
Clemson University
TigerPrints

All Dissertations Dissertations

12-2010

Evolutionary Strategies for Data Mining
Rose Lowe
Clemson University, rlowe@clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Lowe, Rose, "Evolutionary Strategies for Data Mining" (2010). All Dissertations. 673.
https://tigerprints.clemson.edu/all_dissertations/673

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/673?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F673&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

Evolutionary Strategies for Data Mining

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Rose M. Lowe

December 2010

Accepted by:

Dr. Dennis E. Stevenson, Committee Chair

Dr. Edward Page

Dr. A. Wayne Madison

Dr. Christopher Cox

Abstract

Learning classifier systems (LCS) have been successful in generating rules for

solving classification problems in data mining. The rules are of the form IF condition

THEN action. The condition encodes the features of the input space and the action

encodes the class label. What is lacking in those systems is the ability to express each

feature using a function that is appropriate for that feature. The genetic algorithm

is capable of doing this but cannot because only one type of membership function

is provided. Thus, the genetic algorithm learns only the shape and placement of

the membership function, and in some cases, the number of partitions generated by

this function. The research conducted in this study employs a learning classifier sys-

tem to generate the rules for solving classification problems, but also incorporates

multiple types of membership functions, allowing the genetic algorithm to choose

an appropriate one for each feature of the input space and determine the number

of partitions generated by each function. In addition, three membership functions

were introduced. This paper describes the framework and implementation of this

modified learning classifier system (M-LCS). Using the M-LCS model, classifiers were

simulated for two benchmark classification problems and two additional real-world

problems. The results of these four simulations indicate that the M-LCS model pro-

vides an alternative approach to designing a learning classifier system. The following

contributions are made to the field of computing: 1) a framework for developing a

ii

learning classifier system that employs multiple types of membership functions, 2) a

model, M-LCS, that was developed from the framework, and 3) the addition of three

membership functions that have not been used in the design of learning classifier

systems.

iii

Dedication

This work is dedicated to my late grandson, Tyler Damonte McKenzie.

iv

Acknowledgments

First and foremost, I thank God for inspiring and anointing me to complete

this dissertation. I thank my advisor, Dr. Dennis Stevenson for his patience, en-

couragement, guidance, and support during the course of this research. I thank Dr.

Ed Page for serving as my initial advisor and for his encouragement, advice, and

countless short stories that were so full of wisdom. I express my appreciation to the

other members of my committee, Dr. Wayne Madison and Dr. Chris Cox, for reading

this dissertation and for their guidance. I thank Dr. Hugh Spitler for providing the

real-world alcohol data. I thank Dr. Larry Hodges and Dr. Mark Smotherman for

their support. I thank Mrs. Carleathea (Lea) Benson for her continuous words of

encouragement and for all that she did to help me remain focused.

My family has always been a source of strength and encouragement. I am

grateful to my husband, Larry, for his love and support. My children, Yolonda, Jason

and his spouse Micah, Lauren and her spouse Paul, and Daniel, helped me to keep

things in perspective. I thank my granddaughter, Jasmine, for always keeping a song

in my heart.

My friends, Sharon Howell, Linda Greene, Mr. Theo Grate and Mrs. Ruby

Grate were always available to listen and encourage. I am grateful to them for their

prayers. Finally, I thank the US Army Research Office and the Southern Regional

Education Board for financial support during my graduate studies.

v

Table of Contents

Title Page . i

Abstract . ii

Dedication . iv

Acknowledgments . v

List of Tables . vii

List of Figures . viii

1 Introduction . 1
1.1 Dissertation Objectives . 4

2 Background . 6
2.1 Introduction . 6
2.2 Data Mining . 6
2.3 The Classification Problem . 9
2.4 Learning Classifier Systems . 13
2.5 Genetic Algorithms and Biological Evolution 19
2.6 Search . 31

3 A Modified Learning Classifier System 34
3.1 A Framework for M-LCS . 34

4 Applications of M-LCS . 49
4.1 Introduction . 49
4.2 Application of the M-LCS to the Fisher Iris Data 50
4.3 Application of the M-LCS to the Pima Indians Diabetes Data 59
4.4 Application of M-LCS to the Army Data 65
4.5 Application of the M-LCS to the Alcohol Data 69
4.6 Discussion . 72

5 Conclusions and Future Work . 75

vi

Bibliography . 78

vii

List of Tables

2.1 Examples of alternate encoding schemes 24
2.2 Roulette wheel algorithm . 27
2.3 Examples of roulette wheel algorithm 27

4.1 M-LCS rules for classifying the iris plant 56
4.2 M-LCS linguistic rules for classifying the iris plant 56
4.3 Classification accuracy reported in literature for iris 57
4.4 Classification results obtained for the iris data 57
4.5 Features of the Pima Indians Diabetes data set 60
4.6 Literature results for Pima Indians Diabetes data 60
4.7 Results for the Pima Indians Diabetes data 61
4.8 M-LCS rules for classifying the diabetes data 63
4.9 Army data classification accuracy . 66
4.10 Army data classification accuracy (within one size) 66
4.11 Results obtained for army data . 67
4.12 Results within one size for army data 68
4.13 Input features for the alcohol problem 71
4.14 Results of alcohol data . 72

viii

List of Figures

1.1 Membership functions for xi using one type 3
1.2 Membership functions for xi using multiple types 3
1.3 Rule generated by using one type of membership function 3
1.4 Rule generated by using multiple types of membership function . . . 4

2.1 Block diagram of the classification problem 10
2.2 Architecture of a Michigan Model LCS 15
2.3 Rule base models . 18
2.4 Genetic Algorithm . 21
2.5 Example of a chromosome with binary encoding 22
2.6 Tournament example. More fit individuals have lower rank values. . . 28
2.7 One-point crossover . 29
2.8 Two-point crossover . 29
2.9 Arithmetic Crossover . 30
2.10 Mutation of third, seventh, and twelfth genes 31

3.1 Illustration of triangular function for Equation 3.1 37
3.2 Illustration of trapezoidal function for Equation 3.2 37
3.3 Illustration of Equation 3.3 for α = 20 and β = 3.0 38
3.4 Illustration of γ-function for Equation 3.4 for α = 20 and β = 23 . . . 38
3.5 Illustration of L-function for Equation 3.5 for α = 20 and β = 23 . . . 39
3.6 Rule i . 40
3.7 Rule i . 40
3.8 Chromosomes consisting of 3 rules . 41
3.9 Chromosomes consisting of 5 rules . 42

4.1 Membership sets generated by fuzzy function classifier for iris 52
4.2 Rule base for the fuzzy function classifier for iris 53
4.3 M-LCS membership functions for iris problem 54
4.4 M-LCS rule base for iris problem . 55
4.5 Convergence speed of M-LCS for iris 58
4.6 Average convergence of M-LCS for iris test data 59
4.7 Membership sets generated by fuzzy function classifier for diabetes . . 62
4.8 Convergence speed during training of diabetes data 64
4.9 Behavior on diabetes test data during training 64

ix

4.10 Convergence speed on army data during training 68
4.11 Behavior on army test set during training 69
4.12 Membership functions for the army data 70
4.13 Convergence speed on alcohol data during training 73
4.14 Behavior on alcohol test set during training 73

x

Chapter 1

Introduction

Data mining is a relatively new discipline that emerged in the 1980s out of

a need to develop tools and methods for processing large data sets and databases.

Although the field is relatively new, the building blocks of current data mining tools

and techniques have been in existence much longer. Tools and techniques used in

artificial intelligence, machine learning, information retrieval, database systems, re-

gression analysis, artificial neural networks, evolutionary algorithms, and others are

employed in data mining systems. Research in data mining seeks to adapt these sys-

tems to work with massive amounts of data as well as develop new ones. The field has

experienced rapid growth during the past three decades and currently data mining is

applied to a variety of problem domains, including bioinformatics [24, 10, 11], medi-

cal applications [6, 77, 48], and business applications [36, 27, 68]. Data mining tasks

include retrieval, analysis, summarization, prediction, and classification. Of these,

Peng reported that classification is the most used data mining task [63].

There are several approaches to solving classification problems. Learning clas-

sifier systems (LCS) have been successful in solving traditional classification problems

and researchers have investigated their use in coping with large amounts of data for

1

solving classification problems in data mining. A learning classifier system is a ma-

chine learning model that maintains a population of IF-THEN rules, called classifiers,

of the form IF condition THEN action. The condition of the rule may be represented

in different ways, one of which is a membership function. Systems that use member-

ship functions generally use one type of membership function for encoding all features

of the input space, varying the placement and shape, but not the type. In all known

classifiers to date, no one membership function has performed significantly better on

all problems. It may be the case that a single type of membership function does not

perform well for all features of the input space. A different approach is to allow each

feature to be encoded using a membership function appropriate for that feature. The

research reported in this dissertation explores the use of learning classifier systems

for data mining but investigates the efficacy of employing more than one type of

membership function for generating the condition component of the classifiers, and

allowing the rule discovery component to choose an appropriate one for each feature

of the input space. With this approach, instead of generating the same type of mem-

bership function for feature xi as in Figure 1.1, the membership functions generated

for xi by the classifier developed in this research may be of different types as shown in

Figure 1.2. Similarly, the condition component of the rules generated by the former

will be comprised of the same function, as in Figure 1.3; whereas, those of the latter

may be comprised of multiple membership functions as in Figure 1.4. Allowing a

function for each feature has the potential of improving the overall performance of

this modified LCS. To implement this modification, the LCS must maintain a set of

membership functions from which to choose. In addition to the traditional triangular

and trapezoidal functions, this research introduced three membership functions to be

used in the LCS.

In learning classifier systems, a genetic algorithm is usually employed in the

2

Figure 1.1: Membership functions for xi using one type

Figure 1.2: Membership functions for xi using multiple types

Figure 1.3: Rule generated by using one type of membership function

rule discovery component of the classifiers. A genetic algorithm is a stochastic heuris-

tic search algorithm based on the theory of evolution and the survival of the fittest.

It maintains a population of potential solutions to the problem and employs genetic

3

Figure 1.4: Rule generated by using multiple types of membership function

operators to evolve an optimal solution. Although additional operators have emerged

over the years, the selection, mutation, and crossover operators are a part of almost

every GA in some form. The modified LCS presented in this research uses a genetic

algorithm that maintains a population of real-valued, variable length chromosomes,

with the following modifications:

1. The mutation and crossover operators were adapted to work with variable length

chromosomes consisting of multiple types of membership functions

2. Three additional genetic operators were included

3. The inclusion of three membership functions not previously used with learning

classifier systems

1.1 Dissertation Objectives

The objectives of this dissertation were as follows:

1. To develop a framework for a modified learning classifier system that incorpo-

rates multiple types of membership functions

2. To include three functions not previously used with learning classifier systems

to assist in generating interpretable rules.

4

3. To use the framework to develop a modified LCS that exhibits a classification

accuracy comparable to those reported in the literature.

The remainder of the dissertation is organized in the following manner. Chapter 2

presents background information on data mining, learning classifier systems, genetic

algorithms, and search, which are all central to the framework presented in this

dissertation. Chapter 3 presents the framework for a learning classifier system that

employs multiple types of membership functions, including the representation of the

rules, membership functions, genetic operators, learning algorithm, and classification

algorithm. The utility of the framework is demonstrated by using it to simulate

classifiers and applying the classifiers to two benchmark classification problems and

two additional real-world problems. The results of the simulations are reported in

Chapter 4. Chapter 5 concludes the dissertation by identifying the contributions of

this research and future directions.

5

Chapter 2

Background

2.1 Introduction

Concepts from data mining, classification, learning classifier systems, genetic

algorithms, and search are central to this research. Classification is an essential data

mining task. A learning classifier system is just one classification model and the

model of choice for this research. Central to most learning classifier systems is a

genetic algorithm for generating the classifiers. This chapter provides background

information for each of these.

2.2 Data Mining

Advances in data capture and storage technologies during the past three

decades have made it possible to capture and store large amounts of data easily,

creating a need for tools and techniques for processing the data to provide informa-

tion that is understandable and useful to the data owner. One field that has emerged

as a result is data mining (DM), which is the process of extracting useful information

6

from large data sets and databases by incorporating tools and techniques from several

disciplines, including statistics [5, 65, 74], artificial intelligence (AI) [8, 18], machine

learning [39, 58, 67], database technology [85, 37, 12, 51, 78], high-performance com-

puting [14], and data visualization [35, 40]. Data mining techniques can be applied

to a wide variety of data types including databases, images, spatial data, temporal

data, and text, graphs, streams, Web, biological, and multi-media [63]. Research

and applications in this area include methods for data analysis, descriptive modeling,

knowledge discovery, retrieval, frequent pattern mining, exception detection, cluster-

ing, data visualization, prediction, and classification. In his data mining framework,

Peng has identified eight categories of data mining to provide a concise description of

the research activities of data mining and knowledge discovery [63]. These categories,

described below, are not mutually exclusive.

1. DM tasks include basic functions of data mining and knowledge discovery such

as classification, clustering, time series analysis, and exception detection.

2. Learning methods and techniques include disciplines that involve data mining

and knowledge discovery or contribute to the area, such as databases, machine

learning, artificial intelligence, statistics and optimization. Unsupervised learn-

ing, reinforcement learning, artificial neural networks, evolutionary computa-

tion, rough sets, fuzzy logic, inductive logic programming, decision trees, sup-

port vector machines, data warehousing, online analytical processing (OLAP),

data mining query languages, indexing, regression, Bayesian analysis, princi-

ple component analysis (PCA), Markov chain Monte Carlo (MCMC), hidden

Markov model and discriminant analysis are subcategories of these.

3. Mining complex data involves issues related to mining diverse data types, such

as text, graph, temporal, spatial, stream, biological, and multi-media.

7

4. Foundations of DM involve theoretical and fundamental issues or data mining

and knowledge discovery, such as data mining theories, frameworks, taxonomies,

measures, privacy, security, and social impact issues.

5. DM software and systems include various aspects of data mining software and

systems, such as software maintenance, software development environment, and

data mining systems.

6. High-performance and distributed DM focus on designing algorithms and tech-

niques for increasing efficiency in handling massive data sets, for example, par-

allel algorithms, parallel processing, and distributed data mining algorithms.

7. DM applications describe current data mining application domains and related

issues, such as fraud detection, e-commerce, basket analysis, and marketing.

8. DM process and project includes steps in the knowledge discovery process and

data mining project related issues, such as process models, preprocessing tech-

niques, model and algorithm selection, post-processing techniques, and visual

data mining.

In highlighting the results of his survey of data mining and knowledge discovery

research, Peng reported that classification is the most used task of data mining [63].

There are several approaches to classification as outlined in Section 2.3, one

being learning classifier systems. Several researchers have investigated the application

of learning classifier systems to the classification task of data mining. For example,

Bagnall studied the potential of the XCS [80] learning classifier system as a data

mining tool by comparing its performance to several other classifier techniques [9],

while Wilson investigated the use of this system in classifying oblique data [81].

Bernado applied two learning classifier systems, XCS and GALE, to several data

8

sets, comparing their performances to six well-known learning algorithms [52]. In

all experiments, no classifier performed significantly better than XCS and GALE.

In further research, Holmes investigated the use of a learning classifier system for

knowledge discovery in epidemiological surveillance [34]. The research reported here

also focuses on the classification task of data mining, investigating the efficacy of

applying a modified learning classifier system to such problems in data mining.

2.3 The Classification Problem

Classification of objects into different classes is central to most application

domains. For example, in biology, large molecules are classified according to their

structure and function, such as carbohydrates, lipids or fats, proteins, and nucleic

acid. In medical diagnostic systems, classification is central to associating a set of

symptoms with a particular disease. In chemistry, classification of molecules is es-

sential in determining the family of molecules that participate in a reaction [43], in

business, classification is essential in assessing the credit risk of its customers. For

literature mining systems such as MEDLINE, document classification is essential.

The classification problem may be viewed as a problem of finding a function

(or a model) that maps a vector of measurements x to a categorical variable Y, for

the purpose of using the function or model to predict the class of data objects whose

class label is unknown or has not been seen. A block diagram of the classification

problem is illustrated in Figure 2.1.

The particular model or function used to generate the classifier depends on

the problem to be solved. These include IF-THEN rules, decision trees, artificial neu-

ral networks, evolutionary algorithms such as genetic algorithms, learning classifier

systems, or mathematical formulas. Since manual classification is seldom feasible for

9

Figure 2.1: Block diagram of the classification problem

complex problems, several automatic methods for deriving classification systems have

been developed. These include decision tree induction, statistical classifiers such as

Bayesian classification, artificial neural networks, k-nearest neighbor, genetic algo-

rithms, rough sets, fuzzy sets, and cased-based reasoning, regression, and clustering.

If the resulting class is all that is required, without any explanation of how

the class label was determined, then either of the above techniques will suffice. For

situations requiring an explanation of the reasoning, learning classifier systems have

been very successful because they represent the knowledge in rules that are easily

interpretable by humans. This research uses learning classifier systems for learning

the rules. To test the utility of the derived classifier, the classifier was applied to

four problems and the results were compared to those reported in the literature, if

possible. The comparison is based on the holdout classification accuracy method,

although there are other criteria established for comparing classifier systems.

2.3.1 Comparing and Evaluating Different Classifier Systems

Criteria for comparing and evaluating different classifier systems include clas-

sification accuracy, speed, robustness, scalability, and interpretability [32]. Of these,

accuracy is the most important and the easiest to assess. Classification accuracy is a

10

measure of the classifier’s ability to classify a new pattern or one that has never been

seen. This is an important measure, allowing a developer to evaluate how accurately

a given classifier will label new data. Common techniques for assessing classifier ac-

curacy include the holdout method, k-fold cross-validation, and leave-one-out. The

holdout method separates the data set into two independent sets, one for training

and the other for testing. The training set is used during the learning phase to de-

rive the classifier. Afterwards, the classifier is used to classify patterns in the test

set. Classification accuracy is the percentage of test set samples that are correctly

classified. In k-fold cross-validation, the initial data set is randomly partitioned into

k mutually exclusive subsets of approximately equal size. The training and testing

cycle is performed k times, each time reserving one of the subsets for the test set

and using the remaining subsets to derive the classifier. Accuracy is computed as

the average of the correctly classified patterns. The leave-one-out method is a special

case of k-fold cross-validation with k being the number of initial samples.

For binary classification problems, those with classification as either has or

does not have (0 or 1), an accuracy measure based only on the number of correct

classifications may not depict how well the classifier is correctly classifying the data.

For example, if only 4% of the training data are actually 1, an accuracy of 90%

may not be acceptable because the classifier could be correctly labeling only the

class 0 patterns. For the binary classification problems, the sensitivity and specificity

measures can be used to assess the performance. Formulas for these measures are

given in Equation 2.1 and Equation 2.2, respectively, where tpos is the number of

positive patterns that were classified as positives, pos is the number of positive (1)

patterns, tneg is the number of true negative (0) patterns that were correctly classified

11

as 0, and neg is the number of negative patterns.

sensitivity =
tpos

pos
(2.1)

sensitivity =
tneg

pos
(2.2)

Accuracy can then be computed as indicated in Equation 2.3

accuracy = sensitivity
tpos

(pos + neg)
+ specificity

neg

(pos + neg)
(2.3)

Sensitivity and specificity measures are useful when the main class of interest is in

the minority.

For systems that have acceptable accuracy measures, the other measures are

helpful in providing additional means of comparing the them. Speed can be viewed as

the cost involved in deriving and using the classifier model, with one measure being

the amount of machine time it takes to derive the model. For real-world problems it is

not uncommon for a system to process data sets that have missing or imprecise data

values or irrelevant or meaningless data (noise). Robustness is the measure of the

classifier’s ability to correctly predict the class label given imprecise, incomplete, or

noisy data. Scalability is the ability of the system to derive the model and maintain

an acceptable level of performance given increasingly larger data sets. This crite-

rion can be evaluated by assessing the number of I/O operations on such data sets.

Interpretability is a measure of how well the model generates understandable rules.

This is a subjective criterion; however, it can be evaluated from objective data. For

example, in a rule-based system, the measure can be based on the number of rules or

the number of features represented in a rule. Interpretability can be measured based

12

on the number of hidden units for neural networks and the number of nodes for a

decision tree.

2.4 Learning Classifier Systems

2.4.1 Introduction

A learning classifier system (LCS), whose fundamental component is a set of

condition-action rules called classifiers, is a machine learning model representing the

current knowledge of a problem. These systems, first introduced by John Holland

[34], which have been in existence for more than thirty years, were originally designed

to evolve rules online to model complex adaptive systems [45]. They were widespread

during the 1980s, but due to the complexity of the architecture and the online adap-

tation process, interest in them declined to almost non-existence by the mid 1990s.

Interest in the field increased again following the work by Wilson in the design and

implementation of XCS [82], which simplified the original design of Holland’s system

in ways that made the system more easily duplicated.

Currently, learning classifier systems are being successfully applied to a number

of machine learning and data mining classification problems. Their success can be

attributed to their ability to adapt, generalize, and scale when applied to complex

problems.

2.4.2 Learning Rules

The most significant attribute of a learning classifier system is its ability to

learn by interacting with the environment. Learning is normally accomplished by

utilizing a learning algorithm. Learning algorithms can be categorized as supervised,

13

unsupervised, or reinforcement. The first classifiers used reinforcement learning; how-

ever, supervised learning is also used in current systems. In supervised learning, each

input pattern has an associated desired target class. During training, the predicted

class is compared to the target class and the fitness value is based on how well the

chromosome predicts the target class. Unsupervised learning, on the other hand, does

not have knowledge of desired targets. It involves clustering the data into categories

to discover features or regularities in the training data. In reinforcement learning,

the credit assignment system receives feedback from the environment and distributes

the reward among the chromosomes based on their contributions to successful behav-

ior. This differs from supervised learning in that feedback is not in the form of the

correct answer. The bucket brigade algorithm is usually employed to manage credit

assignment.

2.4.3 Categories of Learning Classifier Systems

Learning classifier systems can be categorized into two types based on the

level of learning determined by the form of the rule base: the Michigan model and

the Pittsburgh model. In the first, a population consists of a number of condition-

action rules, each encoded by a single chromosome in the population and representing

a portion of the overall solution. The entire population of chromosomes, thus, con-

stitutes the rule base and represents the overall solution to the target problem. This

model was first described by John Holland in 1978 and the first LCS based on it,

Cognitive System One (CS-1) devised by Holland and Reitman [23], consisted of a

performance component, a reinforcement component known as the credit assignment,

and a rule discovery component. The performance component, which consists of the

rules, interacts directly with the environment. It specifies how to construct a map-

14

ping from the rule base to a class label. Since all rules in the population will not be

useful nor perform at the same level, the credit assignment component is responsible

for assessing the performance of each rule, with the rule discovery component being

used to generate new rules to replace those less fit. This rule discovery component is

usually implemented using a genetic algorithm. An illustration of a learning classifier

system can be seen in Figure 2.2.

Figure 2.2: Architecture of a Michigan Model LCS

The classifier system interacts with the environment, receiving input and send-

ing actions to be performed. The input interface (detectors) receives messages from

the environment and, based on its sensations, sends messages (actions) through the

output interface (effectors), thus affecting actions in the environment, such as arm

movements of a robot, game moves, or buying shares. Depending on the effective-

ness of the actions, the environment may reward the system. The credit assignment

15

component then determines the reward to assign each classifier based on its level of

contribution to the solution. The basic execution of Holland’s classifier is given below:

1. Post all input messages on the message list

2. Compare each message with each rule and record all rules whose condition

matches the message

3. Merge each matched message with the action part of the satisfied classifier.

Replace the old message list with the new message list generated in this way

4. Process the message list through the output interface to produce messages that

affect the environment

While the Michigan model was designed to work online, it is also capable of working

offline. [75].

In the Pittsburgh style LCS, LS-1, devised by Smith [61], each chromosome

encodes a complete rule base (i.e. a set of condition-action rules) instead of one

rule as is the case in the Michigan model. The population consists of a number of

chromosomes each encoding a rule base representing a complete solution to the target

problem. Since a chromosome represents an entire rule base, individual rules do not

compete during evolution, meaning a credit assignment component is not needed in

this model. The GA searches for the optimal set of rules for solving the problem.

The two models are similar in the following ways:

1. Both models maintain a population or chromosomes.

2. Both consist of a rule discovery component that usually employs a genetic al-

gorithm.

16

3. A performance measure is used by both to guide the GA in exploring the search

space.

4. Reinforcement learning was the original learning mode for both.

The two models differ in the following ways:

1. In the Michigan model, each chromosome encodes a single rule representing a

partial solution to the problem and the rule base consists of the entire population

of chromosomes; whereas, in the Pittsburgh model, each chromosome encodes

a complete rule base representing the complete solution to the problem.

2. In the Michigan model, evaluation consists of both the strength and fitness of a

rule. The credit assignment component adjusts the strength of a rule based on

the payoff received from the environment and the contribution of the rule to the

solution. The Pittsburgh model, on the other hand, uses a purely GA approach

to assign fitness to the rule base in terms of the number of patterns it correctly

classifies. Consequently, it does not need a credit assignment component for

distributing credit to individual rules.

3. The Michigan model uses fixed length chromosomes to represent the classifiers;

whereas, the Pittsburgh model uses variable-length chromosomes and applies

modified genetic operators for coping with these chromosomes.

4. The Michigan model was designed to work online; whereas, the Pittsburgh

model was designed to work offline.

The two rule base configurations are illustrated in Figure 2.3.

Each model has advantages and disadvantages. It is easier to design the rules in the

Michigan model since a single chromosome encodes a single rule. In addition, learn-

ing is faster and recombination simpler because the recombination operator operates

17

Figure 2.3: Rule base models

on shorter chromosomes and the population requires less memory storage than in the

Pittsburgh model. One disadvantage is the conflict between maintaining a population

of rules that cooperate to solve the problem and, at the same time, compete to par-

ticipate in the next generation. Having the entire population represent the complete

rule base also causes the rule base to contain a larger number of rules.

Although the design of a chromosome is more difficult in the Pittsburgh ap-

proach, its implementation is simpler than that of the Michigan model. Since a single

chromosome represents a complete rule base, it is easier to generate a complete set

of rules using this model. However, this model requires more memory storage for the

population since each chromosome of the population encodes an entire rule base. For

the same reason, the Pittsburgh model is more computationally intensive.

In both models, the genetic algorithm is usually employed in the implementa-

tion of the rule discovery component of the system. Although the genetic operators

are similar in both models, there may be differences in the characteristics of the rules

selected for the next generation. Since the selection operator chooses a chromosome

based on its fitness, individuals with high values have a higher probability of partic-

ipating in the next generation. When the entire rule base is represented by a single

chromosome, as in the Pittsburgh model, selection is based on the overall fitness of

18

the entire rule base, not on an individual rule. As a result, individual rules with

high fitness values might be replaced and not participate in the next generation if the

overall fitness of the rule base is relatively low. This is not the case with the Michigan

model. With the Michigan approach, every rule competes for selection, meaning if

an individual rule has a high fitness value, then it is likely to participate unchanged

in the next generation.

2.5 Genetic Algorithms and Biological Evolution

The origin of GAs dates back to 1975 with the work of John Holland [33], a

professor of psychology and computer science at the University of Michigan. Holland

devised a genetic code of binary digits that could be used to represent any type of

computer program, using 1 to represent true and 0 false. Holland showed that, given

a long enough string, it is possible to represent any object by the right combination

of binary digits. This approach, called a genetic algorithm (GA), is a computational

model that is conceptually based on Darwin’s theory of evolution, which is based on

the concept that the genetic information on human chromosomes is passed from one

generation to the next. As these traits change, or evolve, over time, the individu-

als expressing these variants exhibit a greater chance of surviving and reproducing,

supporting the principle of survival of the fittest [21].

GAs refer to a class of stochastic search techniques that emulate the mechanics

of natural evolution [13]. This type of algorithm is comprised of a population of

potential solutions and a corresponding set of genetic operators that guide the search

through it to identify a string representing a suitable solution to the problem. The

components of a GA include

1. A suitable representation

19

2. A method for creating an initial population of solutions

3. A function that assigns a fitness measure to each solution in the population

4. Genetic operators that are applied to the population of solutions in a proba-

bilistic manner

The overall procedure of a basic genetic algorithm is as follows: An initial

population of potential problem solutions is randomly generated and subsequently

evaluated for fitness. Then, the selection operator is applied to create an intermediate

population. Next, the genetic operators are applied to this population to create a

population of new and possibly more fit solutions consisting of chromosomes that have

survived the fitness test and offspring produced from applying the genetic operators.

The process of moving from the current population to the next population constitutes

one generation in the execution of the GA. As solutions alter and combine, the worst

solutions are discarded, and the ones that have higher fitness survive to participate

in the next generation to produce solutions that have even higher fitness values. As a

result, the new generation usually contains strings superior to those from the previous

generation. A flowchart of this procedure is illustrated in Figure 2.4.

GAs have been successfully applied to a variety of problem domains, including prob-

lems in optimization, product design, and monitoring industrial systems. Commercial

applications of GAs continue to emerge.

To use a GA, the developer makes a number of crucial architectural decisions

to determine the encoding scheme, the fitness function, and the genetic operators,

including the probabilities associated with each. The GA devised by Holland, re-

ferred to as the canonical GA, uses fixed length chromosomes, binary encoding, and

a fixed set of genetic operators. Variations of the canonical GA use variable length

chromosomes, different encodings, and additional genetic operators.

20

Figure 2.4: Genetic Algorithm

21

2.5.1 Encoding Techniques

In natural genetics, every organism has a set of rules describing how that

organism is generated from the tiny building blocks of life. These rules are encoded

in the genes of the organism. The genes are in turn connected into long strings called

chromosomes, with each gene representing a specific trait of the organism such as

height or eye color. Similarly, in a GA, the potential solution to a problem is encoded

in a chromosome-like structure, with each gene representing a feature of the input.

The encoding of the solutions depends on the problem to be solved. For example,

for an optimization problem, the chromosome can be used to encode the values for

the parameters being optimized, while in a classification problem, it can be used to

represent either a single rule or an entire rule base. Choosing a suitable representation

of a solution to the problem is critical to the success and performance of the GA [2].

Methods typically used for this encoding are bit string, value, and a permutation.

In bit string encoding, each chromosome is represented by a binary string of a fixed

length as illustrated in Figure 2.5.

Figure 2.5: Example of a chromosome with binary encoding

This encoding scheme works well if the solutions do not involve integer, real-

valued data, or character data. If a binary string is used to represent integer data or

real-valued data, each value must first be encoded with the chromosome consisting

of a binary string for each value and decoding is necessary to evaluate the string.

Michalewicz [54] gives one example of this scheme. Given a variable x whose domain

has length 3 and precision requirement of six places after the decimal point, the range

[−1..2] should be divided into at least 3 * 1000000 equal size ranges. A chromosome

22

length of 22 bits is required for the encoding, since

The following procedure was used to decode the binary string to obtain its

equivalent real number:

1. Convert the binary string from base 2 to base 10

2. Use the following Equation 2.4 to find the corresponding real number x:

x = −1.0 + x
′ 3

222
− 1 (2.4)

j where −1.0 is the left boundary of the domain and 3 is the length of the

domain. For example, the chromosome

1000101110110101000111

represents the number 0.637197, since

x
′
= (1000101110110101000111)2 = 2288967

and

x = −1.0 + 2288967 3
4194303

= 0.637197

With this representation, the length of the chromosome is directly proportional to

the number of features that must be encoded, meaning a bit string representation can

become long for a problem involving several features. To address this issue, researchers

have used value-encoded chromosomes to represent the data along with specialized

genetic operators to manipulate the chromosomes [23, 54]. In value encoding, a

chromosome is represented as a fixed-length string of values. The values used depend

on the type of data, for examples, integer, real, or character. In a permutation

encoding, each chromosome is a string of numbers representing the numbers in a

sequence. This type of encoding is suitable for problems that involve ordering things,

23

such as ordering the cities to be visited as in the traveling salesman problem or

ordering tasks to be performed. Examples of value and permutation encodings are

illustrated in Table 2.1. In the permutation example, if the values represent tasks to

be performed, then Task 3 should be done first, followed by Task 5, then Task 1, etc.

Table 2.1: Examples of alternate encoding schemes

integer: 3 1 3 6 5 2 7

real: 7.4 0.3 2.1 2.5 0.1 4.1 8.3

character: A B C D A B C

permutation: 3 5 1 4 6 7 2

No matter which encoding is chosen, there must be an evaluation function to evaluate

the chromosome and assign it a fitness value.

2.5.2 Fitness Function

One of the most difficult and critical tasks in developing a GA-based solution

is the design of the fitness function. This function determines both the success of

the GA and the speed at which it converges. A GA operates on a population of

potential solutions to a problem, not the problem itself, relying on the fitness of

the chromosome to determine how close it is to the solution. Chromosomes with

superior characteristics should be assigned a higher fitness value than those that are

less fit; otherwise, the GA will take longer to evolve a solution that performs well.

The choice depends on the problem to be solved. For a function approximation

problem, the fitness function may be the evaluation of the function at the given

values. For a classification problem, it may be necessary to develop a simulation

24

and evaluate a chromosome based on the its outcome. Similarly, for a model design,

fitness may involve developing a simulation of the model. For learning classifier

systems applying reinforcement learning, fitness is usually based on the strength of

the rule; however, accuracy-based fitness is used with more recent systems employing

supervised learning.

2.5.3 Genetic Operators

Genetic operators, in concert with the fitness measure, improve the population

of solutions from one generation to the next. They are applied to the chromosomes in

a probabilistic manner. The three genetic operators of the canonical GA, selection,

crossover, and mutation, are a part of almost every GA in some form. The inversion

operator is also used with position independent encoding.

2.5.3.1 Selection

Selection in a GA operates in a manner similar to Darwin’s natural selection.

Darwin recognized that an advantageous trait first appearing in only one or a few

individuals of a population gives them and their descendants superiority over others

in the population. This process of selecting an advantageous trait and transmitting it

to a larger proportion of individuals in the population in each successive generation

is referred to as natural selection. Ultimately, many generations of natural selection

produce a population of members all expressing this trait. At the same time, variant

forms of other traits arise in each generation, and natural selection will, for each,

determine which survives over time. In a GA, the fitness function assigns a fitness

value to each chromosome. The selection operator works in conjunction with the

fitness value to choose chromosomes for the next generation by making copies of the

25

more successful ones and deleting the less successful, ensuring better chromosomes

in the next generation. However, this selection operator must be chosen with care.

Although the selection operator should be biased toward the better individuals in the

population, it should also choose those that do not have high fitness values but rather

those having genetic material that will help the population to improve; otherwise, the

population will rapidly converge to one individual, a result that is not desirable.

Selection schemes include truncation, fitness-proportionate, linear ranking,

tournament, sigma scaling, and steady state selection. Truncation selection is the

simplest form. With this method, individuals are sorted according to their fitness,

from highest to lowest and the top n% are selected as parents for the next generation.

These individuals are duplicated to maintain the population size. For example, given

a population size of 200, truncation might select 25% of these as parents and then

create four copies of each to maintain a population of 200 individuals. Although this

scheme is easy to implement, it can result in premature convergence since less fit

individuals are not given an opportunity to evolve into ones more fit. To overcome

this, fitness-based approaches give every individual a chance to participate in the next

generation with fitter individuals more likely to be chosen than weaker ones. Fitness-

proportionate selection chooses individuals to participate in the next generation based

on the ratio of their individual fitness values to the average fitness of the population.

The roulette wheel algorithm [23], described in Table 2.2, is most commonly used

to implement fitness-proportionate selection; however, stochastic universal sampling

is another. For example, given the chromosomes and corresponding fitness values in

Table 2.3, the algorithm will choose chromosome 5 if the random fitness value is 3.0.

Linear ranking selection sorts individuals according to their fitness values, choosing

them based on their rank. The rank of the least fit is zero while the rank of the most fit

is N−1, where N is the size of the population. Unlike fitness-proportionate selection,

26

Table 2.2: Roulette wheel algorithm

1. Compute the sum S of the fitness values of all members of the population,
2. Generate a random number r from the interval (0, S)
3. initialize partial sum s to zero
4. While r is greater than s

4.1. Add the fitness of this chromosome to s
4.2. If r is less than s, return this chromosome.

Table 2.3: Examples of roulette wheel algorithm

Chromosome: 1 2 3 4 5 6 7

Fitness: 0.75 0.32 0.8 0.55 0.7 0.92 0.36

Partial Sum: 0.75 1.07 1.87 2.42 3.12 4.04 4.4

no individual generates an excessive number of offspring in the next generation, thus

overcoming the problem of stagnation or premature convergence.

Tournament selection chooses a number of individuals randomly from a pop-

ulation and selects the best from this group for further genetic processing, repeating

this process as often as desired. For selection, an individual must win a competition,

or a tournament, with a randomly selected set of individuals in the population. In

a k-ary tournament, the best of k strings is selected for the next generation. One

advantage of this scheme is the potential for massive parallelism. An example of

tournament selection is illustrated in Figure 2.6. Steady state selection chooses an

individual according to linear ranking, then chooses the currently worst individual

for replacement.

Although selection can increase the number of superior individuals in the pop-

ulation, in The Origin of Species Darwin cautioned that it is not the exclusive means

of genetic modification [21]. Selection alone cannot create improved offspring. To

27

Figure 2.6: Tournament example. More fit individuals have lower rank values.

achieve that, variation operators are required, the two common ones being crossover

and mutation.

2.5.3.2 Crossover

In natural genetics when two parents mate, the resulting offspring receive half

its genes from one parent and half from the other. Before mating, the exchange of

chromosomal material occurs between each identical pair of parental chromosomes by

breakage and reunion during the production of mating cells. This process, referred

to as crossing over, is the basis of genetic recombination. In a similar manner, the

crossover operator in a genetic algorithm forms two new chromosomes by combining

select parts of two parent chromosomes and then exchanging these parts beyond this

point. While crossover conserves the genetic information present in the chromosomes

crossed, it creates chromosomes superior to the two originals. The different types of

crossover operators include one-point, two-point, uniform, and average crossover.

In one-point crossover, the chromosomes are randomly selected in pairs. Given

two chromosomes in generation t:

vt =(v1, v2, . . . , vN) and

wt =(w1, w2, . . . , wN)

where N is the length of the chromosome and a point k ∈ {1, 2, . . . , N} generated

28

randomly with vt and wt being crossed at the kth position, the resulting offspring,

produced for generation t + 1 by exchanging the genetic material of the two parents

after the k-th position, are illustrated in 2.7.

Figure 2.7: One-point crossover

The offspring are composed of the head of one parent’s chromosome combined with

the tail of the other.

The other three types function similarly. In two-point crossover, two points

j, k ∈ {1, 2, . . . , N}, j < k, are randomly generated and two offspring are produced by

exchanging the genetic material of the parents between j and k and leaving unchanged

the parts preceding j and those following k as illustrated in 2.8.

Figure 2.8: Two-point crossover

Uniform crossover, on the other hand, randomly chooses each bit position

of the two parent chromosomes and exchanges the two bits if applicable. The last

type, an arithmetic crossover, is generally used with real-valued chromosomes [70],

29

one example being whole arithmetic crossover which produces offspring by computing

linear combinations of the two parents. Given two chromosomes at generation t:

vt =(v1, v2, . . . , vN) and

wt =(w1, w2, . . . , wN)

the resulting offspring at generation t+1 are

vt+1 = r ∗ vt + (1− r) ∗ wt and

wt+1 = r ∗ wt + (1− r) ∗ vt

This type of arithmetic crossover is illustrated in 2.9.

Figure 2.9: Arithmetic Crossover

Although crossover is capable of producing chromosomes that are superior to

others, it cannot introduce new genetic material into the population. For this, the

mutation operator is necessary.

2.5.3.3 Mutation

Mutations serve as the foundation for the evolution of species and the survival

of organisms. The balance between the continuous introduction of new advantageous

mutations and the loss of deleterious ones provides a selective advantage to individ-

uals carrying them. Just as mutations occur by chance in natural evolution to alter

the genetic information, a mutation operator is used in a genetic algorithm to alter

the genetic information of a gene at random. This mutation operator iterates over

30

the chromosome and, if applicable, changes a gene of the chromosome, thereby in-

troducing new genetic material into the population. In the case of binary-encoded

chromosomes, mutation simply changes the bit, while for value-encoded chromosomes,

mutation replaces the value of the gene with a randomly generated value within the

desired range. A binary-encoded chromosome with mutation applied to its third,

seventh, and twelfth genes is illustrated in Figure 2.10, with the gene to be mutated

and the mutated genes in bold.

Figure 2.10: Mutation of third, seventh, and twelfth genes

2.5.4 Inversion

The inversion operator is another variation operator, but only suitable for a

permutation encoding. It selects two random points of the chromosome and reverses

the order of the genes between these points as illustrated below, with the genes to be

inverted and the inverted genes in bold.

Original chromosome: 15739284

Inverted chromosome: 15293784

2.6 Search

For a number of problems, there exists a known algorithm for solving it and

a computer program can be developed to implement the solution. Such algorithms

are referred to as deterministic algorithms. For many real-world problems no known

31

algorithm exists for solving the problem. For others, an algorithm may exist, but the

time or storage required prohibits its implementation. For these problems, finding a

solution reduces to a search problem. It is necessary to search the space of possible

solutions to find one that is suitable. The type of search used depends on the problem

to be solved. Search techniques can be categorized as blind random, exhaustive, or

heuristic search.

A blind random search algorithm is an unsystematic search technique that

does not use any domain-specific knowledge to direct it even if knowledge is available.

Exhaustive techniques, such as breadth-first and depth-first searches, systematically

search through the search space until a solution is found. Although they do not use

domain-specific knowledge about the problem to guide the search, they are guaranteed

to find a solution if one exists. For small problems, using either blind random search

or exhaustive search techniques may be quite feasible; however, these techniques are

rarely feasible for non-trivial problems. To address these issues, heuristic search

techniques were developed.

Heuristic search seeks to reduce the search space by using information about

the problem domain. In their early development heuristic search methods were ap-

plied to a single domain and domain-specific knowledge was closely intertwined with

techniques for using this method. Heuristics were not easily accessible for study nor

adaptation to new problems. Because of the tight coupling of the search technique

with the domain-specific knowledge, it was likely that similar heuristic techniques had

to be repeatedly developed for different applications. Beginning in the mid 1960s, re-

searchers began developing generalized heuristic search algorithms whose properties

could be studied independently of the particular programs that might use them, thus

making it possible to apply the heuristic algorithm to a wide variety of problems. The

genetic algorithm is one such heuristic search technique; others include hill climbing

32

and simulated annealing. The latter two will not be included in this research.

33

Chapter 3

A Modified Learning Classifier

System

3.1 A Framework for M-LCS

Chapter 2 presented two types of learning classifier systems: the Pittsburgh

model and the Michigan model. This research uses the Pittsburgh model because its

implementation is simpler and it is easier to generate a complete set of rules using it

since a single chromosome encodes a complete rule base.

A learning classifier system based on the Pittsburgh model is an algebra char-

acterized by a search space S, a heuristic function F , and a membership function

M. In a classical GA approach, the heuristic function consists of selection, crossover,

and mutation operators. The M-LCS extends this algebra by using a set of five types

of membership functions M′ instead of one. The heuristic function F ′ consists of

three additional genetic operators – a creep operator, an insert operator and a delete

operator. In developing a framework for the M-LCS, the following seven aspects of

the model need to be addressed:

34

1. A set of membership functions for deriving the rules

2. Representation of the membership function

3. Representation of a single rule

4. Representation of a rule base

5. A set of genetic operators

6. Constraint satisfaction

7. An evaluation function.

3.1.1 A set of membership functions for deriving the rules

Chapter 2 presented several approaches for representing the rules in a rule

base, one being membership functions. This research uses membership functions for

the following reasons: 1) they do not require crisp clearly defined boundaries, calcu-

lating instead a degree of membership of a feature in the interval [0, 1], and 2) they

make it possible to express rules in a form easily interpreted by humans. Selecting

an appropriate one can be challenging because of the number available: triangular

[20, 28, 29], trapezoidal [42, 29], ellipsoidal [3, 84], Gaussian [30, 15], and sigmoidal

functions [76, 25], to name a few. Current classifier systems employing membership

functions use a single type to derive the rules; however, since no membership function

performs best for all domains [83, 66], the performance of the resulting classifier sys-

tem is limited by the performance of the one chosen. To address this limitation, the

research reported here examines the efficacy of employing multiple types of member-

ship functions to derive the classifiers, with the GA choosing an appropriate one from

the available set for each feature, producing rules that may consist of two or more

35

membership functions. In addition, the M-LCS also employs membership functions

that have not been used in previous classification problems in an attempt to generate

rules that are easily expressed. Although the system is capable of using any number

of membership functions in its set, this research focuses on the use of five: triangu-

lar (Equation 3.1), trapezoidal (Equation 3.2), two ramp functions (the γ function

and the L-function) [64]. described in Equation 3.4 and Equation 3.5, and a fuzzy

membership function [45] described in Equation 3.3.

The triangular and the trapezoidal functions were chosen because of their

widespread use in deriving classification rules, having been employed in the design of

fuzzy logic controllers [71, 16] as well as with evolutionary algorithms in the design of

classification systems [42, 29]. The ramp functions have simple forms and work well for

representing situations in which a condition is true up to or past a certain value. For

example, in a classification problem involving age and weight, age greater than 50 and

weight less than 160 can be easily represented using a ramp function. Since the fuzzy

membership has been successfully applied to fuzzy classification problems involving

controllers, this research investigates the efficacy of using this membership function

in conjunction with a genetic algorithm. While all of these functions have been

previously used in the design of fuzzy logic classification systems, there is no known

use of the last three with evolutionary algorithms. The graphical representations of

the functions are given in Figures 3.1 - 3.5.

f(x; α, β) =

0 x < α

2(x−α)
β−α

α ≤ x < α+β
2

2(x−β)
α−β

α+β
2
≤ x ≤ β

0 x > β

(3.1)

36

Figure 3.1: Illustration of triangular function for Equation 3.1

f(x; α, β) =

4(x−α)
β−α

α ≤ x < 3α+β
4

1 (3α+β)
4

≤ x < 3β+α
4

4(x−β)
α−β

3α+β
4

≤ x ≤ β

0 otherwise

(3.2)

Figure 3.2: Illustration of trapezoidal function for Equation 3.2

f(x; α, β) =
1

1 + (α−x
β

)2
(3.3)

37

Figure 3.3: Illustration of Equation 3.3 for α = 20 and β = 3.0

f(x; α, β) =

0 x ≤ α

x−α
β−α

α < x < β

1 x ≥ β

(3.4)

Figure 3.4: Illustration of γ-function for Equation 3.4 for α = 20 and β = 23

f(x; α, β) =

1 x ≤ α

x−β
α−β

α < x < β

0 x ≥ β

(3.5)

In this research, the GA determines the placement of each membership func-

38

Figure 3.5: Illustration of L-function for Equation 3.5 for α = 20 and β = 23

tion by learning the values of the associated α’s and the β’s. Incorporating multiple

functions adds to the complexity of the representation. To address this issue, this

research assigns a numeric code to each membership function in the set and then

simplifies the application of the genetic operators by using a consistent representa-

tion for each. This representation of a membership function and its parameters is

given by a 3-tuple < fn−code, α, β >, where fn−code is the predefined code for the

function and α and β are its parameters. The triangular and trapezoidal functions

are restricted to isosceles triangles and trapezoids to conform to this 3-tuple notation.

In the representation scheme used in this research, a 3-tuple constitutes a single gene

of the chromosome.

3.1.2 Representation of a Single Rule

A classification rule consists of two components, the condition and the associ-

ated action, taking the form IF condition THEN action. The condition component of

the rule can be represented using strings over the alphabet {0, 1,]} [80, 56], disjunc-

tions of intervals [47, 60], symbolic expressions [44, 46, 55], first-order logic expressions

[49, 53], or membership functions [20, 29]. The action component can be represented

39

by continuous functions [82, 17], membership functions [41], or a set of labels [7, 79].

This research uses membership functions to represent the condition and a set of labels

to represent the action. A single rule encodes a membership function for each feature

of the input space, using the 3-tuple notation described above, followed by a discrete

value for the action. In the M-LCS, the action is a value representing the class asso-

ciated with the patterns that satisfy the condition. Given N input patterns, m input

features, and K predefined classes, the ith rule is represented by a fixed length array

of real values as illustrated in Figure 3.6:

Figure 3.6: Rule i

If µij represents the membership function for feature j of rule i, then the rule

can be interpreted as

IF µi1 and µi2 and . . . and µim THEN cq

For example, in a garment sizing system, the input may consist of height, weight,

and chest size, and the output the size of the garment. For a 3-tuple representation

of height as 0.0 60.0 5, 1.0 110.0 140.0 for weight, and 1.0 32.0 36.0, for age and a

garment size of 34, the rule is represented in Figure 3.7.

Figure 3.7: Rule i

Each 3-tuple is a gene and each rule represents a small part of the overall solution to

the problem, with the complete solution consisting of one or more rules called a rule

base.

40

3.1.3 Representation of the Rule Base

The number of rules in a rule base is problem dependent, either specified by the

developer or learned by the system. Requiring the developer to specify the number

of rules is a concern since not all problems require the same number of rules. If

the developer overestimates the number needed, the system may not generalize well.

Too few rules may cause the system to fail to learn the necessary ones. The M-LCS

addresses this problem by adopting the Pittsburgh model to represent a rule base

and allowing the length of the chromosome to vary based on the number of rules in

it. Figure 3.8 illustrates a rule base consisting of three rules and Figure 3.9 and one

consisting of five. The GA then learns the appropriate number of rules for solving

the problem.

Figure 3.8: Chromosomes consisting of 3 rules

3.1.4 Genetic Operators

Given a rule base consisting of chromosomes of variable lengths, the next issues

to be resolved involve 1) the choice of operators that generate meaningful offspring and

2) the manner in which the operators are applied during reproduction. For this study,

the classical crossover and mutation operators were modified and additional operators

41

Figure 3.9: Chromosomes consisting of 5 rules

used by Davis [23] were added to accommodate a rule base comprised of multiple

types of membership functions, variable-length chromosomes, and real-valued genes.

Specifically, the M-LCS uses a selection operator, a no operation (NOP) operator,

and five variation operators: one point crossover, mutation, creep [23], insert [23],

and delete [23].

3.1.4.1 Selection Operator

The selection operator works in conjunction with the fitness function to se-

lect an intermediate population of chromosomes to participate in reproduction. The

M-LCS uses fitness proportionate selection, implemented using the roulette wheel

selection algorithm [23] described in Chapter 2. The intermediate population is se-

lected, operators applied to it and the resulting chromosomes are placed in the next

generation. Using this technique, it is possible that the best chromosome will not sur-

42

vive to participate in the next generation. To guarantee having the best chromosome

in the next generation, the elitist method, which first copies the best chromosome

to the next generation, is used. With this technique the best chromosome is always

preserved in the population.

3.1.4.2 NOP Operator

It is desirable to have some chromosomes participate in the next generation

without any modifications. The NOP operator is designed for this purpose. NOP

does not perform an operation on the chromosome, thus allowing it to be included in

the next generation unchanged.

3.1.4.3 Crossover Operator

The M-LCS uses one-point crossover modified to work with variable-length

rules containing multiple types of membership functions and real-valued genes. For

this operator, the chromosomes are randomly selected in pairs (vt, wt). Given two

randomly selected chromosomes in generation t, v of length M and w of length N :

vt = (v1, v2, . . . , vM) and

wt = (w1, w2, . . . , wN), with v and w

being crossed at the jth and kth positions, respectively. The resulting offspring are

vt+1 =(v1, . . . , vj, wk+1, . . . , wN) and

wt+1 =(w1, . . . , wk, vj + 1, . . . , vM)

where j ∈ {1, 2, . . . ,M} is the position of an element in chromosome v , and k ∈

{1, 2, . . . , N} is the position of an element in chromosome w.

Crossovers may occur either at a gene boundary or at a rule boundary. If the

former, they must occur at a feature boundary within points matching on the same

feature. This restriction is imposed since the parameters of multiple-membership

43

functions have different meanings. Thus, restricting the crossover points to a feature

boundary helps to maintain legitimate rules.

3.1.4.4 Mutation Operator

The mutation operator used in the M-LCS, which is similar to the one used in

other systems, produces a rule that is the same as the parent in all locations except

for one or more randomly selected parameters of the membership functions. The

selected parameters are replaced by randomly generated values in the allowable range

for the feature. Given a randomly selected chromosome,

vt = (v1, v2, . . . , vi, vi+1, . . . , vj, vj+1, . . . , vk, vk+1, . . . , vM)

mutated at the ith, jth and kth positions, respectively, the resulting offspring is

vt = (v1, v2, . . . , v
′
i, vi+1, . . . , v

′
j, vj+1, . . . , v

′
k, vk+1, . . . , vM)

where v
′
i, v

′
j, and v

′
j represent the new values. Only the parameters of the membership

functions may be modified; the mutation operator does not modify the function codes.

3.1.4.5 Insert and Delete Operators

The main goal of the insert and delete operators is to assist in maintaining

variable-length chromosomes. They are included because of their success in other

systems employing variable-length chromosomes [23]. The insert operator introduces

new genetic material into the population. It generates a new rule and inserts it in

the rule base, thus increasing the size of the rule base. The deletion operator deletes

a randomly chosen rule, thus decreasing the number of rules in the rule base by one.

44

3.1.5 Constraint Satisfaction

During evolution, the mutation, insert, and creep operations may produce

illegal offspring. In this research, it is desirable to omit illegal offspring in order to

avoid generating meaningless rules. Past research offers four solutions to this problem.

One is to introduce a penalty term that adjusts the fitness functions if a constraint

is violated. Using this approach, the genetic algorithm may have to spend time

evaluating illegal individuals. A second solution is to use decoders to avoid building

an illegal individual, while the third repairs the chromosome in such a way that the

chromosome fulfills all the constraints and constraint-preserving operators. The M-

LCS investigated here uses the fourth approach, constraint-preserving operators, to

avoid producing illegal chromosomes. To implement this solution, a procedure used

by Setnes [69]was adapted for this study. The search constraints are coded in two

vectors, vmax = [vmax
1 , vmax

2 , . . . , vmax
N] and vmin = [vmin

1 , vmin
2 , . . . vmin

N], representing

the upper and lower bounds of each condition and each action. If the mutation, creep,

or insert operators generate a value violating either of the bounds for vk, it is replaced

by

max(vmin
k , min(vk, v

max
k))

where

vmax represents the upper bounds and vmin the lower bounds.

Unlike the classical GA, which can apply both crossover and mutation to the

same individual during reproduction, the M-LCS uses an operator-based procedure

[23] for applying operators. With this procedure, each reproduction event applies

exactly one genetic operator based on some probability. Empirically, the following

probabilities were found to work well: 0.02 for NOP, 0.65 for crossover, 0.1 for muta-

tion, 0.05 for creep, 0.1 for delete and 0.08 for insert.

45

3.1.6 Fitness Function

This research uses accuracy-based fitness as described in Chapter 2. The

fitness function used in this research was empirically determined. There are no re-

strictions placed on the size of a rule base. To discourage the generation of excessive

rules, fitness is based on the accuracy of the rule base and the number of rules.

Accuracy, the percentage of correctly classified patterns, is computed using

Eq. 3.6.

accuracy =
1

p
∗ n (3.6)

where n is the number of correctly classified patterns. The fitness of the rule base is

computed using Equation 3.7.

fitness = ν ∗ accuracy + (1− ν) ∗ (
1.0

r
) (3.7)

where ν is a weight for accuracy and and r is the number of rules in the rule base. In

this research, the value for ν is 0.98.

3.1.7 Learning Algorithm

A supervised learning algorithm is used during the training mode to generate a

solution to the problem. Consider a system with n inputs (conditions) and q outputs

(actions). Given a training set S of p input-output patterns,

S = {(x1, y1), . . . , (xp, yp)}

where x ∈ <n and y ∈ {1, 2, . . ., q}. For this case, the algorithm consists of the

following steps:

46

1. Generating an initial population of rule bases of variable sizes using the con-

straints for each condition and each action, then randomly generating the asso-

ciated parameter values.

2. Evaluating the population by

(a) Processing S to compute the membership degree for each rule in the rule

base. For the ith rule Ri, expressed as If x1 is A1, . . . xn is An, then y1

is C1, . . . yq is Cq, the degree of the rule, denoted by D(Ri), is defined as

follows

D(Ri) =
1

n

n∑
k=1

mAik
(xk) (3.8)

for all patterns (x, y), where mAij
(xj) represents the membership function

value for the jth feature of pattern x and n is the number of features.

(b) Removing the duplicate rules from the rule base

(c) Removing the rule with the lowest degree if two rules are inconsistent

(d) Processing S to compute the fitness of each chromosome (rule base) by

i. Selecting the next input pattern (x, y) from the training set

ii. Computing the degree of the rule using Equation 3.8

iii. Choosing the rule with the highest degree of data fitness, assigning

this degree to fd, and choosing the action of this rule as the output

class

iv. Calculating the error for this output:
√

(outactual − outcalculated)
2

v. Determining if the error is within a specified range to ascertain if the

pattern is correctly classified and adding one to the sum of correct

output if it is, soutput = soutput + 1.

47

vi. Returning to (a) for the next pattern

(e) Calculating the output fitness using Equation 3.9

fitnessoutput =
1

p
sout (3.9)

(f) Computing the fitness using Equation 3.7 in section 3.1.6

Once the classifier has been trained, it is used in classification mode to classify unseen

patterns.

3.1.8 Classification Algorithm

Let S represent the rule base generated by the learning algorithm. The fol-

lowing procedure is used to classify a pattern by:

1. Computing the membership degree of each rule Ri in the rule base using Equa-

tion 3.8

2. Choosing the rule with the maximum degree. The output class is the action of

this rule

This mode computes the accuracy of the classifier in classifying patterns. During the

development phase, the classification algorithm is used to compute accuracy for both

the training and test sets.

48

Chapter 4

Applications of M-LCS

4.1 Introduction

To evaluate the performance of the M-LCS developed here, the framework was

used to design learning classifier systems for the Fisher iris classification problem, the

Pima Indians diabetes forecasting problem, the military garment sizing problem, and

the alcohol classification problem. Although there are several available problems from

which to choose, these were used because they represent different levels of difficulty

and data set sizes. In addition, all except the alcohol problem have published results

for comparison. As a first step the framework developed here was used to design

classifier systems that employed only one membership function as well as an M-LCS.

The results of these classifiers were compared to those reported in the literature. In

addition, the results of the one-membership function classifiers were used to evaluate

the relative performance of the M-LCS. The following general procedure was used for

each classifier:

1. Starting with a population of randomly-initialized chromosomes, the classifier

was trained until a desired fitness value was obtained or a maximum number of

49

generations was reached, whichever came first.

2. The trained classifier was then used in classification mode on both the training

and the test sets.

3. Steps 1 - 2 were repeated ten times.

4. The average performance of the ten iterations of the training set and the average

of the test set were computed.

This chapter presents the results obtained from these experiments.

4.2 Application of the M-LCS to the Fisher Iris

Data

The iris classification problem is a common benchmark in classification and

recognition studies [2, 31, 38, 57, 70]. This data set, obtained from the UCI Machine

Learning Repository, is based on the one used by R. A. Fisher in his pioneering work

on linear discriminant analysis [26]. It consists of 150 data values with four input

features — sepal length, sepal width, petal length, and petal width — and three

classes, each referring to a type of iris plant — iris setosa, iris versicolor, or iris

virginica. The problem involves classifying the patterns into one of the three classes,

a simple classification problem because the setosa class is linearly separable from the

other two classes while the latter classes overlap and cannot be linearly distinguished

[2].

For this study, the training and the test sets were constructed using the same

method as those used by Simpson [72]. Specifically, the first twenty-five patterns of

each class were selected for the training set and the remaining twenty-five for the

50

test set, yielding seventy-five training patterns and seventy-five test patterns. To

apply the M-LCS, the population size was set to 100 chromosomes, each representing

a complete rule base of if-then rules, the number of rules in a rule base ranging

from one to five. The maximum number of generations was 1500. Most of the

classifiers were completely trained before reaching this number, and training beyond

1500 generations caused over-training of the training set and, consequently, produced

lower generalization capabilities. During training, the GA learned the number of

rules, and for each, it learned the membership function for each input feature, the

parameters of each membership function, and the output class for the rule.

The membership functions obtained by using the best fuzzy function classifier

are shown in Figure 4.1. Only three membership functions were needed for the sepal

length. Although the LCS generated five membership functions for sepal width, two

of them were almost identical and could be easily combined. Similarly, two of the

four functions generated for petal length and petal width could be combined. These

results closely match those reported by other researchers. For example, the VISIT

algorithm devised by Chang et al.[19] utilized two membership functions for sepal

length, three for petal length, and two for petal width.

The rule base obtained by the best fuzzy function classifier is shown in Fig-

ure 4.2. The number of rules generated by this classifier also fits within the range of

rules reported by other researchers. The membership functions obtained from the

M-LCS are shown in Figure 4.3

The M-LCS generated the following membership functions: one trapezoidal,

two γ functions, and an L function for sepal length; a trapezoidal, triangular, γ, and

L function for sepal width; a γ, an L, and two fuzzy functions for petal length; and

a γ, an L, a triangular, and a fuzzy function for petal width. The GA chose each

membership function in its set.

51

Figure 4.1: Membership sets generated by fuzzy function classifier for iris

52

Figure 4.2: Rule base for the fuzzy function classifier for iris

53

Figure 4.3: M-LCS membership functions for iris problem

The rule base having the highest average classification rate out of ten runs is shown

in Figure 4.4.

As this figure shows, the best rule base generated by the M-LCS consists of

four rules; however, during training, the number of rules varied from three to twelve.

This number of rules is consistent with those reported by other researchers. The

graphical representation of the rules in Figure 4.4 can be written in the form given in

Table 4.1, where SL is sepal length, SW is sepal width, PL is petal length and PW

is petal width. If linguistic sets are assigned to the membership sets, then the rules

can be written in a form that is more understandable as demonstrated in Table 4.2.

To evaluate the performance of the classifiers used in this research, the per-

formance of each was compared to those listed in Table 4.3.

The average of the ten runs for each of the single membership functions and the

M-LCS for the training set and the test set at the end of the classifier training are

54

Figure 4.4: M-LCS rule base for iris problem

55

Table 4.1: M-LCS rules for classifying the iris plant

R1: if SL is in the interval [5.6, 18.77] and SW in the interval [13.3, 58.1] and
PL is close to 25.9 and PW is close to 58.0,
then the class is Versicolor.

R2: if SL is less than 5.0 and SW is less than 16.1 and
PL is close to 33.2 and PW is less than 58.6,
then the class is Setosa.

R3: if SL is greater than 15.7 and SW is greater than 51.7 and
PL is greater than 23.9, and PW is greater than 50.6,
then the class is Virginica.

R4: if SL is greater than 14.1 and SW is close to 23.0 and
PL is less than 26.9 and PW is close to 56.8,
then the class is Verginica.

Table 4.2: M-LCS linguistic rules for classifying the iris plant

R1: if SL is narrow and SW is narrow and
PL is short and PW is narrow
then the class is Versicolor.

R2: if SL is short and SW narrow and
PL is medium and PW is narrow
then the class is Setosa.

R3: if SL is long and SW wide and
PL is medium or long, and PW is medium or wide,
then the class is Virginica.

R4: if SL is medium or long and SW is narrow and
PL is short and PW is narrow
then the class is Verginica.

56

Table 4.3: Classification accuracy reported in literature for iris

Source #Rules Train Test Overall
Data Data

Abe - - 97.3 98.0
Aboyni 3 - - 96.1
Chang 5 - - 99.3
Guidi - - - 96.0
Halgamuge 13 - 98.7 -
Ishibuchi 13 - - 100.0
Nauck 7 - 97.3 -
Liu 6 - - 95.3
Russo 5 - 100.0 100.0
Shi 4 - 96.0 -
Setnes 3 - 98.7 -

presented in Table 4.4.

Table 4.4: Classification results obtained for the iris data

Membership All Data Train Data Test Data Test Data Test Data
Function Mean Mean Mean Min Max
Fuzzy 96.8 100 93.6 92.0 94.7
γ 96 99.1 92.9 90.7 94.7
L 94.6 99.9 89.3 76.0 94.7
Triangular 95.3 99.6 91.1 86.7 93.3
Trapezoidal 96.3 99.7 92.9 90.7 96.0
M-LCS 96.3 100 93.1 90.7 94.7

As the results indicate, the performance of each classifier is close to those reported

in the literature. Although the average classification accuracy on the test data is

lower than some, it is not significantly lower and, with the exception of the triangular

function, the overall performance of the best classifier for each function is at least

97.3%. The overall performance of the M-LCS, having only four misclassifications, is

97.3%. Thus, the best classifiers in this research perform at or near the level of those

57

reported in the literature. The results of the test set provide an indication of the

generalization ability of the classifiers, that is, how well the classifier will correctly

classify unseen patterns. On average, the L-function classifier exhibited the lowest

generalization ability, while the fuzzy-function exhibited the highest. The M-LCS

performed 0.5% below the fuzzy-function classifier.

The fuzzy function classifier comparison with the average convergence speed of

the different classifiers based on the percent accuracy during training can be seen in

Figure 4.5. If the classifier is trained offline, then the convergence speed may not be

Figure 4.5: Convergence speed of M-LCS for iris

a factor; however, if training has to be done in real time, then the convergence speed

of the classifier is important. On average, the fuzzy function classifier converged to

the optimum solution at 400 generations, while the M-LCS converged at 700. The L-

function classifier converged to its optimum solution faster than the M-LCS; however,

its accuracy is lower. This function also did not generalize well, perhaps implying

58

overfitting of the training data. The average performance of each classifier when

applied to the test set is illustrated in Figure 4.6.

Figure 4.6: Average convergence of M-LCS for iris test data

4.3 Application of the M-LCS to the Pima Indians

Diabetes Data

The Pima Indians diabetes data set, obtained from the machine-learning database

at the University of California, Irvine, has been used to design systems for predicting

the onset of diabetes in Pima Indians. The data consists of 768 input-output patterns.

In this research, 576 of these patterns were used for training and 192 for testing. The

eight features of the input are listed in Table 4.5

This classification problem, previously studied by Smith et al. [73] in 1988, by Ab-

delbar [1] in 1996, and more recently by others, has proven to be difficult. Using a

59

Table 4.5: Features of the Pima Indians Diabetes data set

Number of previous pregnancies
Plasma glucose concentration after 2 hours — Glucose Tolerance Test (GTT)
Diastolic blood pressure
triceps skin fold thickness
2-hour serum insulin
body mass index (weight divided by the square of the height)
diabetes pedigree function — evaluates subject’s family history of diabetes
age

neural network algorithm called ADAP, Smith et al. obtained a classification rate

of 76% on the test set; Abdelbar et al. used a feedforward High Order Network to

obtain a classification rate of 83%. Results obtained more recently are presented in

Table 4.6

Table 4.6: Literature results for Pima Indians Diabetes data

Source Train Test Overall
Data Data

Chang 75.8 78.2 77.0
Aboyni - - 73.05
Orriols - 74.88
MLP - 75.8 -
RBF - 75.7 -
Bayes - 72.2 -
C4.5 - 72.2 -
SVM - 77.5 -

The results of the research reported here are compared to the results obtained

by other learning classifier systems as well as those based on a different learning

paradigm. Chang [19], Aboyni [4], and Orriols [59] used a learning classifier system;

MLP, RBF, and Bayes are based on artificial neural networks, while C4.5 is a decision

tree based classifier, and SVM is a support vector machine style classifier. The results

60

are presented in Table 4.7.

Table 4.7: Results for the Pima Indians Diabetes data

Membership Overall Train Test Test
Function Mean Mean Mean Min Max
Fuzzy 79.7 80.6 77.2 74.5 80.7
γ 78.8 79.8 75.6 72.4 78.1
L 79.6 81.3 74.4 73.4 76.6
Triangular 78.9 80.5 74.4 72.4 76.6
Trapezoidal 80.1 81.6 75.6 72.4 77.6
M-LCS 79.3 80.4 75.9 73.4 79.2

Although M-LCS did not have the highest classification accuracy, its over-

all performance was only 0.8% below that of the fuzzy-function classifier, which

performed the highest. On the training set, M-LCS performed 1.2% below the

trapezoidal-function classifier, 1.3% below the fuzzy-function classifier on the test

set, but had the highest maximum test performance. Compared to the results re-

ported by other researchers, the classifier systems developed in this research were

found to be very competitive. Although the classification accuracy of M-LCS was

below that of Chang, the performance of the best M-LCS classifier was higher. The

M-LCS membership functions are presented in Figure 4.8

The convergence speed of the classifiers during training is given in Figure 4.8.

The graph indicates that the fuzzy function classifier peaked near generation fastest

convergence speed and also the highest performance. Figure 4.9 illustrates the behav-

ior of the classifiers on the test set during training. Although the classifiers continued

to slowly improve in classifying the training data, the performance on the test data

remained relatively constant. Since this is a has/has not type problem, meaning

the classification is either diabetes predicted or diabetes is not predicted, it may be

61

Figure 4.7: Membership sets generated by fuzzy function classifier for diabetes

62

Table 4.8: M-LCS rules for classifying the diabetes data

R1: If previous pregnancy is less than 4.3 and GTT is in [31.2, 117.13] and
diastolic BP is greater than 28.7 and
triceps skin fold thickness is less than 61.4 and
2-hour serum insulin is less than 734.8 and
MI is less than 29.7 and DPF is less than 0.16 and
age is greater than 21, then onset is not predicted.

R2: If previous pregnancy is less than 7 and GTT is greater than 154.8 and
diastolic BP is greater than 28.7 and
triceps skin fold thickness is less than 80.3 and
2-hour serum insulin is close to 572.5 and
BMI is close to 36.5 and DPF is less than 1.8 and
age is close to 47, then onset is predicted.

R3: If previous pregnancy is close to 8 and GTT is greater than 32.2 and
diastolic BP is between 36.0 and 73.3 and
triceps skin fold thickness is less than 70.9 and
2-hour serum insulin less than 4.7 and
BMI is close to 30 and DPF is greater than 2.1 and
age is close to 41, then onset is predicted.

R4: If previous pregnancy is close to 3 and GTT is greater than 67.4 and
diastolic BP is less than 22.8 and
triceps skin fold thickness is less than 66.1 and
2-hour serum insulin close to 115.3 and
BMI is in [28.7, 46.9] and DPF is greater than 1.3 and
age is in [51, 67], then onset is predicted.

R5: If previous pregnancy is close to 1.3 and GTT is close to 61.0 and
diastolic BP is 58.5 and
triceps skin fold thickness is less than 81.1 and
2-hour serum insulin close to 624.9 and
BMI is greater than 38.5 and DPF is close to 1.0 and
age is less than 49, then onset is not predicted.

R6: If previous pregnancy is between 12 and 17 GTT is greater than 74.1 and
diastolic BP is in [104.4, 113.2] and
triceps skin fold thickness is in [27.6, 34.3] and
2-hour serum insulin close to 270.7 and
BMI is greater than 35.0 and DPF is less than 0.75 and
age is less than 59, then onset is predicted.

63

Figure 4.8: Convergence speed during training of diabetes data

Figure 4.9: Behavior on diabetes test data during training

64

possible to use sensitivity and specificity measures to improve accuracy.

4.4 Application of M-LCS to the Army Data

The manual procedure for issuing clothing to military personnel, which is very

labor-intensive and highly susceptible to human error, includes two phases: to the

process: 1) Taking the necessary body measurements, and 2) Mapping the set of

measurements to the appropriate size. Errors that occur may include the improper

placement of the measuring tape, varying the tension of the tape, and human fatigue.

If measurements are inaccurate, then a soldier may receive garments that do not

fit, requiring additional measurements or extensive alterations. Even with accurate

measurements, a fitter is still faced with the task of mapping a set of measurements to

a chart to determine the correct garment size. When the set of actual measurements

do not correspond exactly to the measurements on the charts, the fitter determines the

correct size based on priorities among body measurements, another potential source

of human error. An automated procedure can potentially provide a more accurate

means of fitting army personnel and, therefore reduce, both the time involved and the

number of alterations required. This problem was studied by Lowe et al. [50], Davis et

al. [22], and Pargas et al. [62]. Lowe et al. provide another approach, implementing a

neural network solution to the problem, testing four encoding techniques. The results

of that research are presented in Tables 4.9 and 4.10.

To test the performance of the M-LCS for forecasting garment sizes, a data

set obtained from the Clothing Initial Issue Facility at Fort Jackson in Columbia,

SC, was used. A database of 1778 input/output patterns was separated by randomly

choosing 1200 vectors for training and using the remaining vectors for testing. This

65

Table 4.9: Army data classification accuracy

Accuracy (%)
Method Train Data Test Data

Mean Mean
Frequency Distribution 98.4 66.4
Ensemble Encoding 87.3 54.4
Normalization 23.0 -
Linear Scaling 5.0 -

Table 4.10: Army data classification accuracy (within one size)

Method Train Data Test Data
Mean Mean

Frequency Distribution 99.0 81.4
Ensemble Encoding 88.2 74.2
Normalization 28.3 -
Linear Scaling 6.7 -

research used the same eight measurements as those previously used by Lowe et al.:

height, head size, neck size, chest size, waist size, hip size, sleeve length, and weight.

During the developmental stages, classifiers were designed using different population

sizes and maximum generations; however, the final version used a population size

of 100 and a maximum of 2000 generations. For this number of generations, the

classification accuracy increased and there was no degradation in performance on the

test set. Since data representation was not the main focus of this research, the results

obtained in this research are based on the raw data. The results of applying the

single-function classifiers and M-LCS are presented in Table 4.11 and Table 4.12.

For this problem, the trapezoidal-function and triangular-function classifiers

performed best on the training data and the complete data set. The M-LCS performed

the worst, with an accuracy 4.0% below that of the triangular-function classifier.

66

Table 4.11: Results obtained for army data

Membership All Data Train Set Test Set Test Set Test Set
Function Mean Mean Mean Min Max
Fuzzy 38.2 38.7 37.2 31.3 46.2
γ 36.9 36.8 38.3 31.7 44.7
L 38.1 37.7 39.1 34.6 44.3
Triangular 40.0 40.0 40.1 35.8 43.3
Trapezoidal 38.1 37.2 40.0 37.3 41.4
M-LCS 37.7 36.0 41.1 35.6 48.3

In addition, as the results show, the classification accuracies of the single-function

classifiers and M-LCS are low compared to the results obtained by the frequency-based

and ensemble encoding networks. However, since the classifiers in this research used

raw data, not pre-processed data, it is more appropriate to compare the performances

to those of the networks that used linear scaling. When compared to this network, the

classifiers performed 31% - 35% higher on the training data, a significant difference.

Compared to the network that used normalized data, the classifiers performed 7.7% -

27.7% higher. There were no values for comparison of the performance on the test

data. Comparing the results obtained for classification within one size, those of the

classifiers were closer to those of the frequency and ensemble networks than the ones

using linear scaling or normalization.

The convergence speed of the classifiers during training is illustrated in Figure 4.10

and the behavior of the classifiers during testing in Figure 4.11.

Membership functions generated by the M-LCS are shown in Figure 4.12. The tri-

angular function performed the best for this application and the M-LCS chose four

triangular function for weight. other function was

The relative performances of the fuzzy function classifier and the M-LCS were lower on

the army data set than any other, a situation that may be attributable to the nature

67

Table 4.12: Results within one size for army data

Membership All Data Train Set Test Set Test Set Test Set
Function Mean Mean Mean Min Max
Fuzzy 76.5 75.8 77.9 70.5 84.6
γ 74.5 73.5 76.5 69.3 81.5
L 75.8 74.7 77.9 71.7 84.8
Triangular 77.1 76.7 77.8 73.8 81.3
Trapezoidal 78.4 77.1 81.0 80.1 82.5
M-LCS 76.5 74.0 81.6 77.9 88.2

Figure 4.10: Convergence speed on army data during training

68

Figure 4.11: Behavior on army test set during training

of the data. Lowe et al. discovered that the data set contains several inconsistent

patterns, which makes it difficult to classify the data. Further study is needed to

determine the cause.

4.5 Application of the M-LCS to the Alcohol Data

Data for the alcohol problem was obtained from the College of Health, Ed-

ucation, and Human Development (HEHD) at Clemson University. This problem

involves identifying specific high-risk contexts and peer reference groups at Clemson

University, promoting alcohol abuse among first-year students. Data collection for

the problem was supported by a National Institute on Alcohol Abuse and Alcoholism

Rapid Response to College Student Drinking Cooperative Agreement Grant. This

research used 633 of the patterns (475 for the training set and 158 for the test set)

to classify freshmen students into one of two classes: those who will abuse alcohol

69

Figure 4.12: Membership functions for the army data

70

and those who will not. The data for the this problem consisted of 32 input features

listed in Table 4.13.

Table 4.13: Input features for the alcohol problem

Age Will student drink in college
Student drinks beer Do parents drink
Student drinks wine Do parents drink beer
Student drinks wine coolers Do parents drink wine
Student drinks hard liquor Do parents drink wine coolers
Age student started drinking Do parents drink hard liquor
How often student drinks How often parents drink
How many drinks when socializing Parents average social drinks
Student gets alcohol at home Student plans to play intramural sports
Student gets alcohol from a friend Student plans to join a fraternity/sorority
Student purchases alcohol Student plans to join an honorary society
Student drinks at home Student plans to join a religious organization
Student drinks at friend’s home Student plans to play collegiate athletics
Student drinks at social events Student plans to join campus clubs
Student drinks at other occasions Gotten in trouble while drinking
Gender Race/ethnicity

The problem is to classify each pattern into one of two classes: alcohol abuse and not

alcohol abuse

Since this real-world problem has not been used in classification studies, there

are no reported results for comparison. The performance of the M-LCS was evaluated

by comparing it to the single-membership function classifiers. The data consisted of

633 input-output patterns, 475 of which were randomly selected for the training set

and the remaining 158 were used for the test set. The results that were obtained

through this research are reported in Table 4.14.

The alcohol problem did not present a challenge for any of the classifiers used

in this study, a situation that may be attributed to the nature of the data. For

many of the features, the values are either 0 or 1, while others have no more than

71

Table 4.14: Results of alcohol data

Membership All Data Train Test Test Test
Function Mean Data Data Min Max
Fuzzy 99.7 100.0 99.0 97.5 100
γ 99.8 100 99.1 96.8 99.4
L 99.4 99.8 98.2 96.8 99.4
Triangular 99.3 99.9 97.5 94.9 99.4
Trapezoidal 99.1 99.8 97.1 94.9 99.4
M-LCS 99.8 100 99.1 97.5 100

five discrete values. For example, do parents drink beer and does student plan to

join a club have a 0 or 1 value. The feature, how often do parents drink, has five

possible values: daily, weekly, monthly, less than monthly. Although all classifiers had

classification accuraces above 96% on the test set, the table shows that the triangular

and trapezoidal classifiers performed almost 2% below the others.

The convergence speed during training is given Figure 4.13 and the behavior

during testing is in Figure 4.14. Figure 4.13

The M-LCS, γ function, and fuzzy-function classifiers were able to classify all

training data after 25 generations and had a 99% accuracy on the test pattern after 25

generations. The L-function and the triangular functions reached 99.8% and 99.9%

respectively at generation 500, while the trapezoidal took 800 generations to reach

a peak of 99.8%. The classification accuracy was constant on the test set for the

M-LCS, γ, and fuzzy functions. The other functions stabalized after generation 700.

4.6 Discussion

The results of this research, which are very encouraging, indicate that the M-

LCS provides an alternative approach to designing a learning classifier system based

72

Figure 4.13: Convergence speed on alcohol data during training

Figure 4.14: Behavior on alcohol test set during training

73

on the Pittsburgh model and that the fuzzy, γ, and L functions provide additional

membership functions for use in the condition component of the classifiers. The fuzzy-

function classifier performed well on all applications. The accuracy of the γ-function

classifier was consistently lower than the others; however, the best γ classifier per-

formed better relative to the other classifiers. The L-function classifier performed well

on the training data but did not always generalize well. Even so, performance of the

best L classifier generated was equal to or higher than that of the others. Although

the γ- and L-function classifier did not have high accuracy, they were chosen by

M-LCS for each of the classification problems used in this research. Moreover, to de-

termine if they had a negative effect on the performance of the M-LCS, it was trained

with these two functions omitted from the function pool. There was no noticeable

change in the performance of the M-LCS. This finding suggests that including these

functions in the pool did not cause a degradation in performance. Since a number

of parameters must be determined when using a GA, altering them may improve the

performance of all of the functions.

Although M-LCS did not always perform the highest on average, the best M-

LCS classifier was generally the highest and when the best M-LCS classifier performed

below the others, the difference was no more than 1.3%. Based on the results obtained

The M-LCS reduces the need for the developer to select a membership function for

representing classifiers. M-LCS was tested with five functions, but it is flexible;

consequently, other functions may be substituted or added to the function pool.

74

Chapter 5

Conclusions and Future Work

The objective of this research has been to design and develop a framework

for a classifier system that employs multiple membership functions and then use the

framework to develop a learning classifier system for use in data mining. Incorporating

multiple membership functions in the development of a classifier system presented new

and challenging problems.

In Chapter 3, a framework for the design of a multiple membership functions

learning classifier system was presented. The classifier system expands the algebra

of current Pittsburgh classifier systems in two ways: 1) by increasing the number of

membership functions from one to five and 2) by modifying the genetic operators to

operate on chromosomes that may contain a variety of membership functions in one

rule. Of the four membership functions, two ramp functions and a fuzzy membership

function were introduced as part of this research. Although heuristic search does

not always produce the best result, heuristic search has been successful in solving

problems when an exhaustive search or a traditional method is not feasible. A genetic

algorithm is the particular heuristic search algorithm used to generate the rule base for

the multiple membership functions learning classifier system. The system uses the

75

Pittsburgh approach to represent the rule base, and variable length chromosomes,

since the number of rules necessary to solve a problem depends on the problem to be

solved.

To test the efficacy of the classifier system, it was applied to four problems

of different sizes and complexities. Three of the problems have been used by other

researchers and the fourth problem is a real-world problem that has not been used in

the past. In Chapter 4 the results were presented and, when possible, the performance

was compared to those of other results reported in the literature. In all cases, the

results of the classifiers were encouraging.

One observation of this research is that even when the M-LCS did not improve

in performance when multiple types of membership functions were used, the GA chose

the membership function that performed best when used alone. This implies that it

may be possible to use the M-LCS to assist in selecting a membership function when

a developer desires to use only one membership function.

As a result of this research, the following contributions have been made to the

field of computing:

1. a framework for developing a learning classifier system consisting of multiple

types of membership functions

2. a modified learning classifier system that employs multiple types of membership

functions to improve performance of the classifiers

3. the addition of three membership functions to be used in the condition part of

the condition-action rules

There are several areas that have not been investigated in this work.

76

1. Only the Pittsburgh model was used. Future work should use the Michigan

model to compare the two approaches for the M-LCS.

2. The representation is very restrictive, allowing a membership function to have

only two parameters. Such a restriction forces triangular and trapezoidal func-

tions to be designed in ways that generate regular triangle and trapezoidal

shapes. General triangles and trapezoids may yield better performance. Fu-

ture work will focus on alternative representation schemes, such as intervals, for

representing the rules.

3. Incorporate different membership functions and experiment to determine the

optimal number of functions to use.

4. Investigate the effects of using different selection and crossover algorithms and

different fitness functions.

5. Apply the framework to a different suite of problems to study the characteristics

of problems that lend themselves well to the framework and those that are not

as suitable.

6. The framework presented here is suitable for other application areas. Future

work will apply the framework to the selection of a a facial recognition algorithm,

given a set of algorithms rather than using the same algorithm for recognizing

each instance.

77

Bibliography

[1] A. Abdelbar and G. Tagliarini. Honest: a new high order feedforward neu-
ral network. In Proceedings of International Conference on Neural Networks
(ICNN’96), volume 2, pages 1257–62, New York, NY, USA, 3-6 June 1996 1996.
IEEE.

[2] S. Abe and M. Lan. A method for fuzzy rules extraction directly from numerical
data and its application to pattern classification. IEEE Transactions on Fuzzy
Systems, 3(1):18–28, 02 1995.

[3] S. Abe and R. Thawonmas. Fast training of a fuzzy classifier with ellipsoidal
regions. In Part 3 (of 3), September 8, 1996 - September 11, volume 3 of Pro-
ceedings of the 1996 5th IEEE International Conference on Fuzzy Systems, pages
1875–1880, New Orleans, LA, USA, 1996 1996. IEEE.

[4] J. Abonyi, J. A. Roubos, and F. Szeifert. Data-driven generation of compact,
accurate, and linguistically sound fuzzy classifiers based on a decision-tree initial-
ization. International Journal of Approximate Reasoning, 32(1):1–21, 01 2003.

[5] H. Ahammer, J. M. Kropfl, C. Hackl, and R. Sedivy. Image statistics and
data mining of anal intraepithelial neoplasia. Pattern Recognition Letters,
29(16):2189–96, 12/01 2008.

[6] F. Alonso, J. Caraca-Valente, A. L. Gonzalez, and C. Montes. Combining expert
knowledge and data mining in a medical diagnosis domain. Expert Systems with
Applications, 23(4):367–75, 11 2002.

[7] P. P. Angelov and X. Zhou. Evolving fuzzy-rule-based classifiers from data
streams. IEEE Transactions on Fuzzy Systems, 16(6):1462–1475, 2008.

[8] H. Bae, S. Kim, Y. Kim, H. L. Man, and B. W. Kwang. e-prognosis and diag-
nosis for process management using data mining and artificial intelligence. In
29th Annual Conference of the IEEE Industrial Electronics Society, volume 3 of
IECON’03, pages 2537–42, Piscataway, NJ, USA, 2-6 Nov. 2003 2003. IEEE.

[9] A. J. Bagnall and G. C. Cawley. Learning classifier systems for data mining: a
comparison of xcs with other classifiers for the forest cover data set. In 2003

78

International Joint Conference on Neural Networks, volume 3, pages 1802–7,
Piscataway, NJ, USA, 20-24 July 2003 2003. IEEE.

[10] A. L. C. Bazzan. Agents and data mining in bioinformatics: joining data gath-
ering and automatic annotation with classification and distributed clustering. In
4th International Workshop, ADMI 2009, Agents and Data Mining Interaction,
pages 3–20, Berlin, Germany, 10-15 May 2009 2009. Springer-Verlag.

[11] P. Bertone and M. Gerstein. Integrative data mining: the new direction in
bioinformatics. IEEE Engineering in Medicine and Biology Magazine, 20(4):33–
40, 07 2001.

[12] V. Bogorny, B. Kuijpers, and L. O. Alvares. St-dmql: a semantic trajectory
data mining query language. International Journal of Geographical Information
Science, 23(10):1245–76, 10 2009.

[13] L. B. Booker, D. E. Goldberg, and J. H. Holland. Classifier systems and genetic
algorithms. Artificial Intelligence, 40(1-3):235–282, 1989.

[14] T. A. Braun, T. E. Scheetz, G. Webster, A. Clark, E. M. Stone, V. C. Sheffield,
and T. L. Casavant. Identifying candidate disease genes with high-performance
computing. Journal of Supercomputing, 26(1):7–24, 08 2003.

[15] O. Buchtala and B. Sick. Goodness of fit: Measures for a fuzzy classifier. In
2007 IEEE Symposium on Foundations of Computational Intelligence, FOCI
2007, April 1, 2007 - April 5, pages 201–207, Honolulu, HI, United states, 2007
2007. Inst. of Elec. and Elec. Eng. Computer Society.

[16] L. Bull. On lookahead and latent learning in simple lcs. In 9th Annual Ge-
netic and Evolutionary Computation Conference, GECCO 2007, July 7, 2007 -
July 11, pages 2633–2636, London, United kingdom, 2007 2007. Association for
Computing Machinery.

[17] L. Bull, P. L. Lanzi, and T. O’hara. Anticipation mappings for learning classifier
systems. In 2007 IEEE Congress on Evolutionary Computation, CEC 2007,
September 25, 2007 - September 28, pages 2133–2140, Singapore, 2007 2008.
Inst. of Elec. and Elec. Eng. Computer Society.

[18] M. G. Ceruti. The relationship between artificial intelligence and data mining:
application to future military information systems. In Proceedings of IEEE In-
ternational Conference on Systems, Man, and Cybernetics, volume 3, page 1875
vol.3, Piscataway, NJ, USA, 8-11 Oct. 2000 2000. IEEE.

[19] X. Chang and J. H. Lilly. Evolutionary design of a fuzzy classifier from data.
IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics,
34(4):1894–1906, August 2004 2004.

79

[20] R. Cheng, M. Gen, and T. Tozawa. Vehicle routing problem with fuzzy due-
time using genetic algorithms. Japanese Journal of Fuzzy Theory and Systems,
7(5):665–79, 1995.

[21] C. Darwin. The origin of species by means of natural selection. London, Watts,
1929.

[22] J. S. Davis, N. Staples, and R. Pargas. Design of a system to predict garment
sizes. New Review of Applied Expert Systems, 4:17–31, 1998.

[23] L. Davis. Handbook of Genetic Algorithms. Van Nostrand Reinhold, New York,
1991.

[24] S. Dixon and X. Yu. Bioinformatics data mining using artificial immune systems
and neural networks. In 2010 International Conference on Information and Au-
tomation (ICIA 2010), pages 440–5, Piscataway, NJ, USA, 20-23 June 2010 2010.
IEEE.

[25] C. J. Enderli. Feature extraction using polynomial and sigmoidal kernels for
classification of radar sar images. In 2006 CIE International Conference on
Radar, ICR 2006, October 16, 2006 - October 19, Shanghai, China, 2006 2007.
Institute of Electrical and Electronics Engineers Inc.

[26] R. A. Fisher. The use of multiple measurements in taxonomic problems. Annals
of Eugenics, 7(part II):179–188, 1936.

[27] O. Folorunso and A. O. Ogunde. Data mining as a technique for knowledge man-
agement in business process redesign. Information Management and Computer
Security, 13(4):274–80, 2005.

[28] L. Y. Fong and K. Y. Szeto. Fuzzy adaptive rules in the forecasting of short
memory time series. In Proceedings Joint 9th IFSA World Congress and 20th
NAFIPS International Conference, volume 1, pages 598–603, Piscataway, NJ,
USA, 25-28 July 2001 2001. IEEE.

[29] Y. Francis, H. Y. Chan, F. K. Lam, and Hung Nguyen. New fuzzy classifier
with triangular membership functions. In Part 4 (of 4), June 9, 1997 - June 12,
volume 1 of Proceedings of the 1997 IEEE International Conference on Neural
Networks, pages 479–482, Houston, TX, USA, 1997 1997. IEEE.

[30] C. Franke, F. Hoffmann, J. Lepping, and U. Schwiegelshohn. Development of
scheduling strategies with genetic fuzzy systems. Applied Soft Computing Jour-
nal, 8(1):706–21, 01 2008.

[31] S. K. Halgamuge and M. Glesner. Neural networks in designing fuzzy systems
for real world applications. Fuzzy Sets and Systems, 65(1):1–12, 07/11 1994.

80

[32] D. Hand, H. Mannila, and P. Smyth. Principles of Data Mining. MIT Press,
Cambridge, Massachusetts, 2001.

[33] J. Holland. Adaptation in natural and artificial systems, 1975.

[34] J. H. Holmes, D. R. Durbin, and F. K. Winston. The learning classifier system:
An evolutionary computation approach to knowledge discovery in epidemiologic
surveillance. Artificial Intelligence in Medicine, 19(1):53–74, 2000.

[35] M. L. Huang and Q. V. Nguyen. Context visualization for visual data mining. In
Visual Data Mining - Theory, volume 4404 LNCS, pages 248–263, Tiergarten-
strasse 17, Heidelberg, D-69121, Germany, Techniques and Tools for Visual An-
alytics 2008. Springer Verlag.

[36] B. Indranil and R. K. Mahapatra. Business data mining-a machine learning
perspective. Information and Management, 39(2):211–25, 12 2001.

[37] N. Inuzuka and T. Makino. Implementing multi-relational mining with relational
database systems. In 13th International Conference, KES 2009, Knowledge-
Based and Intelligent Information and Engineering Systems, pages 672–80,
Berlin, Germany, 28-30 Sept. 2009 2009. Springer.

[38] H. Ishibuchi, K. Nozaki, N. Yamamoto, and H. Tanaka. Construction of fuzzy
classification systems with rectangular fuzzy rules using genetic algorithms. Fuzzy
Sets and Systems, 65(2-3):237–53, 08/10 1994.

[39] L. Jikeng, W. Xudong, and S. K. Tso. Ann-based data mining for the detection
of the most influential variables causing mismatch of super-heater outlet tem-
peratures in a thermo-plant. In CyberC 2009, 2009 International Conference on
Cyber-Enabled Distributed Computing and Knowledge Discovery, pages 5–11,
Piscataway, NJ, USA, 10-11 Oct. 2009 2009. IEEE.

[40] H. Jin and H. Liu. Research on visualization techniques in data mining. In 2009
International Conference on Computational Intelligence and Software Engineer-
ing, CiSE 2009, December 11, 2009 - December 13, Wuhan, China, 2009 2009.
IEEE Computer Society.

[41] C. Joung, H. Kang, and K. Sim. Fuzzy classifier system for edge detection. In
1999 IEEE International Conference on Systems, Man, and Cybernetics ’Human
Communication and Cybernetics’, October 12, 1999 - October 15, volume 4,
pages IV–911 – IV–915, Tokyo, Jpn, 1999 1999. IEEE.

[42] P. R. Kersten. The fuzzy quadratic classifier. In Proceedings of IEEE 5th Inter-
national Fuzzy Systems, New York, NY, USA, 8-11 Sept. 1996 1996. IEEE.

81

[43] B. Krishnamurthy, T. Malik, S. Stamatis, V. Venkatasubramanian, and
J. Caruthers. Rule-based classification systems for informatics. In 2008 IEEE
Fourth International Conference on eScience, pages 420–1, Piscataway, NJ, USA,
7-12 Dec. 2008 2008. IEEE.

[44] P. L. Lanzi. An analysis of generalization in xcs with symbolic conditions. In
2007 IEEE Congress on Evolutionary Computation, CEC 2007, September 25,
2007 - September 28, pages 2149–2156, Singapore, 2007 2008. Inst. of Elec. and
Elec. Eng. Computer Society.

[45] P. L. Lanzi. Learning classifier systems: Then and now. Evolutionary Intelli-
gence, 1(1):63–82, 2008.

[46] P. L. Lanzi, S. Rocca, and S. Solari. An approach to analyze the evolution of
symbolic conditions in learning classifier systems. In 9th Annual Genetic and
Evolutionary Computation Conference, GECCO 2007, July 7, 2007 - July 11,
pages 2795–2800, London, United kingdom, 2007 2007. Association for Comput-
ing Machinery.

[47] H. Lee, K. Chen, and I. Jiang. A neural network classifier with disjunctive fuzzy
information. Neural Networks, 11(6):1113–1125, 1998.

[48] M. Lee and C. Yang. A novel data mining algorithm and knowledge-based di-
agnostic rules for medical thermograph. Biomedical Engineering, Applications
Basis Communications, 21(1):1–8, 02 2009.

[49] H. Lodhi, S. Muggleton, and M. J. Sternberg. Learning large margin first order
decision lists for multi-class classification. In 12th International Conference on
Discovery Science, DS 2009, October 3, 2009 - October 5, volume 5808 LNAI,
pages 168–183, Porto, Portugal, 2009 2009. Springer Verlag.

[50] R. M. Lowe and E. W. Page. Application of neural networks to garment size
prediction. In Joint Conference of Information Sciences, pages 176–179, March
1997 1997.

[51] S. A. Maelainin and A. Bensaid. Fuzzy data mining query language. In KES
’98, volume 1 of Proceedings of Second International Conference on Conventional
and Knowledge-Based Intelligent Electronic Systems, pages 335–40, New York,
NY, USA, 21-23 April 1998 1998. IEEE.

[52] S. Z. Mahmoodabadi, A. Ahmadian, M. D. Abolhassani, J. Alireazie, and
P. Babyn. Ecg arrhythmia detection using fuzzy classifiers. In NAFIPS 2007:
2007 Annual Meeting of the North American Fuzzy Information Processing So-
ciety, June 24, 2007 - June 27, pages 48–53, San Diego, CA, United states, 2007
2007. Institute of Electrical and Electronics Engineers Inc.

82

[53] D. Mellor. A first order logic classifier system. In GECCO 2005 - Genetic and
Evolutionary Computation Conference, June 25, 2005 - June 29, pages 1819–
1826, Washington, D.C., United states, 2005 2005. Association for Computing
Machinery.

[54] Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Stringer-Verlag, New York, 1994.

[55] V. Mikovic and M. Milosavljevic. Application of symbolic inductive learning
methods to gene expression analyses. In 9th Symposium on Neural Network
Applications in Electrical Engineering, NEUREL 2008, September 25, 2008 -
September 27, pages 99–102, Belgrade, Rs, 2008 2008. Inst. of Elec. and Elec.
Eng. Computer Society.

[56] J. Moreno-Torres, X. Llora, and D. E. Goldberg. Binary representation in gene
expression programming: towards a better scalability. In 2009 Ninth Interna-
tional Conference on Intelligent Systems Design and Applications (ISDA 2009),
pages 1441–4, Piscataway, NJ, USA, 30 Nov.-2 Dec. 2009 2009. IEEE.

[57] D. Nauck and R. Kruse. A neuro-fuzzy method to learn fuzzy classification rules
from data. Fuzzy Sets and Systems, 89(3):277–88, 08/01 1997.

[58] N. Navaroli, D. Turner, A. I. Concepcion, and R. S. Lynch. Performance com-
parison of adrs and pca as a preprocessor to ann for data mining. In 2008 Eighth
International Conference on Intelligent Systems Design and Applications, vol-
ume 1, pages 47–52, Piscataway, NJ, USA, 26-28 Nov. 2008 2008. IEEE.

[59] A. Orriols-Puig, J. Casillas, and E. Bernado-Mansilla. Fuzzy-ucs: A michigan-
style learning fuzzy-classifier system for supervised learning. IEEE Transactions
on Evolutionary Computation, 13(2):260–83, 04 2009.

[60] A. Orriols-Puig, X. Llora, and D. E. Goldberg. How xcs deals with rarities in
domains with continuous attributes. In 12th Annual Genetic and Evolution-
ary Computation Conference, GECCO-2010, July 7, 2010 - July 11, pages 1–8,
Portland, OR, United states, 2010 2010. Association for Computing Machinery.

[61] C. Ouyang and S. Lee. Knowledge acquisition from input-output data by fuzzy-
neural systems. In Part 2 (of 5), October 11, 1998 - October 14, volume 2 of
Proceedings of the 1998 IEEE International Conference on Systems, Man, and
Cybernetics, pages 1928–1933, San Diego, CA, USA, 1998 1998. IEEE.

[62] R. P. Pargas, N. J. Staples, and J. S. Davis. Automatic measurement extraction
for apparel from a three-dimensional body scan. Optics and Lasers in Engineer-
ing, 28(2):157–172, 1997.

83

[63] Y. Peng, G. Kou, Y. Shi, and Z. Chen. A descriptive framework for the field
of data mining and knowledge discovery. International Journal of Information
Technology and Decision Making, 7(4):639–682, 2008.

[64] H. Polheim. Geatbx: Genetic and evolutionary toolbox for use with matlab.
Technical report, 1995-2005.

[65] V. Rayward-Smith. Statistics to measure correlation for data mining applica-
tions. Computational Statistics and Data Analysis, 51(8):3968–82, 05/01 2007.

[66] C. Reddy and M. Doshi. Effects of combining classifiers.

[67] D. Rivero, J. Rabunal, J. Dorado, and A. Pazos. Automatic design of anns by
means of gp for data mining tasks: iris flower classification problem. In Proceed-
ings, Part I, Adaptive and Natural Computing Algorithms. 8th International
Conference, ICANNGA 2007, pages 276–85, Berlin, Germany, 11-14 April 2007
2007. Springer-Verlag.

[68] J. Seng and T. C. Chen. An analytic approach to select data mining for business
decision. Expert Systems with Applications, 37(12):8042–57, 12 2010.

[69] M. Setnes and H. Roubos. Transparent fuzzy modeling using fuzzy clustering and
gas. In Proceedings of NAFIPS-99: 18th International Conference of the North
American Fuzzy Information Processing Society, pages 198–202, Piscataway, NJ,
USA, 10-12 June 1999 1999. IEEE.

[70] M. Setnes and H. Roubos. Ga-fuzzy modeling and classification: complexity and
performance. IEEE Transactions on Fuzzy Systems, 8(5):509–22, 10 2000.

[71] M. Shetty-Wagoner, K. S. Rattan, and R. Siferd. Membership function generator
circuit for a fuzzy logic controller. In Proceedings of NAECON ’93 - National
Aerospace and Electronics Conference, volume 1, pages 48–53, New York, NY,
USA, 24-28 May 1993 1993. IEEE.

[72] P. K. Simpson. Fuzzy min-max neural networks. i. classification. IEEE Trans-
actions on Neural Networks, 3(5):776–86, 1992.

[73] J. W. Smith, J. E. Everhart, W. C. Dickson, W. C. Knowler, and R. S. Johannes.
Using the adap learning algorithm to forecast the onset of diabetes mellitus. In
Proceedings - Twelfth Annual Symposium on Computer Applications in Medical
Care, November 6, 1988 - November 9, pages 261–265, Washington, DC, USA,
1988 1988. Publ by IEEE.

[74] C. Soares, A. M. Jorge, and M. A. Domingues. Monitoring the quality of meta-
data in web portals using statistics, visualization and data mining. In 12th

84

Portuguese Conference on Artificial Intelligence, EPIA 2005 - Progress in Ar-
tificial Intelligence, December 5, 2005 - December 8, volume 3808 LNCS, pages
371–382, Covilha, Portugal, 2005 2005. Springer Verlag.

[75] K. Taboada, S. Mabu, E. Gonzales, K. Shimada, and K. Hirasawa. Fuzzy classi-
fication rule mining based on genetic network programming algorithm. In SMC
2009, 2009 IEEE International Conference on Systems, Man and Cybernetics,
pages 3860–5, Piscataway, NJ, USA, 11-14 Oct. 2009 2009. IEEE.

[76] K. Toh. Training a reciprocal-sigmoid classifier by feature scaling-space. Machine
Learning, 65(1):273–308, 10 2006.

[77] S. Tsumoto, K. Matsuoka, and S. Yokoyama. Application of data mining to
medical risk management. In Data Mining, Intrusion Detection, Information
Assurance, and Data Networks Security 2008, volume 6973, pages 697308–1,
USA, 03/16 2008. SPIE - The International Society for Optical Engineering.

[78] M. Usman, S. Asghar, and S. Fong. A conceptual model for combining enhanced
olap and data mining systems. In 2009 Fifth International Joint Conference on
INC, IMS and IDC, pages 1958–63, Piscataway, NJ, USA, 25-27 Aug. 2009 2009.
IEEE.

[79] M. Wang, X. Zhou, and T. Chua. Automatic image annotation via local multi-
label classification. In 2008 International Conference on Image and Video Re-
trieval, CIVR 2008, July 7, 2008 - July 9, pages 17–26, Niagara Falls, ON,
United states, 2008 2008. Association for Computing Machinery.

[80] S. W. Wilson. Generalization in the xcs classifier system. In Proceedings of
Genetic Programming Conference (GP-98), pages 665–74, San Francisco, CA,
USA, 22-25 July 1998 1998. Morgan Kaufmann Publishers.

[81] S. W. Wilson. Mining oblique data with xcs. In Revised Papers, Advances in
Learning Classifier Systems. Third International Workshop, IWLCS 2000, pages
158–74, Berlin, Germany, 15-16 Sept. 2000 2001. Springer-Verlag.

[82] S. W. Wilson. Classifiers that approximate functions. Natural Computing, 1(2-
3):211–33, 2002.

[83] H. Xu, S. Mannor, and C. Caramanis. Sparse algorithms are not stable: a no-free-
lunch theorem. In 2008 46th Annual Allerton Conference on Communication,
Control, and Computing, pages 1299–303, Piscataway, NJ, USA, 23-26 Sept. 2008
2008. IEEE.

[84] L. Yao, K. Weng, and R. Chang. A fuzzy classifier with directed initialization
adaptive learning of norm inducing matrix. In 2009 First Asian Conference on

85

Intelligent Information and Database Systems, ACIIDS, pages 226–31, Piscat-
away, NJ, USA, 1-3 April 2009 2009. IEEE.

[85] S. Zhang and J. Zhang. A new classification mining model based on the data
warehouse. In Proceedings of the 2003 International Conference on Machine
Learning and Cybernetics, volume 1, pages 168–71, Piscataway, NJ, USA, 2-5
Nov. 2003 2003. IEEE.

86

	Clemson University
	TigerPrints
	12-2010

	Evolutionary Strategies for Data Mining
	Rose Lowe
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	Introduction
	Dissertation Objectives

	Background
	Introduction
	Data Mining
	The Classification Problem
	Learning Classifier Systems
	Genetic Algorithms and Biological Evolution
	Search

	A Modified Learning Classifier System
	A Framework for M-LCS

	Applications of M-LCS
	 Introduction
	Application of the M-LCS to the Fisher Iris Data
	Application of the M-LCS to the Pima Indians Diabetes Data
	Application of M-LCS to the Army Data
	Application of the M-LCS to the Alcohol Data
	Discussion

	Conclusions and Future Work
	Bibliography

