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Abstract

In recent years, emphasis has been placed on generating quality representations of

the nondominated set of multiobjective programming problems. This manuscript presents

two methods for generating discrete representations with equidistant points for multiob-

jective programs with solution sets determined by convex cones. The Bilevel Controlled

Spacing (BCS) method has a bilevel structure with the lower-level generating the nondom-

inated points and the upper-level controlling the spacing. The Constraint Controlled Spac-

ing (CCS) method is based on the epsilon-constraint method with an additional constraint

to control the spacing of generated points. Both methods (under certain assumptions) are

proven to produce (weakly) nondominated points. Along the way, several interesting results

about obtuse, simplicial cones are also proved.

Both the BCS and CCS methods are tested and show promise on a variety of prob-

lems: linear, convex, nonconvex (CCS only), two-dimensional, and three-dimensional. Sam-

ple Matlab code for two of these examples can be found in the appendices as well as tables

containing the generated solution points. The manuscript closes with conclusions and ideas

for further research in this field.
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Chapter 1

Introduction

Decisions are a part of life and can range from the mundane (“What should I have

for breakfast?”) to the life-changing (“Who should I spend the rest of my life with?”). With

so many different options and opinions bombarding us on a daily basis, it is easy to become

overwhelmed. Herein lies the attraction of mathematical programming: its ability to be an

unbiased aid in the decision making process.

An important subfield of mathematical programming which in the past decade has

“found its legs” (so to speak) in the research community is multiple-objective optimiza-

tion. The increased research efforts in this field are due in large part to the ubiquity of

multiple-objective problems in the real world. Multiple-objective problems can be found in

a wide array of applications: in [18], the authors formulate an multiple-objective program

(MOP) to determine optimal routes for the transportation of nuclear waste; the authors

of [62] use multiple-objective optimization to assist in developing a well managed paper

recycling logistics system; and in [59], the authors apply a multiple-objective framework to

the problem of allocating the bandwidth of a computer server in both a fair and an efficient

manner. Of course, these are only a few examples of multiple-objective optimization “in

action” and many others can be found. Hopefully, however, these applications give a sense

of the widespread applicability and usefulness of the field.

Unlike single-objective optimization problems which typically have one unique op-
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timum, anmul MOP usually has infinitely many solution points due to conflict among the

objective functions. Mathematically, all of the solutions are equivalent, so the selection

of the final “best” solution depends upon the preferences and experiences of the decision

maker (DM). Techniques for assisting the DM in the actual choice of this final solution are

studied in the field of multiple criteria decision analysis (MCDA). Together, multiple crite-

ria optimization and MCDA form the field of multiple criteria decision making (MCDM).

The role of multiple-objective programming, then, when considered in the larger framework

of MCDM, is to present the DM with as much information as possible about the solution

set to facilitate the next step in the decision making process.

Unfortunately, this is a difficult task: the set of solution points of an MOP can

rarely be defined by a closed-form formula and generating the entire set of solutions is

almost always too time consuming and costly to be feasible. Thus, the majority of the

research in this field has focused on generating representations or approximations of the

solution sets; for MOPs with continuous variables, many methods are proposed (see [28],

[66] for reviews). In the literature, the terms “representation” and “approximation” seem

to be used almost interchangeably. However, in this manuscript, we differentiate between

(discrete) representations and approximations of the solution set of an MOP as suggested

in [36] and [72]. Henceforth, when we speak of a discrete representation, or simply a

representation, we mean a finite subset of individual (true) solution points; when we use the

term approximation, we are referring to a collection of (perhaps, not exact) solution points

along with some sort of approximating structure (e.g., a piece-wise linear or interpolated

curve).

It is our opinion that discrete representations of solution sets are preferable to ap-

proximated solution sets for three reasons. First, discrete representations present a finite,

manageable number of solutions to the DM, whereas approximations do not limit the num-

ber of solutions. Second, discrete representations explicitly provide the DM with solution

points while solutions are only implicitly available through an approximating structure.

Lastly, all the solutions points in a discrete representation are optimal for the MOP; this is

2



not necessarily true for solution points inferred from an approximated solution set.

With respect to discrete representations, several authors (e.g., [2, 10, 33]) suggest

that more emphasis should be placed on finding globally representative subsets of the solu-

tion sets of MOPs, instead of contenting ourselves with simply finding solutions. That is,

solution procedures should be placed into a larger framework where both the relationship

among solution points and the relationship between the approximated solution set and the

true solution set are considered. Further, Lotov et al. [49] and Berezkin et al. [11] discuss

the importance of the visualization of solution sets as a tool in the decision making process.

Generating representative subsets of the solution sets of MOPs both provides complete in-

formation to the DM as well as aids in her visualization of the solution set (in two and three

dimensions).

In this light, many researchers have proposed measures for determining the quality

of solution sets of MOPs. Others have begun integrating those and other measures into al-

gorithms for generating discrete representations which meet a prespecified quality criterion.

In Chapter 3, we review and classify the measures and (exact) algorithms that have been

published in the literature. We present measures that have been proposed independently

of an algorithm or that are used in conjunction with a heuristic algorithm but are appli-

cable to exact algorithms. Sayin [67] suggests that measures of the quality of a solution

set fall into three main categories: cardinality, coverage, and spacing. The measures are

sorted according to this scheme. The published algorithms are sorted according to whether

a measure is integrated before generation of a solution point (a priori), after generation of

a solution point (a posteriori), or not at all. We include the last category because we found

several algorithms that were developed to produce quality representations of the solution

set but do not integrate any measure per se. Again, note that we include only exact algo-

rithms which produce discrete representations satisfying a stated quality measure or which

improve on a certain quality characteristic of a previous method. Additionally, because of

this, we do not include any measure that quantifies the “error” of a discrete representation

(the distance between the representation and the true solution set) because in the case of

3



exact algorithms, the representation is always be a subset of the true solution set (i.e., there

is no error).

Based on our literature review, the goal of our research is threefold. First, we would

like to generate discrete representations of the Pareto set with equidistant spacing of Pareto

points and complete coverage. Second, we would like the method to be applicable to both

convex and nonconvex continuous MOPs. Third, we would like to be able to generalize

the method to notions of optimality defined by convex, polyhedral cones. This final aspect

of our research has been studied recently both theoretically in [39], [31], and [80], and

in applications in [15] and [78], as a means of integrating the DM’s preferences into the

optimization process. Of the a priori techniques we reviewed, only [30] presents a method

for controlling the spacing of Pareto points. Only [30] and [50] are applicable to general

MOPs. Lastly, only [30] presents an approach that can be extended to notions of optimality

defined by general cones. Our work offers alternatives to the method presented in [30]

which we believe will be more easily understood and implemented by operations research

practitioners. Additionally, we introduce the idea of controlling the tradeoffs of generated

solution points, in order to further integrate the DM into the optimization process.

Finally, we would like to emphasize that in our work, we seek to produce quality

representations of the solution set in the objective space. This decision is supported by

discussions in several papers such as [10], [65], and [67]. In particular, all of these papers

give three main reasons for focusing on the objective space instead of the decision space.

First, the dimension of the objective space (i.e., the number of objective functions) tends to

be smaller than the dimension of the decision space (i.e., the number of decision variables)

making the objective space much more attractive computationally in terms of size and

complexity. Second, there is no guarantee of a one-to-one mapping between the decision

space and the objective space. Thus, if we generate a representation in the decision space,

it is possible that all of the decision points could map to the same solution in the outcome

space. Third, DMs seem to base their decisions primarily on the values of the objective

functions, not on the values of decision variables.
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The organization of this manuscript is as follows. In Chapter 2, we present termi-

nology and notation that we use throughout the remainder of the dissertation. As discussed

above, Chapter 3 is a literature review of measures of the quality of the solution set and al-

gorithms that have been proposed to generate quality representations. In Chapters 4 and 5,

we give our two methods for generating equidistant representations. The Bilevel Controlled

Spacing method is discussed in Chapter 4, and the Constraint Controlled Spacing method

is discussed in Chapter 5. Chapter 6 contains our numerical experiments for both methods.

Our conclusions and directions for further research are presented in Chapter 7. Appendices

A and B contain sample Matlab code from the numerical experiments, and Appendix C

contains the solution points for selected problems from Chapter 6.
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Chapter 2

Terminology and Notation

The general form of a multiple-objective program (MOP) is as follows:

minimize f(x) = [f1(x), f2(x), . . . , fp(x)]

subject to x ∈ X
(2.1)

where fi : Rn → R, i = 1, . . . , p, and X ⊆ Rn. We assume that fi, i = 1, . . . , p, are

continuous, and we let Y = f(X) = {f(x) : x ∈ X} be the feasible region in the objective

space.

When comparing two vectors a, b ∈ Rp, we use the following notations: a 5 b implies

that ai ≤ bi for i = 1, . . . , p, while a ≤ b implies that ai ≤ bi for i = 1, . . . , p and a 6= b.

The optimality of a solution y ∈ Y to (2.1) can be defined by a pointed, convex,

polyhedral cone C which we call a preference cone.

Definition 2.0.1. A set C ⊂ Rp is said to be a cone if

λC ⊆ C for all λ > 0.

Definition 2.0.2. A cone C ⊂ Rp is said to be convex if

C + C ⊆ C.
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Definition 2.0.3. A convex cone C ⊂ Rp is said to be pointed if

C ∩ −C = {0}

Definition 2.0.4. A convex cone C ⊂ Rp is said to be polyhedral if

C = {y ∈ Rp : Ay = 0}

where A is a m× p matrix.

Additionally, we assume that C is simplicial.

Definition 2.0.5. [57] Let C = {y ∈ Rp : Ay = 0} be a cone in Rp. Then, C is simplicial

if A is a p× p invertible matrix.

Note that a simplicial cone is always a polyhedral cone.

More details on the types of cones which can be used to define optimality in multiple-

objective programming can be found in [27], among others.

Definition 2.0.6. Given a preference cone C, we say a solution y∗ = f(x∗) to (2.1) is

nondominated if (y∗ − C) ∩ Y = {y∗} or is weakly nondominated if (y∗ − int C) ∩ Y = ∅.

The set of all (weakly) nondominated points is called the (weakly) nondominated set and

is denoted by N(Y,C) (NW (Y,C)). The pre-image of N(Y,C) (NW (Y,C)), in the decision

space, is known as the (weakly) efficient set, E(X, f,C) (EW (X, f,C)).

Often, preferences are modeled by the Pareto cone Rp
= := {y ∈ Rp : yi ≥ 0, i =

1, . . . , p}.

Definition 2.0.7. A point y∗ = f(x∗) is called a Pareto optimal point if there does not

exist x ∈ X such that f(x) ≤ f(x∗). Further, a solution is called a weak Pareto optimal

point if there does not exist x ∈ X such that f(x) < f(x∗).

The set of all (weak) Pareto optimal points is called the (weak) Pareto set and is denoted
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by YN (YWN ). In this case, we denote the (weakly) efficient set by XE (XWE). In our work,

we assume that NW (Y,C) and YWN are nonempty, bounded sets.

The relationship between Pareto sets and general nondominated sets given a cone

C has been investigated by [82] and [58], among others. This relationship is given in the

following proposition.

Proposition 2.0.8. Let C be a convex, pointed cone such that C = {y ∈ Rp : Ay = 0}

where A is a m× p matrix. Further, let A · Y = {Ay : y ∈ Y }. Then,

(i) y ∈ N(Y,C) if and only if Ay ∈ N(A · Y,Rp
=) [82], and

(ii) E(X, f,C) = E(X,Af,Rp
=) [58].

In other words, to obtain the nondominated set N(Y,C) for the MOP in (2.1), we may

equivalently determine the Pareto set of the transformed MOP in (2.2) and then use the

elements in the efficient set of (2.2) to recover N(Y,C).

minimize g(x) = [g1(x), g2(x), . . . , gp(x)]

where g(x) = A · f(x)

subject to x ∈ X

(2.2)

This result simplifies the problem of finding the nondominated set with respect to a cone

C and is important later in our work.

In Chapter 5, the structure of the matrix A which defines a preference cone C is

also important.

Definition 2.0.9. Given a p×p matrix A, a minor of A is obtained by deleting a specified

(and equal) number of rows and columns of A.

Definition 2.0.10. Given a p× p matrix A, a principal minor of A is obtained by deleting

the same rows and columns of A.
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For example, given the matrix

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 ,

we obtain a minor of A by deleting row one and column three:

 a21 a22

a31 a32

 .
To obtain a principal minor, however, we delete the same row(s) and column(s), say row

one and column one:  a22 a23

a32 a33

 .
An important class of square matrices is the class of positive definite matrices.

Definition 2.0.11. A p× p matrix A is said to be positive definite if

xTAx > 0 for all x ∈ Rp with x 6= 0.

Definition 2.0.11 is difficult to apply in practice, so we present the following propo-

sition.

Proposition 2.0.12. [12, 63] A p×p matrix A is positive definite if all its principal minors

are positive.

Lastly, we define the notions of cone convexity and connectivity.

Definition 2.0.13. Let C ⊆ Rp be a cone. Then a set Y ⊆ Rp is said to be C-convex if

Y + C is convex, where Y + C := {y + c : y ∈ Y and c ∈ C}.

With respect to connectivity, intuitively, the notion is simple: if YN is disconnected,

we should be able to separate it into two or more disjoint parts.
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Definition 2.0.14. [13] A set S ⊂ Rp is disconnected if there exist closed sets H1 and H2

such that

(i) S ⊆ H1 ∪H2,

(ii) S ∩H1 6= ∅,

(iii) S ∩H2 6= ∅, and

(iv) S ∩ (H1 ∩H2) = ∅.

The application of this definition to the nondominated set is straightforward.
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Chapter 3

Literature Review

In this chapter, we review and classify the measures and (exact) algorithms that

have been published in the literature. In Section 3.1, we present measures that have been

proposed independently of an algorithm or that are used in conjunction with a heuristic

algorithm but are applicable to exact algorithms. We follow the suggestion of Sayin [67]

and sort the measures of quality into three main categories: cardinality (Section 3.1.1),

coverage (Section 3.1.2), and spacing (Section 3.1.3). Section 3.1.4 contains hybrid measures

which overlap the three categories. In Section 3.2, the published algorithms are sorted

according to whether a measure is integrated before generation (a priori) of a solution point

(Section 3.2.1), after generation (a posteriori) of a solution point (Section 3.2.2), or not at all

(Section 3.2.3). We include the last category because we found several algorithms that were

developed to produce quality representations of the solution set but do not integrate any

measure per se. Again, note that we include only exact algorithms which produce discrete

representations satisfying a stated quality measure or which improve on a certain quality

characteristic of a previous method. Additionally, because of this, we do not include any

measure in Section 3.1 that quantifies the “error” of a discrete representation (the distance

between the representation and the true solution set) because in the case of exact algorithms,

the representation is always a subset of the true solution set (i.e., there is no error).

Throughout the paper, we denote discrete representations of the true efficient set
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and nondominated set by XE and Y N , respectively. Moreover, for ease of notation, the

same symbol may denote slighty different concepts when used in different contexts, but,

in such cases, adequate explanation will be given. In particular, unless otherwise stated,

d(·, ·) denotes a metric for measuring the distance between two points in Rn; when not

specifically defined, the DM should choose the appropriate metric for her situation. Lastly,

when reviewing papers, we have maintained the authors’ notations as much as possible.

3.1 Review of Measures

In general, we would like to provide the DM with a “good” representation of the

nondominated set. The meaning of “good”, here, is ambiguous because no definite consensus

has been reached in the mathematical and operations research community on what qualities

a good representation of the nondominated set should possess. However, within the past

ten years, many authors have suggested quality measures which may be useful to this end.

In this section, we present and classify the measures proposed in the literature.

We sort the measures into three main groups as suggested by Sayin [67]: measures

of cardinality, coverage, and spacing. Cardinality refers to the number of points in a repre-

sentation. In general, we desire enough points to fully represent the outcome set, but not

so many that the DM is overwhelmed with choices. Measures of coverage seek to ensure

that all regions of the outcome set are represented. That is, we do not want any portion

of the outcome set to be neglected. Measures of spacing quantify the distance between

points in the representation. Typically, we would like a representation to have uniform, or

equidistant, spacing, so that all portions of the outcome set are represented to an equal de-

gree. Although quality measures defined in the literature may allow for the use of alternate

notions of optimality, they have predominantly been applied to problems governed by the

Pareto notion. Further, in some papers, measures were defined for arbitrary sets. In these

cases, we present the measures in the context of the Pareto set.
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3.1.1 Measures of Cardinality

Measures of cardinality essentially boil down to the same idea: count the number of

Pareto points in the representation. Clearly, two straightforward candidates for measures of

cardinality are the size of the generated Pareto set (i.e., |Y N |) and the size of the generated

efficient set (i.e., |XE |). Van Veldhuizen [79] proposes the former measure as “overall

nondominated vector generation”, while Sayin [67] proposes the latter.

On the other hand, in this group we also have the measure proposed by Wu and

Azarm [81] called the “number of distinct choices”. This measure is similar to the previous

two but takes the DM’s preferences into account: Pareto outcomes within a certain distance

of each other (a choice made by the DM) are counted as a single point. Thus, the number

of distinct choices of a discrete representation is always less than or equal to its cardinality.

To calculate this measure, let µ (0 < µ < 1) be chosen so that the DM is indifferent between

any two outcomes whose difference in each (normalized) criterion is less than or equal to

µ. Next, divide the objective space into 1
µp hypercubes. These hypercubes are indifference

regions. Let Tµ(q) denote the hypercube with reference vertex q, and let NTµ(q, Y N ) be

defined as follows:

NTµ(q, Y N ) =

 1, ∃ y ∈ Y N such that y ∈ Tµ(q)

0, else
.

Then, given the above, the number of distinct choices of a nondominated set, Y N , is

NDCµ(Y N ) =

1
µ
−1∑

lp=0

· · ·

1
µ
−1∑

l2=0

1
µ
−1∑

l1=0

NTµ(q, Y N ) (3.1)

where q = (q1, . . . , qp) with qi = liµ. Thus, the number of distinct choices of a set Y N is

the number of hypercubes containing at least one Pareto point.

Since the cardinality of a discrete representation of the Pareto set is easily controlled,

this category of measures is less important than the following two. In general, the cardinality
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of a representation should be minimized while still maintaining good coverage and spacing.

3.1.2 Measures of Coverage

Measures of coverage face the challenge of trying to assess something that is unknown

because, in general, the true Pareto set is not known a priori. However, we must try to

ensure that no region of YN is neglected. Because of this, we always seek to maximize the

coverage of a discrete representation, and unless otherwise noted, the following measures

should be maximized as well.

Czyżak and Jaszkiewicz [21] introduce two measures to determine the extent to

which a discrete representation covers the true Pareto set. The measures, “D1” and “D2”,

are defined as follows:

D1(YN , Y N ) =
1
|YN |

∑
y∈YN

min
ỹ∈Y N

d(y, ỹ), (3.2)

and

D2(YN , Y N ) = max
y∈YN

min
ỹ∈Y N

d(y, ỹ), (3.3)

where d(y, ỹ) = maxi=1,...,p{wi|fi(y) − fi(ỹ)|}. The weights used in the definition of d are

defined as wi = 1/Ri where Ri is the range of fi in the true Pareto set. Measure D1 gives a

(weighted) average of the distances between a point in the Pareto set and the closest point

in the representation, while measure D2 gives the largest (weighted) distance between a

point in the Pareto set and the closest point in the representation. We would like these

distances to be as small as possible, so both of these measures should be minimized.

Zitzler and Thiele [86] propose a measure to determine the size of the region dom-

inated by Y N . In his dissertation, Ziztler [84] calls this measure the “S-measure”. Each

point y ∈ Y N dominates a (hyper)cube with one corner at y and another at ymax where

ymax = (fmax
1 , . . . , fmax

p ) and fmax
i = maxx∈X fi(x). Thus, the region dominated by Y N ,

which we denote by D(Y N ), is found by taking the union of these cubes for all y ∈ Y N .
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The value of the S-measure is the volume of this union.

S(Y N ) = volume(D(Y N )). (3.4)

Zitzler [84] also suggests a measure, called “M3”, to determine the overall range of

the representation:

M3(Y N ) =

√√√√ p∑
i=1

max{| yi − ỹi| : y, ỹ ∈ Y N}. (3.5)

This measure calculates an average of the ranges of the criteria.

Sayin [67] suggests the measure “coverage” which determines the maximum distance,

ε, between a point in the true Pareto set and its closest neighbor in the representation:

ε(YN , Y N ) = max
y∈ YN

min
ỹ∈ Y N

d(y, ỹ). (3.6)

Because we would like every point in the true Pareto set to be represented in our discrete

representation, we want this measure to be minimized rather than maximized.

Wu and Azarm [81] propose two measures, “overall Pareto spread” and “ith Pareto

spread”, which calculate the range of the entire representation and of each individual crite-

rion, respectively. These measures are defined as follows:

OS(Y N ) =
∏
i

( max
y∈ Y N

yi − min
y∈ Y N

yi) (3.7)

and

OSi(Y N ) = max
y∈ Y N

yi − min
y∈ Y N

yi. (3.8)

Wu and Azarm [81] also propose a measure called “hyperarea difference” which is

a slight variation on the S-measure (3.4) of Ziztler and Thiele. This measure calculates

the difference (in terms of volume) between the portions of the objective space which are

dominated by the true Pareto set and a given representation of the Pareto set. To overcome
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the difficulty of not knowing the true Pareto set, they suggest normalizing the objective

space so that the volume of the region dominated by the true Pareto set can be estimated

as one. Given this, the hyperarea difference is computed as follows:

HD(Y N ) = 1− volume(D(Y N )) (3.9)

where D(Y N ) denotes the region of the objective space which is dominated by the set Y N ,

and can be found as discussed in the paragraph preceding (3.4). Note that if Y N = YN then

vol(D(Y N )) = 1 and thus, HD(Y N ) = 0. In general, a small hyperarea difference value is

desired.

Meng et al. [52] propose a measure of coverage called “extension”. Let

Ui = max
x∈XE

fi(x)

and

Li = min
x∈XE

fi(x),

then we have a set of reference outcomes, {y1, . . . , yp}, where

yi = (L1, . . . , Li−1, Ui, Li+1, . . . , Lp).

Meng et al. suggest that Ui and Li can be approximated if the true values are not readily

available. Given a discrete representation Y N , we calculate the distance between each

reference outcome and Y N as follows:

d(yi, Y N ) = min{d(yi, y) | y ∈ Y N}.

Finally, the extension is calculated as follows:

EX(Y N ) =

√∑p
i=1(d(yi, Y N ))2

p
. (3.10)
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Thus, the extension measures an average distance of a representation from its reference

outcomes. For this measure, a small value is preferred to a larger value because the latter

could indicate that the representation is mainly in the center of the true Pareto set with

the outskirts being neglected.

Zitzler et al. [85] suggest a measure of the “outer diameter” of a discrete represen-

tation which is defined as shown below:

OD(Y N ) = max
i=1,...,p

wi( max
y∈Y N

yi − min
y∈Y N

yi), (3.11)

where wi > 0. The outer diameter measures the maximum (weighted) range over all the

objective functions.

3.1.3 Measures of Spacing

Measures of spacing are abundant in the literature. In general, we desire a discrete

representation of the Pareto set with equally spaced Pareto points, so that each region of

the true Pareto set is represented to an equal degree. Note that having equidistant Pareto

points, however, does not guarantee that we have good coverage as well, so measures of

spacing should always be used in conjunction with a coverage measure.

Schott [71] proposes a measure for bicriteria problems called “spacing” which takes

the standard deviation of the distances between nearest-neighbor points:

fspacing(Y N ) =

√√√√ 1
|Y N | − 1

|Y N |∑
i=1

(d̄− di)2 (3.12)

where each di is measured with the l1-norm and d̄ is the average of the di. Because we want

the spacing of Pareto points to be equidistant, small values for this measure are desired.

Note that Schott’s measure can be extended to higher dimensions by changing the definition

of di.

Ziztler [84] proposes the “M2” measure which calculates the average cardinality of
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the set of points which are greater than a fixed distance, σ, from a Pareto point in the

representation:

M2(Y N ) =
1

|Y N | − 1

∑
y∈Y N

|{ỹ ∈ Y N : d(y, ỹ) > σ}|. (3.13)

This measure gives us a sense of the number of redundancies (with respect to the chosen

value of σ) which are contained in our representation. Ideally, for a chosen σ, M2(Y N ) =

|Y N |, indicating no redundancies.

Sayin [67] proposes the measure “uniformity” which is defined as the minimum

distance, δ, between any two distinct points in the discrete representation of the Pareto set:

δ(Y N ) = min
y, ỹ∈Y N , y 6= ỹ

d(y, ỹ). (3.14)

Wu and Azarm [81] suggest a measure called “cluster” which measures the average

size of a redundant cluster of points (with respect to the parameter µ) in the representation.

To compute the cluster value, the number of points in the representation is divided by the

number of distinct choices, NDCµ(Y N ) (see (3.1)): namely,

Cluster(Y N ) =
|Y N |

NDCµ(Y N )
. (3.15)

We desire no redundancies, so ideally, |Y N | = NDCµ(Y N ) which gives a cluster value of

one. Otherwise, the cluster value is greater than one.

Messac and Mattson [55] present a measure of spacing called “evenness”. For each

point, yi, in the discrete representation, two (hyper)spheres are constructed: the smallest

and the largest spheres that can be formed between yi and any other point in the set such

that no other points are within the spheres. The diameters of the two spheres are denoted

by dil and diu, respectively. The evenness, ξ, of a representation is then calculated with the

following formula:

ξ(Y N ) =
σd
d̄

(3.16)

18



where d̄ and σd are, respectively, the mean and standard deviation of the set of minimum

and maximum diameters for each point in the representation. A discrete representation

with all points spaced equidistantly has ξ = 0 because the dil and diu are all equal (i.e.,

σd = 0).

Meng et al. [52] propose a measure called “uniformity” which was inspired by wavelet

analysis. This measure was developed for comparing two different representations of YN .

Let Y 1
N and Y

2
N be two distinct discrete representations of the Pareto set, and suppose that

|Y 1
N | = N and |Y 2

N | = M . Set l = 1. For each point yi ∈ Y 1
N and yk ∈ Y 2

N , we calculate

the distance to its nearest neighbor:

d1
i = d(yi, Y 1

N ) = min
yj∈Y 1

N , y
j 6=yi

d(yi, yj), i = 1, . . . , N

and

d2
k = d(yk, Y 2

N ) = min
yj∈Y 2

N , y
j 6=yk

d(yk, yj), k = 1, . . . ,M.

Next we calculate the average distance between nearest neighbor points for both sets:

d̄1
l =

∑N
i=1 d

1
i

N
and d̄2

l =
∑M

k=1 d
1
k

M
.

Finally, we calculate the spacing measures as follows:

SP 1
l (Y 1

N ) =

√∑N
i=1(1− F (d1

i , d̄
1
l ))

2

N − 1
and SP 2

l (Y 2
N ) =

√∑M
k=1(1− F (d2

k, d̄
2
l ))

2

M − 1
(3.17)

where

F (a, b) =


a
b , if a > b

b
a , else

.

If SP 1
l < SP 2

l , then Y
1
N has better uniformity, and vice versa. If SP 1

l = SP 2
l and l ≥

min(N − 1,M − 1), then Y
1
N is the same as Y 2

N . Else, if SP 1
l = SP 2

l and l < min(N −

1,M − 1), then increment l by one and decrement N and M by one, and recalculate the
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spacing measure for both sets, ignoring the smallest d1
i and d2

k, respectively. Note that this

measure is binary because it is used to compare two different discrete representations of the

Pareto set; the value of the spacing measure by itself does not have a clear interpretation.

Collette and Siarry [20] propose two different spacing measures for bicriteria prob-

lems: “spacing”, which is a modification of Schott’s measure (3.12), and the “hole relative

size” measure. Both measures require that the generated Pareto points be put in ascending

order with respect to the first objective function. Their spacing measure is computed as

follows:

Spacing(Y N ) =

√√√√ 1
|Y N | − 1

|Y N |−1∑
i=1

(
1− di

d̄

)2

(3.18)

where di =
√

(f1(xi)− f1(xi+1))2 + (f2(xi)− f2(xi+1))2 and d̄ is the average of all the di.

Their hole relative size measure gives the ratio of the largest gap between two adjacent

points to the average gap:

HRS(Y N ) =
maxi di

d̄
(3.19)

where di and d̄ are as defined previously. The authors note that the hole relative size

measure would not be appropriate for use on a problem with a disconnected Pareto set.

3.1.4 Hybrid Measures

Several authors propose measures which overlap the above three categories. Deb et

al. [23, 26] suggest the “∆” measure for bicriteria problems which takes into account both

the spacing between generated Pareto points and the coverage of the true Pareto set by the

generated representation. This measure calculates the distance between each point and its

nearest neighbors (a spacing-type measure) as well as the distance between the individual

objective minima and their respective single nearest neighbor (a coverage-type measure).

Including the second part of the measure ensures that there is not a group of equally spaced

points in the center of the set, for example, with the outer portions neglected. Deb’s measure
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for bicriteria problems is as follows:

∆(Y N ) =
df + dl +

∑|Y N |−1
i=1 |di − d̄ |

df + dl + (|Y N | − 1)d̄
(3.20)

where df and dl are the Euclidean distances between the individual objective minima and

the nearest points in the representation, the di are the Euclidean distances between each

pair of consecutive Pareto points, and d̄ is the average of all the di. A small value for ∆ is

desired with the ideal value being ∆ = 0: di = d̄ for all i and df = dl = 0, indicating that

the individual objective minima are included in the representation. The authors note that

this measure can be extended to three or more dimensions, but the formula would change

slightly.

Leung and Wang [48] suggest the “U-measure” which measures both coverage and

spacing, similar to Deb’s measure (3.20). First, we determine the nearest neighbors of each

Pareto point with respect to each axis, as well as the nearest neighbor of each reference

point (i.e., the individual objective minima or other points chosen by the DM). Let χ be the

set of distances between nearest neighbor outcomes and let χ̄ be the set of distances between

a reference point and its nearest neighbor outcome. For good spacing, we would like the

distances in χ to be roughly the same. For good coverage, we would like the distances in

χ̄ to be close to zero. For ease of calculation, we combine the sets into one by computing

the average of the distances in χ and incrementing each element in χ̄ by this number. We

denote this new set by χ̄
′
. Now, we need only to check that the elements in χ̄

′
are close to

each other. Given this, we compute the U-measure as follows:

U(Y N ) =
1
D

D∑
i=1

∣∣∣∣∣ d
′
i

dideal
− 1

∣∣∣∣∣ (3.21)

where d
′
i ∈ χ̄

′
, dideal =

∑D
i=1 d

′
i/D, and D = |χ̄′ |. If the points are equally spaced over

the entire set, then d
′
i = dideal for each i resulting in U = 0. This measure calculates the

average deviation from the ideal so that a small U-measure indicates a representation that
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is close to equidistant and covers the entire Pareto set.

Farhang-Mehr and Azarm [32] propose a measure called “entropy” using ideas from

the field of information theory. Entropy assesses all three of the quality categories: cardi-

nality, coverage, and spacing. For each Pareto point ȳi in a discrete representation Y N , we

define a scalar-valued influence function Ωi which is decreasing in the distance to ȳi (e.g.,

a Gaussian distribution centered on ȳi). Then, the density function, defined for any point

in the objective space, is given by the following:

D(y) =
|Y N |∑
i=1

Ωi(y), y ∈ Y.

Next, we create an a1×a2× . . .×ap grid in the objective space so that the DM is indifferent

between outcomes which share the same (hyper)cube (where ai is the number of indifference

regions with respect to the ith axis). Let yi1,i2,...,ip denote the center point of the cube having

grid position (i1, i2, . . . , ip). Given this, we evaluate D(y) for each center point and then

normalize the result as follows:

ρi1,i2,...,ip =
D(yi1,i2,...,ip)∑a1

k1=1

∑a2
k2=1 · · ·

∑ap
kp=1D(yk1,k2,...,kp)

.

Finally, the entropy of Y N is given by

H(Y N ) = −
a1∑
i1=1

a2∑
i2=1

· · ·
ap∑
ip=1

ρi1,i2,...,ip ln(ρi1,i2,...,ip). (3.22)

A high entropy value is desired because a set with high entropy maximizes coverage and

minimizes redundancies for a given cardinality.

3.2 Review of Methods

In this section, we review articles which present exact methods for generating a

discrete representation of the nondominated set. Recall that we use the term discrete
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representation to mean a subset of outcome points from the nondominated set, while an ap-

proximation uses some additional structure. We classify these papers according to whether

a measure is incorporated into the method a priori (before generation of nondominated

points), a posteriori (after generation of nondominated points), or not at all. For meth-

ods with measures, we also indicate which type of measure is used. Finally, within each

category, we present the papers chronologically according to their publication dates.

3.2.1 Methods With A Priori Measures

Despite the prevalence of quality measures in the literature, only a few authors

have integrated these measures into algorithms to produce representations of the Pareto set

satisfying some prespecified quality criterion. Additionally, a majority of the algorithms in

this section are only applicable to specific classes of problems.

Helbig [37] suggests an approach for producing a discrete representation of the

Pareto set with good coverage which is applicable to biobjective programs (BOPs) with

connected Pareto sets. The convex hull of the individual objective minima is discretized

and these points are used as the reference points in the max-ordering method. Helbig

presents a method for choosing the discretized points so that the maximum Euclidean dis-

tance between a point in the true Pareto set and a point in the representation is at most a

prespecified value (chosen by the DM).

Churkina [19] investigates the Chebyshev method [74] as a method of producing a

discrete representation of the Pareto set for convex MOPs. The notion of a delta-grid is

used as a measure of coverage. A finite delta-grid, in terms of the Pareto set, is a finite

subset in which the maximum distance between a point in the true Pareto set and a point

in the representation is at most delta where the distance is measured with the Chebyshev

norm. The author proves that for any chosen delta, it is possible to find an epsilon so that

a finite epsilon-grid of reference points produces a delta-grid representation of the Pareto

set. However, no method is presented for finding the value of epsilon or the set of reference

points.
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Sayin [68] proposes a method for multiple-objective linear problems (MOLPs) to

produce a representation with a given target coverage value or the maximum coverage

possible given a target cardinality when the set of efficient faces is known a priori. Here,

the coverage of the representation is calculated using the coverage measure (3.6) from [67].

At each iteration, the point in the true Pareto set which has the maximum Chebyshev

distance from the current representation is selected.

Sayin and Kouvelis [69] and Kouvelis and Sayin [46] give a two-stage method called

Algorithm Robust for generating representations of the Pareto set for discrete BOPs. The

coverage, using the measure (3.6) in [67], is controlled by continuing to refine an interval

between two previously generated Pareto points until its length falls below a prespecified

value.

Eichfelder [29, 29] is, to the best of our knowledge, the first author to attempt

to control the spacing of generated nondominated points. Her method is based on the

Pascoletti and Serafini scalarization [61], making it applicable to general MOPs and notions

of optimality defined by general cones. She derives sensitivity information in a neighborhood

about a nondominated point and uses this information to determine input parameters for

the scalarization so that the produced nondominated point is a prespecified distance from

the previous point. Although theoretically sound, issues arise when the method is applied

to problems with three or more objective functions.

Ruzika [65] and Hamacher et al. [36] present two box algorithms for producing rep-

resentations of the Pareto set for discrete BOPs. The algorithms use the lexicographical

epsilon-constraint scalarization to generate Pareto points. Boxes are formed with consec-

utive Pareto points as the upper left and lower right corner points. The “accuracy” (a

coverage measure) of the current representation is calculated as the area of the largest of

these rectangles. The representation is refined until the accuracy has met a prespecified

value. Alternatively, the authors point out that a specific cardinality may be used as the

stopping criterion for the algorithms instead of a desired accuracy, and that the resulting

accuracy is a function of this given cardinality. Filtering is also mentioned as a way to
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reduce redundancies and, thus, improve the spacing of the representation a posteriori.

Sylva and Crema [76] propose an algorithm for mixed-integer linear MOPs which

generates representations of the Pareto set with good coverage. At each iteration, their

algorithm finds the Pareto point which maximizes the infinity-norm distance from the set

already dominated by previous outcomes. The cardinality of the representation can also be

used as a stopping criterion.

Most recently, Masin and Bukchin [50] present the Diversity Maximization Approach

to produce representations with good coverage for general MOPs. At each iteration, the

most “diverse” outcome is added to the representation where the most diverse outcome is

defined as the one that maximizes the minimum coordinate-wise distance between the new

point and all the points already in the representation. The authors note that although this

method is applicable to general MOPs, it is recommended predominantly for mixed-integer

and combinatorial problems.

The methods discussed in this section which integrate some sort of quality measure

of the Pareto set a priori have the disadvantage of perhaps increasing the complexity of

the optimization procedure: not only do we want to produce a Pareto point, we want to

produce a specific type of Pareto point. However, we feel that this possible drawback is

outweighed by the fact that discrete representations produced by a priori methods wholly

represent the true Pareto set, and thus provide the best possible information to the DM.

3.2.2 Methods With A Posteriori Measures

A posteriori methods are the simplest of the three classes of methods that we present

here. In general, these methods consist of generating a discrete representation of the non-

dominated set and then removing certain points so that the resulting representation satisfies

some quality criterion.

As early as 1980, filtering techniques were being proposed to produce discrete rep-

resentative subsets of the outcome sets of MOPs. Steuer and Harris [75] suggest using a

forward and reverse interactive filtering scheme to produce a representative subset of the
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Pareto extreme points of an MOLP. Forward filtering consists of using a weighted lp-norm

to discard Pareto extreme points that are too close together and thus, produce a diverse set

of extreme point outcomes. Once the DM has chosen her most preferred outcome from this

set, the reverse filtering is performed. In this process, the closest Pareto extreme points to

the preferred outcome are reintroduced and Pareto extreme points that are further away

are discarded. In this way, the DM is now presented with outcomes that are most similar

to her preferred outcome, allowing her to refine her outcome even further.

Morse [56] suggests a filtering method involving cluster analysis for reducing redun-

dancy in the Pareto sets of MOLPs. The DM sets a minimum redundancy level below

which she is indifferent between two Pareto points. The author experiments with several

clustering methods among which he found the most useful in this context to be Ward’s

Method, the Group Average Method, and the Centroid Method. Using the desired method

and the minimum redundancy level, clusters of Pareto points are formed. The DM is then

presented with a representative Pareto point from each cluster.

More recently, Mattson et al. [51] suggest a Smart Pareto filter to produce repre-

sentations with good cardinality and complete coverage which emphasize areas with high

tradeoffs more than areas with low or insignificant tradeoffs. First, an “even” representation

of the Pareto set is produced. The authors define an even representation as one where all

areas of the Pareto set are represented to an equal degree and suggest methods proposed in

[22], [54], or [55] to produce such a set. Next, a Pareto point is selected and the tradeoffs be-

tween it and all other Pareto points are calculated. If the tradeoff between the chosen point

and another point falls below a prespecified level, the second point is removed. Otherwise,

the second point is retained. This process is performed on each point in the representation.

The authors denote the resulting representation as the “smart” Pareto set.

As mentioned previously, a posteriori methods tend to be simple to understand and

straightforward to implement. However, one major drawback of this class of methods is

that redundant work is performed. Resources are used to generate a large representation

of the Pareto set only to have a portion of the produced Pareto points discarded at a later
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stage.

3.2.3 Methods Without Measures

This class includes a variety of methods which aim to produce quality discrete

representations but which do not include any measure of quality of the Pareto set. Many

authors improve upon the coverage or spacing of existing methods with simple variations.

A few authors produce quality representations of other sets (i.e., weights, reference points)

and project these sets onto the Pareto set. However, without a quality measure, the degree

to which the quality of the method improves can be neither quantified nor guaranteed.

Steuer and Harris [75] propose an intra-set point generation method to go along with

their filtering method which is discussed in the previous section. In cases where the Pareto

extreme points do not sufficiently describe the Pareto set of a MOLP, the authors suggest

generating Pareto points within the set (i.e., not extreme points) using intelligently chosen

convex combinations of the Pareto extreme points so that the generated points provide

good coverage of the entire Pareto set. They present empirical evidence which shows that

choosing half of the weights from the uniform distribution and half of the weights from the

Weibull distribution results in a well-distributed set.

Armann [2] develops a method for choosing the epsilon parameters in the hybrid

weighted-sum, epsilon-constraint scalarization for general MOPs (proposed by Guddat et

al. [35], among others). Given the desired number of points in the representation, he solves

an integer program to determine the values of epsilon to use in the hybrid scalarization so

that in the resulting representation, the distance between neighboring points is maximized.

This improves the coverage and the spacing of the hybrid scalarization as compared to using

equally spaced values of the epsilon parameter.

Benson and Sayin [10] propose a global shooting procedure to produce a represen-

tation of the nondominated set of a general MOP. This method seeks to cover the entire

nondominated set without many redundancies. The method begins by constructing a sim-

plex which contains the feasible region in the objective space. Then a subsimplex is chosen
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and a discrete sample of points from this subsimplex is taken. Finally, the representation is

obtained by shooting from each of these points in a specific direction toward the nondomi-

nated set. The authors stress that it is the method by which the points are sampled from

the subsimplex which determines whether the representation has good coverage.

Das and Dennis [22] introduce the Normal Boundary Intersection method for pro-

ducing representations of the Pareto set with complete coverage. The convex hull of the

individual objective minima is discretized with equally spaced points. Then a series of

minimization problems is solved to determine the intersection between the boundary of

the feasible region in the objective space and the normal vector emanating from each of

these points respectively. The Normal Boundary Intersection method may produce non-

Pareto points and not all Pareto points are obtainable using this method. However, if the

Pareto set is sufficiently well-behaved the Normal Boundary Intersection method produces

a representation with both good coverage and good uniformity.

Buchanan and Gardiner [16] perform a comparative study of two versions of the

weighted Chebyshev method [74], one using the ideal point as a reference point and the

other using the nadir point. The authors found that when choosing weights from the

uniform distribution, discrete representations produced using the nadir outcome as the

reference point had better coverage than those produced with the ideal point.

Messac et al. [53] introduce the Normal Constraint method for producing representa-

tions with good coverage. The convex hull of the individual objective minima is discretized

with equally spaced points, and then for each discretized point, a single objective optimiza-

tion problem is solved over a reduced feasible region which is determined using the current

point; this produces a Pareto point. In [55], the authors point out that the original Normal

Constraint method neglects certains regions of the Pareto set. They remedy this by slightly

enlarging the convex hull of the individual objective minima so that it covers the entire

feasible region. With this refinement, the Normal Constraint method produces represen-

tations with complete coverage of the Pareto set. Also, similar to the Normal Boundary

Intersection method [22], for well-behaved Pareto sets, the Normal Constraint method pro-
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duces representations with good uniformity as well because of the equally spaced points on

the enlarged convex hull.

Fu and Diwekar [34] present a variation of the epsilon-constraint method for general

MOPs. In their method, the parameter epsilon is chosen in a pseudo-random manner.

Empirical evidence is given to show that representations produced using this technique

have more complete coverage (measured in terms of the mean and variance of the set) than

those produced by the traditional method of using uniformly spaced epsilon values.

Kim and de Weck [45] propose an algorithm based on the weighted-sum method

which seeks to produce complete coverage. The Adaptive Weighted-Sum method begins

by using the usual weighted-sum method to approximate the shape of the Pareto set. A

piecewise linear mesh is formed using the Pareto points just found. Any mesh “patch” that

is too large is refined with additional points chosen through interpolation. These points are

then projected onto the Pareto set in the direction of a pseudo-nadir point. The authors

note that non-Pareto points may be produced and a Pareto filter should be applied at the

end of each iteration. The weighted-sum method can only produce nondominated points

along Rp
=-convex regions of the Pareto set, resulting in large gaps in the representation

if the nondominated set is not entirely convex. However, by refining the feasible region

as discussed, the Adaptive Weighted-Sum method is able to generate Pareto points in

nonconvex regions, thus improving the coverage of the weighted-sum method as well as

making it applicable to nonconvex MOPs.

Zhang and Gao [83] present a method for adaptively choosing the weights and the

reference point in the min-max method so as to produce a discrete representation of the

Pareto set with approximately equidistant Pareto points. Beginning from a known Pareto

point, a single objective optimization problem is solved to determine the optimal weights

for the weighted-sum method which produces the specified point. The vector of weights is

then used to determine the tangent descent direction at the current point. The weighting

vector is translated along the tangential direction a distance of α, where α is the desired

distance between Pareto points. This weighting vector now becomes the weighting vector
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of the min-max method and the reference point is chosen to be “small enough” on this

vector (i.e., a point which clearly is outside the feasible region). The min-max problem is

solved with this new weighting vector and reference point to obtain the next Pareto point.

The method is an improvement over the Normal Boundary Intersection method [22] and

the Normal Constraint method [53] because the reference plane (i.e., the tangent to each

point) is updated at each point and more closely reflects the curvature of the Pareto set.

However, this method still only produces approximately equidistant points because the α

distance is measured between points on the tangent directions and not between the Pareto

points themselves. This method is applicable to general MOPs, although it has only been

tested on bicriteria problems.

Shao and Ehrgott [72] combine the global shooting procedure of Benson and Sayin

[10] and the Normal Boundary Intersection method of Das and Dennis [22] to produce a re-

vised Normal Boundary Intersection method for use on MOLPs. Instead of using the convex

hull of the individual minima as the reference plane as in the Normal Boundary Intersection

method, the revised method uses the subsimplex described in the global shooting proce-

dure. This is done to overcome the inability of the Normal Boundary Intersection method

to produce certain Pareto points. As in the original Normal Boundary Intersection method,

equidistant reference points are chosen on the subsimplex and an optimization problem is

solved for each reference point to determine the intersection between the boundary of the

feasible region in the objective space and the normal vector emanating from that point.

Shao and Ehrgott prove that the distance between any two Pareto points produced by the

revised method is between d and d
√
p, where p is the number of objectives and d is the

spacing between the reference points. Thus, for small problems, the new revised method is

guaranteed to produce representations with complete coverage and good uniformity.

Karasakal and Köksalan [43] suggest a method for producing discrete representa-

tions of the Pareto set with good coverage and spacing as measured by (3.6) and (3.14),

respectively. First, a weighted lp−surface is used to approximate the Pareto set. Then, this

surface is discretized with equidistant points which are projected onto the Pareto set in the
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direction of the gradient of the surface at each point. These Pareto points form the discrete

representation. Although the method is proposed for general MOPs, the authors emphasize

that it is best suited for convex problems.

The methods discussed in this section are a compromise between a priori methods

and a posteriori methods. These methods eliminate the redundancy of the latter class and

move toward the integrated quality of the former class. However, since no measure of quality

of the Pareto points themselves is utilized, the quality of the produced representations

usually cannot be guaranteed and is sometimes highly dependent on the structure (e.g., the

curvature) of the Pareto set.
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Chapter 4

Bilevel Controlled Spacing

In this chapter, we present the Bilevel Controlled Spacing (BCS) approach for gen-

erating discrete representations of the nondominated set. The chapter is divided into two

main sections, Section 4.1 details the BCS approach in the context of biobjective problems

and Section 4.2 extends the approach to multiple-objective problems. In the biobjective

section, we first discuss the approach with respect to the Pareto cone and then generalize to

polyhedral, convex cones. At the end of the biobjective section, we suggest a modification

of the BCS approach that allows us to control the tradeoffs of the generated nondominated

points. In the multiple-objective section, we present two different implementations of the

BCS approach: the center method (Section 4.2.1) and the slicing method (Section 4.2.2).

Again, we discuss both first with respect to the Pareto cone and then with respect to general

cones.

4.1 Biobjective Approach

Pareto Cone The idea behind the Bilevel Controlled Spacing approach is to generate a

Pareto point with the lower-level problem and to control the spacing of that point with the

upper-level problem. Previously produced Pareto points are used as reference points for

the placement of new points: we input two Pareto points and use a min-max formulation
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so that the generated point is equidistant between the two input points. Because of this,

the DM is restricted somewhat in her choice for the cardinality of the representation: N

must satisfy N = 2n + 1 for some n ∈ N. Further, we consider this approach only for

convex MOPs since, as discussed below, we transform the bilevel optimization problem into

a single-level problem using the Karush-Kuhn-Tucker (KKT) optimality conditions.

A similar bilevel formulation has been used in the context of MOLPs in [5, 6, 7, 8, 9].

In these papers, an additional linear function (i.e., not necessarily a criterion function of

the MOLP) is optimized over the (weakly) efficient solutions of the problem. However, the

purpose is not to generate a discrete representation as is our goal, but to to choose a single

optimum from among the set of efficient points.

The Bilevel Controlled Spacing formulation (BCS(x1∗, x2∗)) for a biobjective pro-

gram is given below where y1∗ = f(x1∗) and y2∗ = f(x2∗) are previously produced Pareto

points.

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||}

subject to x ∈ XWE

(4.1)

In the first iteration, the reference points are chosen to be

y1 = f(x1) := lex min{[f1(x), f2(x)] : x ∈ X}, (4.2)

and

y2 = f(x2) := lex min{[f2(x), f1(x)] : x ∈ X}. (4.3)

Recall from the discussion at the beginning of Section 3.1 that x ∈ XWE implies

that there exists an ε such that x is a solution to the corresponding ε-constraint problem.
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In other words, we can rewrite (4.1) in terms of the ε-constraint method as follows:

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||}

subject to x = arg min f1(x̃)

subject to f2(x̃) ≤ ε

x̃ ∈ X

(4.4)

The first order KKT optimality conditions are both necessary and sufficient for convex pro-

grams (see for example, [4]). Thus, we may transform (4.4) into a single-level optimization

problem by replacing the lower-level problem with its KKT conditions:

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||}

subject to ∇xf1(x) + u∇x(f2(x)− ε) = 0

f2(x) ≤ ε

u(f2(x)− ε) = 0

u ≥ 0

x ∈ X

(4.5)

where u ∈ R is a dual multiplier. In general, in the ε-constraint method, ε is fixed prior to

optimization. However, note that fixing ε in (4.4) also fixes f(x) so that no minimization

actually occurs at the upper-level. Our approach is to allow ε to vary throughout the

optimization, but not as an optimization variable. Rather, we optimize with respect to x,

and ε is adjusted as needed to maintain feasibility.

General Cones The BCS method can be generalized to arbitrary convex, polyhedral

preference cones. Just as in the CCS method, we use the results given in Proposition 2.0.8.

Given that a cone C is represented by the matrix A, we make the transformation g(x) =

Af(x) and derive the KKT conditions for this new problem. The single-level optimization
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problem for a general cone C, BCS(x1∗, x2∗, A), is then given by

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||}

subject to ∇xg1(x) + v∇x(g2(x)− ε) = 0

g2(x) ≤ ε

v(g2(x)− ε) = 0

v ≥ 0

x ∈ X

(4.6)

where v ∈ R is a dual multiplier associated with the transformed functions. Notice that

our objective function, however, is the same as in (4.5). This is because we seek equidistant

spacing in the original objective space, not the transformed objective space.

Proposition 4.1.1. Let C be a convex cone defined by C = {y ∈ R2 : Ay = 0}. If x̂ is an

optimal solution to BCS(x1∗, x2∗, A), then f(x̂) ∈ NW (Y,C).

Proof. Let x̂ be an optimal solution to BCS(x1∗, x2∗, A). Since the KKT optimality condi-

tions are both necessary and sufficient for optimality and the ε-constraint method guarantees

at least a weakly efficient point, x̂ ∈ EW (X, g,Rp
=) = EW (X,Af,Rp

=). By Proposition 2.0.8,

x̂ ∈ EW (X, f,C) which implies f(x̂) ∈ NW (Y,C). This completes the proof.

The single level formulation in (4.6) can now be solved using a nonlinear solver.

Unfortunately, we found through the literature (e.g., [73]) and through test runs of our

own that the highly nonlinear complementary slackness conditions make this problem very

difficult to solve. In [3] and [73], a branch-and-bound algorithm for solving bilevel problems

is presented. The problem is first formulated as a single level problem as we have done

and then solved without the complementary slackness conditions. If the complementary

slackness conditions are satisfied for the relaxed problem, then we have found a solution.

Otherwise, we branch on the most violated complementary slackness constraint, first set-

ting the corresponding dual multiplier to zero then setting the primal constraint equal to

zero. We solve each relaxation, checking to see if complementary slackness is satisfied. We
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continue in this way until we have found a solution. Note that usually we do not have to

enumerate all the possible combinations because some paths lead to infeasibility or can be

fathomed.

Pseudocode for the Bilevel Controlled Spacing Algorithm (BCSAN ) for general cones

is shown in Figure 4.1. The inputs for this algorithm are N , the number of points desired

in the representation, and two nondominated points, x1 and x2. As mentioned earlier, N

must satisfy N = 2n + 1 for some n ∈ N. If x1 and x2 are chosen to be the individual

objective minima for the transformed problem, we determine their values using procedure

BCSA Initialization (Figure 4.2). Otherwise, we may use two points chosen by the DM.

In either case, these points are used as the reference points in the first iteration. We next

solve problem (4.6) to obtain the center point between our reference points and we insert

this point between the reference points in the list L. If the length of L is shorter than the

desired length N , then we solve (4.6) with the first and second points in the list as reference

points and, again, with the second and third points as reference points. Each time, we

insert the newly generated point into the list L between the two points which produced it.

We continue in this manner until the desired cardinality is reached. The algorithm outputs

the list L containing the N efficient points that were produced.

We can slightly alter the previously discussed algorithm so that the spacing between

generated points is used as the stopping criterion instead of the cardinality. In this case,

the DM would specify a distance δ such that she would like the distance between two

nondominated points to be δ or less. The modified algorithm, BCSAδ, is identical to

BCSAN except for the changes shown in Figure 4.3. Note that to determine if the stopping

criterion has been met, we look only at the spacing between the first two points in the list L.

This is acceptable because we know that we have at least approximately equidistant spacing

throughout the representation. Whether we have exactly equidistant spacing depends on

the chosen norm and on the cone C which we discuss next.

When the DM’s preferences are modeled by an obtuse cone C and the l1−norm is
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algorithm BCSAN

obtain x1 and x2 from DM or using Initialization;

input: N , x1, x2

begin

set L = {x1, x2};
while length of L < N do

begin

set L′ = L;
for i = 1 to the length of L

solve BCS(L(i), L(i+ 1), A) to obtain x∗;
insert x∗ into L′ between L(i) and L(i+ 1);
i+ +;

end for;
set L = L′;

end while;

end;

output: L

Figure 4.1: Pseudocode for BCSAN

procedure Initialization

input: BOP

begin

find x1 ∈ arg lex min{[g1(x), g2(x)] : x ∈ X};
find x2 ∈ arg lex min{[g2(x), g1(x)] : x ∈ X};

end;

output: x1, x2

Figure 4.2: Pseudocode for Initialization
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algorithm BCSAδ

obtain x1 and x2 from DM or using Initialization;

input: δ, x1, x2

begin

set L = {x1, x2};
while ||f(L(1))− f(L(2))|| > δ do

begin

set L′ = L;
for i = 1 to the length of L

solve BCS(L(i), L(i+ 1), A) to obtain x∗;
insert x∗ into L′ between L(i) and L(i+ 1);
i+ +;

end for;
set L = L′;

end while;

end;

output: L

Figure 4.3: Pseudocode for BCSAδ
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selected, we have exactly equidistant spacing because as discussed in Section 3.1, in this

case, the triangle inequality becomes an equality. If p > 1 or an acute cone is used, we can

no longer use the strengthened version of the triangle inequality, so we cannot guarantee

that we have exactly equidistant spacing throughout the representation. However, each

generated nondominated point is placed so that it is equidistant from the two input points

by which it was produced. In other words, if the solution of BCS(x1∗, x2∗, A) is x̂, then

||f(x∗a)− f(x̂)||p = ||f(x∗b)− f(x̂)||p (note that this is our objective function from (4.6)).

Controlled-Tradeoff We now propose a method for controlling the tradeoffs of the gen-

erated solution points. Since the variable u in (4.5) represents the tradeoff between the

objective functions, u can be used to generate a Pareto point with a specified tradeoff sim-

ply by changing the objective function as shown in (4.7) where t is the desired tradeoff.

minimize ||u− t||

subject to ∇xf1(x) + u∇x(f2(x)− ε) = 0

f2(x) ≤ ε

x ∈ X

u(f2(x)− ε) = 0

u ≥ 0

(4.7)

This problem has several possible applications. It can be used to determine the input points

for the BCS method. For instance, if the DM knows that she is not willing to give up more

than five units of f1 to obtain one additional unit of f2, we could generate the solution

point having a tradeoff of one-fifth. This point could then be used as one of the initial

input points so that the equidistant representation is generated only over the portion of the

Pareto set having a tradeoff of greater than one-fifth. Furthermore, instead of generating

equidistant solution points, we can solve formulation (4.7) multiple times to generate a

discrete representation with tradeoffs chosen by the DM. Both of these applications using

controlled-tradeoff would allow the DM to focus on areas of the nondominated set in which
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she may be more interested.

4.2 Multiobjective Approach

Extending the Bilevel Controlled Spacing approach to multiobjective problems with

more than two criteria is relatively straightforward. Through numerical investigations, we

found that two versions of the approach naturally present themselves. The first, which

we call the center method, generalizes problem (4.5) exactly as one would expect. That

is, just as we input two reference points and find the point equidistant between them in

two dimensions, in p dimensions, we input p reference points and find the center point

among them. We discuss the details of this method first below. In the second method, the

slicing method, instead of working in the dimension p of the problem, we fix the value of

a chosen criterion and work instead in p − 1 dimensions. In fact, we can continue fixing

criterion values until we are again in two dimensions at which point we apply equation

(4.5) just as before. This method is discussed in more detail following our discussion of the

center method below. Finally, it is important again to note that both of these methods are

intended for use on convex MOPs because we utilize the KKT optimality conditions which

are necessary and sufficient only for convex problems.

4.2.1 Center Method

Pareto Cone The Bilevel Controlled Spacing formulation utilizing the center method

(BCSC(x1∗, x2∗, . . . , xp∗)) is given below where yi∗ = f(xi∗), i = 1, . . . , p, are previously

produced Pareto points (typically, the individual objective minima in the first iteration).

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||, . . . , ||yp∗ − f(x)||}

subject to x ∈ XWE

(4.8)
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As discussed in the biobjective case in Section 4.1, we may rewrite the condition x ∈ XWE

in equation (4.8) in terms of the ε-constraint method:

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||, . . . , ||yp∗ − f(x)||}

subject to x = arg min f1(x̃)

subject to fi(x̃) ≤ εi, for i = 2, . . . , p

x̃ ∈ X

(4.9)

Next, we reformulate (4.9) as a single-level optimization problem by replacing the lower-level

problem with its KKT conditions:

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||, . . . , ||yp∗ − f(x)||}

subject to ∇xf1(x) + u2∇x(f2(x)− ε2) + . . .+ up∇x(fp(x)− εp) = 0

fi(x) ≤ εi, for i = 2, . . . , p

ui(fi(x)− εi) = 0, for i = 2, . . . , p

ui ≥ 0, for i = 2, . . . , p

x ∈ X

(4.10)

where ui ∈ R are dual multipliers.

In three dimensions, we can picture the center method as finding the center Pareto

point of the curved triangle formed by the three input points. For each Pareto point

generated, three new triangles are formed and continuing in this way, we investigate all

regions of the Pareto set. As discussed in Section 4.1, we are only guaranteed that the

newly produced point is as close to equidistant as possible between the generating input

points. Because of this, the areas of the triangles may differ, so certain areas of the Pareto

set will need more refinement than others. Thus, when implementing the center method, we

investigate a triangle only if its area (which we estimate as the area of the planar triangle

formed by the input points) is greater than a prespecified level. This prevents redundancies

in the resulting representation.
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General Cones Just as in the biobjective approach, we can generalize the BCSC method

to notions of optimality defined by arbitrary convex, polyhedral preference cones using the

results given in Proposition 2.0.8. The single-level optimization problem given a general

cone C defined by the matrix A, BCSC(x1∗, x2∗, . . . , xp∗, A), is

minimize max{||y1∗ − f(x)||, ||y2∗ − f(x)||, . . . , ||yp∗ − f(x)||}

subject to ∇xg1(x) + v2∇x(g2(x)− ε2) + . . .+ vp∇x(gp(x)− εp) = 0

gi(x) ≤ εi, for i = 2, . . . , p

vi(gi(x)− εi) = 0, for i = 2, . . . , p

vi ≥ 0, for i = 2, . . . , p

x ∈ X

(4.11)

where vi ∈ R are dual multipliers associated with the transformed functions.

Proposition 4.2.1. Let C be a convex cone defined by C = {y ∈ Rp : Ay = 0}. If x̂ is an

optimal solution to BCSC(x1∗, x2∗, . . . , xp∗, A), then f(x̂) ∈ NW (Y,C).

Proof. Let x̂ be an optimal solution to BCSC(x1∗, x2∗, . . . , xp∗, A). Since the KKT op-

timality conditions are both necessary and sufficient for optimality and the ε-constraint

method guarantees at least a weakly efficient point, x̂ ∈ EW (X, g,Rp
=) = EW (X,Af,Rp

=).

By Proposition 2.0.8, x̂ ∈ EW (X, f,C) which implies f(x̂) ∈ NW (Y,C). This completes the

proof.

The advantages of this method are that it can be implemented in exactly the same

manner as the BCSA for biobjective problems given in Section 5.1, although the bookkeeping

for the algorithm becomes more complex. Additionally, a check for the area of each search

region (in three dimensions, a triangle) needs to be added. The major drawback of this

method is that it is not conducive to visualization for more than three objectives. This

disadvantage led us to the idea for the slicing method which we discuss next.
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4.2.2 Slicing Method

Pareto Cone Recall that one of the goals of our work is to aid in the visualization of the

nondominated set. In this respect, however, the center method left us unsatisfied. Because

of this, we suggest an alternate method for applying the Bilevel Controlled Spacing method

to multiobjective problems, called the slicing method. The main concept behind the slicing

method is that although we may not be able to see the Pareto set as a whole in higher

dimensions, we can visualize its two- or three-dimensional cross-sections.

Let j, k ∈ {1, 2, . . . , p}, j < k, and

X̃ = {x ∈ Rn : fi(x) = f∗i for i = 1, . . . , p, i 6= j, i 6= k} (4.12)

where the f∗i values are fixed scalars. Given this, the Bilevel Controlled Spacing Formulation

using the slicing method (BCSS(xj∗, xk∗)) is given below:

minimize max{||yj∗ − f(x)||, ||yk∗ − f(x)||}

subject to x ∈ X̃

x ∈ XWE

(4.13)

where
xj∗ = arg lex min [fj(x), fk(x)]

subject to x ∈ X̃

x ∈ XWE

(4.14)

and
xk∗ = arg lex min [fk(x), fj(x)]

subject to x ∈ X̃

x ∈ XWE

(4.15)

Note that in (4.13), yj∗ = f(xj∗) and yk∗ = f(xk∗). As in the center method, we rewrite
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x ∈ XWE using the ε-constraint method.

minimize max{||yj∗ − f(x)||, ||yk∗ − f(x)||}

subject to x ∈ X̃

x = arg min f1(x̃)

subject to fi(x̃) ≤ εi, for i = 2, . . . , p

x̃ ∈ X

(4.16)

Finally, we arrive at our single-level optimization problem by rewriting the lower-level ε-

constraint problem in terms of its KKT conditions.

minimize max{||yj∗ − f(x)||, ||yk∗ − f(x)||}

subject to x ∈ X̃

∇xf1(x) + u2∇x(f2(x)− ε2) + . . .+ up∇x(fp(x)− εp) = 0

fi(x) ≤ εi, for i = 2, . . . , p

ui(fi(x)− εi) = 0, for i = 2, . . . , p

ui ≥ 0, for i = 2, . . . , p

x ∈ X

(4.17)

In problems (4.13) through (4.17), we reduce the p−dimensional Pareto set to a two-

dimensional cross-section. To reduce the Pareto set to a three-dimensional cross-section,

we would instead fix all but three of the objective function values. Also note that the same

process as described above would be use to solve problems (4.14) and (4.15).

General Cones Notice that the slicing method essentially reduces the initial optimization

problem to two or three dimensions at which point the center method is applied. Because

of this, the derivation of the BCSS method for general cones is the same as discussed in the

previous section. Proposition 4.2.1 also applies here.
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Implementation To produce a discrete representation of the entire nondominated set,

we need to generate a collection of cross-sections. That is, we must systematically vary the

values of f∗i in the set X̃ (4.12). The Bilevel Controlled Spacing Slicing Algorithm (BCSSA)

for general cones is shown in Figure 4.4. Note that as mentioned, the biobjective bilevel

algorithm is nested inside the multiobjective algorithm. BCSSA takes as inputs the indices

(j, k) of the objective functions that are not fixed, the scalars ni which are the number of

slices desired with respect to each fixed objective function, and the spacing value δ which

is used as the stopping criterion. Next, for each fixed objective function, we determine the

minimum and maximum values, f li and fhi , over the nondominated set. We calculate the

distance between these extreme values and divide by ni − 1 to find the spacing between

each slice. A series of nested for-loops is used to investigate all possible cross-sections. Note

that these loops are only over the fixed objective functions. For each possible combination

of the fixed values, we specify the set X̃ and determine the minimum values of fj(x) and

fk(x) over this cross-section of the nondominated set. These points are used as the reference

points in the biobjective BCSAδ. We recommend the use of BCSAδ over BCSAN because

the length of each cross-section will (most likely) be different. The former refines as much

or as little as necessary to meet the spacing criterion, while the latter does not adapt to the

problem and generates N nondominated points regardless of the length of the cross-section

resulting in highly variable spacing among the cross-sections. Each time we run BCSAδ, we

obtain a list L of efficient points which we add to the list of lists, L. BCSSA returns L at

the conclusion of the algorithm.

Algorithmically, when applying the slicing method to an MOP, it does not mat-

ter which objectives we choose to fix. However, the resulting representations can be quite

different in terms of decision-making because different sets of nondominated points (i.e., dif-

ferent alternatives) are presented to the DM. Additionally, due to the increased complexity

of higher dimensions, slicing with respect to different objective functions can lead to varying

coverage in certain areas of the nondominated set: in particular, along the boundary of the
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algorithm BCSSA

input: j, k ∈ {1, . . . , p}, ni for i = 1, . . . , p, i 6= j, i 6= k, δ

begin

find f li = min{fi(x) : x ∈ EW (X, f,C)} for i = 1, . . . , p, i 6= j, i 6= k;

find fhi = max{fi(x) : x ∈ EW (X, f,C)} for i = 1, . . . , p, i 6= j, i 6= k;

compute di = (fhi − f li )/(ni − 1) for i = 1, . . . , p, i 6= j, i 6= k;

set L = {};
for count1 = 1, . . . , n1

f∗1 = f l1 + (count1 − 1)d1;
...
for countp = 1, . . . , np

f∗p = f lp + (countp − 1)dp;

set X̃ = {x ∈ Rn : fi(x) = f∗i for i = 1, . . . , p, i 6= j, i 6= k};
find x1 ∈ arg lex min{[fj(x), fk(x)] : x ∈ X̃, x ∈ EW (X, f,C)};
find x2 ∈ arg lex min{[fk(x), fj(x)] : x ∈ X̃, x ∈ EW (X, f,C)};
run algorithm BCSAδ with inputs δ, x1, x2 to obtain L;
append L to L;

end for;

end for;

end;

output: L

Figure 4.4: Pseudocode for BCSSA
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nondominated set. Both of these issues can be seen in Figures 4.5 and 4.6 which illustrate

the same nondominated set sliced with respect to two different objective functions. Note

that in Figure 4.5 we lack coverage around the nondominated point farthest to the right

of the figure, while in Figure 4.6 we lack coverage around the nondominated point at the

top of the figure. Given this, if the DM has no preferences about which objective to fix,

it would be beneficial to generate several different representations sliced with respect to

different objective functions. On the other hand, if the DM is more informed about one

of the objective functions than the others, then we recommend slicing with respect to this

objective function.

Figure 4.5: Example sliced wrt f1 Figure 4.6: Example sliced wrt f2

The advantages of the slicing method are that it aids in the visualization of the

nondominated set even for problems with more than three dimensions. Additionally, the

slicing method can easily integrate DM preferences. For example, the DM can choose to

investigate only certain cross-sections quite easily. Along the same lines, it is also possible

to integrate the controlled-tradeoff method presented in (4.7) at the two-dimensional level

so that the DM can consider specific tradeoffs that may be of interest to her. The main

disadvantage of the slicing method is that, as with the other bilevel techniques, it is only

applicable to convex MOPs.
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Chapter 5

Constraint Controlled Spacing

In this chapter, we present the Constraint Controlled Spacing (CCS) approach for

generating discrete representations of the nondominated set. Instead of utilizing a bilevel

structure as in the Bilevel Controlled Spacing approach, in this method we add a constraint

to the epsilon-constraint problem to control the spacing of newly generated points. The

chapter is divided into three sections. In Section 5.1, we discuss the CCS approach for

biobjective problems; we begin assuming the Pareto notion of optimality (Section 5.1.1)

and then move to notions of optimality defined by general cones (Section 5.1.2). In Section

5.1.3, we discuss the implementation of the biobjective approach, and in Section 5.1.4, we

consider a family of elliptic norms. In Section 5.2, we give some linear algebra results

related to simplicial cones. These results are used in Section 5.3 where we present the CCS

approach for multiobjective problems, again beginning with the Pareto cone (Section 5.3.1)

and then moving to general cones (Section 5.3.2). Section 5.3.3 concludes the chapter with

a discussion of the implementation of the multiobjective approach.
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5.1 Biobjective Approach

5.1.1 Pareto Cone

The epsilon constraint method [17] is a well-known scalarization in the field of

multiple-objective programming. The formulation (P1(ε)) for the biobjective case is given

in (5.1):

minimize f1(x)

subject to f2(x) ≤ ε

x ∈ X

(5.1)

where ε ∈ R is a parameter. In [17], it is proved that if x̂ is an optimal solution of

P1(ε) for some ε, then f(x̂) ∈ YWN . Alternately, it is shown that if f(x̂) ∈ YWN , then

there exists an ε such that x̂ is an optimal solution of P1(ε). Typically, ε is varied in a

uniform manner between two fixed reference points to obtain a discrete representation of

the Pareto set (see for example, [40]). However, in almost every case, uniformly varying

ε in the epsilon constraint method does not lead to uniformly spaced Pareto points in the

representation as shown in Figure 5.1. To remedy this, we add a spacing constraint to the

epsilon constraint formulation to ensure equidistant spacing of the generated Pareto points

between the reference points which, without loss of generality, are chosen to be y1 (4.2)

and y2 (4.3). Alternatively, the reference points may be chosen by the DM. Notice that if

we produce equidistant Pareto points between our two “end” points, then we have attained

complete coverage of the Pareto set as well.

The Constraint Controlled Spacing formulation (CCS1(δ, x∗)) for a biobjective pro-

gram, assuming Pareto preferences, is as follows. Let x∗ ∈ XWE such that ||f(x∗)−y2|| ≥ δ

where δ is a fixed scalar representing the desired spacing between points in the Pareto set.
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Figure 5.1: A Pareto set generated using uniformly spaced epsilons

Further, let || · || be an lp-norm. Then CCS1(δ, x∗) is defined as:

minimize f1(x)

subject to f1(x) ≤ f1(x2)

f2(x) ≤ f2(x∗)

||f(x)− f(x∗)|| ≥ δ

x ∈ X

(5.2)

The requirement that ||f(x∗)−y2|| ≥ δ is needed to ensure that (5.2) has a feasible solution.

The first constraint in (5.2) is needed only from a theoretical point of view to ensure that

all feasible solutions to (5.2) are “above” the weak Pareto set. This is used in the proof of

Proposition 5.1.3 when we assume that we can reduce the f2-value of any feasible solution

by a certain amount and obtain another feasible point. This constraint can be omitted

in practice since we are minimizing f1(x). The second constraint is similar to the epsilon

constraint in (5.1). Here, however, a previously produced point (in the first iteration, y1)

plays the role of epsilon and is used as a reference for placing the new point. The third

constraint controls the spacing by forcing the new point to be at least δ distance away from

the input point. This constraint takes the form of the δ-level curve for the appropriate

lp-norm, and, thus, is nonlinear. Notice that the epsilon constraint eliminates the majority
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of (or, in the cases of the l1- and l∞-norms, eliminates entirely) the non-convexity in the

feasible region created by the spacing constraint (see Figure 5.2). After the first iteration,

the newly generated point becomes the input point, and in this way, we “walk down” the

Pareto set until we reach a fixed stopping point (in our work, y2). Figure 5.2(b) shows a

typical iteration with the diamond-shaped constraint representing the δ-level curve for the

l1-norm. The parameter δ is selected based on the cardinality preferences of the DM and is

discussed at the end of this section.

 

f2
 

f1 

f (x∗) 

f2
 

f1 

f (x∗) 

f ( ˆ x )  

(b) (a) 

Figure 5.2: Example feasible regions for the l1-norm (a) without and (b) with the epsilon
constraint

5.1.2 General Cones

Using the results given in Proposition 2.0.8, the CCS method can be generalized

to produce equidistantly-spaced nondominated points where optimality is defined by an

arbitrary obtuse preference cone. Let C ⊇ R2
= be a cone defined by a matrix A and let

z = g(x) = Af(x) as in the transformed MOP (2.2). We obtain the reference (“end”)

points, z1 = g(x1) and z2 = g(x2), of the Pareto set in a similar manner as before (see (4.2)

and (4.3)):

z1 := lex min{[g1(x), g2(x)] : x ∈ X}, (5.3)
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and

z2 := lex min{[g2(x), g1(x)] : x ∈ X}. (5.4)

As in formulation (5.2), we ensure that the problem has a feasible solution by requiring

that ||f(x∗) − f(x2)|| ≥ δ where x2 is now defined as the preimage of z2, δ is the desired

spacing, x∗ ∈ EW (X, f,C), and || · || is an lp-norm. Notice that this requirement is in the

space of the original problem, not the transformed problem. The Constraint Controlled

Spacing Problem for an obtuse preference cone defined by the matrix A, CCS1(δ, x∗, A), is

formulated as follows where Ai is the ith row of the matrix A:

minimize A1f1(x)

subject to f1(x) ≤ f1(x2)

A2f2(x) ≤ A2f2(x∗)

||f(x)− f(x∗)|| ≥ δ

x ∈ X

(5.5)

which we rewrite with simplified notation as

minimize g1(x)

subject to f1(x) ≤ f1(x2)

g2(x) ≤ g2(x∗)

||f(x)− f(x∗)|| ≥ δ

x ∈ X

(5.6)

The constraints serve the same purposes as discussed at the beginning of the section: the first

is purely theoretical as was discussed in the Pareto cone section and is needed here for the

same reason, the second is the ε-constraint, and the third is the spacing constraint. However,

it is clear from (5.6) that the ε-constraint and the spacing constraint are now operating in

different spaces. That is, the ε-constraint is applied to the transformed functions while

the spacing constraint is applied to the original functions. This is done because we seek
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equidistant nondominated points of the original problem. If we had, instead, used the

spacing constraint ||g(x) − g(x∗)|| ≥ δ, we would obtain equidistant Pareto points of the

transformed problem. Unfortunately, though, when we recover the nondominated points of

the original problem using Proposition 2.0.8, there is no guarantee that the spacing remains

equidistant.

We now prove some propositions which lead to our main result.

Proposition 5.1.1. Let C be a polyhedral cone defined by C = {y ∈ Rp : Ay = 0}. The

matrix A has all nonnegative entries if and only if Rp
= ⊆ C.

Proof. (⇒) Suppose the matrix A has all nonnegative entries. That is, suppose aij ≥ 0 for

all i, j. Let y ∈ Rp
= which implies y = 0 by definition. Then, Ay = 0 since aij ≥ 0 for all

i, j. Thus, y ∈ C.

(⇐) Suppose that Rp
= ⊆ C, and assume that there exists an i′ and a j′ such that ai′j′ < 0.

Consider the unit vector ej
′ ∈ Rp

= which has a 1 in the j′th position and 0s everywhere else.

Multiplying the i′th row of A by ej
′

gives Ai′ej
′

= ai′j′ < 0. Thus, Aej
′ 6= 0 which implies

that ej
′
/∈ C and Rp

= 6⊆ C, a contradiction. This completes the proof.

Proposition 5.1.2. Any pointed, polyhedral cone C ⊂ R2 can be represented by a 2 × 2

matrix A having positive determinant.

Proof. Let C ⊂ R2 be a pointed cone defined by C = {y ∈ R2 : Ay = 0}. Since C is

pointed, the determinant of A is non-zero. Suppose that the determinant of A is negative.

Then one may exchange the rows of A without changing the cone. Exchanging two rows in

a matrix changes the sign of the determinant of the matrix, so the determinant of A is now

positive. This completes the proof.

We next prove our main theorem for this section.

Theorem 5.1.3. Let C ⊇ R2
= be a pointed cone defined by C = {y ∈ R2 : Ay = 0}.

If NW (Y,C) is connected and x̂ is the unique optimal solution of CCS1(δ, x∗, A), then

f(x̂) ∈ NW (Y,C).
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Proof. Assume NW (Y,C) is connected and let x̂ be the unique optimal solution of CCS1(δ,

x∗, A). Let ŷ = f(x̂) and ẑ = Af(x̂). Suppose that ŷ /∈ NW (Y,C). By definition,

ŷ /∈ NW (Y,C) implies (ŷ − int C) ∩ Y 6= ∅. This further implies that (ŷ − C) ∩ Y 6= ∅. In

particular, since y∗ = f(x∗) and y2 = f(x2) (where x2 is defined as the preimage of z2 from

(5.4)) are both in NW (Y,C), NW (Y,C) is connected, and f1(x̂) ≤ f1(x2), there must exist

a λ > 0 and ỹ = f(x̃) ∈ Y such that ỹ = ŷ + λ(0,−1)T . Let A have the form

A =

 a11 a12

a21 a22


such that the determinant of A is positive (see Proposition 5.1.2). Then, the resulting

components of z̃ are as follows:

z̃ = Aỹ = A(ŷ + λ(0,−1)T ) = ẑ + λA(0,−1)T =

 ẑ1 − λa12

ẑ2 − λa22


Note that since C is obtuse, all components of the matrix A are nonnegative by Proposition

5.1.1. Combining this fact with λ > 0 gives that

z̃1 ≤ ẑ1, (5.7)

and

z̃2 ≤ ẑ2. (5.8)

To establish the feasibility of x̃, recall that since x̂ is optimal for CCS1(δ, x∗, A), we have

ŷ1 ≤ y2
1, (5.9)

ẑ2 ≤ z∗2 , (5.10)
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and

||ŷ − y∗|| ≥ δ. (5.11)

Combining (5.8) and (5.10) gives z̃2 ≤ z∗2 , so x̃ is feasible to the ε-constraint in (5.6).

Further, since ỹ = ŷ + λ(0,−1)T , we know that

ỹ1 = ŷ1, (5.12)

and

ỹ2 < ŷ2. (5.13)

Combining (5.9) and (5.12) gives ỹ1 ≤ y2
1, so x̃ is feasible to the first constraint in (5.6). To

complete the feasibility argument, we determine the relationship between ŷ2 and y∗2. From

(5.10) we can derive the following where Ai denotes the ith row of A:

A2ŷ ≤ A2y
∗

a21ŷ1 + a22ŷ2 ≤ a21y
∗
1 + a22y

∗
2

ŷ1 ≤ y∗1 + a22
a21

(y∗2 − ŷ2).

(5.14)

Note that since y∗ ∈ NW (Y,C), then Ay∗ ∈ ANW (Y,C) which we may rewrite as z∗ ∈

ANW (Y,C). By Proposition 2.0.8, ANW (Y,C) = NW (AY,Rp
>). Thus, z∗ ∈ NW (AY,Rp

>)

which by definition means that (z∗−R2
>)∩AY = ∅. In particular, given (5.10), this implies

that we must have ẑ1 ≥ z∗1 which gives

A1ŷ ≥ A1y
∗

a11ŷ1 + a12ŷ2 ≥ a11y
∗
1 + a12y

∗
2

ŷ1 ≥ y∗1 + a12
a11

(y∗2 − ŷ2).

(5.15)
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Combining the last inequalities of (5.14) and (5.15), we have

y∗1 + a12
a11

(y∗2 − ŷ2) ≤ y∗1 + a22
a21

(y∗2 − ŷ2)

a12a21(y∗2 − ŷ2) ≤ a11a22(y∗2 − ŷ2)

0 ≤ (a11a22 − a12a21)(y∗2 − ŷ2)

(5.16)

Note that (a11a22−a12a21) is the determinant of A which by assumption is positive. Hence,

we have that ŷ2 ≤ y∗2. This fact along with (5.11), (5.12), and (5.13) implies that ||f(x̃)−

f(x∗)|| > δ. Thus, x̃ is feasible to CCS1(δ, x∗, A) with z̃1 ≤ ẑ1. If z̃1 < ẑ1, then x̂ is

not an optimal solution of CCS1(δ, x∗, A). If z̃1 = ẑ1, then x̂ is not a unique optimal

solution of CCS1(δ, x∗, A). Hence, both cases lead to contradictions which implies that

f(x̂) ∈ NW (Y,C). This completes the proof.

Corollary 5.1.4. Let C ⊇ R2
= be a pointed cone defined by C = {y ∈ R2 : Ay = 0}.

If N(Y,C) is connected and x̂ is the unique optimal solution of CCS1(δ, x∗, A), then

f(x̂) ∈ N(Y,C).

Proof. Follows directly from the proof of Theorem 5.1.3.

The following proposition shows that the spacing between nondominated points

actually equals δ. That is, CCS1(δ, x∗, A) produces equidistant nondominated points when

NW (Y,C) is connected.

Proposition 5.1.5. Let C ⊇ R2
= be a pointed cone defined by C = {y ∈ R2 : Ay = 0} and

assume NW (Y,C) is connected. If x∗ ∈ EW (X, f,C) and x̂ is the unique optimal solution

of CCS1(δ, x∗, A), then ||f(x̂)− f(x∗)|| = δ.

Proof. Assume NW (Y,C) is connected. Let x∗ ∈ EW (X, f,C) and x̂ be the unique optimal

solution of CCS1(δ, x∗, A). Then by Theorem 5.1.3, f(x̂) ∈ NW (Y,C). Suppose that

||f(x̂) − f(x∗)|| > δ. Note that since x∗ ∈ EW (X, f,C) and NW (Y,C) is connected, we

must have that {x ∈ R2 : ||f(x) − f(x∗)|| = δ} ∩ NW (Y,C) 6= ∅. Further, since we

require ||f(x∗) − f(x2)|| ≥ δ, we must have that {x ∈ R2 : ||f(x) − f(x∗)|| = δ, f1(x) ≤
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f1(x2), and g2(x) ≤ g2(x∗)} ∩NW (Y,C) 6= ∅. Thus, let x̃ ∈ EW (X, f,C) such that g2(x̃) ≤

g2(x∗) and ||f(x̃) − f(x∗)|| = δ. Then we must have the following ordering with respect

to g1: g1(x∗) ≤ g1(x̃) ≤ g1(x̂) with all points distinct. If g1(x̃) < g1(x̂), then x̂ is not an

optimal solution of CCS1(δ, x∗, A). If g1(x̃) = g1(x̂), then x̂ is not a unique optimal solution

CCS1(δ, x∗, A). Hence, both cases lead to contradictions. This completes the proof.

If the nondominated set is not connected, we are still guaranteed to have equidistant points

in the regions of NW (Y,C) which are locally connected.

If x̂ is not the unique solution of CCS1(δ, x∗, A), one cannot guarantee that f(x̂) is

nondominated (see Figure 5.3). Fortunately, this is only an issue with the l∞-norm in the

family of lp-norms. Thus, if we use any other lp-norm, the uniqueness restriction may be

relaxed. Further, note that while Theorem 5.1.3 requires that the solution x̂ be unique, we

actually only need f(x̂) to be unique.

 

f2
 

f1 

f ( ˆ x )  

f (x∗) 

Figure 5.3: A dominated solution may be produced when using the l∞-norm.

If NW (Y,C) is not connected, CCS1(δ, x∗, A) may not produce a nondominated

point as shown in Figure 5.4. However, one may still apply the method to a problem with

a disconnected nondominated set by checking the nondominance of the solution point x̂.

This check is performed by solving an instance of the epsilon constraint problem, denoted

P2(ε), in the space of the transformed problem. We let epsilon be the appropriate criterion
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value of the current candidate solution x̂ (as shown in (5.17)).

minimize g2(x)

subject to g1(x) ≤ g1(x̂)

x ∈ X

(5.17)

As mentioned previously, a solution to the epsilon constraint problem is at least weakly

nondominated, so if the solution to the check problem, x′, is equal in the objective space

to the candidate solution (i.e., g2(x′) = g2(x̂)), then the candidate solution is weakly non-

dominated. Otherwise, we discard the candidate solution and use the solution of the check

problem as our new input point.

Additionally, notice that if a larger δ is chosen, the disconnected portion of the

nondominated set may become a non-issue. That is, depending on the magnitude of δ,

the size of the gap in the nondominated set, and the placement of f(x∗), it is possible

that the algorithm will not detect the gap in the nondominated set and will run as if the

nondominated set were connected.

 

f2
 

f1 

f ( ˆ x )  

f (x∗) 

Figure 5.4: A dominated point may be produced when YWN is not connected.

The selection of the parameter δ should be based on the chosen lp-norm and the

DM’s cardinality preference, N . Note that N should be the largest number of solution

points that the DM can simultaneously compare. We first consider the case where the
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(weakly) nondominated set is known to be connected. If the l1-norm is selected, given the

input points (i.e., z1 and z2) and N (which includes the input points), δ should be chosen

as

δ =
||z1 − z2||1
N − 1

. (5.18)

The formula in (5.18) is valid because the triangle inequality becomes an equality for the

l1−norm when the (weakly) nondominated set is monotonic (which is the case when C

is obtuse). When p > 1, one can no longer use the strengthened version of the triangle

inequality regardless of the curvature of the (weakly) nondominated set, so δ should be

chosen experimentally as:

||z1 − z2||1
N − 1

≤ δ ≤ ||z
1 − z2||∞
N − 1

. (5.19)

Notice that if a δ is chosen that does not “fit” the specific problem being solved, the spacing

between the final generated nondominated point and the second input point will be smaller

than δ. If no information is known about the connectivity of the (weakly) nondominated

set a priori, the guidelines above should still be followed for the selection of δ. However, in

this case, the number of solution points generated is less than or equal to N .

In the case of an acute cone, CCS1(δ, x∗, A) may not produce a nondominated

point. Figure 5.5 (a) shows the cone C and its associated negative cone −C. Figure 5.5

(b) shows how this cone would be applied to a generic problem. The oblique ray of −C is

used as the constraint while the other represents level curves of the objective function. In

this example, we simply minimize f1. Several level-curves of f1 are shown along with the

level curve corresponding to the optimal solution x̂. However, notice that f(x̂) is clearly

not a nondominated point. This occurs because of the extreme non-convexity of the feasible

region when an acute cone is used. On the other hand, when an obtuse cone is used, the

ε-constraint eliminates the majority of (or, in the cases of the l1- and l∞-norms, eliminates

entirely) the non-convexity in the feasible region created by the spacing constraint (see

Figure 5.6).

59



 

f2
 

f1 
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Figure 5.5: Example of CCS1(δ, x∗, A) when C is acute
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(b) (a) 

f ( ˆ x )  

Figure 5.6: Example of CCS1(δ, x∗, A) when C is obtuse
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5.1.3 Implementation

The Constraint Controlled Spacing Algorithm (CCSA) is shown in Figure 5.7. The

algorithm begins by determining the individual objective minima (see Figure 4.2) which are

used as the initial reference points. Other points chosen by the DM may be used instead.

The while-loop depends on the chosen cardinality, N , and on the requirement that the

problem has a feasible solution. Recall that computationally, the constraint f1(x) ≤ f1(x2)

is unnecessary, so this constraint my be eliminated when solving CCS1(δ, x∗, A). The check

for nondominance is integrated into the algorithm after the initial “solve” step. If, however,

the problem is known to have a connected nondominated set, this check may be eliminated.

The algorithm outputs L, the list of efficient solutions.

5.1.4 Elliptic Norms

In the context of the Pareto cone, we also consider elliptic norms which are a class

of norms not usually applied to multiple-objective programming. Rustem [64] introduces

the following elliptic norm which is defined by a symmetric, positive definite, p× p matrix

Q:

||y||2Q = yTQy. (5.20)

In terms of decision-making, the matrix Q allows DMs to quantify their preferences. The di-

agonal elements represent the importance of each individual criterion, while the off-diagonal

elements represent the DMs tradeoff preferences.

Unfortunately, replacing the norm in problem (5.2) with the elliptic norm in (5.20)

is not as straightforward as it may appear. Choosing the matrix Q is the first difficulty. It is

unclear how to determine the magnitudes of the entries and through numerical experiments,

we have found that the magnitudes of the elements of Q do not necessarily coincide with

the magnitudes of the objective functions. Applying the norm in (5.20) to our problem and
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algorithm CCSA

obtain x1 and x2 from DM or using Initialization

input: δ, N

begin

let x∗ = x1, let L = {x1}, and set i = 1;

while i ≤ N − 2 and ||f(x∗)− f(x2)|| ≥ δ do

begin

solve CCS1(δ, x∗, A) to obtain x(i);
solve P2(g1(x(i))) to obtain x′;
if g2(x(i)) = g2(x′) then set x∗ = x(i);
else set x∗ = x′;
end if;
set L(i+ 1) = x∗;
i+ +;

end while;

set L(N) = x2;

end;

output: L

Figure 5.7: Pseudocode for CCSA
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doing a bit of algebra we have:

||f(x)− f(x∗)||2Q = (f(x)− f(x∗))TQ(f(x)− f(x∗)) (5.21)

= q11(f1(x)− f1(x∗))2 + 2q12(f1(x)− f1(x∗))(f2(x)− f2(x∗))

+ q22(f2(x)− f2(x∗))2

where

Q =

 q11 q12

q12 q22

 .
Note that since Q is positive definite, we know that q11q22 − q212 > 0 which implies that

q212 − q11q22 < 0, and additionally that q212 − 4q11q22 < 0. Hence (see for example [1]),

equation (5.21) is the equation of a rotated ellipse with center (f1(x∗), f2(x∗)). On the

other hand, we can use the standard rotation matrix to rotate each of the ordered pairs α

degrees from the horizontal, as shown in (5.22).

[f1(x)− f1(x∗), f2(x)− f2(x∗)]

 cos(α) sin(α)

− sin(α) cos(α)

 (5.22)

=

 cos(α)(f1(x)− f1(x∗))− sin(α)(f2(x)− f2(x∗))

sin(α)(f1(x)− f1(x∗)) + cos(α)(f2(x)− f2(x∗))


T

. (5.23)

Substituting the results from (5.23) into the usual equation for an ellipse and simplifying

gives

a2b2 = (b2 cos2(α) + a2 sin2(α))(f1(x)− f1(x∗))2 (5.24)

− 2 cos(α) sin(α)(b2 − a2)(f1(x)− f1(x∗))(f2(x)− f2(x∗))

+ (b2 sin2(α) + a2 cos2(α))(f2(x)− f2(x∗))2

where a is the radius of the ellipse in the f2 direction, b is the radius of the ellipse in the
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f1 direction, and α is the degree of rotation of the ellipse from horizontal (see Figure 5.8).

Note that when applying equation (5.24) to problem (5.2), we have a less than or equal to

instead of an equality with a2b2 serving in the place of δ. The equation in (5.24) is much

easier to apply than (5.21) because a, b, and α are all quantities which are easily interpreted

in the context of the problem. However, the meaning of a, b, and α in terms of decision

making is unclear.

 f
2

 

f
1
 

α  a 
b 

Figure 5.8: A rotated ellipse

Comparing the equations in (5.21) and (5.24), we see that

q11 = b2 cos2(α) + a2 sin2(α),

q12 = − cos(α) sin(α)(b2 − a2), and

q22 = b2 sin2(α) + a2 cos2(α).

Thus, it seems as though we should be able to resolve the issue of the matrix Q being

difficult to specify but having a clear application to decision making on the one hand, and

the quantities a, b, and α being easy to select but not having a straightforward interpretation

in terms of decision making, on the other. However, approaching the problem from either

direction leads the DM to difficulties. The DM understands the meaning of the matrix

Q but cannot quite determine how to choose the entries, and she can easily choose the
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quantities a, b, and α, but is not quite sure how these quantities reflect her preferences.

5.2 Linear Algebra for Simplicial Cones

In this section, we prove several propositions about obtuse, simplicial cones C ⊇ Rp
=

defined by C = {y ∈ Rp : Ay = 0}. Note that by Proposition 5.1.1, the matrix A has all

nonnegative entries. Moreover, since C is simplicial, A is a p× p matrix.

Given a matrix A, a minor of A is a matrix obtained by deleting certain rows and

columns of A. We denote a minor of A by M(i1,j1)(A) where the subscript specifies which

rows and columns to delete: in this case, row i1 and column j1. If more than one row and

one column are deleted, more ordered pairs are appended to the subscript. For instance,

M(i1,j1),(i2,j2)(A) is the minor of A with rows i1 and i2 and columns j1 and j2 deleted. If we

let

A =


1 2 3

4 5 6

7 8 9

 ,
then

M(1,1)(A) =

 5 6

8 9

 ,
and

M(1,1)(2,2)(A) = [9] .

Notice that the minor notation is not unique. That is, M(1,1),(2,2)(A) and M(1,2),(2,1)(A)

represent the same minor ([9]) because the same rows and columns are deleted. Lastly, we

denote the determinant operator by det[·].

In both Proposition 5.2.1 and Proposition 5.2.2, for ease of notation and for the sake

of brevity, we prove specific instances of general results. Namely, in Proposition 5.2.1, the

specific ordered pairs (i1, 1) and (i2, 3) were chosen without loss of generality based on the

needs of Proposition 5.2.2. Likewise, the specific ordered pairs (1, 1) and (1, 2) were chosen
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based on Proposition 5.2.3 as will be seen.

Proposition 5.2.1. Let A be a p× p matrix with nonnegative entries. Then, the following

holds:

det
[
M(1,2)(i1,1)(i2,j1)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(A)

]
(5.25)

− det
[
M(1,2)(i1,1)(i2,j2)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(A)

]
= det

[
M(1,2)(i1,1)(i2,3)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(A)

]
(5.26)

Proof. We proceed by induction. For the base case, we consider a 5 × 5 matrix (because

this is the smallest matrix for which the minors in (5.25) exist) of the form

A =



a11 a12 a13 a14 a15

a21 a22 a23 a24 a25

a31 a32 a33 a34 a35

a41 a42 a43 a44 a45

a51 a52 a53 a54 a55


.

Note that in (5.25) i1, i2 6= 1 and j1, j2 6= 1, 2, 3, so we choose (without loss of generality)

i1 = 2, i2 = 3, j1 = 4, and j2 = 5. Then,

det
[
M(1,2)(2,1)(3,4)(A)

]
det
[
M(1,1)(3,3)(2,5)(A)

]
− det

[
M(1,2)(2,1)(3,5)(A)

]
det
[
M(1,1)(3,3)(2,4)(A)

]
= (a43a55 − a45a53)(a42a54 − a44a52)− (a43a54 − a44a53)(a42a55 − a45a52)

= a42a43a54a55 − a43a44a52a55 − a42a45a53a54 + a44a45a52a53

− (a42a43a54a55 − a43a45a52a54 − a42a44a53a55 + a44a45a52a53)

= a43a45a52a54 − a43a44a52a55 − a42a45a53a54 + a42a44a53a55

= (a44a55 − a45a54)(a42a53 − a43a52)

= det
[
M(1,2)(2,1)(3,3)(A)

]
det
[
M(1,1)(2,4)(3,5)(A)

]
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Now, assume that the proposition holds for an arbitrary k−1×k−1 matrix with nonnegative

entries, and consider a k×k matrix. We begin by writing each of the determinants in (5.25)

in terms of its Laplace expansion along the lth row where l 6= 1, l 6= i1, and l 6= i2. We also

assume, without loss of generality, that k and j1 are even, and j2 is odd (this is to determine

the signs in the definition of the determinant), 1 < i1 < i2 < k, and 1 < j1 < j2 < k.

det
[
M(1,2)(i1,1)(i2,j1)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(A)

]
(5.27)

− det
[
M(1,2)(i1,1)(i2,j2)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(A)

]
=

[(
al,3det

[
M(1,2)(i1,1)(i2,j1)(l,3)(A)

]
− . . .+ al,j1−1det

[
M(1,2)(i1,1)(i2,j1)(l,j1−1)(A)

]
(5.28)

− al,j1+1det
[
M(1,2)(i1,1)(i2,j1)(l,j1+1)(A)

]
+ . . .+ al,kdet

[
M(1,2)(i1,1)(i2,j1)(l,k)(A)

])
∗
(
al,2det

[
M(1,1)(i2,3)(i1,j2)(l,2)(A)

]
− al,4det

[
M(1,1)(i2,3)(i1,j2)(l,4)(A)

]
+ . . .− al,j2−1det

[
M(1,1)(i2,3)(i1,j2)(l,j2−1)(A)

]
+ al,j2+1det

[
M(1,1)(i2,3)(i1,j2)(l,j2+1)(A)

]
− . . .+ al,kdet

[
M(1,1)(i2,3)(i1,j2)(l,k)(A)

])]
−
[(
al,3det

[
M(1,2)(i1,1)(i2,j2)(l,3)(A)

]
− . . .− al,j2−1det

[
M(1,2)(i1,1)(i2,j2)(l,j2−1)(A)

]
+ al,j2+1det

[
M(1,2)(i1,1)(i2,j2)(l,j2+1)(A)

]
− . . .+ al,kdet

[
M(1,2)(i1,1)(i2,j2)(l,k)(A)

])
∗
(
al,2det

[
M(1,1)(i2,3)(i1,j1)(l,2)(A)

]
− al,4det

[
M(1,1)(i2,3)(i1,j1)(l,4)(A)

]
+ . . .+ al,j1−1det

[
M(1,1)(i2,3)(i1,j1)(l,j1−1)(A)

]
− al,j1+1det

[
M(1,1)(i2,3)(i1,j1)(l,j1+1)(A)

]
+ . . .+ al,kdet

[
M(1,1)(i2,3)(i1,j1)(l,k)(A)

])]

Notice that, once multiplied out, the number of terms in (5.28) is 2(k− 3)2. Now, to begin

the simplification of (5.28), note that there are four terms that cancel:

al,3al,2det
[
M(1,2)(i1,1)(i2,j1)(l,3)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(l,2)(A)

]
− al,3al,2det

[
M(1,2)(i1,1)(i2,j2)(l,3)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(l,2)(A)

]
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and

− al,j2al,j1det
[
M(1,2)(i1,1)(i2,j1)(l,j2)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(l,j1)(A)

]
−
(
− al,j1al,j2det

[
M(1,2)(i1,1)(i2,j2)(l,j1)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(l,j2)(A)

])
.

Next, we have four terms that we can rewrite into more convenient forms:

−
(
− al,j1al,2det

[
M(1,2)(i1,1)(i2,j2)(l,j1)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(l,2)(A)

])
= al,j1al,2det

[
M(1,2)(i1,1)(i2,3)(l,j1)(A)

]
det
[
M(1,1)(i2,j2)(i1,j1)(l,2)(A)

]
,

− al,j2al,2det
[
M(1,2)(i1,1)(i2,j1)(l,j2)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(l,2)(A)

]
= − al,j2al,2det

[
M(1,2)(i1,1)(i2,3)(l,j2)(A)

]
det
[
M(1,1)(i2,j1)(i1,j2)(l,2)(A)

]
,

al,3al,j2det
[
M(1,2)(i1,1)(i2,j2)(l,3)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(l,j2)(A)

]
= al,3al,j2det

[
M(1,2)(i1,1)(i2,3)(l,j2)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(l,3)(A)

]
,

and

− al,3al,j1det
[
M(1,2)(i1,1)(i2,j1)(l,3)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(l,j1)(A)

]
= − al,3al,j1det

[
M(1,2)(i1,1)(i2,3)(l,j1)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(l,3)(A)

]
.

Lastly, each of the remaining terms can be placed into pairs and reduced using induction.

We show one case and all the others follow similarly:

al,kal,k

(
det
[
M(1,2)(i1,1)(i2,j1)(l,k)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(l,k)(A)

]
(5.29)

− det
[
M(1,2)(i1,1)(i2,j2)(l,k)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(l,k)(A)

])
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Notice that the statement inside the large parentheses in (5.29) is precisely the statement

in (5.27) applied to a k − 1× k − 1 matrix. Hence, by the inductive hypothesis, we have

al,kal,k

(
det
[
M(1,2)(i1,1)(i2,j1)(l,k)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(l,k)(A)

]
− det

[
M(1,2)(i1,1)(i2,j2)(l,k)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(l,k)(A)

])
= al,kal,kdet

[
M(1,2)(i1,1)(i2,3)(l,k)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(l,k)(A)

]
.

Considering the cancelled terms, the rewritten terms, and the paired terms, we have reduced

the number of terms from 2(k− 3)2 to (k− 3)2. It is not difficult to see that the remaining

terms can be factored as

(
al,4det

[
M(1,2)(i1,1)(i2,3)(l,4)(A)

]
− . . .+ al,kdet

[
M(1,2)(i1,1)(i2,3)(l,k)(A)

])
(5.30)

∗
(
al,2det

[
M(1,1)(i1,j1)(i2,j2)(l,2)(A)

]
− . . .− al,j1−1det

[
M(1,1)(i1,j1)(i2,j2)(l,j1−1)(A)

]
+ al,j1+1det

[
M(1,1)(i1,j1)(i2,j2)(l,j1+1)(A)

]
− . . .+ al,j2−1det

[
M(1,1)(i1,j1)(i2,j2)(l,j2−1)(A)

]
− al,j2+1det

[
M(1,1)(i1,j1)(i2,j2)(l,j2+1)(A)

]
+ . . .+ al,kdet

[
M(1,1)(i1,j1)(i2,j2)(l,k)(A)

])
= det

[
M(1,2)(i1,1)(i2,3)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(A)

]
.

Notice that the factorization in (5.30) indeed contains (k − 3)2 terms. This completes the

proof.

Proposition 5.2.2. Let A be a p× p matrix with nonnegative entries. Then, the following
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holds:

det
[
M(1,1)(i1,j1)(A)

]
det
[
M(1,2)(i2,j2)(A)

]
(5.31)

+ det
[
M(1,2)(i1,j1)(A)

]
det
[
M(1,1)(i2,j2)(A)

]
− det

[
M(1,1)(i1,j2)(A)

]
det
[
M(1,2)(i2,j1)(A)

]
− det

[
M(1,2)(i1,j2)(A)

]
det
[
M(1,1)(i2,j1)(A)

]
= det

[
M(1,1)(A)

]
det
[
M(1,2)(i1,j1)(i2,j2)(A)

]
+ det

[
M(1,2)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(A)

]
Proof. As in the previous proof, we assume, without loss of generality, that p and j1 are

even, and j2 is odd (this is to determine the signs in the definition of the determinant),

1 < i1 < i2 < p, and 1 < j1 < j2 < p. We begin by writing each of the determinants in

(5.31) according to its Laplace expansion along the i1th or i2th row, whichever is appropriate.

det
[
M(1,1)(i1,j1)(A)

]
(5.32)

= ai2,2det
[
M(1,1)(i2,2)(i1,j1)(A)

]
− . . .− ai2,j1−1det

[
M(1,1)(i2,j1−1)(i1,j1)(A)

]
+ ai2,j1+1det

[
M(1,1)(i2,j1+1)(i1,j1)(A)

]
− . . .− ai2,kdet

[
M(1,1)(i2,k)(i1,j1)(A)

]

det
[
M(1,2)(i2,j2)(A)

]
(5.33)

= ai1,1det
[
M(1,2)(i1,1)(i2,j2)(A)

]
− ai1,3det

[
M(1,2)(i1,3)(i2,j2)(A)

]
+ . . .+ ai1,j2−1det

[
M(1,2)(i1,j2−1)(i2,j2)(A)

]
− ai1,j2+1det

[
M(1,2)(i1,j2+1)(i2,j2)(A)

]
+ . . .− ai1,kdet

[
M(1,2)(i1,k)(i2,j2)(A)

]
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det
[
M(1,2)(i1,j1)(A)

]
(5.34)

= ai2,1det
[
M(1,2)(i2,1)(i1,j1)(A)

]
− ai2,3det

[
M(1,2)(i2,3)(i1,j1)(A)

]
+ . . .− ai2,j1−1det

[
M(1,2)(i2,j1−1)(i1,j1)(A)

]
+ ai2,j1+1det

[
M(1,2)(i2,j1+1)(i1,j1)(A)

]
− . . .− ai2,kdet

[
M(1,2)(i2,k)(i1,j1)(A)

]

det
[
M(1,1)(i2,j2)(A)

]
(5.35)

= ai1,2det
[
M(1,1)(i1,2)(i2,j2)(A)

]
− . . .+ ai1,j2−1det

[
M(1,1)(i1,j2−1)(i2,j2)(A)

]
− ai1,j1+1det

[
M(1,1)(i1,j2+1)(i2,j2)(A)

]
+ . . .− ai1,kdet

[
M(1,1)(i1,k)(i2,j2)(A)

]

det
[
M(1,1)(i1,j2)(A)

]
(5.36)

= ai2,2det
[
M(1,1)(i2,2)(i1,j2)(A)

]
− . . .+ ai2,j2−1det

[
M(1,1)(i2,j2−1)(i1,j2)(A)

]
− ai2,j2+1det

[
M(1,1)(i2,j2+1)(i1,j2)(A)

]
+ . . .− ai2,kdet

[
M(1,1)(i2,k)(i1,j2)(A)

]

det
[
M(1,2)(i2,j1)(A)

]
(5.37)

= ai1,1det
[
M(1,2)(i1,1)(i2,j1)(A)

]
− ai1,3det

[
M(1,2)(i1,3)(i2,j1)(A)

]
+ . . .− ai1,j1−1det

[
M(1,2)(i1,j1−1)(i2,j1)(A)

]
+ ai1,j1+1det

[
M(1,2)(i1,j1+1)(i2,j1)(A)

]
− . . .− ai1,kdet

[
M(1,2)(i1,k)(i2,j1)(A)

]

det
[
M(1,2)(i1,j2)(A)

]
(5.38)

= ai2,1det
[
M(1,2)(i2,1)(i1,j2)(A)

]
− ai2,3det

[
M(1,2)(i2,3)(i1,j2)(A)

]
+ . . .+ ai2,j2−1det

[
M(1,2)(i2,j2−1)(i1,j2)(A)

]
− ai2,j2+1det

[
M(1,2)(i2,j2+1)(i1,j2)(A)

]
+ . . .− ai2,kdet

[
M(1,2)(i2,k)(i1,j2)(A)

]
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det
[
M(1,1)(i2,j1)(A)

]
(5.39)

= ai1,2det
[
M(1,1)(i1,2)(i2,j1)(A)

]
− . . .− ai1,j1−1det

[
M(1,1)(i1,j1−1)(i2,j1)(A)

]
+ ai1,j1+1det

[
M(1,1)(i1,j1+1)(i2,j1)(A)

]
− . . .− ai1,kdet

[
M(1,1)(i1,k)(i2,j1)(A)

]
Note equations (5.32), (5.35), (5.36), and (5.39) contain the term det

[
M(1,1)(i1,j1)(i2,j2)(A)

]
,

while equations (5.33), (5.34), (5.37), and (5.38) contain the term det
[
M(1,2)(i1,j1)(i2,j2)(A)

]
.

These terms are important because they need to be factored in order to obtain the result

in (5.31). Now, notice that substituting the determinant equations in (5.32) - (5.39) into

equation (5.31) yields 4(k − 2)2 terms. First, we consider 4(k − 4) terms which cancel. For

j 6= 1, 2, j1, j2, we have the following terms:

ai1,jai2,jdet
[
M(1,1)(i2,j)(i1,j1)(A)

]
det
[
M(1,2)(i1,j)(i2,j2)(A)

]
(5.40)

ai1,jai2,jdet
[
M(1,1)(i1,j)(i2,j2)(A)

]
det
[
M(1,2)(i2,j)(i1,j1)(A)

]
(5.41)

− ai1,jai2,jdet
[
M(1,1)(i2,j)(i1,j2)(A)

]
det
[
M(1,2)(i1,j)(i2,j1)(A)

]
(5.42)

− ai1,jai2,jdet
[
M(1,1)(i1,j)(i2,j1)(A)

]
det
[
M(1,2)(i2,j)(i1,j2)(A)

]
(5.43)

Note that the terms given in (5.40) and (5.43) cancel. Likewise, (5.41) and (5.42) can-

cel. This leaves 4(k2 − 5k + 8) terms. Without loss of generality, we focus only on

factoring the term det
[
M(1,1)(i1,j1)(i2,j2)(A)

]
and showing that the leftover terms equal

det
[
M(1,2)(A)

]
. Factoring det

[
M(1,2)(i1,j1)(i2,j2)(A)

]
follows similarly. Because of this, we

only need to consider half of the remaining terms: 2(k2− 5k+ 8). Now, we consider all the

terms from which det
[
M(1,2)(i1,j1)(i2,j2)(A)

]
may be factored directly. There are a total of
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2(k − 3) + 2(k − 2) = 4k − 10 of these terms, which are shown below:

+ ai1,1

(
− ai2,j1det

[
M(1,2)(i1,1)(i2,j1)(A)

]
+ ai2,j2det

[
M(1,2)(i1,1)(i2,j1)(A)

])
− ai1,3

(
ai2,j1det

[
M(1,2)(i1,3)(i2,j1)(A)

]
− ai2,j2det

[
M(1,2)(i1,3)(i2,j1)(A)

])
...

+ a11,j2

(
ai2,1det

[
M(1,2)(i1,j1)(i2,1)(A)

]
− ai2,3det

[
M(1,2)(i1,j1)(i2,3)(A)

]
+ . . .− ai2,j1−1det

[
M(1,2)(i1,j1)(i2,j1−1)(A)

]
+ ai2,j1+1det

[
M(1,2)(i1,j1)(i2,j1+1)(A)

]
− . . .− ai2,kdet

[
M(1,2)(i1,j1)(i2,k)(A)

])
...

− ai1,j2
(
ai2,1det

[
M(1,2)(i1,j2)(i2,1)(A)

]
− ai2,3det

[
M(1,2)(i1,j2)(i2,3)(A)

]
+ . . .+ ai2,j2−1det

[
M(1,2)(i1,j2)(i2,j2−1)(A)

]
− ai2,j2+1det

[
M(1,2)(i1,j2)(i2,j2+1)(A)

]
+ . . .− ai2,kdet

[
M(1,2)(i1,j2)(i2,k)(A)

])
...

+ ai1,k

(
ai2,j1det

[
M(1,2)(i1,k)(i2,j1)(A)

]
− ai2,j2det

[
M(1,2)(i1,k)(i2,j2)(A)

])
(5.44)

In (5.44), we have grouped the factored terms so that one can see the construction of

det
[
M(1,2)(A)

]
. To fill in the remaining terms in (5.44), we use Proposition 5.2.1. We show

one case and the rest follow similarly. Notice that in (5.44) the first missing term is

ai1,1ai2,3det
[
M(1,2)(i1,1)(i2,3)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(A)

]
. (5.45)

From (5.32) - (5.39), we see that we have the following:

ai1,1ai2,3det
[
M(1,2)(i1,1)(i2,j1)(A)

]
det
[
M(1,1)(i2,3)(i1,j2)(A)

]
(5.46)

− ai1,1ai2,3det
[
M(1,2)(i1,1)(i2,j2)(A)

]
det
[
M(1,1)(i2,3)(i1,j1)(A)

]
.

By Proposition 5.2.1, (5.46) is equal to (5.45). Thus, we are able to fill in the missing terms

of (5.44), so that (5.44) equals det
[
M(1,2)(A)

]
which is what we wanted to show. Lastly, we

count the number of terms to which we apply Proposition 5.2.1. To do this, consider (5.33)
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multiplied by (5.32). The first term in (5.33), ai1,1det
[
M(1,2)(i1,1)(i2,j2)(A)

]
is multiplied

by k − 3 terms in (5.32) (all the terms except ai2,j2det
[
M(1,1)(i2,j2)(i1,j1)(A)

]
because we

previously accounted for all terms that could be factored directly). The remaining k − 4

terms in (5.33) (we leave out the term ai1,j1det
[
M(1,2)(i1,j1)(i2,j2)(A)

]
because those terms

are used in the other half of the proof which we inferred) are multiplied by k − 4 terms

in (5.32), the same ones as the first term except now also omitting the terms we already

counted in the cancellation argument. This gives a total of (k−3) + (k−4)2 = k2−7k+ 13

terms. Of course, each of these terms has a “matching” term from the product of (5.36)

and (5.37) which results in Proposition 5.2.1 being applied to 2k2− 14k+ 26 terms. Notice

that the number of terms factored directly, 4k − 10, plus 2k2 − 14k + 26 gives a total of

2k2 − 10k + 16 = 2(k2 − 5k + 8) terms accounted for which is the number we desired. This

completes the proof.

Proposition 5.2.3. Let A be a p× p matrix with nonnegative entries. Then, the following

holds:

det
[
M(i1,j1)(A)

]
det
[
M(i2,j2)(A)

]
(5.47)

− det
[
M(i1,j2)(A)

]
det
[
M(i2,j1)(A)

]
= det

[
M(i1,j1)(i2,j2)(A)

]
det(A)

Proof. We proceed by induction. For the base case, we consider a 3× 3 matrix of the form

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33

 .
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Without loss of generality, we choose i1 = j1 = 1 and i2 = j2 = 2. Then,

det
[
M(1,1)(A)

]
det
[
M(2,2)(A)

]
− det

[
M(1,2)(A)

]
det
[
M(2,1)(A)

]
= (a22a33 − a23a32)(a11a33 − a13a31)− (a21a33a23a31)(a12a33 − a13a32)

= a11a22a
2
33 − a13a22a31a33 − a11a23a32a33 + a13a23a31a32

−(a12a21a
2
33 − a13a21a32a33 − a12a23a31a33 + a13a23a31a32)

= a11a22a
2
33 − a13a22a31a33 − a11a23a32a33

− a12a21a
2
33 + a13a21a32a33 + a12a23a31a33

= a33

[
a11(a22a33 − a23a32)− a12(a21a33 − a23a31) + a13(a21a32 − a22a31)

]
= det

[
M(1,1)(2,2)(A)

]
det(A)

Now, assume that the proposition holds for an arbitrary k−1×k−1 matrix with nonnegative

entries, and consider a k×k matrix. We begin by writing each of the determinants in (5.47)

in terms of its Laplace expansion along the first row, assuming, without loss of generality,

that k and j1 are even, and j1 is odd (this is to determine the signs in the definition of the

determinant), 1 < i1 < i2 < k, and 1 < j1 < j2 < k.

det
[
M(i1,j1)(A)

]
(5.48)

= a11det
[
M(1,1)(i1,j1)(A)

]
− . . .+ a1,j1−1det

[
M(1,j1−1)(i1,j1)(A)

]
− a1,j1+1det

[
M(1,j1+1)(i1,j1)(A)

]
+ . . .+ a1,kdet

[
M(1,k)(i1,j1)(A)

]

det
[
M(i2,j2)(A)

]
(5.49)

= a11det
[
M(1,1)(i2,j2)(A)

]
− . . .− a1,j2−1det

[
M(1,j2−1)(i2,j2)(A)

]
+ a1,j2+1det

[
M(1,j2+1)(i2,j2)(A)

]
− . . .+ a1,kdet

[
M(1,k)(i2,j2)(A)

]
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det
[
M(i1,j2)(A)

]
(5.50)

= a11det
[
M(1,1)(i1,j2)(A)

]
− . . .− a1,j2−1det

[
M(1,j2−1)(i1,j2)(A)

]
+ a1,j2+1det

[
M(1,j2+1)(i1,j2)(A)

]
− . . .+ a1,kdet

[
M(1,k)(i1,j2)(A)

]

det
[
M(i2,j1)(A)

]
(5.51)

= a11det
[
M(1,1)(i2,j1)(A)

]
− . . .+ a1,j1−1det

[
M(1,j1−1)(i2,j1)(A)

]
− a1,j1+1det

[
M(1,j1+1)(i2,j1)(A)

]
+ . . .+ a1,kdet

[
M(1,k)(i2,j1)(A)

]
Notice that substituting equations (5.48) - (5.51) into (5.47) yields a total of 2(k−1)2 terms.

Two of these terms cancel:

a1,j2a1,j1det
[
M(1,j2)(i1,j1)(A)

]
det
[
M(1,j1)(i2,j2)(A)

]
− a1,j1a1,j2det

[
M(1,j1)(i1,j2)(A)

]
det
[
M(1,j2)(i2,j1)(A)

]
.

Next, we apply the inductive hypothesis to several groupings of terms. First, all the terms

with squared coefficients may be reduced using induction. For instance,

a2
1,1

(
det
[
M(1,1)(i1,j1)(A)

]
det
[
M(1,1)(i2,j2)(A)

]
− det

[
M(1,1)(i1,j2)(A)

]
det
[
M(1,1)(i2,j1)(A)

])
= a2

1,1

(
det
[
M(1,1)(i1,j1)(i2,j2)(A)

]
det
[
M(1,1)(A)

])
.

There are a total of 2(k−2) of these terms which are reduced to k−2 terms after induction.

Two other groupings to which we can apply induction are terms having the coefficients
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a1,j1a1,j or a1,ja1,j2 where j 6= j1, j2. For instance,

−a1,1a1,j1

(
det
[
M(1,1)(i1,j1)(A)

]
det
[
M(1,j1)(i2,j2)(A)

]
− det

[
M(1,j1)(i1,j2)(A)

]
det
[
M(1,1)(i2,j1)(A)

])
= −a1,1a1,j1

(
det
[
M(1,1)(i1,j1)(i2,j2)(A)

]
det
[
M(1,j1)(A)

])
.

There are a total of 4(k−2) terms of this types which are reduced to 2(k−2) terms through

induction. Finally, we consider the remaining mixed terms. All of these terms can be

put into groupings of four terms each and reduced using Proposition 5.2.2. For example,

consider the terms with the coefficient a11a12:

−a11a12

(
det
[
M(1,1)(i1,j1)(A)

]
det
[
M(1,2)(i2,j2)(A)

]
+ det

[
M(1,2)(i1,j1)(A)

]
det
[
M(1,1)(i2,j2)(A)

]
− det

[
M(1,1)(i1,j2)(A)

]
det
[
M(1,2)(i2,j1)(A)

]
− det

[
M(1,2)(i1,j2)(A)

]
det
[
M(1,1)(i2,j1)(A)

])
= −a11a12

(
det
[
M(1,1)(A)

]
det
[
M(1,2)(i1,j1)(i2,j2)(A)

]
+ det

[
M(1,2)(A)

]
det
[
M(1,1)(i1,j1)(i2,j2)(A)

])
.

To determine the number of terms of this type, consider the first term in equation (5.48),

a11det
[
M(1,1)(i1,j1)(A)

]
. This term is multiplied by all the terms in (5.49) except for the

terms a11det
[
M(1,1)(i2,j2)(A)

]
and a1,j1det

[
M(1,j1)(i2,j2)(A)

]
because we have already ac-

counted for these terms. Similarly, every term in (5.48) is multiplied by k − 3 terms in

(5.49), except the term a1,j2det
[
M(1,j2)(i1,j1)(A)

]
. So taking into account all four equations

(5.48) - (5.51), there are a total of 2(k−2)(k−3) mixed terms which are reduced by half to

(k−2)(k−3) terms using Proposition 5.2.2. Now, notice that we have accounted for all the

terms we began with because 2+2(k−2)+4(k−2)+2(k−2)(k−3) = 2k2−4k+2 = 2(k−1)2.
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It is not difficult to see that the remaining rewritten terms can be factored as follows:

(
a11det

[
M(1,1)(A)

]
− a12det

[
M(1,2)(A)

]
+ . . .− al,kdet

[
M(1,k)(A)

])
(5.52)

∗
(
a11det

[
M(1,1)(i1,j1)(i2,j2)(A)

]
− a12det

[
M(1,2)(i1,j1)(i2,j2)(A)

]
+ . . .+ a1,j1−1det

[
M(1,j1−1)(i1,j1)(i2,j2)(A)

]
− a1,j1+1det

[
M(1,j1+1)(i1,j1)(i2,j2)(A)

]
+ . . .+ a1,j2−1det

[
M(1,j2−1)(i1,j1)(i2,j2)(A)

]
− a1,j2+1det

[
M(1,j2+1)(i1,j1)(i2,j2)(A)

]
+ . . .− a1,kdet

[
M(1,k)(i1,j1)(i2,j2)(A)

])
= det(A) det

[
M(i1,j1)(i2,j2)(A)

]
.

Finally, notice that the number of terms which remain is (k−2)+2(k−2)+(k−2)(k−3) =

k(k − 2) which is precisely the number of terms in equation (5.52). This completes the

proof.

5.3 Multiobjective Approach

5.3.1 Pareto Cone

The formulation of the Constraint Controlled Spacing problem for biobjective prob-

lems (5.2) generalizes quite easily to multiobjective problems. The implementation, how-

ever, is not as straightforward and is discussed later. As before, let x∗ ∈ XWE , δ be the

desired spacing between Pareto points, and || · || be an lp-norm. Then, the Constraint
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Controlled Spacing problem for an MOP (CCSp1(δ, x∗)) is:

minimize f1(x)

subject to f1(x) ≤ f1(xp)
...

fp−1(x) ≤ fp−1(xp)

f2(x) ≤ f2(x∗)
...

fp(x) ≤ fp(x∗)

||f(x)− f(x∗)|| ≥ δ

x ∈ X

(5.53)

where

xp ∈ arg min{fp(x) : x ∈ X}. (5.54)

Notice that the problem feasibility check ||f(x∗) − y2|| ≥ δ in the biobjective case does

not extend well to higher dimensions because we now have a Pareto surface instead of a

two-dimensional curve. Thus, checking the initial feasibility of the problem becomes much

more complex. Additionally, we would like to stress again that the first p− 1 constraints in

(5.53) are needed only theoretically and may be omitted in practice.

We now prove that problem (5.53) generates a weak Pareto point.

Theorem 5.3.1. If YWN is connected and x̂ is the unique optimal solution of CCSp1(δ, x∗),

then f(x̂) ∈ YWN .

Proof. Assume YWN is connected and let x̂ be the unique optimal solution of CCSp1(δ, x∗).

Let ŷ = f(x̂). Suppose that ŷ /∈ YWN . By definition, ŷ /∈ YWN implies (ŷ− int Rp
=)∩Y 6= ∅.

This further implies that (ŷ −Rp
=)∩ Y 6= ∅. In particular, since y∗ = f(x∗) and yp = f(xp)

are both in YWN , YWN is connected, and fi(x̂) ≤ fi(xp) for i = 1, . . . , p − 1, there must
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exist a λ > 0 and ỹ = f(x̃) ∈ Y such that ỹ = ŷ + λ(0, . . . , 0,−1)T . Then, we have that

ỹi = ŷi, for i = 1, . . . p− 1, (5.55)

and

ỹp < ŷp. (5.56)

To establish the feasibility of x̃, recall that since x̂ is optimal for CCSp1(δ, x∗), we have

ŷi ≤ ypi , for i = 1, . . . , p− 1, (5.57)

ŷi ≤ y∗i , for i = 2, . . . , p, (5.58)

and

||ŷ − y∗|| ≥ δ. (5.59)

Combining (5.55) - (5.58) gives

ỹi ≤ ypi , for i = 1, . . . , p− 1,

and

ỹi ≤ y∗i , for i = 2, . . . , p,

so x̃ is feasible to the first 2(p− 1) constraints in (5.53). Further, combining (5.55), (5.56),

and (5.59) with ŷp ≤ y∗p from (5.58) gives that ||ỹ− y∗|| > δ. Thus, x̃ is feasible to CCSp1(δ,

x∗) with ỹ1 = ŷ1 which implies that x̂ is not the unique optimal solution to CCSp1(δ, x∗).

This is a contradiction, so f(x̂) ∈ YWN . This completes the proof.
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5.3.2 General Cones

As in the biobjective case, the CCS problem (5.53) can be generalized to problems

where optimality is defined by an arbitrary obtuse, simplicial preference cone, C, by using

the results of Proposition 2.0.8. Let C ⊇ Rp
= be defined by the matrix A and let g(x) =

Af(x). Given that x∗ ∈ EW (X, f,C), then CCSp1(δ, x∗, A) is defined as:

minimize g1(x)

subject to f1(x) ≤ f1(xp)
...

fp−1(x) ≤ fp−1(xp)

g2(x) ≤ g2(x∗)
...

gp(x) ≤ gp(x∗)

||f(x)− f(x∗)|| ≥ δ

x ∈ X

(5.60)

where

xp ∈ arg min{gp(x) : x ∈ X}.

Before proving that problem (5.60) is valid under certain assumptions about the

matrix A, we present a result which generalizes Proposition 5.1.2 to more than two dimen-

sions.

Proposition 5.3.2. Let C ⊇ Rp
= be a simplicial cone defined by C = {d ∈ Rp : Ad = 0}.

Then, A can be written as a positive definite matrix using only row exchanges.

Proof. We proceed by induction. For the base case, we consider a 3 × 3 matrix A of the

form

A =


a11 a12 a13

a21 a22 a23

a31 a32 a33


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and show that A can be written as a positive definite matrix. Without loss of generality,

we assume that the determinant of A is positive. Otherwise, we can exchange two of the

rows to make the determinant positive. Now, notice that we may perform an even number

of row exchanges without affecting the determinant of A. For the 3 × 3 case, this leads to

two additional candidate matrices which represent the same cone, C, as the original matrix

A:

A′ =


a21 a22 a23

a31 a32 a33

a11 a12 a13

 and A′′ =


a31 a32 a33

a11 a12 a13

a21 a22 a23

 .
We must show that at least one of A, A′, and A′′ is positive definite. To do this, we need only

check the signs of the determinants of the second order leading principal minors. Suppose

that the determinants of the second order leading principal minors of A, A′, and A′′ are all

nonpositive. That is, suppose that

a11a22 − a12a21 ≤ 0,

a21a32 − a22a31 ≤ 0, and

a12a31 − a11a32 ≤ 0.

(5.61)

However, consider the determinant of A:

det(A) = a13(a21a32 − a22a31)− a23(a11a32 − a12a31) + a33(a11a22 − a12a21).

If the inequalities in (5.61) hold, then det(A)≤ 0 which is a contradiction. Thus, at least

one of A, A′, and A′′ is positive definite. Notice that we do not need to consider the case

when the determinant of the first order leading principal minor is 0 because this would

cause the determinant of the second order leading principal minor to be less than or equal

to 0. Now, we assume that the proposition holds for k − 1 × k − 1 matrices and consider
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the case of a k × k matrix A of the form:

A =



a11 a12 · · · a1k

a21 a22 · · · a2k

...
...

. . .
...

ak1 ak2 · · · akk


.

Again, without loss of generality, we assume that the determinant of A is positive. In this

case, we must only show that we can obtain a matrix A′ from A with an even number of

row exchanges in which the determinant of the (k− 1)st leading principal minor is positive.

Then, by induction, we know that we are able to reorder the first k − 1 rows in an even

number of exchanges to obtain a positive definite (k − 1)st leading principal minor. First,

consider the determinant of A. There are two cases: k is odd (5.62) or k is even (5.63).

det(A) = (5.62)

a1k

∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 · · · a2,k−1

a31 · · · a3,k−1

...
. . .

...

ak1 · · · ak,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
− a2k

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,k−1

a31 · · · a3,k−1

...
. . .

...

ak1 · · · ak,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ · · ·+ akk

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,k−1

a21 · · · a2,k−1

...
. . .

...

ak−1,1 · · · ak−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣

det(A) = (5.63)

−a1k

∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 · · · a2,k−1

a31 · · · a3,k−1

...
. . .

...

ak1 · · · ak,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
+ a2k

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,k−1

a31 · · · a3,k−1

...
. . .

...

ak1 · · · ak,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
− · · ·+ akk

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,k−1

a21 · · · a2,k−1

...
. . .

...

ak−1,1 · · · ak−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
Suppose that the (k−1)st leading principal minor of A has a nonpositive determinant. That
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is, suppose ∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,k−1

a21 · · · a2,k−1

...
. . .

...

ak−1,1 · · · ak−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣
≤ 0. (5.64)

From this, we can determine the signs of the determinants in (5.62) and (5.63) by calculating

the number of row exchanges necessary to obtain a specific matrix from the matrix in (5.64).

In the odd case, consider the first matrix in equation (5.62). To obtain this matrix from

the one in (5.64), we must perform k − 1 row exchanges. Since k is odd, k − 1 is even, so

the first determinant in (5.62) is nonpositive. Notice, now, that to obtain each consecutive

matrix from the one before it in (5.62) requires a single row exchange so that the signs of

the determinants alternate between nonpositive and nonnegative. So from equation (5.62)

we have

a1k

∣∣∣∣∣∣∣∣∣∣∣∣∣

a21 · · · a2,k−1

a31 · · · a3,k−1

...
. . .

...

ak1 · · · ak,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≤0

−a2k

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,k−1

a31 · · · a3,k−1

...
. . .

...

ak1 · · · ak,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≥0

+ · · ·+ akk

∣∣∣∣∣∣∣∣∣∣∣∣∣

a11 · · · a1,k−1

a21 · · · a2,k−1

...
. . .

...

ak−1,1 · · · ak−1,k−1

∣∣∣∣∣∣∣∣∣∣∣∣∣︸ ︷︷ ︸
≤0

≤ 0

which is a contradiction. The case when k is even is similar except that the first determinant

in (5.63) is nonnegative because k − 1 is odd. This completes the proof.

Following, we use the results from Section 5.2 and some additional assumptions

about the cone C to prove that problem (5.60) generates a weakly nondominated point for

a certain class of simplicial cones which is the main result for this section.

Theorem 5.3.3. Let C ⊇ Rp
= be a simplicial cone defined by C = {y ∈ Rp : Ay = 0} where

A is a positive definite matrix. Additionally, we assume that the following minors of A have
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nonpositive determinants: all minors of the form



a11 · · · a1,j

...
. . .

...

aj−1,1 · · · aj−1,j

ai,1 · · · ai,j


(5.65)

where j = 2, . . . , p − 1 and i = j + 1, . . . , p. If NW (Y,C) is connected and x̂ is the unique

optimal solution of CCSp1(δ, x∗, A), then f(x̂) ∈ NW (Y,C).

Proof. Assume NW (Y,C) is connected and let x̂ be the unique optimal solution of CCSp1(δ,

x∗, A). Let ŷ = f(x̂) and ẑ = Af(x̂). Suppose that ŷ /∈ NW (Y,C). By definition,

ŷ /∈ NW (Y,C) implies (ŷ − int C) ∩ Y 6= ∅. This further implies that (ŷ − C) ∩ Y 6= ∅. In

particular, since y∗ = f(x∗) and yp = f(xp) are both in NW (Y,C), NW (Y,C) is connected,

and fi(x̂) ≤ fi(xp) for i = 1, . . . , p − 1, there must exist a λ > 0 and ỹ = f(x̃) ∈ Y such

that ỹ = ŷ + λ(0, . . . , 0,−1)T . Let A be a positive definite matrix of the form

A =



a11 a12 · · · a1p

a21 a22 · · · a2p

...
...

. . .
...

ap1 ap2 · · · app


.

Then, the resulting components of z̃ are as follows:

z̃ = Aỹ = A(ŷ + λ(0, . . . , 0,−1)T ) = ẑ + λA(0, . . . , 0,−1)T =



ẑ1 − λa1p

ẑ2 − λa2p

...

ẑp − λapp


.

Note that since C is obtuse, by Proposition 5.1.1, all components of the matrix A are
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non-negative. Combining this fact with λ > 0 gives that

z̃1 ≤ ẑ1, (5.66)

and

z̃i ≤ ẑi, for i = 2, . . . , p. (5.67)

To establish the feasibility of x̃, recall that since x̂ is optimal for CCSp1(δ, x∗, A), we have

ŷi ≤ ypi , for i = 1, . . . , p− 1, (5.68)

ẑi ≤ z∗i , for i = 2, . . . , p, (5.69)

and

||ŷ − y∗|| ≥ δ. (5.70)

Combining (5.67) and (5.69) gives z̃i ≤ z∗i , for i = 2, . . . , p, so x̃ is feasible to the second set

of p− 1 constraints in (5.60). Further, since ỹ = ŷ + λ(0, . . . , 0,−1)T , we know that

ỹi = ŷi, for i = 1, . . . , p− 1, (5.71)

and

ỹp < ŷp. (5.72)

Combining (5.68) and (5.71) gives that ỹi ≤ ypi for i = 1, . . . , p − 1, so x̃ is feasible to

the first set of p − 1 constraints in (5.60). Now, to complete the feasibility argument, we

determine the relationship between ŷp and y∗p. From (5.69) we can derive the following

where Ai denotes the ith row of A:

Aiŷ ≤ Aiy
∗, for i = 2, . . . , p. (5.73)
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Note that since y∗ ∈ NW (Y,C), then Ay∗ ∈ ANW (Y,C) which we may rewrite as z∗ ∈

ANW (Y,C). By Proposition 2.0.8, ANW (Y,C) = NW (AY,Rp
>). Thus, z∗ ∈ NW (AY,Rp

>)

which by definition means that (z∗−Rp
>)∩AY = ∅. In particular, given (5.69), this implies

that we must have ẑ1 ≥ z∗1 which gives

A1ŷ ≥ A1y
∗. (5.74)

Combining (5.73) and (5.74), we have:

A1(ŷ − y∗) ≥ 0

Ai(ŷ − y∗) ≤ 0, for i = 2, . . . , p.
(5.75)

Next, we rewrite the inequalities in (5.75) as:

a11(ŷ1 − y∗1) + a12(ŷ2 − y∗2) + · · ·+ a1p(ŷp − y∗p) ≥ 0

a21(ŷ1 − y∗1) + a22(ŷ2 − y∗2) + · · ·+ a2p(ŷp − y∗p) ≤ 0

a31(ŷ1 − y∗1) + a32(ŷ2 − y∗2) + · · ·+ a3p(ŷp − y∗p) ≤ 0
...

...

ap1(ŷ1 − y∗1) + ap2(ŷ2 − y∗2) + · · ·+ app(ŷp − y∗p) ≤ 0.

(5.76)

Solving all of the inequalities in (5.76) for (ŷ1 − y∗1) gives:

(ŷ1 − y∗1) ≥ −a12
a11

(ŷ2 − y∗2)− · · · − a1p

a11
(ŷp − y∗p)

(ŷ1 − y∗1) ≤ −a22
a21

(ŷ2 − y∗2)− · · · − a2p

a21
(ŷp − y∗p)

(ŷ1 − y∗1) ≤ −a32
a31

(ŷ2 − y∗2)− · · · − a3p

a31
(ŷp − y∗p)

...
...

(ŷ1 − y∗1) ≤ −ap2
ap1

(ŷ2 − y∗2)− · · · − app
ap1

(ŷp − y∗p).

(5.77)

Substituting the first inequality in (5.77) into the other p− 1 inequalities, we can eliminate
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(ŷ1 − y∗1):

−a12
a11

(ŷ2 − y∗2)− · · · − a1p

a11
(ŷp − y∗p) ≤ −a22

a21
(ŷ2 − y∗2)− · · · − a2p

a21
(ŷp − y∗p)

−a12
a11

(ŷ2 − y∗2)− · · · − a1p

a11
(ŷp − y∗p) ≤ −a32

a31
(ŷ2 − y∗2)− · · · − a3p

a31
(ŷp − y∗p)

...
...

−a12
a11

(ŷ2 − y∗2)− · · · − a1p

a11
(ŷp − y∗p)) ≤ −ap2

ap1
(ŷ2 − y∗2)− · · · − app

ap1
(ŷp − y∗p).

(5.78)

Rewriting the inequalities in (5.78), we see determinants of minors of the matrix A emerge:

(a11a22 − a12a21)(ŷ2 − y∗2) ≤ (a13a21 − a11a23)(ŷ3 − y∗3) + · · ·+ (a1pa21 − a11a2p)(ŷp − y∗p)

(a11a32 − a12a31)(ŷ2 − y∗2) ≤ (a13a31 − a11a33)(ŷ3 − y∗3) + · · ·+ (a1pa31 − a11a3p)(ŷp − y∗p)
...

...

(a11ap2 − a12ap1)(ŷ2 − y∗2) ≤ (a13ap1 − a11ap3)(ŷ3 − y∗3) + · · ·+ (a1pap1 − a11app)(ŷp − y∗p).
(5.79)

Since A is positive definite by Proposition 5.3.2, we know that all of the principal minors

of A have positive determinants. Namely, in (5.79),

(a11a22 − a12a21) > 0

(a11a33 − a13a31) > 0
...

...

(a11app − a1pap1) > 0.

So we may rearrange the inequalities in (5.79) as follows:

(ŷ2 − y∗2) ≤ (a13a21−a11a23)
(a11a22−a12a21)(ŷ3 − y∗3) + · · ·+ (a1pa21−a11a2p)

(a11a22−a12a21) (ŷp − y∗p)

(ŷ3 − y∗3) ≤ (a12a31−a11a32)
(a11a33−a13a31)(ŷ2 − y∗2) + · · ·+ (a1pa31−a11a3p)

(a11a33−a13a31) (ŷp − y∗p)
...

...

(ŷp − y∗p) ≤
(a12ap1−a11ap2)
(a11app−a1pap1)(ŷ2 − y∗2) + · · ·+ (a1,p−1ap1−a11ap,p−1)

(a11app−a1pap1) (ŷp−1 − y∗p−1).

(5.80)

Note that in (5.80) all the coefficients of (ŷ2 − y∗2) are positive: the numerators are the
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negative determinants of minors having the form of (5.65) and, thus, are positive, and the

denominators are principal minors and are positive since A is PD. Next, we substitute the

right hand side of the first inequality in (5.80) for (ŷ2− y∗2) in all the remaining inequalities

and do some rearranging to get:

0 ≤
[
(a12a31 − a11a32)(a13a21 − a11a23)− (a11a22 − a12a21)(a11a33 − a13a31)

]
(ŷ3 − y∗3)

+ · · ·+
[
(a11a22 − a12a21)(a1pa31 − a11a3p) + (a12a31 − a11a32)(a1pa21 − a11a2p)

]
(ŷp − y∗p)

...

0 ≤
[
(a12ap1 − a11ap2)(a13a21 − a11a23) + (a11a22 − a12a21)(a13ap1 − a11ap3)

]
(ŷ3 − y∗3)

+ · · ·+
[
(a12ap1 − a11ap2)(a1pa21 − a11a2p)− (a11a22 − a12a21)(a11app − a1pap1)

]
(ŷp − y∗p).

These inequalities can again be rewritten as:

0 ≤
[
− a11(a22a33 − a23a32) + a12(a21a33 − a23a31)− a13(a21a32 − a22a31)

]
(ŷ3 − y∗3)

+ · · ·+
[
− a11(a22a3p − a2pa32) + a12(a21a3p − a2pa31)− a1p(a21a32 − a22a31)

]
(ŷp − y∗p)

... (5.81)

0 ≤
[
− a11(a22ap3 − a23ap2) + a12(a21ap3 − a23ap1)− a13(a21ap2 − a22ap1)

]
(ŷ3 − y∗3)

+ · · ·+
[
− a11(a22app − a2pap2) + a12(a21app − a2pap1)− a1p(a21ap2 − a22ap1)

]
(ŷp − y∗p).

Notice that in (5.81) we see the (negative) determinants of third order minors of A emerge

and, in particular, that the coefficient of (ŷ3 − y∗3) in the final inequality of (5.81) is the

negative determinant of a minor having the form of (5.65). Continuing in this fashion,

eliminating the term (ŷi − y∗i ) for each i 6= p, we arrive at the following inequality in terms

of only (ŷp − y∗p):

(
det
[
M(p−1,p−1)(A)

]
det
[
M(p,p)(A)

]
− det

[
M(p−1,p)(A)

]
det
[
M(p,p−1)(A)

])
(ŷp − y∗p) ≤ 0.
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Then, by Proposition 5.2.3, equation (5.3.2) becomes

det
[
M(p−1,p−1)(p,p)(A)

]
det(A)(ŷp − y∗p) ≤ 0. (5.82)

Since A is a positive definite by Proposition 5.3.2, we know that det
[
M(p−1,p−1)(p,p)(A)

]
> 0

and det(A) > 0. Hence, we have that ŷp ≤ y∗p. This fact along with (5.70), (5.71), and

(5.72) implies that ||f(x̃)− f(x∗)|| > δ. Thus, x̃ is feasible to CCSp1(δ, x∗, A) with z̃1 ≤ ẑ1.

If z̃1 < ẑ1, then x̂ is not an optimal solution of CCSp1(δ, x∗, A). If z̃1 = ẑ1, then x̂ is not a

unique optimal solution of CCSp1(δ, x∗, A). Hence, both cases lead to contradictions which

implies that f(x̂) ∈ NW (Y,C). This completes the proof.

Next, we give some examples to show that there exist positive definite matrices

which satisfy the assumptions given in Theorem 5.3.3 while there also exist some that do

not. Matrices A and A′ shown in (5.83) and matrices A′′ and A′′′ shown in (5.84) are all

positive definite.

A =


4 3 0

1 2 3

3 1 5

 , A′ =


2 1 3

4 3 4

1 2 3

 (5.83)

A′′ =



5 2 0 1

2 1 3 4

4 1 4 2

5 1 0 4


, A′′′ =



1 1 3 1

2 4 1 0

1 3 5 3

3 0 4 0


(5.84)

Note that for 3 × 3 matrices we only have to examine the sign of the determinant of one

minor: namely,  a11 a12

a31 a32

 . (5.85)

For 4×4 matrices, we additionally must check the signs of the determinants of the following
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minors:  a11 a12

a41 a42

 , (5.86)

and 
a11 a12 a13

a21 a22 a23

a41 a42 a43

 . (5.87)

For matrix A given in (5.83), the minor having the form given in (5.85) has a negative

determinant and thus satisfies the assumption, while for matrix A′ in (5.83), the minor of

the form given in (5.85) has positive determinant and so does not satisfy the assumption.

For matrix A′′ in (5.84), we see that the signs of the determinants of the minors in (5.85)

- (5.87) are all negative, so A′′ satisfies the assumptions of Theorem 5.3.3. On the other

hand, the minor of A′′′ having the form of (5.85) has a positive determinant. Thus, A′′′

does not satisfy the assumptions of the theorem.

5.3.3 Implementation

The proofs of both Theorem 5.3.1 and Theorem 5.3.3 require the uniqueness of the

solution x̂. However, because of the increased dimensionality, problems (5.53) and (5.60)

rarely have a unique solution. This is seen in the following simple example. Consider the

linear MOP:
minimize f(x) = [−x1,−x2,−x3]

subject to x1 + x2 + x3 ≤ 1

x ∈ R3
=

(5.88)
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Let δ = 0.5 and x∗ = (1, 0, 0) ∈ XE . Then, CCS3
1(0.5, (1,0,0), R3

=) is (note that we dropped

the “theoretical” constraints):

minimize −x1

subject to −x2 ≤ 0

−x3 ≤ 0

x1 + x2 + x3 ≤ 1

||[−x1,−x2,−x3]− [−1, 0, 0]|| ≥ 0.5

x ∈ R3
=

(5.89)

Assume that we are using the l1-norm. Then the spacing constraint can be rewritten as:

| − x1 + 1|+ | − x2|+ | − x3| ≥ 0.5 (5.90)

In this case, since we know that the Pareto set of problem (5.88) is the portion of the plane

x1 + x2 + x3 = 1 which lies in the first orthant, we can eliminate the absolute values from

(5.90):

x1 − x2 − x3 ≤ 0.5 (5.91)

92



The KKT conditions for problem (5.89), with the spacing constraint as in (5.91), are:


−1

0

0

+ u1


0

−1

0

+ u2


0

0

−1

+ u3


1

1

1

+ u4


1

−1

−1

 =


0

0

0


−x2 ≤ 0

−x3 ≤ 0

x1 + x2 + x3 ≤ 1

x1 − x2 − x3 ≤ 0.5

u1(−x2) = 0

u2(−x3) = 0

u3(x1 + x2 + x3 − 1) = 0

u4(x1 − x2 − x3 − 0.5) = 0

u ∈ R4
=

x ∈ R3
=

(5.92)

Solving the gradient conditions in (5.92), we find that u1 = u2 and u3 = 1 − u4. Since

x∗ = (1, 0, 0), we also know that at least one of x2 and x3 must increase from 0. Without

loss of generality, assume that x2 > 0. Then, u1 = 0, by complementary slackness, which

implies u2 = 0. Substituting these values into the gradient conditions, we find that u3 = u4.

This, combined with u3 = 1 − u4, implies that u3 = u4 = 0.5. Thus, we must have that

x1 + x2 + x3 = 1 and x1 − x2 − x3 = 0.5. Adding these two equations together gives that

x1 = 0.75 and x2 + x3 = 0.25. Hence, problem (5.89) has alternate optimal solutions:

x̂ = (0.75, x2, 0.25− x2) where x2 ∈ [0, 0.25].

Additionally, again because of the increase in dimension, neither problem (5.53) nor

(5.60) suggest an intuitive structure for an algorithm. In more than two dimensions, there is

no inherent organizational method for producing a representation, and this combined with

the lack of uniqueness discussed previously creates a somewhat chaotic generation of points,

as was seen in computational experiments. Moreover, since the feasibility check from the
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biobjective approach does not generalize to higher dimensions, we do not have an intuitive

stopping criterion to integrate into an algorithm which is based on these problems.

Due to these considerations, we recommend using a modified version of problems

(5.53) and (5.60) in conjunction with certain aspects of the Bilevel Controlled Spacing

(BCS) approach (which is discussed in Chapter 4) to implement the CCS method in more

than two dimensions. The new problem, instead of considering the nondominated set as

a whole, reduces the nondominated set to its two-dimensional cross-sections (similar to

the slicing technique of the BCS approach) where we may then apply the biobjective CCS

method. The BCS approach is used only to determine the reference points for input into the

algorithm. This implementation injects the structure we need to formulate an algorithm.

Let C ⊇ Rp
= be a simplicial cone defined by C = {y ∈ Rp : Ay = 0}, and let x∗ ∈

EW (X, f,C). Since we are now focusing on a two-dimensional cross-section of the problem,

we may again apply the feasibility check ||f̃(x∗) − f̃(x2)|| ≥ δ where f̃(x) = [f1(x), f2(x)]

and

x2 ∈ arg lex min{[f2(x), f1(x)] : x ∈ EW (X, f,C), f3(x) = f∗3 , . . . , fp(x) = f∗p }. (5.93)

Given this, the Constraint Controlled Spacing formulation using the slicing method (CCSSp1(δ,

x∗, A)) follows:

minimize g1(x)

subject to f1(x) ≤ f1(x2)

g2(x) ≤ g2(x∗)

f3(x) = f3(x∗)
...

fp(x) = fp(x∗)

||f̃(x)− f̃(x∗)|| ≥ δ

x ∈ X

(5.94)

We prove that problem (5.94) produces a weakly efficient point next.
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Theorem 5.3.4. Let C ⊇ Rp
= be a simplicial cone defined by C = {y ∈ Rp : Ay = 0}.

If NW (Y,C) is connected and x̂ is the unique optimal solution of CCSSp1(δ, x∗, A), then

f(x̂) ∈ NW (Y,C).

Proof. Assume NW (Y,C) is connected and let x̂ be the unique optimal solution of CCSSp1(δ,

x∗, A). Let ŷ = f(x̂) and ẑ = Af(x̂). Suppose that ŷ /∈ NW (Y,C). Recall that we require

||f̃(x∗) − f̃(x2)|| ≥ δ, so x2 (as defined in (5.93)) is feasible for CCSSp1(δ, x∗, A) and the

problem always has a feasible solution. Now, notice that if we let X̃ = {x ∈ X : f3(x) =

f3(x∗), . . . , fp(x) = fp(x∗)}, then problem (5.94) becomes

minimize g1(x)

subject to f1(x) ≤ f1(x2)

g2(x) ≤ g2(x∗)

||f̃(x)− f̃(x∗)|| ≥ δ

x ∈ X̃

(5.95)

The problem in (5.95) is now precisely the bicriteria CCS problem (5.6), so we may apply

the results of Theorem 5.1.3 and conclude that f(x̂) ∈ NW (Y,C). This completes the

proof.

The pseudocode for the Constraint Controlled Spacing Slicing Algorithm (CCSSA)

is given in Figure 5.9. CCSSA takes as inputs the indices (j, k) of the objective functions

that are not fixed, the scalars ni which are the number of slices desired with respect to each

fixed objective function, and the spacing value δ. Next, for each fixed objective function,

we determine the minimum and maximum values, f li and fhi , over the nondominated set.

That is, to solve for f li , for example, we solve the following bilevel problem:

minimize fi(x)

subject to x ∈ EW (X, f,C)
(5.96)

We reformulate the problem in (5.96) as a single-level problem by rewriting the lower-level
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problem in terms of its KKT conditions, and then solve the resultant problem using the

branch-and-bound method discussed in Chapter 4. We calculate the distance between each

pair of extreme values and divide by ni − 1 to find the spacing between each slice. A

series of nested for-loops is used to investigate all possible cross-sections. Note that these

loops are only over the fixed objective functions. For each possible combination of the fixed

values, we specify the set X̃ and determine the minimum values of fj(x) and fk(x) over

this cross-section of the nondominated set, again using the bilevel methodology previously

discussed. These points are used as the reference points in the biobjective CCSA. Since

the length of each cross-section will (most likely) be different, the number of points desired,

N , which is used as an input of CCSA (see Figure 5.7) cannot be specified as an input.

Rather, we recommend using a slightly modified version of CCSA, CCSAδ, in which the

main while-loop depends on there being a feasible solution rather than the input N . The

pseudocode for CCSAδ is shown in Figure 5.10. The same issue as was discussed with

respect to CCSA applies here. That is, if δ does not “fit” the current cross section, then

the final two points will be less than δ distance apart. Each time we run CCSAδ, we obtain

a list L of efficient points which we add to the list of lists, L. CCSSA returns L at the

conclusion of the algorithm.

The advantages of the Constraint Controlled Spacing Slicing (CCSS) method are

that it aids in the visualization of the nondominated set even for problems with more than

three dimensions. An advantage this method has over the Bilevel Controlled Spacing Slicing

(BCSS) method is that the CCSS method is not limited to convex problems. However, while

the BCSS method can accommodate preferences modeled by both acute and obtuse cones,

a disadvantage of the CCSS method is that we can only integrate preferences modeled

by obtuse cones. Additionally, since we utilize techniques from the BCSS approach to

determine bounds on the nondominated set, there is a possibility that the bounds will

be incorrect on nonconvex problems. However, this has not been an issue in any of our

computational tests thus far.
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algorithm CCSSA

input: j, k ∈ {1, . . . , p}, ni for i = 1, . . . , p, i 6= j, i 6= k, δ

begin

find f li = min{fi(x) : x ∈ EW (X, f,C)} for i = 1, . . . , p, i 6= j, i 6= k;

find fhi = max{fi(x) : x ∈ EW (X, f,C)} for i = 1, . . . , p, i 6= j, i 6= k;

compute di = (fhi − f li )/(ni − 1) for i = 1, . . . , p, i 6= j, i 6= k;

set L = {};
for count1 = 1, . . . , n1

f∗1 = f l1 + (count1 − 1)d1;
...
for countp = 1, . . . , np

f∗p = f lp + (countp − 1)dp;

set X̃ = {x ∈ Rn : fi(x) = f∗i for i = 1, . . . , p, i 6= j, i 6= k};
find x1 ∈ arg lex min{[fj(x), fk(x)] : x ∈ X̃, x ∈ EW (X, f,C)};
find x2 ∈ arg lex min{[fk(x), fj(x)] : x ∈ X̃, x ∈ EW (X, f,C)};
run algorithm CCSAδ with inputs δ, x1, x2 to obtain L;
append L to L;

end for;

end for;

end;

output: L

Figure 5.9: Pseudocode for CCSSA
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algorithm CCSAδ

obtain x1 and x2 from DM or using Initialization

input: δ

begin

let x∗ = x1, let L = {x1}, and set i = 1;

while ||f(x∗)− f(x2)|| ≥ δ do

begin

solve CCS1(δ, x∗, A) to obtain x(i);
solve P2(g1(x(i))) to obtain x′;
if g2(x(i)) = g2(x′) then set x∗ = x(i);
else set x∗ = x′;
end if;
set L(i+ 1) = x∗;
i+ +;

end while;

set L(i) = x2;

end;

output: L

Figure 5.10: Pseudocode for CCSAδ
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Chapter 6

Numerical Experiments

In this chapter, we present the results of our two methods, the Bilevel Controlled

Spacing (BCS) method and the Constraint Controlled Spacing (CCS) method, when applied

to a variety of test problems. All results were obtained using Matlab version 7.7.0. We first

give the BCS results, bicriteria problems in Section 6.1.1 and tricriteria problems in Section

6.1.2. Then we move to the results of the CCS method, with bicriteria results given in

Section 6.2.1 and tricriteria results given in Section 6.2.2. In all cases, any lines displayed in

the figures are simply to aid in visualization and are not part of the representation. Further,

all numerical experiments were performed using the l1-norm unless otherwise noted.

6.1 Bilevel Controlled Spacing

6.1.1 Biobjective Results

The BCS method was applied to three convex biobjective test problems. Example

1 (6.1) is a simple linear MOP. We set N = 17 and solved the problem first with respect to

the Pareto cone and then with respect to the acute cone defined by the matrix

A =

 1 0

−2 1

 .
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The results are shown in Figures 6.1 and 6.2, respectively. In both figures, the displayed

line represents the true nondominated set.

minimize f(x) = [−x1 − 2x2, −3x1 − x2]

subject to x1 + x2 ≤ 6

2x1 + x2 ≤ 9

x1 ≤ 4

x2 ≤ 5

x1, x2 ≥ 0

x ∈ R2

(6.1)

Figure 6.1: Example 1 with the Pareto cone

Example 2 (6.2) is a convex nonlinear MOP from [70]. We first set N = 17 and

solved the problem with respect to the Pareto cone. The results are shown in Figure 6.3.

Then, we set N = 9 and solved the problem with respect to the obtuse cone defined by the
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Figure 6.2: Example 1 with an acute cone

matrix

A =

 10 1

0 1

 .
The results are shown in Figure 6.4.

maximize f(x) = [x1 + x2, 10x1 − x2
1 + 4x2 − x2

2]

subject to 3x1 + x2 ≤ 12

2x1 + x2 ≤ 9

x1 + 2x2 ≤ 12

x ∈ R2

(6.2)

Example 3 (6.3) is a simple convex problem from [30] which we use to demonstrate

the controlled-tradeoff application of the BCS method. Figure 6.5 shows the generated

representation. The solutions points from top to bottom have tradeoffs of 1
4 , 1

3 , 1
2 , 1, 2, 3,
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Figure 6.3: Example 2 with the Pareto cone

Figure 6.4: Example 2 with an obtuse cone
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and 4, respectively. Compare this figure to Figures 6.21 and 6.22.

minimize f(x) = [
√

1 + x2
1, x

2
1 − 4x1 + x2 + 5]

subject to x2
1 − 4x1 + x2 + 5 ≤ 3.5

x1, x2 ≥ 0

x ∈ R2

(6.3)

Figure 6.5: Example 3 with controlled-tradeoff

6.1.2 Multiobjective Results

The BCS method was applied to three convex, tricriteria problems. Example 4 (6.4)

is a simple linear problem.

minimize f(x) = [−x1, −x2, −x3]

subject to x1 + x2 + x3 ≤ 3

x1, x2, x3 ≥ 0

x ∈ R3

(6.4)
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We first ran the BCS method using the center technique. These results are shown in Figures

6.6 and 6.7. We next applied the BCS method using the slicing technique. These results

are shown in Figures 6.8 and 6.9. For this example, the Pareto preference was assumed and

the l2-norm was used.

Figure 6.6: Example 4 using the center technique: front view

Example 5 (6.5) is a linear problem with two nondominated faces taken from [43].

minimize f(x) = [−4x1 − x2 − 2x3, −x1 − 3x2 + x3, x1 − x2 − 4x3]

subject to x1 + x2 + x3 ≤ 3

2x1 + 2x2 + x3 ≤ 4

x1 − x2 ≤ 0

x1, x2, x3 ≥ 0

x ∈ R3

(6.5)

For this example, we applied the slicing method. We chose to fix f3 and set the number of

slices at n3 = 10. The results are shown in Figures 6.10 and 6.11.
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Figure 6.7: Example 4 using the center technique: side view

Figure 6.8: Example 4 using the slicing technique: front view
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Figure 6.9: Example 4 using the slicing technique: side view

Figure 6.10: Example 5 using the slicing technique: front view
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Figure 6.11: Example 5 using the slicing technique: side view

Example 6 (6.6) is a simple convex problem.

minimize f(x) = [−x1, −x2, −x3]

subject to x2
1 + x2

2 + x2
3 ≤ 1

x1, x2, x3 ≥ 0

x ∈ R3

(6.6)

We ran this example using both the center and the slicing techniques for each of the three

types of cones (Pareto, acute, and obtuse). For the center method, we stopped when the

areas of all the search regions were less than or equal to 0.06 units. For the slicing method,

the number of slices varied depending on the cone, but in all cases, we set δ = 0.30.

Additionally, the l2-norm was used for all tests. The results for the Pareto cone are shown

in Figures 6.12, 6.13, and 6.14. Matrices A and A′ in (6.7) were used to define the acute
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and obtuse cones, respectively, that we investigated.

A =


1 0 0

0 1 0

0 −1 1

 , A′ =


1 0 0

0 1 0

0 1 1

 (6.7)

The results for the acute cone represented by matrix A are shown in Figures 6.15, 6.16, and

6.17. The results for the obtuse cone represented by matrix A′ are shown in Figures 6.18,

6.19, and 6.20.

Figure 6.12: Example 6 with the Pareto cone using the center technique

6.2 Constraint Controlled Spacing

6.2.1 Biobjective Results

The CCS method was applied to four biobjective test problems. Example 7 (6.3)

is a simple convex problem from [30]. We first set our cardinality preferences to N = 9,

resulting in δ = 0.456. The results for this run are shown in Figure 6.21. We then let

108



Figure 6.13: Example 6 with the Pareto cone using the slicing technique: front view

Figure 6.14: Example 6 with the Pareto cone using the slicing technique: side view
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Figure 6.15: Example 6 with an acute cone using the center technique

Figure 6.16: Example 6 with an acute cone using the slicing technique: front view
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Figure 6.17: Example 6 with an acute cone using the slicing technique: side view

Figure 6.18: Example 6 with an obtuse cone using the center technique
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Figure 6.19: Example 6 with an obtuse cone using the slicing technique: front view

Figure 6.20: Example 6 with an obtuse cone using the slicing technique: side view
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N = 17 yielding δ = 0.228. These results are shown in Figure 6.22. Both representations

were generated with respect to the Pareto cone.

Figure 6.21: Example 7 with the Pareto cone and N = 9

Example 8 [70], shown in (6.8), is a nonconvex problem with a disconnected Pareto

set and a connected weak Pareto set.

minimize f(x) = [f1(x), f2(x)]

where f1(x) = 10 + 10
4∑
j=3

2∑
i=1

(xi − 2)j

f2(x) = 10 +
2∑
i=1

(xi − 3)2

subject to −x1 − x2 + 0.1 ≤ 0

0 ≤ x1 ≤ 10

0 ≤ x2 ≤ 10

x ∈ R2

(6.8)

We first solved the problem with respect to the Pareto cone with N = 100. The results

are shown in Figure 6.23. In Figure 6.24, we kept N = 100 and solved the problem with
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Figure 6.22: Example 7 with the Pareto cone and N = 17

respect to the obtuse cone defined by the matrix

A =

 3 1

0 1

 .
Note that in both figures we “zoomed in” on the interesting portion of the nondominated

set.

Example 9 (6.9), which was originally proposed in [77], is a nonconvex problem with

a disconnected weak Pareto set.

minimize f(x) = [x1, x2]

subject to x2
1 + x2

2 − 1− 0.1 cos(16 arctan(x1
x2

)) ≥ 0

(x1 − 0.5)2 + (x2 − 0.5)2 ≤ 0.5

x1, x2 ∈ [0, π]

x ∈ R2

(6.9)

The results when the problem is solved with respect to the Pareto cone and N = 20 are
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Figure 6.23: Example 8 with the Pareto cone

Figure 6.24: Example 8 with an obtuse cone
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shown in Figure 6.25. The grey area in the figure denotes Y , the feasible region in the

objective space.

Figure 6.25: Example 9 with the Pareto cone

Example 10 (6.10), a slight modification of a problem presented in [41], is another

nonconvex problem with a disconnected weak Pareto set.

minimize f(x) = [−x1, x1 + x2
2 − cos(50x1)]

subject to x2
1 − x2 ≤ 0

x1 + 2x2 − 3 ≤ 0

x1 ≥ 0.5

x ∈ R2

(6.10)

We let N = 16 and solved the problem with respect to the Pareto cone. The results are

shown in Figure 6.26. We then let N = 20 and solved the problem with respect to the
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obtuse cone defined by the matrix

A =

 31 1

0 1

 .
The line shown in both figures represents the boundary of Y . Notice that in Figure 6.27,

the chosen δ does not exactly “fit” the problem so the final two points have a distance of

less than δ from each other.

Figure 6.26: Example 10 with the Pareto cone

6.2.2 Multiobjective Results

The CCS method was applied to three tricriteria test problems. For comparison

of the BCS method and the CCS method, Example 11 (6.6) is the same as Example 6 in

Section 6.1.2. We first ran the problem with respect to the Pareto cone and then with

respect to obtuse cone defined by the matrix A′ in (6.7). In both cases, we sliced with

respect to f3 and set δ = 0.30. The results for the Pareto case are shown in Figures 6.28

and 6.29, and the results for the obtuse case are shown in Figures 6.30 and 6.31.
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Figure 6.27: Example 10 with an obtuse cone

Figure 6.28: Example 11 with the Pareto cone: front view
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Figure 6.29: Example 11 with the Pareto cone: side view

Figure 6.30: Example 11 with an obtuse cone: front view
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Figure 6.31: Example 11 with an obtuse cone: side view

Example 12 (6.11) is another simple convex problem.

minimize f(x) = [x1, x2, x3]

subject to 4x2
1 + x2

2 − x3 ≤ 10

x ∈ R3

(6.11)

We ran Example 12 with respect to the Pareto cone, slicing with respect to f3, and setting

δ = 0.30. Figures 6.32 and 6.33 show the results.

Example 13 (6.12) is taken from [29] and is a slight modification of a problem found
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Figure 6.32: Example 12 with the Pareto cone: front view

Figure 6.33: Example 12 with the Pareto cone: side view
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in [44].

minimize f(x) = [−x1, −x2, −x2
3]

subject to − cos(x1)− e−x2 + x3 ≤ 0

0 ≤ x1 ≤ π

x2 ≥ 0

x3 ≥ 1.2

x ∈ R3

(6.12)

This problem has a nonconvex Pareto set. We ran Example 13 with respect to the Pareto

cone and an obtuse cone defined by the matrix

A =


1 0 0

0 1 0

1 1 1

 .

In both cases, we sliced with respect to f2 and set δ = 0.20. We present four views of the

nondominated set for both the Pareto cone and the obtuse cone defined by A. For ease of

comparison, in Figures 6.34 - 6.41, we show each view first for the Pareto set and then for

the nondominated set.

We would like to emphasize that few methods in the literature have been tested on

problems in higher than two dimensions. This is because of the fact that higher dimensional

MOPs are innately more complex and difficult to solve, regardless of the method or solver

used.
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Figure 6.34: Example 13 with the Pareto cone: front view

Figure 6.35: Example 13 with an obtuse cone: front view
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Figure 6.36: Example 13 with the Pareto cone: side view #1

Figure 6.37: Example 13 with an obtuse cone: side view #1
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Figure 6.38: Example 13 with the Pareto cone: side view #2

Figure 6.39: Example 13 with an obtuse cone: side view #2
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Figure 6.40: Example 13 with the Pareto cone: side view #3

Figure 6.41: Example 13 with an obtuse cone: side view #3
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Chapter 7

Conclusion and Further Research

7.1 Conclusion

This dissertation contains several theoretical contributions. In proving the correct-

ness of the Constraint Controlled Spacing (CCS) method, we revealed the different behaviors

of acute and obtuse simplicial cones in the general cone extension of the ε-constraint scalar-

ization. Moreover, in the multicriteria CCS method, we proved the interesting property that

any p×p matrix with nonnegative entries can be written as a positive definite matrix using

only row exchanges. Combined with an earlier proposition which shows that any obtuse,

polyhedral cone C, Rp
= ⊆ C, can be represented by a matrix having all nonnegative entries,

the aforementioned result implies that any obtuse, simplicial cone can be represented by a

positive definite matrix.

Methodologically, we presented two algorithms for generating quality discrete rep-

resentations of the nondominated sets of multiobjective programs: the Bilevel Controlled

Spacing (BCS) method and the CCS method. The BCS method uses a bilevel formula-

tion to produce equidistant points: the upper-level problem controls the spacing, while the

lower-level problem ensures that the point is nondominated. The CCS method, on the other

hand, adds an additional constraint to the ε-constraint problem to control the spacing of

each newly generated point. The CCS method is applicable to general MOPs while the
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BCS method is limited to convex MOPs because of its use of the KKT optimality condi-

tions. On the other hand, the CCS method is limited to notions of optimality defined by

obtuse cones, whereas the BCS method can be used with both obtuse and acute cones. The

BCS method is easily applied to problems with more than two objective functions and we

presented two different approaches for doing so: the center method and the slicing method.

On the other hand, although theoretically elegant, the CCS method as initially conceived

encounters difficulties in higher dimensions. We presented a slightly altered formulation of

the CCS method which integrates the BCS method to overcome these issues. Both methods

integrate the cardinality preferences of the DM, although the BCS method is more restric-

tive. Also, the BCS method can be used to find a solution point with a specified tradeoff or

a set of points with tradeoffs chosen by the DM. These extensions of the method promote

the involvement of the DM in the optimization process which is important in multi-criterion

decision making. Notice that the CCS and BCS methods complement one another in the

sense that each is applicable in certain situations while the other is not.

In terms of computational work, both the BCS method and the CCS method show

promise on a variety of test problems including linear, convex, nonconvex (CCS only),

two-dimensional, and higher-dimensional problems. Previously in the literature, there has

been limited testing of methods on higher dimensional problems although some approaches

were theoretically applicable to problems with more than two dimensions. We found that

the CCS method is much more computationally efficient. The computational issues of the

BCS method are due in large part to the fact that the branch-and-bound method explicitly

enumerates all possible solutions to the complementarity constraints in the KKT conditions.

Thus, as the number of constraints grows, the branch-and-bound method becomes less

efficient.

We also presented a comprehensive literature review covering both engineering and

mathematical literature. The literature review contains measures proposed for assessing

the quality of a discrete representation as well as methods that have been proposed for

producing a representation satisfying certain quality criteria. Interestingly though, there is
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an apparent disconnect between these two areas. We found that the vast majority of quality

measures were proposed in the field of engineering. Typically, these measures are used a

posteriori to evaluate the performances of evolutionary algorithms, but they could just as

well be applied to nondominated sets generated by exact algorithms. For the most part,

however, these measures are either unknown or unused in the mathematical community.

Within the proposed methods, several authors suggest filtering algorithms or other schemes

to control the quality of a nondominated set after the outcome points are generated. This

type of method seems inefficient because resources are used to generate a selection of non-

dominated points, some of which are later discarded. Why not incorporate a measure into

the algorithm so these points are not produced in the first place? Further, methods which

do not incorporate measures at all seem to improve the quality of discrete representations

but only in a general sense. Usually, the quality of a resultant nondominated set cannot be

explicitly stated or guaranteed. Both of these problems are solved by integrating measures

into algorithms a priori. Each new point is generated so that when combined with the pre-

viously produced points, the updated nondominated set satisfies one or more prespecified

quality criteria. Because of this, it is our opinion that the a priori class of methods is to be

preferred. However, researchers have only recently begun formulating a priori methods, so

many of these algorithms are limited to special classes of problems or encounter difficulties

in higher dimensions.

7.2 Further Research

In both the Constraint Controlled Spacing method and the Bilevel Controlled Spac-

ing method, we used the ε-constraint method as a scalarizing function because it is simple

to implement and understand. Additionally, it completely characterizes efficiency. That is,

any solution to an ε-constraint problem is at least weakly efficient and any weakly efficient

solution can be found as the solution of some ε-constraint problem. However, other scalar-

izing approaches have this same property (see [28] or [66] for reviews). Thus, it would be
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interesting to explore whether these other scalarization methods can be integrated into our

two approaches instead of the ε-constraint scalarization.

In our work with integrating the preferences of the DM through the use of general

cones, we require the cones to be simplicial. In more than two dimensions though, there are

many non-simplicial cones. For instance, it is not difficult to find a cone in three dimensions

that has four (or more) extreme directions. Further study is needed to determine if these

non-simplicial cones are compatible with our methods.

Along the same lines, in both methods, we assume that the chosen norm (in the

constraint, in the CCS method, and in the objective, in the BCS method) is from the

family of lp-norms. However, there are other classes of norms besides the lp-family. For

the CCS method, at the end of Section 5.1, we consider elliptic norms in two dimensions.

Other norms of interest could include block or polyhedral norms. It may also be possible

to integrate the more general concept of gauges. A nice review of norms and gauges can be

found in Chapter 2 of [70].

Recently, a new measure of the quality of the Pareto set has been proposed called

robustness (see for example, [24] or [25]). Robustness measures the sensitivity of Pareto

points to small changes in the decision space. Currently, the CCS and BCS methods

generate discrete representations with good cardinality, complete coverage, and equidistant

spacing. Integrating another measure, such as robustness, would be the next step in their

development.

Other areas that could be investigated for both methods include: relaxing the re-

quirement that solutions are Pareto optimal and allowing, instead, ε-Pareto solutions (see

[47] and [60]); determining the applicability of our methods to integer or mixed-integer

MOPs which arise frequently in applications (e.g., recently, [38] and [42]); and applying

the developed methods to real-world problems such as an engineering design problem or a

portfolio selection problem.

With respect to the BCS approach, the main disadvantage is that it can only be

used on convex MOPs because we rewrite the lower-level ε-constraint problem in terms of its
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KKT conditions to obtain a solvable single-level optimization problem. However, up until

this reformulation, the BCS approach ((4.8) or (4.13)) is applicable to general problems. It

is only our solution method that restricts its use. Thus, it would be of significant interest

to explore other bilevel solution techniques such as the penalty method proposed by Bonnel

and Morgan [14].

In terms of the CCS approach, further study is needed to determine the meaning

behind the assumptions (see (5.65)) required for the proof of Theorem 5.3.3. Because the

specified minors represent lower-dimensional projections of the cone C, our intuition is that

these assumptions enforce some sort of necessary relationship between the projections, but

this has yet to be verified.

Although there is plenty left to be pondered, researched, and improved in the field

of multiple-objective optimization, and indeed, even in this specific area on which we chose

to focus this dissertation, one has an overwhelming sense that the importance of this field

and of MCDM as a whole has finally been realized and that widespread acceptance and use

of MCDM techniques is inevitable, probably sooner rather than later.
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Appendix A Matlab Code for Example 2

In this appendix, we give the Matlab code for Example 2 (6.2), assuming the Pareto

cone, in Chapter 6. The files example2_f1.m and example2_f2.m contain the objective

functions. Note that the objective functions are negative because Example 2 is a maximiza-

tion problem.

example2_f1.m

function z = example2_f1(x,y)

z = -(x+y);

example2_f2.m

function z = example2_f2(x,y)

z = -(10*x-x^2+4*y-y^2);

The file example2_bilevel.m implements the pseudocode in Figure 4.1 for Example

2. The first two optimizations (i.e., fmincon(...)) are to determine the initial reference

points for the Bilevel Controlled Spacing algorithm. This is our implementation of the pseu-

docode found in Figure 4.2. The objective functions and constraints called by fmincon, are

example2_bilevel_subobj.m and example2_bilevel_subnlc.m, respectively. These func-

tions are shown below. In example2_bilevel_subnlc.m, c stores the inequality constraints

while ceq stores the equality constraints (in this case, there are none). Following these ini-

tial optimizations, we declare any linear inequality (Ax ≤ b) or equality (Aeqx = beq)

constraints, any lower (lb) or upper (ub) bounds on the variables, and a starting point

(x0) for the algorithm. The solution algorithm we used is a branch-and-bound method

proposed by Bard (see [3] or [73] for the pseudocode). Our nonlinear implementation

(not shown here) is called using branch_and_bound_nonlinear(...). As can be seen, we
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use a linked-list type structure to store the list of nondominated points throughout the

algorithm. After the codes for example2_bilevel.m, example2_bilevel_subobj.m, and

example2_bilevel_subnlc.m below, we discuss the objective function and constraints used

in the branch-and-bound procedure.

example2_bilevel.m

clc;

clear all;

options = optimset(’maxfunevals’,1000000,’TolX’,1e-8,’TolCon’,1e-8,...

’TolFun’,1e-8,’MaxIter’,100000);

x0 = [0; 0];

j = 1;

v = fmincon(’example2_bilevel_subobj’,x0,[],[],[],[],[],[],...

’example2_bilevel_subnlc’,options,j);

p0 = [example2_f1(v(1),v(2)); example2_f2(v(1),v(2))];

figure(1);

hold on;

plot(-p0(1),-p0(2),’-or’);

j = 2;

v = fmincon(’example2_bilevel_subobj’,x0,[],[],[],[],[],[],...

’example2_bilevel_subnlc’,options,j);

q0 = [example2_f1(v(1),v(2)); example2_f2(v(1),v(2))];

figure(1);

hold on;
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plot(-q0(1),-q0(2),’-or’);

A = [];

b = [];

Aeq = [];

beq = [];

lb = [];

ub = [];

x0 = [0;0;0;0;0;0;0;0];

p = p0;

clear list;

list(1) = libpointer(’doublePtr’,q0);

k = size(list,2);

N = 17;

while ((k+1) < N)

for i=1:k

q = get(list(i),’value’);

[z,zval] = branch_and_bound_nonlinear(’example2_bilevel_obj’,...

’example2_bilevel_nlc’,A,b,Aeq,beq,lb,ub,x0,p,q);

x1 = z(2);

x2 = z(3);

p1 = [example2_f1(x1,x2); example2_f2(x1,x2)];

figure(1);

hold on;
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plot(-p1(1), -p1(2), ’-ok’);

newlist(2*i-1) = libpointer(’doublePtr’,p1);

newlist(2*i) = libpointer(’doublePtr’,q);

p = q;

end

list = newlist;

clear newlist;

k = size(list,2);

p = p0;

end

h(1,:)=p0’;

for l=1:size(list,2)

h(l+1,:)=get(list(l),’value’);

end

figure(1);

plot(-h(:,1),-h(:,2),’-ok’);

example2_bilevel_subobj.m

function z = example2_bilevel_subobj(x,j)

x1 = x(1);

x2 = x(2);
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f = [example2_f1(x1,x2); example2_f2(x1,x2)];

if (j == 1)

z = f(1);

else

z = f(2);

end

example2_bilevel_subnlc.m

function [c,ceq] = example2_bilevel_subnlc(x,j)

x1 = x(1);

x2 = x(2);

c = [3*x1+x2-12; 2*x1+x2-9; x1+2*x2-12];

ceq = 0;

The functions example2_bilevel_obj.m and example2_bilevel_nlc.m, shown be-

low, are the objective and constraint functions of the branch-and-bound algorithm, re-

spectively. Recall that to use the branch-and-bound procedure, we first reformulate the

lower-level problem using the ε-constraint scalarization and then rewrite this new problem

according to its KKT conditions (see Chapter 4). This increases the number of optimization

variables from two (x1, x2) to eight (t, x1, x2, e, u1, u2, u3, u4) as is shown in the beginning

of both example2_bilevel_obj.m and example2_bilevel_nlc.m below. The variables p

and q which are input into both functions are the reference nondominated points between

which we would like to find a new nondominated point in each iteration. The objective is
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to minimize t since t represents the maximum of the distances from p to the new point and

from q to the new point. The function example2_bilevel_nlc.m contains the inequality (c)

and equality (ceq) constraints for the problem. It also contains the complementary slack-

ness conditions (CS) which need to be satisfied. The vector P is used to store the branching

tree that is formed while using the branch-and-bound algorithm, and the for-loop at the

end of example2_bilevel_nlc.m utilizes the information in P to append additional equality

constraints to ceq.

example2_bilevel_obj.m

function z = example2_bilevel_obj(x,P,p,q)

t = x(1);

x1 = x(2);

x2 = x(3);

e = x(4);

u1 = x(5);

u2 = x(6);

u3 = x(7);

u4 = x(8);

z = t;

example2_bilevel_nlc.m

function [c,ceq_new] = example2_bilevel_nlc(x,P,p,q)

global CS;
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t = x(1);

x1 = x(2);

x2 = x(3);

e = x(4);

u1 = x(5);

u2 = x(6);

u3 = x(7);

u4 = x(8);

f = [example2_f1(x1,x2); example2_f2(x1,x2)];

c = [norm(f-p,1)-t; norm(f-q,1)-t; f(1)-e; 3*x1+x2-12; 2*x1+x2-9;...

x1+2*x2-12; -u1; -u2; -u3; -u4];

ceq = [-u1-10+2*x1+3*u2+2*u3+u4; -u1-4+2*x2+u2+u3+2*u4];

CS = [u1; u2; u3; u4; f(1)-e; 3*x1+x2-12; 2*x1+x2-9; x1+2*x2-12];

n = size(CS,1);

a = [];

l=1;

for i=1:size(P,2)

if (P(i)>0)

a(l,1) = CS(P(i));

l=l+1;

else if (P(i)<0)

a(l,1) = CS(n/2-P(i));
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l=l+1;

end

end

end

ceq_new = vertcat(ceq,a);
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Appendix B Matlab Code for Example 7

In this appendix, we give the Matlab code for Example 7 (6.3), assuming the Pareto

cone, in Chapter 6. The files example7_f1.m and example7_f2.m contain the objective

functions.

example7_f1.m

function z = example7_f1(x,y)

z = sqrt(1+x^2);

example7_f2.m

function z = example7_f2(x,y)

z = x^2-4*x+y+5;

The file example7_constraint.m implements the pseudocode in Figure 5.7 without

the additional check step. We input the reference points a0 and b0, the desired spac-

ing value d, the initial nondominated point a, and the initial epsilon e. Given these

inputs, fmincon calls the objective function example7_constraint_obj.m and the non-

linear constraint function example7_constraint_nlc. These functions are shown below.

In example7_constraint_nlc.m, c stores the inequality constraints while ceq stores the

equality constraints (in this case, there are none). Notice that we have removed the absolute

value from the norm constraint in c because we are taking advantage of the two-dimensional

structure of the problem.

example7_constraint.m

clc;

clear all;
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options = optimset(’maxfunevals’,1000000,’TolX’,1e-10,’TolCon’,1e-10,...

’TolFun’,1e-10,’MaxIter’,1000000);

a0 = [1.0842; 3.5000];

b0 = [2.2361; 1.0000];

f1(17) = 1.0842;

f2(17) = 3.5000;

f1(1) = 2.2361;

f2(1) = 1.0000;

figure(1);

hold on;

plot(a0(1), a0(2),’-.ok’);

plot(b0(1), b0(2),’-.ok’);

v0=[1.0842; 3.5000];

d = 0.22824375;

e = 2.2361;

a = b0;

i=1;

N=17;

while ((i<=N-2) && (norm(a0-a,1)>=d))

142



v = fmincon(’example7_constraint_obj’,v0,[],[],[],[],[],[],...

’example7_constraint_nlc’,options,a,e,d);

f1(i+1) = example7_f1(v(1),v(2));

f2(i+1) = example7_f2(v(1),v(2));

a = [f1(i+1); f2(i+1)];

e = f1(i+1);

v0 = v;

figure(1);

hold on;

plot(f1(i+1), f2(i+1),’-.ok’);

i = i+1;

end

figure(1);

hold on;

plot(f1,f2,’-.ok’);

example7_constraint_obj.m

function y = example7_constraint_obj(v,a,e,d)

x1 = v(1);

x2 = v(2);
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y = example7_f2(x1,x2);

example7_constraint_nlc.m

function [c,ceq] = example7_constraint_nlc(v,a,e,d)

x1 = v(1);

x2 = v(2);

f = [example7_f1(x1,x2); example7_f2(x1,x2)];

c = [f(1)-e; d-(a(1)-f(1)+f(2)-a(2)); f(2)-3.5; -x1; -x2];

ceq = 0;
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Appendix C Solution Points for Selected Examples

This appendix contains sample solution points for various test problems chosen from

Chapter 6. All solution points given are with respect to the Pareto cone. Additionally, if

the objective functions are equal to the decision variables or the negatives of the decision

variables, then we have not included the values of the objective functions in the table.

x1 x2 f1 f2

1.0000 5.0000 -11.0000 -8.0000
2.6667 3.3333 -9.3333 -11.3333
1.8333 4.1667 -10.1667 -9.6667
3.3750 2.2500 -7.8750 -12.3750
1.4167 4.5833 -10.5833 -8.8333
2.2500 3.7500 -9.7500 -10.5000
3.0625 2.8750 -8.8125 -12.0625
3.6875 1.6250 -6.9375 -12.6875
1.2083 4.7917 -10.7917 -8.4167
1.6250 4.3750 -10.3750 -9.2500
2.0417 3.9583 -9.9583 -10.0833
2.4583 3.5417 -9.5417 -10.9167
2.8750 3.1250 -9.1250 -11.7500
3.2188 2.5625 -8.3438 -12.2188
3.5313 1.9375 -7.4063 -12.5313
3.8438 1.3125 -6.4688 -12.8438
4.0000 1.0000 -6.0000 -13.0000

Table C-1: Efficient and Pareto points for Example 1
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x1 x2 f1 f2

3.5000 1.5000 -5.0000 -26.5000
2.5362 3.9276 6.4638 19.2138
2.9075 3.1849 6.0925 23.2175
2.2462 4.5076 6.7538 15.1288
3.1217 2.6348 5.7566 25.0691
2.7073 3.5854 6.2927 21.2302
2.3842 4.2315 6.6158 17.1783
2.1188 4.7623 6.8812 13.0687
3.2545 2.2365 5.4910 25.8973
3.0185 2.9445 5.9630 24.1817
2.8028 3.3943 6.1972 22.2284
2.6189 3.7622 6.3811 20.2249
2.4582 4.0836 6.5418 18.1980
2.3137 4.3725 6.6863 16.1550
2.1814 4.6373 6.8186 14.0999
2.0585 4.8831 6.9415 12.0353
2.0000 5.0000 -7.0000 -11.0000

Table C-2: Efficient and Pareto points for Example 2
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x1 x2 x3

3.0000 0.0000 0.0000
0.0000 3.0000 0.0000
0.0000 0.0000 3.0000
1.0000 1.0000 1.0000
1.5000 1.5000 0.0000
1.5000 0.0000 1.5000
0.0000 1.5000 1.5000
2.0000 0.5000 0.5000
0.5001 2.0000 0.4999
0.5000 0.5000 2.0000
2.2500 0.7500 0.0000
2.2500 0.0000 0.7500
1.5000 1.0000 0.5000
1.5000 0.5000 1.0000
0.7500 2.2500 0.0000
0.0000 2.2500 0.7500
1.0000 1.5000 0.5000
0.5000 1.5000 1.0000
0.5000 1.0000 1.5000
1.0000 0.5000 1.5000
0.0000 0.7500 2.2500
0.7500 0.0000 2.2500

Table C-3: Efficient points for Example 4 using the center technique
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x1 x2 x3

0.0000 0.0000 3.0000
0.7500 0.0000 2.2500
0.0000 0.7500 2.2500
0.3750 0.3750 2.2500
0.5625 0.1875 2.2500
0.1875 0.5625 2.2500
1.5000 0.0000 1.5000
0.0000 1.5000 1.5000
0.7500 0.7500 1.5000
1.1250 0.3750 1.5000
0.3750 1.1250 1.5000
1.3125 0.1875 1.5000
0.9375 0.5625 1.5000
0.5625 0.9375 1.5000
0.1875 1.3125 1.5000
2.2500 0.0000 0.7500
0.0000 2.2500 0.7500
1.1250 1.1250 0.7500
1.6875 0.5625 0.7500
0.5625 1.6875 0.7500
1.9688 0.2812 0.7500
1.4062 0.8437 0.7500
0.8438 1.4062 0.7500
0.2812 1.9687 0.7500
3.0000 0.0000 0.0000
0.0000 3.0000 0.0000
1.5000 1.5000 0.0000
2.2500 0.7500 0.0000
0.7500 2.2500 0.0000
2.6250 0.3750 0.0000
1.8750 1.1250 0.0000
1.1250 1.8750 0.0000
0.3750 2.6250 0.0000

Table C-4: Efficient points for Example 4 using the slicing technique
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x1 x2 x3 f1 f2 f3

0.0000 0.0000 3.0000 -6.0000 3.0000 -12.0000
0.1667 0.1667 2.6667 -6.1667 2.0000 -10.6667
0.0000 0.4444 2.5556 -5.5556 1.2222 -10.6667
0.3333 0.3333 2.3333 -6.3333 1.0000 -9.3333
0.0000 0.8889 2.1111 -5.1111 -0.5556 -9.3333
0.1667 0.6111 2.2222 -5.7222 0.2222 -9.3333
0.2500 0.4722 2.2778 -6.0278 0.6111 -9.3333
0.0833 0.7500 2.1667 -5.4167 -0.1667 -9.3333
0.5000 0.5000 2.0000 -6.5000 0.0000 -8.0000
0.0000 1.1429 1.7143 -4.5714 -1.7143 -8.0000
0.2500 0.8214 1.8571 -5.5357 -0.8571 -8.0000
0.3750 0.6607 1.9286 -6.0179 -0.4286 -8.0000
0.1250 0.9821 1.7857 -5.0536 -1.2857 -8.0000
0.5833 0.5833 1.6667 -6.2500 -0.6667 -6.6667
0.0000 1.3333 1.3333 -4.0000 -2.6667 -6.6667
0.2917 0.9583 1.5000 -5.1250 -1.6667 -6.6667
0.4375 0.7708 1.5833 -5.6875 -1.1667 -6.6667
0.1458 1.1458 1.4167 -4.5625 -2.1667 -6.6667
0.6667 0.6667 1.3333 -6.0000 -1.3333 -5.3333
0.0000 1.5238 0.9524 -3.4286 -3.6190 -5.3333
0.3333 1.0952 1.1429 -4.7143 -2.4762 -5.3333
0.5000 0.8810 1.2381 -5.3571 -1.9048 -5.3333
0.1667 1.3095 1.0476 -4.0714 -3.0476 -5.3333
0.7500 0.7500 1.0000 -5.7500 -2.0000 -4.0000
0.0000 1.7143 0.5714 -2.8571 -4.5714 -4.0000
0.3750 1.2321 0.7857 -4.3036 -3.2857 -4.0000
0.5625 0.9911 0.8929 -5.0268 -2.6429 -4.0000
0.1875 1.4732 0.6786 -3.5804 -3.9286 -4.0000
0.6563 0.8705 0.9464 -5.3884 -2.3214 -4.0000
0.4687 1.1116 0.8393 -4.6652 -2.9643 -4.0000
0.2812 1.3527 0.7321 -3.9420 -3.6071 -4.0000
0.0937 1.5938 0.6250 -3.2187 -4.2500 -4.0000
0.8333 0.8333 0.6667 -5.5000 -2.6667 -2.6667
0.0000 1.9048 0.1905 -2.2857 -5.5238 -2.6667
0.4167 1.3690 0.4286 -3.8929 -4.0952 -2.6667
0.6250 1.1012 0.5476 -4.6964 -3.3810 -2.6667
0.2083 1.6369 0.3095 -3.0893 -4.8095 -2.6667
0.7292 0.9673 0.6071 -5.0982 -3.0238 -2.6667
0.5208 1.2351 0.4881 -4.2946 -3.7381 -2.6667
0.3125 1.5030 0.3690 -3.4911 -4.4524 -2.6667
0.1042 1.7708 0.2500 -2.6875 -5.1667 -2.6667

Table C-5: Efficient and Pareto points for Example 5 using the slicing technique
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x1 x2 x3 f1 f2 f3

0.9167 0.9167 0.3333 -5.2500 -3.3333 -1.3333
0.3333 1.6667 0.0000 -3.0000 -5.3333 -1.3333
0.6250 1.2917 0.1667 -4.1250 -4.3333 -1.3333
0.7708 1.1042 0.2500 -4.6875 -3.8333 -1.3333
0.4792 1.4792 0.0833 -3.5625 -4.8333 -1.3333
1.0000 1.0000 0.0000 -5.0000 -4.0000 0.0000
1.0000 1.0000 0.0000 -5.0000 -4.0000 0.0000

Table C-6: Efficient and Pareto points for Example 5 using the slicing technique (continued)

x1 x2 x3

1.0000 0.0000 0.0000
0.0000 1.0000 0.0000
0.0000 0.0000 1.0000
0.5774 0.5774 0.5774
0.7071 0.7071 0.0007
0.7071 0.0007 0.7071
0.0283 0.7068 0.7068
0.8865 0.3669 0.2820
0.8865 0.2820 0.3669
0.2932 0.8872 0.3562
0.3669 0.8865 0.2820
0.3669 0.2820 0.8865
0.2932 0.3562 0.8872
0.9239 0.3827 0.0004
0.7168 0.6282 0.3027
0.3827 0.9239 0.0005
0.6282 0.7168 0.3027
0.3153 0.7256 0.6116
0.0420 0.9235 0.3814
0.3153 0.6116 0.7256
0.0417 0.3814 0.9235
0.3827 0.0005 0.9239
0.6282 0.3027 0.7168
0.7168 0.3027 0.6282
0.9239 0.0004 0.3827

Table C-7: Efficient points for Example 13 using the center technique

150



x1 x2 x3

0.0000 0.0000 1.0000
0.5151 0.0000 0.8571
0.0338 0.5140 0.8571
0.3760 0.3521 0.8571
0.4790 0.1893 0.8571
0.2203 0.4656 0.8571
0.6999 0.0000 0.7143
0.0427 0.6986 0.7143
0.5097 0.4795 0.7143
0.6506 0.2579 0.7143
0.2971 0.6337 0.7143
0.6874 0.1313 0.7143
0.5907 0.3754 0.7143
0.4107 0.5667 0.7143
0.1730 0.6781 0.7143
0.8207 0.0000 0.5714
0.0451 0.8194 0.5714
0.5960 0.5641 0.5714
0.7624 0.3036 0.5714
0.3450 0.7446 0.5714
0.8060 0.1546 0.5714
0.6916 0.4418 0.5714
0.4791 0.6663 0.5714
0.1986 0.7963 0.5714
0.9035 0.0000 0.4286
0.0465 0.9023 0.4286
0.6551 0.6222 0.4286
0.8391 0.3350 0.4286
0.3778 0.8207 0.4286
0.8873 0.1706 0.4286
0.7608 0.4874 0.4286
0.5259 0.7347 0.4286
0.2160 0.8773 0.4286
0.9583 0.0000 0.2857
0.0473 0.9571 0.2857
0.6942 0.6607 0.2857
0.8898 0.3558 0.2857
0.3993 0.8712 0.2857
0.9410 0.1812 0.2857
0.8065 0.5176 0.2857
0.5568 0.7800 0.2857
0.2274 0.9309 0.2857

Table C-8: Efficient points for Example 6 using the slicing technique
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x1 x2 x3

0.9897 0.0000 0.1429
0.0480 0.9886 0.1429
0.7166 0.6827 0.1429
0.9189 0.3676 0.1429
0.4117 0.9000 0.1429
0.9719 0.1872 0.1429
0.8328 0.5348 0.1429
0.5746 0.8059 0.1429
0.2341 0.9617 0.1429
1.0000 0.0000 0.0000
0.0478 0.9989 0.0000
0.7238 0.6900 0.0000
0.9284 0.3716 0.0000
0.4156 0.9096 0.0000
0.9819 0.1892 0.0000
0.8413 0.5406 0.0000
0.5802 0.8145 0.0000
0.2360 0.9718 0.0000

Table C-9: Efficient points for Example 6 using the slicing technique (continued)

x1 x2 f1 f2

2.0000 0.0000 2.2361 1.0000
1.7912 0.0000 2.0514 1.0436
1.6326 0.0000 1.9146 1.1349
1.4992 0.0000 1.8021 1.2508
1.3816 0.0000 1.7055 1.3824
1.2751 0.0000 1.6204 1.5255
1.1768 0.0000 1.5443 1.6777
1.0850 0.0000 1.4756 1.8372
0.9985 0.0000 1.4132 2.0030
0.9163 0.0000 1.3563 2.1744
0.8377 0.0000 1.3045 2.3509
0.7623 0.0000 1.2574 2.5320
0.6895 0.0000 1.2147 2.7175
0.6190 0.0000 1.1761 2.9071
0.5506 0.0000 1.1415 3.1009
0.4839 0.0000 1.1109 3.2985
0.4189 0.0000 1.0842 3.5000

Table C-10: Efficient and Pareto points for Example 7 with N = 17
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x1 x2 f1 f2

1.2500 1.2500 7.8906 16.1250
1.2913 1.2913 7.9263 15.8391
1.3270 1.3270 8.0065 15.5978
1.3597 1.3597 8.1115 15.3812
1.3906 1.3906 8.2321 15.1802
1.4205 1.4205 8.3632 14.9898
1.4498 1.4498 8.5015 14.8065
1.4788 1.4788 8.6444 14.6278
1.5080 1.5080 8.7901 14.4520
1.3070 1.8161 8.9275 14.2678
1.2545 2.0417 8.9463 13.9650
2.1170 1.2962 8.9853 13.6825
1.3468 2.1531 9.0748 13.4504
1.3985 2.1733 9.1940 13.2480
1.4515 2.1848 9.3298 13.0623
1.5071 2.1899 9.4742 12.8851
1.5672 2.1892 9.6208 12.7102
1.6357 2.1816 9.7634 12.5312
1.7205 2.1624 9.8925 12.3387
1.8520 2.1091 9.9868 12.1115
2.0498 2.0498 10.0026 11.8057
2.1262 2.1262 10.0453 11.5269
2.1881 2.1881 10.1582 11.3182
2.2365 2.2365 10.3273 11.1657
2.2754 2.2754 10.5331 11.0500
2.3078 2.3078 10.7629 10.9582
2.3356 2.3356 11.0092 10.8830
2.3599 2.3599 11.2674 10.8196
2.3815 2.3815 11.5344 10.7650
2.4011 2.4011 11.8083 10.7174
2.4190 2.4190 12.0876 10.6751
2.4355 2.4355 12.3714 10.6373
2.4508 2.4508 12.6588 10.6032
2.4652 2.4652 12.9493 10.5721

Table C-11: Efficient and Pareto points for Example 8
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x1 x2

0.0417 1.0384
0.0906 1.0023
0.1337 0.9604
0.1882 0.9299
0.4464 0.9298
0.4750 0.8734
0.5021 0.8155
0.5501 0.7785
0.6297 0.7731
0.7052 0.7636
0.7534 0.7268
0.7720 0.6604
0.7740 0.5774
0.7977 0.5161
0.8510 0.4844
0.9099 0.4583
0.9290 0.1996
0.9546 0.1402
0.9963 0.0969
1.0384 0.0417

Table C-12: Efficient points for Example 9

x1 x2 f1 f2

1.0000 1.0000 -1.0000 1.0350
0.8994 0.8090 -0.8994 1.0045
0.8965 0.8037 -0.8965 0.8763
0.8931 0.7977 -0.8931 0.7485
0.8890 0.7904 -0.8890 0.6215
0.8823 0.7785 -0.8823 0.4971
0.7713 0.5949 -0.7713 0.4770
0.7679 0.5897 -0.7679 0.3493
0.7638 0.5834 -0.7638 0.2223
0.7571 0.5732 -0.7571 0.0979
0.6433 0.4138 -0.6433 0.0807
0.6393 0.4087 -0.6393 -0.0465
0.6335 0.4013 -0.6335 -0.1718
0.5163 0.2666 -0.5163 -0.1887
0.5119 0.2620 -0.5119 -0.3154
0.5021 0.2521 -0.5021 -0.4340

Table C-13: Efficient and Pareto points for Example 10
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x1 x2 x3

0.0000 0.0000 -10.0000
-0.5976 0.0000 -8.5714
-0.0092 -1.1951 -8.5714
-0.5806 -0.2830 -8.5714
-0.5340 -0.5364 -8.5714
-0.4602 -0.7626 -8.5714
-0.3567 -0.9590 -8.5714
-0.2138 -1.1162 -8.5714
-0.8452 0.0000 -7.1429
-0.0265 -1.6895 -7.1429
-0.8328 -0.2877 -7.1429
-0.7986 -0.5534 -7.1429
-0.7446 -0.7995 -7.1429
-0.6715 -1.0264 -7.1429
-0.5781 -1.2330 -7.1429
-0.4614 -1.4162 -7.1429
-0.3143 -1.5691 -7.1429
-0.1187 -1.6736 -7.1429
-1.0351 0.0000 -5.7143
-0.0170 -2.0699 -5.7143
-1.0249 -0.2898 -5.7143
-0.9963 -0.5612 -5.7143
-0.9513 -0.8162 -5.7143
-0.8905 -1.0554 -5.7143
-0.8140 -1.2789 -5.7143
-0.7208 -1.4857 -5.7143
-0.6090 -1.6739 -5.7143
-0.4747 -1.8396 -5.7143
-0.3102 -1.9751 -5.7143
-0.0963 -2.0612 -5.7143

Table C-14: Efficient points for Example 12
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x1 x2 x3

-1.1952 0.0000 -4.2857
-0.0110 -2.3904 -4.2857
-1.1863 -0.2911 -4.2857
-1.1612 -0.5660 -4.2857
-1.1215 -0.8263 -4.2857
-1.0681 -1.0729 -4.2857
-1.0011 -1.3059 -4.2857
-0.9204 -1.5251 -4.2857
-0.8250 -1.7297 -4.2857
-0.7133 -1.9181 -4.2857
-0.5825 -2.0873 -4.2857
-0.4275 -2.2323 -4.2857
-0.2379 -2.3426 -4.2857
-1.3363 0.0000 -2.8571
-0.0005 -2.6726 -2.8571
-1.3283 -0.2920 -2.8571
-1.3056 -0.5693 -2.8571
-1.2697 -0.8334 -2.8571
-1.2212 -1.0849 -2.8571
-1.1607 -1.3244 -2.8571
-1.0880 -1.5517 -2.8571
-1.0028 -1.7665 -2.8571
-0.9042 -1.9679 -2.8571
-0.7908 -2.1545 -2.8571
-0.6601 -2.3238 -2.8571
-0.5081 -2.4718 -2.8571
-0.3274 -2.5911 -2.8571
-0.1012 -2.6649 -2.8571

Table C-15: Efficient points for Example 12 (continued)
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x1 x2 x3

-1.4639 0.0000 -1.4286
-0.0072 -2.9277 -1.4286
-1.4565 -0.2927 -1.4286
-1.4357 -0.5718 -1.4286
-1.4025 -0.8387 -1.4286
-1.3578 -1.0940 -1.4286
-1.3020 -1.3381 -1.4286
-1.2352 -1.5713 -1.4286
-1.1571 -1.7933 -1.4286
-1.0674 -2.0035 -1.4286
-0.9651 -2.2013 -1.4286
-0.8489 -2.3851 -1.4286
-0.7167 -2.5528 -1.4286
-0.5648 -2.7010 -1.4286
-0.3872 -2.8234 -1.4286
-0.1714 -2.9076 -1.4286
-1.5811 0.0000 0.0000
-0.0003 -3.1623 0.0000
-1.5743 -0.2932 0.0000
-1.5549 -0.5738 0.0000
-1.5239 -0.8428 0.0000
-1.4822 -1.1011 0.0000
-1.4301 -1.3489 0.0000
-1.3677 -1.5866 0.0000
-1.2951 -1.8140 0.0000
-1.2120 -2.0308 0.0000
-1.1178 -2.2366 0.0000
-1.0116 -2.4304 0.0000
-0.8921 -2.6109 0.0000
-0.7572 -2.7761 0.0000
-0.6038 -2.9226 0.0000
-0.4263 -3.0452 0.0000
-0.2143 -3.1331 0.0000

Table C-16: Efficient points for Example 12 (continued)
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x1 x2 x3 f3

0.0000 1.6094 1.2000 -1.4400
0.2808 1.4306 1.2000 -1.4400
0.0355 1.4306 1.2385 -1.5340
0.1490 1.4306 1.2281 -1.5082
0.4177 1.2518 1.2000 -1.4400
0.0349 1.2518 1.2854 -1.6522
0.3107 1.2518 1.2381 -1.5329
0.1870 1.2518 1.2686 -1.6092
0.5394 1.0730 1.2000 -1.4400
0.0347 1.0730 1.3414 -1.7993
0.4467 1.0730 1.2439 -1.5472
0.3454 1.0730 1.2829 -1.6459
0.2302 1.0730 1.3156 -1.7308
0.0896 1.0730 1.3380 -1.7902
0.6583 0.8941 1.2000 -1.4400
0.0315 0.8941 1.4085 -1.9838
0.5755 0.8941 1.2479 -1.5572
0.4881 0.8941 1.2922 -1.6698
0.3937 0.8941 1.3325 -1.7754
0.2886 0.8941 1.3676 -1.8703
0.1653 0.8941 1.3953 -1.9470
0.7799 0.7153 1.2000 -1.4400
0.0339 0.7153 1.4885 -2.2155
0.7046 0.7153 1.2509 -1.5647
0.6270 0.7153 1.2989 -1.6870
0.5457 0.7153 1.3438 -1.8058
0.4593 0.7153 1.3854 -1.9194
0.3652 0.7153 1.4231 -2.0252
0.2590 0.7153 1.4557 -2.1190
0.1315 0.7153 1.4804 -2.1916
0.9082 0.5365 1.2000 -1.4400
0.0336 0.5365 1.5842 -2.5098
0.8387 0.5365 1.2532 -1.5706
0.7683 0.5365 1.3039 -1.7001
0.6962 0.5365 1.3521 -1.8281
0.6217 0.5365 1.3977 -1.9535
0.5436 0.5365 1.4406 -2.0755
0.4605 0.5365 1.4806 -2.1923
0.3699 0.5365 1.5172 -2.3018
0.2679 0.5365 1.5491 -2.3998
0.1461 0.5365 1.5741 -2.4779

Table C-17: Efficient and Pareto points for Example 13

158



x1 x2 x3 f3

1.0464 0.3577 1.2000 -1.4400
0.0333 0.3577 1.6988 -2.8858
0.9816 0.3577 1.2550 -1.5751
0.9167 0.3577 1.3078 -1.7103
0.8513 0.3577 1.3583 -1.8449
0.7851 0.3577 1.4067 -1.9787
0.7173 0.3577 1.4529 -2.1109
0.6474 0.3577 1.4970 -2.2410
0.5744 0.3577 1.5388 -2.3680
0.4972 0.3577 1.5782 -2.4908
0.4140 0.3577 1.6148 -2.6076
0.3220 0.3577 1.6479 -2.7156
0.2158 0.3577 1.6761 -2.8094
0.0825 0.3577 1.6959 -2.8761
1.1985 0.1788 1.2000 -1.4400
0.0331 0.1788 1.8357 -3.3698
1.1371 0.1788 1.2564 -1.5786
1.0765 0.1788 1.3107 -1.7179
1.0161 0.1788 1.3629 -1.8576
0.9558 0.1788 1.4132 -1.9973
0.8951 0.1788 1.4617 -2.1366
0.8337 0.1788 1.5084 -2.2752
0.7712 0.1788 1.5533 -2.4127
0.7072 0.1788 1.5965 -2.5487
0.6409 0.1788 1.6378 -2.6824
0.5717 0.1788 1.6773 -2.8132
0.4984 0.1788 1.7146 -2.9399
0.4195 0.1788 1.7496 -3.0610
0.3323 0.1788 1.7815 -3.1738
0.2324 0.1788 1.8094 -3.2739
0.1087 0.1788 1.8304 -3.3502

Table C-18: Efficient and Pareto points for Example 13 (continued)
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x1 x2 x3 f3

1.3694 0.0000 1.2000 -1.4400
0.0329 0.0000 1.9995 -3.9978
1.3105 0.0000 1.2574 -1.5810
1.2527 0.0000 1.3127 -1.7233
1.1959 0.0000 1.3662 -1.8665
1.1397 0.0000 1.4178 -2.0103
1.0840 0.0000 1.4678 -2.1545
1.0284 0.0000 1.5162 -2.2989
0.9727 0.0000 1.5631 -2.4432
0.9166 0.0000 1.6085 -2.5872
0.8600 0.0000 1.6524 -2.7306
0.8024 0.0000 1.6950 -2.8730
0.7435 0.0000 1.7361 -3.0141
0.6828 0.0000 1.7758 -3.1534
0.6199 0.0000 1.8140 -3.2904
0.5538 0.0000 1.8505 -3.4244
0.4837 0.0000 1.8853 -3.5543
0.4079 0.0000 1.9179 -3.6785
0.3240 0.0000 1.9480 -3.7946
0.2273 0.0000 1.9743 -3.8978
0.1067 0.0000 1.9943 -3.9773

Table C-19: Efficient and Pareto points for Example 13 (continued)
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