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ABSTRACT 

 
 

DNA repair enzymes and pathways are diverse and critical for living cells to 

maintain correct genetic information. Single-strand-selective monofunctional uracil DNA 

glycosylase (SMUG1) belongs to Family 3 of the uracil DNA glycosylase superfamily.  

We report that a bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the 

human SMUG1 enzyme are not only uracil DNA glycosylases (UDG), but also xanthine 

DNA glycosylases (XDG).  Mutations at M57 (M57L) and H210 (H210G, H210M, 

H210N) can cause substantial reductions in XDG and UDG activities. Increased 

selectivity is achieved in the A214R mutant of Gme SMUG1 and G60Y completely 

abolishes XDG and UDG activity.  Most interestingly, a proline substitution at the G63 

position switches the Gme SMUG1 enzyme to an exclusive uracil DNA glycosylase.  

Mutational analysis and molecular dynamics (MD) simulations of Gme SMUG1 identify 

important structural determinants in conserved motifs 1 and 2.  Our study offers insights 

on the important role that modulation of conformational flexibility may play in defining 

specificity and catalytic efficiency.  

Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by 

making an endonucleolytic incision at the 3’ side one nucleotide from a deaminated base 

lesion.  This study defines the endonuclease and exonuclease activity in endonuclease V 

from Thermotoga maritima (Tma) in an assay condition with Mn2+ as a metal cofactor.  

Tma endonuclease V exhibits inosine-dependent 3’-exonuclease activity.  Detailed 

kinetic analysis using 3’-labeled DNA indicates that Tma endonuclease V also possesses 



iii 
 

nonspecific 5’-exonuclease activity.  The multiplicity of the endonuclease and 

exonuclease activity is discussed with respect to deaminated base repair. 

Biochemical properties of human endonuclease V with respect to repair of 

deaminated base lesions were reported.  We determined repair activities of human 

endonuclease V on inosine (I)-, xanthosine (X)-, oxanosine (O)- and uridine (U)-

containing DNA.  Human endonuclease V is most active with inosine-containing DNA; 

however, with minor activity on xanthosine-containing DNA.  Mg2+ and to a much less 

extent, Mn2+, Ni2+, Co2+ can support the endonuclease activity.  Introduction of human 

endonuclease V into Escherichia coli cells caused two-fold reduction in mutation 

frequency.  This is the first report of deaminated base repair activity from human 

endonuclease V.  
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CHAPTER ONE 

DNA DAMAGE AND REPAIR 

 

1. Introduction 

It has been long known that DNA is the carrier of the genetic information which 

needs to be passed accurately from one generation to the next. Since each cell inherits 

traits from its parents to maintain the basic characteristics of the family, DNA should be 

stable enough to conserve and pass this genetic information. DNA is composed of a 

double helix structure. Its stability is maintained through hydrogen bonds and other 

noncovalent interactions. Research shows that the hydrodynamic diameter of DNA 

molecules ranges from 22 to 26 Å in dilute aqueous solutions (1).  

In nature, many chemicals can damage the DNA bases and subsequently cause 

mutations. The damage frequency is low in vivo; however, a genome is quite large. For 

example, the human genome is ~ 3.2 Gb (2). As a result, mutations generated by damage 

are considerable, with more than one million damage incidences occurring in DNA per 

cell every day (3). DNA repair enzymes which can recognize and repair this damage play 

an important role in reducing mutations by removing damaged DNA. To date, various 

kinds of responses after DNA damage and many kinds of DNA repair enzymes and 

pathways recognizing and repairing the damage have been studied.  

This chapter first introduces the sources of DNA damage, second describes the 

types of DNA damage, third discusses the mechanisms responsible for DNA repair, and 

finally presents the consequences of DNA damage 
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2. Sources of DNA damage 

Generally, the sources of DNA damage can be divided into two groups, 

endogenous and exogenous damage. Previously, exogenous chemicals were thought to be 

the major causes of DNA damage in cells; however, recent research suggests that the 

damage caused by endogenous reagents is more prevalent (4). Endogenous damage can 

arise from metabolic byproducts, with numerous endogenous reagents having been 

discovered (5, 6). For example, 4-hydroxynonenal, a reactive oxygen species (ROS) toxic 

to DNA, is a lipid peroxide product (7). Oestrogen, a natural hormone, can induce direct 

or indirect DNA damage including single-strand breaks and 8-hydroxylation of guanine 

bases (8).  

Several types of exogenous damage caused by external chemicals have been 

studied. It is known that nucleic acid can absorb UV from the sun, damaging DNA 

forming UV-specific dipyrimidine photoproducts. However, this damage also provides 

benefits as a driving source of mutation evolution (9). It can be recognized by 

deoxyribodipyrimidine photolyase (10) or several other enzyme, such as UV damage 

endonuclease (11). Ionizing radiation (IR), generating hydroxyl (OH) radicals (12), is 

another frequently seen source of DNA damage. Research shows the cells exhibit 

proliferation delay after exposure to ionizing radiation (13-15). A possible reason for this 

delay is that it takes the cells some time to deal with the damaged DNA after exposure to 

ionizing radiation (16, 17). Several chemicals, inhibiting DNA repair enzymes and 

increasing instability of the genome, are regarded as mutagens (18). DNA oxidation and 

deamination, frequently observed damage, can be caused by these exogenous reagents. In 
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the mean time, it has been found that many human-made chemicals are harmful and can 

damage DNA. The disadvantages of using these chemicals become the focus of much 

research (19-23).  

 

3. Types of DNA damage 

Many forms of DNA damage have been extensively studied (24-26), including 

base modification, base loss, replication error, DNA cross-linkage, DNA-protein cross-

linkage and double-strand breaks. DNA damage caused by deamination and its repair are 

the focus of my research. 

 

A. Base modification 

Four kinds of bases compose genomic DNA, adenine, thymine, guanine, and 

cytosine. Base modifications, such as cytosine methylation, is widely used in cells to 

control gene expression (27). However, most of these modifications occur can cause 

mutations and diseases. Commonly observed base modifications, such as alkylation, 

oxidation, depuination and depyrimidination, and deamination, have been studied 

intensively. 

 

B. Base deamination 

Among the four normal bases in genomic DNA, cytosine and adenine, can be 

deaminated to uracil and hypoxanthine, respectively, and guanine can be deaminated to 
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either xanthine or oxanine (28-30) (Fig. 1.1). Because thymine does not have an amino 

group (-NH2), it does not experience deamination as other bases do. 
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Figure 1.1 Schematic representation of the deamination products of cytosine to uracil, 
adenine to hypoxanthine, and guanine to xanthine and oxanine. Taken from (28) 

 

Uracil can form a stable base pair with adenine. After another cycle of DNA 

replication, the original C:G base become the A:T base pair. As such, it can introduce the 

C:G to A:T transition mutation into genomic DNA if uracil is not recognized and repaired 

in time (31, 32). Hypoxanthine, which prefers to be paired with cytosine, can cause the 

A:T to C:G base pair mutation. Research shows hypoxanthine can also be integrated into 

the chromosome DNA under certain circumstances, such as in the rdgB deletion mutant 

(33), and ITP, in conjunction with T7 polymerase, can be used in RNA extension with 

(34). 

Xanthine and oxanine can be paired with thymine and it can cause the G:C to T:A 

mutation. Xanthine is relatively stable at pH 7.0 at 37oC, its half life in double-stranded 

DNA being 2.4 years (35). Drosophila DNA polymerase alpha has been used to 

determine which base(s) can be paired with xanthine in vitro. The results demonstrated 

NH2 

NH2 
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that the relative nucleotide incorporation rates of xanthine follow this order: T > G >A = 

C (36).  However, since in vivo, the nucleotide which can be paired with xanthine is 

determined by replisome, and they may not follow this order. 

Reactive nitrogen species (RNS) are known to introduce deamination in DNA 

bases. Reactive oxygen species (ROS) can also generate deaminations in DNA (37). 

Toyokuni and Spencer originally assumed that oxidative stress primarily produced 

oxidative damage with a small amount of deamination products. However, recent 

research has demonstrated that reactive oxygen species can generate large amounts of 

deaminated bases under certain conditions. This increased ratio of deaminated DNA 

bases corresponds to the increased ratio of ROS to cells (37, 38). 

When male Wistar rats were treated with ferric nitrilotriacetate (Fe-NTA), many 

modified bases including xanthine, 5-hydroxy-5-methylhydantoin, 5-(hydroxymethyl) 

uracil, 5-hydroxy-cytosine, thymine glycol, 5,6-dihydroxyuraril, 4,6-diamino-5-form-

amidopyrimidine, 8-hydroxyadenine, 2-hydroxyadenine and 8-hydroxyguanine were 

detected in the renal chromatin (37). When both calf thymus DNA and human skin 

epidermal keratinocytes were treated with peroxynitrite, only a small dose of oxidative 

damage was detected, while large amounts of nitrated and deaminated purine bases, 

hypoxanthine, xanthine, 8-nitro-guanine were found (37). These results indicated that 

peroxynitrite can generate more deamination damage than oxidation damage in DNA. In 

addition to OH•, a known radical generating oxidative damage to bases, is not a major 

source from peroxynitrite stress according to a previous study (38).  
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The profiles of the base deamination products and the intermediates of the process 

caused by diazonium ions has been determined (39) and the deamination rate is very low. 

For example, the half life of cytosine in single-stranded DNA is approximately 200 years 

(40). However, the events of cytosine deamination are numerous due to the large size of 

the genome. It has been estimated that approximately 60-500 cytosines can be 

deaminated in 24 hours in the human body based on the assumption that cytosine forms 

approximately 20% of the human genome (41). Direct evidence was provided that the 

deamination of cytosine is a significant source for spontaneous mutations (32). 

Base deamination can also occur when the DNA is treated with UV, ionizing 

radiation (IR) (42) or nitric oxide (43, 44). Nitrous acid is widely found in environment 

and in in vivo metabolic processes. It causes deamination by interacting with 

polynucleotides (45). 

There are several common reagents which can cause deamination, such as nitrous 

acid (HNO2), hydroxylamine (HONH2) and bisulfite (HSO3
-). Nitrous acid can penetrate 

into the cell, causing damage, and HSO3
-
 reacts with single-stranded DNA. Various 

bacteria can denitrify nitrate to NO• directly, causing damage stress; however, in E. coli, 

nitrite can be reduced to ammonia (46) and nitrosating agents are produced during 

metabolic processes when oxygen is scarce because the anaerobic pathway allows nitrate 

and nitrite to be used as electron acceptors to replace oxygen (46-48). The products of 

nitrate and nitrite are known to be harmful to DNA bases. Nitrosating reagents can cause 

both deamination and alkylation (49). Cells contain several enzymes, for example, Alka, 

alkylguanine DNA alkyltransferases (50), to repair this alkylation damage. 
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Figure 1.2 Production of the mutagenic nitrosating agent N2O3 during nitrate/nitrite 
metabolism in E. coli. NO·here is a minor by-product of nitrite reductase activity. Taken 
from (51) 
 

Dinitrogen trioxide (N2O3), the anhydride of nitrous acid (Fig. 1.2), causes 

damage to DNA bases through N-nitrosation. N2O3 is a result from HNO2 or NO• 

autooxidation. NO• is generated in E. coli cells during nitrate respiration (52). Nitrite 

reductases bind to nitrite, maintaining at low level (47). In acid condition, HNO2 can 

cause mutations to E. coli DNA at stationary phase (53). The damage to DNA caused by 

nitrate or nitrite is at similar levels, indicating that these molecules use the same pathway. 

Research demonstrates that NO•, not HNO2, is the major source producing N2O3 during 

nitrate and nitrite metabolism processes. It was also verified that N2O3 produced from 

HNO2 condensation is the predominant product in E. coli when the cells are treated with 

HNO2 (51).  

The immunity to retroviruses, such as to HIV, involves DNA deamination of the 

retroviral first strand cDNA at certain stage (54). The protein (Vpr) encoded by HIV type 

1 has been found to have the ability to degrade UNG or SMUG1 of the host cell, 

preventing AP sites from occurring (55). The mispair U:G is an important intermediate 
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for Ig genes during the process of somatic hypermutation (SHM) and class switch 

recombination (CSR) (56, 57). 

Cytosine can be methylated to 5-methyl-cytosine, a process commonly observed 

in areas known for high mutation frequency. This type of research is a popular because of 

its close relation to cancer. 5-methyl-cytosine can be deaminated by nitrosative stress 

generating thymine, a normal base in DNA, to form a G:T mismatch pair, which is 

removed by mismatch repair enzymes (58). 

Guanosine monophosphate reductase (guaC), one of the enzymes involved in the 

purine de novo synthesis pathway, can catalyze the deamination from GMP to IMP (59-

61). IMP can be converted to ITP which can be mistakenly incorporated into 

chromosomal DNA generating mutations.  

It has been found that the abundance of uracil increased in mammalian cells after 

the treatment with 5-fluorouracil. This can disturb the normal process of pyrimidine 

metabolism, increasing the possibility of the incorporation of uracil in the chromosome 

(62).  

 

4. Repair mechanisms and pathways  

DNA damage is diverse, and the consequences are serious. Therefore, cells have 

complex repair mechanisms to deal with this issue. Many DNA repair pathways 

involving multiple enzymes have been discovered. Since many types of DNA damage 

exist, one pathway can repair several kinds of DNA damage and several DNA repair 

enzymes can even recognize wide broad substrates. However, several kinds of repair 
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pathways are still required. The repaired DNA lengths in each repair pathways are quite 

different, from one nucleotide to approximately 1000 nucleotides. For example, in the 

short patch base excision repair pathway, only one nucleotide is removed while in 

mismatch repair pathway in either the E. coli or mammalian system, up to 1000 

nucleotides are removed and regenerated. 

 

A. Base excision repair pathway (BER) 

Base excision repair pathway is a relatively simple; however, very important 

repair pathway and it recognizes many types of damaged DNA. Research demonstrates 

that BER is involved in the repair of the damage caused by ionizing radiation, alkylation, 

deamination, methylation chemicals. It is speculated that BER is a tumor suppressor 

mechanism (63). 

 

I. Base excision repair pathway outline 

BER includes several steps and usually repairs non-bulky (a single nucleotide or 

2-10 nucleotides) DNA damage (64). BER pathway is initiated by a glycosylase which 

recognizes the damaged base. The specific glycosylase determines the patch size of the 

repair pathway (65). Two patch size pathways have been found in BER. Short patch size 

pathway (66-69), approximate 80-90% of all BER, is more frequently observed than long 

patch size pathway which is also called back up pathway (70). In certain rare cases, one 

enzyme may also be involved in both patch size pathways, such as human 3-

methyladenine DNA glycosylase (71).  
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Figure 1.3 The base excision repair (BER) pathway. The nucleotide structure drawn is 
assumed to be part of a longer double-stranded DNA. Repair by DNA glycosylases 
without associated AP-lyase activity generally follows the pathway using AP-
endonuclease and 5'-deoxyribophosphodiesterase activity. However, repair with N-
glycosylases having associated AP-lyase activity uses the 3’-phosphodiesterase activity 
of the AP-endonuclease to make a single nucleotide gap that is filled by DNA polymerase 
and ligase. The β elimination reaction of the AP-lyase converts the deoxyribose residue 
to the aldehyde form. Taken from (72). 

 

The glycosylic bond between the base and the sugar phosphate backbone is 

cleaved by one glycosylase and an apurinic/apyrimidinic (AP) sites is generated. If the 

glycosylase only removes the base, it is called monofunctional glycosylase. Then an AP-

lyase (3' to the AP site is cleaved) or AP-endonuclease (usually APE1) (5' to the AP site 

is cleaved) is recruited depending on different glycosylases. If the glycosylase removes 

the base and possess AP-lyase activity, it is called bifunctional glycosylase. After AP 

lyase cleavage, the 3'-phosphate is removed by 3'-phosphodiesterase enzymes. While 
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after AP endonuclease (APE1) cleavage, the 5'-phosphate is removed by 5'-

phosphodiesterase enzymes. Finally DNA polymerase and ligase fill the gap. The whole 

pathway is shown in Fig. 1.3 (72). 

The abasic sites (AP site) generated after the cleavage of glycosylases is very 

mutagenic and cytotoxic (73). During DNA replication, the normal DNA polymerase 

does not use an AP site as a template and pass it. Because the AP site blocks the 

replication, other enzymes, such as DNA polymerases involved in translesion synthesis 

(TLS) usually insert a base following this order: G>A>T>C (74) and generate a site 

mutation, which is harmful to the cells (75). AP site also increases the possibility of 

double-strand breaks (76). 

 

II. Uracil DNA glycosylase (UDG) superfamily 

Uracil DNA glycosylase (UDG) superfamily is one of the families responsible for 

BER pathway. Until now five groups of uracil DNA glycosylases, which recognizes and 

repairs uracil have been found. Family 1 UDG (UDG or UNG) exclusively recognizes 

uracil containing substrates and repair most of the uracil on chromosome, while certain 

UDG superfamily members recognize more substrates. For example, Family 2 and 3 

UDGs recognize xanthine. The details will be discussed in following sections. 

The amino acid sequences are quite diverse among the UDG superfamily. 

However, they all share a similar crystal structural fold. According to amino acid 

sequence alignment and structure comparison, two highly conserved motifs have been 

found in the UDG superfamily. Motif 1 and the short helix after the motif 1 are used to 
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recognize the substrate. Motif 2 is used to insert into the DNA a “wedge” to replace the 

gap after the damaged base has been flipped out by glycosylase. 

 

a. Uracil DNA glycosylase (UDG) Family 1 

UDG Family 1 (UDG or UNG) is a group of highly conserved enzymes. Family 1 

UDG glycosylase recognizes uracil exclusively on both single-stranded and double-

stranded DNA. In E. coli, it is the primary enzyme responsible for removal of uracil 

which may be incorporated on chromosome or caused by deaminiation of cytosine. E. 

coli UNG mutant strains exhibit a 3 to 5 times increase in spontaneous mutation 

frequencies compared with wild type strains (32, 77). In E. coli UNG and dUTPase 

double mutants, approximately 20% of the thymine in genomic DNA is replaced by 

uracil although this does not harm the cells because uracil still prefers to be paired with 

adenine (78).  

Family 1 UDG is wildly spread among prokaryotic, eukaryotic and viruses, while 

in archaea and Drosophila melanogaster, it is absent. In mammalian systems, there are 

two forms of UNG. Two different RNA splicing methods generate two UNGs. UNG1 

and UNG2 come from one gene with different promoters and mRNA slicing (79). UNG1 

was found in mitochondria (79) and UNG2 was located in nuclei which interacted with 

replication factor A (RPA) and proliferating cell nuclear antigen (PCNA). UNG2 was 

found in S phase during cell amplification (80) and it was regulated by cell cycles and 

repair the uracil in post-replication stage. UNG2 plays an important role in both short 

patch and long patch BER (80). In nucleoplasm and in pre-replicative BER which is in 
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front of replication fork, UNG2 repairs uracil and its analogs with short patch BER. 

While in post replicative BER which may be caused by misincorperation of uracil, UNG2 

is utilized in long patch BER to remove uracil (81).  

UNG2 has been found important in acquired immune response. It is up regulated 

in activated B-cells (56). The protein RPA, which binds to UNG2, also binds to 

activation-induced cytosine deaminase (AID) (80). AID is important in 

immunoglobulin’s diversification. It catalyzes cytidine to uracil on single-stranded DNA, 

which is recognized by UNG2. Although uracil in single-stranded DNA is the best 

substrate for UNG2, only a small part of uracil from this deamination in IgV is repaired 

and unrepaired uracil is paired with adenine and this process generates many kinds of 

immunoglobulin. Research demonstrated that human cells with deficiency in UNG2 have 

impaired immunoglobulin class-switch recombination (56).  

The crystal structures of Family 1 UDG from E. coli, human and Herpes have 

been obtained (82-84). The enzymes form a pocket with highly conserved residues 

among the family to recognize and bind the substrates. In E. coli UNG, the Gly 86-Gln 

87 interacts with the O2 carbonyl of uracil to fix the base orientation. The Asn 123 can 

interact with the O4 of carbonyl and identify the bases, which helps UNG exclude 

cytosine and thymine while accept uracil as substrate (82). 

 

b. Uracil DNA glycosylase (UDG) Family 2 

The UDG Family 2 (MUG/TDG) was found initially as a G:T mismatch N-

glycosylase. Later it was found that it possesses uracil DNA glycosylase activity (85). 
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Two types of enzymes with different properties have been found until now, thymine 

DNA glycosylase (TDG) and mismatch UDG (MUG). Family 2 UDG recognizes G:U 

base pair as substrate. It is insensitive to ugi, an inhibitor structurally specific to UDG 

Family 1, because UDG Family 2 does not have the conserved residues corresponding to 

UDG Family 1’s catalytic sites and key substrate recognition residues.  

The crystal structure of E. coli MUG has been resolved in 1998 (86). Although 

UNG and MUG in E. coli only share approximately  10% homology at amino acid 

sequence level, they share a similar 3-D structural fold. TDG/MUG was called as UDG 

Family 2 based on the structural similarity.  

 

c. Uracil DNA glycosylase (UDG) Family 3 

SMUG1 was firstly found in eukaryotic systems, Xenopus, as a protein binding to 

DNA repair enzyme inhibitors. The crystal structure of Xenopus laevis SMUG1 has been 

obtained (87). Human SMUG1 localizes at the human cell nucleus (88). It was named as 

a new family of uracil DNA glycosylase because it has low amino acid sequence 

similarity to UDG Family 1 (UDG or UNG) and Family 2 (MUG/TDG) enzymes; 

however, with structural similarity. Sequences analysis demonstrated that SMUG1 has 

hybrid active sites of UNG and MUG (89).  

UNG is not the only primary repair enzyme in mammals responsible for uracil 

repair because a mouse UNG knock out mutant did not show high mutation frequency 

(90). This result also leads to the identification of SMUG1. SMUG1 plays a very 

important role in mice and maintains the similar level in both proliferating and non 
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proliferating cells, which is different with UNG2 (91). SMUG1 is not related to 

replication repair directly and SMUG1 exists with high abundance in heart and kidney. 

PCNA binds to UNG2 in vivo; however, not to SMUG1 by recognizing the motif 

QxxL/I/MxxF/HF/Y (92) which does not exist in SMUG1. It is estimated that SMUG1 

evolves from UNG 550 million years ago (91). 

The relative amount of UNG2 and SMUG1 are similar in vivo. Nilsen et al. once 

thought that SMUG1 was the backup enzyme of UNG2. However, with different assay 

conditions, SMUG1 was found to be as important as UNG2 (91). When damaged bases in 

mice cells are in excess, UNG2 is found to play a major role to repair the bases because 

of the enzyme’s high turnover number. SMUG1 is reported to be a primary enzyme when 

substrates are not in excess because of the lower Km value compared with UNG2. 

Because the products of SMUG1, abasic sites, inhibits SMUG1’s activity, adding APE1 

enhances SMUG1’s activity in vitro assays and increases the multi-turnover ability by 

eliminating these abasic sites (90).  

Previously, SMUG1 were thought to exist only in eukaryotic systems. It was 

found exclusively in mammals, insects, parasites and ocean animals. While in our 

research, we investigated SMUG1’s uracil and xanthine DNA glycosylase activities from 

a bacterium and it will be addressed in details in chapter 2.  

SMUG1 was also found to be involved in removing uracil from immunoglobulin 

genes when it was overexpressed; however, the major function of SMUG1 is still in base 

excision repair pathway (93). 

 



16 
 

d. Uracil DNA glycosylase (UDG) Family 4  

Thermatoga maritima UDGa was found to contain uracil DNA glycosylase 

activity; however, have different amino acid sequences from 1-3 UDG families. It was 

named as the UDG Family 4 (94). Later, its homologues were also found in certain 

archaea and eubacteria. Tma UDGa shows part of sequence homology to MUG; however, 

according to amino acid sequence BLAST, the total 192 Tma UDGa demonstrates 

approximately 44% identities and 60% positives with C terminal of Stigmatella 

aurantiaca phage SPO1 DNA polymerase domain protein. 

An iron sulfur cluster was found first in UDG Family 4 in Pyrobaculum 

aerophilum (Pae-UDGa) firstly, which is conserved among UDG Family 4; however, is 

rare in other UDG families (95). In certain DNA repair enzymes, such as Nth/MutY 

family, iron sulfur also exists; however, it was not involved in catalytic activity (96). The 

crystal structure of Thermus thermophilus HB8 UDGa demonstrated that this iron sulfur 

is essential to stabilize a nearby loop. Besides iron sulfur, the salt bridge and ion pairs on 

the enzyme’s surface and prolines on the enzyme’s turns and loops were found to help 

Tth UDGa maintain activity at high temperature. Thermus thermophilus UDGa (Tth 

UDGa) recognizes both double-stranded and single-stranded uracil containing substrates 

and this property is similar as UDG Family 1 (97).  
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e. Uracil DNA glycosylase (UDG) Family 5 

Most of UDG Family 4 and 5 were found in thermophilic prokaryotic organisms. 

Different from 1-4 UDG Families, a polar residue, used to hydrolyze the N-glycosidic 

bond’s hydrolysis with a water molecule is missed in Family 5 UDG.  

Family 5 UDGb is a broad substrate enzyme and has a classified sequence motif 

in the active site. Thermus thermophilus HB8 UDGb (Tth UDGb) recognizes uracil from 

double-stranded DNA while not be active on single-stranded DNA (98). It repairs the 

G:T mismatch which cannot be repaired by Tth UDGa. Tth UDGb also excises uracil 

analogues from DNA, such as 5’-hydroxymethyluracil (hmU) and 5’-fluorouracil (fU).  

Similar to UDG Family 4 UDGa, UDG Family 5 UDGb also possesses four 

conserved cysteines to form an iron sulfur cluster. The crystal structure of Tth UDGb was 

obtained (98). Tth UDGb demonstrates 55% similarity and 32% identity to Tth UDGa on 

amino acid sequence level while with very low similarity to the other three UDG 

families. Both Family 4 and 5 UDGs share similar orders of secondary structures with 

other UDG family members.  

 

B. Mismatch repair pathways (MMR) 

Mismatch repair pathway is a relatively comprehensive repair pathway involved 

in correcting the errors generated during DNA replication. It requires several proteins’ 

cooperation. The purified enzymes have been used to reconstitute the repair system in 

both E. coli (99, 100) and human cells (101, 102).  
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A         B 

 

Figure 1.4 Mismatch repair pathway (MMR) in E. coli and human. (A) A working 
hypothesis of MutL-mediated mismatch repair in E. coli. MutS, MutL, MutH and UvrD 
are shape- and color-coded, and methylated (template) and unmethylated (daughter) 
DNA strands are shown in black and gray, respectively. Adapt from (103). (B) Incision 
of the Discontinuous Heteroduplex Strand in Human Mismatch Repair. MutSα, PCNA, 
and RFC activate a latent MutLα endonuclease, which incises the discontinuous strand of 
5′ or 3′ heteroduplex DNAs in an ATP-dependent reaction. Incision displays a bias for 
occurrence on the distal side of the mismatch relative to the location of the original strand 
break (large arrows); however, can also occur proximal to the mispair (small arrows). For 
a 3′ heteroduplex, this yields a new 5′ terminus on the distal side of the mismatch that 
serves as an entry site for MutSα-activated ExoI, which removes the mismatch in a 5′-to-
3′ hydrolytic reaction controlled by RPA (102). The strong bias for incision of the 
discontinuous strand implies signaling along the helix contour, which may involve ATP-
promoted movement of MutSα or the MutSα-MutLα complex along the helix. Adapted 
from (104) 

 

E. coli employs d(GATC) methylation mechanism to identify whether a strand is 

methylated or not and the methylated strand is not cleaved (Fig. 1.4A). First, MutS (Fig. 

1.4A left) binds to the mismatch position and recruits MutL which demonstrates a MutS 

and ATP (shown as a red dot) dependent property. MutL binds DNA at both the 

mismatch and the nicked GATC sites, which releases adjacent DNA sequences. MutH is 
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a GATC sequence-specific endonuclease enzyme and it recognizes and is activated by the 

MutS-MutL-DNA complex (Fig. 1.4A middle left). MutH cleaves the unmethylated 

strand at GATC position, which is be regarded as a signal to synthesize the new DNA 

strand. MutH nicks both 3’ and 5’ of the mispaired DNA. After that, MutS-MutL-UvrD-

DNA complex is formed with the presence of ATP. After ATP is hydrolyzed by MutL, 

the flexibility of MutS-MutL-UvrD-DNA complex becomes loose and reduces the size of 

DNA loop bound before. Then UvrD unwinds the DNA (Fig. 1.4A right). DNA helicase 

II and DNA polymerase III holoenzyme have been proved to be involved in the following 

repair pathway (99, 100, 103). 

In mammalian systems, the process is quite similar to that in E. coli. The repair 

pathway is initiated by a discontinuous strand, a strand with either a nick or a gap (Fig. 

1.4B). The E. coli MutS homolog MutSα includes MSH2-MSH6 and MutSβ includes 

MSH2-MSH3. MutSα is the major enzyme responsible for mismatch repair pathway 

(MMR) in mammals. PMS2 domain in MutLα (MLH1-PMS2) is conserved with many 

MutL homologs while it is absent in E. coli. It has been found that PMS2 has a 

DQHA(X)2E(X)4E domain which is responsible for the endonuclease activity. Human 

MutLα demonstrates endonuclease activity in the presence of MutSα, PCNA, RFC and 

nicked DNA substrate (104). MutH homologue, an endonuclease in E. coli, is missing in 

human system. MutLα increases the mismatch dependent cleavage by decreasing 

excision of exonuclease I (ExoI) to regular DNA bases (102). With Mn2+, MutLα  also 

demonstrates endonuclease activity in vitro and it is enhanced by the presence of ATP. 

The nick produced by MutLα facilitates the entry of MutSα/β (104) which recruits ExoI 
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and enhances ExoI’s ability to cleave the DNA strand. Without RPA (Fig. 1.4 B left), 

ExoI cleaves a few DNA bases from the strand following 5’ to 3’ direction, and with 

RPA, the DNA strand is bound with single-stranded binding proteins (RPA). As long as 

the mismatch bases exist, MutSα and MutLα maintain both ExoI and MutSα to bind with 

DNA. ExoI and MutSα will be released from DNA strands after removal approximately  

250 nucleotides (102). Besides ExoI, MutSα, MutLα and RPA, PCNA (replication 

clamp), RFC (clamp loader), DNA polymerase δ and HMGB1 (DNA binding protein) are 

found to take part in human mismatch repair events (99, 100).  

 

C. Nucleotide excision repair pathway (NER) 

Nucleotide excision repair pathway is a complicated and versatile repair pathway. 

It recognizes many kinds of DNA damage, such as (6-4) photoproducts (6-4 PPs), and 

cyclobutane pyrimidine dimmers (CPDs) caused by short wave length UV from sun. It 

also repairs large bulky damage caused by chemical reactions.  

NER in E. coli is mediated by UvrABC. In DNA repair enzymes, besides certain 

active site domains, there are several domains which are commonly used in the enzymes. 

One of them is adaptor domain and it mainly exists in eukaryotic systems. However, in 

prokaryotic cells, an adaptor domain from UvrB and UvrC has been found and it is used 

to connect these two proteins to form a complex (105). 

NER core factors in mammals have been identified and NER pathway has been 

reconstituted with purified enzymes. Two types of NER pathways are found to date, 

including global genome NER (GG-NER) and transcription coupled NER (TC-NER).  
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Figure 1.5 Molecular models for the incision stage of NER. Taken from (106) 
 

Briefly, (Fig. 1.5) the pathway starts from the lesion recognition. (I) XPC 

(xeroderma pigmentosum C) -hHR23B recognizes the damage from DNA substrates by 

detecting the structure distortion in GG-NER. The lesions in TC-NER are recognized by 

elongating RNA Pol II because the enzyme is blocked by the lesions. (II) In GG-NER, 

the protein XPC-hHR23B binds with DNA and recruits TFIIH and possibly XPG. TFIIH 

is composed of XPB and XPD helicases, which can unwind DNA with approximately 10 

to 20 nucleotides to form a so called “opened DNA complex”. The helicases requires 

ATP to perform this function. Then XPC-hHR23B is disassociated from DNA or released 
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at later steps. In TC-NER, CS factors and TFIIH (XPG possibly involved) replace 

elongating RNA Pol II to interact with DNA. (III) XPA and RPA are recruited and 

participate in the complex which stabilizes this 10 to 20 nucleotide opened DNA 

complex. XPA binds to the damaged strand and RPA binds to the undamaged DNA 

strand. XPG here is also involved in stabilizing the whole complex. (IV) In the following 

step, XPG makes a 3' incision from the lesion with the help of TFIIH and RPA to locate 

the position. ERCC1-XPF makes the second incision 5' of the former lesion which is 

located by RPA and XPA. (V) After double cleavage, the gap will be filled by DNA 

synthesis and following ligation (106).  

The NER defects cause several kinds of diseases, such as lung cancer (107, 108). 

The proteins within the NER pathway may have extra functions in vivo, because it has 

been found recently that the protein deficiency causes more kinds of disease beyond lung 

cancer. 

 

D. Other repair pathways  

Besides the repair pathways mentioned above, other repair pathways are also 

observed, homologous recombinational repair (HR) and nonhomologous end joining 

(NHEJ). Both of them deal with double-strand breaks damage. Homologous 

recombinational repair, involved in S and G2 phases, is accurate because it employs the 

homologous template. To the contrary, nonhomologous end joining, found in the G1 

phase, introduces several errors and loses several nucleotides because it only joints the 

break ends. Double-strand breaks are harmful to cells because they cause chromosomal 
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instability if it is not repaired. The deficiency repair of double-strand breaks or the 

deficiency of its regulation is related to certain diseases, such as Ataxia telangiectasia 

(AT) and related disorders (109).  

 

E. Endonuclease V mediated repair pathway 

Endonuclease V mediated repair pathway is regarded as an alternative repair 

pathway. E. coli endonuclease V (endo V) was first purified in 1977 by biochemical 

methods as a 25 kDa DNA repair enzyme which could recognize single-stranded circular 

phage fd DNA. It was estimated that there are approximately  80-100 molecules in one 

cell, which is similar to endonuclease III and IV (34). Endo V is an authentic 

endonuclease and it generates 3’hydroxy and 5’phosphate terminus.  

 

I. Endonuclease V in bacteria 

a. Biochemical properties of Escherichia coli endo V  

E. coli endo V is a broad substrate enzyme and it recognizes the DNA treated with 

OsO4, UV or acid (pH5.0). It cleaves many sites on fd DNA; however, it cannot 

recognize either RNA or DNA/RNA hybrids. Endo V digests deaminated bases, AP sites, 

uracil, FLAP, pseudo Y structure, and small insertions or deletions (34, 110-112). 

Because endo V’s activity is enhanced with uracil containing substrates, it was thought it 

provided an alternative way to repair uracil (113, 114). Until now, the knowledge about 

endo V is limited to the biochemical and genetic studies.  
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Endo V requires divalent metals to facilitate its activity, such as Mg2+, while Co2+ 

and Mn2+ recover its activity to certain extent (34, 115). Endo V demonstrates different 

cleavage abilities with different metals and it also demonstrates activity in a broad pH 

range, from pH 6-8 (34). It digests substrates processively because it moves to next 

substrate after it digests multiply damaged sites on one substrate completely (114).  

 

b. Escherichia coli endo V mediated repair pathway 

All deaminated bases, including uracil, hypoxanthine, xanthine and oxanine, are 

substrates of E. coli endonuclease V (34, 116-119). In E. coli, 3-methyladenine DNA 

glycosylase II (AlkA) (120) has been found to recognize hypoxanthine. E. coli MutSLH 

is a mismatch repair enzyme complex which recognizes I:T pairs in newly synthesized 

DNA strands (121). E. coli AlkA recognizes hypoxanthine; however, it has been 

estimated that 93-99% hypoxanthine is repaired by endo V, which provide a solid 

foundation to use genetic methods to detect the patch length of DNA involved in the 

repair pathway (122). The spontaneous mutation frequency or HNO2 induced frequency 

in AlkA mutant strain is not increased dramatically compared with wild type strain, 

which is quite different with the results from endo V mutant. This result proves that AlkA 

is not the major enzyme to repair hypoxanthine in E. coli.  

Different from uracil DNA glycosylase superfamily members, E. coli endo V 

recognizes the inosine on DNA strand with no preference to the opposite bases and 

cleave 3’ of the 2nd phosphodiester bond (34, 116, 118, 119, 123), and endo V binds both 
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substrate and product tightly. The damaged base is not cleaved and still remains on the 

DNA strand which indicates that endo V may just initiate the repair pathway.  

The patch length of DNA involved in the repair pathway initiated by endo V has 

been reported recently (122). Then full-length deoxyhypoxanthine (dI)-containing 

oligodeoxyribonucleotides and their corresponding cleavage products by endo V were 

transformed to E. coli strains contacting different sets of lacZ mutations. The strain with 

full-length dI-containing oligo grows on selective plates while the strain with the 

cleavage product of the dI-containing oligo cannot grow. The results indicate that the dI-

containing oligo is incorporated onto the chromosome before cleavage by endo V. This is 

very important to the genetic study to be sure that the oligodeoxyribonucleotides will not 

suffer digestion before incorporation into chromosome. G:T base pairs are used to replace 

the correct base pairs as an indicator because the G:T base pair is a relative stable 

mismatch pair with a shorter half life and a longer open-state lifetime than normal correct 

base pairs and it does not introduce too much distortion for the DNA double helix 

structure. dI-containing oligodeoxyribonucleotides with dG, paired with dT on the other 

strand, at different distance positions were chosen.  

After the oligodeoxyribonucleotides were incorporated onto the chromosome, the 

endo V repair pathway recognized the inosine and repaired the adjacent nucleosides. 

According to Dr. Weiss’ studies, the oligodeoxyribonucleotides are incorporated into the 

lagging strand of the chromosome. G:T base pairs in E. coli have approximately  twenty 

minutes to be repaired. It is important for the cell to have enough time to recruit endoV to 

cleave the dI. After repair, the correct nucleosides recovers the wild type lacZ and allow 
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E. coli to grow on selection medium. It is the first demonstration of the repair patch for 

the pathway mediated by endo V. It was found that the patch DNA size in endo V 

initiated repair pathway is approximately  5 nucleotides, with 2 nucleotides on the 5’ 

and 3 nucleotides on the 3’ of the cleavage cut position (122). The repair patch length of 

this repair pathway is close to the very short patch mismatch repair pathway which 

removes 2-10 nucleotides according to genetic experiments (124). The proteins used to 

remove the nucleotides from the patch position and the interaction behaviors are still 

unknown.  

 

c. In vivo function study of Escherichia coli endo V  

There are several uracil DNA glycosylases in E. coli, such as UNG and MUG. 

They are all responsible for uracil repair, it was thought that endo V’s activity to uracil 

may not be as important as UDG family enzymes (123) although endo V demonstrates 

robust uracil cleavage activity. And in vivo genetic study demonstrates that neither 

overexpression nor knockout of endo V gene influences the growth of single-stranded 

DNA phages M13 or uracil containing bacteriophage λ (125). The spontaneous mutation 

frequencies of endo V mutant in either ung overexpression or knockout strains are similar 

(126). In vitro binding study also shows that endo V may not play a critical role to repair 

uracil because endo V fails to bind the uracil containing substrates tightly (123).   

E. coli nfi also demonstrates the anti-mutator property. The strain grows with 

sodium nitrate or sodium nitrite at neutral pH condition, which indicates that nfi is an 

anti-mutator in nitrate and nitrite metabolism process. E. coli endo V mutant strain 
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demonstrated two times higher for spontaneous mutation frequency than that of in the 

wild type strain (125, 127) and 12 times higher than wild type strain under nitrous acid 

stress (125). 

 

d. Biochemical properties of Thermotoga maritima endo V  

Thermotoga maritima (Tma) endo V shares 44% amino acid identities with E. 

coli Endo V and it has been extensively studied. Tma endo V possesses similar properties 

with E. coli endo V. For example, it recognizes inosine, abasic site (AP site), uracil and 

mismatched substrates. It cleaves inosine-containing strand and also nicks its 

complementary strand at two different positions and these two nick events are 

independent (123).  

Tma endo V cleaves 2-3 nucleotides at the 5’ side of complementary strand in I:C 

and I:T substrates under certain conditions. Tma endo V cleaves both strands and 

demonstrates a higher preference for purine mismatch bases than for pyrimidine 

mismatch bases. For inosine-containing substrates, with Mg2+, Tma endo V shows higher 

cleavage activity than that with Mn2+. For mismatched substrates, with Mn2+, Tma endo 

V possesses higher activity than that with Mg2+ (123). Tma endo V demonstrates 

different cleavage preferences from E. coli endo V. E. coli endo V does not cleave C:A, 

C:C and C:T mismatch bases, while it cleaves all inosine-containing mismatch base pairs 

without any preference to the opposite bases; however, if the base pairs have G:C pairs in 

adjacent area, inosine cannot be cleaved by E. coli endo V.  
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Figure 1.6 Potential base contacts with Tma Endonuclease V. The possible favorable 
interactions are marked by an arrow. The unfavorable interactions are marked by an X. 
Taken from (123) 

 

It has been demonstrated that Tma endo V may interact with 6-keto of purine 

(110) and 4-keto of uracil and N7 of purine may also be involved in the interaction. The 

N3 in purines is possible to interact with enzymes (Fig. 1.6), which may help enzyme 

distinguish purine from pyrimidine (123). 

Tma Endo V is known as an endonuclease; however, interestingly, exonuclease 

activity has been detected in Tma endo V (118). Both endonuclease and exonuclease 

activities are studied in our group, and exonuclease activities will be discussed in details 

in chapter 3. WT Tma endo V demonstrated robust exonuclease activities in the reaction 

condition with MnCl2. Although it is known that Mn2+’s concentration is not very high in 

vivo. It has been demonstrated that the metal Mn2+ may help enzyme to show its latent 

property and it may require several enzymes or cofactors to reveal the activity in vivo. 

For example, human MutLα demonstrates endonuclease activity with metal Mn2+ and 
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low KCl concentration in vitro and no endonuclease activity is detected with metal Mg2+, 

while this endonuclease activity requires three proteins’ (MutSα, RFC and PCNA’s) 

cooperation in vivo (104). Tma endo V’s exonuclease activity starts after endonuclease 

cleavage with hypoxanthine containing substrates. WT Tma endo V possesses both 3’ 

hypoxanthine independent and 5’ exonuclease activity and it also demonstrates non-

specific endonuclease activity on regular DNA substrates (123). 

Although endo V’s biochemical properties have been studied extensively, and 

endo V’s function in vivo has been studied intensively in E. coli under the nitrosive 

condition in Dr. Weiss group with genetic methods, the repair pathway remains an 

enigma.  

 

II. Endonuclease V in mammals 

Endo V not only exists in prokaryotic microorganism; however, also in archaea, 

eukaryotic organisms, such as yeast, mustard, rice, pig, mouse and human and it is highly 

conserved among these species which were found by ETS database searching. Based on 

amino acid sequence alignment, seven motifs were identified.  

Mouse endo V, with the accession number of XP_203558, was identified in 2003 

with 338 amino acids and 37.2 kDa molecular weight. It has 32% amino acid sequence 

identity with E. coli endo V. It was amplified from cDNA and cloned into E. coli vector. 

After expression and purification, mouse endo V was tested with biochemical assays and 

demonstrated highest activity on single-stranded inosine-containing substrates. However, 

the activity was very low. Even under the condition that mouse endo V’s concentration is 
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100 times higher than that of E. coli endo V, the cleavage activity (80%) is still lower 

than that of E. coli endo V (100%). Because genetic study is more sensitive than 

biochemical study, mouse endo V was found to suppress spontaneous mutation frequency 

which means mouse endo V is also an anti-mutator (128).  

In mouse, it has been found that AAG is currently the only hypoxanthine DNA 

glycosylase, which recognizes and repair hypoxanthine containing DNA. The AAG 

knockout mice are still viable and do not show too many phenotypes difference from wild 

type mice (129, 130). Hypoxanthine DNA glycosylase from calf thymus recognizes 

hypoxanthine from both I:T and I:C base pairs and showed 15 to 20 times faster on I:C 

than I:T base pair (131). 

Mouse endo V expresses widely in tissues. According to sequence data search, 

mouse endo V was found express widely in eyeballs, lung, and brain. Experimental data 

show that it is abundant in liver, heart, kidney and testis (128). The wide distribution 

indicates that endo V is very important to life events. Mouse endo V doesn’t recognize 

broad substrates, which indicates that bacteria endo V, such as E. coli endo V and Tma 

endo V, may have gained the ability to repair broad substrates during evolution (132). 

Human endo V DNA sequences were first obtained from human genome project. 

It is located on chromosome 17q25.3 with 22,915 bp genomic DNA. It has 10 exons and 

with 7 corresponding homologous motifs among endo V family. Human endo V has 282 

amino acids with 31.9 kDa molecular weight and the pI is 6.46. Now in our lab, we have 

cloned human endo V gene and expressed in alka-, ung-, and mug- BL21(DE3) mutant 

strain. Soluble and active protein was purified. Biochemical and genetic methods were 
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employed to investigate human endo V’s properties, which will be addressed in details in 

Chapter four. Briefly, human endo V shows highest activity in Tris-HCl pH 8.0 buffer 

with low concentration of NaCl. Similar to bacteria endo V, human endo V requires 

divalent metal ion and the best one is Mg2+. Human endo V exhibits lower activity with 

metal Mn2+. Its substrates preference follows this order single-stranded I> G/I> T/I>> A/I 

and C/I. It is not a broad substrate enzyme and only shows activity for inosine-containing 

substrates and very low activity to xanthine-containing substrates, which may prove the 

notion that bacteria endo V may gain the broad substrate recognition ability during 

evolution (132). 

Human endo V is also an anti-mutator enzyme. Mispaired, oxidized, or 

hydrolytically deaminated damage occurs without external reagent. Investigations in our 

lab demonstrated that expressing human endo V in E. coli complements E. coli endo V to 

decrease the spontaneous mutation frequency for E. coli endo V mutant strain. It has been 

reported that E. coli endo V mutant have a huge survival rate (12 to 1,000-fold) on 

streptomycin (Str) containing medium than wild type strain after treated with nitrous acid 

(125). Streptomycin binds to 16S rRNA of the bacterial ribosome and inhibits protein 

synthesis; however, does not cause cell death (133). It has been verified that mutations in 

gene rpsL (ribosomal protein S12) helps strains resistant to streptomycin (134). 

Mutations to rpsL gene are mainly occur at one of two lysine codons, AAA (135). An E. 

coli endo V mutant that does not have the ability to repair inosine causing mutations to 

rpsL gene and allow E. coli to grow on Str containing medium. The better ability to 
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survive on Str containing plates demonstrated that endo V plays a major role in repairing 

inosine damage in vivo (125).  

 

III. Endonuclease V’s homologues 

With the help of software Metabasic, combining both amino acid sequences and 

protein secondary structure, it has been found that endo V is a homolog of UvrC, a 

subunit of UvrABC complex (136). Both enzymes cleave the nucleotide next to the 

damaged nucleotide. UvrABC complex recognizes pyrimidine dimmers and nucleotide 

containing bulky adducts, and serves as an endonuclease which is involved in NER 

pathway. UvrABC complex cleaves both sides of the damaged DNA bases. It removes 15 

nucleotides from 3’ and 8 nucleotides from 5’ of the damaged DNA bases. E. coli UvrC 

mutants at position D399 and D466 diminish 5’ cleavage while maintain 3’ cleavage 

(137, 138). Based on sequence homology analysis, endo V only possesses one domain 

which is responsible for 5’ cleavage (139).  

 

5. DNA damage and consequences 

DNA damage exists all the time. If cells fail to repair the damage which may be 

caused by inactive DNA repair enzyme or errors in repair pathway, there will be many 

consequences. One of the frequently observed consequences is disease.  

Superoxide (O2•) and nitric oxide (NO•), generated from active phagocytes, can 

cause inflammation, reperfusion and other pathological conditions. It has been reported 

that chronic infection and inflammation may cause carcinogenesis diseases (140, 141). 
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XPD is a helicase involved in transcription and nucleotide excision repair 

pathways. XP mutant proteins failed to repair the DNA damage treated after oxygen free 

radicals (142). XPD mutation causes hypersensitivity to UV and increase the risk for skin 

cancer (143). The study of XPD polymorphisms showed a surprising result that 

individuals with Lys751, on the common allele, maintain low DNA repair proficiency 

(144) . Cockayne syndrome (CS) is the second human nucleotide excision repair related 

disease. The patients are sensitive to UV light and unable to synthesis RNA after UV 

radiation. Also the patients have several of these following problems: neurological 

abnormalities, dwarfism, premature aging of certain tissues, facial and limb 

abnormalities, and early death due to neurodegeneration (145, 146). Another disease 

found to be related to nucleotide excision repair pathway is trichothiodystrophy (TTD). 

The patients are photosensitivity and the main symptoms are brittle hair and nails (147). 

These results are all obtained from clinical studies and the specific enzymes found 

responsible for these diseases are enzymes in XP group. 

8-hydroxy-2-deoxyguanine is found to be related to UVB-induced skin cancer. 

The level of 8-oxo-dG is increased when the mice were treated with chronic UVB 

exposure (148), while the addition of exogenous OGG1 helps decrease the tumor size on 

mice (149). Approximately 20 different variants of OGG1 have been identified to date 

and several of them are associated with cancer. For example, ser326cys variant was 

found in lung cancer patient (63, 150). 
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In hereditary nonpolyposis colorectal cancer (HNPCC) patients, mutations in 

several mismatch repair enzymes have been found. They are hMLH1, hMSH2, hPMS1 

and hPMS2 (151).  

MBD4 gene (methyl-CpG binding domain protein 4 gene) has one polyA(10) and 

three polyA(6). The mutations in these repeats are found in several tumor cells, such as 

colon carcinomas cells (150).  

Another commonly observed consequence for DNA damage is related to 

evolution. The studies about DNA repair enzymes’ properties, such as substrates 

recognition and enzymatic functions’ divergence may help explain the evolution. 

Because the DNA repair enzymes are evolved under both intracellular and extracellular 

pressure, such as oxidative stress, the relationships among those enzymes and the repair 

pathways reflect the evolution to certain extent (152).  

Novel properties emerge during evolution corresponding to environmentally 

selective pressure according to Darwinian’s theory. The process is slow and has to 

accumulate enough mutations to certain degree to generate new characters. The theory of 

sudden origins (153, 154) suggests that unrepaired DNA damage increases the number of 

the mutation events and change the gene expression. Although DNA repair enzymes 

repair damage and provide stability of chromosome, under certain conditions, the 

damaged DNA cannot be repaired in time and correctly. According to this theory, a large 

amount of mutations occur in a short time to generate novel properties (154). 
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CHAPTER TWO 

INSIGHTS FROM XANTHINE AND URACIL DNA GLYCOSYLASE ACTIVITIES 

OF BACTERIAL AND HUMAN SMUG1: SWITCHING SMUG1 TO UNG 

 

1. Summary 

Single-strand-selective monofunctional uracil DNA glycosylase (SMUG1) 

belongs to Family 3 of the uracil DNA glycosylase superfamily.  Here, we report that a 

bacterial SMUG1 ortholog in Geobacter metallireducens (Gme) and the human SMUG1 

enzyme are not only uracil DNA glycosylases (UDG) but also xanthine DNA 

glycosylases (XDG).  In addition, mutational analysis and molecular dynamics (MD) 

simulations of Gme SMUG1 identify important structural determinants in conserved 

motifs 1 and 2 for XDG and UDG activities.  Mutations at M57 (M57L) and H210 

(H210G, H210M, H210N), both of which are involved in interactions with C2 carbonyl 

oxygen in uracil or xanthine, cause substantial reductions in XDG and UDG activities. 

Increased selectivity is achieved in the A214R mutant of Gme SMUG1, which 

corresponds to a position involved in base flipping.  This mutation results in an activity 

profile resembling a human SMUG1-like enzyme as exemplified by the retention of UDG 

activity on mismatched base pairs and weak XDG activity.  MD simulations indicate 

that M57L increases the flexibility of the motif 2 loop region and specifically A214, 

which may account for the reduced catalytic activity.  G60Y completely abolishes XDG 

and UDG activity, which is consistent with a modeled structure in which G60Y blocks 

the entry of either xanthine or uracil to the base binding pocket.  Most interestingly, a 
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proline substitution at the G63 position switches the Gme SMUG1 enzyme to an 

exclusive uracil DNA glycosylase as demonstrated by the uniform excision of uracil in 

both double-stranded and single-stranded DNA and the complete loss of XDG activity.  

MD simulations indicate that a combination of a reduced free volume as well as altered 

flexibility in the active site loops may underlie the dramatic effects of the G63P mutation 

on the activity profile of SMUG1.  This study offers insights on the important role that 

modulation of conformational flexibility may play in defining specificity and catalytic 

efficiency.  
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2. Introduction 

DNA bases adenine (A), cytosine (C), and guanine (G) are subject to deamination 

caused by endogenous and environmental agents (1-7).  Hypoxanthine (I) and uracil (U) 

are generated by deamination of adenine and cytosine, respectively (2, 3).  Treatment of 

deoxyguanosine or DNA with nitrous acid, nitric oxide, or 1-nitrosoindole-3-acetonitrile 

yields xanthine (X) and oxanine (O) (8, 9).  The deaminated base damage may cause 

mutations if they are not removed by DNA repair systems (10-17). 

 The frequently generated deamination product uracil is removed by DNA 

glycosylases (18).  The uracil DNA glycosylase superfamily is classified into five 

families based on conserved motifs and structural similarity (19, 20).  A common 

structural feature of the UDG superfamily is a four-stranded β-sheet surrounded by α-

helices.  Family 1 UDGs (UDG or UNG), as represented by Escherichia coli (E. coli), 

human, and herpes simplex virus 1 UDGs, are highly conserved enzymes with exquisite 

specificity toward uracil in both double-stranded (ds) and single-stranded (ss) DNA.  

Family 2 is comprised of human thymine DNA glycosylase (TDG), E. coli mismatch-

specific uracil-DNA glycosylase (MUG), and a broad substrate specificity fission yeast 

Schizosaccromyces pombe TDG (21, 22).  Family 3 enzymes were previously thought to 

be eukaryotic-specific UDG’s as represented by African clawed frog Xenopus laevis 

SMUG1 (single-strand-selective monofuntional uracil-DNA glycosylase) and human 

SMUG1.  Family 4 UDG enzymes are a group of prokaryotic iron-sulfur-containing 

enzymes that act on both single-stranded and double-stranded uracil-containing DNA 

(23-26).  Family 5 UDG enzymes are found in a small number of prokaryotic species, 
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one of which, from the hyperthermophilic crenarchaeon Pyrobacculum aerophilum, 

demonstrates glycosylase activity toward G/U and to a lesser degree toward T/I substrates 

(27).   

Xanthine is a stable lesion in DNA under physiological conditions, indicating the 

need for repair (15, 28).  The content of xanthine in DNA increases when exposed to 

reactive nitrogen species such as nitric oxide (2, 29-31). E. coli AlkA was reported to 

possess xanthine DNA glycosylase activity, while the possible XDG activity of E. coli 

endo VIII remains controversial (32, 33). More importantly, endonuclease V initiates a 

repair pathway to remove xanthine from DNA in bacteria. Biochemical analyses have 

detected deoxyxanthosine endonuclease activities in several bacterial endonuclease V 

homologs (32-35).  In an earlier study, repair of xanthine lesions was observed in human 

lymphoblast cells (36).  Later, it was found that human alkyladenine DNA glycosylase 

(hAAG) exhibited strong xanthine DNA glycosylase activity ((15, 33), L. Dong & W. 

Cao, unpublished data).  hAAG is active toward xanthine in both single-stranded and 

double-stranded DNA regardless of the opposite base (L. Dong & W. Cao, unpublished 

data).   

 SMUG1 was initially discovered as a uracil DNA glycosylase by screening 

proteins that bound to transition state analogs of monofunctional DNA glycosylases (37).  

In mammalian cells, SMUG1 is responsible for removal of uracil generated from cytosine 

deamination in premutagenic G/U base pairs (38-40).  In addition to excision of uracil in 

double-stranded and single-stranded DNA, hSMUG1 also removes 5-formyluracil (fU), 

5-hydroxyuracil (hoU), 5-hydroxymethyluracil (hmU), and 3,N4-ethenocytosine (41, 42).  
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A crystal structure of a Xenopus laevis SMUG1-DNA complex reveals how hmU is 

accommodated while thymine is excluded from the active site  (43).   

 SMUG1 was considered a eukaryote-only uracil DNA glycosylase since 

homologs were found previously in vertebrates and insects.  A search of genome 

databases showed the existence of SMUG1 orthologs in several bacteria including 

Geobacter metallireducens (Gme), Azoarcus species (Asp), Rhodopirellula baltica (Rba) 

and Opitutaceae bacterium (Oba) (Fig. 2.1).  This study investigated deaminated repair 

activity in Gme SMUG1 and XDG activity in hSMUG1.  As expected, bacterial Gme 

SMUG1 is a uracil DNA glycosylase.  Surprisingly, Gme SMUG1 is also a xanthine 

DNA glycosylase (XDG) that removes xanthine in both double-stranded and single-

stranded DNA.  Interestingly, human SMUG1 is also found to be active toward 

xanthine, indicating that XDG activity is universal in both prokaryotic and eukaryotic 

SMUG1.  This work, along with a previous report on oxanine DNA glycosylase activity 

from SMUG1 (44), extends the substrate specificity of SMUG1 from pyrimidine 

deamination/oxidation products to purine deamination products.  How the active site of 

Gme SMUG1 accommodates both uracil and xanthine was investigated by site-directed 

mutagenesis and molecular modeling. Through a single amino acid change, G63P 

switches Gme SMUG1 to a Family 1 UDG- or UNG-like exclusive uracil DNA 

glycosylase. 
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Figure 2.1 Sequence alignment of bacterial and eukaryotic SMUG1.  Genbank accession 
numbers are shown after the species names.  Family 3 (SMUG1): Gme, Geobacter 
metallireducens GS-15,YP_383069; Asp, Azoarcus sp. BH72, YP_935478; Rba, 
Rhodopirellula baltica SH 1, NP_869403; Oba, Opitutaceae bacterium TAV2, 
ZP_02013615.1; Spu, Strongylocentrotus purpuratus, XP_782746.1; Hsa, Homo sapiens, 
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NP_055126; Mmu, Mus musculus, NP_082161; Xla, Xenopus laevis, AAD17300; Dme, 
Drosophila melanogastser, NP_650609.1; Ame, Apis mellifera, XP_396883.2; Tca, 
Tribolium castaneum, XP_971699.1.  Family 1 (UDG or UNG): Eco, Escherichia coli, 
NP_289138; Dra, Deinococcus radiodurans R1, NP_294412; Mtu, Mycobacterium 
tuberculosis H37Rv, CAB05436.1; Hsa, Homo sapiens, NP_003353; Mmu, Mus 
musculus, NP_035807; Xla, Xenopus laevis, NP_001085412; HSV1, Herpes Simplex 
Virus-1, 1UDI.  Family 2 (MUG/TDG): Eco, Escherichia coli, P0A9H1; Bce, 
Burkholderia cenocepacia HI2424, YP_836419; Dra, Deinococcus radiodurans R1, 
NP_294438; Swi; Sphingomonas wittichii RW1, ZP_01607068; Csp, Caulobacter sp. 
K31, ZP_01418424.1; Dge, Deinococcus geothermalis DSM 11300, YP_605182.1; Acl, 
Aspergillus clavatus NRRL 1, XP_001268386.1; Spo, Schizosaccharomyces pombe, 
O59825; Hsa, Homo sapiens, NP_003202; Dme, Drosophila melanogaster, CAB93525; 
Xla, Xenopus laevis, AAH77465.  Family 4 (UDGa): Pae, Pyrobaculum aerophilum str. 
IM2, NP_558739.1; Dra (DR 1751), Deinococcus radiodurans R1, NP_295474; Dra (DR 
0022), Deinococcus radiodurans R1, AAF09614; Tma, Thermotoga maritima MSB8, 
NP_228321.1; Nmu, Nitrosospira multiformis, YP_412806; Tth, Thermus thermophilus 
HB27, YP_004341.1.  Family 5 (UDGb): Pae, Pyrobaculum aerophilum str. IM2, 
NP_559226; Sso, Sulfolobus solfataricus P2, NP_344053.1; Tvo, Thermoplasma 
volcanium GSS1, NP_111346.1; Sco, Streptomyces coelicolor A3(2), NP_626251.1; Mtu, 
Mycobacterium tuberculosis H37Rv, P64785 (Rv1259); Tth, Thermus thermophilus 
HB27,  YP_004757.1 

 

3. Materials and Methods 

Reagents, Media and Strains.   

All routine chemical reagents were purchased from Sigma Chemicals (St. Louis, 

MO), Fisher Scientific (Suwanee, GA), or VWR (Suwanee, GA). Restriction enzymes, 

Taq DNA polymerase and T4 DNA ligase were purchased from New England Biolabs 

(Beverly, MA). BSA and dNTPs were purchased from Promega (Madison, WI). HiTrap 

chelating and Q columns were purchased from Amersham-Pharmacia Biotech 

(Piscataway, NJ).  Oligodeoxyribonucleotides were ordered from Integrated DNA 

Technologies Inc. (Coralville, IA).  The LB medium was prepared according to standard 

recipes. The Gme SMUG1 sonication buffer consisted of 50 mM HEPES-KOH (pH 7.4), 

1 mM EDTA (pH 8.0), 2.5 mM DTT, 0.15 mM PMSF, 10% glycerol and 50 mM NaCl. 
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The GeneScan stop buffer consisted of 80% formamide (Amresco, Solon, OH), 50 mM 

EDTA (pH 8.0), and 1% blue dextran (Sigma Chemicals).  The TB buffer (1 x) 

consisted of 89 mM Tris base and 89 mM boric acid.  The TE buffer consisted of 10 

mM Tris-HCl (pH 8.0), and 1 mM EDTA.  The E. coli host strain BH214 [thr-1, ara-14,  

leuB6,  tonA31, lacY1, tsx-78, galK2, galE2, dcm-6, hisG4, rpsL,  xyl-5,  mtl-1, thi-1, 

ung-1, tyrA::Tn10,  mug::Tn10, supE44, (DE3)] was a kind gift of Dr. Ashok Bhagwat 

(Wayne state university, Detroit, MI) and JM109 [e14-(McrA-) endA1, recA1, gyrA96, 

thi-1, hsdR17(rk
-, mk

+), supE44, relA1 ∆(lac-proAB), [F’, traD36, proAB, lacIqZ∆M15]] 

was from our laboratory collection.  The genomic DNA from Geobacter 

Metallireducens GS-15 was a kind gift of Dr. Derek R. Lovley and Muktak Aklujkar 

(University of Massachusetts, Amherst, MA).  The Human SMUG 1 protein was a kind 

gift of Drs. Geir Slupphaug and Bodil Kavli (Norwegian University of Science and 

Technology, Trondheim, Norway). 

 

Plasmid Construction, Cloning and Expression of Gme SMUG1. 

The putative SMUG1 gene from G. Metallireducens GS-15 was amplified by 

PCR using the forward primer Gme.smug1.01F (5’ TAA GGT ACC CC ATG GCC GGT 

CTC GCG GCT ATT TCC 3’; the NcoI site is underlined) and the reverse primer 

Gme.smug1.02R (5’ TGA ACG CGT GGA TCC TCA GAA ATC GAC ACC AAG CTC 

CG 3’; the BamHI site is underlined).  The PCR reaction mixture (50 µL) consisted of 

10 ng of G. Metallireducens GS-15 genomic DNA, 200 nM forward primer 

Gme.smug1.01F and reverse primer Gme.smug1.02R, 1 x Taq PCR buffer (New England 
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Biolabs), 200 µM each dNTP, and 2 units of Phusion DNA polymerase (New England 

Biolabs).  The PCR procedure included a predenaturation step at 94°C for 4 min, 30 

cycles of three-step amplification with each cycle consisting of denaturation at 94°C for 

15 s, annealing at 47°C for 30 s and extension at 72°C for 1 min, and a final extension 

step at 72°C for 10 min.  The PCR product was purified with Gene Clean 2 Kit 

(Qbiogene).  The purified PCR product and plasmid pET32a were digested with NcoI 

and BamHI, purified with Gene Clean 2 Kit and ligated according to the manufacturer’s 

instructional manual.  The ligation mixture was transformed into E. coli strain JM109 

competent cells prepared by a CaCl2 method.  The sequence of the Gme smug1 gene in 

the resulting plasmid (pET32a-Gsmug1) was confirmed by DNA sequencing.   

To express the N-terminal His-6-tagged Gme SMUG1 protein, pET32a-Gsmug1 

was transformed into E.coli strain BH214 by standard protocol.  An overnight E. coli 

culture containing pET32a-Gsmug1/BH214 was diluted 100-fold into LB medium (1 

Liter) supplemented with 50 µg/mL ampicillin. The E. coli cells were grown at 37°C 

while being shaken at 250 rpm until the optical density at 600 nm reached approximately 

0.6.  IPTG (isopropyl-β-D-thiogalactopyranoside) was added to a final concentration of 

0.5 mM.  The culture was grown at room temperature for an additional 16 h. The cells 

were collected by centrifugation at 4,000 rpm with JS-4.2 rotor in J6-MC centrifuge 

(Beckman Coulter) at 4°C and washed once with precooled sonication buffer.  

To purify the Gme SMUG1 protein, the cell paste from the 1 L culture was 

suspended in 10 mL of sonication buffer and sonicated at output 5 for 3 x 1 min with 5 

min rest on ice between intervals.  The sonicated solution was clarified by centrifugation 
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at 12,000 rpm with JA-17 rotor in Avanti J-25 centrifuge (Beckman Coulter) at 4°C for 

20 min.  The supernatant was transferred into a fresh tube and loaded into a 1 mL 

HiTrap chelating column.  The bound protein in the column was eluted with a linear 

gradient of 10 column volumes of 0-1 M imidazole in chelating buffer B [20 mM Tris-

HCl (pH 7.6), 10% glycerol and 50 mM NaCl] using a Bio-Rad BioLogic 

chromatographic system.  

Fractions (200-400 mM imidazole) containing the Gme SMUG1 protein as seen 

on 15% SDS-PAGE were pooled and dialyzed against HiTrap Q buffer A [20 mM Tris-

HCl (pH 8.0), 1 mM EDTA, 10% glycerol and 0.2 mM DTT] overnight at 4°C.  The 

dialysis sample was then loaded onto a 1 mL HiTrap Q column and eluted with a linear 

gradient of 10 column volumes of 0-1 M of NaCl in HiTrap Q buffer B (HiTrap Q buffer 

A containing 1 M NaCl).  The putative Gme SMUG1 protein was eluted at 200 - 400 

mM NaCl.  The homogeneity of the protein was examined by 12.5% SDS-PAGE 

analysis and found to be greater than 90% pure.  The Gme SMUG1 protein 

concentration was determined by SDS-PAGE using BSA as a standard. 

 

Site-Directed Mutagenesis.  

An overlapping extension PCR procedure was used for site-directed mutagenesis.  

The construction of the M57L mutant is described as an example.  The first round of 

PCR was carried out using pET32a-Gsmug1 as the template DNA with two pairs of 

primers, Gme.smug1.01F and GSM57L.R (5' TCC TTT TCG TCG GCC TGA ACC 

CCG GCC CCT GGG GGA T 3’, the M57L site is underlined) pair & Gme.smug1.02R 
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and GSM57L.F (5’ CAG GGG CCG GGG TTC AGG CCG ACG AAA AGG ACT TCC 

T 3’, the M57L site is underlined) pair.  The PCR mixtures (50 µL) contained 1 ng of 

pET32a-Gsmug1 DNA as template, 200 nM of each primer pair, 50 µM of each dNTP, 1 

× Phusion DNA polymerase buffer, and 1 unit of Taq DNA polymerase (New England 

Biolabs).  The PCR procedure involved a predenaturation step at 95°C for 2 min, 30 

cycles of three-step amplification with each cycle consisting of denaturation at 94°C for 

15 s, annealing at 49°C for 30 s and extension at 72°C for 1 min, and a final extension 

step at 72°C for 10 min.  The PCR products were electrophoresed on 1% agarose gel 

and the expected PCR fragments were purified from gel slices by spin-squeeze method.  

The second run of the PCR reaction mixture (100 µL), which contained 3 µL of each of 

the first run PCR fragments, 50 µM of each dNTP, 1 × Taq DNA polymerase buffer, and 

2 units of Phusion DNA polymerase (New England Biolabs), was initially carried out 

with a predenaturation step at 95°C for 2 min, five cycles with each cycle of denaturation 

at 94°C for 15 s and annealing at 55°C for 30 s and extension at 72°C for 2 min, and a 

final extension at 72°C for 5 min.  Afterward, 100 nM of outside primers 

(Gme.smug1.01F and Gme.smug1.02R) were added to the above PCR reaction mixture.  

The subsequent overlapping PCR amplification included a predenaturation step at 95°C 

for 2 min, 25 cycles with each cycle of denaturation at 94°C for 15 s and annealing at 

49°C for 1.5 min and extension at 72°C for 2 min, and a final extension at 72°C for 5 

min.  The purified PCR products digested with a pair of NcoI and BamHI endonucleases 

were ligated to the cloning vector pET32a treated with the same pair of restriction 

endonucleases.  The recombinant plasmids containing the desired mutations were 
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confirmed by DNA sequencing and transformed into E. coli host strain BH214 for 

expression and protein purification as described above. 

 

Oligodeoxynucleotide Substrates.  

Oligonucleotides containing xanthine (X) or oxanine (O) were prepared as 

previously described (44).  The sequences of the oligonucleotides are shown in Fig. 

2.2A.  Oligonucleotides containing hypoxanthine or uridine were ordered from IDT, 

purified by PAGE, and dissolved in TE buffer at a final concentration of 10 µM.  The 

two complementary strands with the unlabeled strand in 1.2-fold molar excess were 

mixed, incubated at 85°C for 3 min, and allowed to form duplex DNA substrates at room 

temperature for more than 30 min.   

 

DNA Glycosylase Activity Assays. 

DNA glycosylase cleavage assays for Gme SMUG1 were performed under 

optimized reaction conditions at 33°C for 60 min in a 10 µL reaction mixture containing 

10 nM oligonucleotide substrate, an indicated amount of glycosylase, 20 mM Tris-HCl 

(pH 7.6), 30 mM NaCl, 1 mM Dithiothreitol, and 1 mM EDTA. The resulting abasic sites 

were cleaved by incubation at 95 °C for 5 min after adding 0.5 µL of 1 M NaOH.  

Reactions were quenched by addition of an equal volume of GeneScan stop buffer.  

After incubation at 95°C for 3 min, samples (3.2 µL) were loaded onto a 7 M urea-10% 

denaturing polyacrylamide gel. Electrophoresis was conducted at 1500 V for 1.5 h using 

an ABI 377 sequencer (Applied Biosystems). Cleavage products and remaining 
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substrates were quantified using the GeneScan analysis software.  DNA glycosylase 

cleavage assays for human SMUG1 were performed under the same reaction conditions 

except that the reaction mixtures were incubated at 37ºC.  

 

Homology Modeling. 

A PSI-BLAST alignment of the amino acid sequence from chain A of 1oe5.pdb 

(Xenopus SMUG1) and the UDG superfamily sequence from Geobacter metalloreducins 

GS-15 (Gene ID: 3739421 Gmet_0095) resulted in a 64% similarity and 50% identity 

between the two sequences.  In addition, a PSI-BLAST alignment was performed 

between the Xenopus sequence and that for the human SMUG1 enzyme (Gene ID: 23583 

SMUG1), resulting in 78% similarity and 66% identity.  Based on these sequence 

alignments and the 1oe5 pdb structure, homology models were constructed for the Gme 

and human SMUG1 enzymes using the NEST program (45).  Coordinates for the uracil 

base complexed with the Xenopus SMUG1 enzyme were transferred directly to the 

coordinate files containing the homology modeled Gme and human SMUG1 enzymes.  

From these initially modeled complexes, models containing the deaminated guanine base 

xanthine were constructed.  Parameters for xanthine were constructed within the 

molecular modeling package charmm (c32b1) by homology (46, 47). Within the charmm 

modeling package, the coordinates for the Gme SMUG1 complex with uracil were fixed. 

Nonbonded energy terms (Coulomb and van der Waals components) were eliminated 

using the “skipe” command in charmm.  Distance restraints were placed between the 

nitrogen and oxygen atoms that are associated with the six-membered rings and 
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analogous between xanthine and uracil (uracil/xanthine restraints: N1/N3, N3/N1, O2/O2, 

O4/O6). The system was then minimized and resulted in an overlap between the six-

membered ring of xanthine and the uracil molecule in the complex.  The uracil 

coordinates were then deleted, leaving a model for xanthine bound to the bacterial Gme 

SMUG1 based on the initial model of SMUG1 bound to uracil.  The identical procedure 

was carried out on the human SMUG1-uracil complex. 

All model complexes were then minimized gently by first fixing the coordinates 

of all amino acids that do not contain atoms within 10Å of the bound substrate (uracil or 

xanthine).  Harmonic restraints, using a force constant of 10 kcal/mol/Å2, were applied 

to amino acids within 10Å of the bound substrate.  A short adopted-basis Newton 

Raphson minimization of 200 steps was carried out to remove van der Waals clashes 

close to the substrate.  Harmonic restraints were removed, a generalized Born implicit 

solvent was applied (GBSW algorithm in charmm) and the complex was minimized a 

further 1000 steps. 

In order to generate mutants of the Gme SMUG1, the mutate.pl script from the 

MMTSB toolset (48) was applied to the initial Gme SMUG1 complexes (prior to 

minimization) bound to uracil and xanthine. The mutated complexes were then gently 

minimized using the protocol described above. 

 

Molecular Dynamics Simulations. 

Canonical ensemble (NVT) Molecular dynamics on the wild-type and mutant 

Gme SMUG1, were carried out using the charmm molecular mechanics package. 
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Simulations were carried out using an implicit generalized Born solvent model (the 

GBSW algorithm in charmm) with a 1 fs timestep.  The salt concentration (modeled 

through a Debye-Huckel term in the GB solvent) was maintained at 0.15 M, while the 

non-polar surface tension coefficient (γ) and the smoothing length (sw) were assigned as 

0.03 kcal/mol Ǻ2 and 0.3 Ǻ, respectively.  Prior to the molecular dynamics, the initial 

unbound Gme SMUG1 model was minimized within a generalized Born solvent under 

successively reduced harmonic restraints applied to all atoms (50 kcal/mol Å2, 10, 1, 0).  

This was done to eliminate high-energy clashes that could impact the simulation.  

During the molecular dynamics run, the system was gradually heated over 20 ps from an 

initial temperature of 100 K to a final temperature of 300 K.  The system was 

equilibrated for 1.11 ns and the production run was carried out for 2 ns. 

Based on the production portion of each molecular dynamics calculation, 

isotropic root mean square fluctuations (rmsf) were calculated for each of the Gme 

SMUG1 mutant systems.  Configurational snapshots taken every 1 ps during the 

production run were oriented with respect to the first production run conformation.  The 

isotropic root mean squared fluctuations for each atom (with respect to the average of the 

oriented structures) were determined using the “coor dyna” command in charm (49).  

The same trajectories were used to calculate the free volume of the active site using the 

“coor volume” command in charmm.  First, amino acids selected to represent the active 

site were chosen based on the initial models of Gme SMUG1 bound to xanthine (the 

larger of the two ligands).  Any amino acid that contained an atom within 8Å of the 

xanthine ligand was identified as part of the binding site.  Active site free volumes were 
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calculated for each production run snapshot based on the difference between the free 

volume calculated with and without the “holes” keyword.   

 

4. Results 

Bacterial SMUG1 as xanthine DNA glycosylase (XDG) 

SMUG1 was previously thought as a eukaryote-only uracil DNA glycosylase, yet 

a search of rapidly accumulating genome databases discovered SMUG1 in four bacterial 

genomes (Fig. 2.1).  Human SMUG1 shows a 54% amino acid sequence identity to 

Geobacter metallireducens SMUG1, 46% to Azoarcus sp. SMUG1, 43% to 

Rhodopirellula baltica SMUG1, and 46% to Opitutaceae bacterium SMUG1.  In 

comparison, the sequence identity between hSMUG1 and fruit fly SMUG1 is 48%.  

Similar to their eukaryotic counterparts, bacterial SMUG1 contains the highly conserved 

sequences GMNPGP in motif 1 and HPSP in motif 2 (Fig. 2.1).  To understand the 

potential role of SMUG1 in DNA repair in bacteria, we cloned and expressed SMUG1 

from Geobacter metallireducens GS-15.  Using fluorescently labeled oligonucleotide 

substrates (Fig. 2.2A), we assayed for the glycosylase activity of Gme SMUG1 toward all 

four deaminated bases, hypoxanthine (I), uracil (U), xanthine (X) and oxanine (O) (Fig. 

2.2B).  As expected, Gme SMUG1 exhibited robust activity in excising all U-containing 

substrates including the single-stranded U-containing substrate, suggesting that bacterial 

SMUG1 is a bona fide uracil DNA glycosylase (Fig. 2.2C).  Both the adenine 

deamination product hypoxanthine and second guanine deamination product oxanine 

were not substrates for Gme SMUG1 even in our assay conditions in which the enzyme 
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was in excess (Fig. 2.2C).  In contrast, Gme SMUG1 demonstrated significant excision 

of xanthine as indicated by ~70% cleavage of all double- and single-stranded xanthine-

containing substrates (Fig. 2.2C).  These results suggested that Gme SMUG1 is also a 

xanthine DNA glycosylase.   

Table 2.1: Apparent rate constants for cleavage of uracil (U) and xanthine (X) 
substrates by Gme SMUG1 (min–1)a 

 

 Bottom 
Strand 

Top Strand  

 A C T G ssb  

WT  

U 

0.18 0.19 0.21 0.22 0.17  

WT c 
(E:S=1:10)  

 0.048 0.051 0.063 0.18 0.015  

M57L  0.13 0.16 0.17 0.18 0.12  

G63P  0.24 0.24 0.24 0.25 0.24  

H210G  0.0032 0.014 0.019 0.016 n.a.d  

H210M  0.0027 0.013 0.015 0.010 n.a.  

H210N  0.0085 0.012 0.015 0.012 n.a.  

A214R  0.062 0.23 0.21 0.20 0.013  

          

WT  

X 

0.056 0.046 0.044 0.056 0.051  

M57L  0.011 0.013 0.011 0.017 0.013  

A214R  0.012 0.016 0.012 0.013 0.014  

a: The reactions were performed as described in Materials and Methods with 
100 nM SMUG1 and 10 nM substrate, unless otherwise stated.  The apparent 
rate constants were determined by fitting the time course data into a first-order 
rate equation using Deltagraph (SPSS Inc.).  Data are an average of two 
independent experiments. 
b: Single-stranded uracil- or xanthine-containing substrate. 
c: The enzyme concentration was 1 nM and the substrate concentration was 10 
nM. 
d: n.a.: no activity was detected under assay conditions. 
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To dissect the kinetic differences between the UDG and XDG activities, we 

performed a time course analysis on five U-containing substrates and five X-containing 

substrates.  Under the assay conditions in which the enzyme was in excess (E:S ratio = 

10:1), Gme SMUG1 excised uracil from all five U-containing substrates to near 

completion, with an apparent rate constant of approximately 0.20 per min (Fig. 2.3A, E:S 

= 10:1; Table 2.1).  The XDG activity from Gme SMUG1 was not as robust as UDG, as 

indicated by a slower cleavage of X-containing substrates and a less than 70% 

completion (Fig. 2.3B, E:S = 10:1).  The apparent rate constant for XDG was around 

0.05 per min, representing a four-fold difference (Table 2.1).  Under the assay 

conditions in which the substrate was in excess (E:S ratio = 1:10), Gme SMUG1 excised 

uracil from G/U base pairs rapidly in a manner similar to that observed when the enzyme 

was in excess (Fig. 3A, G/U).  The cleavage of the remaining U-containing substrates 

followed the order of T/U > C/U, A/U > single-stranded U (Fig. 2.3A, Table 2.1).  

These results indicated that G/U was a better substrate for the Gme SMUG1.  Cleavage 

of the X-containing substrates was low under the assay conditions, with less than 5% of 

the substrate being converted to product (Fig. 2.3B, E:S = 1:10).  
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Figure 2.2 Cleavage of uracil- and xanthine-containing DNA substrates by wild-type 
Gme SMUG1.  A. Sequences of xanthine (X)- and oxanine (O)-, and hypoxanthine (I)- 
and uracil (U)-containing oligodeoxyribonucleotide substrates.  B. Chemical structures 
of deaminated DNA bases.  C. DNA glycosylase activity of wt Gme SMUG1 on I-, U-, 
X- and O-containing substrates. Cleavage reactions were performed as described in 
Materials and Methods with 100 nM wt Gme SMUG1 protein and 10 nM substrate.  
hAAG was assayed as a control with 10 nM hAAG protein and 10 nM substrate as 
described previously (16). 
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Figure 2.3 Kinetic analysis of glycosylase activity of wt Gme SMUG1 on U- and X-
containing substrates.  A. Time course analysis of cleavage activity on U-containing 
substrates.  S = 10 nM.  (�) E:S = 10:1; () E:S = 1:10.  B. Time course analysis of 
cleavage activity on X-containing substrates.  S = 10 nM. (�) E:S = 10:1; (�) E:S = 
1:10. 
 

Human SMUG1 as xanthine DNA glycosylase (XDG) 

 The surprising discovery of XDG activity from Gme SMUG1 prompted us to 

investigate XDG activity in human SMUG1.  Under the assay conditions in which the 

enzyme was in excess, we indeed observed cleavage of X-containing substrates by 

hSMUG1 (Fig. 2.4A).  Similar to the bacterial enzyme, hSMUG1 cleaves both double-

stranded and single-stranded X-containing DNA without regard to the opposite base (Fig. 

2.4B).  The XDG activity from hSMUG1 was not as robust as the one from Gme 

SMUG1 as judged by the percent cleavage yield.  Since hSMUG1 was shown to 

maintain good activity on the positive control substrate (G/U), these results indicate that 

hSMUG1 is a less efficient enzyme for xanthine substrates (Figs. 2.3 and 2.4). 
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Figure 2.4 Cleavage activity of hSMUG1 on X-containing substrates.  Cleavage 
reactions were performed as described in Materials and Methods at 37°C for 60 min with 
100 nM hSMUG1 protein and 10 nM substrate.  A. GeneScan gel picture of cleavage 
activity of hSMUG1 on X-containing substrates.  B. Quantification of XDG activity 
from hSMUG1.  Cleavage products and remaining substrates were quantified using 
GeneScan analysis software. 

 

Site-directed mutagenesis of Gme SMUG1 

The hallmark of the UDG superfamily is that all the glycosylases contain two 

conserved motifs that are involved in the recognition of deaminated bases (Fig. 2.1).  

Apparently, some of the amino acid residues within these motifs may play an important 

role in determining substrate specificity.  Using the SMUG1 from Geobacter as a model 

system, we made ten site-directed mutants at eight sites in both motifs (Fig. 2.1).  The 

rationale for choosing each site targeted in this study is described below along with a 

description of the activity changes associated with each corresponding mutation. To 

characterize these mutants, we assayed DNA cleavage activity using double-stranded and 

single-stranded uracil-, xanthine-, hypoxanthine-, and oxanine-containing substrates.  

When appropriate, detailed kinetic analyses were performed to compare the mutant Gme 

SMUG1 and the wild-type (wt) enzyme.  Overall, neither hypoxanthine DNA 

glycosylase activity nor oxanine DNA glycosylase activity was detected, indicating that 
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none of mutants acquired additional deamination repair activity.  However, significant 

changes in both xanthine DNA glycosylase activity and in uracil DNA glycosylase 

activity were observed and are described in the following sections. 

 

M57, N58D, G60Y, W62F and M64G in motif 1 

 M57 is an invariant residue among SMUG1 family proteins; however, is not 

conserved in other UDG families (Fig. 2.1).  The M57L substitution renders the Gme 

SMUG1 identical in this position to Family 5 UDGb proteins.  Under the assay 

conditions in which the enzyme was in excess (E:S ratio = 10:1), M57L excised uracil 

from all five U-containing substrates to near completion (Fig. 2.5A-2.5B), although the 

efficiencies were around 15-30% lower than the wt enzyme (Table 2.1).  The cleavage 

of X-containing substrates was substantially lower, with 20% cleavage for A/X, 36% for 

C/X, 30% for T/X, 42% for G/X, and 33% for single-stranded X observed when the 

enzyme was in excess (Fig. 2.5C).  Under the assay conditions in which the substrate 

was in excess (E:S ratio = 1:10), Gme SMUG1 excised uracil from G/U base pair with 

the highest efficiency, followed by T/U > C/U > A/U (Fig. 2.5B).  Cleavage of single-

stranded U was less than 3% (Fig. 2.5B).  No cleavage was detectable in any X-

containing substrate when the substrate was in excess (data not shown).   

N58 is an invariant residue in SMUG1 that was changed to aspartate in this study. 

N58D showed no DNA glycosylase activity toward any deaminated substrate (data not 

shown).  It was proposed and later proved by a structural study that motif 1 in SMUG1 

is more Family 2 MUG/TDG-like than Family 1 UDG- or UNG-like  (37, 43). The  
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Figure 2.5 Kinetic analysis of glycosylase activity of M57L, W62F and M64G mutants of 
Gme SMUG1 on U- and X-containing substrates.  A. GeneScan gel pictures of cleavage 
activity of M57L, W62F and M64G mutants on U- and X-containing substrates.  B. 
Time course analysis of cleavage activity of M57L on U-containing substrates.  S = 10 
nM.  (�) E:S = 10:1; () E:S = 1:10.  C. GeneScan gel pictures of time course 
analysis of cleavage activity of M57L on X-containing substrates with E:S = 10:1. S = 10 
nM. 
 

outcome of the N58D substitution is consistent with the biochemical analysis of E. coli 

MUG and human TDG, which reveals that indeed this asparagine residue plays a critical 

role in catalysis (50).  Within the UDG superfamily, the G60 position in Gme SMUG1 

is typically occupied by either glycine or alanine except for UDG Family 1, which 

contains an invariant tyrosine residue (Fig. 2.1).  The G60Y substitution rendered the 

mutant inactive toward all deaminated substrates (data not shown), suggesting that a 

small sidechain is required at this position for the SMUG1 family and perhaps for 

Families 2, 4 and 5 as well.  These results are consistent with a previous biochemical 
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analysis of hSMUG1 G87Y mutant, which showed no detectable activity against the A/U 

or G/U substrate (40).  A conservative change was made at W62 in an attempt to 

convert the activity of Gme SMUG1 to that observed in hSMUG1.  W62F essentially 

maintained wt level activity toward xanthine and uracil substrates (Fig. 2.5A).  

Likewise, although M64 is invariant in SMUG1, M64G did not seem to alter its catalytic 

activity (Fig. 2.5A). These results, consistent with the mutational analysis of hSMUG1 

(40, 51), suggest that the W62 and M64 sidechains in motif 1 are not involved in 

determining DNA base specificity in SMUG1.   

 
Figure 2.6 Cleavage activity of G63P mutant of Gme SMUG1 on U- and X-containing 
substrates and kinetic analysis of cleavage activity on U-containing substrates.  A. 
GeneScan gel picture of cleavage activity of G63P mutant on U- and X-containing 
substrates.  B. Time course analysis of cleavage activity of G63P mutant on U-
containing substrates.  S = 10 nM.  E:S = 10:1.  (�) E:S = 10:1; () E:S = 1:10. 
 

G63P 

The G63P substitution in Gme SMUG1 mimicked the UNG enzyme (Family 1) at 

this position (Fig. 2.1).  Similar to wt Gme SMUG1 (Fig. 2.2C), the G63P mutant 

retained a high level of uracil DNA glycosylase activity, as demonstrated by close to 
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complete cleavage under the same assay conditions (Fig. 2.6A).  In stark contrast to the 

wt enzyme and other mutants, G63P completely lost xanthine DNA glycosylase activity 

toward any xanthine-containing DNA substrate, indicating that this mutant became an 

exclusive uracil DNA glycosylase (compare Fig. 2.6A with Fig. 2.2C).  Furthermore, 

the subtle difference in UDG activity between the wt enzyme and G63P was revealed by 

kinetic analysis.  Although both of them showed similar levels of activity when the 

enzyme was in excess (E:S = 10:1) (Fig. 2.2C and Fig. 2.6A), G63P differed from the wt 

enzyme in cleavage of G/U and single-stranded U substrates.  Under the assay 

conditions in which the substrate was in excess (E:S = 1:10), while the wt enzyme was 

most active with G/U and least active with ss U (Fig. 2.3A), G63P showed a somewhat 

lower activity with G/U; however, elevated activity with ss U  (Fig. 2.6B).  As a 

consequence, the UDG activity from G63P is more uniform with respect to all uracil 

substrates relative to the wt SMUG1 with the apparent rate constants in the range of 0.24-

0.25 per min (Table 2.1), demonstrating a kinetic character that is consistent with the 

Family 1 UDG or UNG (19). 

 

H210 and A214R in motif 2 

 H210 in motif 2, a conserved residue in all UDG families except for Family 2 

MUG/TDG, was substituted by glycine, methionine and asparagine (Fig. 2.1).  Overall, 

the mutants were significantly less active toward uracil substrates than the wt enzyme 

(Fig. 2.7A-B).  Excision of uracil in C/U, T/U and G/U experienced a more than ten-

fold reduction in activity as compared with the wt enzyme (Table 2.1).  Cleavage of an 
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A/U substrate suffered 56-fold, 67-fold and 21-fold decreases for H210G, H210M, and 

H210N, respectively (Fig. 2.7A and Table 2.1).  In addition, these mutants demonstrated 

a significant loss of single-stranded UDG activity (Fig. 2.7A, U), indicating a catalytic 

feature that is more in-line with Family 5 UDGb enzymes (25).  Additionally, the XDG 

activity of H210G, H210M and H210N was reduced to such a level that the cleavage 

product was barely detectable even when the enzyme was in excess (Fig. 2.7A). 

 
Figure 2.7 Cleavage activity of H210 mutants of Gme SMUG1 on U- and X-containing 
substrates and kinetic analysis of cleavage activity on U-containing substrates.  A. 
GeneScan gel pictures of cleavage activity of H210 mutants on U- and X-containing 
substrates.  U or X: single-stranded uracil- or xanthine-containing substrate.   B. Time 
course analysis of cleavage activity on U-containing substrates.  S = 10 nM.  E:S = 
10:1.  (�) C/U; () A/U; (�) T/U; (�) G/U.  C. GeneScan gel picture and time 
course analysis of cleavage activity of the A214R mutant on U- and X-containing 
substrates.  S = 10 nM.  E:S = 10:1.  (�) C/U or C/X; () A/U or A/X; (�) T/U or 
T/X; (�) G/U or G/X; (�) ss U or ss X. 
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All bacterial homologs contain an alanine at the position homologous to position 

214 in Gme SMUG1, while eukaryotic SMUG1 proteins typically contain an arginine 

residue in this position (Fig. 2.1).  The A214R substitution was made in Gme SMUG1 

to test its effects on the glycosylase activity.  Under the assay conditions in which the 

enzyme was in excess (E:S = 10:1), the A214R mutant maintained a similar level of UDG 

activity as the wt enzyme on C/U, T/U and G/U substrates as indicated by very similar 

apparent rate constants (Fig. 2.7C and Table 2.1).  On the other hand, the efficiencies of 

the A214R mutant on A/U and ss U substrates were reduced by 2.9- and 13-fold, 

respectively (Table 2.1).  Cleavage of all five X-containing substrates was reduced, 

ranging from 3-fold for C/X to approximately  4-fold for T/X, G/X and ss X to five-fold 

for A/X (Fig. 2.7C and Table 2.1).  Under the assay conditions in which the substrate 

was in excess (E:S = 1:10), only the cleavage of U-containing substrates was observed 

with the activity following the descending order of C/U > T/U > G/U >> A/U, ss U (data 

not shown). 

 

5. Discussion 

Bacterial SMUG1 

 The rapid sequencing of bacterial genomes has changed our view on SMUG1 

as a eukaryote-only DNA repair enzyme (this work and (40)).  To the best of our 

knowledge, this work is the first report to provide experimental evidence to prove 

SMUG1 homologs from bacteria act as DNA glycosylases.  The distribution of SMUG1 

in nature appears to be limited.  So far, it has been found only in four bacterial species 
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(Fig. 2.1).  Geobacter metallireducens, isolated from the Potomac River near 

Washington D. C., is capable of oxidizing organic compounds using iron oxides as the 

electron acceptor (52).  In addition to SMUG1, the Gme genome contains a Family 4 

UDGa homolog.  Given that it lacks a Family 1 UDG or UNG commonly found in 

prokaryotic and eukaryotic organisms, SMUG1 may play an important role in the repair 

of cytosine and guanine deamination in DNA in Geobacter metallireducens. 

 

SMUG1 as xanthine DNA glycosylase 

One of the major findings from this study is that SMUG1 enzymes, regardless of 

their origins, contain xanthine DNA glycosylase activity.  This is surprising since 

eukaryotic SMUG1 enzymes are only known to be active toward uracil, uracil 

derivatives, or ethenocytosine (41, 42).  However, we recently reported oxanine DNA 

glycosylase activity from mammalian cell extracts and purified human SMUG1, 

indicating several deaminated purine base lesions are also accommodated by the active 

site in SMUG1 (44).  This work offers a comprehensive analysis of xanthine DNA 

glycosylase activity between bacterial SMUG1 and human SMUG1.  The XDG activity 

from bacterial SMUG1 appears far more robust than that from hSMUG1 (Figs. 2.3 and 

2.4).  At the maximal incubation time (60 min) and with the enzyme in excess, the Gme 

SMUG1 was able to remove 70% of xanthine from either double-stranded or single-

stranded DNA (Fig. 2.3B).  On the other hand, human SMUG1 can only remove less 

than 15% xanthine from DNA (Fig. 2.4B).  It should be noted that the XDG activity 

from hSMUG1 (< 15%) is more robust than its ODG activity (~3%) (44).  Despite the 
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difference in the level of XDG activity, both the bacterial and human SMUG1 can 

remove xanthine regardless of strandness or opposite base.  It should be pointed out that 

the XDG activity of Gme SMUG1 is distinct from its UDG activity in two respects.  

First, the overall XDG activity of Gme SMUG1 is less robust than the UDG activity (Fig. 

2.3).  Second, the UDG activity is sensitive toward strandness and somewhat toward the 

opposite base (Fig. 2.3A).   

 

Table 2.2: Interaction energies (kcal/mol) between substrates and SMUG1a 

 Uracil Xanthine Uracil (min) Xanthine (min) 

Gme SMUG1 -34.4 -36.8 -39.0 -68.1 

Human SMUG1 -36.4 -26.2 -41.0 -53.4 
a: Interaction energies, the sum of the intermolecular nonbonded van der Waals and 
Coulomb energies between the enzyme and ligand, were calculated under vacuum 
conditions without cutoffs and determined for both the initial model complexes as well as 
the minimized (min) model complexes. 

 

In order to gain further insight into the experimental results, molecular modeling 

calculations were performed to characterize the structural and energetic properties of the 

Gme and human SMUG1 enzymes bound to uracil and xanthine.  We investigated the 

significant differences in xanthine DNA glycosylase activity between Gme and human 

SMUG1 enzymes.  This was accomplished by first homology modeling the Gme and 

human SMUG1 enzymes complexed with xanthine and uracil and then followed up with 

a qualitative estimate of the relative interaction energies associated with these complexes 

(Table 2.2).  Within the charmm molecular modeling package, simple interaction 

energies were calculated between the SMUG1 enzymes and their substrates uracil and 

xanthine.  Although the comparison of interaction energies (intermolecular Coulomb 
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and van der Waals energies) is not an accurate way of determining binding free energy 

values, it provides a rapid, qualitative means of accessing key interactions between the 

ligand and the protein.  We examined both the initial models of the enzymes bound to 

their substrates as well as the models following a gentle minimization protocol described 

in the Materials and Methods section.  These basic calculations, when applied to both 

sets of models, indicate that uracil is accommodated in both the Gme and human SMUG1 

enzymes similarly (Table 2.2).  However, xanthine is accommodated much more readily 

by the Gme SMUG1 than the human homolog as indicated by the more negative 

(favorable) interaction energies determined in the Gme SMUG1-xanthine complex.  As 

shown in Table 2.2, these interaction energy trends are consistent when examining both 

the initial models of the complexes as well as the optimized (minimized) models.   

A            B 

      
Figure 2.8 Minimized structures of Gme SMUG1 and human SMUG1.  A. Gme 
SMUG1-xanthine complex structure.  M64 and xanthine are shown in color.  B. 
Human SMUG1-xanthine complex structure.  M91 and xanthine are shown in color.  
Hydrogen bond formed between the backbone amide of M64 and N7 of xanthine in Gme 
SMUG1 (A) is missing in the human SMUG1 (B).   
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By closely examining the contributions from each amino acid in the Gme and 

human SMUG1 enzyme to their vdW and Coulombic interactions with xanthine, we find 

that a key interaction with M64, which forms a backbone hydrogen bond with N7 of 

xanthine in the Gme SMUG1-xanthine complex, is significantly weakened in the human 

SMUG1-xanthine complex (Fig. 2.8).  This weakened interaction may partly contribute 

to the lower activity of human SMUG1 for xanthine (Figs. 2.2 and 2.4). 

 

G60Y 

All UDG superfamily enzymes consist of two motifs involved in the activation of 

a water molecule for attacking the glycosidic bond and recognition of deaminated bases 

(19, 53).  The mutational analysis described here reveals contributions from motifs 1 

and 2 in the recognition of both the pyrimidine deaminated base uracil and the purine 

deaminated base xanthine.  As an experimental control, we constructed the W62F 

mutant and modeled its structure.  Amino acid substitutions at the non-conserved W62 

did not seem to significant affect its catalytic activity in Gme SMUG1 and hSMUG1 

(Fig. 2.5 and (51)), suggesting that W62 is not part of the recognition pocket.  Indeed, 

the sidechain of W62F is directed away from the binding pocket according to the 

molecular modeling (Supplemental Fig. 2.1, W62 and W62F).   

The mainchains of G98 (equivalent to G60 in Gme SMUG1 and G87 in 

hSMUG1) and M102 (equivalent to M64 in Gme SMUG1 and M91 in hSMUG1) form 

hydrogen bonds to a well-ordered water molecule in the x-ray structure of Xenopus 

SMUG1 (43).  Mutations at the corresponding positions in Gme SMUG1 had very 
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different effects.  Neither M64G in Gme SMUG1 described in this study nor M91A in 

hSMUG1 significantly alter the catalytic activity (Fig. 2.5 and (51)).  On the other hand, 

G60Y in Gme SMUG1 and G87Y in hSMUG1 rendered the enzymes completely inactive 

(this work and (40)).  Note all UDG superfamily enzymes take a glycine or alanine in 

this position except for UDG Family 1.  These results, combined with biochemical 

analysis of G87A, G87S, G87V, and G87F in hSMUG1 (40, 51), suggest that a bulky 

sidechain may prevent recognition of both uracil and xanthine in the active site. This is 

substantiated by examining molecular models for the G60Y and M64G mutants.  In the 

case of M64G, the sidechain is directed away from the base binding pocket and thus may 

cause minimal changes to the activity of the enzyme (Supplemental. 2.1, M64 and M64G; 

located at the end of this chapter).  On the other hand, models of the G60Y mutation in 

Gme SMUG1 indicate that the bulky tyrosine is in a position that may inhibit a flipped 

out base from entering the binding pocket (Fig. 2.9A).  Models indicate that the base 

binding pocket in G60Y still has enough room to accommodate a free DNA base; 

however, the proximity of the tyrosine at position 60 to the N1 of uracil suggests the 

possibility that this amino acid is blocking the channel to the binding site.  As a result, 

both UDG and XDG activities are eliminated.  Interestingly, in the human UNG 

structure, the equivalent Y147 blocks binding of pyrimidines other than uracil  (54).  

Mutational analysis shows that Y147A, Y147C and Y147S of human UNG become 

active on cytosine and thymine bases (55).  To understand the distinctly different 

specificity exhibited by the SMUG1 and UNG enzymes, we compared the human UNG 

structure with the modeled Gme SMUG1 G60Y mutant structure (Fig. 2.9A).  The 
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molecular models strongly indicate that the tyrosine at position 60 in the G60Y structure 

is sterically blocking the binding channel (Fig. 2.9A, compare Gme-WT with Gme-

G60Y).  However, an examination of the binding channel of the human UNG structure 

clearly shows that the corresponding tyrosine is in a conformation that does not interfere 

with the binding channel (Fig. 2.9A, hUNG-WT and Gme-G60Y)  (40, 56).   

 
Figure 2.9 Molecular modeling and molecular dynamics simulation of Gme SMUG1 
mutants.  A. Models depicting the effect of Gme SMUG1 G60Y mutation on the entry 
of a uracil base to the binding pocket.  Uracil, G60 and G60Y in Gme SMUG1, and 
Y147 in human UNG (pdb code: 1ssp) are shown in color.  B. Difference in isotropic 
root mean squared fluctuations between the wt Gme SMUG1 and the M57L mutant. 
Positive values indicate that C-α’s are more rigid in the mutant. 

 

 



82 
 

M57L and A214R 

The M57L substitution reduced; however, did not abolish both UDG and XDG 

activities.  In the Xenopus SMUG1 crystal structures and the modeled Gme SMUG1 

structures, the mainchain amide of M57 interacts with the C2-keto group of uracil or 

xanthine.  Mutating the sidechain would not directly perturb this interaction.  Further, 

the sidechain of methionine and the sidechain of leucine in the models both appear to be 

directed away from the binding site into the core of the protein (Supplemental Fig. 2.1, 

M57 and M57L). However, given the fact that M57 directly neighbors the catalytic N58 

residue, subtle changes in structure or dynamics in this region could significantly impact 

the specificity and catalytic efficiency of the Gme SMUG1 enzyme.  In order to explore 

the impact of the M57L mutation on the Gme SMUG1 enzyme, we ran molecular 

dynamics simulations examining any relevant changes to the flexibility of the enzyme.  

The results indicate the flexibility of the M57L mutant is perturbed, most notably in the 

motif 2 region, which demonstrates greater flexibility (Fig. 2.9B).  Since part of motif 2 

(equivalent to 211PSPAS215 in Gme SMUG1) is a “wedge” that occupies the space 

vacated by the flipped-out base  (43), we surmise that this change may result in a less 

effective “wedge” that will not sufficiently stabilize the double-stranded DNA in the 

flipped out conformation.  As a result, the M57L mutant shows a reduction in the 

xanthine DNA glycosylase activity (Fig. 2.5 and Table 2.1).   

To test this hypothesis, we substituted alanine with arginine at the 214 position.  

The A214R substitution in Gme SMUG1, which mimics the human SMUG1, reduced its 

XDG activity (Fig. 2.7C).  This is consistent with the low XDG activity observed in 
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hSMUG1 (Fig. 2.4).  Furthermore, the reduced activity on A/U and ss U resembles 

Xenopus SMUG1 in which G/U is a more efficient substrate than either A/U or ss U (43).  

These results may suggest that the A214R mutant is less capable of flipping a deaminated 

base.  Similarly to the M57L mutant, the A214R mutant displays increased selectivity 

for uracil.  Therefore, either a direct mutation at the “wedge” or a remote change such as 

M57L that alters the flexibility of the “wedge” may achieve a similar effect on SMUG1’s 

glycosylase activity.   

 

H210G, H210M and H210N 

In the crystal structure of the Xenopus SMUG1 enzyme, H250 in motif 2 

(equivalent to H210 in Gme SMUG1) appears to contribute a hydrogen bond interaction 

with the C2-keto group in uracil  (43).  All three Gme SMUG1 mutants (H210N, 

H210M, H210G) exhibited similar effects, i.e., close to complete loss of XDG activity 

and substantial loss of UDG activity (Fig. 2.7 and Table 2.1).  In the modeled structures, 

H210G and H210M lose the hydrogen bond interaction, which may contribute to the 

substantial loss of activity by these mutants.  The loss of catalytic activity on the A/U 

substrate is less severe with the H210N mutant (Fig. 2.7A and Table 2.1).  This may be 

due to the fact that H210N potentially can still form a hydrogen bond via its sidechain 

amide, which may help maintain the interaction with the uracil base in an A/U base pair.  

However, even H210N lost substantial UDG activity as compared with the wt enzyme, 

suggesting that H210 may play other subtle roles beyond a simple hydrogen bond 
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interaction.  One possibility is that the H210 mutants may impact the structure or 

flexibility of the neighboring “wedge” region of the SMUG1 enzyme. 

 

G63P 

The G63P substitution in motif 1 showed the most striking effect as it abolished 

Gme SMUG1’s xanthine DNA glycosylase activity (Fig. 2.6).  Consistent with a proline 

at this position in UDG Family 1 (Fig. 2.1), G63P is kinetically quite similar to UDG or 

UNG (Table 2.1). We surmised that a mutation from glycine to a more conformationally 

restrictive proline would alter movement within the activation loop of the Gme SMUG1 

enzyme.  A change of the dynamics within this critical region of the enzyme may 

contribute to the observed loss of xanthine DNA glycosylase activity.  To understand 

the effect of G63P on the catalytic activity, we modeled G63P into the Gme SMUG1 

structure (Fig. 2.10A).  Several interesting insights emerged from molecular dynamics 

simulations performed on the wild-type Gme SMUG1 and the G63P mutant.  First, the 

equilibrated trajectories were analyzed to determine whether there were any significant 

changes in the C-α isotropic root mean squared fluctuations (RMSF) of each protein.  

The results indicate that indeed the flexibility of the loop regions in motifs 1 and 2 are 

altered by the G63P substitution (Fig. 2.10B).  Consistent with the M57L mutation (Fig. 

2.9B), the increased flexibility of the “wedge” region in motif 2 may contribute to the 

increased selectivity of this mutant for uracil over xanthine.  Second, an examination of 

the base binding pocket indicates that the G63P mutation causes a reduction in the 

average free volume, which may also contribute to this mutant being able to more  
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Figure 2.10 Molecular modeling and molecular dynamics simulation of Gme SMUG1 
G63P mutant.  A. Model of G63P mutant bound to uracil.  Motif 1 is shown in orange 
and motif 2 is shown in green.  G63P and uracil are shown in color.  B. Difference in 
isotropic root mean squared fluctuations between the wt Gme SMUG1 and the G63P 
mutant.  Positive values indicate that C-α’s are more rigid in the mutant.  C. Free 
volume distributions of WT Gme SMUG1 and G63P mutant.  D. A closeup view of the 
catalytic residue N58 and its vicinity.  N58, G63P and uracil are shown in color. 
 

effectively eliminate binding to the larger xanthine base while maintaining strong 

interactions with the smaller uracil base (Fig. 2.10C).  In contrast, there is no significant 

change in free volume observed between M57L and the wt enzyme (data not shown).  

Third, G63P maintains robust and uniform uracil DNA glycosylase activity toward all 

five U-containing substrates (Fig. 2.6B and Table 2.1).  N58 is the catalytic residue that 

activates a water molecule to attack the N-glycosidic bond.  The RMSF chart shows that 
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N58 appears to be situated in a more rigid loop in the G63P mutant than that in the wt 

enzyme (Fig. 2.10B and D).  This change in the dynamic character may help to more 

efficiently align the catalytic center to the scissile glycosidic bond, thus contributing to 

the robust glycosylase activity with respect to all five uracil-containing substrates (Table 

2.1).  Overall, it may be that the structural changes in the active site result in a 

conformation more accommodating to uracil in addition to excluding xanthine.  This 

effect might explain the uniformity of activity against all uracil substrates.  As such, 

Gme SMUG1 is switched to a Family 1 UDG- or UNG-like enzyme by the G63P 

mutation.  Protein dynamics have been shown to be closely associated with enzyme 

catalysis (57-61), where interconversions between sub-states have been observed (62).  

By modulating the flexibility of specific protein regions, G63P may confine the motion of 

Gme SMUG1 toward more productive conformations. 

In summary, this study reveals that both bacterial and human SMUG1 enzymes 

are not only uracil DNA glycosylases but also xanthine DNA glycosylases.  The 

difference in XDG activity between the bacterial SMUG1 and human SMUG1 may be 

attributable to the ability of the bacterial enzyme to effectively flip out the xanthine base 

and accommodate it in the active site by specific interactions.  The striking switching of 

SMUG1 to an exclusive Family 1 UDG- or UNG-like enzyme by a single amino acid 

substitution underscores the evolutionary conservation between Family 3 SMUG1 and 

Family 1 UDG or UNG.  Molecular modeling and molecular dynamics analyses 

uncover the power a single amino acid substitution may exert on substrate specificity as 

well as catalytic efficiency through the tuning of protein conformational flexibility.  
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Given that loop regions are commonly involved in the active site of many enzymes, this 

mechanism for evolving distinct and specialized enzyme functions (such as the truly 

selective UNG function generated through a glycine to proline mutation) may be a 

general mechanism applicable to other DNA repair enzymes and perhaps other enzyme 

classes. 
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Supplemental Figure 2.1 Molecular modeling of Gme SMUG1.  Uracil, M57 (A), M57L 
(B), W62 (C), W62F (D), M64 (E), and M64G (F) are shown in color. 
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CHAPTER THREE 

DISSECTING ENDONUCLEASE AND EXONUCLEASE ACTIVITIES IN 

ENDONUCLEASE V FROM THERMOTOGA MARITIMA 

 

1. Abstract 

Endonuclease V is an enzyme that initiates a conserved DNA repair pathway by 

making an endonucleolytic incision at the 3’ side one nucleotide from a deaminated base 

lesion.  DNA cleavage analysis using mutants defective in DNA binding and Mn2+ as a 

metal cofactor reveals a novel 3’-exonuclease activity in endonuclease V.  This study 

defines the endonuclease and exonuclease activity in endonuclease V from Thermotoga 

maritima (Tma).  In addition to its well-known inosine-dependent endonuclease, Tma 

endonuclease V also exhibits inosine-dependent 3’-exonuclease activity.  The 

dependence on inosine site and the exonuclease nature of the 3’-exonuclease activity was 

demonstrated using 5’-labeled and internally-labeled inosine-containing DNA and 

H214D mutant that is defective in nonspecific nuclease activity.  Detailed kinetic 

analysis using 3’-labeled DNA indicates that Tma endonuclease V also possesses 

nonspecific 5’-exonuclease activity.  The multiplicity of the endonuclease and 

exonuclease activity is discussed with respect to deaminated base repair. 
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2. Introduction 

Endonuclease V (endo V) is a DNA repair enzyme which hydrolyzes the second 

phosphodiester bond 3' from a deaminated base lesion (1-4).  Inosine derived from 

adenosine deamination, xanthosine and oxanosine from guanosine deamination, and 

uridine from cytidine deamination are all substrates in vitro for endo V (1-3, 5, 6).  The 

endonuclease activity towards inosine and its role in repair of deaminated inosine damage 

in vivo have been studied intensely.  Biochemical and kinetic analysis reveals that endo 

V remains bound to inosine-containing DNA after strand cleavage (1, 3, 7, 8).  It was 

proposed that this unique property may act as a sensor to recruit other proteins for 

downstream repair process (3).  Genetic analysis using endo V (encoded by nfi gene) 

deletion mutants indicates that endo V is a primary repair enzyme for the repair of 

inosine lesions produced under nitrosative stress condition (9-11).  After the 3’ cut by 

endo V downstream of the inosine site, a repair patch needs to be created to remove the 

lesion.  Taking advantage of an oligonucleotide-mediated transformation system in 

Escherichia coli (E. coli), a genetic study demonstrates that repair of inosine in 

chromosome creates a five-nucleotide (nt) gap (12).  After the cleavage at the inosine 

site, the repair patch is defined by removal of two nt from the 5’ side and three nt from 

the 3’ side (12). 

The structure and function relationship of this repair enzyme has been 

investigated intensely using thermostable endonuclease V from the thermophilic 

bacterium Thermotoga maritima (Tma) as a model system.  A systematic site-directed 

mutagenesis analysis on all seven conserved motifs defines the role of a series of residues 
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in motifs I, III, IV, V, Vi, VII in interactions with inosine in DNA (13).  D43, E89, 

D110, and H214 are part of the active site that coordinates metal binding and catalytic 

function (14).  Several conserved amino acid residues in motifs III and IV play an 

important role in protein-DNA interactions and recognition of deamianted DNA bases. 

In addition to the endonuclease activity nicking the inosine site, Tma endo V also 

contains nonspecific endonuclease activity (3).  An important finding from previous 

systematic site-directed mutagenesis analysis is the revelation of 3’-exonuclease activity 

from Tma endo V (13).  Previous biochemical characterization of the nuclease activity 

from Tma endo V primarily focused on endonuclease activity on deaminated lesions (2, 

3, 7, 13-15).  In this study, we investigated endonuclease and exonuclease activities 

from Tma endo V using 5’-labeled, 3’-labeled, 5’-internally labeled inosine-containing 

DNA.   Using 5’-labeled T/I and T/A substrates and 5’-internally labeled T/I substrate, 

we detected inosine-dependent 3’-exonuclease activity.  Using H214D mutant that 

primarily retained inosine-dependent endonuclease and 3’-exonuclease activity, we 

defined the kinetic property of the inosine-dependent 3’-exonuclease activity.  Using 3’-

labeled T/I and T/A substrates, we detected and defined nonspecific 5’-exonuclease 

activity.  Using 5’-labeled dual inosine-containing substrate, we defined the 

directionality of endo V’s movement on DNA.  
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3. Experimental Procedures 

Reagents, media, and strains.   

All routine chemical reagents were purchased from Sigma Chemicals (St. Louis, MO), 

Fisher Scientific (Suwanee, GA) or VWR (Suwanee, GA).  Deoxyoligonucleotides were 

ordered from Integrated DNA Technologies Inc. (Coralville, IA).  LB medium was 

prepared according to standard recipes.  GeneScan Stop Buffer consisted of 80% 

formamide (Amresco, Solon, OH), 50 mM EDTA (pH 8.0), and 1% blue dextran (Sigma 

Chemicals).  TB Buffer (1 x) consisted of 89 mM Tris base and 89 mM boric acid.  TE 

buffer consisted of 10 mM Tris-HCl, pH 8.0 and 1 mM EDTA.  Escherichia coli host 

strain AK53 (mrrB-, MM294) was from our laboratory collection.  Tma endo V mutant 

proteins were prepared as previously described (13). 

 

Oligonucleotide substrates.   

The sequences of the oligonucleotides are shown in Fig. 2.2A.  Oligonucleotides 

containing inosine or uridine were ordered from IDT and purified by PAGE.  The 

oligonucleotides were dissolved in TE buffer at a final concentration of 10 µM.  The 

two complementary strands with the unlabeled strand in 1.2-fold molar excess was mixed 

and incubated at 85°C for 3 min and allowed to form duplex DNA substrates at room 

temperature for more than 30 min.  Oligonucleotides containing xanthosine (X) or 

oxanosine (O) were prepared as previously described (1, 17).   
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Tma endo V cleavage assays.  

The cleavage reaction mixtures (10 µL) containing 10 mM HEPES-KOH (pH 

7.4), 1 mM DTT, 2% glycerol, 5 mM MnCl2 (unless otherwise specified), 10 nM 

oligonucleotide DNA substrate, and 100 nM Tma endo V protein (unless otherwise 

specified) were incubated at 65℃ for 30 min.  The reactions were terminated by 

addition of an equal volume of GeneScan Stop Buffer.  The reaction mixtures were then 

heated at 94 ℃ for 3 min and cooled on ice.  Samples (3.6 µL) were loaded onto a 16% 

denaturing polyacrylamide gel containing 7 M urea.  Electrophoresis was conducted at 

1500 V for 3.2 h using an ABI 377 sequencer (Applied Biosystems).  Cleavage products 

and remaining substrates were quantified using GeneScan analysis software version 3.0.  

 

4. Results 

Cleavage of 5’-labeled inosine- and non-inosine-containing substrates 

Endonuclease V is an authentic nuclease involved in repair of DNA after 

deaminat base damage such as inosine.  For example, the thermostable ortholog from 

Thermotoga maritima has been a valuable model system for biochemical investigation 

given its thermostability and ease to generate site-directed mutants.  Previously, we have 

conducted a systematic site-directed mutagenesis of Tma endo V and generated over 

sixty site-directed mutants (13).  Using the mutants with relatively low binding affinity 

to inosine-containing DNA, we observed 3’-exonuclease activity of Tma endo V in the 

presence of Mn2+ metal cofactor.  However, the biochemical properties of the 

exonuclease activity were not defined.   
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Figure 3.1 Cleavage activity of Tma endo V on 5’-labeled full-length T/I substrate. A. 
Conserved motifs of Tma endo V.  Site-directed mutants used in this study were listed 
above the arrows.  B. Cleavage activity of wt and mutant Tma endo V on 5’-labeled 
full-length T/I substrate. Cleavage reactions were performed as described in 
Experimental Procedures with 100 nM enzyme and 10 nM substrate.  The 5' end of the 
bottom strand was labeled with the Fam fluorophore.  The T/I base pair was underlined. 
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Figure 3.2 Cleavage activity of Tma endo V on 5’-labeled nicked and overhang T/I 
substrates.  Cleavage reactions were performed as described in Experimental Procedures 
with 100 nM enzyme and 10 nM substrate.  A. Cleavage activity of wt and mutant Tma 
endo V on 5’-labeled nicked T/I substrate.  B. Cleavage activity of wt and mutant Tma 
endo V on 5’-labeled overhang T/I substrate. 
 

This study attempts to understand the exonuclease activity in greater detail using 

thirty six mutants and the wt Tma endo V (Fig. 3.1A).  D43, E89, D110 and H214 are 

part of the active site that coordinates metal binding (14).  We initially tested the 

nuclease activity using a 5’ fluorescently labeled inosine-containing substrate (Fig. 3.1B).  

The inosine was placed at the 11th position from the 3’ side so that endo V cleavage 
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would generate a 51-mer since it cuts at the 3’-side one nucleotide from inosine.  If a 

mutant exhibited 3’-exonuclease activity, a long ladder below the 51-mer was 

anticipated.  Under the assay condition in which Mn2+ was used as a metal cofactor, all 

the mutants except D43A, D43C and D43H showed a strong 51-mer band, resulting from 

the specific inosine-dependent endonuclease activity (Fig. 3.1B).  Due to nonspecific 

nuclease activities, the wt enzyme cleaved the specific 51-mer to small low molecular 

weight products (Fig. 3.1B).  Similar to the previous observation (13), several mutants 

produced a ladder that was indicative of 3’exonuclease activity (Fig. 3.1B).   

The active site mutants in general did not show the 3’-exonuclease activity except 

E89D, H214C, H214D and H214E (Fig. 3.1B).  A few low activity mutants such as 

G113V, G121V and G136V also showed minimal ladder formation.  Consistent with the 

substantial reduction of binding affinity to inosine-containing DNA, H116E and in 

particular H116Y had little exonuclease activity (Fig. 3.1B).  Overall, the uniform 

ladders generated from several of the mutants confirmed that Tma endo V possesses 3’-

exonuclease activity. 

To further confirm the 3’-exonuclease activity, we assayed DNA cleavage using a 

synthesized nicked inosine-containing DNA with (Fig. 3.2A, T/I nicked substrate) or 

without the 3’ downstream complementary DNA (Fig. 3.2B, T/I overhang substrate).  

Regardless of which substrate tested, they all showed a very similar laddering pattern, 

suggesting that the 3’-exonuclease activity did not depend on the 3’ downstream 

complementary sequence.  We then tested whether the same pattern holds for single-

stranded inosine-containing substrates.  Indeed, the wt enzyme and the mutants all 
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showed a similar laddering pattern with the full-length and the short single-stranded 

inosine-containing substrates (Fig. 3.S1, located at the end of this chapter). 

Since all the substrates tested so far contained a single inosine in the sequences, 

we set out to determine how the wt enzyme and mutants cleave non-inosine-containing 

DNA.  Using a double-stranded substrate in which the T/I base pair was replaced with a 

T/A base pair, we measured the nonspecific nuclease activities.  As expected, the wt 

Tma endo V degraded the substrate to low molecular weight fragments due to 

nonspecific activities (Fig. 3.3A and (2)).  The majority of the binding mutants showed 

varying degree of nonspecific activities as indicated by the low molecular weight 

fragments in the bottom of the gel (Fig. 3.3A, Q20A-R205K).  The active site mutants 

exhibited little low molecular weight fragments (Fig. 3.3A, D43A-H214E), suggesting 

that the nonspecific activities were minimized.  A very similar pattern was observed in 

the single-stranded non-inosine-containing substrate (Fig. 3.3B).  A significant 

difference of the 3’-exonuclease pattern between the inosine-containing and non-inosine-

containing substrates was noted in certain active site mutants (Figs. 3.1 and 3.3).  In 

particular, H214D mutant only generated the well-formed ladder only with the inosine-

containing DNA; however, not with non-inosine-containing DNA.  This result indicates 

that the 3’-exonuclease activity requires the presence of an inosine site in the DNA. 
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Figure 3.3 Cleavage activity of Tma endo V on 5’-labeled non-inosine substrates. 
Cleavage reactions were performed as described in Experimental Procedures with 100 
nM enzyme and 10 nM substrate.  A. Cleavage activity of wt and mutant Tma endo V 
on 5’-labeled full-length T/A substrate.  B. Cleavage activity of wt and mutant Tma 
endo V on 5’-labeled full-length single-stranded substrate. 
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Figure 3.4 Time course analysis of cleavage activity by H214D on 5’-lableled full-length 
and nicked T/I substrates.  Cleavage reactions were performed as described in 
Experimental Procedures with 100 nM H214D and 10 nM substrate.  Reactions were 
stopped on ice at the indicated time points, followed by addition of an equal volume of 
GeneScan Stop Buffer.  A. Time course analysis of cleavage activity by H214D on 5’-
labeled full-length T/I substrate.  B. Time course analysis of cleavage activity by 
H214D on 5’-labeled nicked T/I substrate. 
 

The minimal nonspecific activity exhibited by the H214D mutant allowed us to 

better characterize the 3’-exonuclease activity without the interference of nonspecific 

activity as seen in the wt enzyme.  Taking advantage of this unique nuclease property, 

we studied the kinetics of the 3’-exonuclease activity using the H214D mutant.  At the 

initial time points, we observed significant cleavage at the inosine site to generate the 51-

mer fragment and small amount of lower molecular weight fragments on a T/I substrate 

(Fig. 3.4A, 2-5 min).  After that, a long ladder was produced by the 3’-exonuclease 

cleavage (Fig. 3.4A).  Interestingly, the ladder did not seem to start right below the 51-

mer band, instead, the vast majority of the ladder started around 43-mer position, leaving 

a 8-nucleotide gap in between (Fig. 3.4A).  To verify this kinetic property, we then 

performed a time course analysis using the nicked inosine-containing substrate.  The 
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cleavage of the nicked inosine-containing substrate essentially showed the same 

laddering pattern, with a gap between the 51-mer and the start of the ladder (Fig. 3.4B). 

 

Figure 3.5 Cleavage activity of Tma endo V on internally labeled T/I substrate. Cleavage 
reactions were performed as described in Experimental Procedures with 100 nM enzyme 
and 10 nM substrate.  The thymidine at position 14 from 5’ end of the bottom strand 
was labeled with the Fam fluorophore. 

 

Cleavage of internally labeled inosine-containing substrate 

To better understand the 3’-exonuclease activity, we designed an internally 

labeled substrate in which the fluorescent group was moved from the 5’ end to the 14th 

position thymine (Fig. 3.5).  The overall cleavage pattern was similar to the 5’-end 

labeled T/I substrates.  All the mutants except D43A, D43C and D43H generated a 51-

mer specific inosine-dependent cleavage product at the 51-mer position (Fig. 3.5). The 

same set of binding and active site mutants showed a 3’-exonuclease ladder.  A 

significant deviation from the cleavage of the internally labeled T/I substrate is that for 

many mutants in particular H214A, H214C and H214D the ladder halted at around 14-
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mer position (Fig. 3.5).  The implication of these observations will be discussed in detail 

later. 

 

Figure 3.6  Cleavage activity of Tma endo V on 3’-labeled full-length T/I and T/A 
substrates. Cleavage reactions were performed as described in Experimental Procedures 
with 100 nM enzyme and 10 nM substrate.  The 3' end of the bottom strand was labeled 
with the Fam fluorophore.  A. Cleavage activity of wt and mutant Tma endo V on 3’-
labeled full-length T/I substrate. B. Cleavage activity of wt and mutant Tma endo V on 
the 3’-labeled full-length T/A substrate. 

 

Cleavage of 3’-labeled inosine- and non-inosine-containing substrates 

To characterize any potential nuclease activities that initiates from the 5’ side, we 

switched the fluorescent label to the 3’ side of the oligonucleotide substrate with the 
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inosine placed at the 33th position from the 3’-label (Fig. 3.6A).  As expected, the 

endonuclease cleavage at the inosine site generated the 31-mer product (Fig. 3.6A).  

Again, the wt enzyme degraded the product to low molecular weight fragments as seen in 

the bottom of the gel.  Many binding mutants in particular Q20A, H116T, R118A and 

R205K still showed nonspecific activity; however, only R118A and R205K showed 

complete degradation of the 31-mer.  G113V, H116Y, R118K, K119R, G121V, G136V 

and S182I generated little low molecular weight fragments, indicating attenuated 

nonspecific activity (Fig. 3.6A).   

We then tested the nuclease activities on the 3’-labeled non-inosine substrate.  

The wt enzyme exhibited nonspecific activities to degrade the DNA to low molecular 

weight fragments (Fig. 3.6B).  Consistent with the results from the inosine-containing 

substrate, Q20A, H116T, R118A and R205K showed stronger nonspecific activity than 

other binding mutants (Fig. 3.6B, Q20A-R205K).  The active site mutants exhibited 

minimal nonspecific activity (Fig. 3.6B, D43A-H214E). 

To further understand the kinetic property of the nonspecific activity, we 

performed a time course analysis on the 3’-labeled non-inosine substrate.  At the intial 5 

sec time point, we observed small amount of high molecular weight fragments generated 

from degradation of the non-inosine substrate (Fig. 3.7).  With increased incubation 

time, the intensities of the fragments also increased.  After one min incubation, the high 

molecular weight fragments started to disappear while the bands of low molecular weight 

started to intensify.  These results indicated that Tma endo V possesses endonuclease or 

exonuclease activity that initiates nonspecific degradation from the 5’ end.     
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Figure 3.7 Time course analysis of cleavage activity by wt Tma endo 3’-labeled full-
length T/A substrate.  Cleavage reactions were performed as described in Experimental 
Procedures with 100 nM enzyme and 10 nM substrate.  Reactions were stopped on ice at 
the indicated time points, followed by addition of an equal volume of GeneScan Stop 
Buffer.   

 

5. Discussion 

Endonuclease V is a versatile DNA repair enzyme with multiple nuclease 

activities on different DNA substrates, including deaminated bases and mismatched base 

pairs.  Previous studies have indicated that endo V possesses 5’-exonuclease, 

nonspecific endonuclease, 3’-exonuclease activities, in addition to the inosine-specific 

endonuclease activity that nicks the inosine-containing strand at the one nucleotide 

downstream of the lesion from the 3’ side (3, 4, 18-20).  However, the nature of the 

multiple nuclease activities is not defined.  This study takes advantage of the site-

directed mutant reportire we accumulated previously and uses different end labeled and 

internally labeled oligonucleotide substrates to investigate the nuclease activities.  The 

biochemical data presented here allows us to dissect the nature of the multiple nuclease 

activities. 
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Inosine-dependent and nonspecific endonuclease activity 

Endo V is known as a deaminated base repair enzyme.  The inosine-dependent 

endonuclease activity is well documented and is a relevant enzymatic activity in vivo (1, 

3-5, 8, 9, 11, 21, 22).  The inosine-dependent endonuclease activity is the primary 

enzymatic activity that is well maintained within the protein structure.  This is 

evidenced by the retention of the activity by most of the Tma endo V mutants tested 

except three active site mutants (D43A, D43C, D43H) (Figs. 3.1 and 3.S1).  Tma endo 

V is also active on a nonspecific circular plasmid in particular when Mn2+ is used as a 

metal cofactor (3).  Thus, Tma endo V is an inosine-dependent endonuclease with 

nonspecific endonuclease activity. 

 

Inosine-dependent 3’-exonuclease activity 

Previously we detected 3’-exonuclease activity from Tma endo V using binding 

mutants (13).  Here we establish that the 3’-exonuclease activity is inosine-dependent.  

Support for this notion primarily comes from biochemical analysis of a few active site 

mutants.  H214C, H214D and H214E failed to show any ladder on the 5’-labeled non-

inosine substrate; however, formed a distinct ladder on all 5’-labeled inosine-containing 

substrate (Figs. 3.1-3.3 and 3.S1), suggesting that the 3-exonuclease activity relies on the 

initial primary cut at the inosine site to initiate the secondary enzymatic action.  It is 

well recognized that Tma endo V remains bound to the nicked product after cleavage at 

the inosine site (1, 3, 7, 13).  The affinity to the inosine site appears to be essential for 

initiating the 3’-exonuclease action.   



112 
 

The more interesting kinetic property of the inosine-dependent 3’-exonuclease 

activity is revealed from the time course analysis using the H214D mutant that has 

minimal nonspecific nuclease activity (Fig. 3.4).  First, the vast majority of the cleavage 

bands appeared around 8-nt below the 51-mer.  These results indicate that the first 

hydrolysis reaction may not occur at the first nucleotide; instead, the enzyme makes a 

first cut at a few nucleotides at the 5’-side from the inosine specific cleavage, leaving a 8-

nt gap in between.  After the initial cut to remove the short inosine-containing 

oligonucleotide fragment, the enzyme then proceeds at the 3’ to 5’ direction in a 

complete 3’-exonuclease manner.  By cleaving one nucleotide at a time on the 5’-

labeled DNA, the fall-off of the enzyme at different sites allows formation of a laddering 

pattern. The laddering pattern shows little change over time, i.e., the pattern at 60 min is 

quite similar to that at 7 min (Fig. 3.4B).  This indicates that the 3’-exonuclease action 

only occurs once on an inosine-containing DNA.  Once the enyzme removes the short 

inosine-containing fragment and falls off the DNA, it has little chance to re-bind to the 

3’-side to reinitiate the 3’-exonulcease action.  This kinetic pattern reinforces the notion 

that the 3’-exonuclease activity is inosine-dependent.   

An alternative explanation for the even laddering pattern throughout the time 

course is that it is caused by singularly random endonuclease action that allows the 

enzyme to jump randomly in the 3’ to 5’ direction at a downstream site after the first cut 

to remove the short inosine-containing fragment.  We found this cut and jump model not 

plausible in comparison with the above cut and chew model due to the distinct even one-

nt laddering pattern (Fig. 3.4).  More importantly, if the enzyme adopts the cut and jump 
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model, we could have seen the ladder extends beyond the 14-mer mark in the internally 

labeled substrate (Fig. 3.5).  Instead, the ladder stopped at the 14-mer position for most 

of the mutants (Fig. 3.5). 

Does the wt enzyme possess nonspecific 3-exonuclease activity?  Although the 

data presented here may not give an absolute answer.  We tend to believe the answer is 

no based on the following reasonings. First, no obvious ladders were observed with 5’-

labeled nonspecific substrates (Fig. 3.3).  Second, the time course data from the 3’-

labeled substrate does not show appearance of low molecular weight fragments at the 

bottom of the gel (Fig. 3.7), which would indicate nonspecific 3’-exonulcease activity.  

Last, the experimental data presented below already demonstrates that the enzyme tracks 

DNA in a 5’ to 3’ direction.   

 

5’-exonuclease activity 

It has been proposed that Tma or E. coli endo V enzymes contain 5’-exonuclease 

activity (18-20).  We measured the 5’-exonuclease activity using 3’-labeled substrates.  

A ladder formed by several mutants such as Q20A and R205K is a good indication of 5’-

exonuclease activity (Fig. 3.6).  The 5’-exonuclease activity is nonspecific since it does 

not dependent on the existence of an inosine site (Fig. 3.6).  A more definitive proof of 

the 5’-exonuclease activity comes from the time course analysis of the 3’-labeled subtrate 

(Fig. 3.7).  At the initial time points, the 5’-exonuclease action produces a ladder 

consisting of higher molecular weight fragments (Fig. 3.7, 5-20 sec).  At the later time 

points, the continuous 5’-exonuclease action results in the disappearance of the higher 
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molecular weight fragments with concurrent accumulation of lower molecular weight 

fragments (Fig. 3.7, 5-20 min).  The detail kinetic analysis also indicates that the mode 

of action of the 5’-exonuclease is somewhat different from the inosine-dependent 3’-

exonuclease discussed above.  Whereas the 3’-exonuclease action seems to remove one 

nucleotide at a time, the nonspecific 5’-exonuclease generates a combination of one 

nucleotide and oligonucleotide products.   

 

Nuclease activities and inosine repair 

Since endo V cuts at the 3’ side of the lesion, the inosine damage still remains in 

the DNA.  Additional enzymatic actions are required for the removal of the damage.  

Based on the result obtained from an oligonucleotide-based study in E. coli, after nicking 

by the inosine-dependent endonuclease activity of E. coli endo V, two-nt from 5’ side and 

three nt from 3’ side are removed to create a gap (12).  The enzymes responsible for the 

removal of inosine and subsequent creation of the 5-nt gap in the repair process are not 

identified yet.  However, the inosine-dependent 3’-exonuclease and nonspecific 5’-

exonuclease raise the possibility that endo V, is facilitated by another protein factor, and 

if so could potentially be involved in creation of the short gap during the repair process.  

If this is the case, then endo V can latch on to a DNA and search for an inosine site.  

Once the enzyme nicks at the 3’ side of an inosine site, it may recruit a protein partner to 

allow it use its inosine-dependent 3’-exonuclease and nonspecific 5’-exonuclease to 

remove the inosine in the DNA.  The gap created by the multiple enzymatic actions can 

then be filled by a DNA polymerase and the resulting nick sealed by a DNA ligase.  
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Interestingly, in the case of mismatch repair, human MutLa is found to be a Mn2+-

dependent endonuclease that can be activated in the presence of a mismatch, ATP and 

multiple protein factors (23).  Of course, it is also possible that the in vitro exonuclease 

activities are not relevant to the in vivo process.  In this scenario, independent 

nuclease(s) instead of endo V is involved in the post-inosine cleavage process.  

Regardless of whether the multiple nuclease activities are physiologically relevant, this 

work reveals a series of concerted enzymatic functions that may define the inner working 

of endonuclease V. 
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Figure 3.S.1 Cleavage activity of Tma endo V on 5’-labeled single-stranded and short I-
containing substrates. A. Exonuclease activity of Tma endo V mutants on 5’ labeled 
single-stranded I-containing substrate. Cleavage reactions were performed as described in 
Experimental Procedures with 100 nM enzymes and 10 nM substrate. B. Exonuclease 
activity of Tma endo V mutants on 5’ labeled short I-containing substrate. Cleavage 
reactions were performed as described in Experimental Procedures with 100 nM enzymes 
and 10 nM substrate. 
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CHAPTER FOUR 

HUMAN ENDONUCLEASE V AS A DEAMINATION REPAIR ENZYME 

 

1. Abstract 

Human endonuclease V located in chromosome 17q25.3 is a 282 amino acid 

protein that shares approximately  30% sequence identity with bacterial endonuclease V.  

This study reports biochemical properties of human endonuclease V with respect to repair 

of deaminated base lesions.  Using soluble proteins from recombinant sources, we 

determined repair activities of human endonuclease V on inosine (I)-, xanthosine (X)-, 

oxanosine (O)- and uridine (U)-containing DNA.  Human endonuclease V is most active 

with inosine-containing DNA; however, with minor activity on xanthosine-containing 

DNA.  Endonuclease activities on oxanosine and uridine were not detected.  The 

endonuclease activity on inosine-containing DNA follows the order of single-stranded I > 

G/I > T/I > A/I > C/I.  The preference of the catalytic activity correlates with the 

binding affinity of these inosine-containing DNA.  Mg2+ and to a much less extent, 

Mn2+, Ni2+, Co2+ can support the endonuclease activity.  Introduction of human 

endonuclease V into Escherichia coli cells caused two-fold reduction in mutation 

frequency.  This is the first report of deaminated base repair activity from human 

endonuclease V.  The relationship between the endonuclease activity and deaminated 

adenine (inosine) repair is discussed. 
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2. Introduction 

Endonuclease V (endo V) was initially discovered in Escherichia coli (E. coli) as 

a nuclease that acted on a variety of DNA damage (1,2).  In the course of identifying 

hypoxanthine DNA repair activity, E. coli endo V was rediscovered as a deoxyinosine 3’ 

endonuclease (3,4).  Endo V in general hydrolyzes the second phosphodiester bond 3’ to 

the aberrant site (3,5-11).  Inosine (known as hypoxanthine as a base), xanthosine and 

oxanosine, and uridine are deamination products derived from adenosine, guanosine, and 

cytidine (12-15).  In addition of endonuclease activity on DNA containing inosine 

(5,7,9,16), endo V was also found active on xanthosine (5,17-19), uridine (2,4,5,7,20), 

and oxanosine (5,6,17).  Genetic analysis indicates that endo V is involved in repair of 

inosine, xanthosine, and N6-hydroxylaminopurine (21-23).  Homologs from endo V 

family proteins are diverse in substrate specificity.  While bacterial endo V enzymes 

exhibit broad endonuclease activity towards different deaminated bases, endo V proteins 

from archaea species Archaeoglobus fulgidus and mouse seem to only active on inosine-

containing DNA (8,9).  Endo V from Salmonella typhimurium appears to possess high 

affinity to deaminated bases as it is the only endo V enzyme tested that shows detectable 

binding to oxanosine-containing DNA (5,6).  Interestingly, bacterial endo V enzymes 

also demonstrate endonuclease activity on mismatches (5,7,10,24), small 

insertions/deletions (indel) (11), flap and pseudo-Y structures (11).  The mismatch and 

indel cleavage activity has been exploited for development of mutation identification or 

scanning methods (25-28).   
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The structure-functional relationship has been extensively studied using endo V 

from the thermophilic bacterium Thermotoga maritima (Tma) as a model system.  

Sequence alignment has identified seven conserved motifs in endo V family proteins 

(Fig. 3.1A).  D43 in motif II, E89 in motif III, D110 in motif IV, and H214 in motif VII 

are identified as catalytic residues involved in coordination of metal ion (17,29).  Based 

on peculiar cleavage pattern occurred when Mn2+ was used as a metal cofactor and two-

metal competition assays, it was proposed that the active site of Tma endo V may contain 

two metal binding sites.  This model posits that the high affinity site (M1) holds a 

catalytic metal ion and the low affinity site (M2) retains another metal ion to modulate 

the nuclease activity (6,30).  Through a large-scale site-directed mutagenesis analysis, 

Y80, G83 and L85 in motif III, G113, H116, R118 and G121 in motif IV, G136 and 

A138 in motif V, and S182 in motif VI were identified as residues that affect protein-

DNA interactions (17).  The importance of Y80 in base recognition has been 

demonstrated by switching of base preference in mismatch cleavage by Y80A mutant 

(24).    

Endo V family proteins are ubiquitous in bacteria, archaea, and eykaryotes (Fig. 

3.1A).  The human genome contains an endo V homolog located in chromosome 

17q25.3.  The biochemical and enzymatic properties of human endo V are not known.  

In this study, we report that human endo V is a deoxyinosine and deoxyxanthosine 

endonuclease that cleaves the second phosphodiester bond at the 3’ side of the lesion.  

The single-stranded inosine endonuclease activity is 14-fold stronger than the single-

stranded xanthosine endonuclease activity.  Human endo V is active with Mg2+, Mn2+ 
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and to a much less extent Ni2+ and Co2+ as a metal cofactor.  The biochemical analysis 

indicates that human endo V possesses robust inosine endonuclease activity that may play 

an important role for repair of deaminated purine damage in vivo.   

 

3. Materials and Methods 

Reagents, media and strains.   

All routine chemical reagents were purchased from Sigma Chemicals (St. Louis, 

MO), Fisher Scientific (Suwanee, GA), or VWR (Suwanee, GA).  Restriction enzymes, 

Taq DNA polymerase, Phusion hifidelity polymerase and T4 DNA ligase were purchased 

from New England Biolabs (Beverly, MA).  BSA and dNTPs were purchased from 

Promega (Madison, WI).  Anti-His (N-term) antibody and anti-rabbit IgG, HRP-linked 

antibody were purchased from Cell Signaling Technology (Danvers, MA). The 

horseradish peroxidase substrate Opti-4CN for western blot and PVDF membrane were 

purchased from Bio-Rad (Hercules, CA). HiTrap chelating and Q columns were 

purchased from GE Healthcare (Piscataway, NJ).  Oligodeoxyribonucleotides were 

ordered from Integrated DNA Technologies Inc. (Coralville, IA).  LB medium was 

prepared according to standard recipes.  Human endo V sonication buffer consisted of 

50 mM Tris HCl (pH 7.4), 1 mM EDTA (pH 8.0), 2.5 mM DTT, 0.15 mM PMSF, 10% 

glycerol and 50 mM NaCl.  GeneScan stop buffer consisted of 80% formamide 

(Amresco, Solon, OH), 50 mM EDTA (pH 8.0), and 1% blue dextran (Sigma Chemicals).  

TB buffer (1 x) consisted of 89 mM Tris base and 89 mM boric acid.  TE buffer 

consisted of 10 mM Tris-HCl (pH 8.0), and 1 mM EDTA.  E. coli host strain 
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BL21(DE3)∆3 (F-, ompT, hsdSB, (rB
- mB

-), gal, dcm, sly, (DE3), nfi, ung, mug) and 

JM109 (e14-(McrA-) endA1, recA1, gyrA96, thi-1, hsdR17 (rk
-, mk

+), supE44, relA1 

∆(lac-proAB), (F-, traD36, proAB, lacIqZ∆M15)) are from our laboratory collection.  

Plasmid pET28a-hnfi was constructed by PCR amplification of human cDNA.  E. coli 

wild type K-12 strain was obtained as a generous gift from E. coli Genetic Stock Center 

in Yale University (New Haven, CT ) 

 

Confirmation of the genotype of BL21(DE3)∆3. 

The E. coli BL21(DE3)∆3 strain was confirmed by PCR with wild type E. coli K-

12 stain as positive control using the following primers.  Ec.NFI.F 5’- TAA AGT ACC 

CCA TGG GTG ATT ATG GAT CTC GCG TC-3’; the NcoI site is underlined. 

Ec.NFI.R 5’- TAA AGG GTG GAT CCT AGG GCT GAT TTG CTG T-3’; the BamHI 

site is underlined. Ec.MUG.F 5’-TGG GGT ACC CCA TGG GTT GAG GAT ATT TTG 

GCT CCA GGG-3’; the NcoI site is underlined. Ec.MUG.R 5’-CCC GGA TCC TTA 

TCG CCC ACG CAC TAC CAG CGC CTG GTC-3’; the BamHI site is underlined. 

Ec.UNG.F 5’-GGG AAT TCC ATA TGG CTA ACG AAT TAA CCT GGC ATG AC-

3’; the NdeI site is underlined. Ec.UNG.R 5’-CCC AAG CTT CTC ACT CTC TGC CGG 

TAA TAC TGG-3’; the HindIII site is underlined.The PCR mixtures (50 µL) contained 

40 ng of genomic DNA as template, 200 nM each primer pair, 50 µM each dNTP, 1 × 

Taq DNA polymerase buffer, and 1 unit of Taq DNA polymerase.  The PCR procedure 

was composed of a predenaturation step at 95°C for 2 min, 30 cycles with each cycle 

consisting of denaturation at 94°C for 15 s, annealing at 56°C for 30 s, and extension at 
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72°C for 1 min, and a final extension step at 72°C for 10 min.  The PCR products were 

electrophoresed on 1% agarose gel. 

 

Plasmid construction, cloning, and expression of human endo V. 

The human endo V gene in pET28a-hnfi and plasmid pET32a were digested with 

NcoI and EcoRI.  The fragments containing human endo V (nfi) gene and digested 

plasmid pET32a, recovered from agarose gel, were purified with Gene Clean 2 Kit (MP 

Biomedicals) and ligated according to the manufacturer’s instruction manual.  The 

ligation mixture was transformed into E. coli strain JM109 competent cells prepared by a 

CaCl2 method (31).  

To express the N-terminal His-6-tagged human endo V gene, pET32a-hnfi was 

transformed into E.coli strain BH21(DE3)∆3 by standard protocol (31).  A single colony 

of BH21(DE3)∆3 containing pET32a-hnfi was selected to inoculate into LB medium and 

incubate at 37°C.  This overnight E. coli culture was diluted 100-fold into LB medium 

(1 Liter) supplemented with 50 µg/mL ampicillin.  The E. coli cells were grown at 37°C 

while being shaken at 250 rpm until the optical density at 600 nm reached about 0.6.  

IPTG was added to a final concentration of 0.5 mM.  After growing at room temperature 

for an additional 16 h, the cells were collected by centrifugation at 4,000 rpm with JS-4.2 

rotor in J6-MC centrifuge (Beckman Coulter) at 4°C and washed once with precooled 

sonication buffer.  

To purify the human endo V protein, the cell paste from a 1 L culture was 

suspended in 10 mL of sonication buffer and sonicated at output 5 for 3 x 1 min with 5 
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min rest on ice between intervals.  The sonicated solution was clarified by centrifugation 

at 12,000 rpm with JA-17 rotor in Avanti J-25 centrifuge (Beckman Coulter) at 4°C for 

20 min.  The supernatant was transferred into a fresh tube and loaded into a 1 mL 

HiTrap chelating column.  The bound protein in the column was eluted with a linear 

gradient of 15 column volumes of 0-1 M imidazole in chelating buffer A (20 mM Tris-

HCl (pH 7.6), 10% glycerol and 50 mM NaCl) using a Bio-Rad BioLogic 

chromatographic system.  

Fractions (200-400 mM imidazole) containing the human endo V protein as seen 

on 15% SDS-PAGE were pooled and dialyzed against HiTrap Q column buffer A (20 

mM Tris-HCl (pH 8.0), 1 mM EDTA, 10% glycerol and 0.2 mM DTT) overnight at 4°C.  

The dialysis sample was then loaded onto a 1 mL HiTrap Q column and eluted with a 

linear gradient of 15 column volumes of 0-1 M of NaCl in HiTrap Q buffer A.  The 

putative human endo V protein was eluted at 200-400 mM NaCl.  The homogeneity of 

the protein was examined by 15% SDS-PAGE analysis.  Fractions (200-400 mM NaCl) 

containing the human endo V protein as seen on 15% SDS-PAGE were pooled and 

dialyzed against HiTrap chelating column buffer A (20 mM Tris-HCl (pH 7.6), 10% 

glycerol and 50 mM NaCl) overnight at 4°C.  The dialysis sample was then loaded onto 

a 1 mL HiTrap chelating column and eluted with a linear gradient of 15 column volumes 

of 0-1 M imidazole in chelating buffer A.  The putative human Endo V protein was 

eluted at 200-400 mM imidazole. The homogeneity of the protein was examined by 15% 

SDS-PAGE analysis. The human endo V protein concentration was determined on SDS-

PAGE using BSA as a standard.  
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Site-directed mutagenesis.  

An overlapping extension PCR procedure was used for construction of D52A 

mutant (32). The first round of PCR was carried out using pET32a-hnfi as template DNA 

with two pairs of primers, Hnfi.01F (5’ TCA GGT ACC CCA TGG CC CTG GAG GCG 

GCG GG 3’, NcoI site underlined) and HVD52A.02R (5’ GGG TCG GGG GCG TTG 

CCG TGT CCT TCG TGA AAG GGG A3’, the D52A site is underlined) pair & 

Hnfi.04R (5’ TCA AAG CTT GAA TTC ATT ACA AAG TGC TGA GGA CTC TC 3’, 

EcoRI site underlined) and HVD52A.03F (5’ CAG GGG CCG GGG TTC AGG CCG 

ACG AAA AGG ACT TCC T 3’, the D52A site is underlined) pair.  The PCR mixtures 

(50 µL) contained 1 ng of pET32a-hnfi DNA as template, 200 nM each primer pair, 50 

µM each dNTP, 1 × Taq DNA polymerase buffer, and 1 unit of Taq DNA polymerase.  

The PCR procedure was composed of a predenaturation step at 95°C for 2 min, 30 cycles 

with each cycle consisting of denaturation at 94°C for 15 s, annealing at 53°C for 30 s, 

and extension at 72°C for 1 min, and a final extension step at 72°C for 10 min.  The 

PCR products were electrophoresed on 1% agarose gel and the expected PCR fragments 

were purified from gel slices by spin-squeeze method.  This second run of PCR reaction 

mixture (100 µL), which contained 3 µL of each of the first run PCR fragment, 50 µM 

each dNTP, 1 × Phusion hifidelity polymerase buffer, and 2 units of Phusion hifidelity 

polymerase, was initially carried out with a predenaturation step at 98°C for 2 min, five 

cycles with each cycle of denaturation at 94°C for 15 s and annealing and extension at 

60°C for 4 min, and a final extension at 72°C for 5 min.  Afterward, 100 nM outside 

primers (Hnfi.01F and Hnfi.04R) were added to the above PCR reaction mixture to 
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continue the overlapping PCR reaction with the same condition for 25 cycles.  The 

purified PCR products, digested with a pair of NcoI and EcoRI endonucleases, were 

ligated to cloning vector pET32a treated with the same pair of restriction endonucleases.  

The recombinant plasmids containing the desired mutations were confirmed by DNA 

sequencing and transformed into Escherichia coli host strain BH21(DE3)∆3 for 

expression and protein purification. 

 

Western blot analysis.  

Western Blot analysis was carried out using an antibody raised against the N-

terminal His-tag to confirm that the protein was overexpressed in E. coli cells. The 

protein samples were first separated on 15% SDS-PAGE, and then transferred onto a 

PVDF membrane by electro-blotting at 100 V for 1 h using a Bio-Rad Mini Trans-Blot 

apparatus. The membrane was blocked with 1% low-fat milk.  Anti-His (N-term) 

antibody (1 µl) diluted in 5 ml of 1% BSA solution was added onto the membrane sealed 

in a plastic bag at room temperature for 1 h while shaking gently.  After washing, anti-

rabbit IgG, HRP-linked antibody (1 µl) diluted in 5 ml of 1% BSA solution was added 

onto the membrane sealed in a plastic bag at room temperature for 1 h with shaking 

gently. The color reaction was developed using Opti-4CN as a substrate. 

 

Oligodeoxynucleotide substrates.  

The fluorescently labeled inosine- and uridine-containing substrates were 

prepared as described (7).  The sequences of the oligonucleotides are shown in Figure 
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2A.  The oligodeoxyribonucleotides were dissolved in TE buffer at a final concentration 

of 10 µM.  The two complementary strands with the unlabeled strand in 1.2-fold molar 

excess were mixed, incubated at 85°C for 3 min, and allowed to form duplex DNA 

substrates at room temperature for more than 30 min.  The fluorescently labeled 

xanthosine- and oxanosine-containing substrates were constructed as previously 

described (5,33). 

 

Human endonuclease V activity assay. 

DNA cleavage assays for human endo V were performed at 37°C for 60 min in a 

10 µL reaction mixture containing 10 nM oligonucleotide substrate, an indicated amount 

of human endo V, 10 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol, 1 mM EDTA, 5 mM 

MgCl2, and 2% glycerol.  Reactions were quenched by addition of an equal volume of 

GeneScan stop buffer.  Samples were treated at 94°C for 3 min and 3.6 µL of samples 

were loaded onto a 7 M urea-10% denaturing polyacrylamide gel.  Electrophoresis was 

conducted at 1500 V for 1.5 h using an ABI 377 sequencer (Applied Biosystems). 

Cleavage products and remaining substrates were quantified using GeneScan analysis 

software.   

 

Gel mobility shift assay.   

The binding reactions were performed at 37°C for 60 min in a 10-µl volume 

containing 50 nM DNA substrate, 10 mM Tris-HCl (pH 8.0), 1 mM dithiothreitol, 5 mM 

MgCl2, and 2% glycerol, and 500 nM of human endo V protein.  Samples were 
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supplemented with 5 µl of 50% glycerol and electrophoresed at 200 V on a 6% native 

polyacrylamide gel in 1 x TB buffer (89 mM Tris base and 89 mM boric acid) 

supplemented with 5 mM EDTA.  The bound and free DNA species were analyzed 

using a Typhoon 9400 Imager (GE Healthcare) with the following settings: 

photomultiplier tube at 600 V, excitation at 495 nm, and emission at 535 nm. 

 

Spontaneous mutation frequency assay.  

A single colony was selected, inoculated into 4 mL liquid LB supplemented with 

50 µg/mL ampicillin and grown at 30°C overnight (34).  IPTG was added to a final 

concentration of 0.5 mM.  The culture continued to grow at 37°C for an additional 5 h.  

The cell culture was diluted and plated on LB plates with 50 µg/mL ampicillin.  One mL 

cell culture was mixed with 3 mL 0.7% soft agar and plated on LB plates with both 50 

µg/mL ampicillin and 100 µg/mL rifampicin.  The plates were incubated at 37°C for 24 

h and cell numbers on ampR and rifR plates were counted respectively.  The mutation 

frequency was calculated as the results of rifR colony number per 108 ampR colony 

number. 
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Figure 4.1 Expression of human endonuclease V.  A. Sequence alignment of 
endonuclease V.  Amino acid residues selected for site-directed mutagenesis are 
highlighted and the resulting mutants are indicated above the arrows.  Genbank 
accession numbers are shown after the species names.  Hsa: Homo sapiens, BAC04765; 
Mmu: Mus musculus, XP_203558; Cel: Caenorhabditis elegans, 1731299; Ath: 
Arabidopsis thaliana, T10669; Spo: Schizosaccharomyces pombe, 1723511; Tma: 
Thermotoga maritima, NP_229661; Eco: Escherichia coli, NP_418426; Sty: Salmonella 
typhimurium, NP_463037; Ype: Yersinia pestis, NP_667835; Sco: Streptomyces 
coelicolor, CAB40676; Bsu: Bacillus subtilis, BSUB0019; Afu: Archaeoglobus fulgidus, 
NP_068968; Tac: Thermoplasma acidophilum, CAC11602; Fac: Ferroplasma 
acidarmanus, ZP_00001774; Sso: Sulfolobus solfataricus, NP_343804; Pfu: Pyrococcus 
furiosus, NP_578716.  B. Confirmation of the genotype of BL21(DE3)∆3 by PCR.  
WT: E. coli K-12 strain.  C. SDS-PAGE analysis of the wt h Endo V.  Purified protein 
(~1 µg) was electrophoresed on a 15% polyacrylamide gel containing 0.1% SDS. Protein 
bands were visualized by Coomassie staining.  D. Western blot analysis of the wt h 
endoV and mutant D52A proteins.  Lanes 1 and 4: 10 µl cell extract.  Lanes 2 and 5: 
Supernatant collected after sonication (equivalent to 30 µl cell culture).  Lanes 3 and 6: 
purified protein (~0.5 µg). 
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4. Results and Discussion 

Expression and purification of human endonuclease V 

Despite biochemical characterization of homologs from a variety of species, 

nothing is known on human endonuclease V.  This is due to the difficulty of obtaining 

soluble and active human endo V protein from recombinant sources.  Previously, we 

attempted to detect endo V activity from mammalian tissues without success, probably 

due to low activity in fractionated protein extracts and interference from nonspecific 

nucleases (L. Dong & W. Cao, unpublished data).  In order to obtain soluble and active 

human endo V, we tried different constructs and induction conditions to express the nfi 

gene.  Co-expression of human nfi gene with heat shock genes only yielded insoluble 

protein (H. Gao & W. Cao, unpublished data).  Refolding of endo V from inclusion 

bodies did not generate active protein (H. Gao & W. Cao, unpublished data).  

Expression of S. pombe and Arabidopsis thaliana nfi genes met with similar difficulty (H. 

Feng & W. Cao, unpublished data).  We then cloned human nfi into pET32a vector, in 

which the human nfi was fused to the downstream of thioredoxin domain.  The resulting 

plasmid pET32a-hnfi was then transformed into a special E. coli expression strain 

BL21(DE3)∆3, in which the endogenous E. coli nfi, mug and ung were deleted.  The 

deletion of these three genes prevents contamination of endo V, MUG, and UNG proteins 

from interfering with assays of deaminated base repair activities.  The genotype of triple 

mutant strain was confirmed by PCR, which showed positive for the wt strain; however, 

negative for the mutant strain (Fig. 4.1B).  Human nfi gene was overexpressed in the 

mutant strain and purified by metal chaleting and Q column chromatography (Fig. 4.1C).   
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To confirm the soluble nature of the expressed protein, Western blot analysis was 

performed on cell extract, and supernatant after sonication and purified protein (Fig. 

4.1D).  Both the wt and the active site mutant D52A protein turned out positive, 

indicating that the expressed human endo V was soluble.   

 

Deaminated base repair activity. 

Using the soluble human endo V protein purified from the mutant strain, we 

measured the repair activity towards all four deaminated bases in DNA, inosine (I), 

uridine (U), xanthosine (X) and oxanosine (O).  Under the assay condition in which the 

enzyme was in excess ((E):(S) = 10:1), human endo V showed the strongest endonuclease 

activity towards inosine-containing DNA (Fig. 4.2B).  The same activity was not 

detectable in the active site mutant D52A, indicating that the observed activity was 

intrinsic to human endo V (Fig. 4.2C).  Human endo V was most active on single-

stranded inosine-containing DNA (56%) followed by G/I (35%), T/I (24%), A/I (8%) and 

C/I (4%) (Fig. 4.2D).  The enzyme also showed low level endonuclease activity on 

xanthosine-containing DNA (Fig. 4.2B), ranging from 4% for single-stranded X to 3% 

for G/X and T/X, 2% for A/X, and 1% for C/X (Fig. 4.2E).  The activity on xanthosine 

was also intrinsic to human endo V since D52A did not show detectable activity (data not 

shown).  On the other hand, human endo V did not show any endonuclease activity on 

either uridine- or oxanosine-containing DNA even under the assay condition in which the 

enzyme was in excess (Fig. 4.2B).  Endo V enzymes from bacteria are also active on 

mismatch base pairs and contain exonuclease activities.  Human endo V did not seem to  
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Figure 4.2 Cleavage of deamianted DNA by wt human endonuclease V and D52A 
mutant.  A. Sequences of xanthine (X)- and oxanine (O)-, and hypoxanthine (I)- and 
uracil (U)-containing oligodeoxyribonucleotide substrates. FAM or TET: fluorophore.  
B. Cleavage activity of wt human endo V on I-, U-, X-, and O-containing substrates.  
Cleavage reactions were performed as described in Materials and Methods with 100 nM 
wt h endo V protein and 10 nM substrate.  C. Cleavage activity of D52A mutant on I-
containing substrates.  Cleavage reactions were performed as described in Materials and 
Methods with 100 nM mutant D52A protein and 10 nM substrate.  D. Quantification of 
cleavage by wt human endo V on I-containing substrates.  E. Quantification of cleavage 
by wt human endo V on X-containing substrates. 
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Figure 4.3 Kinetic analysis of cleavage activity of wt human endonuclease V on T/I 
substrates.  A. GeneScan gel picture of cleavage activity of wt human endo V on T/I 
substrate.  B. Time course analysis of cleavage activity. (S) = 10 nM.  (E):(S) = 10:1 
(▲) ss I; (�) G/I; () T/I. 
 

 

Figure 4.4 Metal effects on T/I cleavage by the wt human endonuclease V. A. Cleavage 
activity of wt h endo V with different metals.  Cleavage reactions were performed as 
described in Materials and Methods with 100 nM protein and 10 nM substrate with 
different metals replacing Mg2+.  B. Quantification of T/I cleavage with different metal 
ions. 



136 
 

 

Figure 4.5 Binding analysis of wt h endo V on I-containing DNA substrates.  A. Gel 
mobility shift analysis of binding of h endo V to I-containing substrate with 5 mM 
MgCl2.  Gel mobility shift assays were performed as described in Experimental 
Procedures with 500 nM endo V protein, 500 nM substrates and 5 mM MgCl2.  The first 
lane is the T/I substrate only used as a control. B. Quantification of wt h endo V’s 
binding activity on I-containing substrates. 
 

 

Figure 4.6 Antimutator effect of h endo V in E.coli BL21(DE3)∆3 (nfi, mug and ung). 
Mutant E.coli BL21(DE3)∆3 (nfi, mug and ung) cells transformed with pET-32a-hnfi or  
pET32a-D52A were plated both in the presence and absence of rifampicin. Results are 
from three independent experiments. Error bars are indicated. 
 



137 
 

contain any of these activities (data not shown).  These data suggest that human endo V 

is primarily an inosine endonuclease with minor activity on xanthosine. 

To better understand the kinetic differences of endonuclease activity on different 

inosine-containing DNA, a time course analysis was performed (Fig. 4.3). The apparent 

rate constant was the highest with single-stranded I substrate (0.025 min-1), followed by 

G/I (0.017 min-1) and T/I (0.014 min-1).  The rate constants for A/I and C/I were not 

measured; however, should be significantly lower than that of the other three substrates.  

Since endo V requires divalent metal ion for its endonuclease activity, we examined the 

cleavage of T/I substrate using eleven metal ions (Fig. 4.4A).  Human endo V was most 

active with Mg2+ as the metal factor.  The activity with Mn2+, Ni2+ and Co2+ was 

detectable; however, significantly less as compared with Mg2+ (Fig. 4.4B).  To 

determine the binding affinity of human endo V to the inosine-containing DNA, we 

performed gel mobility shift analysis.  As shown in Figure 4.5, human endo V was able 

to generate a shifted band in all five substrates.  The intensities of the shifted bands 

roughly followed the order of its endonuclease activity with C/I being the weakest.  

These results suggest that the binding affinity of human endo V to inosine-containing 

base pairs correlates with its catalytic activity. 

 

Human endonuclease V as an antimutator 

To assess whether of human endo V acts as an antimutator, we measured mutation 

frequency on rifampicin plates (34).  The active site mutant D52A was used as a control.  
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As shown in Figure 6, the mutation frequency was reduced two-fold in the presence of 

the wt human endo V. This result suggests that human endo V is an antimutator in vivo.   

 

Biochemical properties of human endonuclease V 

Human endonuclease V is an elusive repair enzyme that has escaped biochemical 

characterization for years.  The successful production of soluble human endo V makes it 

possible to understand well the biochemical properties of this important repair enzyme, 

which initiates so called Alternative Excision Repair pathway to remove deaminated base 

lesions (35).  The primary target of the endonuclease activity from human endo V 

appears to be inosine lesions with minor activity on xanthosine lesions.  On the other 

hand, bacterial endo V enzymes have broader endonuclease activities on deaminated 

bases, including inosine, xanthosine, oxanosine and uridine (3-5,16-18).  However, 

genetic and biochemical studies indicate that bacterial endo V primarily is involved in 

repair of inosine and xanthosine lesions (7,22,36,37).  It is interesting that few amino 

acid substitutions influence the endonuclease activity on inosine and xanthosine of Tma 

endo V in an extensive site-directed mutagenesis analysis, indicating that endo V has 

evolved to maintain its activity on inosine and xanthosine lesions.   

The inosine endonuclease activity appears to be distinct in human endo V.  

Whereas bacterial endo V enzymes do not appear to be sensitive to the regular DNA base 

opposite to inosine (5,7), human endo V does.  Besides the single-stranded inosine-

containing DNA, the enzyme is most active on G/I followed by T/I > A/I > C/I (Figs. 4.2-

4.3).  Such a trend in activity in general is consistent with the stability of the inosine-
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containing base pairs in which the stability follows the order of C/I > A/I > T/I, G/I (38-

40).  These results indicate that human endo V may significantly rely on the instability 

of the inosine-containing base pairs for recognition of the inosine base and subsequent 

endonucleolitic cleavage.  The bacterial counterparts, on the other hand, may have 

evolved intrinsic exquisite ability to recognize any inosine in any base pairs.   

We now know human genome contains two repair activities for inosine, with 

human endo V being a primarily inosine-specific endonuclease and Alkyl Adenine 

Glycosylase (AAG) being a hypoxanthine DNA glycosylase.  These two enzymes share 

certain similarity in repair of deaminated adenine base, in which they both are quite 

active towards T/I base pairs as well as G/I and A/I base pairs.  The activity on C/I 

appears to be low for both enzymes (Fig. 4.2 and (33,41-44)).  The most significant 

contrast is that while human endo V is quite active on single-stranded inosine-containing 

DNA, human AAG has little activity on ss I (33,45).  The physiological significance of 

this difference is unknown; perhaps it allows human endo V, in coupling with other 

repair machinery, to repair single-stranded inosine lesions during DNA replication and 

transcription more effectively.   

  



140 
 

Acknowledgements 

 This project was supported in part by CSREES/USDA (SC-1700274, 

technical contribution No. XXXX) and DOD-Army Research Office (W911NF-05-1-

0335 and W911NF-07-1-0141).   

 

  



141 
 

5. References 
1. Demple, B., and Linn, S. (1982) On the recognition and cleavage mechanism of 

Escherichia coli endodeoxyribonuclease V, a possible DNA repair enzyme, J Biol 
Chem 257, 2848-2855. 

 
2. Gates, F. T., 3rd, and Linn, S. (1977) Endonuclease V of Escherichia coli, J Biol 

Chem 252, 1647-1653. 
 
3. Yao, M., Hatahet, Z., Melamede, R. J., and Kow, Y. W. (1994) Purification and 

characterization of a novel deoxyinosine-specific enzyme, deoxyinosine 3' 
endonuclease, from Escherichia coli, J Biol Chem 269, 16260-16268. 

 
4. Yao, M., and Kow, Y. W. (1997) Further characterization of Escherichia coli 

endonuclease V, J Biol Chem 272, 30774-30779. 
 
5. Feng, H., Klutz, A. M., and Cao, W. (2005) Active site plasticity of endonuclease 

V from Salmonella typhimurium, Biochemistry 44, 675-683. 
 
6. Hitchcock, T. M., Gao, H., and Cao, W. (2004) Cleavage of deoxyoxanosine-

containing oligodeoxyribonucleotides by bacterial endonuclease V, Nucleic Acids 
Res 32, 4071-4080. 

 
7. Huang, J., Lu, J., Barany, F., and Cao, W. (2001) Multiple Cleavage Activities of 

Endonuclease V from Thermotoga maritima: Recognition and Strand Nicking 
Mechanism, Biochemistry 40, 8738-8748. 

 
8. Liu, J., He, B., Qing, H., and Kow, Y. W. (2000) A deoxyinosine specific 

endonuclease from hyperthermophile, Archaeoglobus fulgidus: a homolog of 
Escherichia coli endonuclease V, Mutat Res 461, 169-177. 

 
9. Moe, A., Ringvoll, J., Nordstrand, L. M., Eide, L., Bjoras, M., Seeberg, E., 

Rognes, T., and Klungland, A. (2003) Incision at hypoxanthine residues in DNA 
by a mammalian homologue of the Escherichia coli antimutator enzyme 
endonuclease V, Nucleic Acids Res 31, 3893-3900. 

 
10. Yao, M., and Kow, Y. W. (1994) Strand-specific cleavage of mismatch-

containing DNA by deoxyinosine 3'-endonuclease from Escherichia coli, J Biol 
Chem 269, 31390-31396. 

 
11. Yao, M., and Kow, Y. W. (1996) Cleavage of insertion/deletion mismatches, flap 

and pseudo-Y DNA structures by deoxyinosine 3'-endonuclease from Escherichia 
coli, J Biol Chem 271, 30672-30676. 



142 
 

12. Shapiro, R. (1981) Damage to DNA caused by hydrolysis, in Chromosome 
Damage and Repair (Seeberg, E., and Kleppe, K., Eds.), pp 3-18, Plenum Press, 
New York. 

 
13. Lindahl, T. (1993) Instability and decay of the primary structure of DNA, Nature 

362, 709-715. 
 
14. Lucas, L. T., Gatehouse, D., and Shuker, D. E. (1999) Efficient nitroso group 

transfer from N-nitrosoindoles to nucleotides and 2'-deoxyguanosine at 
physiological pH. A new pathway for N- nitrosocompounds to exert genotoxicity, 
J Biol Chem 274, 18319-18326. 

 
15. Suzuki, T., Yamaoka, R., Nishi, M., Ide, H., and Makino, K. (1996) Isolation and 

characterization of a novel product, 2'-deoxyoxanosine, from 2'-deoxyguanosine, 
oligodeoxynucleotide and calf thymus DNA treated by nitrous-acid and nitric-
oxide, J. Am. Chem. Soc. 118, 2515-2516. 

 
16. Yao, M., Hatahet, Z., Melamede, R. J., and Kow, Y. W. (1994) Deoxyinosine 3' 

endonuclease, a novel deoxyinosine-specific endonuclease from Escherichia coli, 
Ann N Y Acad Sci 726, 315-316. 

 
17. Feng, H., Dong, L., Klutz, A. M., Aghaebrahim, N., and Cao, W. (2005) Defining 

amino acid residues involved in DNA-protein interactions and revelation of 3'-
exonuclease activity in endonuclease V, Biochemistry 44, 11486-11495. 

 
18. He, B., Qing, H., and Kow, Y. W. (2000) Deoxyxanthosine in DNA is repaired by 

Escherichia coli endonuclease V, Mutat Res 459, 109-114. 
 
19. Dong, M., Vongchampa, V., Gingipalli, L., Cloutier, J. F., Kow, Y. W., 

O'Connor, T., and Dedon, P. C. (2006) Development of enzymatic probes of 
oxidative and nitrosative DNA damage caused by reactive nitrogen species, Mutat 
Res 594, 120-134. 

 
20. Guo, G., Ding, Y., and Weiss, B. (1997) nfi, the gene for endonuclease V in 

Escherichia coli K-12, J Bacteriol 179, 310-316. 
 
21. Burgis, N. E., Brucker, J. J., and Cunningham, R. P. (2003) Repair system for 

noncanonical purines in Escherichia coli, J Bacteriol 185, 3101-3110. 
 
22. Guo, G., and Weiss, B. (1998) Endonuclease V (nfi) mutant of Escherichia coli 

K-12., J Bacteriol 180, 46-51. 
 
23. Weiss, B. (2001) Endonuclease V of Escherichia coli prevents mutations from 

nitrosative deamination during nitrate/nitrite respiration, Mutat Res 461, 301-309. 



143 
 

24. Gao, H., Huang, J., Barany, F., and Cao, W. (2007) Switching base preferences of 
mismatch cleavage in endonuclease V: an improved method for scanning point 
mutations, Nucleic Acids Res 35, e2. 

 
25. Bazar, L., Collier, G., Vanek, P., Siles, B., Kow, Y., Doetsch, P., Cunningham, 

R., and Chirikjian, J. (1999) Mutation identification DNA analysis system 
(MIDAS) for detection of known mutations., Electrophoresis 20, p1141-1148. 

 
26. Favis, R., Huang, J., Gerry, N. P., Culliford, A., Paty, P., Soussi, T., and Barany, 

F. (2004) Harmonized microarray/mutation scanning analysis of TP53 mutations 
in undissected colorectal tumors, Hum Mutat 24, 63-75. 

 
27. Huang, J., Kirk, B., Favis, R., Soussi, T., Paty, P., Cao, W., and Barany, F. (2002) 

An endonuclease/ligase based mutation scanning method especially suited for 
analysis of neoplastic tissue. Oncogene 21, 1909-21. 

 
28. Pincas, H., Pingle, M. R., Huang, J., Lao, K., Paty, P. B., Friedman, A. M., and 

Barany, F. (2004) High sensitivity EndoV mutation scanning through real-time 
ligase proofreading, Nucleic Acids Res 32, e148. 

 
29. Huang, J., Lu, J., Barany, F., and Cao, W. (2002) Mutational analysis of 

endonuclease V from Thermotoga maritima, Biochemistry 41, 8342-8350. 
 
30. Feng, H., Dong, L., and Cao, W. (2006) Catalytic mechanism of endonuclease v: 

a catalytic and regulatory two-metal model, Biochemistry 45, 10251-10259. 
 
31. Sambrook, J., and Russell, D. W. (2001) Molecular Cloning-A Laboratory 

Manual, 3rd ed., Cold Spring Harbor laboratory Press, Cold Spring Harbor, New 
York. 

 
32. Ho, S. N., Hunt, H. D., Horton, R. M., Pullen, J. K., and Pease, L. R. (1989) Site-

directed mutagenesis by overlap extension using the polymease chain reaction, 
Gene 77, 51-59. 

 
33. Hitchcock, T. M., Dong, L., Connor, E. E., Meira, L. B., Samson, L. D., Wyatt, 

M. D., and Cao, W. (2004) Oxanine DNA glycosylase activity from Mammalian 
alkyladenine glycosylase, J Biol Chem 279, 38177-38183. 

 
34. Otterlei, M., Kavli, B., Standal, R., Skjelbred, C., Bharati, S., and Krokan, H. E. 

(2000) Repair of chromosomal abasic sites in vivo involves at least three different 
repair pathways, EMBO J 19, 5542-5551. 

 
35. Kow, Y. W. (2002) Repair of deaminated bases in DNA, Free Radic Biol Med 33, 

886-893. 



144 
 

36. Schouten, K. A., and Weiss, B. (1999) Endonuclease V protects Escherichia coli 
against specific mutations caused by nitrous acid, Mutat Res 435, 245-254. 

 
37. Yao, M., and Kow, Y. W. (1995) Interaction of deoxyinosine 3'-endonuclease 

from Escherichia coli with DNA containing deoxyinosine, J Biol Chem 270, 
28609-28616. 

 
38. Case-Green, S. C., and Southern, E. M. (1994) Studies on the base pairing 

properties of deoxyinosine by solid phase hybridisation to oligonucleotides, 
Nucleic Acids Res 22, 131-136. 

 
39. Martin, F. H., Castro, M. M., Aboul-ela, F., and Tinoco, I., Jr. (1985) Base pairing 

involving deoxyinosine: implications for probe design, Nucleic Acids Res 13, 
8927-8938. 

 
40. Watkins, N. E., Jr., and SantaLucia, J., Jr. (2005) Nearest-neighbor 

thermodynamics of deoxyinosine pairs in DNA duplexes, Nucleic Acids Res 33, 
6258-6267. 

 
41. Abner, C. W., Lau, A. Y., Ellenberger, T., and Bloom, L. B. (2001) Base excision 

and DNA binding activities of human alkyladenine DNA glycosylase are sensitive 
to the base paired with a lesion, J Biol Chem 276, 13379-13387. 

 
42. Dianov, G., and Lindahl, T. (1991) Preferential recognition of I.T base-pairs in 

the initiation of excision-repair by hypoxanthine-DNA glycosylase, Nucleic Acids 
Res 19, 3829-3833. 

 
43. Saparbaev, M., Mani, J. C., and Laval, J. (2000) Interactions of the human, rat, 

Saccharomyces cerevisiae and Escherichia coli 3-methyladenine-DNA 
glycosylases with DNA containing dIMP residues, Nucleic Acids Res 28, 1332-
1339. 

 
44. Wyatt, M. D., and Samson, L. D. (2000) Influence of DNA structure on 

hypoxanthine and 1,N(6)-ethenoadenine removal by murine 3-methyladenine 
DNA glycosylase, Carcinogenesis 21, 901-908. 

 
45. Saparbaev, M., and Laval, J. (1994) Excision of hypoxanthine from DNA 

containing dIMP residues by the Escherichia coli, yeast, rat, and human 
alkylpurine DNA glycosylases, Proc Natl Acad Sci U S A 91, 5873-5877. 

 
 



145 
 

CHAPTER FIVE 

RESEARCH SIGNIFICANCE AND CONCLUDING REMARKS 

 

Repair enzymes are essential factors for maintaining DNA stability against attack 

from endogenous and exogenous sources. A defect in these repair enzymes or their 

pathways poses a significant problem for living cells because it can cause mutation, 

disease or even death. 

SMUG1, believed to include hybrid active sites from UDG Family 1 and Family 2, 

evolutes at a relatively late stage (1). This enzyme, which belongs to Family 3 of the 

UDG superfamily, was previously thought to be an eukaryotic exclusive enzyme, 

primarily recognizing uracil and its derivatives (2-6). Based on genome sequence 

analysis, the research reported here identified four SMUG1 orthologs in bacteria strains, 

meaning that these strains place SMUG1’s initial appearance back to a much earlier time 

period. This research is the first report studying SMUG1’s activity from bacterial species. 

To characterize the bacteria SMUG1, the recombinant protein, Gme SMUG1, was cloned, 

expressed and purified from the E. coli system. This protein exhibits robust uracil DNA 

glycosylase activity and xanthine DNA glycosylase activity on both double- and single-

stranded substrates. Ten Gme SMUG1 mutants were constructed to study the key active 

site residues involved in the interactions between the DNA substrates and this enzyme, 

and in the ability to recognize specific damaged bases. Molecular modeling and 

molecular dynamic simulation methods were employed to analyze the experimental 

results. These results indicate that although several key residues are typically involved in 
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the enzyme-DNA substrate complex, a single amino acid change in one of the mutants 

switches the UDG Family 3 SMUG1 to Family 1 UDG or UNG. Thus, this mutant 

eliminates the XDG activity while maintaining robust UDG activity and demonstrating 

an equal preference for all uracil containing substrates unlike the Family 3 UDG (7). 

Bacterial endonuclease V is a small protein which recognizes many types of 

substrates (8-11). Thus far, only two enzymes, bacterial endo V and Spo TDG (12), were 

found to possess the ability to recognize hypoxanthine, xanthine, uracil and oxanine with 

endo V being the primary enzyme repairing inosine in bacteria in vivo (13); however, the 

precise repair pathway remains unknown. According to an E. coli endo V repair patch 

study, 3 nucleotides from the 3’ end and 2 nucleotides from the 5’ end of the 

endonuclease cleavage are removed in vivo (13). In addition, our group investigated Tma 

endo V, a thermal stable enzyme, which not only exhibits endonuclease activity, but also 

exonuclease activity under specific assay conditions. This exonuclease activity may 

potentially play a vital role in investigating the endo V-initiated repair pathway. The 

research reported here expanded the understanding of endonuclease activity and 

exonuclease activity in Tma endo V. In addition to inosine specific and nonspecific 

endonuclease activity, Tma endo V was found to have 3’ inosine dependent exonuclease 

activity and 5’ nonspecific exonuclease activity. These results may help in determining 

the endo V-initiated repair pathway.  

The genetic and biochemical studies of bacterial endo V are extensive, while the 

studies of eukaryotic endo V are limited because of the difficulty of obtaining this soluble 

recombinant protein. For this research; however, soluble and active human endo V was 
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obtained, facilitating the characterization of this enzyme in vitro. Human endo V is also 

an authentic endonuclease having different properties from bacterial endo V. It 

recognizes the inosine-containing DNA substrates having the highest activity on single-

stranded DNA and exihibts limited cleavage activity on xanthosine containing substrates 

under the assay conditions reported here. These findings are consistent with the results 

indicating that E. coli endo V in vivo is primaly responsible for inosine repair (13). These 

results can help future research of the endo V-initiated repair pathway in mammalian 

systems. 
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