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Abstract

An automatic theorem prover is a computer program that proves theorems without

the assistance of a human being. Theorem proving is an important basic tool in proving

theorems in mathematics, establishing the correctness of computer programs, proving the

correctness of communication protocols, and verifying integrated circuit designs.

This dissertation introduces two new categories of theoremprovers, one for classi-

cal propositional logic and another for intuitionistic propositional logic. For each logic a

container property and generalized algorithm are introduced.

Many methods have been developed over the years to prove theorems in propo-

sitional logic. This dissertation describes and presents example proofs for five of these

methods: natural deduction, Kripke tableau, analytic tableau, matrix, and resolution. Each

of these methods uses refutation to prove a theorem. In refutation, the proposed theorem is

assumed to be false. The theorem prover is successful, only if the analysis of this assump-

tion leads to a contradiction.

Each of these methods, except resolution, share a common algorithm. To prove this,

the container is introduced. A data structure used by a method is acontainer, if it meets a

set of properties.

A generalized algorithm that proves theorems is introduced. Since each step in this

algorithm uses only operations that are provided by the container. The steps it performs
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can be translated to any method that can be described using a container. This allows the

data structures representing a partial proof in one method,to be transformed into the data

structures representing the “same” proof in another method. This can be very beneficial in a

situation where another method would be more efficient in advancing the proof. In addition

to being able to switch between methods, an heuristic for onemethod can be examined to

see if it can be applied to the other methods.

This development is repeated for intuitionistic logic. Each of these methods, except

resolution, is modified to prove theorems in intuitionisticlogic. An intuitionistic container

is presented. Each one of the intuitionistic methods is proven to have the properties of the

intuitionistic container. Lastly, a generalized algorithm using the intuitionistic container

is presented. This algorithm proves theorems in intuitionistic logic. Examples showing

successful and unsuccessful proof attempts are presented.
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Frequently Used Notation and Functions

Logical Connectives

∧ conjunction ⇒ Implication

∨ disjunction ¬ Negation

• The Greek lettersα andβ are used for Smullyan’s rule types. Smullyan usesγ andδ

for rule types in first order logic.

• The Greek lettersϕ, ψ, andρ, represent arbitrary formulas and signed formulas.

• The capital Greek lettersΓ and∆ represent sets of formulas. These letter are used in

natural deduction sequents.

• E is almost always used to represent a formula or signed formula. When more than

one formula is needed, a subscript or a tick mark is added (i.e. E ′ ). The choice of

E was used to stand for expression. During the writing of this dissertation a decision

was made the replace the term expression with formula to match the other literature.

SinceF is commonly used a to represent predicates or functions, a decision was

made to stick withE.

• The lower case letterb represents either a branch in an analytic tableau or a box in a

Kripke tableau.
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• The lower case lettersp andq are used for partial order elements used with intuition-

istic analytic tableau. Alsop is used to represent a path in a matrix.

• SMr maps a signed formula to the Smullyan rule type (α or β).

• SMc maps a signed formula to its child formula(s).

• KRr maps a column-expression pair in a Kripke box to the expansion rule typesplit

or no split.

• KRc maps a column-expression pairE in a Kripke box to the set of column-expression

pairs that are generated by expandingE.

• L(v) maps a vertexv in a tree to the leaf vertices that are descendants ofv.

• K2C maps a set Kripke column-formula pairs to a set of signed formulas.

• B2C maps a branch in an analytic tableau to the set of signed formulas that label its

vertices.

• P2C maps a path in a matrix to the set of signed formulas that labelits vertices.

• S2C maps a sequent, represented as a set of sequent side formulas, to a set of signed

formulas.

• IB2C Intuitionistic branch to container. Maps an element of the partial order and a

branch in an intuitionistic tableau to a set of signed formulas. IB2C(b, p) is the set

of signed formulas on branchb with either partial elementp or elements preceding it

in the partial order. Intuitionistic version ofB2C.

• P (v) maps a vertex in an intuitionistic analytic tableau to the partial order element

labeling it.
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• SFn maps a sequent side formula to signed formula.

• SFk map a column-formula pair in a Kripke box to a signed formula.

• J(E) maps a signed formula topresent, some future, orall future. This function

is used withSMr andSMc to describe the semantics of intuitionistic logic.
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Chapter 1

Introduction

Automatic theorem proving (ATP) is used in many areas such asproving theorems

in mathematics, establishing that computer programs meet their specifications, proving the

properties of communication protocols, and verifying integrated circuit designs. The be-

havior of a system or object is reduced to logical formulas that are fed to an ATP, which

then proves that the system functions as desired. Typically, the logical formulas that de-

scribe these systems are large, involving hundreds or thousands of variables. Thus, efficient

procedures must to be used to prove or disprove theorems in a reasonable period of time.

1.1 The Development of Logic

Logic was developed in ancient Greece to assist philosophers in constructing and

analyzing arguments. The origin of formal logic is creditedto Aristotle [Smith 2007], who

made many contributions including the notion of deduction.Deduction is the process of

breaking an argument down into a chain of reasoning, where each step leads to the next by

applying a simple logical rule. The logic of Aristotle was used extensively until the Nine-
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teenth Century when mathematicians increased the rigor of their research and encountered

the limits of Aristotle’s logic.

George Boole’s “Mathematical Analysis of Logic” (1847) andhis later work “An

Investigation of the Laws of Thought, on which are founded the Mathematical Theory of

Logic and Probabilities” (1854) [Boole 1854] were very influential in defining the seman-

tics of classical propositional logic, but the semantics that Boole used were different. In

his work, Boole developed a system which allowed logical formulas to be treated as if they

were numerical formulas. Boole viewed logical addition (disjunction) as the union of two

disjoint sets, logical multiplication (conjunction) as the intersection of two sets, and the

logical complement ofx asI − x, abbreviated asx, whereI is the universe under discus-

sion ando (denoted with the lowercase letter o) is the empty set. His semantics fit well into

the computation of probability, whereI is treated as one ando is treated as zero. The se-

mantics used in propositional logic restrict Boolean variables to one of two values, namely

treatingI as true ando as false [Kneale and Kneale 1962][pages 404-420].

Frege in 1879 created a symbolic language which included an explicit, finite closed

set of proof rules [von Plato 2008]. Frege’s formulation of aproof system is in itself a

mathematical object, thus subject to Gödel’s completeness and incompleteness theorems

[Gödel 1967].

One of Frege’s contemporaries, Peirce, published a paper in1883, which added

subscripts to relations. For instance, the relationlij might indicate the individuali likes

individualj. In this same paper, he also introduced the notion of the quantifiers “for all” and

“there exists” which range over the sets of individuals. He used
∏

and
∑

to represent these

quantifiers because he intended for them to represent logical multiplication (conjunction)

and logical addition (disjunction) over a set of individuals[Kneale and Kneale 1962][page

430]. Today, these quantifiers are represented by the symbols∀ and∃, respectively.
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Intuitionistic logic [Moschovakis 2007] was introduced byBrouwer and others as

a basis for constructive mathematics. Classical logic assumes that every proposition has

a known truth value, but intuitionistic logic allows for thetruth value of a formula to be

unknown. The principal difference between intuitionisticand classical logic is that intu-

itionistic logic rejects the excluded middle (ϕ∨¬ϕ). While the excluded middle is perfectly

valid when applied to reasoning about a finite number of possibilities, it is unsound when

extended to infinite domains. Brouwer’s objections were later justified by Gödel’s incom-

pleteness theorem [Gödel 1967].

1.2 The Development of Automated Theorem Provers

As soon as the digital computer was developed, people started to program auto-

mated theorem provers. One of these early efforts is described in the following quote: “...in

1947 an electrical computer ... was constructed at Harvard by T. A. Kalin and W. Burkhart

specially for the solution of Boolean problems involving upto twelve logical variables (i.e.

propositional or class letters)”[Kneale and Kneale 1962][page 421].

The first experimental theorem proving programs for generalpurpose computers

dates back to the 1950’s. The early work included proving established theorems in math-

ematics and logic. It was soon recognized that Skolem functions and what later came be

called the Herbrand universe were key tools for solving first-order theorems. Early theo-

rem provers tried most, if not all, possibilities (aka the British Museum search) including

implementing truth tables to test all possible assignmentsof truth values to variables [Davis

2001].

These provers included a semantic tableau method implementation by D. Prawitz,

H. Prawitz, and Voghera[Prawitz et al. 1960] and the Davis-Putnum procedure [Davis and

Putnam 1960]. There are many other distinct procedures and variants of these procedures.
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The most popular of these is the resolution method, named forthe resolution rule [Robin-

son 1965]. Today, the resolution method is the most commonlyused automated theorem

proving method.

1.3 Categories

A category [Pierce 1991] is a collection of objects and morphisms (sometimes

called arrows). Each morphism has a domain of objects and a codomaim (range) such

that morphism maps objects to. The morphismf : A → B indicates thatf has a do-

mainA and a codomianB. These morphisms have the following properties: 1) There is

an identity function that maps an object to itself. 2) The morphisms can be composed that

has the same effect as apply one followed by the second. 3) Forany three morphisms,f ,

g, andh, not necessarily distinctf : A → B, g : B → C, andh : C → D such that

f ◦ (g ◦ h) = (f ◦ g) ◦ h.

Categories are used in mathematics, theoretical computer science, and applied physics

[Marquis 2007]. Some examples of categories are semi-groups, groups, fields, NP-complete

problems, and partially ordered sets. This dissertation establishes two categories of theo-

rem proving methods, one for classical propositional logicand another for intuitionistic

propositional logic.

1.4 Categories of Theorem Provers

Proving the completeness of a proof method is an important result. Completeness

means that if there exists a proof for a given formula, then the method will find it in a

finite period of time. Many texts on logic show that a method iscomplete with respect

to a logic and, thus, is equivalent to all other complete methods for that logic. For this
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dissertation, completeness of these methods is not enough.This dissertation seeks a deeper

understanding of the various methods, finding commonalities between the procedural steps

used by each.

Several ATP methods are used by computers. In this dissertation, five of these

methods are examined: natural deduction, Kripke tableau, analytic tableau, resolution, and

matrix. For both classical and intuitionistic logic, a container is defined. The container’s

properties capture the important commonalities of four of the five methods. The properties

of a container are used to construct a generalized theorem proving algorithm. This gener-

alized algorithm is at the core of all of the methods except resolution. A different container

and generalized algorithm are used for classical and intuitionistic logic.

A fifth method, resolution, is also discussed for classical logic, but does not use a

data structure that meets the properties of the classical container. The resolution method

as described by Robinson [Robinson 1965] cannot be used in intuitionistic logic since in

general formulas in intuitionistic logic cannot be represented in conjunctive normal form.

The inverse method (also called resolution caluci) makes modifications to resolution to

support intuitionistic logic [Tammet 1996], [Mints 1994] and [Degtyarev and Voronkov

2001]. The inverse method attempts to construct the proposed theorem by starting with

axioms and attempting to construct the proposed theorem. This approach is opposite to

that taken by containers which start with the proposed theorem and break it down into

smaller expressions in an attempt to find a contradiction. Hence, the inverse method is

not discussed in this dissertation. Although resolution inclassical logic does not meet

the requirements of the container, a transformation between it and the matrix method is

presented.

For both classical logic and intuitionistic logic, a container is defined, and each of

the four methods is proven to use a data structure that has theproperties of the container.

A container methodis a method that uses a data structure that is a container.
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The properties of a container guarantee that at points during a proof, a partial

proof in one container method can be transformed into a partial proof in another container

method, preserving all of the proof steps made so far. There are test results[Tammet 1996]

showing that for some problems resolution is faster than analytic tableau and for other

problems analytic tableau is faster than resolution. If situations can be identified where one

method is slower than another, then these results allow the partial proof to be transformed

into the faster method and continued. A transformation between methods may be made

several times during the proof of a formula. In addition, this deep level of understanding

allows a heuristic or optimization developed for one container method to be more easily

evaluated for its usefulness in other container methods.

The second chapter presents the terminology and notation that will be used in the

remainder of the dissertation. The third chapter describeseach of the five ATP methods

used in classical logic. The fourth chapter introduces the concept of a container for classi-

cal logic and proves that each method except resolution has the properties of the container.

The generalized proof algorithm for classical logic is introduced; this algorithm’s oper-

ations use only the properties of a container to prove theorems and shows that the four

methods share a common algorithm at their core. The fifth chapter begins by introducing

intuitionistic logic and giving a brief description of how it differs from classical logic. For

each classical method, except resolution, modifications are described that allow these meth-

ods to be used in intuitionistic logic. The intuitionistic container is introduced, and each of

the intuitionistic methods is proven to use a data structurehaving the properties of the intu-

itionistic container. The chapter ends with the presentation and description of a generalized

algorithm for intuitionistic logic. This algorithm uses only properties of the intuitionistic

container. The sixth chapter concludes the dissertation byreviewing the material in the

previous chapters and presenting areas for future work.
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The dissertation includes an ML program that implements Kripke’s method for in-

tuitionistic logic. To save paper, it is available only in electronic form. It is also available

from the author upon request.
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Chapter 2

Background

2.1 Propositional Logic

Propositional logic explores the truth of formulas composed of logic constants, vari-

ables, and connectives. The two logical constants are true and false, denoted by⊤ and⊥,

respectively. Propositional variables represent statements that may be true or false.Atomic

formulasconsist of propositional variables and logical constants,and, thus, they cannot be

broken down any further; i.e., they contain no connectives.The four connectives consist of

the unary connective, negation (¬), and the binary connectives, disjunction (∨), conjunc-

tion (∧), and implication (⇒).

A (logical) formulaρ is inductively defined:

1. Base Cases

(a) a propositional variable

(b) a logical constant, i.e.⊤ or⊥

2. General cases whereϕ andψ are logical formulas

(a) (ϕ ∧ ψ)
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(b) (ϕ ∨ ψ)

(c) (ϕ⇒ ψ)

(d) (¬ϕ)

In a logical formula, parentheses are used to make a formula unambiguous by indicating

the structure of its underlying parse tree. It is assumed that the reader is familiar with parse

trees as described in [Aho et al. 2006].

Theprimary connectiveof a non-atomic formulaϕ is the connective at the root of

the formula’s parse tree. In the inductive definition above,the primary connective is the

last connective added in the construction of the formula.

2.2 Formula Notations

Formulas Using Signed Formulas
Only Connectives

ϕ 〈T, ϕ〉
¬ϕ 〈F, ϕ〉
¬¬ϕ 〈F, ¬ϕ〉
ϕ ∨ ψ 〈T, ϕ ∨ ψ〉
¬(ϕ ∨ ψ) 〈F, ϕ ∨ ψ〉
ϕ⇒ ψ 〈T, ϕ⇒ ψ〉
¬(ϕ⇒ ψ) 〈F, ϕ⇒ ψ〉

Table 2.1: Each row in this table contains an unsigned formula in the left column and the
equivalent signed formula in the right column. Unsigned formulas use only connectives,
while signed formulas consist of a sign,T orF , and a formula.

There are two notations used in this dissertation to represent formulas, unsigned

and signed. Unsigned formulas use only logical connectives, while a formula insigned

notation, 〈S,E〉 , is represented by an ordered pair consisting of a signS (T or F ) and a

formulaE. In signed notation, angle brackets are used in running textto prevent confusion,
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A B A ∧ B
⊥ ⊥ ⊥
⊥ ⊤ ⊥
⊤ ⊥ ⊥
⊤ ⊤ ⊤

A B A ∨ B
⊥ ⊥ ⊥
⊥ ⊤ ⊤
⊤ ⊥ ⊤
⊤ ⊤ ⊤

A B A⇒ B

⊥ ⊥ ⊤
⊥ ⊤ ⊤
⊤ ⊥ ⊥
⊤ ⊤ ⊤

A ¬A
⊥ ⊤
⊤ ⊥

Table 2.2: Truth tables for the basic connectives.

and are not typically used in figures and tables. In unsigned notation, a negation operator is

added to the formula (i.e.¬ϕ) to indicate that the formulaϕ is false, while the unmodified

formula (ϕ) indicates that it is true. Adding negation connectives to subformulas yields

correct results in classical logic, however, it can lead to incorrect results in other logics,

such as intuitionistic. In classical logic, the signed formula 〈T, ϕ〉 signifies thatϕ is true,

while 〈F, ϕ〉 signifies thatϕ is false. Table 2.1 shows examples of these two notations.

When a formula is determined to be true or false, it leads to conclusion(s) about the

truth or falsity of its subformula(s). For example, in non-signed notation if it is determined

that ϕ ∨ ψ is false, denoted by¬(ϕ ∨ ψ), then in the next step of the analysis, it can

inferred from this formula that bothϕ andψ must be false. Hence, the formulas¬ϕ and¬ψ

are added to the proof. If the analysis leads to the conclusion that a formula should evaluate

to false, a¬ (negation operator) is added. Repeating this analysis in signed notation, if it

is known thatϕ ∨ ψ is false, denoted by〈F, ϕ ∨ ψ〉, then in the next step of the analysis,

it can be inferred from this formula that bothϕ andψ must be false. Hence, the formulas

〈F, ϕ〉 and〈F, ψ〉 are added to the proof. Smullyan’s eight rules, as shown in Table 2.4, are

sufficient to analyze any classical propositional logic formula using signed formulas.
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2.3 Classic Truth Determined by Truth Tables

A B ¬A A⇒ B ¬A ∨B (A⇒ B)⇒ (¬A ∨B)
⊥ ⊥ ⊤ ⊤ ⊤ ⊤
⊥ ⊤ ⊤ ⊤ ⊤ ⊤
⊤ ⊥ ⊥ ⊥ ⊥ ⊤
⊤ ⊤ ⊥ ⊤ ⊤ ⊤

Table 2.3: Truth table for(A⇒ B)⇒ (¬A ∨ B).

Truth tables are the least complicated way to determine if a formula is a theorem;

the table systematically checks every possible assignmentof truth values to the variables

in the formula. In a truth table there is a separate column foreach propositional variable

and one for the formula being tested. Sometimes extra columns are added for each proper

subformula of the formula being tested. A truth table has2n rows, wheren is the number

of propositional variables. Each row tests one of the possible truth value assignments to the

propositional variables. The non-variable entries in a roware filled in, computing the truth

value for the expression using the definitions of the connectives in the tables in Table 2.2.

A formula is a theorem in classical logic if and only if the column under it contains only⊤

values. An example of a truth table being used to prove the formula(A⇒ B)⇒ (¬A∨B)

is presented in Table 2.3.

2.4 Proofs and Types of Proofs

A proof is a demonstration that a formula is true for any possible assignment of

values to its variables. Truth tables, discussed in Section2.3, are a type of proof, but there

are also others that are more efficient since they do not try every possibility.

A proof can be either a direct proof or a refutation. A direct proof constructs a

theoremby using axioms and inference rules to derive the proposed theorem, while refuta-
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tion proofs assume that the proposed theorem is false and then show that this assumption

leads to a contradiction. Ifϕ is the proposed theorem, then the refutation assumes¬ϕ. If

a contradiction is found, then(¬ϕ) ⇒ ⊥ has been proven. Since(¬ϕ) ⇒ ⊥ ≡ ¬¬ϕ and

¬¬ϕ ≡ ϕ, ϕ is established as a theorem.

2.5 A Valuation Function for Logical Formulas

If v is a function that maps logical formulas to truth values, then it can be defined

deductively using the rules shown below:

• v(¬ϕ) = ⊤ if and only if v(ϕ) = ⊥

• v(¬ϕ) = ⊥ if and only if v(ϕ) = ⊤

• v(ϕ ∧ ψ) = ⊤ if and only if v(ϕ) = ⊤ andv(ψ) = ⊤

• v(ϕ ∧ ψ) = ⊥ if and only if v(ϕ) = ⊥ or v(ψ) = ⊥

• v(ϕ ∨ ψ) = ⊤ if and only if v(ϕ) = ⊤ or v(ψ) = ⊤

• v(ϕ ∨ ψ) = ⊥ if and only if v(ϕ) = ⊥ andv(ψ) = ⊥

• v(ϕ⇒ ψ) = ⊤ if and only if v(ϕ) = ⊥ or v(ψ) = ⊤

• v(ϕ⇒ ψ) = ⊥ if and only if v(ϕ) = ⊤ andv(ψ) = ⊥

Using this deductive definition ofv, the truth values of the subformulas can be determined.

In section 2.6, Smullyan’s rules present a systematic way toimplement these rules.
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Signed Rule Type Child Subform-
Formula E SMr(E) ulasSMc(E)
〈T, ϕ ∧ ψ〉 α {〈T, ϕ〉, 〈T, ψ〉}
〈F, ϕ ∧ ψ〉 β {〈F, ϕ〉, 〈F, ψ〉}
〈T, ϕ ∨ ψ〉 β {〈T, ϕ〉, 〈T, ψ〉}
〈F, ϕ ∨ ψ〉 α {〈F, ϕ〉, 〈F, ψ〉}
〈T, ϕ⇒ ψ〉 β {〈F, ϕ〉, 〈T, ψ〉}
〈F, ϕ⇒ ψ〉 α {〈T, ϕ〉, 〈F, ψ〉}
〈T, ¬ϕ〉 α {〈F, ϕ〉}
〈F, ¬ϕ〉 α {〈T, ϕ〉}

Table 2.4: Smullyan’s expansion rules. A system of rules foranalyzing logical [Smullyan
1995] formulas used in many different proof methods. Each row describes one of
Smullyan’s rules. The expansion rule for a formulaE is located by finding its sign and
primary connective in the first column of a row. The second column (Rule TypeSMr(E))
of this row indicates the rule’s type and the third column (Child SubformulasSMc(E))
contains the child subformulas generated by the application of the rule.

2.6 Smullyan’s Rules

Each of the proof methods discussed in this dissertation hasrules that allow new

formulas to be generated from existing formulas. Either explicitly or implicitly, all five

methods employ Smullyan’s rules as defined in Table 2.4. Smullyan’s rules [Smullyan

1995] are used to analyze a logical formula. They implement the semantics of the evalu-

ation functionv discussed in Section 2.5. In a signed formula, the sign and the formula’s

primary connective determine which Smullyan rule to apply.There are eight rules, one for

each combination of the two signs and the four connectives.

The termexpandand its noun formexpansionare used in the descriptions of the

proof methods to indicate the application of a Smullyan rule. The standard descriptions of

natural deduction and the Kripke C-tableau use their own sets of rules. However, this dis-

sertation proves that these rule systems manipulate formulas in the same way as Smullyan’s

rules.
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For propositional logic, Smullyan identified two types of rules: α and β. This

dissertation separates theα-rules into unary and binary types. During an expansion, unary

α-rules add one new formula to the proof, while binaryα andβ-rules add two. Theα-rules

add new formulas to the current proof, whileβ-rules split the proof into two subproofs,

adding a new formula to each. Anα-formulais a formula that requires anα-rule to expand

it, and aβ-formulais a formula that requires aβ-rule to expand it.

To facilitate the discussion of Smullyan’s rules, two functions,SMr andSMc, are

introduced. The functionSMr maps a formula to eitherα or β, the two categories of

Smullyan’s expansion rules. The functionSMc maps a formula to a set of formulas added

by an expansion and|SMc(E)| is the number of formulas added by the expansion of the

formulaE. Other texts useα andβ as their rule types, this dissertation splits theα rules into

two types, unaryα when the expansion adds one formula and binaryα when the expansion

adds two formulas.

The actions taken for each rule type are described below and an example of its

application is presented:

• If SMr(E) = α and|SMc(E)| = 1, thenE is a unaryα-formula. When an unary

α-rule is applied, the formula inSMc(E) is added to the current proof. For example,

〈T,¬ϕ〉 indicates that¬ϕ is a true formula. From this formula, it can be inferred that

ϕ is false. Thus,〈F, ϕ〉 is added to the proof.

• If SMr(E) = α and|SMc(E)| = 2, thenE is a binaryα-formula. When a binary

α-rule is applied, the two formulas inSMc(E) are added to the current proof. For

example,〈T, ϕ ∧ ψ〉 indicates thatϕ ∧ ψ is a true formula. From this formula, it can

be inferred that bothϕ andψ are true. Thus,〈T, ϕ〉 and〈T, ψ〉 are added to the proof.

• If SMr(E) = β, thenE is aβ-formula. When aβ-rule is applied, the current proof

splits into two subproofs; one formula fromSMc(E) is added to each subproof. For
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example,〈T, ϕ ∨ ψ〉 indicates thatϕ ∨ ψ is a true formula. From this formula, it can

be inferred that one or both ofϕ andψ are true. The current proof is replaced with

two new subproofs. IfE is the set of formulas before the expansion, then after this

expansion one subproof contains the formulasE ∪ {〈T, ϕ〉}, and the other subproof

contains the formulasE ∪ {〈T, ψ〉}.

The goal of a refutation theorem prover is to close all of the subproofs it creates.

A subproofclosesif it contains contradictory formulas. As Smullyan’s rulesadd formulas

to subproofs or split them, a subproof closes when a formula is added that contradicts a

formula already in the subproof.

An application of aβ-rule could also create a third subproof with both subexpres-

sions fromSMc(E). Since this third subproof would contain the formulasE ∪ SMc(E), it

would close if either of the other two subproofs close. Thus,the subproof with both child

formulas is omitted.

2.7 Disjuncts and Clauses

Disjuncts and clauses are used in resolution, a proof methoddescribed in Sec-

tion 3.5. Both are sets of formulas that represent the disjunction of their members. Adis-

junct contains both atomic and non-atomic formulas, while aclausecontains only atomic

formulas. An empty clause or disjunction is defined as being false. In this dissertation,

a disjunct is displayed as a list of formulas between square brackets; for example,[A,B],

[¬A,C,D], and[¬A] are three clauses using the variablesA, B, C, andD. Equation 2.1

shows how to transform a disjunct or clause into an equivalent logical formula.
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[E1, E2, . . . , En] =

n
∨

i=1

Ei = E1 ∨ E2 ∨ . . . ∨ En (2.1)

whereE1, E2, . . . , En are formulas

A set of disjunctsD1, D2, . . . , Dm can be transformed into a logical formula using

Equation 2.3.

{D1, D2, . . . , Dm} =

m
∧

i=1

|Di|
∨

j=1

Eij (2.2)

whereEij is thejthformula in disjunctDi

Applying this equation to a set of disjuncts transforms theminto an equivalent log-

ical formula as shown in Equations 2.3 and 2.4.

{[A,B], [¬A,C,D], [¬A]} ≡ (A ∨B) ∧ (¬A ∨ C ∨D) ∧ (¬A) (2.3)

{[A⇒ B,¬C], [D], [¬E ∧ F, (G ∨H) ∧ I]} ≡

((A⇒ B) ∨ ¬C) ∧D ∧ ((¬E ∧ F ) ∨ ((G ∨H) ∧ I)) (2.4)

In unsigned notation, aliteral is a variable or its negation (e.g.A or¬A ). In signed

notation, aliteral consists of a sign and a propositional variable (e.g.〈T,A〉 or 〈F,A〉).
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The formula in Equation 2.3 is inconjunctive normal form(CNF), while the for-

mula in Equation 2.4 is not in CNF. A formula is in this form if 1) each formula in a clause

is a literal and 2) the entire formula is a conjunction of clauses; the formula representing

the set of clauses is a conjunction of disjunctions. Clausesalways represent formulas in

CNF, while disjuncts can represent formulas that are not in CNF.

2.8 Some Basic Graph Theory

A graph can be used to represent a variety of abstract and concrete relationships. A

graphG = (V,E) is composed of a finite set of verticesV and a set of edgesE ⊆ V × V

that connect vertices. Anedgeconsists of a pair of vertices. In an undirected graph, edges

represent a symmetric relation; for example, an edgexy could mean thatx has mety, and,

hence,y has also metx. In a directed graph, edges represent relationships that are not

necessarily symmetric; for example, if one authoru cited a second authorv but the second

author has not cited the first, thenuv is an edge, butvu is not an edge. An undirected graph

represents edges using an unordered pairxy of vertices, while directed graphs represent

edges using an ordered pair(x, y) of vertices.

A pathfrom vertexv1 to a vertexvn is a sequence of distinct verticesv1, v2, . . . , vn

such that for1 ≤ i < n, vivi+1 is an edge in the graph. Acycleis a path where the starting

and ending vertices are the same, i.e.v1 = vn.

An acyclic graphis a graph that does not contain any cycles. In an undirected graph

there is no path leading from any vertex back to itself. In directed graphs there is no path

leading from any vertex following the directions of the edges that leads back to itself.

A connectedgraph is one where there is at least one vertex that has a path to every

vertex in the graph. Equivalently, in an undirected, connected graph there is a path between

every pair of vertices.
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A rooted treeis a directed, acyclic, connected graph where there is a directed path

from a singleroot vertex to every other vertex in the tree. If there is an edge(u, v) in

a rooted tree, thenu is called theparent of v andv is thechild of u. A vertexw is a

descendantof u if there is a directed path fromu tow. A vertexu is anancestorof w if w

is a descendant ofu. Two distinct verticesu andw areunrelatedif u is neither an ancestor

nor descendant ofw. A leaf is a vertex that has no children. The functionL is used to

describe the construction of trees for an analytic tableau in Section 3.3. In a rooted tree, the

expressionL(v) is the set of leaves that are descendants of the vertexv.

A partial order is a set of elementsS and an ordering relation< on⊆ S × S. If

p, q ∈ S andp 6= q, then eitherp < q, q < p, or p andq are unrelated. Whenp < q, then

p is called apredecessorof q andq is thesuccessorof p. Partial orders are often displayed

as lattices. An elementq ∈ S is calledminimal if there does not exist any elementp ∈ S

with p < q.

2.9 Intuitionistic Truth: Frames, Worlds, and Forcing

Intuitionistic logic adds the notion that the truth value ofa formula may not be

known at a given time. This logic adds a time-like component to the analysis of the for-

mulas. Some truth values may currently be unknown but may become known. Aworld is

the state of knowledge at a given time. There is a directed acyclic graph (DAG) of possible

future worlds; one shifts to another world when new information becomes available. Some

formulas areforced(true), while others are unforced in a given world (state of knowledge).

If a formula is true (forced) in a world, it is true (forced) inall possible successor worlds.

Once the truth value is established, it is neither changed nor contradicted by future infor-

mation.

18



In analyzing formulas in intuitionistic logic, a frame is constructed. Aframe is a

three-tuple(P,≥, A(p)) whereP is a set of worlds,≥ a transitive and reflexive relation on

P , andA(p) the set of forced formulas in worldp. The relation≥ on the setP defines a

partially ordered set. In this partially ordered set, each element inP represents a possible

world or state of knowledge.

If q is a successor world ofp, denoted asq ≥ p, thenA(p) ⊆ A(q). Themono-

tonicity property states that if a formula is forced in a world, it mustalso be forced in all

successor worlds. The operator is used to indicate that the world on the left forces the

formula on the right. Thus, the statementp  ϕ indicates thatϕ is forced in worldp, while

the statementp 6 ψ indicates thatψ is not forced in worldp.

Nerode and Shore [Nerode and Shore 1993] use the functionA(p) for atomic for-

mulas and define the semantics of the logical connectives, using frames and worlds in terms

of forcing as shown in Figure 2.1. Later, Nerode and Shore in their Lemma 2.12 prove that

for any forced formulaϕ, if p  ϕ, then for allq ≥ p, q  ϕ.

In the semantics presented in Figure 2.1, disjunction (∨) and conjunction (∧) are

similar to the same operators in classical logic, but the semantics of negation (¬) and im-

plication (⇒ ) are different. (These differences are explored in detail in Chapter 5.)

2.10 Derivability and Validity

A logic is defined by its rules of inference and axioms. A formula ϕ is derivable,

(⊢ ϕ), if it can be obtained using axioms and rules of inference. Alogic iscompleteif every

true formula can be derived using its inference rules and axioms. Truth tables are used in

classical logic to establish the validity or truthfulness of a formula, but this approach does

not work in intuitionistic logic. Instead, intuitionisticlogic uses frames and forcing to

establish validity, as discussed in Section 2.9. Classicaland intuitionistic propositional
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1. For all atomic formulasϕ, p  ϕ if and only ifϕ is inA(p).

2. If p  ϕ⇒ ψ, then for allq ≥ p, q  ϕ impliesq  ψ.

3. If p 6 ϕ⇒ ψ, then there exists aq ≥ p whereq  ϕ, butq 6 ψ.

4. If p  ¬ϕ, then for allq ≥ p, q 6 ϕ (q does not forceϕ).

5. If p 6 ¬ϕ, then there exists aq ≥ p such thatq  ϕ.

6. p  ϕ ∧ ψ if and only if p  ϕ andp  ψ.

7. p  ϕ ∨ ψ if and only if p  ϕ or p  ψ.

Figure 2.1: Semantics of logical connectives in intuitionistic logic.

〈F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)〉

〈T, ϕ⇒ ψ〉
yyrrrrrrr

〈F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)〉

〈F, (¬ϕ) ∨ ψ〉
%%LLLLLLL

〈T, ϕ⇒ ψ〉

〈F, ϕ〉
����

��
�

〈T, ϕ⇒ ψ〉

〈T, ψ〉
��:

::
::

〈F, (¬ϕ) ∨ ψ〉

〈F, ¬ϕ〉
����

��
�

〈F, (¬ϕ) ∨ ψ〉

〈F, ψ〉
��:

::
::

〈F, ¬ϕ〉

〈T, ϕ〉
��

Figure 2.2: Formula tree for(ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ). This tree represents a partial order
indicating the restrictions on the order in which signed formulas may be expanded during
a proof. The subscripts on the operators have been added to aid in the discussion.

logic are both complete; every true (valid) formula can be derived from axioms using rules

of inference.

2.11 Formula Trees

Formula trees are similar to parse trees, but the children ofeach vertex are labeled

with the subformulas generated by using Smullyan’s rules. The root of the formula tree for

the proposed theoremϕ is labeled with〈F, ϕ〉. If a non-leaf vertexv is labeled with the
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signed expressionE, then its children are labeled with the formulas inSMc(E). The leaves

are labeled with atomic formulas. The formula tree for(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ) is shown in

Figure 2.2. This tree is constructed solely by the functionSMc; the functionSMr does not

affect the tree’s construction.
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Chapter 3

Proof Methods in Classical Logic

All logical formulas can be classified into one of three categories: theorems (tau-

tologies), contingencies, and contradictions. Theorems evaluate to true for all possible

assignments of values to their variables. Contingencies evaluate to true for some assign-

ments and false for others. Contradictions evaluate to false regardless of the assignments

made to their variables.

One way to demonstrate that the logical formulaA ⇒ A is a theorem is by as-

signing one of the two logical values, true (⊤) or false (⊥), to A. After the assignment,

the formula becomes either⊤ ⇒ ⊤ or ⊥ ⇒ ⊥. Both assignments result in formulas

that evaluate to true; hence, it is a theorem. As the number ofvariables grows, the num-

ber of possible assignments increases exponentially. Thus, trying all possible assignments

becomes tedious and impractical. There are2n assignments for a logical formula withn

variables. If a formula has ten or twenty variables, the number of possible assignments is

210 = 1024 or 220 = 1, 048, 576, respectively. Because of the large number of possible as-

signments, several algorithms have been developed that more efficiently decide if a logical

formula is a theorem.
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Since the early Twentieth Century, several methods have been developed to prove

theorems more efficiently; five of these methods are natural deduction, Kripke tableau,

resolution, analytic tableau, and matrix. There are other methods and minor variations of

these methods, but the discussion in this dissertation is limited to these five. Each of these

uses a different data structure to record the truth values ofthe formulas they manipulate.

There are also differences in the way they handle how a proof is split into subproofs.

The two principal strategies that theorem provers use are direct proof and refutation.

A proposed theoremis a formula that a method is trying to prove. For a proposed theorem

P , a direct proof attempts to find a proof by working from the axioms/assumptions towards

P , using the rules of inference. A refutation proof, on the other hand, shows that¬P is a

contradiction. Recall, a contradiction is a formula that evaluates to false for all assignments.

Thus,¬P evaluates to false; hence(¬P ) ⇒ ⊥ ≡ ¬¬P ≡ P . Thus,P must evaluate to

true for all assignments, and, hence, is a theorem. The five Sections 3.1 through 3.5 each

describe one of the proof methods: natural deduction, Kripke C-tableau, analytic tableau,

matrix, and resolution.

Chapter 4 shows that every method, except resolution, uses the same underlying

algorithm. Section 3.6 shows how the clauses of the resolution method can be transformed

into an equivalent matrix. Using these findings this dissertation demonstrates how a theo-

rem prover can switch between methods during a proof.

3.1 Sequents and Natural Deduction Method

Sequents, introduced by Gentzen [Gentzen 1935], consist of two sets of logical for-

mulas separated by a sequent arrow−→. A natural deduction proof is a tree of sequents,

with axioms (true statements) at its leaves and a sequent with the proposed theorem at its

root. Axiom sequents are sequents expressing formulas thatare accepted as true. The se-
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¬⊥ ⇔ ⊤ (3.1)

¬⊤ ⇔ ⊥ (3.2)

ϕ⇒ ψ ⇔ ¬ϕ ∨ ψ (3.3)

ϕ ∧ ⊥ ⇔ ⊥ (3.4)

ϕ ∨ ⊤ ⇔ ⊤ (3.5)

¬ϕ ∨ ϕ⇔ ⊤ Excluded Middle (3.6)

¬(ϕ ∧ ψ)⇔ ¬ϕ ∨ ¬ψ De Morgan’s Law 1 (3.7)

¬(ϕ ∨ ψ)⇔ ¬ϕ ∧ ¬ψ De Morgan’s Law 2 (3.8)

Figure 3.1: List of common identities in classical logic.

quent rewrite rules describe which sequents can be placed above or below a given sequent.

The rewrite rules are used to construct the tree of sequents that link the leaf sequents with

the root sequent. This section begins by defining a sequent, moves on to describing sequent

rules, and concludes with a step-by-step description of a proof’s construction. The proof’s

construction illustrates how the sequent rules are combined.

Sequents, introduced by Gentzen [Gentzen 1935], consist of two sets of logical for-

mulas separated by a sequent arrow−→. The set on the left of the arrow is the antecedent,

and the succedent is the set on the right. A sequent represents the statement: if all of the

formulas in the antecedent are true, then at least one formula in the succedent must be

true. Gentzen specified the semantics in terms of logical operators using equivalence in

Formula 3.9, transforming a sequent into a logical formula.

ϕ1, ϕ2, . . . , ϕn −→ ψ1, ψ2, . . . , ψm ≡ ϕ1 ∧ ϕ2 ∧ . . . ∧ ϕn ⇒ ψ1 ∨ ψ2 ∨ . . . ∨ ψm (3.9)
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For example, the sequent

A ∧ B,B ∨ ¬C −→ A⇒ B,C

contains the formulasA ∧ B andB ∨ ¬C in the antecedent and the formulasA ⇒ B and

C in the succedent. Applying Equivalence 3.9, this sequent can be transformed into the

logical formula below:

((A ∧ B) ∧ (B ∨ ¬C))⇒ ((A⇒ B) ∨ C)

In a proof, each sequent is linked to the sequent(s) above or below it by one of the

sequent rewrite rules seen in Figure 3.2. The number of sequents in a proof depends on

the order in which rewrite rules are applied and on the size and content of the proposed

theorem’s formula tree.

Rewrite and axiom sequent rules describe how to build a prooftree. Rewrite rules

link sequents in a chain, while axiom rules indicate where the chain ends. In a rewrite rule,

a horizontal line separates the premise sequent(s) above itfrom the conclusion sequent

below it. Axiom rules consist of just one sequent.

For example, the rewrite ruler¬ indicates that the sequent (A −→ ) may be placed

directly above the sequent (−→ ¬A ). Figure 3.3 shows this rule with an example of its

application. All sequent rules are stated in the most general terms using schema variables.

The schema variables are represented by Greek letters. Whena rule is applied, substitutions

are made for the these letters; lower case letters representa formula, and upper case letters

represent a set of formulas. In Figure 3.3, when the rule is applied,ϕ is substituted forA,

and the empty set is substituted forΓ and∆.
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Γ, ϕ −→ ϕ,∆ (Axiom,Ax1)

Γ,⊥ −→ ∆ (Axiom,Ax2) Γ −→ ⊤,∆ (Axiom,Ax3)

Rewrite Rules

Γ, ϕ, ψ −→ ∆
l∧

Γ, ϕ ∧ ψ −→ ∆

Γ −→ ϕ,∆ Γ −→ ψ,∆
r∧

Γ −→ ϕ ∧ ψ,∆

Γ, ϕ −→ ∆ Γ, ψ −→ ∆
l∨

Γ, ϕ ∨ ψ −→ ∆

Γ −→ ϕ, ψ,∆
r∨

Γ −→ ϕ ∨ ψ,∆

Γ −→ ϕ,∆ Γ, ψ −→ ∆
l ⇒

Γ, ϕ⇒ ψ −→ ∆

Γ, ϕ −→ ψ,∆
r ⇒

Γ −→ ϕ⇒ ψ,∆

Γ −→ ϕ,∆
l¬

Γ,¬ϕ −→ ∆

Γ, ϕ −→ ∆
r¬

Γ −→ ¬ϕ,∆

Figure 3.2: Classical logic sequent rules. This figure contains the axioms and rewrite rules
for classical logic expressed using sequents.Γ and∆ represents sets of formulas that are
not involved in the current rule. This set of sequent rules isa modification of the rules in
[Wallen 1990].

The names of rewrite rules come from the formulaE that appears in the conclusion

but not in the premise(s). The name is a combination of the side of the sequent arrow where

E appears,l indicating the antecedent andr the succedent, andE’s primary connective (the

operator at the root ofE’s parse tree). SinceE is non-atomic, it must be one of four forms,

either¬ρ, ϕ ∧ ψ, ϕ ∨ ψ, orϕ⇒ ψ. Thus,E’s primary connective is one of the following:

¬, ∧, ∨, or⇒. The eight rewrite rules result from the combination of the four primary

connectives and the two sides of the sequent arrow. Thus, there is exactly one rule for each

non-atomic formula wherever it appears in a sequent.

For example, thel∨ sequent rule divides the formulaϕ ∨ ψ in the antecedent into

two subformulas. The conclusion sequentC of the rule is (Γ, ϕ ∨ ψ −→ ∆ ). The rule’s

26



Sequent Rule Example of This
Rule’s Application

Γ, ϕ −→ ∆
r¬

Γ −→ ¬ϕ,∆

A −→
r¬

−→ ¬A

Figure 3.3: On the left ther¬ rule is shown and on the right an example showing its
application. In the rule’s applicationA is substituted forϕ, and the empty set is substituted
for bothΓ and∆.

Γ, ϕ −→ ∆ Γ, ψ −→ ∆
l∨

Γ, ϕ ∨ ψ −→ ∆

A ∧B,D −→ B ∧ ¬D,E C ⇒ B,D −→ B ∧ ¬D,E
l∨

(A ∧B) ∨ (C ⇒ B), D −→ B ∧ ¬D,E

Figure 3.4: Thel∨ sequent rule and an example of its application. The top of thefigure
shows thel∨ sequent rule and the bottom of the figure has an example of thisrule’s appli-
cation. In the application of the rule,A ∧B is substituted forϕ, C ⇒ B for ψ, {D} for Γ,
and{B ∧ ¬D,E} for ∆.

first premise sequentP1 ( Γ, ϕ −→ ∆ ) is obtained fromC by removingϕ ∨ ψ and adding

ϕ to the antecedent. The rule’s second premise sequentP2 ( Γ, ψ −→ ∆ ) is obtained from

C by removingϕ∨ψ and addingψ to the antecedent. Figure 3.4 displays this sequent rule

and an example of its application. In the application of thisrule, the following substitutions

are made:ϕ for A ∧ B, ψ for C ⇒ B, ∆ for the set{B ∧ ¬D,E}, andΓ for the set{D}.

Unlike ther¬ rule, this rule has two premise sequents. Two premise rules split a proof tree

branch into two branches, each representing a subproof. Each of these subproofs must be

successful for the main proof to be successful. Generally, aproof of a non-trivial theorem

has many subtrees.

In contrast to rewrite rules that govern the construction ofa chain of sequents, axiom

rules indicate the sequents which terminate the chain. Axiom sequents represent a formula

that is accepted as true and, thus, is a terminal leaf. In classical propositional logic, axiom
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sequents have one of three forms: (1) the antecedent contains⊥, (2) the succedent contains

⊤, or (3) the antecedent and the succedent have a formula in common. The top three rules

in Figure 3.2 show these axioms represented as sequent schema. If an axiom sequent is

substituted into Equivalence 3.9, the resulting logical formula can easily be proven to be

true. Each axiom rule type is proven in Figures 3.5, 3.6, and 3.7.

Statement Statement Justification
Number

1) A,⊥ −→ B Given
2) A ∧ ⊥ ⇒ B By Identity 3.9
3) ⊥ ⇒ B By Identity 3.4
4) ¬⊥ ∨B By Identity 3.3
5) ⊤∨ B = ⊤ By Identities 3.1 and 3.5

Figure 3.5: Proof of the sequent, axiom ruleϕ,⊥ −→ ψ. In the proofA is substituted for
ϕ andB for ψ.

Statement Statement Justification
Number

1) A −→ ⊤, B Given
2) A⇒ ⊤∨B Using Identity 3.9
3) A⇒ ⊤ Using Identity 3.5
4) ¬A ∨ ⊤ = ⊤ Using Identities 3.3 and 3.5

Figure 3.6: Proof of the sequent, axiom ruleϕ −→ ⊤, ψ. In the proofA is substituted for
ϕ andB for ψ.

A rewrite rule can be used as inference or reduction. An inference adds the conclu-

sion sequent beneath the sequent(s) that match the premise(s) of a rule, while a reduction

adds the premise sequent(s) above a leaf sequent that matches the conclusion sequent of

a rule. An inference constructs the formula in the conclusion sequent from simpler for-

mula(s) in the premise sequent(s). On the other hand, a reduction decomposes one formula

E in the conclusion into its subformula(s) that replaceE in the rule’s premise(s). A com-

pleted proof can be viewed as either a reduction proof working from the proposed theorem
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Statement Statement Justification
Number

1) A,B −→ B,C Given
2) (A ∧B)⇒ (B ∨ C) Using Identity 3.9
3) ¬(A ∧ B) ∨ (B ∨ C) Using Identity 3.3
4) (¬A ∨ ¬B) ∨ (B ∨ C) Using De Morgan’s law 3.7
5) (¬A ∨ C) ∨ (¬B ∨ B) Associativity and Community of∨
6) (¬A ∨ C) ∨⊤ = ⊤ Excluded middle 3.6

and Identity 3.5

Figure 3.7: Proof of the sequent, axiom ruleϕ, ψ −→ ψ, ρ. In the proofA is substituted
for ϕ, B for ψ, andC for ρ.

to the axioms or an induction proof working from the axioms tothe proposed theorem. By

examining the completed proof tree, it is impossible to determine if it was created using

inferences, reductions, or a combination of the two.

A⇒ B −→ ¬A,B
r∨

A⇒ B −→ ¬A ∨B
r ⇒

−→ (A⇒ B)⇒ (¬A ∨ B)

Figure 3.8: Incomplete natural deduction proof. This figurecontains the first two steps of
a natural deduction proof of(A⇒ B)⇒ (¬A ∨B).

To illustrate how these sequent rules are used to construct aproof tree for a formula,

each step of the construction of the proof for(A ⇒ B) ⇒ (¬A ∨ B) is discussed. Every

proof is rooted with anendsequent, which has an empty antecedent and only the proposed

theorem in the succedent. Figure 3.8 shows the first two stepsin the proof. Assuming that

this proof is constructed using reductions, the first step isto construct the endsequent for

the proposed theorem at its root. The first sequent rule applied is r ⇒ , adding the sequent

A⇒ B −→ ¬A ∨B followed byr∨ adding the sequentA⇒ B −→ ¬A,B.

After the first ruler ⇒ is applied, either the rulel⇒ can be applied toA⇒ B or

the ruler∨ can be applied to¬A ∨ B. Two proofs forA⇒ B −→ ¬A ∨ B are shown in
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A −→ A,B
r¬

−→ A,¬A,B B −→ ¬A,B
l ⇒

A⇒ B −→ ¬A,B
r∨

A⇒ B −→ ¬A ∨ B
r ⇒

−→ (A⇒ B)⇒ (¬A ∨B)

A −→ A,B
r¬

−→ A,¬A,B
r∨

−→ A,¬A ∨B

B −→ ¬A,B
r∨

B −→ ¬A ∨ B
l ⇒

A⇒ B −→ ¬A ∨ B
r ⇒

−→ (A⇒ B)⇒ (¬A ∨B)

Figure 3.9: Two natural deduction proofs. This figure contains two natural deduction proofs
of (A⇒ B)⇒ (¬A ∨ B). The proof on the left applies ther∨ rule before thel ⇒ rule,
while the proof on the right applies the rules in the oppositeorder. Because of this differ-
ence, the proof on the left needs to apply ther∨ rule only once, while the proof on the right
needs to apply this rule twice.

Figure 3.9. The proof on the left side of the figure applies ther∨ rule next, while the proof

on the right applies thel⇒ rule next. In the proof on the right, since the two premise rule

l ⇒ was applied before ther∨ rule, ther∨ rule has to applied twice, once in each subtree.

However, in the proof on the left, since ther∨ rule was applied before the tree split, it needs

to be applied only once.

Concentrating on the proof on the left side, the applicationof ther∨ generates only

one premise,A ⇒ B −→ ¬A,B. Next, thel ⇒ is applied toA ⇒ B, splitting the

tree and adding the sequents−→ A,¬A,B andB −→ ¬A,B. The second of these is an

axiom; thus, the right subproof has concluded successfully. On the left branch, ther¬

rule is applied, adding the sequentA −→ A,B. This new sequent is also an axiom; thus,

the left subproof has concluded successfully. Since both subproofs (subtrees) concluded

successfully, the entire proof is successful. The proof on the right side of the figure follows

a similar set of rule applications to construct a different proof.

During almost every step of a proof, often there is more than one rule that can be

applied, and, thus, a choice must be made. A good ordering of these choices creates a

shorter proof, while a poor ordering generates a longer proof. In Figure 3.9, there was a
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point where two rules could have been applied; the choice made on the right led to a longer

proof. In general, it is wise to defer an application of a two premise rule when a one premise

rule can be applied. Since two premise rules copy all formulas to each subtree (premise

sequent), the number of copies of a given formula may grow quickly. If a one premise rule

is applied to the formulaψ, replacing it withψ1 andψ2 followed by several two premise

rules, then each leaf sequent will containψ1 andψ2. However, if several two premise rules

are applied first, then the rule replacingψ with ψ1 andψ2 will need to be applied on each of

the branches to have the same effect. There is only a difference of one proof step between

the proofs in Figure 3.9. However, for more complex formulas, the order in which formulas

are expanded will lead to proofs with a very large differencein the number of steps. Even

though the number and order of steps in the proofs for a given formula are different, the

same set of axiom sequents are present at the leaves.

3.2 Kripke C-Tableau Method

The Kripke tableau algorithm [Kripke 1965] attempts to prove theorems in intu-

itionistic logic by constructing a tree of boxes. Here a simplified version, referred to as

Kripke C-tableau, for classical logic is presented. The full version is presented in subsec-

tion 5.6.2.

In a Kripke C-tableau, a proof is constructed using a tree of boxes. Each box is

divided into two columns, with antecedent formulas placed in the left column and succedent

formulas in the right column. These columns were designed tomirror the antecedent and

succedent of natural deduction [Beth 1956], and the sequentrules were converted into rules

for manipulating formulas within boxes. In this method, therewrite rules are used only as

reductions. Single premise rules add their new formulas to the current box, while two

premise rules split the box. Each time a box splits, the tree grows. A proof begins with a
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root box containing the proposed theorem in the right columnand then tries to construct

boxes corresponding to axiom sequents.

This section begins by defining the column-formula pair notation for a Kripke box.

Next, it explains how the rewrite and axiom rules are appliedin a Kripke C-tableau with

two examples of the rules. The section concludes with a step-by-step construction of a

proof.

The contents of a box are represented as a set of Kripke column-formula (KCF)

pairs, each consisting of a columnleft or right and a formula. For example, the ordered

pair 〈left,¬A〉 indicates that the logical formula¬A appears in the left column. The KCF

set and the Kripke box in Figure 3.10 both represent the same set of formulas.

ϕ⇒ ψ

ϕ ψ

The set of KCF{〈right, ϕ ⇒ ψ〉, 〈left, ϕ〉, 〈right, ψ〉} is another repre-
sentation of this Kripke box.

Figure 3.10: An example of a Kripke box and its Kripke column-formula (KCF) notation.
The contents of a Kripke tableau are represented as a set of Kripke column-formula pairs.

The rules for manipulating the formulas in a Kripke C-tableau have only a verbal

description in [Kripke 1965]; it contains no example proofs. Kripke’s rules are derived

from the rules of natural deduction. Just as in natural deduction, the rewrite rule used to

expand the formulaE depends on the column and the primary connective ofE. To facilitate

the discussion, the functionsKRr andKRc are introduced in Table 3.11; they indicate the

actions to be taken to expand a formula. The functionKRr(E) indicates if the current box

should be split, andKRc(E) contains the formulas added in the expansion. The functions

KRr andKRc describe the rewrite rules in [Kripke 1965] and were designed to mirror the

functionsSMr andSMc.
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Parent Formula (E) Rule Type Children
Column and Form KRr(E) KRc(E)
〈left, ϕ ∧ ψ〉 no split {〈left, ϕ〉, 〈left, ψ〉}
〈right, ϕ ∧ ψ〉 split {〈right, ϕ〉, 〈right, ψ〉}
〈left, ϕ ∨ ψ〉 split {〈left, ϕ〉, 〈left, ψ〉}
〈right, ϕ ∨ ψ〉 no split {〈right, ϕ〉, 〈right, ψ〉}
〈left, ϕ⇒ ψ〉 split {〈right, ϕ〉, 〈left, ψ〉}
〈right, ϕ⇒ ψ〉 no split {〈left, ϕ〉, 〈right, ψ〉}
〈left,¬ϕ〉 no split {〈right, ϕ〉}
〈right,¬ϕ〉 no split {〈left, ϕ〉}

Figure 3.11: Kripke C-tableau rule table. This table distills the classical portion of Kripke’s
description in [Kripke 1965] of the rules for manipulating formulas into two functions,
KRr andKRc. Suppose thatE is a column-formula pair. The functionKRr(E) func-
tion returnssplit or no split to indicate whether the expansion rule splits the current box.
The functionKRc(E) returns a set containing column-formula pairs that are added by the
expansion rule.

The rules for closing a box are also derived from the three axiom rules of natural

deduction. Like sequents, there are three kinds of axioms: 1) ⊥ appears in the left column

(the antecedent), 2)⊤ appears in the right column (the succedent), and 3) the same formula

appears in both columns (both sides of the arrow). If all leafboxes close, then the theorem

has been proven.

The method begins by creating a root box, similar to the endsequent in natural

deduction, by placing the proposed theorem in the right column. Each subsequent step

expands a formulaE. If KRr(E) = no split, similar to applying a one premise sequent

rewrite rule, then the Kripke C-tableau adds the formula(s)in KRc(E) to the current box.

However, ifKRr(E) = split, similar to applying a two premise sequent rule, then the

Kripke C-tableau box splits, creating two boxes under the current box. All the formulas

in the parent are copied to each new box, and one formula fromKRc(E) is added to each

child box. Kripke C-tableaux are more efficient than naturaldeduction since all formulas

in a box are copied only when that box splits.
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Before Expansion
1)¬A

1)¬A 2) A (1)

1)A ∨B

After Expansion
1)A ∨B

�
�

�	

@
@

@R
1)A ∨B
2) A (1)

1)A ∨ B
3) B (1)

Figure 3.12: Examples of a split and an non-split rule in a Kripke C-tableau. This figure
shows one example of each of the two Kripke rule types; the example on the left shows a
rule that does not split the box, while the example on the right splits the box.

Examples of the application of the two Kripke rule types,split andno split, are

shown in Figure 3.12. On the left of the figure, the FormulaEa 〈left,¬A〉 is expanded.

SinceKRr(Ea) = no split andKRc(Ea) = {〈right, A〉}, the formulaA is added to the

right column of the current box. On the right, the FormulaEb, 〈left, A ∨ B〉, is expanded.

SinceKRr(Eb) = split andKRc(Eb) = {〈left, A〉, 〈left, B〉}, the current box is split

into two new ones, one of which containsA in its left column and the otherB in its left

column.

Now a step-by-step description of the Kripke C-tableau proof for (ϕ ⇒ ψ) ⇒

(¬ϕ ∨ ψ) is presented; the Kripke C-tableau is shown in Figure 3.13. This description

shows how the Kripke rules are combined to construct a proof.For convenience,Ei will

represent the KCF pair numberedi. The first step of the proof is to place the proposed

theorem, numbered 1, in the right column of the root box. Thus, E1 = 〈right, (ϕ ⇒

ψ)⇒ (¬ϕ∨ψ)〉. SinceE1 is the only logical formula, it is chosen for expansion. Because

KRr(E1) = no split, the subformula(s) generated by the expansion ofE1 are added to

this box. These formulas areKRc(E1) = {〈left, ϕ ⇒ ψ〉, 〈right,¬ϕ ∨ ψ〉}. These two

formulas are added to the root box and numbered as 2 and 3, respectively.
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1) (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)
2)ϕ⇒ ψ (1) 3)¬ϕ ∨ ψ (1)

�
�

�	
2)ϕ⇒ ψ (1) 1) (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

3) ¬ϕ ∨ ψ (1)
4) ϕ (2)
6) ¬ϕ (3)

10)ϕ (6) 7) ψ (3)

closed 4 and 10

@
@

@R
1) (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

2) (ϕ⇒ ψ) (1) 3)¬ϕ ∨ ψ (1)
5)ψ (2) 8)¬ϕ (3)
11)ϕ (8) 9)ψ (3)

closed 5 and 9

Figure 3.13: A Kripke C-tableau proof of(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

In the next expansion step, either Formula 2 or 3 can be expanded. In this version

of the proof, Formula 2 is expanded next. BecauseKRr(E2) = split, the box is split into

a left and a right box. The two new boxes are shown under the root box in Figure 3.13.

Formulas 1, 2, and 3 are copied from the root box into the left and right boxes. Next the

KCF formulas inKRc(E2) are placed in these boxes, Formula 4〈right, ϕ〉 in the left box

and Formula 5〈left, ψ〉 in the right box.

Since the root box split before Formula 3 was expanded, it needs to be expanded

twice, once in each leaf box. On the other hand, if Formula 3 was expanded before For-

mula 2, this duplication would have been avoided. Returningto the proof, next Formula

3 in the left box is expanded. SinceKRr(E3) = no split, the members ofKRc(E3) =

{〈right,¬ϕ〉, 〈right, ψ〉} are added to left box as formulas 6 and 7. Next, the same formula

is expanded in the right box, adding the same formulas, but numbered 8 and 9. The right

box can be closed since the same formula appears in both columns,〈left, ψ〉 (Formula 5)

and〈right, ψ〉 (Formula 9).

The only non-atomic formula in the left box is 6〈right,¬ϕ〉, which is expanded

next. SinceKRr(E6) = no split, the formula inKRc(E6) = {〈left, ϕ〉} is added as
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Formula 10. This box can now be closed since the same formula appears in both columns,

〈right, ϕ〉 (Formula 4) and〈left, ϕ〉 (Formula 10). Even though the right box is already

closed, Formula 8 (which is the same as Formula 6) may be expanded, adding Formula 11

to the right box. Since all the leaf boxes are closed, the proposed theorem has been proven.

3.3 Analytic Tableau Method

Analytic tableau, a refutation method, proves theorems by constructing a binary

tree in which each vertex is labeled with a signed formula. Inan attempt to prove that the

formulaϕ is a theorem, the first step creates a root vertex labeled with〈F, ϕ〉, assuming

that the proposed theorem is false. Each subsequent step expands a vertex using one of

Smullyan’s rules and then determines if the modified branch(es) can be closed. A branch is

closed if it contains an obvious contradiction. A theorem isproven when all of the branches

close. Figure 3.14 shows an example of an application of eachrule type: unaryα, binary

α, andβ.

When a vertexv labeled with the formulaE is expanded, its rule type determines

how a new vertex or vertices are added as descendants of each leaf vertex inL(v). Recall

that the functionL(v) is defined to be the set of leaves beneathv; each case below describes

how a rule type adds new vertices to the tree.

• If SMr(E) = α and|SMc(E)| = 1, then a unaryα-rule is applied, adding a single

vertex as the child of each vertex inL(v). Each of these new vertices is labeled with

the formula inSMc(E).

• If SMr(E) = α and |SMc(E)| = 2, then a binaryα-rule is applied, adding two

vertices as descendants of each vertex inL(v). If vℓ ∈ L(v), one vertex is added as
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Rule Type An Application of
the Rule Type

Unaryα-rule

T, ¬ϕ

F, ϕ
��

Binaryα-rule

T, ϕ ∧ ψ

T, ϕ
��

T, ϕ

T, ψ
��

β-rule

T, ϕ ∨ ψ

T, ϕ
����

��
��
T, ϕ ∨ ψ

T, ψ
��?

??
??

?

Figure 3.14: Examples of the application of anα and aβ rule type in analytic tableau.
Since confusion is not likely, the signed formulas are presented without angle brackets.

the child ofvℓ and the other as the child of the first, making it the grandchild of vℓ.

The new descendants ofvℓ are labeled with the formulas inSMc(E).

• If SMr(E) = β, then aβ-rule is applied, adding two vertices as siblings beneath

each vertex inL(v). These new vertices are labeled with the formulas inSMc(E).

After vertices are added, the tree is examined; any of the branches that have become

obviously contradictory are closed. A branch is closed whenit meets one of three condi-

tions: 1) the branch contains a vertex labeled with〈T,⊥〉, 2) the branch contains a vertex

labeled with〈F,⊤〉, or 3) for a formulaϕ, the branch contains vertices labeled with〈T, ϕ〉

and〈F, ϕ〉. The first two conditions close the branch because they represent the inherently

37



1) F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

2) T, ϕ⇒ ψ (1)
��

2) T, ϕ⇒ ψ (1)

3) F, ¬ϕ ∨ ψ (1)
��

3) F, ¬ϕ ∨ ψ (1)

4) F, ϕ (2)
||yy

yy
yy

3) F, ¬ϕ ∨ ψ (1)

5) T, ψ (2)
""EE

EE
EE

4) F, ϕ (2)

6) F, ¬ϕ (3)
��

5) T, ψ (2)

8) F, ¬ϕ (3)
��

6) F, ¬ϕ (3)

7) F, ψ (3)
��

8) F, ¬ϕ (3)

9) F, ψ (3)
��

7) F, ψ (3)

10) T, ϕ (6)
��

closed 5 and 9closed 5 and 9

closed 4 and 10closed 4 and 10

Figure 3.15: Analytic tableau proof of(ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ). Each vertex contains three
items: 1) an number to identify it, 2) a formula labeling it, and 3) a number in parentheses.
The number in parentheses is the number of the vertex whose expansion created this vertex.

contradictory statements that “false is a true formula” or “true is a false formula.” The third

condition closes the branch because it indicates that the same formula is both true and false.

Once closed, a branch cannot be reopened.

Now a step-by-step description of an analytic tableau proofof (ϕ⇒ ψ)⇒ (¬ϕ∨ψ)

shown in Figure 3.15 is presented. In the discussion of the construction of this proof,vi

represents the vertex numbered withi, andEi represents the signed formula labeling vertex

vi. The first step of the method creates Vertexv1, labeled with the assumption that the

proposed theorem is false. To expandE1, first its rule type needs to be determined; since

SMr(E1) = α and|SMc(E1)| = 2, a binaryα-rule is applied, adding verticesv2 andv3 as

the child and grandchild of Vertexv1. These new vertices are labeled with the formulas in

SMc(E1); hence,〈T, ϕ⇒ ψ〉 labels Vertexv2 and〈F,¬ϕ ∨ ψ〉 labels Vertexv3.
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Next, Vertexv2 is expanded; sinceSMr(E2) = β, the expansion uses aβ-rule,

adding verticesv4 and v5 as the children of Vertexv3. These vertices are labeled with

the signed formulas in the setSMc(E2) = {〈F, ϕ〉, 〈T, ψ〉}. Next, Vertexv3 is expanded

using a binaryα-rule. At this point,L(v3) = {v4, v5}, meaning two new vertices are added

beneath each leaf. Verticesv6 andv8 labeled with〈F,¬ϕ〉 are added as children of vertices

v4 andv5, respectively, and verticesv7 andv9 labeled with〈F, ψ〉 are added as the children

of v6 andv8, respectively. As can be seen in Figure 3.15, Vertexv7 is the grandchild of

Vertexv4, and Vertexv9 is the grandchild of Vertexv5. The right branch can now be closed

since verticesv5 andv9 are labeled with contradictory formulas.

On the left branch, Vertexv6, labeled with〈F,¬ϕ〉, can still be expanded. Since

SMr(E6) = α andSMc(E6) = {〈T, ϕ〉}, Vertexv10, labeled with〈T, ϕ〉, is added as the

child of Vertexv7. The left branch may now be closed since verticesv4 andv10 are labeled

with contradictory formulas. Since no open branches remain, the proof has succeeded.

As the example illustrates, the number of branches increases with each application

of aβ-rule. Thus, a simple heuristic is to applyα-rules beforeβ-rules so that the number

of open branches present in the middle of the proof is reduced. There are two good reasons

for this heuristic. First, fewer open branches mean that fewer branches need to be closed in

order to complete the proof. Second, each expansion step adds vertices beneath each leaf

vertex; thus, fewer branches mean that fewer vertices need to be added during an expansion

step. In the example presented here, if Vertexv3 was expanded before Vertexv2, only two

vertices would have been added instead of four.

The matrix method, presented next, saves space by never having to add more than

four entries or vertices during each expansion. A matrix uses paths through its structure

where the analytic tableau uses branches; thus, a matrix proof is successful if all paths

contain contradictory formulas. However, recognizing that a proof is successful in the

analytic tableau is much easier than in the matrix method. Inthe analytic tableau method,
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as soon as contradictory formula(s) are added to a branch, itis closed. If all of the branches

are closed, the proof is successful. In the matrix method, a path is just a set of vertices

in a directed acyclic graph (DAG). Many paths may share a given vertex or edge; hence,

there is nothing unique to a given path that can be marked to indicate that it is contradictory.

Thus, one must wait until all expansions have been performedbefore checking that all paths

through the DAG are contradictory.

3.4 Matrix Method

The matrix method, described in [Andrews 1981] and [Bibel 1987], constructs a

graph from the proposed theorem. This method consists of twophases; the first con-

structs a matrix using Smullyan’s rules, and the second searches for a contradiction-free

path through it. If no such path can be found, then the theoremhas been proven. The

phrasepath through a matrixis used to indicate paths that are maximal within a matrix;

non-maximal paths can lengthened by adding a vertex to one oftheir ends. Traditionally,

this method has used nested matrices; this dissertation introduces two DAG representations.

3.4.1 Nesting Matrices

A nested matrix is defined recursively using one of three structures: 1) a signed

formula, 2) a single column of matrices, or 3) a single row of matrices. A nested matrix

visually illustrates the semantic structure of the formulafrom which it was created. In a ma-

trix, a signed formula represents itself. A column of submatrices represents a disjunction,

while a row of submatrices represents a conjunction.

The first step in the construction of the matrix proof forϕ creates a matrix with

〈F, ϕ〉 as its only entry. Each subsequent step replaces a formulaE with a matrix using

Smullyan’s rules. If a unaryα-rule is applied,E is replaced with the signed formula in
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Rule Type Matrix Before Matrix Generated
Expansion by Expansion

unary− α [〈T,¬ϕ〉] [〈F, ϕ〉]

binary− α [〈T, ϕ ∧ ψ〉] [〈T, ϕ〉 〈T, ψ〉]

β [〈T, ϕ ∨ ψ〉]

[

〈T, ϕ〉
〈T, ψ〉

]

Figure 3.16: Nested matrix examples of the three rule types.There are three rule types:
unaryα, binaryα, andβ. One example of the application of each is illustrated above.

SMc(E). If a binaryα-rule is applied,E is replaced with a single row containing the two

formulas inSMc(E). If a β-rule is applied,E is replaced with a single column with two

rows, each containing a formula inSMc(E). An example of an application of each of these

rule types is shown in Figure 3.16. The construction phase iscomplete when all formulas

are atomic, meaning that there are no formulas to which Smullyan’s rules can be applied.

The row and column structure of a matrix determines the location of the paths

through the matrix. Apath is a set of formulas found as one moves from the left to the

right of the matrix. Each part of the path depends on the type of entry. If the entry is a

formulaE, then the path through this matrix consists of onlyE. A column of submatrices

represents a disjunction; it contains multiple paths, one through each submatrix. A path

through a column consists of a path through one submatrix in the column. A row of sub-

matrices, on the other hand, represents a conjunction. A path through a row consists of the

concatenation of a path from each of its submatrices.

In the path-checking phase, a search is made for a path through the matrix that does

not contain an obvious contradiction. Similar to analytic tableau, a path contains such a
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[

〈F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)〉
]

(A)

[ [

〈F, ϕ〉
〈T, ψ〉

]

〈F,¬ϕ ∨ ψ〉

]

(C)

[

〈T, ϕ⇒ ψ〉 〈F,¬ϕ ∨ ψ〉
]

(B)

[ [

〈F, ϕ〉
〈T, ψ〉

]

〈F,¬ϕ〉 〈F, ψ〉

]

(D)

[ [

〈F, ϕ〉
〈T, ψ〉

]

〈T, ϕ〉 〈F, ψ〉

]

(E)

Figure 3.17: The matrix proof of the formula(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ). The matrix derivation
sequence is labeled in alphabetical order. The initial matrix is labeled with (A) and the final
matrix with (E). The other matrices are derived from the previous one by the expansion of
a single formula.

contradiction if there is a formulaψ where〈T, ψ〉 and〈F, ψ〉 both appear on the path or the

path contains〈T,⊥〉 or 〈F,⊤〉.

MatricesA throughE in Figure 3.17 show the matrix proof after each step for the

FormulaE1 = (ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ). A is the initial matrix. SinceSMr(E1) = α

and|SMc(E1)| = 2, matrixB is obtained fromA by applying a binaryα-rule to replace

E1 with a row containing the two formulas inSMc(E1). For convenience,E2 andE3

represent the formulas inSMc(E1), whereE2 = 〈T, ϕ⇒ ψ〉 andE3 = 〈F,¬ϕ∨ψ〉. Since

SMr(E2) = β, matrixC is obtained fromB by replacingE2 with a one-column matrix

having two rows, each containing one formula fromSMc(E2). Matrix D is the result of

expandingE3 in matrix C; sinceSMr(E3) = α and |SMc(E3)| = 2, a binaryα-rule

replacesE3 with a matrix having one row with two entries, each labeled with a formula

in SMc(E3). Finally, matrixE is obtained using an unaryα-rule to replace〈F,¬ϕ〉 with

〈T, ϕ〉.

Matrix E has two paths,p1 andp2, passing through it, wherep1 contains〈F, ϕ〉,

p2 contains〈T, ψ〉, and both contain〈T, ϕ〉 and〈F, ψ〉. Sincep1 contains both〈F, ϕ〉 and

〈T, ϕ〉, it is contradictory;p2 is also contradictory since it contains both〈F, ψ〉 and〈T, ψ〉.

Since all paths through the matrix are contradictory, the proposed theorem has been proven.
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Since only one or two entries are added in each step, the final matrix is small, but

the number of paths can be large. IfE is aβ-formula andE1 andE2 represent the formulas

in SMc(E), then expansion ofE replaces it with a one column matrix with two rows, one

containingE1 and the other containingE2. For every path that passed throughE, there are

now two, one passing throughE1 and the other throughE2. This is similar to the analytic

tableau, where theβ-rules double the number of branches containing a formula. Unlike

analytic tableau, the final matrix size does not depend on theorder in which the formulas

are expanded. However, since any vertex or edge in a matrix may be part of multiple paths,

there is no simple way to eliminate contradictory paths as the matrix is constructed.

Most of the literature describing the matrix method focuseson matrix construction,

leaving readers to develop their own procedures to show thatall paths through the matrix

are contradictory. For non-classical logics, the literature describes the extra requirements

for that specific logic. Thus, for classical logic the construction of a matrix transforms the

question of theoremhood to the graph theory question of showing that all paths through the

matrix are contradictory.

The nested matrix representation works well for small examples, but larger ones

cannot be feasibly presented on a page. When the nesting becomes very deep, the paths

through the nested matrices become difficult to identify. Toavoid this situation, this disser-

tation introduces two new DAG representations.

3.4.2 Construction of the DAG Matrix

In the construction of a DAG matrix, each expansion step usesa Smullyan rule to

replace a vertex with a subgraph. The kind of subgraph that replaces a vertex depends upon

which of the three rule types is applied. These subgraphs contain structural and formula

vertices. Structural vertices are unlabeled and are used toconnect the new subgraph with
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the vertices adjacent to the vertex being replaced. Each of the formula vertices includes

a formula number, the formula itselfE, and in parentheses the number of the formulaE ′

whose expansion generatedE. The DAG matrix is a series-parallel graph, first introduced

by Duffin in [Duffin 1965] to describe electrical circuits.

The steps below describe the construction procedure for a DAG proof from the

proposed theoremϕ. The initial DAG is a path with three vertices, two structural and one

formula. The endpoints are structural vertices calledinput andoutput. The middle vertex,

a formula vertex, is labeled with the formula〈F, ϕ〉. There is an edge from theinput to the

middle vertex and another from the middle vertex tooutput. During each subsequent step,

one of Smullyan’s rules is used to replace a vertex with a subgraph. This process continues

until all formula vertices are labeled with atomic formulas. If all paths between theinput

andoutput are contradictory, then the theorem has been proven.

In an expansion step, the subgraph replacing a vertexv is determined by the rule

type used to expand the formula that labelsv; α-rules replacev with a path andβ-rules

replacev with a diamond-shaped subgraph (hereafter called a diamond) as shown in Ta-

ble 3.1. As this table shows, the diamond contains two structural vertices namedin andout

but not labeled; these vertices connect the subgraph to the vertices that were adjacent to the

vertexv. To make eachin andout vertex distinct, a subscript is attached to their names;

thus, thekth application of aβ-rule creates vertices namedink andoutk.

The choice of whether to insert a path or a diamond reflects thesemantics of the

logical connectives. Assuming the vertexv is chosen for expansion and it is labeled with

E, Figure 3.1 shows an example of how each of the three rule types is applied.

• If E is an unaryα-formula, thenv is replaced by the vertexv′ labeled with the

formula inSMc(E). Any path that passed throughv now passes throughv′.

44



Rule Type Before Expansion After Expansion
Unary-α G1 〈T,¬ϕ〉// 〈T,¬ϕ〉 G2

// G1 〈F, ϕ〉// 〈F, ϕ〉 G2
//

Binary-α G1 〈T, ϕ ∧ ψ〉// 〈T, ϕ ∧ ψ〉 G2
// G1 〈T, ϕ〉// 〈T, ϕ〉 〈T, ψ〉// 〈T, ψ〉 G2

//

β G1 〈T, ϕ ∨ ψ〉// 〈T, ϕ ∨ ψ〉 G2
// G1 ink

// ink

〈T, ϕ〉
++WWWWink

〈T, ψ〉33gggg

〈T, ϕ〉
outk33gggg

〈T, ψ〉
outk

++WWWW
outk G2

//

Table 3.1: Matrix expansion rules. This table shows examples of the subgraphs inserted
into the DAG for theα andβ-rule types. The symbolsG1 andG2 represent the parts of the
graph surrounding the vertex being expanded.

• If E is a binaryα-formula, thenv is replaced by a path consisting of two verticesv1

andv2. Any path that passed throughv now passes through bothv1 andv2.

• If E is aβ-formula, thenv is replaced with a diamond. This subgraph has two struc-

tural vertices and two formula vertices. The structural vertices provide connections

with the surrounding graph, while the formula vertices, each labeled with one for-

mula in SMc(E), are on separate paths through the subgraph. For any path that

passed throughv, there are now two paths, each containing one vertex labeledwith a

formula inSMc(E).

Similar to the nesting matrix, a contradictory path betweenthe input andoutput

vertices meets one of three following conditions: 1) it contains〈T,⊥〉, 2) it contains〈F,⊤〉,

or 3) for a formulaϕ, there is a vertex labeled with〈T, ϕ〉 and another with〈F, ϕ〉. The

procedure for finding a non-contradictory path is the same asthat for nested matrices.

3.4.3 An Alternate DAG Representation and Its Rejection

When considering possible DAG representations to replace the nested matrix, two

possibilities were considered. The graphs at the top and bottom of Figure 3.18 illustrate

these two alternatives. The neighborhood representation at the top adds edges between

45



input

AAA�����������
input

B55kkkkkk
input

C
))SSSSSSinput

D
��;

;;
;;

;;
;;

;

A

F
))SSSSSSSA

G
��;

;;
;;

;;
;;

;;
A

H
��0

00
00

00
00

00
00

00
00

B

F55kkkkkkk
B

G
))SSSSSSSB

H
��;

;;
;;

;;
;;

;;

C

FAA�����������
C

G55kkkkkkk
C

H
))SSSSSSS

D

FFF�����������������
D

GAA�����������
D

H55kkkkkkk

F

output
##GGGGG

GGG

G output//

H

output
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input in1
// in1

in3EE���
in1

in4

��/
//

/

in3

〈T,A〉55lll
in3

〈T,B〉
))RRR

in4

〈T,C〉55lll
in4

〈T,D〉
))RRR

〈T,A〉

out3
))RR

〈T,B〉

out355ll

〈T,C〉

out4
))RR

〈T,D〉

out455ll

out3

out1
��?

??

out4

out1BB����

out1 in2
// in2

〈T, F 〉44jjjjjj
in2

in5

��0
00

0

in5

〈T,G〉66ll
in5

〈T,H〉
((RR

〈T,G〉

out5
))SS

〈T,H〉

out555kk
out5

out2EE����

〈T, F 〉

out2
**UUUUUU

out2 output//

Figure 3.18: Comparison of two DAG representations of the formula〈T, ((A ∨B) ∨ (C ∨
D)) ∧ (F ∨ (G ∨ H))〉. The DAG at the top uses the neighborhood representation, while
the DAG at the bottom use the diamond representation. The DAGs use diamonds with
structural vertices labeledink andoutk.

vertices labeled with formulas, while the diamond representation at the bottom adds two

structural vertices calledin and out to the graph each time aβ-rule is applied. These

structural vertices are inserted to reduce the number of edges in a graph, especially for

complete bipartite subgraphs, as shown at the top of Figure 3.18.

The neighborhood graph illustrates an alternative representation in which no struc-

tural vertices are used. Thein-neighborhoodof a vertexv, denoted asN−(v), is {x | xv ∈

E(G)} and theout-neighborhoodof vertex v, denoted asN+(v), is {x | vx ∈ E(G)}

[West 1996][page 46]. In the neighborhood representation,the size of a vertexv’s in-

neighborhood and out-neighborhood can become very large and difficult to manage. For

instance, if vertexv is labeled with〈T, ϕ ∨ ψ〉 and there arek vertices inN−(v) andℓ

vertices inN+(v), then expandingv would replace it withv1 andv2; the edges adjacent to
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v could be removed, but2(k+ℓ) edges need to be added. For each vertexv− inN−(v), two

edgesv−v1 andv−v2 need to be added, and for each vertexv+ in N+(v), two edgesv1v
+

andv2v
+ need to be added. The description of thisβ-rule is not simple, and its execution

can be tedious.

The diamond representation illustrates how the diamond subgraph makes it easier

to construct the DAG, to identify paths through the DAG, and to separate a DAG into sub-

graphs so that large DAGs may be easily presented in separatefigures. The neighborhood

representation assumes that the formula is presented in CNF, while the diamond represen-

tation can handle any formula.

The neighborhood graph contains many edges; thus, it is difficult to identify all of

its paths. For this small example in Figure 3.18, it is feasible to identify all of the paths

through the graph, but for larger formulas the number and size of clauses produce more

and larger complete bipartite subgraphs, making the identification of the paths much more

difficult, while in the diamond representation, the use of diamonds reduces the number

edges required to represent a given formula. Thus, the diamond representation was chosen

over the neighborhood representation.

3.4.4 Appending Matrix DAG

The last modification to the matrix representation is calledthe appending DAG

representation. This representation differs from the previous one; duringthe construction

phase, instead of replacing the vertexv with a subgraph, a subgraph is inserted immediately

after v. A rule is added that a vertex may be expanded only once. Sinceformulas are

preserved in the appending matrix, the appending DAG matrixis useful in proving that

paths in the matrix method are containers (as discussed in Chapter 4) and presenting a

transformation between the matrix and resolution methods in Section 3.6.
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Appending Matrix

input T, (υ ∧ ϕ) ∧ (χ ∨ ψ)// T, (υ ∧ ϕ) ∧ (χ ∨ ψ) output//

input T, (υ ∧ ϕ) ∧ (χ ∨ ψ)// T, (υ ∧ ϕ) ∧ (χ ∨ ψ) T, υ ∧ ϕ// T, υ ∧ ϕ T, χ ∨ ψ// T, χ ∨ ψ output//

input T, (υ ∧ ϕ) ∧ (χ ∨ ψ)// T, (υ ∧ ϕ) ∧ (χ ∨ ψ) T, υ ∧ ϕ// T, υ ∧ ϕ T, υ// T, υ T, ϕ// T, ϕ T, χ ∨ ψ// T, χ ∨ ψ output//

input T, (υ ∧ ϕ) ∧ (χ ∨ ψ)// T, (υ ∧ ϕ) ∧ (χ ∨ ψ) T, υ ∧ ϕ// T, υ ∧ ϕ //

��oo

T, υ
��

T, υ T, ϕ// T, ϕ T, χ ∨ ψ// T, χ ∨ ψ in1
// in1

T, χ
**UUUin1

T, ψ44iii

T, χ
out144ii

T, ψ
out1

**UU
out1 output//

Replacement Matrix

input T, (υ ∧ ϕ) ∧ (χ ∨ ψ)// T, (υ ∧ ϕ) ∧ (χ ∨ ψ) output//

input T, υ ∧ ϕ// T, υ ∧ ϕ T, χ ∨ ψ// T, χ ∨ ψ output//

input T, υ// T, υ T, ϕ// T, ϕ T, χ ∨ ψ// T, χ ∨ ψ output//

input T, υ// T, υ T, ϕ// T, ϕ in1
// in1

T, χ
))RRin1

T, ψ55

T, χ
out144jj

T, ψ
out1

**TT
out1 output//

Figure 3.19: Replacement and appending matrix representations. The appending matrix
representation is shown in the top half of this figure and replacement (standard) matrix
representation in the bottom half. The underlines in the appending version mark the vertices
that have already been expanded.

Figure 3.19 shows each step in the matrix proofs of(ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ) using

both the replacement and the appending matrix representations. After the final expansion,

all paths through both DAGs are contradictory.
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3.5 Resolution Method

Resolution, the most commonly used refutation method, [Bachmair and Ganzinger

2001], [Robinson 1965], and [Wos et al. 1984], consists of two phases, first converting the

proposed theorem into a set of clauses containing only atomic formulas and second using

the resolution rule to combine two clauses to create a new one. The method is successful

only if the empty clause can be derived. The first step of the first phase creates an initial

disjunct containing a single formula that assumes the proposed theorem is false. Each

subsequent step of the first phase uses one of Smullyan’s rules to expand a formula in a

disjunct, replacing the clause with either one or two disjuncts.

A distinction needs to be made between the resolution methodand the resolution

rule. The resolution rule, described in [Robinson 1965], combines two clauses to generate

a third; the resolution method, which gets its name from thisrule, refers to both phases

of the method. Although some literature assumes that the proposed theorem is supplied in

CNF, this dissertation takes the broader view that a proof method should correctly handle

any formula presented.

In this presentation of the resolution method, the signed formula notation is used

even though the standard representation uses unsigned notation.

The first phase begins by creating an initial disjunct and then using Smullyan’s

rules to generate an equivalent set of clauses in CNF, where all clauses contain only atomic

formulas. Ifϕ is the proposed theorem, then the initial disjunct is[〈F, ϕ〉], which assumes

thatϕ is false. Each subsequent step applies one of Smullyan’s rules to expand a formulaE

in a disjunctD. An application of an unaryα-rule replacesD with a disjunctD′, in which

E is replaced with the formula inSMc(E). An application of a binaryα-rule replacesD

with two disjuncts,D1 andD2, each of which removesE from D and adds one formula

in SMc(E). An application of aβ-rule replacesE in the disjunctD with the formulas
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First Clause Second Clause Clause Produced
Using Resolution Rule

[〈T,A〉, 〈T,B〉, 〈F,C〉] [〈T, C〉, 〈T,D〉, 〈T,E〉] [〈T,A〉, 〈T,B〉, 〈T,D〉, 〈T,E〉]
[〈T,A〉, 〈T,B〉] [〈F,B〉, 〈T, C〉, 〈T,D〉] [〈T,A〉, 〈T, C〉, 〈T,D〉]
[〈T,A〉, 〈T,B〉] [〈F,A〉, 〈F,C〉] [〈T,B〉, 〈F,C〉]
[〈T,X〉, 〈T, Y 〉] [〈F,X〉, 〈T, Y 〉, 〈F, Z〉] [〈T, Y 〉, 〈F, Z〉]

[〈T,G〉] [〈F,G〉, 〈T,H〉, 〈F,K〉] [〈T,H〉, 〈F,K〉]

Table 3.2: Examples of the application of the resolution rule. The first and second clauses,
shown in the first two columns, are combined using the resolution rule to produce a new
clause shown in the third column.

in SMc(E). The first phase ends when all clauses contain only atomic formulas. At this

point the proposed theorem has been converted into conjunctive normal form (CNF). The

disjuncts now contain only atomic formulas and thus are now clauses.

To satisfy a formula in CNF, one formula in each clause must betrue. If any clause

cannot be satisfied, then the entire set of clauses does not have a satisfying truth assignment.

A proof is successful if an empty clause can be derived; by definition the empty clause is

false.

The second phase of the method uses the resolution rule. Thisrule combines two

clauses to generate a new one. Signed formulas that differ only in their signs are called

complementary. The resolution rule is applied to a variableϕ and a pair of clauses, one

that contains the formula〈T, ϕ〉 and the other〈F, ϕ〉). Applying the rule creates a new

clause containing all of the formulas in both clauses exceptfor the formulas containingϕ.

Examples of the use of the resolution rule are shown in Table 3.2. In addition to eliminating

the variable on which the resolution rule is being performed, duplicate formulas are also

removed as shown in the fourth row of the table where〈T, Y 〉 appears in both input clauses

but only once in the clause generated by the resolution rule.

If two clauses have more than one complementary pair in common, then the reso-

lution rule must be applied to one pair at a time. If this restriction is ignored, then applying
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resolution to[〈T,A〉, 〈T,B〉] and [〈F,A〉, 〈F,B〉], resolving on bothA andB, yields the

empty clause, indicating that the original two clauses cannot be satisfied. However, in this

instance, assigning true to one variable and false to the other satisfies both of the original

clauses.

1) [〈F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)〉] given
2) [〈T, ϕ⇒ ψ〉] (1,α )
3) [〈F,¬ϕ ∨ ψ〉] (1,α )
4) [〈F, ϕ〉, 〈T, ψ〉] (2, β )
5) [〈F,¬ϕ〉] (3,α )
6) [〈F, ψ〉] (3,α )
7) [〈T, ϕ〉] (5,α )
8) [〈T, ψ〉] (4, 7, resolution)
9) [] (6, 8, resolution)

Figure 3.20: Resolution proof of(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

The resolution proof for(ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ) is shown in Figure 3.20. It starts

by creating Disjunct 1, the initial disjunct[〈F, (ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ)〉], containing the

signed formulaE1 composed of theF sign and the proposed theorem, representing the

assumption that the proposed theorem is false. Since the initial disjunct contains onlyE1,

the next step must expand it. SinceSMr(E1) = α and |SMc(E1)| = 2, a binaryα-rule

is applied, adding disjuncts 2 and 3, each replacingE1 with one formula inSMc(E1) =

{〈T, ϕ⇒ ψ〉, 〈F,¬ϕ ∨ ψ〉}. For convenience, the first formula is referred to asE2 and the

second asE3. Next, either formulaE2 in Disjunct 2 orE3 in Disjunct 3 can be expanded.

In the proof,E2 in Disjunct 2 is expanded first; sinceSMr(E2) = β, a β-rule creates

Disjunct 4 from Disjunct 2 by replacingE2 with 〈F, ϕ〉 and〈T, ψ〉. Since both formulas

in Disjunct 4 are atomic, the only unexpanded non-atomic formula isE3. The expansion

of E3 adds disjuncts 5 and 6 with the formulas〈F,¬ϕ〉 and〈F, ψ〉. The only unexpanded

non-atomic formula remaining is〈F,¬ϕ〉 in Disjunct 5. To expand it, an unaryα-rule is

applied, adding Disjunct 7 containing the formula〈T, ϕ〉. At this point all formulas have
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either been expanded or are atomic, so the first phase is complete; the initial disjunct has

been transformed into a CNF representation consisting of disjuncts 4, 6, and 7. Since this

disjuncts only contain atomic formulas these three disjuncts are clauses.

The proof now moves to the second phase, looking for pairs of clauses containing

complementary formulas. The first application of the resolution rule resolves on the vari-

ableϕ in clauses 4 and 7 containing[〈F, ϕ〉, 〈T, ψ〉] and[〈T, ϕ〉]; thus the resolution rule

generates clause 8,[〈T, ψ〉]. The next application of the resolution rule resolves on the

variableψ in clauses 6 and 8, generating clause 9, an empty clause. Thisstarts a chain

reaction of reasoning. Since the empty clause has been derived, the set of clauses is not

satisfiable. Because the set of clauses were derived from theinitial disjunct containing only

〈F, (ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ)〉, this initial formula must be a contradiction, and, hence, the

formula(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ) has been proven to be a theorem.

1)[〈T,A ∨ B〉, 〈T, C ∧D〉]

2x)[〈T,A〉, 〈T,B〉, 〈T, C ∧D〉] (1, β) 2y)[〈T,A ∨ B〉, 〈T, C〉] (1, α)

3x)[〈T,A〉, 〈T,B〉, 〈T, C〉] (2x, α) 3y)[〈T,A ∨ B〉, 〈T,D〉] (1, α)

4x)[〈T,A〉, 〈T,B〉, 〈T,D〉] (2x, α) 4y)[〈T,A, 〉, 〈T,B〉, 〈T, C〉] (2y, β)

5y)[〈T,A, 〉, 〈T,B〉, 〈T,D〉] (3y, β)

Table 3.3: The same set of clauses are generated from a disjunct regardless of expansion
order. Columns x and y show two different expansion orders used to reduce clause 1 into a
set of clauses containing only atomic formulas. Note columnx requires one less expansion
than column y.

In the proof in Figure 3.20, the number of expansion rules applied does not change if

a different expansion order is used. However, there are situations when the expansion order

does affect the number of expansions required. Table 3.3 shows an example in which two

different expansion orders require a different number of steps to complete the first phase. In

this example, the number of rules applied differs by one between the two orders; however,
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there are situations when a change in the expansion order canmake a large difference in the

number of rules that need to be applied. Unlike other methods, resolution requires fewer

steps ifβ-rules are applied beforeα-rules.

In the second phase, the order in which the pairs of clauses are chosen for resolu-

tion also can have a dramatic effect on the number of steps required to find a proof. In

Figure 3.20 the proof has only a few pairs where resolution can be applied, but as problems

grow larger, the number of pairs grows quickly. In larger problems, the majority of time is

spent using the resolution rule, and hence, much research has been devoted to developing

strategies to derive the empty clause more quickly.

3.6 A Mapping Between Resolution and Matrix Methods

This section shows that the empty clause can be derived usingresolution, for the

proposed theoremϕ if and only if all paths through the appending matrix constructed forϕ

contain a contradiction. The section begins by defining an obstruction set, which is also a

vertex cut set [West 1996]. It then proves that the initial clause in the resolution method is

an obstruction set in the initial matrix. Next, it shows thatas Smullyan’s rules are applied in

resolution and in the matrix method, each clause is an obstruction set in the corresponding

matrix. Next, semantic obstruction sets are introduced; all paths through a matrix must

either contain a vertex in this set or are contradictory. Theresolution rule is then shown to

generate clauses that are semantic obstruction sets. Thus,if resolution can derive an empty

clause, then the empty set must be a semantic obstruction set; therefore, all paths through

that matrix are contradictory.

Definition 1 If M is an appending matrix DAG andv(M) is the set of vertices inM , then

a setS ⊆ v(M) is anobstruction setfor M if every path throughM contains at least one

vertex inS.
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in1

〈T,A〉
::ttt

in1

〈T,B〉
$$JJJ

〈T,A〉

out1
$$JJJ

〈T,B〉

out1::ttt
out1 in2

// in2

〈T, C〉
::ttt

in2

〈T,D〉
$$JJJ

〈T, C〉

out2
$$JJJ

〈T,D〉

out2::ttt

Figure 3.21: Matrix representation of〈T, (A ∨ B) ∧ (C ∨D)〉

The clauses generated by Smullyan rules for the formula〈T, (A∨B)∧(C∨D)〉 are

[〈T,A〉, 〈T,B〉] and[〈T, C〉, 〈T,D〉]. This matrix has four paths through it(〈T,A〉, 〈T, C〉),

(〈T,A〉, 〈T,D〉), (〈T,B〉, 〈T, C〉) and(〈T,B〉, 〈T,D〉). Every path through the DAG con-

tains at least one formula from each of the clauses; thus eachclause is an obstruction set.

Smullyan’s rules decompose formulas based on their syntactical form. In the first

phase of resolution, Smullyan’s rules are applied to convert the proposed theorem into

CNF. In the second phase, the resolution rule combines two clauses (sets of formulas) that

contain a pair of complementary formulas. Applying this rule creates a new clause that has

all of the formulas in the two clauses except for the complementary formulas.

in1

〈T,A〉
&&MMM

Min1

〈T,B〉
88qqqq

〈T,A〉

out188qqq

〈T,B〉

out1
&&MMM

out1 in2
// in2

〈F,A〉
&&MMM

Min2

〈T,B〉
88qqqq

〈F,A〉

out288qqq

〈T,B〉

out2
&&MMM

out2 in3
// in3

〈T,A〉
&&MMM

Min3

〈F,B〉
88qqqq

〈T,A〉

out388qqq

〈F,B〉

out3
&&MMM

Figure 3.22: Matrix representation of〈T, (A ∨B) ∧ (¬A ∨ B) ∧ (A ∨ ¬B)〉

The clauses[〈T,A〉, 〈T,B〉], [〈F,A〉, 〈T,B〉] and [〈T,A〉, 〈F,B〉] are equivalent

to the matrix shown in Figure 3.22. Each path through the DAG contains one formula

from each clause. The goal of a refutation method is to show that there are no satis-

fying truth assignments to the variables in the proposed theorem. Thus, any path that

contains both a formula and its complement can be eliminatedfrom consideration. The

DAG in the Figure 3.22 has eight paths through it, many of which are contradictory.

When the resolution rule is applied to the variableA in the clauses[〈T,A〉, 〈T,B〉] and
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[〈F,A〉, 〈T,B〉], the clause[〈T,B〉, 〈T,B〉] is generated. After removing the duplicate for-

mula, the clause[〈T,B〉] remains. This new clause is added to the set of clauses. Thus,

any non-complementary path must contain〈T,B〉. All paths contain either a vertex labeled

with 〈T,B〉 or contain a vertex labeled with〈T,A〉 and another vertex labeled with〈F,A〉.

Thus, the resolution rule has eliminated formulas from the clause that, if chosen, would

lead to paths containing complementary formulas.

Definition 2 An expansion orderis a sequence of vertices from the formula tree such that

the parent of a vertex must appear in the sequence before its children. IfO is an expansion

order andOi is theith vertex in the formula tree, then the formula that labelsOi is expanded

in stepi. O0 is 〈F, ϕ〉 whereϕ is the proposed theorem.

The first phase of both the matrix and the resolution methods reduce the proposed

theorem into atomic formulas. After this first phase, the matrix method attempts to show

that all maximal paths contain contradictory formulas, while the resolution method uses

the resolution rule to combine clauses in an attempt to generate the empty clause.

Theorem 3 For a fixed expansion orderO, after expansion stepi, let Ci be the set of

disjuncts andMi be the appending matrix. IfC ∈ Ci, thenC is an obstruction set inMi.

Proof: (by induction on the number of expansion steps)

Base Case: Ifϕ is the proposed theorem, then the initial set of disjuncts has only

one memberC0 = {[〈F, ϕ〉]}, while the initial matrix has only one formula vertex labeled

with 〈F, ϕ〉. Hence,C0 is an obstruction set for the initial matrix.

Induction Hypothesis: Aftern expansion steps, every disjunct inCn is an obstruc-

tion set inMn.

Induction Step: LetE be a non-atomic signed formula labeling the vertexOn+1 in

the formula tree. SupposeC is a disjunct inCn+1 that containsE. This formula is expanded

using either anα or β-rule.
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CaseE is expanded by applying a binaryα-rule: The application of the rule gener-

ates two subformulas, denoted byα1 andα2. In the resolution method, ifC is the disjunct

that containsE, then expandingE adds two new disjunctsC1 andC2. These two disjuncts

contain all the formulas inC exceptE, which is replaced byα1 in C1 andα2 in C2.

input 〈T, ϕ ∧ ψ〉// 〈T, ϕ ∧ ψ〉 output//

p
//

p
//

input 〈T, ϕ ∧ ψ〉// 〈T, ϕ ∧ ψ〉 〈T, ϕ〉// 〈T, ϕ〉 〈T, ψ〉// 〈T, ψ〉 output//

Figure 3.23: Binaryα matrix rule. Example of a binaryα-rule applied in an appending
matrix. The expansion inserts two new vertices labeled withthe formulas inSMc(E).
These vertices are the immediate successors of the originalvertex.

In the matrix method, if a vertexv is labeled withE as shown in Figure 3.23, then

expandingv inserts a path containing two vertices as its immediate successor. These new

vertices are labeled withα1 andα2. Any path that passed throughv must now pass through

both of these new vertices labeled withα1 andα2. Thus, bothC1 andC2 are obstruction

sets.

CaseE is expanded by applying a unaryα-rule: The application of the rule gener-

ates a new formulaα′ in SMc(E).

In resolution, ifE is in disjunctC, then expandingE adds a new disjunctC ′, which

is created by replacingE in C with α′, i.e.C ′ = (C \ {E}) ∪ {α′}. In the matrix method,

a vertexv′ labeled withα′ is inserted as the immediate successor ofv. Since any path that

passed throughv must now also pass throughv′, the new disjunct is an obstruction set.

CaseE is expanded by applying aβ-rule: Letβ1 andβ2 be two new signed formulas

in SMc(E). In resolution, ifE is in disjunctC, then expandingE adds a new disjunctC ′.

The disjunctC ′ is obtained by replacingE with β1 andβ2, i.e.C ′ = (C \ {E})∪{β1, β2}.
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input 〈T, ϕ ∨ ψ〉// 〈T, ϕ ∨ ψ〉 output//

p
//________________

input 〈T, ϕ ∨ ψ〉// 〈T, ϕ ∨ ψ〉 in1
// in1

〈T, ϕ〉55lllllll
in1

〈T, ψ〉
))RRRRRRR

〈T, ϕ〉

out1
))RRRRRR

〈T, ψ〉

out155llllll

out1 output//
_________ //___

t
t

t
t

p1 //_____

J
J

J
J

//_____

_________ //___

J
J

J
J

p2

//_____

t
t

t
t

//_____

Figure 3.24: Matrixβ-rule. Expansion of theβ formula〈T, ϕ∨ψ〉 in an appending matrix.
This figure illustrates aβ-rule expansion, the matrix before (top) the expansion and after
(bottom) the expansion. This expansion inserts two new vertices labeled with subformulas.
The bottom matrix contains the new pathsp1 andp2.

In the matrix method, if the vertexv labeled with the formulaE is expanded, then

a diamond containingv1 andv2 is inserted as the immediate successor ofv, as shown in

Figure 3.24. SupposeSMc(E) = {β1, β2} are the new formulas that labelv1 andv2 in

this diamond. In the subgraph,v1 andv2 are on separate paths; thus any path that passed

throughv must now also pass through eitherv1 or v2. Hence, disjunctC ′ is an obstruction

set since it contains bothβ1 andβ2.

Each case above checks one of Smullyan’s three rule types, and in each the resolu-

tion rule creates a new disjunct(s) that is an obstruction sets. �

Let Ψ be a function that maps a clause to a set of vertices. The vertex v ∈ Ψ(C) if

and only ifv is labeled with a signed formula in clauseC.

Ψ(C) = {v | the formula labelingv is inC} (3.10)

Since the same formula may label more than one vertex in the matrix, |C| ≤

|Ψ(C)|. LetG be the graph of the matrix andV (G) be the set of vertices inG.

Definition 4 The setS of formulas is asemantic obstruction setif all paths through a ma-

trix either contain a vertex labeled with a formula inS or contain contradictory formulas.
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If Ψ(S) ⊆ V (G) is a semantic obstruction set, then the set of maximal paths (a path

betweeninput andoutput ) can be divided into those that are complementary and those

that contain a vertex inS. If the empty set is a semantic obstruction set, then all paths

throughV (G) must be complementary.

Recall that the matrix method proves a theorem by showing that all paths through

DAGG are contradictory. Thus, if it can shown that the empty set isa semantic obstruction

set, then the the matrix method is successful.

Theorem 5 If two clauses are semantic obstruction sets that contain a complementary pair

of formulas, then the clause generated by using the resolution rule on these two clauses is

also a semantic obstruction set.

Proof:

SupposeC1 andC2 are clauses that are both semantic obstruction sets and for a

variableϕ, C1 contains〈T, ϕ〉 andC2 contains〈F, ϕ〉. By resolving onϕ, clausesC1 and

C2 are combined to generate clauseCr, whereCr = (C1 ∪ C2) \ {〈T, ϕ〉, 〈F, ϕ〉}.

Assume thatCr is not a semantic obstruction set. Then there exists a non-contradictory

pathp through the matrix that does not pass through a vertex labeled with a formula inCr.

SinceC1 andC2 are semantic obstruction sets,p must contain a vertexv1 in Ψ(C1) and

a vertexv2 in Ψ(C2). Now, v1 must be labeled with〈T, ϕ〉 becauseΨ(C1) \ Ψ(Cr) =

Ψ(〈T, ϕ〉). By a similar argument,v2 is labeled with〈F, ϕ〉 becauseΨ(C2) \ Ψ(Cr) =

Ψ(〈F, ϕ〉). But this requiresp to contain vertices labeled with contradictory formulas,

which contradicts the assumption thatCr is not a semantic obstruction set.�
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3.7 Summary of Methods used in Classical Logic

This chapter describes the five methods explored in this research: natural deduction,

Kripke C-Tableau, analytic tableau, matrix, and resolution. This chapter ends by showing

a transformation between the matrix and the resolution methods. The descriptions of the

methods will be used in Chapter 4 where the container for classical logic and the general-

ized algorithm for classical logic are presented.
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Chapter 4

The Container and Generalized

Algorithm for Classical Logic

Of the five methods discussed in Chapter 3, four share the sameunderlying proce-

dure; resolution uses a different one. In this chapter, the logical container is introduced, and

for each of the four methods, a proof is presented, showing that the method’s data structure

has the properties of the container. Next, a generalized algorithm is presented which uses

only the operations provided by a container to prove theorems in classical logic. Thus, this

algorithm captures the commonalities of these four methods.

4.1 Logical Container

A logical container〈C, S〉 consists of a data structureC that stores logical formulas

and a functionS that maps a data structure to a set of signed formulas. In the following sec-

tions, proofs are presented, demonstrating that sequents are containers in natural deduction,

branches are containers in analytic tableaux, boxes are containers in Kripke C-tableaux, and

paths are containers in matrices.
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A logical container is composed of a data structureC that stores formulas and a

functionS having the following properties:

LC1– Two Sets Logical formulas stored in a containerC can be separated into two setsT

andF , denoted asT (C) andF (C).

LC2– S function TheS function maps logical formulas inC to a set of signed formulas,

where the formulas with aT sign come from theT (C) set and the formulas with an

F sign come from theF (C) set.

LC3– Initial Container When the initial container is created, it contains only the pro-

posed theorem in itsF set.

LC4– Expansion Suppose thatC is a container andE is a signed formula inS(C):

LC4a– α expansion If SMr(E) = α, then there is an expansion rule that adds the

formula(s) inSMc(E) toC. If C ′ represents the container after the expansion,

thenS(C ′) = S(C) ∪ SMc(E).

LC4b– β expansion If SMr(E) = β, then there is an expansion rule that splitsC

into two new containersC1 andC2. SupposeE1 andE2 are the signed formulas

in SMc(E), then the contents of these new containers areS(C1) = S(C)∪{E1}

andS(C2) = S(C) ∪ {E2}.

LC4c– Only α and β expansion rules All rules which change the contents of a con-

tainer or which create new containers must fall into one of these two categories

or be decomposed into a sequence of rules from these two categories.

LC5– Closure conditions A containerC is closed when its contents become contradic-

tory. A container is contradictory if one of three conditions exist: 1) there exists a

formula in bothT (C) andF (C), 2)⊥ ∈ T (C), or 3)⊤ ∈ F (C).
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LC6– Non-reopening Once a container becomes closed, it remains closed. Expansion

rules may applied to formulas in a closed container, but the changes made cannot

cause the container to reopen. If an expansion rule splits a closed container, then

both of the new containers are closed.

LC7– SuccessA proof succeeds if and only if the application of expansion rules causes

all of the containers to close.

4.2 Extending Set Operator Definitions to Containers

To simplify the notation and facilitate the discussion, thedefinitions of the opera-

tors set union (∪) and set difference (\) are extended to containers. Recall that set union

combines the contents of two sets, eliminating duplicates.The union of two containers

C1 andC2 is a containerC with T (C) = T (C1) ∪ T (C2) andF (C) = F (C1) ∪ F (C2).

Recall that set difference removes the members of the set on the right of the operator from

the set on the left of the operator. This definition is extended to containers by perform-

ing a set difference operation between theT sets and another between theF sets (i.e.

T (C1 \ C2) = T (C1) \ T (C2) andF (C1 \ C2) = F (C1) \ F (C2) ).

In addition, the definition of union∪ is also extended to a mixture of a signed

formula and a container. To accomplish this, a signed formula will be treated as a container

with only one formula. A signed formula of the form〈T, ϕ〉 will be treated as a container

with ϕ in its T set and an emptyF set (i.e. T (〈T, ϕ〉) = {〈T, ϕ〉} andF (〈T, ϕ〉) = ∅),

while a signed formula of the form〈F, ψ〉 is a container withψ in its F set and an empty

T set (i.e.T (〈F, ψ〉) = ∅ andF (〈F, ψ〉) = {〈F, ψ〉}).
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4.3 The Containers Used by the Proof Methods

This section presents proofs that demonstrate that each proof method, except res-

olution, uses a data structure that has the properties of a container. Resolution is omitted

because it differs from the other methods; it represents logical formulas as a conjunction

of disjunctions, whereas the other methods represent formulas as a disjunction of conjunc-

tions. The container property was designed for this latter representation.

4.3.1 A Branch in an Analytic Tableau

The proof in this subsection demonstrates that a branch in ananalytic tableau meets

all the properties of a container. In order to facilitate thediscussion, the functionB2C

(short for branch to container) is introduced:

B2C(b) = {E | E labels a vertex onb} (4.1)

If b is a branch in an analytic tableau, thenB2C(b) is the set of the signed formulas that

labels the vertices onb.

Theorem 6 A branch in an analytic tableau is a container.

Proof:

For each property (LC1- LC7) of the container, a brief argument proving that the

branch has that property is presented.

The signed formulas that label the vertices on a branch can beseparated into two

sets based on their signs. TheT set contains formulas with aT sign, while the formulas

with anF sign are placed in theF set. This fulfills the two set property (LC1).

TheB2C function, defined by Equation 4.1, maps a branch to the set of signed

formulas that labels its vertices. This function fulfills theS function property (LC2).
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Suppose thatϕ is the proposed theorem. The initial tableau consists of only the root

vertex labeled with〈F, ϕ〉; hence, there is one branchb which contains this vertex. Since

B2C(b) = {〈F, ϕ〉}, the branch meets the initial container property (LC3).

The expansion properties (LC4a and LC4b) are demonstrated by examining how

the analytic tableau uses expansion rules to create and modify branches. Suppose thatE is

the formula that labels a vertex on branchb andvℓ is the leaf vertex ofb. If a unaryα-rule

is used to expandE, then a single vertex labeled with the formula inSMc(E) is added

as the child ofvℓ. If a binaryα-rule is used to expandE, then two new vertices labeled

with the formulas inSMc(E) are added as the child and grandchild ofvℓ. In both cases,

B2C(b′) = B2C(b) ∪ SMc(E), whereb′ is the branch after the expansion. This meets the

α expansion property (LC4a).

If a β-rule is used to expandE, then two vertices are added as the children ofvℓ,

splitting branchb into two branchesb1 andb2. The leaves of these two branches are labeled

with the formulas inSMc(E). LetE1 andE2 be the formulas inSMc(E). WLOG, it can

be assumed thatE1 labels the leaf ofb1 andE2 labels the leaf ofb2. Hence,B2C(b1) =

B2C(b)∪{E1} andB2C(b2) = B2C(b)∪{E2}, meeting theβ expansion property (LC4b).

The third property (LC4c) requires that all rules that can create or change the con-

tents of a branch meet theα or β expansion rules. Since this method uses onlyα and

β-rules to change the contents of the tableau, it meets theonlyα andβ property (LC4c).

A branchb is closed ifB2C(b) contains〈T,⊥〉, 〈F,⊤〉, or two signed formulas

〈T, ϕ〉 and〈F, ϕ〉 for some unsigned formulaϕ. These are the same conditions that cause

a container to close; thus the branch meets the closure property (LC5).

Expansions performed on a closed branch cannot cause it to reopen since every

expansion rule adds formulas to a branch. On a closed branchb, if an α-rule expands

a formula, vertices are added to the branch. Ifb′ representsb after the expansion, then

B2C(b) ⊆ B2C(b′). SinceB2C(b) is contradictory,B2C(b′) must also be contradic-
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tory. On the other hand, if on a closed branchb a β-rule expands a formula,b is split

into b1 andb2, with a new vertex added to each branch; thus,B2C(b) ⊆ B2C(b1) and

B2C(b) ⊆ B2C(b2). SinceB2C(b) is contradictory,B2C(b1) andB2C(b2) must both be

contradictory and, thus, closed. Therefore, the branch meets the non-reopening property

(LC6).

An analytic tableau proof succeeds only if all of its branches close. Hence, it meets

the success property (LC7).

The branch in an analytic tableau has met every property of a container.�

4.3.2 A Path Through a Matrix

In this subsection, a lemma and a theorem demonstrate that a path through a matrix

meets the properties of a container. To facilitate these proofs, the functionP2C is intro-

duced. For a pathp through a matrix,P2C(p) (short for path to container) is the set of

signed formulas that label vertices onp:

P2C(p) = {E | E labels a vertex onp} (4.2)

Lemma 7 Using P2C as itsS function, a path through a matrix meets the expansion

properties (LC4a, LC4b, and LC4c) of a container.

Proof:

Each time a formulaE labeling a vertexvm on pathp is expanded, one of three rule

types is applied, unaryα, binaryα, orβ. Thus, there are three cases to consider.

Case 1: IfSMr(E) = α and|SMc(E)| = 1, then an unaryα-rule expandsE. The

new pathp′ is obtained fromp by inserting a new vertex as the successor ofvm. This new

vertex is labeled with the formula inSMc(E); hence,P2C(p′) = P2C(p) ∪ SMc(E).
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Case 2: IfSMr(E) = α and|SMc(E)| = 2, then a binaryα-rule expandsE. The

new pathp′ is obtained fromp by inserting as the successor ofvm a path containing two new

vertices, each labeled with a formula inSMc(E); hence,P2C(p′) = P2C(p) ∪ SMc(E).

Together cases 1 and 2 show that whenSMr(E) = α, the path meets theα expan-

sion rule property (LC4a).

Case 3: IfSMr(E) = β, then aβ-rule expandsE. Theβ-rule inserts a diamond as

the successor ofvm, splittingp into two pathsp1 andp2. LetE1 andE2 be the formulas in

SMc(E). WLOG, assume that the vertex unique top1 is labeled withE1, and the vertex

unique top2 is labeled withE2. Hence,P2C(p1) = P2C(p) ∪ {E1} andP2C(p2) =

P2C(p) ∪ {E2}, meeting theβ expansion rule property (LC4b).

Since a path through a matrix is only created or modified usingone of these rule

types, this satisfies the onlyα andβ expansion rule property (LC4c).�

Theorem 8 A path though an appending DAG representation of the matrix is a container.

Proof:

For each property (LC1- LC7) of a container, a brief justification is presented

demonstrating that a path through a matrix meets that property.

The signed formulas that label the vertices on a path can be separated into two sets

based on their signs. TheT set contains formulas that have aT sign, while theF set

contains formulas that have anF sign, meeting the two set property (LC1).

The functionP2C maps a path to the set of signed formulas that label it. This

function meets theS function property (LC2).

Suppose thatϕ is the proposed theorem. The only path through the initial matrix

contains one labeled vertex. This vertex is labeled with〈F, ϕ〉, and, thus, the initial path

meets the initial container property (LC3).

Lemma 7 proves that the path meets the expansion properties (LC4a-c).
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A pathp is closed ifP2C(b) contains〈T,⊥〉, 〈F,⊤〉 or two signed formulas〈T, ϕ〉

and 〈F, ϕ〉 for an unsigned formulaϕ. Thus, a path through a matrix meets the closure

property (LC5).

On a closed pathp, any expansion made will always add but never remove signed

formulas fromP2C(p). If a β-rule is used to expand a vertex onp, thenp is split into

two pathsp1 andp2. SinceP2C(p) is contradictory,P2C(p) ⊆ P2C(p1) andP2C(p) ⊆

P2C(p2), bothP2C(p1) andP2C(p2) must also be contradictory, meeting the non-reopening

property (LC6).

The matrix method succeeds if all paths through the matrix are contradictory (closed),

and, hence, it meets success property (LC7).

A path through a matrix meets every property of the container. �

4.3.3 A Sequent in Natural Deduction Proof

This subsection proves that a sequent in natural deduction is a container. It be-

gins with a discussion of how the sequent rewrite rules can beviewed as inferences or

reductions. To facilitate the discussion, it introduces the SSF (sequent side formula) rep-

resentation of sequents. It concludes by using tree lemmas and a theorem to prove that a

sequent in natural deduction is a container.

A natural deduction proof tree may be created using rewrite rules as either infer-

ences or reductions. When rewrite rules are used as inferences, the proof tree is constructed

by working from axioms at the leaves towards the endsequent at the root. However, when

rewrite rules are used as reductions, the proof tree is constructed by working from the

proposed theorem at the root towards axioms at the leaves.

When a completed proof tree is presented, it is impossible todetermine if it was

constructed using sequent rules as inferences or reductions. To prove that a sequent in
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natural deduction is a container, it will be assumed that thenatural deduction proof tree

was constructed using reduction rules. In addition, for technical reasons it is assumed that

the formula expanded in the conclusion is retained in the premise(s). As long as a formula is

expanded only once, this modification does not affect the correctness of natural deduction.

To simplify the discussion of sequents, theSSF(sequent side formula) representa-

tion is introduced. The standard representation of sequents is two sets of unsigned formulas

separated by a sequent arrow. The set on the left of the arrow is the antecedent, and the

set on the right is the succedent. But in the SSF representation, a sequent is represented by

a set of ordered pairs. The first component of these ordered pairs is eitherante or succ,

indicating whether the unsigned formula in the second component is in the antecedent or

in the succedent. Figure 4.1 presents a sequent in both the standard representation and the

SSF set representation. The SSF representation was chosen both to facilitate the proofs that

follow and to resemble the signed formula notation.

ϕ, ψ, ρ −→ χ, σ, τ ≡ {〈ante, ϕ〉, 〈ante, ψ〉, 〈ante, ρ〉, 〈succ, χ〉, 〈succ, σ〉〈succ, τ〉}

ϕ ∧ ψ −→ ρ, σ ∨ τ ≡ {〈ante, ϕ ∧ ψ〉, 〈succ, ρ〉, 〈succ, σ ∨ τ〉}

ϕ ∧ ψ −→ ∅ ≡ {〈ante, ϕ ∧ ψ〉}

Figure 4.1: Three examples of sequents using both representations. This figure shows three
different sequents using two different representations, the standard and the SSF.

To facilitate the proofs, two functionsSFn andS2C (short for sequent to container)

are introduced. The functionSFn defined by Equation 4.3 maps an SSF formula to a signed
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formula. The other functionS2C maps a sequent represented as a set of SSF formulas to a

set of signed formulas as defined in Equation 4.4.

SFn(E) =











〈T,E ′〉 if E is of the form〈ante, E ′〉

〈F,E ′〉 if E is of the form〈succ, E ′〉
(4.3)

S2C(K) = {〈T, ϕ〉 | 〈ante, ϕ〉 ∈ K} ∪ {〈F, ϕ〉 | 〈succ, ϕ〉 ∈ K} (4.4)

The functionS2C could equivalently be defined usingSFn by the equation

S2C(K) = {SFn(E)|E ∈ K}.

The rewrite rule used to expand a formulaE in natural deduction is determined by

bothE’s primary connective (∧, ∨,⇒, or ¬) and the side of the sequent arrow whereE

appears. Combining the four logical connectives with the two possible sides of the sequent,

there are eight cases to consider in the following lemmas.

Lemma 9 If E is a non-atomic SSF formula, then the sequent rule used to expandE has

one premise ifSMr(SFn(E)) = α and two premises ifSMr(SFn(E)) = β.

Proof:

If a formulaE is chosen for expansion, there are eight possible sequent rewrite

rules, one for each of the eight combinations of the two sidesof the sequent arrow and the

four primary connectives.

Case 1.E is of the form〈ante, ϕ ∧ ψ〉:

For this casel∧ is the sequent rule
Γ, ϕ, ψ −→ ∆

l∧
Γ, ϕ ∧ ψ −→ ∆

.

This rule has one premise, and

SMr(SFn(E)) = SMr(SFn(〈ante, ϕ ∧ ψ〉)) = SMr(〈T, ϕ ∧ ψ〉) = α
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Case 2.E is of the form〈succ, ϕ ∧ ψ〉:

For this caser∧ is the sequent rule
Γ −→ ϕ,∆ Γ −→ ψ,∆

r∧
Γ −→ ϕ ∧ ψ,∆

.

This rule has two premises, and

SMr(SFn(E)) = SMr(SFn(〈succ, ϕ ∧ ψ〉)) = SMr(〈F, ϕ ∧ ψ〉) = β

Case 3.E is of the form〈ante, ϕ ∨ ψ〉:

For this casel∨ is the sequent rule
Γ, ϕ −→ ∆ Γ, ψ −→ ∆

l∨
Γ, ϕ ∨ ψ −→ ∆

.

This rule has two premises, and

SMr(SFn(E)) = SMr(SFn(〈ante, ϕ ∨ ψ〉)) = SMr(〈T, ϕ ∨ ψ〉) = β

Case 4.E is of the form〈succ, ϕ ∨ ψ〉:

For this caser∨ is the sequent rule
Γ −→ ϕ, ψ,∆

r∨
Γ −→ ϕ ∨ ψ,∆

.

This rule has one premise, and

SMr(SFn(E)) = SMr(SFn(〈succ, ϕ ∨ ψ〉)) = SMr(〈F, ϕ ∨ ψ〉) = α

Case 5.E is of the form〈ante, ϕ⇒ ψ〉:

For this casel ⇒ is the sequent rule
Γ −→ ϕ,∆ Γ, ψ −→ ∆

l ⇒
Γ, ϕ⇒ ψ −→ ∆

.

This rule has two premises, and

SMr(SFn(E)) = SMr(SFn(〈ante, ϕ⇒ ψ〉)) = SMr(〈T, ϕ⇒ ψ〉) = β

Case 6.E is of the form〈succ, ϕ⇒ ψ〉:

For this caser ⇒ is the sequent rule
Γ, ϕ −→ ψ,∆

r ⇒
Γ −→ ϕ⇒ ψ,∆

.
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This rule has one premise, and

SMr(SFn(E)) = SMr(SFn(〈succ, ϕ⇒ ψ〉)) = SMr(〈F, ϕ⇒ ψ〉) = α

Case 7.E is of the form〈ante,¬ϕ〉:

For this casel¬ is the sequent rule
Γ −→ ϕ,∆

l¬
Γ,¬ϕ −→ ∆

.

This rule has one premise, and

SMr(SFn(E)) = SMr(SFn(〈ante,¬ϕ〉)) = SMr(〈T,¬ϕ〉) = α

Case 8.E is of the form〈succ,¬ϕ〉:

For this caser¬ is the sequent rule
Γ, ϕ −→ ∆

r¬
Γ −→ ¬ϕ,∆

.

This rule has one premise, and

SMr(SFn(E)) = SMr(SFn(〈succ,¬ϕ〉)) = SMr(〈F,¬ϕ〉) = α

In all eight cases ifSMr(SFn(E)) = α, then the sequent rule forE has one

premise, but whenSMr(SFn(E)) = β, then the sequent rule forE has two premises.

�

Lemma 9 established a correspondence between the Smullyan rule type and the

number of premises in a sequent rule. Lemma 10 establishes that the formulas added to

the premise(s) by the sequent rewrite rules forE can be converted usingS2C to the signed

formulas that Smullyan’s rules add to a container when expandingSFn(E).

Lemma 10 In a sequent rule ifE is the SSF formula in the conclusion that is expanded

andE is the set of formulas added to the conclusion to obtain the premise sequent(s), then

S2C(E) = SMc(SFn(E)).
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Proof:

LetE represent the SSF formula in the conclusion which is rewritten to obtain the

premise(s). Then the conclusionC can be written as the set{E} ∪ Γ ∪ ∆, whereΓ is the

set of formulas in the antecedent and∆ is the set of formulas in the succedent that are not

modified by the rule’s application.

The choice of the rewrite rule depends on whetherE is in the antecedent or succe-

dent and onE’s primary connective. The proof consists of eight cases, one for each com-

bination of the two sides of the sequent arrow and the four logical connectives.

Case 1.E is of the form〈ante, ϕ ∧ ψ〉:

For this casel∧ is the sequent rule
Γ, ϕ, ψ −→ ∆

l∧
Γ, ϕ ∧ ψ −→ ∆

.

In this case, the premise is obtained by adding〈ante, ϕ〉 and〈ante, ψ〉 toC:

S2C(E) = S2C({〈ante, ϕ〉, 〈ante, ψ〉}) = {〈T, ϕ〉, 〈T, ψ〉}

= SMc(〈T, ϕ ∧ ψ〉) = SMc(SFn(〈ante, ϕ ∧ ψ〉)) = SMc(SFn(E))

Case 2.E is of the form〈succ, ϕ ∧ ψ〉:

For this caser∧ is the sequent rule
Γ −→ ϕ,∆ Γ −→ ψ,∆

r∧
Γ −→ ϕ ∧ ψ,∆

.

In this case, one premise is obtained by adding〈succ, ϕ〉 toC, and the other premise

is obtained by adding〈succ, ψ〉 toC:

S2C(E) = S2C({〈succ, ϕ〉, 〈succ, ψ〉}) = {〈F, ϕ〉, 〈F, ψ〉}

= SMc(〈F, ϕ ∧ ψ〉) = SMc(SFn(〈succ, ϕ ∧ ψ〉)) = SMc(SFn(E))

Case 3.E is of the form〈ante, ϕ ∨ ψ〉:

For this casel∨ is the sequent rule
Γ, ϕ −→ ∆ Γ, ψ −→ ∆

l∨
Γ, ϕ ∨ ψ −→ ∆

.

In this case, one premise is obtained by adding〈ante, ϕ〉 toC, and the other premise
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is obtained by adding〈ante, ψ〉 toC:

S2C(E) = S2C({〈ante, ϕ〉, 〈ante, ψ〉}) = {〈T, ϕ〉, 〈T, ψ〉}

= SMc(〈T, ϕ ∨ ψ〉) = SMc(SFn(〈ante, ϕ ∨ ψ〉)) = SMc(SFn(E))

Case 4.E is of the form〈succ, ϕ ∨ ψ〉:

For this caser∨ is the sequent rule
Γ −→ ϕ, ψ,∆

r∨
Γ −→ ϕ ∨ ψ,∆

.

In this case, the premise is obtained by adding〈succ, ϕ〉 and〈succ, ψ〉 toC:

S2C(E) = S2C({〈succ, ϕ〉, 〈succ, ψ〉}) = {〈F, ϕ〉, 〈F, ψ〉}

= SMc(〈F, ϕ ∨ ψ〉) = SMc(SFn(〈succ, ϕ ∨ ψ〉)) = SMc(SFn(E))

Case 5.E is of the form〈ante, ϕ⇒ ψ〉:

For this casel ⇒ is the sequent rule
Γ −→ ϕ,∆ Γ, ψ −→ ∆

l ⇒
Γ, ϕ⇒ ψ −→ ∆

.

In this case, one premise is obtained by adding〈succ, ϕ〉 toC, and the other premise

is obtained by adding〈ante, ψ〉 toC:

S2C(E) = S2C({〈succ, ϕ〉, 〈ante, ψ〉}) = {〈F, ϕ〉, 〈T, ψ〉}

= SMc(〈T, ϕ⇒ ψ〉) = SMc(SFn(〈ante, ϕ⇒ ψ〉)) = SMc(SFn(E))

Case 6.E is of the form〈succ, ϕ⇒ ψ〉:

For this caser ⇒ is the sequent rule
Γ, ϕ −→ ψ,∆

r ⇒
Γ −→ ϕ⇒ ψ,∆

.

In this case, the premise is obtained by adding〈ante, ϕ〉 and〈succ, ψ〉 toC:

S2C(E) = S2C({〈ante, ϕ〉, 〈succ, ψ〉}) = {〈T, ϕ〉, 〈F, ψ〉}

= SMc(〈F, ϕ⇒ ψ〉) = SMc(SFn(〈succ, ϕ⇒ ψ〉)) = SMc(SFn(E))
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Case 7.E is of the form〈ante,¬ϕ〉:

For this casel¬ is the sequent rule
Γ −→ ϕ,∆

l¬
Γ,¬ϕ −→ ∆

.

In this case, the premise is obtained by adding〈succ, ϕ〉 toC:

S2C(E) = S2C({〈succ, ϕ〉}) = {〈F, ϕ〉}

= SMc(〈T,¬ϕ〉) = SMc(SFn(〈ante,¬ϕ〉)) = SMc(SFn(E))

Case 8.E is of the form〈succ,¬ϕ〉:

For this caser¬ is the sequent rule
Γ, ϕ −→ ∆

r¬
Γ −→ ¬ϕ,∆

.

In this case, the premise is obtained by adding〈ante, ϕ〉 toC:

S2C(E) = S2C({〈ante, ϕ〉}) = {〈T, ϕ〉}

= SMc(〈F,¬ϕ〉) = SMc(SFn(〈succ,¬ϕ〉)) = SMc(SFn(E))

�

Lemma 11 The sequent rules of classical logic shown in Figure 3.2 meetthe expansion

properties (LC4a- LC4c) of the container.

Proof:

Lemma 9 proves that when a rewrite rule is used to expand an SSFformulaE,

the number of premises depends on the value ofSMr(SFn(E)); whenSMr(SFn(E)) =

α, the expansion generates one premise, but whenSMr(SFn(E)) = β, the expansion

generates two premises. Lemma 10 proves that the new formulas added to the premise(s)

by the sequent rules correspond to the formulas generated bySmullyan’s rules. Together the

results of these two lemmas demonstrate that the sequent in the natural deduction method

meets theα andβ expansion properties (LC4a and LC4b) of the container.
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Since every sequent rewrite rule was examined in Lemma 9 werefound to have

either one or two premises, all of the rules fall intoα andβ-rule types. This meets the only

α andβ-rules property (LC4c).�

Theorem 12 The sequents of the natural deduction have the properties ofthe container.

Proof:

All of the formulas in a sequent are in one of two sets, the antecedent or succedent,

meeting the two set property (LC1).

The functionS2C maps a sequent to a set of signed formulas. Suppose thatK is a

sequent. IfE is a formula in the antecedent ofK, then〈T,E〉 ∈ S2C(K). However, ifE

is in the succedent ofK, then〈F,E〉 ∈ S2C(K). Since theT set contains formulas in the

antecedent and theF set contains formulas in succedent,S2C has theS function property

(LC2).

Suppose thatϕ is the proposed theorem. The endsequentK0 at the root of the

natural deduction proof contains only the formulaϕ in its succedent, i.e.S2C(K0) =

{〈F, ϕ〉}. Hence, the sequent meets the initial container property (LC3).

For all eight sequent reduction rules shown in Figure 3.2, lemmas 9, 10, and 11

prove that these rules have the expansion rule properties (LC4a- LC4c).

A sequentK is an axiom ifS2C(K) contains 1)〈T,⊥〉 ( ⊥ appears in the an-

tecedent), 2)〈F,⊤〉 ( ⊤ appears in the succedent), or 3) two signed formulas〈T, ϕ〉 and

〈F, ϕ〉 (ϕ appears in both the antecedent and succedent). This meets the closure property

(LC5).

If an expansion rule is applied to an axiom, then the new sequent(s) created remain

axioms because all formulas are preserved in the application of the sequent rules. Thus,

sequents in the natural deduction method have the non-reopening property (LC6).
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If all of the leaf sequents in the proof tree are axioms, then the proposed theorem

has been proven, meeting the success property (LC7).

It has been shown that the sequent in natural deduction has all the properties of the

container.�

4.3.4 A Box in a Kripke C-Tableau

This subsection presents two lemmas and a proof demonstrating that a box in the

Kripke C-tableau is a container. To facilitate the proofs, two functionsSFk andK2C are

introduced. The functionSFk defined by Equation 4.5 maps a formula in a Kripke box to

a signed formula. The functionK2C (short for Kripke to container) maps the formulas in

a box to a set of signed formulas as described in Equation 4.6.

SFk(E) =











〈T,E ′〉 if E is of the form〈left, E′〉

〈F,E ′〉 if E is of the form〈right, E′〉
(4.5)

K2C(b) = {SFk(E) | E ∈ b} (4.6)

Lemma 13 Expanding a formulaE splits the Kripke tableau box,KRr(E) = split if and

only if SMr(SFk(E)) = β.

Proof:

When a KCF formulaE is expanded, one of eight expansion rules is used, one for

each combination of the four primary connectives and the twocolumns. Each combination

is checked individually.

Case 1.E is of the form〈left, ϕ ∧ ψ〉:

KRr(E) = no split, so this rule box doesnot split the box, and

SMr(SFk(〈left, ϕ ∧ ψ〉)) = SMr(〈T, ϕ ∧ ψ〉) = α
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Case 2.E is of the form〈right, ϕ ∧ ψ〉:

KRr(E) = split, so this rulesplits the box, and

SMr(SFk(〈right, ϕ ∧ ψ〉)) = SMr(〈F, ϕ ∧ ψ〉) = β

Case 3.E is of the form〈left, ϕ ∨ ψ〉:

KRr(E) = split, so this rulesplits the box, and

SMr(SFk(〈left, ϕ ∨ ψ〉)) = SMr(〈T, ϕ ∨ ψ〉) = β

Case 4.E is of the form〈right, ϕ ∨ ψ〉:

KRr(E) = no split, so this rule box doesnot split the box, and

SMr(SFk(〈right, ϕ ∨ ψ〉)) = SMr(〈F, ϕ ∨ ψ〉) = α

Case 5.E is of the form〈left, ϕ⇒ ψ〉:

KRr(E) = split, so this rulesplits the box, and

SMr(SFk(〈left, ϕ⇒ ψ〉)) = SMr(〈T, ϕ⇒ ψ〉) = β

Case 6.E is of the form〈right, ϕ⇒ ψ〉:

KRr(E) = no split, so this rule box doesnot split the box, and

SMr(SFk(〈right, ϕ⇒ ψ〉)) = SMr(〈F, ϕ⇒ ψ〉) = α

Case 7.E is of the form〈left,¬ϕ〉:

KRr(E) = no split, so this rule box doesnot split the box, and

SMr(SFk(〈left,¬ϕ〉)) = SMr(〈T,¬ϕ〉) = α

Case 8.E is of the form〈right,¬ϕ〉:

KRr(E) = no split, so this rule box doesnot split the box, and

SMr(SFk(〈right,¬ϕ〉)) = SMr(〈F,¬ϕ〉) = α

In all eight cases, expandingE splits a box if and only ifSMr(SFk(E)) = β. �

Now the issue of whether expanding a KCF formulaE generates the same formu-

las as expandingSFk(E) in a container is addressed. This is expressed by the equality

K2C(KRc(E)) = SMc(SFk(E)).
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Lemma 14 For each non-atomic KCF formulaE, SMc(SFk(E)) = K2C(KRc(E)).

Proof: There are eight Kripke expansion rules, one for each combination of the

two columns and the four connectives. When expanding a non-atomic KCF formulaE, the

rule applied is determined byE’s column andE’s primary connective. Each of the eight

combinations is checked separately below.

Case 1.E is of the form〈left, ϕ ∧ ψ〉:

SMc(SFk(E)) = SMc(SFk(〈left, ϕ ∧ ψ〉)) = SMc(〈T, ϕ ∧ ψ〉)

= {〈T, ϕ〉, 〈T, ψ〉} = K2C({〈left, ϕ〉, 〈left, ψ〉})

= K2C(KRc(〈left, ϕ ∧ ψ〉)) = K2C(KRc(E))

Case 2.E is of the form〈right, ϕ ∧ ψ〉:

SMc(SFk(E)) = SMc(SFk(〈right, ϕ ∧ ψ〉)) = SMc(〈F, ϕ ∧ ψ〉)

= {〈F, ϕ〉, 〈F, ψ〉} = K2C({〈right, ϕ〉, 〈right, ψ〉})

= K2C(KRc(〈right, ϕ ∧ ψ〉)) = K2C(KRc(E))

Case 3.E is of the form〈left, ϕ ∨ ψ〉:

SMc(SFk(E)) = SMc(SFk(〈left, ϕ ∨ ψ〉)) = SMc(〈T, ϕ ∨ ψ〉))

= {〈T, ϕ〉, 〈T, ψ〉} = K2C({〈left, ϕ〉, 〈left, ψ〉})

= K2C(KRc(〈left, ϕ ∨ ψ〉)) = K2C(KRc(E))

Case 4.E is of the form〈right, ϕ ∨ ψ〉:

SMc(SFk(E)) = SMc(SFk(〈right, ϕ ∨ ψ〉)) = SMc(〈F, ϕ ∨ ψ〉)

= {〈F, ϕ〉, 〈F, ψ〉} = K2C({〈right, ϕ〉, 〈right, ψ〉})

= K2C(KRc(〈right, ϕ ∨ ψ〉)) = K2C(KRc(E))

Case 5.E is of the form〈left, ϕ⇒ ψ〉:

SMc(SFk(E)) = SMc(SFk(〈left, ϕ⇒ ψ〉)) = SMc(〈T, ϕ⇒ ψ〉)

= {〈F, ϕ〉, 〈T, ψ〉} = K2C({〈right, ϕ〉, 〈left, ψ〉})

= K2C(KRc(〈left, ϕ⇒ ψ〉)) = K2C(KRc(E))
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Case 6.E is of the form〈right, ϕ⇒ ψ〉:

SMc(SFk(E)) = SMc(SFk(〈right, ϕ⇒ ψ〉)) = SMc(〈F, ϕ⇒ ψ〉)

= {〈T, ϕ〉, 〈F, ψ〉} = K2C({〈left, ϕ〉, 〈right, ψ〉})

= K2C(KRc(〈right, ϕ⇒ ψ〉)) = K2C(KRc(E))

Case 7.E is of the form〈left,¬ϕ〉:

SMc(SFk(E)) = SMc(SFk(〈left,¬ϕ〉)) = SMc(〈T,¬ϕ〉)

= {〈F, ϕ〉} = K2C({〈right, ϕ〉})

= K2C(KRc(〈left,¬ϕ〉)) = K2C(KRc(E))

Case 8.E is of the form〈right,¬ϕ〉:

SMc(SFk(E)) = SMc(SFk(〈right,¬ϕ〉)) = SMc(〈F,¬ϕ〉)

= {〈T, ϕ〉} = K2C({〈left, ϕ〉})

= K2C(KRc(〈right,¬ϕ〉)) = K2C(KRc(E))

For each of the eight rules, the equalitySMc(SFk(E)) = K2C(KRc(E)) holds,

and, thus, the lemma has been proven.�

Theorem 15 The box in a Kripke C-tableau proof is a container.

Proof:

Each logical formula is in one of the two columns. TheT set consists of logical

formulas in the left column, and theF set consists of logical formulas in the right column,

thereby meeting the two set property (LC1).

TheK2C function described above maps a KCF formula to a set of signedformulas

such that a KCF formula withleft as its column is mapped to a signed formula with aT

flag, while a KCF formula withright as its column is mapped to a signed formula with a

F flag.K2C has theS function property (LC2).
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Suppose thatϕ is the proposed theorem. The root boxb0 at the start of a Kripke C-

tableau proof contains only the formulaϕ in right column ofb0 (i.e.K2C(b0) = {〈F, ϕ〉} ).

Hence, the box meets the initial container property (LC3).

Lemma 13 proves that expanding a KCF formulaE splits a Kripke box (KRr(E) =

split) if and only if SMr(SFk(E)) = β. Lemma 14 proves that formulas generated by

expandingE in a Kripke C-tableau match those generated by expandingSFk(E) in a con-

tainer. Together these two lemmas demonstrate that the expansion rules for the box meet

theα andβ expansion properties (LC4a and LC4b). The cases consideredin lemmas 13

and 14 cover all of the rules used to alter or create a Kripke box. This fulfills the onlyα

andβ expansion rules property (LC4c).

A box b is closed ifK2C(b) contains〈T,⊥〉, 〈F,⊤〉, or two signed formulas〈T, ϕ〉

and〈F, ϕ〉 for an unsigned formulaϕ, meeting the closure property (LC5).

Since formulas are not removed from a box, it cannot be reopened once it has been

closed. Further, when a rule splits a closed box, since all formulas are copied to the new

boxes, these new boxes must also be closed. This meets the non-reopening property (LC6).

The Kripke C-tableau method successfully proves a theorem if only if all of its

boxes close. Thus, it meets the success property (LC7).

The box in a Kripke C-tableau meets all of the properties of the container.�

4.4 Generalized Algorithm

In this section, an algorithm is presented that decides theoremhood using only the

properties of a logical container. The disjunctive methods(natural deduction, Kripke C-

tableau, analytic tableau, and matrix) all use data structures that have the container property,

and each method is a different representation of the generalized algorithm.
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Algorithm 1 classCheckForClosure(C: Container) returns an empty set or a set with one
container

if ⊤ ∈ F or⊥ ∈ T or a formula appears in bothF andT then
return ∅ { return an empty set, the container is closed}

else
return {C}

end if

Algorithm 2 classExpandFormula(E:Signed Formula,C: Container) returns a set of con-
tainers

if SMr(E) = α then
C ← C ∪ SMc(E)
S ← CheckForClosure(C )

else{ SMr(E) = β }
{β1, β2} ← SMc(E)
C1 ← C ∪ {β1}
C2 ← C ∪ {β2}
S ← CheckForClosure(C1) ∪ CheckForClosure(C2 )

end if
return S

Algorithm 3 classProver(S: a set of containers) returns theorem or non-theorem
while at least one containerC in S is opendo

if all formulas inC have been expanded or atomicthen
return non-theorem

else{ Choose a formula and expand it}
RemoveC from S
LetE be an unexpanded, non-atomic formula inC
S ← (S \ C) ∪ classExpandFormula( E , C )

end if
end while
if all of the containers are closedthen

return theorem
end if

Algorithm 4 classProofStart(ϕ: Logical Formula) returns theorem or non-theorem. This
algorithm working with algorithms to determine ifϕ is a theorem.
C ← 〈∅, {ϕ}〉 {Construct a containerC with its T set empty and itsF set containing
ϕ.}
S ← classCheckForClosure({C})
return classProver(S )
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The generalized algorithm starts whenclassProofStart is called. This al-

gorithm is passed the proposed theoremϕ and returns either theorem or non-theorem.

This algorithm initializes the data structures for the other algorithms. It creates the ini-

tial container and the set of open containersS containing only this initial container, and

then callsclassProver. The algorithmclassProver contains the main loop of the

proof. This loop consists of choosing an open container withan unexpanded formulaE,

calling classExpandFormula to expandE and checking if a termination condition

has been met. If all containers are closed, then the algorithm terminates successfully,

having proven the theorem. However, if there is an open container with no unexpanded

formulas, then the algorithm terminates unsuccessfully (the proof has failed). The algo-

rithm classExpandFormula expands a formula, adding formulas to the container and

splitting it if necessary. After the expansion,classExandFormula returns only those

containers that are still open. The final algorithm,classCheckforClosure is passed

a containerC and returns a set of containers; ifC is open, it returns a set containingC, but

if C is closed, it returns an empty set indicating thatC is closed and can be removed from

the set of open containersS.

Four proofs for the formula(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ), each constructed by one of the

classical logic methods (resolution is excluded), are shown in Figures 4.2 and 4.3. The

Kripke C-tableau and natural deduction proofs both use five expansions, while the analytic

tableau and matrix proofs both use four expansions.

These methods use different numbers of expansions. Since these methods all share

the same algorithm, it is necessary to explore the reasons for the differences and add rules

to establish numerical parity between the methods. In the next three subsections the causes

of these numerical differences are explained, and rules areadded that lead to a numerical

parity between the expansions of these four methods.
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Kripke Tableaux

1) (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)
2) (ϕ⇒ ψ) (1) 3)¬ϕ ∨ ψ (1)

�
�

�	

3)¬ϕ ∨ ψ (1)
4) ϕ (2)
6)¬ϕ (3)

10)ϕ (6) 7) ψ (3)
closed 4 and 10

@
@

@R
5) ψ (2) 3)¬ϕ ∨ ψ (1)

8)¬ϕ (3)
9) ψ (3)

closed 5 and 9

Natural Deduction
ϕ −→ ϕ, ψ

r¬
−→ ϕ,¬ϕ, ψ

r∨
−→ ϕ,¬ϕ ∨ ψ

ψ −→ ¬ϕ, ψ
r∨

ψ −→ ¬ϕ ∨ ψ
l ⇒

ϕ⇒ ψ −→ ¬ϕ ∨ ψ
r ⇒

−→ (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

Figure 4.2: First of two figures showing the five methods used to prove the theorem(ϕ⇒
ψ)⇒ (¬ϕ ∨ ψ) in classical logic.

4.4.1 Maximum Expansion

When most methods find a contradiction, they stop, possibly leaving formulas un-

expanded. If these formulas were expanded, they may create subproofs (containers) and

would require expansions to be repeated in each container. Since containers are used in

different ways by different methods, it is important to require maximum expansion, that is

to expand every non-atomic formula possible. This often means performing expansions in

a closed container and possibly splitting one.

Maximum expansion was not used in Figures 4.2 and 4.3. In the natural deduc-

tion proof, another expansion could have been applied, on the right branch, reducing

ψ −→ ¬ϕ, ψ to ψ, ϕ −→ ψ . This step was not taken because the sequent was already
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Analytic Tableaux

1) F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

2) T, ϕ⇒ ψ (1)
��

2) T, ϕ⇒ ψ (1)

3) F,¬ϕ ∨ ψ (1)
��

3) F,¬ϕ ∨ ψ (1)

4) F, ϕ (2)
wwoooooooo

4) F, ϕ (2)

6) F,¬ϕ (3)
��

6) F,¬ϕ (3)

7) F, ψ (3)
��

7) F, ψ (3)

10) T, ϕ (6)
��

closed 4 and 10closed 4 and 10

3) F,¬ϕ ∨ ψ (1)

5) T, ψ (2)
''OOOOOOOO

5) T, ψ (2)

8) F,¬ϕ (3)
��

8) F,¬ϕ (3)

9) F, ψ (3)
��

closed 5 and 9closed 5 and 9

Matrix
input F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)// F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ) output//

input T, ϕ ⇒ ψ// T, ϕ ⇒ ψ F, ¬ϕ ∨ ψ// F, ¬ϕ ∨ ψ output//

input in1
// in1

F, ϕ77ooo
in1

T, ψ
''OOO

F, ϕ

out1
))SSSS

T, ψ

out155kkkk
out1 F, ¬ϕ ∨ ψ// F, ¬ϕ ∨ ψ output//

input in1
// in1

F, ϕ77ooo
in1

T, ψ
''OOO

F, ϕ

out1
))SSSS

T, ψ

out155kkkk
out1 F, ¬ϕ// F, ¬ϕ F, ψ// F, ψ output//

input in1
// in1

F, ϕ
77ooo

in1

T, ψ
''OOO

F, ϕ

out1
))SSSS

T, ψ

out155kkkk
out1 T, ϕ// T, ϕ F, ψ// F, ψ output//

Figure 4.3: Second of two figures showing the different methods used to prove the theorem
(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ) in classical logic.
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an axiom. However, it is important to count it. Similarly in the Kripke C-tableau proof,

Formula 8,¬ϕ, in the right column of the right box could also have been expanded, adding

ϕ to the left column of the same box. In the analytic tableau, the right branch closed, leav-

ing the non-atomic formula〈F,¬ϕ〉 on Vertex 8 unexpanded. Again, it is important to

include these unexpanded formulas in the count. These adjustments bring the number of

expansions in the analytic tableau to five and in natural deduction and Kripke C-tableau to

six. Using the adjusted counts, the matrix method used four steps, while all of the other

methods used five or six steps.

4.4.2 Different Expansion Orders

There are often multiple choices for the expansion order of agiven formula. Some

expansion orders lead to the same formula being expanded in separate containers. This

occurs when multiple formulas can be expanded at the same time asE, but one or more

β-formulas are chosen beforeE. Each application of aβ-rule splits the container, creating

another copy ofE. Finally, whenE is expanded, there are several copies present in multiple

containers. However, ifE is expanded before theβ-formulas, thenE’s children are copied

each time aβ-rule is applied. Subsection 4.4.3 introduces a grouping rule that eliminates

these multiple expansions.

A formula tree[Wallen 1990] is a tree of signed formulas for the proposed theorem

ϕ. The root vertex is labeled with〈F, ϕ〉. A vertex labeled with the formulaE has no

children ifE is atomic. However, ifE is non-atomic, the vertex’s children are labeled with

the formulas inSMc(E). A signed formula cannot appear in a proof unless its parent has

already appeared.

85



M) C,E,F −→ A,B
l¬

K) C,¬B,E,F −→ A
l¬

I) C,¬A,¬B,E,F −→
l∧

G) C,¬A ∧ ¬B,E,F −→
l∧

E) C,¬A ∧ ¬B,E ∧ F −→

N) D,E,F −→ A,B
l∧

L) D,E ∧ F −→ A,B
l¬

J) D,¬B,E ∧ F −→ A
l¬

H) D,¬A,¬B,E ∧ F −→
l∧

F ) D,¬A ∧ ¬B,E ∧ F −→
l∨

D) ¬A ∧ ¬B,C ∨D,E ∧ F −→
l∧

C) (¬A ∧ ¬B) ∧ (C ∨D), E ∧ F −→
l ∧

B) ((¬A ∧ ¬B) ∧ (C ∨D)) ∧ (E ∧ F ) −→
l ¬

A) −→ ¬(((¬A ∧ ¬B) ∧ (C ∨D)) ∧ (E ∧ F ))

1) F, ¬((((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ))

2) T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ) (1)
��

2) T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ) (1)

3) T, ((¬A) ∧ (¬B)) ∧ (C ∨D) (2)
��

3) T, ((¬A) ∧ (¬B)) ∧ (C ∨D) (2)

4) T, (E ∧ F ) (2)
��

4) T, (E ∧ F ) (2)

5) T, (¬A) ∧ (¬B) (3)
��

5) T, (¬A) ∧ (¬B) (3)

6) T, (C ∨D) (3)
��

6) T, (C ∨D) (3)

7) T,C (6)
vvnnn

7) T,C (6)

9) T, E (4)
��

9) T, E (4)

10) T, F (4)
��

10) T, F (4)

13) T, ¬ A (5)
��

13) T, ¬ A (5)

14) T, ¬ B (5)
��

14) T, ¬ B (5)

17) F, A (13)
��

17) F, A (13)

18) F, B (14)
��

6) T, (C ∨D) (3)

8) T,D (6)
((PPP

8) T,D (6)

11) T, ¬ A (5)
��

11) T, ¬ A (5)

12) T, ¬ B (5)
��

12) T, ¬ B (5)

15) F, A (11)
��

15) F, A (11)

16) F, B (12)
��

16) F, B (12)

19) T, E (4)
��

19) T, E (4)

20) T, F (4)
��

This is not a proper analytic tableau.
The order was chosen to match the natu-
ral deduction proof but violates the rules
of tableau construction. Vertices 4 and
5 are on both branches but are expanded
in different orders on the two branches.

Analytic Tableau
Sequent Vertex

A 1
B 2
C 3 and 4
D 5 and 6
E 7
F 8
G 9 and 10
H 11 and 12
I 13 and 14
J 15
K 17
L 16
M 18
N 19 and 20

Figure 4.4: An analytic tableau proof violates its construction rules by trying to use the
same expansion order used in the a natural deduction proof. Vertices 4 and 5 are on both
branches; on the left branch Vertex 4 is expanded before Vertex 5, while on the right branch
they are expanded in the opposite order.
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W ) C,E,F −→ A,B
l¬

U) C,¬B,E,F −→ A
l¬

S) C,¬A,¬B,E,F −→
l∧

Q) C,¬A ∧ ¬B,E,F −→
l∧

O) C,¬A ∧ ¬B,E ∧ F −→

X) D,E,F −→ A,B
l¬

V ) D,¬B,E,F −→ A
l¬

T ) D,¬A,¬B,E,F −→
l∧

R)D,¬A ∧ ¬B,E,F −→
l∧

P ) D,¬A ∧ ¬B,E ∧ F −→
l∨

D) ¬A ∧ ¬B,C ∨D,E ∧ F −→
l∧

C) (¬A ∧ ¬B) ∧ (C ∨D), E ∧ F −→
l ∧

B) ((¬A ∧ ¬B) ∧ (C ∨D)) ∧ (E ∧ F ) −→
l ¬

A) −→ ¬(((¬A ∧ ¬B) ∧ (C ∨D)) ∧ (E ∧ F ))

1) F, ¬((((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ))

2) T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ) (1)
��

2) T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ) (1)

3) T, ((¬A) ∧ (¬B)) ∧ (C ∨D) (2)
��

3) T, ((¬A) ∧ (¬B)) ∧ (C ∨D) (2)

4) T, E ∧ F (2)
��

4) T, E ∧ F (2)

5) T, (¬A) ∧ (¬B) (3)
��

5) T, (¬A) ∧ (¬B) (3)

6) T, C ∨D (3)
��

6) T, C ∨D (3)

7) T, C (6)
ttjjjjj

7) T, C (6)

9) T, E (4)
��

9) T, E (4)

10) T, F (4)
��

10) T, F (4)

13) T, ¬ A (5)
��

13) T, ¬ A (5)

14) T, ¬ B (5)
��

14) T, ¬ B (5)

17) F, A (13)
��

17) F, A (13)

19) F, B (14)
��

6) T, C ∨D (3)

8) T, D (6)
**TTTT

T

8) T, D (6)

11) T, E (4)
��

11) T, E (4)

12) T, F (4)
��

12) T, F (4)

15) T, ¬ A (5)
��

15) T, ¬ A (5)

16) T, ¬ B (5)
��

16) T, ¬ B (5)

18) F, A (15)
��

18) F, A (15)

20) F, B (16)
��

This is a proper analytic tableau. The or-
der for the natural deduction proof above
was chosen to allow it to be mirrored in
the tableau expansion.

Corresponding
Sequent Analytic Tableau

Vertex
A 1
B 2
C 3 and 4
D 5 and 6
O 7
P 8
Q 9 and 10
R 11 and 12
S 13 and 14
T 15 and 16
U 17
V 18
W 19
X 20

Figure 4.5: The tableau at the bottom and the natural deduction at the top use the same
expansion order. In contrast to Figure 4.4, this tableau does not violate the construction
rules for analytic tableau.
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input 1) F, ¬((((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ))// 1) F, ¬((((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F )) output//

input 2) T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ) (1)// 2) T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ) (1) output//

input 5) T, (¬A) ∧ (¬B) (3)// 5) T, (¬A) ∧ (¬B) (3) 6) T, C ∨D (3)// 6) T, C ∨D (3) 4) T, E ∧ F (2)// 4) T, E ∧ F (2) output//

input 5) T, (¬A) ∧ (¬B) (3)// 5) T, (¬A) ∧ (¬B) (3)

7) T, C (6)
33hhhhhh

5) T, (¬A) ∧ (¬B) (3)

8) T, D (6)
++VVVVVV

7) T, C (6)

4) T, E ∧ F (2)
**VVVVVV

8) T, D (6)

4) T, E ∧ F (2)
44hhhhh

4) T, E ∧ F (2) output//

input 11) T, ¬A(5)// 11) T, ¬A(5) 12) T, ¬B(5)// 12) T, ¬B(5)

7) T, C (6)
))SSSS

12) T, ¬B(5)

8) T, D (6)
55kkkk

7) T, C (6)

9) T, E (4)
77nnnn

8) T, D (6)

9) T, E (4)
''PPPP

9) T, E (4) 10) T, F (4)// 10) T, F (4) output//

input 13) F, A(11)// 13) F, A(11) 14) F, B(12)// 14) F, B(12)

7) T, C (6)
55kkkk

14) F, B(12)

8) T, D (6)
))SSSS

7) T, C (6)

9) T, E (4)
&&NNN

8) T, D (6)

9) T, E (4)
88ppp

9) T, E (4) 10) T, F (4)// 10) T, F (4) output//

Figure 4.6: The construction of a matrix using the same expansion order as natural deduc-
tion and analytic tableau proofs in Figure 4.5.

4.4.3 Grouping in Expansion Orders

In some methods, a formula labeling a vertex in the formula tree appears in more

than one container. This formula is expanded separately in each container. To illustrate this,

the sequence of actions taken to expand¬ϕ∨ψ in each of the methods is examined. In the

analytic tableau proof in Figure 4.3, when Vertex 3, labeledwith 〈F,¬ϕ ∨ ψ〉 , is expanded,

vertices 6 and 7 are added under Vertex 4, and vertices 8 and 9 are added under Vertex 5.

This single expansion adds four new vertices since Vertex 3 is on two branches; i.e there

are two leaf vertices beneath it. In the Kripke C-tableau (shown in Figure 4.2), Formula 3

(¬ϕ∨ψ) is expanded twice since it appears in two containers. In oneexpansion, expanding
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Formula 3 in the left box adds formulas 6 and 7. In another expansion, expanding Formula

3 in the right box adds formulas 8 and 9. The natural deductionproof also exhibits this

behavior as it expands¬ϕ∨ψ twice, once in the left subtree and again in the right subtree.

The analytic tableau and matrix methods both expand¬ϕ ∨ ψ once.

Also in natural deduction and Kripke C-tableau, expansionsin different containers

may occur in different orders. The natural deduction proof in Figure 4.4 shows a situation

where E ∧ F is expanded before¬A ∧ ¬B in the left subtree and the opposite order is

used in the right subtree. The Kripke C-tableau (not shown inthe figure) is able to use

different expansion orders in each box, but the analytic tableau cannot without violating

its construction rules. However, in Figure 4.5 where natural deduction uses the same ex-

pansion order in both subtrees, a proper analytic tableau using this expansion order can be

constructed.

〈F, ¬((((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ))〉

〈T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F )〉
��

〈T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F )〉

〈T, ((¬A) ∧ (¬B)) ∧ (C ∨D)
uullllllllll

〈T, (((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F )〉

〈T, E ∧ F 〉
))RRRRRRRRRR

〈T, E ∧ F 〉

〈T, E〉
����

��
�

〈T, E ∧ F 〉

〈T, F 〉
��:

::
::

〈T, ((¬A) ∧ (¬B)) ∧ (C ∨D)

〈T, (¬A) ∧ (¬B)〉
xxpppppppp

〈T, ((¬A) ∧ (¬B)) ∧ (C ∨D)

〈T, C ∨D〉
''OOOOOOOOO

〈T, (¬A) ∧ (¬B)〉

〈T, ¬A〉
����

��
��

〈T, (¬A) ∧ (¬B)〉

〈T, ¬B〉
��?

??
??

?
〈T, C ∨D〉

〈T, C〉
����

��
��

〈T, C ∨D〉

〈T, D〉
��?

??
??

?

〈T, ¬A〉

〈F, A〉
��

〈T, ¬B〉

〈F, B〉
��

Figure 4.7: Formula tree for〈F, ¬((((¬A) ∧ (¬B)) ∧ (C ∨D)) ∧ (E ∧ F ))〉.

The only restriction on the choice of expansion orders is thepartial order exhibited

by the formula tree in Figure 4.7. A formula may be expanded only after its parent has

been expanded. Thus, a formula tree may be viewed as a partialorder of the expansions of
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the formulas. After a container splits natural deduction, Kripke C-tableau, and sometimes

in analytic tableau, the expansion order may differ betweencontainers.

To eliminate different expansion orders in different containers, a rule called group-

ing is introduced. Agrouping is the set of expansions that come from a single vertex in

the formula tree. Under this rule each expansion step consists of expanding all formulas

that belong to the same grouping. Some vertices in the formula tree, notably the root, are

always in a grouping that has only one expansion.

By adding the grouping rule, the number of expansion steps required by each

method is now the same. An expansion consists of expanding a formula on one sequent,

box, branch, or in another container, but an expansion step consists of one or more expan-

sions, one for each formula that shares the same vertex in theformula tree. Returning to

the proofs in Figures 4.2 and 4.3 and comparing the number of expansions and expansion

steps, using the maximum expansion rule. The number of expansions in natural deduction

and Kripke C-tableau proofs is six, in analytic tableau five,and in the matrix method four.

However, the number of expansion steps needed for natural deduction, analytic tableau

and Kripke C-tableau is four. This change results from the combining of the duplicate

expansions of¬ϕ ∨ ψ and¬ϕ. By its nature, the matrix method does not have duplicate

expansions; thus, in the matrix, each grouping consists of the expansion of a single vertex.

The number of groupings used by each method is the same since every proof attempts to

prove the same formula, which has a fixed formula tree.

Since the grouping rule requires that all formulas in a grouping be expanded at the

same time, the natural deduction and analytic tableau proofs in Figure 4.4 are not permit-

ted; however, the natural deduction proof and analytic tableaux proofs in Figure 4.5 are

permitted. Table 4.1 shows the expansion order and the groupings it creates during the

construction of the natural deduction, analytic tableaux,and matrix proofs in Figures 4.5

and 4.6.
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Step Matrix Analytic Sequents
Function Vertices Tableau

Vertices
Initial Step → 1 → 1 → A

Expand 1→ 2 1→ 2 A→ B

〈F,¬((((¬A) ∧ (¬B))∧
(C ∨D)) ∧ (E ∧ F ))〉

Expand 2→ 3, 4 2→ 3, 4 B → C

〈T, (((¬A) ∧ (¬B))∧
(C ∨D)) ∧ (E ∧ F )〉

Expand 3→ 5, 6 3→ 5, 6 C → D

〈T, ((¬A) ∧ (¬B))∧
(C ∨D))〉

Expand 6→ 7, 8 6→ 7, 8 D → O,P

〈T, C ∨D〉
Expand 4→ 9, 10 4→ 9, 10 O → Q

〈T,E ∧ F 〉 4→ 11, 12 P → R

Expand 5→ 11, 12 5→ 13, 14 Q→ S

〈T, (¬A) ∧ (¬B)〉 5→ 15, 16 R→ T

Expand 11→ 13 13→ 17 S → U

〈T,¬A〉 15→ 18 T → V

Expand 12→ 14 14→ 19 U →W

〈T,¬B〉 16→ 20 V → X

Table 4.1: A table showing the correspondence between expansion steps in natural deduc-
tion, analytic tableau, and matrix proofs as shown in Figures 4.5 and 4.6. Each row in the
table represents a single expansion step. The number/letter on the left of the arrow repre-
sents the vertex or sequent expanded to generate the number/letter of the vertex or sequent
on the right of the arrow. Thus, a single expansion order can be used by each of these
methods.
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Chapter 5

Intuitionistic Logic

5.1 Some Definitions for Intuitionistic Logic

In [van Dalen 1994], intuitionistic logic is likened to the work of a human mathe-

matician beginning with various postulates and objects andderiving theorems and objects

from this initial state, then repeatedly using these previously proven theorems and the exis-

tence of these objects to prove new theorems and construct new objects. After a period of

time, the mathematician stops.

The state of knowledge in an intuitionistic investigation is called aworld. The

investigation starts in an initial world. This world contains axioms and known objects and

theorems that can be immediately derivable from these. As new evidence is gathered, the

logical investigation may take different paths. This process is modeled by a DAG linking

the current world with other possible worlds. This DAG linking worlds together is called

a frame. Aframe is the collection of worlds that are accessible from the initial world.

As new evidence is gained, the investigation moves between worlds within the DAG. The

successor relation≥ indicates which worlds are accessible from other worlds. Ifwi andwj

are worlds, then the statementwi ≥ wj indicates thatwi is a successor ofwj.
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Instead of true and false, intuitionistic logic is defined using forced and unforced

formulas in a frame consisting of possible worlds. Intuitionistic logic has themonotonicity

property: once a theorem is proven or an individual is found to exist, then it exists in all

possible future worlds (theorems and the existence of individuals are never retracted).

In a world a formula can be forced, unforced or neither forcedor unforced. Forced

formulas are known to be true, while unforced formulas are those formulas which are false

or whose truth value is unknown.

The signsT andF , which denoted true and false in classical logic, are used to

denote forced and unforced in intuitionistic logic. If the formulaϕ is forced, it is denoted

by 〈T, ϕ〉 and ifϕ is unforced, it is denoted by〈F, ϕ〉. This notation may seem confusing

since formulas that are unforced have theF flag. However, this is standard notation as

forced formulas have similar semantics to true formulas in classical logic.

The semantics of forced and unforced formulas are differentfrom true and false in

classical logic. They are described using Kripke’s semantics. If a formula is forced in a

world, it must also be forced in all successor worlds. A formula that is unforced in a world

maybe forced in a successor world, but not the converse.

A formulaϕ is a theorem in intuitionistic logic if it is forced in all frames. There-

fore, refutation creates an initial world whereϕ is unforced and attempts to construct a

frame that is consistent with this initial world.

5.2 Philosophical Differences with Classical Logic

The four philosophical differences between classical and intuitionistic logic are:

• constructive dilemma

• an existential quantifier, which requires a witness
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• a universal quantifier, which applies to current and future individuals

• the constructive semantics of the connective implication (⇒).

To demonstrate the first difference, the constructive dilemma, consider the proposi-

tionG, “Goldbach’s conjecture can be proven.” Goldbach conjecture states that every even

integer greater than two is the sum of two prime numbers. SinceG either has a proof or

does not have a proof, the formulaG∨¬G can be constructed to represent this proposition.

In classical logic, this is a theorem, but not in intuitionistic logic.

In classical logic this is accepted as a theorem as a result ofthe law of the excluded

middle (Tertium Non Daturor there is no third value), which expresses the principle that all

propositions are either true or false. Intuitionistic logic rejects this principle, recognizing

that the truth value of a proposition may not be known but may become known in the future.

In intuitionistic logic, the formulaG∨¬G means that there is either a proof ofG or a proof

of ¬G. SinceG has not be proven nor has it be proven thatG is false,G ∨ ¬G is not a

theorem.

The second difference between classical and intuitionistic logic is the witness re-

quirement for the existential quantifier (∃). In intuitionistic logic, it cannot asserted∃xP (x)

until ay can be found such thatP (y) is true. This prevents making assertions about empty

domains (e.g. Pegasuses and unicorns).

A third difference between classical and intuitionistic logic deals with the universal

quantifier (∀). As evidence is gathered in the reasoning process, new individuals may be

discovered. For∀xP (x) to be forced in worldw, one must be able to say that for all

x known inw, P (x) is forced; in addition, for anyy discovered in a possible successor

world,P (y) is also forced.

The fourth difference is in the semantics (meaning) of implication (⇒). In intu-

itionistic logicP ⇒ Q means that there is an algorithm to constructQ fromP . In classical
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logicP ⇒ Q is false only if P is true and Q is false For example, letP be “Lassie is a dog”

andQ be “Lassie is a mammal.” In classical logic, this statement is false only if Lassie

is a dog but not a mammal. Symbolically,(P ⇒ Q) ⇒ (¬P ∨ Q). Since all dogs are

mammals, this statement is true. In intuitionistic logic, if it is known that Lassie is a dog,

then it can be concluded that Lassie is a mammal(P ⇒ Q). But if the truth value is not

known for either proposition: “Lassie is not a dog” or “Lassie is a mammal”(¬P ∨Q),

then the compound statement, “Lassie is not a dog or Lassie isa mammal,” does not have a

proof, because a proof that “Lassie is not a dog” (¬P ) or a proof that “Lassie is a mammal”

(Q) is needed (the constructive dilemma comes into play). Hence,(P ⇒ Q)⇒ (¬P ∨Q)

is not a theorem in intuitionistic logic.

Statements like the ones below are not known to be true or false, in the fall of 2008:

• The complexity of primality testing is exponential.

• The Goldbach conjecture has a proof.

• P = NP .

At some point in the future, the truth value of some of these statements will become known.

But for some statements, the truth value may never be known.

In science, experiments are performed in order to answer questions. For instance,

if the police are investigating a murder where the victim wasstabbed and a suspect has

a bloody knife, the blood on the knife is analyzed to determine if it matches the victim’s

blood type. In classical logic, the assumption is made that the blood type found on the

knife is known; intuitionistic logic allows for the test result to be initially unknown and

perhaps never known as the knife could be washed before a sample is taken or the test

results could be inconclusive. Classical logic assumes that all propositions are known to

be true or false, while intuitionistic logic allows for reasoning with incomplete information
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and the introduction of information that does not contradict previous information. Variables

and formulas can be added to classical logic to allow it to deal with inconclusive or partial

information, but intuitionistic logic was designed the work with these kinds of information.

5.3 Kripke Semantics

The semantics of the connectives are defined in terms of forced and unforced for-

mulas in a set of worlds that make up a frame. A frameF is a three tuple:F = (P,≥,Φ),

whereP is a set of worlds,≥ is a reflexive and transitive successor relation on the setP ,

andΦ is a partial function from a world and a formula to the set{T, F}, indicating if a

formula is forced or unforced in a world.

If the formulaϕ is forced in worldp, thenΦ(p, ϕ) = T , denoted asp  ϕ, and read

asp forcesϕ. Similarly, if a formulaψ is unforced in worldp, thenΦ(p, ψ) = F , denoted

asp 6 ψ, and read asp does not forceψ.

The successor relation≥ defines a DAG of worlds within a frame. For example,

q ≥ p indicates thatq is a possible future world reachable fromp.

The deductive definitions of the primary connectives shown below are adapted from

[Nerode and Shore 1993][page 266]:

• If p  ϕ, then for allq ≥ p, q  ϕ (monotonicity property).

• If p  ϕ ∧ ψ, thenp  ϕ andp  ψ.

• If p 6 ϕ ∧ ψ, thenp 6 ϕ or p 6 ψ.

• If p  ϕ ∨ ψ, thenp  ϕ or p  ψ.

• If p 6 ϕ ∨ ψ, thenp 6 ϕ andp 6 ψ.

• If p  ϕ⇒ ψ, then for allq ≥ p, q  ϕ impliesq  ψ.
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• If p 6 (ϕ⇒ ψ), then there exists aq ≥ p whereq 6 ϕ andq  ψ.

• If p  ¬ϕ, then for allq ≥ p, q 6 ϕ.

• If p 6 ¬ϕ, then for someq ≥ p, q  ϕ.

When working in intuitionistic logic, conjunction (∧ ) and disjunction (∨) behave

very much like their classical logic counterparts, while implication (⇒) and negation (¬)

behave differently. The semantics described above affect not only the current world but

also a future world or all future worlds. Unforced implication and negation require that

there exists a future world with a certain property.

In a given world, formulas that are true are said to beforced in that world. If

a formula is forced in one worldw, then it is forced in all possible future worlds. If a

formula is bothunforced and unforced in the same worldw, then there is a contradiction.

However, it is not a contradiction if a formula is unforced inone world but forced in a

successor world.

5.4 Refutation in Intuitionistic Logic

Refutation in classical logic depends on the tautology¬¬ϕ ⇔ ϕ, but this does not

hold in intuitionistic logic. In intuitionistic logic, a formula is a theorem if it is forced in

all frames. In intuitionistic logic, a refutation proof creates a frame with an initial world

assuming that the proposed theorem is unforced and then builds the rest of the frame consis-

tent with this assumption. The proof succeeds if and only if aframe cannot be constructed

consistent with this assumption.
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Signed Expansion Child Intuitionistic J(E)
Formula E Rule Type Formulas Semantics Function

SMr(E) SMc(E)
〈T, ϕ ∧ ψ〉 α {〈T, ϕ〉, 〈T, ψ〉} current world present
〈F, ϕ ∧ ψ〉 β {〈F, ϕ〉, 〈F, ψ〉} current world present
〈T, ϕ ∨ ψ〉 β {〈T, ϕ〉, 〈T, ψ〉} current world present
〈F, ϕ ∨ ψ〉 α {〈F, ϕ〉, 〈F, ψ〉} current world present
〈T, ϕ⇒ ψ〉 β {〈F, ϕ〉, 〈T, ψ〉} current and all future

all future worlds
〈F, ϕ⇒ ψ〉 α {〈T, ϕ〉, 〈F, ψ〉} at least one somefuture

future world
〈T,¬ϕ〉 α {〈F, ϕ〉} current and all future

all future worlds
〈F,¬ϕ〉 α {〈T, ϕ〉} at least one somefuture

future world

Table 5.1: J Function definition. TheJ function is used in addition toSMr andSMc to
describe the semantics of intuitionistic logic.

5.5 TheJ Function

In the description of the intuitionistic algorithm, the functionJ is introduced. This

function modifies the actions taken when expanding some formulas. J maps a signed

formulaE to one of three values:present, all future, andsome future.

• If J(E) = present, then the expansion of the formula is carried out in the current

world, much like in classical logic.

• If J(E) = all future, then the expansion takes place in the current world as well as

in all possible future worlds.

• If J(E) = some future, then the expansion only applies to at least one future world.

In intuitionistic logic, all of the formulasE whereJ(E) = all future have aT sign. Since

the monotonicity property of the logic and the methods movesall formulas with aT sign to

future worlds, these formulas can be handled as ifJ(E) = current. If another logic was
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implemented that required some formulas with aF sign to be advanced to future worlds,

then this function would have to be modified.

Definition 16 TheN setconsists of the unforced formulas that have either implication or

negation as their primary connective. A formulaE is in this set if and only ifJ(E) =

some future.

The formulas in theN set require special handling in each of the methods. If a

formula is in theN set, then the Kripke semantics require a future world to meetsome

forcing condition.

5.6 Intuitionistic Methods

The intuitionistic proof methods presented in this sectionare modifications of their

classical logic counterparts. Each method is modified to reflect the intuitionistic semantics

of the connectives. Analytic tableau and the matrix method build their graphs and then

analyze them to see if each branch or path can be closed simultaneously. Natural deduction

and Kripke tableau purge the the unforced formulas when expanding anN set formula.

During a proof there is often more than one formula in theN set. After expanding a

formula in theN set, future expansions may create anotherN set, and another choice has

to be made. If one series of choices fails to produce a proof, another set of choices is

tried until either one sequence of choices succeeds or all possible sequences have failed. If

sequence of choices produces a successful proof, then the theorem has been proven, but if

no sequence can be found, then the proof attempt has failed.
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Γ, ϕ −→ ϕ,∆ (Axiom)

Γ,⊥ −→ ∆ (Axiom) Γ −→ ⊤,∆ (Axiom)

Γ, ϕ, ψ −→ ∆
l∧

Γ, ϕ ∧ ψ −→ ∆

Γ −→ ϕ,∆ Γ −→ ψ,∆
r∧

Γ −→ ϕ ∧ ψ,∆

Γ, ϕ −→ ∆ Γ, ψ −→ ∆
l∨

Γ, ϕ ∨ ψ −→ ∆

Γ −→ ϕ, ψ,∆
r∨

Γ −→ ϕ ∨ ψ,∆

Γ −→ ϕ,∆ Γ, ψ −→ ∆
l ⇒

Γ, ϕ⇒ ψ −→ ∆

Γ, ϕ −→ ψ
r ⇒

Γ −→ ϕ⇒ ψ,∆

Γ −→ ϕ,∆
l¬

Γ,¬ϕ −→ ∆

Γ, ϕ −→
r¬

Γ −→ ¬ϕ,∆

Figure 5.1: Intuitionistic sequent rules. This figure contains the natural deduction rewrite
rules and axioms for intuitionistic logic.Γ and∆ represent the sets of formulas that are
not involved in the current rule. Ther ⇒ andr¬ rules differ from their counterparts in
classical logic. This set of sequent rules is a modification of the rules in [Wallen 1990].

5.6.1 Natural Deduction

As in classical logic, natural deduction attempts to construct a tree of sequents

rooted with an endsequent, having axioms at its leaves. The sequent rules for intuitionistic

logic, shown in Figure 5.1, are similar to the ones used in classical logic. They have the

same axiom rules, but two of the rewrite rules are different.The two rules that differ are

r ⇒ andr¬; these rewrite rules expand a formula in theN set. They are both missing

∆ from the premise, indicating that formulas in the succedentare purged except for the

formulas generated by the expansion.

The order in which formulas are expanded can determine whether or not a proof

is found. Unlike classical logic where the expansion order does not affect the outcome of

the proof, the search for an expansion order that leads to a successful proof is important
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in intuitionistic logic. A formula is a theorem if there is atleast one expansion order that

creates a tree that has axiom sequents at its leaves.

A −→
r¬

−→ ¬A,A
l¬

¬A −→ ¬A
r ⇒

−→ ¬A⇒ ¬A

A −→ A
l¬

A,¬A −→
r¬

¬A −→ ¬A
r ⇒

−→ ¬A⇒ ¬A

Figure 5.2: Two intuitionistic natural deduction proof attempts of¬A⇒ ¬A. The proof on
the left applies thel¬ rule before ther¬ rule and fails, while the proof on the right applies
these rules in the opposite order and succeeds.

Two proof attempts for the theorem¬A ⇒ ¬A are shown in Figure 5.2; because

they use different expansion orders, the one on the left fails, while the one on the right

succeeds. After applying ther ⇒ rule, there is a choice of either applying al¬ or a r¬

rule; the left proof applies thel¬ rule, while the right proof applies ther¬ rule. At this

point, the left proof has the sequent−→ ¬A,A as its leaf. Ther¬ rule is the only one

that can be applied to this sequent, creating the sequentA −→, which is not an axiom, and

since no rewrite rules can be applied, the proof has failed. Returning to the proof tree on

the right after ther¬ is applied, it has the leaf sequentA,¬A −→. The only rewrite rule

that can be applied isl¬, adding the sequentA −→ A; since this is an axiom, the proof is

successful. Since ther¬ rule purges the contents of the succedent, it is a good heuristic to

apply it when there are as few formulas as possible in the succedent.

In classical logic the formula(A⇒ B)⇒ (¬A∨B) is a theorem, but it is not a the-

orem in intuitionistic logic. Figure 5.3 shows two different unsuccessful proof attempts for

this formula. Regardless of the expansion order used and, hence, the sequence of choices

made to expand formulas in theN set, this formula cannot be proven.
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A −→
r¬

−→ A,¬A,B B −→ ¬A,B
l ⇒

A⇒ B −→ ¬A,B
r∨

A⇒ B −→ ¬A ∨ B
r ⇒

−→ (A⇒ B)⇒ (¬A ∨B)

A −→
r¬

−→ A,¬A,B
r∨

−→ A,¬A ∨B

B −→ ¬A,B
r∨

B −→ ¬A ∨ B
l ⇒

A⇒ B −→ ¬A ∨ B
r ⇒

−→ (A⇒ B)⇒ (¬A ∨B)

Figure 5.3: Two intuitionistic natural deduction proof attempts for the formula(A⇒ B)⇒
(¬A ∨ B). The two proof attempts in this figure use different expansion orders to prove
the same formula. The proof on the left applies ther∨ rule before thel ⇒ rule, while the
proof on the right applies these rules in the opposite order.Both expansion orders lead to
failed proofs for the same formula.

5.6.2 Kripke Tableau

The Kripke tableau method was designed for intuitionistic logic. A simplified ver-

sion for classical logic, called the Kripke C-tableau, was described in Section 3.2. The rules

for both the Kripke tableau and the C-tableau were derived from the sequent rules used for

their respective logics.

The functionsKRr andKRc defined in Table 5.2 are the same as in classical logic,

but intuitionistic logic also includes theJ function. ThisJ function modifies the actions

taken when expanding a formulaE in theN set. WhenJ(E) = some future, the intu-

itionistic method creates a “new” box from the current one bycopying only the formula(s)

in the left column, while the formulas in right column are lost, and then adding the for-

mula(s) generated by the expansion.

Since the Kripke tableau is just another representation of natural deduction, the

special action taken when expanding an implication or negation in the right column cor-

responds to the two sequent rewrite rulesr¬ and r ⇒. In these two sequent rules, the

formulas in the succedent of the conclusion are lost. This loss is represented by the ab-

sence of∆ from the premise.
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Kripke Expansion Child Intuitionistic J(E)
Column Rule Type Formulas Semantics Function

Formula E KRr(E) KRc(E)
〈left, ϕ ∧ ψ〉 no split {〈left, ϕ〉, current world present

〈left, ψ〉}
〈right, ϕ ∧ ψ〉 split {〈right, ϕ〉, current world present

〈right, ψ〉}
〈left, ϕ ∨ ψ〉 split {〈left, ϕ〉, current world present

〈left, ψ〉}
〈right, ϕ ∨ ψ〉 no split {〈right, ϕ〉, current world present

〈right, ψ〉}
〈left, ϕ⇒ ψ〉 split {〈right, ϕ〉, } current and all future

〈left, ψ〉} all future worlds
〈right, ϕ⇒ ψ〉 no split {〈left, ϕ〉, at least one somefuture

〈right, ψ〉} future world
〈left,¬ϕ〉 no split {〈right, ϕ〉} current and all future

all future worlds
〈right,¬ϕ〉 no split {〈left, ϕ〉} at least one somefuture

future world

Table 5.2: Kripke andJ Functions. TheJ function is used with theKRr andKRc func-
tions to describe the actions taken to expand a formula in a Kripke tableau.

Figure 5.4 shows an unsuccessful Kripke proof attempt for the formula(A⇒ B)⇒

(¬A∨B). As in natural deduction, finding a proof becomes a search foran expansion order

that causes all of the leaf boxes to close.

5.6.3 Analytic Tableau

This subsection discusses how Nerode and Shore [Nerode and Shore 1993] modi-

fied the analytic tableau method to prove theorems in intuitionistic logic. As in classical

logic, each tableau expansion uses one of Smullyan’s rules to expand a vertex labeled with

a formula. The formulas generated by each expansion are added to the tableau. In addition,

the intuitionistic method constructs a partial order. Eachvertex in an intuitionistic tableau

is labeled with both a signed formula and an element from the partial order.
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1) (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

?
New

2)ϕ⇒ ψ (1) 3)¬ϕ ∨ ψ (1)

�
�

�	

2) ϕ⇒ ψ (1) 3)¬ϕ ∨ ψ (1)
4)ϕ (2)
6)¬ϕ (3)
7)ψ (3)

?
New

2) ϕ⇒ ψ (1)
10)ϕ (6)

open

@
@

@R
2) ϕ⇒ ψ (1) 3)¬ϕ ∨ ψ (1)
5) ψ (2) 8)¬ϕ (3)

9) ψ (3)

closed 5 and 9

Figure 5.4: Intuitionistic Kripke tableau proof attempt for (ϕ⇒ ψ)⇒ (¬ϕ∨ ψ). This is a
theorem in classical logic, but it is not a theorem in intuitionistic logic.

The first step in constructing a proof for the formulaϕ consists of creating a partial

order with one elementp0 and creating the root vertex of the tableau. This vertex is labeled

with the partial order elementp0 and the signed formula〈F, ϕ〉. Each subsequent step

expands a vertex labeled with the signed formulaE and a partial order elementp. If J(E) =

some future, then a new elementp′ of the partial is created as the immediate successor

of p and the new vertices are labeled withp′. If J(E) 6= some future, no new element is

added to the partial order, and the vertices added to the tableau are labeled withp.

Recall the monotonicity rule states that if a formula is forced in one world, it is

forced in all successor worlds. This rule may add vertices toa tableau without expanding

a vertex. Suppose that a vertexv is labeled with the forced formulaE and the partial order

elementp. This rule can be applied if there is a partial order elementq that is a successor of

p. The application of the rule adds a vertex as the child of a vertex inL(v), this new vertex

is labeled withE andq.
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1) p  F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

2) p2  T, ϕ⇒ ψ (1)
��

2) p2  T, ϕ⇒ ψ (1)

3) p2  F, ¬ϕ ∨ ψ (1)
��

3) p2  F, ¬ϕ ∨ ψ (1)

4) p2  F, ϕ (2)
yyrrrrrrr

3) p2  F, ¬ϕ ∨ ψ (1)

5) p2  T, ψ (2)
%%LLLLLLL

4) p2  F, ϕ (2)

6) p2  F, ¬ϕ (3)
��

5) p2  T, ψ (2)

8) p2  F, ¬ϕ (3)
��

6) p2  F, ¬ϕ (3)

7) p2  F, ψ (3)
��

8) p2  F, ¬ϕ (3)

9) p2  F, ψ (3)
��

7) p2  F, ψ (3)

10) p3  T, ϕ (6)
��

9) p2  F, ψ (3)

11) p4  T, ϕ (8)
��

p

p2
��
p2

p3
����
p2

p4
��/

/

closed 5 and 9closed 5 and 9openopen

Figure 5.5: Intuitionistic analytic tableau proof attemptof (ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ). Each
vertex is labeled with both a signed formula and an element ofthe partial order. The right
branch closes because vertices 5 and 9 contain contradictory formulas in worldp2. In the
left column, while vertices 4 and 10 are labeled with contradictory formulas, they are in
different worlds. Further, since〈T, ϕ〉 is worldp3, and〈F, ϕ〉 is worldp2, the monotonicity
rule cannot be applied becausep2 is not a successor ofp3. Nor can〈F, ϕ〉 be moved from
p2 to p3 since it is unforced.

As in classical logic, a branch is closed when it contains vertices labeled with con-

tradictory formulas. In intuitionistic logic, a branch closes if it contains contains a contra-

diction, either a vertex labeled with a self-contradictoryformula or a pair of contradictory

formulas. A vertex is self-contradictory if it is labeled with 〈T,⊥〉 or 〈F,⊤〉. A pair of

vertices are contradictory if they both are labeled with thesame partial order element, but

one is labeled with〈F, ϕ〉 and the other labeled with〈T, ϕ〉 for some formulaϕ.
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5.6.4 Matrices in Intuitionistic Logic

The construction rules used to build a matrix for intuitionistic logic are the same

as those for classical logic; however, each non-structuralvertex in the matrix is labeled

with both a signed formula and a T-string (described below).As in classical logic, after the

matrix is constructed, there is a search for a pair of contradictory formulas on each path. In

intuitionistic logic, there is an additional requirement that the T-strings labeling the vertices

which have contradictory formulas can be unified with a single substitution.

A good description of T-strings can be found in [Otten and Kreitz 1996]; they serve

a similar role as partial orders do in an intuitionistic tableau. In the theorem prover ilean-

TAP [Otten 1997], T-strings are used in an analytic tableau instead of the partial order used

in the previous subsection.

A T-string is composed of constants and variables. An over-bar will be used to mark

variables in a T-string. Two T-strings are unified by substituting a string of constants and

variables for each variable. For instance,card andcandid may be unified by substituting

ndi for r. However,minor andmatrix cannot be unified since one string starts with the

constantsmi and the other with the constantsma; the variables appear after these initial

characters.

Definition 17 Two stringst ands over the same alphabet have theT-stringproperty if 1)

there are no repeated symbols withint or s, 2) there is a stringr with0 ≤ |r| ≤ min(|t|, |s|)

that is a prefix of botht ands, and 3) once past the common prefixr, they share no symbols

in common.

The T-strings used in intuitionistic matrices are constructed using the formula tree

[Wallen 1990] discussed in Section 2.11. Recall for the proposed theoremϕ, the root vertex

of the formula tree is labeled with the signed formula〈F, ϕ〉. A vertexv labeled with the

formulaE has no children ifE is atomic. If |SMc(E)| = 1, thenv has one child labeled
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with the formula inSMc(E). If |SMc(E)| = 2, thenv has two children, each labeled with

a formula inSMc(E).

For convenience each vertex in the formula tree will be denoted with an identifier

ai, wherei is a unique number within the tree; these numbers are assigned using depth-first

ordering. A vertex isspecialif it is the root or a leaf, or is labeled with a signed formula

that has negation or implication as its primary connective.The T-string for vertexv in

the formula tree is constructed by concatenating the symbols associated with each special

vertex as one travels from the root tov. Let E be the signed formula labeling the special

vertexi in a formula tree. IfE is forced, then the symbol for vertexi is the variableai,

while if E is unforced, then the symbol for vertexi is the constantai. Suppose vertexv has

a childw andv is labeled with the T-strings. If w is not special, then it will also be labeled

with s. But if w is special, its T-string consists ofs followed by the T-string symbol for the

vertexw.

A pair of vertices on pathp is contradictory if for some formulaϕ one vertex is

labeled with the formula〈T, ϕ〉 and the other vertex is labeled with the formula〈F, ϕ〉.

Equation 5.1 definesRp as the set of pairs of contradictory vertex pairs on pathp. Equa-

tion 5.2 definesSp as the set of pairs of T-strings where each T-string labels one vertex of

a contradictory pair of vertices on pathp. If for eachp there is a T-string pair(t1, t2) ∈ Sp

such thatσ(t1) = σ(t2), then the proof is successful.

Rp = {(v1, v2)|v1 andv2 are contradictory vertices on pathp} (5.1)

Sp = {(s1, s2)|(v1, v2) ∈ Rpwheres1 labelsv1 ands2 labelsv2} (5.2)

Let σ be a substitution mapping each T-string variable to a possibly empty string

of T-string constants. For an intuitionistic proof to be successful, each pathp must contain
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input 1) F, ϕ ∨ ¬ϕ// 1) F, ϕ ∨ ¬ϕ output//

input 2) F, ϕ (1)// 2) F, ϕ (1) 3) F, ¬ϕ (1)// 3) F, ¬ϕ (1) output//

input 2) F, ϕ (1)// 2) F, ϕ (1) 4) T, ϕ (3)// 4) T, ϕ (3) output//

Figure 5.6: Matrix proof of the excluded middleϕ∨¬ϕ. This is a theorem in classical logic
but not a theorem in intuitionistic logic. The T-strings labeling vertices 2 and 4 cannot be
unified.

a1)〈F, ϕ ∨ ¬ϕ〉, a1

a2)〈F, ϕ〉, a1a2

uullllllllll
a1)〈F, ϕ ∨ ¬ϕ〉, a1

a3)〈F, ¬ϕ〉, a1a3

))RRRRRRRRRR

a3)〈F, ¬ϕ〉, a1a3

a4)〈T, ϕ〉, a1a3a4

��

Figure 5.7: The formula tree with T-strings for the proposedtheorem(ϕ ∨ ¬ϕ). The
root vertex is labeled with the signed formula composed of the F sign and the proposed
theorem. Each vertex in the formula tree is labeled with one of the signed formulas created
by expanding the signed formula labeling its parent and the T-string derived from its parent.

either 1) a vertex with a self-contradictory formula (〈T,⊥〉 or 〈F,⊤〉) or 2) a pair of T-

strings inSp that can be unified by a substitutionσ; i.e., for each pathp there is a pair of

T-strings(s1, s2) ∈ Sp such thatσ(s1) = σ(s2).

The first example of an intuitionistic matrix proof is for theformula known as the

excluded middle,(ϕ∨¬ϕ), and is displayed in Figure 5.6 with its formula tree being shown

in Figure 5.7. In classical logic, its only path would be closed because it contains vertices

labeled with the contradictory formulas〈T, ϕ〉 and〈F, ϕ〉. But in intuitionistic logic, the

two T-strings,a1a3a4 anda1a2, also have to be unified, but this is not possible since the

constantsa2 anda3 cannot be unified, and, thus, the proof fails.

In the second example, an intuitionistic matrix proof for(ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ)

is attempted. Figure 5.8 shows the matrix proof and Figure 5.9 its formula tree. There
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input 1)F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)// 1)F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ) output//

input 2)T, ϕ ⇒ ψ(1)// 2)T, ϕ ⇒ ψ(1) 3)F, ¬ϕ ∨ ψ(1)// 3)F, ¬ϕ ∨ ψ(1) output//

input in1
// in1

4)F, ϕ(2)
77ooooo

in1

5)T, ψ(2)
''OOO

OO

4)F, ϕ(2)

out1
''OOO

O

5)T, ψ(2)

out177oooo
out1 3)F, ¬ϕ ∨ ψ// 3)F, ¬ϕ ∨ ψ output//

input in1
// in1

4)F, ϕ(2)
77ooooo

in1

5)T, ψ(2)
''OOO

OO

4)F, ϕ(2)

out1
''OOO

O

5)T, ψ(2)

out177oooo
out1 6)F, ¬ϕ(3)// 6)F, ¬ϕ(3) 7)F, ψ(3)// 7)F, ψ(3) output//

input in1
// in1

4)F, ϕ(2)
77ooooo

in1

5)T, ψ(2)
''OOO

OO

4)F, ϕ(2)

out1
''OOO

O

5)T, ψ(2)

out177oooo
out1 8)T, ϕ(6)// 8)T, ϕ(6) 7)F, ψ(3)// 7)F, ψ(3) output//

Figure 5.8: Intuitionistic matrix proof of(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ). The proof proceeds from
the graph at the top to the one at the bottom. The proof attemptfails; in the final matrix
each path has a pair of contradictory formulas, but there is not a single substitution that
unifies both pairs of T-strings.

a1)〈F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)〉, a1

a2)〈T, ϕ⇒ ψ〉, a1a2

ttjjjjjjjjjjj
a1)〈F, (ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)〉, a1

a5)〈F, (¬ϕ) ∨ ψ〉, a1

**TTTTTTTTTTT

a2)〈T, ϕ⇒ ψ〉, a1a2

a3)〈F, ϕ〉, a1a2a3

{{www
ww

w
a2)〈T, ϕ⇒ ψ〉, a1a2

a4)〈T, ψ〉, a1a2 a4

##GGG
GG

G
a5)〈F, (¬ϕ) ∨ ψ〉, a1

a6)〈F, ¬ϕ〉, a1a6

{{ww
ww

ww
a5)〈F, (¬ϕ) ∨ ψ〉, a1

a8)〈F, ψ〉, a1a8

##GGGG
GG

a6)〈F, ¬ϕ〉, a1a6

a7)〈T, ϕ〉, a1a6a7

��

Figure 5.9: Formula tree labeled T-strings for(ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ). The root vertex is
labeled with the signed formula composed of theF sign and the proposed theorem. Each
vertex in the formula tree is labeled with a formula and a T-string.

are two paths through the matrix; on the upper path there is only one set of contradictory

vertices, 4 and 8; Vertex 4 has the T-stringa1a2a3, and Vertex 8 has the T-stringa1a6a7.
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On the bottom path there is only one set of contradictory vertices, 5 and 7; Vertex 5 has the

T-stringa1a2 a4, and Vertex 7 has the T-stringa1a8. To unify the top pair,σ(a2) must start

with a6, but to unify the bottom pair,σ(a2) = a8 or σ(a2) = ǫ, whereǫ is the empty string.

or the empty string. These two requirements ofσ(a2) cannot be simultaneously satisfied.

The proof fails since there is no single substitution that unifies both pairs of T-strings.

Recall the monotonicity property states the if a formula is forced in one world, then

it is forced in all successor worlds. This property is implemented for a formulaE by taking

two actions, 1) in the matrix inserting a copy ofE as its immediate successor and 2) in

the formula tree adding aE as its own sibling, so that the complete formula tree structure

of E appears twice. The different copies ofE’s tree with each have their own identifiers

within the tree, and, thus, different T-string constants and variables. Recall each vertex in

the formula tree has an identifier.

It may be necessary to create more than two copies of an forcedformula. Since

using the monotonicity rule creates extra copies of a formula, it should only be done when

a proof has failed because of a T-string variable needed to have more than one value. How-

ever, care must be taken to find the forced formula farthest from the root suitable for the

circumstance to limit to extra vertices added to the matrix and the formula tree. Finally,

the extra paths added to the matrix by using the monotonicityrule may add extra paths that

cannot be closed.

5.7 Intuitionistic Container

The intuitionistic container is a modification of its classical counterpart. It iden-

tifies the commonalities of the intuitionistic methods thatwill be used in a generalized

algorithm for intuitionistic logic. This section begins byintroducing theJ function andN

set formulas. Next theJ function is used in specifying the properties of the intuitionistic
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container, and then proving that each of the intuitionisticmethods uses a data structure and

aS function that has the properties of the intuitionistic container.

Classical logic was described using the functionsSMc andSMr to expand formulas

in a container. To describe intuitionistic logic, a third functionJ , defined in Figure 5.1, is

added that modifies the actions taken when expanding anN set formula.

In addition to the set ofβ child containers created by the application of aβ-rule,

there is also a set of child containers created when a formulain theN set is expanded.

Expanding a formulaE in theN set creates a container having only the forced formulas

of its parent and the formulas inSMc(E). Unlike child containers created by aβ-rule, if

one of the containers created by anN set expansion closes, then its parent also closes. A

container is contradictory if it contains a contradictory formula or formula(s), i.e.〈T,⊥〉,

〈F,⊤〉 or for a formulaϕ, both 〈T, ϕ〉 and 〈F, ϕ〉. A container closes if one of three

conditions are met: 1) it is contradictory (it contains a contradiction), 2) all of itsβ child

containers close, or 3) one of itsN child containers close.

An intuitionistic logical container〈C, S〉 consists is a data structureC that stores

logical formulas and a functionS that maps the data structure to a set of signed formulas,

with the following six properties:

LJ1– Two Sets The logical formulas stored in a containerC can be separated into two sets

T andF denoted asT (C) andF (C).

LJ2– S Function TheS function maps the formulas inC to a set of signed formulas where

the formulas with aT sign come from theT (C) set and the formulas with aF sign

come from theF (C) set.

LJ3– Initial Container When the initial container is created, it contains only the proposed

theorem in itsF set.
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LJ4– Expansion Rules LetC be a container andE be a signed formula inS(C).

LJ4a–α and J(E) 6= some future If SMr(E) = α andJ(E) 6= some future,

then the expansion rule adds formula(s) toC. Thus,S(C ′) = S(C) ∪ SMc(E)

whereC ′ is the container after the expansion.

LJ4b– α and J(E) = some future If SMr(E) = α andJ(E) = some future,

then there is an expansion rule that creates anN child containerC ′. This con-

tainer has the forced formulas inC and the formulas inSMc(E); i.e. S(C ′) =

T (C) ∪ SMc(E). Note that the set of unforced formulas,F (C), is not copied

toC ′ in the creation of theN child container.

LJ4c– β expansion If SMr(E) = β, then there is an expansion rule that splitsC,

replacing it with two containersC1 andC2. LetE1 andE2 be the signed formu-

las inSMc(E). The contents of these new containers areS(C1) = S(C)∪{E1}

andS(C2) = S(C) ∪ {E2}.

LJ4d– Only α and β expansion rules All rules which change the contents of a con-

tainer or create new containers must fit into one of the three categories above

or can be decomposed into steps, each of which belongs to one of the above

categories.

Note: In this system wheneverJ(E) = some future, E is anα-formula. Thus,

there is no formulaE whereJ(E) = some future andSMr(E) = β.

LJ5– Closure A container closes if 1) it contains a contradiction, 2) all of the β child

containers created by a split rule close, or 3) at least of oneof itsN child containers

created by expanding a formula in theN set closes.

LJ6– SuccessA proof method succeeds if and only if the application of the expansion and

closure rules causes its initial container to close.
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5.7.1 A Sequent in Natural Deduction as an Intuitionistic Container

Lemma 18 If E is an SSF formula in a sequentK,SMr(SFn(E)) = α, andJ(SFn(E)) 6=

some future, then the premiseP generated by expandingE can be computed using the

equationS2C(P ) = S2C(K) ∪ SMc(E).

Proof:

The sequent rules in whichSMr(SFn(E)) = α andJ(SFn(E)) 6= some future

arel∧, r∨, andl¬. These rules are the same for both classical and intuitionistic logic and

thus, have already been proven as part of lemmas 9 and 10.

Thus, the intuitionistic sequent meets theα andJ(E) 6= some future expansion

property (LJ4a).�

Lemma 19 If E is an SSF formula in the sequentK andJ(SFn(E)) = some future,

then the premiseP generated expandingE meets the equalityT (S2C(K))∪SMc(SFn(E)) =

S2C(P ).

Proof:

If E is an SSF formula andJ(E) = some future, then the form ofE is either

〈succ, ϕ ⇒ ψ〉 or 〈succ,¬ϕ〉; the rules used to expand these formulas arer ⇒ andr¬,

respectively. In both casesSMr(SFn(E)) = α.

In both cases below in the conclusion of the sequent rule,Γ represents the set of

SSF formulas in the antecedent and∆ represents the set of SSF formulas in the succe-

dent. LetG = S2C(Γ), the set of signed formulas corresponding to the formulas inthe

antecedent, andD = S2C(∆), the set of signed formulas corresponding to the formulas in

the succedent.

The two cases below consider the two types of formulas, whereJ(SFn(E)) =

some future.
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CaseE is of the form〈succ, ϕ⇒ ψ〉:

The sequent rule forE is r ⇒
Γ, ϕ −→ ψ

r ⇒
Γ −→ ϕ⇒ ψ,∆

.

The premise sequentP is computed below:

T (S2C(K)) ∪ SMc(SFn(E))

= T (S2C(Γ ∪∆ ∪ {〈succ, ϕ⇒ ψ〉})) ∪ SMc(SFn(〈succ, ϕ⇒ ψ〉))

= T (G ∪D ∪ {〈F, ϕ⇒ ψ〉}) ∪ SMc(〈F, ϕ⇒ ψ〉)

= G ∪ {〈T, ϕ〉, 〈F, ψ〉} = S2C(Γ, ϕ −→ ψ) = S2C(P )

The sequent computed by this equation matches the premise ofthe r ⇒ rewrite

rule.

CaseE is of the form〈succ,¬ϕ〉:

The sequent rule forE is r¬
Γ, ϕ −→

r¬
Γ −→ ¬ϕ,∆

.

The premise sequentP is computed below:

T (S2C(K)) ∪ SMc(SFn(E))

= T (S2C(Γ ∪∆ ∪ {〈succ,¬ϕ〉})) ∪ SMc(SFn(〈succ,¬ϕ〉))

= T (G ∪D ∪ {〈F,¬ϕ〉}) ∪ SMc(〈F,¬ϕ〉)

= G ∪ {〈T, ϕ〉} = S2C(Γ, ϕ −→) = S2C(P )

The sequent computed by this equation matches the premise ofther¬ rewrite rule.

The intuitionistic sequent rewrite rules meet theα andJ(E) = some future ex-

pansion property (LJ4b).�

Lemma 20 If E is an SSF formula in the sequentK andSMr(SFn(E)) = β, then the two

premisesP1 andP2 can be computed using the equationsS2C(P1) = S2C(K) ∪ {E1}

andS2C(P2) = S2C(K) ∪ {E2} where{E1, E2} = SMc(E).

Proof:

The sequent rules in whichSMr(SFn(E)) = β arer∧, l∨, andl ⇒. These rules are

the same for both classical and intuitionistic logic Thus, they have already been proven as
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part of lemmas 9 and 10. Hence, the intuitionistic sequent meets theβ expansion property

(LJ4c).�

Lemma 21 A sequent in intuitionistic natural deduction withS2C as itsS function is an

intuitionistic container.

Proof:

The sequent is composed of two sets, with the antecedent being theT set and the

succedent being theF set, fulfilling the two set property (LJ1).

TheS function isS2C as it maps a sequent to a set of signed formulas. The formu-

las in the antecedent are given aT sign, and the formulas in the succedent are given anF

sign, meeting theS function property (LJ2).

Suppose thatϕ is the proposed theorem. The endsequentk0 at the root of the natural

deduction proof contains onlyϕ in its succedent. Hence,S2C(k0) = {〈F, ϕ〉}. The root

sequent meets the initial container property (LJ3).

Lemmas 18, 19, and 20 established that the sequent expansionrules meet the ex-

pansion properties (LJ4a, LJ4b, and LJ4c). Since these three rule types cover each sequent

rewrite rule, this meets the onlyα andβ expansion rule property (LJ4d).

The axiom sequents for intuitionistic logic are the same as the ones used in classic

logic; thus, an intuitionistic natural deduction sequent will close if it contains a contradic-

tory formula or formulas. A sequent is an axiom if 1) it has⊥ in its antecedent, 2) it has⊤

in its succedent, or 3) there is a formula that appears in boththe antecedent and the succe-

dent. An axiom sequent represents a container that has a contradiction. If the sequent(s)

directly aboveK was created using by expanding a formula not in theN set, thenK would

also close since its child container(s) have closed. If the sequent directly aboveK was

created by expanding a formula inK ’s N set, thenK would also close since one of itsN

children has closed. There may have been several formulas inK ’s N set, but the one that
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appears in the proof was chosen because it created a subtree that closed. This meets the

closure property (LJ5).

Suppose thatK is a sequent in a proof tree with axioms at each of its leaves. For

each type of sequent rewrite rule, if the sequent(s) aboveK close, thenK closes also.

As one progress away from the leaves, each sequent closes because the sequent(s) above it

close. The process ends when the initial sequent at the root of the proof tree closes, meeting

the success property (LJ6).�

5.7.2 A Box in a Kripke Tableau as an Intuitionistic Container

Lemma 22 If E is a formula in a Kripke boxb, SMr(SFk(E)) = α, andJ(SFk(E)) 6=

some future, then the formulas added tob by expandingE meet the equalityK2C(KRc(E)) =

SMc(SFk(E)).

Proof:

These Kripke expansion rules are the same for both classicaland intuitionistic logic.

Thus, they have already been proven as part of Lemma 14.

Thus, the Kripke box meets theα andJ(E) 6= some future expansion property

(LJ4a).�

Lemma 23 If E is a KCF formula in a boxb andJ(SFk(E)) = some future, then a new

boxb′ is created by expandingE. This new boxb′ contains the forced formulas inb and the

formulas inKRc(E), i.e. T (K2C(b)) ∪ SMc(SFk(E)) = K2C(b′) whereT (C) is the set

of signed formulas in a containerC that are forced, i.e. have aT sign.

Proof:

Suppose thatE is a KCF formula in a Kripke boxb and the boxb′ is created fromb

by expandingE.
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The two Kripke expansion rules whereSMr(SFk(E)) = α andJ(SFk(E)) =

some future are both rules for expandingN set formulas; these rules expand formulas

that have one of two forms〈right, ϕ⇒ ψ〉 or 〈right,¬ϕ〉.

In both cases below, suppose thatC = K2C(b), and thatC is a container with the

set of signed formulas that correspond to the set of KCF formulas inb. LetT (C) be the set

of forced formulas in containerC andF (b) be the set of unforced formulas in containerC.

CaseE is of the form〈right, ϕ⇒ ψ〉:

The contents of the new boxb′ are computed below:

T (K2C(b)) ∪ SMc(SFk(E)) = T (C) ∪ SMc(SFk(〈right, ϕ⇒ ψ〉))

= T (C) ∪ SMc(〈F, ϕ⇒ ψ〉) = T (C) ∪ {〈T, ϕ〉, 〈F, ψ〉} = K2C(b′)

The contents of this new box computed match the contents of the box generated by

expandingE.

CaseE is of the form〈right,¬ϕ〉:

The contents of the new boxb′ are computed below:

T (K2C(b)) ∪ SMc(SFk(E)) = T (C) ∪ SMc(SFk(〈right,¬ϕ〉))

= T (C) ∪ SMc(〈F,¬ϕ〉) = T (C) ∪ {〈T, ϕ〉} = K2C(b′)

The contents of this new box computed matches the contents ofthe box generated

by expandingE.

In both cases when expanding a formula in theN set of a Kripke box, the box

constructed meets theα andJ(E) = some future expansion property (LJ4b).�

Lemma 24 If E is a KCF formula in the boxb andSMr(SFk(E)) = β, then the expansion

splits b into two boxesb1 and b2. The contents ofb1 and b2 can be computed using the

equationsK2C(b1) = K2C(b) ∪ {SFk(E1)} andK2C(b2) = K2C(b) ∪ {SFk(E2)}

where{E1, E2} = KRc(E).
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Proof:

If KRr(E) = split, thenE is one of three forms,〈left, ϕ ∨ ψ〉, 〈right, ϕ ∧ ψ〉,

or 〈left, ϕ ⇒ ψ〉, in each case whereSMr(SFk(E)) = β. ExpandingE splits the box

(KRr(E) = split) if and only ifE is in one of these three forms.

WhenE is expanded, the boxb splits, creating boxesb1 and b2. One formula

in KRc(E) is added tob1 and the other tob2. Thus, WLOG, assume thatE1 is added

to b1 andE2 is added tob2, thenK2C(b1) = K2C(b) ∪ {SFk(E1)} andK2C(b2) =

K2C(b) ∪ {SFk(E2)}.

Thus, the Kripke box meets theβ expansion property (LJ4c).�

Lemma 25 A box in a Kripke tableau withK2C as itsS function is an intuitionistic con-

tainer.

Proof:

A box is separated into two columns, with the left column containing the forced

formulas and the right containing the unforced formulas, meeting the two set property

(LJ1).

TheK2C function maps the set of KCF formulas in a box to a set of signedformu-

las. The formulas in the left column of the box are mapped to theT set, and the formulas

in the right column of the box are mapped to theF set, fulfilling theS function property

(LJ2).

Suppose thatϕ is the proposed theorem. The initial boxb0 in a Kripke tableau proof

contains only the formulaϕ in right column, i.e.K2C(b0) = {〈F, ϕ〉}. Hence, the initial

box meets the initial container property (LJ3).

Lemma 22 proves that the box meets theα andJ(E) 6= some future expansion

property (LJ4a); Lemma 23 proves that the box meets theα andJ(E) = some future ex-

pansion property (LJ4b), and Lemma 24 proves that the Kripkebox meets theβ expansion
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property (LJ4c). All expansion rules in a Kripke tableau fall into one of these three types;

thus, the Kripke box meets the onlyα andβ expansion rules property (LJ4d).

If a boxb closes because it is contradictory, then the containerK2C(b) also closes.

There are three contradictory conditions to check:

• If a box b contains〈left,⊥〉, then the box closes. Since〈T,⊥〉 ∈ K2C(b), the

container also closes.

• If a box b contains〈right,⊤〉, then the box closes. Since〈F,⊤〉 ∈ K2C(b), the

container also closes.

• If a box b contains both〈left, ϕ〉 and〈right, ϕ〉 for some formulaϕ, then the box

closes. Since{〈T, ϕ〉, 〈F, ϕ〉} ⊆ K2C(b), the container also closes.

Each condition that makes a Kripke boxb contradictory causes it and the containerK2C(b)

to close.

If E is a formula in a boxb andKRr(E) = split, then expandingE creates twoβ

child boxesb1 andb2. If b1 andb2 both close, thenb also closes.

In a boxb when a formulaE in theN set is expanded, anN child boxb′ is created.

If b′ closes, thenb also closes. Thus, the Kripke box meets the closure property(LJ5).

A proof succeeds if all of the leaf boxes close by the argumentabove; the leaf boxes

cause the ones directly above them to close, and the closing progresses upwards until the

initial box at the root closes; thus, the sequent meets the success property (LJ6).�

5.7.3 An Intuitionistic Container for Analytic Tableau

This subsection proves that an ordered pair consisting of a branch and an element

of a partial order, abbreviated as BPO, is the container for an intuitionistic analytic tableau.

The BPO withb as its branch andp as its partial order element is denoted as〈b, p〉. For
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a vertexv in an analytic tableau, letP (v) be a function the maps a vertexv to the partial

order element labeling it.

The functionIB2C (short for intuitionistic branch to container) maps a branch

b and an element of the partial orderp (BPO) to a set of formulas. A formulaE is in

IB2C(b, p) if it labels a vertexv on b and either 1)P (v) = p or 2)E is forced andP (v)

proceedsp in the partial order:

IB2C(b, p) = {E | E ∈ 〈b, p〉 orE is a forced andE ∈ 〈q, b〉 whereq ≤ p} (5.3)

LetB be the set of branches that pass through the vertexv that are labeled with the

formulaE and the partial order elementp. WhenE is expanded, ifJ(E) 6= some future,

thenp′ is p; otherwise a new elementp′ of the partial order is created as the immediate

successor ofp. ExpandingE adds the formulas inSMc(E) to 〈b, p′〉 for eachb ∈ B.

The monotonicity rule also adds the forced formulas generated by each expansion to BPOs

〈b, q〉 whereb ∈ B andq > p′, i.e. to all BPOs which have a branch that passes through

v and have a partial order element that is a successor ofp′. An expansion that adds forced

formulas updates all containers in known successor worlds of p′ as well as successor worlds

of p′ that might be created by future expansions. This is the reason that the definition of

IB2C includes forced formulas created in predecessor worlds.

Theorem 26 Using IB2C as itsS function, a BPO in an intuitionistic analytic tableau

meets the expansion properties (LJ4a, LJ4b, LJ4c, and LJ4d)of the intuitionistic container.
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Proof:

At each step, a vertexv is expanded. Letb be a branch which containsv, E be the

signed formula that labelsv, p be the partial order element that labelsv, andvℓ be the leaf

vertex ofb.

CaseSMr(E) = α andJ(E) 6= some future:

This case behaves in the same way as an analytic tableau in classical logic. If

|SMc(E)| = 1, one vertex is added as the child ofvℓ. On the other hand, if|SMc(E)| = 2,

one vertex is added as the child ofvℓ and the other as the child of the first child (the

grandchild ofvℓ ). The new vertices are labeled with formula(s) inSMc(E) and the partial

order elementp. If b′ is the branch after the expansion, thenIB2C(b′, p) = IB2C(b, p) ∪

SMc(E). This meets theα andJ(E) 6= some future property (LJ4a).

CaseSMr(E) = α andJ(E) = some future:

The vertices added to the tableau are labeled with the same formulas as in the pre-

vious case. The difference is that these new vertices are labeled with a new element of the

partial order. This new elementp′ is added as an immediate successor ofp.

Suppose thatb′ is the branch after the expansion, thenIB2C(b′, p′) =

T (IB2C(b, p)) ∪ SMc(E). This meets theα andJ(E) = some future expansion prop-

erty (LJ4b).

CaseSMr(E) = β:

This case proceeds similarly to the classical version. The expansion ofE adds

vertices as the two children ofvℓ, causingb to split into two branchesb1 and b2, each

labeled with a formula inSMc(E) and the partial order elementp. Thus,IB2C(b1, p) =

IB2C(b, p) ∪ {E1} and IB2C(b2, p) = IB2C(b, p) ∪ {E2} whereE1 andE2 are the

formulas inSMc(E). This meets theβ expansion property (LJ4c).

The monotonicity rule allows a vertexv labeled with a forced formulaE and the

partial elementp to be added as the child of a leaf vertex. The new vertex is labeled withE
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and a partial order elementq whereq > p. The application of the monotonicity rule does

not affect the contents ofIB2C(b, q) since the definition ofIB2C already includesE.

Since these expansion rules are the only way to create or modify the contents of a

BPO and all the expansion rules fit into one of the three rule types, each handled be one of

the three cases above. Therefore the BPO meets the onlyα andβ-rule property (LJ4d).�

Lemma 27 If a BPO 〈b, p〉 contains a contradiction, then the containerIB2C(b, p) also

contains a contradiction.

Proof:

In an analytic tableau, a BPO〈b, p〉 closes under these conditions. 1) It contains a

vertex onb labeled with partial order elementp and either the formula〈T,⊥〉 or 〈F,⊤〉,

then〈T,⊥〉 ∈ IB2C(b, p) or 〈F,⊤〉 ∈ IB2C(b, p); in either caseIB2C(b, p) contains a

contradiction; 2) Letp be a partial element such thatp ≤ q andϕ is an unsigned formula. If

a vertex on a branchb is labeled with〈T, ϕ〉 andp and another vertex is labeled with〈F, ϕ〉

andq, then{〈T, ϕ〉, 〈F, ϕ〉} ⊆ IB2C(b, q), and, hence,IB2C(b, q) is contradictory.�

Theorem 28 A BPO in an analytic tableau withIB2C as itsS function is an intuitionistic

container.

Proof:

Let 〈b, p〉 be a BPO containing the formulas labeling vertices on a branch b and

labeled with the partial elementp as well as the forced formulas labeling a vertexv on b

whereP (v) proceedsp. The formulas in〈b, p〉 can be separated into two setsT andF with

the forced formulas in theT set and the unforced formulas in theF set. This meets the two

set property (LJ1).

For a branchb and an element of the partial orderp, the functionIB2C(b, p) is the

set of signed formulas in〈b, p〉. The signed formulas inIB2C(b, p) can then be partitioned
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into aT and anF set matching their signs. TheIB2C meets the requirements of theS

function property (LJ2).

Supposeϕ is the proposed theorem. The initial analytic tableau consists only of the

root vertex labeled with〈F, ϕ〉 and the partial elementp0. Since there is only one branch

b0 and only one element in the partial orderp0, then there is only one BPO〈b0, p0〉. Since

IB2C(b0, p0) = {〈F, ϕ〉}, the initial BPO meets the initial container property (LJ3).

Lemma 26 proved that a BPO meets the expansion properties (LJ4a-d).

Lemma 27 proved that if the BPO〈b, p〉 contains a contradiction, thenIB2C(b, p)

also contains a contradiction.

Let b1 andb2 be the two branches created by expanding aβ-formulaE on branch

b. The split creates two branches, each considering one of twoformulas that would satisfy

the semantics ofE. If both branches close, then both of the formulas inSMc(E) lead to

contradictions, and, hence, branchb also has a contradiction.

If the BPO〈b, p′〉 is found to have a contradiction and it was created by expanding

anN set formulaE in the BPO〈b, p〉, then the BPO〈b, p〉 also has a contradiction. The

Kripke semantics ofN set formulas guarantee that there exists a world where the Kripke

semantics of the formula(s) inSMc(E) are satisfied. Since there is a contradiction in〈b, p′〉,

there is a violation of the Kripke semantics for anN set formula, creating a contradiction

in 〈b, p〉.

When a BPO contains a contradiction, it closes; the three causes for this closure are

1) the BPO itself contains a contradiction, 2) all of the BPOsβ children have contradic-

tions, or 3) at least one of the BPOsN children has a contradiction. Together these three

conditions meet the closure property (LJ5).

The closure process works from the BPOs on each branch where the contradictory

formulas are found, closing BPOs as it progresses, until theinitial BPO is closed, satisfying

the success property (LJ6).�
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5.7.4 A Path and T-String Pair a Matrix as an Intuitionistic C ontainer

There is high confidence that a ordered pair consisting of a path and a T-string,

similar to a BPO, can be proven to be an intuitionistic container. But the proof has not been

found at this time, and thus it has been moved to future work.

5.8 Generalized Algorithm for Intuitionistic Logic

The generalized algorithm for intuitionistic logic, like its classical counterpart, de-

termines if a formula is a theorem using only operations provided by the intuitionistic

container; thus, it shows the commonalities of the different intuitionistic methods.

Each container in the intuitionistic generalized algorithm stores formulas in one of

five sets:

• T0 for forced formulas that have not been expanded

• T1 for forced formulas that have been expanded

• F0 for unforced formulas that have not been expanded

• F1 for unforced formulas that have been expanded

• N for unforced formulas, where their expansion would create anew container. A

formulaE is placed in this set whenJ(E) = some future.

All formulas not in theN set are processed first; if the container closes when ex-

panding an non-N formula, then the formulas in theN set do not have to be expanded. If

this rule is violated, expanding a formula that creates anN child container before formulas

not in theN set may cause a proof attempt to fail, while waiting could lead to a successful

proof.
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If a containerC has formulas in itsN set, a new container is created where each

of these formulas is expanded. Since the Kripke semantics ofthese formulas affect only

a non-empty subset of future worlds, it has to be assumed thatthese sets are disjoint. In

contrast to theβ rules, only one of the containers created by an expansion of an N set

formula has to close for its parent container to close.

The generalized algorithm keeps track of which formulas areexpanded by moving

formulas between sets; when a forced formula is expanded, itis moved fromT0 to T1, and

when an unforced formula is expanded, it is moved fromF0 to F1.

During each iteration of the main loop, the algorithm selects a formulaE in T0∪F0

and processes it. IfJ(E) 6= some future, then the formulas inSMc(E) are processed

in the same way as it in the classical generalized algorithm.However, whenJ(E) =

some future, the formula is moved to theN set. After all formulas inT0 andF0 are

expanded, then each formula in theN set is expanded separately.

The generalized algorithm starts whenintProofStart is called. This algo-

rithm is passed the proposed theoremϕ and returns eitherproven or notProven or

non-theorem. This algorithm creates the initial containerC0 with only ϕ in its F0 set.

The set of open containersS is created withC0 as its only member. Then,intProof

is called which contains the main loop of the generalized algorithm. Each trip through

the loop consists of choosing an open container with an unexpanded formulaE, calling

intExpandFormula to expandE and checking if a termination condition has been met.

If S is the empty set, then the algorithm terminates successfully, having proven the theo-

rem. However, ifS has an open container with no unexpanded formulas, then the algorithm

terminates unsuccessfully (the proof has failed). In the loop, if a formulaE is chosen for

expansion andJ(E) = some future, thenE is placed in theN set. After both theT0 and

F0 sets are emptied, then the formulas in theN set are processed byintProcessNSet.

For each formula inN , intProcessNSet creates a newN child container. ThisN child
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Comment T0 T1 F0 F1 N

Initial state 1) ϕ ∨ ¬ϕ
Expand 1 2) ϕ (1) 1) ϕ ∨ ¬ϕ

3) ¬ϕ (1)
Move 3 to N 2) ϕ (1) 1) ϕ ∨ ¬ϕ 3) ¬ϕ (1)

Expand 3 in N 4) ϕ (3)
Open

Table 5.3: Trace of the generalized algorithm for the formulaϕ∨¬ϕ known as the excluded
middle. A characteristic of intuitionistic logic is that the excluded middle is not a theorem.

container has aT0 set consisting of all forced formulas, both expanded and unexpanded,

from its parent and the formulas inSMc(E), but none of the unforced formulas from its

parent. The reason is that expanded formulas are placed in theT0 set is that formulas of the

form 〈T, ϕ ⇒ ψ〉 and〈T,¬ϕ〉 generate unforced formulas. Marking all forced formulas

as unexpanded allows the unforced formulas derived from forced formulas to be derived

again. This step in the generalized algorithm implements the monotonicity property. If at

least one of theseN child containers closes, then the parent container can alsobe closed.

The algorithmintExpandFormula expands one formula, adding formulas to

the container and splitting it if necessary. After the expansion, this algorithm returns

only those containers that remain open. The final algorithm,intCheckforClosure, is

passed a containerC; if C is open, a set containingC is returned, but ifC is closed, the

empty set is returned so thatC can be removed from the set of open containersS.

Algorithm 5 intCheckForClosure(C: Container) returns an empty set or a set with one
container.

if ⊤ ∈ F1 or⊥ ∈ T1 or a formula appears in bothF1 andT1 then
return ∅ {Return an empty set, indicating that the container is closed.}

else
return {C}

end if
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Algorithm 6 intExpandFormula(E:Signed Formula,C: Container) returns a set of con-
tainers.

if E is atomicthen
if E is forcedthen

AddE to T1.
else{ E is unforced.}

AddE to F1.
end if
S ← intCheckForClosure(C )

end if
if SMr(E) = α then

Add forced elements inSMc(E) to T0.
Add unforced elements inSMc(E) toF0.
S ← intCheckForClosure(C )

else{ SMr(E) = β }
CopyC toC1 andC2.
for all chi ∈ SMc(E) do

if chi is Forcedthen
Add chi to T0 in Ci

else{chi is Unforced}
Add chi toF0 in Ci

end if
end for
S ← intCheckForClosure(C1) ∪ intCheckForClosure(C2 )

end if
return S
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Algorithm 7 intProof(S: set of containers ) returns proven or notProven.
if all containers inS are closedthen

return proven
end if
while at least one container is opendo

Choose an open containerC.
RemoveC from S {Let T0, T1, F0, F1, andN be the sets of formulas inC.}
if T0 ∪ F0 6= ∅ then

Choose a formulaE in T0 ∪ F0

if E ∈ T0 then
RemoveE from T0.
AddE to T1.

else{ E ∈ F0 }
RemoveE from F0.
AddE toF1.

end if
if J(E) = some future then

AddE toN .
else
S ← S ∪ intExpandFormula(E,C )

end if
else{ F0 ∪ T0 = ∅ }

return intProcessNSet(C)
end if

end while

Algorithm 8 intProcessNSet(C: Container) returns proven or notProven.
for all E ∈ N do

Remove a formulaE from theN set ofC
Create a new containerC ′.
T ′

0 ← T0 ∪ T1 { T0 may contain atomic formulas}
T ′

1 ← ∅
F ′

0 ← ∅
F ′

1 ← ∅
N ′ ← ∅
branchStatus← intProof({C ′})
if branchStatus = Proventhen

return Proven
end if

end for
return notProven
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Algorithm 9 intStart(ϕ: Logical Formula) returns proven or notProven.
Construct a containerC with all sets empty except forF0 which containsϕ. {whereϕ is
the proposed theorem}
Let S be an empty set of containers.
C ← 〈∅, ∅, {ϕ}, ∅, ∅〉 {Construct a containerC with ϕ as the only formula in setF0 and
the other sets are empty.}
return intProof(S )

In traces of the algorithm, multiple containers are handled; there is a column for

each set and a row for each step in the algorithm. Each container is identified by a sequence

of numbers, with the empty sequence representing the root container. If a container is

identified by the sequence of numbersK, then when aβ-rule is applied to this container,

two containers are created, one with the sequence of numbersK, 1 and the other with the

sequenceK, 2. This numbering system is designed to keep track of the multiple containers.

Comment T0 T1 F0 F1 N

Initial state 1) ϕ⇒ (ϕ ∨ ψ) ∨ ¬ψ
Move 1 to N 1) ϕ⇒ (ϕ ∨ ψ) ∨ ¬ψ

Expand 1 2) ϕ (1) 3) (ϕ ∨ ψ) ∨ ¬ψ (1)
Expand 3 2) ϕ (1) 4) ϕ ∨ ψ(3) 3) (ϕ ∨ ψ) ∨ ¬ψ (1)

2) ϕ (1) 5) ¬ψ (3)
Move 5 to N 2) ϕ (1) 4) ϕ ∨ ψ(3) 3) (ϕ ∨ ψ) ∨ ¬ψ (1) 5) ¬ψ (3)

2) ϕ (1)

Expand 5 in N 2) ϕ (1)
6) ψ (5)

Open

Table 5.4: Trace of proof attempt forϕ⇒ (ϕ ∨ ψ) ∨ ¬ψ that violates the expansion order
of the generalized algorithm. This trace shows how the algorithm gives the wrong result
by expanding Formula 5, which creates a new tableau, before expanding Formula 4, which
does not create a new tableau.

The proof attempt forϕ ⇒ (ϕ ∨ ψ) ∨ ¬ψ shown in Table 5.4 fails because the

expansion of Formula 5,¬ψ, in N causes the formulas inF0 andF1 to be purged. Specif-

ically, F0 contains Formula 4,ϕ ∨ ψ, so the expansion of Formula 5 purges Formula 4. If

Formula 4 were expanded before Formula 5, thenϕ andψ would be added toF0, raising

a contradiction with Formula 2. Sinceϕ is in T0, this contradiction closes the container.
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Comment T0 T1 F0 F1 N

Initial state 1) ϕ⇒ (ϕ ∨ ψ) ∨ ¬ψ
Move 1 to N 1) ϕ⇒ (ϕ ∨ ψ) ∨ ¬ψ

Expand 1 2) ϕ (1) 3) (ϕ ∨ ψ) ∨ ¬ψ (1)
Expand 3 2) ϕ (1) 4) ϕ ∨ ψ(3) 3) (ϕ ∨ ψ) ∨ ¬ψ (1)

5) ¬ψ (3)
Move 5 to N 2) ϕ (1) 4) ϕ ∨ ψ(3) 3) (ϕ ∨ ψ) ∨ ¬ψ (1) 5) ¬ψ (3)

Expand 4 2) ϕ (1) 6) ϕ (4) 3) (ϕ ∨ ψ) ∨ ¬ψ (1) 5) ¬ψ (3)
7) ψ (4) 4) ϕ ∨ ψ(3)

Closed 2 and 6

Table 5.5: Trace of the generalized algorithm using an expansion order that proves the
theoremϕ⇒ (ϕ∨ψ)∨¬ψ. Unlike the above trace, in this trace the expansion of Formula
5 is deferred and the expansion of 4 generates formulas allowing the container to close.

However, the trace in Table 5.5 shows another proof attempt to prove this formula that

expands all formulas inT0 ∪ F0 before it expands anN set formula; thus, the generalized

algorithm is successful.

The proof attempt for(ϕ ⇒ ψ) ⇒ (¬ϕ ∨ ψ) shown in Table 5.6 fails because

there is an open container in which all formulas have been expanded. This formula is not a

theorem in intuitionistic logic.

5.9 Concluding Remarks on Intuitionistic Logic

This chapter began by describing the philosophical differences between intuition-

istic and classical logic. Next, Kripke semantics defined the semantics of the connectives

in terms of forcing. TheJ function was introduced, together withSMr andSMc. These

functions were used to describe the actions taken for each expansion in the intuitionistic

versions of the proof methods. Using these functions, the properties of the intuitionistic

container were specified. The data structures used in each ofthe intuitionistic methods

were shown to meet the properties of the container. Finally,the container played a central

role in the intuitionistic generalized algorithm.
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Comment T0 T1 F0 F1 N

Initial state 1) (ϕ⇒ ψ)⇒
(¬ϕ ∨ ψ)

Move 1 to N 1) (ϕ⇒ ψ)⇒
(¬ϕ ∨ ψ)

Expand 1 2)ϕ⇒ ψ (1) 3) ¬ϕ ∨ ψ (1)
Expand 2 2)ϕ⇒ ψ (1) 3)¬ϕ ∨ ψ (1)

Container 1 4) ϕ (2)
Expand 3 2)ϕ⇒ ψ (1) 4) ϕ (2) 3)¬ϕ ∨ ψ (1)

Container 1 6) ¬ϕ (3)
7) ψ (3)

Move 6 to N 2)ϕ⇒ ψ (1) 4) ϕ (2) 3)¬ϕ ∨ ψ (1) 6) ¬ϕ (3)
Container 1 7) ψ (3)
Expand 6 2)ϕ⇒ ψ (1)

Container 1 8) ϕ (3)
Expand 2 2)ϕ⇒ ψ (1) 9) ϕ (2)

Container 1, 1 8) ϕ (6)
Closed 8 and 9

Expand 6 10) ψ (2) 2)ϕ⇒ ψ (1)
Container 1, 2 8) ϕ (6)

Open

Expand 2 5) ψ (2) 2) ϕ⇒ ψ (1) 3) ¬ϕ ∨ ψ (1)
Container 2
Expand 3 5) ψ (2) 2) ϕ⇒ ψ (1) 11) ¬ϕ (3) 3) ¬ϕ ∨ ψ (1)

Container 2 12) ψ (3)
Closed 5 and 12

Table 5.6: Proof trace of the formula(ϕ⇒ ψ)⇒ (¬ϕ ∨ ψ)

The container is concerned with a single expansion within itand checking the clo-

sure conditions of a single container, while the generalized algorithm manages the overall

proof. The container and generalized algorithm expose the commonalities of each method.

It also shows that the order in which formulas in theN set are expanded is critical to the

success of the proof attempt.
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Chapter 6

Conclusion

This research has explored the commonalities of four well-established methods

used in classical and intuitionistic logic: natural deduction, Kripke tableau, analytic tableau,

matrix, and resolution (classical logic only). Classical logic, followed by intuitionistic

logic, were discussed separately, but each had a similar three-step development. First,

several proof methods for that logic were described. Second, a container property was

introduced that identified common aspects of these methods.Third, a generalized algo-

rithm was introduced that used only the operations in the container property. The common

features captured by the container and used the generalizedalgorithm include: how for-

mulas expansion modified and created new containers, the closure conditions, and success

requirement.

6.1 Containers and Their Generalized Algorithms

The container property specifies requirements for a single expansion, while the gen-

eralized algorithm manages the proof itself. The containerproperty 1) requires that formu-

las can be identified as belonging to one of two setsT andF , 2) describes how Smullyan’s
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rules are used to expand them, adding formulas to the containers and splitting them, and

3) specifies the closure conditions for a container. The generalized algorithm manages the

proof by initializing the first container, managing the set of containers, using the expansion

rules of the container to modify it, detecting if it has closed, and determining when a proof

has terminated (successfully or unsuccessfully).

6.2 The Benefits of Identifying Commonalities

The reason for introducing containers and the generalized algorithms was to reveal

the commonalities of these methods. Doing so makes it is easier to compare how these

methods construct proofs.

In classical logic, the properties of a container employ Smullyan’s rules. For each

method there was a proof that demonstrated the expansion rules met the container’s expan-

sion property. Together these proofs illustrate that each formula is expanded either explic-

itly using Smullyan’s rules or rewrite rules that can be shown to be equivalent to them. To

facilitate the discussion of Smullyan’s rules, this research introduced two functionsSMr

andSMc. The definitions of the functionsKRr andKRc for C-Kripke tableau were cho-

sen both to match the semantics of Kripke’s rewrite rules andto facilitate comparisons with

Smullyan’s functions.

In moving from classical logic to intuitionistic logic, a new function, J , was in-

troduced. This function indicates the special processing required to expand a formula.J ,

together withSMr andSMc, describes the actions that need to be taken to construct an

intuitionistic proof. The intuitionistic container property uses these three functions to de-

scribe its requirements.

The properties of a container codify the common closure and rewrite rules of the

various methods. If other methods can be proven to have the container property, then they
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become full members with the other container methods. A switch can be made between

any two container methods. In addition, when a theorem or heuristic is established for

a container and/or its associated algorithm, then that theorem or heuristic applies to all

container methods.

6.3 Commonalities Permitting Switching

Research [Tammet 1996] has shown that some theorems can be proved in less than

a tenth of a second using resolution but require several seconds or minutes using an analytic

tableau; for some theorems this situation is reversed: analytic tableau is faster than resolu-

tion. One solution is to run two or more methods as separate tasks and use the answer of

the one that terminates first. Alternatively switching between methods during a proof may

allow for better results than any single method.

The commonalities between these methods are sufficient to allow a switch between

methods during a proof. A proof begins using one method, performing some expansion

steps; then its data structures are transformed into a second method’s data structures. The

proof continues using this second method. The containers and generalized algorithms in-

troduced in this research for classical and intuitionisticlogic are robust enough to support

this switching between methods. A switch which is made between expansion steps, can be

made as often as desired without requiring any expansions tobe repeated in the proof.

6.4 The Importance of theN Set in Intuitionistic Logic

The importance of theN set formulas in proving intuitionistic logic theorems be-

came apparent during the writing and debugging of a program to implement the Kripke
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method. Learning how to handleN set formulas in Kripke tableaux assisted in the under-

standing of the other intuitionistic methods.

Theβ-rule applications increase the number of branches in a tree, making a proof

more difficult to complete since every branch must close for the proof to be successful.

Expanding a formula in theN set creates a different kind of split; where only one branch

needs to close for the proof to be successful.

The order in which formulas in theN set are expanded is critically important to

finding a proof. If a formula in theN set is expanded, theF set of that container is purged.

However, in classical logic formulas are never purged. Theyaccumulate as expansions are

performed. Therefore, if a proof exists, it will always be found regardless of the expan-

sion order used. In intuitionistic logic each formula in a container’sN set is expanded

separately. Expanding a formulaE in theN creates a new container. This new container

includes the forced formulas from its parent and the formulas in SMc(E); the unforced

formulas are purged, including the other formulas in theN set, requiring a choice to be

made. If one choice does not lead to a proof, then the program backtracks to make another

choice.

A good heuristic for choosing which formula to expand in anN set would be useful

and is an area for future work. Here two heuristics are proposed. First, if an unforced

formulaE can be derived from a formulaE ′ in theT set, then the monotonicity rule allows

E to be derived again after another member of theN set has been expanded. The second

heuristic examines theT set for formulas that contain variables that appear in formulaE;

if few or none of the variables are shared, then expandingE is not likely to generate a

contradiction.
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6.5 Future Work

The research presented in this research builds upon the research of others and hope-

fully is a foundation that will be used for future work. This subsection discusses some

areas that should be investigated based on the research presented here. Some of these areas

include: 1) Proving that other proof methods for classical or intuitionistic logic can be de-

scribed using containers. 2) Using the insights gained fromthe existing container methods

to investigate how optimizations and heuristics for one method can be adapted to the oth-

ers. 3) Identifying the conditions when a switch between methods should be made and the

method to switch to. 4) Adapting the container for use with logics other than classical and

intuitionistic logic. 5) Modifying the containers to support first order logic. 6) Proving that

the intuitionistic matrix uses a container, deferred from Subsection 5.7.4.

The identification of the similarities between the methods allows optimizations and

heuristics to be potentially shared between the different methods. What does an optimiza-

tion or heuristic look like when it is translated to another method? It might not make sense,

not apply, be another well-known optimization or heuristic, or perhaps be something new.

With the identification of the similarities, new heuristicsand optimizations can be adapted

for other methods more easily.

Sinceβ-rules split containers, these methods might be well-suited to a distributed

computing environment, where each task can be given a different part of the proof tree to

solve. After each task completes, its results can be combined with the results of the other

tasks.

The switching feature of the generalized algorithm raises many questions including:

When should one method be switched to another? What is the overhead required to make a

switch? What properties of a formula make it best suited to a given method? The answers
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to these questions would improve the decisions for the following questions: Which method

should be used to begin a proof? When a switch should be made? Which method should

the switch be made to?

Classical and intuitionistic logic are only two of many types of logic. This research

defined classical logic using the Smullyan functionsSMr andSMc. Intuitionistic logic was

characterized by adding theJ function to the Smullyan functions. TheJ function modifies

the actions taken when certain formulas are expanded. In describing the semantics of other

logics, perhaps a function similar to the intuitionistic logic’s J function could be used to

correctly implement the semantics of that logic. There is a close relationship between

modal-S4 logic and intuitionistic logic, thus modal-S4 should be one of the first logics

for which a new container should be designed. Modal logics have two extra connectives;

therefore, by extendingSMr andSMc to handle the new connectives and modifying theJ

function, it is likely that these functions could be used in an algorithm for modal-S4 logic.

There are other modal logic types for which rules could be developed.

It is also desirable to modify both the classical and intuitionistic containers and

generalized algorithms to support first-order logic. First-order logic supports the quanti-

fiers for all (∀) and there exists (∃), predicates, and functions. These extra elements add

succinctness and expressiveness to the language. For instance, the statement “Given a pos-

itive integerx there exists a positive integery such thatx + y = 15.” can be expressed

using the first-order formula∀x∃yA(x, y, 15)∧P (x)∧P (y) whereP is a predicate that is

true only when its argument is a positive integer andA is a predicate that is true only when

the the sum of its first two arguments equals the third. Assuming thex andy are both less

than fifteen, this can be encoded in propositional logic by combining two sets of formu-

las, the first indicating that there are two integers, each having a single value between one

and fourteen, and the second writing formulas indicating which combinations of the values

of the two integers equal fifteen. This propositional formula would be long and complex
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and would have to be drastically modified if the question is even slightly changed, such as

changing the sum to sixteen.

6.6 Concluding Summary

This research has shown that many common methods used in classical and intu-

itionistic logic share a common algorithm. This research defined a container, proved several

methods had a data structure that has the properties of a container, and created a generalized

algorithm. The container provides a simpler solution revealing the important commonali-

ties shared by the methods. It allows proofs about the container and generalized algorithm

to apply to all methods that share these properties.

Instead of constructing an ordinary spanning tree of equivalences between the meth-

ods, this research created a star-like spanning tree by adding a new vertex with the container

and generalized algorithm. Each time a proof method was shown to have a data structure

and aS function met the properties of a container, an edge was addedfrom that method

to the generalized algorithm. This equivalence argument was repeated for intuitionistic

logic. The vertex at the center of this star graphs is a generalized algorithm exposing the

commonalities of the methods.
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