represent vectors in the axes of the CCSD and n-th valley

ECS, individually.

The direct relation between ECS to CCSD depends on the material under

consideration. For a given conduction band ellipsoid in a given material, the unit
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Figure 3.6: Conduction band constant energy ellipsoids along ∆ for Si.

basis vector k̂l, k̂t1 and k̂t2 in the ECS can be expressed in the CCSU, thus forms a

rotation matrix ℜE←U , which transforms the components of the unit wave vector

k̂U = (k̂1 k̂2 k̂3)
T in CCSU to k̂n

E
in ECS. Different ellipsoid transformation

matrices have been shown in [99] for sixfold-degenerate ∆ and the

eightfold-degenerate Λ valleys. For Si, there are six degenerate constant energy ∆

valley conduction band ellipsoids, as shown in Fig. 3.6. The basis vectors are unique

for each ellipsoid in the ECS, with k̂l along the major axis and k̂t1, k̂t2

perpendicular to it. There is a unique transformation matrix ℜE←U for each

ellipsoid, with the rows coming from the components of k̂l, k̂t1 and k̂t2. For

instance, for ellipsoid 1 in Fig. 3.6, k̂l = (1 0 0), k̂t1 = (0 1 0) and k̂t2 = (0 0 1),
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thus,

ℜ∆1
E←U =













1 0 0

0 1 0

0 0 1













. (3.24)

Transformation matrix for other ellipsoids can be obtained similarly.

Having determined ℜE←U , for a crystal lattice under deformation, a rotation

matrix ℜU←D, which transforms k̂D in CCSD to k̂U in CCSU, is determined by using

the deformation gradient tensor F,

ℜU←D = FT . (3.25)

Accordingly, the relation between wave vectors in CCSD and ECS is obtained as,

k̂n

E
= ℜE←UℜU←Dk̂D. (3.26)

Then we will have Cn = ℜ−1
U←Dℜ−1

E←U .

The total conductivity is the summation of conductivities from all the six

valleys [81],

σij =
6

∑

n

3
∑

p

cn
ipσ

n
p

[

cn
pj

]−1
, (3.27)

where cn
ip and

[

cn
pj

]−1
are components of Cn and its inverse matrices.
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The Seebeck coefficient is defined by

Sij =

∑6
n

∑3
p cn

ipS
n
p σn

p [cn
pj]

−1

σij

, (3.28)

with

Sn
i = − 1

eT

∫ ∞

0
τn(E)[υn

i (E)]2 ∂fn(E,EF )
∂E

(E − EF )gn(E)dE
∫ ∞

0
τn(E)[υn

i (E)]2 ∂fn(E,EF )
∂E

gn(E)dE
. (3.29)

3.2.4 Strain effect on thermal transport of Si/Ge

nanocomposites

For strain effects on phonon thermal transport of SiGe nanocomposites, we use

the model described in Chap. 2. The only difference is the 2-D unit cell. Here

we study Ge-nanowire Si-host nanocomposite materials and a unit cell is shown in

Fig. 3.7. Ge nanowires are assumed to be uniformly distributed, so the BTE can

be solved to obtain phonon intensities by finite volume method on this 2-D unit cell

of the nanocomposites with periodic boundary conditions and a diffuse mismatch

interface model. The edge length of the unit cell is set to be LSi and the edge length

of Ge nanowire is set to be LGe.

The electronic thermal conductivity, ke, is calculated from the

Wiedemann-Franz law, ke = σLzT , where Lz is the Lorenz number. For metals,

Lz = 2.45 × 10−8WΩK−2. However, Lz depends on doping for semiconductors [94].

Here we assume the nanocomposites are heavily doped. In this case, the

semiconductors become metal-like and Lz for metals is used.
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Figure 3.7: Si1−xGex unit cell.

3.2.5 Strain effect on ZT of Si/Ge nanocomposites

Having obtained strain dependent phonon thermal conductivity and electrical

properties, the calculation of dimensionless figure of merit of nanocomposite

thermoelectric materials is straightforward, i.e., ZT = S2σT/(kp + ke).

3.3 Results and Discussion

3.3.1 Thermoelectric properties of Si0.8Ge0.2 nanocomposites

This section investigates the strain effect on electrical properties of bulk Si and

Si1−xGex nanocomposites. As a validation of the electrical conductivity model

described in Chap. 3.2.3, electrical conductivities of Si0.7Ge0.3 alloy and Si0.8Ge0.2
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nanocomposites are computed as functions of temperature. The comparison of the

obtained results with available experimental data is shown in Fig. 3.8. Experiment

data for Si0.7Ge0.3 alloy and Si0.8Ge0.2 nanocomposites are obtained from [100]

and [82], respectively. The computational results show a good agreement with the

experiment data.
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Figure 3.8: Temperature dependent electrical conductivity of
Si0.7Ge0.3 alloy and Si0.8Ge0.2 nanocomposites.

The strain effect on electrical conductivity is verified by comparing the electron

mobility of intrinsic Si for [100] uniaxial strain with data from [90], as shown in

Fig. 3.9. Results here are not exactly the same with the results shown in [90] but they

show similar dependence on strain. The difference comes from the different modeling

tools and different scattering mechanisms considered. Our results are based on an

analytical formula derived from BTE with several fitting parameters. Their results
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Figure 3.10: Electron mobility enhancement of intrinsic Si as a
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were calculated numerically by solving the semiclassical BTE using an MC method.

We considered ionized impurity and phonon deformation potential scatterings but

their models contained ionized impurity scattering, phonon scattering, alloy scattering

and impact ionization scattering. Figure 3.10 shows electron mobility enhancement

of intrinsic Si as a function of strain for stress direction along [100] calculated from

our model and experiment results obtained from [91]. Our results show similar trends

as experimental data. And Fig. 3.11 shows electron mobility enhancement of Si as

a function of strain introduced by 〈100〉 tension. Experimental data is obtained

from [91] and our results show good match with them. From the three figures, we

find out that uniaxial tensile strain along 〈100〉 direction increases electron mobility

in the same direction but decreases them in the two perpendicular directions, which

implies possible change in power factor.
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Figure 3.11: Electron mobility enhancement as a function of
〈100〉 tension.
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Figure 3.12: Seebeck coefficient of Si.

Seebeck coefficient of unstrained bulk Si is shown in Fig. 3.12. Solid lines are

Seebeck coefficient calculated from our model and dashed lines are from Fig. 3.8

of [101]. For doping density from 1016/cm3 to 1019/cm3, our model matches well

with Wagner’s model. The results indicate that Seebeck coefficient decreases with

increasing temperature, and further decreases with decreasing doping density.

3.3.2 Strain effect on figure of merit of Si0.8Ge0.2

nanocomposites

Three types of strains have been studied on the Si0.8Ge0.2 nanocomposites with

the length of Ge nanowire, LGe, to be 10 nm, 15 nm and 20 nm: (1) 1% uniaxial strain

in 〈100〉 direction; (2) 1% shear strain on (001) plane; (3) 1% biaxial normal strain in
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Figure 3.13: Thermoelectric properties of Si0.8Ge0.2 under uniaxial strain when LGe =
10nm.

[100] and [010] directions. The calculated Seebeck coefficient, electrical conductivity,

phonon thermal conductivity and figure of merit are shown in Figs. 3.13-3.15 for

LGe = 10nm, Figs. 3.16-3.18 for LGe = 15nm and Figs. 3.19-3.21 for LGe = 20nm.

For the three nanowire sizes, as shown in Figs. 3.13, 3.16 and 3.19, uniaxial

tensile strain along 〈100〉 direction increases electrical conductivity but decreases

Seebeck coefficient and thermal conductivity along the direction in which the force

is applied. Even though the decreased Seebeck coefficient somehow cancels the
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Figure 3.14: Thermoelectric properties of Si0.8Ge0.2 under shear strain when LGe =
10nm.

enhancement of ZT, we still find out that uniaxial tensile strain increases

dimensionless figure of merit along the applied force direction. Uniaxial compressive

strain largely decreases electrical conductivity and at the same time increase the

phonon thermal conductivity. Even though Seebeck coefficient increases with

compressive strain at high temperatures, ZT still decreases with uniaxial

compressive strain applied.

Figures 3.14, 3.17 and 3.20 show that shear strain largely decreases electrical
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Figure 3.15: Thermoelectric properties of Si0.8Ge0.2 under biaxial strain when LGe =
10nm.

conductivity. With temperature increase, shear strain first decreases Seebeck

coefficient and then increases it. However, the power factor is decreased by shear

strain. At the same time, shear strain shows almost no influence on phonon thermal

conductivity. Thus shear strain leads to a drop in ZT.

Figures 3.15, 3.18 and 3.21 show strain effect on thermoelectric properties of

Si/Ge nanocomposites along the direction in which biaxial strain occurs. Biaxial

tensile strain increases electrical conductivity but decreases Seebeck coefficient while
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Figure 3.16: Thermoelectric properties of Si0.8Ge0.2 under uniaxial strain when LGe =
15nm.

biaxial compressive strain decreases electrical conductivity and Seebeck coefficient.

Phonon thermal conductivity is decreased by tensile strain and increased by

compressive strain. Combining them we find that tensile strain decreases ZT at

relatively low temperature but increases it with increasing temperatures.

Compressive strain decreases ZT at all temperatures considered here.

Comparing different types of strain, the uniaxial tensile strain leads to the largest

increase of figure of merit. And this increase becomes clearer when the temperature
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Figure 3.17: Thermoelectric properties of Si0.8Ge0.2 under shear strain when LGe =
15nm.

increases. At 800 K, 1% uniaxial tensile strain results in 14% increase of dimensionless

figure of merit.

By comparing the same strain with different sizes, taking Figs. 3.13,3.16 and 3.19

for example, the increase of the size of the unit cell of SiGe nanocomposites largely

increases phonon thermal conductivities, slightly increases electrical conductivity but

has little influence on Seebeck coefficient, leading to slightly decreased figure of merit.

This result shows that interface scattering has a large influence on phonon transport
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Figure 3.18: Thermoelectric properties of Si0.8Ge0.2 under biaxial strain when LGe =
15nm.

but small effects on electron transport. When LGe increases from 10 nm to 20 nm,

the phonon thermal conductivity increases by about 60% (see Figs. 2.21 and 2.22)

but the electrical conductivity only increases less than 5%. The change in electrical

conductivity obtained here along with Fig. 3.8 shows that interface scattering has a

small influence on electrical conductivity. This explains why ZT decreases when LGe

increases.

Comparing phonon thermal conductivity figure in Fig. 3.13 with 2.22, we find
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Figure 3.19: Thermoelectric properties of Si0.8Ge0.2 under uniaxial strain when LGe =
20nm.

out that at the same temperature and the same characteristic length, phonon thermal

conductivity of Si0.8Ge0.2 is very close to that of Si0.2Ge0.8 nanocomposites. Figure

4.3 of [101] shows that SiGe alloys have similar property. Wang et al. found out

that nanostructured n-type SiGe bulk alloy could reach a peak ZT ≈ 1.3 at around

1173K [78]. This is mainly attributed to the low thermal conductivity, which is

around 2.5 W/mk at 1173K. The low thermal conductivity comes from their increased

interface scattering.
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Figure 3.20: Thermoelectric properties of Si0.8Ge0.2 under shear strain when LGe =
20nm.

3.4 Summary

Strain effect on thermoelectric properties of SiGe nanocomposites has been

studied in this chapter with analytical and numerical models. The influence of

strain on electron transfer was studied by analytical formulas derived from BTE

with band structures obtained from a degenerate k · p theory. Strain effect on

thermal transport was studied by solving phonon BTE using strain dependent
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Figure 3.21: Thermoelectric properties of Si0.8Ge0.2 under biaxial strain when LGe =
20nm.

phonon scattering properties calculated from lattice dynamics. Our results confirm

that nanocomposites are better thermoelectric materials compared to their alloys.

In the 300-800 K temperature range, uniaxial tensile strain along 〈100〉 direction

can improve dimensionless figure of merit parallel to the tension. Biaxial tensile

strain along [100] and [010] directions only leads to ZT enhancement at high

temperatures in the tension directions. Shear strain and compressive strains

decrease dimensionless figure of merit. At 800 K with electron concentration to be
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1019cm−3, 1% uniaxial tensile strain can increase figure of merit of Si0.8Ge0.2

nanocomposites by 14% at 800 K and the dimensionless figure of merit can reach

0.18 in Si0.8Ge0.2 nanocomposites.
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CHAPTER 4

COMPUTATIONAL ANALYSIS

OF NANOCOMPOSITE BASED

THERMAL ACTUATORS

4.1 Introduction

Micro-scale thermal actuators (TAs) are miniature devices using thermal

expansion produced by Joule heating to generate in-plane deflections and actuation

forces. Typical thermal actuators are comprised of beam structures whose

elongation due to thermal expansion is the main driving force of the device.

Compared to other MEMS actuators such as electrostatic actuators and magnetic

actuators, TAs can provide a larger force output per unit area [102, 103]. In

addition, the structures of TAs are usually simple, making integration and

fabrication very easy. However, TAs typically generate small displacements and

have a high power consumption due to energy loss from the heated beams to the
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surroundings. To overcome these shortcomings, a variety of methods have been

proposed to improve the mechanical performance and energy efficiency of TAs. For

instance, Comtois and Bright employed an array of two or more TAs to generate

high forces [102]. Que et al. found that cascaded Si devices could save power while

offering comparable actuation displacement [103]. Huang et al. and Hickey et al.

investigated effects of the length and width of TA beams on the overall

performance [104, 33]. Sigmund investigated topology optimized TAs [105]. Yan et

al. introduced a bidirectional vertical TA which can generate twice the total

deflection of the traditional U-shaped actuator [106]. Along the line of topology

optimization, Chen et al. proposed TAs with contour beams to increase actuator

stroke and decrease power consumption [107]. The design of the contour beams was

further improved by Sassen et al. [35]. While all these approaches can improve the

performance of TAs, another important dimension of TA design and optimization,

the material configuration, has not been paid much attention.

The concept of thermal actuation using nanocomposite materials is explored in

this chapter. Nanocomposites are multi-phase materials containing components

with nanometer characteristic lengths. In this work, we propose to incorporate

nanocomposites in actuator structures and utilize their non-classical electrical to

thermal conductivity ratio to tailor the temperature profile in the actuator and

achieve a larger thermal actuation displacement. To test the validity of the concept,

we develop a multi-scale electro-thermo-mechanical model for computational

analysis of nanocomposite TAs. While models for micro TAs have been well

developed [104, 33, 108], the inclusion of nanocomposites impose a major challenge,

i.e., nano-scale size and scattering effects on carrier transport properties must be

accounted for in the micro-scale electro-thermo-mechanical analysis. To address this
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issue, we construct a top-down multi-scale model for the computational analysis. In

the multi-scale model, the thermo-mechanical behavior of the actuator is described

using the continuum theories, while the material thermal and electrical transport

properties are calculated from atomistic models to take into account size, interface

scattering and strain effects. The carrier transport properties such as thermal and

electrical conductivities obtained from the atomistic descriptions are used in the

continuum level models to calculate the physical quantities such as temperature and

structural deformation. These continuum quantities are then employed as external

conditions for the re-calculation of the thermal and electrical conductivities from

the atomistic descriptions. The iteration between the two levels continues until a

self-consistent solution is obtained. Broadly speaking, this two-level multi-scale

model fits in the quasicontinuum multi-scale modeling framework [53, 109]. By

using the multi-scale model, we demonstrate the performance of nanocomposite

TAs. The effects of several design parameters are also investigated.

4.2 Conceptual Development

Commonly used in-plane TAs can be categorized according to their geometry

configuration into V-shaped and U-shaped TAs. A V-shaped TA consists of a V-

shaped beam anchored at both ends with a tip in the middle. Upon heating, the

tip will deform in the vertical direction due to the thermal expansion of the beam

as shown in Fig. 4.1 (a). A U-shaped TA contains two beam structures (legs) with

different cross-sections as shown in Fig. 4.1 (b). The difference in cross-section causes

a temperature difference between the two legs resulting in larger expansion of the thin

(hot) leg than the wide (cold) leg, and thus a lateral deflection of the actuator [110].
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(a) (b)

(c)

nanocomposites nanocomposites

Si host

Ge wire

Si nanocomposites

Si 
nanocomposites nanocomposites

Figure 4.1: Si/Ge nanocomposite-based thermal actuators: (a) V-shaped actuator.
(b) U-shaped actuator. (c) Si/Ge nanocomposite material.

Taking the V-shaped TA shown in Fig. 4.1 (a) as an example and assuming heat

transfer in the TA is dominated by conduction along the longitudinal axis of the beam,

the steady state temperature distribution in the TAs can be obtained by solving the

1-D governing equation

∇ · (kt∇T ) = −σV 2

4L2
, (4.1)

where kt is the total thermal conductivity, T is the temperature, V is the applied

voltage, σ is the electrical conductivity and L is half length of the actuator beam

(assuming θ is small). If kt is constant and the temperature at the two ends is T0,
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the solution to Eq.( 4.1) can be obtained as

T (x) = − σV 2

8L2kt

(x − L)2 + T0 +
σV 2

8kt

. (4.2)

With the initial temperature set to be T0, the total elongation of the beam, ∆, can

be calculated as

∆ =

∫ 2L

0

αL(T ) · [T (x) − T0] dx , (4.3)

where αL is the linear thermal expansion coefficient of the actuator beam. From

Eq. (4.2), it is clear that the TA’s temperature distribution can be altered by

changing the length of TA beams. In addition, by changing the cross-sectional area

along the length of the TA beam, the current density and the strength of the Joule

heating can be varied to alter the temperature distribution. Along this line, efforts

have been made to improve TAs’ performance by adjusting the length, width and

cross-section of the TA’s beams [104, 33, 107, 35], using the array or cascade of

TAs [102, 103] and optimization of fabrication and topology [105, 106]. While these

TA optimization strategies focus on the geometry configuration of the device, we

observe that the σ/kt ratio plays an important role in the temperature function as

shown in Eq. (4.2). A material with high σ/kt ratio would enable a rapid change in

the temperature solution given in Eq. (4.2) and thus facilitate temperature

manipulation in the TA beam. Nanocomposites are such materials with a high σ/kt

ratio due to a low phonon thermal conductivity caused by strong phonon scattering

at the interfaces of material components. This unique property of nanocomposites

has been successfully applied to create efficient thermoelectric materials [17].

Another observation can be made from Eq. (4.3) that a large temperature increase,
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∆T (x) = T (x)− T0, along the entire length of the beam (0 ≤ x ≤ 2L) is desirable to

achieve a large thermal expansion in beam length. However, to prevent failure of

the device, an allowable temperature increase, ∆Tallow, is usually imposed for most

TAs. Therefore, the temperature increase in an optimal TA design can be translated

as ∆T (x) → ∆Tallow for 0 ≤ x ≤ 2L. In light of these considerations, we use

nanocomposites at the two ends of the V-shaped TA (shown in Fig. 4.1 (a)) to

enable a rapid temperature increase within a short distance. Conventional materials

such as doped Si with relatively low σ/kt ratio are then used for the rest of the

beam to lower the temperature gradient and maintain the elevated temperature in

the majority of the TA beam structure. With this material configuration, a high

∆T (x) is produced through most part of the TA beam and a high beam thermal

expansion can be achieved. The same idea can be used in the U-shaped TAs where

the nanocomposite material is used at the fixed end of the upper beam as shown in

Fig. 4.1 (b). It should be noted that this approach is compatible and can be

combined with other geometry configuration based optimization approaches.

In this chapter, we investigate a type of Si/Ge nanocomposites for thermal

actuation. As shown in Fig. 4.1 (c), the Si/Ge nanocomposite has a periodic nano

structure with Ge nanowires embedded in a Si host material. In the following

sections, we present a multi-scale model for the electro-thermo-mechanical analysis

of the nanocomposite TAs. By using the model, numerical simulations are carried

out to demonstrate the performance of the nanocomposite TAs.
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4.3 Computational Modeling

We adopt a top-down multi-scale paradigm to model the nanocomposite TAs.

The overall thermo-mechanical response of the actuators due to the Joule heating is

modeled using classical continuum theories, while the thermal and electrical

properties of the doped Si and the nanocomposite material are obtained from

nano-scale models and the mechanical stiffness and thermal stress matrices of

nanocomposites are calculated using the Mori-Tanaka method. Phonon thermal

conductivities of Si/Ge nanocomposites are computed as a function of mechanical

strain through a combined model of strain dependent lattice dynamics and ballistic

BTE. Electronic thermal conductivities are calculated using the Wiedemann-Franz

law. For doped Si and Si/Ge nanocomposites, the electrical conductivity is

calculated by using an analytical model derived from the BTE under

relaxation-time approximation. Electron scattering effects due to ionized impurity

and phonon deformation-potential are included in the relaxation time for doped Si

while an additional material interface scattering is included for the nanocomposites.

4.3.1 Mechanical analysis

If we define the overall stress of the nanocomposites to be

σ = {σx σy σz σxy σyz σxz}T , the three-dimensional (3D) governing equations for

elasticity problems can be expressed as follows:
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∂σx

∂x
+

∂σxy

∂y
+

∂σxz

∂z
+ bx = 0 ,

∂σxy

∂x
+

∂σy

∂y
+

∂σyz

∂z
+ by = 0 , (4.4)

∂σxz

∂x
+

∂σyz

∂y
+

∂σz

∂z
+ bz = 0,

with bx, by and bz to be body forces at x, y and z directions, respectively. Assume

the displacement to be u = {ux uy uz}T , and the overall strain to be

ε = {εx εy εz εxy εyz εxz}T , according to kinematics, we have
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. (4.5)

The constitutive relation for thermoelastic material response is given by

σ = Cε + c∆T , (4.6)

where C is the 6× 6 overall stiffness matrix of composites, c = {c1 c2 c3 c4 c5 c6}T is

the 6 × 1 thermal stress vector defined as c = −Cm where m is a vector listing the
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linear thermal expansion coefficients, ∆T is temperature gradient. Note that because

the mechanical problem is analyzed on a composite, homogenized effective stress and

strain need to be used instead of stress and strain of a single material.

The elastic constants of the constituent materials can be homogenized to obtain

the effective elastic constants of the composites. Several models have been proposed

to obtain the effective elastic moduli in terms of atomic percentage and phase

geometry. For example, Hashin-Shtrikman bounds have been used to bracket the

actual magnitudes of the moduli for two-phase and multi-phase systems [111].

Self-consistent approaches have been applied to calculate effective elastic moduli for

aligned fiber composites [112] and two-phase media reinforced by randomly oriented

inclusions of various shapes [113]. The Mori-Tanaka method [114] was applied by

Chen et al. to evaluate the effective elastic moduli of multi-phase composites

reinforced by aligned fibers or platelets and similar systems with randomly oriented

reinforcement [115]. Benveniste et al. have identified conditions limiting the use of

the self-consistent and Mori-Tanaka methods in multi-phase systems [116]. Dvorak

and Benveniste have commented on their extensive similarities [117]. Reiter et al.

calculated the elastic response of micromechanical systems consisting of piecewise

homogeneous layers by using both Mori-Tanaka and self-consistent methods. It was

found that the Mori-Tanaka method gives a better prediction of the mechanical

behavior for composite materials with a well-defined continuous matrix and

discontinuous second phase, while the self-consistent approach is more accurate for

graded materials with a skeletal micro-structure in wide transition zone between

matrix phases [118]. For this reason, Mori-Tanaka method is adopted in this work

to obtain the effective elastic moduli of the Si/Ge nanocomposites.

The Mori-Tanaka method provides a way to predict the elastic properties of
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two-phase composites according to the inclusion’s volume fraction and geometry. In

Mori-Tanaka method, the average inclusion strain is related to average matrix strain

and the inclusion interaction effects are approximately accounted for. The method is

summarized as follows.

Composites reinforced by aligned fibers are often transversely isotropic. If the

axis of symmetry is chosen as parallel to the z-axis of a Cartesian coordinate system,

then the elastic response of a transversely isotropic solid may be described in the

form [119]:
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,

σx − σy = 2M(εx − εy) , (4.7)

σxy = Mεxy, σyz = Pεyz, σxz = Pεxz ,

where K is the plane-strain bulk modulus for lateral dilatation without longitudinal

extension, N is the modulus for longitudinal uniaxial straining, L is the associated

cross modulus, M is the rigidity modulus in any transverse direction and P is the

shear modulus for longitudinal shearing. For an isotropic material, these moduli are

related to the bulk and shear moduli K and G as:

K = K +
1

3
G, L = K − 2

3
G, N = K +

4

3
G, M = P = G. (4.8)

Elastic constants of single crystal Si and Ge in an arbitrarily oriented coordinate

system can be obtained from the literature [120]. It has been shown that, for the

temperature range of 300-800 K we considered in this work, doping and temperature
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effects on the elastic constants of single crystal Si and nanostructured n- and p- type

Si/Ge composites are negligible [121, 122]. In this work, we take (100) direction as

the longitudinal direction of the actuators and assume the in-plane elastic constants

are isotropic. For a two-phase composite system, the effective elastic constants in Eq.

(4.8) can be obtained by [115]:

P =
2VfPmPf + Vm(PmPf + P2

m)

2VfPm + Vm(Pf + Pm)

M =
MmMf (Km + 2Mm) + KmMm(VfMf + VmMm)

KmMm + (Km + 2Mm)(VfMm + VmMf )

K =
VfKf (Km + Mm) + VmKm(Kf + Mm)

Vf (Km + Mm) + Vm(Kf + Mm)

L =
VfLf (Km + Mm) + VmLm(Kf + Mm)

Vf (Km + Mm) + Vm(Kf + Mm)

N = VmNm + VfNf + (L − VfLf − VmLm)
Lf − Lm

Kf −Km

, (4.9)

where the subscripts f and m represent the fiber and matrix, respectively, and Vf and

Vm are the volume fractions of the fiber and matrix, respectively, with Vf + Vm = 1.

The stiffness matrix C in the constitutive law can be obtained from Eq. (4.8)

with the effective elastic constants calculated from Eq. (4.9), i.e.,

C =
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. (4.10)
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The overall thermal stress vector c of the composite material can then be found in

the form [123],

c = cm + (C − Cm)(Cm − Cf )
−1(cm − cf ). (4.11)

In our case, composites with fibers as inclusions in the TAs can be treated as plane

strain problem, so σxz = 0 and σyz = 0. Then the stress-strain relation, Eq. (4.6),

can be simplified as
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The temperature dependence of linear thermal expansion coefficients of Si and

Ge have been studied extensively [124]. An empirical expression was given by Okada

and Tokumaru for Si thermal expansion from 120 to 1500 K [125]. Reeber and Wang

used a semi-empirical quasi-harmonic model to fit available data for Si and Ge from

near 0 K to the vicinity of their respective melting points and obtained the following

relation [126]

αV = 3
4

∑

i=1

Xi
(θi/T )2 eθi/T

[eθi/T − 1]
2 , (4.13)

where αV is the volume thermal expansion, θis and Xis are fitting parameters, whose

recommended values for Si and Ge can be found in Table 2 of [126]. Assuming

isotropic thermal expansion, the linear thermal expansion coefficients of Si and Ge

are obtained as 1/3 of their volume thermal expansion. With elastic and thermal

expansion properties of the nanocomposite material obtained, the mechanical analysis
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is performed by using the linear elasticity theory, i.e.,

∇ · σ = 0 (4.14)

4.3.2 Thermal analysis

As heat transfer is dominated by conduction in electric current heated slender

beams, convection and radiation are neglected. The temperature distribution in

actuator beams is obtained by solving the Fourier heat conduction equation,

∇ · (kt∇T ) = −J2/σ, (4.15)

where J is the current density. Note that kt contains both phonon and electronic

contributions: kt = kp +ke where kp is the phonon thermal conductivity and ke is the

electronic thermal conductivity.

The solution of Eq. (4.15) is challenging for nanocomposite materials. First, for

Si/Ge nanocomposites, when the characteristic length of the nano-fibers is less than

a hundred nanometers, ballistic phonon transport dominates. Interface scattering

plays an important role in the thermal resistance of the material [94]. The phonon

thermal conductivity needs to be determined by using ballistic transport models.

Second, the thermal conductivity also depends on mechanical strain [46, 79]. In

the coupled thermo-mechanical analysis of the TAs, the strain effect on the thermal

conductivity needs to be considered. Third, the electrical conductivity of doped

Si/Ge nanocomposites can be different from that in the bulk materials. Various

scattering effects need to be included along with the temperature effect. These issues

are addressed as follows.
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4.3.2.1 Thermal conductivities modeling of doped Si and Si/Ge

nanocomposites

The calculation of phonon thermal conductivity of doped Si and Si/Ge

nanocomposites has been discussed in Chap. 2. The main procedure is repeated

briefly as follows. With deformation information obtained from mechanical analysis,

F is related to u by

F =













F11 F12 0

F21 F22 0

0 0 1













(4.16)

=













1 + ∂ux

∂x
∂ux

∂y
0

∂uy

∂x
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0
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











(4.17)

With the above deformation gradient tensor, phonon dispersion relations are

calculated. Then the strain and temperature dependent bulk phonon thermal

conductivity of Si and Ge is computed by Slack relation given by Eq. (2.17) and

phonon thermal conductivity of Si/Ge nanocomposites is calculated by solving

BTE, Eq. (2.27), in a 2-D unit cell of the nanocomposite material as shown in Fig.

3.7 by finite volume method with periodic boundary conditions and diffuse

mismatch interface conditions shown in Eq. (2.32).

The electronic thermal conductivity, ke, is calculated from the Wiedemann-Franz

law, ke = LzσT . We consider a doping level of 2 × 1020cm−3 for the TAs in this

work thus the value of metal is used for Lz. Note that, since the electronic thermal

conductivity, ke, is only a small fraction of the total thermal conductivity, kt, the
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strain effect on the electronic thermal conductivity is not considered.

4.3.2.2 Electrical conductivity modeling of doped Si and Si/Ge

nanocomposites

The electrical conductivity σ is calculated from the analytical model based on

BTE under relaxation-time approximation described in Chap. 3. Here doped Si and

Si/Ge nanocomposites are assumed to be n-type with a carrier concentration of

2 × 1020cm−3. Three-band transport is considered by calculating the contribution

from two conduction bands, one close to the X point and one at the L point, and

one valence band at the Γ point. Results indicate that contributions from L

conduction band and Γ valence band are negligible at the carrier concentration and

temperature considered here. Nonparabolicity and anisotropicity are accounted for

in the dispersion relation of electrons. For doped Si, ionized impurity (II) and

phonon deformation potential (DP) scatterings have been included in the carrier

transport. For Si/Ge nanocomposites, in addition to II and DP scatterings, grain

boundary (GB) scattering (interface scattering) is also included. Matthiessen’s rule

is used to obtain the total relaxation time accounting for all the scattering

mechanisms. Detailed expressions for X conduction band are listed in Table 3.1.

Note that, as a limitation of the current model, strain effect on the electrical

conductivity is not considered.

4.3.3 Main Procedure

In the main computational procedure for the electro-thermo-mechanical analysis

of the TAs as shown in Fig. 4.2, for a given input current density J , T = T0 = 300K

and ε = 0 are specified as the initial conditions. Heat conduction equation with

109



Joule heating is solved to obtain the temperature distribution in the actuator. The

temperature change is then used in the mechanical analysis as discussed in Chap.

4.3.1. After the displacements, strain and stress are computed, the strain and

temperature dependent phonon thermal conductivity, the temperature dependent

electronic thermal conductivity and electrical conductivity are calculated as

described in Chap. 4.3.2. The updated material properties are then used to solve

the thermal and mechanical equations again. The iterative procedure continues

until a converged solution is obtained.

End
Yes No

Figure 4.2: Computational procedure for the electro-thermo-
mechanical analysis of the thermal actuators.
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4.4 Results and Discussion

4.4.1 Properties of Si and Si1−xGex nanocomposites

The strain and/or temperature dependent mechanical, thermal and electrical

properties of bulk Si and Si1−xGex nanocomposites are investigated in this section.

Elastic constants and linear thermal expansion coefficients of Si and Si1−xGex

nanocomposites are shown in Figs. 4.3 and 4.4, respectively. In these two figures, x

is the atomic percentage of Ge and x = 0 is corresponding to bulk Si. Figure 4.3

shows the relation between elastic constants and x. As x increases, the elastic

constants decrease linearly due to the lower elastic constants of Ge. With x

increasing from 0 to 0.2 (i.e. 20%), the elastic constants decrease by 6.3%, 8.2% and

5.0% for C11, C12 and C44, respectively. The atomic percentage of Ge has a

significant effect on the linear thermal expansion coefficient, as shown in Fig. 4.4.

Comparing Si0.8Ge0.2 nanocomposite with the bulk Si, 25.6% and 15.2% increase of

the thermal expansion coefficient are observed at 300 K and 800 K, respectively.

This result can be attributed to the large difference in thermal expansion

coefficients between Si and Ge.

Figure 4.5 shows strain and temperature dependent phonon thermal conductivity

of single crystal Si between 300-800 K calculated from Eq. (2.17). A maximum 2%

plane strain is considered here. In Figs. 4.5-4.7, the strains are corresponding to F11 =

F22 = 0.98, F12 = F21 = 0 for compressive strain and F11 = F22 = 1.02, F12 = F21 = 0

for tensile strain. It is shown in Fig. 4.5 that the compressive strain increases the

bulk phonon thermal conductivities by about 23% while the tensile strain introduces

about 20% decrease in the temperature range we consider here. As temperature

increases, strain effect decreases slightly. The phonon thermal conductivities of the
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Figure 4.3: Elastic constants of Si1−xGex.
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Figure 4.4: Linear thermal expansion coefficient of Si1−xGex

between 300-800 K.
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Figure 4.5: Strain and temperature dependent phonon thermal
conductivity of bulk Si between 300-800 K.

single crystal Si decrease as temperature increases. Similar behavior is observed in

the phonon thermal conductivity of bulk Ge (not shown here).

Figure 4.6 shows the phonon thermal conductivity of a Si0.8Ge0.2 nanocomposite

calculated from Eq. (2.37) as a function of strain and temperature. In this

nanocomposite the embedded Ge nanowires are assumed to have 10 nm × 10 nm

cross-sections. Similar to the bulk Si case, a compressive/tensile strain

increases/decreases the phonon thermal conductivity of Si0.8Ge0.2 nanocomposite.

However, the phonon thermal conductivity variation due to the strains (<10%) is

much smaller than that in bulk Si. A decrease in the phonon thermal conductivity

with increasing temperature is also observed. Once again, the phonon thermal

conductivity variation in the Si0.8Ge0.2 nanocomposite from 300 K to 800 K is much

less than that in the bulk Si, indicating the dominance of interface scattering over

the Umklapp scattering.
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Figure 4.6: Strain and temperature dependent phonon thermal
conductivity of Si0.8Ge0.2 nanocomposite between 300-800 K.
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Figure 4.7: Variation of phonon thermal conductivity of
Si1−xGex nanocomposites at 300 K with respect to the atomic
percentage of Ge.
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Next we calculate the phonon thermal conductivity as a function of strain and

atomic percentage of Ge. For the rest of this section, we fix the cross-section of the

Ge nanowire inclusions to be 10 nm × 10 nm in a unit cell as shown in Fig. 3.7 and

adjust the atomic percentage of Ge by varying the size of the unit cell, LSi. Again,

x = 0 is corresponding to bulk Si. As shown in Fig. 4.7, at 300 K the phonon

thermal conductivity decreases quickly with growing atomic percentage of the Ge

nanowire. When the interface scattering becomes significant as the volume fraction

of Ge increases, the strain effect on the phonon thermal conductivity becomes less

obvious.
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Figure 4.8: Temperature dependent electrical conductivity of
Si1−xGex nanocomposites for different atomic percentage of Ge.

Figure 4.8 gives the electrical conductivities of doped bulk Si and Si1−xGex

nanocomposites as a function of temperature for different atomic percentage of Ge.

The curve with x = 0 represents electrical conductivity of doped bulk Si. The

electrical conductivity results show that, while electrical conductivity decreases as
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temperature increases, the difference between bulk Si and Si/Ge nanocomposites is

small, especially at high temperatures. This implies that, in the nanocomposites

considered here, grain boundary (interface) scattering of electrons is not significant.

From the results shown in Figs. 4.7 and 4.8, it is clear that, due to the large

decrease of phonon thermal conductivity in the nanocomposites, the electrical to

thermal conductivity ratio of Si/Ge nanocomposites is much higher than that of

bulk Si or Ge materials.

4.4.2 Thermal and mechanical performance of TAs

In this section, by using the multi-scale model described in Chap. 4.3, we perform

computational analysis of nanocomposite thermal actuators. We consider a V-shaped

and a U-shaped nanocomposite TAs. Their geometry parameters shown in Fig. 4.1

are listed in Table 4.1.

4.4.2.1 V-shaped thermal actuator

As shown in Fig. 4.1 (a), the two ends of the V-shaped TA are fixed. The

temperature at the two ends is maintained at 300 K. Under a given current going

through the TA, the temperature distribution along the length of the V-shaped TA

beam is computed. Figure 4.9 shows the variation of temperature distribution with

respect to the length of the nanocomposite part, Lc, and the atomic percentage x

in Si1−xGex for a current of 27 mA (i.e., current density is 56.25 × 106A/m2 when

the thickness of the beam is 30µm). The curve with Lc = 0 and x = 0 is the

temperature distribution when the nanocomposite is not used. In comparison, beams

containing Si/Ge nanocomposites obtain higher temperatures with the same input

current. It is shown in the figure that there is a rapid temperature increase in the
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Table 4.1: Geometry parameters used for the calculation of V-
shaped and U-shaped thermal actuators.

Parameters V-shaped TA U-shaped TA

L (µm) 600 240

L1 (µm) 210

L2 (µm) 9

Lc (µm) 40, 80, 120, 160, 200 20, 40, 80, 120

W (µm) 16 37

w1 (µm) 4

w2 (µm) 4

w3 (µm) 25.5

θ (degree) 1

thickness (µm) 30 20

nanocomposite region. The elevated temperature is maintained with a relatively small

variation in the Si region of the beam. Comparing the curves with the same x, it

is shown that increasing the length of the nanocomposite part extends the region of

rapid temperature increase, resulting a higher temperature in the middle Si region.

Comparing the curves with the same Lc, it can be observed in Fig. 4.9 that increasing

atomic percentage of Ge in the Si/Ge nanocomposites is equivalent to increasing the

rate of temperature change in the nanocomposite region, resulting again a higher

temperature in the middle Si region. This is due to the reduction of the phonon

thermal conductivity with increasing x, as shown in Fig. 4.7, and thus the increase

of electrical to thermal conductivity ratio. From Eq. (4.3), it is obvious that a large

temperature increase will give a large actuation displacement. Figure 4.10 shows

the tip displacement of the V-shaped TA as a function of Lc and x. Among the
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Figure 4.9: Temperature distribution variation of V-shaped
thermal actuator with respect to the length of the nanocomposite
part and the atomic percentage of Ge in Si1−xGex.
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Figure 4.10: Tip displacement of V-shaped thermal actuator as a
function of the length of the nanocomposite part and the atomic
percentage of Ge in Si1−xGex.
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results shown in Fig. 4.10, the maximum tip displacement reaches 5.8µm when the

nanocomposite Si0.8Ge0.2 with a length Lc = 200µm is used. Compared to the tip

displacement of 0.53µm for the pure Si beam, an 10-fold displacement increase is

obtained.
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Figure 4.11: Variation in temperature distribution along V-
shaped thermal actuator beam with respect to the length of
Si0.8Ge0.2 nanocomposite.

As discussed previously, a very high temperature may not be desirable in practice.

An allowable temperature is typically imposed for the safe operation of the TAs. For

this reason, the maximum temperature in the beam is enforced to be 528 K. For

different combinations of Lc and x of the Si1−xGex nanocomposites, the input current

density is adjusted so that the maximum temperature in the beam is 528 K for all

cases. Figs. 4.11 and 4.12 show the temperature distribution and the tip displacement

of the TA, respectively, when Si0.8Ge0.2 nanocomposite is used. As shown in Fig. 4.11,
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Figure 4.12: Maximum displacement of V-shaped thermal
actuator for different length of Si0.8Ge0.2 nanocomposite.

when the length of the nanocomposite region, Lc, increases, to keep the maximum

temperature the same, the current must be reduced. However, even with a reduced

current density the temperature in the Si region still becomes higher for a larger Lc.

Note that the current density represents the power consumption in this case. The

tip displacements shown in Fig. 4.12 indicate that, compared to the pure Si thermal

actuator, the maximum tip displacement is increased by about 40% and the power

consumption is decreased by about 50% when the nanocomposite Si0.8Ge0.2 with a

length Lc = 200µm is used.

Next we fix the size of the Si/Ge nanocomposite in the TA beam and

investigate the effect of the composition of the nanocomposite material.

Figures 4.13 and 4.14 show the temperature distribution and the tip displacement of
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the TA for different atomic percentage of Ge in the Si1−xGex nanocomposites.

Again, for the same maximum temperature, a larger atomic percentage of Ge gives

a larger temperature increase in the beam. A larger tip displacement can be

achieved with a smaller power consumption.
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Figure 4.13: Temperature distribution along V-shaped thermal
actuator beam for different atomic percentage of Ge in Si1−xGex

(Lc = 200µm).

Figure 4.15 shows the undeformed (black) and deformed (red) beam of V-shaped

TAs. The deformation is obtained when the Si0.8Ge0.2 nanocomposites with a length

of Lc = 200µm is used in TA beams with a current of 27 mA passing the beam.

In order to make the deformation clear, both x and y direction deformation has

been enlarged 50 times. This figure shows that thermal expansion caused by Joule

heating generates in-plane deflection in a V-shaped TA and the tip has the largest

deformation.

121



0 0.05 0.1 0.15 0.2
0

1

2

3

4

5

6

7

x (Atomic percentage of Ge)

U
y m

ax
 (

um
)

 

 

J=121.1 A/mm2

J=88.3 A/mm2

J=72.7 A/mm2

J=56.25 A/mm2

Figure 4.14: Maximum displacement of V-shaped thermal
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Figure 4.15: Deformed and undeformed beams of V-shaped thermal actuator (deformation has been scaled up by
a factor of 50).
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4.4.2.2 U-shaped thermal actuator

The performance of Si/Ge nanocomposites in a U-shaped TA (Fig. 4.1 (b)) is also

investigated. The two ends of the TA are fixed. The nanocomposite material is placed

at the end of the upper (hot) beam. The temperature at the two ends is fixed at 300

K. Figure 4.16 shows the temperature distribution along the hot beam for different Lc

and x in Si1−xGex when the current is fixed at 27 mA. Similar to the V-shaped TA,

the nanocomposite generates a higher temperature along the hot beam with the same

input current. With the atomic percentage of Ge held fixed, a longer nanocomposite

region produces a higher temperature along the length of the beam, leading to a larger

thermal expansion of the beam. With the length of the nanocomposite region held

fixed, a higher atomic percentage of Ge in the Si/Ge nanocomposite also gives a higher

temperature along the length of the beam. Note that the kinks in the temperature

distributions are due to the difference of the electrical to thermal conductivity ratio

between the Si and Si/Ge nanocomposite regions. The large temperature increase

shown in Fig. 4.16 translates into a large actuation displacement shown in Fig. 4.17.

Note that, for the U-shaped TA, the largest displacement occurs at the lower-right

corner of the TA structure. Among the results shown in Fig. 4.17, the maximum

displacement reaches 1.7µm when the nanocomposite Si0.8Ge0.2 with a length of Lc =

120µm is used. Compared to the maximum displacement of 0.24µm without using

nanocomposites, an 7-fold displacement increase is obtained. In the analysis of U-

shaped TA with a fixed maximum temperature, similar behaviors and conclusions are

obtained as shown in the V-shaped TA case. For the sake of brevity, the results are

not shown here.
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Figure 4.16: Variation of the temperature distribution along
the upper beam of U-shaped thermal actuator with the length
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Figure 4.17: Maximum vertical displacement of U-shaped
thermal actuator as a function of the length of Si/Ge
nanocomposite for different Ge atomic percentages.
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Figure 4.18: Deformed and undeformed beams of U-shaped thermal actuator (deformation has been scaled up by
a factor of 50).
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Again, the undeformed (black) and deformed (red) beam of U-shaped TAs is

shown here in Fig. 4.18. The deformation is obtained when the Si0.8Ge0.2

nanocomposites with a length of Lc = 80µm is used in U-shaped TA beams with a

current of 27 mA passing the beam. Again, to show the deformed shape of the TA

clearly, the actual deformation is scaled up by a factor of 50. This figure shows that

thermal expansion caused by Joule heating generates in-plane y-direction deflection

in a U-shaped TA and the free end has the largest deformation.

4.5 Summary

In this chapter, we introduce a concept of thermal actuation using

nanocomposites. To demonstrate the effectiveness of nanocomposite based thermal

actuators, we develop a top-down quasicontinuum multi-scale model for

computational analysis of the nanocomposite based thermal actuators. Numerical

results indicate that incorporating Si/Ge nanocomposites in thermal actuators can

significantly increase their energy efficiency and mechanical performance. For a

given input current, the Si/Ge nanocomposites can increase the actuation

displacement of V-shaped and U-shaped TAs by as much as 10-fold. With a fixed

maximum temperature, inclusion of nanocomposites enable the TAs to achieve a

larger actuation displacement with less power consumption. In addition, parametric

studies show that the size of the nanocomposite region and atomic percentage of the

material components have significant effects on the overall performance of the

actuators.
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CHAPTER 5

CONCLUSIONS

Theoretical and computational models to investigate strain effect on thermal

and electron transport properties of Si/Ge nanocomposite materials are developed in

this thesis. Based on these models, strain effect on thermoelectric figure of merit of

Si/Ge nanocomposite materials and devices is studied. In addition, we propose to

use nanocomposites in thermal actuators to enhance their performance and develop

a model to analyze the multi-scale, multi-physics problem.

Strain effect on the phonon thermal conductivities in Si/Ge nanocomposites is

analyzed by a model combining lattice dynamics and phonon BTE. For a given

strain condition, mechanical strain is translated to crystal lattice deformation by

using the Cauchy-Born rule. Strain dependent scattering properties of Si and Ge

calculated from lattice dynamics with Tersoff empirical interatomic potential are

used in BTE to obtain strain dependent effective phonon thermal conductivity of

nanocomposites. Ballistic transport within one material and diffuse scattering

between Si-Ge interface are employed in BTE, while BTE is numerically solved on

an unstructured triangular mesh using the finite volume method. Nanocomposites
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with different Si nanowire cross-sections are also investigated. The results show that

the phonon thermal conductivity of the nanocomposites can be significantly

decreased by a tensile strain, or increased by a compressive strain. With the same

length change, hydrostatic strain produces a larger variation in phonon thermal

conductivity than uniaxial strain. In addition, it is shown that with the same

atomic percentage, the cross-sectional shape makes little difference to the thermal

conductivity except at very small characteristic lengths of the Si nanowire.

The strain effect on electrical properties of the Si/Ge nanocomposites are

modeled by an analytical model derived from the BTE under the relaxation-time

approximation with strain induced energy shift and effective mass variation

calculated from deformation potential theory and k · p method. Based on the above

two models, strain effect on figure of merit is investigated in n-type Ge wire-Si host

nanocomposite materials. Our calculations show that uniaxial tensile strain along

〈100〉 direction enhances dimensionless figure of merit in the tension direction in the

300-800 K temperature range, while biaxial tensile strain along [100] and [010]

directions decreases it parallel to tensions at low temperatures and increases it at

high temperatures. Numerical results indicate that dimensionless figure of merit is

decreased by shear strain, compressive uniaxial strain and compressive biaxial

strain. When electron concentration is 1019cm−3, 1% uniaxial tensile strain increases

the dimensionless figure of merit of Si0.8Ge0.2 nanocomposites by 14% at 800 K.

Due to the large reduction of thermal conductivity and small electrical

conductivity variation in nanocomposites, we propose to use nanocomposites in

micro thermal actuators to allow a higher temperature increase in a large region of

the actuator beams, leading to significantly increased actuation distance. A

multi-scale, multi-physics model is developed to simulate the thermo-mechanical
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response of nanocomposite based thermal actuators. In the multi-scale model, the

thermo-mechanical response of the actuator due to Joule heating is modeled using

classical continuum theories, while the thermal and electrical properties of doped Si

and Si/Ge nanocomposite materials are obtained from atomistic level descriptions.

An iterative procedure is carried out between the calculations at the two length

scales until a self-consistent solution is obtained. Numerical results reveal that

thermal actuators’ energy efficiency and mechanical performance can be

significantly improved by incorporating Si/Ge nanocomposites in them. In addition,

parametric studies indicate that the overall performance of the actuators is

significantly affected by the size of the nanocomposite region and atomic percentage

of the material components.
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