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ABSTRACT

This dissertation is divided into four self-contained chapters. In Chapter 1, a new

estimator using a single calibrated camera mounted on a moving platform is devel-

oped to asymptotically recover the range and the three-dimensional (3D) Euclidean

position of a static object feature. The estimator also recovers the constant 3D Eu-

clidean coordinates of the feature relative to the world frame as a byproduct. The

position and orientation of the camera is assumed to be measurable unlike existing

observers where velocity measurements are assumed to be known. To estimate the

unknown range variable, an adaptive least squares estimation strategy is employed

based on a novel prediction error formulation. A Lyapunov stability analysis is used

to prove the convergence properties of the estimator. The developed estimator has a

simple mathematical structure and can be used to identify range and 3D Euclidean

coordinates of multiple features. These properties of the estimator make it suitable

for use with robot navigation algorithms where position measurements are readily

available. Numerical simulation results along with experimental results are presented

to illustrate the effectiveness of the proposed algorithm.

In Chapter 2, a novel Euclidean position estimation technique using a single uncal-

ibrated camera mounted on a moving platform is developed to asymptotically recover

the three-dimensional (3D) Euclidean position of static object features. The position

of the moving platform is assumed to be measurable, and a second object with known

3D Euclidean coordinates relative to the world frame is considered to be available a

priori. To account for the unknown camera calibration parameters and to estimate

the unknown 3D Euclidean coordinates, an adaptive least squares estimation strat-

egy is employed based on prediction error formulations and a Lyapunov-type stability

analysis. The developed estimator is shown to recover the 3D Euclidean position of

the unknown object features despite the lack of knowledge of the camera calibra-

tion parameters. Numerical simulation results along with experimental results are
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presented to illustrate the effectiveness of the proposed algorithm.

In Chapter 3, a new range identification technique for a calibrated paracatadioptric

system mounted on a moving platform is developed to recover the range information

and the three-dimensional (3D) Euclidean coordinates of a static object feature. The

position of the moving platform is assumed to be measurable. To identify the unknown

range, first, a function of the projected pixel coordinates is related to the unknown 3D

Euclidean coordinates of an object feature. This function is nonlinearly parameterized

(i.e., the unknown parameters appear nonlinearly in the parameterized model). An

adaptive estimator based on a min-max algorithm is then designed to estimate the

unknown 3D Euclidean coordinates of an object feature relative to a fixed reference

frame which facilitates the identification of range. A Lyapunov-type stability analysis

is used to show that the developed estimator provides an estimation of the unknown

parameters within a desired precision. Numerical simulation results are presented to

illustrate the effectiveness of the proposed range estimation technique.

In Chapter 4, optimization of antiangiogenic therapy for tumor management is

considered as a nonlinear control problem. A new technique is developed to optimize

antiangiogenic therapy which minimizes the volume of a tumor and prevents it from

growing using an optimum drug dose. To this end, an optimum desired trajectory

is designed to minimize a performance index. Two controllers are then presented

that drive the tumor volume to its optimum value. The first controller is proven

to yield exponential results given exact model knowledge. The second controller is

developed under the assumption of parameteric uncertainties in the system model.

A least-squares estimation strategy based on a prediction error formulation and a

Lyapunov-type stability analysis is developed to estimate the unknown parameters of

the performance index. An adaptive controller is then designed to track the desired

optimum trajectory. The proposed tumor minimization scheme is shown to mini-

mize the tumor volume with an optimum drug dose despite the lack of knowledge

of system parameters. Numerical simulation results are presented to illustrate the
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effectiveness of the proposed technique. An extension of the developed technique for

a mathematical model which accounts for pharmacodynamics and pharmacokinetics

is also presented. Futhermore, a technique for the estimation of the carrying capacity

of endothelial cells is also presented.
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CHAPTER 1

RANGE IDENTIFICATION FOR PERSPECTIVE VISION

SYSTEMS: A POSITION BASED APPROACH

Introduction

Range identification, where the time-varying distance from the camera to the ob-

ject along the focal length is recovered, has been a mainstream research problem for

many years. The range and thus, the three-dimensional (3D) Euclidean coordinates

of a feature on a moving or a static object can be recovered from its two-dimensional

(2D) projection on the image-plane of the camera. The estimation of the unmeasur-

able range signal is usually done by mounting a camera on a moving vehicle such

as an unmanned aerial vehicle (UAV) or a mobile robot that travels through the

environment and takes images of static objects or features. Range identification has

significant impact on several applications including autonomous vehicle navigation,

aerial tracking, path planning, surveillance of ground based, stationary or moving

objects [3, 4, 5, 6] and terrain mapping systems [7, 8, 9].

Although, the problem of range identification is inherently nonlinear, lineariza-

tion based techniques, typically extended Kalman filter (EKF), have been frequently

used [10, 11, 12, 13, 14]. The use of linearized motion models can cause significant

inconsistencies in solutions [15]. Also, it is well known that the EKF may fail in some

real applications [1] and the convergence conditions for the continuous time EKF can

only be checked by actually running the filter [16]. Another drawback of EKF is

an a priori assumption of the noise model [1]. To overcome these shortcomings, an

identifier based nonlinear observer was proposed in [17], and was followed by several

researchers who focused on utilizing nonlinear system analysis and estimation tools to

develop nonlinear state observers for the problem [1, 18, 19, 20, 21, 22, 23, 2]. All of

these observers were based on known motion dynamics and known motion parameters

of the object (or the camera). The known motion dynamics can model either a static

1



point’s 3D position as seen from a moving camera (assuming camera’s velocities to

be measurable [17]) or a moving point’s 3D position as seen from a stationary camera

[24]. In practice, it is easier to measure the velocity of the moving camera than to

have knowledge of the motion parameters of a moving object. In [25], Gupta et al.

developed a nonlinear state estimator that can be applied to the nonaffine perspective

dynamic system assuming known motion parameters. More recently, in [26], Dahl et

al. designed a nonlinear observer to estimate 3D position assuming knowledge of

linear and angular velocities. In [27], again the velocity of the moving camera was

assumed to be known and a nonlinear integral observer was utilized to estimate the

velocity of each feature point in the image plane which facilitated the design of an

estimator for the unknown range parameter. Furthermore, in [2], De Luca et al.

employed nonlinear observer theory to develop a depth-estimator utilizing velocity

measurements of the camera.

All the aforementioned papers detailing nonlinear state observers for range iden-

tification are based on known motion parameters, that is, they utilize velocity mea-

surements. However, only [2] reports experimental results where it can be seen that

the estimated depth signals are quite noisy because a numerical differentiation step

is utilized to obtain actual robot velocities. The numerical differentiation results in

noisy velocity measurements. Further in [28], a low-pass filter was utilized to smooth

the measured velocity signals; still, satisfactory results for Euclidean distance estima-

tion errors were not obtained. Recently, we have made several attempts to implement

the estimator in [27], using an industrial charge-coupled device (CCD) camera on a

robotic manipulator. However, we failed to obtain an estimation of the range variable

because of very noisy velocity measurements. For many applications, position mea-

surements are considerably less noisy and easy to obtain than velocity measurements;

hence, we are motivated to develop a new estimator where measured position of a

moving mechanical system can be directly utilized to identify the range of a static

object feature. To the best of our knowledge, the current work presents the first
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results in range identification where robot position measurements are utilized instead

of velocity measurements.

In this paper, our goal is to develop an estimator to identify the range of a feature

on a static object by mounting a calibrated camera on a mobile platform whose po-

sition is measurable. There are applications such as video surveillance and mapping

using a UAV or a mobile robot where the position of the camera is readily measurable

assuming that the intrinsic and extrinsic camera parameters are known. The estima-

tor is designed by first developing a geometric model to relate the fixed feature point

on the object with the moving camera. The novelty of this work lies in the parame-

terization of a nonlinear model which relates the projected pixel coordinates with the

Euclidean coordinates of the object feature. A prediction error formulation is then

presented which allows us to utilize nonlinear estimation theory to design an adap-

tive least squares estimator. We show that the developed estimator asymptotically

identifies the range along with the Euclidean coordinates of the feature on the object

subject to a persistency of excitation condition similar to that of [2]. An important

byproduct of the proposed estimation technique is the estimation of the constant 3D

Euclidean coordinates of the feature on an object relative to the world frame. The

estimation technique that is presented has shown good robustness to noise, quick

convergence, and provides accurate results which is demonstrated by simulation and

experimental results.

Geometric Model

To develop a geometrical relationship between a moving camera and a stationary

object, an orthogonal coordinate frame, denoted by C, whose origin coincides with

the optical center of the moving camera, an inertial coordinate frame, denoted by W,

and an orthogonal coordinate frame, denoted by B, are used (see Fig. 1.1). To make

the following discussion more tractable, a feature point located on the static object,

denoted by F , is considered. Let the 3D coordinates of the feature on the object
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be denoted as the constant xf ∈ R
3 relative to the world frame W and m̄ (t) ∈ R

3

relative to the camera frame C which is defined as follows

m̄ , [x y z]T . (1.1)

Figure 1.1 Geometric relationships between the fixed object, mechanical system,
and the camera.

In the subsequent development, it is assumed that the feature point is always in

the field of view of the camera; hence, the distance from the origin of C to the feature

is always positive and bounded. To relate the coordinate systems, let Rb (t) ∈ SO (3)

and xb (t) ∈ R
3 denote the rotation matrix and the translation vector, respectively,

from B to W, expressed in W. Let Rc ∈ SO (3) and xc ∈ R
3 denote the rotation

matrix and the translation vector, respectively, from C to B, expressed in B. Let

m (t) ∈ R
3 denote the normalized Euclidean coordinates for the feature point relative

to C, which is defined as follows

m ,
1

z
m̄ = [x/z y/z 1]T . (1.2)
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In the image captured by the camera the feature point has corresponding projected

pixel coordinates, denoted by p (t) ∈ R
2, defined as follows

p , [u v]T (1.3)

in which u (t), v (t) ∈ R. The projected pixel coordinates of the feature point is

related to the normalized Euclidean coordinates by the pin-hole model [29] such that

p = Am (1.4)

where A ∈ R
2×3 is a known constant intrinsic camera calibration matrix defined as

follows [30]

A ,

[
fku fku cotφ u0

0 fkv

sinφ
v0

]
(1.5)

where ku, kv ∈ R denote camera scaling factors, u0, v0 ∈ R represent the pixel

coordinates of the principal point, φ ∈ R is the angle between the camera axes, and

f ∈ R is the camera focal length. From (1.2) and (1.4), p (t) can be written as follows

p =
1

z
Am̄. (1.6)

The Euclidean coordinates of the feature point m̄ (t) relative to the camera, in-

cluding the corresponding range z (t), are unknown and unmeasurable signals. The

corresponding projected pixel coordinates p (t) along with Rb (t) and xb (t) are mea-

surable signals, and Rc and xc are known constant parameters. The objective of this

work is to accurately identify the unknown constant Euclidean coordinates of the

feature xf relative to the world frame in order to recover the range z(t) along with

the 3D Euclidean coordinates m̄(t) of the feature on the object relative to the camera

frame.
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Range Estimation

In this section, a prediction error formulation for the unknown parameters will

be used to parameterize Am̄, and the unknown range variable z(t). An estimator

for the unknown 3D Euclidean coordinates xf is then presented which facilitates the

identification of the range variable. A stability analysis will be provided which ensures

the estimation error signals go to zero.

Prediction Error Formulation

From the geometric model shown in Fig. 1.1, m̄(t) can be found to be of the

following form

m̄ = RT
c

[
RT
b (xf − xb) − xc

]
. (1.7)

After utilizing (1.6) and (1.7), the pixel coordinates for the object feature can be

written as follows

p =
1

z
ART

c

[
RT
b (xf − xb) − xc

]
. (1.8)

The corresponding range z (t) can be written from the last row of (1.7) as follows

z = RT
c3

[
RT
b (xf − xb) − xc

]
(1.9)

where RT
c3 ∈ R

1×3 is the last row of RT
c . It should be noted that, in (1.8) and (1.9), A,

Rc, xc are known constant parameters, Rb (t), xb (t) are measurable signals, and xf

is an unknown constant parameter. Based on these facts, p (t) can be parameterized

as follows

p =
1

Πθ
Wθ (1.10)

where

Πθ = z = RT
c3

[
RT
b (xf − xb) − xc

]
(1.11)

Wθ = ART
c

[
RT
b (xf − xb) − xc

]
. (1.12)

We note that z (t) is assumed to satisfy the following inequalities

ρ (·) ≥ z(t) = Πθ ≥ ε (1.13)
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where ρ (·) ∈ R is a known positive function and ε ∈ R is a known positive constant. In

(1.11) and (1.12), Π (t) ∈ R
1×4 and W (t) ∈ R

2×4 are measurable regression matrices,

and θ ∈ R
4 is a partially unknown constant parameter vector which is defined as

θ , [xf1 xf2 xf3 1]T (1.14)

where xfi ∈ R ∀ i = 1, 2, 3 is the unknown Euclidean coordinate of the object feature

relative to the world frame. It should be noted that in (1.11) and (1.12), xf is the

only unknown; we can use an estimate of this signal, x̂f(t) ∈ R
3 in (1.7) to obtain an

estimation of m̄(t) as follows

ˆ̄m = RT
c

[
RT
b (x̂f − xb) − xc

]
(1.15)

and the corresponding range estimate from (1.11), as follows

ẑ = RT
c3

[
RT
b (x̂f − xb) − xc

]
(1.16)

where ˆ̄m(t) ∈ R
3 and ẑ(t) ∈ R are the estimates of m̄(t) and z(t), respectively. To

facilitate the prediction error development, both sides of (1.10) are multiplied with

the term Πθ which results in the following expression

pΠθ = Wθ. (1.17)

The estimate of (1.17) can be defined as follows

p̂Πθ̂ = Wθ̂ (1.18)

where θ̂ (t) ∈ R
4 is the estimate for θ. After subtracting (1.18) from (1.17), the

following expression is obtained

pΠθ − p̂Πθ̂ = Wθ −Wθ̂. (1.19)

After adding and subtracting the term p̂Πθ to the left-hand-side of (1.19) and sim-

plifying, the following expression can be obtained

p̃ =
1

Πθ
(W − p̂Π)θ̃ (1.20)
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where θ̃ (t) ∈ R
4 is the estimation error defined as follows

θ̃ , θ − θ̂ (1.21)

and the prediction error for the object feature, p̃ (t) ∈ R
2, is defined as follows

p̃ , p− p̂. (1.22)

The prediction error p̃(t), given in (1.20), can be rewritten in a compact form as

follows

p̃ = BW̄pθ̃ (1.23)

where W̄p ∈ R
2×4 is a measurable signal and B(t) ∈ R is an auxiliary signal defined

as follows

W̄p , W − p̂Π , B , 1/(Πθ). (1.24)

Estimator

As mentioned earlier, an estimate of the 3D Euclidean coordinates ˆ̄m(t) along

with an estimate of the corresponding range ẑ(t) can be obtained from (1.15) and

(1.16), respectively, given the estimate of xf . Thus, based on the subsequent stability

analysis, the following adaptive update law
.

θ̂ (t) ∈ R
4 is designed to estimate xf

which facilitates the range identification

.

θ̂, Proj
{
αΓW̄ T

p p̃
}

(1.25)

where Proj{·} ensures that the term Π (t) θ̂ (t) is positive (see Appendix B) and

α (t) ∈ R is a positive scalar function defined as follows

α , 1 +
1

ε
ρ (·) (1.26)

In (1.25), Γ (t) ∈ R
4×4 is the least-squares estimation gain matrix, designed as follows

d

dt

{
Γ−1(t)

}
= 2W̄ T

p W̄p. (1.27)
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Remark 1 It should be noted that if Γ−1 (t0) is selected to be positive definite and

symmetric, then Γ (t0) is also positive definite and symmetric. Therefore, it follows

that both Γ−1 (t) and Γ (t) are positive definite and symmetric. From (1.27), the

following expression can be obtained

Γ̇ = −2ΓW̄ T
p W̄pΓ. (1.28)

From (1.28), it is easy to conclude that Γ̇ (t) is negative semidefinite; it follows that

Γ (t) is bounded (the reader is referred to [31] and [32] for more detailed descriptions).

Remark 2 It should be noted that the parameterization of the numerator and denom-

inator of the expression given in (1.10) may include a constant scaling factor. Since

both the numerator and the denominator contain the unknown parameter vector θ,

a constant scaling factor may exist. To account for this constant scaling factor, we

include 1 as the 4th component of the unknown vector which complicates the problem

but provides us with a unique solution to find the constant scaling factor.

Remark 3 The projection strategy given in (1.25) ensures that the term is positive.

A second projection may be used to ensure that the 4th component of the estimate

vector is always non-zero. As seen by subsequently presented simulations and exper-

imental results, the 4th component of the estimate vector was always non-zero; thus,

for the sake of simplicity the second projection is not included in this manuscript.

Stability Analysis

Theorem 1 The update law defined in (1.25) ensures that
∥∥∥θ̃ (t)

∥∥∥ → 0 as t → ∞
provided that the following persistent excitation condition [33] holds

γ1I4 ≤
∫ t0+t′

t0

W̄ T
p (τ)W̄p(τ)dτ ≤ γ2I4 (1.29)

where γ1,γ2 are positive constants, I4 ∈ R
4×4 is an identity matrix1, and t′ ∈ R is a

positive constant.

1Through out the paper, In denotes a standard n × n identity matrix.
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Proof. See Appendix A.

Remark 4 The parameter vector θ̂ (t) provides a scaled estimate of the Euclidean

coordinates of the object features relative to the world frame. Since the last element

in the unknown constant parameter vector is equal to 1 (see (1.14)), the scale factor

can be computed as

λ = θ̂4 (1.30)

where λ (t) ∈ R is the scale factor for the object feature and θ̂4 (t) ∈ R is the last entry

of θ̂ (t). It should be noted that θ̂4 (t) is always nonzero which is guaranteed by the

projection algorithm introduced in (1.25). The estimates of the Euclidean coordinates

of the object feature can now be recovered as follows

x̂fi =
1

λ
θ̂i

where x̂fi(t) and θ̂i (t) ∀ i = 1, 2, 3 are the ith element of the corresponding vector.

Simulation Results

A detailed simulation study was conducted to evaluate the performance of the

proposed estimation technique using the Mathworks Simulink program. First, an in-

dependent simulation study was performed which was followed by comparative simu-

lation studies with some of the existing velocity measurement based range observers.

Independent Simulation Study

The 3D Euclidean coordinates of an object feature relative to the world frame,

xf , was selected as follows

xf = [1 1.5 2.5]T m. (1.31)

The following translation vector xb(t) and the angular rotation qb(t) ∈ R
3 (yaw-pitch-

roll about x-y-z axes) were given to the mechanical system

xb = [0 0 sin(2πt)]T m , qb = [0 0 2πt]T rad. (1.32)
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The measurable rotation matrix Rb(t) was generated using qb(t). In addition, the in-

trinsic calibration matrix for a typical 640×480 camera, and the extrinsic parameters

were specified as follows

A =

[
810 0 320
0 820 240

]
, Rc = I3 , xc = [0.5 0 0.1]T m. (1.33)

The initial condition for the estimator was set as θ̂i(t0) = 180 ∀i = 1, .., 4. The fol-

lowing estimator gains were selected based on trial-and-error

Γ−1(t0) = 8000I4 , α = 300. (1.34)

Two different sub-cases were considered in the simulation study without changing

any of the above mentioned parameters: Case 1 was without any additive noise and

Case 2 was with additive-white-Gaussian noise (AWGN) injected into the measured

pixel coordinates u(t) and v(t) using the awgn() function of Matlab. A constant

signal-to-noise ratio (SNR) of 20 was maintained. Although the measurable position

signals are rarely noisy, still to test the efficiency of the proposed estimator, xb(t)

and qb(t) were corrupted by AWGN of SNR 40. Additonally, in Case 2, the camera

calibration parameters were disturbed by 2% of their actual values in order to account

for inaccurate camera calibration. In other words, A, Rc, and xc in the regression

matrices were taken as 0.98 times their respective values given in (1.33).

Fig. 1.2 shows x̂fi(t) ∀i = 1, 2, 3, the estimates of the constant 3D Euclidean

coordinates of the object feature relative to the world frame with and without additive

noise. x̂fi(t) without additive noise (i.e., Case 1) are shown in Figs. 1.2(a)-(c), and

x̂fi(t) with additive noise and inaccurate camera calibration parameters (i.e., Case 2)

are shown in Figs. 1.2(d)-(f) ∀i = 1, 2, 3. Range estimation errors (i.e., z(t) − ẑ(t))

for Case 1 and Case 2 are shown in Fig. 1.3(a) and Fig. 1.3(b), respectively. It

can be seen from these figures that the estimation errors converge quickly and an

accurate estimation of the range along with 3D coordinates relative to the world

frame are obtained. It can also be inferred from the figures that the developed range
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estimation technique is robust to noisy measurements and provides good estimates

of the 3D coordinates of the object feature relative to the world frame along with an

estimate of the range even in presence of noise in all the measurable signals as well as

inaccurate information of the camera calibration parameters. It should be noted that

x̂f (t) can be utilized to obtain other 3D coordinates of the object feature relative to

the moving camera from (1.15).

Comparative Simulation Study

Although, the proposed range estimator is based on a different approach than the

existing range observers (i.e., it utilizes position measurements instead of velocity

measurements) two comparative simulation studies were conducted to obtain a better

understanding of its performance. The two comparisons were done with the results

reported by Chen et al. in [1], and by De Luca et al. in [2], respectively.

Comparison with the work by Chen et al. in [1]

For the comparison, the same periodic movement of a single object feature as

described by [1] was considered as follows

d

dt




x1(t)
x2(t)
x3(t)



 =




0 −2π 0
2π 0 0
0 0 0








x1(t)
x2(t)
x3(t)



+




0
0

2π cos(2πt)



 (1.35)

[x1(0) x2(0) x3(0)]T = [1 1 2]T (1.36)

which was decomposed [24] giving the angular and linear velocities assuming no linear

deformation. The time integral of these velocities were used to compute the angular

and linear positions of the camera. In the simulations presented earlier in this section

the camera’s calibration parameters were picked to represent a real-world system.

However, the camera’s intrinsic and extrinsic calibration parameters for the simula-

tions in the comparison study were chosen to match the parameters given in [1] and

were defined as follows

A =

[
1 0 0
0 1 0

]
, Rc = I3 , xc = [0 0 0]T m. (1.37)
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An image space feature trajectory was generated based on the camera motion

described by (1.35) and (1.36) and then corrupted by 1% random noise as in [1].

The initial condition for the estimate vector was taken as 0.01 for all its entries and

the same estimator gains given in (1.34) were used. Fig. 1.4 shows the estimation

error between y3(t) and its estimate ŷ3(t) obtained by our proposed estimator where

y3(t) = 1
z(t)

with z(t) equal to the range of the object feature. The result in Fig. 1.4

shows that the proposed estimator is superior to the estimator presented by [1]2 in

terms of transient response, convergence time, and error value. Also, as pointed out

by [1], the method proposed by [17] can not be applied to this motion.

Comparison with the work by De Luca et al. in [2]

For this comparison, the camera was translated and rotated about the x and z

axes as described in [2]. As mentioned in [2], this kind of complex motion could not

be addressed with the methods of Matthies et al. in [10] or Smith et al. in [34]. The

following translation vector xb(t) and the angular rotation qb(t) were given to the

mechanical system

xb = [(0.1/2π)sin(2πt) 0 (0.5/π)sin(πt)]T m (1.38)

qb = [(1.2/π)sin(0.5πt) 0 t]T rad. (1.39)

Similar to the previous simulation section, the measurable rotation matrix Rb(t) was

generated using qb(t). The following camera parameters were taken so as to match

the parameters given in [2]

A =

[
128 0 0
0 128 0

]
, Rc = I3 , xc = [0 0 0]T m. (1.40)

The 3D Euclidean coordinates of an object feature relative to the world frame, xf ,

was selected as follows

xf = [0.08 − 0.08 0.5]T m. (1.41)

2The reader is referred to Fig. 3 in [1] for the comparison.
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The initial condition for the estimator was set as θ̂i(t0) = 10 ∀i = 1, .., 4, and the same

estimator gains given in (1.34) were used.

Fig. 1.5 shows the estimates x̂fi(t) ∀i = 1, 2, 3 and Fig. 1.6 shows the range

estimation error by using the proposed estimator. It can be seen from these figures

that the proposed estimation technique provides accurate results even for a complex

camera motion, and the results are comparable with the work presented by De Luca et

al. in [2]3 where noise-free velocity measurements were utilized. As mentioned earlier,

in practice, velocity measurements could be a lot noisier than position measurements;

hence, direct utilization of position measurements could be preferred.

Experimental Results

In this section, experimental results of the estimator presented in this paper are

shown for two different stationary objects: a checker-board and a doll-house. A prac-

tical implementation of the estimator involves (a) hardware for image acquisition, (b)

implementation of an algorithm for feature-tracking, and (c) software implementation

of the range estimator itself.

A calibrated 640×480 monochrome CCD camera (Sony XC-ST50) equipped with

a Navitar CCTV lens (focal length = 8 mm) was mounted on the end-effector of

a Puma 560 robotic manipulator, as shown in Fig. 1.7. The end-effector of the

PUMA robot having an initial distance of approximately 1.5 m from the object was

moved along a smooth sinusoidal trajectory along x, y, and z axes commanded by a

PC running the QNX 6.2 operating system as shown in Fig. 1.8. Fig. 1.9(a) and

Fig. 1.9(b) show the linear and angular velocity measurements respectively for the

same trajectory. It can be seen from these figures that velocity measurements are

very noisy; hence, very difficult to utilize for range estimation using a velocity based

range observer. A second PC, dedicated to image processing and equipped with an

Imagenation PXC200AF frame-grabber board capable of acquiring images in real time

3The reader is referred to Fig. 2 in [2] for the comparison.
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(30 fps) over the PCI bus was interfaced with the camera. The robot manipulator

is equipped with position sensors for all the 6 joints. In order to measure Rb(t) and

xb(t), the joint positions were measured and forward kinematics was utilized to obtain

a 4x4 homogenous transformation matrix which contained the 3x3 rotation matrix,

Rb(t), and the 3x1 translation vector, xb(t). In this experiment, the robot control

and vision system have been separated, this requires synchronization between the

two systems. Therefore, a 15 Hz digital signal was sent out to the image processing

PC from the robot control PC to trigger the frame-grabber to acquire images. The

same trigger signal was used to record the end-effector position of the robot relative

to the world frame, in a file to be processed off-line later.

For each object multiple feature points were selected, and an implementation of

the Kanade-Lucas-Tomasi feature tracking algorithm [35] available online [36] was

used to track these feature points from one frame to another. The implementation,

written in C++, allowed the user to select feature points manually and track all the

selected feature points in the sequence of images. The output of the program was a

data file that contained pixel coordinates of all the object features for all the frames

that were successfully tracked in the sequence of images. It is worthwhile to mention

that feature tracking plays an essential role as it is desired that none of the selected

features should be lost during tracking. See [37] for a discussion on issues related to

selection and tracking of feature points. The intrinsic calibration matrix of the camera

was found using MATLAB camera calibration toolbox [38] to be the following

A =

[
825 0 320
0 835 243

]
. (1.42)

The camera’s coordinate frame was aligned with the robot end-effector coordinate

frame in order to produce the following rotation matrix from the camera to the end-

effector

Rc =




−1 0 0
0 −1 0
0 0 1



 . (1.43)
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The translation vector between the camera and the end-effector was obtained as

follows

xc = [0 0.0681 0.0311]T m. (1.44)

The proposed estimation algorithm was implemented off-line using Mathworks Simulink

program using the data obtained from the vision tracking system and the robot control

PC. For each object, Euclidean distances between the object features were measured,

and the estimated Euclidean distances were computed from the estimates of xf (t)

obtained from the estimator. The estimator was tested on two different objects using

the above parameters.

Object I: Checker-board

Nine feature points were selected and tracked on a static checker-board, and six

Euclidean distances between the object features were measured as shown in Fig.

1.10. The initial condition for the estimate vector θ̂(t0) was taken as 10 for all the

entries. The following estimator gains were selected based on trial-and-error

α = 300, Γ−1
j (t0) = 1000I4 (1.45)

where the subscript j denotes jth object feature. The Euclidean distance estimation

errors between the representative object features are shown in Fig. 1.11. The inset

shows the Euclidean estimation errors zoomed in for the last 20 seconds. The evolu-

tion of range estimate for a single object feature is shown in Fig. 1.12. For clarity of

the figure, and to emphasize the fact that the estimated range is noise-free, we show

the range estimation for only one object feature.

Object II: Doll-house

A stationary doll-house was taken as the second object. Nine feature points were

selected and tracked on it, and six Euclidean distances between the object features

were measured as shown in Fig. 1.13. Similar to the checker-board experiment, the

initial condition for the estimate vector θ̂(t0) was taken as 10 for all the entries, and
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same estimator gains given in (1.45) were used. The Euclidean distance estimation

errors are shown in Fig. 1.14. The inset shows the Euclidean estimation errors zoomed

in for the last 20 seconds.

Discussion

The experimental results clearly show good and robust performance of the estima-

tor. The distance estimation errors are less than 1 cm for all the lengths in both the

experiments; therefore, it can be easily inferred that the 3D Euclidean coordinates of

the object features relative to the world frame are identified with good precision. It

can also be inferred from Fig. 1.12 that the evolution of range variable is noise-free

as opposed to [2] where evolution of range is quite noisy. Fig. 1.9 clearly shows that

velocity measurements are very noisy as compared to the position measurements in

Fig. 1.8; thus, a need of position based range estimator is evident. These velocity

measurements are obtained by differentiation of the position signal and then filtered

using a second order low pass filter. As mentioned previously, x̂f (t) can be utilized

to obtain other 3D coordinates of the object feature relative to the moving camera

from (1.15).
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Figure 1.2 Independent simulation study: Estimates x̂f (t) (a)-(c) without additive
noise (Case 1), and (d)-(f) in presence of additive noise and inaccurate information

of camera calibration parameters (Case 2).
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Figure 1.3 Independent simulation study: Range estimation error z(t) − ẑ(t) (a)
without additive noise (Case 1), and (b) in presence of additive noise and inaccurate

information of camera calibration parameters (Case 2).

Figure 1.4 Comparative simulation study with [1]: Error between y3(t) and its
estimate ŷ3(t) by using the proposed estimator.
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Figure 1.5 Comparative simulation study with [2]: Estimates of (a) x̂f1(t), (b)
x̂f2(t), and (c) x̂f3(t) by using the proposed estimator.
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Figure 1.6 Comparative simulation study with [2]: Range estimation error
z(t) − ẑ(t) by using the proposed estimator.

Figure 1.7 Experimental testbed with camera, robot and object
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Figure 1.8 Experiment: Robot position measurements xb(t).

Figure 1.9 Experiment: Robot velocity measurements (a) linear velocity and (b)
angular velocity.

22



Figure 1.10 A frame from the checker-board image sequence with the tracked
feature points along with true Euclidean distances between the object features.

Figure 1.11 Experiment: Euclidean distance estimation error (checker-board).
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Figure 1.12 Experiment: Range estimate ẑ(t) for a single object feature
(checker-board).

Figure 1.13 A frame from the doll-house image sequence with the tracked feature
points along with true Euclidean distances between the object features.
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Figure 1.14 Experiment: Euclidean distance estimation error (doll-house).
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CHAPTER 2

EUCLIDEAN POSITION ESTIMATION OF STATIC FEATURES

USING A MOVING UNCALIBRATED CAMERA

Introduction

3D reconstruction of an object, where the Euclidean coordinates of the features

on a moving or fixed object are recovered from a sequence of two-dimensional (2D)

images, has received noteworthy attention over the last several years. The recovery

of the 3D Euclidean coordinates is usually done by mounting a camera on a moving

vehicle such as an unmanned aerial vehicle (UAV) or a mobile robot which travels

through the environment and captures images of static objects or features. 3D recon-

struction or 3D Euclidean position estimation has significance in several applications

such as autonomous vehicle navigation, aerial tracking, path planning, surveillance,

etc.

Although, the problem of Euclidean reconstruction is inherently nonlinear, lin-

earization based techniques, such as the extended Kalman filter (EKF) [10], [12],

have been used quite frequently. However, linearized motion models can cause sig-

nificant incosistencies in solutions, as noted in [15]. Moreover, EKF involves a priori

knowledge of noise distribution. To overcome the shortcomings of the linear model

several researchers focused on utilizing nonlinear system analysis and estimation tools

to develop nonlinear state observers for depth estimation or 3D reconstruction [1], [18],

[19], [20], [21], [22], [25], [26], [39], [40]. All these works utilized velocity measurement

of the camera or the object in order to estimate the depth where the camera’s ex-

trinsic calibration parameters (rotational matrix and translation vector of the camera

relative to its mounting frame) were not considered, and the intrinsic calibration pa-

rameters (a matrix consisting functions of the camera’s internal parameters; namely,

focal length, scaling factors, pixel coordinates of the principal point, and camera axes

angles) were set to unity to simplify the problem. In practice, these calibration pa-

rameters are often required to estimate the depth or the structure of an object. In
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other words, the aforementioned works require the camera to be calibrated. In [27],

a valid intrinsic calibration matrix of the camera was assumed to recover the depth

of an object. Our recent work [41] utilized position measurements of the camera to

recover the structure of an object. However, this work assumed a calibrated cam-

era, i.e., the intrinsic and the extrinsic camera calibration parameters were assumed

to be known. The work in [41] was extended and evaluated experimentally in [42]

where it was realized that calibrating a camera is tedious and complicated, especially

calibration of the camera’s extrinsic parameters.

Hartley and Zisserman in [43] discussed techniques where the essential matrix

(when intrinsic calibration parameters are known) can be decomposed to obtain cam-

era’s extrinsic calibration parameters. This technique usually results in multiple solu-

tions for the rotation matrix, and the translation vector is found up to an ambiguous

scale factor; thus, making it difficult to select the correct solution. If the intrinsic

parameters are also unknown along with extrinsic parameters, the fundamental ma-

trix can be obtained. However, the knowledge of just the fundamental matrix is not

sufficient to estimate the depth information. It is also noted that recovering the 3D

Euclidean coordinates of an object from a sequence of its 2D images with a single

uncalibrated camera is a very difficult task. In [44], Hartley proposed a multiple-

step algorithm for Euclidean reconstruction from uncalibrated camera views. It was

noted in [45] that a true 3D Euclidean scene of an object using a single camera with

unconstrained motion and unknown parameters can not be reconstructed. These is-

sues motivated us to develop a simple and an easily implementable estimator for 3D

Euclidean position estimation using a single uncalibrated camera where both, the

intrinsic and the extrinsic camera calibration parameters are unknown.

In this paper, our goal is to develop an estimator to identify the 3D Euclidean

coordinates of features on a stationary object by mounting an uncalibrated camera on

a mobile platform whose position is measurable. To achieve this goal, first a geometric

model is developed to relate the fixed features on the object with the moving camera
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where the 3D Euclidean coordinates of the other object is considered to be available

a priori. The model is then parameterized for known and unknown object features.

A prediction error formulation is then presented along with an auxiliary prediction

error that allow us to utilize nonlinear estimation theory to design two adaptive least-

squares estimators to compensate for the unknown camera calibration parameters and

to estimate the structure. We show that the developed structure estimator identifies

the Euclidean coordinates of the object features upon satisfaction of a persistency

of excitation (PE) condition, and is not dependent on an accurate estimation of the

unknown camera calibration parameters. The proposed estimation technique can be

useful in places where a known object exists, and the 3D Euclidean coordinates of

another object has to be estimated. Also, when a camera on a mechanical system is

replaced or orientation of the camera is changed, it is not required to recalibrate the

camera if a known object is present. The developed estimator provides good results

and is robust to noise as demonstrated by the simulation results. The validity of the

proposed estimation technique is also demonstrated by experimental results.

Geometric Model

To develop a geometric relationship between a perspective moving camera and

features on known, and unknown static objects, we define an orthogonal coordinate

frame, denoted by C, whose origin coincides with the optical center of the camera,

an inertial coordinate frame, denoted by W, and an orthogonal coordinate frame,

denoted by B (see Fig. 2.1). In Fig. 2.1, Fsi ∀i = 1, .., n denotes the ith object

feature whose unknown 3D Euclidean coordinates relative to the world frame W
are denoted as the constant ωsi ∈ R

3, and Fcj ∀j = 1, .., m represents the jth object

feature4 whose corresponding 3D Euclidean coordinates relative to the world frame

W are known a priori and denoted by the constant ωcj ∈ R
3. The 3D coordinates

4Through out the paper the subscript si denotes the ith feature whose 3D coordinates relative to
the frame W is unknown, and cj denotes the jth feature whose 3D coordinates relative to the frame
W is known.
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Figure 2.1 Geometric relationships between the fixed objects, mechanical system,
and the camera.

of the object features relative to the camera frame C, denoted by m̄si/cj(t) ∈ R
3, is

defined as follows5

m̄si/cj ,
[
xsi/cj ysi/cj zsi/cj

]T
. (2.1)

In the subsequent development, it is assumed that both the objects are always

in the field of view of the camera; hence, the distances from the origin of C to all

the features are always positive and bounded. To relate the coordinate systems,

let Rb (t) ∈ SO (3) and xb (t) ∈ R
3 denote the measurable rotation matrix and the

measurable translation vector, respectively, from B to W, expressed in W. Let Rc ∈
SO (3) and xc ∈ R

3 denote the unknown rotation matrix and the unknown translation

vector, respectively, from C to B, expressed in B. The pixel coordinates of the object

features projected on the image plane, denoted by psi/cj(t) ∈ R
3, is defined as follows

psi/cj ,
[
usi/cj vsi/cj 1

]T
(2.2)

where usi/cj(t), vsi/cj(t) ∈ R. The projected pixel coordinates of the features are

5The notation Ysi/cj implies Ysi or Ycj through out the paper. If the left-hand side of any
expression is considered with the subscript si then the right-hand side of the expression is with si,
and similarly for cj.
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related to the Euclidean coordinates by the pin-hole camera model [29] such that

psi/cj =
1

zsi/cj
Am̄si/cj (2.3)

where A ∈ R
3×3 is the unknown constant intrinsic camera calibration matrix of the

following form [30]

A ,




fku fku cotφ u0

0 fkv

sinφ
v0

0 0 1



 (2.4)

where ku, kv ∈ R denote camera scaling factors, u0, v0 ∈ R represent the pixel

coordinates of the principal point, φ ∈ R is the angle between the camera axes, and

f ∈ R is the camera focal length.

Parameterization of the Model

In this section, the parameterization of Am̄si/cj(t) and the depth variable zsi/cj(t)

are presented. The nonlinear static model given in (2.3) is parameterized for two

cases: case 1, where the 3D coordinates of the features relative to W are unknown

(i.e., for si), and case 2, where the 3D coordinates of the features relative to W are

known a priori (i.e., for cj).

From Fig. 2.1, m̄si/cj(t) can be written as follows [41]

m̄si/cj = RT
c

[
RT
b

(
ωsi/cj − xb

)
− xc

]
. (2.5)

After substituting (2.5) into (2.3), the pixel coordinates for the object features can

be written as follows

psi/cj =
1

zsi/cj
ART

c

[
RT
b (ωsi/cj − xb) − xc

]
(2.6)

and the corresponding depth zsi/cj (t) can be written as follows

zsi/cj = RT
c3

[
RT
b (ωsi/cj − xb) − xc

]
(2.7)

where RT
c3 ∈ R

1×3 is the last row of RT
c .

Case 1: For the object features that have unknown 3D coordinates relative to W,
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psi(t) is parameterized as follows

psi =
1

Π(X, θc2)θsi
W (X, θc1)θsi ∀i = 1, .., n (2.8)

where

Π(·)θsi = zsi = RT
c3

[
RT
b (ωsi − xb) − xc

]
(2.9)

W (·)θsi = ART
c

[
RT
b (ωsi − xb) − xc

]
. (2.10)

In (2.8)-(2.10), θc1 ∈ R
12 and θc2 ∈ R

4 are the constant vectors containing all the

camera parameters [46], the variable X(t) ∈ R
q×r contains the combinations of the

elements of the measurable signals Rb(t) and xb(t), Π(·) ∈ R
1×4, W (·) ∈ R

3×4 are

regression matrices, and θsi ∈ R
4 is an unknown constant parameter vector, which is

defined as

θsi , [ωsi1 ωsi2 ωsi3 1]T (2.11)

where ωsir ∈ R ∀r = 1, 2, 3, is the unknown Euclidean coordinate of the ith feature

for the unknown object relative to W .

Case 2: For known 3D coordinates of the features relative to W, pcj(t) is parameter-

ized as follows [46]

pcj =
1

Πxj(X̄)θc2
Wxj(X̄)θc1 ∀j = 1, .., m (2.12)

where Wxj(·) ∈ R
3×12, Πxj(·) ∈ R

1×4 are known regression matrices (X̄(t) ∈ R
s×t

contains combinations of the measurable signals and structure information of the

known object).

It should be noted that zsi/cj (t) is assumed to satisfy the following inequalities

ρsi/cj (·) ≥ zsi/cj(t) = denum(psi/cj) ≥ εsi/cj > 0 (2.13)

where denum(·) denotes the denominator of (·), ρsi/cj(m̄si/cj) ∈ R is a positive function

and εsi/cj ∈ R is a positive constant ∀i, j. The objective of this work is to identify the

3D Euclidean coordinates of the features on an unknown object θsi in the presence
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of unknown camera parameters θc1, θc2
6. It is to be noted that our novel structure

estimation technique guarantees the estimation of the 3D Euclidean coordinates upon

the satisfaction of a PE condition, and it does not require an accurate estimation of

the camera parameters. Estimating the camera parameters accurately is beyond the

scope of this paper.

Euclidean Structure Estimation

In this section, a prediction error formulation for the parameterized model given in

(2.8) is presented along with an auxiliary prediction error formulation which accounts

for the unknown camera parameters. A structure estimator is then presented along

with the stability analysis.

Prediction Error Formulation

To proceed with the error development, the term Π(·)θsi is multiplied to the both

sides of (2.8) that results in the following expression

psiΠθsi = Wθsi. (2.14)

The estimate of (2.14) can be written as follows

p̂siΠ̂θ̂si = Ŵ θ̂si (2.15)

where p̂si(t) ∈ R
3 and θ̂si(t) ∈ R

4 are the estimates of psi(t) and θsi, respectively, Π̂

and Ŵ denote Π(X, θ̂c2) and W (X, θ̂c1), respectively where θ̂c1(t) ∈ R
12, θ̂c2(t) ∈ R

4

are the estimates of θc1 and θc2, respectively. To facilitate the development, the

terms Ŵ θsi and p̂siΠθsi are added and subtracted from the right-hand-side and the

left-hand-side of (2.14), respectively that yields the following expression

[psi − p̂si] Πθsi + p̂siΠθsi = Ŵθsi + [W − Ŵ ]θsi. (2.16)

6The estimates of A, Rc, and xc can be obtained from the estimates of θc1, θc2 (see [46] for a
detailed explanation).
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After subtracting (2.15) from (2.16), the following expression is obtained

p̃siΠθsi + p̂siΠθsi − p̂siΠ̂θ̂si = Ŵ θ̃si + W̃ θsi (2.17)

where p̃si (t) , psi − p̂si ∈ R
3 is the prediction error for the ith feature point

∀i = 1, .., n, θ̃si(t) , θsi − θ̂si ∈ R
4 is the structure estimation error, and W̃ de-

notes W (X, θ̃c1) where θ̃c1(t) , θc1 − θ̂c1 ∈ R
12. After adding and subtracting the

term p̂siΠ̂θsi to the left-hand-side of (2.17) and simplifying, the following expression

can be obtained

p̃si =
1

Πθsi

{[
Ŵ − p̂siΠ̂

]
θ̃si +

[
W̃ − p̂siΠ̃

]
θsi

}
(2.18)

where Π̃ denotes Π(X, θ̃c2) and θ̃c2(t) , θc2 − θ̂c2 ∈ R
4. To ease the subsequent

analysis, we combine these individual vectors ∀i to obtain their respective compact

forms. The combined form of the pixel coordinates and their estimates for all the

feature points on the unknown object, denoted by ps (t) , p̂s (t) ∈ R
3n, respectively,

are defined as follows

ps ,
[
pTs1 pTs2 ... pTsn

]T
; p̂s ,

[
p̂Ts1 p̂Ts2 ... p̂Tsn

]T
(2.19)

and the prediction error p̃s (t) ∈ R
3n is defined as follows

p̃s , ps − p̂s =
[
p̃Ts1 p̃Ts2 ... p̃Tsn

]T
. (2.20)

Based on (2.18), the prediction error p̃s (t) can be written as

p̃s = BW̄sθ̃s +BWsθs (2.21)

where W̄s (t) ∈ R
3n×4n is a measurable signal defined as follows

W̄s ,





Ŵ − p̂s1Π̂ 03×4 ... 03×4

03×4 Ŵ − p̂s2Π̂ ... 03×4

. . . .

. . . .

03×4 03×4 ... Ŵ − p̂snΠ̂




(2.22)
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and Ws(t) ∈ R
3n×4n is an auxiliary matrix defined as

Ws ,





W̃ − p̂siΠ̃ 03×4 ... 03×4

03×4 W̃ − p̂siΠ̃ ... 03×4

. . . .

. . . .

03×4 03×4 ... W̃ − p̂siΠ̃




(2.23)

where 03×4 ∈ R
3×4 is a zero matrix. In (2.21), θs ,

[
θTs1 θTs2 ... θTsn

]T ∈ R
4n, and

B(t) ∈ R
3n×3n is an auxiliary matrix defined as

B , diag {ϕ1, ϕ1, ϕ1, ..., ϕn, ϕn, ϕn} (2.24)

where ϕi , 1
Πθsi

∀i = 1, .., n. The combined form of the structure estimation errors

of the features, denoted by θ̃s (t) ∈ R
4n, is defined as follows

θ̃s , θs − θ̂s =
[
θ̃
T

s1 θ̃
T

s2 ... θ̃
T

sn

]T
. (2.25)

The expression given in (2.21), can be rewritten as follows

p̃s = BW̄sθ̃s +BS (2.26)

where S(t) , Wsθs ∈ R
3n. After utilizing (2.18), Si(t) ∈ R

3 for the ith object feature

can be written as follows

Si = [W (X, θ̃c1) − p̂siΠ(X, θ̃c2)]θsi (2.27)

which can be further written as follows7

Si = [Wxi(X, θsi) − p̂siΠxi(X, θsi)]θ̃c ∀i = 1, .., n (2.28)

where Wxi(·) ∈ R
3×12, Πxi(·) ∈ R

1×4, and θ̃c ,
[
θTc1 θTc2

]T ∈ R
16.

In order to make the structure estimation error θ̃s(t) go to zero, we seek to make

the prediction error p̃s(t) given in (2.26) go to zero.

Auxiliary Prediction Error Formulation

7The reader is referred to [47] for the matrix property.
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To further facilitate the development and to account for the unknown intrinsic

and extrinsic camera parameters, both sides of (2.12) is multiplied with the term

Πxj(·)θc2 to obtain the following expression

pcjΠxj(·)θc2 = Wxj(·)θc1 ∀j = 1, .., m. (2.29)

The estimate form of (2.29) is written as follows

p̂cjΠxj(·)θ̂c2 = Wxj(·)θ̂c1 (2.30)

where p̂cj(t) ∈ R
3 is the pixel estimate of the jth feature. After subtracting (2.30)

from (2.29), and then adding and subtracting the term p̂cjΠxjθc2 to the left-hand-side

results in the following expression

p̃cj =
1

Πxj(·)θc2

[
Wxj(·)θ̃c1 − p̂cjΠxj(·)θ̃c2

]
(2.31)

where p̃cj(t) , pcj − p̂cj ∈ R
3 is the prediction error for the jth feature point

∀j = 1, .., m. Based on (2.31), the combined form of the prediction errors, denoted

by p̃c ,
[
p̃Tc1 p̃Tc2 ... p̃Tcm

]T ∈ R
3m, can be written as follows

p̃c = F [Wx Πx]
[
θ̃
T

c1 θ̃
T

c2

]T
. (2.32)

In (2.32), Πx(t) ∈ R
3m×4, and Wx(X̄) ∈ R

3m×12 are defined as follows

Πx , −
[
(p̂c1Πx1)

T (p̂c2Πx2)
T ... (p̂cmΠxm)T

]T

Wx ,
[
Wx1(X̄)T Wx2(X̄)T ...Wxm(X̄)T

]T
(2.33)

and F (t) ∈ R
3m×3m is an auxiliary matrix defined as follows

F , diag {ϕ̄1, ϕ̄1, ϕ̄1, ..., ϕ̄n, ϕ̄n, ϕ̄n} (2.34)

where ϕ̄j , 1
Πxjθc2

∀j = 1, ..., m. The expression given in (2.32) can be further

simplied as follows

p̃c = FWcθ̃c (2.35)
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where Wc(t) ∈ R
3m×16 is defined as follows

Wc , [Wx Πx] . (2.36)

To account for the unknown camera parameters, the following update law is designed

[46]
.

θ̂c, Proj
{
αcΓcW

T
c p̃c
}

(2.37)

where Proj{·} ensures the positiveness of the term Πxj(·)θ̂c2(t) (see [48] for a detailed

description) and αc (t) ∈ R is a positive function defined as follows

αc , 1 +
1

ε̄ c
ρ̄c (·) (2.38)

where ρ̄c (·) , max
j

{
ρ2
cj (·)

}
∈ R is a positive function and ε̄c , min

j
{εcj} ∈ R is

a positive constant. In (2.37), Γc (t) ∈ R
16×16 is the covariance matrix, designed as

follows8

d

dt

{
Γ−1
c (t)

}
= 2W T

c Wc, Γc(t
+
m) = Γc(t0) = η0I16 (2.39)

where tm ∈ R
+ is the time instant at which the minimum eigenvalue of Γc(t) is less

than or equal to η1 (i.e., the covariance matrix is reset each time when its minimum

eigenvalue becomes less than η1) and η0, η1 ∈ R are positive constants satisfying the

inequality η0 > η1.

Remark 1 It is to be noted that due to resetting, Γc(t) is guaranteed to be positive

definite for all t ≥ 0. At the resetting time tm, Γc(t
+
m) = Γc(t0) = η0I16; there-

fore, Γ−1
c (t0) = η−1

0 I16 and between the discontinuities d
dt

Γ−1
c (t) ≥ 0 ( i.e., Γ−1

c (t2) −
Γ−1
c (t1) ≥ 0, ∀t2 ≥ t1 ≥ 0). Thus, it can be easily inferred that Γ−1

c ≥ η−1
0 I16, ∀t ≥ 0.

Because of the resetting, Γc(t) is always lower bounded by η1I16, ∀t ≥ 0; therefore, the

following inequalities are always guaranteed [49]

η0I16 ≥ Γc(t) ≥ η1I16, η
−1
1 I16 ≥ Γ−1

c (t) ≥ η−1
0 I16. (2.40)

8Throughout the paper, Iq will be used to denote a q × q standard identity matrix.
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Euclidean Structure Estimator

Based on the subsequent stability analysis, the following update law is designed

to estimate the Euclidean coordinates of the unknown object features relative to W
.

θ̂s, Proj
{
αΓW̄ T

s p̃s
}

(2.41)

where Proj{·} ensures the positiveness of the term Π̂(·)θ̂si (t) (see [48] for a detailed

description), and α (t) ∈ R is a positive scalar function defined as follows

α , 1 +
1

ε̄ s
ρ̄s (·) (2.42)

where ρ̄s(·) ∈ R is a positive function defined as

ρ̄s (·) , max
i

{
ρ2
si (·)

}
(2.43)

and ε̄s ∈ R is a positive constant defined as follows

ε̄s , min
i

{εsi} . (2.44)

In (2.41), Γ (t) ∈ R
4n×4n is the least-squares estimation gain matrix, designed as

follows
d

dt

{
Γ−1(t)

}
= 2W̄ T

s W̄s. (2.45)

The Euclidean structure estimator given in (2.41) is run simultaneously with the

adaptive update law given in (2.37). The latter updates the camera parameters for

W̄s(t) which is used in the structure estimator. See Fig. 2.2 for an illustration of the

estimation technique.

Remark 2 It should be noted that if Γ−1 (t0) is selected to be positive definite and

symmetric then Γ (t0) is also positive definite and symmetric. Therefore, it follows

that both Γ−1 (t) and Γ (t) are positive definite and symmetric. The following expres-

sion can be obtained from (2.45)

Γ̇ = −2ΓW̄ T
s W̄sΓ. (2.46)
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Figure 2.2 An illustration of the proposed 3D Euclidean coordinates estimation
technique.

It can be easily seen from (2.46) that Γ̇ (t) is negative semidefinite; therefore, Γ (t) is

always constant or decreasing; hence, it follows that Γ (t) is bounded (for more details,

the reader is referred to [31]).

Remark 3 The projection algorithm utilized in (2.37), and (2.41) ensures that p̂si(t)

is bounded ∀i = 1, .., n. Furthermore, it satisfies the following inequalities (see [42]

for a detailed description)

−θ̃sΓ−1Proj {τ s} ≤ −θ̃sΓ−1τ s (2.47)

−θ̃cΓ−1
c Proj {τ c} ≤ −θ̃cΓ−1

c τ c (2.48)

where τ s = αΓW̄ T
s p̃s and τ c = αcΓcW

T
c p̃c.

Stability Analysis

Theorem 2 The update law defined in (2.41) ensures that
∥∥∥θ̃s(t)

∥∥∥→ 0 as t → +∞
provided that the following PE condition [49] holds

γ1I4n ≤
∫ t0+T

t0

W̄ T
s (τ)W̄s(τ )dτ ≤ γ2I4n. (2.49)

where γ1, γ2, T ∈ R are positive constants.
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Proof. See Appendix D.

Remark 4 The parameter vector θ̂si (t) provides a scaled estimate of the Euclidean

coordinates of the object features relative to the world frame. Since the last element

in the unknown constant parameter vector is equal to 1 as defined in (2.11), the scale

factor can be computed as

λi = θ̂si4 (2.50)

where, λi (t) ∈ R is the scale factor for the ith feature and θ̂si4 (t) ∈ R is the last entry

of θ̂si (t). It should be noted that θ̂si4 (t) is always nonzero which is guaranteed by the

projection algorithm introduced in (2.37). The estimates of the Euclidean coordinates

of the ith feature can now be recovered as follows

ω̂sih =
1

λi
θ̂sih (2.51)

where θ̂sih (t) ∀ h = 1, 2, 3, is the hth element of the estimated parameter vector for

ith feature.

Simulation Results

A numerical simulation study was conducted to evaluate the performance of the

proposed estimation algorithm using the Mathworks Simulink program. Six object

features on the known object whose Euclidean coordinates relative to the world frame

considered to be known a priori, were selected as follows

ωc1 = [0 1 1]T m ωc2 = [0 0.5 1]T m
ωc3 = [0 0 1]T m ωc4 = [1 1 1]T m
ωc5 = [1 0.5 1]T m ωc6 = [1 0 1]T m.

Eight non-planar object features on the unknown object, were selected to have the

following 3D Euclidean coordinates relative to the world frame

ωs1 = [0.5 1 1]T m ωs2 = [0.8 1 1.2]T m
ωs3 = [0.5 0.5 1.4]T m ωs4 = [1.5 1 1.5]T m
ωs5 = [1.5 1.5 1.6]T m ωs6 = [1 2 1.8]T m
ωs7 = [2 1 2]T m ωs8 = [1 1 2.5]T m.
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The intrinsic calibration matrix and extrinsic parameters for a 640×480 camera were

selected as follows

A =




825 0 320
0 835 240
0 0 1





Rc = I3 xc = [0.5 0 0.1]T m.

The mechanical system was given the following translation vector xb(t), and angular

rotation qb(t) ∈ R
3(yaw-pitch-roll about x-y-z axes)

xb = [0.1cos(t) 0.1sin(t) 0.1sin(0.5t)]T m

qb = [0 0 0.1sin(0.1t)]T rad.

The measurable Rb(t) was generated using qb(t). The initial condition for the vector

θ̂s(t0) was set to 250 for all its entries, and θ̂c(t0) was set to 100 for all its entries.

The estimator gains were selected based on trial-and-error as follows

αc = 50, Γ−1
c (t0) = I16 ; η0 = 1 , η1 = 0.002

α = 300, Γ−1(t0) = 4000I32.

Two different cases were examined using the above parameters. For case A, pixel

measurements had no noise in them while in case B, the pixel coordinates were cor-

rupted by 2% random noise (pixel errors not exceeding 5 pixels at any time). The

estimates for the 3D Euclidean coordinates ω̂si(t) ∀i = 1, .., 8 for the two cases are

shown in Fig. 2.3 and Fig. 2.4, respectively. It can be seen from these figures that

the proposed estimation technique provides good estimations for the structure, and

the added noise has insignificant effect on the estimator. To further validate the esti-

mation technique, seven lengths (Euclidean distances) were measured on the object.

For instance “Length 1” is the distance from ωs1 to ωs2 on the object. The lengths
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Figure 2.3 Simulation case A (without noise): Estimates of the 3D Euclidean
coordinates ω̂si(t) ∀i = 1, .., 8 shown in (a)-(h)., respectively.

(in [cm]) were found to be

Length 1 = 36.06 Length 2 = 61.64 Length 3 = 112.20

Length 4 = 50.99 Length 5 = 73.48 Length 6 = 142.80

Length 7 = 111.80.

The results for the Euclidean distance estimation error for both the cases are shown

in Fig. 2.5. The insets show the errors zoomed in for the last 20 seconds of the

simulation. Again, it can be seen that the added noise plays an insignificant role,

and the Euclidean distance estimation errors for all the lengths are well within 1

cm for the last 20 seconds. The simulation results in figures 2.3, 2.4, and 2.5 show

that the proposed estimation technique can be used to recover the 3D Euclidean
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Figure 2.4 Simulation case B (with noise): Estimates of the 3D Euclidean
coordinates ω̂si(t)∀i = 1, .., 8 shown in (a)-(h)., respectively.

coordinates of an object without having the knowledge of the camera’s intrinsic or

extrinsic calibration parameters.

Experimental Results

In this section, experimental results of the proposed estimation technique are

discussed. In the experiment, a single object was considered with known 3D coordi-

nates of six features and unknown 3D coordinates of another four features relative to

the world frame. An uncalibrated monochrome CCD camera (Sony XC-ST50) was

mounted on the end-effector of a Puma 560 robot manipulator (see Fig. 2.6). The

end-effector of the robot was given a smooth closed trajectory along x, y, and z axes

commanded by a PC running the QNX 6.2 operating system. A second PC, used

for image processing and equipped with an Imagenation PXC200AF frame-grabber
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Figure 2.5 Euclidean distance estimation error: (a) without noise (b) in the presence
of noise.
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Figure 2.6 Experimental testbed with camera, robot and object.

board capable of acquiring images in real time (30 fps) over the PCI bus was inter-

faced with the camera. The robot control and vision systems were separated that

required a synchronization between the two systems. Therefore, a 15 Hz digital sig-

nal was sent out to the image processing PC from the robot control PC to trigger

the frame-grabber to acquire images. The same trigger signal was used to record the

end-effector position of the robot relative to the world frame, in a file to be processed

off-line later.

An implementation of the Kanade-Lucas-Tomasi feature tracking algorithm [35]

available at [36] was used for tracking object features from one frame to another.

The C++ implementation of the algorithm enabled the user to select object features

manually and track them in the image sequence.

The proposed estimation algorithm was implemented off-line using Mathworks

Simulink program using the data obtained from the vision tracking system and the

robot control PC. Ten features were tracked on a stationary doll-house. A sample

frame with the tracked features is shown in Fig. 2.7 where circle-markers represent

four object features whose Euclidean coordinates are unknown and star-markers de-

note the other six object features with known Euclidean coordinates relative to the

world frame. The true Euclidean distances between the object features with unknown
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Figure 2.7 A frame from the doll-house image sequence with the tracked object
features, and the true Euclidean distances between them.

3D coordinates relative to the world frame are shown in Fig. 1.13. The initial condi-

tion for the vector θ̂s(t0) was set to 100 for all its entries, and θ̂c(t0) was set to 20 for

all its entries. The following estimator gains provided good performance

αc = 50, Γ−1
c (t0) = I16 ; η0 = 1 , η1 = 0.002

α = 1000, Γ−1(t0) = 1000I16.

Similar to the simulation section, the proposed estimation technique was verified

by estimating the Euclidean distances between the object features whose 3D coordi-

nates were unknown. The Euclidean distance estimation errors between representa-

tive features are shown in Fig. 2.8. The inset shows Euclidean distance estimation

error zoomed in for the last 60 seconds. It can be seen that the proposed estimation

technique gives good estimation of the Euclidean distances between the object fea-

tures. One can conclude that a precise estimation of the 3D Euclidean coordinates is

obtained of the object features without any knowledge of the camera’s intrinsic and

extrinsic calibration parameters.
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Figure 2.8 Experiment: Euclidean distance estimation error.
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CHAPTER 3

RANGE IDENTIFICATION FOR NONLINEAR

PARAMETERIZABLE PARACATADIOPTRIC

SYSTEMS

Introduction

The problem of range identification, where the estimation of the unknown time-

varying distance of the object from the camera along its optical axis, has received

noteworthy attention over the last several years due to its significance in several

applications such as autonomous vehicle navigation, aerial tracking, path planning,

surveillance, etc. These applications require either the range or the 3D Euclidean

coordinates of features of a moving or a static object to be recovered from their two-

dimensional (2D) image sequence. The range estimation is usually done by mounting

a camera on a moving vehicle such as a mobile robot or an unmanned aerial vehicle

(UAV) which captures images of the static objects or features. However, the use of

conventional (perspective) cameras pose restrictions for some applications because of

their limited field-of-view (FOV).

One efficient way to enhance the FOV is to use mirrors (spherical, elliptical, hyper-

boloid, or paraboloid) in conjunction with conventional cameras, commonly known

as catadioptric systems [50]. However, the use of curved mirrors reduce the resolu-

tion and distort the images to a large extent. As stated in [51], the distorted image

mapping can be dealt with by using computer vision techniques, but the nonlinearity

which is introduced in the transformation makes it difficult to recover 3D coordinates

of the object features. Catadioptric systems that have a single effective viewpoint

are known as central catadioptric systems, and are desirable because they allow for

distortion-free reconstruction of panoramic images [52]. A paracatadioptric system

is a special case of central catadioptric systems which employs a paraboloid mirror

along with an orthographic lens. These systems are advantageous due to the fact
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that the paraboloid constant of the mirror along with its physical size do not need to

be determined during the calibration. Furthermore, mirror alignment requirements

are relaxed which means that the mirror can be arbitrarily translated enabling the

camera to zoom in on a part of the paraboloid mirror for higher resolution; however,

with a reduced FOV [50].

In the past, many researchers have proposed various range identification tech-

niques for perspective vision systems. Some of which have utilized the extended

Kalman filter (EKF) [10], [12], [53]. However, EKF involves linearization of the non-

linear vision model and requires a priori knowledge of the noise distribution. To

overcome the shortcomings of the linear model, many researchers focused on utiliz-

ing nonlinear system analysis and estimation tools to develop nonlinear observers to

identify the range when the motion parameters were known [1], [17], [18], [19], [20],

[39]. More recently, in [41], measurement of camera position was utilized to develop

an adaptive estimator to recover the structure which was extended in [42] to recover

the range.

Although, there have been several reports on range identification for perspec-

tive vision systems, very few results have been shown for range identification for

catadioptric systems. In [54], Ma et al. proposed a range identification technique

for paracatadioptric system based on a sequence of linear approximation-based ob-

servers. In [25], Gupta et al. designed a nonlinear observer to asymptotically identify

the range for a paracatadioptric system. However, both of these reports assumed

the focal point of the paraboloid mirror to be at its vertex. This assumption was

recently relaxed in [51]. In the current work, we also base our development on a more

practical approach that the focus of the paraboloid mirror is not at its vertex. In [52],

an omnidirectional light projector was embedded in a paracatadioptric system, and

the range was calculated by triangulation. In [51], Hu et al. developed a nonlinear

estimator similar to [19] to identify the range for paracatadioptric systems where the

motion parameters were assumed to be known, and it assumed that the object must
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translate in at least one direction.

In this paper, we present a method to identify the range of a static object using

a moving paracatadioptric system whose position is measurable. For many applica-

tions, position measurements are considerably less noisy than velocity measurements;

hence, we are motivated to develop an estimator based on position measurements.

The estimator is designed by first developing a geometric model along with a para-

catadioptric projection model that relates an object feature with the paracatadioptric

system mounted on a moving mechanical system. The novelty of this work lies in the

compensation for nonlinear parameterization of the model which relates the pro-

jected pixel coordinates to the Euclidean coordinates of the object feature. It should

be noted that contrary to [41], where the unknown terms appear linearly in the pa-

rameterized model for a perspective vision system, in the current work, the unknown

parameters appear nonlinearly in the model for a paracatadioptric system. This fact

makes it difficult to use a standard adaptive estimator or a gradient based estimator

[55]. The estimator presented in this paper which facilitates range identification to

the desired precision is based on a min-max optimization algorithm. We show that

the developed estimator identifies the range and the 3D coordinates of the object

feature upon the satisfaction of a Nonlinear Persistent Excitation (NLPE) condition

and is robust to noise as demonstrated by the simulation results. The contributions of

this paper are that: i) the developed estimator utilizes position measurements instead

of velocity measurements, ii) is continuous, and iii) provides estimation of unknown

parameters within a desired precision.

Model Development

Geometric Model

For the development of a geometric relationship between a moving paracatadiop-

tric system and a stationary object, an orthogonal coordinate frame, denoted by M,

which is centered at the focal point of the moving paraboloid mirror whose Z-axis is
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aligned with the optical axis of the camera, is defined (see Fig. 3.1). As shown in Fig.

3.1, an inertial coordinate frame, denoted by W, and an orthogonal coordinate frame,

denoted by B, are defined. F denotes a static feature on a stationary object. Let the

unknown 3D Euclidean coordinates of the object feature be denoted as the constant

θ ∈ R
3 relative to the world frame W and m(t) ∈ R

3 relative to M be defined as

follows

m , [x y z]T . (3.1)

To relate the coordinate systems, let Rb(t) ∈ SO(3) and xb(t) ∈ R
3 denote the

Figure 3.1 Geometric relationships between the stationary object, mechanical
system, and the paracatadioptric system.

measurable rotation matrix and the translation vector, respectively, from B to W
expressed in W. Let Rm ∈ SO(3) and xm ∈ R

3 be the known rotation matrix and

the translation vector, respectively, from M to B expressed in B.

Paracatadioptric System Projection Model

In a paracatadioptric system, a Euclidean point is projected onto a paraboloid

mirror and is then reflected to an orthographic camera (see Fig. 3.1); thus, to facilitate

the subsequent development, and to relate the geometric model to the vision system,
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let the projection of the object feature on the surface of the paraboloid mirror with

its focus at the origin be denoted by w(t) ∈ R
3 relative to M and defined as follows

w , [u v q]T . (3.2)

The projection w(t) can be expressed as follows [56]

w =
2f

λ
m =

2f

λ
[x y z]T (3.3)

where f ∈ R is the known focal length of the mirror and λ(x, y, z) ∈ R is the unknown

nonlinear signal defined as follows

λ , −z +
√
x2 + y2 + z2. (3.4)

It is worthwhile to mention that the use of a paracatadioptric system results in

an orthographic projection from the paraboloid mirror to the image plane. In other

words, the reflected rays are parallel to the optical axis; thus, the distance from the

mirror to the image plane is irrelevant. After utilizing (3.2) and (3.3), the projection

can be expressed as follows [
u
v

]
=

2f

λ

[
x
y

]
. (3.5)

However, when measured from a CCD chip as in any practical case, [u, v]T is trans-

formed as follows [57]

p ,

[
u′

v′

]
= K

[
u
v

]
+ C (3.6)

where p(t) ∈ R
2 are the measured pixel coordinates on the image plane, K ∈ R

2×2

and C ∈ R
2 are defined as follows

K ,

[
a1 a2

0 a−1
1

]
C ,

[
cx
cy

]
(3.7)

where a2
1, a2 ∈ R are the aspect ratio and the skew factor, respectively, and C is the

image center. Since a central catadioptric camera can be calibrated using a single

image of three lines [57], [58], we assume the camera to be calibrated. It is clear from
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(3.6) that the coordinates in the mirror frame, u(t) and v(t), can be obtained from

the measured pixel coordinates as follows

[u v]T = K−1(p− C). (3.8)

Also, since the paraboloid mirror is rotationally symmetric, q(·) ∈ R can be computed

from u(t) and v(t) as follows [51]

q =
u2 + v2

4f
− f. (3.9)

Assumption 1 It is assumed that the object feature is not on the optical axis i.e.,

x(t), y(t) 6= 0 simultaneously and thus, λ(·) 6= 0.

Nonlinear Parameterization of the Model

In this section, the parameterization of the nonlinear function q(·) is presented

after relating it to the unknown 3D Euclidean coordinates of the object feature.

From Fig. 3.1, m(t) can be written as follows [41]

m = RT
m

[
RT
b (θ − xb) − xm

]
. (3.10)

After utilizing (3.1), the 3D coordinates of the object feature relative to M can be

expressed as follows

x = RT
m1

[
RT
b (θ − xb) − xm

]
(3.11)

y = RT
m2

[
RT
b (θ − xb) − xm

]
(3.12)

z = RT
m3

[
RT
b (θ − xb) − xm

]
(3.13)

where RT
mi ∈ R

1×3 is the ith row of RT
m, and z(t) is the range of the object feature.

After substituting (3.5) into the nonlinear model given in (3.9), q(·) is nonlinearly

parameterized (NLP) as follows

q (θ, Rm, xm, Rb, xb, f) =

(
2f
λ
x
)2

+
(

2f
λ
y
)2

4f
− f. (3.14)
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In the subsequent analysis, q (θ, Rm, xm, Rb, xb, f) is replaced by q(θ,Π) where Π(·) ∈
R
n1×n2 with n1 and n2 being integers, contains the combinations of known and mea-

surable quantities (i.e., f, Rm, xm, Rb(t), and xb(t)).

Remark 1 It can be seen from (3.4), (3.9), and (3.11)- (3.13) that θ appears non-

linearly in q(·); thus, it is not possible to give an exact expression for the function

Π(·). Specifically, Π(·) is a shorthand notation for Π(f, Rm, xm, Rb(t), xb(t)).

Assumption 2 The unknown parameter vector θ is assumed to belong to a known

hypercube Θ ⊂ R
3. In other words, the 3D coordinates of the object feature relative

to W are assumed to lie within their known minimum and maximum values.

Assumption 3 For any Π(·), the function q(·) is either concave or convex on a

simplex9 Θs in R
3 such that Θs ⊃ Θ (see Fig. 3.2).

Assumption 4 The function Π(t) is bounded, continuous function of its arguments,

and is Lipschitz in t such that

‖Π(t1) − Π(t2)‖ ≤ L1|t1 − t2| ∀t1, t2 ∈ R
+ (3.15)

where L1 ∈ R
+ is the Lipschitz constant.

Assumption 5 q(θ0,Π) is Lipschitz with respect to its arguments such that

|q(θ0 + ∆θ0,Π + ∆Π) − q(θ0,Π)| ≤ L2(‖∆Π‖ + ‖∆θ0‖) (3.16)

where L2 ∈ R
+ is the Lipschitz constant, ∆Π = Π(t1) − Π(t2), and ∆θ0 = θ0(t1) −

θ0(t2).

Definition 1 A function H(ς) is said to be convex on Θ if it satisfies the following

inequality

H (σς1 + (1 − σ) ς2) ≤ σH (ς1) + (1 − σ)H (ς2)

∀ς1, ς2 ∈ Θ (3.17)

9A simplex in R
n is a convex polyhedron having exactly n + 1 vertices.
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and concave if it satisfies the following inequality

H (σς1 + (1 − σ) ς2) ≥ σH (ς1) + (1 − σ)H (ς2)

∀ς1, ς2 ∈ Θ (3.18)

where 0 ≤ σ ≤ 1.

Remark 2 It should be noted that the Assumptions 2 and 3 essentially characterize

the nature of the nonlinear parameterization, and the convexity or concavity of the

function q(·) is required in a region Θs which is larger than the hypercube Θ. Also,

since an estimation problem for a practical moving paracatadioptric system is con-

sidered in this paper, we assume that the measurable position signals are bounded as

well as its velocity is bounded. The boundedness of the position signals in other words

mean that the function Π(·) is bounded.

Remark 3 In Appendix L, we show how Assumptions 4 and 5 can be replaced by a

simpler condition on the differentiability of q(·) for the estimation problem.

Remark 4 Assumptions 4 and 5 are related to the boundedness of the motion of

the mechatronic platform ( i.e., a robot manipulator, UAV, or a mobile robot, etc.)

to which the omnidirectional camera is attached. Also, The definition of convexity

and concavity are provided in Definition 1. As noted in [59], for an affine function,

we always have equality in (3.17) and (3.18), respectively. Therefore all affine (and

therefore also linear) functions are both convex and concave. Conversely, any function

that is convex and concave is affine. In Assumption 3, it is claimed that for any Π(·),
q(·) is either convex or concave. Thus, Assumption 3 is utilized to exclude affine (and

also linear) functions.

Remark 5 The hypercube Θ can be found using the minimum and the maximum

values of θ. The vertices of the simplex Θs, denoted by θs1, θs2, θs3, θs4 ∈ R
3, can be

found by first inscribing Θ in a 3-dimensional sphere and then inscribing this sphere

inside a 4-dimensional polyhedron [55], [60].
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It should be noted that in (3.11)-(3.13), θ (i.e, the constant 3D coordinates of the

object feature relative to W) is the only unknown vector, and if we estimate this we

can then obtain an estimation of the 3D coordinates of the object feature relative to

M as follows

x̂ = RT
m1[R

T
b (θ̂ − xb) − xm] (3.19)

ŷ = RT
m2[R

T
b (θ̂ − xb) − xm] (3.20)

ẑ = RT
m3[R

T
b (θ̂ − xb) − xm] (3.21)

where x̂(t), ŷ(t) ∈ R are the estimates of x(t) and y(t), respectively, ẑ(t) ∈ R is the

estimate of the corresponding range z(t), and θ̂(t) ∈ R
3 is the estimate of θ.

Remark 6 It is worthwhile to mention that the range identification precision depends

on the precision at which the constant unknown parameter vector θ is estimated.

The estimated range, ẑ(t), further depends upon the noise in the measurable position

signals Rb(t) and xb(t), and the error in the constant camera calibration parameters

Rm and xm. The effect of noise in these signals has been demonstrated later in the

simulation section.

Range Estimation

In this section, an estimator for the unknown constant parameter vector θ which

appears nonlinearly in the model given in (3.14) is presented. There are very few

researchers who have addressed adaptive control or estimation for NLP systems [55],

[61], [62], [63]. Parameter convergence in NLP systems was addressed in [64]. As

pointed out in [55], the gradient algorithm employed in [61], [62], [63] are not only

inadequate but can also lead to instability for general NLP systems. In this work, we

design an adaptive estimator that facilitates the identification of range within a de-

sired precision based on the min-max algorithm developed in [55]. The maximization

is that of a tuning function over all the possible values of the nonlinear parameters,
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and the minimization is over all the possible sensitivity functions that can be used in

the adaptive law. The sensitivity function which differs from the gradient depending

upon the sign of a tuning error is incorporated in the adaptive law. The stability

analysis ensures that the use of the tuning function along with the adaptive law

has globally bounded error signals, and upon the satisfaction of an NLPE condition

similar to [64], the parameter estimation follows; hence, the identification of range.

Estimator Design

To facilitate the estimator design, the estimate of (3.14) is defined as follows

q̂ ,

(
2f

λ̂
x̂
)2

+
(

2f

λ̂
ŷ
)2

4f
− f (3.22)

where q̂(·) ∈ R denotes q(θ̂), λ̂(x̂, ŷ, ẑ) ∈ R is the estimate of λ(·), and is defined as

follows

λ̂ , −ẑ +
√
x̂2 + ŷ2 + ẑ2. (3.23)

To further facilitate the development, we define a filter signal qf (t) ∈ R as follows

q̇f , −αqf + q ; qf(0) , 0 (3.24)

where α ∈ R
+. The estimate of (3.24) is designed as follows

.

q̂f= −α (q̂f − εsat(r)) + q̂ − a∗sat(r) (3.25)

where q̂f (t),
.

q̂f (t) ∈ R are the estimates of qf(t), and q̇f(t), respectively, ε ∈ R
+

is the desired precision, a∗(t) is the tuning function obtained from the subsequently

presented min-max optimization problem, and r(t) ∈ R is defined as follows

r ,
q̃f
ε

(3.26)

where the filter error q̃f (t) ∈ R is defined as follows

q̃f , q̂f − qf . (3.27)
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Also, in (3.25), sat(r) is a saturation function given as follows

sat(r) =






+1 if r ≥ 1

r if |r| < 1

−1 if r ≤ −1.

(3.28)

To proceed with the development, we define a tuning error q̃fε(t) ∈ R as follows

q̃fε , q̃f − εsat(r). (3.29)

After taking the time derivative of (3.27), the following expression can be written

.

q̃f= −αq̃fε + q̂ − q − a∗sat(r) (3.30)

where (3.24), (3.25), and (3.29) were utilized.

Remark 7 It should be noted that the inclusion of the tuning error q̃fε(t) provides

the following expressions

q̃fε = 0 when |q̃f | ≤ ε
.

q̃fε =
.

q̃f when |q̃f | > ε.

This remark is utilized later in the stability analysis.

Based on the stability analysis an estimator
.

θ̂ (t) ∈ R
3 is designed with a projec-

tion strategy which facilitates the estimation of θ as follows

.

θ̂= Proj{−q̃fεφ∗} (3.31)

where φ∗(t) ∈ R
3 is the sensitivity function. The projection strategy Proj{·} in (3.31)

ensures that θ̂(t) always belongs to the hypercube Θ. The strategy is as follows

θ̂j =






θ̂j if θ̂j ∈ [θj,min, θj,max]

θj,min if θ̂j < θj,min

θj,max if θ̂j > θj,max

(3.32)

where the subscript j denotes the jth element of the corresponding vector ∀j = 1, 2, 3,

and θj,min, θj,max ∈ R are the minimum and maximum values of the jth component of

θ, respectively.
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Similar to [55], the solutions for φ∗(t) and a∗(t) are obtained from a min-max

optimization problem of the following form

a∗ = min
φ∈R3

max
θ∈Θs

J(φ, θ) (3.33)

φ∗ = arg min
φ∈R3

max
θ∈Θs

J(φ, θ) (3.34)

where the performance index J(·) ∈ R is given by the following expression

J(·) = sat(r)
[
q̂ − q − θ̃

T
φ
]

(3.35)

where θ̃(t) ∈ R
3 is the parameter estimation error defined as follows

θ̃ , θ̂ − θ. (3.36)

The solutions of (3.33) and (3.34) are given as follows10

a) when q̃f < 0

a∗ =

{
0 if q is concave on Θs

A1 if q is convex on Θs

(3.37)

φ∗ =

{
∇q(θ̂) if q is concave on Θs

A2 if q is convex on Θs

(3.38)

b) when q̃f ≥ 0

a∗ =

{
A1 if q is concave on Θs

0 if q is convex on Θs

(3.39)

φ∗ =

{
A2 if q is concave on Θs

∇q(θ̂) if q is convex on Θs

. (3.40)

In (3.37)-(3.40), A(t) ∈ R
4 is given as follows

A = [A1 A2]
T = G−1b (3.41)

10The reader is referred to [55] for the proof of the solutions.
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where A1(t) ∈ R, and A2(t) ∈ R
3, G(t) ∈ R

4×4 is given as follows

G =





−1 β(θ̂ − θs1)
T

−1 β(θ̂ − θs2)
T

−1 β(θ̂ − θs3)
T

−1 β(θ̂ − θs4)
T




(3.42)

and b(t) ∈ R
4 is given as follows

b =





β (q̂ − qs1)
β (q̂ − qs2)
β (q̂ − qs3)
β (q̂ − qs4)



 (3.43)

where β(Π) ∈ R is defined as follows

β =

{
1 if q is convex on Θs

−1 if q is concave on Θs.
(3.44)

In (3.43), gsh , q(θsh,Π) ∀h = 1, 2, 3, 4. As mentioned earlier in Remark 5, θsh are the

vertices of the simplex Θs. In (3.38) and (3.40), ∇q(θ̂) ∈ R
3 is the gradient function

given as follows

∇q(θ̂) = (∂q/∂θ) |θ=θ̂. (3.45)

It is evident that the estimate of the constant 3D coordinates of the object feature

relative to the world frame (i.e., θ̂(t)) can be used to obtain the estimates of all

its 3D coordinates relative to the vision system including the range (i.e., ẑ(t)) from

(3.19)-(3.21).

Remark 8 It should be noted that the inclusion of the tuning error q̃fε(t) with the

saturation function sat(r) ensures that the estimator is continuous even if a discon-

tinuous solution of the min-max algorithm is obtained (see [55] for more detailed

description).

Remark 9 It should be noted that θ̂(t) is bounded because of the projection strategy

in (3.32); thus, φ∗(t) can be upper bounded as follows

‖φ∗(t)‖ ≤ Lφ ∀t ≥ t0 (3.46)

where Lφ ∈ R
+.
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Remark 10 We note that the tuning function a(t), the sensitivity function, and the

matrices G(t) and b(t) are similar to the corresponding functions defined in [55] and

[64]. The novelty in the proposed work lies in the fact that we have applied a modified

version of [55] and [64] for nonlinear parameter estimation application ( i.e., range

identification using paracatadioptic systems). The work presented in [55] deals with

the control of a nonlinearly parameterized system while parameter convergence of a

nonlinearly parameterized system is presented in [64]. In the current paper, we modify

the technique given in [64] for nonlinearly parameterized parameter estimation which

facilitates the range identification for a paracatadioptric system. This modification is

accomplished through the introduction of a filtering scheme which is given in (3.24).

Stability Analysis

Theorem 3 The adaptive update law given in (3.31) along with the solutions of a∗(t)

and φ∗(t) given in (3.37)-(3.40) ensures that q̃fε(t) ∈ L2 ∩L∞; hence, the stability of

the estimator, and the global boundedness of the overall adaptive system are ensured.

Proof. See Appendix G.

Theorem 4 The developed estimation technique ensures that ‖θ̃(t)‖ ≤ √
γ as t→ ∞

provided the following NLPE condition holds

β(Π(t2))
(
q(θ̂(t1),Π(t2)) − q(θ,Π(t2))

)
≥ εu

∥∥∥θ̂(t1) − θ
∥∥∥ (3.47)

where

γ =
8εc1
ε2
u

; c1 = 4L1L2 + 2L2Lφ + L2
φ, (3.48)

t2 ∈ [t1, t1 + T0], t1 > t0, and T0, εu ∈ R
+.

Proof. See Appendix H.

Remark 11 From the definition of γ in (3.48), it follows that γ can be made smaller

by choosing smaller ε. As the desired precision ε → 0, then γ → 0; thus, the parameter

estimation error ‖θ̃(t)‖ → 0.

60



Remark 12 As pointed out in [64], it is difficult to check if the NLPE condition

given in (3.47) can be satisfied in a general nonlinear system. To ensure parameter

convergence, Π(·) must be such that one of the following occurs at least at one time

instant t2 ∈ [t1, t1 + T ]: a) For the given θ̃(t), Π(·) must change in such a way

that the sign of q̂(·) − q(·) is reversed, while keeping the convexity/concavity of q(·)
the same or, b) for the given θ̃(t), Π(·), must reverse the convexity/concavity of

q(·), while preserving the sign of q̂(·) − q(·). The reader is referred to [64] for a

detailed analysis. It should be noted that the parameter convergence shown in the

subsequently presented simulation results seems to indicate that the NLPE condition

for the particular problem attacked in this paper was met.

Simulation Results

A detailed simulation study was conducted to evaluate the performance of the

proposed estimation technique using the Mathworks Simulink program. The trans-

lation vector xb(t), and angular rotation qb(t) ∈ R
3 (yaw-pitch-roll about x-y-z axes)

to the mechanical system were given as follows

xb = [sin(πt) 2cos(πt) sin(2πt)]T [m]

qb = [0 0 0.2cos(πt)]T [rad]. (3.49)

The measurable signal Rb(t) was generated using qb(t). The 3D Euclidean coordinates

of an object feature relative to the world frame, θ, was taken as follows

θ = [1 2 2]T [m] (3.50)

along with the following maximum and minimum values

θmax = [4 4 4]T [m] ; θmin = [0 0 0]T [m]. (3.51)

The calibration parameters were set as a1 = 1, a2 = 0, and C = [0 0]T . The rotation

matrix Rm, and the translation vector xm of the paracatadioptric system relative to
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its mounting frame were selected as follows

Rm = I3 xm = [0 0 0.1]T [m]. (3.52)

where I3 ∈ R
3×3 denotes a standard identity matrix. θmax, and θmin given in (3.51)

were utilized to find the vertices of the hypercube Θ which is a cube in this case with

its 8 vertices at [0 0 0]T , [0 4 0]T , [0 4 4]T , [0 0 4]T , [4 0 0]T , [4 0 4]T , [4 4 4]T ,

and [4 4 0]T . Hence, a tetrahedron simplex Θs, enclosing Θ was constructed as

shown in Fig. 3.2 whose vertices were given as follows

θs1 = [0 0 0]T θs3 = [16 0 0]T

θs2 = [0 0 8]T θs4 = [0 16 0]T .

Definition 1 was utilized to determine the concavity/convexity of the function q(·) on

Θs. Initializing the estimator as θ̂(t0) = [0.5 1 1]T (i.e., 50% of the true values),

and setting f = 0.5 along with the simulation parameters given in (3.49)-(3.50) and

(3.52), gave the following initial values

z(t0) = 1.9 [m] ẑ(t0) = 0.9 [m].

The parameter α was set as α = 5, and ε was selected as ε = 0.001 to make the

tuning error q̃fε(t) introduced in (3.29) very close to q̃f (t) so that a high precision for

the estimation is obtained.

Two different cases were considered in the simulation study without changing any

of the above mentioned parameters: case 1 was without any noise and case 2 was

with additive-white-Gaussian-noise (AWGN) injected into the measured coordinates

u(t) and v(t) using the awgn() function of Matlab. A constant signal-to-noise ratio

(SNR) of 20 was maintained. It should be noted that injection of noise into u(t) and

v(t) induces noise into q(θ,Π); hence, noise in any measurable signal contained in

Π(·) is considered.

Fig. 3.3 shows θ̂(t), the estimates of the 3D Euclidean coordinates of the object

feature relative to the world frame, for case 1. Range estimation error (i.e, z(t)− ẑ(t))
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Figure 3.2 Simplex Θs, and hypercube Θ.

for case 1 is shown in Fig. 3.4. It can be seen from these Figs. that the developed

estimation technique provides an accurate estimation of the range with an accurate

estimate of the 3D coordinates of the object feature relative to the world frame. Figs.

3.5 and 3.6 show θ̂(t) and the range estimation error, respectively in the presence

of noise (i.e., case 2). It can be inferred from these Figs. that the proposed range

estimation technique is robust to noisy measurements and provides good estimates

for the constant 3D coordinates of the object feature relative to the world frame along

with an estimate of its range. It is worthwhile to note that θ̂(t) can be used to obtain

other 3D coordinates of the object feature relative to M, x̂(t), ŷ(t) from (3.19) and

(3.20), respectively.

Remark 13 The NLPE condition, given in (3.47), guarantees the parameter but it is

not clear what role the NLPE condition plays in the rate of convergence. Furthermore,

we note that the simulation results indicate that the constant parameter α, defined in

(3.24), can also be tuned to affect the rate of convergence at the cost of estimation

accuracy. In this paper, we primarily focus on the architecture and the technique

to identify the range for a paracatadioptric system. This technique can be further

applied to any moving mechanical platform as long as its position and velocity signals
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are continuous, bounded, and the required assumptions are satisfied.

Remark 14 The initial range and the initial range estimate depend upon the actual

values of the parameters and the initial estimate of the unknown parameter vector,

respectively. If the initial error is high, the range estimation error will converge slower.

Figure 3.3 Simulation case 1: (a) θ̂1(t), (b) θ̂2(t), and (c) θ̂3(t).
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Figure 3.4 Simulation case 1: Range Estimation Error z(t) − ẑ(t).

Figure 3.5 Simulation case 2: (a) θ̂1(t), (b) θ̂2(t), and (c) θ̂3(t).
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Figure 3.6 Simulation case 2: Range Estimation Error z(t) − ẑ(t).
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CHAPTER 4

OPTIMIZING ANTIANGIOGENIC

THERAPY FOR TUMOR MINIMIZATION

Introduction

Tumor antiangiogenic therapy is an encouraging new form of cancer treatment

which targets the vasculature of a growing tumor. A solid, avascular growing tumor

reaches a size, a few millimeters in diameter, where it can no longer depend upon

the blood vessels of the host to obtain its nutrition; thus, it starts the process of

angiogenesis. This is a process where a tumor taps the surrounding mature host blood

vessels to develop its own blood vessels [65]. The linings of these newly created blood

vessels consist of endothelial cells. The tumor produces vascular endothelial growth

factor to stimulate the endothelial cells growth along with inhibitors to suppress them

[66], [67]. Antiangiogenic therapies were proposed in the early seventies by Folkman

[68] to arrest this phase of tumor growth. As pointed out in [69], these treatments

were enabled only after the discovery of the inhibitory mechanism of the tumor in the

nineties [70]. Antiangiogenic therapies indirectly affect the tumor growth by providing

external angiogenic inhibitors in the form of medication which targets the endothelial

cells and block their growth; hence, a tumor is deprived of its necessary nutrition and

ceases to grow. This therapy does not kill the fast replicating and mutating cancer

cells, and instead targets the comparitively more stable endothelial cells. Hence,

acquired drug resistance to the angiogenic inhibitors has not been observed [71]. Since

the conventional chemotherapy treatments are often limited by the development of

drug resistance by the tumor cells, antiangiogenic therapy has been considered as a

promising treatment of tumors [72], [73].

There have been several mathematical models that describe the dynamics of an-

giogenesis. Some of these models attempt to fully describe the complexity of the

biological processes [74], [75]. Ramanujan et al. [76] presented a model of tumor
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growth based on the balance of pro-angiogenic and antiangiogenic signals. More

complex PDE models are also presented in [77], [78], [79]. However, these models

are not tractable for mathematical analysis [80]. Mathematical models that aim to

describe a tumor growth in the vascular phase including the development of the vascu-

lature are few. A simple mathematical model which emphasizes the concept that the

development of vascular network controls the tumor growth process was developed

and biologically validated by Hahnfeldt et al. [81]. This two-dimensional model uses

ordinary differential equations to describe the interactions between the tumor volume

and the carrying capacity of the endothelial cells. The model can easily represent

the effect of antiangiogenic drugs and the predictions of the model have been suc-

cessfully compared with the volume response of an experimental subcutaneous tumor

implanted in mice treated with drugs [82]. The underlying spatial analysis carried out

in the development of the model has spawned various modifications. A modification

of this model has been presented by Ergun et al. [83]. More recently, a slight variant

of the model by Hahnfeldt et al. was presented by d’Onofrio and Gandolfi [82]. This

model assumes the potential doubling time of the vasculature to be constant. Also,

it subdivides the endothelial cell pool, which is involved in angiogenesis, into resting

and proliferating cells.

Since antiangiogenic therapy is a new cancer treatment, very few researchers have

worked on controlling or administrating the drugs. Ledzewicz et al. [65], [69], [80],

[84], [85], have proposed optimal control theory for administrating a given amount

of drug dose to realize the minimum tumor size. Ergun et al. [83] and Swierniak et

al. [86] also proposed optimal control theory to address the same problem. d’Onofrio

and Gandolfi proposed open-loop periodic antiangiogenic therapy in [82] and constant

infusion of antiangiogenic therapy [87] for tumor reduction. To obtain effective control

on tumor growth, antiangiogenic therapy has been proposed by Kerbel and Folkman

as an uninterrupted and a long-term therapy [88]. Futher, Cao [89], pointed out that

a life-span delivery or injection of angiogenesis inhibitors to patients may be required
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and research is going on to develop oral angiogenic drugs for therapy. It will be shown

later in the paper that the tumor as well as the vasculature carrying capacity tend

to grow if the medication is removed; thus, the regression of tumor volume is not

guaranteed.

In this paper, we present an entirely different approach for tumor minimization

from the aforementioned papers where optimal control theory was utilized and the

drug dose was stopped after a certain time. As mentioned previously, tumor antian-

giogenic therapy may require a long-term or a life-span delivery of drugs; hence, we

are motivated to develop a tumor reduction technique which keeps the tumor size at a

minimum and prevents it from growing using the least possible continuous drug dose.

To this end, we first formulate a performance index which will be minimized. Then,

we present a nonlinear, continuous control (i.e., drug dose) to achieve the desired op-

timum value of the carrying capacity of the endothelial cells (and thus, the optimum

size of the tumor) assuming exact model knowledge. However, it is a diffcult task to

exactly measure or estimate the model parameters. Thus, we develop a prediction

error based least-squares estimation technique to identify the unknown parameters

used in the performance index. Further, an adaptive controller is designed to track

the desired optimum trajectory for the carrying capacity of endothelial cells. The

optimum trajectory is obtained through an optimization algorithm which seeks the

minimum of the performance index. The developed tumor minimization technique

successfully finds the optimum values of the tumor size and the carrying capacity

of endothelial cells, and it prevents them from growing by maintaining an optimum

drug dose as demonstrated by the simulation results. As an extension of this work,

we show how the proposed technique can be extended to a model which describes

pharmacokinetics and pharmacodynamics. Further, we also show how to estimate

the carrying capacity of endothelial cells if required.

System Model

In our work, we consider the model proposed by d’Onofrio and Gandolfi [82]
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to relate tumor growth, vascular growth, and the effect of an antiangiogenic therapy.

This model allows for a detailed description of the drug effects, and is given as follows

ṗ = αp

(
1 − p

q

)
(4.1)

q̇ = bq − dp2/3q −Guq (4.2)

where p(t) ∈ R is the tumor volume in [mm]3, q(t) ∈ R is the carrying capacity of the

endothelial cells, also measured in [mm]3, and α ∈ R is a positive tumor growth pa-

rameter. In (4.2), the term bq accounts for the proliferation kinetics of the endothelial

cells and the term dp2/3q models endogenous inhibition of the tumor. The exponent

2/3 arises from the geometrical argument that the inhibitors generated within the tu-

mor are transported out of the tumor through the tumor surface, modeled as a sphere.

The parameters b, d ∈ R are positive growth constants. The positive constant G ∈ R

denotes the antiangiogenic killing parameter, and u(t) ∈ R is the manipulated con-

trol input which corresponds to the drug dose, measured in [conc.]. A term which

represents a spontaneous vasculature loss is often neglected in the literature as it is

very small compared to other factors [65]; thus, it is omitted in the above model.

To investigate the steady-state properties of the system model given in (4.1) and

(4.2), we calculate its equilibria corresponding to a constant drug dose u = u0; u0 ∈ R

being the steady-state value of u(t). To this end, we set the right-hand sides of (4.1)

and (4.2) equal to zero. After some algebraic manipulations we obtain the following

two equilibria

p0 = q0 = 0 (4.3)

and

p0 = q0 =

(
b−Gu0

d

)3/2

. (4.4)

It should be noted that p0 = q0 = 0 is not an admissible point [82]. It is evident

from (4.4) that if the control input is zero, the tumor volume p(t) along with q(t) rise

and go to their respective equilibria which is p0 = q0 = 17320 [mm]3. This supports
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the previously mentioned claim that an uninterrupted or a long-term antiangiogenic

therapy is required to prevent growth of the tumor. All the parameter values are

taken from [82], and are given as follows

α = 1.08 [day]−1 d = 3.63 × 10−4 [day]−1[mm]−2

b = 0.243 [day]−1 G = 1.3 [day]−1[conc.]−1. (4.5)

Assumption 6 In this work, we assume that the tumor volume p(t) along with the

carrying capacity of endothelial cells q(t) are measurable. Furthermore, we restrict

our analysis to a biologically realistic domain where p(t) > 0 and q(t) > 0 for all time

instants.

Control Problem

The goal of this work is to design a therapy regimen for u(t) that minimizes the

volume of the while minimizing the drug dose. We propose that these objectives will

be met if the following performance index is minimized

J = p+

(
Gu

d

)3/2

. (4.6)

The performance index J(t) ∈ R captures the treatment goal using the summation of

tumor size and drug dose. The drug dose u(t) in the performance index is multiplied

by a factor of G/d and then raised to 3/2 to obtain the same unit as p(t); thus, J(t)

is expressed in [mm]3. The steady-state expression for the performance index can be

written as

J0 = p0 +

(
Gu0

d

)3/2

(4.7)

where J0, p0, and u0 are the steady-state values of J(t), p(t), and u(t), respectively.

The minimum of this performance index gives the minimum tumor volume that can

be obtained and kept at that value with the minimum amount of the drug dose u(t).

Figure 4.1 shows the plot for J0 with respect to the steady-state values of u(t), denoted
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Figure 4.1 Steady-state performance index J0 with respect to the steady-state values
of the drug dose u0.

by u0. Figure 4.2 shows J0 with respect to the steady-state values of p(t) and q(t).

Thus, the control objective is to minimize the performance index given in (4.6) and

drive the carrying capacity of the endothelial cells q(t) to its optimum value q⋆. From

(4.4) and from Figure 4.2, it can be seen that at steady-state, q(t) is equal to p(t);

thus, driving q(t) to its optimum value makes p(t) to go to its optimum value. The

minimum value of the performance index at steady-state J0, and the optimum values

of u(t), p(t), and q(t) at their respective steady-states can be seen in Figures 4.1 and

4.2, and are given as follows

J⋆ = 12, 247 [mm]3 u⋆ = 0.0938 [conc.]

p⋆ = q⋆ = 6115 [mm]3. (4.8)

Controller Development with Exact Model Knowledge

In this section, a continuous nonlinear controller is presented to manipulate the

drug dose u(t) in order to minimize the tumor volume using the minimum drug dose.

From (4.6), it is clear that if we have an exact knowledge of the model parameters,

we can obtain the minimum value of the performance index, and the optimum values
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Figure 4.2 Steady-state performance index J0 with respect to the steady-state values
of the tumor volume p0 and the carrying capacity of the endothelial cells q0 (q0 = p0

at equilibrium).

of p(t) and q(t) as given in (4.8); thus, a set-point control for q(t) can be designed to

achieve

q(t) → q⋆ as t→ ∞. (4.9)

As stated earlier, p(t) = q(t) at steady-state; thus, if q(t) goes to q⋆ then p(t) → p⋆ =

q⋆.

To facilitate the control developement, we define the tracking error em(t) ∈ R as

follows

em , q − q⋆. (4.10)

After taking the time derivative of (4.10), the following expression is obtained

ėm = bq − dp2/3q −Guq (4.11)

where (4.2) was utilized. Based on the subsequent stability analysis, the following

control law is proposed

u ,
1

Gq

(
bq − dp2/3q + kmem

)
(4.12)

where km ∈ R is a positive control gain.
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Remark 1 From (4.1) and Assumption 6, it is clear that ṗ(t) ≤ 0 when p(t) ≥ q(t);

thus, p(t) decreases. If p(t) < q(t), p(t) will increase until p(t) = q(t), and will start

to decrease again if p(t) ≥ q(t). Therefore, p(t) is bounded as long as q(t) is bounded.

Stability Analysis

Theorem 5 The control law given in (4.12) ensures that em(t) → 0 exponentially.

Proof. After substituting (4.12) into (4.11), we obtain the following error dynamics

ėm = −kmem. (4.13)

After solving the differential equation given in (4.13), the following expression can be

obtained

em(t) = em(t0) exp(−kmt). (4.14)

It is clear from (4.14) that em(t) → 0 exponentially; thus, q(t) → q⋆ exponentially

fast.

From (4.14), we can infer em(t) ∈ L∞; hence, from (4.10), it follows that q(t) ∈
L∞. Since q(t) is bounded, from Remark 1, it follows that p(t) ∈ L∞. The control

input u(t) given in (4.12) is a function of bounded signals (i.e., p(t) and q(t)) and

known constant parameters, therefore, u(t) ∈ L∞.

Controller Development with Uncertain Model Knowledge

As mentioned previously in the Introduction, in practice, it is difficult to exactly

determine the model parameters for a specific patient. To adderess this issue, we

define an estimate of the performance index given in (4.6), denoted by Ĵ(t) ∈ R, as

follows

Ĵ , p+

(
Ĝu

d̂

)3/2

(4.15)

where Ĝ(t), d̂(t) ∈ R are estimates of G and d, respectively. The control objective

remains the same as outlined in previous section, i.e., to minimize Ĵ(t) given in
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(4.15) and drive q(t) from a given initial condition to its optimum value q⋆ in order

to drive p(t) to its optimum value p⋆. However, we can no longer utilize a set-point

control as previously described because of the lack of knowledge about the model

parameters. To overcome this problem, we design an adaptive controller to track

an optimum desired trajectory qd(t) ∈ R such that q(t) → qd(t) as t → ∞. The

desired optimum trajectory is dynamically generated online using a numerical-based

optimization algorithm, described later, to minimize the performance index given in

(4.15), such that qd(t) → q⋆ where q⋆ is the optimum value of q(t) at steady-state.

Thus, the overall control objective can be stated as follows

q(t) → qd(t) → q⋆ as t→ ∞. (4.16)

Parameter Estimation

In this subsection, we design an estimator based on the least-squares estimation

technique to generate estimates of the unknown constant parameters b, d, and G.

The estimates Ĝ(t) and d̂(t) are then utilized in (4.15). To facilitate the estimator

development, we parameterize (4.2) as follows

Q = Weθe (4.17)

where Q(t) denotes q̇(t) and We(t) ∈ R
1×3 represents a measurable regression vector

which is defined as follows

We ,
[
q −p2/3q −uq

]
. (4.18)

In (4.17), θe ∈ R
3 is a vector of unknown constant parameters defined as follows

θe ,
[
b d G

]T
. (4.19)

To further facilitate the estimator design, we define a prediction error ε(t) ∈ R as

follows

ε , Qf − Q̂f (4.20)
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where Qf(t) ∈ R is a filtered signal defined as follows

Q̇f , −βQf + βQ ; Qf (t0) = 0 (4.21)

where β ∈ R is a positive constant. Notice that (4.21) can not be implemented since

Q(t) is unmeasurable. The reader is referred to Appendix M for the implementable

form of the filtered signal. In (4.20), Q̂f (t) ∈ R is the estimate of Qf(t), defined as

follows

Q̂f , Wf θ̂e (4.22)

where Wf(t) ∈ R
1×3 is a filtered regression vector, written as follows

Ẇf , −βWf + βWe ; Wf(t0) = 01×3 (4.23)

where 01×3 denotes a 1-by-3 vector of zeros and β was introduced in (4.21). In (4.22),

θ̂e(t) ,
[
b̂ d̂ Ĝ

]T ∈ R
3 is the estimate vector of the unknown parameters. After

substituting (4.17) into (4.21), the following expression can be obtained

Q̇f + βQf = βWeθe. (4.24)

The expression given in (4.24) can be rewritten as follows

Q̇f + βQf = Ẇfθe + βWfθe (4.25)

where (4.23) was utilized. After taking the time derivative of (4.22), and then adding

and subtracting the term Ẇf θ̂e to the right-hand side of the resulting expression, the

following expression can be obtained

.

Q̂f +βQ̂f =
d

dt

(
Wf θ̂e

)
+ βWf θ̂e (4.26)

where (4.22) and (4.23) were utilized. After subtracting (4.26) from (4.25), and

utilizing (4.20) and (4.23), the resulting expression can be written as follows

ε̇+ βε =
d

dt

(
Wf θ̃e

)
+ βWf θ̃e (4.27)
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where θ̃e(t) ∈ R
3 is the estimation error signal defined as follows

θ̃e , θe − θ̂e. (4.28)

From (4.27), it can be shown that a mathematically useful, but unrealizable, form of

the prediction error ε(t) given in (4.20) can be written as follows [90]

ε = Wf θ̃e. (4.29)

Based on the subsequent stability analysis, the following continuous least-squares

update law
.

θ̂e (t) ∈ R
3 is employed for estimating the unknown parameters

.

θ̂e, ΓW T
f ε (4.30)

where Γ(t) ∈ R
3×3 is the least-squares estimation gain matrix which is designed as

follows

Γ̇−1 , W T
f Wf . (4.31)

Remark 2 If Q(t) is bounded, from (4.21), we can show that Qf (t), Q̇f(t) ∈ L∞.

Similarly, if We(t) ∈ L∞, from (4.23), we can show that Wf(t), Ẇf(t) ∈ L∞. The

reader is referred to [90] for a detailed description.

Remark 3 It should be noted that if Γ−1 (t0) is selected to be positive definite and

symmetric then Γ (t0) is also positive definite and symmetric. Therefore, it follows

that both Γ−1 (t) and Γ (t) are positive definite and symmetric. The following expres-

sion can be obtained from (4.31)

Γ̇ = −ΓW T
f WfΓ. (4.32)

It can be easily seen from (4.32) that Γ̇ (t) is negative semidefinite; therefore, Γ (t) is

always constant or decreasing; hence, it follows that Γ (t) is bounded (for more details,

the reader is referred to [31] and [32]).

Development of Adaptive Control Law
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To proceed with the development of an adaptive control law to achieve the control

objective stated in (4.16), we divide both sides of (4.2) by G to obtain the following

expression
1

G
q̇ =

b

G
q − d

G
p2/3q − uq. (4.33)

The expression given in (4.33) is then parameterized as follows

Aq̇ = W0θ0 − uq (4.34)

where A , G−1 ∈ R is a positive unknown constant, andW0(t) ∈ R
1×2 is a measurable

regression vector defined as follows

W0 ,
[
q −p2/3q

]
. (4.35)

In (4.34), θ0 ∈ R
2 is a vector of unknown constants, defined as follows

θ0 ,
[
bA dA

]T
. (4.36)

To facilitate the development, we define a tracking error ea(t) ∈ R as follows

ea , q − qd (4.37)

where qd(t) ∈ R is a subsequently designed optimum desired trajectory for q(t). The

desired trajectory qd(t) is designed such that qd(t), q̇d(t) ∈ L∞ as shown later in

Section V-C. After taking the time derivative of (4.37), and then multiplying both

the sides of the resulting expression by A, we can write the following expression

Aėa = Aq̇ −Aq̇d. (4.38)

After substituting (4.34) into (4.38), the following expression is obtained

Aėa = W0θ0 − uq − Aq̇d (4.39)

which can be rewritten in a parameterized form as follows

Aėa = Waθa − uq. (4.40)
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In (4.40), Wa(t) ∈ R
1×3 is a measurable regression vector and θa ∈ R

3 is a vector of

unknown constants defined as follows

Wa ,
[
W0 −q̇d

]
(4.41)

and

θa ,
[
θT0 A

]T
. (4.42)

Based on the subsequent stability analysis, the control input u(t) is designed as follows

u ,
1

q

(
Waθ̂a + kaea

)
(4.43)

where θ̂a(t) ∈ R
3 is an estimate vector of θa, and the adaptive update law

.

θ̂a (t) ∈ R
3

is designed as follows
.

θ̂a, γaW
T
a ea. (4.44)

In (4.43) and (4.44), ka, γa ∈ R are positive constants.

Optimum Trajectory Generation

In this subsection, an optimum desired trajectory qd(t) is designed which is fed to

the adaptive controller given in previous section. This continuous optimum trajectory

qd(t) is designed to minimize the performance index given in (4.15) where the esti-

mates for the parameters G and d, obtained as described previously, are utilized. For

the minimization of the estimate of the performance index, Ĵ(t), a gradient descent

algorithm is employed which guesses the optimum value q̄d[n] at each time step of

the optimization algorithm. The output of the algorithm, q̄d[n], is passed through

a set of second-order, stable and proper, low-pass filters to generate continuous and

bounded signals for qd(t) and q̇d(t). The following filters are utilized

qd(t) =
ς1

ς2s2 + ς3s + ς4
q̄d[n], (4.45)

q̇d(t) =
sς1

ς2s2 + ς3s+ ς4
q̄d[n] (4.46)
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Figure 4.3 A block-diagram representation of the developed tumor minimization
technique.

where ς1, ς2, ς3, ς4 ∈ R are positive filter constants, and n ∈ Z is a positive integer

(i.e., the iteration step of the algorithm). At step n, the optimum trajectory holds the

output, q̄d[n], constant until the response of the closed-loop system, q(t), has reached a

steady-state near qd(t). A new target optimum q̄d[n+1] is then issued. In other words,

the algorithm waits for certain thresholds to be satisfied before it proceeds to the next

iteration. For instance, if |q(t)− qd(t)| ≤ ē1, |q̄d[n]− qd(t)| ≤ ē2, and |q(t)−p(t)| ≤ ē3

then n = n+1 where ē1, ē2, ē3 ∈ R are threshold constants. Furthermore, the designed

trajectory can be concluded to have converged when the gradient of Ĵ(t) with respect

to q(t) is within a certain threshold. Once the optimization algorithm satisfies the

termination criteria, it stops updating q̄d[n]. As the performance index approaches its

minimum value, the desired trajectory qd(t) and u(t) approach q̂⋆ and û⋆, respectively.

q̂⋆, û⋆ ∈ R are the estimates of the optimum values of q(t) and u(t), respectively that

are resulted from the optimum seeking algorithm.

As mentioned earlier, at steady-state p(t) = q(t); therefore, p(t) → pd(t) → p̂⋆ as

q(t) → qd(t) → q̂⋆ where pd(t) = qd(t) and p̂⋆ = q̂⋆. Then p̂⋆ is the estimated optimum

tumor volume that can be realized by applying the estimated optimum drug dose û⋆.
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Stability Analysis

Theorem 6 The update law defined in (4.30) ensures that ‖θ̃e(t)‖ → 0 as t → ∞
provided that the following Persistency of Excitation (PE) condition [49] holds

κ1I3 ≤
∫ t0+δ

t0

W T
f (τ)Wf (τ)dτ ≤ κ2I3 (4.47)

where κ1, κ2, δ ∈ R are positive constants, and I3 is a standard 3-by-3 identity matrix.

Proof. See Appendix N.

Remark 4 The PE condition given in (4.47) can be fulfilled by guaranteeing that the

signals in the regression matrix vary in a sufficiently independent manner within a

time-window. The reader is referred to [91] for a detailed explanation.

Theorem 7 The control law u(t) given in (4.43) and the adaptive update law defined

in (4.44) guarantee that ea(t) → 0 as t→ ∞.

Proof. See Appendix O.

Simulation Results

A numerical simulation study was conducted to evaluate the developed tumor

treatment optimization technique using Mathworks Simulink program. It should be

noted that the least-squares estimator, the adaptive controller, and the optimization

algorithm, were run simultaneously as shown in Fig. 4.3. All the parameter values

for the simulation were taken from [82] and are given in (4.5). The initial conditions

for p(t) and q(t) were selected as follows

p(t0) = 10, 000 [mm]3 q(t0) = 12, 000 [mm]3. (4.48)

It can be seen from (4.48) that q(t0) > p(t0). In other words, the carrying capacity

of the endothelial cells is greater than the tumor volume; thus, the tumor volume is

susceptible to an increase in the absence of a proper therapy.
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The least-squares estimator given in (4.30) was initialized as θ̂e(t0) = 0.1θe, and

the estimation gain matrix was initialized as Γ−1(t0) = 10I3. The positive constant β,

introduced in (4.21), was set to β = 0.005. The adaptive update law was initialized

as θ̂a(t0) = 03 where 03 denotes a 3-by-1 vector of zeros. The positive gains were set

as ka = 10 and γa = 1.3× 10−12. Additionally, the initial guess, q̄d[0], was selected to

be 9000 [mm]3.

Figure 4.4 The time evolution of the tumor volume p(t).

Figure 4.5 The time evolution of the carrying capacity of endothelial cells q(t).

The time evolution of the tumor volume p(t) and the carrying capacity of the

endothelial cell volume q(t) are shown in figures 4.4 and 4.5, respectively. It can

be seen from these figures that p(t) and q(t) converge to their respective optimum
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values p⋆ ± 5 [mm]3 and q⋆ ± 5 [mm]3 given in (4.8), respectively. Fig. 4.6 shows

the time evolution of the drug dose u(t). The inset plot in this figure shows u(t)

during day one of the therapy. It can be inferred from Fig. 4.6 that u(t) starts from

a high dose and then converges to its optimum value u⋆ ± 0.0003[conc.]. The time

evolution of the estimate of the performance index, Ĵ(t), is shown in Fig. 4.7. It

can be seen from Fig. 4.7 that Ĵ(t) converges to J⋆ ± 3 [mm]3. It should be noted

that if the initial conditions, p(t0) and q(t0), were chosen to be smaller values, then

the convergence would have been faster. Furthermore, if the initial guess for the

optimization algorithm was selected very close to q(t0), the drug dose during day one

would have been lower than 2.5 [conc.] but the convergence would have been slower.

Fig. 4.8 shows the least-squares estimate of the unknown vector θe. It can be seen

from this figure that all the parameters are accurately identified. Fig. 4.9 shows the

tracking error ea(t). The inset in this figure shows ea(t) during day one of the therapy

period. It can be seen from Fig. 4.9 that the tracking error ea(t) is driven to zero. It

can be concluded from the simulation study that the developed tumor minimization

technique can efficiently reduce the tumor volume with an optimum drug dose.

Remark 5 From Theorem 7 and the optimum seeking algorithm, it can be concluded

that q(t) → qd(t) as t → ∞ and qd(t) → q̂⋆. From the simulation results, it can be

further seen that if q̂⋆ = q⋆ then û⋆ = u⋆ resulting in an optimal solution. However,

if the optimization algorithm does not locate the exact optimal values, the solution

results into one of a sub-optimal nature.

83



Figure 4.6 The time evolution of the drug dose u(t).

Figure 4.7 Time evolution of the estimate of the performance index, Ĵ(t).
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Figure 4.8 Least-squares estimation: (a) b̂(t), (b) d̂(t), and (c) Ĝ(t).

Figure 4.9 Tracking error ea(t).
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CHAPTER 5

CONCLUSIONS

This dissertation presents contributions to two research areas: Nonlinear estima-

tion techniques for range identification of vision-based systems and nonlinear control

technique for optimization of tumor volume.

In Chapter 1, A novel estimation technique for range along with 3D Euclidean

coordinates of features on a static object, with a moving calibrated camera whose

position is measurable, was presented. An adaptive update law was designed by

utilizing a unique prediction error formulation. It was proven that Euclidean distance

estimation error signals are driven to zero, upon satisfaction of a persistent excitation

condition. Detailed numerical simulation results and some comparative simulation

results along with experimental results were presented demonstrating the robustness

and accuracy of the estimator. The estimator accurately identifies the Euclidean

distances between the features and thus, the range and the 3D Euclidean positions

of the features without any information about the object’s geometry. The results

show that the proposed estimator can be used for range identification where position

measurements are readily available.

In Chapter 2, A novel technique for estimation of 3D Euclidean coordinates of

features on a static object with an uncalibrated camera mounted on a moving me-

chanical system was presented. The position information of the mechanical system

was available and information of a second object was assumed to be known. Two

adaptive update laws were presented utilizing formulations of a prediction error and

an auxiliary prediction error, respectively, that facilitated the 3D Euclidean coordi-

nates estimation and compensation for the unknown camera calibration parameters.

It was proven that the Euclidean distance estimation error signals were driven to zero.

In Chapter 3, A novel technique for range identification and recovering the 3D

Euclidean coordinates of a static object feature with a calibrated paracatadioptric

system mounted on a moving platform with measurable position was presented. An
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adaptive estimator for a nonlinearly parameterized function of projected pixel coordi-

nates was presented which facilitated the range estimation along with the estimation

of 3D Euclidean coordinates of an object feature. A Lyapunov-type stability analy-

sis was presented to prove that the proposed estimator is stable, and ensures global

boundedness of the error signals. Further, the parameter estimation error signals were

shown to be bounded by a desired precision upon satisfaction of an NLPE condition.

Numerical simulation results were presented to demonstrate the efficiency of the de-

veloped range identification technique and its robustness to noise. The results show

that the developed estimator can be used for range identification for the applications

with paracatadioptric systems where position measurements are readily avaliable.

In Chapter 4, A novel approach to optimize antiangiogenic therapy for tumor

minimization was presented. We considered the mathematical problem to minimize

the tumor volume and prevent it from growing using a continuous optimum drug

dose. A performance index was formulated which was minimized in order to obtain

the optimum value of the tumor volume. It was shown that given exact model knowl-

edge, the tumor volume can be driven to its optimum value exponentially fast. In

the absence of model knowledge, a least-squares estimation strategy was presented

which facilitated the estimation of the performance index. An optimum trajectory

generator was presented which seeks the unknown minimum of the performance index

while ensuring that the desired trajectory remains bounded and sufficiently differen-

tiable. An adaptive controller was then developed to track the desired trajectory in

the presence of uncertainties in the model in order to minimize the tumor volume

with an optimum dose of drug. It was proven that the least-squares estimation errors

are driven to zero upon the satisfaction of a PE condition. Numerical simulation re-

sults were presented demonstrating the efficacy of the developed tumor minimization

technique. The developed technique successfully minimized the tumor volume along

with the carrying capacity of endothelial cells with an optimum drug dose despite

the lack of knowledge about the sytem model. The proposed tumor minimization
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technique was also shown to be applicable for the model with pharmacodynamics

and pharmacokinetics. Further, an estimation technique was presented to identify

the carrying capacity of endothelial cells.
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Appendix A

Proof of Theorem 1

To facilitate the proof, a nonnegative Lyapunov function V (t) ∈ R is defined as

follows

V ,
1

2
θ̃
T
Γ−1θ̃ (A.1)

where Γ−1 (t) ∈ R
4×4 was defined in (1.27). The time derivative of (A.1) is given as

follows

V̇ =
1

2

.

θ̃
T

Γ−1θ̃ +
1

2
θ̃
T .

Γ
−1
θ̃ +

1

2
θ̃
T
Γ−1

.

θ̃ . (A.2)

The expression in (A.2) can be written as follows

V̇ = θ̃
T
Γ−1

.

θ̃ +
1

2
θ̃
T .

Γ
−1
θ̃. (A.3)

After utilizing the definition of θ̃(t) given in (1.21) and taking its derivative, (A.3)

can be rewritten as follows

V̇ = −θ̃TΓ−1
.

θ̂ +
1

2
θ̃
T .

Γ
−1
θ̃. (A.4)

After substituting (1.25) and (1.27) into (A.4), the following expression is obtained

V̇ = −θ̃TΓ−1Proj
{
αΓW̄ T

p p̃
}

+ θ̃
T
W̄ T
p W̄pθ̃. (A.5)

After utilizing the property of the projection (see (B.8) in Appendix B, V̇ (t), can be

upper bounded as follows

V̇ ≤ −αθ̃T W̄ T
p p̃+ θ̃

T
W̄ T
p W̄pθ̃. (A.6)

It should be noted that, the expression (1.23) can be rearranged as follows

W̄pθ̃ = B−1p̃. (A.7)

From (1.11) and (1.24), we can write B−1 = Πθ = z and utilizing (1.13), it can

be confirmed that B−1 exists. After utilizing (1.23), the expression in (A.6) can be

rewritten as follows

V̇ ≤ −αp̃TB−T p̃ + p̃TB−TB−1p̃. (A.8)
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The right hand side of (A.8) can be upper bounded as follows

V̇ ≤ −αεp̃T p̃ + ρp̃T p̃ (A.9)

where the definition of B (t) in (1.24) is utilized along with (1.13). After substituting

(1.26) into (A.9), the following inequality can be written

V̇ ≤ −ε ‖p̃‖2 . (A.10)

After integrating (A.10), the following expression can be obtained

V (t0) − V (∞) > ε

∫
∞

t0

‖p̃‖2 dτ. (A.11)

After utilizing (A.10) and the fact that V (t) is nonnegative, it can be concluded that

V (∞) ≤ V (t0) ∀ t; hence, V (t) is bounded (i.e., V (t) ∈ L∞) and from (A.11), it

can be easily concluded that p̃ (t) ∈ L2. The fact that the projected pixel coordinates

p(t) ∈ L∞, it follows that p̂ (t) ∈ L∞. Since z (t) is bounded and the fact that θ ∈ L∞,

from (1.11) it follows that Π (t) ∈ L∞; hence, from (1.17), it can be easily seen that

W (t) ∈ L∞. Since, W (t), Π (t) are bounded, it is clear from the definitions in (1.24)

that B (t), W̄p (t) ∈ L∞. Since θ ∈ L∞, and θ̂(t) ∈ L∞ because of the projection

algorithm, therefore from (1.21), it follows that θ̃(t) ∈ L∞. Since, B(t), W̄p(t) ∈ L∞

and p̃(t) ∈ L2 ∩ L∞, from (1.23) it can be concluded that W̄p (t) θ̃ (t) ∈ L2 ∩ L∞.

From (1.27), it is clear that
.

Γ
−1

(t) ∈ L∞. Since, Γ−1 (t) is always positive definite

(see Remark 1) and W̄p(t), p̃(t) ∈ L∞ and p̃(t) ∈ L2, from (1.25) it is easy to see

that
.

θ̂ (t) ∈ L2 ∩ L∞; hence, the time derivative of (1.21) can be used to show that
.

θ̃ (t) ∈ L∞. From (1.11) and (1.12), we can also have
.

W (t),
.

Π (t); thus, from (1.18)
.

p̂ (t) ∈ L∞. After utilizing the above boundedness statements along with the fact

that it is a function of bounded signals, it is easy to see that d
dt
W̄p (t) ∈ L∞. Now, it

follows that d
dt

(
W̄p (t) θ̃ (t)

)
∈ L∞. Since, W̄p (t) θ̃ (t) ∈ L2∩L∞, it can be concluded

from Barbalat’s Lemma [92] that

∥∥∥W̄p (t) θ̃ (t)
∥∥∥→ 0 as t→ +∞. (A.12)
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As shown in Appendix C, if the signal W̄p (t) satisfies the persistent excitation (PE)

condition given in (1.29), then from (A.12) it can further be concluded that

∥∥∥θ̃ (t)
∥∥∥→ 0 as t→ +∞. (A.13)
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Appendix B

Projection Algorithm

The positiveness of the term Π (t) θ̂ (t) is ensured by a projection operator on
.

θ̂ (t)

[31]. To facilitate the subsequent development, an auxiliary scalar function is defined

as follows

P
(
θ̂
)

, ε̄− Πθ̂ (B.1)

where its gradient is computed as follows

∇θ̂P
(
θ̂
)

=
[

01×4 −Π
]

(B.2)

where ε̄ being an arbitrarily small positive constant and 01×4 ∈ R
1×4 being a vector

of zeros. Two convex sets based on the function P
(
θ̂
)

are defined as follows

R ,

{
θ̂ ∈ R

4 : P
(
θ̂
)
≤ 0
}

(B.3)

Rδ ,

{
θ̂ ∈ R

4 : P
(
θ̂
)
≤ δ
}

(B.4)

where δ ∈ R is a positive constant that is very close to zero.

Let the boundary and the interior of set R be defined by ∂R and
◦

R , respectively. Based

on these definitions, the projection of τ (t) is defined as follows

Proj {τ} ,

{
τ θ̂ ∈

◦

R or ∇θ̂PT τ ≤ 0

Pτ θ̂ ∈ Rδ\
◦

R and ∇θ̂PT τ > 0
(B.5)

where Pτ (t) ∈ R
nq is defined as follows

Pτ =

(
I − c

(
θ̂
)

Γ
∇θ̂P∇θ̂PT

∇θ̂PTΓ∇θ̂P

)
τ (B.6)

where the auxiliary scalar function c
(
θ̂
)

is defined as follows

c
(
θ̂
)

, min




1,
P
(
θ̂
)

δ




 . (B.7)
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It is helpful to note that c (∂R ) = 0 and c (∂Rδ) = 1. The suggested projection

operator satisfies the following property (reader is referred to [31] for the proof)

−θ̃TΓ−1Proj {τ} ≤ −θ̃TΓ−1τ , ∀θ̂ ∈ Rδ, θ ∈ R. (B.8)
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Appendix C

PE Proof for W̄p (t)

An auxiliary function Ω (t0, t) ∈ R
4×4 is defined as follows

Ω ,

∫ t

t0

W̄ T
p (τ)W̄p(τ )dτ. (C.1)

To facilitate the proof the following expression is considered

d

dτ

{
θ̃
T

(τ) Ω (t0, τ) θ̃ (τ)
}

=
.

θ̃
T

(τ )Ω (t0, τ) θ̃ (τ )+θ̃
T

(τ )
d

dτ
{Ω (t0, τ)} θ̃ (τ)+θ̃

T
(τ) Ω (t0, τ)

.

θ̃ (τ ) .

(C.2)

From (C.2), the following expression can be obtained after integrating from t0 to

t and rearranging the terms
∫ t

t0

θ̃
T

(τ) Ω (t0, τ)
.

θ̃ (τ) dτ = θ̃
T

(t) Ω (t0, t) θ̃ (t) − θ̃
T

(t0)Ω (t0, t0) θ̃ (t0)

−
∫ t

t0

.

θ̃
T

(τ) Ω (t0, τ) θ̃ (τ) dτ −
∫ t

t0

θ̃
T

(τ)
d

dτ
{Ω (t0, τ)} θ̃ (τ ) dτ.(C.3)

After utilizing the following facts

Ω (t0, t0) = 04 (C.4)

ΩT (t0, τ ) = Ω (t0, τ)

d

dτ
{Ω (t0, τ)} = W̄ T

p (τ)W̄p(τ ),

the expression in (C.3) can be rearranged as follows

θ̃
T

(t) Ω (t0, t) θ̃ (t) = 2

∫ t

t0

θ̃
T

(τ )Ω (t0, τ)
.

θ̃ (τ ) dτ +

∫ t

t0

θ̃
T

(τ ) W̄ T
p (τ )W̄p(τ )θ̃ (τ ) dτ

(C.5)

where 04 ∈ R
4×4 is a matrix of zeros. To further facilitate the proof, the following

lemma is stated [93]:

Lemma 8 Let f (t) be a uniformly continuous function [92]. Then,

lim
t→+∞

f (t) = 0 ⇔ lim
t→+∞

∫ t+t
′

t

f (τ) dτ = 0 (C.6)

for any positive constant t
′ ∈ R.
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To utilize Lemma 8, a change of variables is applied to (C.5) by substituting t

with t0 + T . The following equation is obtained after applying a limit operation to

the resulting equation

lim
t0→+∞

θ̃
T

(t0 + T ) Ω (t0, t0 + T ) θ̃ (t0 + T ) = 2 lim
t0→+∞

∫ t0+T

t0

θ̃
T

(τ )Ω (t0, τ)
.

θ̃ (τ ) dτ

+ lim
t0→+∞

∫ t0+T

t0

θ̃
T

(τ ) W̄ T
p (τ ) W̄p (τ) θ̃ (τ) dτ.(C.7)

Remark 1 Utilizing the fact that
.

θ̃ (t) = −
.

θ̂ (t), the right-hand-side of (1.25) can

be written as follows
.

θ̃= −Proj
{
αΓW̄ T

p BW̄pθ̃
}

(C.8)

where (1.23) was utilized. From (A.12), it is clear that the term inside the bracket

on the right-hand-side of (C.8) goes to zero. So, both
.

θ̂ (t) and
.

θ̃ (t) go to zero as

t→ +∞.

After utilizing (1.29), (C.8), Lemma 8, and the fact that θ̃ (t) is bounded, it is

clear that the first term at the right-hand-side of (C.7) is equal to zero. After utilizing

(A.12), Lemma 8, and the facts that W̄p (τ), θ̃ (τ ) are bounded, it is clear that the

second term at the right-hand-side of (C.7) is equal to zero. Thus the following

expression can be obtained based on (C.7)

lim
t0→+∞

θ̃
T

(t0 + T )Ω (t0, t0 + T ) θ̃ (t0 + T ) = 0. (C.9)

After utilizing the fact that γ1I4 ≤ Ω (t0, t0 + T ) ≤ γ2I4 it is clear that

∥∥∥θ̃ (t)
∥∥∥→ 0 as t→ +∞. (C.10)
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Appendix D

Proof of Theorem 2

To facilitate the proof, a nonnegative Lyapunov function V (t) ∈ R is defined as

follows

V ,
1

2
θ̃
T

s Γ−1θ̃s. (D.1)

The time derivative of (D.1) is given as follows

V̇ =
1

2

.

θ̃
T

s Γ−1θ̃s +
1

2
θ̃
T

s

.

Γ
−1
θ̃s +

1

2
θ̃
T

s Γ−1
.

θ̃s . (D.2)

The expression in (D.2) can be written as follows

V̇ = θ̃
T

s Γ−1
.

θ̃s +
1

2
θ̃
T

s

.

Γ
−1
θ̃s. (D.3)

After utilizing the time derivative of θ̃s given in (2.25), (D.3) can be rewritten as

follows

V̇ = −θ̃Ts Γ−1
.

θ̂s +
1

2
θ̃
T

s

.

Γ
−1
θ̃s. (D.4)

After substituting (2.41) and (2.45) in (D.4), the following expression is obtained

V̇ = −θ̃Ts Γ−1Proj
{
αΓW̄ T

s p̃s
}

+ θ̃
T

s W̄
T
s W̄sθ̃s. (D.5)

After utilizing the property of the projection given in (2.47), V̇ (t) can be upper

bounded as follows

V̇ ≤ −αθ̃Ts W̄ T
s p̃+ θ̃

T

s W̄
T
s W̄sθ̃s. (D.6)

It should be noted that, the expression (2.26) can be rearranged as follows

W̄sθ̃s = B−1p̃s − S. (D.7)

Based on (2.3), (2.7), (2.9), and the definition of B(t) in (2.24), it is easy to see

that the denominators of the entries of B(t) are equal to zsi(t) ∀i = 1, .., n; thus, from
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(2.13) we can conclude that B−1(t) exists. After utilizing (D.7), the expression in

(D.6) can be rewritten as follows

V̇ ≤ − α(p̃Ts B
−T − ST )p̃s

+ (p̃Ts B
−T − ST )(B−1p̃s − S). (D.8)

The right hand side of (D.8) can be upper bounded as follows

V̇ ≤ − αε̄sp̃
T
s p̃s + ρ̄sp̃

T
s p̃s + αST p̃s

− p̃Ts B
−TS − STB−1p̃s + STS (D.9)

where the definition of B (t) in (2.24) is utilized along with (1.13), (2.43) and (2.44).

After substituting (2.42) in (D.9), the following inequality can be written

V̇ ≤ −ε̄s ‖p̃s‖2 + ST (αI3n − 2B−1)p̃s + ‖S‖2 . (D.10)

After utilizing (2.3)-(2.9), (2.24) and (2.42), the following expression is obtained

V̇ ≤ −ε̄s ‖p̃s‖2 + δ1 ‖S‖ ‖p̃s‖ + ‖S‖2 ; δ1 ∈ R
+. (D.11)

After utilizing Young’s inequality, (D.11) can be further simplified as follows

V̇ ≤ −ε̄s ‖p̃s‖2 + δ1δ2 ‖S‖2 +
δ1

δ2
‖p̃s‖2 + ‖S‖2 (D.12)

where δ2 ∈ R is a positive constant. After simplifying (D.12), the following in-

equality is obtained

V̇ ≤ −β1 ‖p̃s‖2 + β2 ‖S‖2 ; β1, β2 ∈ R
+. (D.13)

After integrating (D.13), the following expression can be obtained

β1

∫
∞

t0

‖p̃s‖2 dτ ≤ V (t0) − V (∞) + β2

∫
∞

t0

‖S‖2 dτ. (D.14)

Since, S(t) ∈ L2 (see Appendix E), the following inequality can be written

∫
∞

t0

‖S‖2 dτ ≤ σ1 ; σ1 ∈ R
+. (D.15)
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After utilizing (D.15), the inequality given in (D.14) can be rewritten as follows

β1

∫
∞

t0

‖p̃s‖2 dτ < V (t0) − V (∞) + β2σ1. (D.16)

From (D.1) and (D.13), it can be concluded that V (t) is bounded. From (D.16), it

is clear that p̃s(t) ∈ L2 ∩ L∞. Since zsi(t) is bounded, from (2.7), (2.9), and the fact

that θsi is constant ∀i, it follows that Π(·) ∈ L∞. Therefore, from (2.8), it can easily

be seen that W (·) ∈ L∞. Since the projection strategy utilized in (2.37) and (2.41)

ensures that θ̂c(t), θ̂s(t) ∈ L∞; therefore, it follows that θ̃c(t), θ̃s(t) ∈ L∞. Thus, from

the definitions given in (2.22)-(2.24), and (2.26), it is clear that B(t) is bounded and

W̄s(t), Ws(·) ∈ L∞. Since Γ(t) is bounded (see Remark 2), W̄s(t), p̃s(t) ∈ L∞ and

p̃s(t) ∈ L2, from (2.41), it is clear that
.

θ̂s (t) ∈ L2 ∩L∞; hence, the time derivative of

(2.25) can be used to show that
.

θ̃s (t) ∈ L∞. Since W̄s(t) ∈ L∞, it can be concluded

that upon the satisfaction of the PE condition given in (2.49),
∥∥∥θ̃s(t)

∥∥∥→ 0 as t→ ∞
[49].
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Appendix E

Proof for S(t) ∈ L2

Proof. To facilitate the proof, a nonnegative Lyapunov function, denoted by Vc (t) ∈
R, is defined as follows

Vc ,
1

2
θ̃
T

c Γ−1
c θ̃c. (E.1)

Using a similar analysis as in Appendix D, the time derivative of (E.1) can be shown

to be upper-bounded as follows

V̇c ≤ −ε̄c ‖p̃c‖2 . (E.2)

At the points of discontinuity of Γc(t) the following expression can be written

Vc(t
+
m) − Vc(tm) =

1

2
θ̃
T

c

[
Γ−1
c (t+m) − Γ−1

c (tm)
]
θ̃c (E.3)

Since Γ−1
c (t+m) = η−1

0 I16 and Γ−1
c (tm) ≥ η−1

0 I16, it follows that

Vc(t
+
m) − Vc(tm) ≤ 0. (E.4)

It can be easily inferred from (E.1) that Vc(t) ≥ 0 ∀t ≥ 0; thus, the time integral

of (E.2) can be used to show that p̃c(t) ∈ L2 ∩ L∞. The derivative of the estimation

error signal θ̃c(t) can be written as follows

˙̃θc = −αcΓcW T
c p̃c (E.5)

where (2.37) was utilized. It should be noted that the adaptive law with the projec-

tion algorithm retains all the properties of the adaptive law without the projection

algorithm [49]. After substituting (2.35) into (E.5), the following expression is ob-

tained

˙̃
θc = −αcΓcW T

c FWcθ̃c. (E.6)

The parameter error equation given in (E.6) and (2.35) can be written as follows [49]

.

θ̃c = Aθ̃c (E.7)

p̃c = CT θ̃c (E.8)
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where A(t) ∈ R
16×16, and C(t) ∈ R

16×3m are defined as follows

A = −αcΓcW T
c FWc (E.9)

CT = FWc. (E.10)

The time derivative of (E.1) can now be written as follows

V̇c =
1

2

.

θ̃
T

c Gθ̃c +
1

2
θ̃
T

c Ġθ̃c +
1

2
θ̃
T

c G
.

θ̃c (E.11)

where G(t) = Γ−1
c (t). After utilizing (E.7), the expression given in (E.11) can be

rewritten as follows

V̇c =
1

2
θ̃
T

c

[
GA+ ATG+ Ġ

]
θ̃c. (E.12)

The inequality given in (E.2), can be rewritten as

V̇c ≤ −ε̄cθ̃
T

c CC
T θ̃c (E.13)

where (E.8) was utilized. After utilizing (E.12) and (E.13) the following expression

is obtained

Ġ+GA+ ATG+ 2ε̄cCC
T ≤ 016 (E.14)

where 016 ∈ R
16×16 is a zero matrix. Since p̃c(t) ∈ L2 ∩ L∞, similar boundedness

statements as given in Appendix Dcan be used to show F (t), θ̂c(t), θ̃c(t) ∈ L∞

and
˙̂
θc(t) ∈ L2 ∩ L∞. The pair (C,A) is uniform complete observable (UCO) (see

Appendix F); hence, from (E.14) it can be shown that θ̃c(t) ∈ L2 [49]. After utilizing

the previous boundedness statements, the expression given in (2.35) can be used to

show Wc(t) is bounded. From (2.36) it follows that Wx(·) is bounded; thus, Wxi(·) is

bounded ∀i. The fact that Wxi(·) and Πxi(·) are the functions of the same bounded

signals, it follows that Πxi(·) ∈ L∞∀i. Since θ̃c(t) ∈ L2, Wxi(·), Πxi(·), and p̂si(t)

are bounded ∀i (see Remark 3), it can be concluded from (2.27) and (2.28) that

Si(t) ∈ L2 ∀i; hence, S(t) ∈ L2.
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Appendix F

Proof for (C,A) is a UCO pair

To facilitate the proof, the following lemma is stated [49]:

Lemma 9 Assume that there exists constants υ > 0, kυ ≥ 0 such that for all t0 ≥ 0,

K(t) ∈ R
n×l satisfies the inequality

∫ t0+υ

t0

‖K(τ )‖2 dτ ≤ kυ ∀t ≥ 0

Then (C,A), where C(t) ∈ R
n×l, A(t) ∈ R

n×n, is a UCO pair if and only if (C,A+

KCT ) is a UCO pair.

To utilize Lemma 9, K(t) ∈ R
16×3m is chosen as follows

K = αcΓcW
T
c . (F.1)

After post-multiplying (F.1) by CT (t), the following expression is obtained

KCT = αcΓcW
T
c FWc (F.2)

where (E.10) was utilized. Adding (E.9) and (F.2) results in the following expression

A+KCT = 0. (F.3)

The system that corresponds to the pair (C,A+KCT ) is considered as follows [49]

Ẏ = 0

p̃c = CTY = FWcY (F.4)

where Y (t) ∈ R
16. The observability grammian of (F.4) is given as follows

Υ(t, t+ T ) =

∫ t+T

t

W T
c F

TFWcdτ. (F.5)

Since, from (2.34), F (t) is symmetric and bounded (see Appendix E), it follows that

upon the satisfaction of the following PE condition

γ3I16 ≤
∫ t0+T

t0

W T
c (τ)Wc(τ)dτ ≤ γ4I16 (F.6)
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where γ3, γ4 ∈ R
+, the grammian matrix Υ(t, t + T ) is positive definite for T ∈

R
+ ∀t ≥ 0 [49]; thus, it can be inferred that (F.4) is UCO which implies (C,A) is

UCO.
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Appendix G

Proof of Theorem 3

To facilitate the proof11, a nonnegative Lyapunov function V (t) ∈ R is defined as

follows

V =
1

2
q̃2
fε +

1

2
θ̃
T
θ̃. (G.1)

The time derivative of (G.1) can be obtained as follows

V̇ = q̃fε
.

q̃fε +θ̃
T

.

θ̃ . (G.2)

After utilizing the time derivative of (3.36), the expression given in (G.2) can be

written as follows

V̇ = q̃fε
.

q̃fε +θ̃
T

.

θ̂ . (G.3)

After substituting (3.31) into (G.3), the following expression is obtained

V̇ = q̃fε
.

q̃fε +θ̃
T
Proj{−q̃fεφ∗}. (G.4)

It should be noted that an adaptive law with the projection algorithm defined on

a convex set retains all the properties of the adaptive law without the projection

algorithm [49]. The projection strategy given in (3.32) is on the cube Θ (i.e., a

convex set); hence, the expression given in (G.4) can be written as follows

V̇ = q̃fε
.

q̃fε −θ̃
T
q̃fεφ

∗. (G.5)

The expression given in (G.5) is rearranged as follows

V̇ = q̃fε

[ .
q̃fε −θ̃

T
φ∗

]
. (G.6)

Two different cases are considered, Case I when |q̃f | ≤ ε, and Case II when ∀ |q̃f | > ε.

Case I) From Remark 7 it follows that

V̇ = 0 ∀ |q̃f | ≤ ε. (G.7)

11The proof follows the concept outlined in [55]. We include it in a detailed manner for the sake
of completeness.
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Case II) Also, from Remark 7 and (G.6), the following expression can be obtained

V̇ = q̃fε

[ .
q̃f −θ̃

T
φ∗
]

∀ |q̃f | > ε. (G.8)

After substituting (3.30) into (G.8), the following expression is obtained

V̇ = q̃fε

[
−αq̃fε + q̂ − q − a∗sat(r) − θ̃

T
φ∗

]
. (G.9)

The inequality given in (G.9) can be rearranged as follows

V̇ = −αq̃2
fε + q̃fε

[
q̂ − q − θ̃

T
φ∗ − a∗sat(r)

]
. (G.10)

Now two distinct sub-cases of Case II are considered: (a) when q̃f > ε, and (b) when

q̃f < −ε.
(a) When q̃f > ε, from (3.28) and (3.29) it follows that q̃fε > 0 and sat(r) =

sgn(q̃f ) = 1. After utilizing (G.10), V̇ (t) can be written as follows

V̇ = −αq̃2
fε + q̃fε

[
q̂ − q − θ̃

T
φ∗ − a∗

]
. (G.11)

It follows from (G.11) that V̇ (t) ≤ 0 if the following inequality holds

a∗ ≥ q̂ − q − θ̃
T
φ∗ ∀θ ∈ Θs. (G.12)

Therefore, we choose to maximize a∗(t) as follows

a∗ = max
θ∈Θs

[q̂ − q − θ̃
T
φ∗] for any φ∗. (G.13)

Since, a∗(t) is like a gain in (3.30), we seek to find φ∗(t) so that a∗(t) is minimized;

thus, a∗(t) is chosen as follows

a∗ = min
φ∈R3

max
θ∈Θs

[q̂ − q − θ̃
T
φ∗]. (G.14)

(b) When q̃f < −ε, from (3.28) and (3.29) it follows that q̃fε < 0 and sat(r) =

sgn(q̃f ) = −1. After utilizing (G.10), V̇ (t) can be written as follows

V̇ = −αq̃2
fε + q̃fε

[
q̂ − q − θ̃

T
φ∗ + a∗

]
. (G.15)
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From (G.15) it follows that V̇ (t) ≤ 0 if the following inequality holds

a∗ ≥ q − q̂ + θ̃
T
φ∗ ∀θ ∈ Θs. (G.16)

Following along the same lines as in (a), the following expression can be written

a∗ = min
φ∈R3

max
θ∈Θs

[q − q̂ + θ̃
T
φ∗]. (G.17)

After combining (G.14) and (G.17), the following expression is obtained

a∗ = min
φ∈R3

max
θ∈Θs

sat(r)
[
q̂ − q − θ̃

T
φ∗
]
. (G.18)

After utilizing (G.12) and (G.16) the following inequality can be obtained

sat(r)
[
q̂ − q − θ̃

T
φ∗

]
− a∗ ≤ 0. (G.19)

The expression given in (G.11) can be rewritten as follows

V̇ = −αq̃2
fε + q̃fεsat(r){sat(r)[q̂ − q − θ̃

T
φ∗] − a∗} (G.20)

Thus, after utilizing (G.19), and the fact that q̃fεsat(r) ≥ 0 when |q̃f | > ε, V̇ (t)

can be upper bounded as follows

V̇ ≤ −αq̃2
fε ∀ |q̃f | > ε. (G.21)

After integrating (G.21), the following inequality can be obtained

α

∫
∞

t0

q̃2
fε dτ < V (t0) − V (∞). (G.22)

From (G.1), (G.7), and (G.21), it can be concluded that V (t) ∈ L∞. From (G.22), it

is clear that q̃fε(t) ∈ L2∩L∞; thus, from (3.29), it can be concluded that q̃f (t) ∈ L∞.

Since the projection strategy given in (3.32) ensures θ̂(t) ∈ Θs; thus, it follows that

θ̂(t) ∈ L∞. Hence, from (3.22), it follows that q̂(·) ∈ L∞. Since a∗(t) is a function of

the bounded signals, and q(·) is a measurable bounded signal, from (3.30), it follows

that
.

q̃f (t) ∈ L∞. It is clear from the projection strategy that
.

θ̂ (t) ∈ L∞; thus, from

(3.36),
.

θ̃ (t) ∈ L∞.

106



Appendix H

Proof of Theorem 4

To facilitate the proof12, without loss of generality, we assume β (Π (t2)) = 1 i.e.,

q (θ,Π (t2)) is convex on Θs
13. Thus, the expression given in (3.47) can be rewritten

as follows

q(θ̂ (t1) ,Π (t2)) − q (θ,Π (t2)) ≥ ε̄ (H.1)

where ε̄ = εu

∥∥∥θ̂(t1) − θ
∥∥∥. To further facilitate the proof, we define a region of con-

vergence as follows

Ωε = {d : V (d) ≤ γ} (H.2)

where

d = [q̃fε θ̃
T
]T (H.3)

and V (·) is the Lyapunov function defined in (G.1).

From the region of convergence, we know that if d (t1) ∈ Ωε then d (t) for all

t ≥ t1 stays in Ωε. Also, V (·) is a Lyapunov function and its time derivative is always

non-positive (see Appendix G); hence, we assume that d(t1) /∈ Ωε. The proof of this

theorem follows by showing that V (·) decreases by a finite amount over every interval

of time until the trajectories reach Ωε.

If d(t1) /∈ Ωε, from (H.2), it is clear that V (·) > γ. Hence, after utilizing (G.1),

(H.2), and (H.3), V (·) can be expressed as follows

V =
1

2
q̃2
fε +

1

2
θ̃
T
θ̃ > γ. (H.4)

From (H.4), it is clear that the following inequalities are not satisfied simultaneously

|q̃fε (t1)| <
√
γ (H.5)

∥∥∥θ̃ (t1)
∥∥∥ <

√
γ. (H.6)

12The proof follows the concept outlined in [64]. We include it in a detailed manner for the sake
of completeness.

13A similar proof can be given if β (Π (t2)) = −1, i.e., q(·) is concave on Θs.
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It can be seen that if the inequalities given in (H.5) and (H.6) are satisfied simul-

taneously, then V (·) ≤ γ which is not true; thus, we have three possible cases as

follows

1. |q̃fε (t1)| >
√
γ or

2.
∥∥∥θ̃ (t1)

∥∥∥ >
√
γ or

3. |q̃fε (t1)| >
√
γ and

∥∥∥θ̃ (t1)
∥∥∥ >

√
γ.

If case 1 or case 3 holds, since |q̃fε (t1)| >
√
γ, from Property 1 (see Appendix I) , it

is clear that V (·) decreases. If case 2 holds, then we show in the following analysis

that |q̃fε(t)| becomes large for some t > t1 and V (·) decreases.

After taking the square of the right-hand side of (H.1), the following inequality

can be obtained

ε̄2 ≥ ε2
uγ. (H.7)

Substituting (3.48) into (H.7) results the following inequality

ε̄2 ≥ 8εc1 (H.8)

We show that if (H.8) holds, then there exists a time t3 ∈ [t2, t2 + T1] such that

|q̃fε (t3)| > min
{
1, δ̄
}

(H.9)

where

δ̄ = min

{
ε̄

2c2
,
ε̄2 − 4εc1
2ε̄c2 + 4c1

}
(H.10)

where

c2 = L2BφT0 + α ; T1 =
ε̄− δ̄c2
c1

. (H.11)

We prove by contradiction that (H.9) holds. To facilitate the proof, we consider the

following inequality

|q̃fε (t2 + τ)| < min
{
1, δ̄
}

∀τ ∈ [0, T1]. (H.12)
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The expression given in (3.30) can be rewritten as follows

˙̃qf(t2 + τ ) ≥ −αmin
{
1, δ̄
}

+ q(θ̂,Π (t2 + τ))

−q(θ,Π (t2 + τ)) − a∗sat(r). (H.13)

where (H.12) was utilized. We seek to establish lower bounds for [q(θ̂,Π (t2 + τ)) −
q(θ,Π (t2 + τ ))] and −a∗sat(r) in (H.13) in order to prove that q̃fε(t) becomes large

over [t2, t2 + T1]. From Assumption 5, it follows that

|q (θ + ∆θ,Π (t2)) − q (θ,Π (t2))| ≤ L2 ‖∆θ‖ . (H.14)

After integrating (3.31) from t1 to t2, the following expression is obtained

θ̂ (t2) − θ̂ (t1) =

t2∫

t1

−q̃fε (σ)φ∗ (σ) dσ. (H.15)

After taking the norm on both the sides of (H.15), the following inequality can be

obtained
∥∥∥θ̂ (t2) − θ̂ (t1)

∥∥∥ ≤
t2∫

t1

‖q̃fε (σ)‖ ‖φ∗ (σ)‖ dσ. (H.16)

The left-hand side of (H.16) can be upper bounded as follows

∥∥∥θ̂ (t2) − θ̂ (t1)
∥∥∥ ≤ min

{
1, δ̄
}
LφT0 (H.17)

where (H.12), Remark 9, and the fact that T0 ≥ t2 − t1 were utilized. After utilizing

(H.14) and (H.17), the following inequality can be obtained

∣∣∣q(θ̂ (t2) ,Π (t2)) − q(θ̂ (t1) ,Π (t2))
∣∣∣ ≤ L2 min

{
1, δ̄
}
LφT0. (H.18)

From (H.18), it follows that

−L2 min
{
1, δ̄
}
LφT0 ≤ q(θ̂ (t2) ,Π (t2)) − q(θ̂ (t1) ,Π (t2)). (H.19)

After adding (H.1) and (H.19), the following expression is obtained

ε̄− L2 min
{
1, δ̄
}
LφT0 ≤ q(θ̂ (t2) ,Π (t2)) − q (θ,Π (t2)) . (H.20)
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From Assumption 4, it follows that

‖Π (t2 + τ ) − Π (t2)‖ ≤ L1τ ∀τ ∈ [0, T1]. (H.21)

Thus, the following inequalities can be obtained

|q (θ,Π (t2 + τ )) − q (θ,Π (t2))|

≤ L2 (‖Π (t2 + τ) − Π (t2)‖) (H.22)

≤ L2L1τ . (H.23)

From (H.22) and (H.23), the following expression is obtained

q(θ,Π (t2 + τ)) − q(θ,Π (t2)) ≤ L2L1τ (H.24)

which can be rewritten as follows

q(θ,Π (t2)) − q(θ,Π (t2 + τ)) ≥ −L2L1τ . (H.25)

After combining (H.17), (H.21), and Assumption 5, the following expression can be

obtained

∣∣∣q(θ̂ (t2 + τ) ,Π (t2 + τ )) − q(θ̂ (t2) ,Π (t2))
∣∣∣

≤ L2L1τ + L2Lφτ (H.26)

where the fact that min(a, b) ≤ a and min(a, b) ≤ b was utilized. From (H.26), it

follows that

−L2L1τ − L2Lφτ ≤ q(θ̂ (t2 + τ ),Π (t2 + τ))

−q(θ̂ (t2) ,Π (t2)). (H.27)

After adding (H.25) and (H.27), the following expression is obtained

−L2 (2L1 + Lφ) τ ≤ q(θ̂ (t2 + τ ) ,Π (t2 + τ ))

−q(θ,Π (t2 + τ )) + q(θ,Π (t2))

−q(θ̂ (t2) ,Π (t2)). (H.28)
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After rearranging (H.28), the following expression can be obtained

−L2 (2L1 + Lφ) τ + q(θ̂ (t2) ,Π (t2)) − q(θ,Π (t2))

≤ q(θ̂ (t2 + τ ) ,Π (t2 + τ )) − q (θ,Π (t2 + τ )) . (H.29)

Utilizing (H.20) and (H.29) results in the following expression

ε̄− L2 min
{
1, δ̄
}
LφT0 − L2 (2L1 + Lφ) τ

≤ q(θ̂ (t2 + τ ) ,Π (t2 + τ )) − q(θ,Π (t2 + τ)). (H.30)

Thus, a lower bound on the term [q(θ̂,Π (t2 + τ )) − q(θ,Π (t2 + τ ))] in (H.13) is es-

tablished. Now, we seek to find a lower bound on the term −a∗sat(r) in (H.13). After

changing the variable t2 to t2 + τ and t1 to t2, the expression given in (H.17) can be

rewritten as follows

∥∥∥θ̂ (t2 + τ) − θ̂ (t2)
∥∥∥ ≤ min

{
1, δ̄
}
Lφτ . (H.31)

After multiplying (H.31) by φ∗(t2) and utilizing Remark 9, the following expression

is obtained ∣∣∣φ∗ (t2) (θ̂ (t2 + τ ) − θ̂ (t2))
∣∣∣ ≤ min

{
1, δ̄
}
L2
φτ . (H.32)

From Property 3 (see Appendix K), it follows that

a∗+(θ̂ (t2) ,Π (t2)) = 0 (H.33)

when β(Π (t2)) = 1 where a∗+(·) denotes a∗(t) when q̃fε > 0 (see Appendix D). From

(3.33), the following expression is obtained

a∗+(θ̂(t2),Π(t2)) = max{q̂2 − φ∗(t2)(θ̂(t2) − θ)} (H.34)

where

q̂2 = q(θ̂(t2),Π(t2)) − q(θ,Π(t2)). (H.35)

At time instant t2 + τ , the expression given in (H.34) can be written as follows

a∗+(θ̂(t2 + τ),Π(t2 + τ)) = max{q̂2τ − φ∗(t2 + τ )(θ̂(t2 + τ ) − θ)} (H.36)
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where

q̂2τ = q(θ̂(t2 + τ),Π(t2 + τ)) − q(θ,Π(t2 + τ )). (H.37)

Since φ∗(t2 +τ) results in the minimum value of a∗+(θ̂(t2 +τ),Π(t2 +τ)), the left-hand

side of (H.36) can be upper bounded as follows

a∗+(θ̂(t2 + τ),Π(t2 + τ)) ≤ max{q̂2τ − φ∗(t2)(θ̂(t2 + τ ) − θ)} (H.38)

After adding and subtracting the terms q̂2 and φ∗(t2)θ̂(t2) to the right-hand side of

(H.38), and then simplifying it results in the following expression

a∗+(θ̂(t2 + τ),Π(t2 + τ)) ≤ max{q̂2τ − q̂2

−φ∗(t2)(θ̂(t2 + τ) − θ̂(t2))}

+ max{q̂2

−φ∗(t2)(θ̂(t2) − θ)} (H.39)

where the fact that max(a+b) ≤ max(a)+max(b) was utilized. After utilizing (H.34),

the expression given in (H.39) can be written as follows

a∗+(θ̂(t2 + τ),Π(t2 + τ)) ≤ max{q̂2τ − q̂2

−φ∗(t2)(θ̂(t2 + τ) − θ̂(t2))}

+a∗+(θ̂(t2),Π(t2)). (H.40)

The expression given in (H.40) can be upper bounded as follows

a∗+(θ̂(t2 + τ),Π(t2 + τ)) ≤ max{q̂2τ − q̂2}

+ max{−φ∗(t2)

×(θ̂(t2 + τ) − θ̂(t2))}

+a∗+(θ̂(t2),Π(t2)). (H.41)

The expression given in (H.41) can be rewritten as follows

a∗+(θ̂(t2 + τ),Π(t2 + τ)) ≤ L2 (2L1 + Lφ) τ + min
{
1, δ̄
}
L2
φτ (H.42)
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where (H.28), (H.32), (H.33), (H.35), and (H.37) were utilized. Since min
{
1, δ̄
}
≤ 1,

(H.42) can be rewritten as follows

a∗+(θ̂(t2 + τ),Π(t2 + τ)) ≤ L2 (2L1 + Lφ) τ + L2
φτ

≤
(
2L2L1 + L2Lφ + L2

φ

)
τ .

(H.43)

The inequality given in (H.43) is rewritten as follows

a∗+(θ̂ (t2 + τ ) ,Π (t2 + τ))sat(r) ≤
(
2L2L1 + L2Lφ + L2

φ

)
τ (H.44)

where the fact that sat(r) ≤ 1 was utilized. After multiplying both the sides of

(H.44) by −1, and utilizing Property 2 (see Appendix J), the lower bound on the

term −a∗sat(r) in (3.30) is obtained as follows

−a∗(θ̂ (t2 + τ ),Π (t2 + τ)) sat(r)

≥ −(2L2L1 + L2Lφ + L2
φ)τ . (H.45)

Now, the expression given in (H.13) can be rewritten as follows

˙̃qf(t2 + τ ) ≥ −αmin
{
1, δ̄
}

+ ε̄− L2 min
{
1, δ̄
}
LφT0

−L2 (2L1 + Lφ) τ

−(2L2L1 + L2Lφ + L2
φ)τ (H.46)

where (H.30) and (H.45) were utilized. After substituting (3.48) and (H.11) into

(H.46), the following expression can be obtained

˙̃qf (t2 + τ) ≥ ε̄− c2 min
{
1, δ̄
}
− c1τ . (H.47)

Since min
{
1, δ̄
}
≤ δ̄, ˙̃qf (t) can be lower bounded as follows

˙̃qf (t2 + τ) ≥ c3 − c1τ (H.48)
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where

c3 = ε̄− c2δ̄. (H.49)

Integrating both the sides of (H.48) over [0, T1] where T1 is defined in (H.11) results

in the following expression

T1∫

0

˙̃qf (t2 + τ ) dτ ≥
(
c3τ −

1

2
c1τ

2

)∣∣∣∣
T1

0

. (H.50)

Simplifying the right-hand side of (H.50) results in the following expression
(
c3τ −

1

2
c1τ

2

)∣∣∣∣
T1

0

=
1

2

c23
c1

(H.51)

where (H.11) was utilized. After performing a change of variable ρ = t2 + τ on the

left-hand side of (H.50), the following expressions can be obtained

T1∫

0

˙̃qf (t2 + τ ) dτ =

t2+T1∫

t2

˙̃qf (ρ) dρ (H.52)

= q̃f (ρ)|t2+T1

t2
(H.53)

= q̃f (t2 + T1) − q̃f (t2) . (H.54)

After combining (H.51) and (H.54), the expression given in (H.51) can be rewritten

as follows

q̃f (t2 + T1) − q̃f (t2) ≥
1

2

c23
c1
. (H.55)

Taking τ = 0 in (H.12) results in the following expression

−min
{
1, δ̄
}
< q̃fε (t2) < min

{
1, δ̄
}

(H.56)

The inequality given in (H.56) can be rewritten as follows

−ε− min
{
1, δ̄
}
< q̃f (t2) < ε+ min

{
1, δ̄
}

(H.57)

where (3.29) was utilized. After substituting (H.57) into (H.55), the following in-

equality can be written

q̃f (t2 + T1) ≥
c23
2c1

− ε− min
{
1, δ̄
}
. (H.58)
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Since min(a, b) ≤ a and min(a, b) ≤ b, from the definition of δ̄ given in (H.10), the

following inequality can be obtained

δ̄ ≤ ε̄2 − 4εc1
2ε̄c2 + 4c1

. (H.59)

After multiplying both the sides of (H.59) by the term (2ε̄c2 + 4c1), the following

inequalities can be obtained

2δ̄ε̄c2 + 4δ̄c1 ≤ ε̄2 − 4εc1

4c1
(
δ̄ + ε

)
≤ ε̄2 − 2δ̄ε̄c2

2
(
δ̄ + ε

)
≤ ε̄2 − 2δ̄ε̄c2

2c1
. (H.60)

After adding and subtracting the term
(
δ̄c2
)2

to the right-hand side of (H.60) results

in the following expressions

ε̄2 − 2δ̄ε̄c2
2c1

=
ε̄2 − 2δ̄ε̄c2 +

(
δ̄c2
)2 −

(
δ̄c2
)2

2c1

=

(
ε̄− δ̄c2

)2 −
(
δ̄c2
)2

2c1

=
c23 −

(
δ̄c2
)2

2c1
. (H.61)

After utilizing (H.60) and (H.61), the following inequality can be obtained

(
δ̄c2
)2

2c1
+ 2

(
δ̄ + ε

)
≤ c23

2c1
. (H.62)

After utilizing (H.62), the inequality given in (H.58) can be written as follows

q̃f (t2 + T1) ≥
(
δ̄c2
)2

2c1
+ 2

(
δ̄ + ε

)
− ε− min

{
1, δ̄
}

≥
(
δ̄c2
)2

2c1
+ δ̄ + ε+ δ̄ − min

{
1, δ̄
}

≥
(
δ̄c2
)2

2c1
+ δ̄ + ε

≥ δ̄ + ε. (H.63)
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From (3.29), it can be seen that the expression given in (H.63) implies that q̃fε ≥ δ̄

which contradicts (H.12); thus, it can be easily concluded that (H.9) must hold.

Thus, it was shown that if V (t1) > γ, then one of the following inequalities hold

|q̃fε(t3)| ≥ δmin
{
1, δ̄
}

∀t3 ∈ [t1, t1 + T0 + T1] (H.64)

|q̃fε(t1)| >
√
γ. (H.65)

From Property 1 (see Appendix I), it follows that if (H.64) holds, then

V (t3 + T ′

1) ≤ V (t3) −
αδ3

3(M + αδ)
(H.66)

where T ′

1 = δ/(M + αδ). Similarly, if (H.65) holds, from Property 1 (see Appendix

I), it follows that

V (t1 + T ′

2) ≤ V (t1) −
α
√
γ3

3(M + α
√
γ)

(H.67)

where T ′

2 =
√
γ/(M + αδ). Since V (t) is a nonincreasing function, the following

expression can be concluded from (H.66) and (H.67)

V (t1 + T ′

3) ≤ V (t1) − ∆V ∀V (t1) > γ (H.68)

where

T ′

3 = max {T0 + T1 + T ′

1, T0 + T1 + T ′

2}

∆V = min

{
αδ3

3(M + αδ)
,

α
√
γ3

3(M + α
√
γ)

}
.

Thus, it is clear from (H.68) that V (t) decreases by a finite amount over every interval

T ′

3 until trajectories reach Ωε; hence, from (G.1), (H.2), and (H.3), it follows that

‖θ̃(t)‖ ≤ √
γ as t→ ∞.
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Appendix I

Property 1

Property 1 The property of the proposed min-max estimtor [64] states that if

|q̃fε| ≥ γ̄ ; γ̄ ∈ R
+. (I.1)

then

V (t1 + T ′) ≤ V (t1) −
αγ̄3

3(M + αγ̄)
(I.2)

where V (·) is the Lyapunov function defined in (G.1) and

T ′ = γ̄/(M + αγ̄) (I.3)

M = max {|ψ(t)|} (I.4)

ψ = q̂ − q − a∗sat(r). (I.5)

Proof. To facilitate the proof14, the following lemma is stated [64]

Lemma 10 For a given system of the following form

ṗ = −k(t)p + s(t) (I.6)

ṗm = −kmpm + sm (I.7)

where k(t), km > 0 and |s(t)| ≤ sm ∀t ≥ t0, if p(t0) ≤ pm(t0) < 0, k(t) ≤ km, then

p(t) ≤ pm(t), ∀t ≥ t0 where pm(t) ≤ 0.

Without loss of generality, (I.1) is rewritten as follows15

q̃fε(t1) ≤ −γ̄. (I.8)

From (3.30) and Remark 7, the following expression can be obtained

.

q̃fε= −αq̃fε + ψ(t) (I.9)

14The proof of the property follows the concept outlined in [64]. We include it in a detailed manner
for the sake of completeness.

15A similar proof can be shown for q̃fε(t1) ≥ γ̄.
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Since q̂(·), q(·) ∈ L∞ (see Appendix G)and a∗(t) is a function of bounded signals, it

follows that ψ(t) is bounded as |ψ(t)| ≤ M . To facilitate the proof, the following

differential equation is considered

q̇m = −αqm +M ; qm(t1) = −γ̄. (I.10)

From (I.8)-(I.10), and Lemma 10, the following inequality can be obtained

q̃fε(t1 + τ) ≤ qm(t1 + τ ) ∀τ ≥ 0 and qm(t1 + τ ) ≤ 0. (I.11)

After solving the differential equation given in (I.10), the solution qm(t) ∀t ≥ t1 can

be obtained as follows

qm(t1 + τ ) =

(
−M
α

− γ̄

)
e−ατ +

M

α
. (I.12)

It should be noted that
..
qm (t1 + τ) ≤ 0 ∀τ ≥ 0; therefore, qm(t1 + τ) is a concave

function of τ ∀τ ≥ 0. After utilizing the gradient property of a concave function [55],

the following inequality can be written

qm(t1 + τ) ≤ qm(t1) + ∇qmτ
(t1 + τ − t1) (I.13)

where ∇qmτ
= (∂qm(t1 + τ)/∂τ )|τ=0. The expression given in (I.13) can be rewritten

as follows

qm(t1 + τ ) ≤ −γ̄ + (M + αγ̄)τ . (I.14)

After utilizing (I.11) and (I.14), q̃fε(t1 + τ ) can be upper bounded as follows

q̃fε(t1 + τ ) ≤ −γ̄ + (M + αγ̄)τ ∀τ ≥ 0. (I.15)

Substituting τ = T ′ = γ̄/(M + αγ̄) in (I.15) results in the following inequality

q̃fε(t) ≤ 0 ∀t ∈ [t1, t1 + T ′]. (I.16)

After squaring, and then integrating both the sides of (I.15) over [t1 = 0, T ′], the

following inequality is obtained
∫ t1+T ′

t1

|q̃fε(τ)|2 dτ ≥ γ̄3

3(M + αγ̄)
. (I.17)
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After integrating (G.21) over [t1, t1 + T ′], the following inequality can be obtained

V (t1 + T ′) ≤ V (t1) −
γ̄3

3(M + αγ̄)
(I.18)

where (I.17) was utilized. Thus, Property 1 is established.
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Appendix J

Property 2

Property 2 The property states the following inequality [64]

−a∗
−
(θ̂,Π) ≤ a∗sat

(
q̃f
ε

)
≤ a∗+(θ̂,Π) (J.1)

where a∗
−
(θ̂,Π) denotes a∗(t) when q̃fε < 0, and a∗+(θ̂,Π) denotes a∗(t) when q̃fε > 0.

Proof. To facilitate the proof16, first we prove the following left-hand side of the

inequality given in (J.1)

−a∗
−
(θ̂,Π) ≤ a∗sat

(
q̃f
ε

)
. (J.2)

The solutions of the min-max optimization problem of the form given in (3.33)-(3.35)

results in the following inequality [55]

a∗ ≥ 0 ∀θ ∈ Θs. (J.3)

From (3.28), it follows that sat
(
q̃f
ε

)
≥ 0 when q̃f ≥ 0; thus, the following inequalities

are obtained

a∗sat

(
q̃f
ε

)
≥ 0 (J.4)

a∗sat

(
q̃f
ε

)
≥ −a∗

−
(θ̂,Π) (J.5)

where (J.3) was utilized. Thus, it can be concluded from (J.5) that if q̃f ≥ 0, then

(J.2) holds.

If q̃f < 0, from (3.29), it follows that q̃fε < 0. Also, from (3.28), it follows that

−1 ≤ sat
(
q̃f
ε

)
< 0. Therefore, the following inequality can be obtained

a∗
−
(θ̂,Π)sat

(
q̃f
ε

)
≥ −a∗

−
(θ̂,Π). (J.6)

Hence, from (J.6), it can be concluded that (J.2) holds when q̃f < 0. This proves (J.2)

for any q̃f(t). Similar analysis can be utilized to prove the right-hand side inequality

of (J.1). Thus, Property 2 is established.

16The proof of the property follows the concept outlined in [64]. We include it in a detailed manner
for the sake of completeness.
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Appendix K

Property 3

Property 3 The property states the following [64]

a∗
−

= 0 if β = −1 (K.1)

a∗+ = 0 if β = 1 (K.2)

βa∗q̃f ≤ 0 ∀β. (K.3)

Proof. The proof of the property follows the concept outlined in [64]. We include it

in a detailed manner for the sake of completeness. From (3.44), it follows that β = −1

if q is concave; thus, the following expression can be obtained from the solutions of

the min-max optimization problem given in (3.37)-(3.43)

a∗ = 0 ∀q̃f < 0 (K.4)

which proves (K.1). Further, when q̃f > 0, the following expression can be obtained

βa∗q̃f ≤ 0 ∀q̃f > 0 (K.5)

where (J.3) was utilized.

Similary, when β = 1, it follows that

a∗ = 0 ∀q̃f > 0 (K.6)

which proves (K.2). After utilizing (J.3), the following expression can be obtained

βa∗q̃f ≤ 0 ∀q̃f < 0. (K.7)

Thus, from (K.5) and (K.7), it can be concluded that (K.3) holds. Hence, Property

3 is established.
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Appendix L

Validity of Assumptions 4 and 5

The assumptions 4 and 5 are technical assumptions that are used for the proof of

convergence as given in [64]. In general, it is not possible to ascertain whether these

assumptions are realistic for the problem attacked in this paper; however, in this

appendix we give an argument which gives confidence that the assumptions have

some validity with regard to the estimation problem.

To facilitate the validity argument, we add and subtract q(θ0 + ∆θ0,Π) to the

left-hand side of (3.16) to obtain the following expression

|q(θ0 + ∆θ0,Π + ∆Π) − q(θ0,Π)| = |q(θ0 + ∆θ0,Π + ∆Π)

−q(θ0 + ∆θ0,Π)

+q(θ0 + ∆θ0,Π)

−q(θ0,Π)|. (L.1)

The left-hand side of (L.1) can be upper bounded as follows

|q(θ0 + ∆θ0,Π + ∆Π) − q(θ0,Π)| ≤ |q(θ0 + ∆θ0,Π + ∆Π)

−q(θ0 + ∆θ0,Π)|

+|q(θ0 + ∆θ0,Π)

−q(θ0,Π)| (L.2)

where triangle inequality was utilized. After utilizing the mean value theorem [93],

the terms on the right-hand side of (L.2) can be written as follows

q(θ0 + ∆θ0,Π + ∆Π) − q(θ0 + ∆θ0,Π)

=
∂q(θ0 + ∆θ0, υ1)

∂υ1

|υ1=ψ1
(Π + ∆Π − Π) (L.3)

where ψ1 ∈ [Π,Π + ∆Π] and can be chosen as ψ1 = Π + ∆Π − ρ1(Π + ∆Π −Π) with
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ρ1 ∈ [0, 1] and

q(θ0 + ∆θ0,Π) − q(θ0,Π)

=
∂q(υ2,Π)

∂υ2

|υ2=ψ2
(θ0 + ∆θ0 − θ0) (L.4)

where ψ2 ∈ [θ0, θ0 +∆θ0] and can be chosen as ψ2 = θ0 +∆θ0−ρ2(θ0 +∆θ0−θ0) with

ρ2 ∈ [0, 1]. From (3.11)-(3.14), it can be seen that q(·) is differentiable with respect to

its arguments. Also, since the measurable position signals are assumed to be bounded

(see Remark 2), we can utilize (L.2)-(L.4) to obtain the following expression can be

obtained

|q(θ0 + ∆θ0,Π + ∆Π) − q(θ0,Π)| ≤ L2(‖∆Π‖ + ‖∆θ0‖) (L.5)

where L2 ∈ R is a positive constant. The expression given in (L.5) is same as the

expression given in (3.16) in Assumption 5.

Similar argument can be given to show the validity of Assumption 4. To facilitate

the argument, we define t∆ ∈ R as t1 ≤ t∆ ≤ t2. After utilizing the mean value

theorem, the following expression can be obtained

Π(t2) − Π(t1) = Π̇(t∆) (t2 − t1) . (L.6)

The left-hand side of (L.6) can be upper bounded as follows

‖Π(t2) − Π(t1)‖ ≤ ‖Π̇(t∆)‖| (t2 − t1) |. (L.7)

Since the position and velocity of the moving platform are assumed to be bounded

then Π̇(t∆) is bounded; hence, (L.7) can be written as follows

‖Π(t1) − Π(t2)‖ ≤ L1|t1 − t2| (L.8)

where L1 ∈ R is a positive constant. It can be seen that (L.8) is the same expression

as given in (3.15) in Assumption 4.
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Appendix M

Implementable Form of the Filtered Signal Qf (t)

In order to obtain the implementable form of (4.21), an auxiliary filter signal ζ(t) ∈ R

is designed as follows

ζ̇ , −βζ − β2q ; ζ(t0) = −βq(t0). (M.1)

Furthermore, the filter signal Qf (t) is defined as follows

Qf , ζ + βq. (M.2)

After taking the time derivative of (M.2), the following expression is obtained

Q̇f = −β(ζ + βq) + βq̇ (M.3)

where (M.1) was utilized. After substituting (M.2) into (M.3), the following expres-

sion can be obtained

Q̇f , −βQf + βQ (M.4)

which is same as (4.21). Thus, it is clear that (M.1) and (M.2) can be implemented

to obtain Qf(t) without measuring q̇(t).
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Appendix N

Proof of Theorem 6

Proof. To facilitate the proof, a nonnegative Lyapunov function Ve(t) ∈ R is defined

as follows

Ve ,
1

2
θ̃
T

e Γ−1θ̃e. (N.1)

Taking the time derivative of (N.1) results in the following expression

V̇e = −θ̃Te Γ−1
.

θ̂e +
1

2
θ̃
T

e Γ̇−1θ̃e (N.2)

where the time derivative of (4.28) was utilized. After substituting (4.30) and (4.31)

into (N.2), the following expression is obtained

V̇e = −ε2 +
1

2
ε2 (N.3)

where (4.29) was utilized. The expression given in (N.3) can be further simplied as

follows

V̇e = −1

2
ε2. (N.4)

After integrating (N.4), the following expression can be obtained

1

2

∫
∞

t0

ε2(τ )dτ = Ve(t0) − Ve(∞). (N.5)

From (N.1) and (N.4), it can be concluded that Ve(t) ∈ L∞; thus, θ̃e(t) ∈ L∞.

From (N.5), it is clear that ε(t) ∈ L2 ∩ L∞. Since θ̃e(t) ∈ L∞, from (4.28), it

follows that θ̂e(t) ∈ L∞. Since q(t), p(t), u(t) ∈ L∞ (see Appendix O, from (4.18),

it follows that We(t) ∈ L∞, and from (4.17), it follows that Q(t) ∈ L∞. Since

Q(t),We(t) ∈ L∞, from Remark 2, it follows that Qf (t), Q̇f(t),Wf(t), Ẇf (t) ∈ L∞.

Since Wf (t), ε(t) ∈ L∞, and from Remark 3, Γ(t) ∈ L∞, therefore from (4.30), it can

be concluded that
.

θ̂e (t) ∈ L∞; thus, the time derivative of (4.28) can be utilized to

show that
.

θ̃e (t) ∈ L∞. Since Ẇf(t),
.

θ̃e (t) ∈ L∞, the time derivative of (4.29) can be

used to show that ε̇(t) ∈ L∞. Since ε(t) ∈ L2 ∩ L∞ and ε̇(t) ∈ L∞, from Barbalat’s
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Lemma [49], it can be concluded that ε(t) → 0 as t → ∞; thus, ‖Wf(t)θ̃e(t)‖ → 0

as t → ∞. Upon the satisfaction of the PE condition [49] given in (4.47), it can be

further concluded that ‖θ̃e(t)‖ → 0 as t→ ∞.
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Appendix O

Proof of Theorem 7

Proof. To facilitate the proof, a nonnegative Lyapunov function Va(t) ∈ R is defined

as follows

Va ,
1

2
Ae2a +

1

2
γ−1
a θ̃

T

a θ̃a (O.1)

where θ̃a(t) ∈ R
3 is defined as follows

θ̃a , θ − θ̂a. (O.2)

After taking the time derivative of (O.1), the following expression is obtained

V̇a = Aėaea + γ−1
a θ̃

T

a

.

θ̃a . (O.3)

Substituting (4.40) into (O.3) results in the following expression

V̇a = (Waθa − uq)ea − γ−1
a θ̃

T

a

.

θ̂a (O.4)

where the time derivative of (O.2) was utilized. After substituting (4.43) and (4.44)

into (O.4), the following expression can be obtained

V̇a = (Waθ̃a − kaea)ea − γ−1
a θ̃

T

a

(
γaW

T
a ea
)

(O.5)

where (O.2) was utilized. The expression given in (O.5) can be further simplified as

follows

V̇a = −kae2a. (O.6)

After integrating (O.6), the following expression can be obtained

ka

∫
∞

t0

e2a(τ)dτ = Va(t0) − Va(∞). (O.7)

From (O.1) and (O.6), it can be concluded that Va(t) ∈ L∞; hence, ea(t), θ̃a(t) ∈ L∞.

From (O.7), it is clear that ea(t) ∈ L2. Since qd(t) is designed to be bounded,

from (4.37), q(t) ∈ L∞; thus, from Remark 1, p(t) ∈ L∞. The fact that θa is a
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constant vector and θ̃a(t) ∈ L∞, from (O.2), it follows that θ̂a(t) ∈ L∞. Since

p(t), q(t), q̇d(t) ∈ L∞, it is clear from (4.35) and (4.41) that Wa(t) ∈ L∞; thus, from

(4.43), it can be concluded that u(t) ∈ L∞. Further, from (4.44), it is clear that
.

θ̂a (t) ∈ L∞. From (4.40), it follows that ėa(t) ∈ L∞. Since ea(t) ∈ L2 ∩ L∞,

and from (4.40), ėa(t) ∈ L∞, from Barbalat’s Lemma [49], it can be concluded that

ea(t) → 0 as t→ ∞.
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Appendix P

Extension of the Tumor Model with Pharmacokinetics and Pharmacodynamics

Pharmacokinetic (PK) equations describe the drug concentration in the body plasma

and pharmacodynamic (PD) equations model the effectiveness of the drugs [69].

System Model

Similar to [69], the modified system model can be given as follows

ṗ = αp

(
1 − p

q

)
(P.1)

q̇ = bq − dp2/3q −Gscq (P.2)

ċ = −mc + hu ; c(t0) = 0. (P.3)

The drug dose u(t) and concentration c(t) ∈ R of the inhibitors are linked by a

first-order, linear, ordinary differential equation given in (P.3) where m, h ∈ R are

constant parameters. The effect of the drug is proportional to the concentration of

the inhibitors, given as effect = sc where s ∈ [0, 1].

In order to minimize the tumor volume p(t) with an optimum drug dose u(t), we

modify the estimate of the performance index given in (4.15) as follows

Ĵ , p+

(
Ŝc

d̂

)3/2

(P.4)

where Ŝ(t) ∈ R is the estimate of the combined term Gs. The control objective

remains the same as described in Chapter 4 and given in (4.16).

Parameter Estimation

Similar to Chapter 4, we design an estimator based on least-squares estimation

technique to identify the unknown parameters b, d, and S. To this end, the expression

given in (P.2) is parameterized as follows

Qb = Wbθb (P.5)
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where Qb(t) denotes q̇(t), Wb(t) ,
[
q −p2/3q −cq

]
∈ R

1×3 is a measurable re-

gression vector, and θb ,
[
b d S

]T ∈ R
3 is a vector of unknown parameters.

An analysis similar to that given in Chapter 4 can be followed to obtain a similar

least-squares update law to identify θb. The update law is given as follows

.

θ̂b= ΓbW
T
bfεb (P.6)

where Γb(t) ∈ R
3×3 is the least-squares estimation gain matrix, Wbf (t) ∈ R

1×3 is the

filtered regression vector, and εb(t) is the prediction error.

Development of Adaptive Backstepping Control Law

The control input u(t) appears only in the last equation of the system model described

by (P.1)-(P.3); therefore, an additional level of control is added using an adaptive

backstepping technique to make q(t) track an optimum desired trajectory qd(t) (and

thus, p(t) to track an optimum desired trajectory) without any knowledge about the

model parameters.

To facilitate the development, we consider c(t) as the virtual control input, and

define two error signals e1(t), e2(t) ∈ R as follows

e1 , q − qd (P.7)

e2 , c− cd (P.8)

where cd(t) ∈ R is a subsequently designed desired trajectory for c(t). After dividing

both sides of (P.2) by Gs, the parameterized form of the resulting expression can be

written as follows

A1q̇ = W1θ1 − cq (P.9)

where A1 , (Gs)−1, W1 ,
[
q −p2/3q

]
∈ R

1×2 is a measurable regression vector,

and θ1 ,
[
bA1 dA1

]T ∈ R
2 is an unknown vector. After substituting (P.8) into

(P.9), the following expression can be obtained

A1q̇ = W1θ1 − e2q − cdq. (P.10)
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After taking the time derivative of (P.7), and multiplying both the sides of the re-

sulting expression by A1, the following expression can be written

A1ė1 = W2θ2 − e2q − cdq (P.11)

where (P.10) was utilized. In (P.11), W2(t) ∈ R
1×3 is a measurable regression vector,

and θ2 ∈ R
3 is a vector of unknown parameters, defined as follows

W2 ,
[
W1 −q̇d

]
(P.12)

and

θ2 ,
[
θT1 A1

]T
. (P.13)

Based on the subsequent stability analysis, cd(t) is designed as follows

cd ,
1

q

(
W2θ̂2 + k1e1

)
(P.14)

where θ̂2(t) ∈ R
3 is an estimate vector of θ2, and k1 ∈ R is a positive constant.

Following the same procedure, i.e., dividing both the sides of (P.3) by h and then

substituting the results into the time derivative of (P.8), the following expression can

be written

A2ė2 = W3θ3 + u (P.15)

where A2 , h−1 ∈ R, W3(t) ∈ R
1×2 is a measurable regression vector, and θ3 ∈ R

2 is

a vector of unknown parameters, defined as follows

W3 ,
[
−c −ċd

]
(P.16)

and

θ3 ,
[
mA2 A2

]T
. (P.17)

Based on the subsequent stability analysis, the control law u(t) is designed as follows

u , −W3θ̂3 − k2e2 + e1q, (P.18)
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where θ̂3(t) ∈ R
2 is an estimate vector of θ3, and k2 ∈ R is a positive constant. The

update laws
.

θ̂2 (t) ∈ R
3 and

.

θ̂3∈ R
2 are designed as follows

.

θ̂2, γ2W
T
2 e1 ,

.

θ̂3, γ3W
T
3 e2 (P.19)

where γ2, γ3 ∈ R are positive constants.

Stability Analysis

Theorem 11 The control laws given in (P.14) and (P.18) along with the update laws

given in (P.19) ensure that e1(t), e2(t) → 0 as t→ ∞.

Proof. To facilitate the proof, a nonnegative Lyapunov function Vb(t) ∈ R is defined

as follows

Vb ,
1

2
A1e

2
1 +

1

2
A2e

2
2 +

1

2
γ−1

2 θ̃
T

2 θ̃2 +
1

2
γ−1

3 θ̃
T

3 θ̃3. (P.20)

In (P.20), θ̃2(t) ∈ R
3, θ̃3(t) ∈ R

2 are defined as follows

θ̃2 , θ2 − θ̂2, θ̃3 , θ3 − θ̂3. (P.21)

Taking the time derivative of (P.20), yields the following expression

V̇b = A1ė1e1 + A2ė2e2 − γ−1
2 θ̃

T

2

.

θ̂2 −γ−1
3 θ̃

T

3

.

θ̂3 (P.22)

where the time derivatives of θ̃2(t) and θ̃3(t) given in (P.21) were utilized. After

substituting (P.11), (P.15), and (P.19) into (P.22), the following expression is obtained

V̇b = (W2θ2 − e2q − cdq)e1 + (W3θ3 + u)e2

−γ−1
2 θ̃

T

2

(
γ2W

T
2 e1
)
− γ−1

3 θ̃
T

3

(
γ3W

T
3 e2
)
. (P.23)

Substituting (P.14) and (P.18) into (P.23) results in the following expression

V̇b = (W2θ̃2 − e2q − k1e1)e1 − θ̃
T

2W
T
2 e1

+(W3θ̃3 + e1q − k2e2)e2 − θ̃
T

3W
T
3 e2 (P.24)
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where (P.21) was utilized. The expression given in (P.24) can be further simplified to

obtain

V̇b = −k1e
2
1 − k2e

2
2. (P.25)

From (P.25), the following inequalities can be written

V̇b ≤ −k1e
2
1, (P.26)

V̇b ≤ −k2e
2
2. (P.27)

After integrating (P.26) and (P.27), the following inequalities can be obtained

k1

∫
∞

t0

e21(τ)dτ ≤ Vb(t0) − Vb(∞), (P.28)

k2

∫
∞

t0

e22(τ)dτ ≤ Vb(t0) − Vb(∞). (P.29)

From (P.20) and (P.25), it can be concluded that Vb(t) ∈ L∞; hence, e1(t), e2(t), θ̃2(t),

θ̃3(t) ∈ L∞. From (P.28) and (P.29), it is clear that e1(t), e2(t) ∈ L2. Since qd(t) is

designed to be bounded, from (P.7), q(t) ∈ L∞; thus, from Remark 1, p(t) ∈ L∞.

The fact that θ2 and θ3 are constant vectors and θ̃2(t), θ̃3(t) ∈ L∞, from (P.21), it

follows that θ̂2(t), θ̂3(t) ∈ L∞. Since p(t), q(t), q̇d(t) ∈ L∞, it is clear from (P.12) that

W2(t) ∈ L∞. Further, since θ̂2(t) ∈ L∞, therefore from (P.14), cd(t) ∈ L∞; thus, from

(P.8), c(t) ∈ L∞. From (P.19), it follows that
.

θ̂2 (t) ∈ L∞. Since cd(t) is a function

of bounded and continuous signals, after taking its time derivative, it follows that

ċd(t) ∈ L∞; therefore, from (P.16), W3(t) ∈ L∞. Now it follows from (P.19) that
.

θ̂3 (t) ∈ L∞. From (P.18), it follows that u(t) ∈ L∞. Since e1(t), e1(t) ∈ L2 ∩ L∞,

and from (P.11) and (P.15) ė1(t), ė2(t) ∈ L∞, from Barbalat’s Lemma [49], it can be

concluded that e1(t), e2(t) → 0 as t→ ∞.
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Appendix Q

Estimation of q(t) in the Tumor Dynamic Model

It may be difficult to measure the carrying capacity of the endothelial cells q(t)

directly; therefore, an estimate of q(t) may be desired. In order to estimate q(t), we

assume p(t) is measurable and the constant parameter α given in (4.1) is known.

To facilitate the development, the expression given in (4.1) is rewritten as follows

ṗ = αp+ f(p, q) (Q.1)

where f(·) , −αp2/q ∈ R represents a function of the unmeasurable function of p(t)

and q(t). The estimate of (Q.1) is defined as follows

˙̂p , αp+ f̂(·) (Q.2)

where f̂(·) ∈ R is the subsequently designed estimate of f(·). An estimation error

p̃(t) ∈ R is defined as follows

p̃ , p− p̂. (Q.3)

After taking the time derivative of (Q.3), and then substituting (Q.1) and (Q.2) into

the resulting expression, the following expression can be obtained

.

p̃ (t) = f(·) − f̂(·). (Q.4)

A proportional-integral-like nonlinear observer f̂(·) can be designed as follows

f̂ , (ks + 1)

(
p̃(t) − p̃(t0) +

∫ t

t0

p̃(τ)dτ

)

+β

∫ t

t0

sgn(p̃(τ ))dτ (Q.5)

where ks, β ∈ R are positive constants and sgn(·) denotes the standard signum func-

tion. The estimator given in (Q.5) ensures that f̂(·) → f(·) as t→ ∞. The reader is

referred to [94] for a detailed analysis of the estimator. From the estimate f̂(·), the

estimate of q(t) can be easily obtained as q̂ = −αp2/f̂(·).
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