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ABSTRACT

Algebraic geometry codes have been studied greatly since their introduction by

Goppa [12]. Early study had focused on algebraic geometry codes CL(D,G) where G was

taken to be a multiple of a single point. However, it has been shown that if we allow G to

be supported by more points, then the associated code may have better parameters. We

call such a code a multipoint code and if G is supported by m points, then we call it an

m-point code. In this dissertation, we wish to develop a decoding algorithm for multipoint

codes. We show how we can embed a multipoint algebraic geometry code into a one-point

supercode so that we can perform list decoding in the supercode. From the output list,

we determine which of the elements is a codeword in the multipoint code. In this way

we have unique decoding up to the minimum distance for multipoint algebraic geometry

codes, provided the parameters of the list decoding algorithm are set appropriately.
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CHAPTER 1

INTRODUCTION

A one-point algebraic geometry code is built upon a divisor G supported by a single

place and another divisor D. These codes have been studied in great detail, including

determining code parameters as well as developing decoding algorithms. Among the

decoding algorithms are list decoding algorithms which return lists of possible sent words

(meaning those within a fixed radius of the sent word) rather than just a single codeword

(meaning the nearest codeword). These algorithms allow for decoding beyond the normal

decoding radius in some cases.

An m-point algebraic geometry code is also a code built upon a divisor G′ and

another divisor D′, but in this case the divisor G′ is supported by m places rather then

a single place. If m ≥ 2, then the code is called a multipoint code. The parameters

of multipoint codes can be better than those of comparable one-point code. However

decoding algorithms for these m-point codes are lacking. In particular, known algorithms

[7] and [30] only decode up to the designed distance or the order bound on the minimum

distance. In this thesis we show how to embed a multipoint code into a one-point code.

We are then able to leverage known list decoding algorithms and decode in the one-point

supercode. We then determine which of the words in the list are also codewords in the

multipoint code. If the parameters in the list decoding algorithm are appropriately set,

then we obtain a unique codeword in the multipoint code. Since we go through the

list to determine which codewords are in the multipoint code, we would like to have a

better idea on the size of the list. Thus, we provide better parameter choices for the

Guruswami-Sudan list decoding algorithm that give a better bound on the list size.



This thesis is arranged as follows.

Chapter 2 details the necessary background for coding theory. In this chapter we

set up the necessary notation and terminology. The background considers linear codes

and then narrows to focus on algebraic geometry codes.

Chapter 3 details some of the breakthroughs in list decoding. We begin with a

focus on the seminal list decoding algorithm for Reed-Solomon codes. We then move on to

the list decoding algorithms developed for algebraic geometry codes. Next we show how

we can choose parameters in the Guruswami-Sudan list decoding algorithm for algebraic

geometry codes to obtain a better bound on the list size. We obtain an analogous result

in the following section for decoding algebraic geometry codes over rings. We close the

chapter by developing a list decoding algorithm for an algebraic geometry code CL(D,αP )

where P is taken to be a place of degee greater than one.

Chapter 4 details the how list decoding may be used to decode multipoint codes.

We begin by showing how to embed a multipoint code in a one-point code. We then

discuss how to use list decoding in the one-point supercode to decode the multipoint

code. We follow that by discussing various ways to determine the sent word for the

multipoint code. We also discuss the use of multiple embeddings and greatest common

divisors for decoding multipoint codes. Chapter 4 concludes with examples.

Chapter 5 concludes the thesis with open problems for future work.
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CHAPTER 2

BACKGROUND

This chapter introduces the notation and terminology used throughout this dis-

sertation. A brief introduction to algebraic function fields and curves, coding theory, and

algebraic geometry codes is provided. Necessary details on each of these subjects can be

found in [33].

2.1 Coding Theory

We begin with a brief discussion of some basic coding theory concepts. A nice

overview of coding theory can be found in [21].

Given a power q of a prime number, Fq denotes the field with q elements. Given a

field F, F[x] denotes the polynomial ring over F in the indeterminate x and F(x) denotes

the rational function field over F. The set of integers is denoted by Z.

Definition 2.1. A linear code C of length n over Fq is a linear subspace of Fnq . Elements

of the subspace C are called codewords of C.

Since we only consider linear codes in this thesis, we say code to mean linear code.

Definition 2.2. Given a code over Fq, we say that Fq is the alphabet for C.

Definition 2.3. The dimension of a code C over Fq is dimFqC, the dimension of C as a

vector space over Fq.

Given a vector w ∈ Fnq , wi denotes the ith coordinate of w. We sometimes refer to

such a vector as a word in Fnq .



Definition 2.4. The Hamming distance between two vectors w and w′ in Fnq is the number

of coordinates in which they differ; that is,

d(w,w′) = |{i : wi 6= w′i}|.

Definition 2.5. The weight of a codeword is its number of nonzero coordinates.

Definition 2.6. The minimum distance of a code C is

d = min{d(c, c′) : c, c′ ∈ C, c 6= c′},

the smallest of the distances between distinct codewords.

We often write d(C) to denote the minimum distance of a code C.

For a linear code C, it can be shown that the minimum distance is equal to the

minimum weight of a nonzero codeword in C.

Definition 2.7. A Hamming sphere of radius r about w ∈ Fn is {y ∈ Fn : d(w, y) ≤ r}.

Definition 2.8. An [n, k, d] code is a code of length n, dimension k, and minimum dis-

tance d. An [n, k] code is a code of length n and dimension k. An [n, k,≥ d] code is a

code of length n, dimension k, and minimum distance at least d.

Remark 2.9. Suppose C is an [n, k, d] code over Fq. Then the Hamming spheres of radius

d−1
2

about the codewords of C are disjoint. Hence, if a word in Fnq differs from a codeword

in
⌊
d−1

2

⌋
or fewer coordinates, it lies in exactly one Hamming sphere about a codeword.

For this reason, it is said that C can correct
⌊
d−1

2

⌋
or fewer errors.

Example 2.10. Let q be a power of a prime number and k be chosen such that 1 ≤ k ≤

q − 1. Let the nonzero elements of Fq be denoted {x1, x2, . . . , xq−1}. Then a code C can

be created by evaluating every polynomial in Fq[x] of degree less than k at each nonzero

field element.
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More precisely,

C = {(f(x1), f(x2), . . . , f(xq−1)) : f ∈ Fq[x], deg(f) < k} ⊆ Fq−1
q

is a code over Fq. In fact, C is a [q − 1, k, q − k] code called a Reed-Solomon code.

As this example shows, the length of a Reed-Solomon code over Fq is determined by the

size of the field Fq. Such a code is considered short relative to the alphabet size.

Definition 2.11. Let a, b ∈ Fnq . The inner product of a and b is defined by

< a, b >:=
n∑
i=1

aibi ∈ Fq.

Definition 2.12. If C ⊆ Fnq is a code, then

C⊥ := {u ∈ Fnq :< u, c >= 0 for all c ∈ C}

is called the dual of C.

Given an [n, k] code C over Fq, C⊥ is an [n, n− k] code over Fq.

2.2 Algebraic Function Fields and Curves

We wish to describe algebraic geometry codes, a generalization of the Reed-Solomon

codes that were introduced in Example 2.10. However, we must develop the necessary

background on algebraic function fields in order to do so. Stichtenoth [33] provides an

in-depth look at this topic. Hence, many of the definitions and results from this section

are taken from [33].

Definition 2.13. An algebraic function field F of one variable over a field K is an

extension field F of K such that F is a finite algebraic extension of K(x) for some

element x ∈ F which is transcendental over K.

6



For convenience, we sometimes refer to an algebraic function field as a function

field for short. We use the notation F/K to mean that F is a function field over K.

Example 2.14. Let K be a field and x be transcendental over F . The field

K(x) :=

{
f(x)

g(x)
: f(x), g(x) ∈ K[x], g(x) 6= 0

}
is a transcendental extension of K. Then clearly K(x) is a finite extension of K(x). This

can be viewed as

K(x)

|

K(x)

|

K.

Thus, K(x)/K is an algebraic function field, called the rational function field.

Example 2.15. Let q be a prime power. Let K = Fq2 and x be so that Fq2(x) is tran-

scendental over Fq2 . Let y be such that

yq + y = xq+1.

Then Fq2(x, y) is a finite algebraic extension of Fq2(x). This can be pictured as

Fq2(x, y)

|

Fq2(x)

|

Fq2 .

Thus, Fq2(x, y)/Fq2 is an algebraic function field called the Hermitian function field.

7



Definition 2.16. A valuation ring of a function field F/K is a ring O ⊆ F with the

following properties:

1. K $ O $ F, and

2. for any z ∈ F, z ∈ O or z−1 ∈ O.

Definition 2.17. A place P of a function field F/K is a maximal ideal of some valuation

ring O of F/K. The set of places of F/K is denoted PF .

Given a place P , we often use the notationOP for the ring that has P as its maximal

ideal. Note that the ring OP is uniquely determined by P because for x ∈ F \ {0}, x ∈ P

if and only if x−1 /∈ O.

Definition 2.18. Given a place P of a function field F/K, any function t ∈ P such that

P = tO is called a local parameter for P .

Definition 2.19. Let F/K be a function field and P ∈ PF .

1. The field FP := OP/P is the residue class field of P .

2. The map
F → FP ∪ {∞}
x 7→ x(P )

is called the residue class map with respect to P where

• for x ∈ OP , the residue class of x modulo P is x(P ) ∈ OP/P , and

• for x ∈ F \ OP , x(P ) :=∞.

3. The degree of the place P is deg P := [FP : K].

Notice that the residue class map gives an embedding of K into OP/P . Thus we

consider K as a subfield of OP/P by way of this embedding. This allows us to define the

degree of a place as above.

8



Example 2.20. Consider the Hermitian function field

H = Fq2(x, y) over Fq2 where yq + y = xq+1.

This function field has q3 + 1 places of degree one. For each pair in (α, β) ∈ Fq2 × Fq2

with βq + β = αq+1, there is a unique place Pαβ ∈ PH of degree one such that x(Pαβ) = α

and y(Pαβ) = β. In particular, for all α ∈ Fq2 there exist q distinct elements β ∈ Fq2 with

βq + β = αq+1. Therefore, the number of such places Pαβ is q3. In addition to these q3

places of degree one, there is also one place at infinity, P∞, and degP∞ = 1. Hence the

Hermitian function field over Fq2 has q3 + 1 places of degree one.

Definition 2.21. A discrete valuation of a function field F/K is a function

v : F → Z ∪ {∞}

with the following properties:

1. v(x) =∞ if and only if x = 0.

2. v(xy) = v(x) + v(y) for any x, y ∈ F.

3. v(x+ y) ≥ min{v(x), v(y)} for any x, y ∈ F.

4. There exists an element z ∈ F with v(z) = 1.

5. v(a) = 0 for any a ∈ K \ {0}.

Definition 2.22. To any place P ∈ PF we associate a function vP : F → Z∪{∞} that is

a discrete valuation of F/K. To do so, choose a local parameter t for P . Let O∗P denote

the group of units of OP . Then every f ∈ F \ {0} has a unique representation f = tnu

with u ∈ O∗P and n ∈ Z. Define

vP (f) := n,

and set

vP (0) :=∞.

9



Theorem 2.1. Let F/K be a function field. The function vP is a discrete valuation of

F/K for any place P ∈ PF . Additionally, we have

OP = {f ∈ F |vP (f) ≥ 0},

O∗P = {f ∈ F |vP (f) = 0}, and

P = {f ∈ F |vP (f) > 0}.

Definition 2.23. Let z ∈ F and P ∈ PF where F/K is a function field. A place P is a

zero of z of order m if and only if

vp(z) = m > 0.

A place P is a pole of order m of z if and only if

vp(z) = −m < 0.

Definition 2.24. The free abelian group generated by the places of a function field F/K,

denoted DF , is called the divisor group of F/K. The elements of DF are called divisors

of F/K. In other words, a divisor is a formal sum

D =
∑
P∈PF

nPP with nP ∈ Z, almost all nP = 0.

The support of the divisor D is

supp D := {P ∈ PF : nP 6= 0}.

Example 2.25. Let P ∈ PF . Then 1
2
P is not a divisor because 1

2
6∈ Z.

By Corollary I.3.2 [33], any function field has infinitely many places. Hence,
∑

P∈PF P is

not a divisor because the sum is not finite.

Let P1, P2, . . . , Pm, P∞ ∈ PF where m is a positive integer. Then A =
∑m

i=1 Pi −mP∞ is

a divisor.

10



Given divisors A = α1P1 + · · ·+αmPm, B = β1P1 + · · ·+βmPm ∈ DF , we say that

A ≤ B

if and only if

αi ≤ βi for all i, 1 ≤ i ≤ m.

Example 2.26. Let P1, P2, . . . , Pm, P∞ ∈ PF where m is a positive integer. Let A and B

be divisors of F/K such that A = −mP∞ and B =
∑m

i=1 Pi −mP∞. Then A ≤ B.

Definition 2.27. The degree of a divisor A = α1P1 + · · ·+ αmPm ∈ DF is

deg(A) =
m∑
i=1

αi · deg(Pi).

Example 2.28. Let P ∈ PF be a place of degree one and B = −mP . Then

deg(B) = −m.

Let P1, P2, . . . , Pm, P∞ ∈ PF be places of degree one where m is a positive integer and

A =
∑m

i=1 Pi −mP∞. Then

deg(A) = 0.

Next, we consider an important class of divisors of degree zero, called principal

divisors [33, Definition I.4.1].

Definition 2.29. Let x ∈ F \{0} and denote by Z (resp. N) the set of zeros (resp. poles)

of x in PF . Then we define

(x)0 :=
∑

P∈Z vp(x)P, the zero divisor of x;

(x)∞ :=
∑

P∈N(−vp(x))P, the pole divisor of x; and

(x) := (x)0 − (x)∞, the principal divisor of x.

11



Note that

(x) =
∑
P∈PF

vp(x)P .

It can be shown that

deg

(∑
P∈Z

vp(x)

)
= deg

(∑
P∈N

vp(x)

)
.

(See [33, Theorem I.4.11].) Therefore, every principal divisor has degree zero. However,

as we will see, not every divisor of degree zero is a principal divisor.

Given a function f ∈ F , the principal divisor (f) is called the divisor of f .

Proposition 2.30. Consider a function field F/K. Let f, h ∈ F \ {0}. Then,

1. (f · h) = (f) + (h).

2. (f−1) = −(f).

3.
(
f
h

)
= (f)− (h).

Proof. Let f, h ∈ F \ {0}. Then,

(f · h) =
∑

P∈PF vP (f · h)

=
∑

P∈PF (vP (f) + vP (h))

=
∑

P∈PF vP (f) +
∑

P∈PF vP (h)

= (f) + (h).

Therefore, (f · h) = (f) + (h).

To determine (f−1), note that f · f−1 = 1. By Definition 2.21 (5)

(1) =
∑
P∈PF

vP (1) = 0.

Thus,

(f · f−1) = 0.

12



Now from the previous result, we have

(f · f−1) = (f) + (f−1).

Combining these, we see that

(f−1) = −(f).

Finally, we consider
(
f
h

)
. From the previous result we have(

f

h

)
=
(
f · h−1

)
.

Then, from the first result, we have

(
f · h−1

)
= (f) +

(
h−1
)

= (f)− (h).

Example 2.31. Consider the Hermitian function field Fq2(x, y) where yq + y = xq+1.

Let a ∈ Fq2 . The divisor of x− a is

(x− a) =
∑
b∈F

q2

bq+b=aq+1

Pab − qP∞.

The divisor of y is

(y) = (q + 1)P00 − (q + 1)P∞.

If b ∈ Fq2 and bq + b = 0, then

(y − b) = (q + 1)P0b − (q + 1)P∞.

Finally, consider the function y − b where b ∈ Fq2 and bq + b 6= 0. The divisor of y − b is

(y − b) =
∑

a∈Fq2 , bq+b=aq+1 Pab − (q + 1)P∞.

13



Definition 2.32. For a divisor A ∈ DF ,

L(A) := {x ∈ F : (x) ≥ −A} ∪ {0}.

We can view this definition in the following manner: if

A =
r∑
i=1

niPi −
s∑
j=1

mjQj

with ni,mj > 0 then the nonzero elements of L(A) are x ∈ F \ {0} such that

(1) x has a zero of order ≥ mj at Qj for j = 1, . . . , s, and

(2) x may have poles only at the places P1, . . . , Pr, with the pole order at Pi being at

most ni for i = 1, . . . , r.

Definition 2.33. Let A and A′ be divisors. The divisors A and A′ are equivalent if

A = A′ + (x)

for some x ∈ F \ {0}. This is denoted by A ∼ A′.

Remark 2.34. Let A ∈ DF . Then

1. x ∈ L(A) if and only if vP (x) ≥ −vP (A) for all P ∈ PF .

2. L(A) 6= {0} if and only if there is a divisor A′ ∼ A with A′ ≥ 0.

Example 2.35. Consider Fq2(x, y) where yq + y = xq+1. Then for a ∈ Fq2,

(x− a) =
∑

b∈Fq2 , bq+b=aq+1 Pab − qP∞ ≥ −qP∞.

Therefore, x− a ∈ L(qP∞) for all a ∈ Fq2.

Now consider the function y − b where b ∈ Fq2 and bq + b 6= 0. Then

(y − b) =
∑

a∈Fq2 , bq+b=aq+1

Pab − (q + 1)P∞ 6≥ −qP∞.

Therefore, y − b 6∈ L(qP∞).

14



Lemma 2.36. Let F/K be a function field and A ∈ DF . Then L(A) is a vector space

over K.

Proof. Let x, y ∈ L(A) \ {0}. Then for any P ∈ PF ,

vP (x+ y) ≥ min{vp(x), vp(y)}

by Definition 2.21. Thus

vP (x+ y) ≥ −vP (A),

and

x+ y ∈ L(A).

Let a ∈ K \ {0}. Then for any P ∈ PF ,

vP (ax) = vP (a) + vP (x) = vP (x) ≥ −vP (A),

and

ax ∈ L(A).

If a = 0, then ax = 0 ∈ L(A).

Definition 2.37. Let A be a divisor of F/K. The dimension of the divisor A is

dim A := dimK L(A).

We sometimes write l(A) to mean dimA.

Lemma 2.38. Let A,B be divisors of F/K with A ≤ B. Then we have

L(A) ⊆ L(B)

and

dim(L(B)/L(A)) ≤ deg B − deg A.
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Proof. Suppose x ∈ L(A) \ {0}. Then

(x) ≥ −A.

Now since A ≤ B,

(x) ≥ −A ≥ −B.

Thus

x ∈ L(B)

and

L(A) ⊆ L(B)

since 0 ∈ L(B).

Assume that B = A+ P for some P ∈ PF . Now choose an element t ∈ F such that

vP (t) = vP (B) = vP (A) + 1.

Then for x ∈ L(B) we have

vP (x) ≥ −vP (B).

Thus

vP (x) ≥ −vP (t),

so

xt ∈ OP

since vP (xt) ≥ 0. Therefore we have a K-linear map

ψ : L(B) −→ FP ,

x 7−→ (xt)(P ).
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We can see that x is in the kernel of ψ if and only if vP (xt) > 0; that is to say, x is in the

kernel of ψ if and only if vP (x) ≥ −vP (A). Thus

Ker(ψ) = L(A).

Therefore ψ induces a K-linear injective mapping from L(B)/L(A) to FP . Therefore,

dim(L(B)/L(A)) ≤ dim FP = deg B − deg A

since dim FP = deg P = deg B − deg A. Now the general result follows by repeated

application.

Definition 2.39. The genus g of F/K is defined by

g := max{deg A− dim A+ 1 : A ∈ DF}.

Example 2.40. It can be shown that the genus of the Hermitian function field over Fq2

is

g =
q(q − 1)

2
.

Lemma 2.41. 1. Let A,A′ be divisors with A ∼ A′. Then we have

dim A = dim A′

and
deg A = deg A′.

2. If deg A < 0 then dim A = 0.

Proof. 1. Let A,A′ be divisors such that A ∼ A′. Then L(A) and L(A′) are isomor-
phic as vector spaces. Thus

dim A = dim L(A) = dim L(A′) = dim A′.

Additionally, A ∼ A′, so A = A+ (x) for some x ∈ F \ {0}. Thus,

degA = deg(A′ + (x)) = deg(A′) + deg((x)).
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But deg((x)) = 0 since (x) is a principal divisor. Therefore,

degA = deg(A′).

2. Suppose that dim A > 0. Then there is a divisor A′ ∼ A such that A′ ≥ 0. Thus,

degA = degA′ ≥ 0.

Therefore, if degA < 0 then dim A = 0.

Definition 2.42. Let F/K be a function field of genus g. A divisor W of F/K is called

a canonical divisor of F/K if and only if

deg W = 2g − 2

and

dim W = g.

Theorem 2.2. (Riemann-Roch Theorem). Let W be a canonical divisor of F/K. Then,

for A ∈ DF , the dimension of A is

dim A = deg A+ 1− g + dim(W − A).

Proof. See [33, Theorem I.5.15].

Corollary 2.43. If A is a divisor of F/K and deg A ≥ 2g − 1, then

dim A = deg A+ 1− g.

Proof. Let W be a canonical divisor. Then

dimA = deg A+ 1− g + dim(W − A)

by Theorem 2.2. Now deg A ≥ 2g − 1 and deg W = 2g − 2, so

deg(W − A) < 0.
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Now since

deg(W − A) < 0,

then

dim(W − A) = 0

from Lemma 2.41. Therefore,

dim A = deg A+ 1− g.

Proposition 2.44. Let P ∈ PF . Then for any n ≥ 2g, there exists a function f ∈ F such

that (f)∞ = nP .

Proof. We have

dim((n− 1)P ) = (n− 1)deg P + 1− g

and

dim(nP ) = n · deg P + 1− g

from Corollary 2.43. Thus L((n−1)P ) $ L(nP ). Therefore, there exists f ∈ L(nP ) such

that f /∈ L((n− 1)P ). Thus (f)∞ = nP .

Let Z+ denote the set of positive integers and N denote the set of nonnegative

integers.

Definition 2.45. Let P ∈ PF . An integer n ≥ 0 is called a pole number of P if and only

if there is a function f ∈ F such that (f)∞ = nP . If n ≥ 0 is not a pole number, then n

is called a gap number.

We define the set of integers n such that n is not a gap number by

H(P ) := {n ∈ N : ∃f ∈ F such that (f)∞ = nP}.
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The set of all integers n such that n is a gap number is the gap set

G(P ) := {n ∈ N : (f)∞ 6= nP ∀ f ∈ F} = {n ∈ N : n /∈ H(P )}.

Proposition 2.46. The set H(P ) is an additive semigroup.

Proof. Suppose that n1, n2 ∈ H(P ). Then there exist functions f1 and f2 in F such that

(f1)∞ = n1P

and

(f2)∞ = n2P.

Now

(f1f2)∞ = (n1 + n2)P.

Thus n1 + n2 ∈ H(P ).

Recall that each principal divisor has degree zero. The next result shows that not

every divisor of degree zero is a principal divisor.

Theorem 2.3. (Weierstrass Gap Theorem). Suppose that F/K has genus g > 0 and P

is a place of degree one. Then there are exactly g gap numbers i1 < · · · < ig of P and

i1 = 1 and ig ≤ 2g − 1.

Proof. If n > 2g − 1, then n is not a gap number from Proposition 2.44. Also, 0 is not a

gap number because (1) = 0. We can characterize gap numbers in the following manner:

i is a gap number of P if and only if L((i− 1)P ) = L(iP ).

By Lemma 2.38, we have the following containment of vector spaces

K = L(0) ⊆ L(P ) ⊆ L(2P ) ⊆ · · · ⊆ L((2g − 1)P ).
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Note that dim L(0) = 1 and dim L((2g − 1)P ) = deg A+ 1− g = 2g − 1 + 1− g = g by

Corollary 2.43. By Lemma 2.38,

dim L(iP ) ≤ dim L((i− 1)P ) + 1.

for any i. So there are exactly g − 1 numbers i, 1 ≤ i ≤ 2g − 1 such that

L((i− 1)P ) $ L(iP ).

This leaves g remaining integers that are gap numbers. Finally, we must show that 1 is

a gap number. Suppose for the sake of contradiction that 1 is not a gap number. Then,

since pole numbers form an additive semigroup, all n ∈ Z+ are pole numbers and there are

no gap numbers. This contradicts that |G(P )| = g > 0. Therefore, 1 is a gap number.

Example 2.47. Suppose F/K has genus g > 0 and P,Q ∈ PF are places of degree one.

Then P −Q is a divisor of degree zero, but P −Q is not a principal divisor.

Given a1, . . . , ak ∈ Z+,

〈a1, . . . , ak〉 :=

{
k∑
i=1

ciai : ci ∈ N

}

is the semigroup generated by a1, . . . , ak.

Example 2.48. Consider the Hermitian function field Fq2(x, y)/Fq2 where yq +y = xq+1.

We claim that H(P∞) = 〈q, q + 1〉 .

Since

(x) =
∑

bq+b=0

P0b − qP∞,

q ∈ H(P∞). Because

(y) = (q + 1)P00 − (q + 1)P∞,

q + 1 ∈ H(P∞). Since H(P∞) is a semigroup under addition,

〈q, q + 1〉 ⊆ H(P∞).
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Next it must be shown that q and q + 1 generate H(P∞). By Theorem 2.3,

|G(P∞)| = g =
q(q − 1)

2
.

Notice that

|N \ 〈q, q + 1〉 | = q(q+1)−q−(q+1)+1
2

= q2+q−q−q−1+1
2

= q(q−1)
2

= |G(P∞)|.

Thus, H(P∞) = 〈q, q + 1〉.

We can associate a projective curve with a function field F/K. The following

discussion, as well as [33, App. B], details this.

Define a relation ∼ on K3 \ {(0, 0, 0)} by

(a, b, c) ∼ (a′, b′, c′)

if and only if there exists λ ∈ K \ {0} such that a = λa′, b = λb′, and c = λc′.

Proposition 2.49. The relation ∼ is an equivalence relation on K3 \ {(0, 0, 0)}.

Proof. In order to show that ∼ is an equivalence relation, we must show that ∼ is reflexive,

symmetric, and transitive.

We first show that ∼ is reflexive. Let (a, b, c) ∈ K3 \ {(0, 0, 0)}. Then λ = 1 ∈ K \ {0}

since K is a field. Thus we have (a, b, c) ∼ (a, b, c).

We now show that ∼ is symmetric. Let (a, b, c), (a′, b′, c′) ∈ K3 \ {(0, 0, 0)} such that

(a, b, c) ∼ (a′, b′, c′). Then, for some λ ∈ K \ {0}, we have a = λa′, b = λb′, and c = λc′.

Now since K is a field, then λ ∈ K \ {0} ⇒ λ−1 ∈ K \ {0}. Thus we have

a′ = λ−1a, b′ = λ−1b, and c′ = λ−1c.
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Therefore, (a′, b′, c′) ∼ (a, b, c).

Finally we show that ∼ is transitive. Let (a, b, c), (a′, b′, c′), (a′′, b′′, c′′) ∈ K3 \ {(0, 0, 0)}

such that (a, b, c) ∼ (a′, b′, c′) and (a′, b′, c′) ∼ (a′′, b′′, c′′). Then we have

a = λa′, b = λb′, c = λc′ and a′ = λ′a′′, b′ = λ′b′′, c′ = λ′c′′

for some λ, λ′ ∈ K \ {0}. Thus we have the following set of equalities:

a = λa′ = λλ′a′′, b = λb′ = λλ′b′′, c = λc′ = λλ′c′′.

We can see that λλ′ ∈ K \ {0}, because K is a field. Therefore

(a, b, c) ∼ (a′′, b′′, c′′).

Therefore, ∼ is an equivalence relation.

Given a, b, c ∈ K where a, b, and c are not all zero, let (a : b : c) denote the

equivalence class of (a, b, c) under ∼; hence,

(a : b : c) = {(λa, λb, λc) : λ ∈ K \ {0}}.

Definition 2.50. Let K be a field. The projective plane over K is defined by

P2
K :=

{
(a : b : c) : (a, b, c) ∈ K3 \ {(0, 0, 0)}

}
.

The equivalence classes (a : b : c) are called points in the projective plane.

If (a : b : c) ∈ P2
K and c 6= 0, then

(a : b : c) = (c−1a : c−1b : 1).

If (a : b : 0) ∈ P2
K and b 6= 0, then

(a : b : 0) = (b−1a : 1 : 0).
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If (a : 0 : 0) ∈ P2
K , then a 6= 0 and

(a : 0 : 0) = (1 : 0 : 0).

Therefore,

P2
K = {(a : b : 1) : a, b ∈ K} ∪ {(a : 1 : 0) : a ∈ K} ∪ {(1 : 0 : 0)}.

The points (a : b : 1) are called affine points, while those of the form (a : b : 0) are called

points at infinity. If f(x, y) ∈ K[x, y], then the associated homogeneous polynomial

F [X, Y, Z] ∈ K[X, Y, Z] is given by

F [X, Y, Z] := Zdf

(
X

Z
,
Y

Z

)
∈ K[X, Y, Z],

where d denotes the degree of f .

Example 2.51. Let q be a power of some prime number. If

f(x, y) = yq + y − xq+1 ∈ Fq2 [x, y],

then deg(f) = q + 1, and the associated homogeneous polynomial is

F (X, Y, Z) = ZY q + ZqY −Xq+1 ∈ Fq2 [X, Y, Z].

Definition 2.52. Let K be a field and let f(x, y) ∈ K[x, y] be a polynomial of degree d.

The projective curve X defined by f is

X =
{

(a : b : c) ∈ P2
K̄ : F (a, b, c) = 0

}
where K̄ denotes the algebraic closure of K and F is the homogeneous polynomial associ-

ated with f .
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We say that (a : b : c) is a point on X provided (a : b : c) ∈ X. If a, b, c ∈ K, then

we say that (a : b : c) is a K-rational point on X. If c = 1 (or (a : b : c) ∼ (a′ : b′ : 1)) for

some a′, b′, then (a : b : c :) is called an affine point; otherwise (a:b:c) is called a point at

infinity.

Example 2.53. Consider the Hermitian curve defined by yq + y = xq+1. The associated

homogeneous equation is yqz + yzq = xq+1. Thus the points on the Hermitian curve in

the projective plane over Fq2 are (a : b : c) ∈ P2
Fq2

where

bqc+ bcq = aq+1.

If c = 0, then we have the point (a : b : 0) where bq(0) + b(0)q = aq+1. Hence, a = 0. Thus

(a : b : 0) = (0 : b : 0) = (0 : 1 : 0) is the unique point at infinity on the Hermitian curve.

The affine points are (a : b : 1) where bq + b = aq+1.

Looking at Example 2.20, we see that there is a one-to-one correspondence between

these points on the projective plane curve and the places of degree one of the corresponding

function field.

Definition 2.54. Let K be a field and f(x, y) ∈ K[x, y] and let F be the associated homo-

geneous polynomial. Let Fx(x, y, z), Fy(x, y, z), and FZ(x, y, z) be the partial derivatives

of F with respect to x, y, and z respectively. A point (x0, y0, z0) ∈ F2 on a curve X is

singular if

1. F (x0, y0, z0) = 0,

2. Fx(x0, y0, z0) = 0,

3. Fy(x0, y0, z0) = 0, and

4. Fz(x0, y0, z0) = 0.

A curve is said to be nonsingular if it has no singular points.

For further discussion of curves, see [36].

25



The notions of divisor, divisor group, and Riemann-Roch space as defined for

function fields earlier are valid for curves, with place replace by point.

2.3 Algebraic Geometry Codes

We now discuss algebraic geometry codes. These codes have attracted much at-

tention because they give rise to a sequence of codes with parameters that exceed the

Gilbert-Varshamov bound. Moreover, they can be viewed as generalizations of Reed-

Solomon codes.

Definition 2.55. Let X be a nonsingular projective curve over Fq. Let G and D :=

P1 + · · ·+Pn be divisors on X such that supp(D)∩ supp(G) = ∅ and D is supported by n

distinct Fq-rational points. The algebraic geometry code CL(D,G) defined by G and D is

CL(D,G) := {(f(P1), ..., f(Pn)) : f ∈ L(G)} ⊆ Fnq .

We sometimes refer to an algebraic geometry code as an AG code. Alternatively, given a

function field F/Fq and divisors G,D ∈ DF , one may define an AG code as above.

Definition 2.56. If CL(D,G) is an algebraic geometry code such that G is a linear

combination of m distinct places (or points), then we call CL(D,G) an m-point code. If

m > 1, we say that CL(D,G) is a multipoint code.

Example 2.57. Consider a function field F/Fq. Let G = mP where m is a positive

integer and P ∈ PF and let D be the sum of the places of degree one not contained in the

support of G. Then CL(D,G) is a one-point code.

Let G′ = aP1 + bP2 for some nonzero integers a and b and P1, P2 ∈ PF , and let D be the

sum of the places of degree one not contained in the support of G′. Then CL(D,G′) is a

two-point code.
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Example 2.58. Consider a [q− 1, k, q− k] Reed-Solomon code C over Fq as described in

Example 2.10. To view the Reed-Solomon code C as a one-point AG code, let X = P2
Fq

and α1, . . . , αq−1 = Fq\{0}. Consider the points Pα1 := (α1 : 1), . . . , Pαq−1 := (αq−1 : 1),

P∞ := (1 : 0) on the projective line P1
Fq . Then

C = {f(Pα1), . . . , f(Pαq−1)|f ∈ L((k − 1)P∞)},

illustrating that a Reed-Solomon code is a one-point AG code.

Example 2.59. Consider the Hermitian curve yq + y = xq+1 over Fq2. Let

G =
∑

bq+b=0

abP0b

for some nonzero integers ab. Set D to be the sum of the places not contained in the

support of G. Then CL(D,G) is a q-point code of length q3 + 1− q.

Theorem 2.4. Suppose that G and D are as defined in Definition 2.55. Then CL(D,G)

is an [n, k, d] code with parameters

k = dim G− dim(G−D)

and

d ≥ n− deg G.

Proof. Define an evaluation map

ev : L(G) −→ Fnq

f 7→ (f(P1), . . . , f(Pn)).

Then ev is a surjective linear map from L(G) to CL(D,G) and has kernel

Ker(ev) = {f ∈ L(G) : vPi(x) > 0 for i = 1, . . . , n} = L(G−D).
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Thus

k = dimCL(D,G) = dimL(G)− dimL(G−D) = dimG− dim(G−D).

Now consider the minimum distance d of CL(D,G). Assume CL(D,G) 6= {(0, . . . , 0)}.

Choose f ∈ L(G) with wt(ev(f)) = d. Then there are exactly n− d places Pi1 , . . . , Pin−d

in the support of D that are zeros of f . Thus,

f ∈ L(G− (Pi1 + · · ·+ Pin−d)) \ {0}.

Then, by Lemma 2.41, 0 ≤ deg(G − (Pi1 + · · · + Pin−d)) = deg G − n + d. Therefore

d ≥ n− deg G.

Corollary 2.60. Suppose that the degree of G is strictly less than n. Then the evaluation

map ev : L(G)→ CL(D,G) is injective, and CL(D,G) is an [n, k, d] code with

k = dim G+ 1− g

and

d ≥ n− deg G.

Thus,

k + d ≥ n+ 1− g.

Proof. Suppose that the degree of G is strictly less than n. Then

deg(G−D) = deg G− n < 0

and

L(G−D) = {0}

by Lemma 2.41.
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The kernel of the evaluation map ev as found in the proof of Theorem 2.4 is

L(G−D) = {0};

hence, ev is injective. Then by combining the fact that d ≥ n − deg G along with the

Riemann-Roch Theorem we have

d ≥ n− deg G

and

k = dim G+ 1− g.

Thus,

k + d ≥ n+ 1− g.

By the Singleton Bound, an [n, k, d] code satisfies

k + d ≤ n+ 1.

Notice that given an [n, k, d] AG code CL(D,G) with degG < n,

n+ 1− g ≤ k + d ≤ n+ 1.

Definition 2.61. Let C be an [n, k] code over Fq. A generator matrix for C is any k×n

matrix whose rows form a basis for C as an Fq vector space. A parity check matrix for C

is any generator matrix for C⊥.

Definition 2.62. Suppose that G and D are as in Definition 2.55. Then

CΩ(D,G) := CL(D,G)⊥.
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Fact 2.63. The dual of an AG code is an AG code. Specifically,

CL(D,G)⊥ = CΩ(D,G) = CL(D,H)

with H := D − G + W for some canonical divisor W such that vPi(W ) = 1 for all Pi in

the support of D.

Proof. See [33, Proposition II.2.10].

Example 2.64. Consider a Hermitian code CL(D,mP∞) where

0 ≤ m ≤ q3 + q2 − q − 2

and D =
∑q3

i=1 Pi with Pi 6= P∞ for all i. The dual of this code is

CL(D,mP∞)⊥ = CL(D, (q3 + q2 − q − 2−m)P∞).

To see this take W = (q3 + q2 − q − 2)P∞ − D in Fact 2.63. Therefore, the dual of a

one-point Hermitian code supported by P∞ is also a one-point Hermitian code.

Example 2.65. Consider a Hermitian code CL(D, aP∞ + bP00) where

0 ≤ a, b ≤ q3 + q2 − q − 2

and D =
∑q3−1

i=1 Pi with Pi 6= P∞ and Pi 6= P00 for all i. The dual of this code is

CL(D, aP∞ + bP00)⊥ = CL(D, (q3 + q2 − q − 2− a)P∞ − (b+ 1)P00).

To see this take W = (q3 + q2 − q − 2)P∞ − P00 − D in Fact 2.63. Hence, the dual of

a two-point Hermitian code supported by P00 and P∞ is also a two-point Hermitian code

supported by P00 and P∞.
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CHAPTER 3

LIST DECODING

We now shift our attention to decoding. A standard decorder returns the unique

codeword closest to a received word, if such a word exists. A list decoder, on the other

hand, returns a list of codewords within a specified distance of a received word. Specif-

ically, a list decoder returns all codewords within a particular Hamming sphere about a

received word.

In this chapter, we provide an overview of the seminal papers on list decoding Reed-

Solomon codes and AG codes. We first explore Sudan’s original list decoding algorithm

for Reed-Solomon codes [34] and the later refinement by Guruswami and Sudan [15].

Next, we consider the work of Shokrollahi and Wasserman on list decoding AG codes

[32] as well as the Guruswami-Sudan algorithm for one-point codes [15]. Then we discuss

different parameter choices for the Guruswami-Sudan algorithm for one-point codes that

give a better bound on the list size. We continue by showing an analagous improvement

for the list decoding algorithm for AG codes defined over rings presented by [5]. We close

the chapter with a discussion of list decoding for one-point codes supported by places of

higher degree.

3.1 List Decoding Reed-Solomon Codes

Although list decoding was first introduced in 1957 and 1958 by Elias [11] and

Wozencraft [39] respectively, it went largely unnoticed until the 1990’s. This was due in

part to the lack of efficient list decoding algorithms. In the early 1990’s, however, Sudan

[34] developed an algorithm for decoding Reed-Solomon codes that ran in polynomial

time. The Sudan algorithm requires the Reed-Solomon code to be low rate. Refinements

to the Sudan algorithm were made by Guruswami and Sudan [15] in order to remove this



restriction. In this section, we present the main ideas of the Sudan algorithm and the

Guruswami-Sudan algorithm.

Both the Sudan algorithm and the Guruswami-Sudan algorithm use the notion of

(a, b)-weighted degree as defined next.

Definition 3.1. Let Q(x, y) ∈ F[x, y]. Given a, b ∈ Z+, the (a, b)-weighted degree of a

polynomial Q(x, y) =
∑

i

∑
j cijx

iyj is given by maxi,j{ia+ bj}.

3.1.1 Sudan List Decoding Algorithm for Reed-Solomon Codes

The Sudan algorithm has three main steps: initialization, interpolation, and fac-

torization (or root-finding). One of the parameters that is set in the initialization step

is an agreement parameter t. This parameter determines the number of coordinates in

which a codeword must agree with a received word in order for the associated function to

be included on the output list.

Algorithm 3.2. (Sudan list decoding algorithm for Reed-Solomon codes)

Let C be an [q − 1, k, q − k] Reed-Solomon code defined over Fq = {α1, . . . , αq} as defined

in Example 2.10.

The input consists of a received word w ∈ Fq−1
q , a parameter s related to the degree of the

polynomial to be found, and an agreement parameter t.

0. Initialize: Fix parameters m and l, both positive integers.

1. Interpolate: Find Q(x, y) ∈ Fq[x, y] \ {0} of degree at most s such that

(a) Q(x, y) has (1, d)-weighted degree at most m+ ld and

(b) Q(αi, wi) = 0 for all i with f(αi) = wi.

2. Factor: Determine the roots of Q in order to output a list of functions h such that
d(ev(h), w) ≤ n − t. When we say root here, we mean a function h(x) such that
y − h(x) is a factor of Q.
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Consider the [q − 1, k, q − k] Reed-Solomon code C which is obtained by evalu-

ating polynomials of degree less than k at each of the elements in Fq where α1, . . . , αn

are elements of Fq. Let t < n ∈ Z+ be an agreement parameter and suppose that

(w1, . . . , wn) ∈ Fnq is the received word. The goal of Sudan’s algorithm is to output a list,

Ω = {h1, . . . , hj} such that there is a codeword y = ev(hi) ∈ C with d(ev(hi), w) ≤ n− t

if and only if hi ∈ Ω.

In the initialization step, the parameters m and l are set so that the interpolating

polynomial Q exists and whenever there is a codeword y = ev(h) with d(ev(hi), w) ≤ n−t,

the interpolating polynomial Q has h(x) as a root.

In the interpolation step, an interpolating polynomial Q(x, y) is found that satisfies

the following three restrictions:

1. the (1, k)-weighted degree of Q(x, y) is bounded by m+ ld,

2. Q(αi, wi) = 0 for 0 ≤ i ≤ n, and

3. Q(x, y) is not identically 0.

The interpolating polynomial has the form

Q(x, y) =
l∑

j1=0

m+(l−j1)k∑
j2=0

qj2j1x
j2yj1 ∈ Fq[x, y].

For this polynomial, the qj2j1 ’s are unknowns and for each pair (αi, wi) the constraint

0 =
l∑

j1=0

m+(l−j1)k∑
j2=0

qj2j1α
j2
i w

j1
i

must be satisfied. To ensure the existence of such a non-zero polynomial, Sudan required

the number of unknowns be greater than the number of constraints.

In the factorization step, all functions f such that deg(f) < k and f(αi) = wi

for at least t values of i are found to be factors of Q(x, y). Sudan accomplishes this by

requiring the degree of Q(x, f(x)) be less than the number of zeros of Q(x, f(x)), so that
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Q(x, f(x)) is identically 0 for all f such that deg(f) < k and f(αi) = wi for at least t

values of i .

The restrictions in the interpolation and factorization steps are

t > m+ lk

and

(m+ 1)(l + 1) + k

(
l + 1

2

)
> n.

To satisfy these constraints, Sudan set

m =

⌈
k

2

⌉
− 1

and

l =

⌈√
2(n+ 1)

k

⌉
− 1

as choices for m and l in the initialization step.

3.1.2 Guruswami-Sudan List Decoding Algorithm for Reed-Solomon Codes

Although Sudan’s algorithm ran in polynomial time, it worked only for codes of

low rate. It is desirable to have an algorithm without this restriction as higher rate codes

are better suited to some applications. In [15], the authors accomplish this by requiring

more from the interpolating polynomial than Sudan had in [34]. Specifically, they define

a singularity and require that the interpolating polynomial have a singularity of degree

larger than one at each of the points; in this terminology, Sudan had required a singularity

of degree one. We will make this idea more precise by presenting the Guruswami-Sudan

algorithm here.

As in Sudan’s algorithm, the Guruswami-Sudan algorithm has three main steps.

Algorithm 3.3. (Guruswami-Sudan list decoding algorithm for Reed-Solomon codes) Let

C be a [q − 1, k, q − k] Reed-Solomon code defined over Fq as defined in Example 2.10.
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The input consists of a received word w ∈ Fq−1
q , the code dimension k, and agreement

parameter t.

0. Initialize: Fix parameters r and l, both positive integers.

1. Interpolate: Find Q(x, y) ∈ Fq[x, y] \ {0} such that

(a) the (1, k)-weighted degree of Q is at most l, and

(b) f(x) is a root of Q for all f such that d(ev(f), w) ≤ n− t.

2. Factor: Determine the roots hi ∈ Fq[x] of Q(x, y) in order to output a list of
functions of degree at most k such that d(ev(h), w) ≤ n− t.

Consider the [q−1, k, q−k] Reed-Solomon code C which is obtained by evaluating

polynomials of degree less than k at each of the elements in Fq with α1, . . . , αn the elements

of Fq. Let t < n ∈ Z+ be an agreement parameter and suppose that (w1, . . . , wn) ∈ Fnq is a

received word. The goal of the Guruswami-Sudan algorithm is to output a list of functions,

Ω = {h1, . . . , hj} such that there is a codeword y = ev(hi) ∈ C with d(ev(hi), w) ≤ n− t

if and only if hi ∈ Ω.

In Sudan’s algorithm, the requirement was that for every pair (αi, wi) and function

f such that f(αi) = wi,

(x− αi)|Q(x, f(x)).

The additional requirement that Guruswami and Sudan enforce is that not only does

(x− αi) divide Q(x, f(x)) but also

(x− αi)r|Q(x, f(x))

where r is a predetermined parameter. This additional requirement, that we have a

singularity of degree r, increases the number of unknowns for the interpolating polynomial

significantly more that than it increases the number of constraints. Again, as in Sudan’s

algorithm, the requirement that the number of unknowns is greater than the number of
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constraints. This restriction manifests itself in the following inequality

n

(
r + 1

2

)
<

(rt− 1)(rt+ 1)

2k

and the additional restriction rt > l also is enforced.

Based on these restrictions, Guruswami and Sudan set

l := rt− 1

and

r :=

⌊
kn+

√
k2n2 + 4(t2 − kn)

2(t2 − kn)

⌋
+ 1.

The choice of l is the “obvious” choice satisfying the constraint rt > l. The choice of r,

however, is obtained by reformulating the inequality

n

(
r + 1

2

)
<

(rt− 1)(rt+ 1)

2k

as a quadratic and choosing r to be just greater than the floor of the larger of the two

roots. In [38], Wang provides other choices for r and s which result in a lower degree

interpolating polynomial.

3.2 List Decoding AG Codes

The renewed interest in list decoding brought about by Sudan’s algorithm was

not restricted to Reed-Solomon codes. Namely, it sparked interest in list decoding al-

gebraic geometry codes which, as illustrated in Example 2.58, are a generalization of

Reed-Solomon codes. Sudan’s algorithm was adapted by Shokrollahi and Wasserman in

1998 [32] to handle low-rate AG codes. The later work by Guruswami and Sudan [15]

eliminated the low-rate restriction not only for Reed-Solomon codes, but also for one-point

algebraic geometry codes. In this section, we will discuss both of these algorithms.
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3.2.1 Shokrollahi-Wasserman List Decoding Algorithm for AG Codes

As in the list decoding algorithms for Reed-Solomon codes, the list decoding algo-

rithms for AG codes consist of three main steps: initialization, interpolation, and factor-

ization.

Consider the algebraic geometry code CL(D,G) defined using a curve X of genus

g. Suppose that a basis for CL(D,G) is given. Let H be a divisor such that the support

of H does not intersect the support of D and

deg(H) = t− 1− b · deg(G) =

⌈
n+ 1

b+ 1
− b · deg(G)

2
+ g − 1

⌉
.

The divisor H will be used in determining a basis for the Riemann-Roch space and the

degree will prove to to be what is needed to ensure that the interpolating polynomial

exists.

Suppose that w is a received word. The goal is to recover all codewords y =

(y1, . . . , yn) that agree with w in at least t places.

In the interpolation step, an interpolating polynomial

Q(T ) = µbT
b + · · ·+ µ1T + µ0 ∈ K[T ]

is found where K denotes the function field associated with X. For convenience we set

Q(Pj, wj) :=
b∑
i=0

µi(Pj)w
i
j.

Then Q(T ) should satisfy the following three restrictions:

1. µi ∈ CL(H + (b− i)G) for all 0 ≤ i ≤ b and

2. Q(Pj, wj) = 0 for 0 ≤ j ≤ n, and

3. Q(T ) 6= 0.

As in the interpolation step in both Sudan’s algorithm and the Guruswami-Sudan algo-

rithm for Reed-Solomon codes, finding such a polynomial is based on solving a system of

linear equations. Namely, the restriction that Q(Pj, wj) = 0 can be written more precisely
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as
b∑
i=0

µi(Pj)w
i
j = 0 for all 1 ≤ j ≤ n.

The number of unknowns is given by
∑

0≤i≤b dim(H + iG). Since

dim(H + iG) ≥ deg(H) + i · deg(G)− g + 1

by the Riemann-Roch Theorem, the number of unknowns is greater than the number of

equations. Thus, a nonzero solution to this system exists.

In the factorization step, the roots h ∈ K of Q(T ) are found. In particular, every

function h such that

d(ev(h), ev(f)) ≤ n− t− 2

are found; the authors show that every such function is indeed seen as a root of Q(T ).

This is attained by considering Q(h) and finding that its number of zeros is not equal to

its number of poles. Thus, Q(h) = 0; that is, h is a root of Q(T ).

Therefore, this decoding algorithm returns all codewords y that agree with a re-

ceived word w in at least t positions.

Definition 3.4. Let e, b ∈ Z+. A code of length n over Fq is said to be (e, b)-decodable if

every Hamming-Sphere of radius e in Fnq contains at most b codewords.

Thus, the Shokrollahi-Wasserman algorithm illustrates that an AG code CL(D,G)

over Fq with degG = α is (n− t− 2, b)-decodable for any b ∈ Z+ with

t :=

⌈
n+ 1

b+ 1
+
bα

2
+ g − 1

⌉
+ 1

and

α := k + g − 1.
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3.2.2 Guruswami-Sudan List Decoding Algorithm for One-point Codes

Although the Shokrollahi-Wasserman algorithm applies to multipoint AG codes,

it works only for AG codes of low rate. We would like to remove this restriction. In

[15], the authors do just that for a restricted class of AG codes. In particular, they do

this for one-point codes. They accomplish this by requiring more from the interpolating

polynomial than Shokrollahi and Wasserman had in [32]. Specifically, they require that

the interpolating polynomial have a singularity of degree larger than one. We present this

algorithm here.

As in the previous algorithms, there are the three steps: initialization, interpola-

tion, and factorization.

Algorithm 3.5. (Guruswami-Sudan list decoding algorithm for one-point codes) Let

C := CL(D,αP ) be an [n, k, d] code defined using a curve X of genus g over Fq, and let

K be the function field associated with X.

The input consists of a received word w ∈ Fnq , α, and an agreement parameter t with

t2 > αn. Let Ω = {f : d(ev(fi), w) ≤ n− t and fi ∈ L(αP )}.

0. Initialization: Fix parameters r and s, both positive integers.

1. Interpolation: Find Q(T ) ∈ K[T ] \ {0} of degree at most s such that

(a) Q(f) ∈ L((rt− 1)P ) ∀ f ∈ L(αP ) and

(b) Q(f) has an r-singularity at Pi for all i with f(Pi) = wi.

2. Factorization: Determine the roots of Q(T ) in order to output a list of at most s
functions h ∈ L(αP ) such that d(ev(h), w) ≤ n− t.

The initialization step consists of setting some parameters and values will be de-

termined later.

The goal of the interpolation step is to find a polynomial Q(T ) ∈ K[T ] of degree

s such that each f ∈ L(αP ) that agrees with w in at least t places is a root of Q(T ).

Moreover, there is also a requirement that Q(f) ∈ L((rt − 1)P ) and Q(f) has an r-

singularity at Pi for all i with f(Pi) = wi.
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The polynomial Q looks like

Q(T ) =
s∑
j=0

l−g+1−αj∑
i=0

qi jφiT
j

where

• φi ∈ L((i+ g − 1)P ) and

• φi all have distinct pole orders at P .

Moreover, there exist functions ψ1, . . . , ψk such that

φi =
k∑
j=1

αP,i,jψj with αP,i,j ∈ Fq.

Thus, Q can be expressed as

Q(P, T ) =
s∑

j2=0

l−g+1∑
j3=1

l−g+1−αj2∑
j1=1

q′j1,j2,j3ψj3,P (P )T j2

where Q(P, T ) := Q(T )(P ). If q
(i)
j3,j4

= 0 for all j4 +j3 ≤ r, then (Pi, wi) is an r-singularity.

Next we discuss why the interpolating polynomial Q exists. This is guaranteed

by Step (0) of the algorithm which forces the number of unknowns to be larger than the

number of constraints. Note that the condition that we have an r-singularity enforces the

constraints

q
(i)
j3,j4

= 0 ∀ j3 + j4 ≤ r, j3 ≥ 1, j4 ≥ 0.

So we have that the number of constraints is

r∑
j3=1

r−j3∑
j4=0

1 =
r2 + r

2

for each of the n points, Pi. So, there are

n

(
r + 1

2

)
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constraints. Additionally, the we have that the number of unknowns is

b l−g
α
c∑

j2=1

l−g+1−αj2∑
j1=0

1 ≥ (l − g)(l − g + 2)

2α
.

Thus Guruswami and Sudan force the number of constraints to be less than the number

of unknowns to ensure a nonzero polynomial Q exists. This is equivalent to choosing

parameters r and s such that

n

(
r + 1

2

)
<

(l − g)(l − g + 2)

2α

in the initialization step.

Next, Guruswami and Sudan ensure that f is a factor of Q for each f such that

ev(f) agrees with the received word in at least t places. They note that if we require that

rt > l, the function Q(f) will have more zeros than poles. Hence, Q(f) = 0 which implies

that f is a root of Q.

Thus, in the initialization step, Guruswami and Sudan choose r and s that meet

the two restrictions noted above. The choices that they make are

r :=

2gt+ αn+
√

(2gt+ αn)2 − 4 (g2 − 1) (t2 − αn)

2 (t2 − αn)

+ 1

and

s :=

⌊
l − g
α

⌋
.

We will discuss better choices for these values in the next section.

Finally, in the factorization step, the polynomial Q is factored and among its roots

are all functions f such that ev(f) agrees with the received word in at least t coordinates.

Therefore, the complete version of their algorithm follows.
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Algorithm 3.6 (Guruswami-Sudan Algorithm). Input: n, α, w ∈ Fnq , t.

Assumptions: t2 > αn.

0. Parameter choices: Set

r :=

⌊
2gt+αn+

√
(2gt+αn)2−4(g2−1)(t2−αn)

2(t2−αn)

⌋
+ 1,

l := rt− 1, and

s :=
⌊
l−g
α

⌋
.

1. Interpolation: Find a polynomial Q(T ) ∈ K[T ]\{0} of degree at most s satisfying
the properties

(a) Q(f) ∈ L((rt− 1)P ) and

(b) Q(f) has an r-singularity at Pi for all i with f(Pi) = wi
for all f ∈ Ω.

2. Factorization: Find all roots h ∈ L (αP ) of the polynomial Q. For each such h, if
h(Qi) = wi for at least t values of i, then add h to the output list.

Output: h1, . . . , hs such that d(w, ev(hi)) ≤ n− t.

Guruswami and Sudan’s use of an r-singularity actually allows for greater flexi-

bility, in particular, it allows for the removal of the low-rate restriction. Note that the

definition of r-singularity is predicated on a one-point code. Hence, this does not provide

a list decoding algorithm for multipoint AG codes.

3.3 Improved Bounds on the List Size in the Guruswami-Sudan Algorithm for
One-point Codes

The previous section outlines the decoding algorithm due to Guruswami and Sudan

as found in [15]. In this section, we give improved parameter choices which can be used

in Step (0) of Algorithm 3.6. Certainly, it is advantageous to choose the parameters that

result in a smaller degree interpolating polynomial Q and yield a better bound s on the

list size of the output. We show how to do this for any one-point AG code CL(D,αP )
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and agreement parameter t >
√
αn satisfying either

α < 2g

or

t <
1

2

(
αn

α− 2g
+ α− 2g

)
.

The restriction on t seems necessary to obtain a polynomial time algorithm; Guruswami

and Rudra have evidence that a lower agreement parameter may lead to super-polynomially

large lists as output [13].

Lemma 3.7. Suppose n, α, g, and t satisfy

1. t2 > αn, and

2. either α < 2g or t < 1
2

(
αn
α−2g

+ α− 2g
)

.

Then the following statements are equivalent:

1. There exist positive integers r and s such that

(s+ 1)(rt− g)− α
(
s+ 1

2

)
> n

(
r + 1

2

)
.

2. There exist positive integers r and s satisfying the following conditions:

(a) r > α(n−t)+2tg+
√

∆2

2(t2−αn)
or r < α(n−t)+2tg−

√
∆2

2(t2−αn)
, and

(b) s1 < s < s2,
where

s1 :=
rt−α

2
−g−

√
∆1

α
,

s2 :=
rt−α

2
−g+

√
∆1

α
,

∆1 := (t2 − αn) r2 + (αt− αn− 2tg) r + α2

4
+ g2 − αg, and

∆2 := α2n(n+ α− 2t) + 4αgn(t+ g − α).

Proof. Assume n, α, g, and t satisfy

(i) t2 > αn and (ii) either α < 2g or t < 1
2

(
αn
α−2g

+ α− 2g
)

.
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(1)⇒ (2): Suppose there exist positive integers r and s such that

(s+ 1) (rt− g)− α
(
s+ 1

2

)
> n

(
r + 1

2

)
.

Then

α

2
s2 − (rt− g − α

2
)s+

r2n+ rn

2
− rt+ g < 0.

Set

h1(x) :=
α

2
x2 − (rt− g − α

2
)x+

r2n+ rn

2
− rt+ g.

Since h1(s) < 0 and α
2
> 0, h1(x) must have two distinct real roots. Let ∆1 denote the

discriminant of h1(x). Then

∆1 = (t2 − αn)r2 + (αt− αn− 2tg)r +
α2

4
+ g2 − αg > 0,

and the roots of h1(x) are

s1 :=
rt− α

2
− g −

√
∆1

α

and

s2 :=
rt− α

2
− g +

√
∆1

α
.

Consequently, h1(s) = (s− s1)(s− s2) and s1 < s < s2. Thus, (b) holds.

Next, we prove (a). To see this, set

h2(x) := (t2 − αn)x+ (αt− αn− 2tg)x+
α2

4
+ g2 − αg.

Then h2(r) = ∆1 > 0. Let ∆2 be the discriminant of h2(x). Then

∆2 = α2n(n+ α− 2t) + 4αgn(t+ g − α)

= αn (αn+ α2 + 4g2 − 4αg − 2t (α− 2g)) .

In the case α ≤ 2g, we see that

∆2 > αn
(
2α2 + 4g2 − 4αg − 2t (α− 2g)

)
= αn

(
2 (t− α) (2g − α) + 4g2

)
≥ 0
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since α < t. Otherwise, t < 1
2

(
αn
α−2g

+ α− 2g
)

. Here, we have

∆2 > αn

(
αn+ α2 + 4g2 − 4αg − (α− 2g)

(
αn

α− 2g
+ α− 2g

))
= 0.

Then

h2(r) =

(
r − α(n− t) + 2tg +

√
∆2

2(t2 − αn)

)(
r − α(n− t) + 2tg −

√
∆2

2(t2 − αn)

)
which implies r > α(n−t)+2tg+

√
∆2

2(t2−αn)
or r < α(n−t)+2tg−

√
∆2

2(t2−αn)
.

(2) ⇒ (1): Suppose there exist positive integers r and s satisfying (a) and (b).

Taking h1(x) and ∆1 as above, we see that the choice of r guarantees that ∆1 ≥ 0 and

the choice of s guarantees h1(s) < 0. As a result,

(s+ 1)(rt− g)− α
(
s+ 1

2

)
> n

(
r + 1

2

)
.

Next, we indicate how Lemma 3.7 can be used in conjunction with Algorithm 3.6

to obtain a better bound on the list size.

Theorem 3.1. Consider the AG code CL(D,αP ) on a curve X of genus g over a finite

field F where D := Q1 + · · · + Qn. Suppose (i) t2 > αn and (ii) either α < 2g or

t < 1
2

(
αn
α−2g

+ α− 2g
)

. Then taking

r :=

⌊
α(n− t) + 2tg +

√
∆3

2(t2 − αn)

⌋
+ 1

and

s :=

⌊
rt− α

2
− g −

√
∆1

α

⌋
+ 1

in Algorithm 3.6 produces a list of s codewords of within distance n − t of any received

word y ∈ Fn, where

∆1 = (t2 − αn)r2 + (αt− αn− 2tg)r +
α2

4
+ g2 − αg > 0
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as in Lemma 3.7 and

∆3 := α2
(
(n− t)2 − 4gn

)
+ 4αgn (t+ g) .

Proof. We use the notation

s1 :=
rt− α

2
− g −

√
∆1

α
,

s2 :=
rt− α

2
− g +

√
∆1

α
,

and

∆2 := αn
(
αn+ α2 + 4g2 − 4αg − 2t (α− 2g)

)
.

as in the statement of Lemma 3.7.

Notice that s = bs1c + 1. We claim that s2 − s1 > 1 so that s1 < s < s2. To

see this, observe that s2 − s1 = 2
√

∆1

α
. Thus, it suffices to show that ∆1 >

α2

4
. Since

∆3 = disc
(

∆1 − α2

4

)
, we have that

∆1 −
α2

4
=

(
r − α (n− t) + 2tg +

√
∆3

2(t2 − αn)

)(
r − α (n− t) + 2tg −

√
∆3

2(t2 − αn)

)
.

By the choice of r, it follows that ∆1 − α2

4
> 0. Therefore, s1 < s < s2 as claimed.

We next check conditions (a) and (b) of Lemma 3.7(2). For condition (a), we note

that

sα ≤ rt+
α

2
− g −

√
∆1 < rt− g < rt

since
√

∆1 >
α
2

from above. Condition (b) holds, because

∆3 −∆2 = α2
(
t2 − αn

)
> 0.

Now applying Lemma 3.7, we see that r and s are valid parameters for the

Guruswami-Sudan algorithm.
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Note that the interpolation step may be thought of as polynomial reconstruction,

as in [38].

3.4 Examples

In this section, examples are given to illustrate Theorem 3.1.

Example 3.8. Consider the Hermitian curve of genus 28 defined by y8 + y = x9 over F64

and the code CL(D, 43P∞) where D := Q1 + · · ·+Q512 is the sum of the 512 F64-rational

points on the curve other than P∞.

Let t = 421. Using the parameter choices in Algorithm 3.6, we have r = 1 and the

number of solutions to the reconstruction problem is bounded by s =
⌊

(1(421)−1)−28
43

⌋
= 9.

Hence, we are guaranteed that there are at most 9 codewords within distance n − t = 91

of a received word w ∈ F512
64 . By Theorem 3.1, we see that taking r = 1 and s = 1 is

possible. Thus, applying Algorithm 3.6 with these parameter choices we see that there is a

unique codeword within distance 91 of w. Recall that C corrects any
⌊
d−1

2

⌋
erros. In this

example, we know that there is a unique codeword within distance 91 since CL(D, 43P∞)

has minimum distance 469 (according to [42]).

Now consider the code CL(Q1 + · · · + Q512, 217P∞) on the same curve. Suppose

w ∈ F512
64 is a received word, and set t = 337. By Theorem 3.1, one can take r = 24

and s = 36 in the Guruswami-Sudan list decoding algorithm. Applying the algorithm

with these parameter choices enables one to work with a degree (at most) 36 interpolating

polynomial and yields a list of at most 36 words which agree with w in at least 337 places.

The original parameter choices give an upper bound of s = 83 on the number of such

words.

Example 3.9. Consider the code CL(Q1 + · · · + Q125, 58P∞) on the Hermitian curve of

genus 10 defined by y5 + y = x6 over F25; here Q1, . . . , Q125 the 125 distinct F25-rational

points on the curve other than P∞. Let t = 88. The typical parameters in Algorithm 3.6

are r = 19 and s = 28. According to Theorem 3.1, we can instead take r = 9 and s = 12.
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Hence, there are at most 12 codewords which agree with a received word w ∈ F125
25 in at

least 88 places (as opposed to at most 28 which one might expect given by the original

parameter choices in the algorithm).

3.5 List Decoding AG Codes Over Rings

In this section, we shift our focus to algebraic geometry codes over rings. Codes

over rings (that are not necessarily fields) have attracted much attention since the break-

through created by Z4-linear codes in [8] and [20]. In the mid-1990’s, Judy Walker defined

algebraic geometry codes over a local Artinian ring [35] and later, along with Kathy Bart-

ley, presented a list decoding algorithm for these codes in [5]. Previously, Marc Armand

([1] and [2]) studied list decoding of Reed-Solomon codes over rings. In the definition

of these codes, the divisors that are used are Cartier divisors, rather than Weil divisors.

However the decoding results parallel those of Guruswami and Sudan. As a result we are

able to make an analogous improvement to the parameters in the list decoding algorithm

that Bartley and Walker provide. We begin with the necessary background and nota-

tion to define algebraic geometry codes over rings. Further discussion of the decoding

algorithm in the ring setting can be found in [4].

Let A be a local Artinian ring with maximal ideal m. Let A/m be the finite residue

field.

Definition 3.10. A linear code C of length n over A is an A-submodule of An.

Let X be a curve over A, by which we mean X is a scheme, and let OX denote its

associated valuation ring. The parallel of the Riemann-Roch space in the ring setting is

the A-module γ(X,OX(G)) where G is a divisor on X. Let α ∈ Z+. Let P1, . . . , Pn, P

be closed points corresponding to distinct A-points Z1, . . . , Zn, Z on a curve X of genus

g. Let Z = {Z1, . . . , Zn}.
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The evaluation map is defined by

γ : ⊕ni=1Γ(Zi,OX(αZ)|Zi) −→ An

where 2g − 2 < α < n.

The one-point algebraic geometry code is CL(Z,OX(αZ)) := Im γ.

Bartley and Walker adapted the Guruswami-Sudan algorithm in order to accom-

modate AG codes over rings. As in the previous list decoding algorithms, their algorithm

consists of three steps: initialization, interpolation, and factorization.

Algorithm 3.11 (Bartley-Walker Algorithm).

Input: received word w ∈ An, α, agreement parameter t.

Assumptions: t2 > αn.

Let Ω := {f ∈ Γ(X,OX(αZ)) : d(γ(f), w) ≤ n− t}.

0. Parameter choices: Set

r :=

⌊
2gt+αn+

√
(2gt+αn)2−4(g2−1)(t2−αn)

2(t2−αn)

⌋
+ 1 and

s :=
⌊
l−g
α

⌋
.

1. Interpolation: Find a polynomial Q[T ] ∈ K[T ] \ {0} of degree at most s satisfying
the properties

(a) Q(f) ∈ Γ(X,OX((rt− 1)Z)) and

(b) Q(f) has an r-singularity at Zi for all i with f(Zi) = wi
for all f ∈ Ω.

2. Factorization: Find all roots h ∈ Γ(X,OX(αZ)) of the polynomial Q. For each
such h, if h(Qi) = wi for at least t values of i, then add h to the output list.

Output: h1, . . . , hs such that d(w, γ(hi)) ≤ n− t.

As seen for the Guruswami-Sudan algorithm, it is advantageous to choose the pa-

rameters that result in a smaller degree interpolating polynomial Q and yield a better

bound s on the list size of the output. We can make improvements by looking at the con-

straints and viewing them as quadratic polynomials. With these additional observations,
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it is possible to choose an r and s that will satisfy the two conditions above, while giving

a smaller upper bound on the list size.

Next, we indicate how Lemma 3.7 can be used in conjunction with Algorithm 3.11

to obtain a better bound on the list size.

Theorem 3.2. Consider the AG code C := CL(Z,OX(αZ)) ⊆ An defined using a curve

X of genus g over a local Artinian ring A and D = Z1 + · · ·+ Zn.

Suppose (i) t2 > αn and (ii) either α < 2g or t < 1
2

(
αn
α−2g

+ α− 2g
)

. Then taking

r :=

⌊
α(n− t) + 2tg +

√
∆3

2(t2 − αn)

⌋
+ 1 and s :=

⌊
rt− α

2
− g −

√
∆1

α

⌋
+ 1

in Algorithm 3.11 produces a list of s codewords of within distance n − t of any received

word w ∈ An, where

∆1 = (t2 − αn)r2 + (αt− αn− 2tg)r +
α2

4
+ g2 − αg

as in Lemma 3.7 and

∆3 := α2
(
(n− t)2 − 4gn

)
+ 4αgn (t+ g) .

Proof. We use the notation

s1 :=
rt− α

2
− g −

√
∆1

α
,

s2 :=
rt− α

2
− g +

√
∆1

α
,

and

∆2 := αn
(
αn+ α2 + 4g2 − 4αg − 2t (α− 2g)

)
.

as in the statement of Lemma 3.7.

Notice that s = bs1c + 1. We claim that s2 − s1 > 1 so that s1 < s < s2. To

see this, observe that s2 − s1 = 2
√

∆1

α
. Thus, it suffices to show that ∆1 >

α2

4
. Since
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∆3 = disc
(

∆1 − α2

4

)
, we have that

∆1 −
α2

4
=

(
r − α (n− t) + 2tg +

√
∆3

2(t2 − αn)

)(
r − α (n− t) + 2tg −

√
∆3

2(t2 − αn)

)
.

By the choice of r, it follows that ∆1 − α2

4
> 0. Therefore, s1 < s < s2 as claimed.

We next check conditions (a) and (b) of Lemma 3.7(2). For condition (a), we note

that

sα ≤ rt+
α

2
− g −

√
∆1 < rt− g < rt

since
√

∆1 >
α
2

from above. Condition (b) holds, because

∆3 −∆2 = α2
(
t2 − αn

)
> 0.

Now applying Lemma 3.7, we see that r and s are valid parameters for the Bartley-

Walker algorithm.

3.6 List Decoding AG Codes Using Places of Higher Degree

Often we consider AG codes CL(D,αP ) where P is a place of degree one. Both [40]

and [26] have shown that by using places of higher degree, codes with better parameters

may be obtained. In this section, we provide a list decoding algorithm for AG codes

CL(D,αP ) where P is a place of degree r > 1.

Let X be a curve of genus g over a finite field F and let D = P1 + · · · + Pn be a

divisor. Consider the code CL(D,αP ) where P is a place of degree r > 1. Suppose that

w ∈ Fn is a received word and t is an agreement parameter. Our goal is to find

Ω := {f ∈ L(αP ) : d ((f(P1), . . . , f(Pn)) , w) ≤ n− t} .

We do this by

1. Determining an interpolating polynomial Q(T ) ∈ K[T ] \ {0} such that

f ∈ Ω⇒ Q(f) = 0,
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and

2. Finding roots of Q(T ).

We first verify that the interpolating polynomial evaluated at f ∈ Ω is zero.

We know

Q(T ) = u0 + u1T + u2T
2 + · · ·+ usT

s

with ui ∈ K for some s ∈ Z+.

Suppose f ∈ L(αP ).Then

Q(f) = u0 + u1f + u2f
2 + · · ·+ usf

s ∈ K.

To guarantee that Q(f) = 0 for all f ∈ Ω, require that the number of zeros of Q(f) be

greater than the number of poles.

To restrict the number of poles, we require that Q(f) ∈ L(lP ). Note that,

vP (Q(f)) = vP (u0 + u1f + u2f
2 + · · ·+ usf

s)

≥ mini vP (uif
i)

= mini vP (ui) + ivP (f)

≥ mini vP (ui)− iα.

Hence, we require that

vP (ui)− iα ≥ −l ∀i, 0 ≤ i ≤ s,

i.e.,

ui ∈ L ((l − iα)P ) ∀i, 0 ≤ i ≤ s.

Recall that ui ∈ L ((l − iα)P ) . Since

L ((l − sα)P ) ⊆ · · · ⊆ L ((l − 2α)P ) ⊆ L ((l − α)P ) ⊆ L (lP ) ,
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one can build a basis for L(lP ) as follows:

φ1, . . . , φdimL((l−sα)P ) is a basis for L((l − sα)P )

φdimL((l−sα)P )+1 . . . , φdimL((l−(s−1)α)P ) is a basis for L((l − (s− 1)α)P )

...

φdimL((l−2α)P )+1 . . . , φdimL((l−α)P ) is a basis for L((l − α)P )

φdimL((l−α)P )+1 . . . , φdimL(lP ) is a basis for L(lP ).

Then

ui =

dimL((l−iα)P )∑
j=1

aijφj

for some aij ∈ F.

Next, we require certain zeros of Q(f) for f ∈ Ω.

Assume f ∈ Ω. We want to have vPk (Q(f)) ≥ M for all k such that f(Pk) = wk.

To accomplish this we “shift”. The basic idea is b ∈ F is a zero of h(T ) ∈ F[T ] of

multiplicity at least M if and only if

h(T ) = (T − b)Mg(T ) if and only if h(T + b) = TMg(T + b).

Rather than requiring that vPk (Q(f)) ≥M for all k such that f(Pk) = wk, we require

vPk (Q(f + wk)) ≥M

for all k such that f(Pk) = 0.

Lemma 3.12. Given any point Pk ∈ suppD, there exist ψ1k, . . . , ψdimL((l−iα)P )k with

〈ψ1k, . . . , ψdimL((l−iα)P )k〉 = 〈φ1, . . . , φdimL((l−iα)P )〉

and

vPk (ψjk) ≥ j − 1.
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By the lemma,

Q(T ) =
∑s

i=0

∑dimL((l−iα)P )
j=1 aijφjT

i

=
∑s

i=0

∑dimL((l−iα)P )
j=1 aij

∑dimL((l−iα)P )
m=1 bjkmψmkT

i

and so

Q(T + wk) =
s∑
i=0

dimL((l−iα)P )∑
j=1

a
(k)
ij ψjkT

i.

Hence,

vPk (Q(f + wk)) ≥ min
{
vPk (ψjkf

i) : i, j with a
(k)
ij 6= 0

}
= min

{
vPk (ψjk) + ivPk (f) : i, j with a

(k)
ij 6= 0

}
≥ min

{
j − 1 + i : i, j with a

(k)
ij 6= 0

}
.

So we require that a
(k)
ij = 0 for all i+ j − 1 < M .

Next we verify that such an interpolating polynomial exists. To ensure that us 6= 0,

assume dimL ((l − sα)P ) ≥ (l − sα) r + 1− g ≥ 1. Take

s :=

⌊
lr − g
αr

⌋
.

Then the number of coefficients of Q is

s∑
i=0

dimL ((l − iα)P ) ≥ (lr + 1− g)2 − 1

2αr
.

Choose M so that

(lr + 1− g)2 − 1

2αr
≥ n

(
M + 1

2

)
.

If rt2 − αn > 0, take

M = 1 +

⌊
2r2t− 2rt+ 2grt+ αrn+

√
∆

2(r2t2 − αrn)

⌋

where

∆ = (2r2t− 2rt+ 2grt+ αrn)2 − 4(r2t2 − αrn)(g2 − 2g + 2rg − 2r + r2).
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We now have all of the necessary ingredients for an algorithm for list decoding

one-point AG codes defined by places of higher degree.

Algorithm 3.13. Let C := CL(P1 + · · · + Pn, αP ) be an [n, k, d] code defined using a

curve X of genus g over Fq and K be the function field of X and P a place of degree r.

The input consists of a received word w ∈ Fn, the code length n, α, and an agree-

ment parameter t such that rt2 − αn > 0.

0. Initialization: Fix parameters

M := 1 +
⌊

2r2t−2rt+2grt+αrn+
√

∆
2(r2t2−αrn)

⌋
,

s :=
⌊
lr−g
αr

⌋
, and

l := Mt− 1

where ∆ = (2r2t− 2rt+ 2grt+ αrn)2 − 4(r2t2 − αrn)(g2 − 2g + 2rg − 2r + r2).

1. Interpolation: Find Q(T ) ∈ K[T ] \ {0} as described above.

2. Factorization: Find all roots f ∈ Ω of Q(T ) in order to output a list of functions
h ∈ L(αP ) such that d(ev(h), w) ≤ n− t.

Finally, we verify that h is a root of Q(T ) for each h ∈ L(αP ) with d(ev(h), w) ≤

n− t. Suppose h ∈ L (αP ) is such that h(Pi) = wi for at least t values of i ∈ {1, . . . , n}.

By construction, Q(h) ∈ L (lP ). However,

# zeros of Q(h) ≥
n∑
i=1

vPi (Q(h)) ≥Mt > l ≥ # poles of Q(h).

Hence, h is among the roots of Q(T ).
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CHAPTER 4

DECODING GENERAL AG CODES USING LISTS

4.1 Introduction

In this chapter, we give a minimum distance decoding algorithm for a general

algebraic geometry code C by viewing it as a subcode of a one-point code C ′. We show

that unique decoding in C up to its minimum distance may be achieved by list decoding in

C ′. As a result, we obtain a decoding algorithm for decoding general algebraic geometry

codes up to the minimum distance.

Recall that algebraic geometry codes are defined by using a divisor G on a curve

over a finite field F. Often, G is supported by a single F-rational point and the resulting

code is a one-point code. Recently, there has been interest in allowing the divisor G to be

more general as this can result in superior codes [6, 9, 10, 26, 40, 41]. In particular, one

may obtain a code with better parameters by allowing G to be supported by m distinct

F-rational points, where m > 1 [24, 23, 25, 17, 18, 19]. While multipoint codes may have

better parameters than comparable one-point codes on the same curve, most decoding

algorithms have been designed specifically for one-point codes. Exceptions are Beelen’s

adaptation of majority voting [6] and the modification of the Berlekamp-Massey-Sakata

Algorithm [31] due to Sakata [30], which decode up to the generalized order bound, a lower

bound on the minimum distance. However, these modifications can be quite tedious and

the generalized order bound does not agree with the actual minimum distance in general

(though it does in certain cases, for example, for two-point Hermitian codes). In this

chapter, we see that list decoding in a supercode provides a simple algorithm for decoding

a multipoint code up to its minimum distance.



By embedding a multipoint code in a one-point code, we can capitalize on the

various improvements to the list decoding algorithms presented such as [28] and [29]

without completely retooling the algorithm.

This chapter is organized as follows. Section 4.2 presents a decoding algorithm for

general AG codes based on a list decoding algorithm for one-point codes. In Section 4.3,

this algorithm is modified to handle multiple one-point supercodes. Finally, examples are

provided in Section 4.4.

4.2 A Minimum Distance Decoder for Multipoint Codes Via Lists

In this section, we outline the decoding algorithm for multipoint codes. Note that

the point of view taken here can be utilized with any list decoding algorithm for one-

point codes. For clarity of exposition, we focus on the Guruswami-Sudan list decoding

algorithm as found in [14, Section IV. B.]. In all that follows, K denotes the function

field associated with X.

The next result shows that every multipoint code C supported by points P1, . . . , Pm

is (isometric to one) of the form CL(D, a1P1 −
∑m

i=2 aiPi).

Lemma 4.1. Let X be a nonsingular projective curve over a finite field F. Given a

multipoint code CL(D,G) on X, CL(D,G) is isometric to a subcode of a one-point code

CL(D,αP ) on X for some F-rational point P in the support of G.

Proof. Consider the multipoint code C := CL(D,
∑m

i=1 aiPi) over Fq. Without loss of

generality, we may assume ai ∈ Z+ for all 1 ≤ i ≤ m. Since Fq is finite, the class number

of X is finite, and consequently, there exists a rational function f with divisor

(f) =
m∑
i=2

biPi − b1P1

where bi ≥ ai for all i, 2 ≤ i ≤ m, and b1 :=
∑m

i=2 bi [33, Proposition V.1.3].
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The function f defines a vector space isomorphism

φ : Fnq −→ Fnq

v 7−→ ev(f) ∗ v

where

ev(f) ∗ v := (f(Q1) · v1, . . . , f(Qn) · vn).

Since f has no zeros among Q1, . . . , Qn, the map φ is weight-preserving, and hence,

distance-preserving. Restricting φ to CL (D,
∑m

i=1 aiPi) induces an isometry φ of codes

CL

(
D,

m∑
i=1

aiPi

)
φ∼= CL

(
D, (a1 + b1)P1 −

m∑
i=2

(bi − ai)Pi

)

as

(fh) ≥
m∑
i=2

(bi − ai)Pi − (a1 + b1)P1

for all h ∈ L (
∑m

i=1 aiPi). If ai = bi for all i, 2 ≤ i ≤ m, then the m-point code is

actually (isometric to) a one-point code. For this reason, we assume that bi > ai for some

i, 2 ≤ i ≤ m, and hence
∑m

i=2 bi >
∑m

i=2 ai.

Algorithm 4.2. Let C := CL(D, a1P1 −
∑m

i=2 aiPi) be an m-point code over the finite

field Fq where D := Q1 + · · · + Qn. Suppose that w ∈ Fnq is a received word in which⌊
d(C)−1

2

⌋
or fewer errors have occurred.

Input: a1, . . . , am, received word w ∈ Fnq , agreement parameter t := n−
⌊
d(C)−1

2

⌋
.

Assumptions: t2 > a1n.

Set Ω := {f ∈ L(a1P ) : d(ev(f), w) ≤ n− t}.

0. Fix parameters: Set

r :=

2gt+ a1n+
√

(2gt+ a1n)2 − 4 (g2 − 1) (t2 − a1n)

2 (t2 − a1n)

+ 1
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and

s :=

⌊
rt− 1− g

a1

⌋
.

1. Interpolation: Find a nonzero interpolating polynomial Q(T ) ∈ K[T ] where K
denotes the function field associated with X, satisfying

(a) Q(f) ∈ L((rt− 1)P1) for all f ∈ L(a1P1), and

(b) vQi(Q(h)) ≥ r for each i ∈ {1, . . . , n} with H(Qi) = wi.

2. Factorization: Find all roots h ∈ L (a1P ) of the polynomial Q. For each such h,
if h (Qi) = wi for at least t values of i, then add h to Ω. In this way, we find all
functions h ∈ L (a1P1) that possibly give rise to the codewords in C ′ := CL(D, a1P1)

at distance
⌊
d(C)−1

2

⌋
from w.

3. Check for zeros: Compute the order of h at Pi for each h found in Step (3) until
the one is found with vPi (h) ≥ −ai for all i, 2 ≤ i ≤ m.

4. Decode w as ((h(Q1), . . . , h(Qn)).

Output: ((h(Q1), . . . , h(Qn)), the unique word in C with d (ev (h) , w) ≤
⌊
d(C)−1

2

⌋
.

Remark 4.3. Steps (1)-(3) of Algorithm 4.2 may be replaced with those of any list de-

coding algorithm for CL (D, a1P1) which yields Ω as its output.

The goal of Step (4) may be achieved via parity checks [37]. Specifically, one could

determine the additional parity checks v1, . . . , vr that words in C ′ must satisfy to be in the

subcode C. Then, for each h found in Step (3), compute ev (h) · vi, 1 ≤ i ≤ r, until an h

is found satisfying all r checks.

Remark 4.4. It should be noted that if we allow the divisor G to contain points of higher

order, we can still decode using a subcode. In this setting, the analysis parallels that above.

For the purpose of decoding it is sufficient to consider the code φ (C). Suppose that

w ∈ Fnq is received using the code C and that E errors have occurred, where E ≤
⌊
d(C)−1

2

⌋
.

We may identify w and ev(f) ∗ w via the map φ. Then ev(f) ∗ w is treated as a received

word using φ (C). Since φ is distance preserving, E ≤
⌊
d(φ(C))−1

2

⌋
and so there is a unique

nearest codeword ev(h) ∈ φ (C) to ev(f) ∗ w. Then ev (f−1h) is the unique codeword in

C nearest w.
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In the literature, m-point codes are often given in the form CL(D,
∑m

i=1 aiPi) with

ai ∈ Z+ for all 1 ≤ i ≤ m. The following examples illustrate an isometry φ described

above for commonly studied multipoint codes.

Example 4.5. In this example, we consider two-point Hermitian codes. Recall that the

Hermitian curve may be defined by yq +y = xq+1 over Fq2. Since the automorphism group

of this curve is doubly-transitive, we may restrict our attention to a code of the form

C := CL (D, aP∞ + bP00). Suppose a, b ∈ Z+. Then multiplication by

f := yd
b
q+1e

induces a vector space isomorphism

L (D, aP∞ + bP00) ∼= L
((

a+

⌈
b

q + 1

⌉
(q + 1)

)
P∞ +

(
b−

⌈
b

q + 1

⌉
(q + 1)

)
P00

)
,

because

(y) = (q + 1) (P00 − P∞) .

Hence,

C ∼= CL

(
D,

(
a+

⌈
b

q + 1

⌉
(q + 1)

)
P∞ −

(⌈
b

q + 1

⌉
(q + 1)− b

)
P00

)
.

Example 4.6. Now consider an m-point Hermitian code

C := CL

(
D, a1P∞ +

m∑
i=2

aiPαβi

)

supported by collinear points P∞, Pαβ2 , . . . , Pαβm where ai ∈ Z+ for all i, 1 ≤ i ≤ m and

2 ≤ m ≤ q + 1. Such codes were studied in [22] where the authors show that if

ταβi := y − βi − αq(x− α)

then

(ταβi) = (q + 1) (Pαβi − P∞) .
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Thus we can take

f =
m∏
i=2

τ
d ai
q+1
e

αβi
.

The multiplication by f induces a vector space isomorphism

L (a1P∞ +
∑m

i=2 aiPαβi)
∼=

L
((
a1 + (q + 1)

∑m
i=2

⌈
ai
q+1

⌉)
P∞ +

∑m
i=2

(
ai −

⌈
ai
q+1

⌉
(q + 1)

)
Pαβi

)
and an isometry of codes

C ∼= CL

(
D,
(
a1 + (q + 1)

∑m
i=2

⌈
ai
q+1

⌉)
P∞ −

∑m
i=2

(⌈
ai
q+1

⌉
(q + 1)− ai

)
Pαβi

)
⊆ CL

(
D,
(
a1 + (q + 1)

∑m
i=2

⌈
ai
q+1

⌉)
P∞

)
since

L
((
a1 + (q + 1)

∑m
i=2

⌈
ai
q+1

⌉)
P∞ +

∑m
i=2

(
ai −

⌈
ai
q+1

⌉
(q + 1)

)
Pαβi

)
⊆ L

((
a1 + (q + 1)

∑m
i=2

⌈
ai
q+1

⌉)
P∞

)
.

Example 4.7. In this example, let C := CL (D, aP∞ + bP00) be a two-point Suzuki code

where a, b ∈ Z+. The Suzuki curve is defined over Fq by the equation

yq − y = xq0(xq − x)

where q0 = 2n, q = 22n+1, and n ∈ Z+. Let

w := y
q
q0 x

q

q20
+1

+

(
y
q
q0 − x

q

q20
+1
) q

q0

.

Since

(w) =

(
q +

q

q0

+ 1

)
(P00 − P∞)

as shown in [16], multiplication by

f := w

⌈
b

q+
q
q0

+1

⌉

61



gives rise to an isomorphism of Riemann-Roch spaces and consequently an isometry of

codes

C ∼= CL (D,αP∞ − βP00)

where

α = a+

⌈
b

q + q
q0

+ 1

⌉(
q +

q

q0

+ 1

)
and β =

⌈
b

q + q
q0

+ 1

⌉(
q +

q

q0

+ 1

)
− b.

4.3 A Minimum Distance Decoder for Multipoint Codes Using Lists, Multiple
Embeddings, and GCD

In this section, we discuss a modification of Algorithm 4.2 in which a multipoint

code is embedded in multiple one-point codes and the interpolating polynomial is obtained

as a greatest common divisor. This idea was inspired by [3].

Consider a multipoint code C := CL (D,
∑m

i=1 aiPi) where ai ∈ Z. Given any

function f whose divisor is supported only by points among P1, . . . , Pm, multiplication by

f induces a vector space isomorphism

L

(
m∑
i=1

aiPi

)
∼= L

(
m∑
i=1

(ai − vPi (f))Pi

)

and an isometry of codes

C
φ∼= CL

(
D,

m∑
i=1

(ai − vPi (f))Pi

)
.

Hence, for each such function f with vPj (f) < aj for exactly one j, 1 ≤ j ≤ m, C is

isometric to a subcode of the one-point code CL
(
D,
(
aj − vPj (f)

)
Pj
)
; that is,

φ (C) ⊆ CL
(
D,
(
aj − vPj (f)

)
Pj
)
.

To emphasize that the embedding is induced by
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f ∈ L

ajPj − m∑
i=1
i6=j

aiPi


we sometimes write φj instead of φ. The following algorithm exploits these multiple

embeddings.

Algorithm 4.8. Let C := CL (D,
∑m

i=1 aiPi) be an m-point code over the finite field Fq

where D := Q1 + · · ·+ Qn. Suppose that w ∈ Fnq is a received word in which
⌊
d(C)−1

2

⌋
or

fewer errors have occurred.

Input: a1, . . . , am, received word w ∈ Fnq , agreement parameter t := n− d(C)−1
2

.

0. Embedding: Choose a nonempty subset J ⊆ {1, . . . ,m}. For each j ∈ J , find a
one-point code Cj := CL (D, (aj − bjj)Pj) such that

C
φj∼= CL

D, (aj − bjj)Pj − ∑
1≤i≤m
i6=j

(bij − ai)Pi

 ⊆ Cj

is the embedding induced by a rational function fj with vPi (fj) = bij for all 1 ≤
i ≤ m, bij ≥ ai for all i 6= j, bjj < aj, and t2 > (aj − bjj)n .

1. Fix parameters: For each Cj, fix parameters as in Step (1) of Algorithm 4.2.

2. Interpolation: For each Cj, find a nonzero interpolating polynomials Hj (T ) ∈ K[T ]
as in Step (2) of Algorithm 4.2. Set

Q (T ) := gcd {Qj (T ) : j ∈ J}

where Qj (T ) = Hj (fjT ).

3. Factorization: Find the roots of Q(T ) as in the standard factorization step. In this
way, we find all functions h ∈ L (

∑m
i=1 aiPi) that possibly give rise to the codewords

in C at distance
⌊
d−1

2

⌋
from w.

4. Check for zeros: Compute the order of h at Pi for each h found in Step (5) until
the one is found with vPi (h) ≥ −ai for all i /∈ J .

5. Decode w as (h (Q1) , . . . , h (Qn)).

Output: ((h(Q1), . . . , h(Qn)), the unique word in C with d (ev (h) , w) ≤
⌊
d(C)−1

2

⌋
.
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Theorem 4.1. Given a multipoint code C := CL (D,
∑m

i=1 aiPi) as above, Algorithm 4.8

provides a minimum distance decoder for C.

Proof. Suppose that w is a received word in which at most
⌊
d(C)−1

2

⌋
errors have occured.

Then there exists a unique codeword ev(h) that is the transmitted word resulting in the

received word w. We must show that the output of Algorithm 4.8 is ev(h).

Assume h ∈ L (
∑m

i=1 aiPi) and d(ev(h), w) ≤
⌊
d(C)−1

2

⌋
. We claim that h is a root

of Hj(fjT ) for all j ∈ J . Note that among the roots of Hj(T ) are elements of

Ω′j :=

{
f ∈ L((aj − bjj)Pj) : d(ev(f), φj(w)) ≤

⌊
d (C)− 1

2

⌋}
.

We prove that fjh ∈ Ω′j for all j ∈ J . Let j ∈ J . Then one can check that fj ∈

L((aj − bjj)Pj) by considering divisors of h and fj. Since ev(fjh) = φj(ev(h)) and φj is

distance preserving,

d(ev(fjh), φj(w)) = d(ev(h), w) ≤
⌊
d (C)− 1

2

⌋
.

Hence, h is a root of Q(T ) and so will be found using Algorithm 4.8.

4.4 Examples

Example 4.9. Let X denote the Hermitian curve y8 + y = x9 over F64. Consider the

two-point code C := CL(D, 344P00 − 8P∞) where D := P1 + · · · + P511 is the sum of all

F64-rational points other than P00 and P∞. Then C is a [511, 309, 175] code and so it can

correct 87 errors.

We can embed this code into C ′ := CL(D, 344P00), a [511, 309, 168] code which

can correct 83 errors. Suppose that w ∈ F511
64 is a received word in which 87 errors have

occurred. Applying the Guruswami-Sudan Algorithm with improved parameter choices to

C ′ produces a list of at most 21 functions h1, . . . , h21 ∈ L(344P00).

Among this list, there is a unique hi with vP∞(hi) ≥ 8. Therefore, we can decode

w as (hi(P1), . . . , hi(Pn)).
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Example 4.10. Let X denote the Hermitian curve yq + y = xq+1 over Fq2.

Let D :=
∑q3−q

i=1 Pi be the sum of points of degree one other than the point P∞ and the q

points of the form P0b. Consider the multipoint Hermitian code

C := CL

D,αP∞ + βP00 −
∑

b∈F
q2
\{0}

bq+b=0

P0b


where α, β ∈ Z+.

We can embed this code into C ′1 := CL(D, (α + r1(q + 1))P∞) where r1 ∈ Z+ such

that r1(q + 1) > β. We identify an isomorphic multipoint code

C1 := CL

D, (α + r1(q + 1))P∞ + (β − r1(q + 1))P00 −
∑

b∈F
q2
\{0}

bq+b=0

P0b


by multiplying by the function yr1.

Alternatively, we can embed this code into C ′2 := CL(D, (β + r2(q + 1))P00) where

r2 ∈ Z+ such that r2(q + 1) > α. We identify an isomorphic multipoint code

C2 := CL

D, (α− r2(q + 1))P∞ + (β + r2(q + 1))P00 −
∑

b∈F
q2
\{0}

bq+b=0

P0b


by multiplying by the function 1

yr2
.

Additionally, we can embed this code into C ′3 := CL(D, (α + (β + 1)q)P∞). We

identify an isomorphic multipoint code

C3 := CL

D, (α + (β + 1)q)P∞ − P00 −
∑

b∈F
q2
\{0}

bq+b=0

(2 + β)P0b


by multiplying by the function x(β+1).
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For C ′1, C ′2, and C ′3 we find nozero interpolating polynomials H1(T ), H2(T ), and

H3(T ). Then we find Q(T ) := gcd(Q1(T ), Q2(T ), Q3(T )) where

Q1(T ) := H1 (yr1T ) ,

Q2(T ) := H2

(
1

yr2
T

)
,

and

Q3(T ) := H3

(
xβ+1T

)
.

We now factor Q(T ) and check for zeros in order to finish the decoding.
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CHAPTER 5

CONCLUSION

We have provided a decoding algorithm for multipoint codes that takes advantage

of existing list decoding algorithms. Additionally, we have improved the bound on the

number of codewords output by the algorithm. It would be worthwhile to obtain a better

estimate on the number of codewords output in the list decoding algorithm, because the

decoding algorithm for multipoint codes requires us to check the output list of codewords

in the supercode. However, we may not necessarily be interested in the worst case scenario,

but rather the average list size. In [27], McEliece shows that the average list size using

a Guruswami-Sudan decoder on Reed-Solomon codes is near one, so it often results in

unique decoding. A similar result in the AG code setting would be quite interesting.

We have shown that there exists a function so that a multipoint code C is isometric

to a subcode of a one-point code. However, it is not clear how to find that function

efficiently, and it is not obvious how to choose the best one. While using the greatest

common divisor as in Section 4.3 provide an approach for handling multiple functions, we

would like to better understand a single “best” function for the shift.

The algorithm presented in this dissertation was analyzed for unique decoding of

multipoint AG codes. However, this method could be extended to yield a list decoding

algorithm for multipoint codes. In order to do this properly, however, one would want to

further investigate properties associated with list decoding such as decoding radius.
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