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Abstract

This work investigates the application of alternative cooling techsigoe
thermal management. In the first section, this work presentsIsnade extensive
simulation studies on an alternative cooling strategy based upoe ghasge materials
(PCMs) for the thermal management system of a LED headigg®mbly. These studies
have shown that properly chosen PCMs, when suspended in metal foarmesnatri
increased the thermal conductivity of the PCM. The increaseth#h@onductivity can
enhance the cooling characteristics of a practical thermahgeaent system for a LED
headlight system. To further enhance the advantages of using,P@voparticle
enhanced fluids (nanofluids) are desirable as an additional soucoelofy. The use of
nanofluids motivates the development of a new diagnostic tool for mdép@avs and
a minimization algorithm for analyzing the data. For thigpee, the second section of
this work develops a new technique that is based on wavelengtiplexdt laser
extinction (WMLE) to measure particle sizes in multiphase$l. In the final section of
this work, the simulated algorithm (SA) is investigated foryamag the data collected in
this work. Specifically, the parallelization of the SA techniguénvestigated to reduce

the high computational cost associated with the SA algorithm.



Acknowledgements

| owe my deepest gratitude to my supervisor, Dr. Lin Ma, fohaut his advice
and leadership this work would not be possible. His encouragement, guidadc
support are greatly appreciated. | would also like to thank DehaRi Miller, Donald

Beasley and Chenning Tong for serving on my advisory committee.

In addition, | would thank all of my colleagues in Dr. Ma’s group; Dieiwei
Cai, Dr. Yan Zhao, and Xuesong Li. | will always gratefullgneanber their discussions
of research and other subjects. | would also like to express tiyideato my colleagues
in the Department of Mechanical Engineering, including Dr. Todd Sehvgar, my
fellow TAs, friends, and the staff. All of these people thaaty call my friends have
made my life in graduate school much more enjoyable, and | wilidbeadly grateful for

their professional wisdom and friendship.

Most importantly, | am thankful for the support, both financially adl ae
emotionally, that | have received from my parents, sister, amy wiker friends. This
work would not have been possible without them, and | will always rémerhne

sacrifices each of them made for me.



Table of Contents

Y 0111 = Tod SRR PPPPPUPPUPPPP il
ACKNOWIEAGEIMENTS ...ttt e e e e e e e e e e e e e e e eeeeesseennnnns ii
LISt OF TADIES ...ttt e e e e e e e e e e e e e e e e s s ebbrnees vii
IS A T U USSP viii
Chapter 1: INtrOAUCTION ......coiiiiii et e e e e e e e e e e e eeeeeeeeenennes 1
I Yo 1Yo o PO 1
1.2 Introduction to Phase Change Materials (PCMS) ........cccooviiiiiiiiiiiiiiiiiii e 3
1.3 Introduction to Wavelength-Multiplexed Laser EXtiNCtion.............cccccceeeeiiiieeeeeenn. 4
1.4 Introduction to Temperature Parallel Simulated Annealing ..............ccovvvvviiviiinnnn. 5
1.5 ODbjJectiVes Of DISSEITALION ......uuuuiiiieie et e e as 7
Chapter 2: Investigation of the Application of Phase Change
MALEIAIS (PCIM) ..ttt e e e e e e e e e e e e e e et e s e ebtan e e eeas 9
P2 N o 11 > T PP PPPPPPPPTR 9
2.2 NOMENCIALUIE ...ttt et e e e e e e e e e e e e e e e e e e s eeee e 10
P2 [ o1 (oo (3 Tox 1 o] o APPSR PPOPPPPP 12
2.4 Problem FOrMUIALION ......coooiii et e e e e e e e e eeeeeenes 14
2.5 The Physical Problem and the PCM Material Properties ...........ccccuvvvviiiiiiinnnnenn. 17
2.6 NUMEIICAlI ANAIYSIS ...uuuiiiiiee e e e e e e e e e e e e aeaaeaeeeeees 20
2.7 RESUIS @Nd DISCUSSION ...uuuiiiiiiiiiiiiiiiieeie ittt e e e e e e e e e e e e e s st r e e e e e e e e aeeaeaaeaaeaaaans 20
2.8 ConClUSIONS ANd DISCUSSION .....cevviiiiiiiieieeeeiiee ettt e et e e e e e e e e e e e e e e e e annnes 27



Chapter 3: Development of a Sensor for Simultaneous Droplet
Size and Vapor Measurement Based on Wavelength-

Multiplexed Laser EXHNCHON ........coovviiieiiiiiiiiiiee e e e e e e e e e e e e e e e e e e e eeees 29
Y o 11 1 =T o! PP EP PP 29
10 1 o 18 o3 1] o F PP PRRPP P 30
TR T I 1= o] o VPSSR 33
3.4 Droplet MEaASUIEMENT.........cueiiiiiiiiiiae ettt e e e e e e e e e e e e e e eeeeeebannn s 37
I JR o R @0 o [0 =7 o | AP PTPPTS 37
3.4.2 Selection of Wavelengths ............uueiiiiiii e 40
3.4.3 General WMLE for Droplet Measurement .............euuuuuveiiiiienneee e 44
3.5 Vapor Concentration MeasUIremMENT .........ccouiiiiiiiiiiiiiiiiiaee e e e e e e eeeeeeeeeenn s 47
G IR T8 A O 0] g [0 =T o | ST UPPPPTPT 47
3.5.2 Selection of Wavelengths ............uuuiiiiiii e 49
3.5.3 Differential Absorption and Wavelength Availability................cccoevvviiiiiiiiinnnns 57
3.0 SUIMIMIATY ...ttt e et ettt e e e e e e e et e e e e e et et e e e e e eeeaa e e e e eeennnnaens 58
3.7 ACKNOWIEAGEMENT ... e e e e e e e e e e e eeeeeeeaenes 58

Chapter 4: Investigation of Temperature Parallel Simulated
Annealing for Optimizing Continuous Functions with

Application to Hyperspectral Tomography........ccoooeeeiiiiiiiiiiiiii e 59

N 011 1 = To! A TP P PTTPPPPPPON 59
T/ [ 11 70 o 18 [ox 1 o] o NPT EPPPPPPPPRRPP 60
4.3 Temperature Parallel Simulated Annealing ...........oovvvvviiiiiiiiiiii e 63
4.4 Determination of Starting and Ending TemMperatures ............ccceeeeeeiieeeeeeeiieeeeeenennns 66
4.5 Evaluation of Performance ...t 69
4.6 Evaluation of Computational COSt..........uuuuuuiiiiiiieiee e e e e e e eees 73



4.7 Preliminary Study of EXchange FreqQUENCY .........ccoooiiiiiiiveiiiiiiiiiee e eeeeeeeeanns 77

4.8 Application to Hyperspectral Tomography ...........ccccceeiiiiiiiiieeieeeieeeeeie e 80
4.9 SUMMAIY ...ttt ettt ettt e e e ettt e e e e et et b e e e e eesaa e e e eeesbn e eeeeeesanaeeeaensnnnaaaaaens 86
4.10 ACKNOWIEUAGEMENTS ... ..ottt e e e e e e e e e e e e e eeeeeeeeennnnes 86
4.11 Appendix. Test Functions and Their Properties ...........cccceeeeeeeiiiieeieeeeeeeeeeeeiiniinnns 87
(@ gF=T o] (=] gt o 1 @ T 1113 [ o 1P 92
REIEIEINCES. ...ttt e e e e e e e e e e e eeeas 94

Vi



List of Tables

Table 2- 1. Properties of some PCM materials and Al Metal Foam..............cccccoeeveeeennnnnn. 19
Table 4- 1. The begtF of SSA and TPSA on the Selected Test
FUN I ONS < e e 71
Table 4- 2. The besix of SSA and TPSA on the Selected Test
72

FUN I ONS e

Vil



List of Figures

Figure 2- 1. Problem SChematiC. .............uiiiiiiiiiii e

Figure 2- 2. Maximum operational time achieved for varigsiof

................. 18

{018 oo L11{=Y (=] 01 d O 1Y K TP 21

Figure 2- 3. The time evolution @Fof the PCM. ... 23

Figure 2- 4. Temperature at different locations within the CMS

under the FC boundary condition. ..........ccoooeiiiiiiiiiiiiiiiiii e

Figure 2- 5. Temperature at different locations within the CMS

under the NC boundary condition. ............ccoouuiiiiiiiiiinine e

Figure 2- 6. Temperature at different locations within the CMS

under the AD boundary CONAItiON.........coooiiiiiiiiiiiiiiir e

Figure 2- 7. The operational times for all three boundary

................ 24

conditions at three different locations within the CMS. ... 26

Figure 2- 8. Operational time comparison between SMS and CMS

at all three boundary CONAItIONS. .........cooiiiiiiiiii

Figure 3- 1. Extinction coefficients at three wavelengthsaater
droplets at a temperature of’2with various size distribution
functions, as shown in the inset. Refractive indices are taken to
be m=1.335 at1=0.6328um, m=1.42-0.0195at 1=3.39 um,

and M=21.218-0.050@ A=LO LUM. ..eeeeiiiiiiiiieeee it e e 36

Figure 3- 2. Ratio of extinction coefficients between two
wavelengths4;,=1.5 and4,=0.5 um for water droplets at 3¢

................ 27

with a log-normal size distribution fUNCLION. .............uuiiiiiiiii e 39

Figure 3- 3. Ratio of extinction coefficients between two
wavelengths4;=1.5 and4,=0.5 um, for water droplets with a
log-normal size distribution function. And the sensitivity of

this ratio fOrD 3o MEASUIEIMENT. ..o ettt e e 41

viii



Figure 3- 4. Ratio of extinction coefficients between two
wavelengths 4;=8.0 and1,=0.5 um) and the sensitivity of this
ratio for D3, measurement with a log-normal size distribution
function. Imaginary and real part of the refractive index at

these wavelengths are assumed to change separately in the
CAICUIALION. .. e e e e e e e e e e e e e e

Figure 3- 5. Schematic of differential absorption strategwapor

[001CTS T U (=T 0 0T o | T

Figure 3- 6. Extinction coefficients for water droplets with
different diameters and vapor absorbance from water vapor

................. 44

.................. 48

from 0.5 10 JUM AL 20C. ..ottt 50

Figure 3- 7.4Q for water droplet with different diameters whén

IS SlECtEd At BIM. .. 51

Figure 3- 8. Wavelength selection of differential absorption
scheme for water with a temperature of@2total pressure 1

atm, mole fraction of water vapor 3%, and pathlength of 1cm.....................

Figure 3- 9. Comparison of droplet extinction and vapor absorption
at a wavelength ofi3z=2.6705um for the evaporation process
depicted in Figure 3- 10 to evaluate the applicable range of
single wavelength scheme for vapor detection. Evaluation
performed at a temperature of °22 pressure 1 atm, and

pathlength Of 1 CM. ..o

Figure 3- 10. Comparison of differential droplet extinction and
vapor absorption between the wavelengths chosen in Figure 3-
9 for the evaporation process depicted in Figure 3- 10 to
evaluate the applicable range of the differential absorption
scheme for vapor detection. Evaluation performed at a

................. 54

temperature of 22, pressure 1 atm, and pathlength of 1 cMm. .......cccoovvveeevveeeenenn, 56

Figure 4- 1. lllustration of the TPSA algorithm. ...

Figure 4- 2. Evolution ofAF for both the SSA and TPSA

AIGONTNMIS. L.

Figure 4- 3. Determination @ andTy using thelc-CUrve. ..........cccoeieeeiiiiiiiiee e, 67

................. 65



Figure 4- 4. Comparison of the SSA and TPSA algorithms on
VarioUS ST TUNCLIONS. ....oiiiiiiiiiii et e e eees 73

Figure 4- 5. Computational time of the TPSA algorithm as a
function of the exchange freQUENCY. .........uueiiiiiii e 74

Figure 4- 6. The relationship between the speedup efficiency and
the number of processes used in the TPSA algorithm. ............oooviiiiiiiiiieeeeeee 76

Figure 4- 7. Impact of the exchange frequency on the perfmena
of the TPSA algorithm for thiazoandfsi2functions. ..., 78

Figure 4- 8. Impact of the exchange frequency on the perfmena
of the TPSA algorithm for thig, andfres funNctions............coooeieiiiiii e, 79

Figure 4- 9. The mathematical formulation of the hyperspectra
tOMOgraphy ProbIEM. ... e e e e e e e eeeaaaee 80

Figure 4- 10. Comparison of T phantom and reconstruction
obtained using the TPSA algorithm. ... 83

Figure 4- 11. Reconstruction obtained using the SSA algorithm in
comparison to the phantom and that obtained using the TPSA
=1 (6 [0 ] 11 0] 1 o PP 85

Figure 4- 12. A plot of test functidas with respect to the first two
variables (the other three variables are Set t0 Zero)............uuuveeiiiiiiiniiiieiieeeeeeiiiiiis 87

Figure 4- 13. A plot of test functiofga10 With respect to the first

two variables (the other variables are Set t0 Zero)..........ooouvvvviiiiiiiiii e, 88
Figure 4- 14. A plot Of teSt fUNCHAB2. ...ooeeeee e e 89
Figure 4- 15. A plot of test functiodiys with respect to the fourth

and fifth variables (the first three variables are set to Zero)..........cccccevvvvvvveveivvivennnnnnn. 90
Figure 4- 16. A plot of th&teSt fUNCHION. ......vvviiiciie e 90

Figure 4- 17. A plot of thézs test function with respect to its first
two variables (other variables are set to Zero). ..........cceiiiiiiiiii e 91



Chapter 1: Introduction

1.1 Motivation

The increased power demands in electric vehicles, especiaéiy wonsidering
the vehicles’ components, have hindered the progress of these sehitlese increased
demands are especially difficult when considering the linfiattery power available in
electric vehicles. Considering this limitation, many vehicleuafacturers are seeking to
decrease the overall power demand of each vehicle component,ssbghuaing light
emitting diodes (LEDs) for their headlight systems. Howethese new systems require
increased thermal protection, especially in outdoor environments. Thesased
cooling needs demand more power for their individual thermal managesysteims.
Since this power is at a premium in electric vehicles, thodeto thermally protect these
headlight systems is desired that requires little to no additipoaler draw for the
thermal management system. This thermal management systeimbengapable of
adequately cooling these component systems while maintaining jpagkiegibility and

reliable operation in many environments.



Therefore, this investigation first explores the concept of addipigage change
material (PCM) based heat sink for a LED headlight assemlitys strategy will utilize
the PCM'’s natural phase change process in order to provide inctkas®al protection
for this component, while demanding no additional power from the eleahwle’s

system.

To further enhance the favorable aspects of this PCM based heatthsnk,
application of nanoparticle suspended fluid (nanofluid) strategyaisigwed in this work.
These nanofluids have been shown in the past to increase the hdat trapabilities of
the base fluid. The main challenge in accurately modelingritisase is that the sizing
characteristics of these particles must be known. Therefonewadiagnostic tool is
needed for use in the study of multiphase flows. To address this, ithis work
investigates a new methodology based on laser extinction to ditectsizing
characteristics of particles in a multiphase flow. Thishodology uses an optical
process with multiple wavelengths to provide increased infoomad detect the sizing

characteristics of the particles in multiphase flows.

One of the key issues in this methodology is the inversion proteéks data in
order to retrieve the sizing characteristics. Therefonevaalgorithm is desired to solve
the inversion process to retrieve the sizing characteristiceatly. Therefore, the last
portion of this investigation seeks to develop an inversion method based upon the

simulated annealing (SA) algorithm. This inversion method, when ingrited in a



parallelized fashion, has been shown to be able to solve the probierhigh fidelity,

while reducing the normal computational cost of the SA algorithm.

1.2 Introduction to Phase Change Materials (PCMs)

PCMs have been extensively used in many engineering applicatichs]jing
building materials for energy storage improvement [1, 2], enstgpage systems [1, 2],
electronics cooling systems [3-9], etc. One reason for trectiteness of PCMs in such
extensive applications is that, due to its latent heat propertgMaddsentially behaves
as a thermal switch [10]. When the operation temperature ofatlyettcomponent
increases to the melting temperature of the PCM, the temperatuhe system will
remain essentially steady until the PCM is completely melted. phaise change process
enables the absorption of a large amount of heat without increasing the tenepefrthe
electronic system being utilized. This process is a majoridenasion for choosing

PCMs as an alternative cooling technique in this work.

Another important reason why a PCM-based cooling strategy isciyarly
attractive is the fact that the implementation of a particl®&CM is relatively
straightforward. A PCM can easily be implemented an existing thermal management
system because the latent heat property of the PCM is alnptocess that does not
require any additional energy input from the system. Also, the R@Wbe easily
implemented as simplethermal block into an existing cooling system to provide added
thermal protection of critical components. For these reafumshermal properties of an

applicable PCM make it an attractive supplement to factory installed coatinegses.



Of important interest is the rothat the thermal conductivity of the PCM plays in
the cooling system’s performance [10]. In particular, orgar@Vi® exhibit many
gualities needed in component cooling, including high latent heat, non-gemness, etc.
[1, 2, 10], but they also exhibit a prohibitivdtyw thermal conductivity [1, 2, 1Gp be
used in practical thermal management systems. To overcoméntitetion of low
thermal conductivity, it has been the focus of many recentndse#forts including this
work, to suggest suspending these PCMs in a metal foam matdd{¥#4] in order to
increase the effective thermal conductivity of the suspensiancorjunction with the
increase of the thermal conductivity of the PCM based heat sirdgtamization process
for the selection of the optimal porosity of the PCM utilized nmhestperformedhat
considers both the increase in thermal conductivity and loss of leahof the PCM in
order to provide the maximum operational time in any system. Coimmgjdbese factors,
this work not only will explore the applicability of using a PCMa proposed thermal
management system, but also will find the optimal volume fractidhe proposed PCM

to be utilized for an LED lighting system.

1.3 Introduction to Wavelength-Multiplexed Laser
Extinction
To increase the effectiveness of the favorable aspects of RIBklsssed in the

previous section, a strategy implementing nanofluids is also coeditéecause of their

increased heat transfer characteristics. One of the rdgnitactors in the study of



nanofluids is measuring the size characteristics of the nandpsrtithin this

multiphase flow application.

Many laser-based techniques have been attempted for this purposgast. Of
the methods investigated thus far, techniques based on laser ertiaci especially
attractive because of their relative simplicity in implemgotaand data interpretation,
capability to provide continuous measurement with fast time respeoasg,limited

requirement of optical access, and species specificity if wavelengtiagelirchosen.

With these factors in mind, this work investigates and developsnsos for
particle measurements in multiphase flows based on wavelengtiplexdd laser
extinction (WMLE). The sensor developed in this work has the uniduangage of
incorporating multiple laser sources to expand the sensing capalilihe diagnostic.
With this increased ability, this sensor technique not only moniterparticle size and

concentration, but also the size distribution and aggregation of the particles.

1.4 Introduction to Temperature Parallel Simulated

Annealing

In order to improve the method for obtaining the sizing charadbsrisf the
nanoparticles within the base fluid of a nanofluid, a new inversion mébhnaohalyzing
the data is needed. This work explores a new technique for ttpegeuby using the
simulated annealing (SA) technique. The simulated annealing dlgajithm was first

introduced in 1983 for solving combinatorial optimization problems [15]. eRbg



many research efforts have been devoted to successfully dertingstsause in solving
both discrete [16, 17] and continuous optimization problems [18-23], revealiegake
critical advantages of the use of the SA algorithm over other @gtiimin techniques.
For example, the SA algorithm can optimize complicated problenmsaniairge number
of variables and numerous confusing local minima. In addition, the §éithim is

insensitive to the initial guess, which is especially importaien no a priori

information about the solution is available. Because of these adeantthe SA
algorithm shows great promise in solving the sizing charact=sisti nanoparticles

within a base fluid.

On the other hand, the disadvantages of the SA algorithm are &bo w
recognized. One of the primary disadvantages of the SA algorighnts high
computational cost [20, 23]. Many research efforts have focusedvetogimg variants
of the SA algorithm to reduce the computational cost [24-26] bereitbptimizing the
annealing schedule [16, 27-30], or by parallelizing the SA algorifps 31-34].
However, the optimization of the annealing schedule is usually problpemdent [27,
28], and therefore limits the applicability of the results frdrase efforts. For the
parallelization of the SA algorithm, convergence is not guaranteadl the maximum

speedup efficiency is very limited [33, 34].

Considering these limitations of the SA algorithm and the subseqwthods to
overcome them, this work studies the application of the temperattakepaimulated

annealing (TPSA) algorithm, which combines the well-establisieallpl tempering (or



replica exchange) method [35, 36] and the SA algorithm [37]. The THR§Aithm
overcomes the above limitations by theoretically guaranteeingeogence; increasing
the speedup of the parallelization process; and, because the offidzation process

occurs at constant temperature, not requiring an annealing schedule [25, 32, 38].

However, the limiting factor to the application of the TPSA atbariis the fact
that this algorithm has only been studied primarily on discretetifunscin previous
efforts [16, 32, 33, 37, 39]. Therefore, this work conducts a systestatly of the
TPSA algorithm on continuous functions that would be applicable to the purptses

work.
1.5 Objectives of Dissertation

The first objective of this work is to explore the application @fM3 to an
existing thermal management system in order to ensure incri@sathl protection of a
LED headlight assembly. Our studies have found that the use oficpECMs shows
promising results in extending the operational time of these compomspecially when
used in conjunction with metal foam suspensions in order to increasthdhmal
conductivity of the PCM being used. Also, our results have potignaatablished a
procedure to optimize the volume fraction of the PCM in order to agpgintihe

operational time.

The next objective of this work is to develop an optical technique cadbwith

an inversion method applicable to multiphase flow applications in ordebttin the



sizing characteristics of nanoparticles within a nanofluid. Theldpwmnent of these two
concepts will enable further understanding of the application of nad®flaithe thermal
management system using PCMs. Our studies have demonstratetiethAtMLE
method can effectively measure the size of particles in mudigphenvironments.
Furthermore, our studies have shown that the implementation of ainwension
algorithm based upon simulated annealing (SA) in a paralieliza&nvironment can

analyze the data obtained accurately under acceptable computational cost.

This work is based upon the work completed and published in three peer-
reviewed journal articles; therefore, the rest of this workrganized as follows. In
Chapter 2, the journal article that explores the application of PlGMsLED headlight
system is presented. Chapter 3 contains the journal articlpurgtes the development
of the WMLE method for measuring particle/droplet sizes. nT@hapter 4 presents the
journal article that develops the TPSA algorithm. The finaptdrasummarizes the work

that is contained within this dissertation.



Chapter 2: Investigation of the
Application of Phase Change Materials

(PCM)

2.1 Abstract

Phase change materials (PCMs) are extensively used in engiyeering areas
for thermal management purposes. This paper investigated theasippliof PCMs for
vehicular systems, especially for the thermal protection oftleehghting systems based
on light emitting diodes (LEDs). Lighting systems based on LEifer many
advantages, however, also pose a smaller margin of error for trmanagement. This
paper analyzed the combined use of PCMs with metal foam for comfstgms. The
cooling performance was studied numerically under different pgresities of the metal
foam, and different boundary conditions. The cooling performance ls@s@mpared to
a solid metal sink system (SMS) and was found to offer sewdssinct cooling

characteristics.



2.2 Nomenclature

b = half thickness of bump in hexagonal structure of metal foam
CMS = cooling management system
SMS = solid management system

T = temperature

Tw = melting temperature of PCM

Ts = solidus temperature of PCM

T, = liquidus temperature of PCM

D = Diameter of CMS and SMS unit

H = height of CMS and SMS unit

h = convective heat transfer

Q = heat added to system

Cp = specific heat at constant pressure

Cprefi= combined effective specific heat of conductor and PCM
(oCp)mr = (0Cp) of the metal foam

(oCp)pcm = (0Cp) of the PCM

k = thermal conductivity

kvr = thermal conductivity of the metal foam

ks = thermal conductivity of solid metal foam

k= thermal conductivity of PCM at its respective solid or liquid phase

kecm = thermal conductivity of the PCM

10



ket = combined effective thermal conductivity of conductor and PCM
r = area ratio of the solid fiber to void area

hret = reference enthalpy

hsens sensible enthalpy

Tt = referencéemperature

L = latent heat

Ls = half length of fiber of metal foam

S, = sourcderm to correct the latent heat variation during the melting process
AH = heat of fusion

Hiot = total enthalpy of material

At = time step

FC = forced convection condition

NC = natural convection condition

AD = Adiabatic condition
Greek Symbols

p = density

ove = density of the metal foam
prcm = density of the PCM
peit = effective density

&= volume fraction of the PCM

A= liquid fraction

11



2.3 Introduction

Phase change materials (PCMs) are extensively used in m@agipeering
applications. They are used in energy storage systems [dff;oglics cooling systems
[41], building materials for energy storage improvement [42], hegtamgers [43], and
many other similar applications. This paper investigated the applicati®iG\d$ for the
thermal management in vehicular systems, especially the theramalgement of vehicle
lighting systems based on light emitting diodes (LEDs). Lightiystems based on LEDs
offer many advantages, including improved energy efficiency and patémt weight
reduction. However, such lighting systems also pose a smallgyinmair error for
thermal management because LEDs can be permanently damatelr ibperation
temperature exceeds a critical temperature. Furthermoreggutpeit power of LEDs
varies significantly with the operation temperature. Tleeef a better thermal

management technique is desired for such light systems.

A cooling management system (CMS) based on PCMs appear tractiae for
this purpose because a PCM essentially behaves as a thertolal 3when the operation
temperature of the lighting systems begins to exceed that oheliang temperature of
the PCM, the temperature of the system stops increasing mtP€M is completely
melted. Therefore, CMS based on PCMs show good promise toy tigitrol the
temperature of LEDs. But as described above, the operation tintleeo€EMS is

fundamentally limited by the melting time of the PCM, which wdsey parameter to be

12



investigated in this study. The investigation was focused onnmmieRrg the operation

time of the CMS while still operating under specified sizing and other restraint

More specifically, PCMs are characterized by thgjr 4H, and theirTs and T,
(Other properties may need to be considered for specific apmtisae.g.,, chemical
stability, safety, and flammability [44]). Once the operatieggerature of the system
being cooled reaches thg of the PCM, the PCM begins to melt and stores the thermal
energy that the system releases during this process. The aofidbaetmal energy that
the PCM can store depends ondt$ and amount. During the melting process, the PCM
and, therefore, the system temperature remain constant. Theoutihe melting
process delays the system from reaching its maximum opeilat@nperature, which
prolongs the operational time of the system where the operatioreals defined as the
amount of time it takes for the system to reach its maximumabpeal temperature.
This operational time gain depends heavily on the PCM mass ratichan®CM
thermophysical propertids p, A4H, Ty, andCp. The configuration of the unit containing
the PCM, such as the thermal properties and the distribution hedrandl conductivity

enhancer that encapsulates the PCM, also affects the system’s peréofdtarb].

It is known that the PCM’s conductivity plays a very importarg folthe cooling
system’s performance [45]. Higher conductivity is usually preterbecause it aids in
heat distribution, more uniform PCM melting process, and overalttefémess of the
CMS. Consequently, a higher conductivity of the PCM would increaseetitetransfer

rate and prolong the operational time of the lighting system. ederymany PCMs have
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relatively low conductivity. For example, organic PCMs exhibiatively low thermal
conductivity, even though they, in comparison with metallic PCMs, asederrosive,
more readily available, and less costly. In order to improveotrerall effective
conductivity of the CMS to leverage the advantages of such ordgdbMs, many
researchers suggest filling the PCM into a honeycomb struatumaxing it with metal
foam conductors [46, 47]. However, with a fixed size for the CMS ungteasing the
effective conductivity of the system will decrease the effectivesrobthe PCM material.
This, in turn, reduces the heat storage potential of the systerapyheeducing the
operational time of the lighting system. Hence, this paper zgwlthe optimal volume
fraction of the PCM for attaining the maximum operational tirtna &xed size for the

CMS unit.

2.4 Problem Formulation

During the phase change process (melting or solidification), thé P
encapsulated in a porous material, in this case, metal foam ¢&tFgxist in three states:
solid, liquid, and a two phase mixture. Additionally, the thermal pr@seaf a PCM-
MF matrix are different from the constituent properties. Taopfgnthe mathematical
model, the PCM-MF combination can be treated as a body of unifornvaanii
physical and thermal properties—principalg, p and k of the PCM and MF. The
effective properties of the mixture are calculated based on theealatio,c of the PCM

material in the mixture, as follows:
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(Co)ert =[A-8)(PCp) e + (PC) perd! £ e (2.1)

where

Pett =(L-€)Pur + € Prcw (2.2)

and as derived in [48],

r(o/Ly)
ke +(13)(1+ /Ly ) (k- ki)
j . @b
ke +(2/3)(b/ L )( k- k)
N J3/2-b/L,
k; +(4r/3J3)(b/L; ) (k- k)

(2.3)

&I

keff: [

whereb/L; is given by the following expression

)
L i(z—r[H\%n (2.4)

Or, in a more simplified yet reasonably accurate fdw,can be calculated as

follows [49]:

Kot =(L-&)Kye + & Koy (2.5)
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This analysis performed in the paper was based on Equation (2.%), irdtead
of tracking the liquid-solid front explicitly, the enthalpy-potgdormulation can be used
in this type of application. The two phase zone is treatedpasoais zone with porosity

equal tog, the liquid fraction, which is defined in the following Equation (2.6):

=0 i <T,

T-T, :
ﬂzﬁ—t ifT,<T<T, (2.6)
p=1 ifT >T

With this definition (also referred to as the lever rule [50f) eathalpy-porosity
technique can be used for modeling the melting process [46]. The twe s is a
region in whichg of the PCM lies between 0 and 1, with 1 corresponding to the PCM
being fully melted and O corresponding to the PCM being fully solid. Woephase
zone is modeled as a “pseudo” porous medium in which the porosity dscheas 1 to
0 as the material melts. When the material has fully cheitethe cell, the porosity

becomes 0.

The enthalpy of the material is computed as the sum.gfandAH:

H,.. =+ AH (2.7)

sens

where

hsens: href+ .[TTref c pdT (2.8)
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The latent heat content of the PCM (a mixture of melted liqual enmelted

solid), L, can now be written in terms bfandg as follows:

AH = gL (2.9)

Obviously, the latent heat conteht, varies between zero (for a pure solid) an@or a

liquid).
For solidification/melting problems, the energy equation can be written as [50]
d(pCpT)/ot=V-(kVT)+ § (2.10)

where §, is the source term to account for the latent heat variation dthingnelting

process. lItis represented by:

S,=-po(AH)/ot (2.11)
And 4H is calculated utilizing the lever rule from Equation (2.6).

Now, temperature can be solved for by the interaction between nitrgye

equation and the liquid fraction equation.

2.5 The Physical Problem and the PCM Material Properties

The physical problem was defined according to the design constodiah LED
light system. The heat input from the vehicle’s lightingexystvas given to be a total of

73.5 W. The maximum permissible temperature of the lighting systesmot to exceed
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90°C and the ambient temperature was given to B€.27The problem is assumed to be
conduction-dominated within the CMS unit, thus the internal natural coweeheat

transfer effect of the PCM can be neglected.

The geometry of the CMS consisted of a cylindrical containeal@minum
material. The container contains a mixture of a PCM suspendadadluminum metal
foam. Figure 2- 1 shows the sketch of the CMS unit. The diarfi2t@nd heightkl) of

the domain were 10 cm and 10 cm, respectively.

Three operating conditions were considered in this investigatiomsbyming
three different boundary conditions. In the first case the unit isneesh to be fitted
outside the engine-hood, exposed to an ambient temperaturéCofa2id air velocity of
40 kilometers per hour (the average speed of the vehicle). gEvie an average
convective heat transfer coefficient of 14 W/ka This case was considered to be the

forced convection (FC) condition.

Line of Al _
symmetn container
y - Bottom  Middle ; Top

— PCM
H suspended in
metal foam

Figure 2- 1. Problem schematic.
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In the second case the unit is assumed to be installed outselegihe-hood, but
with the vehicle at rest. In this case, the temperaturehbairiit was exposed to is the
ambient temperature of Z7. Natural convection would be present in this case,
therefore, a value df = 5 W/nf-K was then determined. This case was considered to be

the natural convection (NC) condition.

Material > kg/m ] C.[Ikg-Kl  AH [I/kg] T, [Cl
MF:
o 2700 963 - -
PCM:
Climsel 1700 3600 280800 70
C 70
PCM:
Thermascorb.175 930 2000 200000 79
PCM:
T80 920 2400 175000 81
PCM: 810 2050 251000 65

Triacontane
Table 2- 1. Properties of some PCM materials and AVletal Foam

Finally, the third case assumed the unit was to be installed ureengine-hood.
The temperature of the environment under the hood (engine tempenaturke) be
extremely high, much higher than the maximum allowable temperatute protected
lighting system. Thus, the unit must be completely isolated. iFlusnsidered to be the
worst operating condition possible, since the unit is operating withoyteaternal

cooling. This case was considered to be the adiabatic (AD) condition.

The thermophysical properties of the PCM and the aluminuml foata used in
this study are listed in Table 2- 1, and are assumed to reroastant over the entire

temperature range encountered in the operation.
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2.6 Numerical Analysis

The commercially available software programs Fluent and ¥®\&ere used to
perform a control-volume-based technique that converts the governingoeguetio
algebraic equations to be solved. This control-volume technique consisteegrating
the governing equations about each control-volume, yielding discreteioeguabat

conserve each quantity on a control-volume basis [51].

A point implicit (Gauss-Seidel) linear equation solver was usecbmunction
with an algebraic multigrid (AMG) method to solve the resultacélar system of

eqguations for the dependent variable in each cell.

For transient simulations, the governing equations were dissilatizboth space
and time. Temporal discretization involved the integration of everyn in the

differential equations over a time st&p

A fully implicit integration scheme was used for integrationth&f unsteady term
(i.e., using “the future time level”). The advantage of the fufiglicit scheme is that it
is unconditionally stable with respect to the time step sizegridxindependence study

was carried out to test the sensitivity of the solution to the grid size.
2.7 Results and Discussion

It is very important to select a PCM withTg that is close to the maximum

allowable temperature of the protected system to attain its gmformance [52].
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According to our survey, the PCMs listed in Table 2- 1 are antbagmost suitable
organic PCMs which satisfy the above condition for the thermal mareajerhthe LED

lighting system.

Use of a different PCM involves a tradeoff among various factogs, the
cooling effectiveness, the operational time, and the thermal portedfor example, as
can be seen, ClimSel C70 clearly has the highidsk, and pCp). However, itsTy, is too
low when compared with the target protection temperature®C90 which will be
overprotective in practice. Thermasorb-175 and RT80 have a much Tlpseithat of
the failure temperature of the lighting system. However, these(along with RT80)

have much lower values fop Cp) andAH.

14000
12000
— 10000
O z
[} 3
§ 8000 5
e ) —o— Climsel
g€ 60001 - o- RT80
2 ] .-~ - Triacontane
S _ Donneens '~ —-v-- Thermasorb
<3 1
& 4000 .
| oI s~ e
C ~‘*'@~\\.\\ A
g

0.65 0.70 0.75 0.80 0.85 0.90
Volume fraction (<)
Figure 2- 2. Maximum operational time achieved fowvarious £'s of four different PCM’s.

In this study, all four PCMs were tested over a range of voluacgions in order

to see which PCM can give the longest operational time forighéng system. The
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results of this investigation were plotted in Figure 2- 2. Fi@ur2 clearly shows that all
four PCM-MF mixtures yield about the same duration of operatioma &t a volume

fraction of¢= 0.75.

Figure 2- 2 also indicates that ClimSel C70 yielded the Idrayeational time in
comparison with the rest of PCMs. Therefore, ClimSel C70 Wwasen for the rest of

the study to be discussed below.

To illustrate the operation of the CMS more closely, we caledlahe liquid
fraction () at different operational times. Time zero was definethadime when the
LEDs were turned on to generate a heat flQy ¢f 73.5 W. Figure 2- 3 shows the
variation of # versus the operational time of the PCM-MF mixture at the ttyes of
boundary conditions as mentioned above: the forced convection, FC, the natural
convection, NC, and the adiabatic, AD. Figure 2- 3 shows that undd&oafidary
conditions, the PCM was fully melted after a certain duration ofatipa under the
given conditions (heat load, driving velocity, geometry of the CM&).etAs expected,
the FC boundary conditions corresponded to the longest melting tidizd60 seconds
in this case), which defines the operational time of the CMS. UhéeAD boundary
condition, heat transfer out of the system is zero. Thus, thengeued to melt the PCM
was the shortest. It is desirable to prolong the operationa) #ind one possible strategy

involves using a different geometry of the CMS.
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Figure 2- 3. The time evolution ofg of the PCM.

Figure 2- 4, Figure 2- 5, and Figure 2- 6 show the transiemeture history of
the CMS at different locations under the three boundary conditionsQhRE& and AD
cases, respectively. These figures illustrate the rigbeofemperature as a function of
operating time at the bottom, the middle, and the top sections oMge @s expected,
the bottom section of the unit will readky and the failure temperature first, because it is
in direct contact with the heat source (i.e., the LED arrayjerefore, the temperature at

the bottom section essentially defines the operational time of the CMS.
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Figure 2- 4. Temperature at different locations wihin the CMS under the FC boundary condition.
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Figure 2- 5. Temperature at different locations wihin the CMS under the NC boundary condition.
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Figure 2- 6. Temperature at different locations wihin the CMS under the AD boundary condition.

Figure 2- 7 summarizes the time at which the criticalpenature was reached
under different boundary conditions at different locations. As can loe seéder the FC
condition, the most favorable cooling condition, the bottom section reachexiittbal
temperature after 13,490 seconds (3.7 hours) of operation; under the NGooploé
bottom section reached the critical temperature after 1124d=d@.1 hours) of
operation; and finally, under the AD boundary condition, after 10790 seconds (2.99

hours) of operation.

Again, one possible approach to prolong the operational time of the CMS
involves varying the geometry of the CMS. Enlarging the sfzthe CMS represents a
simple, yet effective method. For example, our calculations shdwédvith a unit size

of 20 cm diameter and 20 cm height, an operational time of 18 hourkecabtained

25



under the FC boundary condition. Research is underway to optimize tla¢i@partime

under various geometrical constraints.
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Figure 2- 7. The operational times for all three bandary conditions at three different locations
within the CMS.

Lastly, we compared the distinct cooling characteristics letvilee PCM-based
method and the method based on a solid metal sink system (SMS)e Eigicompares
the history of temperature rise at the bottom section using@@-based method (the
CMS case) and the cooling method based on a solid unit of aluminunMBege). In
this comparison, both the CMS and the SMS cases were assumed tthénasame
geometry as defined in Figure 2- 1; and both cases were abk$armeerate under the
same conditions as defined previously. As Figure 2- 8 shows, witBNt& system,
temperature increased monotonically until it reached an asympédtie (corresponding
to the steady state value). In contrast, with the CMS sys&mperature first increased

to the melting temperature of the PCM, then remained almost constant aroundtitinge mel
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temperature, and finally started increasing again after @ ®as completely melted.
This difference clearly elucidates the functionality of the P&ydtem as a thermal

switch to tightly control the temperature.

560
] CMS
480 - —FC
_ 1 - - NC
O 400- -+ AD
o ]
5 320- SMS
® ] —o—FC
8 240 —4=NC
S ] - o- AD
o
F 1601
80 - g [T
F T T T T T T T T T
0 4000 8000 12000 16000

Operational time (s)
Figure 2- 8. Operational time comparison between S8 and CMS at all three boundary conditions.

2.8 Conclusions and Discussion

The use of PCMs was investigated for the thermal managemeDofigghting
systems. The advantages of the PCMs to tightly control tetaperaelow the failure
temperature of the LEDs were clearly illustrated. Théopaance and limitations of the
PCM-based cooling methods for such applications were examined udiegsies
numerical simulations. The use of metal foam significantlprowed the cooling
performance, and the optimal MF fraction was determined. Thengoperformance
was also compared to a solid metal sink system and was found te@ffral distinct

cooling characteristics.
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Two conclusions can be drawn from this study. First, a well-ché¥M
provides better control of temperature when compared with a rodtalit sink. Second,
the operational time of the PCM-based method depends sensitively oal actors,
especially the size and geometry of the cooling unit. Resé&argiderway to optimize

the design of PCM-based cooling systems under geometrical constraints.

Current ongoing research involves investigating the performance d?Gihg
based cooling systems under more realistic boundary conditions, addtingli the
numerical analysis via experimental tests. In reality, oendary conditions are
characterized by mixed modes of heat transfer, and transiepétatures. Though the
rigorous is undergoing, many insights can be obtained from thesrggakented here.
For example, the case with an adiabatic boundary condition reprdsemisrist scenario
under a constant under-hood temperature. When the temperature flu@sdtesy as it
does not exceed the temperature studied here), the operationaliltitve prolonged. A
prolonged operational time can also be expected when mixed modest tfalnsfer are

considered.
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Chapter 3: Development of a Sensor for
Simultaneous Droplet Size and Vapor
Measurement Based on Wavelength-

Multiplexed Laser Extinction

3.1 Abstract

Multiphase flows involving liquid droplets in association with a ga fbccur in
many industrial and scientific applications. Recent work has dematewtthe feasibility
of using optical techniques based on laser extinction to simultanemeslyure vapor
(e.g., vapor concentration and temperature) and droplet propergesd¢eplet size and
loading). This work introduces the theoretical background for thenaptiesign of such
laser extinction techniques, which is termed the WMLE (wagttemultiplexed laser
extinction) technique in this paper. After a brief survey of paskwthis paper focuses
on the development of WMLE and presents a systematic methodologyide the

selection of suitable wavelengths and therefore optimize the penfice of WMLE for a
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specific application. WMLE schemes utilizing wavelengths ir@gpngrom 0.5 to 10um
are illustrated for droplet size and vapor concentration measotretheough an example
of water spray and are found to enable unique and sensitive Sauterdmezeter
measurement in the range of ~1 to. b along with accurate vapor detection. A vapor
detection strategy based on differential absorption is developedetadexccurate vapor
measurement to a significantly wider range of droplet loadimtyvepor concentration
compared with strategies based on direct fixed-wavelength almsorpExpected
performance of the sensor is modeled for an evaporating spraywaditkiss expected to
lay the groundwork for implementing optical sensors based on WMLE variety of

research and industrial applications involving multi-phase flows.

3.2 Introduction

In many scientific and industrial applications, multiphase problexist & the
form of liquid droplets in association with a gas flow. The studyayorization or
condensation of liquid droplets inside a spray is one typical examplesuth
applications, it would be desirable to monitor both the vapor and the wrople

simultaneously.

Numerous laser-based techniques have been developed for the separate
characterization of either vapor or droplets. These vapor sensinggieetmnclude laser
Rayleigh scattering [53], spontaneous Raman spectroscopy [53]i-indseed

fluorescence (LIF) [53, 54], spectrally-resolved absorption [55], ahdr&t Droplet
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measurement techniques include the measurement of Fraunhofer idiffrattlaser
radiation by droplets [56], laser phase Doppler anemometry [57], éxs@ction [58,
59], and wavelength-multiplexed laser extinction [60]. Each technigseitaown

advantages and disadvantages and is useful for a certain domain of applications.

However, these techniques are generally not transferable tontldtaseous
monitoring of both vapor and droplet properties. Some vapor sensing techniques based on
elastic scattering such as the Rayleigh scattering techoiqué~ can be extended to
measure both vapor and droplets. However, usually the scatteringlfomiets greatly
exceeds that from the vapor, therefore, jeopardizing or even prohihitiaccarate vapor
measurement. Similar reasoning precludes the direct combination efpaoe and one
droplet measurement technique discussed above for simultaneous vapor and drople
measurements. Furthermore, different techniques usually have mlfteraporal and
spatial resolution, and some of the techniques may require wide optmeds, so that

practical implementation becomes difficult.

Despite these challenges, a few laser-based diagnostic teshrigve been
attempted for simultaneous characterization of vapor and dropleter laguced
Exciplex Fluorescence (LIEF) developed by Melton [61] allowed-dwaeensional
imaging of vapor and droplets simultaneously under limited conditiorsid8s
implementation difficulties, however, the LIEF signal is difficati quantify, and
guenching from oxygen limits most of the LIEF applications to némognvironments

[53]. For more quantitative and realistic applications, Chraplyvy asdk®ff [62, 63]

31



proposed and applied a method based on a two-wavelength laser extsti@tegy to
measure vapor concentration and droplet volume fraction simultaneovslgn i
evaporating fuel spray. This technique requires an independent dragletisiribution
(or droplet size in the case of mono-dispersed droplets) measuyemérthe dynamic

range of measurements offered by this technique was limited.

Of the methods investigated thus far, techniques based on laseriextiaue
especially attractive owing to their relative simplicity implementation and data
interpretation, capability to provide continuous measurement withtifast response,
very limited requirement of optical access, and species spgcifiwavelengths are well
chosen. This paper describes the development of a sensor for simultdngaas and
vapor measurement based on wavelength-multiplexed laser extiG8tMbE). The first
unique feature of this sensor involves the incorporation of laseresoatcan arbitrary
number of wavelengths to expand sensing capability of the diagnmstiore quantities
besides vapor concentration and droplet volume fraction. The second unique featur
involves a vapor sensing technique modified from spectrally-resolvedptios, namely
differential absorption, to significantly improve the detection tliwii vapor sensing.
Experimental demonstration and application of the sensor have beeredegplsgwhere
[64, 65]. Here we describe the sensing strategy and analyzeetiser performance.
Systematic methodologies are developed to guide the selectiaavefangths to achieve
optimized performance for both vapor and droplets measurement, and dxpecte

performance is modeled for an evaporating spray.
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3.3 Theory

When a collimated light beam at wavelengtis incident upon a mixture of vapor

and droplets, the transmitted beam intendijyig¢ related to the incident beam intensity

(lo) by
TA) =111,
= exp{_‘[vapor @ )} eXp‘ETdrops ﬂ’ )] (31)
= eXp{—Ot @ ) X-P- L] exp‘ETdrops @’ )
where:
T(4) = the optical transmittance at wavelength

wapof4) = the vapor absorbance

TaropdA) = the droplet extinction

a(h) = the absorption coefficient of vapor (i)

X = the vapor mole fraction

P = the total (mixture) pressure along the pathlength (atm)
L = the pathlength (cm)

From light scattering theory [66], extinction by a collectioh monodisperse
spherical droplets is related to the number density and size ofirtpdets in the
following equation

.7rD2

"2 ‘QzD/ 2, m- L (3.2)

Tdrops = C
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where:

Cn = the number density of the drop(ets®)

D = diameter of the droplets (cm)

Q(#D/A,m) = the extinction coefficient of a droplet with diameter at
wavelengthil

m = the complex refractive index of thepliets at wavelength

Q(#D/A,m)is a complex function of the incident wavelength and drojpéeneter
and calculation 0Q(zD/A,m) requires numerical methods, except in some special cases.
This work uses a Mie scattering algorithm described in [67tompute the droplet
extinction coefficients. In the case of a collection of polypédised droplets, Equation

(3.2) needs to be modified as

rdmpS:%CnLTQ(ﬂD//l, m) f( D) F dD (3.3)
0

wheref(D) is the droplet size distribution function defingalch thatj” f(D)dD =1,

andf(D)dD represents the probability that a droplet has diambetwee® andD+dD.
Due to the lack of fundamental mechanism or modédbuild droplet size distribution
functions theoretically, various distribution fuiects have been used based on
probability analysis or empirical observations. Agdnormal function, defined as

following, is one of the most commonly used disitibn functions:
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1 1 2
f(D) = 720 Inanp[_ 2(noy -(InD-InD,, )] (3.4)

In this equation, o represents the standard deviation of the distibuti
(distribution width); andDcy the count median diameter, which means 50% of the

droplets in the distribution have diameter smat@nDcy and 50% larger thaDc.

In many calculations and applications, it is congehto restrict the work to
averaged parameters instead of using the completedsstribution function. Based on
f(D), many statistical parameters about the dropletildigion can be defined. Two
useful parameters, the mean scattering coeffic{@tand the Sauter Mean Diameter

(Ds»), are defined as following

5 j:Q(an, m) f(D) D*dD

_ (3.5)
jo f (D)D?dD

[ “ f(D)D%D
Dy = 10— (3.6)
jo f(D)D%dD
Obviously, for a given droplet distributio, depends on the incident wavelength
and some characteristic diameter of the droplts.is used as such a characteristic
diameter in this paper and this dependence is ddna$ Q(zD/4,D,,). Figure 3- 1
provides some example calculations to show theatrans of Q (for mono-dispersed

droplets) andQ (for poly-dispersed droplets) with droplet sizettaiee wavelengths for

water droplets. In the case of poly-dispersed @tspkize distribution functions are taken
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to be the log-normal function defined in EquatiBmj with different distribution widths,
as illustrated in the insert of Figure 3- 1. Refirge indices used in the calculations
shown in Figure 3- 1 are from measurements maf@8in69]. An important observation
is that the positions of principal maxima of theimstion coefficient curve display only a
weak dependence on the widd) Of the log-normal distribution functions. Furthesre,

a weak dependence on the distribution functiorisuad both in our work and in studies
elsewhere [58], especially when the distributiordtwi (characterized by the standard
deviation of the distribution function) is largelsd, note the insensitivity of extinction

coefficients to distribution width at a wavelengthlO um.

monodispersed
Log-norm distribution width

0.34

Qand Q

D,, (um)

Figure 3- 1. Extinction coefficients at three wavelngths for water droplets at a temperature of 22C
with various size distribution functions, as showrin the inset. Refractive indices are taken to be
m=1.335 at1=0.6328um, m=1.42-0.019bat 4=3.39um, and m=1.218-0.0508at A=10 um.

Finally, by introducing a new parameter, the droptdume fractionCy, Equation

(3.2) and (3.3) can be transformed into the follayiorms
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3C,Q(zD/A,m)L

Tarop = D for mono-dispersed droplets (3.7)

and

_3G,QrD, /2, mL

T =
drop
2D,,

for poly-dispersed droplets (3.8)

where Cy is defined as the volume fraction occupied by itqdroplets along the

pathlength, and can be calculated by the folloveqgations
C, =C, % D® for mono-dispersed droplets (3.9)
and

C = an:% D’ f( D)dD for poly-dispersed droplets (3.10)

3.4 Droplet Measurement

3.4.1 Concept

At wavelengths where vapor does not absorb (€1)=0), the optical

transmittance is only due to droplet extinction andiven by

T (/1) = exp[_Tdrops (ﬂ“ )] (3 11)
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where zgropd 4) is given by Equation (3.7) or (3.8).

Transmittance measurement at one wavelength isuifitient to extract droplet
information because of the multiple unknowr@, (and D) in Equation (3.11). If
transmittance measurements are performed at naultipl’elengths (e.gly and 4,), then

from Equation (3.7) and (3.8) we obtain

2-drops(ﬂl) _ Q(ﬂD/ﬂl, m)
Tdrops(ﬂ'z) - Q(ﬂ'D/ﬂz; m)

=R for mono-dispersed droplets (3.12)*

and

2-drops(ﬂl) _ 6(7[ D32 / ﬂ‘l’ m)
Tdrops(ﬂ?) (5(7[ D32 / 12, m)

=R for poly-dispersed droplets (3.13)*

Equations (3.12) and (3.13) state that the rationmfasured extinction at
wavelength4; and A, only depends on droplet size (or size distribufienction) and
equals the ratio of extinction coefficient®) (at these wavelengths. Theoretically, by
measuring the ratio of extinction at multiple waredths and solving Equation (3.12) or
(3.13), the droplet size or size distribution fuoctcan be inferred. Figure 3- 2 provides
an example calculation of the ratio of extinctiopefficients (R) at two wavelengths
(41=1.5 andA,=0.5 um for water droplets to illustrate this conceptr kstance, if the
ratio of extinction at1;=1.5 and4,=0.5 um is measured to be 0.8, then solving Equation

(3.13) will yield D3, ~ 1.6um for the given droplets, as shown graphicallyiguFe 3- 2.

" Due to symmetryi;>),is assumed for the discussions of droplet size mrea®ent in this work.

38



After droplet size or distribution function is detened, other quantities of the spray,
such as the droplet number densit)(and droplet volume fractionC(), can be

determined by the absolute value of the laser etxtin measured at either wavelength.

1.6 — T T T T T T T T 1
9(1.5 L)
1.2 - 0(0.5 um)
(14
0.8
A,=1.5 pm
A,=0.5
0.4 - . um
Water droplet with
log-normal distribution
Distribution width ¢=1.3
0.0 E T y T y T y T g T E T y T y
1 2 3 4 5 6 7 8
D,, (km)

Figure 3- 2. Ratio of extinction coefficients betwen two wavelengths4,=1.5 and4,=0.5um for water
droplets at 22C with a log-normal size distribution function.

Variations of this technique have been previouslyatbped and employed using
two [59, 70, 71] or three wavelengths [72] rangfrgm 0.3 to 3.4um. These studies
achieved droplet size measurement ranges withikD@;24 pum. The continuing
development of laser sources and related wavelangttiplexing technologies in recent
years renders it feasible to extend this schemectade a larger number of multiplexed
laser sources spanning a wider range of wavelen@ihissequently we contemplate the
potential advantages of this extension, for exaptplachieve more sensitive droplet size

determinations over a wider range.
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3.4.2 Selection of Wavelengths

Obviously, it is most desirable to measure the sitribution function for a
complete description of the collection of dropletdowever, it would be also
advantageous to develop a method to guide thetselenf wavelengths for optimized
droplet size measurement based on a mean dianfates droplets, rather than the size
distribution function. Moreover, under some casksplet size can be measured with
reasonable accuracy without detailed knowledge tabwa distribution function [59].
Therefore, this section discusses the selectiowasfelengths based dbs, to achieve

optimized droplet size measurement for a knownribdigion function.

Three quantitative criteria to defineptimized droplet size measurenieat

selected wavelengths are first developed from bsevations made in Figure 3- 2:

Criterion A. For each combination of two wavelengths, the rafi@xtinction

coefficients R) is monotonic only over a certain range of droplieimeter D3,) and the

A
min

lower limit of this range is denoted and upper limiD/,_ as shown in Figure 3- 3.

A
min

A
max

The lower limit (D, ) is zero and upper limitl " ) about 3.2um for the combination

of 1,=1.5 and1=0.5 um for the water droplets specified in Figure 3F&r aD3, outside
this range, this combination of two wavelengthsdoees insufficient to provide a unique
determination oD3,. Criterion A requires that the selected wavelesgitovide unique

determination of droplet size over the range optkbsize to be measured.
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Figure 3- 3. Ratio of extinction coefficients betwen two wavelengths4,=1.5 andA,=0.5um, for
water droplets with a log-normal size distributionfunction. And the sensitivity of this ratio for Da,
measurement.

Criterion B. For each combination of two wavelengths, theorafi extinction
coefficients R) is only sensitive to droplet diamet&s6) over a certain range @f;,. As

for the calculation shown in Figure 3-R,remains virtually unchanged for the range of

D32 near D2 and/or greater than gm. Obviously, insensitivity oR to D3 is not

desirable for droplet size measurement. Criteriaediires that the selected wavelengths

provide sensitive determination of droplet size rotlee range of droplet sizes to be

measured.

In this work, sensitivity of droplet sizingSY is quantified by the following

equation:
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S:|M | (3.14)
dD,,/ D,,

A large S implies that a small proportional change 3, results in large
proportional change IR, therefore, sensitive determination Dk, is enabled. The
sensitivity for the wavelength combination desaliba Figure 3- 2 is calculated in
Figure 3- 3. Different applications may requirefetiént levels of sensitivity. Here we
define a minimum sensitivity of unityS€l) for the purpose of this discussion.
Consequently, a combination of two wavelengthsasstered unacceptable over the

range ofD3,, whereS of this combination is less than unity, and thearplimit of this

range is denoted bp>_ as shown in Fig. 3. Calculations in Figure 3- 8vsla D__, of

about 2.2um for the wavelength combination used in Figur@.3-

Criterion C. For each combination of two wavelengths, theorafi extinction
coefficients R) is very small over a certain range@f,. Based on Equation (3.12) or
(3.13), very smalR implies either very strong or very weak extinctianone of the
wavelengths. However, both very strong extinctio aery weak extinction impair
signal to noise ratio (SNR) of the measurementrafydmittancel{l,) between 0.4 and
0.9 is recommended for optimum extinction measurgmig3]. Based on this
recommendation and Equation (3.1), the optinRufar droplet sizing should lie between
0.1 and 10. Criterion C requires that the raticerfinction coefficients at the selected
wavelengths be between 0.1 to 10 to ensure opti®NR over the range of droplet size

to be measured. This criterion usually imposesagidimit on the applicable range of a
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combination of two wavelengths (under the assumgtiati,> 4, in Equation (3.12) and

(3.13)) and this limit is denoted dY<. as shown in Figure 3- 3.

min

More detailed discussion of these criteria candasd in [60]. Based on these
three criteria, a method is developed to selectiemum number of wavelengths for
droplet size distribution measurement. As an exarapplication of these criteria and the
wavelength selection method, here we describe ¢sgya of sensor to measurement the
D3, of water aerosols following the lognormal disttibn as defined in Equation (3.4)
using wavelengths in the range from 0.25 tqui@ Forty wavelengths uniformly spaced
between 0.25 and 10m (the spacing is 0.2hm) are considered. The Mie extinction
coefficient at each wavelength is calculated usirgrefractive index of water at @2
provided in [68, 69]. Then, the mean extinctionfioents are calculated for a given
distribution, specified by a distribution widtl, and a counter median diamet®BCM
(or equivalently a Sauter Mean Diamet@gp). All the possible ratios formed from these
mean extinction coefficients are then examinedresgdhe three criteria described above
to select the optimized wavelengths. Five wavelendd.25, 0.5, 1.5, 4.0 and jufh, are
selected for 0.783,<12 um and 1.2 &<1.6, where ao of 1.2 corresponds to a very
narrow distribution and @ of 1.6 to a dispersed distribution spanning m&@ntone
decade. Therefore, a WMLE scheme composed of theselengths will enable
sensitive and unique determination of the mean ldtogize over a wide range of

distributions.
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3.4.3 General WMLE for Droplet Measurement

Although the analysis in the preceding sectionased on water droplets with a

specific size distribution function, extension b&étmajor conclusions obtained from this

analysis to other droplet systems is straightfodwar

First. we consider the extension to droplets witier distribution functions. The

conclusions obtained regarding each criterion avé sensitive to size distribution

functions, because the analysis depends primatilye locations of principal maxima of

the extinction coefficient curves, which are relaly insensitive to droplet size

distribution functions as discussed in Figure 3- 1.
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Figure 3- 4. Ratio of extinction coefficients betwen two wavelengths £,=8.0 and4,=0.5um) and the
sensitivity of this ratio for Dz, measurement with a log-normal size distribution furtion. Imaginary
and real part of the refractive index at these wavengths are assumed to change separately in the

calculation.

Second we consider the extension to other dropleia water, for example

hydrocarbon fuel droplets or even composite fuabptbts. This consideration is
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essentially the consideration of the dependentleeodbove conclusions on the refractive
indices of the droplets at the selected wavelengbhs calculations show that the
locations of principal maxima of the extinction ffa@ent curves have a weak
dependence on the imaginary part of the refragtidex but a strong dependence on the
real part of the refractive index. At wavelengthdene the imaginary part of the
refractive index is not very large, the effect wfaginary part is negligible. Figure 3- 4
presents some example calculations to illustrageahalysis. In Figure 3- 4, the ratio of
mean extinction coefficient between 0.5 andu@ are calculated assuming different
imaginary and real parts of the refractive indeguFe 3- 4 shows that a 25% decrease in
the imaginary part of the refractive index has mg#gle impact onR and S and,
consequently has negligible impact on the appleakinge of this wavelength
combination for droplet size measurement. Howeaesmall increase in the real part of
the refractive index causes obvious shifts of thiacpal maxima of the extinction
coefficients toward smalleiDs; and, consequently, the ratios of the extinction
coefficients will behave monotonically over a navev D3, range, and vice versa. Figure
3- 4 illustrates this strong dependence by showhiagja 5% decrease in the real part of
the refractive index results in substantial chaimge andS. In this case, the real part of
the refractive index is decreased. Therefore, dnge in whiclR behaves monotonically
is widened as expected. On the contrary, adoptfothe scheme designed for water
droplets at the end of section 3.2 to droplets witkal part of the refractive index larger

than that for water droplets (e.g., heptane or meahoplets) will result in a narrower
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applicable range oDs3,. More wavelengths can be added to maintain theedagp

measurement range.

Finally, we consider the extension to droplets wdifferent temperatures. The
influence of temperature on wavelength selectianves from the variation of refractive
index with temperature of the droplets. Therefareimilar analysis made in the above
paragraph applies here except that an increaseopiet temperature usually causes a
decrease in the real part of the refractive indexerefore, adoption of the scheme
designed for water droplets at a temperature 822 the end of section 3.2 will yield a
wider applicable range dds, at a higher temperature, as illustrated by theutations

shown in Figure 3- 4 with decreased real part efrdiractive index.

In summary, this section has described a strateged on WMLE for droplet
size measurement and investigated the optimum emgti selection in a spectral range
from 0.25 to 1Qum. An arbitrary number of wavelengths over wideecpal range can
be incorporated into the WMLE scheme to achieveukaneous measurement of

multiple quantities in wider droplet size ranges.

The current availability of laser sources in a wegectral range from deep UV (~
100 nm) to far IR (=1 mm) facilitates consideratioha general WMLE concept. For
example, a large group of gas lasers operate attresgavelength range from about 100
nm to 1 mm. One of the most commonly used devioethis group, the He-Ne laser,

generates wavelengths such as 0.5435, 0.6328,,1ah823.391um. Another gas laser

based on the COmolecule lases between a wavelength range fromo912.4um and
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from 4.6 to 5.8um when frequency-doubled. Therefore, the He-Ne @@4d lasers can
provide the wavelengths shown in Figure 3- 1. Asotlgroup of lasers, the
semiconductor lasers, provide wavelengths rangnmogn fabout 600 nm to 3@um;
especially in the spectrum from 0.6 to L, the semiconductor lasers can generate
virtually any wavelength. Hence the 0.63n wavelength used in Figure 3- 1 can
alternatively be provided by a semiconductor laBeing wavelength tunable, many of
the semiconductor lasers can be employed to prateleesired wavelength and avoid
interference vapor absorption. Besides the gassamdconductor lasers, other common
laser devices commercially available include setite and dye lasers whose output
wavelengths range from about 200 nm to 3.9 mm é&odita300 to 750 nm respectively.
These laser devices provide a great many wavelength wide spectral range and will

significantly enhance the development of the WMEEhnique.

3.5 Vapor Concentration Measurement

3.5.1 Concept

Theoretically, after the contribution from droplettinction is known from the
droplet measurement, the vapor concentration cbeldbtained from the measurement
of extinction at a wavelength where vapor absoé2s §3, 74]. However, the accuracy of
this method is jeopardized when the contributiamfrdroplet extinction is larger than

that from vapor absorption (i.€zrops > wapor) €VEN Wheng a0 itself is large enough to
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allow accurate vapor measurement, therefore lignitthe applicable range of this

method. An alternative strategy has been sougiktend the vapor detection range.

a)

Droplet Extinction

Tdrops(}')

A, , Vapor Absorbance
M T

Wavelength (71)

b)
Differential 4

Signal A

At dro s( )
Mo

N

Figure 3- 5. Schematic of differential absorption sategy for vapor measurement.

Our approach for vapor sensing is based on a diffed absorption concept. This
concept takes advantage of the observation thabrvapsorption varies much more
rapidly with wavelength than the droplet extinctitiased on the fact that vapor spectra
is spectrally narrower than corresponding liquickcdp. Figure 3- 5 illustrates this
concept schematically, withs as the vapor detection wavelength. When extindtiom
droplets exceeds that from vapor absorption as showpart a) of Figure 3- 5 (i.e.
TaropdA3)™> apo43)), vapor measurements at this wavelength suffénteyference from

strong droplet extinction. However, as shown int rof Figure 3- 5, the differential
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vapor absorption betweety and another wavelength (defined asAzapor = | wapol4a) -
wapo(44)|), can be comparable or larger than the differédtiaplet extinction (defined as
Atgrops = | TaropdA3) - Tropd44)[), therefore extending accurate vapor detectiom antvider

dynamic range.

3.5.2 Selection of Wavelengths

Obviously the selection of wavelength% @nd 14) to optimize vapor detection
depends on the spectra of the specific vapor apuadliunder consideration. This section
again uses water as an example to illustrate aadelbgy for wavelength selection, but

the approach is also applicable to other vaporigndl systems.

We first examine the dependence of differentialptirb extinction Azyropg ON
selected wavelengthsif and A4) with the goal of minimizing differential droplet
extinction. Substitution of Equation (3.7) (from nmadispersed droplets) into the

definition of Azyops yields

re,, - X 1QG.D)-QELDIL_ KL o (3.15)

2D 2D

Therefore the dependence Af;ops ON selected wavelengths is equivalent to the

dependence afQ (i.e. the differential extinction coefficient) aelected wavelengths.

Figure 3- 6 shows the droplet extinction coeffitiamd vapor absorption over

wavelength in a spectral range from 0.5 tar® for water vapor and droplets with two
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diameters, using the liquid spectra data of wateasured in [68, 69]; and the vapor
spectra is simulated using HITRAN 2004. Note tHatiee slow variation of extinction
coefficient compared to that of vapor with wavelgn@s mentioned before. Examination

of AQ at different combinations of; and A4 within this spectral range shows a general

profile of AQ similar to that shown in Figure 3- 7, whe¥gis chosen to be pm.

T T T T T
P=1atm
4+ 3% water vapor [~ 4
31 Q for D=6 um 3 —
§
g
g 2 -2 O
l-_)
Q for D=3 ym
14 -1
0 —* = 'ﬁ - 0

1 | é 3 | 4 | 5 | 6 7 8 9
Wavelength (um)

Figure 3- 6. Extinction coefficients for water dropets with different diameters and vapor absorbance
from water vapor from 0.5 to 9 um at 22°C.

Figure 3- 7 reveals that multiple combinations @velengths can be applied to
achieve smallQ for a given droplet diameter. For example, foraptet diameter of 6
um and alz of 5 um, either al4 near5 or 3 um results in smallQ. These wavelength
combinations can be divided into two categoriese fitst category is a combination of
two wavelengths close to each other (lg=5 um and A4 close to5 um in the above
example), and the second is a combination of tweeleagths well separated from each

other (i.e.43 = 5 um and/, close to3 um in the above example). However, the second
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category of wavelength combinations is only applieao cases with small droplet size
changes. As shown in Figure 3- 7, when droplet diamchanges from 6 to8n, 4Q
increases by a large amountlifis well separated froms, while smallAQ is maintained

if A4 is close tol;. Mathematical considerations of the dependend@ oh droplet size
and wavelength validate the generalization of abmh&ervations. Therefore, in general,
wavelengths for vapor measurement by differentizdogption must be close to each

other for applications with varying droplet size.

3.5 T g T . T . T . T . T y T . T g
for 3 um droplet
304 [\ e for 6 um droplet

Figure 3- 7.4Q for water droplet with different diameters when 4; is selected at fum.

Next, we consider the dependence of differentiglovaabsorption Azapo) 0N
selected wavelengthsiq and A4) with the goal of maximizing differential vapor
absorption. Apparently, maximum differential absmnp is achieved by selecting one
wavelength (e.g43) where the strongest vapor absorption occurs aothar wavelength

(e.g. 44) where the weakest vapor absorption occurs oweretitire spectral range of
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interest. For the example of water as shown inrei@4 6, one wavelengtti4) can be at

a vapor absorption peak near 2.7 or m@ Part a) of Figure 3- 8 shows the selection of
Az at 2.6705um, where maximum vapor absorbance occurs in théo2Z350um spectral
range. For the case with varying droplet size, tvigcof major interest to this work, the
second wavelengthif) must be close td;. Part b) of Figure 3- 8 shows water vapor
spectra in the vicinity of 2.670pm. In principle, al4 chosen to be as close Ag as
possible provided that vapor does not absorb at\hvelength can minimizé zops
while maintaining maximum zapor. A A4 0f 2.6720pum as shown in part b) of Figure 3-
8 is an example of such a choice. But in practitker considerations such as avoiding
interference from pressure broadening of the vapectra, may encourage a different

selection ofl,, for example, 2.6818m as shown.

{b) T T T T T T T T T T

3 Q for D=6 um

N
1

A, =2.6705um
} QforD=3um

2.6720 um M =2.6818 yum
1 Vapor absorbance
0 p . Jl e A J'J\—"A

2.660 2.665 Z.GIYG 2675 2.680 2.685 2.690
Wavelength (um)

Figure 3- 8. Wavelength selection of differential akorption scheme for water with a temperature of
22°C, total pressure 1 atm, mole fraction of water vapr 3%, and pathlength of 1cm.

Q and Vapor absorbance
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Finally, we evaluate the applicable range of thevabdifferential scheme for
water vapor detection in an evaporating spray. Heeeconsider a system of water

aerosols bathed in an inert gas undergoing unifevaporation at constant pressure (1
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atm) and temperature (X2), as a simplified model of the aerosol evaporatiehind
shock waves [64]. The system starts at time=0 waifitldroplets at diametdd,, droplet
volume fractionCyo, and no vapor. As time progresses, the diametéreotiroplets )
and the droplet volume fractiof\) decreases due to evaporation and, consequédrgly, t
mole fraction of water vapor in the system increadéhe differential scheme designed
above withA; at 2.6705 and, at 2.6818um is applied to monitor vapor concentration.
Comparison betweenlzops and Aznapor during the evaporation process provides an
evaluation of the applicable range of this vapaerssgg scheme in terms of droplet size
(D), droplet loading €y), and mole fraction of vapor. This work uses taege where
Atapor €XCEEASATy0ps 10 quantify the applicable range of the differahtabsorption

scheme.

This comparison is complicated because it depemdsbath initial droplet
diameter Do) and droplet volume fractionC(o). Comparison at some representative
initial diameter is therefore used to provide asight into the applicable range of the
differential absorption scheme. One such represeataiameter can be obtained by
seeking a diameter to maximize differential drogbetinction (zop¢ in Equation (3.18)
for a given combination of differential absorptigravelengths. This initial diameter,

denoted asD,™, results in maximumdzeps at time=0 in the evaporation process.

Furthermore, both mathematical considerations amdenical computations reveal that

other initial diameters will yield similar or smailAzyops during the entire evaporation

process compared to that yieldedDgt*. Therefore, comparison betweehyops and
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Atapor @t Dy*provides a lower limit of the applicable range dfe tdifferential
absorption, i.e. the applicable range for othetiahdroplet diameters will be similar or
wider than that evaluated &;™. For the differential scheme shown in Figure 3A8at

2.6705 andi4at 2.6818um), D;*is found to be 5..um. Therefore, the range where

ATyapor €XCEEASATy0ps €Valuated atDy=5.1 um represents a lower limit of the

applicable range of this differential absorptiomeste, and this scheme can be applied

for vapor detection in a wider range at otbe's .
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Figure 3- 9. Comparison of droplet extinction and apor absorption at a wavelength of4;=2.6705um
for the evaporation process depicted in Figure 3-(lto evaluate the applicable range of single
wavelength scheme for vapor detection. Evaluationgsformed at a temperature of 23C, pressure 1
atm, and pathlength of 1 cm.

Vapor absorption and droplet extinction at a singd/elength £z=2.6705um)
are first calculated in Figure 3- 9 for a few iaitdroplet volume fractions &p=5.1um.

Note aCyo of 19.36 ppm (parts per million) corresponds te tase that the saturated
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water vapor pressure at the given temperatureashesl when all the droplets in the
system are evaporated. Therefore, & a@higher than 19.36 ppm (for example 40 ppm),
the saturated water vapor pressure is reached wherdroplets are only partially
evaporated (about 50% evaporated in the examplye#0 ppm), and vapor absorption
becomes a constant afterwards. Figure 3- 9 sugtiggtaccurate vapor measurement by
single wavelength is jeopardized by large dropktinetion interference for some range
of droplet volume fraction while vapor absorptiaseif is strong enough to allow
accurate vapor measurement. For example, for the wenC,=40 ppm, after about
10% of the droplets are evaporated, the vapor bhsoe reaches about 10% and
accurate vapor detection can be readily performtethia absorbance level. However,
droplet extinction imposes significant interfererme vapor detection becausdrops
exceedsrapor Dy almost a factor of three at this stage of evatpmn as shown in Figure
3- 9. Once at least 22% of the droplet volume exatps (i.e Cy/Cyo<78%), wapor Starts

to exceed mops and this single wavelength detection scheme besoapplicable

afterwards by the definition in this work.

The differential absorption strategy extends th@ovaneasurement into the range
where strong interference from droplet extinctiompairs the utility of single wavelength
detection. Figure 3- 10 shows the comparison betweg.,s and Axaper When the
differential scheme Az at 2.6705 andl, at 2.6820um) is applied to the evaporating
process described above. Obviousty,apor Starts to exceed zyops much earlier in the

process thargapor Starts to exceedyrops in Figure 3- 9, therefore, a wider domain of
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accurate vapor detection is achieved using diftakabsorption. In the case shown in
Figure 3- 10, vapor detection is limited by the miagle of vapor absorption itself, not
by interference from droplet extinction as in tlase of Figure 3- 9. For example, for the
case whelCy¢=40 ppm, after about 2% of the droplets are evdpdr@.e.C\/C,(<98%),
vapor absorbance starts to exceed droplet extmctiod, therefore, the differential
absorption scheme becomes applicable for vapor ctimte afterward. Although
differential vapor absorbance is low (~1.5%) beeatl®e vapor concentration is low at
this stage of evaporation, stronger differentighal can be achieved by utilizing a longer
pathlength. Note that By of 3.0 pum results in smalledzps than that from @, of 5.1
um, as expected. Also note that the applicable rasigdifferential absorption is not

strongly sensitive to normalized droplet volumefian (i.e.C\/Cyg) from Figure 3- 10.
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Figure 3- 10. Comparison of differential droplet exinction and vapor absorption between the
wavelengths chosen in Figure 3- 9 for the evaporath process depicted in Figure 3- 10 to evaluate the
applicable range of the differential absorption sckme for vapor detection. Evaluation performed at
a temperature of 22C, pressure 1 atm, and pathlength of 1 cm.
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3.5.3 Differential Absorption and Wavelength Availability

Discussions in Section 3.5.2 are based on the gggnmhat light sources are
available at any wavelength to allow the utilizatiof the strongest differential vapor
absorption. Although the strongest differential ma@bsorption cannot be always
accessed in practice due to the lack of light sesurat proper wavelengths, it can be
shown that differential absorption always extendpor detection into wider domain
compared with the single wavelength technique. Mapmnclusions about wavelength
selection are transferable to other droplet/vagstesns than water and the methodology
demonstrated above can be used evaluate the dpeli@nge of specific differential
absorption scheme. For example, currently therenareonvenient and economical laser
devices to provide the wavelengths near 21687 shown in Figure 3- 8, but diode laser
sources are readily available to access the alsorppectra by water vapor near 1.39
um, where the strongest absorption of thevs; band of water vapor occurs. Though the
absorption from water vapor near 139 is weaker than that near 2.pih by about an
order of magnitude, a differential absorption schdmased on the absorption features
near 1.3um still enablesdr,apor tO Start to exceedzops in an early stage of evaporation
in the process described above and, thereforayslémcurate vapor detection in a wide

range of droplet loading and vapor concentration.
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3.6 Summary

Design criteria and methods are developed for 8efethe optimum wavelengths
for simultaneous droplet size and vapor conceptmath sprays. These criteria and
methods are applied to the design of a sensor fterwaerosols and water vapor
measurements. The expected performance of thersensionulated for an evaporating
spray containing both droplet and vapor to supppglication for temporally-resolved
measurements. These results demonstrated thaethesensing technique significantly
extends the applicable range of extinction and mbem methods, in terms of the range
of the droplet size, number density of the droplatgl concentration of the vapor. This
work provides a systematical summary of the thefmy simultaneously measuring
droplet/vapor based on laser extinction, and iseetqu to lay the groundwork for
implementing optical sensors based on WMLE in detarof research and industrial

applications involving multi-phase flows.
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Chapter 4: Investigation of Temperature
Parallel Simulated Annealing for
Optimizing Continuous Functions with
Application to Hyperspectral
Tomography

4.1 Abstract

The simulated annealing (SA) algorithm is a wsliblished optimization
technique which has found applications in many aege areas. However, the SA
algorithm is limited in its application due to thhegh computational cost and the
difficulties in determining the annealing schedul&his paper demonstrates that the
temperature parallel simulated annealing (TPSAYratlym, a parallel implementation of
the SA algorithm, shows great promise to overconesd limitations when applied to
continuous functions. The TPSA algorithm grea#iguces the computational time due
to its parallel nature, and avoids the determimatibthe annealing schedule by fixing the

temperatures during the annealing process. The wcwtributions of this paper are
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threefold. First, this paper explains a simple aifective way to determine the
temperatures by applying the concept of criticahgerature Tc). Second, this paper
presents systematic tests of the TPSA algorithmvanous continuous functions,

demonstrating comparable performance as well-eskednl sequential SA algorithms.
Third, this paper demonstrates the applicationhef TPSA algorithm on a difficult

practical inverse problem, namely the hyperspedtnadography problem. The results
and conclusions presented in this work provideexygected to be useful for the further

development and expanded applications of the TH&#ithm.

4.2 Introduction

The simulated annealing (SA) algorithm was firdstaduced in 1983 for solving
combinatorial optimization problems [15]. Sincernhit has been extensively studied,
with successful demonstrations of its use for bdigcrete [16, 17] and continuous
optimization problems [18-23]. These past reseaftbrts have shown several critical
advantages of the SA algorithm over other optinmratechniques. For example, it can
optimize complicated problems with a large numberaviables and numerous confusing
local minima. In addition, the SA algorithm is insdive to the initial guess, which is

especially important when reopriori information about the solutions is available.

On the other hand, the disadvantages of the SAridign are also well-
recognized. One of the primary disadvantages of $#e algorithm is its high
computational cost [20, 23]. Many research effohat have focused on developing

variants of the SA algorithm to reduce the compomai cost [24-26] can be divided into
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two categories. Efforts in the first category @i to optimize the annealing schedule
[16, 27-30]. However, the optimal annealing schedsusually problem-dependent [27,
28], therefore limiting the applicability of theswts from these efforts. The second
category involves the parallelization of the SAaaithm [25, 31-34]. However, most of

these parallelization schemes do not guaranteeecgence. Some of the parallelization
schemes that do guarantee convergence, (e.g.pécelatively parallelized SA (SPSA)

algorithm [33, 34]) can only achieve a maximum sigeefficiency of log(Nproc), where

Noroc IS the number of processes used to implementétadl@l algorithm.

The above considerations motivate the study oféhgerature parallel simulated
annealing (TPSA) algorithm which combines the vesliablished parallel tempering (or
replica exchange) method [35, 36] and the SA algari[37]. The TPSA algorithm is
another parallel SA algorithm that has theoretycla#ien proven to be convergent [25, 32,
38], while being able to achieve linear speedup. addition, optimization processes
occur at constant temperatures in the TPSA algurittherefore, the TPSA algorithm
does not require an annealing schedule. Once #negngt and ending temperaturek (
andTy) are determined, the remaining temperatures csity ée obtained. However, the
TPSA algorithm has only been studied primarily @tkte functions in previous efforts
[16, 32, 33, 37, 39]. Therefore, it is the goathws current work to conduct a systematic
study of the TPSA algorithm on continuous functiofihis paper first explains a simple
and effective way to determifig andTy by applying the concept of critical temperature
(Tc) which has been successfully demonstrated onwsgomplicated functions in [19].

Then systematic tests of the TPSA algorithm on owaricontinuous functions are
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reported, demonstrating comparable performance el-established sequential SA

algorithms.

The above studies are directly motivated by a pralcapplication, in which a so-
called hyperspectral tomography problem is desioebe solved efficiently to obtaiim
situ measurements of the temperature and concentrafiachemical species [8, 9].
Therefore, the application of the TPSA algorithnmvaleped in this paper was also
applied to solve the hyperspectral problem, illatstg its usefulness and potential for

practical applications.

The remainder of this paper is organized as follow&ection 4.3 provides a
detailed introduction to the TPSA algorithm. Sewtd.4 discusses the determination of
the To and T using the concept of JJ while Sections 4.5 and 4.6 evaluate the
performance of the TPSA algorithm in terms of aacyrand computational time.
Section 4.7 discusses the impact of other parameétgrortant to the TPSA algorithm,
including the relationship between the speedugieficy and the number of processes
(Nproc), and the effects of the exchange frequerieff).( Section 4.8 describes the
application of the TPSA algorithm to a practicabigem, where the TPSA algorithm was
applied to perform tomographic inversion of hypergpal measurements. Finally,

Section 4.9 summarizes the paper.
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4.3 Temperature Parallel Simulated Annealing

The TPSA algorithm, a parallel implementation of A algorithm, offers two
advantages over sequential SA algorithms: 1) therehnation of the annealing schedule
can be avoided by fixing the temperatures as cohdtaoughout the optimization
process, and 2) a reduction in computational tiare lme achieved. Note that under the
context of the SA algorithm, the terftemperature” represents parameterused in the
algorithm, to be differentiated from the physicamperature to be measured in the

hyperspectral tomography technique later in Secti8rof the paper.

The mechanism of the TPSA algorithm has been enguaelsewhere under the
context of combinatorial optimization [16, 32], aisdllustrated in Figure 4- 1 and briefly
summarized here. Firsi+1 temperaturesT( to Ty) are generated and dispatched to
N+1 processes. Then, each process performs an ipgiiom procedure using a
sequential SA algorithm with the assigned tempeeafixed as constant. Here, a well-
established sequential SA algorithm described @) {2 used. After a pre-set number of
iterations on each process, the processes witlcetjgemperatures (labeled Band T’
in Figure 4- 1) exchange their optimal solutionsshswn in Figure 4- 1. The exchange
occurs at a probabilityp as defined in Figure 4- 1. If the solution at thigher
temperature exhibits a smaller function value thizat of the lower temperature, the
solutions are always exchanged. Otherwise, thetisnk will be exchanged with a

probability less than 1. The specific value of fhr®bability is determined by the
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temperature difference betwednand T' (labeled asAT) and the difference in the

functional values (labeled aff).

Temperature
A
T, ¢ = Process 1
AfAT

Exchange with p=min(l,e 1.7’ )
T, Y ¥ Process 2
Ty = 3 Process N
T, LY ¥ Process N+1

t
] ' Time

Figure 4- 1. lllustration of the TPSA algorithm.

This procedure of exchanging solutions starts fitbm processes with the two
highest temperatures and proceed to those withwbdowest temperatures. Therefore,
the downward direction of the exchange tends taeomate the solutions with smaller
function values at lower temperatures, where funtbduction in function values is more
likely to occur and to converge. However, meanghit also becomes less likely to
escape local minima at lower temperatures. Thiseiss solved by the upward direction
of the exchange, where the local minima at lowenperatures can be transferred to
higher temperatures, allowing the TPSA algorithmescape the local minima and find

the global minimum.

One important parameter involved in the above moceis the frequency of the

exchangeEF. This paper defines theF as follows:
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1
- Nadj

step

EF 4.1)

where N9

step

is the number of the step-length adjustments bedach solution exchange.
See [20] for more details about the adjustmentefdtep-length in the sequential SA.

This paper defines the following quantithF, to quantify the performance of

optimization:

AF =F - I:global (4.2)

where F is the minimum value of the target function obeain andFyona the global
minimum of the target function. Obviously A& of zero means the algorithm has found
the global minimum; and a smalldF means the algorithm has approached a solution

that is closer to the global minimum.

10" ion:
] Test function: f,

AF
-
°o

1

—=—SSA
—+— TPSA (EF=6.2510%): Highest T
Y TPSA (EF=6.25102): Lowest T
T T T T T T I T I T T
0 2x10°  4x10° 6x10° 8x10° 1x10°
Number of Function Evaluations
Figure 4- 2. Evolution of AF for both the SSA and TPSA algorithms.

65



Figure 4- 2 compares the typical behaviors of tHESA algorithm and the
sequential SA (SSA) algorithm. The function usetkhs the Griewangk’s function with
5 variables (a detailed description of the funci®provided in the appendix). The same
number of function evaluations was used in botlordlgms. For the SSA algorithm, the
AF is recorded each time the temperature is reduEed.the TPSA algorithm, theF is
recorded each time the solutions exchange. Asshowigure 4- 2, thaF of the SSA
exhibits a decreasing trend as the algorithm ps;aéustrating the convergence of the
algorithm. The fluctuations iiF illustrate the algorithm’s ability to escape local
minima. In contrast, thaF of the TPSA algorithm oscillates around certaitugs.
More specifically, the\F at the highest temperaturg) oscillates around a higher value,
illustrating the upward direction of the exchangad theAF at the lowest temperature
around a lower value, illustrating the concentratad smaller function values towards

lower temperature.
4.4 Determination of Starting and Ending Temperatures

The starting and ending temperaturésand Ty, are critical parameters for the
TPSA algorithm. IfTy is too high, the algorithm will not be efficien¢tause the upward
exchange will almost always be accepted at higlpéeatures. On the other handTfis
too low, the algorithm will be unable to escapealaminima because the probability for
upward exchange diminishes. For similar reasdresTPSA algorithm will be unable to
converge to the global minimum T is too high, and will suffer low efficiency ¥y is

too low. The authors of [16] presented a methodetermine these two temperatures by
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utilizing the Genetic Algorithm (GA). The authdested their method on combinatorial
problems [16] and observed encouraging results.weder, it has been noted that
incorporating the GA further complicates the optation algorithm by requiring
elaborate parameter tuning [75]. Other authorsgestgd adaptivel, and Ty by
maintaining empirically determined acceptance r@fi®], which also complicates the
implementation of the algorithm. This work, themef, seeks an alternative simple

approach to determine tfig andTy.
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Figure 4- 3. Determination ofT, and Ty using theTc-curve.
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The critical temperaturelc, is an important and useful concept in the SA
algorithm. It has been found that the SA algoritexplores the searching space more
efficiently atT¢ than at other temperatures [27, 29, 30]. A rewsrk has examined the
application of T¢ in minimizing continuous functions using sequdn8& algorithms
[19]. Here, we found that the useTf is also effective in determining the starting and
ending temperatures for the TPSA algorithm. Abealiscussed in Sections 4.5 and 4.6,
using the starting and ending temperatures detednioy Tc, the TPSA algorithm

provides comparable performance to well establis$ed algorithms.

Figure 4- 3 illustrates the concept Tf, using the Schewefel’'s function with 4
variables, which is denoted &g A detailed description of this function and thethod
to generate the results shown here can be foufi®]n Briefly, the SSA algorithm was
conducted independently at 10 constant temperatareging from ~10 to ~16. At
each temperature, 10 cases were performed anddhe walue and standard deviation
(std) of theAF’s were recorded. The top panel of Figure 4- 3ashthe mean value of
theAF’s with the error bar representing the std ofAlés, while the bottom panel shows
the std. The results shown in Figure 4- 3 cle#idgtrate that the SA algorithm exhibits
three distinct behaviors at different temperat@gians. First, when the temperature is
high (>10), the output from the algorithm is characterizgdablargeAF and std. The
reason for this behavior is that when the tempegais sufficiently high, the SA
algorithm essentially samples the function randemésulting in highAF and std.
Second, when the temperature is sufficiently lovi0fy the algorithm essentially

samples the local minima of the function randondgduse the algorithm cannot escape a
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local minimum once the algorithm enters one, rasylin highAF and std again. Third,
in the temperature range of ~?10 1, the results are characterized by both smgll
and std. This paper names the temperature at which the eshalid ofAF’s occurs aJ¢
(Tc~10° for thefssfunction), and the curve shown in the lower parfdFigure 4- 3 the
Tc-curve. It has been shown that, in the region figathe SA algorithm has a high
probability of locating the global minimum for vaus problems with complicated

energy landscapes as demonstrated in [19].

Here, we use th&:-curve generated as described above to determengtdinting and
ending temperatures for the TPSA algorithms. Sisadly, the starting and ending
temperatures are chosen to be the temperature irmtelgdhigher and lower thafc,
respectively, as shown on tiig-curve. The effectiveness of this simple schemikebei

demonstrated in Sections 4.5 and 4.6.

4.5 Evaluation of Performance

To evaluate the performance of the TPSA algoritd the effectiveness of the
scheme for determinin@ andTy, a TPSA algorithm was implemented in FORTRAN 90
and compared to a well-established SSA algorith@). [2Note that there are also other
variations of the SSA algorithms [10, 11], and @ulMd be interesting to examine which
SSA algorithm is optimal for parallelizing undeetiPSA scheme. However, such an
examination is out of the scope of this currentky@nd merits a full-length paper by

itself. Therefore, in this work, we chose to wavith a well established SSA algorithm

69



[6]. In the SSA, a relative change of function valugs=(10°) during two consecutive
temperature reductions was used as the terminatitamion. Two measures were taken
to make the results comparable. First, both algms are performed using the same
number of function evaluations. More specificatlye SSA algorithm was run using the
parameters recommended in [20] and the aforemesttisiop criteria ofs=10° was
implemented. Upon the termination of the SSA atbor, the number of evaluations of
the target function was recorded. Then the sanmebeu of function evaluations was
assigned evenly across all the processes usedeinf®BA algorithm. The TPSA
algorithm was terminated when the number of fumctevaluations at each process
reached its assigned quota. Second, a local seaslperformed at the end of the SSA
and TPSA algorithms. The local search guaranteasthe global minimum will be
found if either algorithm can locate a solutionmi global minimum. The local search
used the quasi-Newton method with the terminatidterion set asoca=10°, where
cLocal 1S the relative change of function values betwéan consecutive function
evaluations. The computational cost of the loadrsh was less than 1% of SA

evaluations in both the SSA and TPSA algorithms.

The comparisons were made on various functiond) eggresenting a unique
optimization challenge. For example, the Michabtag function with 10 variable$o)
has a global minimum hidden in a deep narrow vaieyed among 10! (~3.6x%)local
minima, and the Schwefel's functiofag function has a global minimum far from the
local minima. More details about these test fumdican be found in the appendix of

[19] and also in the appendix of this paper.
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Number of TPSA TPSA TPSA
Function SSA _
EF=6.25%x10

Evaluations (EF=1) ( 2) (EF=3.91x10)
fa,  1.60x10° 1.00x 10®  1.00x 10%® 1.00x 10*¢ 1.00x 10*°
fes 1.25x10°  2.91x 10  1.00x 10%€ 1.00x 10'€ 9.86x 10°
fuz  2.00x 100  2.60x10®  5.11x10% 3.76x 105 4.22x 105
fus  1.00x 10  2.70x 10"  4.36x 10 4.76x 10%2 4.73x 10*2
fuio 2.00x10°  1.14x10¥®  2.74x 10% 2.74x 101 1.45x 101
frat 5 50x1F  6.48x10%2  1.00x 107 8.88x 10%° 9.95x 10*

0

fres  1.10x 1P 1.69x 10"  2.67x 10% 3.13x 101 1.18x 10%°
fs,  1.00x 1P 7.40x 103 5.51x 10*2 5.29x 10*2 5.51x 10*2
f  1.20x 1¢P 2.98x 1P 1.07x 10 1.01x 10 1.08x 10!
fs, 2.32x10°  8.11x10Y%  1.61x10Y 1.68x 10! 1.73x 101

Table 4- 1. The best\F of SSA and TPSA on the Selected Test Functions

To compare the SSA and TPSA algorithm3cacurve was generated for each of
the test functions, from which th& and Ty for the TPSA algorithm and the initial
temperature for the SSA algorithm were determin@d.computations were performed
on two Dell workstations with dual Intel Xeon queake processors (X5482, 3.2 GHz).
A set of results is listed in Table 4- 1 and Tadle2, and plotted in Figure 4- 4. The
results are presented in termsA4sf as defined before and also in termsAgfas defined
below to quantify the distance between the solutibtained and the true solution at the

global minimum:
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(4.3)

AX= HX_ Xylobal

where x is the solution obtained from the SSA or TPSA Hthm, andXgepa is the
solution at the global minimum. For each functi8@,runs were performed using either
the SSA or TPSA algorithm, with different randonede The best results from these 30

runs were selected and listed in Table 4- 1 andeT&b2, and also plotted in Figure 4- 4

for better visualization.

differentEF’s to illustrate the effects of exchange frequency.

The results from the PP8Igorithm are reported at three

Number of TPSA TPSA TPSA
Function SSA

Evaluations (EF=1) (EF=6.25x107) (EF=3.91x10%
fs, 1.60x10° 3.06x10°  9.20x 10% 4.35x 105 7.54x 10%°
fes  1.25x10°  3.41x 10° 2.93x 10° 1.69x 10° 6.28x 10
fuz  2.00x 100  6.55x 10° 4.53x 10° 6.17x 108 5.75x 108
fus  1.00x 1P  2.43x 10° 9.91x 108 1.63x 107 1.50x 107
fuo 2.00x10°  1.86x 10° 2.63x 10" 2.63x 107 2.42x 10"
frao  2.50x 10°  7.43x 10° 1.20x 10*° 7.19x 10* 9.95x 10*
fres 1.10x 1P 1.18x 10° 2.51x 10° 8.87x 10° 2.01x 10°
f,  1.00x 1P  5.44x 1& 7.16x 107 3.45x 10° 3.94x 10°
fe 1.20x10°F  1.72x 1@ 1.61x 10° 1.54x 10° 3.04x 10°
fop,  2.32x10°  4.82x 107 4.19x 10° 8.20x 10° 1.00x 10°

Table 4- 2. The besiAx of SSA and TPSA on the Selected Test Functions
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Figure 4- 4. Comparison of the SSA and TPSA algofhitms on various test functions.

As shown by these results, Bf=6.25x10" andEF=1, the TPSA algorithm provides
better or comparable performance both in termdFond Ax as the SA algorithm. Such
performance across various test functions demdastthe effectiveness of the TPSA
algorithm for continuous functions and the methoddeterminingT, and Ty using the
Tc-curve. Also as shown by the results, the perfoceaof the TPSA algorithm
deteriorates aEF decreases. At dBF of 3.91x10°, the TPSA does not perform as well
as the SSA algorithm on some of the test functiokkre detailed discussions on the

effects of theEF on the performance and computational cost areigeedvin Section 4.7.
4.6 Evaluation of Computational Cost

The previous section discussed the performandkeoTPSA algorithm in terms

of its accuracy, this section focuses on its compaal cost.
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Figure 4- 5. Computational time of the TPSA algorihm as a function of the exchange frequency.

First, the effects oEF on the computational cost were examined. Figuré 4
illustrates the impact of thEF on the computational time of the TPSA algorithithe
TPSA algorithms at variouEF's ranging from ~16 to 1 are implemented using 16
processes and applied to 3 test functions, anc¢heal computational time (the wall-
clock time) was recorded and plotted in Figure 4- Bhe same number of functions
evaluations was (as determined by the method destat the beginning of Section 4.5)
performed at eacltF for each test function. As illustrated by thessults, the
computational time increases &$ increases, due to the computational overhead
involved in evaluating the exchange criteria andexthanging information between
different processes. At d&fF=1, the actual computational time was about 3x ntloae
that at arEF=6.25x10%; and the benefits of such increased computatitme were the
improved performance as shown in Table 4- 1 andeTdb 2. These computational

times were also compared with the time witgh was set to zero. WheBF=0, the
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TPSA algorithm essentially reduces to a serieslagstc Metropolis algorithms, each
running at a fixed temperature. The computatidina in this case represents the time
for actually evaluating the functions (i.e., withayvaluating the exchange criterion and
without communication between the processes). &tigges were shown on Figure 4- 5
by the straight lines labelddF=0. The difference between the computational timtes
various EF's and that atEF=0 represents the computational overhead in theATPS

algorithm due to exchanges.

Second, the effects of the number of procesSgs( on the computational cost
were examined. Ideally, the computational timeusth@xhibit a linear or super-linear
dependence oNoe. Here, to quantify the speedup efficiency of THRSA algorithm,
the following parameter) is defined:

3 Computational time of SSA
(Computational time of TPSAN

(4.4)

proc

where all the times are wall-clock time. Cleadyindicates the efficiency of the parallel
algorithm: ®=1 means a linear speedudp;1 a super-linear speedup, ahdl stands for

a sub-linear speedup. Figure 4- 6 shows the oelsttip betweer andN, at different
EF's for two test functions. The TPSA algorithm waglemented on various numbers
of processes ranging from 2 to 64. At edih., 30 test runs were conducted. The points
in the figure represent the mean valuebofor these 30 cases and the error bars the std.
As Figure 4- 6 shows, the std is generally quitalsiftoo small to be visible in many

cases shown here), evidencing the repeatabilitiyeofuns.
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Figure 4- 6. The relationship between the speeduffieiency and the number of processes used in the
TPSA algorithm.

As can be seen, a highEF (corresponding to a larger computational overhead)
results in a smalle®. At a specificEF, the @ exhibits a weak dependence Npoc,
which might be due to the particular structure of workstations. At aiF of 3.91x10
3 a slightly super-linear speedup can be achievethiorange OoNproc tested. However,
at largeEF's, the TPSA algorithm only enables sub-linear gpge due to the increased

overhead as shown in Figure 4- 5.
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4.7 Preliminary Study of Exchange Frequency

The results reported in Sections 4.5 and 4.6 sigpat TPSA provides better
performance at largdfF, at the cost of increased computational time. rdfoee, it is
highly desirable to have some insight into optimigithe tradeoff between the
performance and computational time. Previous studin such optimization have
focused on discrete functions [16, 32], and hawvshthat the performance of the TPSA
algorithm becomes insensitive tF after a certain value. Here, we examined the
dependence of the TPSA’s performanceEdnfor continuous functions, and found that

the pattern of the dependence is more complichgau for discrete functions.

Two representative patterns were selected and showigure 4- 7 and Figure 4-
8. In these figures, the TPSA algorithm was im@atad on 16 processes to minimize
various test functions, and 30 cases were run oh &t function. The mean and std
(represented by the error bar) of the obtained for these 30 cases were shown here.
Figure 4- 7 shows the “normal” patterns, i.e., plegformance of the TPSA improves as
EF increases for the test functions shown in Figuré.4This pattern is what one would
intuitively expect: the algorithm should locate th@bal minimum more accurately if
information across at different processes is exgbdmmore frequently. In contrast, the
patterns shown in Figure 4- 8 are “abnormal”, whéee performance shows a weak or
even fluctuating dependence BR. As the top panel of Figure 4- 8 shows, for e
function, the performance (again measured in terfo= and its std) fluctuates withF;

and the bottom panel of Figure 4- 8 shows a weakmigence for thi.sfunction.
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Figure 4- 7. Impact of the exchange frequency on ¢éhperformance of the TPSA algorithm for the
fra10 @nd fg;» functions.
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Though the dependence of TPSA’s performance BE6nis complicated as
discussed above and remains as on ongoing reseaedtion, several preliminary
observations can be made for optimizing the trefddmftween performance and
computational cost. First, aBF larger than 6.25x19 already provided comparable
performance to the SSA algorithm as shown in Tdblgé and Table 4- 2, and in Figure
4- 4. Also, TPSA’s performance at B of 6.25x1( is only worse than at &8F of 1

marginally. Second, as Figure 4- 5 shows, the ctatipnal time aEF=1 is about 3x
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more than that @F~10° due to the increased computational overhead. Suethead
will decrease (relative to the computational tiraedvaluating the target function) when
the target function becomes more expensive to atgland many target functions in
practice are considerably more expensive to ewalthen the test functions used here.
Therefore, using akEF=1 might be a feasible practical strategy for mapplications.

Our results agree with the conclusion of [77], vhialso suggests low exchange

frequency.
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Figure 4- 8. Impact of the exchange frequency on ¢éhperformance of the TPSA algorithm for thefg,
and fges functions.
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4.8 Application to Hyperspectral Tomography

This section describes the application of the TR8¥eloped above in a so-called
hyperspectral tomography (HT) problem. The goathef HT problem is to image the
distribution of the property of a chemical specfesg, temperature or concentration)
using of line-of-sight-integrated absorption measegnts at various wavelengths. The
HT problem is highly nonlinear and computationafitensive [4, 8, 9]. Thus there is a
strong motivation to parallelize the solution oé tHT problem, so that it can be solved

quickly forin situanalysis.

Domain of interest

/’ \_‘

Line of sight: ¢ / \D Absorbance

[1] A
p(L, Ay) k Lo | T /
\ Ay Tt

LT

-
\--__- My N Mg i Wavelength
Figure 4- 9. The mathematical formulation of the hperspectral tomography problem.

The mathematical background and experimental deimzdiomn of the HT
problem has been detailed in [4, 8] and [9], reSpely. A brief summary is provided
here for convenience. The configuration of the pidblem is illustrated in Figure 4- 9.
A hyperspectral laser beam (i.e., a laser beamdtemts a wide wavelength range) is
directed along the line of sight, denoted/tp probe the domain of interest as shown in

the left. Absorption by the target species witeatiate the probe laser beam, and the
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absorbance at a certain wavelength (eig.,generally contains contributions from
multiple transitions centered at various wavelesdthcluding that centered Aatitself),
as schematically shown in the right. Here, wepfkg /;), termed a projection, to denote
the absorbance at a projection locatigand a wavelength. The projectionp(L;, 4i),

is expressed by the following integral:

p(L.4)=

D ey T

;S(zk,T(l )): X(1)-@(4—4)- P d (4.5)

wherea andb the integration limits determined by the line @hé and the geometry of
the domain of interes§Ax, T()) is the line strength of the contributing traimitcentered
at a wavelengthi, and depends highly nonlinearly on temperattief4]; T() andX ()
the temperature and mole fraction profile of theabing species along the line of sight,
respectively; @ the Voigt lineshape function [9]; an the pressure, assumed to be
uniform. Note that the physical temperature (iit ohKelvin) here is different from the
“temperature” parameter used in the SA algorithrifie summation runs over all the
transitions with non-negligible contributions, whiccompounds the computational
intensity due to the significant overlap under picat conditions due to various
broadening mechanisms. In this work, the domainindérest is discretized by
superimposing a square mesh in the Cartesian cadedias shown in the left of Figure

4- 1; and the integration in Eq. (4.5) is also discretiaecordingly.

With the above understanding, the hyperspectrabgpaphy problem seeks to

determine the distributions df and X over the discretized domain with a finite set of
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projections as described in Eq. (4.5). Hence, ematiically, the hyperspectral
tomography problem is an inverse problem, which bagn studied extensively.
However, due to the inclusion of multiple waveldrgyand the nonlinear dependence of
the line strength on temperature, the hyperspetdrabgraphy problem poses distinct
challenges and algorithms designed in the pastotabe readily applied. A new
inversion algorithm was therefore developed to eslirthe special challenges of the
hyperspectral tomography problem [7, 8]. The atgor casts the inversion problem into
a nonlinear optimization problem, where tfieand X distributions are retrieved by

minimizing the following function:

3 L, A)=p( L, A4 )]°
Da—rec’xreC):;;[pm( ]p)(l_ij)ﬂv()2 )] (46)

wherepm(L;, 4i) denotes the measured projection at a locdtjoand a wavelength;;
pe(Lj, 4i) the computed projection based on a reconstruttaedd X profile (denoted by
T and X"¢, respectively); and and| the total number of wavelengths and projection
locations used in the tomography scheme, respéctivélowever, the problem is a
nonlinear optimization problem due to the nonlineanperature-dependence of the line
strength and the lineshape function; and typicatimization methods based on the
derivatives (or gradients) of the objective funoticannot be applied. These issues can
be addressed, respectively, by 1) applying a regalioon technique, and 2) using a
stochastic minimization algorithm, the simulatediealing algorithm. More specifically,

the following new target functior} is minimized instead db:

F(T ™, X )= D(T ™, X *)+ 77 R(TV47, R( X 4.7
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where Rr and Rx are the regularization factors for temperature andcentration,
respectively; s and yx are positive constants (regularization parametirsycale the
magnitude ofRr andRx properly such that they do not dominate B(@"°, X% term.
The master functiorf;, is then minimized using the simulated annealilggr&éhm; and
finally, the solution of the minimization problenestribed in Eq. (4.7) provides the

tomographic reconstruction of tieandX distributions.

2000 .Phantom T(K) 2000, T . (K)
1600 1600
1400 1400
10 5 10 40
5
m 00 n m 00 n

Figure 4- 10. Comparison of T phantom and reconstrction obtained using the TPSA algorithm.

Here, we applied the TPSA algorithm to the HT pealml demonstrating its
comparable performance to previous techniquesdaicezl computational time. The left
panel of Figure 4- 10 shows an exampl@hantom used in the study. The phantoms
were generated over a 10-by-10 square grid by sapesing two Gaussian peaks on a
paraboloid to simulate a representative multi-modad asymmetric temperature
distribution of HO in practical combustion devices. Other distitnutphantoms have
been tested and the results obtained are similé#hdse obtained with the phantoms
shown here. A hypothetical HT sensor with 20 bedmsapplied to probe the
distributions, with 10 beams probing in the horizbrdirection and the other 10 in the

vertical direction. Each beam contains 10 wavelesigtrobing 10 different transitions of
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H.,O. A set of simulated projections was then geedraiccording to Eq. (4.5), and the
TPSA algorithm was applied to solve the HT problbyn minimizing Eq, (4.7). A
reconstructed T distribution is shown in the michgdaand the difference between the
reconstruction and the phantom shown in the rigimep The inversion was performed
on the Dell workstation with two Intel Xeon quadre@rocessors (X5482, 3.2 GHz) and
eight processes was applied in the TPSA algoritiife chose to conduct this study on
such a workstation instead of on a large numb@ragessors because the primary object
is to examine whether it is feasible to processhgectral tomography datasitu on a
small workstation or a PC. According to our congpiohal experiments, the HT problem
depends weakly oBF and theEF used here was chosen to be 0.125, consideriria¢he
that the computation of the target function in E7) is considerably more costly than
the exchange overhead. As these results show, TR8A algorithm yielded
reconstructions with high fidelity. In the exampésults shown here, the reconstruction
error was within -40 K to 60 K and the overall restsuction error was 1.56% (defined

as error relative to the phantom averaged ovegrals).

In comparison, Fig. 11 shows an example reconsbrucising the sequential SSA
algorithm [8]. The left panel shows the reconsinmt the mid panel shows the
difference relative to the phantom, and the riginigd shows the difference relative to the
results obtained by the TPSA algorithm shown in. Hi§. The overall reconstruction
error was 1.59% in this case. The results in Figafd Fig. 11 demonstrated that the

TPSA algorithm can achieve comparable reconstnudiitelity as the SSA algorithm.
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Figure 4- 11. Reconstruction obtained using the SS&lgorithm in comparison to the phantom and
that obtained using the TPSA algorithm.

Solving this example problem using the sequentfala®orithm required 430
seconds (~ 7 minutes) of computation time, and Snds (~ 1.7 minutes) using the
TPSA algorithm, representing around 4x reduction computational time. The
computation costs approximately scales linearhhwlite number of grids (i.e., a 20x20
case will require 4x more computation time than 10 case). A 10x10 case
represents a typical current hyperspectral tomdwyrappplication because of two
considerations. First, a 10x10 discretization lreaaly sufficient for many practical
applications; and second, a finer discretizatiosegdmplementation difficulty in practice
in terms of optical access, laser power availghiktc. The processing time also varies
approximately linearly with the number of waveldmgtused, and the specific
configuration of the workstation. A 1.7-minute pessing time in our current study
shows good promising of the TPSA fior situ analysis of HT measurements in many

practical applications.
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4.9 Summary

To summarize, this paper provides a systemati@sinyation of the TPSA
algorithm on continuous functions, with applicatiom a practical problem where
tomographic reconstruction of a chemical speciesoh$ained using hyperspectral
absorption measurements. Two aspects of the #Higonvere considered. First, this
work developed a simple and effective way to deieenthe starting and ending
temperatures for TPSA using the critical tempermtuSecond, this work conducted an
extensive comparison of the TPSA algorithm agamstell-established sequential SA
algorithm, and demonstrated that comparable pegooa can be achieved. The results
show that the TPSA algorithm is a reliable methddiclv can achieve comparable
performance to the SSA algorithm while greatly w@dg the computational time.
Implications of these findings are discussed untier context of the hyperspectral
tomography problem. This work is expected to l&g tgroundwork for further

development of the TPSA algorithm, and for its exjeal applications.
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4.11 Appendix. Test Functions and Their Properties

This Appendix provides the definitions of the testctions and their properties.

The definition offgs is as follows:

5 2 5
. :;4300—1;1003% 1 - 60&x< 60 A1)

The subscript G" specifies that the test function is the Griewdadkinction, and the
subscript "5" refers to the number of variableshie function. The same notation rules
are used for the other test functions. The nunwetocal minima offss are regularly
distributed. The function has its global minimutxa0 ( =1, 2, ...,5) andFgiopa =0, as

illustrated in Figure 4- 12.
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Figure 4- 12. A plot of test functionfgs with respect to the first two variables (the othetthree
variables are set to zero).
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The definition offra1gis as follows:

10
frao =100+ (" —10 cos(2z-x% )) - 5.12x< 5. (A2)

i=1

The function has its global minimum gt=0 ( =1, 2, ..., 10) andrgiopas =0. This
function shares similar features witly, whose local minima are regularly distributed, as

illustrated in Figure 4- 13.
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Figure 4- 13. A plot of test functionfr,o With respect to the first two variables (the othewariables
are set to zero).

The next functiontg,, is defined as:
=X’ +2%;-0.3cos(@x » 0.4cos@x, 9 0.7 <Ix %< (A3)

The global minimum ofg; is at (0, 0) andFgiepa =0. Figure 4- 14 shows a plot of test

functionfg,, illustrating the many irregularly distributed &aninima.
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Figure 4- 14. A plot of test functionfg,.

The Michalewicz’s function witm variables is defined as:

n iLy?2
o == sinx [sin¢ - )f"  0< x <7 (A4)
T

i=1

This function has a global minimum hidden in a deeprow valley buried among!
local minima. The parameter defines the sharpness of the valley containingytbbkal
minimum. Figure 4- 15 shows an example of the Michalewidmisction with five
variables (=5) with the first three variables set to zerdysirating the large number of

local minima and the steepness of the global mimmu
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Figure 4- 15. A plot of test functionfys with respect to the fourth and fifth variables (the first three
variables are set to zero).

The Schwefel’s function with variables is defined as:

fSn:—Zn:xi-sin\/M — 500 x < 50 (A.5)
i=1

This function has its global minimum &t =420.9687 i(=1, 2, ...,n) and Fgigpa =-
418.982N. This function is characterized by a large nundddocal minimawhich are
widely separated from each other, as illustratethbyplot in Figure 4- 16 shows=2).
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Figure 4- 16. A plot of thefs, test function.
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The last test function is the Rosenbrock’s funct{also known as the Banana

function) with 5 variables. The Rosenbrock’s fuaotwithn variables is defined as:
n-1
fron= > 100- (;,, — X Y+ (I- x ¥ — 2.04& x< 2.04  (A6)
i=1

This function features a global minimum that isded inside a long and twisted flat
valley. Finding the valley is trivial, however,ngating through the valley and locating
the exact location of the global minimum is chaliiely. This function has a global

minimum atx, =1 ( =1, 2, ..., 5) andFgiopas =0. Figure 4- 17 shows a plot of the function
with two variables, illustrating the shape andr&ss of the valley, inside which the
global minimum is located.
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Figure 4- 17. A plot of thefgs test function with respect to its first two varialles (other variables are
set to zero).
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Chapter 5: Conclusion

In this final chapter, the results from this work aummarized from the studies of
the application of PCMs, the development of a mesmsant technique for particles in
multiphase environments, and the application offtR8A algorithm to the data analysis.
The latter two developments are expected to ineré@s understanding of the influence

that nanopatrticle sizing has on the thermal enhraanés of nanofluids.

This work first investigated the practical applioat of selected phase change
materials (PCMs) to a practical thermal managensystem for a LED headlight
assembly. The major challenge was the fact thestettorganic PCMs, while possessing
favorable latent heat properties, possessed vevythermal conductivities that would
render any practical application of these materras$ feasible. However, with the
emergence of metal foams which can suspend theddsP@e effective thermal
conductivity can be increased to a level that &pcal in a thermal management system.
It is very clear that, for the system studied, PG3¥lew great promise in protecting the
LED headlight system. PCMs provide delayed timeetach the failure temperature of
these components and are easily integrated ingostrstem without requiring additional
energy input. Finally, an optimization processnduhe optimal volume fraction of the
PCM that maximizes the operational time of the L#adlight assembly. These results

should not only prove the applicability of using M€ to protect the studied LED

92



headlight system, but also demonstrate the apjiliyabf using PCMs in many other

systems needing enhanced thermal protection.

Next, in order to enhance the favorable charatiesisf the PCM based thermal
management system, this work investigated methmdsetasure the size of nanoparticles
within a nanofluid in order to understand the dftbat sizing has on the nanofluid. This
study focused on developing a method to be apptigtie multiphase flow problem of
detecting the size of particles within a multiphasavironment. The expected

performance of the sensor is simulated.

Finally, this work endeavored to improve the inwansalgorithm of the data by
increasing the fidelity of solution while decreagiine computational time, which should
prove valuable to the study of nanofluids. Thigkwdeveloped a new method based on
simulated annealing for analyzing the data in aalfdized fashion (TPSA). By
conducting an extensive comparison of the TPSArdlgn against a well-established
sequential simulated annealing (SSA) algorithng tork demonstrated that comparable
performance can be achieved with reduced computétice. The results showed that
the TPSA algorithm is a reliable method which cahieve comparable performance to
the SSA algorithm while greatly reducing the comapiohal time. Results of the TPSA
algorithm given by this work are expected to lag ¢iioundwork for further development

of the detection of nanoparticles sizing charasties in a nanofluid.
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