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Abstract

In this thesis we explore three di�erent sub�elds in the area of number theory. The

�rst topic we investigate involves modular forms, speci�cally nearly holomorphic eigenforms.

In Chapter 3, we show the product of two nearly holomorphic eigenforms is an eigenform for

only a �nite list of examples. The second type of problem we analyze is related to the rank of

elliptic curves. Speci�cally in Chapter 5 we give a graph theoretical approach to calculating

the size of 3-Selmer groups for a given family of elliptic curves. By calculating the size of

the 3-Selmer groups, we give an upper bound for the rank of an elliptic curve. Finally, in

Chapter 7, we conclude with an exposition of work from Goss, Thakur and Diaz-Vargas

related to Drinfeld modules. We discuss how to build a zeta function for Drinfeld modules

and introduce a symmetric group discovered by Thakur and Diaz-Vargas. An element in the

symmetric group is essentially a set permutation of the p-adic integers. It is suspected that

there is a relationship between this group and the zeros of certain special zeta functions.

We give a speci�c example of this suspected connection and make a conjecture about this

action.
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Chapter 1

Introduction

Number theory is a broad branch of mathematics dating back thousands of years.

There are numerous sub�elds which have been developed and studied over the years. The

following work is a collection of problems on which I have focused my graduate research. This

dissertation is broken down into three sections. We begin with results on nearly holomorphic

modular forms, then explore elliptic curves and Selmer groups and �nally �nish with Zeta

functions over function �elds. Each section contains a chapter dedicated to background

material, which is followed by a chapter on recent results. Here, we give an overview of what

the reader will �nd in each section.

1.1 Introduction to Nearly Holomorphic Modular Forms

It is well known that the modular forms of a speci�c weight for the full modular group

form a complex vector space. The action of the algebra of Hecke operators on these spaces

is well understood. For instance, we know that there is a basis for such spaces composed

entirely of forms called Hecke eigenforms which are eigenvectors for all of the Hecke operators

simultaneously. Since the set of all modular forms (of all weights) for the full modular group

1



can be viewed as a graded complex algebra, it is quite natural to ask if the special property

of being a Hecke eigenform is preserved under multiplication. This problem was studied

independently by Ghate [34] and Duke [29] and they found that it is actually quite rare

that the product of Hecke eigenforms is again a Hecke eigenform. In fact, they proved that

there are only a �nite number of examples of this phenomenon. Emmons and Lanphier

[30] extended these results to an arbitrary number of Hecke eigenforms. The more general

question of preservation of eigenforms through the Rankin-Cohen bracket operator (a bilinear

form on the graded algebra of modular forms) was studied by Lanphier and Takloo-Bighash

[50, 51] and led to a similar conclusion. One can see [60] or [73] for more on these operators.

The work mentioned above focuses on eigenforms which are �new� everywhere. It

seems natural to extend these results to eigenforms which are not new. In Chapter 3, we

consider modular forms which are �old� at in�nity in the sense that the form comes from a

holomorphic form of lower weight. More precisely, we show that the product of two nearly

holomorphic eigenforms is an eigenform for only a �nite list of examples (see Theorem 21).

It would also be interesting to consider the analogous question for forms which are old at

one or more �nite places.

1.2 Introduction to Selmer Groups

One of the major open problems in number theory involves calculating the rank of an

elliptic curve. By calculating the size of the Selmer group, we can give an upper bound for

the rank of a given elliptic curve. The goal of Chapter 5 is to bound the size of the 3-Selmer

groups for a family of elliptic curves with 3-torsion given by

Eab : y2 = x3 + (ax+ b)2

2



and its auxiliary curve

E ′ab′ : y2 = x3 − 3(ax+ b′)2

with b′ = 27−4a3

9
and therefore provide a bound for the rank of Eab. Speci�cally, we analyze

the 3-Selmer groups associated to 3-descent by isogeny of such elliptic curves by relating

them to graphs with certain properties, then translate the graph theory into a problem

involving matrix analysis. Our methods use an elementary approach involving algebra and

combinatorics. These methods have been employed to study 2-Selmer groups which arise

from 2-descent for the family of congruent number curves, possessing 2-torsion, but not for

curves with 3-torsion or for 3-Selmer groups. Speci�cally, Feng and Xiong [32] introduce the

notion of �odd graphs� in order to study the 2-Selmer groups of congruent number curves

and Faulkner and James [31] extend their results to allow a graph theoretical computation of

2-Selmer groups. We extend their methods to the computation of 3-Selmer groups of elliptic

curves with 3-torsion. This graph theoretical approach o�ers a visual and more elementary

description of 3-Selmer groups. Signi�cant work has been done using a linear algebraic

approach to bound the dimension of 3-Selmer groups. Speci�cally, using the work of Top

[68], DeLong [23] gives a formula for the dimension of 3-Selmer groups using vector spaces

and the 3-ranks of quadratic number �elds. For additional related work, we refer the reader

to [11, 41, 42, 45, 55, 71].

In Chapter 4 we give an overview of 3-descent maps and their relation to the rank of

an elliptic curve with rational 3-torsion. Next, we follow the treatment given in [14] and we

associate the following homogeneous polynomials of degree 3 to Eab and E
′
ab′ respectively

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

3



and

Fu′(X, Y, Z) =
(
γ
(
X + Y

√
−3
)3 − γ

(
X − Y

√
−3
)3
)
/
√
−3

+2aZ
(
X + Y

√
−3
) (
X − Y

√
−3
)

+ (2b′/N(γ))Z3.

Using these polynomials, we arithmetically de�ne 3-Selmer groups as opposed to the usual

de�nition involving Galois cohomology. For a more general treatment, we refer the reader

to [17, 18, 33]. Finding integer solutions to the above equations is di�cult, so we relax

the condition and de�ne the 3-Selmer groups, Sel(φ)(Eab) and Sel(φ̂)(E ′ab′), to be the set

of u ∈ Q∗/(Q∗)3 (respectively, u′ ∈ Q∗(
√
−3)/(Q∗(

√
−3))3) for which Fu(X, Y, Z) = 0

(respectively Fu′(X, Y, Z) = 0) has local solutions for all places. Once we de�ne Selmer

groups in the above manner, it is natural to investigate when we obtain local solutions. We

discuss the local solubility of the homogeneous polynomials associated to Eab in Chapter

5, Section 5.1. Many of these conditions involve checking if ratios of the coe�cients of the

homogeneous polynomials are cubes modulo a given prime.

After completely characterizing when we obtain local solutions, we begin exploring

this question in terms of graph theory. For the elliptic curve, Eab, we construct a directed

graph G′ with subgraph G. The vertices of G and G′ are comprised of the primes dividing

2b and the discriminant of the curve. We draw directed edges between primes where local

solutions are not guaranteed and label each directed edge with a cubic root of unity. Next we

introduce the idea of a �three-balanced� partition, (S1, S2, S3), of the vertices of the subgraph

G. We identify each set in the partition with a coe�cient associated to the homogeneous

polynomial, Fu(X, Y, Z). The general idea is that a partition of a graph is three-balanced if

the ratios of the associated coe�cients are cubes modulo a given prime. The prime p = 3

is slightly more complicated, so we introduce the idea of �three-quasi-balanced� partitions

as well. We show that given a three-balanced partition, we can construct an element in the

4



3-Selmer group, Sel(φ)(Eab), associated to the elliptic curve Eab.

For example, consider the family of elliptic curves

En/Q : y2 = x3 + n2,

and its auxiliary family

E ′n : y2 = x3 − 27n2.

There are isogenies φ : En → E ′n given by

φ(P ) = φ((x, y)) =

(
x3 + n2

x2
,
y(x3 − 8n)

x3

)
.

We realize a concrete identi�cation between the associated Selmer group, Sel(φ)(En), and

the subgroup of Q∗/(Q∗)3 consisting of equivalence classes [u] with u = u1u
2
2 for which the

equation

u1x
3 + u2y

3 +
2n

u1u2

z3 = 0

has non-trivial solutions over R and Qp for every prime p. Casting this condition into

the language of graph theory, we construct a directed graph G′ with subgraph G where

the vertices of G are exactly the prime divisors of 2n and the prime 3. Partitioning the

vertices G into 3 possibly empty subsets, (S1, S2, S3), if this partition is three-balanced, then

u =
∏
p∈S1

p
∏
p∈S2

p2 is an element in Sel(φ)(En). In fact, we have the following theorem.

Theorem 1. Let En : y2 = x3 + n2. Suppose that n is odd, square-free, and divisible by 3,

and de�ne G to be the associated digraph. Then

∣∣∣Sel(φ)(En)
∣∣∣ = #{three-balanced partitions of G}.

For E ′ab′ , we take a slightly di�erent approach. In this setting we construct a graph G′′

5



with subgraphs G′ and G. The vertices of G, G′ and G′′ are comprised of the primes dividing

2b′ and the discriminant. However, in this case, we place primes in di�erent subgraphs

depending on their classi�cation; split primes, inert primes and rami�ed primes in Q(ζ3).

The subgraph G consists only of split primes which divide 2b′. Again, we draw directed

edges between primes for which local solutions are not guaranteed and label each with a

cubic root of unity. Due to complications associated with the local solubility at the primes

2 and 3, we do not require local solutions in Q2 and Q3. Hence we introduce the subgroup

Sel
(φ̂)
S (E ′ab′) ⊂ Q∗(

√
−3)/(Q∗(

√
−3))3, where we relax the conditions on all primes in S.

Once we have constructed the graph, we introduce the notion of a �good� labeling on the

vertices of the subgraph G. We label each vertex in G with a 0, 1 or 2 and identify the primes

labeled with a 1 or a 2 to the parameters γ and γ in Fu′(X, Y, Z). The idea is that a good

labeling will produce an element in the modi�ed 3-Selmer group, Sel
(φ̂)
S (E ′ab′), associated to

the auxiliary curve E ′ab′ . This notion of employing the methods of graph theory to describe

the 3-Selmer group gives us a visual interpretation of what these groups look like and we can

easily construct examples. Additionally, it gives a de�nition of the Selmer group, which is

completely elementary and could be used, as in [55], to obtain results on the average ranks

of 3-Selmer groups of elliptic curves with 3-torsion.

Finally, for completeness, we use the associated graphs to construct a Laplacian

matrix. Indexing the rows and columns by primes in the vertex set, we can relate the

notion of a three-balanced partition and a good labeling to a Laplacian matrix. The primes

associated with the columns will be those primes which are the heads of the directed edges

and the primes associated with rows will be the primes which are the tails of the directed

edges. The entries of the matrix will consist of cubic roots of unity and zeros. If a prime

is associated with both a row and column, this entry will either be the sum of the other

entries in the row or the negative of this sum, reduced modulo 3. Looking at the kernel

of a submatrix of the Laplacian matrix, we can construct an element of the Selmer group

6



(or modi�ed Selmer group in the case of the auxiliary curve). Employing the results of the

rank-nullity theorem, we can bound the size of the 3-Selmer group. Therefore, combining

this result with the fact that the rank of the elliptic curve is bounded by the product of the

sizes of the 3-Selmer groups, Sel(φ)(Eab) and Sel(φ̂)(E ′ab′), we can give an upper bound for the

rank of Eab.

1.3 Introduction to Zeta Functions for Drinfeld Modules

Euler computed values of the Riemann zeta function at the positive even integers and

the negative integers. By comparing them he found the basic symmetry given by the famous

functional equation of ζ(s).

In classical number theory, mathematicians are interested in studying elliptic curves

and their associated L-functions. As stated in Section 1.2, we are interested in calculating

the rank of a given elliptic curve. Recall, Mordell's Theorem [63] tells us that given an

elliptic curve E of rank r over Q, we can write

E(Q) = Zr ⊕ E(Q)tors.

Additionally, we are interested in a given elliptic curve's associated Hasse-Weil L-function,

L(E, s) and its value at s = 1, which is called the `critical value.' The Birch Swinnerton-Dyer

Conjecture relates the arithmetic of a curve to the behavior of its L-function at s = 1. More

precisely,

Theorem 2 (Weak Birch Swinnerton-Dyer Conjecture). The rank of an elliptic curve equals

the order of vanishing of its associated L-function at s = 1.

We want to attempt to build a zeta function for Drinfeld modules by comparing it

to L-series for elliptic curves. In characteristic p, the construction of a zeta function for the

7



Carlitz module, a dimension one rank one Drinfeld module, is the analogue to the classical

zeta function. The zeta function of a rank two Drinfeld module is the analogue to the zeta

function of an elliptic curve. In characteristic p, there are results at the positive and negative

integers. Recall the classical zeta function satis�es a functional equation relating the values

of the Riemann zeta function at s and 1 − s. In characteristic p, however, all attempts to

obtain an analogous result have been unsuccessful.

Through the work of Dinesh Thakur and Javier Diaz-Vargas they discovered a sym-

metric group which conjecturally allows one to establish certain �niteness results on trivial

zeros for characteristic p zeta functions [66, 26]. Further calculations indicate that in the

polynomial ring case, this group acts on the zeros of the zeta function. Chapter 7 will give

an exposition of work done by Goss, Thakur, Diaz-Vargas as well as others on the action

of this symmetric group on zeta zeros. Speci�cally we will de�ne zeta functions of Drinfeld

modules as functions from C∞ to C∞, which is the analogue of C. There are a few obstacles

Goss addresses in his work since exponentiating elements over an extension of a �nite �eld

is not the same as in R. We have also included some examples we computed to help solid-

ify the concepts. In addition, we will de�ne the symmetric group Thakur and Dias-Vargas

discovered, which seems to act on zeros of the zeta function and give an example of this

symmetry. For the unfamiliar reader, a brief introduction to Drinfeld modules can be found

in Chapter 6.

8



Chapter 2

Background on Modular Forms

The purpose of this chapter is to give the reader a brief introduction to modular

forms. For further details, we refer the reader to [24, 46, 47, 58].

2.1 Basic De�nitions and Notation

Let R be a commutative ring. The general linear group is de�ned as

GL2(R) :=

g =

a b

c d

 : det g ∈ R∗

 .

The special linear group is a subset of the general linear group, de�ned as

SL2(R) := {g ∈ GL2(R) : det g = 1} .

For sake of simplicity, we will speci�cally examine the cases when R = R and R = Z. Let

C̃ := C ∪ {∞} where ∞ represents the point at in�nity. This is equivalent to the complex

projective line P1
C, which is also known as the �Riemann sphere.�

9



Let g ∈ SL2(R) and z ∈ C. De�ne

gz :=
az + b

cz + d
(2.1)

g∞ :=
a

c
= lim

z→∞
gz (2.2)

We de�ne a fractional linear transformation of the Riemann sphere C̃ by the map

z 7→ gz. Equations (2.1) and (2.2) de�ne a group action on C̃, i.e. g1(g2z) = (g1g2)z and

ez = z.

Remark 1. Observe that for g = −I =

−1 0

0 −1

, then gz is the identify map. However,

±I are the only matrices which act trivially on C̃. Therefore, the quotient group, PSL2(R) :=

SL2(R)/± I, acts faithfully on C; meaning every element other than the identity acts non-

trivially.

We denote the upper half plane by H ⊂ C where

H = {z ∈ C : Im(z) > 0} .

Notice that any g ∈ SL2(R) preserves H, since Im(z) > 0 implies Im(gz) > 0. To see this,

10



observe that

Im(gz) = Im

(
az + b

cz + d

)

= Im

(
(az + b)(cz + d)

|cz + d|2

)

= |cz + d|−2 Im (adz + bcz)

= |cz + d|−2 (ad− bc)Im(z)

= |cz + d|−2 Im(z).

Note that the last equality follows since det(g) = 1. From this we can see that SL2(R) acts

on H by the transformations given in equations (2.1) and (2.2).

An important subgroup of SL2(R) is SL2(Z), the set of matrices consisting of integer

entries. It is known as the full modular group and is typically denoted by Γ. Set Γ :=

Γ/± I. This group acts faithfully on H as well and is one of the basic groups which arise in

number theory.

Next, we will introduce some special subgroups of Γ. Let N ∈ Z+, then we de�ne the

principal congruence subgroup of level N by

Γ(N) :=


a b

c d

 ∈ SL2(Z) : a ≡ d ≡ 1 (N), b ≡ c ≡ 0 (N)

 .

This is a normal subgroup. Also, observe Γ(1) = Γ. Any subgroup of Γ containing Γ(N) is
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called a congruence subgroup of level N . Set

Γ0(N) :=


a b

c d

 ∈ Γ : c ≡ 0 (N)


and

Γ1(N) :=


a b

c d

 ∈ Γ0(N) : a ≡ 1 (N)

 .

Note that for Γ1(N), d ≡ 1 (N). These are the most important congruence subgroups of Γ.

When a group acts on a set, it divides the set into equivalence classes. Let G be a

subgroup of Γ and let z1, z2 ∈ H. Then z1 and z2 are G-equivalent if there exists g ∈ G

such that z2 = gz1. Let F be a closed region in H. We say that F is the fundamental

domain for the subgroup G of Γ if every z ∈ H is G-equivalent to a point in F , but no two

distinct points z1, z2 in the interior of F are G-equivalent.

The following proposition de�nes a fundamental domain for Γ.

Proposition 3 (Chapter 3, Proposition 1, [47]). The region

F :=

{
z ∈ H : −1

2
≤ Re(z) ≤ 1

2
& |z| ≥ 1

}

is a fundamental domain for Γ.

For a detailed proof, we refer the reader to [47].

As mentioned previously, the group Γ acts on the set H with fundamental domain

F. One can identify the Γ-equivalent points on the boundary of F and we denote the Γ-

equivalence classes in H by Γ \ H. Let H denote the set H ∪ Q ∪ {∞}. Notice that we

adjoin not only ∞, but the rationals, Q, as well. Then we identify adjoined points under

Γ-equivalence. A Γ-equivalence class of points in Q ∪ {∞} is called a cusp of Γ. Modular

forms need to be holomorphic on H as well as at the cusps in order to keep their associated
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vector spaces �nite dimensional. With a little work, one can show that Γ permutes the cusps

transitively. To see this, consider a fraction
a

c
with (a, c) = 1. Then by solving the equation

ad − bc = 1 for b and d, by de�nition the matrix

a b

c d

 ∈ Γ sends ∞ to
a

c
. Therefore all

rational numbers are Γ-equivalent to ∞, hence Γ = SL2(Z) only has one cusp.

One can extend the usual topology on H to the set H. We will show how to extend

the topology to H ∪ {∞} and refer the interested reader to [47] for details on H.

Consider the set of open neighborhoods of∞ of the form NC = {z ∈ H : Imz > C}∪

{∞} for C > 0. By mapping H to the punctured open unit disk; sending

z 7→ q := e2πiz (2.3)

and taking the point ∞ ∈ H to the origin, then NC is the inverse image of the open disc

centered at the origin with radius e−2πC . Hence the map given by (2.3) is continuous and

we have a topology on H ∪ {∞}.

The change of variables given by (2.3) plays a major role in the theory of modular

forms and we use it to de�ne an analytic structure onH∪{∞}. This leads us to the following

de�nitions.

De�nition 1. Let q = e2πiz where z ∈ H. Given a function on H of period 1, we say it

is meromorphic at ∞ if it can be expressed as a power series in the variable q having at

most �nitely many negative terms, i.e. it has a Fourier expansion of the form

f(z) =
∑
n∈Z

ane
2πinz =

∑
n∈Z

anq
n

in which an = 0 for n� 0.

We say that f(z) is holomorphic at ∞ if an = 0 for all negative n and we say that

13



f(z) vanishes at ∞ if f(z) is holomorphic at ∞ and a0 = 0.

If f(z) has period N , one can use the map z 7→ qN := e2πiz/N to map H∪{∞} to the

open disk. So here, one can express f(z) as a series in qN and we say it's meromorphic

(respectively holomorphic, vanishes) at ∞ if an = 0 for n� 0 (respectively, for n < 0 or

for n ≤ 0).

2.2 Modular forms for the Special Linear Group

Recall a holomorphic function is a complex-valued function which is complex dif-

ferentiable in a neighborhood of every point in its domain. Given an open set D, a mero-

morphic function is a holomorphic function on D except on a set of isolated points, which

are called the poles of the function. Now we are ready to de�ne a modular form for Γ.

De�nition 2. Let f(z) be a meromorphic function on the upper-half plane H and let k be

a non-negative integer. Suppose that f(z) satis�es the relation

f (γz) = (cz + d)kf(z) (2.4)

for all γ =

a b

c d

 ∈ SL2(Z). In particular, for the elements γ = T =

1 1

0 1

 and

γ = S =

 0 1

−1 0

, equation (2.4) gives

f(z + 1) = f(z) (2.5)

and

f

(
−1

z

)
= (−z)k f(z). (2.6)
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Furthermore, suppose that f(z) is meromorphic at ∞. Then f(z) is called a modular

function of weight k for Γ = SL2(Z).

If, in addition, f(z) is holomorphic on H and at in�nity (i.e. an = 0 for all n < 0),

then f(z) is called amodular form of weight k for Γ. The set of such functions is denoted

Mk(Γ). Further, if we have a0 = 0, (i.e. the modular form vanishes at in�nity), then f(z)

is called a cusp-form of weight k for Γ. The set of such functions is denoted Sk(Γ). The

expansion for a modular form f(z) is called its q-expansion given by

f(z) =
∑
n∈Z

anq
n (2.7)

where q = e2πiz.

Remark 2. 1. For k odd, there are no non-zero modular functions of weight k for Γ.

To see this, let γ = −I. Then for any z, we have −Iz =
−z + 0

0(z)− 1
= z. And from

De�nition 2, this implies that f(−Iz) = f(z) = (−1)kf(z) = −f(z). Hence the only

modular form of odd weight is the zero function. So from now on we will assume k is

even.

2. Since

dγz

dz
=

d

dz

(
(az + b)

(cz + d)

)
= (cz + d)−2 ,

we can rewrite equation (2.4) in the form

(
dγz

dz

)k/2
f (γz) = f(z).

3. The set of modular forms, functions and cusp-forms of some �xed weight are complex

vector spaces. The set of modular functions of weight zero is a �eld.

Let's look at some important examples.
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Example 1. The following is known as a general Eisenstein series. For additional details,

see [47]. Let k be an even integer greater than 2. Let z ∈ H and de�ne

Gk(z) :=
∑
m,n

′ 1

(mz + n)k
(2.8)

where we sum over all integer pairs m and n, both not zero. One can show that Gk(z) ∈

Mk(Γ). When computing the q-expansion coe�cients for Gk, we �nd that they are arithmetic

functions of n given by

σk−1(n) :=
∑
d|n

dk−1. (2.9)

Therefore Gk(z) has q-expansion

Gk(z) = 2ζ(k)

(
1− 2k

Bk

∞∑
n=1

Bk
xk

k!

)
(2.10)

where q = e2πiz, Bk denotes the kth Bernoulli number and

ζ(k) =
∞∑
n=1

1

nk
.

Next, it is natural to de�ne the normalized Eisenstein series,

Ek(z) :=
1

2ζ(k)
Gk(z), (2.11)

which can also be written as

Ek(z) = 1− 2k

Bk

∞∑
n=1

σk−1(n)qn

=
1

2

∑
m,n∈Z

(m,n)=1

1

(mz + n)k
.
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The �rst few normalized Eisenstein series are

E4(z) = 1 + 240
∞∑
n=1

σ3(n)qn,

E6(z) = 1− 504
∞∑
n=1

σ5(n)qn,

E8(z) = 1 + 480
∞∑
n=1

σ7(n)qn.

One can de�ne the Eisenstein series E2, however, it is not a modular form because the

absolute convergence of the sum is not guaranteed.

Example 2. The following is known as the discriminant modular form:

∆(z) =
(2π)12

1728

(
E4(z)3 − E6(z)2

)
. (2.12)

We can see that ∆(z) is a modular form of weight 12 for Γ. Additionally, since E4(z) and

E6(z) both have constant term a0 = 1; ∆(z) is a cusp form. One can show ∆(z) is the

cusp form of lowest possible weight for Γ. The interested reader should consult [24, 47] for

additional details and examples.

Let ω denote a primitive cube root of unity and i denote a primitive fourth root of

unity. The next result will assist in determining the spaces Mk(Γ) and Sk(Γ) of a given

weight k.

Proposition 4 (Chapter 3, Proposition 8, [47]). Let f(z) be a non-zero modular function

of weight k for Γ. For P ∈ H, let vP (f) denote the order of the zero (or minus the order of

pole) of f(z) at the point P . Let v∞(f) denote the index of the �rst non-vanishing term in

the q-expansion of f(z). Then

v∞(f) +
1

2
vi(f) +

1

3
vω(f) +

∑
P∈Γ\H,
P 6=i,ω

vP (f) =
k

12
. (2.13)
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For a proof, we refer the reader to [47].

To conclude this Chapter, we now state and prove important properties ofMk(Γ) and

Sk(Γ).

Proposition 5 (Chapter 3, Proposition 9, [47]). Let k be an even integer, Γ = SL2(Z).

(a) The only modular forms of weight 0 for Γ are constants, i.e. M0(Γ) = C.

(b) Mk(Γ) = 0 if k is negative or k = 2.

(c) Mk(Γ) is one-dimensional, generated by Ek, if k = 4, 6, 8, 10 or 14; in other words,

Mk(Γ) = CEk for those values of k.

(d) Sk(Γ) = 0 if k < 12 or k = 14; S12(Γ) = C∆; and for k > 14 Sk(Γ) = ∆Mk−12(Γ) (i.e.

the cusp forms of weight k are obtained by multiplying modular forms of weight k− 12

by the function ∆(z)).

(e) Mk(Γ) = Sk(Γ)⊕ CEk for k > 2.

Proof. We begin by observing that all terms on the left hand side of equation (2.13) are

non-negative.

(a) Let f ∈M0 (Γ). Suppose f(z) takes on the value c. Then f(z)− c ∈M0 (Γ) and it has

a zero. Observe

v∞(f(z)− c) +
1

2
vi(f(z)− c) +

1

3
vω(f(z)− c) +

∑
P∈Γ\H,P 6=i,ω

vP (f(z)− c) = 0.

Since f(z) − c has a zero, one of the terms on the left hand side must be positive.

However, since the right hand side is identically zero, this only occurs when f(z) − c

is the zero function. Hence f(z) is constant.
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(b) From equation (2.13), if k < 0, then the right hand side of the equation is negative.

However, every term on the left hand side is positive. So Mk(Γ) = 0 for k < 0.

Additionally, when k = 2, the right hand side equals 1
6
, which is not a possible value

for the left hand side.

(c) Assume k ∈ {4, 6, 8, 10, 14}. Then vp(f) must be chosen in the following ways in order

to satisfy equation (2.13).

When k = 4, vω(f) = 1 and vp(f) = 0 for all p 6= ω.

When k = 6, vi(f) = 1 and vp(f) = 0 for all p 6= i.

When k = 8, vω(f) = 2 and vp(f) = 0 for all p 6= ω.

When k = 10, vω(f) = vi(f) = 1 and vp(f) = 0 for all p 6= i, ω.

Finally, when k = 14, vω(f) = 2, vi(f) = 1 and vp(f) = 0 for all p 6= i, ω.

Consider two non-zero modular forms of the same weight. From above, we know that

f1(z) and f2(z) must have the same zeros. Hence
f1(z)

f2(z)
, the weight zero modular

function, is actually a modular form. From part (a), we can conclude that f1(z) =

cf2(z) for some constant c. So we may choose f2(z) = Ek(z) and thus obtaining the

result.

(d) For f ∈ Sk(Γ), we know v∞(f) > 0. When k = 12 and f = ∆, as de�ned in Example

2, equation (2.13) tells us that the only zero of ∆(z) is at in�nity. Therefore, given any

k and any f ∈ Sk(Γ), the modular function
f

∆
is a modular form. So

f

∆
∈ Mk−12(Γ).

From this, one can obtain the result.

(e) We know Ek does not vanish at ∞. Given any f ∈ Mk(Γ), there exists a multiple of

Ek such that f − cEk vanishes at ∞. So f − cEk ∈ Sk(Γ).
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Chapter 3

Nearly Holomorphic Eigenforms

In this chapter, we prove that the product of two nearly holomorphic Hecke eigenforms

is again a Hecke eigenform for only �nitely many choices of factors. This is joint work

with Je� Beyerl, Kevin James and Hui Xue. I would like to thank them for allowing the

republication of these results. For related work, we refer the reader to [29, 30, 34, 50, 51, 53]

and a more concise version of this work can be found in [2].

3.1 Nearly Holomorphic Modular Forms

Let Γ = SL2(Z) be the full modular group and let Mk(Γ) represent the space of level

Γ modular forms of even weight k. Let f ∈ Mk(Γ) and g ∈ Ml(Γ). Throughout k, l will be

positive even integers and r, s will be non-negative integers.

De�nition 3. We de�ne the Maass-Shimura operator δk on f ∈Mk(Γ) by

δk(f) =

(
1

2πi

(
k

2iImz
+

∂

∂z

)
f

)
(z).

Write δ
(r)
k := δk+2r−2 ◦ · · · ◦ δk+2 ◦ δk, with δ(0)

k = id. A function of the form δ
(r)
k (f) is called a

nearly holomorphic modular form of weight k + 2r as in [50]. Let M̃k(Γ) denote the
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space generated by nearly holomorphic forms of weight k and level Γ.

Note that the image of δk is contained in M̃k+2(Γ). Also, the notation δ
(r)
k (f) will

only be used when f is in fact a holomorphic modular form.

We de�ne the Hecke operator Tn : M̃k(Γ)→ M̃k(Γ) following [49], as

(Tn (f)) (z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

A modular form (or nearly holomorphic modular form) f ∈ M̃k(Γ) is said to be an

eigenform if it is an eigenvector for all the Hecke operators {Tn}n∈N.

The Rankin-Cohen bracket operator [f, g]j : Mk(Γ) ×Ml(Γ) → Mk+l+2j(Γ) is given

by

[f, g]j :=
1

(2πi)j

∑
a+b=j

(−1)a
(
j + k − 1

b

)(
j + l − 1

a

)
f (a)(z)g(b)(z)

where f (a) denotes the ath derivative of f .

Proposition 6 (Proposition 2.2, [2]). Let f ∈Mk(Γ), g ∈Ml(Γ). Then

δ
(r)
k (f)δ

(s)
l (g) =

s∑
j=0

(−1)j
(
s

j

)
δ

(s−j)
k+l+2r+2j

(
δ

(r+j)
k (f)g

)
.

Before we prove this result, we will prove a simpler result �rst.

Lemma 7. Let f ∈Mk(Γ), g ∈Ml(Γ). Then

δ
(1)
k+l(fg) = δ

(1)
k (f)g + fδ

(1)
l (g).
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Proof. Assume that f ∈Mk(Γ) and g ∈Ml(Γ). Then

δ
(1)
k+l(fg) =

(
1

2πi

)(
k + l

2iy
+

∂

∂z

)
(fg)

=

(
1

2πi

)(
(k + l)fg

2iy
+
∂f

∂z
g + f

∂g

∂z

)
.

Also,

δ
(1)
k (f)g =

[(
1

2πi

)(
k

2iy
+

∂

∂z

)
(f)

]
g

=

(
1

2πi

)(
fgk

2iy
+
∂f

∂z
g

)
and

fδ
(1)
l (g) = f

(
1

2πi

)(
l

2iy
+

∂

∂z

)
(g)

=

(
1

2πi

)(
fgl

2iy
+ f

∂g

∂z

)
.

Therefore combining these we obtain the result.

With some additional work we can prove a more general result of this lemma.

Lemma 8.

δ
(1)
k+l+2r

(
δ

(r)
k (f)g

)
= δ

(r+1)
k (f)g + δ

(r)
k (f)δ

(1)
l (g)

The proof of this lemma is identical to Lemma 7 by replacing f by δ
(r)
k f .

Now we are able to easily prove Proposition 6.

Proof. (of Proposition 6)

Let f and g be as above. We will proceed by induction on s. By Lemma 8, we know that
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for any r,

δ
(r)
k (f)δ

(1)
l (g) = δ

(1)
k+l+2

(
δ

(r)
k (f)g

)
− δ(r+1)(f)g

= (−1)0

(
1

0

)
δ

(1)
k+l+2r

(
δ

(r)
k (f)g

)
+ (−1)

(
1

1

)
δ

(0)
k+l+2r+2

(
δ

(r+1)
k (f)g

)
.

So the formula holds for the base case of s = 1.

Assume the formula holds for all i ≤ s. Then for any r the standard product rule,

Lemma 7, gives,

δ
(1)
k+l+2s+2r

(
δ

(r)
k (f)δ

(s)
l (g)

)
= δ

(r+1)
k (f)δ

(s)
l (g) + δ

(r)
k (f)δ

(s+1)
l (g).

Thus,

δ
(r)
k (f)δ

(s+1)
l (g) = δ

(1)
k+l+2s+2r

(
δ

(r)
k (f)δ

(s)
l (g)

)
− δ(r+1)

k (f)δ
(s)
l (g)

= δ
(1)
k+l+2s+2r

(
s∑
j=0

(−1)j
(
s

j

)
δ

(s−j)
k+l+2r+2j

(
δ

(r+j)
k (f)g

))

−
s∑
j=0

(−1)j
(
s

j

)
δ

(s−j)
k+l+2r+2j+2

(
δ

(r+j+1)
k (f)g

)

=
s∑
j=0

(−1)j
(
s

j

)
δ

(s+1−j)
k+l+2r+2j

(
δ

(r+j)
k (f)g

)
+

s∑
j=0

(−1)j+1

(
s

j

)
δ

(s−j)
k+l+2r+2j+2

(
δ

(r+j+1)
k (f)g

)
.

Since, (
s

j

)
+

(
s

j − 1

)
=

(
s+ 1

j

)
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and

1 =

(
s

0

)
=

(
s+ 1

0

)
=

(
s

s

)
=

(
s+ 1

s+ 1

)
it follows by reindexing the second sum with j 7→ j − 1 that

δ
(r)
k (f)δ

(s+1)
l (g) =

s+1∑
j=0

(−1)j
(
s+ 1

j

)
δ

(s+1−j)
k+l+2r+2j

(
δ

(r+j)
k (f)g

)
.

Thus we have proven the formula holds for any r and any s.

Combining Proposition 6 and the Rankin-Cohen bracket operator gives us the follow-

ing expansion of a product of nearly holomorphic modular forms.

Proposition 9 (Proposition 2.3, [2]). Let f ∈Mk(Γ), g ∈Ml(Γ). Then

δ
(r)
k (f)δ

(s)
l (g) =

r+s∑
j=0

1(
k+l+2j−2

j

)
 s∑
m=max(j−r,0)

(−1)j+m

(
s
m

)(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+r+m+j−1

r+m−j

)
 δ

(r+s−j)
k+l+2j ([f, g]j(z)) .

Proof. Lanphier [51] gives the following formula:

δ
(n)
k (f(z)) · g(z) =

n∑
j=0

(−1)j
(
n
j

)(
k+n−1
n−j

)(
k+l+2j−2

j

)(
k+l+n+j−1

n−j

)δ(n−j)
k+l+2j ([f, g]j(z)) .

Substituting this into the equation in Proposition 6, we obtain

δ
(r)
k (f)δ

(s)
l (g) =

s∑
m=0

(−1)m
(
s

m

)
δ

(s−m)
k+l+2r+2m

[
r+m∑
j=0

(−1)j
(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+2j−2

j

)(
k+l+r+m+j−1

r+m−j

)δ(r+m−j)
k+l+2j ([f, g]j(z))

]
.
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Therefore,

δ
(r)
k (f)δ

(s)
l (g) =

s∑
m=0

(−1)m
(
s

m

)
δ

(s−m)
k+l+2r+2m

[
r+m∑
j=0

(−1)j
(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+2j−2

j

)(
k+l+r+m+j−1

r+m−j

)δ(r+m−j)
k+l+2j [f, g]j(z)

]

=
s∑

m=0

r+m∑
j=0

(−1)m
(
s

m

)
δ

(s−m)
k+l+2r+2m

(−1)j
(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+2j−2

j

)(
k+l+r+m+j−1

r+m−j

)δ(r+m−j)
k+l+2j [f, g]j(z)

=
r∑
j=0

s∑
m=0

(−1)m
(
s

m

)
δ

(s−m)
k+l+2r+2m

(−1)j
(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+2j−2

j

)(
k+l+r+m+j−1

r+m−j

)δ(r+m−j)
k+l+2j [f, g]j(z)

+
r+s∑
j=r+1

s∑
m=j−r

(−1)m
(
s

m

)
δ

(s−m)
k+l+2r+2m

(−1)j
(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+2j−2

j

)(
k+l+r+m+j−1

r+m−j

)δ(r+m−j)
k+l+2j [f, g]j(z)

=
r+s∑
j=0

δ
(r+s−j)
k+l+2j [f, g]j(z)(

k+l+2j−2
j

)
 s∑
m=max(j−r,0)

(−1)j+m

(
s
m

)(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+r+m+j−1

r+m−j

)


where we interchanged summations by noting that we are summing over the integer points

in the following region.

m

j

r

s

j = r +m

Note that by the fact that
(
s
m

)
= 0 for integral m < 0 we may rewrite the equation
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given in Proposition 9 as

δ
(r)
k (f)δ

(s)
l (g) =

r+s∑
j=0

δ
(r+s−j)
k+l+2j [f, g]j(z)(

k+l+2j−2
j

) (
s∑

m=j−r

(−1)j+m

(
s
m

)(
r+m
j

)(
k+r+m−1
r+m−j

)(
k+l+r+m+j−1

r+m−j

) )
.

Next we state a simple result relating Hecke operators and the Maass-Shimura oper-

ator.

Proposition 10. Assume f ∈Mk. Then

(δk (Tnf)) (z) =
1

n
(Tn (δkf)) (z)

where Tn is the Hecke operator and δk is the Maass-Shimura operator.

Proof. By Theorem 6.1 of [46], we know we can write

(Tn (f)) (z) = nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)
.

By de�nition of the Maass-Shimura operator, we have

δk (f(z)) =

(
1

2πi

)(
kf(z)

2iIm(z)
+
∂f

∂z
(z)

)
.

First note that

Im

(
nz + bd

d2

)
=
nIm(z)

d2
.
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Then combining the above two results, we have that

Tn (δkf) (z) = nk+1
∑
d|n

d−(k+2)

d−1∑
b=0

(
1

2πi

)(
k

2iIm
(
nz+bd
d2

)f (nz + bd

d2

)
+
∂f

∂z

(
nz + bd

d2

))

= nk+1
∑
d|n

d−(k+2)

d−1∑
b=0

(
1

2πi

)(
kd2

2inIm(z)
f

(
nz + bd

d2

)
+
∂f

∂z

(
nz + bd

d2

))

= n

nk−1
∑
d|n

d−k
d−1∑
b=0

(
1

2πi

)(
k

2iIm(z)
f

(
nz + bd

d2

)
+
n

d2

∂f

∂z

(
nz + bd

d2

)) .

Now let's compute δk (Tnf) (z). Let F (z) = f

(
nz + bd

d2

)
. Then

∂

∂z
(F (z)) =

∂

∂z

(
f

(
nz + bd

d2

))

=
∂f

∂z

(
nz + bd

d2

)
∂

∂z

(
nz + bd

d2

)

=
n

d2

∂f

∂z

(
nz + bd

d2

)
.
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So,

δk (Tnf) (z) = δk

nk−1
∑
d|n

d−k
d−1∑
b=0

f

(
nz + bd

d2

)

= nk−1
∑
d|n

d−k
d−1∑
b=0

δk (f(z))

= nk−1
∑
d|n

d−k
d−1∑
b=0

(
1

2πi

)[
k

2iIm(z)
f(z) +

∂

∂z
(f(z))

]

= nk−1
∑
d|n

d−k
d−1∑
b=0

(
1

2πi

)[
k

2iIm(z)
f

(
nz + bd

d2

)
+
n

d2

∂f

∂z

(
nz + bd

d2

)]
.

Therefore we obtain the result.

From Proposition 10, we obtain the following corollary.

Corollary 11 (Proposition 2.4, [2]). Let f ∈Mk(Γ). Then

(
δ

(m)
k (Tnf)

)
(z) =

1

nm

(
Tn

(
δ

(m)
k (f)

))
(z)

where m ≥ 0.

Proof. We will proceed by induction. From Proposition 10, we know that the case m = 1 is
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true. So assume for all l ≤ m, the formula holds. Then

δ
(m+1)
k (Tnf) (z) = δk+2m

(
δ

(m)
k (Tnf)

)
(z)

= δk+2m

(
1

nm

(
Tn

(
δ

(m)
k f

))
(z)

)

=
1

nm
δk+2m

(
Tn

(
δ

(m)
k f

))
(z)

=
1

nm

(
1

n
Tn

(
δk+2m

(
δ

(m)
k f

))
(z)

)

=
1

nm+1
Tn

(
δ

(m+1)
k f

)
(z).

In order to prove the next result, we need the following lemma.

Lemma 12. The Maass-Shimura operator, δ, is injective.

Proof. We begin by noticing that

(δkf) (z) =
1

2πi

(
k

2iIm(z)
f(z) +

∂f

∂z
(z)

)

=

(
1

2πi

)(
kf(z)

2iIm(z)

)
+

(
1

2πi

)
∂f

∂z

We observe that the holomorphic part of (δkf) (z) is

(
1

2πi

)
∂f

∂z
, and the non-holomorphic

part is

(
1

2πi

)(
kf(z)

2iIm(z)

)
. It is easy to see that the non-holomorphic part is zero if and

only if f(z) is identically zero. Then (δkf) (z) ≡ 0 if and only if both the non-holomorphic

part and the holomorphic part are zero. This occurs if and only if the non-holomorphic part
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is zero, which occurs if and only if f(z) ≡ 0. Therefore if (δkf) (z) = 0, then we have that

f(z) = 0. Hence δk is injective.

We would like to show that a sum of eigenforms of distinct weights can only be an

eigenform if each form has the same set of eigenvalues. In order to prove this, we need to

know the relationship between eigenforms and nearly holomorphic eigenforms.

Proposition 13 (Proposition 2.5, [2]). Let f ∈Mk(Γ). Then δ
(r)
k (f) is an eigenform for Tn

if and only if f is. In this case, if λn denotes the eigenvalue of Tn associated to f , then the

eigenvalue of Tn associated to δ
(r)
k (f) is nrλn.

Proof. Assume f is an eigenform. So (Tnf) (z) = λnf(z). Then applying δ
(r)
k to both sides

and applying Proposition 11 we obtain the following:

Tn

(
δ

(r)
k (f)

)
(z) = nrλn

(
δ

(r)
k (f)

)
(z).

So δ
(r)
k (f) is an eigenform.

Now assume that δ
(r)
k (f) is an eigenform. Then Tn

(
δ

(r)
k (f)

)
(z) = λn

(
δ

(r)
k (f)

)
(z).

Using Proposition 11, we obtain

δ
(r)
k (Tnf) (z) =

λn
nr
δ

(r)
k (f)(z)

= δ
(r)
k

(
λn
nr
f

)
(z).

Since δ
(r)
k is injective,

(Tnf) (z) =
λn
nr
f(z).

Hence f is an eigenform.
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Finally, before we state the result on a sum of eigenforms, it is important to note the

spaces the Maass-Shimura operator acts between.

Lemma 14. The Maass-Shimura operator, δk, is an operator from M̃k(Γ) to M̃k+2(Γ).

Proof. Let h ∈ M̃k(Γ). First note that

∂

∂z
(h(γz)) =

∂h

∂z
(γz)

∂γz

∂z
=
∂h

∂z
(γz)

1

(cz + d)2

where γ =

a b

c d

 . Hence we have:

(2πi)(δkh)(γz) =

(
k

2iIm·
+

∂

∂z

)
(h)(γz)

=
kh(γz)

2iImγz
+

(
∂h

∂z

)
(γz)

= |cz + d|2kh(γz)

2iImz
+ (cz + d)2

(
∂

∂z

)
(h(γz))

= |cz + d|2(cz + d)k
kh(z)

2iImz
+ (cz + d)2

(
kc(cz + d)k−1h(z) + (cz + d)k

∂

∂z
(h(z))

)
= k(cz + d)k+1h(z)

(
cz + d

2iImz
+ c

)
+ (cz + d)k+2 ∂

∂z
(h(z))

=

(
k(cz + d)k+2

2iImz
+ (cz + d)k+2 ∂

∂z

)
(h(z))

= (cz + d)k+2

(
k

2iIm·
+

∂

∂z

)
(h)(z)

= (cz + d)k+2(2πi)(δkh)(z).

Now the result on a sum of eigenforms with distinct weights follows.
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Proposition 15 (Proposition 2.6, [2]). Suppose that {fi}i is a collection of modular forms

with distinct weights ki. Then
t∑
i=1

aiδ
(n− ki2 )
ki

(fi) (ai ∈ C∗) is an eigenform if and only if every

δ
(n− ki2 )
ki

(fi) is an eigenform and each function has the same set of eigenvalues.

Proof. By induction we only need to consider t = 2.

(⇐) : If Tn

(
δ

(r)
k (f)

)
= λδ

(r)
k (f), and Tn

(
δ
( k−l2

+r)
l (g)

)
= λδ

( k−l2
+r)

l (g), then by lin-

earity of Tn,

Tn

(
δ

(r)
k (f) + δ

( k−l2
+r)

l (g)

)
= λ

(
δ

(r)
k (f) + δ

( k−l2
+r)

l (g)

)
.

(⇒) : Suppose δ
(r)
k (f) + δ

( k−l2
+r)

l (g) is an eigenform. Then by Proposition 13 and

linearity of δ
(r)
k , we have that f + δ

( k−l2 )
l (g) is also an eigenform. We can write

Tn

(
f + δ

( k−l2 )
l (g)

)
= λn

(
f + δ

( k−l2 )
l (g)

)
.

Applying linearity of Tn and Proposition 11 we obtain

Tn(f) + n
k−l
2 δ

( k−l2 )
l (Tn(g)) = λnf + λnδ

( k−l2 )
l (g).

Rearranging this we have

Tn(f)− λnf = δ
( k−l2 )
l

(
λng − n

k−l
2 Tn(g)

)
.

Since the δ operator sends all non-zero modular forms to so called nearly holomorphic

modular forms, the right hand side is either non-holomorphic or zero. However, the left hand

side is holomorphic and of positive weight. Hence both sides must be zero. So we have

Tn(f) = λnf and Tn(g)

= λnn
−(k−l)

2 g.

32



Therefore f is an eigenvector for Tn with eigenvalue λn, and g is an eigenvector for

Tn with eigenvalue λnn
−(k−l)

2 . By Proposition 13, we have that δ
( k−l2 )
l (g) is an eigenvector

for Tn with eigenvalue λn. Hence f and δ
( k−l2 )
l (g) are eigenvectors for Tn with eigenvalue λn.

So δ
(r)
k (f) and δ

( k−l2
+r)

l (g) must have the same eigenvalue with respect to Tn as well. Thus

for all n ∈ N, δ(r)
k (f) and δ

( k−l2
+r)

l (g) must be eigenforms with the same eigenvalues.

Using the above proposition we can show that when two holomorphic eigenforms of

di�erent weights are mapped to the same space of nearly holomorphic modular forms that

di�erent eigenvalues are obtained.

Lemma 16 (Lemma 2.7, [2]). Let l < k and f ∈ Mk(Γ), g ∈ Ml(Γ) both be eigenforms.

Then δ
( k−l2 )
l (g) and f do not have the same eigenvalues.

Proof. For sake of contradiction, assume f and δ
( k−l2 )
l (g) have the same eigenvalues. That is,

say g has eigenvalues λn(g), then by Proposition 13 we are assuming that f has eigenvalues

n
k−l
2 λn(g). We then have

f(z) =
∞∑
n=1

cn
k−l
2 λn(g)qn + c0

=
1

(2πi)(k−l)/2
∂(k−l)/2

∂z(k−l)/2

∞∑
n=1

cλn(g)qn + c0

=
1

(2πi)(k−l)/2
∂(k−l)/2

∂z(k−l)/2 g(z) + c0

which says that f is a derivative of g plus a constant. To see that this cannot be a modular

form, consider f − δ(
k−l
2 )

l g:

f − δ(
k−l
2 )

l g =
1

(2πi)(k−l)/2
∂(k−l)/2

∂z(k−l)/2 g(z) + c0 −
1

(2πi)(k−l)/2
∂(k−l)/2

∂z(k−l)/2 g(z)− 1

(2πi)(k−l)/2
l

2iImz
g(z)

= c0 −
1

(2πi)(k−l)/2
l

2iIm(z)
g(z) ∈ M̃k(Γ).
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In particular, using γ =

0 −1

1 0

 we �nd

zk
(
c0 −

1

(2πi)(k−l)/2
l

2iImz
g(z)

)
= c0 −

1

(2πi)(k−l)/2
l

2iIm−1/z
g(−1/z)

= c0 −
l

(2πi)(k−l)/2
|z|2

2iImz
zlg(z).

Solving for g, we then have

g(z) = c0(zk − 1)
2il−1(2πi)(k−l)/2Imz

zk + |z|2zl

which is not invariant to translations by one since

c0(zk − 1)
2il−1(2πi)(k−l)/2Imz

zk + |z|2zl
6= c0((z + 1)k − 1)

2il−1(2πi)(k−l)/2Imz

(z + 1)k + |z + 1|2(z + 1)l
.

Hence we have a contradiction.

We shall need a special case of this lemma.

Corollary 17 (Corollary 2.8, [2]). Let k > l and f ∈ Mk(Γ), g ∈ Ml(Γ). Then δ
( k−l2

+r)
l (g)

and δ
(r)
k (f) do not have the same eigenvalues.

From [51] we know for eigenforms f, g, that [f, g]j is a eigenform only �nitely many

times. Hypothetically, however, it could be zero. In particular, by the fact that [f, g]j =

(−1)j[g, f ]j, and f = g with j odd gives [f, g]j = 0. Hence we need the following lemma,

where Ek denotes the weight k Eisenstein series normalized to have constant term 1.

Lemma 18 (Lemma 2.9, [2]). Let δ
(r)
k (f) ∈ M̃k+2r(Γ), δ

(s)
l (g) ∈ M̃l+2s(Γ). In the following

cases [f, g]j 6= 0:

Case 1: f a cusp form, g not a cusp form.
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Case 2: f = g = Ek, j even.

Case 3: f = Ek, g = El, k 6= l.

Proof. Case 1: Write f =
∞∑
j=1

Ajq
j, g =

∞∑
j=0

Bjq
j. Then a direct computation of the q-

coe�cient of [f, g]j yields

A1B0(−1)j
(
j + k − 1

j

)
6= 0.

Case 2: Using the same notation, a direct computation of the q coe�cient yields

A0B1

(
j + l − 1

j

)
+ A1B0

(
j + k − 1

j

)
= 2A0A1

(
j + k − 1

j

)
6= 0.

Case 3: This is proven in [51] using L-series. We provide an elementary proof

here. Without loss of generality, let k > l. A direct computation of the q coe�cient yields

A0B1

(
j+l−1
j

)
+ A1B0

(
j+k−1
j

)
. Using the fact that A0 = B0 = 1, A1 = k/Bk, B1 = l/Bl, we

obtain

−2l

Bl

(
j + k − 1

j

)
+ (−1)j

−2k

Bk

(
j + l − 1

j

)
.

If j is even, then both of these terms are non-zero and of the same sign. If j is odd,

then we note that for l > 4,

∣∣∣∣Bk

k

(
j + k − 1

j

)∣∣∣∣ =

∣∣∣∣(j + k − 1) · · · (k + 1)Bk

j!

∣∣∣∣ > ∣∣∣∣(j + l − 1) · · · (l + 1)Bl

j!

∣∣∣∣ =

∣∣∣∣Bl

l

(
j + l − 1

j

)∣∣∣∣
using the fact that |Bk| > |Bl| for l > 4, l even. For l = 4, the inequality holds so long as

j > 1. For j = 1 the above equation simpli�es to |Bk| > |Bl| which is true for (k, l) 6= (8, 4),

with this remaining case handled individually. For j = 0, the Rankin-Cohen bracket operator

reduces to multiplication.

We will need the fact that a product is not an eigenform, given in the next lemma.
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Lemma 19 (Lemma 2.10, [2]). Let δ
(r)
k (f) ∈ M̃k+2r(Γ), δ

(s)
l (g) ∈ M̃l+2s(Γ) both be cuspidal

eigenforms. Then δ
(r)
k (f)δ

(s)
l (g) is not an eigenform.

Proof. By Proposition 9 we may write δ
(r)
k (f)δ

(s)
l (g) as a linear combination of δ

(r+s−j)
k+l+2j ([f, g]j).

Then from [51], [f, g]j is never an eigenform. Hence by Proposition 13, δ
(r+s−j)
k+l+2j ([f, g]j) is

never an eigenform. Finally Proposition 15 tells us that the sum, and thus δ
(r)
k (f)δ

(s)
l (g) is

not an eigenform.

Finally, this last lemma is the driving force in the main result to come; one of the

�rst two terms from Proposition 9 is non-zero.

Lemma 20 (Lemma 2.11, [2]). Let δ
(r)
k (f) ∈ M̃k+2r(Γ), δ

(s)
l (g) ∈ M̃l+2s(Γ) both be eigen-

forms, but not both cusp forms. Then in the expansion given in Proposition 9, either the

term including [f, g]r+s is non-zero, or the term including [f, g]r+s−1 is non-zero.

Proof. There are three cases.

Case 1: f = g = Ek.

If r + s is even, then via Lemma 18, [f, g]r+s 6= 0 and it is clear from Proposition 9 that the

coe�cient of [f, g]r+s is non-zero so we are done. If r+ s is odd, then [f, g]r+s−1 is non-zero.

Now because wt(f) = wt(g), the coe�cient of [f, g]r+s−1 is non-zero. This is due to the fact

that if it were zero, after simpli�cation we would have k = −(r + s) + 1 ≤ 0, which cannot

occur.

Case 2: If f is a cusp form and g is not then by Lemma 18, [f, g]r+s, and thus the

term including [f, g]r+s is non-zero.

Case 3: If f = Ek, g = El, k 6= l. Again by Lemma 18, [f, g]r+s, and thus the term

including [f, g]r+s is non-zero.
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3.2 Main Result

Recall that Ek is weight k Eisenstein series, and let ∆k be the unique normalized

cuspidal form of weight k for k ∈ {12, 16, 18, 20, 22, 26}. We have the following theorem.

Theorem 21 (Theorem 3.1, [2]). Let δ
(r)
k (f) ∈ M̃k+2r(Γ), δ

(s)
l (g) ∈ M̃l+2s(Γ) both be eigen-

forms. Then δ
(r)
k (f)δ

(s)
l (g) is not a eigenform aside from �nitely many exceptions. In par-

ticular δ
(r)
k (f)δ

(s)
l (g) is a eigenform only in the following cases:

1. The 16 holomorphic cases presented in [34] and [29]:

E2
4 = E8, E4E6 = E10, E6E8 = E4E10 = E14,

E4∆12 = ∆16, E6∆12 = ∆18, E4∆16 = E8∆12 = ∆20,

E4∆18 = E6∆16 = E10∆12 = ∆22,

E4∆22 = E6∆20 = E8∆18 = E10∆12 = E14∆12 = ∆26.

2. δ4 (E4) · E4 = 1
2
δ8 (E8).

Proof. By Proposition 9 we may write

δ
(r)
k (f)δ

(s)
l (g) =

r+s∑
j=0

αjδ
(r+s−j)
k+l+2j ([f, g]j) .

Now, by Proposition 15 this sum is an eigenform if and only if every summand

is an eigenform with a single common eigenvalue or is zero. Note that by Corollary 17,

αjδ
(r+s−j)
k+l+2j ([f, g]j) are always of di�erent eigenvalues for di�erent j. Hence for δ

(r)
k (f)δ

(s)
l (g)

to be an eigenform, all but one term in the summation must be zero and the remaining term

must be an eigenform.
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If both f, g are cusp forms, apply Lemma 19. Otherwise, from Lemma 20, either

the term including [f, g]r+s or the term including [f, g]r+s−1 is non-zero. By [51] this is an

eigenform only �nitely many times. Hence there are only �nitely many f, g, r, s that yield

the entire sum, δ
(r)
k (f)δ

(s)
l (g), an eigenform. Each of these �nitely many quadruples were

enumerated and all eigenforms found. See the following comments for more detail.

Remark 3. In general 2δk (Ek) ·Ek = δ2k (E2
k). However, for k 6= 4, this is not an eigenform.

Once we know that δ
(r)
k (f)δ

(s)
l (g) is in general not an eigenform, we have to rule out

the last �nitely many cases. In particular consider each eigenform (and zero) as leading term

[f, g]n in Proposition 9. From [51] we know that there are 29 cases with g a cusp form (12

with n = 0), 81 cases with f, g both Eisenstein series (4 with n = 0). By case we mean

the instance of [f, g]n that is an eigenform. We also must consider the in�nite class with

f = g = Ek and r + s odd, where [f, g]r+s = 0.

For the in�nite class when f = g and r + s is odd, we have [f, g]r+s = 0. By Lemma

20 the [f, g]r+s−1 term is non-zero. If r + s − 1 = 0, then this is covered in the n = 0 case.

Otherwise r + s − 1 ≥ 2. This is an eigenform only �nitely many times. In each of these

cases one computes that the [f, g]0 term is non-zero. Thus because there are two non-zero

terms, δ
(r)
k (f)δ

(s)
l (g) is not an eigenform.

The 16 cases with n = 0 are the 16 holomorphic cases. Now consider the rest. In

the last �nitely many cases we �nd computationally that there are two non-zero coe�cients;

the coe�cient of [f, g]0 and [f, g]r+s. Now [f, g]0 6= 0 and [f, g]r+s 6= 0, so in these cases

δ
(r)
k (f)δ

(s)
l (g) is not an eigenform.

The typical case, however, will involve many non-zero terms such as

δ4 (E4) · δ4 (E4) =
−1

45
[E4, E4]2 + 0 · δ10 ([E4, E4]1) +

10

45
δ

(2)
8 ([E4, E4]0)

=
−1

45

(
42 · E4

∂2

∂z2
E4 − 49

(
∂

∂z
E4

)2
)

+
10

45
δ

(2)
8 (E8) ,
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δ6 (E6) · E8 =
−1

14
[E6, E8]1 +

3

7
δ14 ([E6, E8]0)

=
−1

14

(
6E6

∂

∂z
E8 − 8E8

∂

∂z
E6

)
+

3

7
δ14 (E6E8)

which cannot be eigenforms because of the fact that there are multiple terms of di�erent

holomorphic weight.
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Chapter 4

Background on Elliptic Curves

4.1 Cubic Reciprocity

In order to estimate the rank of an elliptic curve, we will be using a combination of

graph theory and linear algebra. In Chapter 5, the idea of cubic reciprocity will be needed.

If the reader is unfamiliar with this material we will give some basic background in this

section. Additional details on the following discussion can be found in [44, Chapter 9].

Since we will be discussing 3-descent, we will familiarize ourselves with the ring Z[ω].

Let ω be a primitive cube root of unity. Then for any α = a + bω ∈ Z[ω], we have N(α) =

a2 − ab + b2. It is not hard to show that α ∈ Z[ω] is a unit if and only if N(α) = 1. So the

units in Z[ω] are 1,−1, ω,−ω, ω2,−ω2.

One important observation is that primes in Z may no longer be primes in Z[ω]. For

the remainder of this section, when we say rational prime, we mean a prime in Z. The

following proposition helps us classify if a rational prime is still prime in Z[ω].

Proposition 22 (Proposition 9.1.4, [44]). Suppose p and q are rational primes.

1. If q ≡ 2 (mod 3), then q is prime in Z[ω].
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2. If p ≡ 1 (mod 3), then p = ππ with π prime in Z[ω].

3. Finally 3 = −ω2(1− ω)2 and 1− ω is prime in Z[ω].

Now we will de�ne the residue class ring modulo a prime π. To de�ne a congruence

class, we say that α ≡ β (mod γ) if γ divides α − β for α, β, γ ∈ Z[ω] with γ 6= 0 and a

non-unit. Then we have the following proposition.

Proposition 23 (Proposition 9.2.1, [44]). Let π ∈ Z[ω] be a prime. Then Z[ω]/πZ[ω] is a

�nite �eld with N(π) elements.

Now we are ready to de�ne the cubic residue character. Let π be a prime. The

multiplicative group of Z[ω]/πZ[ω] has order N(π) − 1. So the analog of Fermat's Little

Theorem tells us that if π - α with α ∈ Z[ω], then

αN(π)−1 ≡ 1 (mod π) .

We note that if the norm of π is not 3, then the residue classes of 1, ω and ω2 are

distinct in Z[ω]/πZ[ω]. And since {1, ω, ω2} is a cyclic group of order 3, it follows that

3 | (N(π)− 1).

Proposition 24 (Proposition 9.3.2, [44]). Suppose π is a prime such that N(π) 6= 3 and

π - α where α ∈ Z[ω];. Then there exists a unique integer m = 0, 1, 2 such that α(N(π)−1)/3 ≡

ωm (mod π).

Now we are ready to de�ne the cubic residue character.

De�nition 4. If N(π) 6= 3, the cubic residue character of α modulo π is given by

(a)
(α
π

)
3

= 0 if π | α

(b) α(N(π)−1)/3 ≡
(α
π

)
3

(mod π) with
(α
π

)
3

= 1, ω, ω2.
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Just as the Legendre symbol is a key component in the theory of quadratic residues,

the cubic residue character is key in the theory of cubic residues. If
(α
π

)
3

= 1, we say that

α is a cubic residue.

Next we will state some of the important properties of the cubic residue character.

These will be extremely useful in the next chapter.

Proposition 25 (Proposition 9.3.3, [44]). (a)
(α
π

)
3

= 1 if and only if x3 ≡ α (mod π)

is solvable.

(b)

(
αβ

π

)
3

=
(α
π

)
3

(
β

π

)
3

(c) If α ≡ β (mod π), then
(α
π

)
3

=

(
β

π

)
3

For the remainder of this chapter, we will de�ne χπ(α) :=
(α
π

)
3
. The subsequent

theorem contains important properties for the cubic residue character, which will be useful

later.

Theorem 26 (Proposition 9.3.4, [44]). Let π ∈ Z[ω] and q ∈ Z be primes. Let α ∈ Z[ω].

1. χπ (α) = χπ (α)2 = χπ (α2).

2. χπ (α) = χπ (α).

3. χq (α) = χq (α2).

4. If n ∈ Z with (n, q) = 1, then χq(n) = 1.

5. If q1 and q2 are two distinct primes both equivalent to 2 mod 3, then χq1 (q2) = χq2 (q1).

A proof of this theorem can be found in [44], speci�cally Proposition 9.3.4 and its

Corollary.

Since there are six units in Z[ω], each element in Z[ω] has six associates. Therefore

we will introduce the idea of a primary prime.
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De�nition 5. If π is a prime in Z[ω], we say that π is primary if π ≡ 2 (mod 3).

So, if π = q is rational, then π is primary. Otherwise, if π = a + bω with a, b ∈ Z,

b 6= 0, then the de�nition of primary is equivalent to a ≡ 2 (mod 3) and b ≡ 0 (mod 3).

To conclude this section, we state the Law of Cubic Reciprocity.

Theorem 27 (Law of Cubic Reciprocity). Let π1 and π2 be primary with N(π1) 6= N(π2)

and N(π1), N(π2) 6= 3. Then

χπ1 (π2) = χπ2 (π1) .

Ireland and Rosen present two proofs of the Law of Cubic Reciprocity in [44]. The

reader should refer to Chapter 9, Sections 4 and 5.

4.2 Elliptic Curves

In this section we will give a quick review of the basic facts and de�nitions for elliptic

curves. For additional details, we refer the reader to [12, 13, 14, 44, 62, 64].

4.2.1 Weierstrass Equations

Let K be any �eld. A Weierstrass equation over K is a cubic equation of the form

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6 (4.1)

where a1, a2, a3, a4, a6 ∈ K. De�ne the following values

b2 := a2
1 + 4a2, b4 := a1a3 + 2a4,

b6 := a2
3 + 4a6, b8 := a2

1a6 − a1a3a4 + a2a
2
3 + 4a2a6 − a2

4

43



Figure 4.1: Singular Curve

∆ := −b2
2b8 − 8b3

4 − 27b2
6 + 9b2b4b6.

We call the value ∆ = ∆(E) the discriminant of the equation E. If ∆ 6= 0, then we say that

the equation is non-singular.

Figure 4.2.1 is a graph of the curve y2 = x3 + x2 over R, which is singular.

However, if we considered the curve y2 = x3 − x, it would be non-singular. A graph

of this curve is given by Figure 4.2.1.
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Figure 4.2: Non-Singular Curve

De�nition 6. Let K be an algebraic closure of K. If E is a non-singular Weierstrass

equation, then the set of (x, y) ∈ K × K satisfying (4.1) together with a point at in�nity,

denoted O, is called an elliptic curve. The set of K-rational points on E is

E(K) :=
{

(x, y) ∈ K ×K : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

}
∪ {O}.

The curve drawn in Figure 4.2.1 is an elliptic curve.

One can produce another Weierstrass equation while keeping the point at in�nity �xed

by making an admissible change of variables to an elliptic curve with Weierstrass equation

(4.1). The most general admissible change of variables is of the form

x = u2x′ + r, y = u3y′ + su2x′ + t, u, r, s, t ∈ K, u 6= 0. (4.2)

We say that two curves are isomorphic if their equations can be related by an admis-

sible change.
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De�ne the following values

c4 := b2
2 − 24b4, c6 := −b3

2 + 36b2b4 − 216b6. (4.3)

If the characteristic of K is not 2 or 3, we can make a change of variables to Equation

(4.1) by sending (x, y) to ((x− 3b2)/36, y/108), from which, we obtain a Weierstrass equation

of the form

E : y2 = x3 − 27c4x− 54c6. (4.4)

In this case the discriminant is ∆ =
c3

4 − c2
6

1728
. Hence we can conclude that when the

characteristic of K is not 2 or 3, we can write the elliptic curve in the form

EA,B : y2 = x3 + Ax+B, A,B ∈ K. (4.5)

Remark 4. There is only one admissible change of variables which will preserve the form

of the elliptic curve given by (4.5). To make this change, let

x = u2x′, y = u3y′, u ∈ K∗

which yields

u4A′ = A, u6B′ = B, u12∆′ = ∆.

4.2.2 Group Law and Isogenies

Next we are ready to de�ne a group operation on E(K) by using the point at in�nity

as an identity element.

Before giving the formal de�nition, we will present a rough idea of how to add points

on an elliptic curve. Pick two distinct points on the curve, P and Q. Draw line connecting
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Figure 4.3: Group Law for Elliptic Curves

the two points, as illustrated in Figure 4.2.2. This will intersect the curve at a third point,

call it R. Now re�ecting over the x-axis, we obtain the point P +Q and R is the inverse of

P +Q.

Now that we have an idea of how the group law works, we give the formal de�nition.

De�nition 7 (Group Law). The point at in�nity, O, is the identity. Let P = (xP , yP ) ∈

E(K) \ {O}. Then the inverse of P is

−P := (xP ,−yP − a1xP − a3) .

Now we can begin to de�ne the + operation. Let Q = (xQ, yQ) ∈ E(K) \ {O}. If

xP = xQ and yQ = −yP − a1xP − a3 (i.e. Q = −P ), then P +Q = O. Otherwise, de�ne

λ :=



yQ − yP
xQ − xP

, xP 6= xQ

3x2
P + 2a2xP + a4 − a1yP
a1xP + a3 + 2yP

, xP = xQ
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and

µ :=



yPxQ − yQxP
xQ − xP

, xP 6= xQ

−x3
P + a4xP + 2a6 − a3yP
a1xP + a3 + 2yP

, xP = xQ.

Additionally, de�ne the two following rational functions

r (xP , yP , xQ, yQ) := λ2 + a1λ− a2 − xP − xQ,

s (xP , yP , xQ, yQ) := − (λ+ a1) r (xP , yP , xQ, yQ)− µ− a3.

Hence we de�ne

P +Q := (r (xP , yP , xQ, yQ) , s (xP , yP , xQ, yQ)) .

Proposition 28 (Proposition 2.2, [62]). The Group Law given in De�nition 7 has the fol-

lowing properties;

(a) If a line L intersects E at the (not necessarily distinct) points P,Q,R, then

(P +Q) +R = O.

(b) P +Q = Q+ P for all P,Q ∈ E(K).

(c) Let P,Q,R ∈ E(K). Then

(P +Q) +R = P + (Q+R).

Thus E(K) is an abelian group under +

By Bezout's Theorem [62, pp 55], if P and Q are two points on the curve, then the line
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l connecting P and Q intersects the curve at a third point (counting the point at in�nity).

Call this third point R and so P + Q = −R. Note that if we work in the projective plane,

the point at in�nity, O, is the only extra point.

Before discussing maps between elliptic curves, we will give some general background

on maps betweens curves. Additional details can be found in [62, pp 15 - 31].

In order to de�ne a morphism between two curves, it is natural to �rst introduce the

generalization; a morphism between two projective varieties.

De�nition 8. Let V1 and V2 be projective varieties. Let K(V1)) be the a�ne function �eld

of V1. A rational map from V1 to V2 is a map of the form

φ : V1 → V2

φ = [f1, . . . , fn],

where f0, . . . , fn ∈ K(V1) have the property that for every P ∈ V1 at which f0, . . . , fn are all

de�ned,

φ(P ) = [f0(p), . . . , fn(P )].

Now we can de�ne a morphism between two projective varieties.

De�nition 9. A rational map

φ = [f0, . . . , fn] : V1 → V2

is regular (or de�ned) at P ∈ V1 if there is a function g ∈ K(V1) such that

(i) each gfi is regular at P and

(ii) for some i, (gfi)(P ) 6= 0.
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If such a g exists, set

φ(P ) = [(gf0)(P ), . . . , (gfn)(P )].

(Note that it may be necessary to take di�erent g's for each point.) A rational map which

is regular at every point is called a morphism.

Next, we will narrow our focus to studying morphisms between curves. Recall a curve

is a projective variety of dimension 1.

Proposition 29 (Proposition 2.1, [62]). Let C be a curve, V ⊂ PN a variety, P ∈ C a

smooth point and φ : C → V a rational map. Then φ is regular at P . In particular, if C is

smooth, then φ is a morphism.

We have the following interesting property associated with morphisms between two

curves.

Theorem 30 (Chapter 2, Theorem 2.3, [62]). Let φ : C1 → C2 be a morphism of curves.

Then φ is either constant or surjective.

Let φ : C1 → C2 be a non-constant rational map de�ned over K where C1/K and

C2/K are curves. Then if we compose φ with itself, it induces an injection of function �elds

�xing K,

φ∗ : K(C2)→ K(C1)

φ∗f = f ◦ φ.

De�nition 10. Let φ : C1 → C2 be map of curves de�ned over K. If φ is constant, we

de�ne the degree of φ to be 0; otherwise we say that φ is �nite and de�ne its degree by

deg φ = [K(C1) : φ∗K(C2)] .
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We say that φ is separable (inseparable, purely inseparable) if the extensionK(C1)/φ∗K(C2)

has the corresponding property.

One �nal observation we will make before returning to elliptic curves is the following.

Theorem 31 (Corollary 2.4.1, [62]). Let C1 and C2 be smooth curves and let φ : C1 → C2

be a map of degree 1. Then φ is an isomorphism.

Now that we have some background on maps and on elliptic curves, we will brie�y

discuss the maps between two elliptic curves. A detailed discussion of the following can be

found in [62, pp. 70 - 79].

De�nition 11. Let E1 and E2 be elliptic curves. An isogeny between E1 and E2 is a

morphism

φ : E1 → E2

satisfying φ(O) = O. We say E1 and E2 are isogenous if there is an isogeny φ between

them with φ(E1) 6= {O}.

Recall, that a morphism between two curves is either constant or surjective, Theorem

30. Therefore, we can deduce that for any isogeny φ, we either have φ(E1) = {O} or

φ(E1) = E2.

De�nition 12. Let P be a point on the elliptic curve E and m ∈ Z. De�nemultiplication

by m to be the result of adding P to itself m times if m > 0, the result of adding −P to

itself −m times if m < 0 and O if m = 0. We denote this operation by [m]P .

De�nition 13. The set of m-torsion points or m-division points of an elliptic curve E

is de�ned to be the set

E[m] := ker[m] =
{
P ∈ E

(
K
)

: [m]P = O
}
.
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The torsion subgroup of E, denoted Etors, is the set of points or �nite order,

Etors =
∞⋃
m=1

E[m].

It is not hard to show that E[m] is a subgroup of E(K).

Let E[m](K) denote the m-torsion points which are K-rational.

The existence of the following morphism plays a key role in calculating the rank of

an elliptic curve.

Proposition 32 (Theorem 6.1, [62]). Let φ : E1 → E2 be a non-constant isogeny of degree

m. Then there exists a unique isogeny

φ̂ : E2 → E1

satisfying

φ̂ ◦ φ = [m].

De�nition 14. Let φ : E1 → E2 be an isogeny of degree m between two elliptic curves with

m-torsion subgroups. The dual isogeny to φ is the isogeny given in Theorem 32.

De�nition 15. Given an elliptic curve E de�ned over K and m ∈ Z, the m-division �eld

of E over K, denoted by K (E[m]), is the �eld obtained by adjoining K to the x and y

coordinates of each point in E[m] \ {O}.

Remark 5. Let E be an elliptic curve and m a positive integer. One can easily �nd a

recursive formula which produces a polynomial Pm(x) ∈ K[x] whose roots are precisely the

x-coordinates of the points in E[m] \ {O}, see [62, Exercise 3.7, p 105] for an example. We

call a polynomial of this form a division polynomial. One can easily obtain the y-coordinates

once the x-coordinates are known by using the equation for E.
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4.2.3 Rank

The following theorem is a special case of the Mordell-Weil theorem.

Theorem 33 (Mordell). Let E/Q be an elliptic curve. Then the group E(Q) is �nitely

generated.

For a proof, we refer the reader to [43, Chapter 6] or [48, Chapter 5].

This leads us to the following important de�nition.

De�nition 16. By Mordell's Theorem, we can conclude that

E(Q) ∼= Etors(Q)× Zr (4.6)

where r is a non-negative integer called the rank of E and is often written as rank(E).

The torsion part, E(Q)tors, is well understood. We have the following deep theorem

of Mazur [62, Chapter 8, Theorem 7.5] which completely characterizes the possibilities for

the torsion subgroup.

Theorem 34 (Mazur). If E is an elliptic curve, then Etors(Q) is one of the following 15

groups:

(1) Z/nZ with 1 ≤ n ≤ 10, n = 12;

(2) Z/2mZ× Z/mZ with 1 ≤ m ≤ 4.

Further, given a speci�c elliptic curve E, E(Q)tors is easily computable by the Nagell-

Lutz Theorem [62, Chapter 8, Corollary 7.2].

On the other hand, there is not much known about the rank of an elliptic curve. For

example, the famous Birch and Swinnerton-Dyer Conjecture (see [4] or [57]) predicts that

the rank of E/Q equals the order of vanishing of its L-series, L(E, s), at s = 1. In general,
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the rank of an elliptic curve is very di�cult to compute. There is no known algorithm to

calculate the rank(E) nor is it known what integers can occur as the rank of an elliptic curve.

The only way, in practice, to give an upper bound for the rank of E/Q has been to prove

upper bounds for the size of the m-Selmer group, Selm(E) (see [57] for more details). More

precisely, for every natural number m we have an exact sequence [62, Theorem 10.4.2]

0→ E(Q)/mE(Q)→ Selm(E)→XE[m]→ 0,

where XE is the Tate-Shafarevich group and A[φ] denotes the kernel of φ in the group A.

Combining this with Mordell's theorem we have that

E(Q)/mE(Q) ∼= (Z/mZ)r ⊕ E(Q)[m].

In particular, we show in Chapter 5 that [Eab(Q) : 3Eab(Q)] = 3r+1.

4.3 Selmer Groups: An Arithmetic Approach

In this section, we will discuss 3-descent maps and their relation to 3-isogenies. This

material will be useful when we de�ne Selmer groups in Chapter 5. For all proofs and

additional details, we refer the reader to [14, pp 2-6] and [12, pp 557-564].

Recall that if E(Q) has a rational 3-torsion subgroup, this means that there exists a

subgroup of E(Q) of order 3 that is stable under the action of Galois conjugation.

De�nition 17. Let E be an elliptic curve de�ned over a perfect �eld K and let T be a �nite

subgroup of E(K). We say that T is a K-rational subgroup of E if it is globally stable

by any σ ∈ Gal(K/K), i.e. if T ∈ T , then σ(T ) ∈ T .

Proposition 35 (Proposition 8.4.2, [12]). Let E be an elliptic curve de�ned over a perfect
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�eld K of characteristic di�erent from 2 and having a K-rational subgroup of order 3 of the

form T = {O, T,−T}.

1. The abscissa, x(T ), of T is in K.

2. Up to a change of variables (i.e. x into x− x0 for some x0 ∈ K), the curve E has an

equation of the form y2 = x3 + D(ax + b)2 for some b,D ∈ K∗ and a ∈ K. From this

we can conclude that T = (0, b
√
D).

3. If, in addition, E has a K-rational point T of order 3, up to the same change of

variables, the equation of E is y2 = x3 + (ax + b)2 for some a ∈ K, b ∈ K∗ and thus

T = (0, b).

For a proof, see [12, pp 557]

It is important to note that when we work with a general equation of the form

y2 = x3 +D(ax+ b)2,

the discriminant of the curve E is given by

∆ = 16D2b3
(
27b− 4a3D

)
with b, D and 27b− 4a3D all non-zero.

The proof of the following lemma can be found in [14].

Lemma 36 (Lemma 1.2, [14]). Assume E is an elliptic curve with K-rational subgroup of

order 3. Then there exists a unique equation of E of the form y2 = x3 +D (ax+ b)2, where

a, b and D are in Z, D a fundamental discriminant (including 1), b > 0 and if we write

b = b1b
3
3 with b1 cube-free, then (a, b3) = 1.
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For the remainder of this section we will consider the elliptic curve E de�ned over Q

with a rational subgroup of order 3. By the above proposition and lemma, we may assume

that E is given by an equation of the form y2 = x3 + D(ax + b)2. Fix the 3-torsion point

T =
(

0, b
√
D
)
, which may not be in E(Q), however T = {O, T,−T} is a rational subgroup

of order 3. Let K = Q
(√

D
)
be of discriminant 1. So K = Q if D = 1 and is a quadratic

�eld otherwise. Let G3 denote the subgroup of K∗/ (K∗)3 of classes whose norms are cubes.

Note G3 = Q∗/ (Q∗)3 when D = 1.

Now we will de�ne the fundamental 3-isogeny and introduce the auxiliary curve, E ′,

de�ned by the equation y2 = x3 +D′ (ax+ b′)2 where

D′ = −3D and b′ =
27b− 4a3D

9
.

It is easy to show that E ′ is non-singular and therefore an elliptic curve.

Since E ′ has the same form as E, it has a K-rational subgroup of order 3 generated

by

T ′ =

(
0,

27b− 4a3D

9

√
−3D

)
.

This leads us to the following proposition.

Proposition 37 (Proposition 8.4.3, [12]). For any P = (x, y) ∈ E \ T , set

φ(P ) = (x′, y′) =

(
x3 + 4D ((a2/3)x2 + abx+ b2)

x2
,
y (x3 − 4Db(ax+ 2b))

x3

)
. (4.7)

Set φ(T ) = φ(−T ) = φ(O) = O′. Then φ is a group homomorphism from E to E ′, whose

kernel is equal to T . Dually, there exists a homomorphism φ̂ from E ′ to E de�ned for
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P ′ = (x′, y′) di�erent from ±T ′ and O′ by

φ̂ (P ′) = (x, y) =

x′3 + 4D′
(

(a2/3)x′
2

+ ab′x′ + b′
2
)

9x′2
,
y′
(
x′

3 − 4D′b′(ax′ + 2b′)
)

27x′3

 (4.8)

and by φ̂ (T ′) = φ̂ (−T ′) = φ̂ (O′) = O. Furthermore, for all P ∈ E we have φ̂ ◦ φ(P ) = 3P

and for all P ′ ∈ E ′, we have φ ◦ φ̂ (P ′) = 3P ′.

We refer the reader to [12, Section 8.4] for the proof.

As we will see in Section 4.3.1, we are interested in calculating the images of φ and φ̂.

However, these are di�cult to calculate, therefore we introduce the idea of the fundamental

3-descent map. As we will see, instead of calculating the images of φ and φ̂, calculating the

cardinality of the images 3-descent maps will su�ce.

De�nition 18. Let E be an elliptic curve de�ned over Q, with T = (0, b). Let E ′ be the

auxiliary curve.

(1) The 3-descent map α is a map from E(Q) to Q∗/ (Q∗)3 de�ned by α(O) = 1, α((0, b)) =

1/2b and α((x, y)) = y − (ax+ b).

(2) The corresponding 3-descent map α′ from E ′(Q) to Q
(√
−3
)∗
/
(
Q
(√
−3
)∗)3

de�ned

analogously.

The following proposition states some important properties concerning the 3-descent

maps.

Proposition 38 (Proposition 8.4.7, [12]). 1. The 3-descent maps α and α′ are group ho-

momorphisms.

2. The kernel of α is equal to the subgroup φ̂ (E ′(Q)) of Q∗/ (Q∗)3. The kernel of α′ is

equal to φ (E(Q)).

For a proof of this proposition see [12, Section 8.4].
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4.3.1 3-Descent with Rational 3-Isogeny

In this section we will explain how to use the 3-descent maps α and α′ to give a

precise estimate on the rank of the elliptic curve E. The reader should refer to [14] for all

proofs and extended details.

We begin with the following lemma.

Lemma 39 (Lemma 2.1, [14]). Let y2 = x3 +D(ax+ b)2 be the equation of an elliptic curve

E with rational 3-torsion subgroup and assume as usual that this equation is written so that

D is a fundamental discriminant. The rational 3-torsion points of E are the following:

1. If D = 1, the points O and (0,±b).

2. If D = −3 and 2 (9b+ 4a3) = t3 is the cube of a rational number t 6= 0, the point O

and the points P such that x(P ) =
t2

3
+

3

t2

(
4ab+

16

9
a4

)
+

4a2

3
.

3. Otherwise, only the point O.

Note that if an elliptic curve does not have a rational 3-torsion subgroup (i.e. if it

does not have an equation of the form y2 = x3 + D(ax + b)2), the only rational 3-torsion

point is O.

Recall the following exact sequence, [62, Remark X.4.7 pp. 300-301]

0→ E ′(Q)

φ(E(Q))
→ E(Q)

3E(Q)
→ E(Q)

φ̂ (E ′(Q))
→ 0.

Combining the above exact sequence with Theorem 33, tells us that if we set rank(E) = r,

then

3r+δ = [E(Q) : 3E(Q)] (4.9)

=
[
E(Q) : φ̂ (E ′(Q))

] [
φ̂ (E ′(Q)) : φ̂ (φ (E(Q)))

]
(4.10)
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where

δ =


1 E has rational point of order 3

0 otherwise

.

Hence, in order to compute the rank of E, it is su�cient to understand the images of

φ and φ̂. This leads us to the next proposition. See [14] and [12, Proposition 8.2.8].

Proposition 40 (Proposition 8.2.8, [12]). Let E be the elliptic curve y2 = x3 +D(ax+ b)2

and E ′ the 3-isogenous curve with equation y2 = x3 − 3D (ax+ (27b− 4a3D) /9)
2
as above.

Let α and α′ be the corresponding 3-descent maps. Then

|Im(α)| |Im (α′)| = 3r+δ

where r = rank(E) = rank (E ′), δ = 1 if D = 1,−3 and δ = 0 otherwise.

From now on we will specialize to the cases where D = 1, that is to elliptic curves

of the form Eab : y2 = x3 + (ax + b)2 and the isogenous curve is of the form E ′ab′ : y2 =

x3 − 3(ax + b′)2 with b′ = 27b−4a3

9
. The reason for this is that elliptic curves of this form,

E/Q, have rational 3-torsion subgroup. It is natural to study 3-Selmer groups associated to

elliptic curves with 3-torsion. For D = 1, Cohen and Pazuki [14] prove the following theorem

describing the group Im (α).

Theorem 41. [14, Theorem 3.1] Let [u] ∈ Q∗/(Q∗)3. Let u be the unique positive cube-free

integer representative of [u]. Then write u = u1u
2
2 where u1 and u2 are square-free, coprime

integers in Z. Then [u] ∈ Im (α) if and only if u1u2 | 2b and the homogeneous cubic equation

Fu(x, y, z) = 0 has an integer solution, where

Fu(x, y, z) = u1x
3 + u2y

3 +
2b

u1u2

z3 − 2axyz. (4.11)

Remark 6. 1. The divisibility of 2b by u1u2 gives an upper bound on |Im(α)|.
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2. When we speak of a solution to a homogeneous equation, we mean a non-trivial solution

and thus when we speak of the solution set of such a homogeneous equation being non-

empty we mean that there are non-trivial solutions.

For an integral domain R and F ∈ R[x, y, z], let

CF (R) = {(x, y, z) ∈ R3 \ {(0, 0, 0)} | F (x, y, z) = 0}.

In light of Theorem 41, we would like to determine CFu(Z) for each u = u1u
2
2 with u1u2|2b.

In general, however, this is not possible due to obstructions in the 3-part of the Tate-

Shafarevich group. The reader should refer [14], [12] and [62] for any details concerning the

Tate-Shafarevich group. Thus we are motivated to de�ne the Selmer group Sel(φ)(Eab) as

Sel(φ)(Eab) = {[u] ∈ Q∗/(Q∗)3 | CFu(Qν) 6= ∅; for all places ν},

where Fu(X, Y, Z) is de�ned for Eab in equation (4.11).

The reader should refer to Appendix A for a discussion on how this de�nition is

related to the usual Cohomology de�nition of the Selmer group.

Cohen and Pazuki [14] also also give criteria in the isogenous case. As usual, OK

denotes the ring of integers of K = Q(
√
−3). The following theorem describes the group

Im (α′). Cohen and Pazuki state the following theorem in a di�erent form than the one given

here. To see that these two statements are equivalent, we refer the reader to Appendix B.

Theorem 42 (Theorem 4.1, [14]). Let G′3 be the subgroup of Q(ω)∗/(Q(ω)∗)3 of classes

whose norms are cubes where ω is a primitive cubic root of unity. Let [u′] ∈ G′3. Then

[u′] ∈ Im(α′) if and only if there exists a representative u′ ∈ Q(ω)∗ such that u′ = γγ2

with γ = c + dω ∈ Z[ω], N(γ) = γγ is only divisible by split primes, N(γ) | (2b′) and the
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homogeneous cubic equation Fu′(x, y, z) = 0 has an integer solution where

Fu′(X, Y, Z) := 2aX2Z−2aXY Z+2aY 2Z+
2b′

N (γ)
Z3−dX3−dY 3−3cXY 2+3cX2Y +3dXY 2.

(4.12)

Proof. It is easy to see that given (x, y) ∈ E ′ (Q), we can �nd an integer solution to

Fu′ (X, Y, Z). For further details, we refer the reader to Appendix B Sections B.1 through

B.2 where we show the construction of the cubic equation.

Now assume that we have a non-trivial integer solution (X, Y, Z) to the cubic. Let

r = N (γ)
(
X2 −XY + Y 2

)
and

s = N (γ)
(
c+ dω2

)
(X + Y ω)3 +

√
−3
(
arZ + bZ3

)
= N (γ)

((
c+ dω2

)
(X + Y ω)3 +

√
−3Z

(
a
(
X2 −XY + Y 2

)
+

b

N (γ)
Z2

))
.

Let x =
r

Z2
and y =

s

Z3
. We need to show that (x, y) ∈ E ′ (Q). To see this, observe

that

α ((x, y)) = y −
√
−3 (ax+ b)

=

N (γ)

(
(c+ dω2) (X + Y ω)3 +

√
−3Z

(
a (X2 −XY + Y 2) +

b

N (γ)
Z2

))
Z3

+
√
−3

(
a
N (γ) (X2 −XY + Y 2)

Z2
+ b

)
.
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Expanding and doing some algebra we �nd that

α ((x, y)) =
1

Z3

(
(c+ dω)

(
c+ dω2

)
(X + Y ω)3)

= u

(
X + Y ω

Z

)3

.

It remains to show that x, y ∈ Q.

Clearly since N (γ) ∈ Z and X2−XY +Y 2 ∈ Z, it follows that x ∈ Q. There is more

work involved to show that y ∈ Q. Notice that

(c+ dω2)(X + Y ω)3

= cX3 + 3cX2Y ω + 3cXY 2ω2 + cY 3 + dX3ω2 + 3dX2Y + 3dXY 2ω + dY 3ω2.

Making the appropriate substitutions for ω and ω2 into the above equation we have

(c+ dω2)(X + Y ω)3

=
1

2

(
cX3 − 3cX2Y − 3cXY 2 + cY 3 − dX3 + 3dX2Y − 3dXY 2 − dY 3

)
+

√
−3

2

(
3cX2Y − 3cXY 2 − dX3 + 3dXY 2 − dY 3

)
.

Also, since

aZ
(
X2 −XY + Y 2

)
+

b

N (γ)
Z3 =

1

2

(
dX3 + dY 3 + 3cXY 2 − 3cX2Y − 3dXY 2

)
,
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we can rewrite s as the following:

s = N (γ)
1

2

(
cX3 − 3cX2Y − 3cXY 2 + cY 3 − dX3 + 3dX2Y − 3dXY 2 − dY 3

)
+N (γ)

√
−3

2

(
3cX2Y − 3cXY 2 − dX3 + 3dXY 2 − dY 3

)
+N (γ)

√
−3

2

(
dX3 + dY 3 + 3cXY 2 − 3cX2Y − 3dXY 2

)
=

N (γ)

2

(
cX3 − 3cX2Y − 3cXY 2 + cY 3 − dX3 + 3dX2Y − 3dXY 2 − dY 3

)
Thus s ∈ Q and hence y ∈ Q.

From Theorem 42 we are motivated to de�ne the Selmer group Sel(φ̂)(E ′ab′) as

Sel(φ̂)(E ′ab′) = {[u′] ∈ Q(
√
−3)∗/(Q(

√
−3)∗)3 | CFu′ (R) 6= ∅;CFu′ (Qp) 6= ∅ for all primes p},

where Fu′(X, Y, Z) is de�ned for E ′ab′ in equation (4.12).

To see a more in depth de�nition of this de�nition, we refer the reader to Appendix

B.
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Chapter 5

Selmer Groups

The aim of this chapter is to give an explicit way to estimate the rank of an elliptic

curve over Q using 3-descent. As in Chapter 4, we will assume the elliptic curve, E, has a

rational 3-torsion subgroup and is of the form

E : y2 = x3 + (ax+ b)2,

with a, b ∈ Z. In addition, we will also explore the auxiliary curve, E ′, given by

E ′ : y2 = x3 − 3 (ax+ b′)
2

with b′ =
27b− 4a3

9
.

The results stated in Sections 5.2, 5.3 and 5.4 originated from a problem posed dur-

ing the Summer 2010 Research Experience for Undergraduates in Computational Number

Theory and Combinatorics. It is joint work with Kevin James and Hui Xue along with the

REU students Tony Feng, Carolyn Kim and Eric Ramos.
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5.1 Local Solubility

The following propositions give the local solubility conditions for the homogeneous

cubic polynomials associated to both Eab : y2 = x3 +(ax+b)2 and E ′ab′ : y2 = x3−3(ax+b′)2

where b′ =
27b− 4a3

9
. These propositions were stated in Cohen and Pazuki's paper [14]. For

completeness, proofs of these results can be found in Appendices C and D.

Let vp(n), n ∈ N, be the highest exponent of p that divides n, i.e. vp(n) = − logp |n|p.

We set vp(0) =∞. So by Lemma 36, we may assume that either vp(a) = 0 or vp(b) ≤ 2 for

E.

5.1.1 The Elliptic Curve Eab

The following two propositions give the local solubility criteria for the polynomial

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

associated with Eab.

Proposition 43 (Lemmas 5.3− 5.5, [14]). Assume p 6= 3. Let

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

with p-integral coe�cients where u1 and u2 are square-free and coprime and u3 =
2b

u1u2

.

1. If p 6= 2, vp(b) = 0 and vp (27b− 4a3) = 0, then Fu(X, Y, Z) = 0 has a solution in Qp.

2. If p 6= 2, vp(b) = 0 and vp (27b− 4a3) > 0, then Fu(X, Y, Z) = 0 has a solution in Qp

if and only if ui/uj is a cube in F∗p for some i 6= j.

3. If p 6= 2 and vp(b) > 0, then Fu(X, Y, Z) = 0 has a solution in Qp if and only if one of

the following is ful�lled:
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(a) vp(a) = 0,

(b) vp(a) > 0 and exactly one of {u1, u2, u3} is divisible by p and the ratio of the other

two is a cube in F∗p,

(c) vp(a) > 0 and exactly two of {u1, u2, u3} are divisible by p and their ratio is a

cube in F∗p.

4. If p = 2, then Fu(X, Y, Z) = 0 has a solution in Q2 if and only if one of the following

is ful�lled:

(a) exactly one of {u1, u2, u3} is divisible by 2 and the ratio of the other two is a cube

in F∗2,

(b) exactly two of {u1, u2, u3} is divisible by 2 each exactly once and their ratio is a

cube in F∗2.

The following proposition gives the solubility conditions for the prime p = 3.

Proposition 44 (Lemmas 5.6, 5.9, 5.10, [14]). Let

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

with 3-integral coe�cients where u1 and u2 are square-free and coprime and u3 =
2b

u1u2

.

1. If v3(a) = 0, then Fu(X, Y, Z) = 0 has a solution in Q3.

2. If v3(a) ≥ 2 and v3(b) = 0 then Fu(X, Y, Z) = 0 has a solution in Q3 if and only if

ui/uj is a cube modulo 9 for some i 6= j.

3. If v3(a) ≥ 2 and exactly one of {u1, u2, u3} is divisible by 3, say ui, then Fu(X, Y, Z) = 0

has a solution in Q3 if and only if either the ratio of the other two is a cube modulo 9

or v3(ui) = 1.
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4. If v3(a) ≥ 2 and exactly two of {u1, u2, u3} are divisible by 3, then Fu(X, Y, Z) = 0 has

a solution in Q3 if and only if their ratio is a cube modulo 9.

5. If v3(a) = 1 and exactly one of {u1, u2, u3} is divisible by 3, then Fu(X, Y, Z) = 0 has

a solution in Q3 if and only if either the ratio of the other two is a cube modulo 9 or

there exists s1, s2 ∈ {±1} such that 2a ≡ s1u1 + s2u2 + s1s2u3 (mod 9).

6. If v3(a) = 1 and two of {u1, u2, u3} are divisible by 3, then Fu(X, Y, Z) = 0 has a

solution in Q3.

7. If v3(a) = 1, v3 (b) = 0 and ui/uj is a cube modulo 9 for some i 6= j, then Fu(X, Y, Z) =

0 has a solution in Q3.

8. If v3(a) = 1, v3 (b) = 0 and ui/uj is not a cube modulo 9 for all i 6= j then Fu(X, Y, Z) =

0 has a solution in Q3 if and only if there exists s1, s2 ∈ {±1} such that 2a ≡ s1u1 +

s2u2 + s1s2u3 (mod 27).

5.1.2 The Auxiliary Curve E ′ab′

The following propositions give the local solubility criteria for the polynomial

Fu′(X, Y, Z) := 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N (γ)
Z3

−dX3 − dY 3 − 3cXY 2 + 3cX2Y + 3dXY 2

associated to the auxiliary elliptic curve E ′ab′ . Note that since we are working over Q
(√
−3
)
,

p = 3 is the only rami�ed prime. If p ≡ 2 (mod 3), then p is an inert prime, and if

p ≡ 1 (mod 3), then p is a split prime.

Proposition 45. [14, Corollary 6.3] Let p be any split prime. Then there exists dp ∈ Qp

such that d2
p = −3. The equation Fu′(X, Y, Z) = 0 has a solution in Qp if and only if the
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cubic

u1X
3 + u2Y

3 + u3Z
3 −CXY Z = 0

does, where u1 =

(
c− d

2

)
− d

2
dp, u2 =

(
c− d

2

)
+
d

2
dp, u3 =

2b′

γγ
dp and C = 2adp.

Making some minor adjustments to Proposition 43, we have all the conditions neces-

sary to �nd a solution for Fu′(X, Y, Z) = 0 in Qp where p is a split prime. Before stating the

Corollary, we make the following observation.

Lemma 46. Let ∆′ = 27b′ + 12a3. If p ≡ 1 (mod 3), p | ∆′ and p - b′, then 2b′
√
−3 is a

cube modulo p.

So we can conclude that if ui/uj is a cube for some i 6= j, then this is true for all

i 6= j.

Corollary 47. Let p be any split prime. We can write p = ππ where π ≡ 2 (mod 3) and is

in the upper-half plane. Let

Fu′(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − cXY Z = 0

where u1 =

(
c− d

2

)
− d

2

√
−3, u2 =

(
c− d

2

)
+
d

2

√
−3, u3 =

2b′

γγ

√
−3 and c = 2a

√
−3 with

(c, d) = 1.

1. If vp(b
′) = 0 and vp(27b′ + 12a3) = 0, then Fu′(X, Y, Z) = 0 has a solution in Qp.

2. If vp(b
′) = 0 and vp(27b′+ 12a3) > 0, then Fu′(X, Y, Z) = 0 has a solution in Qp if and

only if u1/u2 is a cube in F∗p.

3. If vπ(b′) > 0, then Fu′(X, Y, Z) = 0 has a solution in Q(ω)π if and only if one of the

following is true

(a) vπ(a) = 0,
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(b) vπ(a) > 0, π divides exactly one of {u1, u2, u3} and the ratio of the other two is a

cube modulo π,

(c) vπ(a) > 0, π divides two of {u1, u2, u3} and their ratio is a cube modulo π.

Proposition 48 (Lemmas 6.5, 6.6, 6.7, [14]). Assume p 6= 2, p ≡ 2 mod 3 and let

Fu′(X, Y, Z) be as in equation (4.12).

1. If vp (γγ) = 0, vp(2b
′) = 0 and vp (27b′ + 12a3) = 0, then Fu′(X, Y, Z) = 0 has a

solution in Qp.

2. If vp(2b
′) = 0 and vp (27b′ + 12a3) > 0, then Fu′(X, Y, Z) = 0 has a solution in Qp if

and only if
γ

γ
is a cube in F∗p2.

3. If vp(2b
′) > 0 and vp (γγ) = 0, then Fu′(X, Y, Z) = 0 has a solution in Qp if and only

if one of the following is satis�ed:

(a) vp(2a) = 0.

(b) vp(2a) > 0 and the class of
γ

γ
modulo p is a cube in F∗p2.

Again, recall that by Lemma 36, we have that either v2(b′) ≤ 2 or v2(a) = 0.

Proposition 49 (Lemmas 6.5, 6.6, 6.7, [14]). Let p = 2 and Fu′(X, Y, Z) be as in equation

(4.12).

1. If v2(2b′) ≤ 2, then Fu′(X, Y, Z) = 0 has a solution in Q2 if and only if the class of
γ

γ

modulo 2 is a cube in Z∗[ω]/2Z∗[ω] ∼= F∗4. Note that the only cube in F∗4 is 1.

2. If v2(2b′) ≥ 3, then

(a) if d ≡ 0 (mod 4) and c ≡ ±1 (mod 4), then Fu′(X, Y, Z) = 0 has a solution in

Q2.
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(b) if d ≡ 2 (mod 4) and c ≡ ±1 (mod 4) then Fu′(X, Y, Z) = 0 has a solution in

Q2.

(c) if d ≡ 1 (mod 2), then Fu′(X, Y, Z) = 0 has a solution in Q2 if and only if either

v2(2b′) ≥ 4 or v2(a) > 0.

Proposition 50. Let p = 3 and Fu′(X, Y, Z) be as in equation (4.12).

1. If v3(2a) = 0, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of the

following conditions is satis�ed:

(a) v3 (d) > 0,

(b) v3 (d) = v3

(
2a+

2b′

N(γ)

)
= 0.

2. If v3(2a) ≥ 2, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of the

following conditions is satis�ed:

(a) v3(d) ≥ 2,

(b) v3(d) = v3(b) = 1,

(c) v3(d) = 0 and
2b′

dN(γ)
is a cube modulo 9,

(d)
2b′

N(γ)
≡ ± (6c− 3d) modulo 27.

3. If v3(2a) = 1, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of the

following is satis�ed:

(a) v3(d) ≥ 2,

(b) v3(d) = v3

(
2a+

2b′

N(γ)

)
= 1,

(c) v3(d) = 0 and

(
2b′

N(γ)
+ 2a

)
/d is a cube modulo 9,
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(d) v3

(
2b′

N(γ)

)
= 1, v3(d) = 0 and there exists s ∈ {±1} such that (d − 2c) ≡

s

(
2b′

3N(γ)
+ 2a

)
(mod 27) and s(2c− d) ≡ 2a/3 (mod 3),

As one can see, the local solubility results associated with the primes 2 and 3 are

complex. Therefore we exclude them when looking for solutions and de�ne a larger group

than the Selmer group. We will discuss this in more detail in Section 5.2.2

5.2 Graph Theory

We can use the propositions from the previous section to give a characterization of

the Selmer group in terms of graphs. The goal is to generalize the results of Feng and Xiong

[32] for 3-Selmer groups. In particular, we consider the results of Faulkner and James [31] for

congruent number curves and give an equivalent approach for elliptic curves with 3 torsion.

For each elliptic curve, we construct a directed graph whose edges are labeled by cubic roots

of unity. In the case of Eab : y2 = x3 + (ax + b)2, if we de�ne a �three-balanced� partition

in terms of the following labeling, then the size of Sel(φ)(Eab) corresponds to the number of

�three-balanced� partitions of the graph. Conversely, for E ′ab′ : y2 = x3−3(ax+b′)2, we de�ne

the notion of a �good� labeling. Then the size of Sel(φ̂)(E ′ab′) is bounded by the number of

�good� labellings. These notions of �three-balanced� partitions and �good� labellings provide

a visual interpretation of the Selmer group. We will make these notions more precise below.

5.2.1 The Elliptic Curve Eab

We will begin by studying elliptic curves with rational 3-torsion of the form

y2 = x3 + (ax+ b)2
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whose discriminant is

∆ = 16b3∆′

where ∆′ = 4a3 − 27b. Recall by Lemma 36, we know that either vp(b) ≤ 2 or vp(a) = 0.

Let ω be a primitive cubic root of unity. If p ≡ 1 (mod 3) is a rational prime (i.e. p

splits in Z[ω]), then we will write p = ππ where π ≡ 2 (mod 3) and π is in the upper-half

plane. Recall that if p ≡ 2 (mod 3), then every number is a cube modulo p.

Using these conventions, let p and q be primes. Then we de�ne the following:

χp(q) =


( q
π

)
3

if p ≡ 1 (mod 3)

1 if p ≡ 2 (mod 3) .

Recall that we have the following properties of χp:

1. χp(q) = 1 if and only if q is a cube in F∗p

2. χp(ab) = χp(a)χp(b) for all a, b ∈ Z.

So the above is true for all primes p not equal to 3. For p = 3, notice that (Z/9Z)∗ is cyclic

and generated by 2. De�ne χ3 on (Z/9Z)∗ by

χ3(q) = ωt

where q = 2t ∈ (Z/9Z)∗. Note that even though we are working modulo 9, we will still use

χ3 to avoid confusion later.

One important concept to notice is that for those primes q which divide ∆′, but do
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not divide 2b, we can conclude that

2b ≡
(
2
(
3−1
)
a
)3

(mod q)

or equivalently that χq (2b) = 1. Using this observation we can conclude that

χq (u2/u3) = χq (u3/u1)

= χq (u1/u2)

and

χq (u1/u3) = χq (u3/u2)

= χq (u1/u2)

where u1, u2 and u3 are de�ned as in Proposition 43. Also χq (ui/uj) = 1 if and only if

χq (uj/ui) = 1 for i 6= j. Therefore in Proposition 43.2, it is enough to show u1/u2 is a cube

modulo a given prime.

For clarity, we will consider di�erent families of elliptic curves.

5.2.1.1 The Family of Curves E1

Consider the family E1 of elliptic curves given by

Eab/Q : y2 = x3 + (ax+ b)2

where 3 - b and ∆ = 16b3∆′, with ∆′ = 27b− 4a3.
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Let G be a graph with g vertices where

g = 1 +
∑
p|b

vp(b).

Let G′ be the graph containing G with g′ vertices where

g′ = g +
∑
p|∆′
p-(2b)

1.

So

V (G) = {p : p | b} ∪
{
p : p2 | b

}
∪ {2}

and

V (G′) = V (G) ∪ {p : p | ∆′, p - 2b} .

Example 3. Consider the elliptic curve

E : y2 = x3 + (7x+ (5)(7)(19))2

where ∆′ = 7(23)(103). Then the vertices of G′ are {2, 5, 7, 19, 23, 103}. The subgraph G is

made up of the vertices {2, 5, 7, 19}. The graph is represented by Figure 5.1.

Next, draw directed edges from all primes p ∈ V (G′) \ V (G) to all primes q ∈ V (G).

Additionally draw directed edges from all primes p ∈ V (G) to q ∈ V (G) where p | ∆′ and

p 6= q. Label each directed edge from p to q as

`(p, q) := χp(q).

Example 4. Adding edges to Figure 5.1, we have the directed graph in Figure 5.2.
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23 7 103

2 5 19

Figure 5.1: Vertices of G′

1

1 1

1

ω2 ω2 ω2

ω

ω2 ω

ω2

23 7 103

2 5 19

Figure 5.2: Directed Graph G′
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In [31], Faulkner and James de�ne even and quasi-even partitions of graphs associated

to congruent number curves in order to calculate the size of 2-Selmer groups. In a similar

way, we will de�ne three-balanced and three-quasi-balanced partitions in order to calculated

the size of 3-Selmer groups.

A partition of V (G) into three parts is an ordered triple of subsets (S1, S2, S3) such

that S1 ∪ S2 ∪ S3 = V (G) and S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = ∅. We will allow for the

possibility that S1, S2 or S3 is empty.

De�nition 19. A partition, (S1, S2, S3), of V (G) is called three-balanced if and only if

the following �ve conditions are satis�ed:

1. if p ∈ S1 ∪ S2 and p2 || 2b, then the additional copy of p is in S3 for all p ∈ V (G)

2. if 4 | b, then all copies of 2 are in S3

3. for every p ∈ Sν such that the prime, p, is only in Sν and p | ∆′, we have

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2

 = 1

where we cycle the indices of the partitions (i.e. S1 = S4, etc.)

4. for every p ∈ Sη, η = 1, 2 such that p is also in S3 and p | ∆′, we have

 ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2

 = 1,

5. for every p ∈ V (G′) \ V (G)

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
= 1.
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1

1 1

1

ω2 ω2 ω2

ω

ω2 ω

ω2

23 7 103

2 5 19

Figure 5.3: Three-Balanced Partition

Example 5. Continuing with the elliptic curve

E : y2 = x3 + (7x+ (5)(7)(19))2

where ∆′ = 7(23)(103). Let S1 = {5, 7}, S2 = {2} and S3 = {19}.

To see this is a three-balanced partition, there are 3 primes we need to check 7, 23

and 103 since these are the primes which divide ∆′. Notice that 7 ∈ S1 and

 ∏
pj∈S2

`(7, pj)

( ∏
pk∈S3

`(7, pk)
2

)
= ω2

(
ω2
)2

= 1.
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1

1 1

1

ω2 ω2 ω2

ω

ω2 ω

ω2

23 7 103

2 5 19

Figure 5.4: Not a Three-Balanced Partition

In addition, since 23 ≡ 2 (mod 3),

 ∏
pj∈S1

`(23, pj)

( ∏
pk∈S2

`(23, pk)
2

)
= 1.

Finally,

 ∏
pj∈S1

`(103, pj)

( ∏
pk∈S2

`(103, pk)
2

)
= 1.

Then (S1, S2, S3) is three-balanced.

Now consider S1 = {7}, S2 = {2, 5} and S3 = {19}.
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To see this is not a three-balanced partition, notice that

 ∏
pj∈S2

`(7, pj)

( ∏
pk∈S3

`(7, pk)
2

)
= ω2 · ω2(ω2)2

6= 1.

We will also need another de�nition.

De�nition 20. A partition, (S1, S2, S3), of V (G) is called three-quasi-balanced at 3 if

and only if the following conditions are satis�ed:

1. (S1, S2, S3) satis�es condition (1) for a three-balanced partition for all primes and

satis�es the remainder of the conditions for all primes except 3

2. Exclusively we have

 ∏
pj∈S1

`(3, pj)

( ∏
pk∈S2

`(3, pk)
2

)
= 1

or there exists s1, s2 ∈ {±1} such that

2a ≡ s1

(∏
pi∈S1

pi

)
+ s2

 ∏
pj∈S2

pj

+ s1s2

( ∏
pk∈S3

pk

)
(mod 27) .

Using these de�nitions, we have the following lemma.

Lemma 51. Suppose (S1, S2, S3) is a partition of V (G). Let

u1 =
∏

pi∈S1

pi and u2 =
∏

pj∈S2

pj.
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Then the homogeneous equation

u1X
3 + u2Y

3 +
2b

u1u2

Z3 − 2aXY Z = 0 (5.1)

has a solution in every local �eld Qp if and only if v3(a) = 1 and (S1, S2, S3) is three-quasi-

balanced at 3 or v3(a) 6= 1 and (S1, S2, S3) is three-balanced.

Proof. Let u3 = 2b/(u1u2). We will begin by assuming (S1, S2, S3) is a three-balanced

partition. By Proposition 43, there are three things we need to show. First, for every prime

p ∈ Sν , if p is only in Sν and p | ∆′, then χp (uν+1/uν+2) = 1 where we cycle the indices.

Second for every p ∈ Sη with η = 1 or η = 2, such that p is also in S3 and p | ∆′, we

have χp (uη/u3) = 1. In addition, we must also show that for every p ∈ V (G′) \ V (G),

χp(u1/u2) = 1. Notice that for every p ∈ Sν , which is only in Sν and p | ∆′, we have

χp (uν+1/uν+2) = χp (uν+1)χp (uν+2)2

=

 ∏
pj∈Sν+1

χp(pj)

 ∏
pk∈Sν+2

χp(pk)
2


=

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2


= 1

since (S1, S2, S3) is three-balanced. In the case p ∈ Sη for η = 1 or η = 2, p ∈ S3 and p | ∆′,
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we have

χp (uη/u3) = χp
(
u′η
)
χp (u′3)

2

=

 ∏
pj∈Sη
pj 6=p

χp(pj)


 ∏
pk∈S3
pk 6=p

χp(pk)
2



=

 ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2


= 1

where uν = pu′ν and u3 = pu′3.

We also know that for every p ∈ V (G′) \ (V (G) ∪ {3}),

χp (u1/u2) = χp (u1)χp (u2)2

=

 ∏
pj∈S1

χp(pj)

( ∏
pk∈S2

χp(pk)
2

)

=

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
= 1.

Note that the only time we will have to worry about three-quasi-balanced at 3 is when 3 || a

and χ3(u1/u2) 6= 1. However with the last condition of three-quasi-balanced, by Proposition

44, we are guaranteed a solution in Q3.

Conversely, suppose that (S1, S2, S3) is not three-balanced or if 3 || a, it is not three-

quasi-balanced at 3 as well. There are �ve cases we need to consider.

Case 1: There exists p ∈ S1 ∪ S2 with p2 || 2b such that the other copy of p is also

in S1 ∪ S2.
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In this case, we either would have that gcd(u1, u2) 6= 1 or ui not square-free for i = 1 or

i = 2. These are both requirements for the equation (5.1).

Case 2: If we have v2(b) = 2 and 2 ∈ S1 ∪ S2, then in this case we are guaranteed

there is no solution by Proposition 43.

Case 3: There exists p in some Sν with p not in any other Sη and p | ∆′, such that

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2

 6= 1.

Then

χp (uν+1/uν+2) = χp (uν+1)χp (uν+2)2

=

 ∏
pj∈Sν+1

χp(pj)

 ∏
pk∈Sν+2

χp(pk)
2


=

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2


6= 1,

where we cycle the indices. Hence by Proposition 43, equation (5.1) does not have a solution

in Qp.

Case 4: There exists p in some Sη with η = 1 or η = 2, p2 | 2b, the other copy of p

in S3 and p | ∆′ such that

 ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2

 6= 1.
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Then

χp (uη/u3) = χp
(
u′η
)
χp (u′3)

2

=

 ∏
pj∈Sη
pj 6=p

χp(pj)


 ∏
pk∈S3
pk 6=p

χp(pk)
2



=

 ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2


6= 1,

where uη = pu′η and u3 = pu′3.

Hence by Proposition 43, equation (5.1) does not have a solution in Qp.

Case 5: There exists a p ∈ V (G′) \ V (G), such that

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
6= 1.

Since

χp (u1/u2) = χp (u1)χp (u2)2

=

 ∏
pj∈S1

χp(pj)

( ∏
pk∈S2

χp(pk)
2

)

=

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
6= 1,

it follows that equation (5.1) would not have a solution in Qp unless p = 3. The only

way it would have a solution is if 3 || a, the above was true for p = 3 and we have 2a ≡
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s1u1 + s2u2 + s1s2u3 (mod 27) for some s1, s2 ∈ {±1}. However, if 3 || a we assumed the

partition was not three-quasi-balanced at 3. So we have covered most of the cases already

with the partition not being three-balanced. We only need to consider that case that there

must not exist s1, s2 ∈ {±1} such that 2a ≡ s1u1 + s2u2 + s1s2u3 (mod 27). But in this

case, by Proposition 44, we do not have a solution in Q3.

So we obtain the following theorem giving the size of the Selmer group, Sel(φ)(Eab),

for the family E1.

Theorem 52. Let Eab : y2 = x3 + (ax + b)2 with 3 - b. Let G and G′ be de�ned as above.

Then if 3 || a, we have

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− quasi− balanced at 3 partitions of V (G)} .

Otherwise, we have

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− balanced partitions of V (G)} .

Proof. Assume Eab : y2 = x3 + (ax+ b)2 where v3(b) = 0 and v3(a) 6= 1. Let [u] ∈ Sel(φ)(Eab)

where we can �nd a representative for u such that there exists integers u1 and u2 with

gcd(u1, u2) = 1 and u = u1u
2
2. Then u1u2 | 2b and Fu(X, Y, Z) = 0 as in Equation (4.11)

has a solution over Qν for all places ν. By Lemma 51 there exists a three-balanced partition

(S1, S2, S3) where S1 = {p : p | u1}, S2 = {p : p | u2} and S3 =

{
p : p | 2b

u1u2

}
.

Now assume (S1, S2, S3) is a three-balanced partition. Let u1 =
∏
p∈S1

p and u2 =
∏
p∈S2

p.

Then by Lemma 51 u1X
3 + u2Y

3 +
2b

u1u2

Z3 − 2aXY Z = 0 has a solution over Qν for all

places ν. And hence u = u1u
2
2 is a representative for the element [u] in Sel(φ)(Eab).

In the case that v3(a) = 1, Proposition 44 gives extra solubility conditions on Equation

(5.1). In this case, an additional condition must be placed on the de�nition of a three-
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balanced partition. This is the condition stated in the de�nition of a three-quasi-balanced

partition. The proof follows the same as before.

Example 6. Let us once again consider the curve

E : y2 = x3 + (7x+ (5)(7)(19))2

where ∆′ = 7(23)(103). Earlier we gave an example of a three-balanced partition. There

are actually 9 possible three-balanced partitions of the graph. Table 5.1 lists all 9 of the

possible three-balanced partitions. Note these will actually correspond to di�erent elements

in the Selmer group. In addition, since this is such an easy example, the subsets can just

be permuted to obtain new elements. The two main reasons for this is due to the fact that

3 does not divide b and each prime divides b exactly once. If a prime had divided b twice,

then we could not longer just permute the subsets.

5.2.1.2 The Family of Curves E2

Next, consider the family E2 of elliptic curves given by

Eab/Q : y2 = x3 + (ax+ b)2

where 3 | b and ∆ = 16b3∆′, with ∆′ = 27b − 4a3. Again, recall that we may assume for

every prime p, either vp(a) = 0 or vp(b) ≤ 2.

Let G be a graph with g vertices where

g = 1 +
∑
p|b

vp(b).
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S1 S2 S3

{2, 5, 7, 19} ∅ ∅

∅ {2, 5, 7, 19} ∅

∅ ∅ {2, 5, 7, 19}

{7, 5} {2} {19}

{7, 5} {19} {2}

{19} {7, 5} {2}

{19} {2} {7, 5}

{2} {19} {7, 5}

{2} {7, 5} {19}

Table 5.1: Three-Balanced Partitions
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Let G′ be the graph, containing G, with g′ vertices where

g′ = g +
∑
p|∆′
p-(2b)

1.

So

V (G) = {p : p | b} ∪
{
p : p2 | b

}
∪ {2}

and

V (G′) = V (G) ∪ {p : p | ∆′, p - (2b)} .

Draw directed edges from all primes p ∈ V (G′) \ V (G) to all primes q ∈ V (G). Additionally

draw directed edges from all primes p ∈ V (G) to q ∈ V (G) where p | ∆′ and p 6= q. Label

each directed edge from p to q as

`(p, q) := χp(q).

Again, a partition of V (G) into three parts is an ordered triple of subsets (S1, S2, S3)

such that S1 ∪ S2 ∪ S3 = V (G) and S1 ∩ S2 = S1 ∩ S3 = S2 ∩ S3 = ∅. We will allow for the

possibility that S1, S2 or S3 is empty.

De�nition 21. A partition, (S1, S2, S3), of V (G) is called three-balanced if and only if

the following conditions are satis�ed:

1. if p ∈ S1 ∪ S2 and p2 || 2b, then the additional copy of p is in S3 for all p ∈ V (G)

2. if 4 | b, then all copies of 2 are in S3

3. for every p ∈ Sν , with p | ∆′ and p 6= 3, such that the prime, p, is only in Sν , we have

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2

 = 1
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where we cycle the indices of the partitions (i.e. S1 = S4, etc.)

4. for every p ∈ Sη, with p | ∆′, η = 1 or 2 and p 6= 3, such that p ∈ S3, we have

 ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2

 = 1

5. for every p ∈ V (G′) \ V (G),

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
= 1.

As in the previous case, the prime 3 is slightly problematic since Proposition 44 gives

extensive conditions on when we obtain solutions. In order to account for these conditions,

we will need two other de�nitions.

De�nition 22. A partition, (S1, S2, S3), of V (G) is called three-quasi-balanced at 3 if

and only if the following conditions are satis�ed:

1. (S1, S2, S3) is three-balanced

2. if p = 3 is in only one Sν , then either

 ∏
pj∈Sν+1

`(3, pj)

 ∏
pk∈Sν+2

`(3, pk)
2

 = 1

where we cycle the indices of the partitions (i.e. S1 = S4, etc.)

or there exists s1, s2 ∈ {±1} such that

2a ≡ s1

(∏
pi∈S1

pi

)
+ s2

 ∏
pj∈S2

pj

+ s1s2

( ∏
pk∈S3

pk

)
(mod 9) .
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De�nition 23. A partition, (S1, S2, S3), of V (G) is called three-quasi-balanced at 9 if

and only if the following conditions are satis�ed:

1. (S1, S2, S3) is three-balanced

2. if 9 | b and 3 6∈ S1 ∪ S2 then

 ∏
pj∈S1

`(3, pj)

( ∏
pk∈S2

`(3, pk)
2

)
= 1.

Using the de�nitions for this family of elliptic curves E2, we have the following lemma.

Lemma 53. Suppose (S1, S2, S3) is a partition of V (G). Let

u1 =
∏

pi∈S1

pi and u2 =
∏

pj∈S2

pj.

Then the homogeneous equation

u1X
3 + u2Y

3 +
2b

u1u2

Z3 − 2aXY Z = 0 (5.2)

has a solution in every local �eld Qp if and only if 3 - a and (S1, S2, S3) is three-balanced or

if 3 || a and (S1, S2, S3) is three-quasi-balanced at 3 or if 9 | a and (S1, S2, S3) is three-quasi-

balanced at 9.

The proof follows in a similar manner to the one given for Lemma 51. A detailed

proof can be found in Appendix E.

The following theorem gives us the size of the Selmer group Sel(φ)(Eab) in terms of

graphs for the family of elliptic curves E2.

Theorem 54. Let Eab : y2 = x3 + (ax + b)2 with 3 | b. Let G and G′ be de�ned as above.
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Then if 3 - a, we have

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− balanced partitions of V (G)} .

If 3 || a, then

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− quasi− balanced partitions at 3 of V (G)} .

Otherwise, if 9 | a, then

∣∣∣Sel(φ)(Eab)
∣∣∣ = # {three− quasi− balanced partitions at 9 of V (G)} .

The proof is almost identical to the one given for Theorem 52. However in this case

if v3(a) = 2, an additional condition must be added to the de�nition of a three-balanced

partition as well.

5.2.2 The Auxiliary Curve E ′ab′

In this section, we will be studying elliptic curves of the form

y2 = x3 − 3(ax+ b′)2

whose discriminant is

∆ = −144(b′)3∆′

where ∆′ = 27b′ + 12a3. Recall by Lemma 36, we know that for every prime, p, either

vp(b
′) ≤ 2 or vp(a) = 0.

Once again, let ω be a primitive cubic root of unity. If p ≡ 1 (mod 3), then we know
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that we can write p = ππ with π ≡ 2 (mod 3) and π in the upper-half plane. De�ne

χp(q) = χπ(q) =
( q
π

)
3
.

For p ≡ 2 (mod 3), de�ne

χp2(δ) = ωi

where δ(p2−1)/3 ≡ ωi (mod p).

Recall that we have the following properties of χp:

1. χp(q) = 1 if and only if q is a cube in F∗p

2. χp(ab) = χp(a)χp(b).

For p = 3, notice that (Z/9Z)∗ is cyclic and generated by 2. De�ne χ3 on (Z/9Z)∗ by

χ3(q) = ωt

where q = 2t ∈ (Z/9Z)∗. Note that even though we are working modulo 9, we will still use

χ3 to avoid confusion later.

Recall

Fu′(X, Y, Z) = 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

γγ
Z3

−dX3 − dY 3 − 3cXY 2 + 3cX2Y + 3dXY 2

with γ = c+ dω where γγ is only divisible by primes p ≡ 1 (mod 3).

Consider the family E3 of elliptic curves given by

E ′ab′ : y2 = x3 − 3(ax+ b′)2.
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Let G be a graph with vertex set V (G) = {p : p ≡ 1 (mod 3) , p | 2b′}. Additionally,

let G′ be a graph containing G with vertex set

V (G′) = {q : q satis�es one of (1), (2) below} ∪ V (G)

(1) q ≡ 2 (mod 3), q | ∆′

(2) q ≡ 1 (mod 3), q | ∆′ and q - 2b′.

Finally, let G′′ be a graph containing G′ with

V (G′′) = V (G′) ∪ {q : q satis�es one of (3), (4), (5), (6) below} ∪ {
√
−3}

(3) q ≡ 1 (mod 3), q2 | 2b′

(4) q 6≡ 1 (mod 3), q2 | 2b′

(5) all copies of 2 which divide 2b′

(6) q | b′, q = 3.

Clearly, if v2(b′) < 2, then we do not need the additional copy of 2. And similarly with the

prime q = 3, we only include it if 3 | b′.

Example 7. Consider the elliptic curve

E : y2 = x3 − 3 ((3)(7)x+ (3)(7)(23)(103))2

where ∆′ = 37(5)(7)(19). There is actually a degree three isogeny between this curve and

the one given in the previous example. The vertices of G are {7, 103}. The vertices of

G′ are {5, 19, 7, 103} and the vertices of G′′ are {2, 3, 23,
√
−3, 5, 19, 7, 103}. The graph is

represented by Figure 5.5.
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Figure 5.5: Vertices of G′′

Next, draw directed edges from all primes p ∈ V (G′) to q ∈ V (G′′) where p | 2b′,

p | ∆′ and q | 2b′
√
−3.

Draw directed edges from all primes p ∈ V (G′) with p - 2b′
√
−3 (the solubility

condition primes) to primes q ∈ V (G).

Label each directed edge from p to q as

`(p, q) =


χπ(η) and χφ(η) p ≡ 1 (mod 3) , p | 2b′

χp(q) p ≡ 1 (mod 3) , p - 2b′

χp2(q) p ≡ 2 (mod 3)

where if q ≡ 1 (mod 3), there exists η ≡ 2 (mod 3) and in the upper half plane such that

q = ηη. When we just want the value χπ(η), then denote the label as `(p, η). Similarly, if we

want the value χπ(η), we will denote it as `(p, η). Finally, observe that for q ≡ 1 (mod 3),
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Figure 5.6: Directed Graph G′′

`(p, q) = χp(q) = χπ(η)χπ(η).

Example 8. Adding edges to Figure 5.1 we obtain the directed graph in Figure 5.6.

For each point p in V (G), randomly label it with L(p) ∈ {0, 1, 2}.

Let S1 = {p ∈ V (G) : L(p) = 1} and S2 = {p ∈ V (G) : L(p) = 2}.

De�ne

u1 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π

and

u2 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π.

As in Subsection 5.2.1, we are attempting to generalize the results of Feng and Xiong

[32]. Recall that we are considering the results of Faulkner and James [31] for congruent

number curves and demonstrate an equivalent approach for elliptic curves with 3 torsion.
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In [31], Faulkner and James de�ne even and quasi-even partitions of graphs associated to

congruent number curves. In a similar manner, we de�ned three-balanced and three-quasi-

balanced partitions of graphs associated to elliptic curves with 3 torsion. Unfortunately, this

does not translate nicely when looking at graphs associated to the auxiliary curve E ′ab′ . The

reason is that instead of working over Q, we are working over Q(ω). So when looking for

local solutions, some of the primes which divide 2b will split. In fact, the split primes are the

only primes which will divide N(γ) and these are the primes which will make up elements

in Sel(φ̂)(E ′ab′).

Suppose p is a split prime and we can write it as p = ππ where π ≡ 2 (mod 3) and π

is in the upper half plane. Then we would like to partition π and π instead of p since p - γ,

but π could divide γ or γ. Instead of putting π and π as vertices in the graph, we will place

the prime p in the graph and label it with a 0, 1 or 2. If p is labeled with a 1, then π divides

γ and if p is labeled with a 2, π divides γ. Otherwise, if p is labeled with a 0, then p - N(γ).

De�nition 24. We say a labeling, L, on V (G) is good if and only if it satis�es the following

properties:

1. For all p ∈ V (G) with p | ∆′, if L(p) = 0, then

∏
q∈S1
q=ηη

`(p, η)`(p, η)2


∏
q∈S2
q=ηη

`(p, η)`(p, η)2

 = 1.

2. For all p ∈ V (G) with p | ∆′, if L(p) = 1 and p 6∈ V (G′′) \ S1, then

∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2

 = 1.
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3. For all p ∈ V (G) with p | ∆′, if L(p) = 2 and p 6∈ V (G′′) \ S2, then

∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2

 = 1.

4. For all p ∈ V (G) with p | ∆′, if L(p) = 1 and p ∈ V (G′′) \ S1, then

 ∏
q∈S1\{p}
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2

 = 1.

5. For all p ∈ V (G) with p | ∆′, if L(p) = 2 and p ∈ V (G′′) \ S2, then

∏
q∈S1
q=ηη

`(p, η)


 ∏
q∈S2\{p}
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2

 = 1.

6. For all q ∈ V (G′) \ V (G), q 6= 2, then

∏
p∈S1
p=ππ

`(q, π)`(q, π)2


∏

p∈S2
p=ππ

`(q, π)`(q, π)2

 = 1.

Using this de�nition, we have the following lemma.

Lemma 55. Suppose L is a labeling of V (G). Then the homogeneous cubic equation

Fu′(X, Y, Z) = 0 has a solution in every local �eld Qp with p 6= 2, 3 if and only if L is

a good labeling.
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Proof. Let

u1 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π

and

u2 =
∏
p∈S1
p=ππ

π
∏
p∈S2
p=ππ

π.

Then, when necessary, let

u3 =
2b′
√
−3

u1u2

.

Assume that L is a good labeling. We need to check the following for every prime p ∈ V (G)

with p | ∆′,

1. if L(p) = 0, then χp(u1/u2) = 1.

2. if L(p) = 1, p 6∈ V (G′) \ S1, then χp(u2/u3) = 1.

3. if L(p) = 2, p 6∈ V (G′) \ S2, then χp(u1/u3) = 1.

4. if L(p) = 1 and p ∈ V (G′) \ S1, then χp(u1/u3) = 1.

5. if L(p) = 2 and p ∈ V (G′) \ S2, then χp(u2/u3) = 1.

Additionally, we must check for every q ∈ V (G′) \ V (G), q 6= 2, then χq(u1/u2) = 1.

First we will check the conditions for every prime p ∈ V (G) with p | ∆′. If L(p) = 0,
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then

χπ(u1/u2) = χπ(u1)χπ(u2)2

=

∏
q∈S1
q=ηη

χπ(η)χπ(η)2


∏
q∈S2
q=ηη

χπ(η)χπ(η)2



=

∏
q∈S1
q=ηη

`(p, η)`(p, η)2


∏
q∈S2
q=ηη

`(p, η)`(p, η)2


= 1.

If L(p) = 1 and p 6∈ V (G′) \ S1, then

χπ(u2/u3) = χπ(u2)χπ(u3)2

=

∏
q∈S1
q=ηη

χπ(η)


∏
q∈S2
q=ηη

χπ(η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

χπ(q)2



=

∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2


= 1.
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If L(p) = 2 and p 6∈ V (G′) \ S2, then

χπ(u1/u3) = χπ(u1)χπ(u3)2

=

∏
q∈S1
q=ηη

χπ(η)


∏
q∈S2
q=ηη

χπ(η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

χπ(q)2



=

∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2


= 1.

If L(p) = 1 and p ∈ V (G′) \ S1, then

χπ(u1/u3) = χπ(u1)χπ(u3)2

=

 ∏
q∈S1\{p}
q=ηη

χπ(η)


∏
q∈S2
q=ηη

χπ(η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

χπ(q)2



=

 ∏
q∈S1\{p}
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2


= 1.

99



If L(p) = 2 and p ∈ V (G′) \ S2, then

χπ(u2/u3) = χπ(u2)χp(u3)2

=

∏
q∈S1
q=ηη

χπ(η)


 ∏
q∈S2\{p}
q=ηη

χπ(η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

χπ(q)2



=

∏
q∈S1
q=ηη

`(p, η)


 ∏
q∈S2\{p}
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2


= 1.

Finally, if q ∈ V (G′) \ V (G), q 6= 2, then

χq(u1/u2) = χq(u1)χp(u2)2

=

∏
p∈S1
p=ππ

χq(π)χq(π)2


∏

p∈S2
p=ππ

χq(π)χq(π)2



=

∏
p∈S1
p=ππ

`(q, π)`(q, π)2


∏

p∈S2
p=ππ

`(q, π)`(q, π)2


= 1.

Therefore, by Propositions 45, 48 and Corollary 47, we will always have a solution in

Qp for p 6= 2, 3.

Conversely assume L is not a good labeling of V (G). There are a few cases we need

to consider.
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Case 1: There exists a p ∈ V (G) such that p | ∆′, L(p) = 0 and

∏
q∈S1
q=ηη

`(p, η)`(p, η)2


∏
q∈S2
q=ηη

`(p, η)`(p, η)2

 6= 1.

But this implies that χπ(u1/u2) 6= 1, so u1/u2 is not a cube modulo π. This violates Corollary

47.3.b, so we will not have a solution in Qp.

Case 2: There exists a p ∈ V (G) such that p | ∆′, L(p) = 1, p 6∈ V (G′) \ S1 and

∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2

 6= 1.

But this implies that χπ(u2/u3) 6= 1, so u2/u3 is not a cube modulo π. This violates Corollary

47.3.b, so we will not have a solution in Qp.

Case 3: There exists p ∈ V (G) such that p | ∆′, L(p) = 2, p 6∈ V (G′) \ S2 and

∏
q∈S1
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2)

q|2b′
√
−3

`(p, q)2

 6= 1.

But this implies that χπ(u1/u3) 6= 1, so u1/u3 is not a cube modulo π. This violates Corollary

47.3.b, so we will not have a solution in Qp.

Case 4: There exists a p ∈ V (G) such that p | ∆′, L(p) = 1, p ∈ V (G′) \ S1 and

 ∏
q∈S1\{p}
q=ηη

`(p, η)


∏
q∈S2
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2

 6= 1.

But this implies that χπ(u1/u3) 6= 1, so u1/u3 is not a cube modulo π. This violates Corollary
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47.3.c, so we will not have a solution in Qp.

Case 5: There exists a p ∈ V (G) such that p | ∆′, L(p) = 2, p ∈ V (G′) \ S2 and

∏
q∈S1
q=ηη

`(p, η)


 ∏
q∈S2\{p}
q=ηη

`(p, η)


 ∏
q∈V (G′′)\(S1∪S2∪{p})

q|2b′
√
−3

`(p, q)2

 6= 1.

But this implies that χπ(u2/u3) 6= 1, so u2/u3 is not a cube modulo π. This violates Corollary

47.3.c, so we will not have a solution in Qp.

Case 6: There exists q ∈ V (G′) \ V (G) with q 6= 2 such that

∏
p∈S1
p=ππ

`(q, π)`(q, π)2


∏

p∈S2
p=ππ

`(q, π)`(q, π)2

 6= 1.

But this implies that χq(u1/u2) 6= 1. If q ≡ 1 (mod 3), then this means u1/u2 is not a cube

modulo q and violates Corollary 47.2, so we will not have a solution in Qq. If q ≡ 2 (mod 3),

then this means u1/u2 is not a cube modulo q2 and violates either Proposition 48.2 or 48.3.a.

In either case, we will not have a solution in Qp.

Example 9. Continuing with the elliptic curve

E : y2 = x3 − 3 ((3)(7)x+ (3)(7)(23)(103))2

where ∆′ = 37(5)(7)(19). It turns out that there is only one good labeling of this graph; the

trivial one which is obtained by labeling 7 and 103 with zeros. Let us look at why another

example would fail to be a good labeling. Label 7 with a zero (denoted in blue) and 103

with a one (denoted in yellow).

Since 7 divides b and ∆′, we must check solubility conditions for this prime. For the
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Figure 5.7: Not a Good Labeling

associated homogeneous cubic polynomial to have a solution modulo 7, u1/u2 must be a cube

modulo 7 where u1 = 10 +
√
−3 and u2 = 10−

√
−3. However, looking at the edge between

7 and 103, we see that χ7(u1/u2) = 1(ω)2 6= 1. Therefore this is not a good labeling.

Let G3 = Q
(√
−3
∗)
/
(
Q
(√
−3
)∗)3

. Let S be a set of primes in Q containing 2 and

3. De�ne

Sel
(φ̂)
S (E ′ab′) =

{
[u′] ∈ G3 : CFu′ (Qν) 6= ∅ ∀ ν 6∈ S

}
.

Proposition 56. Sel
(φ̂)
S (E ′ab′) is a group.

Proof. It is enough to show the existence for inverses and that given [u], [w] ∈ Sel
(φ̂)
S (E ′ab′),

then [uw] ∈ Sel
(φ̂)
S (E ′ab′). We will cover the condition of inverses at the end of the proof.

We know that given [u] ∈ Sel
(φ̂)
S (E ′ab′), there exists γ1, γ1 such that u = γ1γ1

2 with

γ1 and γ1 coprime and square-free. Similarly, for [w] ∈ Sel
(φ̂)
S (E ′ab′), there exists γ2, γ2 such

that w = γ2γ2
2 with γ2 and γ2 coprime and square-free.
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De�ne δ = gcd(γ1, γ2) and ε = gcd(γ1, γ2). Then δ = gcd(γ1, γ2) and ε = gcd(γ1, γ2).

Additionally, de�ne

γ :=
γ1γ2δ

δ2εε
(5.3)

and so

γ :=
γ1γ2δ

δ
2
εε
. (5.4)

Then uw ≡ [uw]G3 = [γγ]G3 .

To show [uw] ∈ Sel
(φ̂)
S (E ′ab′), it is enough to show that for all p 6∈ S, if Fu = 0 and

Fw = 0 are soluble in Qp, then Fuw = 0 is soluble in Qp. There are numerous cases we need

to consider.

Since 2b′ and ∆′ do not depend on u and w, if p - 2b′ and p - ∆′ then Fuw = 0 is

soluble in Qp.

If p - 2b′ but p | ∆′, then for Fuw = 0 to be soluble in Qp, we require γ/γ to be a cube

modulo p. Notice that since Fu = 0 is soluble, there exists a c1 such that γ1/γ1 ≡ c3
1 (mod p).

And similarly, since Fw = 0 is soluble, there exists a c2 such that γ2/γ2 ≡ c3
2 (mod p). Hence

γ/γ =
γ1γ2

γ1γ2

(
δ

δ

)3

=

(
c1c2δ

δ

)3

(mod p) .

In the case that p ≡ 2 (mod 3) and p | 2b′, we require γ/γ to be a cube modulo p if

p | a. However, we are the same situation as above, so we are done.

If p ≡ 1 (mod 3), we need to work a little harder. We may assume p | a, otherwise

we know Fuw = 0 is soluble. Recall p = ππ where π ≡ 2 (mod 3) and π is in the upper-half

plane.

Case 1: π || 2b′ with π | γ1 and π | γ2.
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In this case, for Fu = 0 and Fw = 0 to be soluble, there must exist c1 and c2 such that

γ1/u3,1 ≡ c3
1 (mod π) , γ2/u3,2 ≡ c3

2 (mod π)

where

u3,1 =
2b′

γ1γ1

, u3,2 =
2b′

γ2γ2

.

Since π | γ1 and π | γ2, it follows that π | δ. This implies that π | γ. Therefore in order for

Fuw = 0 to have a solution, we must have γ/u3 equivalent to a cube modulo π where

u3 =
2b′

γγ
.

Then

γ/u3 =
γ2

1γ
2
2γ1γ2

2b′

(
1

εεδ

)3

≡ γ1γ
2
2γ1

2γ2

( c1

εεδ

)3

(mod π) since
1

2b′
≡ c3

1

γ1γ1
2 (mod π)

≡
(

c3
1

c2εεδ

)3

(mod π) since γ1
2γ1γ

2
2γ2 ≡

c3
1

c3
2

(mod π) .

Thus Fuw = 0 has a solution. The case that π divides γ1 and γ2 is identical.

Case 2: π || 2b′ with π | γ1 and π | γ2.

In this case, for Fu = 0 and Fw = 0 to be soluble, there exists c1 and c2 such that

γ1/u3,1 ≡ c3
1 (mod π) , , γ2/u3,2 ≡ c3

2 (mod π)

where

u3,1 =
2b′

γ1γ1

, u3,2 =
2b′

γ2γ2

.

Since π | γ1 and π | γ2, it follows that π | ε. This implies that π | u3. Therefore in order for
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Fuw = 0 to have a solution, we must have γ/γ equivalent to a cube modulo π. Then

γ/γ =
γ1γ2

γ1γ2

(
δ

δ

)3

≡
(
c1δ

c2δ

)3

(mod π) since
γ1γ2

γ1γ2

≡
(
c1

c2

)3

(mod π) .

Thus Fuw = 0 has a solution. The case that π divides γ1 and γ2 is identical.

Case 3: π || 2b′ with π | γ1 and π - γ2γ2.

In this case, for Fu = 0 and Fw = 0 to be soluble, there exists c1 and c2 such that

γ1/u3,1 ≡ c3
1 (mod π) , γ2/γ2 ≡ c3

2 (mod π)

where

u3,1 =
2b′

γ1γ1

.

Since π | γ1 and π - γ2γ2, it follows that π | γ. Therefore, in order for Fuw = 0 to have a

solution, we must have γ/u3 equivalent to a cube modulo π where

u3 =
2b′

γγ
.

Then

γ/u3 =
γ1γ2γ1

2γ2
2

2b′

(
1

εεδ

)3

≡ γ2γ2
2

(
c1

εεδ

)3

(mod π) since
γ1γ1

2

2b′
≡ c3

1 (mod π)

≡
(
c1c2

εεδ

)3

(mod π) since γ2γ2
2 ≡ c3

2 (mod π) .

Thus Fuw = 0 has a solution. The cases that π divides γ1 and u3,2, γ2 and u3,1, and γ2 and

u3,1 are identical.

Case 4: π - γ1γ1 and π - γ2γ2.
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In this case, for Fu = 0 and Fw = 0 to be soluble, there must exist c1 and c2 such that

γ1/γ ≡ c3
1 (mod π) , γ2/γ2 ≡ c3

2 (mod π) .

Since π - γ1γ1 and π - γ2γ2, it follows that π - γγ. Therefore in order for Fuw = 0 to have a

solution, we must have γ/γ equivalent to a cube modulo π. Then

γ/γ =
γ1γ2

γ1γ2

(
δ

δ

)3

≡
(
c1c2δ

δ

)3

(mod π) since
γ1γ2

γ1γ2

≡ c3
1c

3
2 (mod π) .

Thus Fuw = 0 has a solution.

Case 5: π2 || 2b′ with π | γ1 and π | γ2.

In this case, for Fu = 0 and Fw = 0 to be soluble, there must exist c1 and c2 such that

γ1/u3,1 ≡ c3
1 (mod π) , γ2/u3,2 ≡ c3

2 (mod π)

where

u3,1 =
2b′

γ1γ1

, u3,2 =
2b′

γ2γ2

.

Since π | γ1 and π | γ2, it follows that π | δ. This implies that π | γ. Therefore in order for

Fuw = 0 to have a solution, we must have γ/u3 equivalent to a cube modulo π where

u3 =
2b′

γγ
.
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Then

γ/u3 =
γ1γ2γ1

2γ2
2

2b′

(
1

εεδ

)3

≡ γ2
1γ2γ1γ2

2

(
c1

εεδ

)3

(mod π) since
1

2b′
≡ c3

1

γ2
1γ1

(mod π)

≡
(

c3
1

c2εεδ

)3

(mod π) since γ2
1γ1γ2γ2

2 ≡ c3
1

c3
2

(mod π) .

Thus Fuw = 0 has a solution. The case that π divides γ1 and γ2 is identical.

Case 6: π2 || 2b′ with π | γ1 and π | γ2.

In this case, for Fu and Fw to be soluble, there must exist c1 and c2 such that

γ1/u3,1 ≡ c3
1 (mod π) , γ2/u3,2 ≡ c3

2 (mod π)

where

u3,1 =
2b′

γ1γ1

, u3,2 =
2b′

γ2γ2

.

Since π | γ1 and π | γ2, it follows that π | ε. This implies that π - γγ. Therefore in order for

Fuw = 0 to have a solution, we must have γ/γ equivalent to a cube modulo π. Then

γ/γ =
γ1γ2

γ1γ2

(
δ

δ

)3

≡ γ2γ2
2

2b′

(
δ

c1δ

)3

(mod π) since
γ1

γ1

≡ 1

2b′c3
1

(mod π)

≡
(
c2δ

c1δ

)3

(mod π) since
γ2γ2

2

2b′
≡ c3

2 (mod π) .

Thus Fuw = 0 has a solution. The case that π divides γ1 and γ2 is identical.

Case 7: π2 || 2b′ with π | γ1 and π - γ2γ2.

In this case, for Fu and Fw to be soluble, there must exist c1 and c2 such that

γ1/u3,1 ≡ c3
1 (mod π) , γ2/γ2 ≡ c3

2 (mod π)
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where

u3,1 =
2b′

γ1γ1

.

Since π | γ1 and π - γ2γ2, it follows that π | γ. Therefore in order for Fuw = 0 to have a

solution, we must have γ/u3 equivalent to a cube modulo π where

u3 =
2b′

γγ
.

Then

γ/u3 =
γ2

1γ
2
2γ1γ2

2b′

(
1

εεδ

)3

≡
(

c1

c2εεδ

)3

(mod π) since
γ2

1γ
2
2γ1γ2

2b′
≡ c3

1

c3
2

(mod π) .

Thus Fuw = 0 has a solution. The cases that π divides γ1 and u3,2, γ2 and u3,1, and γ2 and

u3,1 are identical.

Hence we have covered all cases, so [uw] ∈ Sel
(φ̂)
S (E ′ab′).

Let [u] ∈ Sel
(φ̂)
S (E ′ab′). Then there exists integers u1, u2 such that gcd(u1, u2) = 1

and u = u1u
2
2. Let w = u2u

2
1. Notice that if (a, b, c) is a solution for Fu(X, Y, Z) = 0,

then (b, a, c) is a solution for Fw(X, Y, Z) = 0, since the only di�erence between the two

functions is that the coe�cients of X3 and Y 3 are switched. Hence [w] ∈ Sel
(φ̂)
S (E ′ab′). And

uw = u1u
2
2u2u

2
1 = u3

1u
3
2 which is a cube and hence equivalent to 1 in G3. Thus [w] is the

inverse of [u].

Therefore Sel
(φ̂)
S (E ′ab′) is a group.

The following theorem bounds the size of the Selmer group Sel(φ̂)(E ′ab′).

Theorem 57. Let E ′ab′ : y2 = x3− 3(ax+ b′)2. Let G, G′ and G′′ be the graphs with vertices
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de�ned above. Let S = {2, 3}. Then

∣∣∣Sel(φ̂)(E ′ab′)
∣∣∣ ≤ ∣∣∣Sel(φ̂)

S (E ′ab′)
∣∣∣ = #{good labeling of V (G)}.

5.3 Linear Algebra

In this section, we will transform the graphical interpretation of the Selmer group by

way of graph theory into a linear algebra problem. Others have used such an approach to

calculate the size of 3-Selmer groups, which yield results similar to the ones presented above.

The interested reader should see [23] and [68]. We include this approach for completeness

and hope to make use of it in future work.

Given a graph G with vertex set V (G), as de�ned in the previous section, we can

construct a characteristic matrix.

5.3.1 The Elliptic Curve Eab

Consider an elliptic curve Eab : y2 = x3 + (ax+ b)2 with ∆′ = 27b− 4a3. Assume we

have a graph G′ with vertex set V (G′) and subgraph G with vertex set V (G), as de�ned in

the Sections 5.2.1.1 and 5.2.1.2. We want to construct a characteristic matrix to relate the

graph theory problem with three-balanced and three-quasi-balanced partitions to a linear

algebra problem.

We will index the rows and columns of the characteristic matrix by primes and we

begin by ordering primes. Let p1, . . . , pl be the distinct primes which divide 2b exactly once

and divide ∆′. Let pl+1, . . . , pr be the distinct primes which divide 2b exactly twice and

divide ∆′. Next, let pr+1, . . . , pn be the distinct primes which divide 2b but do not divide

∆′. Also, let pn+1, . . . , pt be the second copy of the primes which divide 2b exactly twice. If

v2(b) = 2, then 2 is not one of the primes, pi, for 1 ≤ i ≤ n, so let pt+1 = pt+2 = pt+3 = 2.
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Let q1, . . . , qm be the distinct primes dividing ∆′, but not 2b.

De�ne

t′ =


t if v2(b) < 2

t+ 3 if v2(b) = 2,

r′ =


r if v2(b) < 2

r + 1 if v2(b) = 2,

and

pr′ =


pr if v2(b) < 2

2 if v2(b) = 2.

De�ne the (r′ +m)× t′ matrix A(G′) by

aij =


logω (` (pi, pj)) 1 ≤ i ≤ r′, 1 ≤ j ≤ t′, pi 6= pj

logω (` (qi−r′ , pj)) r′ + 1 ≤ i ≤ r′ +m, 1 ≤ j ≤ t′

0 otherwise.

Let D(G′) be the (r′ +m)× t′ matrix with entries

dij =



t′∑
k=1

aik 1 ≤ i ≤ l, i = j

−
t′∑
k=1

aik l + 1 ≤ i ≤ r, i = j

0 otherwise

all reduced modulo 3.

Let

L′ (G′) = A(G′)−D(G′)
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again reduced modulo 3 and de�ne L(G) be the (r′ +m) × n submatrix of L′(G′) with the

n+ 1 to t′ columns removed.

Remark 7. Notice that kerL(G) =
{
~w : (~w, 0, . . . , 0)T ∈ kerL′(G′)

}
.

Let ~w = (w1, w2, . . . , wn)T ∈ Fn3 . For each ~w, associate subsets as follows:

S1 = {pi : wi = 1} ,

S2 = {pi : wi = 2} ,

and

S3 = {pi : wi = 0} ∪ {pn+1, . . . , pt′} .

Now we will reduce to the case given in Section 5.2.1.1.

5.3.1.1 The Family of Curves E1

Assume Eab has the property that 3 - b. If v3(a) = 1, then we need to make the

following adjustments. In this case we know that 3 must be one of the qi's, so assume

qm = 3. De�ne L3(G′) to be the (r′ +m− 1) × n submatrix of L′(G′) with the m-th row

removed as well as the n+ 1 to t′ columns removed.

Remark 8. Again, notice that kerL3(G′) =
{
~w : (~w, 0, . . . , 0)T ∈ kerL′(G′)

}
.

The following lemma gives the relationship between partitions of the graph G and

the submatrices L(G) and L3(G′) of the Laplacian matrix L′(G′).

Lemma 58. 1. If v3(a) 6= 1, then the partition (S1, S2, S3) corresponding to the vector ~w

is three-balanced if and only if ~w ∈ kerL(G).

2. If v3(a) = 1, then the partition (S1, S2, S3) corresponding to the vector ~w is three-

quasi-balanced if and only if either ~w ∈ ker (L(G)) or ~w ∈ ker (L3(G′)) and there exists

112



s1, s2 ∈ {±1} such that

2a ≡ s1

∏
pi∈S1

pi|2b

pi

+ s2

 ∏
pj∈S2

pj |2b

pj

+ s1s2

 ∏
pk∈S3

pk|2b

pk

 (mod 27) .

Proof. First assume that v2(b) < 2. Then 2 is one of the primes p1, . . . , pr and p
′
r = pr. Next

assume that pi ∈ S1 for 1 ≤ i ≤ l, so there is only one copy of pi. It is enough to show that

L′(G′)~w′ = ~0 with ~w′ = (w1, . . . , wt′)
T = (~w, 0, . . . , 0)T . Then

(L′(G′)~w′)i =
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wj −
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wi

=
t′∑
j=1
pj 6=pi

logω (` (pi, pj)) (wj − wi)

=
∑
wj=2

logω (` (pi, pj)) +
∑
wj=0

2 logω (` (pi, pj)) .

This is equivalent to zero modulo 3 if and only if

ω

∑
wj=2

logω(`(pi,pj))+
∑
wj=0

2 logω(`(pi,pj))

= 1.

And one can see that

ω

∑
wj=2

logω(`(pi,pj))+
∑
wj=0

2 logω(`(pi,pj))

= ω

∑
wj=2

logω(`(pi,pj))

ω

∑
wj=0

2 logω(`(pi,pj))

=

 ∏
pj∈S2

` (pi, pj)

( ∏
pk∈S3

` (pi, pk)
2

)
.

Hence ∑
wj=2

logω (` (pi, pj)) +
∑
wj=0

2 logω (` (pi, pj)) ≡ 0 (mod 3)
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if and only if  ∏
pj∈S2

` (pi, pj)

( ∏
pk∈S3

` (pi, pk)
2

)
= 1.

The cases that pi ∈ S2 and pi ∈ S3 with 1 ≤ i ≤ l are identical.

Now assume pi ∈ S1 with l + 1 ≤ i ≤ r. So we know that pi appears in more than

one Sj. Then

(L′(G′)~w′)i =
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wj +
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wi

=
t′∑
j=1
pj 6=pi

logω (` (pi, pj)) (wj + wi)

=
∑
wj=0

logω (` (pi, pj)) +
∑
wj=1

2 logω (` (pi, pj)) .

Once again, as before this is equivalent to zero modulo 3 if and only if

 ∏
pj∈S3

pj 6=pi

` (pi, pj)


 ∏
pk∈S1
pk 6=pi

` (pi, pk)
2

 = 1.

Once again, the cases that pi ∈ S2 and pi ∈ S3 follow in a similar manner.

Now assume that v2(b) = 2. Then we know that 2 is not one of the primes p1, . . . , pn

and pr′ = 2. So we have that

(L′(G′)~w′)r′ =
t′∑
j=1
pj 6=2

logω (` (2, pj))wj

=
∑
wj=1

logω (` (2, pj)) +
∑
wj=2

2 logω (` (2, pj)) .
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This is equivalent to zero modulo 3 if and only if

 ∏
pj∈S1

` (2, pj)

( ∏
pk∈S2

` (2, pk)
2

)
= 1.

Finally, consider rows i with i between r′ + 1 and r′ +m. Then we have that

(L′(G′)~w′)i =
t′∑
j=1

logω (` (qi−r′ , pj))wj

=
∑
wj=1

logω (` (qi−r′ , pj)) +
∑
wj=2

2 logω (` (qi−r′ , pj)) .

This is equivalent to zero modulo 3 if and only if

 ∏
pj∈S1

` (qi−r′ , pj)

( ∏
pk∈S2

` (qi−r′ , pk)
2

)
= 1.

If v3(a) 6= 1, then we are done.

Otherwise, in the case that v3(a) = 1, we need to re-examine the last row of L(G). If

(L(G)~w)i =
t′∑
j=1

logω (` (qm, pj)) vj

=
∑
wj=1

logω (` (qm, pj)) +
∑
wj=2

2 logω (` (qm, pj))

6≡ 0 (mod 3)

then look at L3(G′). The argument is exactly the same as the one used for L(G) except for

the fact that the last row has been removed. And if there exists s1, s2 ∈ {±1} such that

2a ≡ s1

 ∏
pi∈S1

pi|2b

pi

+s2

 ∏
pj∈S2

pj |2b

pj

+s1s2

 ∏
pk∈S3

pk|2b

pk

 (mod 27) then we know by Proposition

43, there exists a solution to the equation.
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Example 10. Let us return to the example used in the previous section. Recall we considered

the elliptic curve

E : y2 = x3 + (7x+ 5 · 7 · 19)2

where ∆′ = 7 · 23 · 103. The vertices of the graphs where V (G′) = {2, 5, 7, 11, 19, 23, 103}

and V (G) = {2, 5, 7, 19}. Here is the corresponding graph.

1

1 1

1

ω2 ω2 ω2

ω

ω2 ω

ω2

23 7 103

2 5 19

When constructing the matrix A, we order the primes corresponding to the columns in

the following order 7, 2, 5, 19. The primes corresponding to the rows are ordered as 7, 23, 103.

It turns out that in this simple example, the matrix D is just the zero matrix. In addition,

since no prime appears twice in the graph, it is not necessary to remove any columns.

Therefore the matrices A, L(G) and L′(G′) are the same and is given by

L(G) =


0 2 2 2

0 0 0 0

2 0 1 1

 .

To see this is the correct matrix, notice that the �rst row corresponds to the exponent power
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of ω on the edge from 7 to the primes 2, 5 and 19. The �rst entry is a zero since the �rst

column corresponds to the prime 7 and there is no loop from 7 to itself. The second row is

entirely of zeros since 23 is equivalent to 2 modulo 3 and therefore all edges leaving 23 are

labeled with a 1 = ω0. Finally the third row corresponds to the exponent power of ω on the

edge from 103 to the primes 2, 5, 7 and 19.

Corollary 59. 1. If v3(a) 6= 1, the number of three-balanced partitions of G is 3n−s where

s is the rank of the (r′ +m)× n matrix L(G).

2. If v3(a) = 1, then the number of three-quasi-balanced partitions of G is between 3n−s1

and 3n−s where s is the rank of the (r′ +m)× n matrix L(G) and s1 is the rank of the

(r′ +m− 1)× n matrix L3(G′).

As a result of Lemma 58 and Corollary 59, we can construct an element of Sel(φ)(Eab)

for the family of elliptic curves E1.

Example 11. To see this, let us continue looking at Example 10. Recall, in Section 5.2, we

gave an example of a three-balanced partition and an example of a partition that was not

three-balanced.

Recall, the three-balanced partition was given by S1 = {5, 7}, S2 = {2} and S3 =

{19}. Converting this to a vector, we have

~w =



1

2

1

0


.

Since the �rst entry corresponds to 7 and it is contained in S1, we place a 1 in the �rst entry.

The third entry corresponds to 5, which is also in S1, so we place a 1 in the third entry. The
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second entry corresponds to the prime 2, which is in S2, so it is labeled with a 2. Finally

the last entry corresponds to the prime 19 which is in S3 and therefore we have a 0 in the

last vector entry. Since ~w corresponds to a three-balanced partition by Lemma 58 ~w should

be in the kernel of L(G) modulo 3. Verifying this we have


0 2 2 2

0 0 0 0

2 0 1 1





1

2

0

1


=


4 + 2

0

2 + 1


≡ ~0 (mod 3) .

From ~w, we can construct the corresponding element in Sel(φ)(Eab). The primes which

correspond to entries with a 1 are the primes which divide u1 and the primes that correspond

to entries with a 2 are the primes which divide u2. So the �rst and third entries of ~w contain

a 1 and correspond to 7 and 5, hence, u1 = 5 · 7. The second entry of ~w contains a 2 and

corresponds to 2, hence u2 = 2. Therefore u = u1u
2
2 = 5 · 7(22) is a representative for the

element [u] in Sel(φ)(Eab).

Now, recall the partition which was not three-balanced was given by S1 = {7},

S2 = {2, 5} and S3 = {19}. Converting this to a vector, we have

~v =



1

2

2

0


.

Since ~v does not corresponds to a three-balanced partition by Lemma 58 ~v should not be in
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the kernel of L(G) modulo 3. Verifying this we have


0 2 2 2

0 0 0 0

2 0 1 1





1

2

2

0


=


4 + 4

0

2 + 2


6≡ ~0 (mod 3) .

Finally, we can easily calculate the rank of L(G) which is 2 and since L(G) is a 3× 4

matrix, Corollary 59 implies that

∣∣∣Sel(φ)(E)
∣∣∣ = 34−2 = 32.

This is equal to the number of three-balanced partitions given in the corresponding graph

theory example.

Corollary 60. 1. If v3(a) = 1, then
∣∣∣Sel(φ)(Eab)

∣∣∣ = 3n−s where s is the rank of the

(r′ +m)× n matrix L(G).

2. If v3(a) 6= 1, then 3n−s1 ≤
∣∣∣Sel(φ)(Eab)

∣∣∣ ≤ 3n−s where s is the rank of the (r′ +m)× n

matrix L(G) and s1 is the rank of the (r′ +m− 1) × n matrix L3(G′), with possible

equality on the right.

5.3.1.2 The Family of Curves E2

Now we will assume that Eab has the property that 3 | b. Construct the matrix L′(G′)

as before.

In this case, we know that 3 is one of the primes pi with 1 ≤ i ≤ t. Let L(G′) be the

(r′ +m− 1)× t′ submatrix of L′(G′) with the logω (` (3,−)) row removed. De�ne L3(G) to
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be the (r′ +m− 1)× n submatrix of L(G′) with the n+ 1 to t′ columns removed.

Remark 9. Notice that kerL3(G) =
{
~w : (w, 0, . . . , 0)T ∈ kerL(G′)

}
.

Recall given ~w = (w1, w2, . . . , wn)T ∈ Fn3 , for each ~w, we associate subsets as follows:

S1 = {pi : wi = 1} ,

S2 = {pi : wi = 2} ,

and

S3 = {pi : wi = 0} ∪ {pn+1, . . . , pt′} .

Lemma 61. 1. If v3(a) = 0, then the partition (S1, S2, S3) corresponding to the vector ~w

is three-balanced if and only if ~w ∈ kerL(G).

2. If v3(a) = 1, then the partition (S1, S2, S3) corresponding to the vector ~w is three-quasi-

balanced at 3 if and only if one of the following holds:

(a) pi = 3 is in only one Sj and ~w ∈ kerL(G)

(b) pi = 3 is in only one Sj, ~w ∈ kerL3(G) and there exists s1, s2 ∈ {±1} such that

2a ≡ s1

∏
pi∈S1

pi|2b

pi

+ s2

 ∏
pj∈S2

pj |2b

pj

+ s1s2

 ∏
pk∈S3

pk|2b

pk

 (mod 9) .

(c) pi = 3 is in two Sj's and ~w ∈ kerL(GE).

3. If v3(a) = 2, then the partition (S1, S2, S3) corresponding to the vector ~w is three-quasi-

balanced at 9 if and only if one of the following holds:

(a) if v3(b) = 2, pi = 3 is in S3 only then ~w ∈ kerL(G)
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(b) if v3(b) 6= 2 or pi = 3 is in more than one Sj then ~w ∈ kerL3(G).

Proof. First assume that v2(b) < 2, then 2 is one of the primes p1, . . . , pr and p
′
r = pr. Next

assume that pi ∈ S1 for 1 ≤ i ≤ l. So there is only one copy of pi. It is enough to show that

L′(G′)~w′ = ~0 with ~w′ = (w1, . . . , wt′)
T = (~w, 0, . . . , 0)T . Then

(L′(G′)~w′)i =
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wj −
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wi

=
t′∑
j=1
pj 6=pi

logω (` (pi, pj)) (wj − wi)

=
∑
wj=2

logω (` (pi, pj)) +
∑
wj=0

2 logω (` (pi, pj)) .

This is equivalent to zero modulo 3 if and only if

 ∏
pj∈S2

` (pi, pj)

( ∏
pk∈S3

` (pi, pk)
2

)
= 1.

The cases that pi ∈ S2 and pi ∈ S3 with 1 ≤ i ≤ l are identical.

Now assume pi ∈ S1 with l + 1 ≤ i ≤ r. So we know that pi appears in more than

one Sj. Then

(L′(G′)~w′)i =
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wj +
t′∑
j=1
pj 6=pi

logω (` (pi, pj))wi

=
t′∑
j=1
pj 6=pi

logω (` (pi, pj)) (wj + wi)

=
∑
wj=0

logω (` (pi, pj)) +
∑
wj=1

2 logω (` (pi, pj)) .
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This is equivalent to zero modulo 3 if and only if

 ∏
pj∈S3

pj 6=pi

` (pi, pj)


 ∏
pk∈S1
pk 6=pi

` (pi, pk)
2

 = 1.

Once again, the cases that pi ∈ S2 and pi ∈ S3 follow in a similar manner.

Now assume that v2(b) = 2. Then we know that 2 is not one of the primes p1, . . . , pn

and pr′ = 2. So we have that

(L′(G′)~w′)r′ =
t′∑
j=1
pj 6=2

logω (` (2, pj))wj

=
∑
wj=1

logω (` (2, pj)) +
∑
wj=2

2 logω (` (2, pj)) .

This is equivalent to zero modulo 3 if and only if

 ∏
pj∈S1

` (2, pj)

( ∏
pk∈S2

` (2, pk)
2

)
= 1.

Finally, consider rows i with i between r′ + 1 and r′ +m. Then we have that

(L′(G′)~w′)i =
t′∑
j=1

logω (` (qi−r′ , pj))wj

=
∑
wj=1

logω (` (qi−r′ , pj)) +
∑
wj=2

2 logω (` (qi−r′ , pj)) .

This is equivalent to zero modulo 3 if and only if

 ∏
pj∈S1

` (qi−r′ , pj)

( ∏
pk∈S2

` (qi−r′ , pk)
2

)
= 1.
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If v3(a) = 0, then we are done.

In the case that v3(a) = 1, we need to reexamine the logω (` (3,−)) row of L(G). If 3

is in only one Sj and

(L(G)~w)i =
t′∑
j=1

logω (` (qm, pj)) vj

=
∑
wj=1

logω (` (qm, pj)) +
∑
wj=2

2 logω (` (qm, pj))

6≡ 0 (mod 3) ,

then look at L3(G). And if there exists s1, s2 ∈ {±1} such that 2a ≡ s1

 ∏
pi∈S1

pi|2b

pi

 +

s2

 ∏
pj∈S2

pj |2b

pj

 + s1s2

 ∏
pk∈S3

pk|2b

pk

 (mod 27) then we know by Proposition 43, there exists a

solution to the equation. Otherwise we do not have a solution.

Finally, in the case that v3(a) = 2, we also need to reexamine the logω (` (3,−)) row

of L(G). If either v3(b) 6= 2 or 3 is in more than one Sj, then look at L3(G). The argument is

exactly the same as the one used for L(G) except for the last row since it has been removed.

Corollary 62. 1. If v3(a) = 0, the number of three-balanced partitions of G is 3n−s where

s is the rank of the (r′ +m)× n matrix L(G).

2. If v3(a) > 0, then the number of three-quasi-balanced partitions at 3 of G is between

3n−s1 and 3n−s where s is the rank of the (r′ +m)× n matrix L(G) and s1 is the rank

of the (r′ +m− 1)× n matrix L3(G).

Using the results of Lemma 61 and Corollary 62, we can calculate the cardinality of

Sel(φ)(Eab) for the family of elliptic curves E2.
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Corollary 63. 1. If v3(a) = 0, then
∣∣∣Sel(φ)(Eab)

∣∣∣ = 3n−s where s is the rank of the

(r′ +m)× n matrix L(G).

2. If v3(a) > 0, then 3n−s1 ≤
∣∣∣Sel(φ)(Eab)

∣∣∣ ≤ 3n−s where s is the rank of the (r′ +m)× n

matrix L(G) and s1 is the rank of the (r′ +m− 1) × n matrix L3(G), with possible

equality on the right.

5.3.2 The Auxiliary Curve E ′ab′

Consider a graph G′′ with vertex set V (G′′) and subgraphs G′ and G with vertex

sets V (G′) and V (G) respectively, as de�ned in the previous section. Once again, we want

to construct a characteristic matrix to relate the graph theory problem to a linear algebra

problem.

We will index the rows and columns of the characteristic matrix by primes and we

begin by ordering the primes which will correspond to the columns of the characteristic

matrix. Let π1, π1, . . . , πn/2, πn/2 be the n/2 distinct primes equivalent to 1 modulo 3 which

divide 2b′. Let πn/2+1, πn/2+1, . . . , π(l−n−1)/2, π(l−n−1)/2 be the second copy of (l − n − 1)/2

primes equivalent to 1 modulo 3 which divide 2b′. Next, let pl+1, . . . , pt be all copies of primes

not equivalent to 1 modulo 3 which divide 2b′. Finally, we will also need pt+1 =
√
−3. Note

that for each prime equivalent to 1 modulo 3, it splits as ππ with π ≡ 2 (mod 3) and π in

the upper half plane.

Next, we will order the primes which will correspond to the rows of the characteristic

matrix. Let q1, . . . , qν be the distinct primes equivalent to 1 modulo 3 which divide 2b′

exactly once and divide ∆′ = 27b′+ 12a3. Let qν+1, . . . , qm be the distinct primes equivalent

to 1 modulo 3 which divide 2b′ exactly twice and divide ∆′. Next, let qm+1, . . . , ql be the

distinct primes equivalent to 1 modulo 3 which divide ∆′, but do not divide 2b′. Finally, let

ql+1, . . . , qr be the distinct primes equivalent to 2 modulo 3, not including 2, which divide
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∆′.

Now we are ready to de�ne the r× (t+1) matrix, A(G′′). De�ne the entries of A(G′′)

by

aij =


logω(`(qi, pj)) 1 ≤ i ≤ m, 1 ≤ j ≤ t+ 1, qi 6= pj

logω(`(qi, pj)) m+ 1 ≤ i ≤ r, 1 ≤ j ≤ l, qi 6= pj

0 otherwise.

Again, note that for 1 ≤ j ≤ l, when we say `(qi, pj), we mean `(qi, πj) and `(qi, πj) Let

D(G′′) be the r × (t+ 1) diagonal matrix with entries

dij =



t+1∑
k=0

aik 1 ≤ i ≤ ν, i = j

−
t+1∑
k=0

aik ν + 1 ≤ i ≤ m, i = j

0 otherwise

reduced modulo 3. Let

L′(G′′) = A(G′′)−D(G′′)

again reduced modulo 3 and de�ne L(G′′) to be the r×n submatrix of L′(G′′) with the n+1

through t+ 1 columns removed.

Remark 10. Notice that kerL(G′′) =
{
~w : (~w, 0, . . . , 0)T ∈ kerL′(G′′)

}
.

Let ~w = (w1, . . . , wn)T ∈ Fn3 . Recall there are n/2 distinct prime equivalent to 1

modulo 3 which divide 2b′, denoted by p1, p3, . . . , pn. For 1 ≤ i ≤ n, let

S1 = {pi : wi = 1}

S2 = {pi : wi = 2}
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and

S3 = {pi : wi = 0} ∪ {pn+1, . . . , pt+1} .

De�ne the labeling L on V (G) by L(pi) = wi. Then we have the following lemma.

Lemma 64. The labeling L of V (G) corresponding to ~w is good if and only if ~w ∈ kerL(G′′)

and ~w satis�es the fact that for each i odd, 1 ≤ i ≤ n, wi + wi+1 ≡ 0 (mod 3).

Proof. We begin by observing the additional condition guarantees that if π | ui i = 1, 2, then

π - ui.

Without loss of generality, assume wi = 1 for 1 ≤ i ≤ ν. So there is only one copy

of pi which divides 2b′. It is enough to show that L′(G′′)~w′ = ~0 with ~w′ = (w1, . . . , wt′)
T =

(~w, 0, . . . , 0)T . Then

L′(G′′)~w =
t+1∑
j=1
pj 6=qi

logω (` (qi, pj))wj −
t+1∑
j=1
pj 6=qi

logω (` (qi, pj))wi

=
t+1∑
j=1
pj 6=qi

logω (` (qi, pj)) (wj − wi)

=
∑
wj=2

logω (` (qi, pj)) +
∑
wj=0

2 logω (` (qi, pj)) .

This is equivalent to zero modulo 3 if and only if

∏
p∈S1
p=ηη

`(qi, η)


∏
p∈S2
p=ηη

`(qi, η)


 ∏
p∈V (G′′)\(S1∪S2)

p|2b′
√
−3

`(p, q)2

 = 1.

The cases that wi = 2 and wi = 0 are identical.

Now assume wi = 1 for ν + 1 ≤ i ≤ m. So there are two copies of pi which divide 2b′.

Once again, it is enough to show that L′(G′′)~w′ = ~0 with ~w′ = (w1, . . . , wt′)
T = (~w, 0, . . . , 0)T .
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Then

(L′(G′′)~w′)i =
t+1∑
j=1
pj 6=qi

logω (` (qi, pj))wj +
t+1∑
j=1
pj 6=qi

logω (` (qi, pj))wi

=
t+1∑
j=1
pj 6=qi

logω (` (qi, pj)) (wj + wi)

=
∑
wj=0

logω (` (qi, pj)) +
∑
wj=1

2 logω (` (qi, pj)) .

This is equivalent to zero modulo 3 if and only if

 ∏
p∈S1\{qi}
p=ηη

`(q, η)


∏
p∈S2
p=ηη

`(qi, η)


 ∏
p∈V (G′′)\(S1∪S2∪{qi})

p|2b′
√
−3

`(qi, p)
2

 = 1.

The cases that wi = 2 and wi = 0 are identical.

Finally, consider rows i with m+ 1 ≤ i ≤ r . Then we have that

(L′(G′′)~w′)i =
t+1∑
j=1

logω (` (qi, pj))wj

=
∑
wj=1

logω (` (qi, pj)) +
∑
wj=2

2 logω (` (qi, pj)) .

This is equivalent to zero modulo 3 if and only if

∏
p∈S1
p=ππ

`(qi, π)`(qi, π)2


∏

p∈S2
p=ππ

`(qi, π)`(qi, π)2

 = 1.

Example 12. Let us return to the example used in the previous section. Recall we considered
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the elliptic curve

E : y2 = x3 − 3(3 · 7 + 3 · 7 · 23 · 103

where ∆′ = 7 · 5 · 19. The vertices of G′ are {5, 19, 7, 103} and the vertices of G′′ are

{2, 3, 23,
√
−3, 5, 19, 7, 103}. Recall the corresponding graph given below.

5

7

19

√
−3

23

103

2

3

1
1

1, ω

ω2

ω2

ω2

ω
ω, ω2

ω2, ω

ω2

When constructing the matrix A, we order the primes corresponding to the columns

in the following order 2 +
√
−3, 2 −

√
−3, 10 +

√
−3, 10 −

√
−3, 2, 3, 23,

√
−3. The primes

corresponding to the rows are ordered as 7, 5, 19. It turns out that in this simple example,

the matrix D(G′′) is just the zero matrix. So the matrix A and L′(G′′) are the same and

given by

A = L′(G′′) =


0 2 0 1 2 1 2 2

0 0 0 0 0 0 0 0

1 2 2 1 0 0 0 0

 .
The matrix L(G′′) is formed by removing the columns which correspond to the primes
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2, 3, 23,
√
−3 and is given by

L(G′′) =


0 2 0 1

0 0 0 0

1 2 2 1

 .
Corollary 65. The number of good labellings of V (G) is at most 3n/2−s where s is the rank

of the r × n matrix L(G).

By calculating the cardinality of the modi�ed Selmer group Sel
(φ̂)
S (E ′ab′) through the

results stated in Lemma 64 and Corollary 65, we can give an upper bound on the size of the

Selmer group Sel(φ̂)(E ′ab′).

Corollary 66.
∣∣∣Sel(φ̂)(E ′ab′)

∣∣∣ ≤ ∣∣∣Sel(φ̂)
S (E ′ab′)

∣∣∣ ≤ 3n/2−s, where s is the rank of the r × n

matrix L(G) and S = {2, 3}.

Example 13. Returning to the previous example, we can see that the rank of L(G′′) is 2

and since L(G′′) is a 3× 4 matrix, Corollaries 65 and 66 imply that

∣∣∣Sel(φ̂)(E ′ab′)
∣∣∣ ≤ ∣∣∣Sel(φ̂)

S (E ′ab′)
∣∣∣ = 32−2 = 1.

This is equal to the number of good partitions given in the corresponding graph theory

example.

5.4 Conclusion

Let L1(G) and L31(G
′) be the matrices de�ned in Section 5.3.1.1. Similarly, let L2(G)

and L32(G) be the matrices de�ned in Section 5.3.1.2. Finally, let L(G) be the matrix de�ned

in Section 5.3.2. Then combining Corollaries 60, 63 and 66 we obtain the following results:
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Theorem 67. 1. If 3 - b and v3(a) = 0, then

r ≤ n1 + n2/2− s1 − s− 1

where s1 is the rank of the (r′1 +m1) × n1 matrix L1(G), s is the rank of the r2 × n2

matrix L(G) and r is the rank of Eab.

2. If 3 - b and v3(a) > 0, then

r ≤ R1 +R2 − 1

where

n1 + n2/2− s2 − s ≤ R1 +R2 ≤ n1 + n2/2− s1 − s

and s1 is the rank of the (r′1 +m1)×n1 matrix L1(G), s2 is the rank of the (r′1 +m1 − 1)×

n2 matrix L31(G
′), s is the rank of the r2 × n2 matrix L(G) and r is the rank of Eab.

3. If 3 | b and v3(a) = 1, then

r ≤ n1 + n2/2− s1 − s− 1

where s1 is the rank of the (r′1 +m1) × n1 matrix L2(G), s is the rank of the r2 × n2

matrix L(G) and r is the rank of Eab.

4. If 3 | b and v3(a) 6= 1, then

r ≤ R1 +R2 − 1

where

n1 + n2/2− s2 − s ≤ R1 +R2 ≤ n1 + n2/2− s1 − s

where s1 is the rank of the (r′1 +m1)×n1 matrix L2(G), s2 is the rank of the (r′1 +m1 − 1)×

n matrix L32(G), s is the rank of the r2 × n2 matrix L(G) and r is the rank of Eab.
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Remark 11. Once one has computed Sel
(φ̂)
S (E ′ab′) using linear algebra, applying Propositions

49 and 50 to the elements of Sel
(φ̂)
S (E ′ab′), one can compute Sel(φ̂)(E ′ab′).
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Chapter 6

Introduction to Drinfeld Modules

In 1973, Vladimir Drinfeld invented elliptic modules commonly referred to as Drinfeld

modules. The following year he produced a proof of Langland's conjectures for GL2 over

a global function �eld of positive characteristic. Langland's conjecture for function �elds

roughly states that there exists a bijection between cuspidal automorphic representations of

GLn and certain representations of a Galois group. Drinfeld used these modules in his proofs

of these conjectures. Continued research enabled Drinfeld to generalize Drinfeld modules to

shtukas, which allowed him to fully prove Langland's conjecture for GL2. In 1990, Drinfeld

was awarded the Fields Medal for his work.

6.1 Brief Overview of Drinfeld Modules

In order to understand Drinfeld modules, we need to set-up some notation. Here,

we will give a general set-up, which we will specialize later. Let X be a smooth, projective

geometrically connected curve over the �nite �eld Fq. Let P∞ ∈ X be a �xed closed rational

point over Fq. Set k to be the function �eld of X and A ⊂ k to be the ring of functions

which are regular outside P∞. Let v∞ be the valuation associated to the point P∞ and let
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K = k∞ be the completion of k with respect to v∞. Let K be a �xed algebraic closure of

K and C∞ be the completion of K. This comes from the canonical extension of v∞ to K.

De�ne τ to be the qth power mapping, i.e. τ i(x) := xq
i
. Let M be a complete extension of

K contained in C∞. Then M{τ} is the composition ring of Frobenius polynomials in τ .

6.1.1 Properties of M{τ}

The following is a concise overview of properties of M{τ}. For a more thorough

explanation, the reader should refer to [37].

It can be shown that τ i(x) is an additive polynomial for all i and hence all polynomials

spanned by τ i are additive. Using properties of additive polynomials, we have that M{τ}

forms a ring under composition. Since M 6= Fq, q a power of p, it follows that M{τ} is not

commutative, however

τα = αqτ ∀ α ∈M.

In addition, due to the fact that M is a �eld of characteristic p, it can be shown that the set

of absolutely additive polynomials over M is M{τ}.

Remark 12. 1. If P (x) is additive, then P (τ) will denote its representation in M{τ}.

Similarly, if P (x) is Fq-linear, then P (τ) is its representation in M{τ}. It is important

to note that P (τ) is not obtained from P (x) by substituting τ in for x.

2. The multiplication, P (τ) ·Q(τ), will refer to multiplication in M{τ}.

3. P (τ) is monic if and only if P (x) is monic.

4. Let P (τ) =
t∑
i=0

αiτ
i with αt 6= 0. Set t = deg (P (τ)). Then

qt = deg (P (x)) .
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The following theorem demonstrates the relationship between M [x] and M{τ}. A

proof can be found in [37, Theorem 1.4.1] or [54].

Theorem 68. Let f(x) ∈M [x]. Then there exists g(τ) ∈M{τ} such that f(x) divides g(x).

With some work, it can be shown that the set of all g(τ) satisfying the condition of

the theorem forms a left ideal in M{τ}.

Next, we will brie�y discuss the left and right division algorithms for M{τ}. Let

{f(τ), g(τ)} ⊂ M{τ}. Notice that f(τ) · g(τ) = 0 in M{τ} implies that f(τ) or g(τ) must

be 0. Therefore multiplication in M{τ} has both left and right cancellation properties.

De�nition 25. 1. f(τ) is right divisible by g(τ) if there exists h(τ) ∈M{τ} such that

f(τ) = h(τ) · g(τ).

2. f(τ) is left divisible by g(τ) if there exists m(τ) ∈M{τ} such that

f(τ) = g(τ) ·m(τ).

We can see that if f(τ) is right divisible by g(τ) then g(x) divides f(x).

The following proposition is the right division algorithm in M{τ}.

Proposition 69. Let {f(τ), g(τ)} ⊂M{τ} with g(τ) 6= 0. Then there exists {h(τ), r(τ)} ⊂

M{τ} with deg (r(τ)) < deg (g(τ)) such that

f(τ) = h(τ) · g(τ) + r(τ).

Moreover, h(τ) and r(τ) are uniquely determined.

The proof follows in the same fashion as the classical division algorithm.
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Now that we have a right division algorithm, the following corollary gives us an

important property about left ideals in M{τ}.

Corollary 70. Every left ideal of M{τ} is principal.

A proof can be found in [37, Corollary 1.6.3].

To state the left division algorithm, we need the following de�nition.

De�nition 26. M is perfect if and only if τM = M .

Since τ has trivial kernel, a counting argument can be used to show that all �nite

�elds are perfect. Furthermore, every algebraically closed �eld is perfect. It can be shown

that every �nite extension of a perfect �eld is separable. Now we can de�ne the left division

algorithm on M{τ} with an additional assumption on M .

Proposition 71. Let M be perfect and let {f(τ), g(τ)} ⊂M{τ} with g(τ) 6= 0. Then there

exists {h(τ), r(τ)} ⊂M{τ} with deg (r(τ)) < deg (g(τ)) such that

f(τ) = g(τ) · h(τ) + r(τ).

Furthermore, h(τ) and r(τ) are uniquely determined.

The left division algorithm leads to the following corollary concerning right ideals.

Corollary 72. If M is perfect, then every right ideal of M{τ} is principal.

Using the Euclidean Algorithm we can compute the right greatest common divisor

of f(τ) and g(τ). It is de�ned as the monic generator of the left ideal generated by f(τ)

and g(τ). We will denote it as (f(τ), g(τ)). This leads us to the �nal lemma we will discuss

about M{τ}.

Lemma 73. Let h(τ) = (f(τ), g(τ)). Then h(x) is the greatest common divisor of f(x) and

g(x).
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A discussion concerning Proposition 71, Corollary 72 and Lemma 73 can be found in

[37, pp 12-14].

6.1.2 Background De�nitions and Theorems

To state the general de�nition of a Drinfeld module, we will present the following

de�nitions and theorem. For further details, the reader should refer to [37, 66].

Recall A ⊂ K is the ring of functions which are regular outside P∞.

De�nition 27. An A-submodule L ⊂ C∞ (with the usual multiplication of A) is called an

M-lattice (or lattice) if and only if

1. L is �nitely generated as an A-module,

2. L is discrete in the topology of C∞,

3. Let M sep ⊆ C∞ be the separable closure of M . Then L is contained in M sep and is

stable under Gal(M sep/M) .

The rank of L is its rank as a �nitely generated torsion-free submodule of C∞. De�ne

d := rankA(L).

De�nition 28. Let L be an M -lattice. Then set

eL(x) = x
∏
α∈L
α 6=0

(1− x/α).

Drinfeld proved the following result, which is fundamental to the theory behind Drin-

feld modules.

Theorem 74. Let 0 6= a ∈ A. Then

eL(ax) = aeL(x)
∏

06=α∈a−1L/L

(1− eL(x)/eL(α)) .
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We shall not go through the proof here (see [37, Theorem 4.3.1]), however, it leads

us to the following de�nition.

De�nition 29. Let 0 6= a ∈ A. Then de�ne

φa := ax
∏

0 6=α∈a−1L/L

(1− x/eL(α)) .

From the proof of Theorem 74, we can conclude that φa ∈ M{τ}. With some work,

it can be shown that deg(φa(τ)) = d · deg(a) where d = rank(L). For a ∈ A, the mapping

a 7→ φa is Fq-linear. Also, if a ∈ Fq ⊂ A, then φa = aτ 0. Finally,

φab(τ) = φa(τ)φb(τ) = φb(τ)φa(τ) = φba(τ).

This last property is not obvious since multiplication in M{τ} is not commutative.

6.1.3 De�nition of a Drinfeld Module

Now we are ready to de�ne a Drinfeld module.

De�nition 30. The injection which maps A into M{τ} by a 7→ φa, associated to L is called

the Drinfeld module associated to L. Its rank is d = rankA(L).

We can actually give a more general de�nition of a Drinfeld module. For this, we will

use the following de�nitions.

De�nition 31. An A-�eld, F , is a �eld equipped with a �xed morphism ι : A→ F . De�ne

the characteristic of F , ℘, to be the kernel of ι which is a prime ideal. We say F has generic

characteristic if and only if ℘ = (0); otherwise we say that ℘ is �nite and F has �nite

characteristic.
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Over F we have the ring F{τ}. Let

f(τ) =
v∑
i=0

aiτ
i ∈ F{τ}.

Set

Df := a0 = f ′(τ).

Then the mapping from F{τ} to F de�ned by f 7→ Df is a morphism of Fq-algebras.

So an equivalent de�nition of a Drinfeld module is given by the following.

De�nition 32. Let φ : A→ F{τ} be a homomorphism of Fq-algebras. Then φ is aDrinfeld

module over F if and only if

1. D ◦ φ = ι

2. For some a ∈ A, φa 6= ι(a)τ 0.

6.2 The Carlitz Module

Prior to Drinfeld's discovery, Leonard Carlitz discovered the Carlitz module in 1938.

He used the Carlitz module to give an explicit construction of the class �eld theory of Fq(t).

The Carlitz module is a dimension one rank one Drinfeld module. Here, we let A = Fq[t]

and L = A, which implies that k = Fq(t). For d ≥ 0, de�ne

A(d) = {α ∈ A : deg(α) < d} .

So A(d) is a d-dimensional Fq-vector space of polynomials of degree less than d. And

A =
⋃

A(d).
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In order to de�ne the Carlitz modules, we need to introduce the Carlitz exponential.

For additional details, the reader should refer to [37] and [69].

De�nition 33. Set e0(x) = x and for d > 0,

ed(x) =
∏

α∈A(d)

(x− α)

=
∏

α∈A(d)

(x+ α).

It is not di�cult to show ed(x) is an Fq-linear polynomial. Thus ed(τ) ∈ A{τ}.

De�nition 34. 1. For i > 0, de�ne

[i] := tq
i − t.

2. Let D0 = 1 and for i > 0, de�ne

Di = [i][i− 1]q . . . [1]q
i−1

.

3. Let L0 = 1 and for i > 0, de�ne

Li = [i][i− 1] . . . [1].

The numbers Di and Li have �factorial-like� properties associated to them as demon-

strated by the following proposition.

Proposition 75. 1. [i] =
∏

f monic polynomial
deg(f)|i

f

2. Di = [i]Dq
i−1 =

∏
g monic
deg(g)=i

g
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3. Li = lcm of all polynomials of degree i

The interested reader can �nd a proof in [37, Proposition 3.1.6].

The following theorem of Carlitz relates the numbers Di and Li to ed(x).

Theorem 76 (Carlitz).

ed(x) =
∏

α∈A(d)

(x− α)

=
d∑
i=0

(−1)d−ixq
i Dd

DiL
qi

d−i

.

Additional details pertaining to the proof can be found in [6, 37, 35]. Expanding

ed(x), we �nd that
Dd

DiL
qi

d−i

∈ A, so the coe�cients are integral.

To form the Carlitz exponential, divide ed(x) by

∏
06=α∈A(d)

α = (−1)d
Dd

Ld
.

So we obtain,

x
∏

06=α∈A(d)

(1 + x/α) =
d∑
j=0

(−1)j
xq

i

Dj

Ld

Lq
j

d−j

.

Then taking the limit as d approaches in�nity, we can de�ne theCarlitz exponential

as

eC(x) =
∞∑
j=0

xq
j

Dj

.

The following proposition and corollary demonstrate properties associated to the

Carlitz exponential. For proofs, please see [37, Section 3.3].

Proposition 77. Let x ∈ C∞. Then

eC(tx) = teC(x) + eC(x)q
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Corollary 78. For x ∈ C∞ and a ∈ A with a =
v∑
j=0

ajt
j where aj ∈ Fq and av 6= 0 we have

that

eC(ax) = aeC(x) +
v∑
j=1

C(j)
a eC(x)q

j

where {C(j)
a } ⊂ A and C

(v)
a = av.

This leads us to the following de�nition.

De�nition 35. Let {C(j)
a } be as in Corollary 78. Then, set

Ca(τ) = aτ 0 +
v∑
j=1

C(j)
a τ j.

So,

eC(ax) = Ca(eC(x)).

Recall the qth power mapping, τ : C∞ → C∞ is de�ned by τ(x) = xq. And for any

sub�eld M of C∞, M{τ} is the composition ring of Fq-linear polynomials.

Now, we will use eC(x) to describe the module action of A = Fq[t] on C∞.

De�nition 36. The mapping C : A → k{τ} de�ned by a 7→ Ca which is an injection of

Fq-algebras is called the Carlitz Module.

As mentioned earlier, this is the simplest example of a Drinfeld module. The zeta

function in characteristic p associated to the Carlitz module is the analogue to the classical

zeta function. It is much easier to study the Carlitz module rather than a general Drin-

feld module. However, due to its simplicity, properties associated to the Carlitz module

often times do not translate to the general case. We will discuss a speci�c example of this

concerning zeros of the zeta function in the next Chapter.
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Chapter 7

Zeta Functions of Drinfeld Modules

In this chapter, we build a zeta function for Drinfeld modules by comparing it to

L-series for elliptic curves. The �rst obstacle we incur involves exponentiating elements.

When working over extensions of �nite �elds, raising elements to the pth powers, it is the

same as raising elements to the �rst power. In order to correct this issue, Goss de�nes a way

to exponentiate over function �elds in a speci�c way so we obtain a characteristic p output

[37, 38]. The goal of this chapter is to introduce zeta functions over function �elds and

explore special values of these functions, known as special polynomials. Additionally, we will

introduce a group which appears to act on the zeros of the special polynomials. Throughout

the chapter, we will give concrete examples in order to demonstrate this action.

7.1 Background

We will begin with some standard notation to be used throughout this chapter. Let

X be a smooth, geometrically connected curve over Fq. Recall a smooth curve is a projective

variety of dimension 1 with no singular points [39].

Let ∞ ∈ X be a �xed closed point (not necessarily rational) of degree d∞ over Fq.
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When d∞ = 1, everything behaves `nicely'; otherwise we need to make adjustments. Let A

be the ring of functions regular away from ∞. It is not hard to show that A is a Dedekind

domain with �nite class group where d∞ divides the order of the class group. Therefore we

can conclude that A∗ ' F∗q. In addition, let k be the quotient �eld of A and K = k∞ be

completion of k at∞. We represent the constants in k∞ by F∞ which is isomorphic to Fqd∞ .

Finally, let K be a �xed algebraic closure of K and C∞ be the completion of K.

The reader should keep the following basic analogies in mind:

A ∼ Z

k ∼ Q

K ∼ R

C∞ ∼ C.

Note that K is not locally compact or complete, so it is more convenient to use C∞.

Example 14. In Chapter 6 Section 6.2, we de�ned the Carlitz Module which is a dimension

one rank one Drinfeld module. Therefore X is the projective line, P1. We can set∞ =

(
1

t

)
,

so d∞ = 1. The ring of functions in the Carlitz module is A = Fq[t] where q = pr and hence

k = Fq(t) with constant �eld F∞ = Fq. Therefore K = Fq
((

1

t

))
is a Laurent series in

terms of
1

t
with coe�cients in Fq.

The next example will be used throughout this chapter, so it is important for the

reader to make note of the following speci�cations.

Example 15. In this example we consider a rank one dimension two Drinfeld module.

In this case set X = F3[t,y]/ (y2 − t+ t2) with ∞ =
1

t
and hence d∞ = 2. The global

ring is A = F3[t]
[√
t− t2

]
, with �eld of constants F∞ = F9 = F3[y]/(y2 + 1). Therefore
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k = F3(t)
(√

t− t2
)
and

K = F3

((
1

t

))((√
1

t
− 1

t2

))
.

Since this example will be used throughout the chapter, we will provide more details than

in the Carlitz Module. Additional details and proofs can be found in [69].

We de�ne a valuation v∞ : F3(t)→ R ∪ {∞} by v∞(1/t) = 1. We can extend this to

k by de�ning v∞

(
1√
t− t2

)
= 1. For all α ∈ A \ F3 with

α =

k1∑
i=0

ait
i +
√
t− t2

k2∑
j=0

bjt
j

where ai, bj ∈ F3, we have

v∞(α) = −max {k1, k2 + 1} .

So for all non-constant elements in the ring, we know how to calculate its valuation. Also,

we have that for all a ∈ A,

degk(a) = −d∞v∞(a) = −2v∞(a)

where degk(a) is the residue degree.

Now we return to the general theory. Choose π ∈ k to be a uniformizer, i.e. v∞(π) =

1.

De�nition 37. If u ∈ K∗ such that

v∞(u− 1) > 0

or equivalently if

u ≡ 1 mod π,
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then we say that u is a 1-unit. Let U1 be the set of 1-units in K.

Let x ∈ K∗, then we can write x as

x = ζxπ
v∞(x)ux

where ζx ∈ F∗∞, ux ∈ U1.

De�nition 38. We de�ne the 1-unit part of x by

〈x〉 := 〈x〉π := ux.

De�nition 39. An element x is positive or monic with respect to π if and only if ζx = 1.

Remark 13. It is not hard to show that a positive element times another positive element

produces a positive element. However, the sum of a �nite number of positive elements is not

necessarily positive.

Example 16. Let A = Fq[t] and π =
1

t
. Then the positive elements in A are the monic

polynomials.

In the above example of the Carlitz setting, everything is very simple. Therefore we

will look at 1-units in the rank one dimension two Drinfeld module example.

Example 17. Let A = F3[t]
[√
t− t2

]
. Assume that π =

1

t
.

Recall that for any α ∈ A \ F3,

α =

k1∑
i=0

ait
i +
√
t− t2

k2∑
j=0

bjt
j

and y =
√
−1 ∈ F9. There are three cases we need to consider.
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Case 1: k1 > k2 + 1

In this case,

〈α〉π = 1 +

k1−1∑
i=0

a−1
k1
ai

(
1

t

)k1−i
+
√
t− t2

k2∑
j=0

a−1
k1
bj

(
1

t

)k1−j
.

Case 2: k1 < k2 + 1

Here,

〈α〉π =
2y
√
t− t2
t

+

k1∑
i=0

2yb−1
k2
ai

(
1

t

)k2+1−i

+
√
t− t2

k2−1∑
j=0

2yb−1
k2
bj

(
1

t

)k2+1−j

.

Case 3: k1 = k2 + 1

Finally,

〈α〉π = 2 + 2

√
1 +

1

t
+ ak1bk2

(
1− y

√
1− 1

t

)

+

k1−1∑
i=0

ai (ak1 + bk2y)−1

(
1

t

)k1−i
+
√
t− t2

k2−1∑
j=0

bj (ak1 + bk2y)−1

(
1

t

)k1−j
.

Let's look at two speci�c elements in A with π =
1

t
,

α1 = t2 +
√
t− t2 − 1

α2 = 2t2 + 2
√
t− t2 + 1.

So v∞(α1) = v∞(α2) = −2.

Then dividing out by the highest power of 1/t, we obtain a Laurent series. Next we

divide out by the constant term and are left with an element that is equivalent to 1 mod π.

So we have

〈α1〉 = ζ−1
α1
π2α1 = ζ−1

α1

(
1 +

√
t− t2
t2

− 1

t2

)
.
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Since 1 +

√
t− t2
t2

− 1

t2
is a 1-unit, it follows that ζα1 = 1 and hence α1 is positive. Now,

〈α2〉 = ζ−1
α2
π2α2 = ζ−1

α2

(
2 +

2
√
t− t2
t2

+
1

t2

)
.

Notice that 2 +
2
√
t− t2
t2

+
1

t2
is not a 1-unit. This implies that ζα2 = 2. Hence α2 is

not positive.

Actually, α2 = 2α1. And so

〈α1〉 = 〈α2〉 = 1 +

√
t− t2
t2

− 1

t2
.

7.2 Exponentiation

Now we have arrived at the main question in this chapter; �How do we exponentiate

elements?� To begin, we need to know what the exponent group looks like. We know that

we need a copy of C∞ due to its roots and the fact that it is complete. However, we will also

need some notion of integer exponents. Since we are working over a �nite �eld, we know

xq = x. So there is a natural embedding of the integers into the p-adic integers. After a

moments thought, it is easy to see that a copy of the p-adic integers should show up in the

exponent group since it is the completion of the integers with respect to the p-adic norm.

Goss suggests to de�ne the exponent group in the following manner [38].

De�nition 40. The exponent group of A is S∞ := C∗∞ × Zp.

Notice �rst term is de�ned multiplicatively, and the second is de�ned additively.

Additionally, the exponentiation depends on the choice of the uniformizer.
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7.2.1 Exponentiation of Elements

Now we are ready to exponentiate elements. Let a ∈ A and s = (x, y) ∈ S∞ so

x ∈ C∗∞ and y ∈ Zp.

De�nition 41. Set

a(x,y) = a(x,y)
π := xdegk(a) 〈a〉yπ

Remark 14. 1. Given s0, s ∈ S∞, we have as0+s = as0as.

2. If a0, a1 are positive, then (a0a1)s = as0a
s
1. So we have the usual properties which

appear in exponentiation.

Let's look at how exponentiation works with the rank one dimension two example.

Example 18. Let A = F3[t]
[√
t− t2

]
. Assume that π =

1

t
. Consider the element α =

t2 +
√
t− t2 − 1. Recall that the valuation of this element is −2 and we have already

calculated its 1-unit part.

Then for s = (x, y) ∈ S∞ = C∗∞ × Z3, we have

α(x,y) = x−2v∞(α) 〈α〉yπ

= x4

(
1 +

√
t− t2
t2

− 1

t2

)y
.

The idea here is to extend the normal de�nition of exponentiation to y ∈ Zp. To do this,

suppose v = 〈α〉 with |v| < 1. Then

〈α〉y = (1 + v)y

=

y∑
k=0

(
y

k

)
vy−k

which is computed via the binomial theorem.
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7.2.2 Exponentiation of Ideals

Recall that A is a Dedekind domain. Let I be the group of A fractional ideals. Let

P ⊆ I be the group of principal ideals and let P+ ⊆ P be the group of positively generated

principal ideals. Since we are working over �nite �elds, we remind the reader that for ℘ ∈ P,

we have ℘|F∞|−1 = (1).

De�nition 42. We de�ne

〈 〉π : P+ → U1

(a) 7→ 〈a〉π

with a positive, so ζa = 1.

We set U1 ⊂ K to be the group of 1-units of K.

Proposition 79. The map

〈 〉π : P+ → U1

extends uniquely to I.

A proof of the above proposition can be found in [37, Corollary 8.2.4].

It is important to note that this is not a canonical extension. Also, given any I ∈ I,

since the class group is �nite, eventually we will have In ∈ P+. So we can de�ne the map

on In and extend it multiplicatively since I/P+ is �nite.

Now we are ready to exponentiate ideals.

De�nition 43. Let I ⊆ A be a non-zero ideal, possibly A. Let (x, y) ∈ S∞. We set

I(x,y) := xdegkI 〈I〉yπ .

Example 19. Continuing with the rank one dimension two example, recall we set A =

F3[t]
[√
t− t2

]
. One can show that every ideal in A is either principal or of the form (γ) I
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with γ ∈ A, where

I =
(
t,
√
t− t2

)
.

Additionally, since the class number of A is 2, we know that every ideal squared gives us a

positively generated principal ideal. So for π =
1

t
,

I(x,y) = x.

Thus far, we have been using the same uniformizer in all of the examples. One may

wonder if there is a way to change uniformizers without calculating 1-units again. The

following lemma give an explicit formula to change from one uniformizer to another. See

[38] for a proof.

Lemma 80. Let π1, π2 be two positive uniformizing parameters. Let I be a non-zero ideal

of A. Then

〈I〉π1 =

(
π1

π2

)degk(I)/d∞

〈I〉π2 .

Example 20. Let A = F3[t]
[√
t− t2

]
and F∞ = F3[y]/(y2 + 1). Let π1 =

1

t
and π2 =

y√
t− t2

. Let

α = t2 +
√
t− t2 − 1.

Then

〈α〉π1 = 1 +

√
t− t2
t2

− 1

t2
.

So using the lemma, we know that

〈α〉π2 =

(
y/
√
t− t2

1/t

)4/2

〈α〉π1

=
−t2

t− t2
− 1√

t− t2
+

1

t− t2
.
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7.3 Zeta Functions

Now we are ready to de�ne zeta functions in the present setting.

De�nition 44. We set

ζA(x, y) := ζA,π(x, y)

=
∑
I⊆A

I−s

which converges for all s = (x, y) ∈ S∞ with |x|∞ > 1. Here the sum is over non-zero ideals

in A and the inverse of s ∈ S∞ is −s = (1/x,−y).

Notice that the de�nition requires |x|∞ > 1 for x ∈ C∞. We would like ζA,π(x, y) to

be de�ned for all x ∈ C∗∞. To analytically continue ζA,π(s) to all of C∗∞, rewrite

ζA,π(s) =
∞∑
e=0

( ∑
degk(I)=e

I−s

)

=
∞∑
e=0

x−e

( ∑
degkI=e

〈I〉−yπ

)
.

For a power series over local �elds, we know that if its coe�cients converge to

zero, then the power series converges. Using Riemann-Roch theorem, one can show that∑
degkI=e

〈I〉−yπ converges to zero exponentially as e approaches in�nity. So ζA,π(s) is an entire

power series in x−1. Since we are working over local �elds and the coe�cients converge, it

follows that the series must converge. Thus ζA,π(s) is de�ned for all s ∈ S∞ = C∗∞ × Zp.

Example 21. Let A = F3[t]
[√
t− t2

]
and π =

1

t
. We know that every ideal in A is either

principal or a principal ideal times I =
(
t,
√
t− t2

)
. Therefore, we can split up the sum into

two parts. Recall that I−s = x−1.

151



ζA,π(s) =
∑

06=(α)⊆A
(α)−s +

∑
06=(β)⊆A

(β)−s I−s

=
1

2

 ∑
α∈A\{0}

x2v∞(α) 〈α〉−yπ

+
1

2

 ∑
β∈A\{0}

x2v∞(β)−1 〈β〉−yπ



=
∞∑
k=0

1

2

 ∑
v∞(α)=−k

〈α〉−yπ

x−2k +
∞∑
k=0

1

2

 ∑
v∞(β)=−k

〈β〉−yπ

x−2k−1.

Note that we need to multiply by 1/2 since there are two generators for every ideal, α and

2α, so we are double counting.

Just as we have a way to go from one uniformizer to another in terms of 1-units, from

the de�nition of the zeta function, it is not hard to see that we can go from one uniformizer

to another in terms of the zeros of the zeta function.

Lemma 81. Let π1 and π2 be two positive parameters, α ∈ C∗∞ and y0 ∈ Zp. Then

ζA,π2 (α, y0) = ζA,π1

(
(π1/π2)−y0/d∞ α, y0

)
.

Proof. From Lemma 80, we know that

〈I〉π1 =

(
π1

π2

)degk(I)/d∞

〈I〉π2 .
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Then,

ζA,π2(α, y0) =
∞∑
e=0

α−e

 ∑
degk(I)=e

〈I〉−y0π2


=

∞∑
e=0

α−e

 ∑
degk(I)=e

((
π2

π1

)degk(I)/d∞

〈I〉π1

)−y0
=

∞∑
e=0

α−e
∑

degk(I)=e

(
π2

π1

)−ey0/d∞
〈I〉−y0π1

=
∞∑
e=0

(
α

(
π1

π2

)y0/d∞)−e ∑
degk(I)=e

〈I〉−y0π1

= ζA,π1

((
π1

π2

)−y0/d∞
α, y0

)
.

Example 22. Now consider π =
y√
t− t2

. We have chosen a di�erent uniformizer, however

we will use the same notion of positive. Then

I(x,y) = x (tπ)y/2 .

So I−s = x−1 (tπ)−y/2. We will need to rede�ne the extension map in terms of the

new uniformizer.

ζA,π(s) =
∑

06=(α)⊆A

(α)−s +
∑

06=(β)⊆A

(β)−s I−s

=
1

2

 ∑
α∈A\{0}

x2v∞(α) 〈α〉−yπ

+
1

2

 ∑
β∈A\{0}

x2v∞(β)−1 (tπ)−y/2 〈β〉−yπ


=

∞∑
k=0

1

2

 ∑
v∞(α)=−k

〈α〉−yπ

x−2k +
∞∑
k=0

1

2

 ∑
v∞(β)=−k

〈β〉−yπ

 (tπ)−y/2 x−2k−1.
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Once again, we must multiply by 1/2 since we are double counting.

Let's look at a speci�c example of how the zeros of the zeta function change when we

choose a di�erent uniformizer.

Example 23. Once again working over A = F3[t]
[√
t− t2

]
and F∞ = F3[y]/(y2 + 1),

consider y = −8. If we set π1 =
1

t
, then

ζA,π1(x,−8) =
1

x3
(x+ 1)

(
x+ π4

1

) (
x− π4

1

)
.

And for π2 =
y√
t− t2

,

ζA,π2(x,−8) = 1 + (tπ2)4x−1 + 2π8
2x
−2 + 2t4π12

2 x
−3.

Computationally we �nd that the zeros of ζA,π1(x,−8) are

(2,−8),
(
2π4

1,−8
)
,
(
π4

1,−8
)
.

Then using the lemma, we can see that the zeros of ζA,π2(x,−8) are

(
2(tπ2)4,−8

)
,
(
2π4

2,−8
)
,
(
π4

2,−8
)
.

7.3.1 Special Polynomials

Now we are ready to de�ne certain zeta functions which are of interest to us.

De�nition 45. For j a positive integer, we set

z(x,−j) = zA(x,−j) := ζA,π(x,−j) =
∞∑
e=0

x−e

 ∑
degk(I)=e

I(j)

 .
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We know that the sum in parenthesis vanishes for su�ciently large e. Therefore z(x,−j) is

a polynomial in x−1. These polynomials occur as special zeta values and, as such, are called

special polynomials.

We are interested in how these polynomials are a�ected by the symmetric group S(q),

which we will de�ne momentarily. Since these are just special values of the zeta function,

we will use ζA,π(x,−j) to avoid confusion.

Continuing with the rank one dimension two setting, let's look at some examples.

Example 24. Let π =
1

t
and recall F∞ = F3[y]/(y2 +1). Then we have the following special

polynomials.

ζA,π(x,−j) = 1 + x−1

for j = 1, 2, 4, 5, 6, 7, 10, 12, 13, 15, 18, 21.

ζA,π(x,−8) = 1 + x−1 + 2π8x−2 + 2π8x−3

ζA,π(x,−11) = 1 + x−1 + 2π11C11x
−2 + 2π11C11x

−3

where C11 = y
√
t− t2 − y(t− t2)9/2 − t9 + t.

ζA,π(x,−16) = 1 + x−1 + 2π16x−2 + 2π16x−3

ζA,π(x,−19) = 1 + x−1 + π19C19x
−2 + π19C19x

−3

where C19 = y
√
t− t2 − y(t− t2)9/2 − t9 + t.

ζA,π(x,−20) = 1 + x−1 + π20C20x
−2 + π20C20x

−3
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where C20 = t+ t5 + t6 + t7 + 2t8.

ζA,π(x,−24) = 1 + x−1 + 2π24x−2 + 2π24x−3.

The reader will notice that we have omitted the zeta functions for j = 14, 17, 22, 23. The

reason for this is due to their complicated coe�cients in the x−2 and x−3 terms.

Example 25. Now let π =
y√
t− t2

. Then we have the following special polynomials.

ζA,π(x,−j) = 1 + (tπ)j/2x−1

for j = 1, 2, 4, 5, 6, 7, 10, 12, 13, 15, 18, 21.

ζA,π2(x,−8) = 1 + (tπ2)4x−1 + 2π8
2x
−2 + 2t4π12

2 x
−3.

ζA,π(x,−11) = 1 + (tπ)11/2x−1 + 2(π)11C11x
−2 + 2(tπ)11/2π11C11x

−3

where C11 = y
√
t− t2 − y(t− t2)9/2 − t9 + t.

ζA,π(x,−16) = 1 + (tπ)8x−1 + 2π16x−2 + 2(tπ)8π16x−3

ζA,π(x,−19) = 1 + (tπ)19/2x−1 + π19C19x
−2 + (tπ)19/2π19C19x

−3

where C19 = y
√
t− t2 − y(t− t2)9/2 − t9 + t.

ζA,π(x,−20) = 1 + (tπ)10x−1 + 2π20C20x
−2 + 2(tπ)10π20C20x

−3

where C20 = t+ t5 + t6 + t7 + 2t8.

ζA,π(x,−24) = 1 + (tπ)12x−1 + 2π24x−2 + 2(tπ)12π24x−3.
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7.4 Symmetric Group

In this section we will introduce the automorphism groups of interest to us. These

are subgroups of the group of homeomorphisms of Zp and they stabilize, and so permute,

both the non-positive and non-negative integers sitting in Zp.

Recall q is a power of p. Let y ∈ Zp. We can write y q-adically as

y =
∞∑
i=0

ciq
i

where 0 ≤ ci < q for all i. If y is a non-negative integer, then this sum is �nite.

Let ρ be a permutation of {0, 1, 2, . . .}.

De�nition 46. For y ∈ Zp, de�ne

ρ∗(y) =
∞∑
i=0

ciq
ρ(i).

So we are just permuting the coe�cients of y. Clearly the map which sends y to ρ∗(y)

gives a representation of ρ as a set permutation of Zp.

De�nition 47. Let S(q) be the group of permutations of Zp obtained as ρ varies over all

permutations of {0, 1, 2, . . .}.

Example 26. Let q = p = 3. Let ρ be the permutation (0, 1). We will calculate ρ∗(5).

We know that 5 = 2 · 30 + 1 · 31. So

ρ∗(5) = 2 · 3ρ(0) + 1 · 3ρ(1)

= 2 · 31 + 1 · 30

= 7.

Next, let's calculate ρ∗(36).
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We know that 36 = 0 · 30 + 0 · 31 + 1 · 32 + 1 · 33. So

ρ∗(36) = 36.

As demonstrated in the above example, sometimes elements are permuted and other

times they are �xed.

7.4.1 Action on Zeta Functions

We are interested in how S(q) acts on the zeros of the zeta function, speci�cally the

zeros of the special polynomials. Recall that zeros of the zeta function lie in S∞ = C∗∞×Zp.

So we must extend the de�nition of ρ∗. Additionally, since we want to look at j ∈ Zp and

apply ρ∗ to −j, we want to avoid rewriting −j in terms of its q-adic expansion. This leads

us to the following de�nition.

De�nition 48. Let ρ be a permutation of {0, 1, 2, . . .} and let y ∈ Zp. We de�ne

ρ̂∗(y) = −ρ∗(−y).

Remark 15. Note that ρ̂∗ stabilizes both the non-negative and non-positive integers.

Now, �x π∗ to be a d∞-th roots of π. Note there is some ambiguity here because we

need to make a choice when d∞ 6= 1.

De�nition 49. De�ne

K1 := F∞ ((π∗)) ' K (π∗) .

Let's look at an example of K1.
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Example 27. For A = F3[t]
[√
t− t2

]
and π =

1

t
, we can choose π∗ =

1√
t
. Then

K1 = F9

((
1√
t

))
.

Next, one may ask what elements in K1 look like. Let x ∈ K∗1 . Then we can write

x =
∑
i�−∞

ciπ
i
∗

with ci ∈ F∞. So writing x in terms of its π∗ expansion we can de�ne ρ∗ on K1. Once again

we are just permuting coe�cients.

De�nition 50. Let ρ be a permutation of {0, 1, 2, . . .} and let x ∈ K∗1 . Then set

ρ∗(x) :=
∑
i�−∞

ciπ
ρ∗(i)
∗ ∈ K∗1 .

Currently, we do not know how to extend the de�nition of ρ∗ to all of C∞, hence to

all of S∞. Therefore we de�ne the following subset of S∞.

De�nition 51. Let

S∞,π := K∗1 × Zp ⊂ S∞.

For (x, y) ∈ S∞,π, we set

ρ∗(x, y) := (ρ∗(x), ρ̂∗(y)) ∈ S∞,π.

In [38], Goss presents evidence that for A = Fq[t], S(q) acts as symmetries of ζ(s)

arising from the negative integers. He proves the following theorem.

Theorem 82 (Goss, [38]). Let j be a non-negative integer with associated special polynomial

z(x,−j). Let ρ∗ ∈ S(q). Then z(x,−j) and z (x, ρ̂∗(−j)) have the same degree in x−1.
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One may wonder if this is true for Drinfeld modules other than the Carlitz module.

It does not take much e�ort to answer the question.

Example 28. Consider A = F3[t]
[√
t− t2

]
, and j a non-negative integer with associated

special polynomial ζA,π(x,−j). Let ρ∗ ∈ S(3). Then ζA,π(x,−j) and ζA,π (x, ρ̂∗(−j)) have the

same degree in x−1. Let π =
1

t
and consider ρ = (1, 2) and ρ∗ ∈ S(3). So ρ∗(7) = 19. But as

we saw earlier,

ζA,π(x,−7) = 1 + x−1

and

ζA,π(x,−19) = 1 + x−1 + π19C19x
−2 + π19C19x

−3.

Therefore Theorem 82 does not hold for all Drinfeld modules. So perhaps this is not

the correct question we wish to answer. This leads us to the following de�nition.

De�nition 52. Let y ∈ Zp. Write y q∞-adically, q∞ = qd∞

y =
∞∑
i=0

ciq
i
∞

where 0 ≤ ci < q∞ for all i. Let S(q∞) be the group of permutations of Zp obtained as ρ

varies over all permutations of {0, 1, 2, . . .} when y ∈ Zp is written q∞-adically.

A better conjecture may be the following.

Conjecture 1. For A = F3[t]
[√
t− t2

]
, and j a non-negative integer with associated special

polynomial ζA,π(x,−j). Let ρ∗ ∈ S(9). Then ζAπ(x,−j) and ζA,π (x, ρ̂∗(−j)) have the same

degree in x−1.

Once again, let's look at an example.

Example 29. Let π =
1

t
. Consider ρ = (0, 1) and ρ∗ ∈ S(9). So ρ∗(24) = 56. We can
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calculate that

ζA,π(x,−24) = 1 + x−1 + 2π24x−2 + 2π24x−3

and

ζA,π(x,−56) = 1 + x−1 + 2π56x−2 + 2π56x−3.

The zeros for ζA,π(x,−24) are

(2,−24) (2π12,−24) (π12,−24) .

Then

ρ∗(2,−24) = (ρ∗(2), ρ̂∗(−24))

= (2,−56)

ρ∗(2π
12,−24) = (ρ∗(2π

12), ρ̂∗(−24))

= (2π28,−56)

ρ∗(π
12,−24) = (ρ∗(π

12), ρ̂∗(−24))

= (π28,−56)

which are the zeros of ζA,π(x,−56).

As demonstrated by the above example, there appears to be some relationship between

zeros of the zeta function and S(q∞). A concrete explanation of this relationship is currently

unknown. Due to the complicated nature of these zeta functions, an e�ective way to study

this relationship is to construct examples. The reader can �nd a summary of ideas for future

work in this area as well as other topics related to Drinfeld modules in Chapter 8.
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Chapter 8

Future Work

This �nal chapter brie�y discusses directions for future research. We will concentrate

on the material presented in Chapters 5 and 7.

8.1 Selmer Groups

In Chapter 5, we discussed a graph theoretic approach to 3-Selmer groups for a family

of elliptic curves. A natural question to ask is �How often do elliptic curves in this family have

3-Selmer groups of size N?� Robert Rhoades discusses such a question for 2-Selmer groups

of congruent number curves [55]. In a pair of papers, Heath-Brown explores Selmer groups

for congruent number curves and their sizes on average [41, 42]. He does so by counting the

number of square-free integers up to X that have 2-Selmer group of a given size. He gives

a precise, yet complicated asymptotic formula. In [55], Rhoades uses di�erent techniques

which are more elementary, however not as precise as Heath-Brown's results. Using the

work of Feng and Xiong [32] and Faulkner and James [31], he builds on a similar graph

theoretical approach (See [5]). In addition, he discusses the relationship between counting 2-

Selmer groups and the Birch Swinnerton-Dyer Conjecture. It would be interesting to explore
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this relationship using 3-Selmer groups. One could adapt Rhoades' methods to the graphs

discussed in Chapter 5 and hopefully obtain similar results.

Perhaps a simpler question would be to explore the size of the modi�ed Selmer groups.

As mentioned in Chapter 5, the primes 2 and 3 are more challenging to study. By de�ning

a modi�ed Selmer group which requires local solutions everywhere except in Q2 and Q3, it

may be easier to extend Rhoades' results for this group. In addition, one could explore how

the modi�ed and actual 3-Selmer groups di�er. On average, how many more elements does

the modi�ed Selmer group contain verses the 3-Selmer group? Is this number signi�cant, if

so, how much of an over-estimate on the rank do we expect? If this number is, on average,

negligible, then we could just study the modi�ed Selmer group and ignore the problems

encountered with 2 and 3.

Another possible direction would be to investigate the average rank of Selmer groups.

Recently, Manjul Bhargava has calculated the average Selmer rank over all elliptic curves.

In 2010, Bhargava and Shankar proved the following theorem in their paper [3].

Theorem 83. When averaged over their height, elliptic curves E de�ned over Q have an

average rank of less than 1.5.

They proved that when elliptic curves are ordered by height, the mean size of the 2-Selmer

group is 3. Therefore, one can conclude that when all elliptic curves over Q are ordered by

height, their average 2-Selmer rank is at most 1.5, implying the above result. The curves

studied in Chapter 5 are a density zero subset of all elliptic curves. It would be intriguing

to investigate their average rank and compare it to Bhargava's results.

8.2 Zeta Functions

In Chapter 7, we discuss the work of Goss, Thakur and Diaz-Vargas for characteristic

p zeta functions and the relation between zeros of special polynomials and the symmetric

163



group S(q). As mentioned in Section 7.4.1, there are currently only results in the Carlitz

module setting. It would be interesting if one could prove an analogous result to Theorem

82. This would give further evidence that S(q∞) acts as symmetries of ζ(s) arising from the

negative integers. Before proving such a theorem, it would be informative to calculate more

examples and explore how the coe�cients of these zeta functions are a�ected by ρ∗. These

calculations might shed some light on the proper statement of the conjecture.

Anderson and Thakur establish a fundamental relationship between logarithms asso-

ciated to the Carlitz modules and special zeta values [1]. Yu used this relationship to establish

important transcendence results, which are not yet known in classical number theory [72].

Thakur expands on these results and presents evidence that such relationships will exist for a

general A in addition to the Carlitz setting [65]. Using the setting described in Example 15,

one could compute the associated logarithms and attempt to establish relationships between

them and the special zeta values.

Finally, one can explore the traces of the Frobenius endomorphism for Drinfeld mod-

ules using an analytical approach. In [22], Chantal David investigates the distribution of

traces of Frobenius endomorphisms on the reductions of a rank 2 Drinfeld module over

Fq(T ). She proves the following theorem.

Theorem 84. Let ϕ be a Drinfeld module over Fq(T ) of rank 2 without complex multiplica-

tion. Let k be a positive integer. De�ne

πt(k) := {primes p ∈ Fq[T ] of degree k such that ap(ϕ) = t}

Then

πt(k)� rqkθ(r)

k
(8.1)

where θ(r) = 1− 1/(2r2 + 4r) and the constant only depends on ϕ.
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David also has established results concerning the supersingular reduction of Drinfeld

modules. In [20], she proves the following theorem.

Theorem 85. Let ϕ be a Drinfeld Fq[T ]-module over Fq(T ) of rank 2. Consider any positive

real number x. Let πϕ(x) be the set of all monic irreducible polynomials p where ϕ has good

reduction and qdeg(p) ≤ x. Then

πϕ(x)� log log(x). (8.2)

There are many directions one could look to for future work. Are there similar results

for Drinfeld modules of rank 1 dimension 2? What type of bound would we expect for a

Drinfeld module of dimension 2 in the analogous case to Equation (8.1)? What about to

Equation (8.2)? How good of a bound do we expect for each of these?
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Appendix A Cohomology De�nition of the Selmer Group

The Selmer Group is typically de�ned as the kernel of maps between Cohomology

groups. This section will give the reader an idea of how the de�nition given in Section 4.3.1 is

related to the usual de�nition. This section is not necessary to understand the results stated

in Chapter 5. All results and de�nitions of this section can be found in [62], speci�cally

Chapters 8, 10 and Appendix B.

A.1 Group Cohomology of Finite Groups

Let G be a �nite group and M an abelian group. We denote the action of σ ∈ G on

M by m 7→ mσ. If this action satis�es the following properties, then we sayM is a G-module

m1 = m,

(m1 +m2)σ = mσ
1 +mσ

2 ,

(mσ)τ = mστ .

For a given G-module, it is natural to calculate the largest submodule on which G

acts trivially. The elements of this group are said to be G-invariant.

De�nition 53. The 0th-cohomology group of the G-moduleM , denotedMG orH0(G,M)

is de�ned by

H0(G,M) = {m ∈M : mσ = m ∀ σ ∈ G} .

Let

0→ P
φ→M

ψ→ N → 0

be an exact sequence of G-modules. Taking G-invariants, we obtain the following exact

sequence

0→ PG →MG → NG.
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Note that the last map may no longer be surjective. One can measure the lack of surjectivity

of this map, by making the following de�nitions.

De�nition 54. Let M be a G-module. The group of 1-cochains from G to M is given by

C1(G,M) = {maps ξ : G→M} .

The group of 1-cocyles from G to M is de�ned by

Z1(G,M) =
{
ξ ∈ C1(G,M) : ξστ = ξτσ + ξτ ∀ σ, τ ∈ G

}
.

The group of 1-coboundaries from G to M is given by

B1(G,M) =
{
ξ ∈ C1(G,M) : ∃ m ∈M s. t. ξσ = mσ −m ∀ σ ∈ G

}
.

Notice that B1(G,M) ⊆ Z1(G,M). The 1st-cohomology group of the G-module M is

the quotient group

H1(G,M) = Z1(G,M)/B1(G,M).

Remark 16. 1. H1(G,M) is the group of 1-cocycles ξ : G→M , modulo the equivalence

relation that any two cycles are identi�ed if their di�erence is of the form σ → mσ−m

for some m ∈M .

2. If the action of G on M is trivial, then

H0(G,M) = M

and

H1(G,M) = Hom(G,M).
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Let φ : M → N be a G-module homomorphism. Let ξ ∈ Z1(G,M), then composition

with φ maps Z1(G,M) to Z1(G,N). In a similar manner, it takes B1(G,M) to B1(G,N).

Hence φ induces a map on cohomologies, φ : H1(G,M)→ H1(G,N).

Proposition 86 (Proposition 1.2, [62]). Let

0→ P
φ→M

ψ→ N → 0

be an exact sequence of G-modules. Then there exists a long exact sequence

0→ H0(G,P )→ H0(G,M)→ H0(G,N)
δ→ H1(G,P )→ H1(G,M)→ H1(G,N),

where δ is de�ned as follows.

Let n ∈ H0(G,N) = NG. Choose an m ∈ M such that ψ(m) = n (such an m exists

since ψ is surjective). De�ne a cochain ξ : C1(G,M) by

ξσ = mσ −m.

Then ξ ∈ Z1(G,P ) and δ(n) is the cohomology class in H1(G,P ) of the 1-cocycle ξ.

A.2 Galois Cohomology

Let K be a perfect �eld and GK/K be the Galois group of K over K. One can show

that GK/K is a pro�nite group since it is the inverse limit of �nite groups. Therefore one can

de�ne a topology on GK/K which consists of a basis of open sets around the identity which

are the collection of normal subgroups which have �nite index in GK/K.

De�nition 55. A (discrete) GK/K-module is an abelian groupM on which GK/K acts such

that the action is continuous for the pro�nite topology on GK/K and the discrete topology
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on M .

Equivalently, the action of GK/K on M has the property that for all m ∈ M , the

stabilizer of m, {σ ∈ G : mσ = m} is a subgroup of �nite index in GK/K .

The 0th-cohomology group is de�ned in the manner as for �nite groups.

De�nition 56. The 0th-cohomology of the GK/K-module M is the group of GK/K-

invariant elements of M ,

H0(GK/K ,M) =
{
m ∈M : mσ = m ∀ σ ∈ GK/K

}
.

When de�ning H1, we use the fact that GK/K is pro�nite and the module is discrete

in order to put some restrictions on the allowable cycles.

De�nition 57. Let M be a GK/K-module. A map ξ : GK/K → M is continuous if it is

continuous for the pro�nite topology on GK/K and the discrete topology on M . We de�ne

the group of continuous 1-cocycles from GK/K to M , Z1
cont(GK/K ,M), to be the group

of continuous maps ξ : GK/K →M satisfying the cocycle condition

ξστ = ξτσ + ξτ .

(Note that this a subgroup of the full group of 1-cocycles Z1(GK/K ,M).) SinceM is discrete,

any coboundary σ → mσ−m will automatically be continuous. The 1st-cohomology group

of the GK/K-module M is given by

H1(GK/K ,M) = Z1
cont(GK/K ,M)/B1(GK/K ,M).

Remark 17. If GK/K acts trivially on M , then we have a similar result to the one given in
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the �nite group case

H0(GK/K ,M) = M,

and

H1(GK/K ,M) = Homcont(GK/K ,M)

where Homcont(GK/K ,M) means the group of continuous homomorphisms.

The fundamental exact sequences given by Proposition 86 for �nite groups is exactly

the same for GK/K .

A.3 Selmer Group

In order to present the cohomology de�nition of the Selmer group, we need a few

de�nitions.

De�nition 58. Let E/K be an elliptic curve. A (principal) homogeneous space for

E/K is a smooth curve C/K together with a simply transitive algebraic group action of E

on C de�ned over K.

Remark 18. We often think of a homogeneous space for E/K as a pair (C, µ), where C/K

is a smooth curve and µ : C × E → C is a morphism de�ned over K with the following

properties:

1. µ(p,O) = p for all p ∈ C

2. µ(µ(p, P ), Q) = µ(p, P +Q) for all p ∈ C and P,Q ∈ E

3. For all p, q ∈ C, there exists a unique P ∈ E satisfying µ(p, P ) = q.

Often times we denote µ(p, P ) as p+ P .
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De�nition 59. Two homogeneous spaces C/K and C ′/K for E/K are equivalent if there

is an isomorphism θ : C → C ′ de�ned over K which is compatible with the action of E on C

and C ′. This means that for all p ∈ C and P ∈ E, the map θ satis�es θ(p+ P ) = θ(p) + P .

The equivalence class containing E, acting on itself by translation, is called the trivial

class. The collection of equivalence classes of homogeneous spaces for E/K is called the

Weil-Châtelet group for E/K which we denote by WC(K/K).

One can characterize the trivial homogeneous spaces using the following proposition.

Proposition 87 (Proposition 3.3, [62]). Let C/K be a homogeneous space for E/K. Then

C/K is in the trivial class if and only if C(K) is not empty.

The following theorem relates the Weil-Châtele group to the �rst cohomology group.

Moreover sinceH1(GK/K , E) is a group, this theorem de�nes a group structure onWC(E/K).

Theorem 88 (Theorem 3.6, [62]). Let E/K be an elliptic curve. There is a natural bijection

WC(E/K)→ H1(GK/K , E)

de�ned as follows: Let C/K be a homogeneous space and choose any point p0 ∈ C. Then

{C/K} → {σ → pσ0 − p0} ,

where the brackets denote an equivalence class.

Recall in Chapter 4, we were considering an elliptic curve E and an auxiliary curve

E ′ with an isogeny φ : E → E ′. Then there is an exact sequence of GK/K-modules,

0→ E[φ]→ E
φ→ E ′ → 0,
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where E[φ] denotes the kernel of φ. Taking Galois cohomology yields the long exact sequence

0 → E(K)[φ] → E(K)
φ→ E ′(K)

δ→ H1(GK/K , E[φ]) → H1(GK/K , E) → H1(GK/K , E
′) →;

and from this we obtain the fundamental short exact sequence

0→ E ′(K)/φ(E(K))
δ→ H1(GK/K , E[φ])→ H1(GK/K , E)[φ]→ 0. (3)

We observe that Theorem 88, tells us that we can identify the last term of (3) with

the φ-torsion in the Weil-Châtelet group WC(E/K).

The next step in calculating the Mordell-Weil group of E/K, requires one to replace

the second and third terms of (3) with speci�c �nite groups. In order to do this, we must

localize. Let MK denote the be the set of standard absolute values on K. Then for each

v ∈ MK , one can �x an extension of v to K which in turn �xes an embedding K ⊂ Kv and

a decomposition group Gv ⊂ GK/K . Then since Gv acts on E(Kv) and E ′(Kv), we obtain

the following exact sequence

0→ E ′(Kv)/φ(E(Kv))
δ→ H1(Gv, E[φ])→ H1(Gv, E)[φ]→ 0. (4)

We notice that Gv ⊂ GK/K and E(K) ⊂ E(Kv), we obtain restriction maps on

cohomology and hence obtain the following commutative diagram:

0 −−−→ E ′(K)/φ(E(K))
δ−−−→ H1(GK/K , E[φ]) −−−→ WC(E/K)[φ] −−−→ 0y y y

0 −−−→ E ′(Kv)/φ(E(Kv))
δ−−−→

∏
v∈MK

H1(Gv, E[φ]) −−−→
∏

v∈MK

WC(E/Kv)[φ] −−−→ 0.

(5)

Now we are ready to de�ne the Selmer group and the Tate-Shafarevich group.
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De�nition 60. Let φ : E/K → E ′/K be an isogeny. The φ-Selmer group of E/K is the

subgroup of H1(GK/K , E[φ]) de�ned by

S(φ)(E/K) = ker

{
H1(GK/K , E[φ])→

∏
v∈MK

WC(E/Kv)

}
. (6)

The Tate-Shafarevich group of E/K is the subgroup of WC(E/K) de�ned by

X(E/K) = ker

{
WC(E/K)→

∏
v∈MK

WC(E/Kv)

}
.

Remark 19. One can think of X(E/K) as the group of homogeneous spaces which are

everywhere locally trivial, modulo equivalence.

The following theorem relates the elliptic curves to the Selmer and Tate-Shafarevich

groups.

Theorem 89 (Theorem 4.2, [62]). Let φ : E/K → E ′/K be an isogeny of elliptic curves

de�ned over K.

(a) There is an exact sequence

0→ E ′(K)/φ(E(K))→ S(φ)(E/K)→X(E/K)[φ]→ 0.

(b) The Selmer group S(φ)(E/K) is �nite.

From this one can conclude that

∣∣S(φ)(E/K)
∣∣ = |E ′(K)/φ(E(K))| |X(E/K)[φ]| .

Therefore, in order to give a bound on the rank, it is su�cient to calculate the size of the

Selmer group.
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We will conclude this section by attempting to give the reader an idea of how the

de�nition in (6) is equivalent to the one given in Section 4.3.1. We begin by recalling the

following de�nition.

De�nition 61. A twist of C/K is a smooth curve C ′/K which is isomorphic to C over K.

One can show that every cohomology class in H1(GK/K , Isom(C)) comes from some

twist of C/K. Since S(φ)(E/K) is a subset of H1(GK/K , E[φ]), if we can �nd a geometric

object X such that AutK(X) ∼= E[φ], we can interpret the elements of the Selmer group as

twists of the object X.

The plane cubic given by Equation (4.11) in Theorem 41 is the equation of a twist

C of the elliptic curve E. So every homogeneous cubic equation which has local solutions

everywhere should correspond to an element in the kernel of the map fromH1(GK/K , E[φ])→∏
v∈MK

WC(E/Kv). Thus the de�nition given in Section 4.3.1 is equivalent to the one presented

above. For additional details and other interpretations of the elements of the Selmer group,

see [17, 18].
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Appendix B Derivation for Auxiliary Curve

B.1 De�ning the Selmer Group

The interested reader may notice that equation (4.12) di�ers from the one stated in

[14]. The following section provides details on the derivation of equation (4.12). This section

is not necessary to understand the results stated in Chapter 5.

Recall, we are considering an elliptic curve of the form

E ′ab′ : y2 = x3 − 3(ax+ b′)2

with b′ = 27b−4a3

9
. Suppose that (x, y) is a rational point on E ′ab′ . Let y = s/t3, x = r/t2

with (rs, t) = 1. Substituting and simplifying we obtain

r3 =
[
s−

(
art+ b′t3

)√
−3
] [
s−

(
art+ b′t3

)√
−3
]

=
[
(s+ art+ bt3) + 2t(ar + bt2)ω

] [
(s− t(ar + bt2))− 2t(ar + bt2)ω

]
, (7)

where ω = −1+
√
−3

2
is a cube root of unity and

√
−3 = 2ω + 1. Letting

u′ = α(x, y) = α(r, s, t) = s−
(
ar + b′t2

)
t
√
−3 = s− t(ar + b′t2)− 2t(ar + b′t2)ω,

implies

ū′ = s+
(
ar + b′t2

)
t
√
−3 = s+ t(ar + b′t2) + 2t(ar + b′t2)ω.

Note that this di�ers from Cohen and Patzuki's de�nition by a multiple of
1

t3
which is a cube.

We may use either de�nition since they are equivalent in G′3. Recall G′3 is the subgroup of

Q(ω)∗/(Q(ω)∗)3 of classes whose norms are cubes.
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From this we can conclude that

s = u′ + t
√
−3
(
ar + b′t2

)
= ū′ − t

√
−3
(
ar + b′t2

)
.

Equivalently,

2s = u′ + ū′.

Let d = gcd(u′, ū′). Then

d | gcd(u′ + ū′, u′ − ū′)

and gcd(u′ + ū′, u′ − ū′) = 2gcd(s,
√
−3(ar + b′t2)). Since s, (ar + b′t2) ∈ Z, it follows that

gcd(s,
√
−3(ar + b′t2)) ∈ Z or

√
−3Z. So, we can write

gcd(u′ + ū′, u′ − ū′) = 2(
√
−3)εk′

where k′ ∈ Z and ε ∈ {0, 1}. Note also that

gcd(u′, ū′) | gcd(u′ + ū′, u′ − ū′) | 2gcd(u′, ū′),

that is d|2(
√
−3)εk′|2d. Since Z[ω] is a unique factorization domain, d = (

√
−3)εk where

k = k′ or 2k′ and ε ∈ {0, 1}.

Thus we have

u′ = (
√
−3)εkβ,

ū′ = (−
√
−3)εkβ̄,
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hence

r3 = u′ū′ = 3εk2ββ̄

where 1 = (u
′

d
, ū
′

d
) = (β, β̄). Since (β, β̄) = 1, β is not divisible by integral primes of Z[ω]

and is not divisible by
√
−3.

Write k = 3εk0(k1)2(k2)3 where (k0, k1) = 1 and k0, k1 are square free integers. Then

we have

r3 = k2
0k1(3εk1k

2
2)3ββ̄

So, k0(k1)2 | ββ̄ and the quotient is a cube. Writing k0 = p1 · . . . · pt and k1 = q1 · . . . · qs we

have

u′ = (
√
−3)ε3εk0k

2
1k

3
2π1 · . . . · πtη2

1 · . . . · η2
sγ

3

= k0π1 · . . . · πt(k1η1 · . . . · ηs)2(k2γ
(√
−3
)ε

)3

= (π1 · . . . · πt)2(π1 · . . . · πt)(η1 · . . . · ηs)4(η1 · . . . · ηs)2(k2γ
(√
−3
)ε

)3

= (π1 · . . . · πt · η1 · . . . · ηs)(π1 · . . . · πt · η1 · . . . · ηs)2
(
k2γ

(√
−3
)ε · η1 · . . . · ηs

)3

= (π1 · . . . · πt · η1 · . . . · ηs)(π1 · . . . · πt · η1 · . . . · ηs)
2
(
k2γ

(√
−3
)ε · η1 · . . . · ηs

)3

where pi = πiπ̄i and qi = ηiη̄i and γ ∈ Z[ω].

Recall that the map α is from E ′ab′(Q) to the subgroup G′3 of Q(ω)∗/ (Q(ω)∗)3 of

classes [u′] of elements u′ whose norm is a cube. From the previous work, we can show that

r3 = u′ū′ and for [u′] ∈ G′3, we can write [u′] = γγ̄2δ3. Without loss of generality, we may

assume the following:

1. (γ, γ̄) = 1,

2. γ and γ̄ are square-free,

3. γ and γ̄ are only divisible by primes π with N(π) ≡ 1 (mod 3) and π /∈ Z (i.e. not
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integer primes and not
√
−3).

So

r3 = γγ̄ (γ)2 (γ̄)2 δ3δ̄3

= (γγ̄)3 (δδ̄)3
.

Hence r = γγ̄δδ̄.

Also,

u′ = s−
√
−3
(
art+ b′t3

)
and

ū′ = s+
√
−3
(
art+ b′t3

)
.

Let δ = z1 + z2ω, γ = c + dω and γ̄ = c + dω2 where c, d ∈ Z and we may assume

that δ is an algebraic integer.

Then

N (γ) = c2 − dc+ d2,

δ3 = (z3
1 + z3

2) + 3z2
1z2ω + 3z1z

2
2ω

2,

δ̄3 = (z3
1 + z3

2) + 3z1z
2
2ω + 3z2

1z2ω
2,

N (δ) = z2
1 − z1z2 + z2

2 ,

and

r = γγ̄δδ̄

= N (γ)N (δ) .
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Notice that

ū′ − u′ = 2t
√
−3
(
ar + b′t2

)
.

Rewriting the left hand side of the equation:

ū′ − u′ = γ̄ (γ)2 δ̄3 − γ (γ̄)2 δ3

= γγ̄
(
γδ̄3 − γ̄δ3

)
= N (γ)

(
γδ̄3 − γ̄δ3

)
.

Substituting in for γ, γ̄, δ and δ̄, we can see that

γδ̄3 − γ̄δ3 =

(c+ dω)
(
(z3

1 + z3
2) + 3z1z

2
2ω + 3z2

1z2ω
2
)
−
(
c+ dω2

) (
(z3

1 + z3
2) + 3z2

1z2ω + 3z1z
2
2ω

2
)
.

Expanding and canceling we �nd that

γδ̄3 − γ̄δ3 =

(
dz3

1 + dz3
2 + 3cz1z

2
2 − 3cz2

1z2 − 3dz1z
2
2

)
ω −

(
dz3

1 + dz3
2 + 3cz1z

2
2 − 3cz2

1z2 − 3dz1z
2
2

)
ω2.

Substituting in for ω and ω2, we have

γδ̄3 − γ̄δ3 =
√
−3
(
dz3

1 + dz3
2 + 3cz1z

2
2 − 3cz2

1z2 − 3dz1z
2
2

)
.

Now consider the right hand side of the equation. Substituting in and reducing we
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have:

2t
√
−3
(
ar + bt2

)
= 2tN (γ)

√
−3

(
az2

1 − az1z2 + az2
2 +

b

N (γ)
t2
)
.

Therefore setting the left hand side equal to the right hand side and doing a little

algebra, we can de�ne the following equation:

2az2
1t− 2az1z2t+ 2az2

2t+
2b′

N (γ)
t3 − dz3

1 − dz3
2 − 3cz1z

2
2 + 3cz2

1z2 + 3dz1z
2
2 = 0.

From this we obtain the following formula:

Fu′(X, Y, Z) :=

2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N (γ)
Z3 − dX3 − dY 3 − 3cXY 2 + 3cX2Y + 3dXY 2.

Since we want Fu′(X, Y, Z) = 0 to have solutions in the integers, we need to check

that N(γ) | (2b′).

Since (γ, γ̄) = 1, and γ and γ̄ are both square-free, we know that N(γ) = γγ̄ is square-free.

Suppose p is a prime such that p | N(γ). Since
√
−3 - γ and

√
−3 - γ̄, we know that

p 6=
√
−3.

Recall that

N(γ)
(
γ̄δ3 − γδ̄3

)
= ū′ − u′

= 2t
√
−3
(
ar + b′t2

)
.

Therefore p | 2t
√
−3 (ar + b′t2).

We know that p 6=
√
−3, so p | 2t (ar + b′t2). Furthermore, since (r, t) = 1 and p | N(γ) | r,
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p - t. Thus,

p |
(
2ar + 2b′t2

)
.

Since we know that p | 2ar, it follows that p | 2b′. Hence N(γ) | 2b′.

Thus the de�nition of Sel(φ̂)(E ′ab′) given in Section 4.3.1 is correct.

B.2 Comparing Equations

The equation we have constructed is

Fu′(X, Y, Z) :=

2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N (γ)
Z3 − dX3 − dY 3 − 3cXY 2 + 3cX2Y + 3dXY 2.

Cohen states that for the auxiliary curve, we have the following equation:

2v2X
3 + 2Dv1Y

3 +
2b′

v2
1 −Dv2

2

Z3 + 6v1X
2Y + 6v2DXY2 + 2a

(
X2Z−DY2Z

)
= 0

where [u] ∈ G3, u = v2τ(v), v = v1 + v2

√
D and τ(v) = v1 − v2

√
D.

Let X =
−1

2
(X + Y ), Y =

1

2
(X − Y ), Z = Z, v1 = c − d

2
, v2 =

−d
2

and D = −3.

Making this substitution into Cohen's equation, we obtain the equation written above.

Here, we also note that Cohen's equation can be written as

(
v
(
X + Y

√
−3
)3 − τ(v)

(
X − Y

√
−3
)3
)
/
√
−3

+2aZ
(
X + Y

√
−3
) (
X − Y

√
−3
)

+ (2b′/ (vτ(v)))Z3.

when D = −3. Since all of these equations are equivalent, we will use them interchangeably.
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Appendix C Local Solubility for Curve

Here are proofs of the local solubility results as stated in Chapter 5 for the curve

Eab : y2 = x3 + (ax+ b)2.

For additional details, we refer the reader to [14].

We begin by recalling Hensel's Lemma. See [62, pp 112 - 115] for a proof.

Lemma 90 (Hensel's Lemma). Let f(x) be a polynomial with integer (p-adic) coe�cients

and let k,m be positive integers such that m ≤ k. If r is an integer such that f(r) ≡

0(mod pk) and f ′(r) 6≡ 0(mod pk+1) then there exists an integer s such that f(s) ≡ 0(mod pk+m)

and r ≡ s(mod pk).

Let vp(n), n ∈ N, be the largest exponent of p that divides n, i.e. vp(n) = − logp |n|p.

We set vp(0) =∞. So by Lemma 36, we may assume that either vp(a) = 0 or vp(b) ≤ 2 for

E.

The following two propositions give the local solubility criteria for the polynomial

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

associated with Eab.

Proposition 91 (Lemmas 5.3− 5.5, [14]). Assume p 6= 3. Let

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

with p-integral coe�cients where u1 and u2 are square-free and coprime and u3 =
2b

u1u2

.

1. If p 6= 2, vp(b) = 0 and vp (27b− 4a3) = 0, then Fu(X, Y, Z) = 0 has a solution in Qp.
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2. If p 6= 2, vp(b) = 0 and vp (27b− 4a3) > 0, then Fu(X, Y, Z) = 0 has a solution in Qp

if and only if ui/uj is a cube in F∗p for some i 6= j.

3. If p 6= 2 and vp(b) > 0, then Fu(X, Y, Z) = 0 has a solution in Qp if and only if one of

the following is ful�lled:

(a) vp(a) = 0,

(b) vp(a) > 0 and exactly one of {u1, u2, u3} is divisible by p and the ratio of the other

two is a cube in F∗p,

(c) vp(a) > 0 and exactly two of {u1, u2, u3} are divisible by p and their ratio is a

cube in F∗p.

4. If p = 2, then Fu(X, Y, Z) = 0 has a solution in Q2 if and only if one of the following

is ful�lled:

(a) exactly one of {u1, u2, u3} is divisible by 2 and the ratio of the other two is a cube

in F∗2,

(b) exactly two of {u1, u2, u3} is divisible by 2 each exactly once and their ratio is a

cube in F∗2.

Proof. 1. Assume p 6= 2, 3, vp(b) = 0 and vp (27b− 4a3) = 0. We would like to show that

there are no singular points in this case, and therefore we can use Hensel's lemma.

We begin by assuming Z = 0 and see if there are any singular points in this case. If

Z = 0, we are left with the equation

u1X
3 + u2Y

3 = 0,
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and to have a singular point we must have

∂F

∂X
= 3u1X

2 ≡ 0 (mod p)

and

∂F

∂Y
= 3u2Y

2 ≡ 0 (mod p) .

But since p 6= 3 and u1u2 | 2b, it follows that X = Y = 0, which is not possible.

Therefore we can conclude that if there is a singular point on the curve, it must have

Z 6= 0. So without loss of generality, we can assume Z = 1.

Then we have a singular point if and only if

∂F

∂X
= 3u1X

2 − 2aY Z = 0,

∂F

∂Y
= 3u2Y

2 − 2aXZ = 0,

and

∂F

∂Z
= 3u3Z

2 − 2aXY = 0.

If vp(2a) > 0, then 3u3Z
2− 2aXY = 0 implies that vp(u3) > 0, a contradiction. Hence

vp(2a) = 0. Therefore we have

Y =
3u1X

2

2a

and

X =
3u2Y

2

2a
.

Combining these two equations, we have

X =
27u2

1u2X
4

8a3
.
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If X = 0, then Y = 0. And using 3u3Z
2 − 2aXY = 0 and the fact that Z = 1, we

would again have that vp(u3) > 0, which is not possible. Therefore X 6= 0.

So

X3 =
8a3

27u2
1u2

.

Again using 3u3Z
2 − 2aXY = 0 and the fact that Z = 1, we obtain that

3u3 = 2aXY

and substituting in for Y , and the equation for X3,

3u3 = 2aX

(
3u1X

2

2a

)
= 3u1

(
8a3

27u2
1u2

)
=

8a3

9u1u2

.

Therefore

27u1u2u3 − 8a3 = 2
(
27b− 4a3

)
= 0.

But since p 6= 2, this implies that vp (27b− 4a3) > 0, a contradiction. Hence there are

no singular points on this curve, so it is non-singular over Fp.

Since it is a curve of genus 1, we know via the Weil bounds that

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p.

Since the smallest prime which could satisfy the conditions listed above is 5 and

6− 2
√

5 > 0
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we know that for every prime p, the curve has a non-trivial point in Fp. Therefore for

every p satisfying the above conditions, we can perform a Hensel lift to Zp as soon as

we know there is a solution modulo p. Thus Fu(X, Y, Z) = 0 has a solution in Qp for

all p satisfying the given conditions.

2. Assume p 6= 2, vp(b) = 0 and vp (27b− 4a3) > 0.

Without loss of generality, we may assume that u2/u1 is a cube modulo p. Then there

exists a c such that 1 ≤ c ≤ p− 1 and u2/u1 ≡ c3 (mod p).

Assume Z = 0, then we have

u1X
3 + u2Y

3 ≡ 0 (mod p) .

This implies that

u2

u1

≡
(
−X
Y

)3

(mod p)

or equivalently that

−X
Y
≡ c (mod p) .

So let Y = 1 and thus X = −c. Then we have a solution at (−c, 1, 0). To verify this,

notice that

Fu(−c, 1, 0) = u1(−c)3 + u2(1)3 + 0− 0

≡ u1

(
−u2

u1

)
+ u2 (mod p)

≡ 0 (mod p) .

In order to lift this solution using Hensel's Lemma, we must show that this point is
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non-singular. To see this, we observe that

∂F

∂X
= 3u1X

2 − 2aY Z,

∂F

∂Y
= 3u2Y

2 − 2aXZ,

∂F

∂Z
= 3u3Z

2 − 2aXY.

And at the solution (−c, 1, 0) we have that

∂F

∂X
= 3u1c

2,

∂F

∂Y
= 3u2,

∂F

∂Z
= 0.

And since p 6= 2, 3, vp(u1u2) = 0 and 1 ≤ c ≤ p − 1, it follows that
∂F

∂X
6= 0 and

∂F

∂Y
6= 0. Thus the solution is non-singular. So for every prime satisfying the given

conditions, we can perform a Hensel lift to Zp.

Assume (x0, y0, z0) is a solution modulo p to Fu(X, Y, Z) = 0. We may assume that

min {vp(x0), vp(y0), vp(z0)} = 0. We also have that

4vp(x0) + 4vp(y0) + 4vp(z0) > 0.

So at least one one of {x0, y0, z0} must be divisible by p. Observe that if two of

{x0, y0, z0} were divisible by p, say x0 and z0, then the equation becomes

u2y
3
0 ≡ 0 (mod p) .

Since vp(u2) = 0, this implies that vp(y0) > 0, a contradiction. Thus, at most one of
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{x0, y0, z0} is divisible by p. Without loss of generality, assume vp(z0) > 0. Then we

have

u1x
3
0 + u2y

3
0 ≡ 0 (mod p) ,

or equivalently

u2

u1

≡
(
−X
Y

)3

(mod p) .

Hence ui/uj is a cube modulo p for some i 6= j.

Thus proving this part of the proposition.

3. Assume p 6= 2, 3 and vp(b) > 0. Recall that we know vp(b) ≤ 2.

(a) Assume vp(a) = 0. Since 0 < vp(b) ≤ 2, there are two cases we need to consider.

Case 1: p divides only one of {u1, u2, u3}.

Without loss of generality, we may assume that vp(u1) = vp(u2) = 0 and vp(u3) >

0. Then the equation becomes

Fu (X, Y, Z) = u1X
3 + u2Y

3 − 2aXY Z.

We claim that in this case,

(
1

u1

,
1

u2

,
u2

1 + u2
2

2au1u2

)
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is a solution to Fu (X, Y, Z) ≡ 0 modulo p. To verify this, we see

Fu

(
1

u1

,
1

u2

,
u2

1 + u2
2

2au1u2

)
= u1

(
1

u1

)3

+ u2

(
1

u2

)3

− 2a

(
1

u1

)(
1

u2

)(
u2

1 + u2
2

2au1u2

)
=

1

u2
1

+
1

u2
2

− u2
1 + u2

2

u2
1u

2
2

≡ 0 (mod p) .

Now it remains to verify that this point is non-singular. It is enough to show that

one partial derivative is non-zero. Consider

∂F

∂Z
= −2aXY,

and evaluating at the solution we see that

∂F

∂Z
=
−2a

u1u2

.

And since vp(a) = vp(u1u2) = 0, it follows that
∂F

∂Z
6≡ 0 (mod p).

Case 2: p divides exactly two of {u1, u2, u3}

Since vp(b) ≤ 2, we can conclude that if p divides ui, then it divides ui exactly once.

Without loss of generality, assume that vp(u2) = vp(u3) = 1, hence vp(u1) = 0.

Then the equation becomes

Fu(X, Y, Z) = u1X
3 − 2aXY Z

It is easy to see that (0, 1, 1) is a solution modulo p. It remains to show that

this point is non-singular. Again, it is enough to show that one of the partial
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derivatives is non-zero. Consider

∂F

∂X
= 3u1X

2 − 2aY Z

and at the point (0, 1, 1), we have that

∂F

∂X
= −2a

6≡ 0 (mod p)

since vp(2a) = 0.

Hence if vp(a) = 0, then we can �nd a solution modulo p which is non-singular.

Thus we can perform a Hensel lift to Zp.

(b) Assume vp(a) > 0, p divides exactly one of {u1, u2, u3} and the ratio of the other

two is a cube modulo p. Without loss of generality, assume vp(u3) > 0 and

u1/u2 is a cube modulo p. Then there exists a c such that 1 ≤ c ≤ p − 1 and

u1/u2 ≡ c3 (mod p). We claim that (1,−c, 0) is a solution modulo p. Let's verify

this:

Fu (1,−c, 0) = u1(1)3 + u2 (−c)3

≡ u1 + u2

(
−u1

u2

)
(mod p)

≡ 0 (mod p) .

It is easy to see that the point is not singular since

∂F

∂X
= 3u1X

2,

which is clearly not equivalent to zero modulo p at the solution. So we can perform
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a Hensel lift to Zp.

(c) Assume vp(a) > 0, p divides exactly two of {u1, u2, u3} and the ratio of these two

coe�cients is a cube modulo p. Without loss of generality, assume vp(u2) = 0.

Then since vp(b) ≤ 2, it follows that vp(u1) = vp(u3) = 1. So there exists a c such

that 1 ≤ c ≤ p− 1 and u1/u3 ≡ c3 (mod p). Note that since p divides u1 and u3

exactly once, vp(u1/u3) = 0. In addition, we can write u1 = pu1 and u3 = pu3.

Let's make the following substitution, Y = py. Then the equation becomes

Fu(X, py, Z) = pu1X
3 + pu2p

2y3 + pu3Z
3 − 2aXpyZ.

Let U2 = u2p
2, then we have that

1

p
Fu(X, py, Z) = u1X

3 + U2y
3 + u3Z

3 − 2aXyZ.

Thus we are in the situation of (b) from above. Hence we can �nd a non-singular

solution and it lifts.

Assume that (x0, y0, z0) is a non-singular solution of Fu(X, Y, Z) ≡ 0 (mod p). We may

assume that min {vp (x0) , vp (y0) , vp (z0)} = 0. In addition, since vp(b) > 0, without

loss of generality we may assume vp(u3) > 0. There are two cases we need to consider.

Case 1: vp(u1u2) = 0

In this case the equation becomes

u1x
3
0 + u2y

3
0 − 2ax0y0z0 ≡ 0 (mod p) .

If vp(a) > 0, then we have

u1x
3
0 + u2y

3
0 ≡ 0 (mod p) .
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The partial derivatives at the solution are

∂F

∂X
= 3u1x

2
0,

∂F

∂Y
= 3u2y

2
0,

∂F

∂Z
= 0.

Since the point is non-singular, this implies that both x0 and y0 are non-zero modulo

p. Hence

u1

u2

≡
(
−y0

x0

)3

(mod p) .

Otherwise, vp(a) = 0 and we obtain no additional information.

Case 2: vp(u1u2) > 0

Without loss of generality, assume vp(u2) > 0. Since vp(b) ≤ 2, this implies that

vp(u2) = vp(u3) = 1. So the equation becomes

u1x
3
0 − 2ax0y0z0 ≡ 0 (mod p) .

If vp(a) = 0, we obtain no additional information.

If vp(a) > 0, then x0 ≡ 0 (mod p). So we can divide out a p from the equation and

reduce modulo p to obtain

u2

p
y3

0 +
u3

p
z3

0 ≡ 0 (mod p) .
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In this case, the partials derivatives are

∂F

∂X
= 0,

∂F

∂Y
=

3u2

p
y2

0,

∂F

∂Z
=

3u3

p
z2

0 .

Since the solution is non-singular, we know that both y0 and z0 are non-zero modulo

p. Therefore,

u3

u2

≡
(
−y0

z0

)3

(mod p) .

Hence if we have a solution to Fu(X, Y, Z) = 0 in Qp for all p satisfying the given

conditions then either vp(a) = 0, vp(a) > 0 with p dividing exactly one of {u1, u2, u3}

and the ratio of the other two is a cube in F∗p, or vp(a) > 0, exactly two of {u1, u2, u3}

are divisible by p and their ratio is a cube in F∗p.

4. These proofs are almost identical to the ones given in 3b and 3c. The only things we

have to show is that if 4 | b, and 2 | u1u2, then we do not have a solution in Q2.

It su�ces to show that there is no non-singular solution modulo 8. For sake of contra-

diction, assume there exists a non-singular solution, (x, y, z) modulo 8. Then 2 | u1u2

and 4 | u3. Without loss of generality, assume 2 | u1. So modulo 8, the equation is of

the form:

2u1x
3 + u2y

3 + 4u3z
3 − 2axyz ≡ 0 (mod 8)

194



where u1 = 2u1 and u3 = 4u3. Also, notice that

∂F

∂X

∣∣∣∣
(x,y,z)

= 2
(
3u1x

2 − ayz
)

∂F

∂Y

∣∣∣∣
(x,y,z)

= 3u2y
2 − 2axz

∂F

∂Z

∣∣∣∣
(x,y,z)

= 2
(
6u3z

2 − axy
)
.

Rearranging the equation, we have

2
(
u1x

3 + 2u3z
3 − axyz

)
≡ −u2y

3 (mod 8) ,

which is true if and only if 2 | y3. So we have that 2 | y. Since we also assumed

the solution was non-singular, we know at least one of the partial derivatives must be

non-zero. Begin by assuming
∂F

∂X

∣∣∣∣
(x,y,z)

6= 0. This implies 3u1x
2 − ayz 6≡ 0 (mod 4)

or equivalently 3u1x
2 6≡ ayz (mod 4). So we can conclude that 2 - x. Using this, we

can look at the original equation modulo 8 and notice that

2
(
u1x

3 + 2u3z
3 − axyz

)
≡ −u2y

3 (mod 8)

u1x
3 + 2u3z

3 − axyz ≡ 0 (mod 4)

2
(
u3z

3 − axyz
)
≡ u1x

3 (mod 4)

where y = 2y. However this is a contradiction since we assumed 2 - x. Thus

∂F

∂X

∣∣∣∣
(x,y,z)

= 0 and so it must be the case that 2 | x.

Now assume
∂F

∂Z

∣∣∣∣
(x,y,z)

6= 0. Then 6u3z
2 − axy 6≡ 0 (mod 4). Since 2 | x and 2 | y,

it follows that for this to be true, we must have 2 - z. But looking at the original
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equation since 2 | x and 2 | y we have

2u3z
3 ≡ 0 (mod 4) ,

which is a contradiction since we assumed 2 - z. Therefore
∂F

∂Z

∣∣∣∣
(x,y,z)

= 0. This implies

2 | z, which tells us that
∂F

∂Y

∣∣∣∣
(x,y,z)

= 0. Therefore we cannot �nd a non-singular

solution.

The following proposition gives the solubility conditions for the prime p = 3.

Proposition 92 (Lemmas 5.6, 5.9, 5.10, [14]). Let

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − 2aXY Z

with 3-integral coe�cients where u1 and u2 are square-free and coprime and u3 =
2b

u1u2

.

1. If v3(a) = 0, then Fu(X, Y, Z) = 0 has a solution in Q3.

2. If v3(a) ≥ 2 and v3(b) = 0 then Fu(X, Y, Z) = 0 has a solution in Q3 if and only if

ui/uj is a cube modulo 9 for some i 6= j.

3. If v3(a) ≥ 2 and exactly one of {u1, u2, u3} is divisible by 3, say ui, then Fu(X, Y, Z) = 0

has a solution in Q3 if and only if either the ratio of the other two is a cube modulo 9

or v3(ui) = 1.

4. If v3(a) ≥ 2 and exactly two of {u1, u2, u3} are divisible by 3, then Fu(X, Y, Z) = 0 has

a solution in Q3 if and only if their ratio is a cube modulo 9.

5. If v3(a) = 1 and exactly one of {u1, u2, u3} is divisible by 3, then Fu(X, Y, Z) = 0 has

a solution in Q3 if and only if either the ratio of the other two is a cube modulo 9 or
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there exists s1, s2 ∈ {±1} such that 2a ≡ s1u1 + s2u2 + s1s2u3 (mod 9).

6. If v3(a) = 1 and two of {u1, u2, u3} are divisible by 3, then Fu(X, Y, Z) = 0 has a

solution in Q3.

7. If v3(a) = 1, v3 (b) = 0 and ui/uj is a cube modulo 9 for some i 6= j, then Fu(X, Y, Z) =

0 has a solution in Q3.

8. If v3(a) = 1, v3 (b) = 0 and ui/uj is not a cube modulo 9 for all i 6= j then Fu(X, Y, Z) =

0 has a solution in Q3 if and only if there exists s1, s2 ∈ {±1} such that 2a ≡ s1u1 +

s2u2 + s1s2u3 (mod 27).

In order to prove the above proposition, we need a slight strengthening of Hensel's

lemma.

Lemma 93 (Lemma 5.7, [14]). Assume v3(a) > 0. Set P0 = (X0, Y0, Z0) and let k ≥ 1.

Assume that v3 (Fu (P0)) ≥ 2k and that

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= k.

Assume that all second and third partial derivatives of Fu are divisible by 3 at the point P0,

the condition on the third derivatives being required only if k = 1. There exists a 3-adic point

P such that Fu(P ) = 0 with P ≡ P0

(
mod 3k

)
.

Proof. We will give a general idea of the proof of this lemma. Assume v3(a) > 0. Let

P0 = (X0, Y0, Z0) and let k ≥ 1. Assume that v3 (Fu (P0)) ≥ 2k and that

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= k.

Then we can write Fu(P0) = 32kN ,
∂F

∂X

∣∣∣∣
P0

= 3km1,
∂F

∂Y

∣∣∣∣
P0

= 3km2 and
∂F

∂Z

∣∣∣∣
P0

= 3km3,
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where N =
Fu(P0)

32k
∈ Z and at least one of m1,m2,m3 ∈ Z is not divisible by 3. Without

loss of generality, assume v3(m1) = 0.

Consider P1 =
(
X0 + 3kl1, Y0 + 3kl2, Z0 + 3kl3

)
. Then

Fu(P1) = u1

(
X0 + 3kl1

)
+ u2

(
Y0 + 3kl2

)
+ u3

(
Z0 + 3kl3

)
−2a

(
X0 + 3kl1

) (
Y0 + 3kl2

) (
Z0 + 3kl3

)
.

Expanding we have

Fu(P1) = 32kN +
∂F

∂X

∣∣∣∣
P0

3kl1 +
∂F

∂Y

∣∣∣∣
P0

3kl2 +
∂F

∂Z

∣∣∣∣
P0

3kl3 + 32k+1(?)

where ? represents the terms having a factor of 32k+1. Then reducing modulo 32k+1, we have

Fu(P1) ≡ 32kN + 32km1l1 + 32km2l2 + 32km3l3
(
mod 32k+1

)
.

Dividing by 32k and rearranging we have

l1 ≡ −m−1
1 (m2l2 +m3l3 +N) (mod 3) .

Therefore we can solve for l1. The rest of the lemma follows from here.

One thing to notice is that in the case of Lemma 93

∂F

∂X
= 3u1X

2 − 2aY Z,

∂F

∂Y
= 3u2Y

2 − 2aXZ,

∂F

∂Y
= 3u3Z

2 − 2aXY.

Since v3(a) > 0, it follows that all partial derivatives are divisible by 3 at any point. Therefore
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it is enough to �nd a point P0 such that Fu (P0) ≡ 0
(
mod 32k

)
and

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= k.

Now we are able to prove the proposition.

Proof. 1. Assume v3(a) = 0. There are a few cases we need to consider.

Case 1: 3 divides exactly one of {u1, u2, u3}

Without loss of generality, we may assume v3(u1u2) = 0 and v3(u3) > 0. In this case,

the equation reduces modulo 3 to

Fu(X, Y, Z) = u1X
3 + u2Y

3 − 2aXY Z.

We claim that in this case, (
1

u1

,
1

u2

,
u2

1 + u2
2

2au1u2

)
is a solution to Fu (X, Y, Z) ≡ 0 (mod 3). Let us verify this:

Fu

(
1

u1

,
1

u2

,
u2

1 + u2
2

2au1u2

)
= u1

(
1

u1

)3

+ u2

(
1

u2

)3

− 2a

(
1

u1

)(
1

u2

)(
u2

1 + u2
2

2au1u2

)
=

1

u2
1

+
1

u2
2

− u2
1 + u2

2

u2
1u

2
2

≡ 0 (mod 3) .

Now it remains to verify that this point is non-singular. It is enough to show that one

partial derivative is non-zero. Consider

∂F

∂Z
= −2aXY.
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Evaluating at the solution we see that

∂F

∂Z
=
−2a

u1u2

.

Since vp(a) = vp(u1u2) = 0, it follows that
∂F

∂Z
6≡ 0 (mod 3). So we can perform a

Hensel lift to Z3.

Case 2: 3 divides two of {u1, u2, u3}

Without loss of generality, assume v3(u2) > 0 and v3(u3) > 0. Since v3(b) ≤ 2, it

follows that v3(u2) = v3(u3) = 1. In this case, the equation over F3 becomes

Fu(X, Y, Z) = u1X
3 − 2aXY Z.

It is easy to see that (0, 1, 1) is a solution. To show that this solution is non-singular,

it is enough to show that one partial derivative is non-zero. Consider

∂F

∂X
= −2aY Z.

This is clearly non-zero at the solution. Thus we can perform a Hensel lift to Z3.

Case 3: v3(b) = 0

From this assumption and the fact that v3(a) = 0, we can conclude that v3(27b−4a3) =

0. Note that the partial derivatives in this case are

∂F

∂X
= −2aY Z,

∂F

∂Y
= −2aXY,

∂F

∂Z
= −2aXY.
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If Z = 0, then for us to have a singular point, either X or Y must be zero. Without

loss of generality assume that X = 0. Then the equation over F3 becomes

Fu(0, Y, 0) = u2Y
3,

which implies Y must be zero for us to have a solution modulo 3. Therefore, if there

is a singular point, it must have Z 6= 0. So without loss of generality, assume Z = 1.

However, in this case for us to have a singular point, we must have both X and Y

being zero. Then the equation becomes over F3

Fu(0, 0, Z) = u3Z
3,

which is a solution if Z = 0. Therefore there are no singular points on the curve. Since

it is a curve of genus 1, the Weil bounds give

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p.

Since

4− 2
√

3 > 0,

we know that the curve has a non-trivial point in F3. Therefore we can perform a

Hensel lift to Z3 as soon as we know there is a solution modulo 3.

2. Assume v3(a) ≥ 2, v3(b) = 0 and ui/uj is a cube modulo 9. Without loss of generality,

we may assume u1/u2 ≡ c3 (mod 9) for some c. We claim that P0 = (1,−c, 0) is a
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non-singular solution modulo 9. To verify this notice that

Fu(1,−c, 0) = u1 − u2c
3

≡ u1 − u2
u1

u2

(mod 9)

≡ 0 (mod 9)

and

∂F

∂X

∣∣∣∣
P0

= 3u1

6≡ 0 (mod 9) .

Thus the solution is non-singular and therefore we perform a Hensel lift.

To see that there exists a solution modulo 3, notice that

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= 1.

Therefore by Lemma 93, we know there exists a P such that P ≡ P0 (mod 3) and

Fu(P ) ≡ 0 (mod 3).

The reverse direction is nothing more than a simple calculation.

3. Assume v3(a) ≥ 2 and 3 divides exactly one of {u1, u2, u3}, say ui.

There are two cases we need to consider in the forward direction.

Case 1: uj/uk is a cube modulo 9 for j, k 6= i and j 6= k.

Without loss of generality, assume v3(u3) > 0 and u1/u2 ≡ c3 (mod 9). In this case,

we claim that P0 = (1,−c, 0) is a solution modulo 9 which is non-singular. Verifying
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this we see

Fu(1,−c, 0) = u1(1)3 + u2(−c)3

≡ u1 − u2
u1

u2

(mod 9)

≡ 0 (mod 9)

and

∂F

∂X

∣∣∣∣
P0

= 3u1 (mod 9)

6≡ 0 (mod 9) .

Therefore we can lift the solution. Now it only remains to show there is a solution

modulo 3. However from the above partial derivative, we can easily see

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= 1.

Hence by Lemma 93, there exists P such that P ≡ P0 (mod 3) and Fu(P ) ≡ 0 (mod 3).

Case 2: v3(ui) = 1

Without loss of generality, assume ui = u3.

Since we know that setting Z = 0 we can �nd a solution when u1/u2 is a cube modulo

9, we may assume u1/u2 is not a cube modulo 9. Equivalently this means that u1 6≡

±u2 (mod 9). Therefore for us to have a solution modulo 9, Z 6= 0. In addition, we
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know that reducing modulo 9,

∂F

∂X
= 3u1X

2,

∂F

∂Y
= 3u2Y

2,

∂F

∂Z
= 0.

So in order to have a non-singular point either X 6= 0 or Y 6= 0.

Notice that reducing the equation modulo 9, we have

Fu(X, Y, Z) = u1X
3 + u2Y

3 + 3u′3Z
3

where u3 = 3u′3.

Since by symmetry we can switch X and Y , we may assume that u1 < u2.

Suppose that Y ≡ 0 (mod 3). Then the equation reduces modulo 9 to

Fu(X, 0, Z) = ±u1 ± 3u′3

since X3 ≡ ±1 (mod 9) and Z3 ≡ ±1 (mod 9). But then for us to have a solution,

this implies that

±u1 ≡ ±3u′3 (mod 9)

which is not possible since v3(u1) = 0.

Thus the equation reduces modulo 9 to

±u1 ± u2 ± 3 ≡ 0 (mod 9)
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A simple calculation shows that we can always �nd a solution.

Assume v3(a) ≥ 2 and 3 divides exactly one of {u1, u2, u3}. Without loss of generality,

assume v3(u3) > 0. Let (x0, y0, z0) be a solution modulo 9 to Fu(X, Y, Z) = 0. Then if

v2(u3) ≥ 2, we have

u1x
3
0 + u2y

3
0 ≡ 0 (mod 9) .

Hence u1/u2 is a cube modulo 9. Otherwise, v3(u3) = 1.

4. Assume v3(a) ≥ 2 and exactly two of {u1, u2, u3} are divisible by 3.

Without loss of generality, assume v3(u1) > 0 and v3(u3) > 0. Since v3(b) ≤ 2, it

follows that v3(u1) = v3(u3) = 1. In addition, assume u1/u3 ≡ c3 (mod 9). Note

this makes sense since they are both divisible by 3 exactly once, so v3(u1/u3) = 0. In

addition, we can write u1 = 3ũ1 and u3 = 3ũ3.

Let us make the following substitution, Y = 3y. Then the equation becomes

Fu(X, 3y, Z) = 3ũ1X
3 + 3u2(9)y3 + 3ũ3Z

3 − 2aX(3y)Z.

Let U2 = u2(9), then we have that

F̃u(X, 3y, Z) :=
1

3
Fu(X, 3y, Z)

= ũ1X
3 + U2y

3 + ũ3Z
3 − 2aXyZ.

We claim that P0 = (1, 3,−c) is a solution modulo 9 to the modi�ed equation. To see
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this note

F̃u(1, 3,−c) ≡ ũ1 + ũ3(−c)3 (mod 9)

≡ ũ1 − ũ3
ũ1

ũ3

(mod 9) .

Also, this point is non-singular since

∂F̃

∂X

∣∣∣∣∣
P0

= u1 (mod 9) .

Therefore we can lift the solution. Now it only remains to show there is a solution

modulo 3. However from the above partial derivative, we can easily see

min

{
v3

(
∂F̃

∂X

∣∣∣∣∣
P0

)
, v3

(
∂F̃

∂Y

∣∣∣∣∣
P0

)
, v3

(
∂F̃

∂Z

∣∣∣∣∣
P0

)}
= 1.

Hence by Lemma 93, there exists P such that P ≡ P0 (mod 3) and Fu(P ) ≡ 0 (mod 3).

Assume that v3(u2) = v3(u3) = 1. Also, assume that P0 = (x0, y0, z0) is a solution

modulo 9.

If x0 ≡ 0 (mod 3), then

Fu(x0, y0, z0) = u2y
3
0 + u3z

3
0

≡ 0 (mod 9) .

Hence u2/u3 is a cube modulo 9.

If x0 6≡ 0 (mod 9), then x3
0 ≡ ±1 (mod 9). So the equation reduces to

Fu(x0, y0, z0) ≡ ±u1 + u2y
3
0 + u3z

3
0 (mod 9) .
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By symmetry, we can switch y0 and z0. So without loss of generality, suppose y0 ≡

0 (mod 3). Then

Fu(x0, y0, z0) ≡ ±u1 + u3z
3
0 (mod 9)

which implies

±u1 ≡ −3z3
0 (mod 9) .

This is a contradiction since v3(u1) = 0. Therefore y0 6≡ 0 (mod 3) and hence z0 6≡

0 (mod 3). But then since

u2 ≡ ±3 (mod 9)

and

u3 ≡ ±3 (mod 9)

it follows that

u2 ≡ ±u3 (mod 9)

which implies that u2/u3 is a cube modulo 9.

5. Assume v3(a) = 1 and exactly one of {u1, u2, u3} is divisible by 3, say ui.

In the forward direction, there are two cases we need to consider.

Case 1: uj/uk ≡ c3 (mod 9) where j 6= i, k 6= i and j 6= k

Without loss of generality, assume v3(u3) > 0 and u1/u2 ≡ c3 (mod 9). In this case,

we claim that P0 = (1,−c, 0) is a non-singular solution modulo 9. Verifying this we
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see

Fu(1,−c, 0) = u1(1)3 + u2(−c)3

≡ u1 − u2
u1

u2

(mod 9)

≡ 0 (mod 9)

and

∂F

∂X

∣∣∣∣
P0

= 3u1 (mod 9)

6≡ 0 (mod 9) .

Therefore we can lift the solution. Now it only remains to show there is a solution

modulo 3. However from the above partial derivative, we can easily see

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= 1.

Hence by Lemma 93, there exists P such that P ≡ P0 (mod 3) and Fu(P ) ≡ 0 (mod 3).

Case 2: There exists s1, s2 ∈ {±1} such that 2a ≡ s1u1 + s2u2 + s1s2u3 (mod 9).

Without loss of generality we may assume ui = u3. We claim that P0 = (s1, s2, s1s2)

is a non-singular solution modulo 9. To see this, notice that

Fu(P0) = u1(s1)3 + u2(s2)3 + u3(s1s2)3 − 2as2
1s

2
2

≡ u1s1 + u2s2 + u3s1s2 − (u1s1 + u2s2 + u3s1s2) (mod 9)

≡ 0 (mod 9)
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since s2
i = 1 and s3

i = si and

∂F

∂Z

∣∣∣∣
P0

= −2as1s2

6≡ 0 (mod 9) .

This implies

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= 1.

Hence by Lemma 93, there exists P such that P ≡ P0 (mod 3) and Fu(P ) ≡ 0 (mod 3).

Assume v3(a) = 1 and exactly one of {u1, u2, u3} is divisible by 3. Let P0 = (x0, y0, z0)

be a solution modulo 9. Without loss of generality, assume v3(u3) > 0.

If z0 ≡ 0 (mod 3), then we have

u1x
3
0 + u2y

3
0 ≡ 0 (mod 9) ,

which implies that u1/u2 is a cube modulo 9.

Now assume z0 6≡ 0 (mod 3). Note that by symmetry, we can interchange x0 and y0.

So without loss of generality, if x0 ≡ 0 (mod 3), then

u2y
3
0 + u3z

3
0 ≡ 0 (mod 9) .

This implies

±u2 ≡ ±3ũ3 (mod 9)

where u3 = 3ũ3. This is a contradiction since v3(u2) = 0. Hence x0 6≡ 0 (mod 3) and

thus y0 6≡ 0 (mod 3). A simple calculation shows that in this case u1/u2 cannot be a
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cube modulo 9. However, one can �nd s1, s2 ∈ {±1} such that

2a ≡ s1u1 + s2u2 + s1s2u3 (mod 9) .

6. Assume v3(a) = 1 and exactly two of {u1, u2, u3} are divisible by 3. Without loss of

generality, assume that v3(u2) = 0. Then since v3(b) ≤ 2, it follows that v3(u1) =

v3(u3) = 1. Notice that this means

u1 ≡ ±3 (mod 9)

and

u3 ≡ ±3 (mod 9) .

Hence we can conclude that

u1/u3 ≡ c3 (mod 9)

for some c where gcd(c, 9) = 1. Note this makes sense since they are both divisible by

3 exactly once, so v3(u1/u3) = 0.

We claim that P0 = (1, 0,−c) is a solution modulo 9. To see this notice that

Fu(1, 0,−c) = u1 + u3(−c)3

≡ u1 − u3

(
u1

u3

)
(mod 9)

≡ 0 (mod 9) .

Since

∂F

∂X

∣∣∣∣
P0

= 3u1(0)2 − 2a(1)(−c)

6≡ 0 (mod 9) ,

210



we know that P0 is non-singular. Therefore we can lift a solution. Now it only remains

to show there is a solution modulo 3. However from the above partial derivative we

can easily see

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= 1.

Hence by Lemma 93, there exists P such that P ≡ P0 (mod 3) and Fu(P ) ≡ 0 (mod 3).

7. Assume v3(a) = 1, v3(b) = 0 and ui/uj is a cube modulo 9 for i 6= j. Without loss of

generality, assume u1/u2 ≡ c3 (mod 9). We claim that P0 = (1,−c, 0) is a non-singular

solution modulo 9. To see this, we observe that

Fu(P0) = u1(1)3 + u2(−c)3

≡ u1 − u2
u1

u2

(mod 9)

≡ 0 (mod 9)

and

∂F

∂X

∣∣∣∣
P0

= 3u1

6≡ 0 (mod 9) .

Therefore we can lift the solution. Now it only remains to show there is a solution

modulo 3. However from the above partial derivative, we can easily see

min

{
v3

(
∂F

∂X

∣∣∣∣
P0

)
, v3

(
∂F

∂Y

∣∣∣∣
P0

)
, v3

(
∂F

∂Z

∣∣∣∣
P0

)}
= 1.

Hence by Lemma 93, there exists P such that P ≡ P0 (mod 3) and Fu(P ) ≡ 0 (mod 3).
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8. Assume v3(a) = 1, v3(b) = 0 and ui/uj is not a cube modulo 9 for all i 6= j. Notice

that the last assumption implies that u1u2u3 ≡ ±1 (mod 9).

Begin by assuming there exists s1, s2 ∈ {±1} such that

2a ≡ s1u1 + s2u2 + s1s2u3 (mod 27) .

We claim that P0 = (s1, s2, s1s2) is a non-singular solution modulo 27. To see this,

notice that

Fu(P0) = u1(s1)3 + u2(s2)3 + u3(s1s2)3 − 2as2
1s

2
2

≡ u1s1 + u2s2 + u3s1s2 − (u1s1 + u2s2 + u3s1s2) (mod 27)

≡ 0 (mod 27)

since s2
i = 1 and s3

i = si.

There is a little more work involved to show that this solution is non-singular modulo

27. By symmetry, we may assume that u1 < u2 < u3 and since ui/uj is not a cube

modulo 9 for all i 6= j, modulo 9 there are only 6 possible combinations for u1, u2 and

u3:

u1 = 1 u2 = 2 u3 = 4,

u1 = 1 u2 = 2 u3 = 5,

u1 = 1 u2 = 4 u3 = 7,

u1 = 1 u2 = 5 u3 = 7,

u1 = 2 u2 = 4 u3 = 8,

u1 = 2 u2 = 5 u3 = 8.
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Notice that

∂F

∂X

∣∣∣∣
P0

= 3u1 − 2(3ã)s1 (mod 27)

≡ u1 − 2ãs1 (mod 9)

where a = 3ã. A few simple calculations shows that there are only 4 cases when

∂F

∂X

∣∣∣∣
P0

≡ 0 (mod 9) .

However, in all four cases, one can show that we always have

∂F

∂Y

∣∣∣∣
P0

6≡ 0 (mod 9) .

Thus the solution P0 is non-singular modulo 27. So we may lift it.

It is not hard to �nd a solution modulo 3, since the equation reduces modulo 3 to

Fu(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3.

Therefore we claim that (u1, u2, u3) is a solution modulo 3 since

Fu(u1, u2, u3) = u4
1 + u4

2 + u4
3

≡ 1 + 1 + 1 (mod 3)

≡ 0 (mod 3) .

To �nd a solution modulo 9, we can again use symmetry and assume u1 < u2 < u3. So

there are 12 equations we have to consider. Doing some calculations, we �nd that half

of these equations do not have solutions. However further examination shows that in
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these situations, for all s1, s2 ∈ {±1},

2a 6≡ u1s1 + u2s2 + u3s1s2 (mod 27) .

Finally, assume that P0 = (x0, y0, z0) is a solution modulo 27. By symmetry, we can

interchange x0, y0 and z0. So, without loss of generality, assume that x0 ≡ 0 (mod 3).

Then the equation becomes

u2y
3
0 + u3z

3
0 ≡ 0 (mod 27) .

This implies that u2/u3 is a cube modulo 27. But all cubes modulo 27 reduce to cubes

modulo 9. A contradiction. Thus we can conclude that x0 6≡ 0 (mod 3) and hence

y0 6≡ 0 (mod 3) and z0 6≡ 0 (mod 3).

Rewrite Fu(X, Y, Z) ≡ 0 (mod 27) as

2a ≡ u1
x2

0

y0z0

+ u2
y2

0

x0z0

+ u3
z2

0

x0y0

(mod 27) .

Let s̃1 ≡
x2

0

y0z0

(mod 3), and s̃2 ≡
y2

0

x0z0

(mod 3). Then s1s2 ≡
z2

0

x0y0

(mod 3). So

modulo 3, we know the equivalence holds. A tedious lifting calculation shows that we

can �nd s1, s2 ∈ {±1} such that

2a ≡ u1s1 + u2s2 + u3s1s1 (mod 27) .
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Appendix D Local Solubility for Auxiliary Curve

Here are detailed proofs of the local solubility results as stated in Chapter 5 for the

curve

E ′ab′ : y2 = x3 + (ax+ b′)2

where b′ =
27b− 4a3

9
. For additional details, we refer the reader to [14].

The following propositions give the local solubility criteria for the polynomial

Fu′(X, Y, Z) := 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N (γ)
Z3

−dX3 − dY 3 − 3cXY 2 + 3cX2Y + 3dXY 2

associated to the auxiliary elliptic curve E ′ab′ . Note that since we are working over Q
(√
−3
)
,

p = 3 is the only rami�ed prime. If p ≡ 2 (mod 3), then p is an inert prime, and if

p ≡ 1 (mod 3), then p is a split prime.

Proposition 94 (Corollary 6.3, [14]). Let p be any split prime. Then there exists dp ∈ Qp

such that d2
p = −3. The equation Fu′(X, Y, Z) = 0 has a solution in Qp if and only if the

cubic

u1X
3 + u2Y

3 + u3Z
3 − ?XY Z = 0

does, where u1 =

(
c− d

2

)
− d

2
dp, u2 =

(
c− d

2

)
+
d

2
dp, u3 =

2b′

γγ
dp and ? = 2adp.

Proof. Let dp ∈ Qp such that d2
p = −3. Let

Gu′(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − ?XY Z,

where u1 =

(
c− d

2

)
− d

2
dp, u2 =

(
c− d

2

)
+
d

2
dp, u3 =

2b′

γγ
dp and ? = 2adp.
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Since there are numerous ways to write Fu′(X, Y, Z), for this proof, we assume

Fu′(X, Y, Z) =
(
γ
(
X + Y

√
−3
)3 − γ

(
X − Y

√
−3
)3
)
/
√
−3

+2aZ
(
X + Y

√
−3
) (
X − Y

√
−3
)

+ (2b′/N(γ))Z3.

First we will show that given a non-trivial solution to Fu′(X, Y, Z) = 0, we can �nd

a non-trivial solution to Gu′(X, Y, Z) = 0.

We must choose a value for dp. However, we obtain the same equation Fu′(X, Y, Z) =

0 when choosing
√
−3 verses −

√
−3. Therefore it does not matter which root we choose.

Assume dp =
√
−3 and suppose (A,B,C) is a non-trivial solution to Fu′(X, Y, Z) = 0.

Let X ′ = A+Bdp and Y
′ = −A+Bdp. Then

0 = Fu′(A,B,C)

=
1

dp

(
u1 (X ′)

3
+ u2 (Y ′)

3
)

+
2b′

γγ
C3 − 2aX ′Y ′C.

Multiplying both sides by dp, we have

0 = u1 (X ′)
3

+ u2 (Y ′)
3

+
2b′

γγ
dpC

3 − 2adpX
′Y ′C

= Gu′ (X
′, Y ′, C) .

Hence (X ′, Y ′, C) is a solution to Gu′(X, Y, Z) = 0.

Now assume that (x, y, z) is a non-trivial solution to Gu′(X, Y, Z) = 0. Let

A =
x− y

2
, B =

x+ y

2dp
, and C = z.
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Then

0 = Gu′(x, y, z)

= u1x
3 + u2y

3 +
2b′

γγ
dpz

3 − 2adpxyz

= u1 (A+Bdp)
3 − u2 (A−Bdp)3 +

2b′

γγ
dpC

3 − 2adpC (A+Bdp) (A−Bdp) .

Dividing both sides by dp, we �nd that (A,B,C) is a solution for Fu′(X, Y, Z) = 0.

Therefore we have a non-trivial solution to Fu′(X, Y, Z) = 0 if and only if we have a

non-trivial solution to Gu′(X, Y, Z) = 0.

Making some minor adjustments to Proposition 43, we have all the conditions neces-

sary to �nd a solution for Fu′(X, Y, Z) = 0 in Qp where p is a split prime. Before stating the

Corollary, we make the following observation.

Lemma 95. Let ∆′ = 27b′ + 12a3. If p ≡ 1 (mod 3), p | ∆′ and p - b′, then 2b′
√
−3 is a

cube modulo p.

Proof. Suppose p | ∆′. Then 27b′ + 12a3 ≡ 0 (mod p). Hence

27b′ ≡ −3(2)2a3 (mod p)

or equivalently

2b′ ≡ −3
(
3−1
)3

(2a)3 (mod p) .

Notice that
√
−3

3
= −3

√
−3. Thus

2b′
√
−3 ≡

(
−3
√
−3
)

(3−1)
3

(2a)3 (mod p)

≡
(
2a
√
−3
)3

(3−1)
3

(mod p) .
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Thus 2b′
√
−3 is a cube modulo p.

We can conclude that if ui/uj is a cube for some i 6= j, then this is true for all i 6= j.

Corollary 96. Let p be any split prime. We can write p = ππ where π ≡ 2 (mod 3) and is

in the upper-half plane. Let

Fu′(X, Y, Z) = u1X
3 + u2Y

3 + u3Z
3 − cXY Z = 0

where u1 =

(
c− d

2

)
− d

2

√
−3, u2 =

(
c− d

2

)
+
d

2

√
−3, u3 =

2b′

γγ

√
−3 and c = 2a

√
−3 with

(c, d) = 1.

1. If vp(b
′) = 0 and vp(27b′ + 12a3) = 0, then Fu′(X, Y, Z) = 0 has a solution in Qp.

2. If vp(b
′) = 0 and vp(27b′+ 12a3) > 0, then Fu′(X, Y, Z) = 0 has a solution in Qp if and

only if u1/u2 is a cube in F∗p.

3. If vπ(b′) > 0, then Fu′(X, Y, Z) = 0 has a solution in Q(ω)π if and only if one of the

following is true

(a) vπ(a) = 0,

(b) vπ(a) > 0, π divides exactly one of {u1, u2, u3} and the ratio of the other two is a

cube modulo π,

(c) vπ(a) > 0, π divides two of {u1, u2, u3} and their ratio is a cube modulo π.

Proof. 1. Assume vp (27b′ + 12a3) = 0 with p ≡ 1 (mod 3). We would like to show that

there are no singular points in this case, and therefore we can use Hensel's lemma.

Let us begin by assuming Z = 0 and see if there are any singular points in this case.

If Z = 0, we are left with the equation

u1X
3 + u2Y

3 = 0,
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and for us to have a singular point we must have

∂F

∂X
= 3u1X

2 = 0

and

∂F

∂Y
= 3u2Y

2 = 0.

But since p 6= 3 and u1u2 | (2b′), it follows that X = Y = 0, which is not possible.

Therefore we can conclude that if there is a singular point on the curve, it must have

Z 6= 0. So without loss of generality, we can assume Z = 1.

Then we have a singular point if and only if

∂F

∂X
= 3u1X

2 − 2a
√
−3Y Z = 0,

∂F

∂Y
= 3u2Y

2 − 2a
√
−3XZ = 0,

and

∂F

∂Z
= 3u3Z

2 − 2a
√
−3XY = 0.

If vp(2a) > 0, then 3u3Z
2 − 2a

√
−3XY = 0 implies that vp(u3) > 0, a contradiction.

Hence vp(2a) = 0. Therefore we have

Y =
3u1X

2

2a
√
−3

and

X =
3u2Y

2

2a
√
−3

.
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Combining these two equations, we have

X =
27u2

1u2X
4

8a3
(√
−3
)3 .

If X = 0, then Y = 0. And using 3u3Z
2 − 2a

√
−3XY = 0 and the fact that Z = 1,

we would again have that vp(u3) > 0, which is not possible. Therefore X 6= 0.

So

X3 =
8a3
(√
−3
)3

27u2
1u2

.

Again using 3u3Z
2 − 2a

√
−3XY = 0 and the fact that Z = 1, we obtain that

3u3 = 2a
√
−3XY

and substituting in for Y with
3u1X

2

2a
√
−3

, and the equation for X3, we have

3u3 = 2a
√
−3X

(
3u1X

2

2a
√
−3

)
= 3u1

(
8a3
(√
−3
)2

27u2
1u2

)

=
8a3
(√
−3
)2

9u1u2

.

Therefore

27u1u2u3 − 8a3
(√
−3
)2

= 2
(
27b′ + 12a3

)
= 0.

But since p 6= 2, this implies that vp (27b′ + 12a3) > 0, a contradiction. Hence there

are no singular points on this curve, so it is non-singular over Fp.

Since it is a curve of genus 1, we know via the Weil bounds that

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p.
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Since the smallest prime which could satisfy the conditions listed above is 5 and

6− 2
√

5 > 0

we know that for every prime p, the curve has a non-trivial point in Fp. Therefore for

every p satisfying the above conditions, we can preform a Hensel lift to Zp as soon as

we know there is a solution modulo p. Thus proving this part of the proposition.

2. Assume p ≡ 1 (mod 3), vp(b
′) = 0 and vp (27b′ + 12a3) > 0.

Assume that u1/u2 is a cube modulo p. Then there exists a c such that 1 ≤ c ≤ p− 1

and u1/u2 ≡ c3 (mod p).

Assume Z = 0, then we have

u1X
3 + u2Y

3 ≡ 0 (mod p) .

We can conclude that both X and Y are not equivalent to zero modulo p, otherwise it

would be a trivial solution. This implies that

u1

u2

≡
(
−Y
X

)3

(mod p)

or equivalently that

−Y
X
≡ c (mod p) .

Let Y = −c and thus X = 1.
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We have a solution at (1,−c, 0). Let us verify this

Fu′(1,−c, 0) = u1(1)3 + u2(−c)3 + 0− 0

≡ u1 + u2

(
−u2

u1

)
(mod p)

≡ 0 (mod p) .

In order to lift this solution using Hensel's Lemma, we must show that this point is

non-singular. To see this, we observe that

∂F

∂X
= 3u1X

2 − 2a
√
−3Y Z,

∂F

∂Y
= 3u2Y

2 − 2a
√
−3XZ,

∂F

∂X
= 3u3Z

2 − 2a
√
−3XY.

At the solution (1,−c, 0) we have that

∂F

∂X
= 3u1,

∂F

∂Y
= 3u2c

2,

∂F

∂X
= 0.

Since p 6= 2, 3, vp(u1u2) = 0 and 1 ≤ c ≤ p − 1, it follows that
∂F

∂X
6= 0 and

∂F

∂Y
6= 0.

Thus the solution is not a singular point. So for every prime satisfying the given

conditions, we can preform a Hensel lift to Zp.

Assume (x0, y0, z0) is a solution modulo p to Fu′(X, Y, Z) = 0. We may assume that

min {vp(x0), vp(y0), vp(z0)} = 0. We also have that

4vp(x0) + 4vp(y0) + 4vp(z0) > 0.
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So at least one one of {x0, y0, z0} must be divisible by p. Observe that if two of

{x0, y0, z0} were divisible by p, say x0 and z0, then the equation becomes

u2y
3
0 ≡ 0 (mod p) .

Since vp(u2) = 0, this implies that vp(y0) > 0, a contradiction. Thus, at most one of

{x0, y0, z0} is divisible by p. Without loss of generality, assume vp(z0) > 0. Then we

have

u1x
3
0 + u2y

3
0 ≡ 0 (mod p) ,

or equivalently

u2

u1

≡
(
−x0

u0

)3

(mod p) .

Hence ui/uj is a cube modulo p for some i 6= j. Therefore by Lemma 95, u1/u2 is a

cube. Thus proving this part of the proposition.

3. Assume p ≡ 1 (mod 3) and vπ(b′) > 0. Recall that we know vπ(b′) ≤ 2.

(a) Assume vπ(a) = 0. Since 0 < vπ(b′) ≤ 2, there are two cases we need to consider.

Case 1: π divides only one of {u1, u2, u3}.

Without loss of generality, we may assume that vπ(u1) = vπ(u2) = 0 and vπ(u3) >

0. Then reducing modulo π the equation becomes

Fu′ (X, Y, Z) = u1X
3 + u2Y

3 − 2a
√
−3XY Z.

We claim that in this case,

(
1

u1

,
1

u2

,
u2

1 + u2
2

2a
√
−3u1u2

)
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is a solution to Fu′ (X, Y, Z) ≡ 0 modulo π. Let us verify this:

Fu′

(
1

u1

,
1

u2

,
u2

1 + u2
2

2a
√
−3u1u2

)
≡ u1

(
1

u1

)3

+ u2

(
1

u2

)3

− 2a
√
−3

(
1

u1

)(
1

u2

)(
u2

1 + u2
2

2a
√
−3u1u2

)
≡ 1

u2
1

+
1

u2
2

− u2
1 + u2

2

u2
1u

2
2

≡ 0 (mod π) .

Now it remains to verify that this point is non-singular. It is enough to show that

one partial derivative is non-zero. Consider

∂F

∂Z
= −2a

√
−3XY.

Evaluating at the solution we see that

∂F

∂Z
=
−2a
√
−3

u1u2

,

and since vπ(a) = vπ(u1u2) = 0, it follows that
∂F

∂Z
6≡ 0 (mod π).

Case 2: π divides exactly two of {u1, u2, u3}

Since vπ(b′) ≤ 2, we can conclude that if π divides ui, then it divides ui exactly

once. Without loss of generality, assume that vπ(u2) = vπ(u3) = 1, hence vπ(u1) =

0. The equation becomes

Fu′(X, Y, Z) = u1X
3 − 2a

√
−3XY Z (mod π) .

It is easy to see that (0, 1, 1) is a solution modulo π. It remains to show that

this point is non-singular. Again, it is enough to show that one of the partial
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derivatives is non-zero. Consider

∂F

∂X
= 3u1X

2 − 2a
√
−3Y Z.

At the point (0, 1, 1) we have

∂F

∂X
= −2a

√
−3

6≡ 0 (mod π)

since vπ(2a) = 0. Hence if vπ(a) = 0, then we can �nd a solution modulo π which

is non-singular. Thus we can preform a Hensel lift.

(b) Assume vπ(a) > 0, π divides exactly one of {u1, u2, u3} and the ratio of the other

two is a cube modulo π. Without loss of generality, assume vπ(u3) > 0 and u1/u2

is a cube modulo π. Then there exists a c such that u1/u2 ≡ c3 (mod π). We

claim that (1,−c, 0) is a solution modulo π. Let us verify this:

Fu′ (1,−c, 0) = u1(1)3 + u2 (−c)3

≡ u1 + u2

(
−u1

u2

)
(mod π)

≡ 0 (mod π) .

It is easy to see that the point is not singular since

∂F

∂X
= 3u1X

2,

which is clearly not equivalent to zero modulo π at the solution. So we can preform

a Hensel lift.

(c) Assume vπ(a) > 0, π divides exactly two of {u1, u2, u3} and their ratio is a cube
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modulo π. Without loss of generality, assume vπ(u2) = 0. Then since vπ(b′) ≤ 2,

it follows that vπ(u1) = vπ(u3) = 1. So there exists a c such that u1/u3 ≡

c3 (mod π). Note that since π divides u1 and u3 exactly once, vπ(u1/u3) = 0. In

addition, we can write u1 = πũ1 and u3 = πũ3 for some ũ1 and ũ3.

Let us make the following substitution, Y = πy. Then the equation becomes

Fu′(X, πy, Z) = πũ1X
3 + πu2π

2y3 + πũ3Z
3 − 2a

√
−3XπyZ.

Let U2 = u2π
2, then we have that

1

π
Fu′(X, πy, Z) = ũ1X

3 + U2y
3 + ũ3Z

3 − 2a
√
−3XyZ.

Thus we are in situation (b) from above. Hence we can �nd a non-singular solution

and it lifts.

Assume that (x0, y0, z0) is a non-singular solution to Fu′(X, Y, Z) ≡ 0 (mod π). We

may assume that min {vπ (x0) , vπ (y0) , vπ (z0)} = 0. In addition, since vπ(b′) > 0,

without loss of generality we may assume vπ(u3) > 0. There are two cases we need to

consider.

Case 1: vπ(u1u2) = 0

In this case the equation becomes

u1x
3
0 + u2y

3
0 − 2a

√
−3x0y0z0 ≡ 0 (mod π) .

If vπ(a) > 0, then we have

u1x
3
0 + u2y

3
0 ≡ 0 (mod π) .
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The partial derivatives at the solution are

∂F

∂X
= 3u1x

2
0,

∂F

∂Y
= 3u2y

2
0,

∂F

∂Y
= 0.

Since the point is non-singular, this implies that both x0 and y0 are non-zero modulo

π. Hence

u1

u2

≡
(
−y0

x0

)3

(mod π) .

Otherwise, vπ(a) = 0 and we obtain no additional information.

Case 2: vπ(u1u2) > 0

Without loss of generality, assume vπ(u2) > 0. Since vπ(b) ≤ 2, this implies that

vπ(u2) = vπ(u3) = 1. So the equation becomes

u1x
3
0 − 2a

√
−3x0y0z0 ≡ 0 (mod π) .

If vπ(a) = 0, we obtain no additional information.

If vπ(a) > 0, then x0 ≡ 0 (mod π). So we can divide out a π from the equation and

reduce modulo π to obtain

ũ2y
3
0 + ũ3z

3
0 ≡ 0 (mod π)
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where u2 = πũ2 and u3 = πũ3. In this case, the partial derivatives are

∂F

∂X
= 0,

∂F

∂Y
= ũ2y

2
0,

∂F

∂Y
= ũ3z

2
0 .

Since the solution is non-singular, we know that both y0 and z0 are non-zero modulo

π. Therefore,

u3

u2

≡
(
−y0

z0

)3

(mod π) .

Thus we have proven the corollary.

Recall from Theorem 42 G3 is the subgroup of Q∗(ω)/(Q∗(ω))3 of classes whose norms

are cubes where ω is a primitive cubic root of unity and [u′] ∈ G3. Write u′ = γγ2 with

γ = c + dω ∈ Z[ω] and N(γ) = γγ is only divisible by split primes. The following lemma

will be useful in proving the solubility propositions.

Lemma 97 (Lemma 6.4, [14]). Let p 6= 3 be an inert prime. The following conditions are

equivalent:

1. There exists X and Y such that

γ/γ ≡
(
X + Y

√
−3

X − Y
√
−3

)3

(mod p) .

2. The class of γ/γ is a cube in F∗p2.

3. p ≡ 2 (mod 3) and γ(p2−1)/3 ≡ 1 (mod p).

Now we are ready to state and prove the solubility propositions.
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Proposition 98 (Lemmas 6.5, 6.6, 6.7, [14]). Assume p 6= 2, p ≡ 2 mod 3 and let

Fu′(X, Y, Z) be as in equation (4.12).

1. If vp (γγ) = 0, vp(2b
′) = 0 and vp (27b′ + 12a3) = 0, then Fu′(X, Y, Z) = 0 has a

solution in Qp.

2. If vp(2b
′) = 0 and vp (27b′ + 12a3) > 0, then Fu′(X, Y, Z) = 0 has a solution in Qp if

and only if
γ

γ
is a cube in F∗p2.

3. If vp(2b
′) > 0 and vp (γγ) = 0, then Fu′(X, Y, Z) = 0 has a solution in Qp if and only

if one of the following is satis�ed:

(a) vp(2a) = 0.

(b) vp(2a) > 0 and the class of
γ

γ
modulo p is a cube in F∗p2.

Proof. Assume p 6= 2 and p ≡ 2 (mod 3).

1. In addition, assume that vp(γγ) = 0, vp(2b
′) = 0 and vp(27b′ + 12a3) = 0. One can

show that in order for us to have a singular point if Z = 0, then both X and Y must

be zero. So we may assume that Z = 1. Then we can rearrange Fu′(X, Y, 1) so it is in

Weierstrass form and calculating its determinant we �nd

∆ = 9b′
(
27b′ + 12a3

)3
.

Therefore since p 6= 3, vp(b
′) = 0 and vp(27b′ + 12a3) = 0, it follows that the curve is

non-singular. Since the curve is of genus 1, we know via the Weil bounds give

p+ 1− 2
√
p ≤ #E(Fp) ≤ p+ 1 + 2

√
p.
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The smallest prime which could satisfy the conditions listed above is 5 and

6− 2
√

5 > 0.

Thus we know that for every prime p the curve has a non-trivial point over Fp. There-

fore for every p satisfying the above conditions, we can preform a Hensel lift to Zp as

soon as we know there is a solution modulo p. Thus proving this part of the proposition.

2. Assume that vp(2b
′) = 0 and vp(27b′ + 12a3) > 0.

Assume γ/γ is a cube modulo p in F∗p2 . Then by Lemma 97 there exists x0 and y0 such

that

γ/γ ≡
((
x0 + y0

√
−3
)
/
(
x0 − y0

√
−3
))3

(mod p) .

Hence

γ ≡ γ

(
x0 + y0

√
−3

x0 − y0

√
−3

)3

(mod p) .

Let P0 = (x0, y0, 0). Then

Fu′(P0) =
1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 − y0

√
−3
)3
)

≡ 1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 + y0

√
−3

x0 − y0

√
−3

)3 (
x0 − y0

√
−3
)3

)
(mod p)

≡ 0 (mod p) .

So P0 is a solution to Fu′(X, Y, Z) = 0. Also, notice that since vp(2a) = 0 and

vp
((
x0 + y0

√
−3
) (
x0 − y0

√
−3
))

= 0,
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it follows that

∂F

∂Z

∣∣∣∣
P0

= 2a
(
x0 + y0

√
−3
) (
x0 − y0

√
−3
)

6≡ 0 (mod p) .

Thus P0 is non-singular, so we can lift to �nd solutions.

Now assume (x, y, z) is a solution to Fu′(X, Y, Z) ≡ 0 (mod p). We may assume that

min {vp(x), vp(y), vp(z)} = 0.

We know that since Fu′(x, y, z) ≡ 0 (mod p),

4vp
(
x+ y

√
−3
)

+ 4vp
(
x− y

√
−3
)

+ 4vp(z) > 0.

Since p is inert, vp
(
x± y

√
−3
)

= 0. Hence vp(z) > 0. Therefore the equation becomes

1√
−3

(
γ
(
x+ y

√
−3
)3 − γ

(
x− y

√
−3
)3
)
≡ 0 (mod p)

or equivalently,

γ/γ ≡
((
x+ y

√
−3
)
/
(
x− y

√
−3
))3

(mod p) .

Hence by Lemma 97, γ/γ is a cube modulo p in F∗p2 .

3. Assume vp(2b) > 0 and vp(γγ) = 0.
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(a) In addition assume that vp(2a) = 0. Then we claim that

P0 =

(
c− d/2
N(γ)

,
d/2

N(γ)
,

γ2 − γ2

2a
√
−3N(γ)

)

is a non-singular solution to Fu′(X, Y, Z) ≡ 0 (mod p). To see this we begin by

noticing that

c− d/2
N(γ)

+
d/2

N(γ)

√
−3 =

γ

N(γ)

=
1

γ

and

c− d/2
N(γ)

− d/2

N(γ)

√
−3 =

γ

N(γ)

=
1

γ
.

Then

Fu′(P0) =
1√
−3

(
γ

(
1

γ

)3

− γ
(

1

γ

)3
)

+ 2a

(
γ2 − γ2

2a
√
−3N(γ)

)(
1

γγ

)
=

1√
−3

(
γ2 − γ2

N(γ)2

)
+

γ2 − γ2

√
−3N(γ)2

≡ 0 (mod p) .

Since

∂F

∂Z

∣∣∣∣
P0

= 2aN(γ)

6≡ 0 (mod p) ,
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it follows that P0 is non-singular and therefore we can lift to �nd solutions.

(b) Now assume that vp(2a) > 0 and γ/γ modulo p is a cube in F∗p2 . Then by Lemma

97 there exists x0 and y0 such that

γ/γ ≡
((
x0 + y0

√
−3
)
/
(
x0 − y0

√
−3
))3

(mod p) .

Hence

γ ≡ γ

(
x0 + y0

√
−3

x0 − y0

√
−3

)3

(mod p) .

Let P0 = (x0, y0, 0). Then

Fu′(P0) =
1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 − y0

√
−3
)3
)

≡ 1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 + y0

√
−3

x0 − y0

√
−3

)3 (
x0 − y0

√
−3
)3

)
(mod p)

≡ 0 (mod p) .

So P0 is a solution to Fu′(X, Y, Z) = 0.

It remains to show that P0 is non-singular. To see this, we notice that

∂F

∂X

∣∣∣∣
P0

=
3√
−3

(
γ(x0 + y0

√
−3)2 − γ(x0 − y0

√
−3)2

)
(mod p) .

If
∂F

∂X

∣∣∣∣
P0

= 0 (mod p), then we have that

γ/γ ≡
((
x0 + y0

√
−3
)
/
(
x0 − y0

√
−3
))2

(mod p) .
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However, this implies that

x0 + y0

√
−3 ≡ x0 − y0

√
−3 (mod p)

which means y0 ≡ 0 (mod p), a contradiction. Thus P0 is non-singular and we

can lift to �nd solutions.

Finally, assume that vp(2b
′) > 0, vp(γγ) = 0 and (x0, y0, z0) is a solution modulo p to

Fu′(X, Y, Z) ≡ 0 (mod p). If vp(2a) > 0, then

1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 − y0

√
−3
)3
)
≡ 0 (mod p) ,

which implies that

γ/γ ≡
(
x0 + y0

√
−3

x0 − y0

√
−3

)3

(mod p) .

So by Lemma 97, this implies that γ/γ is a cube modulo p in F∗p2 .

Otherwise, vp(2a) = 0.

Again, recall that by Lemma 36 we have that either v2(b′) ≤ 2 or v2(a) = 0.

Proposition 99 (Lemmas 6.5, 6.6, 6.7, [14]). Let p = 2 and Fu′(X, Y, Z) be as in equation

(4.12).

1. If v2(2b′) ≤ 2, then Fu′(X, Y, Z) = 0 has a solution in Q2 if and only if the class of
γ

γ

modulo 2 is a cube in Z∗[ω]/2Z∗[ω] ∼= F∗4. Note that the only cube in F∗4 is 1.

2. If v2(2b′) ≥ 3, then

(a) if d ≡ 0 (mod 4) and c ≡ ±1 (mod 4), then Fu′(X, Y, Z) = 0 has a solution in

Q2.
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(b) if d ≡ 2 (mod 4) and c ≡ ±1 (mod 4) then Fu′(X, Y, Z) = 0 has a solution in

Q2.

(c) if d ≡ 1 (mod 2), then Fu′(X, Y, Z) = 0 has a solution in Q2 if and only if either

v2(2b′) ≥ 4 or v2(a) > 0.

Proof. 1. Assume v2(2b′) ≤ 2. Since 2 is inert, v2(γγ) = 0.

Assume γ/γ is a cube modulo 2 in F∗4. Write ω = x0 + y0

√
−3, then ω2 = x0− y0

√
−3.

So

γ/γ ≡
((
x0 + y0

√
−3
)
/
(
x0 − y0

√
−3
))3

(mod 2) .

Hence

γ ≡ γ

(
x0 + y0

√
−3

x0 − y0

√
−3

)3

(mod 2) .

We claim that P0 = (x0, y0, 0) is a non-singular solution to Fu′(X, Y, Z) ≡ 0 (mod 2).

To see this, notice that

Fu′(x0, y0) =
1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 − y0

√
−3
)3
)

≡ 1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 + y0

√
−3

x0 − y0

√
−3

)3 (
x0 − y0

√
−3
)3

)
(mod 2)

≡ 0 (mod 2) .
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In addition,

∂F

∂X

∣∣∣∣
P0

=
3√
−3

(
γ
(
x0 + y0

√
−3
)2 − γ

(
x0 − y0

√
−3
)2
)

=
3√
−3

(
γω2 − γ

(
ω2
)2
)

=
3√
−3

(
γω2 − γω

)
6≡ 0 (mod 2) .

Therefore P0 is non-singular. Hence we can lift.

Now assume (x0, y0, z0) is a solution modulo 2 . Then we have

1√
−3

(
γ
(
x0 + y0

√
−3
)3 − γ

(
x0 − y0

√
−3
)3
)
≡ 0 (mod 2) .

Hence it follows that γ/γ is a cube modulo 2.

2. Assume v2(2b′) ≥ 3. Then by Lemma 36, we know that either v2(a) > 0 and v2(2b′) = 3

or v2(a) = 0.

(a) In addition, assume d ≡ 0 (mod 4) and c ≡ ±1 (mod 4). Then (1, 1, 1) is clearly

a solution modulo 2. However all solutions are singular. So we will look modulo

4. Notice that modulo 4, the equation reduces to

Fu′(X, Y, Z) = 2aX2Z − 2aXY Z + 2aY 2Z − 3cXY 2 + 3cX2Y.

It is not hard to see that P0 = (1, 1, 0) is a solution modulo 4 and since

∂F

∂X

∣∣∣∣
P0

= −3c(1)2 + 6c(1)(1)

≡ 3c (mod 4)
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is non-zero, P0 is non-singular. Therefore we can lift to �nd solutions.

(b) Now assume d ≡ 2 (mod 4) and c ≡ ±1 (mod 4). Again, (1, 1, 1) is a solution

modulo 2, however all solutions are singular. Therefore, we will look for solutions

modulo 4 to lift. We claim that P0 = (1,−1, 0) is a non-singular solution modulo

4. To see this, notice that

Fu′(1,−1, 0) = −2(1)3 − 2(−1)3 − 3c(1)(−1)2 + 3c(1)2(−1) + 2(1)(−1)2

≡ −6c+ 2 (mod 4) ,

which is equivalent to −4 if c ≡ 1 (mod 4) and to 8 if c ≡ −1 (mod 4). Also,

∂F

∂X

∣∣∣∣
P0

= −3d(1)2 − 3c(−1)2 + 6c(1)(−1) + 3d(−1)2

≡ 3c (mod 4)

which is clearly non-zero. Therefore we can lift to �nd solutions.

(c) Finally, assume that d ≡ 1 (mod 2). Note that from this we can deduce that

2v1 ≡ 2v2 ≡ 1 (mod 2). For this we will use the following form of the equation:

Fu′(X, Y, Z) = 2v2X
3−6v1Y

3+
2b

N(γ)
Z3+6v1X

2Y−18v2XY
2+2a

(
X2Z + 3Y 2Z

)
.

Notice that reducing modulo 2, we have

X3 + Y 3 +X2Y +XY 2 ≡ 0 (mod 2) .

So (1, 1, 0) is solution. However all solutions modulo 2 are singular. Looking

modulo 4 and modulo 8, we �nd that P0 = (1,−1, 1) is a solution. However, it is

a singular solution. We claim that P0 = (2, 2, 2) is a non-singular solution modulo
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16. To see this, let us �rst assume that v2(2b′) = 3 and v2(a) > 0. Then

Fu′(2, 2, 2) =

2v2(8)− 3(2v1)(8) +
2b

N(γ)
(8) + 3(2v1)(8)− 9(2v2)(8) + 2a(8 + 3(8)) (mod 16)

≡ 0 (mod 16)

and

∂F

∂Y

∣∣∣∣
P0

= 14(2v1) + 8(2v2)

= 2(7(2v1) + 4(2v2)) (mod 16) .

Note that
∂F

∂Y

∣∣∣∣
P0

will never be zero modulo 16, since 2v2 and 2v1 are both odd.

Thus P0 is a non-singular solution, so we can lift.

To see the reverse, one observes that there are no solutions when v2(2b′) = 3 and

v2(a) = 0.

Proposition 100 (Lemmas 6.11, 6.12, [14]). Let p = 3 and Fu′(X, Y, Z) be as in equation

(4.12).

1. If v3(2a) = 0, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of the

following conditions is satis�ed:

(a) v3 (d) > 0,

(b) v3 (d) = v3

(
2a+

2b′

N(γ)

)
= 0.

2. If v3(2a) ≥ 2, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of the

following conditions is satis�ed:
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(a) v3(d) ≥ 2,

(b) v3(d) = v3(b) = 1,

(c) v3(d) = 0 and
2b′

dN(γ)
is a cube modulo 9,

(d)
2b′

N(γ)
≡ ± (6c− 3d) modulo 27.

3. If v3(2a) = 1, then Fu′(X, Y, Z) = 0 has a solution in Q3 if and only if one of the

following is satis�ed:

(a) v3(d) ≥ 2,

(b) v3(d) = v3

(
2a+

2b′

N(γ)

)
= 1,

(c) v3(d) = 0 and

(
2b′

N(γ)
+ 2a

)
/d is a cube modulo 9,

(d) v3

(
2b′

N(γ)

)
= 1, v3(d) = 0 and there exists s ∈ {±1} such that (d − 2c) ≡

s

(
2b′

3N(γ)
+ 2a

)
(mod 27) and s(2c− d) ≡ 2a/3 (mod 3),

Proof. 1. Assume v3(2a) = 0.

(a) In addition, assume that v3(d) > 0. Then the equation reduces modulo 3

Fu′(X, Y, Z) ≡ 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N(γ)
Z3 (mod 3) .

We claim that P0 = (1, 1, 0) is a non-singular solution to this equation. Clearly

this is a solution and since

∂F

∂Z

∣∣∣∣
P0

≡ 2a(1)2 − 2a(1)(1) + 2a(1)2 (mod 3)

≡ 2a (mod 3)
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which is non-zero modulo 3, it follows that P0 is non-singular. Hence we can lift

to �nd solutions.

(b) Now assume that v3(d) = v3

(
2a+

2b′

N(γ)

)
= 0. If 2a+

2b′

N(γ)
≡ 1 (mod 3), then

we claim that P0 =

(
1

d
,

1

d
, 2

)
is a non-singular solution modulo 3. Otherwise if

2a +
2b′

N(γ)
≡ 2 (mod 3), then we claim that P0 =

(
1

d
,

1

d
, 1

)
is a non-singular

solution modulo 3.

In either case, substituting in for X and Y , combining like terms and reducing,

we have

Fu′

(
1

d
,

1

d
, Z

)
≡ 2N(γ)aZ + 2b′d2Z3 +N(γ)

N(γ)d2
(mod 3) .

Notice that since v3(d) = 0, d2 ≡ 1 (mod 3). Hence in case one we have

Fu′

(
1

d
,

1

d
, Z

)
≡ a+

b′

N(γ)
+ 1 (mod 3)

≡ 2 + 1 (mod 3)

≡ 0 (mod 3) .

In case two, we have

Fu′

(
1

d
,

1

d
, Z

)
≡ 2a+

2b′

N(γ)
+ 1 (mod 3)

≡ 2 + 1 (mod 3)

≡ 0 (mod 3) .
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To see that both solutions are non-singular, notice that

∂F

∂Z

∣∣∣∣
P0

≡ 2a

(
1

d

)2

− 2a

(
1

d

)2

+ 2a

(
1

d

)2

(mod 3)

≡ 2a

d2
(mod 3) ,

which is clearly non-zero modulo 3. Thus we can lift to �nd solutions.

Now assume that (x, y, z) is a non-trivial, non-singular solution modulo 3.

If v3(d) = 0, then the equation reduces to

Fu′(X, Y, Z) ≡ 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N(γ)
Z3 − dX3 − dY 3 (mod 3) .

Notice by symmetry, we can interchange X and Y .

Without loss of generality, if x = 0, then the equation becomes

Fu′(0, y, z) ≡ 2ay2z +
2b′

N(γ)
z3 − dy3 (mod 3) .

Since the solution is non-singular, a quick calculation shows that y 6= 0 and z 6= 0.

Hence y ≡ ±1 (mod 3) and z ≡ ±1 (mod 3). Exhausting all possibilities, we �nd that

we must have

v3

(
2a+

2b′

N(γ)

)
= 0.

Otherwise, if x 6= 0, then a simple calculation shows we must have z 6= 0 and x ≡

y (mod 3). Hence the equation becomes

2az +
2b′

N(γ)
z3 + d ≡ 0 (mod 3) ,
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which implies that

v3

(
2a+

2b′

N(γ)

)
= 0.

Therefore if v3(d) = 0, then v3

(
2a+

2b′

N(γ)

)
= 0. Otherwise we have v3(d) > 0.

2. Assume v3(2a) ≥ 2.

(a) In addition, assume that v3(d) ≥ 2. Then since 3 | d, it follows that 3 - c. It is

easy to �nd a solution modulo 3, however all solutions are singular. Therefore we

must look for a solution modulo 9. Notice that modulo 9, the equation reduces

to

Fu′(X, Y, Z) ≡ 2b′

N(γ)
Z3 − 3cXY 2 + 3cX2Y (mod 9) .

It is easy to see that P0 = (1, 1, 0) is a solution modulo 9 and since

∂F

∂X

∣∣∣∣
P0

= −3c(12) + 6c(1)(1)

≡ 3c (mod 9) ,

is non-zero, it follows that P0 is non-singular and therefore we can lift to �nd

solutions.

(b) Now assume that v3(d) = v3(b′) = 1. Once again, we have v3(c) = 0. Notice

that in this case, every term of Fu′(X, Y, Z) is divisible by 3. So we can reduce to

�nding solutions modulo 3 of the modi�ed equation
1

3
Fu′(X, Y, Z) ≡ 0 (mod 3).

Note that the modi�ed equation is

2b

N(γ)
Z3 − dX3 − dY 3 − cXY 2 + cX2Y ≡ 0 (mod 3) ,
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where b′ = 3b and d = 3d. By the above assumptions this implies that
2b

N(γ)
≡

±1 (mod 3) and d ≡ ±1 (mod 3). If d ≡ 2b

N(γ)
(mod 3), then we claim that

P0 = (0, 1, 1) is a non-singular solution to the above equation. Otherwise, if

d ≡ − 2b

N(γ)
(mod 3), then we claim that P1 = (0,−1, 1) is a non-singular solution

to the above equation. In the �rst case, we have

2b

N(γ)
− d ≡ 2b

N(γ)
− 2b

N(γ)
(mod 3) .

And since

∂F

∂X

∣∣∣∣
P0

= −c (mod 3) ,

is non-zero modulo 3, it follows that P0 is non-singular and we can lift to �nd

solutions.

In the second case, we have

2b

N(γ)
+ d ≡ 2b

N(γ)
− 2b

N(γ)
(mod 3) .

And since

∂F

∂X

∣∣∣∣
P1

= c (mod 3) ,

which is non-zero modulo 3, it follows that P1 is non-singular and we can lift to

�nd solutions.

(c) In this part, assume v3(d) = 0 and
2b′

dN(γ)
≡ k3 (mod 9) where (9, k) = 1. We
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begin by noticing that modulo 3, the equation becomes

2b′

N(γ)
Z3 − dX3 − dY 3 ≡ 0 (mod 3)

which has the singular solution (1,−1, 0). Since all solutions are singular modulo

3, we will look for non-singular solutions modulo 9. It is not hard to see that

(k, 0, 1) is a non-singular solution modulo 9, since

Fu′(−k, 0, 1) ≡ 2b′

N(γ)
(1)3 − d(k)3 (mod 3)

≡ 2b′

N(γ)
− d

(
2b′

dN(γ)

)
(mod 3)

≡ 0 (mod 3) ,

and

∂F

∂X

∣∣∣∣
P0

≡ −3dk2 (mod 9)

6≡ 0 (mod 9) ,

it follows that P0 is a non-singular solution modulo 9 and therefore we can lift to

�nd other solutions.

(d) Finally assume that
2b′

N(γ)
≡ ± (6c− 3d) (mod 27). Reducing the equation mod-

ulo 3, we have

2b′

N(γ)
Z3 − dX3 − dY 3 ≡ 0 (mod 3) ,

which has the singular solution (1,−1, 0). A simple calculation reveals that all

solutions modulo 9 are singular. Therefore we must look for non-singular solutions

modulo 27.

There are two cases we need to consider.

244



Case 1:
2b′

N(γ)
≡ (6c− 3d) (mod 27).

We claim that P0 = (1,−1, 1) is a non-singular solution modulo 27. To see this

notice

Fu′(1,−1, 1) = 3(2a) +
2b′

N(γ)
− 6c+ 3d

≡ 6c− 3d− 6c+ 3d (mod 27)

≡ 0 (mod 27)

and

∂F

∂X

∣∣∣∣
P0

≡ −9c (mod 27) ,

∂F

∂Y

∣∣∣∣
P0

≡ 9(c− d) (mod 27) ,

∂F

∂Z

∣∣∣∣
P0

≡ 9 (2c− d) (mod 27) .

For P0 to be a singular point, we would have to have c ≡ d ≡ 0 (mod 3), which

is not possible since (c, d) = 1. Thus P0 is non-singular and we can lift to �nd

solutions.

Case 2:
2b′

N(γ)
≡ − (6c− 3d) (mod 27).

We claim that P0 = (1,−1,−1) is a non-singular solution modulo 27. To see this

notice

Fu′(1,−1,−1) = 3(2a)− 2b′

N(γ)
− 6c+ 3d

≡ −(−6c+ 3d)− 6c+ 3d (mod 27)

≡ 0 (mod 27)
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and

∂F

∂X

∣∣∣∣
P0

≡ −9c (mod 27)

∂F

∂Y

∣∣∣∣
P0

≡ 9(c− d) (mod 27)

∂F

∂Z

∣∣∣∣
P0

≡ 9 (2c− d) (mod 27) .

For P0 to be a singular point, we would have to have c ≡ d ≡ 0 (mod 3), which

is not possible since (c, d) = 1. Thus P0 is non-singular and we can lift to �nd

solutions.

The reverse direction requires a series of calculations in MATLAB to exhaust all pos-

sibilities. These show that whenever we have a solution, one of the above conditions

is satis�ed.

3. Assume v3(2a) = 1.

(a) In addition, assume v3(d) ≥ 2. Then since v3(N(γ)) = 0, we know that v3(c) = 0.

Note that the equation modulo 3 becomes

Fu′(X, Y, Z) =
2b

N(γ)
Z3.

It is easy to see that (1, 1, 0) is the only solution modulo 3, however it is singular.

So we will look modulo 9. Now, reducing modulo 9 the equation is of the form

Fu′(X, Y, Z) = 2aX2Z − 2aXY Z + 2aY 2Z +
2b′

N(γ)
Z3 − 3cXY 2 + 3cX2Y.

246



It is not hard to see that P0 = (1, 1, 0) is a solution modulo 9 and since

∂F

∂Z

∣∣∣∣
P0

≡ 2a− 2a+ 2a (mod 9)

6≡ 0 (mod 9) ,

P0 is non-singular so we can lift to �nd solutions.

(b) Now assume v3(d) = v3

(
2a+

2b′

N(γ)

)
= 1. Again, we can deduce that v3(c) = 0.

In addition, since 3 divides 2a exactly once and 3 divides 2a +
2b′

N(γ)
exactly

once, it follows that v3

(
2b′

N(γ)

)
= 1. Now, we can easily see that every term of

Fu′(X, Y, Z) is divisible by 3, so �nding a solution to Fu′(X, Y, Z) = 0 is equivalent

to �nding a solution to
1

3
Fu′(X, Y, Z) = 0.

Let a = 3a, b′ = 3b and d = 3d. Then the modi�ed equation becomes

2aX2Z − 2aXY Z + 2aY 2Z +
2b

N(γ)
Z3 − dX3 − dY 3 − cXY 2 + cX2Y = 0.

There are two cases we need to consider.

Case 1: 2a+
2b

N(γ)
≡ d (mod 3)

In this case, we claim that P0 = (0, 1, 1) is a non-singular solution modulo 3 to

the modi�ed equation. To see this, notice that we have

2a(12)(1) +
2b

N(γ)
(13)− d(13) ≡ d− d (mod 3)

≡ 0 (mod 3) ,
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and

∂F

∂X

∣∣∣∣
P0

= −2a(1)(1)

6≡ 0 (mod 3) .

Thus we can lift to �nd solutions.

Case 2: 2a+
2b

N(γ)
≡ −d (mod 3)

In this case, we claim that P0 = (0, 1,−1) is a non-singular solution modulo 3 to

the modi�ed equation. To see this, notice that we have

2a12(−1) +
2b

N(γ)
(−1)3 − d(13) ≡ d− d (mod 3)

≡ 0 (mod 3) ,

and

∂F

∂X

∣∣∣∣
P0

= −2a(1)(−1)

6≡ 0 (mod 3) .

Thus we can lift to �nd solutions.

(c) In this case, we will assume v3(d) = 0 and

(
2a+

2b′

N(γ)

)
/d is a cube modulo 9.

This implies that there exists k ∈ Z such that

(
2a+

2b′

N(γ)

)
/d ≡ k3 (mod 9)

and (k, 9) = 1. Reducing the equation modulo 3, we have

Fu′(X, Y, Z) ≡ 2b′

N(γ)
Z3 − dX3 − dY 3 (mod 3) ,

which clearly has the solution (1,−1, 0). It is easy to see that every solution
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modulo 3 is singular. So again, we will look for solutions modulo 9.

If k3 ≡ 1 (mod 9), then this implies that 2a+
2b′

N(γ)
≡ d (mod 9). It is not hard

to see that P0 = (k, 0, k) is a solution modulo 9. Running Maple code, one can

check that in all cases P0 will be a non-singular solution. Hence we can lift to

�nd solutions.

If k3 ≡ −1 (mod 9), then this implies that 2a+
2b′

N(γ)
≡ −d (mod 9). Again, it is

not hard to see that P0 = (−k, 0, k) is a solution modulo 9. Running Maple code,

one can again check that in all cases P0 will be a non-singular solution. Hence we

can lift to �nd solutions.

(d) Now assume v3(d) = 0, v3

(
2b′

N(γ)

)
= 1 and there exists s ∈ {±1} such that

(d− 2c) ≡ s

(
2b′

3N(γ)
+ 2a

)
(mod 27) and s(2c− d) ≡ 2a/3 (mod 3). A tedious

calculation in MATLAB shows that in this case, we will always have a solution.

If we assume there is a solution, then one can show that the equation always satis�es

one of the situations listed above.
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Appendix E Proof of Lemma 53

Lemma 101. Suppose (S1, S2, S3) is a partition of V (G). Let

u1 =
∏

pi∈S1

pi and u2 =
∏

pj∈S2

pj.

Then the homogeneous equation

u1X
3 + u2Y

3 +
2b

u1u2

Z3 − 2aXY Z = 0 (8)

has a solution in every local �eld Qp if and only if 3 - a and (S1, S2, S3) is three-balanced or

if 3 || a and (S1, S2, S3) is three-quasi-balanced at 3 or if 9 | a and (S1, S2, S3) is three-quasi-

balanced at 9.

Proof. Let u3 = 2b/(u1u2). We will begin by assuming that 3 - a and (S1, S2, S3) is a

three-balanced partition. Note in this case, 3 - ∆′. By Proposition 43, there are three

things we need to show. First, for every prime p ∈ Sν , if p is only in Sν and p | ∆′, then

χp (uν+1/uν+2) = 1 where we cycle the indices. Second, for every p ∈ Sη with η = 1 or 2

such that p is also in S3 and p | ∆′, we have χp (uη/u3) = 1. Finally, we must also show that

for every p ∈ V (G′) \ V (G), χp(u1/u2) = 1.

Notice that for every p ∈ Sν , which is only in Sν and p | ∆′, we have

χp (uν+1/uν+2) = χp (uν+1)χp (uν+2)2

=

 ∏
pj∈Sν+1

χp(pj)

 ∏
pk∈Sν+2

χp(pk)
2


=

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2


= 1
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since (S1, S2, S3) is three-balanced. In the case that p ∈ Sη, with η = 1 or 2 and p is also in

S3 and p | ∆′, we have

χp (uη/u3) = χp
(
u′η
)
χp (u′3)

2

=

 ∏
pj∈Sη
pj 6=p

χp(pj)


 ∏
pk∈S3
pk 6=p

χp(pk)
2



=

 ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2


= 1,

with uη = pu′η and u3 = pu′3.

We also know that for every p ∈ V (G′) \ V (G),

χp (u1/u2) = χp (u1)χp (u2)2

=

 ∏
pj∈S1

χp(pj)

( ∏
pk∈S2

χp(pk)
2

)

=

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
= 1.

If 3 || a and (S1, S2, S3) is three-quasi-balanced at 3, then 3 | ∆′. Notice that we

have checked most of the conditions already. So if p = 3 is only in one Sν , then we only

need to check that either χ3 (uν+1/uν+2) = 1 or there exists s1, s2 ∈ {±1} such that 2a ≡

s1

( ∏
pi∈S1

pi

)
+ s2

( ∏
pj∈S2

pj

)
+ s1s2

( ∏
pk∈S3

pk

)
(mod 9). Otherwise we are guaranteed a

solution.
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If p = 3 is in only one Sν , then either

χ3 (uν+1/uν+2) = χ3 (uν+1)χ3 (uν+2)2

=

 ∏
pj∈Sν+1

χ3 (pj)

 ∏
pk∈Sν+2

χ3 (pk)
2


=

 ∏
pj∈Sν+1

`(3, pj)

 ∏
pk∈Sν+2

`(3, pk)
2


= 1

or 2a ≡ s1

( ∏
pi∈S1

pi

)
+ s2

( ∏
pj∈S2

pj

)
+ s1s2

( ∏
pk∈S3

pk

)
(mod 9) for some s1, s2 ∈ {±1}. In

either case, by Proposition 44 we are guaranteed a solution in Q3.

If 9 | a and (S1, S2, S3) is three-quasi-balanced at 9, then we still have 3 | ∆′. Again,

notice that most of the conditions have already been veri�ed. If v3(2b) = 1, then we are

guaranteed a solution. Otherwise, if v3(2b) = 2, then we need to check two things. First, if

both copies of 3 are in S3, then χ3 (u1/u2) = 1. Otherwise if 3 ∈ Sη, with η = 1 or 2, and

3 ∈ S3, then χ3 (uη/u3) = 1.

If 3 is only in S3, then

χ3 (u1/u2) = χ3(u1)χ3(u2)2

=

 ∏
pj∈S1

χ3 (pj)

( ∏
pk∈S2

χ3 (pk)
2

)

=

 ∏
pj∈S1

`(3, pj)

( ∏
pk∈S2

`(3, pk)
2

)
= 1.
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If 3 ∈ Sη with η = 1 or 2 and 3 ∈ S3, then

χ3 (uη/u3) = χ3

(
u′η
)
χ3 (u′3)

=

 ∏
pj∈Sη
pj 6=3

χ3(pj)


 ∏
pk∈S3
pk 6=3

χ3(pk)
2



=

 ∏
pj∈Sη
pj 6=3

`(3, pj)


 ∏
pk∈S3
pk 6=3

`(3, pk)
2


= 1,

where uη = 3u′η and u3 = 3u′3. In either case, by Proposition 44, we have a solution in Q3.

Conversely, suppose if 3 - a, then (S1, S2, S3) is not three-balanced or if 3 || a, then

(S1, S2, S3) is not three-quasi-balanced at 3 or if 9 | a, then (S1, S2, S3) is not three-quasi-

balanced at 9. There are a few cases we need to consider.

Case 1: These exists p ∈ S1 ∪ S2 with p2 | 2b such that the additional copy of p is

also in S1∪S2. Note in this case, we would either have that (u1, u2) 6= 1 or ui not square-free

for i = 1 and i = 2. These are both requirements for the equation (5.2).

Case 2: If we have v2(b) = 2 and 2 ∈ S1 ∪ S2, then in this case we are guaranteed

that the equation does not have a solution by Proposition 43.

Case 3: There exists p in some Sν with p | ∆′, p 6= 3 and p not in any other Sν , such

that  ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2

 6= 1.
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Then

χp (uν+1/uν+2) = χp (uν+1)χp (uν+2)2

=

 ∏
pj∈Sν+1

χp(pj)

 ∏
pk∈Sν+2

χp(pk)
2


=

 ∏
pj∈Sν+1

`(p, pj)

 ∏
pk∈Sν+2

`(p, pk)
2


6= 1,

where we cycle the indices. Hence by Proposition 43, equation (5.2) does not have a solution

in Qp.

Case 4: There exists p in some Sη, with p | ∆′ and η = 1 or 2, such that p is also in

S3 and p | ∆′ and

 ∏
pj∈Sη

`(p, pj)

( ∏
pk∈S3

`(p, pk)
2

)
6= 1.

Then

χp (uη/u3) = χp
(
u′η
)
χp (u′3)

2

=

 ∏
pj∈Sη
pj 6=p

χp(pj)


 ∏
pk∈S3
pk 6=p

χp(pk)
2



=

 ∏
pj∈Sη
pj 6=p

`(p, pj)


 ∏
pk∈S3
pk 6=p

`(p, pk)
2


6= 1

with uη = pu′η and u3 = pu′3. Hence by Proposition 43, equation (5.2) does not have a
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solution in Qp.

Case 5: There exists a p ∈ V (G′) \ V (G)

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
6= 1.

Since

χp (u1/u2) = χp (u1)χp (u2)2

=

 ∏
pj∈S1

χp(pj)

( ∏
pk∈S2

χp(pk)
2

)

=

 ∏
pj∈S1

`(p, pj)

( ∏
pk∈S2

`(p, pk)
2

)
6= 1,

it follows that (4.11) does not have a solution in Qp.

If 3 || a and (S1, S2, S3) is not three-quasi-balanced at 3, then we have already covered

every case except when p = 3 is only in one Sν . For (S1, S2, S3) not to be three-quasi-balanced

at 3, this means that

 ∏
pj∈Sν+1

`(3, pj)

 ∏
pk∈Sν+2

`(3, pk)
2

 6= 1

where we cycle the indices of the partitions (i.e. S1 = S4, etc.) and for all s1, s2 ∈ {±1} we

have

2a 6≡ s1

(∏
pi∈S1

pi

)
+ s2

 ∏
pj∈S2

pj

+ s1s2

( ∏
pk∈S3

pk

)
(mod 9) .
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So for 3 ∈ Sν ,

χ3 (uν+1/uν+2) = χ3 (uν+1)χ3 (uν+2)2

=

 ∏
pj∈Sν+1

χ3 (pj)

 ∏
pk∈Sν+2

χ3 (pk)
2


=

 ∏
pj∈Sν+1

`(3, pj)

 ∏
pk∈Sν+2

`(3, pk)
2


6= 1.

Hence by Proposition 44, there is no solution in Q3.

Finally, if 9 | a and (S1, S2, S3) is not three-quasi-balanced at 9, then we have already

covered every case except when 9 | 2b. If p = 3 is only in S3 and

 ∏
pj∈S1

`(3, pj)

( ∏
pk∈S2

`(3, pk)
2

)
6= 1,

then

χ3 (u1/u2) = χ3(u1)χpn(u2)2

=

 ∏
pj∈S1

χ3 (pj)

( ∏
pk∈S2

χ3 (pk)
2

)

=

 ∏
pj∈S1

`(3, pj)

( ∏
pk∈S2

`(3, pk)
2

)
6= 1.
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If instead, 3 ∈ Sη with η = 1 or 2, 3 ∈ S3 and

 ∏
pj∈Sη
pj 6=3

`(3, pj)


 ∏
pk∈S3
pk 6=3

`(3, pk)
2

 6= 1,

then

χ3 (uη/u3) = χ3

(
u′η
)
χ3 (u′3)

=

 ∏
pj∈Sη
pj 6=3

χ3(pj)


 ∏
pk∈S3
pk 6=3

χ3(pk)
2



=

 ∏
pj∈Sη
pj 6=3

`(3, pj)


 ∏
pk∈S3
pk 6=3

`(3, pk)
2


= 1,

where uη = 3u′η and u3 = 3u′3. So in either case, by Proposition 44 we would not have a

solution in Q3.
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