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ABSTRACT 

 

 

Solitary waves and water surface depressions are generated using a piston-type 

wavemaker.  Different aspects of their propagation including profile evolution, 

establishment rate, stability, and celerity are examined experimentally.   

 

Traditionally, solitary waves are generated in laboratory set-ups using a methodology 

developed by Goring (1979) that considers a wave of permanent form during the 

generation process.  A New methodology for generation of solitary waves using piston-

type wavemakers is proposed by considering the evolving nature of the wave during 

generation phase.  The capability of the New methodology in generation of solitary 

waves is assessed by conducting a series of laboratory experiments in water depth, h, of 

20 cm and for the dimensionless wave height, H/h, values (H – wave height) ranging 

from 0.3 to 0.6.  Waves generated using the Goring methodology served as a benchmark 

to evaluate the performance of the New methodology in generating solitary waves.  

Recorded waveforms are compared with theoretical solutions in terms of various wave 

characteristics (e.g., wave height, profile shape, wave celerity).  These comparisons 

revealed that the New methodology is capable of generating more accurate and rapidly-

established solitary waves with less wave attenuation with distance compared to the 

Goring methodology. 

 

In the second part, water surface depressions are generated using the Goring 

methodology in water depths of 6, 10 and 30 cm and for the dimensionless trough 

amplitude, at/h, values (at – trough amplitude) ranging from 0.05 to 0.6.  Generated water 
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surface depressions are in good agreement with the aimed theoretical profile in the 

vicinity of the wave paddle.  In all experiments, generated negative solitary wave-like 

depression wave rapidly deforms into a triangular-like depression wave followed by a 

series of oscillatory trailing waves.  As the depression wave propagates, as a result of 

nonlinear and dispersive effects its amplitude attenuates, slope of the leading edge of the 

depression wave becomes gentler while its rear edge slope becomes steeper.  The 

amplitudes of the oscillatory trailing waves increase initially as the depression 

propagates; then the amplitudes of the oscillatory trailing waves start attenuating with 

distance due to viscous and dispersive effects.  Celerity of the depression wave increases 

with distance as the depression amplitude attenuates with distance, but it never reaches 

the celerity of long waves in deep waters.  Based on the experimental data of the present 

study and those reported by Hammack and Segur (1978), three empirical equations are 

proposed to predict the profile shape of a depression (i.e. trough amplitude, frequency of 

the leading half, and slope of the rear edge) for a given propagation distance. 
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CHAPTER ONE 

 

INTRODUCTION 

 

 
Tsunamis are very long waves that are mainly generated due to underwater geophysical 

dislocations such as submarine earthquakes, landslides, volcanic eruptions and 

underwater explosions.  These waves propagate across the ocean with very high speeds.  

As they reach the continental shelf and approach the shoreline, they decelerate and this 

deceleration results in piling-up of water and may lead to very large wave heights at the 

shoreline.  .  Tsunamis are frequently referred to as “Killer Waves” since when they 

attack the populated coastal areas worldwide they cause tremendous damages of coastal 

infrastructures, noteworthy amounts of loss of lives, and a variety of additional long-term 

social and health-related issues.  The deadliest and most recent tsunami was generated by 

the submarine earthquake of December 26, 2004 on the west coast of Sumatra, Indonesia.  

Nearly 300,000 people in three different countries around the Indian Ocean lost their 

lives. 

 

In deep oceans, a tsunami has a typical length of hundreds of kilometers, a few 

centimeters height, and travels towards the coast with speeds as high as 500 km/hr.  As it 

starts to climb the continental slope, shoaling effects slow down the wave, shorten the 

length, and increase its height.  Depending on the nearshore topography and its height, it 

may break on the continental shelf and reaches the coast as a propagating bore.  If the 

wave does not break, it reaches the coast as a steep gradient wall of water.  Once the 

waves reach the shoreline, they break if they have not already broken, and a foamy 

turbulent bore climbs the dry beach slope with considerable height and speed.  Because 
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of the large height and speed, they are capable of penetrating inland for a large distance.  

In addition, they have sufficient energy to erode the sediments from the land adjacent to 

the shoreline and deposit them several hundred meters farther inland. Unlike regular 

waves, the velocity profile of water particles under tsunamis extends to large depths. In 

other words, closer to the coast and on the continental shelf, the seafloor feels the 

propagation of a tsunami on the water surface since the water particles adjacent to the 

ocean’s bottom also move with some velocity. Therefore, tsunamis are “deep nature” 

waves.  They are capable of eroding the sediments from the seafloor, and transporting 

them up the slope to the coast. Observation of sediments containing microfossils at the 

coast confirmed the erosion of sediments from the seafloor and their transportation to the 

coast by tsunamis. 

 

Tsunami generation is difficult to simulate in the laboratory because of the numerous 

unknowns associated with the complex nature of the generation mechanisms.  Moreover, 

the abrupt and unexpected nature of tsunami generation prevents scientists from 

acquiring reliable field data to better understand this phenomenon.  Tsunami propagation 

has become better understood following the acquisition of reliable field data during the 

transoceanic propagation of recent tsunamis (for instance Indian Ocean tsunami of 2004).  

However, laboratory modeling of tsunami propagation encounters scale difficulties due to 

the large wavelength and enormous traveling speed.  As mentioned earlier, shoaling 

effects decrease the wavelength and traveling speed of tsunamis drastically as the waves 

approach the coast.  This makes it easier for scientists to simulate the nearshore 

propagation and coastal impacts of tsunamis in laboratory wave-tanks. 
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The type of tsunami observed near the coast is a function of its generation mechanism, 

the nearshore bathymetry, and the tidal level (Ramsden, 1993).  Since tsunamis may 

reach the coast with different profile shapes and propagation characteristics, they 

manifest different behaviors in their nearshore propagation, inland penetration, 

interaction with structures and even geomorphological imprints.  Therefore, in order to 

better simulate the nearshore propagation and coastal impacts of tsunamis in laboratory 

wave-tanks, generation of accurate nearshore tsunami profiles is of high importance to 

tsunami research.  Generation of accurate nearshore tsunami profiles also helps to better 

verify numerical codes and analytical solutions. 

 

Solitary waves are often used to simulate tsunamis in the laboratory (see Chapter 2).  

Following the derivation of the wave-paddle trajectory for the generation of solitary 

waves by piston-type wavemakers in laboratory wave-tanks by Goring (1979), many 

laboratory studies have been undertaken to investigate tsunami propagation, run-up and 

coastal impacts (e.g. Synolakis, 1986 for run-up; Ramsden, 1993 for interaction with 

structures; and many others).  Solitary waves generated by the Goring’s methodology 

reach their stable form after a considerable distance of approximately 80 times the water 

depth following their formation (Guizien and Barthelemy, 2002).  Therefore, laboratory 

studies have been limited to long set-ups on the order of tens of meters.  In the derivation 

of the wave-paddle trajectory, Goring (1979) overlooked the evolving nature of a wave 

during formation as was previously also pointed out by Synolakis (1990).  The main 

motivation behind the first part of the present study was to achieve more accurate solitary 

wave profiles in a shorter distance in order to facilitate tsunami research in small set-ups 
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(see Chapter 3 for set-up details). Therefore, a New methodology that considers the 

evolving nature of the waves during generation has been developed and verified by a 

series of laboratory experiments, which is discussed in Chapter 4. 

 

Since tsunamis are generated by an impulsive mechanism, close to the generation zone, 

their profile contains both elevation and depression components as shown in Fig. 1.1a.  

Depression components (Fig. 1.1a) gradually merge to form a coherent individual 

depression component (Fig. 1.1b) in the profile of a propagating tsunami.  Typically, 

water surface depressions are hydrodynamically unstable in water depths larger than a 

few millimeters (Korteweg de-Vries, 1895).  However, due to the long wavelengths of 

tsunamis and their enormous traveling speeds, depressions may remain attached to the 

main hump as the wave propagates across the ocean and reaches the coast.  This is 

especially noticeable in the case of locally generated tsunamis which are closer to the 

coast, when viscous and dispersive effects do not have enough time to affect the 

depression profile.  In this case, instead of a pure solitary wave, a solitary wave following 

or leading a depression reaches the coast.  The depression is associated with the recession 

of water along a shoreline and has been recently observed and photographed by 

eyewitnesses during the Mexican tsunami of 1995 (Borrero et al., 1997).  Depending on 

the position of the depression relative to the elevation, waveforms are called Leading 

Depression N-waves (LDN) or Leading Elevation N-waves (LEN).  There is not a 

theoretical profile for N-waves, but there are some suggested profiles based on field 

observations cited in the literature (e.g., Tadepalli and Synolakis, 1994 and 1996; Carrier 

et al., 2003).  However, most of these profiles were suggested to simplify the analytical 
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calculation and are not necessarily the best fit to the field data.  A typical waveform far 

from the generation zone is shown in Fig. 1.1b. 
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Figure 1.1. Sample tsunami waveform generated by an imaginary submarine 

earthquake in a rapture zone of 270 km long and 70 km wide and in water depth of 4 km 

(for details see Geist and Dmowska, 1999). (a) Initial tsunami waveform at the generation 

zone calculated using elastic halfspace method (Okada, 1985; Kajiura, 1963) (b) 

Propagated tsunami waveform calculated using the linear long wave theory (Geist and 

Dmowska, 1999) 

 

 

Motivated by the recent field observations of water recession along coastlines, in this 

present study water surface depressions are experimentally studied to develop a 

fundamental understanding on the propagation characteristics of depressions.  Such an 

understanding is essential to eliminate the critical knowledge gap towards elucidation of 

coastal impacts of tsunamis.  Depressions were generated in the laboratory wave-tank 

assuming a profile of solitary wave.  Evolutions of the depression and oscillatory trailing 

wave train with distance have been investigated.  Details of experiments and discussion 

of the results have been presented in Chapter 5. 
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CHAPTER TWO 

 

LITERATURE SURVEY 

 

 

This chapter comprehensively reviews numerous investigations on the generation of 

tsunamis in laboratory wave-tanks.  As stated earlier, tsunamis may reach the coastal 

zone in a form of one or a series of solitary or solitary-like waves or bores.  

 

 

2.1. Solitary and Solitary-like Waves 

A solitary wave consists of a single hump of water entirely above still water level with an 

infinite wavelength (Goring, 1979).  Solitary waves were observed by Scottish naval 

engineer, John Scott Russell, for the first time in 1834 while he was conducting 

experiments to determine the most efficient design for canal boats.  Following this 

observation, the first attempt to generate solitary waves was undertaken by Russell in 

1845 in a 10 m tank.  He generated solitary waves in two different ways.  In the first set 

of experiments, he generated a solitary wave by dropping weights in one end of the tank.  

Once the weight is dropped into the water, splashing occurs.  The wave leaves the 

splashing zone and after some distance, a solitary-like wave forms and travels toward the 

other end of the tank.  In the second set of experiments, he generated solitary waves by 

removing a barrier and releasing large amount of water from one end of the tank.  The 

released water first moves at the water surface like a wall of water and then gradually 

reshapes into a solitary wave.  In this second set of experiments, Russell unknowingly 

applied the theory by Hammack and Segur (1974), which states that from any net positive 
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disturbance in a water surface, one or a series of solitary waves followed by dispersive 

oscillatory trailing waves emerge.  

It was after mid-20
th

 century that scientists realized the importance of Russell’s 

observations in the complicated problem of impulsive waves.  Motivated by the 

observation of surface waves generated by underwater explosions, Johnson and Bermel 

(1949) carried out similar experiments to those performed by Russell (1845).  They 

dropped weighted blocks with a range of weights and circular discs with various 

diameters and weights into a 35 m × 20 m × 0.6 m hydraulic basin.  Experiments were 

conducted on both horizontal and sloped bottoms.  Maximum wave heights were 

measured at different distances from the splashing point.    

 

Later, Wiegel (1955) performed a series of experiments to generate solitary waves to 

investigate the generation of gravity waves by underwater landslides.  Initially, 

underwater landslides were modeled using a steep pile of coarse sediments lying on a 

metal sheet.  Pulling the sheet from under the pile destroyed its equilibrium and caused 

the slide to move under the water.  However, the slide originated by this method was not 

effective enough to create realistic waves in terms of amplitude.  In the next attempt, 

coarse sediments were piled behind a vertical plate in a channel.  By lifting the plate, the 

coarse sediments were released and the slides were generated.  However, the new method 

did not improve the order of magnitude of the waves’ amplitude generated by the 

previous method.  Consequently, as the final attempt, bodies of different shapes, sizes 

and weights were allowed to drop vertically or to slide down inclines of different angles 

in water of various depths from several heights above the bottom, yet always below the 
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water surface.  While the objective of experiments was not generation of solitary waves, 

recording of water surface elevation at different locations along the tank demonstrated the 

gradual deformation of generated waves into a solitary wave profile along the wave-tank.  

Similar experiments to those performed by Johnson and Bermel (1949) to model 

impulsive waves generated by underwater landslides or subaerial landslides have been 

reported by many investigators such as Prins (1958), Kamphuis and Bowering (1970), 

Singerland and Voight (1979), Heinrich (1992), Watts (1997, 1998), Grilli and Watts 

(1999, 2001, 2005), Enet et al. (2003), Walder et al. (2003, 2006), and Sue et al. (2006). 

 

The use of wave paddles to generate impulsive waves originated with laboratory 

experiments of Daily and Stephan (1952).  In order to simulate earthquake generated 

tsunamis, they moved the tank bottom vertically by means of a hydraulic jack resembling 

a tectonic plate.  Later, Hammack (1972) used the same method, but he controlled the 

hydraulic mechanism of wave generation system with a micro-computer.  The trajectory 

of the moving part of the tank bottom was determined using the basic wavemaker 

theories developed by Havelock (1929) and Kennard (1949).  A piston-type wavemaker 

was used for the first time by Hall and Watts (1953) to generate impulsive waves.  They 

used a mechanical system to move the wave paddle horizontally.  The purpose of the 

experiments was not solitary wave generation, but generation of impulsive waves in order 

to visualize the run-up process and measure the maximum run-up height on a beach 

slope.  However, they unintentionally generated solitary waves by moving the wave 

paddle horizontally.  This method was used afterwards by Camfield and Street (1969) to 

generate solitary waves using horizontal movement of the wave paddle.  The motion of 
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the wave paddle was controlled by a hydraulic system which was commanded from a 

micro-computer.  The trajectory of the wave paddle was determined using the basic 

wavemaker theory.  During 1960s and 1970s, solitary waves were most often generated 

by less expensive methods such as sudden release of an air valve on a vacuum tank that 

held a prescribed amount of water (e.g., Kishi and Saeki, 1966).  

 

Following the laboratory experiments carried out by Camfield and Street (1969), Goring 

(1979) attempted to generate more accurate solitary waves by defining the wave paddle 

trajectory for a given solitary wave profile.  This solitary wave generation theory assumes 

that the horizontal component of the water particle velocity adjacent to wave paddle is 

equal to the wave paddle velocity: 

( )tu
dt

d
,ξ

ξ
=                                                                                                         (2.1) 

where ξ is the wave paddle position, t is the time and ū is the horizontal water particle 

velocity adjacent to the wave paddle.  Horizontal water particle velocity is assumed to be 

constant throughout the depth and equal to the depth-averaged velocity which is derived 

from the continuity equation by Svendsen (1974) for long waves of permanent form: 

( ) ( )
( )th

tc
tu

,

,
,

ξη
ξη

ξ
+

=                                                        (2.2) 

where η is the free surface elevation above still water level, h is the water depth at the 

paddle and c is the wave celerity.  To generate solitary waves, Goring (1979) used 

Boussinesq (1871)’s first-order solution for the solitary wave profile: 

( ) ( )( )ξξη −= ctkhHt 2sec,              (2.3) 
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where H is the wave height, k (= 33 4H h ) is the boundary decay coefficient or solitary 

wave number, and c = ( )g h H+ .  Eqns. 2.1 through 2.3 yields to the trajectory of the 

wave paddle in the following implicit form: 

( ) ( )( )ξξ −= ctk
kh

H
t tanh                                                                           (2.4) 

This implicit wave paddle trajectory equation can be solved numerically (e.g., using 

Newton-Ralphson method).  From Eqn. 2.4, the total stroke length of the wave paddle, S, 

can be calculated as 2H/kh.  Ideally, the total duration of the wave paddle, T, approaches 

infinity.  However, to make it practical, Goring assumed that after 99.9% of the total 

stroke length, the wave profile is completely generated, and therefore the total duration of 

the wave paddle was calculated as T = 7.8/kc + S/c.  Goring (1979) generated solitary 

waves in different depths of water and for relative wave height, ε = H/h ranging from 0.1 

to 0.7.  He reported that the greater the ε, the less agreement between the generated wave 

height and the theoretical (i.e. aimed) wave height.  The generated wave height is 

reported much smaller than the aimed wave height.  The deviation from theory was not 

limited to the wave height but also included the boundary shape and the celerity of 

generated wave.  Goring reported severe damping for the generated Boussinesq-type 

waves.  He added that this amount of decay can not be explained by frictional damping 

only.  For greater values of ε, he observed greater damping.  In terms of change in profile 

shape, Goring (1979) reported larger change near the wave generator, but as the wave 

propagates farther away from the generation zone, the rate of wave profile change 

decreases drastically.  Solitary waves generated by piston-type wavemakers are followed 

by dispersive oscillatory trailing waves.  Goring (1979) reported the trailing wave 
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amplitude in a range of 6% to 12% of the solitary wave height.  He demonstrated 

experimentally that increasing the total duration of wave paddle motion by 10% can 

reduce the trailing wave’s amplitude significantly.  Goring’s method have been 

commonly used in laboratory studies to generate solitary waves and specifically to 

investigate tsunami propagation, run-up and coastal impacts (e.g. Synolakis, 1986 and 

1987; Zelt, 1986; Ramsden, 1993; Li, 2000; Li and Raichlen, 2001; Jensen et al., 2003).  

 

Recently, Guizien and Barthelemy (2002) conducted a series of experiments in a 36 m 

long, 0.55 m wide and 1.2 m deep wave-tank that is equipped by a piston-type 

wavemaker, and they generated solitary waves using the method developed by Goring.  

In addition to the Boussinesq’s solitary wave solution that was used by Goring (1979), 

Guizien and Barthelmy used Rayleigh’s (1876) solution along with first- and second-

order shallow water solutions by Korteweg de-Vries (1895) (1
st
 and 2

nd
 order KdV 

solutions) to define the wave paddle trajectory.  Note that Rayleigh’s solution differs 

from Boussinesq’s solution only by the definition of the solitary wave number, k, which 

is defined as (3H/(4h
2
(H+h)))

1/2
.  Guizien and Barthelemy conducted experiments in 20 

cm and 30 cm depths of water for various values of relative wave height, ε, ranging from 

0.05 to 0.6.  They numerically solved Eqns (2.1) through (2.3) simultaneously and by 

linearization of the numerical results, proposed the following explicit solution for the 

trajectory of the wave paddle based on Rayleigh’s profile: 

( ) ( )
( )( )kctHh

kcth

hk

H
t

2tanh1

tanh

−+
=ξ            (2.5) 

Their laboratory experiments showed that generated waves based on Rayleigh’s solution 

are more accurate in terms of wave height, profile shape and celerity compared to those 
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generated based on Boussinesq’s solution.  1
st
 and 2

nd
 order KdV solutions led to less 

accurate solitary wave generation.  In addition, they reported that damping of the 

Rayleigh-type waves seems explainable by frictional damping.  They also described that 

Rayleigh-type waves achieve their permanent form in a shorter distance, approximately 

20 times water depth compared to Boussinesq-type waves which achieve their permanent 

form after approximately 80 times water depth.  Guizien and Barthelemy related this 

behavior to the better description of k in Rayleigh’s solution that is suggested by the 

numerical solution of Byatt-Smith (1970, 1971). 

 

Jensen et al. (2003) used the Goring’s method with Boussinesq’s profile to generate 

solitary waves in order to study tsunami run-up.  For high-amplitude solitary waves, they 

argued that long wave theory is no longer valid.  Consequently, they used numerical 

solution of Tanaka (1986) rather than the first-order approximate solution of Boussinesq 

(1871).  However, they incorporated the solitary wave profile in the same Eqn. 2.2 to find 

the depth-averaged velocity values.  Tanaka’s numerical solution provides larger k values 

and consequently smaller stroke length compared to Boussinesq’s and Rayleigh’s 

solutions.  Since Jensen et al. (2003) had a limitation on maximum stroke length of the 

wave paddle, the use of Tanaka’s solution allowed them to generate steeper solitary 

waves.  However, as mentioned earlier, Eqn. 2.2 was derived based on long wave theory 

assumptions.  Therefore, it is not evident whether the use of Eqn. 2.2 with any higher 

order definition of solitary wave profile, such as numerical solution of Tanaka, improves 

the wave generation process or not. 
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2.2  Bores 

In many circumstances, solitary-like waves break offshore or on dry land and form a 

turbulent bore which continues climbing up the beach until it is overtaken by another 

bore or drawn back under gravity.   

 

There have been several laboratory investigations to generate turbulent bores resembling 

breaking tsunamis.  Extensive laboratory experiments were reported about bore 

generation and run-up by Miller (1968).  Miller used a vertical paddle to generate bores; 

the piston moved at constant speed and stopped suddenly after a distance.  Later, Yeh et 

al. (1989) performed in-depth laboratory investigations on generation and run-up of fully-

developed and undular bores on an initially dry beach.  A bore was generated by lifting a 

thick aluminum plate which separates the stationary water on the beach from the deeper 

water behind it.  Recently, Chanson et al. (2002), assuming that tsunami bores are similar 

to plunging jets in nature, generated bores by the vertical release of a known water 

volume.  Water was released through a rectangular, sharp-crested orifice with 70 mm by 

750 mm cross-sectional area at one end of the channel, similar to a dam break surge.  

While the method in generating bores was innovative, further investigations are needed to 

demonstrate the adequacy of the aforementioned assumption for the accurate simulation 

of the characteristics of the run-up process (Chanson et al., 2002). 

 

In one of the first analytical attempts to simulate bore run-up, Whitham (1958) proposed 

that bore propagation was governed by the known hydrodynamic principles immediately 

behind it.  Applying this statement, a widely accepted analytical solution for the 
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propagation of bores was presented by Meyer and his associates during the 1960s which 

is summarized by Meyer and Taylor (1972).  Shen and Meyer (1963) transformed 

Nonlinear Shallow Water (NLSW) equations into a set of linear shallow-water equations 

by using canonical variables.  They showed that the shoreline position is insensitive to 

other wave motions and only governed by gravity.  As the bore approaches the shoreline, 

the bore height decreases and eventually will become zero at the new shoreline 

(Whitham, 1958; Ho and Meyer, 1962). 

 

 

2.3 Water Surface Depressions and �-waves 

The profile shape and amplitude of the water surface deformation in the vicinity of the 

generation zone is dominated by the magnitude and pattern of the seafloor displacement.  

By considering the Earth’s crust as an elastic halfspace, Okada (1985) derived a set of 

analytical expressions for the seafloor dislocations due to inclined shear and tensile 

faults.  For the rise time of most earthquakes, displacement of the seafloor can be 

considered instantaneous relative to the propagation speed of tsunamis.  Therefore, the 

water surface profile in the generation zone mimics the vertical component of the 

seafloor displacement (Kajiura, 1963).  In other words, by assuming that the ocean is an 

incompressible layer of liquid over an underlying elastic halfspace, the seafloor 

dislocation field can be transferred directly to the water surface by applying appropriate 

attenuation factors.  Starting with the three-dimensional Green’s function for water 

motion in an ocean of finite depth, Kajiura (1963) demonstrated that the effect of 

attenuation on the initial water surface disturbance can be approximated by applying a 
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reduction factor of 1/cosh(kh) to the vertical seafloor displacement field, where k is the 

wave number, and h is the water depth. 

 

The initial disturbed water surface, which lies very close to the seismic faulting zone, is 

irregularly composed of different elevation and depression parts, thus it is often called 

“the splashing zone”.  The initial water surface profile predicted by numerical 

simulations based on the aforementioned elastic halfspace theory is shown in Fig. 1.1a. 

The elevation and depression parts in the wave field gradually merge as the generated 

disturbance propagates radially.  If there is enough distance from the tsunami source to 

the coast, the wave field eventually reshapes into a so-called “N-wave” profile including 

a single elevation and a single depression part.  Depending on the relative position of the 

elevation and depression components, two types of N-waves including Leading Elevation 

N-wave (LEN) and Leading Depression N-wave (LDN) are possible.  This is confirmed 

by numerical simulation of wave propagation based on long wave theory as shown in Fig. 

1.1b and also several tidal gauge recordings at the coastline during tsunami events (e.g., 

Borrero et al., 2005). 

 

Since the first observation of a solitary wave on the water surface by Russell (1844) and 

supporting analytical studies (e.g., Boussinesq, 1871; Rayleigh, 1878; Korteweg and de-

Vries, 1895 and many others) solitary waves of elevation (above still water level) have 

been widely studied experimentally (e.g. Hammack and Segur, 1974; Goring, 1979; 

Guizien and Barthelemy, 2002), as well as analytically (e.g., Benjamin, 1972; Byatt-

Smith and Longuet-Higgins, 1976; Tanaka, 1986).  It has been emphasized by Korteweg 
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and de-Vries (1895) that solitary waves can be in the form of both elevation (positive; i.e. 

above still water level) and depression (negative; i.e. under still water level).  In the long 

wavelength limit when the gravitational force is dominant, only elevation solitary waves 

can be observed.  However, for shorter wavelengths, when surface tension is no longer 

negligible, capillary effects have a drastic influence on the water surface waves and 

depression solitary waves can also be observed (Falcon et al., 2002).  In fluid mechanics, 

the Bond number is a dimensionless number expressing the ratio of body forces (often 

gravitational) to surface tension forces and defined as Bo ( )2
hlc= , where cl gσ ρ=  is 

the capillary length of water, and h is the water depth.  In the equation for capillary length 

of water, σ is the water surface tension.  When 0 < Bo < 1/3, elevation solitary waves are 

stable form of disturbance when Bo > 1/3, depression solitary waves could be observed 

(Korteweg and de-Vries, 1895; Falcon et al., 2002).  Assuming the density of tap water, 

ρ, as 1.0 × 10
3

 kg/m
3
, the water surface tension, σ , equal to 0.0728 �/m

2
, and the 

dynamic viscosity of water, µ, as 1.0 × 10
-3

 �.s/m
2
, the capillary length of seawater, 

cl gσ ρ= , is calculated as 2.7 mm.  The Bond number, Bo ( )2
hlc= , for 30 cm water 

depth is then calculated as 8 × 10
-5

 (notice that the value calculated for Bond number is 

for 30 cm water depth of the wave-tank and in deep oceans by increasing the water depth, 

the value gets very minuscule).  Therefore water surface depressions are 

hydrodynamically unstable especially in large water depths such as in the ocean. 

 

As the N-wave shown in Fig. 1.1b propagates toward the coast, the depression stretches 

out and its amplitude attenuates rapidly with distance.  Attenuation of the trough is due to 

viscous dissipation and nonlinear dispersion.  Moreover, the depression part propagates 
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with a lower celerity compared to the elevation part closer to the coast (Korteweg and de-

Vries, 1895).  Consequently, if there is enough propagation distance for an LDN-wave, 

the depression part will be overtaken by the elevation component due to the lower 

celerity.  However, when the seismic source of undersea earthquake is closer to the coast, 

there will not be enough propagation distance for the elevation component to exterminate 

the trough and both elevation and depression parts of the wave will reach the coast.  

While it is shown theoretically that stable water surface depressions will not be formed 

on the ocean surface, it does not mean that they should be neglected.  Water surface 

depressions are unstable in deep oceans and in laboratory wave-tanks in water depths of 

larger than 1 cm (Korteweg de-Vries, 1895).  However, they are still capable of 

propagating large distances while attenuating drastically with distance.   

 

In deep oceans, depressions are very long and only a few centimeters in amplitude.  

However, water depth decreases near the coast and thus, the relative amplitude of the 

trough (εt = at/h; at - maximum trough amplitude) increases.  Tidal gauge recordings for 

major tsunami events are listed in Table 2.1.  Gauge stations listed in Table (2.1) are 

coastal tidal gauges and do not include those installed close to the islands.  There is no 

reference regarding the water depth at the position of gauges.  However, since they are 

close to the coastline, the water depths at coastal gauge stations are always assumed to be 

less than 10 m (see for example Satake, 1995). 
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Table 2.1 Depression amplitude recorded by gauges during major tsunami events 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tsunami 

Event 
Gauge Station 

Distance 

from the 

source (km) 

Depression 

Amplitude 

(m) 

Reference 

Kurabi ~700 0.4 Tsuji et al. (2006) 

Colombo, Sri 

Lanka 
~2000 1.4 

Salalah, Oman ~4500 1.1 

Lamu, Kenya ~5500 0.5 

Paradip, India ~1900 1.2 

Vishakhapatnam

, India 
~1600 1.1 

Chennai, India ~1600 1.6 

Neendakara, 

India 
~2200 1.1 

Tuticorin, India ~2000 1.0 

Kuraburi, 

Thailand 
~850 1.4 

Ranong, 

Thailand 
~800 1.4 

Trang, Thailand ~750 1.25 

Belawan, 

Indonesia 
~300 0.93 

Indian Ocean, 

2004 

Sibolga, 

Indonesia 
~450 2.46 

Rabinovich and 

Thomson (2007) 

Uragami, Japan ~320 0.75 
Kii Peninsula, 

2004 Kushimoto, 

Japan 
~300 0.65 

Satake et al. 

(2005) 

Hokkaido, 

1993 
Wajima, Japan ~550 0.5 

Nagai et al. 

(1996) 

Alameda, CA ~3500 1.0 

Alaskan, 1964 
San Francisco, 

CA 
~3500 1.3 

Magoon (1966) 

Alameda, CA ~9500 0.4 

Chilean, 1960 

San Francisco, 

CA 
~9500 0.45 

Magoon (1962) 

& Berkman and 

Symons (1960) 
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Since the approaching N-wave has a steeper water surface gradient and consequently a 

larger inertia, it may climb up the beach to higher points with higher velocities during 

run-up. Similarly, the wave may draw back more rapidly and further offshore during run-

down compared to a corresponding solitary wave with the same elevation height 

(Tadepalli and Synolakis, 1996; Carrier et al., 2003). Since the velocity of run-up and 

run-down increase, the net slamming drag force exerted on coastal structures will 

increase as well (Carrier et al., 2003; Yeh, 2006). Moreover, pronounced 

geomorphological imprints including stronger erosion and sediment transport are 

expected. These N-waves are believed to be responsible for several documented 

observation of shoreline recession during tsunami events (e.g., Borrero et al., 1997 for 

1995 Mexican tsunami).  Being aware of higher coastal impacts of N-waves, one may 

propose that N-waves are also responsible for inaccurate and underestimated results of 

prevailing solitary wave-based numerical or analytical models.  On the other hand, 

profound doubt in hydrodynamic stability of N-waves (especially in long distances) and 

uncertainties about inferring the initial N-wave profile from uplift and subsidence 

magnitudes of seafloor deformation are limiting laboratory modelers in studying N-

waves.  Consequently, numerical modelers mainly utilize solitary waves as initial 

conditions and apply large amplification factors to fit their numerical results to run-up 

field measurements.  To the writer’s knowledge, there is no or only a few unpublished 

reports of experimental investigations on the generation, propagation or coastal impacts 

of N-waves.  However, there have been a few analytical studies proposing a profile for 

N-waves and solving the run-up equations for both solitary waves and N-waves (e.g., 

Tadepalli and Synolakis, 1994 and 1996; Carrier et al., 2003). 
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Carrier et al. (2003) assumed the following profile for LDNs and LENs as tsunamis: 

( )[ ] ( )[ ]2

222

2

111 expexp xxkaxxka −−−−−=η                                             (2.6) 

where 1a  and 2a are elevation and depression heights respectively. 1x and 2x are positions 

of 1a  and 2a  along the x-axis respectively assuming the x-axis has an arbitrary origin.  1k  

and 2k  are constants and define the length and boundary shape of elevation and 

depression parts respectively.  By introducing α  as the beach slope and L as any 

horizontal length scale such as the fault width, later Yeh (2006) represented this profile in 

dimensionless form as: 

( )[ ] ( )[ ]2

222

2

111 expexp xxkaxxka ′−′′−′−′−′′−′=′η                                        (2.7) 

where Lαηη =′ , Lxx =′ , Lxx 11 =′ , Lxx 22 =′ , Laa α11 =′ , Laa α22 =′ , 1

2

1 kLk =′  

and 2

2

2 kLk =′ are dimensionless substitutes.  Based on this profile, Carrier et al. (2003) 

showed that the maximum flow velocity for predominately negative waves (i.e., larger 

depression parts than elevation parts) occurs during run-up while the maximum flow 

velocity for predominantly positive waves (i.e., larger elevation parts than depression 

parts) occurs during run-down.  This implies that for a predominantly positive LDN, the 

maximum momentum flux (force) occurs immediately after the maximum penetration, 

before flow reversal, and in the offshore direction.  For a predominantly negative LDN, 

the maximum momentum flux occurs immediately after flow reversal and in the onshore 

direction.  Therefore, the maximum force exerted on coastal structures will take place at 

the extreme draw-down location, regardless of the specifics of the LDN. 
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Tadepalli and Synolakis (1996) proposed the following general profile for both solitary 

waves and N-waves: 

( ) ( )[ ]θεη −−= xkhXxH 2

2 sec                                                        (2.8) 

In this equation, η is wave amplitude, 43 λHk = , ctX += 1θ , 21 XXL −= , 1=c , and 

λ  is a steepness parameter. X1 and X2 are arbitrary constants which defines the length 

and shape of the profile.  1<ε  is a scaling parameter defining the crest amplitude 

introduced only for reference to ensure that the wave height in Eqn. 2.8 is H.  Tadepalli 

and Synolakis (1996) added that ε  can be chosen in such a way that Eqn. 2.8 fits any 

desired surface profiles inferred from the field observations.  H and the wavelength of the 

profile in Eqn. 2.8 are substituted from vertical and horizontal measures of the ground 

deformation, respectively. Tadepalli and Synolakis (1994) analytically showed that an 

LEN runs up higher than a solitary wave with the same elevation height but less than a 

similar LDN.  They explained this larger run-up height by the larger inertia produced by a 

steeper water surface slope in an approaching LDN compared to an LEN.  By a similar 

discussion, they reasoned the higher run-down calculated in the case of an LEN.  

 

In order to examine the stability of an LDN during transoceanic propagation, Tadepalli 

and Synolakis (1996) solved KdV equations for the N-wave profile of Eqn. 2.8. For an 

initial height-to-depth ratio of 0.01, they showed that tsunamis with LDN profiles will 

remain unchanged for distances over 4000 depths while for a more realistic initial height-

to-depth ratio of 0.001, this value will be 2000 depths.  Moreover, they showed that run-

up values of LDNs increase as the ratio of trough-height to crest-height increases.  

Finally, they conclude that the orientation of the subduction zone, the direction of the 
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slip, and the maximum sea-bottom displacement significantly change the shape of the 

generated N-Waves.  Thus, numerical and experimental simulations based on solitary 

waves do not necessarily provide us with the maximum run-up heights of the tsunamis as 

observed in 1992 Nicaraguan event (Satake, 1994 and 1995) and 1993 Flores Island event 

(Yeh et al., 1993).  

  

While N-waves seems to be only a subject of a few unreported experimental studies 

recently, there are a series of laboratory experiments reported by Hammack (1973) and 

Hammack and Segur (1974, 1978) about the generation of complex waveforms with 

different elevation and depression components.  They also reported the generation and 

propagation of pure elevation and pure depression waves.  Different waveforms were 

generated in order to determine whether a solitary wave would emerge from the 

waveform in the far field, and if so, it was desired to understand the factors behind the 

profile shape and propagation. 
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CHAPTER THREE 

 

EXPERIMENTAL SET-UP AND TECHNIQUES 

 

 
This chapter is organized into two principle sections: Experimental Setup and 

Instruments.  The Experimental Setup section contains information regarding the wave-

tank and wave generation system whereas the Instrument section includes information 

referencing equipments that used to acquire experimental data including data acquisition 

system, wave gauges, digital video camera, Laser Displacement Sensor (LDS), and high-

speed video camera. 

 

 

3.1  Experimental Set-up 

Wave-Tank 

Experiments were conducted in a 12 m long, 0.6 m wide and 0.6 m deep wave-tank 

located at the Flow Physics Laboratory of the Civil Engineering Department of Clemson 

University.  The tank is constructed of eight identical 1.5 m steel-framed modules.  The 

sidewalls and bottoms of each module are made of Plexiglas panels measuring 1.5 m 

long, 0.6 m wide, and 0.5 cm thick.  Tank bottom is elevated 1 m from the ground to ease 

the visualizations from the sides and bottom.  The carriage rails, made of 1.5 cm diameter 

stainless steel, are bolted at 1 m intervals to the top flanges of the tank sidewalls.  There is 

a small clearance of 1 cm between the rails and top flanges. 

 

To avoid the problem of leakage at the tank bottom and sidewalls, the Plexiglas bottom of 

the wave-tank is sealed by a waterproof chemical sealant which is extended to the height 
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of 10 cm on both sidewalls.  Since the waves should be generated in stable and quiescent 

water and in order to reduce reflection, and thereby, the time between each experiment, 

an artificial porous beach was placed at the other end of the tank, opposite of the 

wavemaker.  In order to reduce the reflection of the waves from the wave paddle and the 

wall behind the wavemaker, plastic fiber meshes is installed behind of the wave paddle as 

a wave absorber.  A schematic of the wave-tank is shown in Fig. 3.1. 

 

 

Figure 3.1 Schematic of the experimental set-up. Numbers 1 to 5 represents the 

position of wave gauges in equal steps of 1 m. 

 

 

The wave generator, which was designed and constructed for this study, consists of a 

vertical aluminum plate which is moved horizontally in a defined trajectory by means of 

an electrical servo-system.  The system accepts a programmed input voltage and converts 

this input electrical signal into a displacement.  The displacement-time history or the 

“trajectory” of the wave paddle movement is linearly proportionate to the voltage-time 

history of the input signal.  
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Wave Generation System 

The wave generation system for this study is comprised of three main parts; a mechanical 

module consists of a vertical wave plate and a linear actuator system, a power module 

consists of a servo-electrical motor, and a controller module.  A picture of the wave 

generation system is shown in Fig (3.2). 

 

 

Figure 3.2 Piston-type wavemaker at Flow Physics Laboratory of Clemson 

University 

 

 

The mechanical module of the wave generation system consists of a precise linear 

actuator system with a position resolution of 1 µm, a vertical wave paddle, a carriage-rail 



 26 

system for the movement of the wave paddle, and a supporting steel frame.  The linear 

actuator system consists of a 30 cm long, 20 cm wide, and 15 cm thick aluminum cubical 

slide which travels on a linear aluminum guide of 2 m long.  The linear actuator system 

has a maximum stroke length of 1.5 m and is capable of reaching a maximum velocity of 

1.5 m/s and a maximum acceleration of 10 m/s
2
.  It is secured by the steel frame at the top 

of the first module of the wave-tank that is bolted into place.  The vertical aluminum 

wave plate is bolted from the top to the center of the actuator slide by means of a circular 

shaft to minimize the resistant moment on the slide motion.  To avoid the potential 

leakage around the wave paddle, the sides of the paddle are sealed with flexible rubber 

membranes. 

 

Once the theoretical trajectory of the wave paddle is calculated, it is transferred in terms 

of a digital voltage signal from the operator computer to the controller through a 

LabView code.  By means of a built-in D/A converter, the digital voltage is converted to 

an analogue voltage signal readable by the servo-electrical motor.  The analogue signal is 

stored by the controller in the memory and once the controller is commanded from the 

operator computer to run the trajectory, the analogue signal is sent to the servo-electrical 

motor.  The Servo-electrical motor is a shaft-driven motor, in which the shaft rotation is 

proportionate to the displacement of the wave paddle.  Once the analogue voltage signal 

is received by the servo-electrical motor, it is converted to the time-radial displacement 

history of the shaft to maintain the proposed trajectory of the wave paddle. 

To estimate the accuracy of the wave generation system in operation, the actual 

movement of the wave paddle as a response to the calculated trajectory is recorded by 
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using a Laser Displacement Sensor (LDS) with a precision of 0.01 mm.  An example of 

the comparison between a programmed and an actual trajectory and velocity of the wave 

paddle is shown in Fig. (3.3a & b).  A time lag of approximately 0.05 s between the 

programmed and actual motion is recognized which is normal and is attributed to the time 

elapsed in communication between the linear actuator system and the electrical servo-

system.  Apart from this, the actual motion shows an excellent agreement with the 

programmed motion.  Repeatability of the wave generation system is examined by 

recording the movement of the wave paddle for 20 different runs of generating the same 

solitary wave profile.  Errors in the movement, ξerror, and velocity, uerror, of the wave 

paddle are presented in Fig. (3.3 c & d).  Errors were always below 2% for both 

movements and velocities. 

 

 

3.2 Instruments 

Data Acquisition System 

The USB data acquisition interface from National Instrument model NI-6009 is used to 

acquire voltage signals from wave gauges, and Laser Displacement Sensor (LDS).  The 

interface includes 16 digital input channels, 8 analogue input and 2 analogue output 

channels with frequency response of 14,000 Hz. The LabView software is used to 

communicate with the data acquisition interface and store the data to computer.   
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Figure 3.3 Accuracy and repeatability of the wave generator. (a) comparison of the 

theoretical trajectory of the wave paddle (- - -) and the actual trajectory of the wave 

paddle recorded by LDS (–––); (b) comparison of the theoretical velocity of the wave 

paddle (- - -) and the actual velocity of the wave paddle calculated based on LDS 

measurement (–––); (c) percent error in the actual trajectory of the wave paddle recorded 

by LDS for 20 different runs of the same solitary wave profile; (d) percent error in the 

actual velocity of the wave paddle calculated based on LDS measurement for 20 different 

runs of the same solitary wave profile.  (all panels are for a solitary wave with 12 cm 

amplitude in water depth of 20 cm (ε = 0.6) based on Rayleigh’s solution and generated 

using Goring methodology.)    
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Wave Elevation Data Recordings 

WG-50 Capacitance wave gauges from RBR Company are used to record the water 

surface elevation at different sections along the wave-tank as a function of time.  The 

wave gauge consists of a stainless steel bracket-shape frame and a plastic-sealed stainless 

wire.  A controller box provides the necessary voltage for the function of the wave gauge.  

The wave gauge functions as a capacitor, in which the steel frame and plastic-sealed steel 

wire are two conductors and the material between these two, either air or water, performs 

as a dielectric.  The amount of electricity stored between the steel frame and plastic-

sealed steel wire is linearly proportionate to the conductivity of the dielectric.  When the 

wave gauge is out of water, air is the dielectric between the two conductors, which has 

the least amount of conductivity.  However, in the water, by having the water as a partial 

dielectric, the conductivity of the capacitor changes by the elevation of the water between 

two conductors and therefore the amount of electricity stored in the capacitor is changing 

by time.  The amount of electricity stored between the conductors is proportionate to the 

elevation of the water surface between the two conductors.   

 

The wave gauge measures the stored voltage and transfers it to the controller box. The 

controller box transfers the stored voltage to the data acquisition system and then a 

LabView code stores the time-history of the voltage to the operator computer.  Output 

voltage of the wave gauge is between -5, which corresponds to a zero water elevation, 

and +5, which corresponds to 1 m water elevation between the conductors.  The time 

history of the water surface elevation is extractable from the recorded time-history of the 

output voltage. 
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Wave gauges are not accurate enough to record the waveforms of smaller than a few 

centimeters in amplitude.  Therefore, in order to measure the small amplitude water 

surface depressions in water depth of 6 cm and 15 cm, a digital video camera has been 

used to record a video of the water surface fluctuations at different sections along the 

wave-tank.  The recorded video is then digitized into a series of high quality images.   

Knowing the time interval between each image, the profile of the water surface 

depression is extracted by processing each image and counting the pixels. 

 

Laser Displacement Sensor (LDS) 

A Laser Displacement Sensor (LDS) from Keyence Company (model #LK-G502) is used 

to check the accuracy and repeatability of the wave generator.  The LDS measures the 

distance by emitting a laser beam that reflects off any solid surface within its 

measurement range.  The sampling rate of the LDS can be adjusted to maintain the 

required resolution starting 100 samples per second.  The measurement range of the LDS 

is between 25 cm and 1 m.  The device can be used stand alone by using a software 

provided by the Keyence Company, or can be connected to the USB data acquisition 

interface to acquire the distance in terms of voltage.  The output voltage is between -10 

and 10 V and is linearly proportionate to the measured distance.  It can be calibrated for 

any desired range between 25 cm and 1 m.  In the present study is was calibrated such 

that the distance of 25 cm and 1 m correspond to -10 V and 10 V respectively. 

 

High-speed Camera 
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A high-speed high-resolution CCD camera from Fastec (model, Troubleshooting) is used 

to visualize the wave paddle movement.  The camera has an adjustable frame rate starting 

from 125 frames per second (fps) up to 1000 fps.  In addition, the shutter speed is 

adjustable from 1X up to 20X.  The user can choose between 6 different resolutions and 

window sizes.  Different lenses can be connected to the camera to provide an appropriate 

window size and resolution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 32 

CHAPTER FOUR 

 

LABORATORY GENERATION OF SOLITARY WAVES 

 

 
A New methodology for solitary wave generation by considering the evolving nature of 

the wave during the generation process is presented in this chapter.  The proposed 

methodology is examined by conducting a series of experiments in the wave-tank (see 

Chapter 3.1) located in the Flow Physics Laboratory of Clemson University .  Solitary 

waves were generated using both the new and the traditional (i.e., Goring methodology, 

see Chapter 2 for an overview) methodologies.  Waves generated using the Goring 

methodology served as a benchmark to assess the performance of the New methodology.  

Generated waves are compared in terms of profile shape (wave height, boundary shape, 

trailing waves), change in profile shape and amplitude attenuation, establishment rate, 

and celerity. 

 

 

4.1 Wave Generation Theory 

In order to generate the solitary waves with desired characteristics in the wave-tank, the 

time-history of the wave paddle motion (i.e., wave paddle trajectory) is required..  In this 

section, the derivation of the paddle trajectory for the proposed solitary wave generation 

methodology is presented. 

 

As alluded to by Synolakis (1990), Goring methodology does not consider the unsteady 

nature of the solitary wave generation process.  It rather assumes that a solitary wave of 

permanent shape forms even during the generation stage.  However, in our New 
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methodology, we consider the evolving nature of the generated solitary wave during the 

generation stage.  It is assumed that as the wave-paddle moves horizontally and pushes 

the water column out in front, a small surge forms at each instant.  These small surges 

pile up to eventually form the smooth profile of the proposed solitary wave.  During the 

wave profile generation, the evolving/forming wave does not propagate with the constant 

celerity of the stable solitary wave as it is assumed in Goring methodology. It instead 

propagates with a celerity that changes with time, cu(t) [henceforth, referred as “unsteady 

celerity”].  Therefore, there are two unknowns to be determined when calculating the 

wave paddle trajectory: ( )u t  [horizontal water particle velocity adjacent to the wave-

paddle or equally wave-paddle velocity, see (1)] and cu(t).  To determine these two 

unknowns at each instant of the paddle motion, mass and momentum conservation 

equations must be solved. 

 

The selected control volume (CV) for our analysis is illustrated in Fig. 4.1.  In this 

schematic and to maintain clarity, only the initial surge formed by the push of the wave 

paddle is shown.  The water column pushed by the wave paddle enters the control volume 

through the control surface (CS) indicated as 1 with a depth-averaged velocity of 1u , and 

the fluid leaves the control volume through CS2 that is far away from the solitary wave 

generation zone with a depth-averaged velocity of 2u .  This initial surge of height η(t1) 

propagates with a celerity of cu(t1) over the water depth of h [subscripts for time, t, 

denotes the instant of time]. 
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Figure 4.1 Definition sketch of parameters. Dashed line represents the considered 

control volume. 1u  is depth-averaged velocity at the paddle and 2u is depth-averaged 

velocity far away from the wave paddle. h is water depth, η is surge height, and cu(t) is 

unsteady celerity. 

 

 

At the next instant, a second surge forms on top of the initial surge and these two surges 

form a new larger surge of height η(t2) and celerity cu(t2).  This surge formation process 

continues, and at each instant a part of the leading half of the solitary wave is formed.  

Described surge formation and formation of the leading half of the solitary wave is 

illustrated in Fig. 4.2.  The proposed New methodology assumes the formation of surges 

only for the formation of the leading half of the solitary wave crest.  It assumes a solitary 

wave of permanent shape that moves with the celerity of the last surge that forms the 

crest (calculated by substituting η = H in Eqn. 4.10 below) for the formation of the 

trailing half of the solitary wave crest.  Our reasoning behind generating the trailing half 

of the solitary wave crest with a constant celerity (i.e., maximum surge celerity) is the 

instabilities (such as widening of the wave profile that may lead to separation of the 

leading and trailing halves of the wave) that may arise as the wave propagates.  However, 

it should be noted that, for our short wave-tank experiments, a notable instability is not 

observed for the case of generating waves using the unsteady celerity values calculated in 

Eqn. 4.10 for the entire wave profile. 

( )tcu  

h+η 
h 

1u  

2u  

1 2 



 35 

 

 

 

Figure 4.2 Theoretical illustration of the new idea behind the New methodology for 

the generation of solitary waves.  Vertical dark block - wave paddle; horizontal solid line 

– wave-tank bottom; dashed line – surge boundary and still water level; curved solid line 

– generated solitary wave boundary, horizontal arrow – direction of surge propagation.  

Graphs in (a)-(c) are three sequential instances illustrating the formation of sequential 

surges and graph in (d) illustrates the formation of the leading half of the solitary wave by 

the sequential surges. 
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h 
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Derivation of the New methodology begins with the application of the conservation of 

mass principle.  The integral form of the mass conservation equation for the CV 

presented in Fig. 4.1 can be written as follows [see also Chaudhry (2008)]: 

0
cscv

d
d UA

dt
ρ ρ∀+ =∑∫              (4.1) 

where ρ - density of water,∀ - volume of the control volume, U – mean flow velocity at 

the corresponding CS, and A - flow area at the corresponding CS.  The second term in 

Eqn. 4.1 can be expanded as: 

( )1 1 2 2 1 2

cs

UA u A u A u h b u hbρ ρ ρ ρ η ρ= − = + −∑          (4.2) 

where b is the wave-tank width and subscripts 1 and 2 denotes quantities for control 

surfaces 1 and 2, respectively.  Since water is incompressible, the first term in Eqn. 4.1 

can be written as: 

u
u

cv cv

d d c t
d d b c b

dt dt t

η
ρ ρ ρ ρ η

∆
∀ = ∀ = =

∆∫ ∫           (4.3) 

where ∆t is the incremental time interval.  Substituting Eqns. 4.2 and 4.3 into Eqn. 2.1, it 

is possible to retrieve the mass conservation equation in the following form. 

( ) 1 2uc h u h uη η− + =              (4.4) 

Similarly, the integral form of the momentum conservation equation for the CV presented 

in Fig. 4.1 can be expressed as: 

ext

cs cv

d
F U UA Ud

dt
ρ ρ= + ∀∑ ∑ ∫            (4.5) 
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where ∑Fext represents the summation of external forces acting on the system.  Assuming 

that hydrostatic pressure distribution occurs on both sides of the CV (at CS1 and CS2), 

the summation of the external forces acting on the system is: 

( )2 2

2 2
ext

h h
F b b

η
γ γ

+
= −∑            (4.6) 

where γ is the specific weight of water.  The first and second terms on the right side of 

Eqn. 4.5 can be expanded as: 

( )2 2 2
2 1

cs

U A u bh u b hρ ρ ρ η= − +∑            (4.7) 

( )( )1 2u

cv

d
Ud bc u h u h

dt
ρ ρ η∀ = + −∫            (4.8) 

Substituting Eqns. 4.6, 4.7, and 4.8 into Eqn. 4.5, one would obtain the momentum 

conservation equation in the following form. 

( ) ( ) ( )2 2
2 1 1 22

2
u u

g
h hu h u c u h c u h

η
η η η+ = − + + + −         (4.9) 

 

To simplify Eqns. 4.4 and 4.9, a long CV (such that CS2 is far away from the wave 

paddle) is conveniently chosen.  Consequently, water particles at CS2 are assumed 

stationary (i.e., 2 0u = ).  This simplification reduces Eqn. 4.4 to the form of mass 

conservation equation in Eqn. 2.2 given by Svendsen (1974) for long waves of permanent 

form.  Therefore, depth-averaged flow velocity at CS1, which is equal to the wave paddle 

velocity (hence, 1u  is used to denote paddle velocity and depth-averaged flow velocity 
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interchangeably throughout the text), is obtained as a function of unsteady celerity and 

height of the surge: 

( )1
uc

u
h

η
η

=
+

              (2.2) 

Substituting 1u  from (2.2) and 2 0u =  into (4.9), unsteady celerity can be obtained as a 

function of surge height: 

( ) 1
2

uc t g h
h

η η  = + +  
  

          (4.10) 

Note here that the surge height, η, appearing on the right hand side of Eqn. 4.10, which is 

the solitary wave elevation at the particular time [see Eqn. 2.3 for Boussinesq- and 

Rayleigh-type wave profiles], is a function of the steady celerity of the solitary wave, c, 

[ ( )c g h H= +  for both Boussinesq- and Rayleigh-type waves].  From Eqns. 4.9 and 

4.10, the paddle velocity, 1u , can be calculated from the following parameterization: 

1
2

u g h
h h

η η η
η

  = +  +  
          (4.11) 

Once the wave paddle velocity is determined at each instant, wave paddle trajectory, ξ(t), 

is calculated by integrating Eqn. 4.12.   

1
2

d
u g h

dt h h

ξ η η η
η

  = = +  +  
         (4.12) 
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Since wave paddle position, ξ, appears on both sides of Eqn. 4.12 [solitary wave 

elevation, η, is a function of the wave paddle position; i.e., η = H sech² (k(ct – ξ) for 

Boussinesq- and Rayleigh-type wave profiles], Eqn. 4.12 is an implicit equation and 

should be solved numerically.  Eqn. 4.12 can be discretized by a simple finite difference 

method to find ξ at each time step.  In order to discretize the Eqn. 4.12, backward finite 

difference method was used.  The position of wave paddle which is found in the previous 

time step was used in the right side to find the position of the wave paddle for the next 

time step. In the following descritization, subscripts i-1 and i refer to previous and present 

time steps respectively. 

















−
−

















−

−−−

−

−

+
+=→

+
+=

1

111

1

1

22
i

iii

ii

ii

h
h

h
g

h
h

h
g

dt

d

tt η

ηηη

η

ηηηξ ξξ
        (4.13) 
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Eqn. 4.13 can be solved for the position of the wave paddle, ξi.  Following Goring (1979) 

and Guizien and Barthelemy (2002), duration of the paddle motion, T, and the paddle 

stroke length, S, are calculated using the analytical parameterizations [T=7.8/kc+S/c, and 

S=2H/kh] derived by Goring (1979).  Since the outskirt decay coefficient, k, is unchanged 

in the New methodology, the total stroke of the wave paddle is the same as the one that is 

used in the Goring methodology.  To avoid complexities and to be able to make direct 

comparisons with the waves generated using the Goring methodology, duration of the 

paddle motion, T, is calculated using the steady celerity values [c = (g(h+H))
1/2

] as in the 

Goring methodology.  
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4.2 Experimental Procedure 

Experiments were conducted in the rectangular wave-tank located at the Flow Physics 

Laboratory of Clemson University (see Chapter 3.1).  The principle measurement of 

interest was the water surface elevation profiles.  Water elevation data were collected 

using capacitance-type wave gauges.  For each experimental condition, wave elevation 

data was recorded at fixed stations along the tank located at distances 2 m to 6 m 

downstream of the wave-paddle in equal steps of 1 m as illustrated in Fig. 3.1.  

Experiments were conducted for the still water depth, h, of 20 cm that is uniform along 

the tank up to the artificial beach at the end of the tank in order to dampen the waves (see 

Fig. 3.1).  In the experiments, solitary waves with dimensionless wave height values, ε = 

H/h, ranging from 0.3 to 0.6 were generated.  Two different solitary wave generation 

methodologies, Goring and our New methodology, were employed to generate the 

solitary waves based on two different first-order approximate solutions of solitary wave 

profile determined by Boussinesq (1872) and Rayleigh (1878).  Photograph of a typical 

solitary wave generated in the wave-tank using the New methodology is presented in Fig. 

4.3.  A total of four sets of experiments [Boussinesq-type waves using the Goring 

methodology (GB), Rayleigh-type waves using the Goring methodology (GR), 

Boussinesq-type waves using the New methodology (NB), and Rayleigh-type waves 

using the New methodology (NR)] were conducted.  Experimental conditions are 

summarized in Table 4.1.   
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Table 4.1 Experimental conditions for the solitary wave generation experiments 

Exp. Run # Methodology / Wave Profile ε = H/h S, m T, s 

1 GB 0.3 0.25 2.16 

2 GB 0.4 0.29 1.85 

3 GB 0.5 0.33 1.64 

4 GB 0.6 0.36 1.48 

5 GR 0.3 0.29 2.47 

6 GR 0.4 0.35 2.19 

7 GR 0.5 0.40 2.01 

8 GR 0.6 0.45 1.87 

9 NB 0.3 0.25 2.16 

10 NB 0.4 0.29 1.85 

11 NB 0.5 0.33 1.64 

12 NB 0.6 0.36 1.48 

13 NR 0.3 0.29 2.47 

14 NR 0.4 0.35 2.19 

15 NR 0.5 0.40 2.01 

16 NR 0.6 0.45 1.87 

Water depth, h, was 0.2 m in all experiments. 

G : Goring Methodology                        N : New Methodology     

T :Duration of wave paddle motion             S : Stroke length for the wave paddle 

motion 

 

 

 

Figure 4.3 Photograph of a typical solitary wave generated in the wave-tank.  

Rayleigh-type solitary wave generated by the New methodology for ε = 0.6 in still water 

depth of h = 20 cm. Photographed at 15h from the wave paddle. 
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4.3 Results and Discussions 

In this section, characteristics of generated solitary waves using the proposed New 

methodology are presented.  Comparisons with the waves generated using the traditional 

methodology by Goring are included to demonstrate the capabilities of the New 

methodology.  Main solitary wave characteristics of interest are profile shape, amplitude, 

change in the profile shape, wave amplitude attenuation, and propagation speed.  In the 

results presented below, the characteristics of the aimed Boussinesq- and Rayleigh-type 

solitary waves served as the benchmark, and the conclusions on the capabilities of the 

New methodology as well as the Goring methodology are drawn based on the degree of 

resemblance of the generated wave characteristics to the characteristics of the aimed 

Boussinesq- and Rayleigh-type solitary waves.  Results of these comparisons are as 

follows. 

 

Comparisons of the generated solitary wave profiles measured at distances x=10h (left 

panel) and 20h (right panel) from the initial position of the wave-paddle are presented in 

Figs. 4.4 and 4.5.  In these figures, graphs are plotted for the dimensionless water surface 

elevation, η/H, (vertical coordinate axes) versus the dimensionless time, /t g h , 

(horizontal coordinate axes).  In these graphs, thick solid lines represent the profiles of 

generated waves by the New methodology, thin solid lines represent the profiles of 

generated waves by the Goring methodology, and the dashed lines represent the profiles 

of the aimed Rayleigh- (Fig. 4.3) and Boussinesq-type (Fig. 4.4) solitary waves.  As can 

be seen from these figures, profiles of the waves generated by the New methodology 

clearly resemble the aimed Boussinesq- and Rayleigh-type solitary wave profiles closer 
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than the waves generated by the Goring methodology.  Moreover, these figures along 

with the figures that are discussed below indicate that waves generated using the New 

methodology can be considered as established solitary waves even at x=10h.  Wave 

profiles generated by both methods resemble the aimed Rayleigh-type solitary wave 

profiles closer than the aimed Boussinesq-type solitary wave profiles.  This observation is 

also reported by Guizien and Barthelemy (2002) in the case of Goring methodology. 
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Figure 4.4 Wave elevation data recorded for generated Rayleigh-type solitary waves.  

Water surface profiles recorded at x = 10h (left) and 20h (right) away from the wave 

paddle with h = 0.2 m. New Method (―――); Goring Method (――――); Rayleigh solution 

profile (-----). 

(a) ε = 0.3 

(b) ε = 0.4 

(c) ε = 0.5 
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Figure4.5 Wave elevation data recorded for generated Boussinesq-type solitary 

waves.  Water surface profiles recorded at x = 10h (left) and 20h (right) away from the 

wave paddle with h = 0.2 m. New methodology (―――); Goring Methodology (――――); 

Rayleigh solution profile (-----). 
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In Figs. 4.4 and 4.5, the hump of the generated wave is followed by a long depression 

below the still water level that consists of a series of dispersive oscillatory trailing waves.  

Solitary waves generated using the New methodology are followed by smaller 

depressions, compared to those generated by the Goring methodology.  Moreover, 

Rayleigh-type solitary waves generated by either method are associated with smaller 

depressions compared to Boussinesq-type solitary waves generated using the same 

methodology.  For generated Rayleigh-type waves at x=10h, amplitude of the depressions 

are observed to be less than 4.5% of the crest heights for the waves generated using the 

New methodology and to be less than 8% of the crest heights for the waves generated 

using the Goring methodology.  On the other hand, for generated Boussinesq-type waves 

at x=10h, amplitudes of the depressions are observed to be less than 7% of the crest 

heights for the waves generated using the New methodology and to be less than 9% of the 

crest heights for the waves generated using the Goring methodology.  Relative 

amplitudes of the depressions (ratio of the depression amplitude and the crest/wave 

height) observed at x = 10h and 30h in each experimental run are tabulated in Table 4.2.  

Amplitudes of the depressions decrease gradually as the solitary waves propagate along 

the wave-tank.  Furthermore, since the celerities of the depressions are smaller than the 

celerities of the humps, depressions separate from the humps gradually as the waves 

propagate along the tank.  This separation process can be considered as a progression 

towards the established solitary wave form that consists of only a hump.  However, the 

longer the distance it takes for the separation to occur, the more dispersive effects act on 

the hump, changing its outskirt profile and reducing its celerity.  The separation process 

occurs over a shorter distance for the generated waves with larger ε values, since the 
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celerities of the generated humps are larger (see Figs. 4.3 and 4.4).  Moreover, 

depressions are detached from the hump in shorter distances for the generated Rayleigh-

type waves as compared to the generated Boussinesq-type waves for the same 

experimental conditions.   The reasons are believed to be: (i) the larger celerity of the 

generated Rayleigh-type waves, and therefore, the larger difference between the celerity 

of the main hump and trailing waves compared to the generated Boussinesq-type waves 

(ii) nonlinear effects are more pronounced in the generated Boussinesq-type waves, 

whereas the linear effects of frequency dispersion are more comparable with the 

nonlinear effects in the generated Rayleigh-type waves.  Therefore, the frequency 

dispersion separates the trailing waves of higher frequency faster and more effective from 

the main hump of lower frequency in the Rayleigh-type waves. 
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Table 4.2 Relative depression amplitudes and profile changes for the generated 

waves  

Exp. 

# 

Methodology 

/ Wave Profile 
ε = H/h 

at/Hexp 

at 10h 

at/Hexp 

at 30h 

Profile change from 

10h to 30h  Ωexp / Ωtheo 

1 GB 0.3 0.070 0.060 10.24% 

2 GB 0.4 0.078 0.070 8.35% 

3 GB 0.5 0.084 0.08 7.69% 

4 GB 0.6 0.060 0.057 7.23% 

5 GR 0.3 0.087 0.070 8.49% 

6 GR 0.4 0.083 0.065 8.47% 

7 GR 0.5 0.08 0.064 8.28% 

8 GR 0.6 0.09 0.08 7.63% 

9 NB 0.3 0.068 0.060 7.53% 

10 NB 0.4 0.076 0.071 5.48% 

11 NB 0.5 0.083 0.079 5.05% 

12 NB 0.6 0.055 0.052 4.68% 

13 NR 0.3 0.062 0.045 6.67% 

14 NR 0.4 0.044 0.038 4.44% 

15 NR 0.5 0.040 0.035 3.41% 

16 NR 0.6 0.045 0.041 3.37% 

Water depth, h, was 0.2 m in all experiments. 

 

 

As Figs. 4.4 and 4.5 illustrate, the separation of depressions from the humps occurs in a 

shorter distance for the waves generated using the New methodology compared to the 

waves generated using the Goring methodology.  For both Boussinesq- and Rayleigh-

type waves generated using the New methodology, the separation of the depressions from 

the humps are clear after propagating a distance of 30h or less.  However, a clear 

detachment of the depressions from the hump for Boussinesq-type waves generated using 

the Goring methodology are not observed throughout the entire length of the tank, while 

detachment within the length of the tank is observed for the Rayleigh-type waves only 

with ε values of 0.5 and 0.6.  Waves of higher amplitude propagate faster; in higher ε 

values, the difference between the celerity of the main waveform and the trailing waves is 

larger and therefore, trailing waves detach faster from the main hump. 
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In order to compare the characteristics of the generated wave profiles (i.e., wave height, 

Hexp, and solitary wave frequency, Ωexp, which represents the profile shape) using both of 

the generation methodologies with the characteristics of the proposed Boussinesq- and 

Rayleigh-type wave profiles, experimental wave elevation data are fitted by Eqn. 4.14 

below.  This equation has the same functional form as the profiles of the Boussinesq- and 

Rayleigh-type waves given in Eqn. 2.3.  A curve fitting analysis is necessary because 

wave gauge measurements are discrete (sampling frequency of 50 Hz) and celerities of 

the generated waves (1 – 2 m/s) are large; therefore, maximum wave elevation values 

measured do not necessarily correspond to the generated wave height values and the 

recorded wave elevation profiles are not necessarily symmetrical with respect to the 

recorded highest wave elevations as can be seen in Figs. 4.4 and 4.5.  Moreover, this 

analysis is necessary to estimate the solitary wave frequencies of the generated waves.  

There are three unknowns in Eqn. 4.14 (solitary wave frequency, Ωreg; wave height, Hreg; 

and time fitting parameter, t0), which are determined using the least squares method. 

ηexp = Hreg sech² (Ωreg (t – t0))          (4.14) 

Ωreg determined from the fitting analysis is considered as the experimental solitary wave 

frequency, and hereafter is referred as Ωexp.  Eqn. 4.14 is fitted to the top 95% (i.e., wave 

elevation values larger than 5% of the wave height) of the recorded wave profile.  The 

reason for choosing the top 95% is that the depression with the trailing waves following 

the hump alters the smooth experimental solitary wave profile approximately within the 

bottom 5% of the wave profile.  In order to avoid the unrealistic values for Hreg, its value 

is forced to be within ± 2% of the maximum recorded water elevation.  Result of a typical 
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fitting analysis is presented in Fig. 4.6 by comparing the experimental data with its best 

fit. 

 

In Fig. 4.7, Hexp/Htheo [Htheo - theoretical wave height value for the aimed Rayleigh (a) or 

Boussinesq (b) type waves] at x=10h (2 m) for the waves generated using the Goring and 

the New methodologies are presented.  As can be clearly seen from this figure, compared 

to the wave height values of the generated waves using the Goring methodology, wave 

height values of the generated waves using the New methodology are closer to the wave 

height values of the aimed Rayleigh- and Boussinesq-type waves. 
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Figure 4.6 A typical fitting analysis output. Recorded water surface elevation (…) 

and fitted curve (―). 
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Figure 4.7 Experimental wave heights at x = 10h from the wave paddle. a) Rayleigh-

type waves [the New methodology (◊); Goring methodology (□)]. b) Boussinesq-type 

waves [the New methodology (o); Goring methodology (/)]. 

 

 

Solitary wave is a permanent waveform that may propagate long distances without a 

change in their characteristics.  Therefore, we considered the dispersive characteristics of 

the generated waves in the laboratory as an indication in assessing the resemblance of the 

generated waves to the aimed solitary waves.  Moreover, it is clear that the dispersive 

characteristics of the generated waves should be taken into consideration for large-scale 

laboratory studies in which waves propagate tens of meters before reaching to the 

measurement station.  To examine the dispersive characteristics of the generated waves, 

the attenuation trends for the heights and frequencies of the generated waves as they 

propagate along the tank are investigated. 

 

For a solitary wave propagating in the wave-tank, in addition to the wave damping 

inherent to the dispersive characteristics of the generated waves, frictional wave damping 

occurs due to the sidewalls and bottom wall.  In order to assess the wave attenuation 

(hence, dispersive characteristics) characteristics of the generated waves solely due to the 

generation mechanism in the absence of frictional damping, a comparison between the 
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observed wave height attenuation of the generated solitary waves and the predicted wave 

height attenuation of the waves only due to frictional damping is given in Figs. 4.8 and 

4.9.  Predictions for wave height attenuations due to frictional damping as the waves 

propagate along the tank are calculated based on the following analytical 

parameterization proposed by Keulegan (1948). 

-1 -1
4 4 1 22 1 1

3112
2 2

H H h l

h h b h
g h

υ     = + +     
    

        (4.15) 

Here, H2 is the attenuated height of the wave at a distance of l from a reference position 

that the wave has already passed through with a height of H1, b is the width of the tank, 

and υ  is the kinematic viscosity of water.  In frictional wave damping calculations 

presented in Figs. 4.8 and 4.9, reference wave height, H1, is selected to be the 

experimental wave height value recorded by the first wave gauge at x = 10h (2 m); hence, 

denoted as Hexp-10h.  In Figs. 4.8 and 4.9, the relative experimental wave heights, 

Hexp/Hexp-10h, at different distances along the wave-tank are presented for Rayleigh- (Fig. 

4.8) and Boussinesq-type (Fig. 4.9) waves generated using both the Goring and the New 

methodologies.  In the graphs given in these figures, the deviation of the relative 

experimental wave height values (solid lines) from the wave attenuation predictions due 

to frictional damping (dashed lines) may be interpreted to infer the establishment 

characteristics of the generated waves, i.e., the less deviation from the predictions the 

more established generated waves.  As can be clearly seen from these graphs, the waves 

generated using the New methodology follow the Keulegan’s predictions for the 

frictional damping better and undergo less attenuation compared to those generated by 

the Goring methodology; hence, indicating that less dispersive waves are generated using 
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the New methodology.  This observation may be explained by the fact that the wave 

profiles generated using the New methodology have smaller depression amplitudes as 

well as demonstrate faster separation of the depressions and the humps compared to the 

waves generated using the Goring methodology.  Comparing the graphs in Figs. 4.8 and 

4.9, it can be seen that the heights of Rayleigh-type waves attenuate less than the heights 

of Boussinesq-type waves.  This observation supports the observation of Guizien and 

Barthelemy (2002) that the attenuation of Rayleigh-type waves follows Keulegan’s 

predictions better than Boussinesq-type waves which undergo severe damping that cannot 

be explained only by friction.  Guizien and Barthelemy (2002) attributed this difference 

in the observed wave attenuation characteristics to different definitions of outskirt decay 

coefficient, k, in Boussinesq- and Rayleigh-type waves.  Another reason for the observed 

difference is the difference in the characteristics of the depressions formed in the 

laboratory generation of Boussinesq- and Rayleigh-type waves.  As mentioned earlier, 

depressions have larger amplitudes and are attached to the humps for a longer distance 

for Boussinesq-type waves compared to Rayleigh-type waves.  Therefore, depressions are 

expected to have more pronounced dispersive effects on Boussinesq-type waves.  Since 

the wave profiles generated using the New methodology resemble the aimed theoretical 

solitary wave profiles better and have smaller depression amplitudes as well as 

demonstrate faster separation of the depressions and the humps compared to the waves 

generated using the Goring methodology, the latter reasoning may also explain the 

improved establishment rate of the waves generated using the New methodology. 
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Figure 4.8 Attenuation of generated Rayleigh-type waves with distance.  Waves 

generated using the New methodology (◊) and the corresponding Keulegan’s prediction 

(Eqn. 4.15) (––); waves generated using the Goring’s methodology (□) and the 

corresponding Keulegan’s prediction (Eqn. 4.15) (- - -). (a) – (d) corresponds to ε = 0.3, 

0.4, 0.5, and 0.6 respectively. 
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Figure 4.9 Attenuation of generated Boussinesq-type waves with distance.  Waves 

generated using the New methodology (o) and the corresponding Keulegan’s prediction 

(Eqn. 4.15) (––); waves generated using the Goring methodology (/) and the 

corresponding Keulegan prediction (Eqn. 4.15) (- - -). (a) – (d) corresponds to ε = 0.3, 

0.4, 0.5, and 0.6 respectively. 
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The second process of interest in assessing the dispersive characteristics of the generated 

waves is the change in wave profile shape as the waves propagate along the tank.  The 

parameter that characterizes the solitary wave profile shape is the solitary wave 

frequency, Ω = kc.  In Figs. 4.10 and 4.11, the ratios of the experimental solitary wave 

frequencies, Ωexp, and their theoretical values, Ωtheo [ ( )243 hHgtheo =Ω  for Rayleigh-

type waves in Fig. (4.10), and ( ) ( )343 hHhHgtheo +=Ω  for Boussinesq-type waves in 

Fig. (4.11)] at different positions along the tank are given.  Note that the values of these 

ratios closer to unity indicate the closer resemblance of the generated wave profiles to the 

aimed theoretical solitary wave profiles and the smaller changes in these ratio values 

along the tank (i.e., milder slopes of the curves in Figs. 4.10 and 4.11 indicate less 

dispersion of the generated waves.  Therefore, from Figs. 4.10 and 4.11, it can be 

concluded that the profiles of the waves generated using the New methodology resemble 

the aimed wave profiles closer and disperse less as they propagate along the tank 

compared to the ones generated by the Goring methodology for all the experimental 

conditions studied.  The change in the ratios of the experimental and theoretical solitary 

wave frequencies from x=10h to x=30h is observed to be confined within 4.5% to 7.5% 

of the initial ratios (at x=10h) for the Boussinesq-type waves and 3.5% to 6.5% of the 

initial ratios for the Rayleigh-type waves generated using the New methodology whereas 

frequency change for the waves generated by the Goring methodology is observed to be 

confined within 7.5% to 10.5% of the initial ratios for Boussinesq-type waves and 7.5% 

to 8.5% of the initial ratios for Rayleigh-type waves.   Percentage change values for the 

ratio of experimental and theoretical frequencies of the  
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Figure 4.10 Solitary wave frequency ratios (experimental to theoretical) along the 

wave-tank for Rayleigh-type waves generated using the New methodology (◊) and the 

Goring methodology (□).  (a) – (d) corresponds to ε = 0.3, 0.4, 0.5, and 0.6 respectively. 
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Figure 4.11 Solitary wave frequency ratios (experimental to theoretical) along the 

wave-tank for Boussinesq-type waves generated using the New methodology (o) and the 

Goring methodology (/).  (a) – (d) corresponds to ε = 0.3, 0.4, 0.5, and 0.6 respectively. 

 

 

solitary waves propagating from x = 10h to 30h for each experimental run are tabulated 

in Table 4.2. 
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the generation methodologies are observed to resemble the aimed waves better than the 

Boussinesq-type waves. 

 

Finally, the average experimental propagation velocities of the generated waves, cexp, are 

compared with the theoretical propagation velocities of the aimed solitary waves, ctheo, as 

shown in Fig. 4.12 [ )( Hhgctheo +=  for both Boussinesq- and Rayleigh-type waves].  

Average experimental celerities are determined from the wave gauge recordings at x=10h 

and x=30h by dividing the distance traveled by the hump (i.e., 20h) by the time elapsed 

during this travel.  Due to accuracy considerations, an average experimental celerity is 

calculated over the measurement section and change in the experimental celerities are not 

considered.  In Fig. 4.12, it can be seen that ratios of the average experimental and 

theoretical celerities of the waves generated by the New methodology are within 1.3% 

neighborhood of unity for the Rayleigh-type waves and 3.2% of unity for the Boussinesq-

type waves.  On the other hand, these celerity ratios for the waves generated by the 

Goring method are within 4.8% neighborhood of unity for the Rayleigh-type waves and 

8.2% of unity for the Boussinesq-type waves.  Like the salient characteristics discussed 

above, this observation indicates that celerities of the waves generated by the New 

methodology are in better agreement with the aimed wave celerities as compared to the 

celerities of the waves generated by the Goring methodology.  Moreover, celerities of the 

generated Rayleigh-type waves demonstrated a better agreement with the celerities of the 

aimed waves in comparison to Boussinesq-type waves.  
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Figure 4.12 Experimental to theoretical solitary wave celerity ratio vs. dimensionless 

wave height (a) for Rayleigh-type waves generated using the New methodology (◊) and 

the Goring methodology (□); (b) for Boussinesq-type waves generated using the New 

methodology (o) and the Goring methodology (∆). 
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CHAPTER FIVE 

 

WATER SURFACE DEPRESSIONS 

 

This chapter, discussing on the water surface depressions, consist of two parts.  In the 

first part of this chapter, the trajectory of the wave paddle for the generation of water 

surface depressions using the Goring methodology is derived and a series of experiments 

were conducted in a water depth of 30 cm to examine the Goring methodology in 

generating water surface depressions.  In the second part of this chapter, a large set of 

experiments were conducted in three different water depths of 6 cm, 10 cm, and 15 cm 

with which the propagation characteristics of water surface depressions in terms of 

profile shape, amplitude attenuation, and celerity were investigated.  Observations are 

discussed in detail by presenting the recorded data.  After identifying the important 

dimensionless parameters involved in the propagation of depressions, empirical 

parameterizations for characterizing the propagation characteristics of the water surface 

depressions are proposed.   

 

 

5.1 Wave Generation Methodology 

The traditional methodology by Goring (1979) for the generation of elevation solitary 

waves by piston-type wavemakers is employed to generate water surface depressions.  

The details of this wave generation methodology is given in Chapter 2.  Briefly, this 

traditional methodology assumes that, during the generation, the horizontal component of 

the water particle velocity next to the wave-paddle is equal to the velocity of the wave-

paddle: 
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( )tu
dt

d
,ξ

ξ
=                               (2.1) 

This horizontal component of the water particle velocity along the wave-tank is assumed 

to be constant throughout the water depth.  Based on the conservation of mass 

considerations, Svendsen (1974) derived the the depth-averaged velocity for long waves 

of permanent form as follows: 

( ) ( )
( )th

tc
tu

,

,
,

ξη
ξη

ξ
+

=                                        (2.2)              

Water surface depressions do not have any particular theoretical profile.  In the present 

study, a negative solitary wave is chosen as a profile of water surface depressions to 

derive the trajectory of the wave paddle.  The 1
st
 order approximate solution of the Euler 

equation for solitary waves by Boussinesq (1871) is used in Eqns. 2.2 as: 

η =-at sech
2
[k(ct - ξ)]                         (5-1) 

where at is the amplitude of the aimed negative solitary wave, k is the boundary/outskirt 

decay coefficient, [ ( )343 hHk =  from Boussinesq (1871)], and c is the celerity of the 

depression.  The propagation speed of a depression solitary wave is very close to the 

celerity of long gravity waves defined as gh .  Korteweg and De-Vries (1895) derived 

the theoretical celerity of depression solitary waves as ( )hagh t 21− .  Boussinesq 

(1871) and Rayleigh (1878) for the 1
st
 order approximate solutions of Euler equation 

found the celerity of depression solitary waves as ( )tahg − .  The celerity values 

obtained from these equations are very close.  In the wave-paddle trajectory calculations 

for the generation of water depressions, the celerity is calculated by the equation derived 
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by Korteweg De-Vries (1895) for the water surface depression profile of Eqn. 5.1.  A 

typical profile of the aimed depression solitary wave is shown in Fig. (5.1b). 

By solving Eqns. 2.1, 2.2, and 5.1 simultaneously, an implicit relationship for the 

trajectory of the wave-paddle, ξ(t), is obtained (see Goring, 1979 for the details of the 

derivation): 

( ) ( )( )ξξ −−= ctk
kh

a
t t tanh                       (5.2) 

From Eqn. 5.2, the total stroke length of the wave-paddle, S, calculated as 2at/kh. Ideally, 

for the generation of a depression solitary wave, Eqn. 5.2 implies an infinite duration of 

the wave paddle motion.  However, in order to make it applicable for the laboratory wave 

generations, the trajectory of the wave paddle should be cut off.  Rearranging Eqn. 5.2 in 

terms of t, gives: 

ckc

a

kh

t t ξ
ξ

+









=

−1tanh

                    (5.3) 

 

For practical purposes, as noted by Goring (1979), any value close enough to unity can be 

chosen to replace ξkh/at.  Goring (1979) used 0.999 and assumed that this is close enough 

to maintain the desired accuracy of the wave paddle trajectory.  By introducing ξkh/at = 

0.999 into Eqn. 5.3, the relationship for the total duration of the wave paddle, T, is 

derived as: 

c

S

kc
T +=

6.7
                         (5.4) 

In Eqn. 5.4, c is the theoretical celerity of the depression solitary waves determined by 

the equation proposed by Korteweg and De-Vries (1895) as ( )haghc t−= 1 .   A typical 
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trajectory of the wave paddle and the corresponding aimed depression solitary wave is 

shown in Fig. 5.1. 

 

Figure 5.1 (a) A typical trajectory of the wave-paddle for generating a depression 

solitary wave. (b) Theoretical profile of the aimed depression solitary wave.  Graphs are 

for εt = at/h = 0.05 in a still water depth of 30 cm.   

 

 

In order to examine the depression wave generation methodology outline above, water 

surface depressions were generated in a still water depth of 30 cm that was uniform along 

the tank up to the steep sandy beach (see Fig 3.1).  Water surface elevation data were 

recorded from 1.5 m (x = 5h) upto 6 m (x = 20h) from the wave paddle in equal steps of 1 

m except for the second wave gauge which is placed at a distance of 50 cm from the first 

one.  Depression solitary waves with relative trough amplitude values ranging from 0.05 

to 0.15 were generated. 
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Table 5.1  Experimental conditions and details for the generation of water surface 

depressions 

 

Exp. Run # h (cm) εt = at/h c (m/s) k (m
-1

) S (m) T (s) 

1 30 0.050 1.67 0.64 0.15 7.20 

2 30 0.075 1.65 0.80 0.19 5.87 

3 30 0.100 1.63 0.92 0.22 5.20 

4 30 0.125 1.60 1.02 0.25 4.81 

5 30 0.150 1.58 1.12 0.27 4.47 

εt, c, and k are all values associated with the aimed profile and are not from 

experimental recordings. 

 

 

Recorded water surface elevation data at 1.5 m from the initial position of the wave-

paddle (x = 5h) are presented in Fig. 5.2.  Graphs are plotted for the relative water surface 

elevation, η/at, (vertical coordinate axes) versus the dimensionless time, hgt / , 

(horizontal coordinate axes).  In these graphs, thick solid lines represent the recorded 

waveforms, and thin solid lines represent the aimed profiles of depression solitary waves 

defined by Eqn. 5.1.  As can be seen from this figure, generated depressions are followed 

by a long, small-amplitude elevation trailing wave.  Once a depression forms and starts to 

detach from the wave paddle, creation of this trailing wave is inevitable due to the 

deceleration of the wave paddle to a complete stop.  This process was visualized by 

recording a high-speed video for the motion of the wave paddle.   
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Figure 5.2 Generation of water surface depressions.  Wave elevation data recorded at 

x = 5h (1.5 m from the wave paddle) in still water depth of 30 cm. (a) aimed εt = at/h = 

0.05, (b) aimed εt = 0.075, (c) aimed εt = 0.1, (d) aimed εt = 0.125, (e) aimed εt = 0.15.  

Recorded water surface elevation (―――); aimed depression solitary wave profile (――――).   
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The amplitude of the trailing wave increases as the waveform propagates until it splits up 

into a series of oscillatory trailing waves due to the frequency dispersion process which is 

clearly seen in Figs. 5.3 through 5.5 for the similar experiments conducted in a water 

depth of 10 cm.  These trailing waves propagate slower than the main depression.  

Therefore, the rear edge of the depression adjusts itself to maintain the slower 

propagation speed of the trailing waves.  A similar phenomenon is observed during the 

generation of elevation solitary waves as described in Chapter 4.  However, in the 

generation of elevation solitary waves, a trailing depression wave follows the main hump 

and deforms its rear boundary.   

 

 

5.2 Propagation of Water Surface Depressions 

In order to study the propagation characteristics of water surface depressions, a series of 

experiments were conducted in three different water depths of 6 cm, 10 cm, and 15 cm.  

Wave elevation data were recorded at different locations along the wave-tank starting 

from the wave paddle (x≈0) upto x=7 m.  Water surface level was recorded  using 

capacitance wave gauges (in the case of 10 cm water depth) and a digital video camera 

(in the case of 6 cm and 10 cm water depths).  Aiming for a negative solitary wave 

profiles, water surface depressions with relative trough amplitude values ranging from 

0.1 to 0.6 were generated.  Details of the experimental conditions are summarized in 

Table 5.2. 
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Table 5.2 Experimental conditions for the propagation of water surface 

depressions 

 

 

 

Figs. 5.3 through 5.5 present the water surface level data recorded by the wave gauges for 

the experimental runs # 6 through 8 given in Table 5.2.  In these figures, graphs are 

plotted for the dimensionless water surface elevation, η/h, (vertical coordinate axes) 

versus the dimensionless time, hgt / , (horizontal coordinate axes).  Each graph shown 

in Figs. 5.3 through 5.5 corresponds to a recording of a different wave gauge along the 

wave-tank.  In these figures, graphs a through g are from the wave gauges starting from 

the closest wave gauge to the wave paddle that is located at x = 5h (50 cm from the wave 

Exp. 

Run # 
h (cm) εt = at/h c (m/s) k (m

-1
) S (m) T (s) 

Measurement 

Method 

1 6 0.1 0.73 4.56 0.043 2.34 Video Camera 

2 6 0.2 0.69 6.45 0.062 1.80 Video Camera 

3 6 0.4 0.59 9.13 0.088 1.56 Video Camera 

4 6 0.5 0.54 10.2 0.098 1.56 Video Camera 

5 6 0.6 0.49 11.18 0.107 1.61 Video Camera 

6 10 0.20 0.89 3.87 0.103 2.32 Wave gauge 

7 10 0.25 0.86 4.33 0.115 2.17 Wave gauge 

8 10 0.30 0.83 4.74 0.127 2.08 Wave gauge 

9 15 0.2 1.08 2.58 0.155 2.87 Video Camera 

10 15 0.4 0.94 3.65 0.219 2.45 Video Camera 

εt, c, and k are all values associated with the aimed profile and are not from 

experimental recordings. 

ε  
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paddle, graph a) to the farthest wave gauge that is located at x = 70h (7 m from the wave 

paddle, graph g).  All wave gauges are located in equal intervals of 1 m in between, 

except for the second wave gauge which is located 1.5 m from the first one.  The 

evolution of the generated water surface depression in these successive graphs is clear.  

The initial graph in all figures, corresponding to the recording of the first wave gauge 

located at 50 cm from the wave paddle, consists of a solitary-like negative wave.  The 

higher the amplitude of the aimed depression, the more pronounced were the oscillatory 

trailing waves recorded at the first gauge indicating more dispersive waveforms.  Water 

surface level graphs for the experimental runs 1-5, 9, and 10 are presented in the 

Appendix.  For those experiments water surface levels were recorded using a digital 

video camera and the data were extracted using the procedure outlined in Chapter 3. 

 

Experimental Results 

In all the experimental runs, the initial solitary-like depression wave deformed into a 

triangular-shape depression wave followed by a series of oscillatory trailing waves.  As 

the initial solitary-like depression propagates, the leading half of the depression wave 

flattens and elongates in the direction of propagation whereas the rear half of the 

depression becomes steeper.  Therefore, the lowest point of the depression gets closer to 

the rear end of the depression as the depression propagates which makes the depression 

look more like a triangle. 

The experimental celerity of a generated depression wave was estimated by the time 

elapsed for the depression wave to pass successive wave gauges that are separated with a 

known distance.  Then, cexp was estimated by averaging all the experimental celerities 
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calculated for each pair of wave gauges.  In Fig. 5.6 the dimensionless theoretical 

celerity, ghctheo , is plotted against the dimensionless experimental celerity, ghcexp .  

Theoretical celerities were calculated using the equation derived by Korteweg de-Vries 

(1895) as ( )haghc t 21−= .  Since the amplitude of the depression is decreasing during 

the propagation, the theoretical celerity, ctheo, is estimated by averaging the theoretical 

celerities at the location of each recording station.  In Fig. 5.6, the corresponding 

experiment numbers ( see Table 5.2) are marked adjacent to the symbols.  In this figure, 

the thin dashed line represents the case of a perfect match between the experimental and 

theoretical celerities.  As can be seen from this figure, the celerity of depressions are very 

close to, yet less than, the celerity of long waves as previously also observed by 

Hammack and Segur (1978).  The theory always underestimates the measured celerity of 

the generated depression; the greater the relative amplitude of the depression, the greater 

the error in the theoretical estimation.  The celerity of a propagating depression is not 

constant during the propagation and it slightly increases with distance as the amplitude of 

the depression decreases.  This agrees well with the theoretical trend of the celerity 

predicted by ( )haghc t 21−= . 
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Figure 5.3 Recorded water surface elevation along the wave-tank, εt = 0.2, h = 10 cm 

(a) x/h = 5, (b) x/h = 20, (c) x/h = 30, (d) x/h = 40, (e) x/h = 50, (f) x/h = 60, (g) x/h = 70 
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Figure 5.4 Recorded water surface elevation along the wave-tank,εt = 0.25, h = 10 cm 

(a) x/h = 5, (b) x/h = 20, (c) x/h = 30, (d) x/h = 40, (e) x/h = 50, (f) x/h = 60, (g) x/h = 70 
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Figure 5.5 Recorded water surface elevation along the wave-tank, εt = 0.3, h = 10 cm 

(a) x/h = 5, (b) x/h = 20, (c) x/h = 30, (d) x/h = 40, (e) x/h = 50, (f) x/h = 60, (g) x/h = 70 
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Figure 5.6 Comparison of averaged experimental and theoretical celerities of the 

generated water surface depressions.  Numbers adjacent to the symbols indicate the 

number of experiment as given in Table 5.2.  Thin dashed line represents the line of equal 

experimental and theoretical celerity values. 

 

 

As stated earlier, the profile of a propagating depression includes three main parts: a 

leading limb, a rear limb, and a series of oscillatory trailing waves.  The leading half can 

be approximated by half of a negative solitary wave profile.  In order to estimate the 

boundary decay coefficient of the leading edge, half of a negative solitary wave profile 

with a general function of Eqn. 5.5 has been fitted to the leading half of the recorded 

waveform. 
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η = – at-reg sech
2
 [kexp cexp(t-t0)]                                   (5.5) 

By performing a curve fitting analysis and using the least squares method, the three 

unknowns of the wave profile given by Eqn. 5.5 [i.e., the leading boundary decay 

coefficient, kexp, the amplitude of depression, at-reg, and the time constant, t0] are 

determined for each experimental run and at all individual recording stations.  Eqn. 5.5 is 

fitted to the bottom 95% (i.e., depression elevation values larger than 5% of the trough 

height) of the recorded wave elevation data.  The main reason for choosing the bottom 

95% of the wave elevation data is the problem of contamination of the top 5% of the 

recorded waveforms by the noise signals, especially in the case of low amplitude troughs.  

Result of a typical fitting analysis is presented in Fig. 5.7.  Values of kexp for the leading 

half of the generated depressions observed at different locations along the wave-tank are 

presented in Fig. 5.8a.  In this figure, the dimensionless boundary decay coefficient, kh, is 

graphed against the dimensionless distance from the wave paddle, x/h for all 

experimental runs.  As can be seen in this figure, the larger the trough amplitude, the 

faster the change in the leading half toward a flatter profile.  After an initial rapid change 

in the profile shape (until approximately x = 30h), the rate of change decreases 

considerably in all cases.  However, there is always a tendency toward elongation and a 

smoother profile in the leading half of the waveform due to nonlinear dispersion 

processes.   
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Figure 5.7 A typical curve fitting analysis to determine the length characteristics in 

the leading and rear halves of generated depression. The waveform is from Exp. #9 and 

recorded by the fourth wave gauge at x = 4 m. (–––) - recorded wave elevation data, (– 

– –) - best fitted curve to the leading half of the recorded profile, (– – –) - best fitted line 

to the rear half of the recorded profile. 

 

 

Ursell number, Ur, governs the relative importance of linear effects of frequency 

dispersion versus nonlinear effects of amplitude dispersion in the propagation of 

waveforms.  For Ursell numbers that are much larger than unity, Ur >> 1, nonlinear 

effects govern the wave propagation whereas for Ursell numbers that are much smaller 

than unity, Ur << 1, linear effects govern the wave propagation.  For values of Ur close 

to unity, both linear and nonlinear factors contribute to the wave propagation to some 

extent and therefore, both effects should be taken into account.  For the leading half of 

the propagating depression, Ur number can be defined as: 

( ) 3

2

2
h

la

Lh

ha
Ur tt ==                      (5.6) 
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where l is the length characteristic of the leading half of the waveform in the direction of 

propagation.  The length of a solitary wave of elevation or depression is theoretically 

infinite.  However, for practical purposes, since the water surface elevation becomes zero 

reasonably fast with x (see Eqn. 5.5), an effective length, L, (for a similar definition of 

effective length of a solitary wave see Grimshaw, 1971) can be defined as: 

k
L

)10(cosh2 1−

=                   (5.7) 

In Eqn. 5.7, L has been determined such that at x = L, η/h = 0.01.  The length 

characteristic of the leading half of a solitary wave, l, is half of L determined using Eqn. 

5.7.   

 

Elongation of the depression from its frontal edge manifests the increase of nonlinear 

effects in the leading half of the propagating waveform.  To further investigate the rate of 

change in the Ursell number and consequently the rate of change in the importance of 

nonlinear effects on the wave propagation, Ursell numbers for the leading halves of the 

propagating depressions at different locations along the tank are estimated for all 

experimental runs.  In Fig. 5.8b, Ur is sketched versus dimensionless distance, x/h, for all 

runs.   
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Figure 5.8 (a) Experimental outskirt boundary decay coefficient of the leading edge, 

kexp, (b) Ursell number of the leading half.  (–●–) Exp. #1, εt = 0.1, h = 6 cm, (–*–) 

Exp. #2, εt = 0.2, h = 6 cm, (–○–) Exp. #3, εt = 0.4, h = 6 cm, (–□–) Exp. #4, εt = 0.5, h 

= 6 cm, (–◊–) Exp. #5, εt = 0.6, h = 6 cm, (–∆–) Exp. #6, εt = 0.3, h = 10 cm, (–+–) 

Exp. No. 7, εt = 0.25, h = 10 cm, (–×–) Exp. No. 8, εt = 0.3, h = 10 cm, (–■–) Exp. No. 

9, εt = 0.3, h = 15 cm, (–▲–) Exp. No. 10,  εt = 0.3, h = 15 cm. 

 

 

By the reduction in the boundary decay coefficient (thus, elongation) of the leading half 

of the propagating depression, the effects of nonlinearity in the propagation of the leading 

half are enhanced.  While Ur always increases as the wave propagates, the rate of 

increase in Ur, (thus, the rate of increase in nonlinear effects) slows down with distance.  

For very large values of Ur, linear effects of frequency dispersion can be neglected in the 

propagation of the leading half of a depression. 

  

In order to estimate the Ursell number for the rear half of the propagating depression, l is 

assumed to be the distance from the lowest elevation point of the trough to the point 
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where the profile intersects with the still water level.  The change in l and Ur with 

distance for the rear halves of the generated depressions are plotted in Figs. (5.9a) and 

(5.9b), respectively. 
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Figure 5.9 (a) Experimental length characteristic of the rear half, l. (b) Ursell number 

of the rear edge.  (–●–) Exp. #1, εt = 0.1, h = 6 cm, (–*–) Exp. #2, εt = 0.2, h = 6 cm, (–

○–) Exp. #3, εt = 0.4, h = 6 cm, (–□–) Exp. #4, εt = 0.5, h = 6 cm, (–◊–) Exp. #5, εt = 

0.6, h = 6 cm, (–∆–) Exp. #6, εt = 0.3, h = 10 cm, (–+–) Exp. # 7, εt = 0.25, h = 10 cm, 

(–×–) Exp. # 8, εt = 0.3, h = 10 cm, (–■–) Exp. # 9, εt = 0.3, h = 15 cm, (–▲–) Exp. # 

10,  εt = 0.3, h = 15 cm. 

 

 

As can be seen from Fig. 5.9a, the characteristic length of the rear half in a generated 

depression decreases as it propagates.  The reduction rate is faster initially and slows 

down gradually with distance.  The Ursell number in the rear half also decreases as the 

depression propagates along the wave-tank as shown in Fig. 5.9b.  Similarly, the 

reduction rate is higher at the outset and diminishes with distance. 
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Significant amplitude attenuation of the generated depression waves is observed.  This 

attenuation is due to viscous and dispersive effects.  As discussed in Chapter 4, Keulegan 

(1948) proposed the following analytical parameterization to predict the attenuation of 

solitary wave’s amplitude in channels due to bottom and sidewall frictional effects: 

2321

41

1

41

2 2
1

12

1

hgh

x

b

h

h

H

h

H υ







 ++







=








−−

            (4-15) 

Elevation solitary waves are in weakly nonlinear and weakly dispersive regimes; 

therefore, damping of the amplitude is mainly governed by viscous frictional effects 

rather than dispersive effects.  However, water surface depressions are fully nonlinear 

and fully dispersive waveforms, and dispersive effects are of primary importance for 

amplitude attenuation.  During the propagation of a depression wave both linear 

dispersive effects (known as frequency dispersion) and nonlinear effects (known as 

amplitude dispersion) contribute to the reduction of the wave amplitude.  Fig. 5.10 

illustrates the attenuation of depressions’ amplitude with distance for the experimental 

runs # 6 - 8 (see Table 5.2).  In this figure, solid lines with symbols represent the 

attenuation curves extracted from the recorded wave elevation data at different stations 

along the wave-tank.  Graphs are plotted for the dimensionless depression amplitude 

at/at0 (vertical coordinate axes, at is the measured depression amplitude along the wave-

tank, and at0 is the measured depression amplitude at the wave-paddle) versus 

dimensionless distance along the wave-tank, x/h (horizontal coordinate axes).  Initially, 

generated waves are highly dispersive, leading to a rapid attenuation of amplitudes with 

distance as shown in Fig. 5.10.  However, it can be seen that the  dispersive effects 

diminish as the waves propagate further along the tank (approximately a distance of 30h - 

40h from the wave paddle) as indicated by the decrease in the damping rate of the 
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amplitudes.  Once the depressions propagate through this initial region, the rate of 

attenuation slows down; however, it is still larger than Keulegan’s predictions.  This 

indicates the ongoing contribution of the dispersive effects during the rest of the wave 

propagation. 
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Figure 5.10 Amplitude attenuation of the water surface depressions along the wave-

tank. (a) Exp. #6, εt = 0.2, h = 10 cm, (b) Exp. #7, εt = 0.25, h = 10 cm, (c) Exp. #8, εt = 

0.3, h = 10 cm. (–○–) Attenuation curve; (- - -) Keulegan’s prediction. 
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Parameterization 

In this section the efforts to parameterize the shape of the depression wave profile are 

presented.  The depression waves are treated of being composed of two parts: leading and 

rear halves as discussed before.  The leading half is considered to be a negative solitary-

like wave and the rear half is considered to be a straight line.  Therefore, parameterization 

for the depression amplitude, frequency (hence, boundary decay coefficient), and rear 

half slope is needed for a propagating depression wave. 

  

The primary parameters of interest for the propagation of water surface depressions are: 

the initial amplitude of the depression at x=0, at0; the stationary water depth, h; the 

gravitational acceleration, g; the propagation distance of the generated wave, x; the 

dynamic viscosity of the water, υ; and the amplitude of the depression at the distance x 

from the wave paddle at.  By performing a dimensional analysis (for details of the 

dimensional analysis see Malek-Mohammadi and Testik (2009b)), four important 

dimensionless parameters are identified as: (i) the relative amplitude of the depression, 

at/at0; (ii) the dimensionless distance traveled by the depression, x/h; (iii) the initial 

dimensionless wave amplitude, εt0 = at0/h; and (iv) the dimensionless viscous diffusion 

velocity, υ/(g
1/2 

h
3/2

).   

 

Experimental data collected in the present study together with the experimental data 

reported by Hammack and Segur (1978) are used to perform a fitting analysis as shown 

in Fig. 5.7 to determine the depression amplitudes, boundary decay coefficients for the 

leading halves, and the slopes of the rear halves of the depression waves at different 
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locations along their propagation path.  Consequently, the following empirical equation 

for the attenuation of water surface depressions is proposed: 
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Experimental data and the predictions of Eqn. 5.8 are presented in Fig. 5.11.  As can be 

seen from this figure, estimations using the proposed parameterization are in good 

agreement with the experimental data collected in this study and the study by Hammack 

and Segur (1978) with the R
2
 value of 0.96.   
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Figure 5.11 Comparison of the experimental data and the estimations by Eqn. 5.8 for 

the attenuation of a water surface depression. (●) experimental data, (–––) estimations. 
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By performing a similar analysis (for details see Malek-Mohammadi and Testik (2009b)), 

the important dimensionless governing the depression wave profile shape are identified 

as the dimensionless frequency of the leading half, Ωat/(gh)
1/2

, the dimensionless distance 

traveled by the depression, x/h, the dimensionless viscous diffusion velocity, υ/(g
1/2 

h
3/2

), 

and the Froude number c/(gh)
1/2

.  Experimental data reported in the present study 

together with the experimental data presented by Hammack and Segur (1978) are plotted 

in Fig. 5.12.  The following empirical equation for the frequency of the leading edge of 

the propagating water surface depression is proposed: 
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Figure 5.12 Comparison of the experimental data and the estimations of Eqn. 5.9 for 

the boundary shape of the leading half of propagating water surface depressions. (●) 

experimental data, (–––) estimations. 
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As can be seen from this figure, estimations using the proposed parameterization are in 

good agreement with the experimental data collected in this study and the study by 

Hammack and Segur (1978) with the R
2
 value of 0.94. 

 

Finally, a similar analysis is performed to identify the following important dimensionless 

parameters for the slope of the rear half of a propagating depression: the relative slope of 

the rear boundary, S/S0, (S – slope after a particular propagation distance, S0 – initial 

slope at the wave paddle); the dimensionless viscous diffusion velocity, υ/(g
1/2 

h
3/2

); the 

dimensionless amplitude of the depression at a distance x from the wave paddle, at/h; and 

the dimensionless distance traveled by the depression, x/h.  Experimental data collected 

in the present study together with the experimental data presented by Hammack and 

Segur (1978) are shown in Fig. 5.13.  The following empirical parameterization for the 

slope of the rear edge of the propagating water surface depression is proposed: 

6/1

2/12/3

6/13/1

0

015.0

−
























=
ghh

a

h

x

S

S t υ
        (5.10) 

As can be seen from this figure, estimations using the proposed parameterization are in 

good agreement with the experimental data collected in this study and the study by 

Hammack and Segur (1978) with the R
2
 value of 0.93. 
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Figure 5.13 Comparison of the experimental data and the estimations by Eqn. 5.10 for 

the slope of the rear half of a propagating water surface depression. (●) experimental 

data, (–––) fitted curve. 
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CHAPTER SIX 

 

CONCLUSIONS 

 

 

In the present study, solitary waves and water surface depressions representing two 

common components of a typical tsunami profile were generated in a laboratory wave-

tank.  Furthermore, physics of propagation of these two waveforms (i.e. profile shape 

evolutions, amplitude attenuation, and propagation celerity) were studied in detail.  In 

this Chapter, major conclusions drawn from the present study that are discussed in 

Chapters 4 and 5 are summarized and possible future research directions are briefly 

discussed. 

 

Solitary waves 

As previously argued by Synolakis (1990), the traditional methodology proposed by 

Goring (1979) does not take into account the evolving nature of the wave during the 

formation.  In other words, it considers an established profile of a solitary wave and its 

characteristics, such as celerity, even during the generation process.  Motivated by this 

discrepancy, a New methodology for laboratory generation of solitary waves using 

piston-type wavemakers is proposed.  The most important difference between the 

proposed New methodology and the traditional methodology by Goring (1979) is the 

consideration of the evolving nature of the wave during the generation process.  In this 

New methodology, the celerity of the wave during the formation process is not assumed 

to match the celerity of an established solitary wave; rather it is assumed that the celerity 

depends on the amplitude of an unsteady water surface elevation component that 

accumulates in front of the wave paddle at each time step.  The celerity of the elevation 
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component and the velocity of the wave paddle at each time step are determined by mass 

and momentum conservation considerations.  Through a series of experiments, it was 

demonstrated that the New methodology is capable of generating more accurate waves in 

terms of wave height and profile shape compared to the Goring methodology.  It even 

produces highly accurate waves closer to the wave paddle.  Smaller trailing waves are 

observed in the generated waveforms compared to those generated by the Goring 

methodology. 

 

Solitary waves generated by the New methodology are established in a distance of 

approximately 10h and 20h from the wave paddle for Rayleigh-type and Boussinesq-type 

profiles, respectively.  The establishment of Rayleigh-type solitary waves generated by 

the Goring methodology occurs after a distance of 30h from the wave paddle.  The 

complete establishment of Boussinesq-type solitary waves generated by the Goring 

methodology occurs at a distance larger than 70h from the wave paddle.  However, due to 

the limitations associated with the size of the wave-tank, completely established 

Boussinesq-type waves were not observed in the present study.  The establishment rate of 

solitary waves is especially important in tsunami research because faster establishment 

rates make it possible to study tsunamis in shorter and smaller wave-tanks, whereas 

ordinarily tens of meters of length is required. 

 

Amplitude attenuation of solitary waves generated by the New methodology can be better 

explained by the viscous frictional damping formulas proposed by Keulegan (1948) 

compared to the waves generated by the Goring methodology.  Theoretical solitary waves 
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are in weakly nonlinear weakly dispersive regime; therefore, their profile shape does not 

change with propagation distance.  Solitary waves generated by the Goring methodology 

attenuate faster with distance than the Keulegan’s prediction indicating the pronounced 

dispersive nature of the generated waves.  This condition is more pronounced in the case 

of Boussinesq-type waves.   

 

Boussinesq-type waves are followed by larger trailing waves compared to Rayleigh-type 

waves.  Moreover, trailing waves are attached to the main hump for a longer distance in 

the case of Boussinesq-type waves.  These and the alternative definition of the outskirt 

decay coefficient in Boussinesq solution make Boussinesq-type waves more nonlinear 

and more dispersive compared to Rayleigh-type waves.  This is believed to be 

responsible for the severe attenuation of Boussinesq-type generated waves.  

 

The generated solitary wave profile is always followed by a very long and small-

amplitude water surface depression which consists of a series of oscillatory trailing 

waves.  The propagation speed of the trailing depression is lower than the celerity of the 

main hump slowing down the movement of the main hump and deforming its rear 

boundary.  With the New methodology, trailing waves detach faster from the rear 

boundary of the main hump.  Faster detachment of the trailing waves reduces the 

nonlinearity of the waveform, diminishes large dispersive effects, and consequently 

reduces wave transformations during propagation. 
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Waves generated by the New methodology propagate with celerity values closer to 

the theoretical values than the waves generated by the Goring methodology for the full 

range of relative amplitudes studied. 

 

Depression waves 

Negative solitary-like depression waves are generated in the wave-tank using the Goring 

methodology.  Once the depression waves are generated, they immediately start 

deforming both in terms of amplitude and profile shape.  As the depression wave 

propagates, its amplitude attenuates due to nonlinear and dispersive effects as well as due 

to frictional damping.  The frontal edge of the depression elongates while its rear 

boundary steepens with distance.  Because of linear dispersion effects, oscillatory trailing 

waves emerge from the tail of the depression wave.  Oscillatory trailing waves consist of 

both negative (below stationary water level) and positive (above stationary water level) 

components.  Negative and positive components are not completely symmetrical about 

the stationary water level as the amplitudes of the positive components are generally 

larger than the amplitudes of the negative components.  The length of oscillatory trailing 

waves increases with distance.  The greater the distance propagated by the depression, the 

greater the number of positive and negative components in the oscillatory wave train.  

The closest components to the depression in the oscillatory wave train have the largest 

positive and negative amplitudes, and the amplitudes of other components decrease 

almost linearly as their distance to the main depression increase.  The amplitudes of the 

oscillatory trailing waves increase with the distance propagated by the main depression 

initially, and then start decreasing due to viscous and dispersive effects.  After some 
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propagation distance, the initial oscillatory trailing wave group splits up into two 

oscillatory trailing wave groups.  Given the size limitations of the wave-tank used in this 

study, this phenomenon was only observed in the case of steep water surface depressions.  

For the small-amplitude depressions, this process was not observed during the 

experiments within the length of the set-up.  The formation of oscillatory trailing waves 

is hastened in the case of steep water surface depressions.  The profile of individual 

positive and negative components in the oscillatory wave train is steeper in the case of 

steep water surface depressions.  As the waveform propagates, the profile of individual 

components in the oscillatory wave train elongates, and therefore the profiles of the 

individual components become flatter.  

 

The celerity of a depression wave increases gradually with distance; however, it is always 

lower than the celerity of long waves in deep water.  This increase in the celerity with 

distance may partially be attributed to the decrease in the trough amplitude.  In our 

analysis, the depression waves are treated of being composed of two parts: leading and 

rear halves.  The leading half is considered to be a negative solitary-like wave and the 

rear half is considered to be a water surface that can be simply modeled by a straight line.  

Therefore, using the experimental data of the present study and those reported by 

Hammack and Segur (1978), three empirical parameterizations are proposed for the 

prediction of depression amplitude, at, frequency (hence, boundary decay coefficient) of 

the leading half, Ω, and slope of the rear half, S, as the waveform propagates.  These 

parameterizations are as follows: 
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Future Research Direction 

Eyewitness reports of recent tsunami events indicate that typical nearshore profile of a 

tsunami consist of both elevation and depression components. Based on these field 

observations and numerical simulations, two main configurations for the nearshore 

profile of a tsunami are considered as Leading Depression N-wave (LDN) and Leading 

Elevation N-wave (LEN).  Future research needs to be focused on the laboratory 

investigation of these waveforms composed of combined elevation and depression 

components.  This present study on the propagation of individual elevation and 

depression components representing the two parts of a tsunami waveform should be 

extended to include the interaction between the elevation and depression components of 

the wave during the propagation.   

 

Tsunamis are not always propagating over horizontal bottoms as in deep oceans; but they 

also propagate over the continental slope and more specifically they climb up the beach 

slope.  While the propagation of solitary waves over sloping bottoms have long been 

studied experimentally (Madsen and Mei, 1969; Camfield and Street, 1969; Skjelbreia, 
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1987; Synolakis, 1987; Zelt, 1991; Grilli et al., 1994; Grilli et al., 2004 and many others), 

no experimental studies have been reported on the propagation of water surface 

depressions or combined profiles of depression and elevation components such as N-

waves over sloping bottoms.  Future research needs to consider the effect of sloping 

bottom on the propagation of water surface depressions and combined profiles of 

depression and elevation components.       
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