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Abstract  

 This work investigates the application of alternative cooling techniques to 

thermal management.  In the first section, this work presents models and extensive 

simulation studies on an alternative cooling strategy based upon phase change materials 

(PCMs) for the thermal management system of a LED headlight assembly.  These studies 

have shown that properly chosen PCMs, when suspended in metal foam matrices, 

increased the thermal conductivity of the PCM. The increased thermal conductivity can 

enhance the cooling characteristics of a practical thermal management system for a LED 

headlight system.  To further enhance the advantages of using PCMs, nanoparticle 

enhanced fluids (nanofluids) are desirable as an additional source of cooling. The use of 

nanofluids motivates the development of a new diagnostic tool for multiphase flows and 

a minimization algorithm for analyzing the data.  For this purpose, the second section of 

this work develops a new technique that is based on wavelength-multiplexed laser 

extinction (WMLE) to measure particle sizes in multiphase flows.  In the final section of 

this work, the simulated algorithm (SA) is investigated for analyzing the data collected in 

this work. Specifically, the parallelization of the SA technique is investigated to reduce 

the high computational cost associated with the SA algorithm. 
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Chapter 1: Introduction 

 

1.1 Motivation 

The increased power demands in electric vehicles, especially when considering 

the vehicles’ components, have hindered the progress of these vehicles.  These increased 

demands are especially difficult when considering the limited battery power available in 

electric vehicles.  Considering this limitation, many vehicle manufacturers are seeking to 

decrease the overall power demand of each vehicle component, such as by using light 

emitting diodes (LEDs) for their headlight systems.  However, these new systems require 

increased thermal protection, especially in outdoor environments.  These increased 

cooling needs demand more power for their individual thermal management systems.  

Since this power is at a premium in electric vehicles, a method to thermally protect these 

headlight systems is desired that requires little to no additional power draw for the 

thermal management system.  This thermal management system must be capable of 

adequately cooling these component systems while maintaining packaging flexibility and 

reliable operation in many environments. 
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Therefore, this investigation first explores the concept of adding a phase change 

material (PCM) based heat sink for a LED headlight assembly.  This strategy will utilize 

the PCM’s natural phase change process in order to provide increased thermal protection 

for this component, while demanding no additional power from the electric vehicle’s 

system.  

To further enhance the favorable aspects of this PCM based heat sink, the 

application of nanoparticle suspended fluid (nanofluid) strategy is examined in this work.  

These nanofluids have been shown in the past to increase the heat transfer capabilities of 

the base fluid.  The main challenge in accurately modeling this increase is that the sizing 

characteristics of these particles must be known.  Therefore, a new diagnostic tool is 

needed for use in the study of multiphase flows.  To address this issue, this work 

investigates a new methodology based on laser extinction to detect the sizing 

characteristics of particles in a multiphase flow.  This methodology uses an optical 

process with multiple wavelengths to provide increased information to detect the sizing 

characteristics of the particles in multiphase flows. 

One of the key issues in this methodology is the inversion process of the data in 

order to retrieve the sizing characteristics.  Therefore, a new algorithm is desired to solve 

the inversion process to retrieve the sizing characteristics correctly.  Therefore, the last 

portion of this investigation seeks to develop an inversion method based upon the 

simulated annealing (SA) algorithm. This inversion method, when implemented in a 
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parallelized fashion, has been shown to be able to solve the problem with high fidelity, 

while reducing the normal computational cost of the SA algorithm. 

1.2 Introduction to Phase Change Materials (PCMs) 

PCMs have been extensively used in many engineering applications, including 

building materials for energy storage improvement [1, 2], energy storage systems [1, 2], 

electronics cooling systems [3-9], etc.  One reason for the attractiveness of PCMs in such 

extensive applications is that, due to its latent heat property, a PCM essentially behaves 

as a thermal switch [10].  When the operation temperature of the target component 

increases to the melting temperature of the PCM, the temperature of the system will 

remain essentially steady until the PCM is completely melted.  This phase change process 

enables the absorption of a large amount of heat without increasing the temperature of the 

electronic system being utilized.  This process is a major consideration for choosing 

PCMs as an alternative cooling technique in this work. 

Another important reason why a PCM-based cooling strategy is particularly 

attractive is the fact that the implementation of a particular PCM is relatively 

straightforward.  A PCM can easily be implemented into an existing thermal management 

system because the latent heat property of the PCM is a natural process that does not 

require any additional energy input from the system.  Also, the PCM can be easily 

implemented as a simple thermal block into an existing cooling system to provide added 

thermal protection of critical components.  For these reasons, the thermal properties of an 

applicable PCM make it an attractive supplement to factory installed cooling strategies. 
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Of important interest is the role that the thermal conductivity of the PCM plays in 

the cooling system’s performance [10].  In particular, organic PCMs exhibit many 

qualities needed in component cooling, including high latent heat, non-corrosiveness, etc. 

[1, 2, 10], but they also exhibit a prohibitively low thermal conductivity [1, 2, 10] to be 

used in practical thermal management systems.  To overcome this limitation of low 

thermal conductivity, it has been the focus of many recent research efforts, including this 

work, to suggest suspending these PCMs in a metal foam matrix [4, 11-14] in order to 

increase the effective thermal conductivity of the suspension.  In conjunction with the 

increase of the thermal conductivity of the PCM based heat sink, an optimization process 

for the selection of the optimal porosity of the PCM utilized must be performed that 

considers both the increase in thermal conductivity and loss of latent heat of the PCM in 

order to provide the maximum operational time in any system.  Considering these factors, 

this work not only will explore the applicability of using a PCM in a proposed thermal 

management system, but also will find the optimal volume fraction of the proposed PCM 

to be utilized for an LED lighting system. 

1.3 Introduction to Wavelength-Multiplexed Laser 

Extinction 

To increase the effectiveness of the favorable aspects of PCMs discussed in the 

previous section, a strategy implementing nanofluids is also considered because of their 

increased heat transfer characteristics.  One of the limiting factors in the study of 
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nanofluids is measuring the size characteristics of the nanoparticles within this 

multiphase flow application.  

Many laser-based techniques have been attempted for this purpose in the past.  Of 

the methods investigated thus far, techniques based on laser extinction are especially 

attractive because of their relative simplicity in implementation and data interpretation, 

capability to provide continuous measurement with fast time response, very limited 

requirement of optical access, and species specificity if wavelengths are well chosen. 

With these factors in mind, this work investigates and develops a sensor for 

particle measurements in multiphase flows based on wavelength-multiplexed laser 

extinction (WMLE).  The sensor developed in this work has the unique advantage of 

incorporating multiple laser sources to expand the sensing capability of the diagnostic.  

With this increased ability, this sensor technique not only monitors the particle size and 

concentration, but also the size distribution and aggregation of the particles.  

1.4 Introduction to Temperature Parallel Simulated 

Annealing  

In order to improve the method for obtaining the sizing characteristics of the 

nanoparticles within the base fluid of a nanofluid, a new inversion method for analyzing 

the data is needed.  This work explores a new technique for this purpose by using the 

simulated annealing (SA) technique. The simulated annealing (SA) algorithm was first 

introduced in 1983 for solving combinatorial optimization problems [15].  Recently, 
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many research efforts have been devoted to successfully demonstrating its use in solving 

both discrete [16, 17] and continuous optimization problems [18-23], revealing several 

critical advantages of the use of the SA algorithm over other optimization techniques.  

For example, the SA algorithm can optimize complicated problems with a large number 

of variables and numerous confusing local minima. In addition, the SA algorithm is 

insensitive to the initial guess, which is especially important when no a priori 

information about the solution is available.  Because of these advantages, the SA 

algorithm shows great promise in solving the sizing characteristics of nanoparticles 

within a base fluid. 

On the other hand, the disadvantages of the SA algorithm are also well-

recognized.  One of the primary disadvantages of the SA algorithm is its high 

computational cost [20, 23].  Many research efforts have focused on developing variants 

of the SA algorithm to reduce the computational cost [24-26] by either  optimizing the 

annealing schedule [16, 27-30], or by parallelizing the SA algorithm [25, 31-34].  

However, the optimization of the annealing schedule is usually problem-dependent [27, 

28], and therefore limits the applicability of the results from these efforts.  For the 

parallelization of the SA algorithm, convergence is not guaranteed, and the maximum 

speedup efficiency is very limited [33, 34].  

Considering these limitations of the SA algorithm and the subsequent methods to 

overcome them, this work studies the application of the temperature parallel simulated 

annealing (TPSA) algorithm, which combines the well-established parallel tempering (or 
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replica exchange) method [35, 36] and the SA algorithm [37].  The TPSA algorithm 

overcomes the above limitations by theoretically guaranteeing convergence; increasing 

the speedup of the parallelization process; and, because the TPSA optimization process 

occurs at constant temperature, not requiring an annealing schedule [25, 32, 38].  

However, the limiting factor to the application of the TPSA algorithm is the fact 

that this algorithm has only been studied primarily on discrete functions in previous 

efforts [16, 32, 33, 37, 39].  Therefore, this work conducts a systematic study of the 

TPSA algorithm on continuous functions that would be applicable to the purpose of this 

work.  

1.5 Objectives of Dissertation 

The first objective of this work is to explore the application of PCMs to an 

existing thermal management system in order to ensure increased thermal protection of a 

LED headlight assembly.  Our studies have found that the use of specific PCMs shows 

promising results in extending the operational time of these components, especially when 

used in conjunction with metal foam suspensions in order to increase the thermal 

conductivity of the PCM being used.  Also, our results have potentially established a 

procedure to optimize the volume fraction of the PCM in order to optimize the 

operational time. 

The next objective of this work is to develop an optical technique combined with 

an inversion method applicable to multiphase flow applications in order to obtain the 
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sizing characteristics of nanoparticles within a nanofluid.  The development of these two 

concepts will enable further understanding of the application of nanofluids to the thermal 

management system using PCMs.  Our studies have demonstrated that the WMLE 

method can effectively measure the size of particles in multiphase environments.  

Furthermore, our studies have shown that the implementation of a new inversion 

algorithm based upon simulated annealing (SA) in a parallelization environment can 

analyze the data obtained accurately under acceptable computational cost.  

This work is based upon the work completed and published in three peer-

reviewed journal articles; therefore, the rest of this work is organized as follows.  In 

Chapter 2, the journal article that explores the application of PCMs to a LED headlight 

system is presented.  Chapter 3 contains the journal article that pursues the development 

of the WMLE method for measuring particle/droplet sizes.  Then, Chapter 4 presents the 

journal article that develops the TPSA algorithm.  The final chapter summarizes the work 

that is contained within this dissertation. 
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Chapter 2: Investigation of the 

Application of Phase Change Materials 

(PCM) 

 

2.1 Abstract 

Phase change materials (PCMs) are extensively used in many engineering areas 

for thermal management purposes. This paper investigated the application of PCMs for 

vehicular systems, especially for the thermal protection of vehicle lighting systems based 

on light emitting diodes (LEDs). Lighting systems based on LEDs offer many 

advantages, however, also pose a smaller margin of error for thermal management. This 

paper analyzed the combined use of PCMs with metal foam for cooling systems. The 

cooling performance was studied numerically under different porosity values of the metal 

foam, and different boundary conditions. The cooling performance was also compared to 

a solid metal sink system (SMS) and was found to offer several distinct cooling 

characteristics. 
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2.2 Nomenclature 

b = half thickness of bump in hexagonal structure of metal foam 

CMS = cooling management system 

SMS = solid management system 

T = temperature  

TM = melting temperature of PCM 

TS = solidus temperature of PCM 

TL = liquidus temperature of PCM 

D = Diameter of CMS and SMS unit 

H = height of CMS and SMS unit 

h = convective heat transfer 

Q = heat added to system 

CP = specific heat at constant pressure 

CPeff = combined effective specific heat of   conductor and PCM 

(ρCP)MF = (ρCP) of the metal foam 

(ρ�CP)PCM = (ρCP) of the PCM 

k = thermal conductivity 

kMF = thermal conductivity of the metal foam 

ks = thermal conductivity of solid metal foam 

kf= thermal conductivity of PCM at its respective solid or liquid phase 

kPCM = thermal conductivity of the PCM 
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keff = combined effective thermal conductivity of  conductor and PCM 

r = area ratio of the solid fiber to void area 

href = reference enthalpy 

hsens= sensible enthalpy 

Tref = reference temperature 

L = latent heat 

Lf = half length of fiber of metal foam 

Sh = source term to correct the latent heat variation during the melting process 

∆H = heat of fusion 

Htot = total enthalpy of material 

∆t = time step 

FC = forced convection condition 

NC = natural convection condition 

AD = Adiabatic condition 

Greek Symbols 

ρ = density 

ρMF = density of the metal foam 

ρPCM = density of the PCM 

ρeff = effective density 

ε = volume fraction of the PCM 

β = liquid fraction 
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2.3 Introduction 

Phase change materials (PCMs) are extensively used in many engineering 

applications.  They are used in energy storage systems [40], electronics cooling systems 

[41], building materials for energy storage improvement [42], heat exchangers [43], and 

many other similar applications.  This paper investigated the applications of PCMs for the 

thermal management in vehicular systems, especially the thermal management of vehicle 

lighting systems based on light emitting diodes (LEDs). Lighting systems based on LEDs 

offer many advantages, including improved energy efficiency and potential for weight 

reduction.  However, such lighting systems also pose a smaller margin of error for 

thermal management because LEDs can be permanently damaged if their operation 

temperature exceeds a critical temperature.  Furthermore, the output power of LEDs 

varies significantly with the operation temperature.  Therefore, a better thermal 

management technique is desired for such light systems.  

A cooling management system (CMS) based on PCMs appear very attractive for 

this purpose because a PCM essentially behaves as a thermal switch.  When the operation 

temperature of the lighting systems begins to exceed that of the melting temperature of 

the PCM, the temperature of the system stops increasing until the PCM is completely 

melted.  Therefore, CMS based on PCMs show good promise to tightly control the 

temperature of LEDs.  But as described above, the operation time of the CMS is 

fundamentally limited by the melting time of the PCM, which was a key parameter to be 
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investigated in this study.  The investigation was focused on maximizing the operation 

time of the CMS while still operating under specified sizing and other restraints. 

More specifically, PCMs are characterized by their TM, ∆H, and their TS and TL 

(Other properties may need to be considered for specific applications, e.g., ρ, chemical 

stability, safety, and flammability [44]).  Once the operating temperature of the system 

being cooled reaches the TL of the PCM, the PCM begins to melt and stores the thermal 

energy that the system releases during this process.  The amount of thermal energy that 

the PCM can store depends on its ∆H and amount.   During the melting process, the PCM 

and, therefore, the system temperature remain constant.  The duration of the melting 

process delays the system from reaching its maximum operational temperature, which 

prolongs the operational time of the system where the operational time is defined as the 

amount of time it takes for the system to reach its maximum operational temperature.  

This operational time gain depends heavily on the PCM mass ratio and the PCM 

thermophysical properties k, ρ, ∆H, TM, and CP.  The configuration of the unit containing 

the PCM, such as the thermal properties and the distribution of a thermal conductivity 

enhancer that encapsulates the PCM, also affects the system’s performance [45, 46].   

It is known that the PCM’s conductivity plays a very important role in the cooling 

system’s performance [45].  Higher conductivity is usually preferred, because it aids in 

heat distribution, more uniform PCM melting process, and overall effectiveness of the 

CMS.  Consequently, a higher conductivity of the PCM would increase the heat transfer 

rate and prolong the operational time of the lighting system.  However, many PCMs have 
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relatively low conductivity.  For example, organic PCMs exhibit relatively low thermal 

conductivity, even though they, in comparison with metallic PCMs, are less corrosive, 

more readily available, and less costly.  In order to improve the overall effective 

conductivity of the CMS to leverage the advantages of such organic PCMs, many 

researchers suggest filling the PCM into a honeycomb structure or mixing it with metal 

foam conductors [46, 47].  However, with a fixed size for the CMS unit, increasing the 

effective conductivity of the system will decrease the effective mass of the PCM material.  

This, in turn, reduces the heat storage potential of the system, thereby, reducing the 

operational time of the lighting system.  Hence, this paper analyzed the optimal volume 

fraction of the PCM for attaining the maximum operational time at a fixed size for the 

CMS unit.  

2.4 Problem Formulation 

During the phase change process (melting or solidification), the PCM 

encapsulated in a porous material, in this case, metal foam (MF), can exist in three states: 

solid, liquid, and a two phase mixture.  Additionally, the thermal properties of a PCM-

MF matrix are different from the constituent properties.  To simplify the mathematical 

model, the PCM–MF combination can be treated as a body of uniform equivalent 

physical and thermal properties—principally CP, ρ and k of the PCM and MF.  The 

effective properties of the mixture are calculated based on the volume ratio, ε of the PCM 

material in the mixture, as follows: 
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 ( ) [(1- )( ) ( ) ] /P eff P MF P PCM effC C Cε ρ ρ ρ= +  (2.1) 

where  

 =(1- )eff MF PCMρ ε ρ ε ρ+   (2.2) 

and as derived in [48], 
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where b/Lf is given by the following expression 
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  =

  
− +  

  

 (2.4) 

Or, in a more simplified yet reasonably accurate form, keff can be calculated as 

follows [49]: 

 =(1- )eff MF PCMk k kε ε+  (2.5) 
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This analysis performed in the paper was based on Equation (2.5).  Also, instead 

of tracking the liquid-solid front explicitly, the enthalpy-porosity formulation can be used 

in this type of application.  The two phase zone is treated as a porous zone with porosity 

equal to β, the liquid fraction, which is defined in the following Equation (2.6):  

 

0                            if  

            if  

1                      if  

s

s
s l

l s

l

T T

T T
T T T

T T

T T

β

β

β

= <

−
= < <

−

= >

 (2.6) 

With this definition (also referred to as the lever rule [50]), an enthalpy-porosity 

technique can be used for modeling the melting process [46].  The two phase zone is a 

region in which β of the PCM lies between 0 and 1, with 1 corresponding to the PCM 

being fully melted and 0 corresponding to the PCM being fully solid.  The two phase 

zone is modeled as a “pseudo" porous medium in which the porosity decreases from 1 to 

0 as the material melts.  When the material has fully melted in the cell, the porosity 

becomes 0. 

The enthalpy of the material is computed as the sum of hsens, and ∆H: 

 tot sensH h H= + ∆
 

(2.7) 

where 

 ref

T

sens ref pT
h h c dT= + ∫

 
(2.8) 
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The latent heat content of the PCM (a mixture of melted liquid and unmelted 

solid), L, can now be written in terms of L and β as follows: 

 H Lβ∆ =  (2.9) 

Obviously, the latent heat content, L, varies between zero (for a pure solid) and L (for a 

liquid). 

For solidification/melting problems, the energy equation can be written as [50] 

 ( ) ( )P hC T t k T Sρ∂ ∂ = ∇ ⋅ ∇ +  (2.10) 

where Sh is the source term to account for the latent heat variation during the melting 

process.  It is represented by: 

 ( )hS H tρ= − ∂ ∆ ∂  (2.11) 

And ∆H is calculated utilizing the lever rule from Equation (2.6). 

Now, temperature can be solved for by the interaction between the energy 

equation and the liquid fraction equation. 

2.5 The Physical Problem and the PCM Material Properties 

The physical problem was defined according to the design constraints of an LED 

light system.  The heat input from the vehicle’s lighting system was given to be a total of 

73.5 W.  The maximum permissible temperature of the lighting system was not to exceed 
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90oC and the ambient temperature was given to be 27oC.  The problem is assumed to be 

conduction-dominated within the CMS unit, thus the internal natural convective heat 

transfer effect of the PCM can be neglected.  

The geometry of the CMS consisted of a cylindrical container of aluminum 

material.  The container contains a mixture of a PCM suspended in an aluminum metal 

foam.  Figure 2- 1 shows the sketch of the CMS unit. The diameter (D) and height (H) of 

the domain were 10 cm and 10 cm, respectively.  

Three operating conditions were considered in this investigation, by assuming 

three different boundary conditions. In the first case the unit is assumed to be fitted 

outside the engine-hood, exposed to an ambient temperature of 27oC, and air velocity of 

40 kilometers per hour (the average speed of the vehicle).  This gave an average 

convective heat transfer coefficient of 14 W/m2-K.  This case was considered to be the 

forced convection (FC) condition.  

Figure 2- 1. Problem schematic. 
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In the second case the unit is assumed to be installed outside the engine-hood, but 

with the vehicle at rest.  In this case, the temperature that the unit was exposed to is the 

ambient temperature of 27oC.  Natural convection would be present in this case, 

therefore, a value of h = 5 W/m2-K was then determined.  This case was considered to be 

the natural convection (NC) condition. 

Material ρ [kg/m
3
] C

P
 [J/kg-K]  ∆H [J/kg]  T

M
 [

o
C] 

MF:   
Al   2700 963 - - 

PCM:   
Climsel  

C 70  
1700 3600 280800 70 

PCM:   
Therma-sorb-175  930 2000 200000 79 

PCM:   
RT80  

920 2400 175000 81 

PCM:   
Triacontane  

810 2050 251000 65 

Table 2- 1. Properties of some PCM materials and Al Metal Foam 

Finally, the third case assumed the unit was to be installed under the engine-hood.  

The temperature of the environment under the hood (engine temperature) would be 

extremely high, much higher than the maximum allowable temperature of the protected 

lighting system.  Thus, the unit must be completely isolated.  This is considered to be the 

worst operating condition possible, since the unit is operating without any external 

cooling.  This case was considered to be the adiabatic (AD) condition.     

The thermophysical properties of the PCM and the aluminum metal foam used in 

this study are listed in Table 2- 1, and are assumed to remain constant over the entire 

temperature range encountered in the operation. 
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2.6 Numerical Analysis 

The commercially available software programs Fluent and ANSYS were used to 

perform a control-volume-based technique that converts the governing equations into 

algebraic equations to be solved.  This control-volume technique consisted of integrating 

the governing equations about each control-volume, yielding discrete equations that 

conserve each quantity on a control-volume basis [51]. 

A point implicit (Gauss-Seidel) linear equation solver was used in conjunction 

with an algebraic multigrid (AMG) method to solve the resultant scalar system of 

equations for the dependent variable in each cell.  

For transient simulations, the governing equations were discretized in both space 

and time.  Temporal discretization involved the integration of every term in the 

differential equations over a time step ∆t.  

A fully implicit integration scheme was used for integration of the unsteady term 

(i.e., using “the future time level”).  The advantage of the fully implicit scheme is that it 

is unconditionally stable with respect to the time step size.  A grid-independence study 

was carried out to test the sensitivity of the solution to the grid size.  

2.7 Results and Discussion 

It is very important to select a PCM with a TM that is close to the maximum 

allowable temperature of the protected system to attain its best performance [52].  
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According to our survey, the PCMs listed in Table 2- 1 are among the most suitable 

organic PCMs which satisfy the above condition for the thermal management of the LED 

lighting system.  

Use of a different PCM involves a tradeoff among various factors, e.g., the 

cooling effectiveness, the operational time, and the thermal protection.  For example, as 

can be seen, ClimSel C70 clearly has the highest ∆H, k, and (ρCP). However, its TM is too 

low when compared with the target protection temperature (90 0C), which will be 

overprotective in practice.  Thermasorb-175 and RT80 have a much closer TM to that of 

the failure temperature of the lighting system.  However, these two (along with RT80) 

have much lower values for (ρ CP) and ∆H.  

 
Figure 2- 2. Maximum operational time achieved for various εεεε's of four different PCM’s. 

In this study, all four PCMs were tested over a range of volume fractions in order 

to see which PCM can give the longest operational time for the lighting system.  The 
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results of this investigation were plotted in Figure 2- 2.  Figure 2- 2 clearly shows that all 

four PCM-MF mixtures yield about the same duration of operational time at a volume 

fraction of ε = 0.75.   

Figure 2- 2 also indicates that ClimSel C70 yielded the longest operational time in 

comparison with the rest of PCMs.  Therefore, ClimSel C70 was chosen for the rest of 

the study to be discussed below.  

To illustrate the operation of the CMS more closely, we calculated the liquid 

fraction (β) at different operational times.  Time zero was defined as the time when the 

LEDs were turned on to generate a heat flow (Q) of 73.5 W.  Figure 2- 3 shows the 

variation of β versus the operational time of the PCM-MF mixture at the three types of 

boundary conditions as mentioned above: the forced convection, FC, the natural 

convection, NC, and the adiabatic, AD. Figure 2- 3 shows that under all boundary 

conditions, the PCM was fully melted after a certain duration of operation under the 

given conditions (heat load, driving velocity, geometry of the CMS, etc.).  As expected, 

the FC boundary conditions corresponded to the longest melting time (~ 12,000 seconds 

in this case), which defines the operational time of the CMS. Under the AD boundary 

condition, heat transfer out of the system is zero.  Thus, the time needed to melt the PCM 

was the shortest.  It is desirable to prolong the operational time, and one possible strategy 

involves using a different geometry of the CMS. 
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Figure 2- 3. The time evolution of ββββ of the PCM. 

Figure 2- 4, Figure 2- 5, and Figure 2- 6 show the transient temperature history of 

the CMS at different locations under the three boundary conditions, the FC, NC and AD 

cases, respectively.  These figures illustrate the rise of the temperature as a function of 

operating time at the bottom, the middle, and the top sections of the CMS.  As expected, 

the bottom section of the unit will reach TM and the failure temperature first, because it is 

in direct contact with the heat source (i.e., the LED array).  Therefore, the temperature at 

the bottom section essentially defines the operational time of the CMS. 
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Figure 2- 4. Temperature at different locations within the CMS under the FC boundary condition. 

 

Figure 2- 5. Temperature at different locations within the CMS under the NC boundary condition. 
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Figure 2- 6. Temperature at different locations within the CMS under the AD boundary condition. 

Figure 2- 7 summarizes the time at which the critical temperature was reached 

under different boundary conditions at different locations.  As can be seen, under the FC 

condition, the most favorable cooling condition, the bottom section reached the critical 

temperature after 13,490 seconds (3.7 hours) of operation; under the NC condition, the 

bottom section reached the critical temperature after 11240 seconds (3.1 hours) of 

operation; and finally, under the AD boundary condition, after 10790 seconds (2.99 

hours) of operation.  

Again, one possible approach to prolong the operational time of the CMS 

involves varying the geometry of the CMS.  Enlarging the size of the CMS represents a 

simple, yet effective method.  For example, our calculations showed that with a unit size 

of 20 cm diameter and 20 cm height, an operational time of 18 hours can be obtained 
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under the FC boundary condition. Research is underway to optimize the operational time 

under various geometrical constraints. 

 
Figure 2- 7. The operational times for all three boundary conditions at three different locations 

within the CMS. 

Lastly, we compared the distinct cooling characteristics between the PCM-based 

method and the method based on a solid metal sink system (SMS).  Figure 2- 8 compares 

the history of temperature rise at the bottom section using the PCM-based method (the 

CMS case) and the cooling method based on a solid unit of aluminum (the SMS case).  In 

this comparison, both the CMS and the SMS cases were assumed to have the same 

geometry as defined in Figure 2- 1; and both cases were assumed to operate under the 

same conditions as defined previously.  As Figure 2- 8 shows, with the SMS system, 

temperature increased monotonically until it reached an asymptotic value (corresponding 

to the steady state value).  In contrast, with the CMS system, temperature first increased 

to the melting temperature of the PCM, then remained almost constant around the melting 
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temperature, and finally started increasing again after the PCM was completely melted.  

This difference clearly elucidates the functionality of the PCM system as a thermal 

switch to tightly control the temperature.   

 
Figure 2- 8. Operational time comparison between SMS and CMS at all three boundary conditions. 

2.8 Conclusions and Discussion 

The use of PCMs was investigated for the thermal management of LED lighting 

systems.  The advantages of the PCMs to tightly control temperature below the failure 

temperature of the LEDs were clearly illustrated.  The performance and limitations of the 

PCM-based cooling methods for such applications were examined using extensive 

numerical simulations.  The use of metal foam significantly improved the cooling 

performance, and the optimal MF fraction was determined.  The cooling performance 

was also compared to a solid metal sink system and was found to offer several distinct 

cooling characteristics. 
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Two conclusions can be drawn from this study.  First, a well-chosen PCM 

provides better control of temperature when compared with a metallic heat sink.  Second, 

the operational time of the PCM-based method depends sensitively on several factors, 

especially the size and geometry of the cooling unit.  Research is underway to optimize 

the design of PCM-based cooling systems under geometrical constraints. 

Current ongoing research involves investigating the performance of the PCM-

based cooling systems under more realistic boundary conditions, and validating the 

numerical analysis via experimental tests.  In reality, the boundary conditions are 

characterized by mixed modes of heat transfer, and transient temperatures.  Though the 

rigorous is undergoing, many insights can be obtained from the results presented here.  

For example, the case with an adiabatic boundary condition represents the worst scenario 

under a constant under-hood temperature.  When the temperature fluctuates (as long as it 

does not exceed the temperature studied here), the operational time will be prolonged. A 

prolonged operational time can also be expected when mixed modes of heat transfer are 

considered.  
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Chapter 3: Development of a Sensor for 

Simultaneous Droplet Size and Vapor 

Measurement Based on Wavelength-

Multiplexed Laser Extinction 

3.1 Abstract 

Multiphase flows involving liquid droplets in association with a gas flow occur in 

many industrial and scientific applications. Recent work has demonstrated the feasibility 

of using optical techniques based on laser extinction to simultaneously measure vapor 

(e.g., vapor concentration and temperature) and droplet properties (e.g., droplet size and 

loading). This work introduces the theoretical background for the optimal design of such 

laser extinction techniques, which is termed the WMLE (wavelength-multiplexed laser 

extinction) technique in this paper. After a brief survey of past work, this paper focuses 

on the development of WMLE and presents a systematic methodology to guide the 

selection of suitable wavelengths and therefore optimize the performance of WMLE for a 
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specific application. WMLE schemes utilizing wavelengths ranging from 0.5 to 10 µm 

are illustrated for droplet size and vapor concentration measurements through an example 

of water spray and are found to enable unique and sensitive Sauter mean diameter 

measurement in the range of ~1 to 15 µm along with accurate vapor detection. A vapor 

detection strategy based on differential absorption is developed to extend accurate vapor 

measurement to a significantly wider range of droplet loading and vapor concentration 

compared with strategies based on direct fixed-wavelength absorption. Expected 

performance of the sensor is modeled for an evaporating spray. This work is expected to 

lay the groundwork for implementing optical sensors based on WMLE in a variety of 

research and industrial applications involving multi-phase flows. 

3.2 Introduction 

In many scientific and industrial applications, multiphase problems exist in the 

form of liquid droplets in association with a gas flow. The study of vaporization or 

condensation of liquid droplets inside a spray is one typical example. In such 

applications, it would be desirable to monitor both the vapor and the droplets 

simultaneously. 

Numerous laser-based techniques have been developed for the separate 

characterization of either vapor or droplets. These vapor sensing techniques include laser 

Rayleigh scattering [53], spontaneous Raman spectroscopy [53], laser-induced 

fluorescence (LIF) [53, 54], spectrally-resolved absorption [55], and others. Droplet 
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measurement techniques include the measurement of Fraunhofer diffraction of laser 

radiation by droplets [56], laser phase Doppler anemometry [57], laser extinction [58, 

59], and wavelength-multiplexed laser extinction [60]. Each technique has its own 

advantages and disadvantages and is useful for a certain domain of applications.  

However, these techniques are generally not transferable to the simultaneous 

monitoring of both vapor and droplet properties. Some vapor sensing techniques based on 

elastic scattering such as the Rayleigh scattering technique or LIF can be extended to 

measure both vapor and droplets. However, usually the scattering from droplets greatly 

exceeds that from the vapor, therefore, jeopardizing or even prohibiting an accurate vapor 

measurement. Similar reasoning precludes the direct combination of one vapor and one 

droplet measurement technique discussed above for simultaneous vapor and droplet 

measurements. Furthermore, different techniques usually have different temporal and 

spatial resolution, and some of the techniques may require wide optical access, so that 

practical implementation becomes difficult.  

Despite these challenges, a few laser-based diagnostic techniques have been 

attempted for simultaneous characterization of vapor and droplets. Laser Induced 

Exciplex Fluorescence (LIEF) developed by Melton [61] allowed two-dimensional 

imaging of vapor and droplets simultaneously under limited conditions. Besides 

implementation difficulties, however, the LIEF signal is difficult to quantify, and 

quenching from oxygen limits most of the LIEF applications to nitrogen environments 

[53]. For more quantitative and realistic applications, Chraplyvy and Tishkoff [62, 63] 
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proposed and applied a method based on a two-wavelength laser extinction strategy to 

measure vapor concentration and droplet volume fraction simultaneously in an 

evaporating fuel spray. This technique requires an independent droplet size distribution 

(or droplet size in the case of mono-dispersed droplets) measurement, and the dynamic 

range of measurements offered by this technique was limited.  

Of the methods investigated thus far, techniques based on laser extinction are 

especially attractive owing to their relative simplicity in implementation and data 

interpretation, capability to provide continuous measurement with fast time response, 

very limited requirement of optical access, and species specificity if wavelengths are well 

chosen. This paper describes the development of a sensor for simultaneous droplet and 

vapor measurement based on wavelength-multiplexed laser extinction (WMLE). The first 

unique feature of this sensor involves the incorporation of laser sources at an arbitrary 

number of wavelengths to expand sensing capability of the diagnostic to more quantities 

besides vapor concentration and droplet volume fraction. The second unique feature 

involves a vapor sensing technique modified from spectrally-resolved absorption, namely 

differential absorption, to significantly improve the detection limit of vapor sensing. 

Experimental demonstration and application of the sensor have been reported elsewhere 

[64, 65]. Here we describe the sensing strategy and analyze the sensor performance. 

Systematic methodologies are developed to guide the selection of wavelengths to achieve 

optimized performance for both vapor and droplets measurement, and expected 

performance is modeled for an evaporating spray.  
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3.3 Theory 

When a collimated light beam at wavelength λ is incident upon a mixture of vapor 

and droplets, the transmitted beam intensity (It) is related to the incident beam intensity 

(I0) by  

 
0( ) /

       exp[ ( )] exp[ ( )]

       exp[ ( ) ] exp[ ( )]

t

vapor drops

drops

T I I

X P L

λ

τ λ τ λ

α λ τ λ

=

= − ⋅ −

= − ⋅ ⋅ ⋅ ⋅ −

 (3.1) 

where: 

T(λ)       =  the optical transmittance at  wavelength λ 

τvapor(λ) =  the vapor absorbance 

τdrops(λ) =  the droplet extinction 

α(λ)      =  the absorption coefficient of vapor (cm-1
·atm-1) 

X           =  the vapor mole fraction 

P           =  the total (mixture) pressure along the pathlength (atm) 

L           =  the pathlength (cm) 

From light scattering theory [66], extinction by a collection of monodisperse 

spherical droplets is related to the number density and size of the droplets in the 

following equation 

 
2

( / , )
4drops n

D
C Q D m L

π
τ π λ= ⋅ ⋅ ⋅  (3.2) 
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where: 

Cn                 =  the number density of the droplets (cm-3) 

D                  =  diameter of the droplets (cm) 

Q(πD/λ,m) =  the extinction coefficient of  a droplet with diameter D at 

wavelength λ 

m                 = the complex refractive index of the droplets at wavelength λ 

Q(πD/λ,m) is a complex function of the incident wavelength and droplet diameter 

and calculation of Q(πD/λ,m) requires numerical methods, except in some special cases. 

This work uses a Mie scattering algorithm described in [67] to compute the droplet 

extinction coefficients. In the case of a collection of poly-dispersed droplets, Equation 

(3.2) needs to be modified as 

 2

0

( / , ) ( )
4drops nC L Q D m f D D dD
π

τ π λ
∞

= ∫  (3.3) 

where f(D) is the droplet size distribution function defined such that 
0

( ) 1f D d D
∞

=∫ , 

and f(D)dD represents the probability that a droplet has diameter between D and D+dD. 

Due to the lack of fundamental mechanism or model to build droplet size distribution 

functions theoretically, various distribution functions have been used based on 

probability analysis or empirical observations. A log-normal function, defined as 

following, is one of the most commonly used distribution functions: 
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 2
2

1 1
( ) exp[ (ln ln ) ]

2(ln )2 ln
CMf D D D

D σπ σ
= − ⋅ −  (3.4) 

In this equation, σ  represents the standard deviation of the distribution 

(distribution width); and DCM the count median diameter, which means 50% of the 

droplets in the distribution have diameter smaller than DCM and 50% larger than DCM.  

In many calculations and applications, it is convenient to restrict the work to 

averaged parameters instead of using the complete size distribution function. Based on 

f(D), many statistical parameters about the droplet distribution can be defined. Two 

useful parameters, the mean scattering coefficient ( )Q and the Sauter Mean Diameter 

(D32), are defined as following 
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 (3.5) 
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 (3.6) 

Obviously, for a given droplet distribution, Q  depends on the incident wavelength 

and some characteristic diameter of the droplets. D32 is used as such a characteristic 

diameter in this paper and this dependence is denoted as 
32( / , )Q D Dπ λ . Figure 3- 1 

provides some example calculations to show the variations of Q (for mono-dispersed 

droplets) and Q  (for poly-dispersed droplets) with droplet size at three wavelengths for 

water droplets. In the case of poly-dispersed droplets, size distribution functions are taken 
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to be the log-normal function defined in Equation (3.4) with different distribution widths, 

as illustrated in the insert of Figure 3- 1. Refractive indices used in the calculations 

shown in Figure 3- 1 are from measurements made in [68, 69]. An important observation 

is that the positions of principal maxima of the extinction coefficient curve display only a 

weak dependence on the width (σ) of the log-normal distribution functions. Furthermore, 

a weak dependence on the distribution functions is found both in our work and in studies 

elsewhere [58], especially when the distribution width (characterized by the standard 

deviation of the distribution function) is large. Also, note the insensitivity of extinction 

coefficients to distribution width at a wavelength of 10 µm. 

 
Figure 3- 1. Extinction coefficients at three wavelengths for water droplets at a temperature of 220C 

with various size distribution functions, as shown in the inset. Refractive indices are taken to be 
m=1.335 at λλλλ=0.6328 µµµµm, m=1.42-0.0195i at λλλλ=3.39 µµµµm, and m=1.218-0.0508i at λλλλ=10 µµµµm.  

Finally, by introducing a new parameter, the droplet volume fraction CV, Equation 

(3.2) and (3.3) can be transformed into the following forms  
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τ =  for mono-dispersed droplets  (3.7) 

and 
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V
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D

π λ
τ =  for poly-dispersed droplets (3.8) 

where CV is defined as the volume fraction occupied by liquid droplets along the 

pathlength, and can be calculated by the following equations 

 3

6V nC C D
π

= ⋅    for mono-dispersed droplets (3.9) 

and 

 
 3

 0
( )

6V nC C D f D dD
π∞

= ∫  for poly-dispersed droplets (3.10) 

 

3.4 Droplet Measurement 

3.4.1 Concept 

At wavelengths where vapor does not absorb (i.e. α(λ) = 0), the optical 

transmittance is only due to droplet extinction and is given by  

 ( ) exp[ ( )]dropsT λ τ λ= −  (3.11) 
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where τdrops(λ) is given by Equation (3.7) or (3.8). 

Transmittance measurement at one wavelength is not sufficient to extract droplet 

information because of the multiple unknowns (Cn and D) in Equation (3.11). If 

transmittance measurements are performed at multiple wavelengths (e.g. λ1 and λ2), then 

from Equation (3.7) and (3.8) we obtain 

 
1 1

2 2

( ) ( / , )

( ) ( / , )
drops

drops

Q D m
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τ λ π λ
τ λ π λ

= =    for mono-dispersed droplets (3.12)* 

and  
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2 32 2
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Q D m
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Q D m

τ λ π λ
τ λ π λ

= =   for poly-dispersed droplets (3.13)* 

Equations (3.12) and (3.13) state that the ratio of measured extinction at 

wavelength λ1 and λ2 only depends on droplet size (or size distribution function) and 

equals the ratio of extinction coefficients (R) at these wavelengths. Theoretically, by 

measuring the ratio of extinction at multiple wavelengths and solving Equation (3.12) or 

(3.13), the droplet size or size distribution function can be inferred. Figure 3- 2 provides 

an example calculation of the ratio of extinction coefficients (R) at two wavelengths 

(λ1=1.5 and λ2 =0.5 µm for water droplets to illustrate this concept. For instance, if the 

ratio of extinction at λ1=1.5 and λ2=0.5 µm is measured to be 0.8, then solving Equation 

(3.13) will yield D32 ~ 1.6 µm for the given droplets, as shown graphically in Figure 3- 2. 

                                                 
* Due to symmetry, λ1>λ2 is assumed for the discussions of droplet size measurement in this work. 
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After droplet size or distribution function is determined, other quantities of the spray, 

such as the droplet number density (Cn) and droplet volume fraction (CV), can be 

determined by the absolute value of the laser extinction measured at either wavelength. 

 
Figure 3- 2. Ratio of extinction coefficients between two wavelengths, λλλλ1=1.5 and λλλλ2=0.5 µµµµm for water 

droplets at 220C with a log-normal size distribution function. 

Variations of this technique have been previously developed and employed using 

two [59, 70, 71] or three wavelengths [72] ranging from 0.3 to 3.4 µm. These studies 

achieved droplet size measurement ranges within 0.2<D32<4 µm. The continuing 

development of laser sources and related wavelength-multiplexing technologies in recent 

years renders it feasible to extend this scheme to include a larger number of multiplexed 

laser sources spanning a wider range of wavelengths. Consequently we contemplate the 

potential advantages of this extension, for example, to achieve more sensitive droplet size 

determinations over a wider range. 
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3.4.2 Selection of Wavelengths 

Obviously, it is most desirable to measure the size distribution function for a 

complete description of the collection of droplets. However, it would be also 

advantageous to develop a method to guide the selection of wavelengths for optimized 

droplet size measurement based on a mean diameter of the droplets, rather than the size 

distribution function. Moreover, under some cases, droplet size can be measured with 

reasonable accuracy without detailed knowledge about the distribution function [59]. 

Therefore, this section discusses the selection of wavelengths based on D32 to achieve 

optimized droplet size measurement for a known distribution function.  

Three quantitative criteria to define “optimized droplet size measurement” at 

selected wavelengths are first developed from the observations made in Figure 3- 2: 

Criterion A.  For each combination of two wavelengths, the ratio of extinction 

coefficients (R) is monotonic only over a certain range of droplet diameter (D32) and the 

lower limit of this range is denoted by min
AD  and upper limit max

AD as shown in Figure 3- 3. 

The lower limit ( min
AD ) is zero and upper limit (max

AD ) about 3.2 µm for the combination 

of λ1=1.5 and λ2=0.5 µm for the water droplets specified in Figure 3- 2. For a D32 outside 

this range, this combination of two wavelengths becomes insufficient to provide a unique 

determination of D32. Criterion A requires that the selected wavelengths provide unique 

determination of droplet size over the range of droplet size to be measured. 
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Figure 3- 3. Ratio of extinction coefficients between two wavelengths, λλλλ1=1.5 and λλλλ2=0.5 µµµµm, for 
water droplets with a log-normal size distribution function. And the sensitivity of this ratio for D32 

measurement. 

Criterion B . For each combination of two wavelengths, the ratio of extinction 

coefficients (R) is only sensitive to droplet diameter (D32) over a certain range of D32. As 

for the calculation shown in Figure 3- 2, R remains virtually unchanged for the range of 

D32 near max
AD  and/or greater than 6 µm. Obviously, insensitivity of R to D32 is not 

desirable for droplet size measurement. Criterion B requires that the selected wavelengths 

provide sensitive determination of droplet size over the range of droplet sizes to be 

measured. 

In this work, sensitivity of droplet sizing (S) is quantified by the following 

equation:  
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A large S implies that a small proportional change in D32 results in large 

proportional change in R; therefore, sensitive determination of D32 is enabled. The 

sensitivity for the wavelength combination described in Figure 3- 2 is calculated in 

Figure 3- 3. Different applications may require different levels of sensitivity. Here we 

define a minimum sensitivity of unity (S=1) for the purpose of this discussion. 

Consequently, a combination of two wavelengths is considered unacceptable over the 

range of D32, where S of this combination is less than unity, and the upper limit of this 

range is denoted by max
BD  as shown in Fig. 3. Calculations in Figure 3- 3 show a max

BD  of 

about 2.2 µm for the wavelength combination used in Figure 3- 2. 

Criterion C . For each combination of two wavelengths, the ratio of extinction 

coefficients (R) is very small over a certain range of D32.  Based on Equation (3.12) or 

(3.13), very small R implies either very strong or very weak extinction at one of the 

wavelengths. However, both very strong extinction and very weak extinction impair 

signal to noise ratio (SNR) of the measurement. A transmittance (It/I0) between 0.4 and 

0.9 is recommended for optimum extinction measurement [73]. Based on this 

recommendation and Equation (3.1), the optimum R for droplet sizing should lie between 

0.1 and 10. Criterion C requires that the ratio of extinction coefficients at the selected 

wavelengths be between 0.1 to 10 to ensure optimum SNR over the range of droplet size 

to be measured. This criterion usually imposes a lower limit on the applicable range of a 



 

43 
 

combination of two wavelengths (under the assumption that λ1>λ2 in Equation (3.12) and 

(3.13)) and this limit is denoted by min
CD as shown in Figure 3- 3.  

More detailed discussion of these criteria can be found in [60]. Based on these 

three criteria, a method is developed to select the minimum number of wavelengths for 

droplet size distribution measurement. As an example application of these criteria and the 

wavelength selection method, here we describe the design of sensor to measurement the 

D32 of water aerosols following the lognormal distribution as defined in Equation (3.4) 

using wavelengths in the range from 0.25 to 10 µm. Forty wavelengths uniformly spaced 

between 0.25 and 10 µm (the spacing is 0.25 µm) are considered. The Mie extinction 

coefficient at each wavelength is calculated using the refractive index of water at 220C 

provided in [68, 69]. Then, the mean extinction coefficients are calculated for a given 

distribution, specified by a distribution width, σ, and a counter median diameter, DCM 

(or equivalently a Sauter Mean Diameter, D32). All the possible ratios formed from these 

mean extinction coefficients are then examined against the three criteria described above 

to select the optimized wavelengths. Five wavelengths, 0.25, 0.5, 1.5, 4.0 and 10 µm, are 

selected for 0.7<D32<12 µm and 1.2 <σ<1.6, where a σ of 1.2 corresponds to a very 

narrow distribution and a σ of 1.6 to a dispersed distribution spanning more than one 

decade. Therefore, a WMLE scheme composed of these wavelengths will enable 

sensitive and unique determination of the mean droplet size over a wide range of 

distributions. 
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3.4.3 General WMLE for Droplet Measurement 

Although the analysis in the preceding section is based on water droplets with a 

specific size distribution function, extension of the major conclusions obtained from this 

analysis to other droplet systems is straightforward. 

 First. we consider the extension to droplets with other distribution functions. The 

conclusions obtained regarding each criterion are not sensitive to size distribution 

functions, because the analysis depends primarily on the locations of principal maxima of 

the extinction coefficient curves, which are relatively insensitive to droplet size 

distribution functions as discussed in Figure 3- 1.  

 
Figure 3- 4. Ratio of extinction coefficients between two wavelengths (λλλλ1=8.0 and λλλλ2=0.5 µµµµm) and the 
sensitivity of this ratio for D32 measurement with a log-normal size distribution function. Imaginary 
and real part of the refractive index at these wavelengths are assumed to change separately in the 

calculation. 

Second we consider the extension to other droplets than water, for example 

hydrocarbon fuel droplets or even composite fuel droplets. This consideration is 
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essentially the consideration of the dependence of the above conclusions on the refractive 

indices of the droplets at the selected wavelengths. Our calculations show that the 

locations of principal maxima of the extinction coefficient curves have a weak 

dependence on the imaginary part of the refractive index but a strong dependence on the 

real part of the refractive index. At wavelengths where the imaginary part of the 

refractive index is not very large, the effect of imaginary part is negligible. Figure 3- 4 

presents some example calculations to illustrate this analysis. In Figure 3- 4, the ratio of 

mean extinction coefficient between 0.5 and 8 µm are calculated assuming different 

imaginary and real parts of the refractive index. Figure 3- 4 shows that a 25% decrease in 

the imaginary part of the refractive index has negligible impact on R and S and, 

consequently has negligible impact on the applicable range of this wavelength 

combination for droplet size measurement. However, a small increase in the real part of 

the refractive index causes obvious shifts of the principal maxima of the extinction 

coefficients toward smaller D32, and, consequently, the ratios of the extinction 

coefficients will behave monotonically over a narrower D32 range, and vice versa. Figure 

3- 4 illustrates this strong dependence by showing that a 5% decrease in the real part of 

the refractive index results in substantial change in R and S. In this case, the real part of 

the refractive index is decreased. Therefore, the range in which R behaves monotonically 

is widened as expected. On the contrary, adoption of the scheme designed for water 

droplets at the end of section 3.2 to droplets with a real part of the refractive index larger 

than that for water droplets (e.g., heptane or decane droplets) will result in a narrower 
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applicable range of D32. More wavelengths can be added to maintain the same D32 

measurement range.  

Finally, we consider the extension to droplets with different temperatures. The 

influence of temperature on wavelength selection derives from the variation of refractive 

index with temperature of the droplets. Therefore, a similar analysis made in the above 

paragraph applies here except that an increase in droplet temperature usually causes a 

decrease in the real part of the refractive index. Therefore, adoption of the scheme 

designed for water droplets at a temperature of 220C at the end of section 3.2 will yield a 

wider applicable range of D32 at a higher temperature, as illustrated by the calculations 

shown in Figure 3- 4 with decreased real part of the refractive index. 

 In summary, this section has described a strategy based on WMLE for droplet 

size measurement and investigated the optimum wavelength selection in a spectral range 

from 0.25 to 10 µm. An arbitrary number of wavelengths over wider spectral range can 

be incorporated into the WMLE scheme to achieve simultaneous measurement of 

multiple quantities in wider droplet size ranges.  

The current availability of laser sources in a wide spectral range from deep UV (~ 

100 nm) to far IR (~1 mm) facilitates consideration of a general WMLE concept. For 

example, a large group of gas lasers operate across the wavelength range from about 100 

nm to 1 mm. One of the most commonly used devices in this group, the He-Ne laser, 

generates wavelengths such as 0.5435, 0.6328, 1.152, and 3.391 µm. Another gas laser 

based on the CO2 molecule lases between a wavelength range from 9.2 to 11.4 µm and 
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from 4.6 to 5.8 µm when frequency-doubled. Therefore, the He-Ne and CO2 lasers can 

provide the wavelengths shown in Figure 3- 1. Another group of lasers, the 

semiconductor lasers, provide wavelengths ranging from about 600 nm to 30 µm; 

especially in the spectrum from 0.6 to 1.7 µm, the semiconductor lasers can generate 

virtually any wavelength. Hence the 0.63 µm wavelength used in Figure 3- 1 can 

alternatively be provided by a semiconductor laser. Being wavelength tunable, many of 

the semiconductor lasers can be employed to provide the desired wavelength and avoid 

interference vapor absorption. Besides the gas and semiconductor lasers, other common 

laser devices commercially available include solid-state and dye lasers whose output 

wavelengths range from about 200 nm to 3.9 mm and about 300 to 750 nm respectively. 

These laser devices provide a great many wavelengths in a wide spectral range and will 

significantly enhance the development of the WMLE technique.  

 

3.5 Vapor Concentration Measurement  

3.5.1 Concept 

Theoretically, after the contribution from droplet extinction is known from the 

droplet measurement, the vapor concentration could be obtained from the measurement 

of extinction at a wavelength where vapor absorbs [62, 63, 74]. However, the accuracy of 

this method is jeopardized when the contribution from droplet extinction is larger than 

that from vapor absorption (i.e., τdrops > τvapor) even when τvapor itself is large enough to 
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allow accurate vapor measurement, therefore limiting the applicable range of this 

method. An alternative strategy has been sought to extend the vapor detection range.  

 
Figure 3- 5. Schematic of differential absorption strategy for vapor measurement. 

Our approach for vapor sensing is based on a differential absorption concept. This 

concept takes advantage of the observation that vapor absorption varies much more 

rapidly with wavelength than the droplet extinction, based on the fact that vapor spectra 

is spectrally narrower than corresponding liquid spectra. Figure 3- 5 illustrates this 

concept schematically, with λ3 as the vapor detection wavelength. When extinction from 

droplets exceeds that from vapor absorption as shown in part a) of Figure 3- 5 (i.e. 

τdrops(λ3)> τvapor(λ3)), vapor measurements at this wavelength suffer by interference from 

strong droplet extinction. However, as shown in part b) of Figure 3- 5, the differential 
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vapor absorption between λ3 and another wavelength λ4 (defined as ∆τvapor = |τvapor(λ3) - 

τvapor(λ4)|), can be comparable or larger than the differential droplet extinction (defined as 

∆τdrops = |τdrops(λ3) - τdrops(λ4)|), therefore extending accurate vapor detection into a wider 

dynamic range. 

 

3.5.2 Selection of Wavelengths 

Obviously the selection of wavelengths (λ3 and λ4) to optimize vapor detection 

depends on the spectra of the specific vapor and liquid under consideration. This section 

again uses water as an example to illustrate a methodology for wavelength selection, but 

the approach is also applicable to other vapor and liquid systems. 

We first examine the dependence of differential droplet extinction (∆τdrops) on 

selected wavelengths (λ3 and λ4) with the goal of minimizing differential droplet 

extinction. Substitution of Equation (3.7) (from mono-dispersed droplets) into the 

definition of ∆τdrops yields 
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Therefore the dependence of ∆τdrops on selected wavelengths is equivalent to the 

dependence of ∆Q (i.e. the differential extinction coefficient) on selected wavelengths.  

Figure 3- 6 shows the droplet extinction coefficient and vapor absorption over 

wavelength in a spectral range from 0.5 to 9 µm for water vapor and droplets with two 
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diameters, using the liquid spectra data of water measured in [68, 69]; and the vapor 

spectra is simulated using HITRAN 2004. Note the relative slow variation of extinction 

coefficient compared to that of vapor with wavelength, as mentioned before. Examination 

of ∆Q at different combinations of λ3 and λ4 within this spectral range shows a general 

profile of ∆Q similar to that shown in Figure 3- 7, where λ3 is chosen to be 5 µm.  

 
Figure 3- 6. Extinction coefficients for water droplets with different diameters and vapor absorbance 

from water vapor from 0.5 to 9 µµµµm at 220C. 

Figure 3- 7 reveals that multiple combinations of wavelengths can be applied to 

achieve small ∆Q for a given droplet diameter. For example, for a droplet diameter of 6 

µm and a λ3 of 5 µm, either a λ4 near 5 or 3 µm results in small ∆Q. These wavelength 

combinations can be divided into two categories. The first category is a combination of 

two wavelengths close to each other (i.e. λ3 = 5 µm and λ4 close to 5 µm in the above 

example), and the second is a combination of two wavelengths well separated from each 

other (i.e. λ3 = 5 µm and λ4 close to 3 µm in the above example). However, the second 
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category of wavelength combinations is only applicable to cases with small droplet size 

changes. As shown in Figure 3- 7, when droplet diameter changes from 6 to 3 µm, ∆Q 

increases by a large amount if λ4 is well separated from λ3, while small ∆Q is maintained 

if λ4 is close to λ3. Mathematical considerations of the dependence of Q on droplet size 

and wavelength validate the generalization of above observations. Therefore, in general, 

wavelengths for vapor measurement by differential absorption must be close to each 

other for applications with varying droplet size.  

 
Figure 3- 7. ∆∆∆∆Q for water droplet with different diameters when λλλλ3 is selected at 5 µµµµm. 

Next, we consider the dependence of differential vapor absorption (∆τvapor) on 

selected wavelengths (λ3 and λ4) with the goal of maximizing differential vapor 

absorption. Apparently, maximum differential absorption is achieved by selecting one 

wavelength (e.g. λ3) where the strongest vapor absorption occurs and another wavelength 

(e.g. λ4) where the weakest vapor absorption occurs over the entire spectral range of 
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interest. For the example of water as shown in Figure 3- 6, one wavelength (λ3) can be at 

a vapor absorption peak near 2.7 or 5.9 µm. Part a) of Figure 3- 8 shows the selection of 

λ3 at 2.6705 µm, where maximum vapor absorbance occurs in the 2.5 to 3.0 µm spectral 

range. For the case with varying droplet size, which is of major interest to this work, the 

second wavelength (λ4) must be close to λ3. Part b) of Figure 3- 8 shows water vapor 

spectra in the vicinity of 2.6705 µm. In principle, a λ4 chosen to be as close to λ3 as 

possible provided that vapor does not absorb at this wavelength can minimize ∆τdrops 

while maintaining maximum ∆τvapor. A λ4 of 2.6720 µm as shown in part b) of Figure 3- 

8 is an example of such a choice. But in practice, other considerations such as avoiding 

interference from pressure broadening of the vapor spectra, may encourage a different 

selection of λ4, for example, 2.6818 µm as shown.   

 
Figure 3- 8. Wavelength selection of differential absorption scheme for water with a temperature of 

220C, total pressure 1 atm, mole fraction of water vapor 3%, and pathlength of 1cm. 

Finally, we evaluate the applicable range of the above differential scheme for 

water vapor detection in an evaporating spray. Here we consider a system of water 

aerosols bathed in an inert gas undergoing uniform evaporation at constant pressure (1 
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atm) and temperature (220C), as a simplified model of the aerosol evaporation behind 

shock waves [64]. The system starts at time=0 with all droplets at diameter D0, droplet 

volume fraction CV0, and no vapor. As time progresses, the diameter of the droplets (D) 

and the droplet volume fraction (CV) decreases due to evaporation and, consequently, the 

mole fraction of water vapor in the system increases. The differential scheme designed 

above with λ3 at 2.6705 and λ4 at 2.6818 µm is applied to monitor vapor concentration. 

Comparison between ∆τdrops and ∆τvapor during the evaporation process provides an 

evaluation of the applicable range of this vapor sensing scheme in terms of droplet size 

(D), droplet loading (CV), and mole fraction of vapor. This work uses the range where 

∆τvapor exceeds ∆τdrops to quantify the applicable range of the differential absorption 

scheme.  

This comparison is complicated because it depends on both initial droplet 

diameter (D0) and droplet volume fraction (CV0). Comparison at some representative 

initial diameter is therefore used to provide an insight into the applicable range of the 

differential absorption scheme. One such representative diameter can be obtained by 

seeking a diameter to maximize differential droplet extinction (∆τdrops) in Equation (3.18) 

for a given combination of differential absorption wavelengths. This initial diameter, 

denoted as max
0D , results in maximum ∆τdrops at time=0 in the evaporation process. 

Furthermore, both mathematical considerations and numerical computations reveal that 

other initial diameters will yield similar or smaller ∆τdrops during the entire evaporation 

process compared to that yielded atmax
0D . Therefore, comparison between ∆τdrops and 
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∆τvapor at max
0D provides a lower limit of the applicable range of the differential 

absorption, i.e. the applicable range for other initial droplet diameters will be similar or 

wider than that evaluated at max
0D . For the differential scheme shown in Figure 3- 8 (λ3 at 

2.6705 and λ4 at 2.6818 µm), max
0D is found to be 5.1 µm. Therefore, the range where 

∆τvapor exceeds ∆τdrops evaluated at max
0D =5.1 µm represents a lower limit of the 

applicable range of this differential absorption scheme, and this scheme can be applied 

for vapor detection in a wider range at other D0’s . 

 
Figure 3- 9. Comparison of droplet extinction and vapor absorption at a wavelength of λλλλ3=2.6705 µµµµm 

for the evaporation process depicted in Figure 3- 10 to evaluate the applicable range of single 
wavelength scheme for vapor detection. Evaluation performed at a temperature of 220C, pressure 1 

atm, and pathlength of 1 cm. 

Vapor absorption and droplet extinction at a single wavelength (λ3=2.6705 µm) 

are first calculated in Figure 3- 9 for a few initial droplet volume fractions at D0=5.1 µm. 

Note a CV0 of 19.36 ppm (parts per million) corresponds to the case that the saturated 
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water vapor pressure at the given temperature is reached when all the droplets in the 

system are evaporated. Therefore, at a CV0 higher than 19.36 ppm (for example 40 ppm), 

the saturated water vapor pressure is reached when the droplets are only partially 

evaporated (about 50% evaporated in the example of CV0=40 ppm), and vapor absorption 

becomes a constant afterwards. Figure 3- 9 suggests that accurate vapor measurement by 

single wavelength is jeopardized by large droplet extinction interference for some range 

of droplet volume fraction while vapor absorption itself is strong enough to allow 

accurate vapor measurement. For example, for the case when CV0=40 ppm, after about 

10% of the droplets are evaporated, the vapor absorbance reaches about 10% and 

accurate vapor detection can be readily performed at this absorbance level. However, 

droplet extinction imposes significant interference on vapor detection because τdrops 

exceeds τvapor by almost a factor of three at this stage of evaporation as shown in Figure 

3- 9. Once at least 22% of the droplet volume evaporates (i.e. CV/CV0<78%), τvapor starts 

to exceed τdrops, and this single wavelength detection scheme becomes applicable 

afterwards by the definition in this work.  

The differential absorption strategy extends the vapor measurement into the range 

where strong interference from droplet extinction impairs the utility of single wavelength 

detection. Figure 3- 10 shows the comparison between ∆τdrops and ∆τvapor when the 

differential scheme (λ3 at 2.6705 and λ4 at 2.6820 µm) is applied to the evaporating 

process described above. Obviously, ∆τvapor starts to exceed ∆τdrops much earlier in the 

process than τvapor starts to exceed τdrops in Figure 3- 9, therefore, a wider domain of 



 

56 
 

accurate vapor detection is achieved using differential absorption. In the case shown in 

Figure 3- 10, vapor detection is limited by the magnitude of vapor absorption itself, not 

by interference from droplet extinction as in the case of Figure 3- 9. For example, for the 

case when CV0=40 ppm, after about 2% of the droplets are evaporated (i.e. CV/CV0<98%), 

vapor absorbance starts to exceed droplet extinction and, therefore, the differential 

absorption scheme becomes applicable for vapor detection afterward. Although 

differential vapor absorbance is low (~1.5%) because the vapor concentration is low at 

this stage of evaporation, stronger differential signal can be achieved by utilizing a longer 

pathlength. Note that a D0 of 3.0 µm results in smaller ∆τdrops than that from a D0 of 5.1 

µm, as expected. Also note that the applicable range of differential absorption is not 

strongly sensitive to normalized droplet volume fraction (i.e. CV/CV0) from Figure 3- 10. 

 
Figure 3- 10. Comparison of differential droplet extinction and vapor absorption between the 

wavelengths chosen in Figure 3- 9 for the evaporation process depicted in Figure 3- 10 to evaluate the 
applicable range of the differential absorption scheme for vapor detection. Evaluation performed at 

a temperature of 220C, pressure 1 atm, and pathlength of 1 cm. 
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3.5.3 Differential Absorption and Wavelength Availability 

Discussions in Section 3.5.2 are based on the assumption that light sources are 

available at any wavelength to allow the utilization of the strongest differential vapor 

absorption. Although the strongest differential vapor absorption cannot be always 

accessed in practice due to the lack of light sources at proper wavelengths, it can be 

shown that differential absorption always extends vapor detection into wider domain 

compared with the single wavelength technique. Major conclusions about wavelength 

selection are transferable to other droplet/vapor systems than water and the methodology 

demonstrated above can be used evaluate the applicable range of specific differential 

absorption scheme. For example, currently there are no convenient and economical laser 

devices to provide the wavelengths near 2.67 µm shown in Figure 3- 8, but diode laser 

sources are readily available to access the absorption spectra by water vapor near 1.39 

µm, where the strongest absorption of the υ1+υ3 band of water vapor occurs. Though the 

absorption from water vapor near 1.39 µm is weaker than that near 2.67 µm by about an 

order of magnitude, a differential absorption scheme based on the absorption features 

near 1.39 µm still enables ∆τvapor to start to exceed ∆τdrops in an early stage of evaporation 

in the process described above and, therefore, allows accurate vapor detection in a wide 

range of droplet loading and vapor concentration.  
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3.6 Summary  

Design criteria and methods are developed for selecting the optimum wavelengths 

for simultaneous droplet size and vapor concentration in sprays. These criteria and 

methods are applied to the design of a sensor for water aerosols and water vapor 

measurements. The expected performance of the sensor is simulated for an evaporating 

spray containing both droplet and vapor to support application for temporally-resolved 

measurements. These results demonstrated that the new sensing technique significantly 

extends the applicable range of extinction and absorption methods, in terms of the range 

of the droplet size, number density of the droplets, and concentration of the vapor. This 

work provides a systematical summary of the theory for simultaneously measuring 

droplet/vapor based on laser extinction, and is expected to lay the groundwork for 

implementing optical sensors based on WMLE in a variety of research and industrial 

applications involving multi-phase flows. 
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Chapter 4: Investigation of Temperature 

Parallel Simulated Annealing for 

Optimizing Continuous Functions with 

Application to Hyperspectral 

Tomography  

4.1 Abstract  

 The simulated annealing (SA) algorithm is a well-established optimization 

technique which has found applications in many research areas.  However, the SA 

algorithm is limited in its application due to the high computational cost and the 

difficulties in determining the annealing schedule.  This paper demonstrates that the 

temperature parallel simulated annealing (TPSA) algorithm, a parallel implementation of 

the SA algorithm, shows great promise to overcome these limitations when applied to 

continuous functions.  The TPSA algorithm greatly reduces the computational time due 

to its parallel nature, and avoids the determination of the annealing schedule by fixing the 

temperatures during the annealing process.  The main contributions of this paper are 
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threefold.  First, this paper explains a simple and effective way to determine the 

temperatures by applying the concept of critical temperature (TC).  Second, this paper 

presents systematic tests of the TPSA algorithm on various continuous functions, 

demonstrating comparable performance as well-established sequential SA algorithms.  

Third, this paper demonstrates the application of the TPSA algorithm on a difficult 

practical inverse problem, namely the hyperspectral tomography problem.  The results 

and conclusions presented in this work provide are expected to be useful for the further 

development and expanded applications of the TPSA algorithm. 

4.2 Introduction 

The simulated annealing (SA) algorithm was first introduced in 1983 for solving 

combinatorial optimization problems [15].  Since then, it has been extensively studied, 

with successful demonstrations of its use for both discrete [16, 17] and continuous 

optimization problems [18-23].  These past research efforts have shown several critical 

advantages of the SA algorithm over other optimization techniques.  For example, it can 

optimize complicated problems with a large number of variables and numerous confusing 

local minima. In addition, the SA algorithm is insensitive to the initial guess, which is 

especially important when no a priori information about the solutions is available. 

 On the other hand, the disadvantages of the SA algorithm are also well-

recognized. One of the primary disadvantages of the SA algorithm is its high 

computational cost [20, 23].  Many research efforts that have focused on developing 

variants of the SA algorithm to reduce the computational cost [24-26] can be divided into 
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two categories.  Efforts in the first category attempt to optimize the annealing schedule 

[16, 27-30].  However, the optimal annealing schedule is usually problem-dependent [27, 

28], therefore limiting the applicability of the results from these efforts.  The second 

category involves the parallelization of the SA algorithm [25, 31-34].  However, most of 

these parallelization schemes do not guarantee convergence. Some of the parallelization 

schemes that do guarantee convergence, (e.g., the speculatively parallelized SA (SPSA) 

algorithm [33, 34]) can only achieve a maximum speedup efficiency of log2(Nproc), where 

Nproc is the number of processes used to implement the parallel algorithm.  

The above considerations motivate the study of the temperature parallel simulated 

annealing (TPSA) algorithm which combines the well-established parallel tempering (or 

replica exchange) method [35, 36] and the SA algorithm [37].  The TPSA algorithm is 

another parallel SA algorithm that has theoretically been proven to be convergent [25, 32, 

38], while being able to achieve linear speedup.  In addition, optimization processes 

occur at constant temperatures in the TPSA algorithm; therefore, the TPSA algorithm 

does not require an annealing schedule. Once the starting and ending temperatures (T0 

and TN) are determined, the remaining temperatures can easily be obtained.  However, the 

TPSA algorithm has only been studied primarily on discrete functions in previous efforts 

[16, 32, 33, 37, 39].  Therefore, it is the goal of this current work to conduct a systematic 

study of the TPSA algorithm on continuous functions.  This paper first explains a simple 

and effective way to determine T0 and TN by applying the concept of critical temperature 

(TC) which has been successfully demonstrated on various complicated functions in [19].  

Then systematic tests of the TPSA algorithm on various continuous functions are 
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reported, demonstrating comparable performance as well-established sequential SA 

algorithms. 

The above studies are directly motivated by a practical application, in which a so-

called hyperspectral tomography problem is desired to be solved efficiently to obtain in 

situ measurements of the temperature and concentration of chemical species [8, 9].  

Therefore, the application of the TPSA algorithm developed in this paper was also 

applied to solve the hyperspectral problem, illustrating its usefulness and potential for 

practical applications.  

The remainder of this paper is organized as follows.  Section 4.3 provides a 

detailed introduction to the TPSA algorithm.  Section 4.4 discusses the determination of 

the T0 and TN using the concept of TC, while Sections 4.5 and 4.6 evaluate the 

performance of the TPSA algorithm in terms of accuracy and computational time.  

Section 4.7 discusses the impact of other parameters important to the TPSA algorithm, 

including the relationship between the speedup efficiency and the number of processes 

(Nproc), and the effects of the exchange frequency (EF).  Section 4.8 describes the 

application of the TPSA algorithm to a practical problem, where the TPSA algorithm was 

applied to perform tomographic inversion of hyperspectral measurements.  Finally, 

Section 4.9 summarizes the paper.  
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4.3 Temperature Parallel Simulated Annealing  

The TPSA algorithm, a parallel implementation of the SA algorithm, offers two 

advantages over sequential SA algorithms: 1) the determination of the annealing schedule 

can be avoided by fixing the temperatures as constant throughout the optimization 

process, and 2) a reduction in computational time can be achieved.  Note that under the 

context of the SA algorithm, the term “temperature” represents a parameter used in the 

algorithm, to be differentiated from the physical temperature to be measured in the 

hyperspectral tomography technique later in Section 4.8 of the paper. 

The mechanism of the TPSA algorithm has been explained elsewhere under the 

context of combinatorial optimization [16, 32], and is illustrated in Figure 4- 1 and briefly 

summarized here.  First, N+1 temperatures (T0 to TN) are generated and dispatched to 

N+1 processes.  Then, each process performs an optimization procedure using a 

sequential SA algorithm with the assigned temperature fixed as constant.  Here, a well-

established sequential SA algorithm described in [20] is used.  After a pre-set number of 

iterations on each process, the processes with adjacent temperatures (labeled as T and T’ 

in Figure 4- 1) exchange their optimal solutions as shown in Figure 4- 1.  The exchange 

occurs at a probability p as defined in Figure 4- 1. If the solution at the higher 

temperature exhibits a smaller function value than that of the lower temperature, the 

solutions are always exchanged.  Otherwise, the solutions will be exchanged with a 

probability less than 1.  The specific value of the probability is determined by the 
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temperature difference between T and T’ (labeled as ∆T) and the difference in the 

functional values (labeled as ∆f). 

 
Figure 4- 1. Illustration of the TPSA algorithm. 

This procedure of exchanging solutions starts from the processes with the two 

highest temperatures and proceed to those with the two lowest temperatures.  Therefore, 

the downward direction of the exchange tends to concentrate the solutions with smaller 

function values at lower temperatures, where further reduction in function values is more 

likely to occur and to converge.  However, meanwhile, it also becomes less likely to 

escape local minima at lower temperatures. This issue is solved by the upward direction 

of the exchange, where the local minima at lower temperatures can be transferred to 

higher temperatures, allowing the TPSA algorithm to escape the local minima and find 

the global minimum.  

One important parameter involved in the above procedure is the frequency of the 

exchange, EF.  This paper defines the EF as follows: 
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1
adj
step

EF
N

=   (4.1) 

where adj
stepN  is the number of the step-length adjustments before each solution exchange.  

See [20] for more details about the adjustment of the step-length in the sequential SA. 

This paper defines the following quantity, ∆F, to quantify the performance of 

optimization:   

 globalF F F∆ = −   (4.2) 

where F is the minimum value of the target function obtained, and Fglobal the global 

minimum of the target function.  Obviously, a ∆F of zero means the algorithm has found 

the global minimum; and a smaller ∆F means the algorithm has approached a solution 

that is closer to the global minimum.  

 
Figure 4- 2. Evolution of ∆F for both the SSA and TPSA algorithms. 
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Figure 4- 2 compares the typical behaviors of the TPSA algorithm and the 

sequential SA (SSA) algorithm.  The function used here is the Griewangk’s function with 

5 variables (a detailed description of the function is provided in the appendix).  The same 

number of function evaluations was used in both algorithms.  For the SSA algorithm, the 

∆F is recorded each time the temperature is reduced.  For the TPSA algorithm, the ∆F is 

recorded each time the solutions exchange.  As shown in Figure 4- 2, the ∆F of the SSA 

exhibits a decreasing trend as the algorithm proceeds, illustrating the convergence of the 

algorithm.  The fluctuations in ∆F illustrate the algorithm’s ability to escape local 

minima.  In contrast, the ∆F of the TPSA algorithm oscillates around certain values.  

More specifically, the ∆F at the highest temperature (T0) oscillates around a higher value, 

illustrating the upward direction of the exchange; and the ∆F at the lowest temperature 

around a lower value, illustrating the concentration of smaller function values towards 

lower temperature. 

4.4 Determination of Starting and Ending Temperatures  

 The starting and ending temperatures, T0 and TN, are critical parameters for the 

TPSA algorithm.  If T0 is too high, the algorithm will not be efficient because the upward 

exchange will almost always be accepted at high temperatures.  On the other hand, if T0 is 

too low, the algorithm will be unable to escape local minima because the probability for 

upward exchange diminishes.  For similar reasons, the TPSA algorithm will be unable to 

converge to the global minimum if TN is too high, and will suffer low efficiency if TN is 

too low.  The authors of [16] presented a method to determine these two temperatures by 
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utilizing the Genetic Algorithm (GA).  The authors tested their method on combinatorial 

problems [16] and observed encouraging results.  However, it has been noted that 

incorporating the GA further complicates the optimization algorithm by requiring 

elaborate parameter tuning [75].  Other authors suggested adaptive T0 and TN by 

maintaining empirically determined acceptance ratio [76], which also complicates the 

implementation of the algorithm.  This work, therefore, seeks an alternative simple 

approach to determine the T0 and TN.   

 

Figure 4- 3. Determination of T0 and TN using the TC-curve. 
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  The critical temperature, TC, is an important and useful concept in the SA 

algorithm.  It has been found that the SA algorithm explores the searching space more 

efficiently at TC than at other temperatures [27, 29, 30].  A recent work has examined the 

application of TC in minimizing continuous functions using sequential SA algorithms 

[19].  Here, we found that the use of TC is also effective in determining the starting and 

ending temperatures for the TPSA algorithm.  As to be discussed in Sections 4.5 and 4.6, 

using the starting and ending temperatures determined by TC, the TPSA algorithm 

provides comparable performance to well established SSA algorithms. 

 Figure 4- 3 illustrates the concept of TC, using the Schewefel’s function with 4 

variables, which is denoted as fS4.  A detailed description of this function and the method 

to generate the results shown here can be found in [19].  Briefly, the SSA algorithm was 

conducted independently at 10 constant temperatures ranging from ~10-5 to ~106.  At 

each temperature, 10 cases were performed and the mean value and standard deviation 

(std) of the ∆F’s were recorded.  The top panel of Figure 4- 3 shows the mean value of 

the ∆F’s with the error bar representing the std of the ∆F’s, while the bottom panel shows 

the std.  The results shown in Figure 4- 3 clearly illustrate that the SA algorithm exhibits 

three distinct behaviors at different temperature regions.  First, when the temperature is 

high (>105), the output from the algorithm is characterized by a large ∆F and std.  The 

reason for this behavior is that when the temperature is sufficiently high, the SA 

algorithm essentially samples the function randomly, resulting in high ∆F and std.  

Second, when the temperature is sufficiently low (<100), the algorithm essentially 

samples the local minima of the function randomly because the algorithm cannot escape a 
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local minimum once the algorithm enters one, resulting in high ∆F and std again.  Third, 

in the temperature range of ~ 102 to 104, the results are characterized by both small ∆F 

and std.  This paper names the temperature at which the smallest std of ∆F’s occurs as TC 

(TC~103 for the fS4 function), and the curve shown in the lower panel of Figure 4- 3 the 

TC-curve.  It has been shown that, in the region near TC, the SA algorithm has a high 

probability of locating the global minimum for various problems with complicated 

energy landscapes as demonstrated in [19]. 

Here, we use the TC-curve generated as described above to determine the starting and 

ending temperatures for the TPSA algorithms.  Specifically, the starting and ending 

temperatures are chosen to be the temperature immediately higher and lower than TC, 

respectively, as shown on the TC-curve.  The effectiveness of this simple scheme will be 

demonstrated in Sections 4.5 and 4.6.  

4.5 Evaluation of Performance  

 To evaluate the performance of the TPSA algorithm and the effectiveness of the 

scheme for determining T0 and TN, a TPSA algorithm was implemented in FORTRAN 90 

and compared to a well-established SSA algorithm [20].  Note that there are also other 

variations of the SSA algorithms [10, 11], and it would be interesting to examine which 

SSA algorithm is optimal for parallelizing under the TPSA scheme.  However, such an 

examination is out of the scope of this current work, and merits a full-length paper by 

itself.  Therefore, in this work, we chose to work with a well established SSA algorithm 
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[6].  In the SSA, a relative change of function values (εSA=10-6) during two consecutive 

temperature reductions was used as the termination criterion.  Two measures were taken 

to make the results comparable.  First, both algorithms are performed using the same 

number of function evaluations.  More specifically, the SSA algorithm was run using the 

parameters recommended in [20] and the aforementioned stop criteria of εSA=10-6 was 

implemented.  Upon the termination of the SSA algorithm, the number of evaluations of 

the target function was recorded.  Then the same number of function evaluations was 

assigned evenly across all the processes used in the TPSA algorithm.  The TPSA 

algorithm was terminated when the number of function evaluations at each process 

reached its assigned quota.  Second, a local search was performed at the end of the SSA 

and TPSA algorithms.  The local search guarantees that the global minimum will be 

found if either algorithm can locate a solution near the global minimum.  The local search 

used the quasi-Newton method with the termination criterion set as εLocal=10-8, where 

εLocal is the relative change of function values between two consecutive function 

evaluations.  The computational cost of the local search was less than 1% of SA 

evaluations in both the SSA and TPSA algorithms.  

The comparisons were made on various functions, each representing a unique 

optimization challenge.  For example, the Michalewicz's function with 10 variables (fM10) 

has a global minimum hidden in a deep narrow valley buried among 10! (~3.6×106) local 

minima, and the Schwefel's function (fS8) function has a global minimum far from the 

local minima.  More details about these test functions can be found in the appendix of 

[19] and also in the appendix of this paper. 
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Number of 
Function 

Evaluations 
SSA 

TPSA TPSA TPSA 

  
(EF=1) 

(EF=6.25×10-
2) 

(EF=3.91×10-3) 

fB2 1.60 X 104 1.00 X 10-16 1.00 X 10-16 1.00 X 10-16 1.00 X 10-16 

fG5 1.25 X 106 2.91 X 10-14 1.00 X 10-16 1.00 X 10-16 9.86 X 10-3 

fM2 2.00 X 105 2.60 X 10-13 5.11 X 10-14 3.76 X 10-13 4.22 X 10-13 

fM5 1.00 X 106 2.70 X 10-11 4.36 X 10-12 4.76 X 10-12 4.73 X 10-12 

fM10 2.00 X 106 1.14 X 10-13 2.74 X 10-11 2.74 X 10-11 1.45 X 10-11 

fRa1

0 
2.50 X 106 6.48 X 10-12 1.00 X 10-16 8.88 X 10-15 9.95 X 10-1 

fRo5 1.10 X 106 1.69 X 10-11 2.67 X 10-10 3.13 X 10-11 1.18 X 10-10 

fS4 1.00 X 106 7.40 X 10-3 5.51 X 10-12 5.29 X 10-12 5.51 X 10-12 

fS8 1.20 X 106 2.98 X 100 1.07 X 10-11 1.01 X 10-11 1.08 X 10-11 

fS12 2.32 X 106 8.11 X 10-11 1.61 X 10-11 1.68 X 10-11 1.73 X 10-11 

Table 4- 1. The best ∆F of SSA and TPSA on the Selected Test Functions 

To compare the SSA and TPSA algorithms, a TC-curve was generated for each of 

the test functions, from which the T0 and TN for the TPSA algorithm and the initial 

temperature for the SSA algorithm were determined.  All computations were performed 

on two Dell workstations with dual Intel Xeon quad-core processors (X5482, 3.2 GHz). 

A set of results is listed in Table 4- 1 and Table 4- 2, and plotted in Figure 4- 4.  The 

results are presented in terms of ∆F as defined before and also in terms of ∆x as defined 

below to quantify the distance between the solution obtained and the true solution at the 

global minimum:  
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 globalx x x∆ = −  (4.3) 

where x is the solution obtained from the SSA or TPSA algorithm, and xglobal is the 

solution at the global minimum.  For each function, 30 runs were performed using either 

the SSA or TPSA algorithm, with different random seeds.  The best results from these 30 

runs were selected and listed in Table 4- 1 and Table 4- 2, and also plotted in Figure 4- 4 

for better visualization.  The results from the TPSA algorithm are reported at three 

different EF’s to illustrate the effects of exchange frequency.  

 Number of 
Function 

Evaluations 
SSA 

TPSA TPSA TPSA 

  (EF=1) (EF=6.25×10-2) (EF=3.91×10-3) 

fB2 1.60 X 104 3.06 X 10-10 9.20 X 10-10 4.35 X 10-10 7.54 X 10-10 

fG5 1.25 X 106 3.41 X 10-8 2.93 X 10-9 1.69 X 10-9 6.28 X 100 

fM2 2.00 X 105 6.55 X 10-8 4.53 X 10-8 6.17 X 10-8 5.75 X 10-8 

fM5 1.00 X 106 2.43 X 10-7 9.91 X 10-8 1.63 X 10-7 1.50 X 10-7 

fM10 2.00 X 106 1.86 X 10-6 2.63 X 10-7 2.63 X 10-7 2.42 X 10-7 

fRa10 2.50 X 106 7.43 X 10-6 1.20 X 10-10 7.19 X 10-11 9.95 X 10-1 

fRo5 1.10 X 106 1.18 X 10-5 2.51 X 10-5 8.87 X 10-6 2.01 X 10-5 

fS4 1.00 X 106 5.44 X 100 7.16 X 10-7 3.45 X 10-6 3.94 X 10-6 

fS8 1.20 X 106 1.72 X 100 1.61 X 10-6 1.54 X 10-6 3.04 X 10-6 

fS12 2.32 X 106 4.82 X 10-7 4.19 X 10-6 8.20 X 10-6 1.00 X 10-5 

Table 4- 2. The best ∆x of SSA and TPSA on the Selected Test Functions 
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Figure 4- 4. Comparison of the SSA and TPSA algorithms on various test functions. 

As shown by these results, at EF=6.25×10-2 and EF=1, the TPSA algorithm provides 

better or comparable performance both in terms of ∆F and ∆x as the SA algorithm.  Such 

performance across various test functions demonstrates the effectiveness of the TPSA 

algorithm for continuous functions and the method for determining T0 and TN using the 

TC-curve.  Also as shown by the results, the performance of the TPSA algorithm 

deteriorates as EF decreases.  At an EF of 3.91×10-3, the TPSA does not perform as well 

as the SSA algorithm on some of the test functions.  More detailed discussions on the 

effects of the EF on the performance and computational cost are provided in Section 4.7. 

4.6 Evaluation of Computational Cost 

 The previous section discussed the performance of the TPSA algorithm in terms 

of its accuracy, this section focuses on its computational cost. 
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Figure 4- 5. Computational time of the TPSA algorithm as a function of the exchange frequency. 

First, the effects of EF on the computational cost were examined.  Figure 4- 5 

illustrates the impact of the EF on the computational time of the TPSA algorithm.  The 

TPSA algorithms at various EF’s ranging from ~10-2 to 1 are implemented using 16 

processes and applied to 3 test functions, and the actual computational time (the wall-

clock time) was recorded and plotted in Figure 4- 5.  The same number of functions 

evaluations was (as determined by the method described at the beginning of Section 4.5) 

performed at each EF for each test function.  As illustrated by these results, the 

computational time increases as EF increases, due to the computational overhead 

involved in evaluating the exchange criteria and in exchanging information between 

different processes.  At an EF=1, the actual computational time was about 3× more than 

that at an EF=6.25×10-2; and the benefits of such increased computational time were the 

improved performance as shown in Table 4- 1 and Table 4- 2.  These computational 

times were also compared with the time when EF was set to zero.  When EF=0, the 
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TPSA algorithm essentially reduces to a series of classic Metropolis algorithms, each 

running at a fixed temperature.  The computational time in this case represents the time 

for actually evaluating the functions (i.e., without evaluating the exchange criterion and 

without communication between the processes).  These times were shown on Figure 4- 5 

by the straight lines labeled EF=0.  The difference between the computational times at 

various EF’s and that at EF=0 represents the computational overhead in the TPSA 

algorithm due to exchanges.  

 Second, the effects of the number of processes (Nproc) on the computational cost 

were examined.  Ideally, the computational time should exhibit a linear or super-linear 

dependence on Nproc.  Here, to quantify the speedup efficiency of the TPSA algorithm, 

the following parameter (Φ) is defined: 

  
Computational time of SSA

(Computational time of TPSA) procN
Φ =

⋅
  (4.4) 

where all the times are wall-clock time.  Clearly, Φ indicates the efficiency of the parallel 

algorithm: Φ=1 means a linear speedup, Φ>1 a super-linear speedup, and Φ<1 stands for 

a sub-linear speedup.  Figure 4- 6 shows the relationship between Φ and Nproc at different 

EF’s for two test functions.  The TPSA algorithm was implemented on various numbers 

of processes ranging from 2 to 64. At each Nproc, 30 test runs were conducted.  The points 

in the figure represent the mean value of Φ for these 30 cases and the error bars the std. 

As Figure 4- 6 shows, the std is generally quite small (too small to be visible in many 

cases shown here), evidencing the repeatability of the runs.  
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Figure 4- 6. The relationship between the speedup efficiency and the number of processes used in the 

TPSA algorithm. 

As can be seen, a higher EF (corresponding to a larger computational overhead) 

results in a smaller Φ.  At a specific EF, the Φ exhibits a weak dependence on Nproc, 

which might be due to the particular structure of our workstations.  At an EF of 3.91×10-

3, a slightly super-linear speedup can be achieved for the range of Nproc tested.  However, 

at large EF’s, the TPSA algorithm only enables sub-linear speedup, due to the increased 

overhead as shown in Figure 4- 5. 
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4.7 Preliminary Study of Exchange Frequency 

 The results reported in Sections 4.5 and 4.6 suggest that TPSA provides better 

performance at larger EF, at the cost of increased computational time.  Therefore, it is 

highly desirable to have some insight into optimizing the tradeoff between the 

performance and computational time.  Previous studies on such optimization have 

focused on discrete functions [16, 32], and have shown that the performance of the TPSA 

algorithm becomes insensitive to EF after a certain value.  Here, we examined the 

dependence of the TPSA’s performance on EF for continuous functions, and found that 

the pattern of the dependence is more complicated than for discrete functions.  

Two representative patterns were selected and shown in Figure 4- 7 and Figure 4- 

8.  In these figures, the TPSA algorithm was implemented on 16 processes to minimize 

various test functions, and 30 cases were run on each test function.  The mean and std 

(represented by the error bar) of the ∆F obtained for these 30 cases were shown here.  

Figure 4- 7 shows the “normal” patterns, i.e., the performance of the TPSA improves as 

EF increases for the test functions shown in Figure 4- 7.  This pattern is what one would 

intuitively expect: the algorithm should locate the global minimum more accurately if 

information across at different processes is exchanged more frequently.  In contrast, the 

patterns shown in Figure 4- 8 are “abnormal”, where the performance shows a weak or 

even fluctuating dependence on EF.  As the top panel of Figure 4- 8 shows, for the fS4 

function, the performance (again measured in terms of ∆F and its std) fluctuates with EF; 

and the bottom panel of Figure 4- 8 shows a weak dependence for the fRo5 function.  
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Figure 4- 7. Impact of the exchange frequency on the performance of the TPSA algorithm for the 

fRa10 and fS12 functions. 

Though the dependence of TPSA’s performance on EF is complicated as 

discussed above and remains as on ongoing research direction, several preliminary 

observations can be made for optimizing the tradeoff between performance and 

computational cost.  First, an EF larger than 6.25×10-2 already provided comparable 

performance to the SSA algorithm as shown in Table 4- 1 and Table 4- 2, and in Figure 

4- 4.  Also, TPSA’s performance at an EF of 6.25×10-2 is only worse than at an EF of 1 

marginally.  Second, as Figure 4- 5 shows, the computational time at EF=1 is about 3× 
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more than that at EF~10-3
 due to the increased computational overhead.  Such overhead 

will decrease (relative to the computational time for evaluating the target function) when 

the target function becomes more expensive to evaluate, and many target functions in 

practice are considerably more expensive to evaluate than the test functions used here.  

Therefore, using an EF=1 might be a feasible practical strategy for many applications.  

Our results agree with the conclusion of [77], which also suggests low exchange 

frequency. 

 
Figure 4- 8. Impact of the exchange frequency on the performance of the TPSA algorithm for the fS4 

and fRo5 functions. 
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4.8 Application to Hyperspectral Tomography  

 This section describes the application of the TPSA developed above in a so-called 

hyperspectral tomography (HT) problem.  The goal of the HT problem is to image the 

distribution of the property of a chemical species (e..g, temperature or concentration) 

using of line-of-sight-integrated absorption measurements at various wavelengths.  The 

HT problem is highly nonlinear and computationally intensive [4, 8, 9].  Thus there is a 

strong motivation to parallelize the solution of the HT problem, so that it can be solved 

quickly for in situ analysis. 

 
Figure 4- 9. The mathematical formulation of the hyperspectral tomography problem. 

The mathematical background and experimental demonstration of the HT 

problem has been detailed in [4, 8] and [9], respectively.  A brief summary is provided 

here for convenience.  The configuration of the HT problem is illustrated in Figure 4- 9.  

A hyperspectral laser beam (i.e., a laser beam that scans a wide wavelength range) is 

directed along the line of sight, denoted by l, to probe the domain of interest as shown in 

the left.  Absorption by the target species will attenuate the probe laser beam, and the 
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absorbance at a certain wavelength (e.g., λi) generally contains contributions from 

multiple transitions centered at various wavelengths (including that centered at λi itself), 

as schematically shown in the right.  Here, we use p(Lj, λi), termed a projection, to denote 

the absorbance at a projection location Lj and a wavelength λi.   The projection, p(Lj, λi), 

is expressed by the following integral: 

 ( ) ( )( ) ( ) ( ), ,
b

j i k k i
ka

p L S T X P dλ λ λ λ= ⋅ ⋅Φ − ⋅ ⋅∑∫ l l l   (4.5) 

where a and b the integration limits determined by the line of sight and the geometry of 

the domain of interest, S(λk, T(l)) is the line strength of the contributing transition centered 

at a wavelength λk and depends highly nonlinearly on temperature (T) [4]; T(l) and X (l) 

the temperature and mole fraction profile of the absorbing species along the line of sight, 

respectively; Φ the Voigt lineshape function [9]; and P the pressure, assumed to be 

uniform.  Note that the physical temperature (in unit of Kelvin) here is different from the 

“temperature” parameter used in the SA algorithms.  The summation runs over all the 

transitions with non-negligible contributions, which compounds the computational 

intensity due to the significant overlap under practical conditions due to various 

broadening mechanisms.  In this work, the domain of interest is discretized by 

superimposing a square mesh in the Cartesian coordinate, as shown in the left of Figure 

4- 1; and the integration in Eq. (4.5) is also discretized accordingly. 

With the above understanding, the hyperspectral tomography problem seeks to 

determine the distributions of T and X over the discretized domain with a finite set of 
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projections as described in Eq. (4.5).  Hence, mathematically, the hyperspectral 

tomography problem is an inverse problem, which has been studied extensively.  

However, due to the inclusion of multiple wavelengths and the nonlinear dependence of 

the line strength on temperature, the hyperspectral tomography problem poses distinct 

challenges and algorithms designed in the past cannot be readily applied.  A new 

inversion algorithm was therefore developed to address the special challenges of the 

hyperspectral tomography problem [7, 8].  The algorithm casts the inversion problem into 

a nonlinear optimization problem, where the T and X distributions are retrieved by 

minimizing the following function: 
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(4.6) 

where pm(Lj, λi) denotes the measured projection at a location Lj and a wavelength λi; 

pc(Lj, λi) the computed projection based on a reconstructed T and X profile (denoted by 

Trec and Xrec, respectively); and J and I the total number of wavelengths and projection 

locations used in the tomography scheme, respectively.  However, the problem is a 

nonlinear optimization problem due to the nonlinear temperature-dependence of the line 

strength and the lineshape function; and typical minimization methods based on the 

derivatives (or gradients) of the objective function cannot be applied.  These issues can 

be addressed, respectively, by 1) applying a regularization technique, and 2) using a 

stochastic minimization algorithm, the simulated annealing algorithm.  More specifically, 

the following new target function (F) is minimized instead of D:  

 ( , ) ( , ) ( ) ( )rec rec rec rec rec rec
T T X XF T X D T X R T R Xγ γ= + ⋅ + ⋅  (4.7) 
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where RT and RX are the regularization factors for temperature and concentration, 

respectively; γT and γX are positive constants (regularization parameters) to scale the 

magnitude of RT and RX properly such that they do not dominate the D(Trec, Xrec) term.  

The master function, F, is then minimized using the simulated annealing algorithm; and 

finally, the solution of the minimization problem described in Eq. (4.7) provides the 

tomographic reconstruction of the T and X distributions. 

 
Figure 4- 10. Comparison of T phantom and reconstruction obtained using the TPSA algorithm. 

 Here, we applied the TPSA algorithm to the HT problem, demonstrating its 

comparable performance to previous techniques at reduced computational time.  The left 

panel of Figure 4- 10 shows an example T phantom used in the study.  The phantoms 

were generated over a 10-by-10 square grid by superimposing two Gaussian peaks on a 

paraboloid to simulate a representative multi-modal and asymmetric temperature 

distribution of H2O in practical combustion devices.  Other distribution phantoms have 

been tested and the results obtained are similar to those obtained with the phantoms 

shown here.  A hypothetical HT sensor with 20 beams is applied to probe the 

distributions, with 10 beams probing in the horizontal direction and the other 10 in the 

vertical direction. Each beam contains 10 wavelengths, probing 10 different transitions of 
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H2O.  A set of simulated projections was then generated according to Eq. (4.5), and the 

TPSA algorithm was applied to solve the HT problem by minimizing Eq, (4.7).  A 

reconstructed T distribution is shown in the mid panel, and the difference between the 

reconstruction and the phantom shown in the right panel.  The inversion was performed 

on the Dell workstation with two Intel Xeon quad-core processors (X5482, 3.2 GHz) and 

eight processes was applied in the TPSA algorithm.  We chose to conduct this study on 

such a workstation instead of on a large number of processors because the primary object 

is to examine whether it is feasible to process hyperspectral tomography data in situ on a 

small workstation or a PC.  According to our computational experiments, the HT problem 

depends weakly on EF and the EF used here was chosen to be 0.125, considering the fact 

that the computation of the target function in Eq. (4.7) is considerably more costly than 

the exchange overhead.  As these results show, the TPSA algorithm yielded 

reconstructions with high fidelity.  In the example results shown here, the reconstruction 

error was within -40 K to 60 K and the overall reconstruction error was 1.56% (defined 

as error relative to the phantom averaged over all grids).  

In comparison, Fig. 11 shows an example reconstruction using the sequential SSA 

algorithm [8]. The left panel shows the reconstruction, the mid panel shows the 

difference relative to the phantom, and the right panel shows the difference relative to the 

results obtained by the TPSA algorithm shown in Fig. 10. The overall reconstruction 

error was 1.59% in this case. The results in Fig. 10 and Fig. 11 demonstrated that the 

TPSA algorithm can achieve comparable reconstruction fidelity as the SSA algorithm. 
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Figure 4- 11. Reconstruction obtained using the SSA algorithm in comparison to the phantom and 

that obtained using the TPSA algorithm. 

Solving this example problem using the sequential SA algorithm required 430 

seconds (~ 7 minutes) of computation time, and 102 seconds (~ 1.7 minutes) using the 

TPSA algorithm, representing around 4× reduction in computational time.  The 

computation costs approximately scales linearly with the number of grids (i.e., a 20×20 

case will require 4× more computation time than the 10×10 case).  A 10×10 case 

represents a typical current hyperspectral tomography application because of two 

considerations.  First, a 10×10 discretization is already sufficient for many practical 

applications; and second, a finer discretization poses implementation difficulty in practice 

in terms of optical access, laser power availability, etc.  The processing time also varies 

approximately linearly with the number of wavelengths used, and the specific 

configuration of the workstation.  A 1.7-minute processing time in our current study 

shows good promising of the TPSA for in situ analysis of HT measurements in many 

practical applications.  
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4.9 Summary 

 To summarize, this paper provides a systematic investigation of the TPSA 

algorithm on continuous functions, with application to a practical problem where 

tomographic reconstruction of a chemical species is obtained using hyperspectral 

absorption measurements.  Two aspects of the algorithm were considered.  First, this 

work developed a simple and effective way to determine the starting and ending 

temperatures for TPSA using the critical temperature.  Second, this work conducted an 

extensive comparison of the TPSA algorithm against a well-established sequential SA 

algorithm, and demonstrated that comparable performance can be achieved.  The results 

show that the TPSA algorithm is a reliable method which can achieve comparable 

performance to the SSA algorithm while greatly reducing the computational time. 

Implications of these findings are discussed under the context of the hyperspectral 

tomography problem.  This work is expected to lay the groundwork for further 

development of the TPSA algorithm, and for its expanded applications. 
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4.11 Appendix. Test Functions and Their Properties 

 This Appendix provides the definitions of the test functions and their properties. 

The definition of fG5 is as follows: 

 
2 55

5
1 1

cos( ) 1      600 600
4000

i i
G i

i i

x x
f x

i= =

= − + − ≤ ≤∑ ∏  (A.1) 

The subscript "G" specifies that the test function is the Griewangk’s function, and the 

subscript "5" refers to the number of variables in the function.  The same notation rules 

are used for the other test functions.  The numerous local minima of fG5 are regularly 

distributed.  The function has its global minimum at xi =0 (i =1, 2, …,5) and FGlobal =0, as 

illustrated in Figure 4- 12.  

 
Figure 4- 12. A plot of test function fG5 with respect to the first two variables (the other three 

variables are set to zero). 
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 The definition of fRa10 is as follows: 

 
10

2
10

1

100 ( 10 cos(2 ))      5.12 5.12Ra i i i
i

f x x xπ
=

= + − ⋅ ⋅ ⋅ − ≤ ≤∑  (A.2) 

The function has its global minimum at xi =0 (i =1, 2, …, 10) and FGlobal =0.  This 

function shares similar features with fG5, whose local minima are regularly distributed, as 

illustrated in Figure 4- 13.  

 
Figure 4- 13. A plot of test function fRa10 with respect to the first two variables (the other variables 

are set to zero). 

 The next function, fB2, is defined as: 

 2 2
2 1 2 1 2 1 22 0.3cos(3 ) 0.4cos(4 ) 0.7   -1 , 1Bf x x x x x xπ π= + − − + ≤ ≤  (A.3) 

The global minimum of fB2 is at (0, 0) and FGlobal =0.  Figure 4- 14 shows a plot of test 

function fB2, illustrating the many irregularly distributed local minima. 
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Figure 4- 14. A plot of test function fB2. 

 The Michalewicz’s function with n variables is defined as: 

 
2

2

1

sin [sin( )]    0
n

mi
Mn i i

i

i x
f x x π

π=

⋅
= − ≤ ≤∑  (A.4) 

This function has a global minimum hidden in a deep narrow valley buried among n! 

local minima.  The parameter m defines the sharpness of the valley containing the global 

minimum.  Figure 4- 15 shows an example of the Michalewicz’s function with five 

variables (n=5) with the first three variables set to zero), illustrating the large number of 

local minima and the steepness of the global minimum. 
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Figure 4- 15. A plot of test function fM5 with respect to the fourth and fifth variables (the first three 
variables are set to zero). 

The Schwefel’s function with n variables is defined as: 

 
1

sin    500 500
n

Sn i i i
i

f x x x
=

= − ⋅ − ≤ ≤∑  (A.5) 

This function has its global minimum at xi =420.9687 (i =1, 2, …, n) and FGlobal =-

418.9829·n.  This function is characterized by a large number of local minima, which are 

widely separated from each other, as illustrated by the plot in Figure 4- 16 shows (n=2). 

 
Figure 4- 16. A plot of the fS2 test function. 
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 The last test function is the Rosenbrock’s function (also known as the Banana 

function) with 5 variables. The Rosenbrock’s function with n variables is defined as: 

 
1

2 2 2
1

1

100 ( ) (1 )    2.048 2.048
n

Ron i i i i
i

f x x x x
−

+
=

= ⋅ − + − − ≤ ≤∑  (A.6) 

This function features a global minimum that is hidden inside a long and twisted flat 

valley.  Finding the valley is trivial, however, navigating through the valley and locating 

the exact location of the global minimum is challenging.  This function has a global 

minimum at xi =1 (i =1, 2, …, 5) and FGlobal =0.  Figure 4- 17 shows a plot of the function 

with two variables, illustrating the shape and flatness of the valley, inside which the 

global minimum is located. 

 

Figure 4- 17. A plot of the fR5 test function with respect to its first two variables (other variables are 
set to zero).  
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Chapter 5: Conclusion 

In this final chapter, the results from this work are summarized from the studies of 

the application of PCMs, the development of a measurement technique for particles in 

multiphase environments, and the application of the TPSA algorithm to the data analysis.  

The latter two developments are expected to increase the understanding of the influence 

that nanoparticle sizing has on the thermal enhancements of nanofluids. 

This work first investigated the practical application of selected phase change 

materials (PCMs) to a practical thermal management system for a LED headlight 

assembly.  The major challenge was the fact that these organic PCMs, while possessing 

favorable latent heat properties, possessed very low thermal conductivities that would 

render any practical application of these materials not feasible.  However, with the 

emergence of metal foams which can suspend these PCMs, the effective thermal 

conductivity can be increased to a level that is practical in a thermal management system.  

It is very clear that, for the system studied, PCMs show great promise in protecting the 

LED headlight system.  PCMs provide delayed time to reach the failure temperature of 

these components and are easily integrated into this system without requiring additional 

energy input.  Finally, an optimization process found the optimal volume fraction of the 

PCM that maximizes the operational time of the LED headlight assembly.  These results 

should not only prove the applicability of using PCMs to protect the studied LED 
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headlight system, but also demonstrate the applicability of using PCMs in many other 

systems needing enhanced thermal protection. 

Next, in order to enhance the favorable characteristics of the PCM based thermal 

management system, this work investigated methods to measure the size of nanoparticles 

within a nanofluid in order to understand the effect that sizing has on the nanofluid.  This 

study focused on developing a method to be applied to the multiphase flow problem of 

detecting the size of particles within a multiphase environment. The expected 

performance of the sensor is simulated. 

Finally, this work endeavored to improve the inversion algorithm of the data by 

increasing the fidelity of solution while decreasing the computational time, which should 

prove valuable to the study of nanofluids.  This work developed a new method based on 

simulated annealing for analyzing the data in a parallelized fashion (TPSA). By 

conducting an extensive comparison of the TPSA algorithm against a well-established 

sequential simulated annealing (SSA) algorithm, this work demonstrated that comparable 

performance can be achieved with reduced computation time.  The results showed that 

the TPSA algorithm is a reliable method which can achieve comparable performance to 

the SSA algorithm while greatly reducing the computational time. Results of the TPSA 

algorithm given by this work are expected to lay the groundwork for further development 

of the detection of nanoparticles sizing characteristics in a nanofluid.   



 

94 
 

References 

1. A. Pasupathy, R. Velraj, and R. V. Seeniraj, "Phase change material-based building 
architecture for thermal management in residential and commercial establishments," 
Renewable & Sustainable Energy Reviews 12, 39-64 (2008). 

2. M. M. Farid, A. M. Khudhair, S. A. K. Razack, and S. Al-Hallaj, "A review on 
phase change energy storage: materials and applications," Energy Conversion and 
Management 45, 1597-1615 (2004). 

3. D. L. Vrable, and K. L. Yerkes, "A thermal management concept for more electric 
aircraft power system applications," SAE Technical Paper Series 981289, 1-6 
(1998). 

4. S. A. Khateeb, M. M. Farid, J. R. Selman, and S. Al-Hallaj, "Design and simulation 
of a lithium-ion battery with a phase change material thermal management system 
for an electric scooter," Journal of Power Sources 128, 292-307 (2004). 

5. R. Kandasamy, X. Q. Wang, and A. S. Mujumdar, "Transient cooling of electronics 
using phase change material (PCM)-based heat sinks," Applied Thermal 
Engineering 28, 1047-1057 (2008). 

6. P. Gauche, and X. Weiran, "Modeling phase change material in electronics using 
CFD - a case study," in 2000 International Conference on High-Density 
Interconnect and Systems Packaging, 402-407 (2000). 

7. S. Krishnan, and S. V. Garimella, "Analysis of a phase change energy storage 
system for pulsed power dissipation," IEEE Transactions on Components and 
Packaging Technologies 27, 191-199 (2004). 

8. S. Krishnan, J. Y. Murthy, and S. V. Garimella, "Analysis of solid-liquid phase 
change under pulsed heating," Journal of Heat Transfer-Transactions of the ASME 
129, 395-400 (2007). 

9. D. W. Yoo, and Y. K. Joshi, "Energy efficient thermal management of electronic 
components using solid-liquid phase change materials," IEEE Transactions on 
Device and Materials Reliability 4, 641-649 (2004). 

10. T. Aldoss, D. J. Ewing, Y. Zhao, and L. Ma, "Numerical investigation of phase 
change materials for thermal management systems," SAE Technical Paper Series,  
(2009). 



 

95 
 

11. A. S. Fleischer, R. D. Weinstein, and T. Kopec, "Analysis of transient thermal 
management characteristics of PCM with an embedded carbon heat sink," in The 
Tenth Intersociety Conference on Thermal and Thermomechanical Phenomena in 
Electronics Systems,  (2006), pp. 1265-1268. 

12. S. T. Hong, and D. R. Herling, "Open-cell aluminum foams filled with phase 
change materials as compact heat sinks," Scripta Materialia 55, 887-890 (2006). 

13. P. A. E. Vallejos, and C. Duston, "Carbon foam filled with phase change materials 
for passive temperature management," in COMSOL Multiphysics Users (2005). 

14. V. V. Kulish, and J. L. Lage, "Diffusion within a porous medium with randomly 
distributed heat sinks," International Journal of Heat and Mass Transfer 43, 3481-
3496 (2000). 

15. S. Kirkpatrick, C. D. Gelatt Jr, and M. P. Vecchi, "Optimization by simulated 
annealing," Science 220, 671-680 (1983). 

16. M. Miki, T. Hiroyasu, J. Wako, and T. Yoshida, "Adaptive temperature schedule 
determined by genetic algorithm for parallel simulated annealing,"  in The 2003 
Congress Evolutionary Computation, 459-466 (2003). 

17. E. L. Piccolomini, and F. Zama, "The conjugate gradient regularization method in 
computed tomography problems," Applied Mathematics and Computation 102, 87-
99 (1999). 

18. W. Cai, D. J. Ewing, and L. Ma, "Application of simulated annealing for 
multispectral tomography," Computer Physics Communications 179, 250-255 
(2008). 

19. W. Cai, and L. Ma, "Applications of critical temperature in minimizing functions of 
continuous variables with simulated annealing algorithm," Computer Physics 
Communications 181, 11-16 (2010). 

20. A. Corana, M. Marchesi, C. Martini, and S. Ridella, "Minimizing multimodal 
functions of continuous variables with the “simulated annealing” algorithm," ACM 
Transactions on Mathematical Software (TOMS) 13, 262-280 (1987). 

21. L. Ma, and W. Cai, "Numerical investigation of hyperspectral tomography for 
simultaneous temperature and concentration imaging," Applied Optics 47, 3751-
3759 (2008). 

22. L. Ma, W. Cai, A. W. Caswell, T. Kraetschmer, S. T. Sanders, S. Roy, and J. R. 
Gord, "Tomographic imaging of temperature and chemical species based on 
hyperspectral absorption spectroscopy," Optics Express 17, 8602-8613 (2009). 



 

96 
 

23. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical 
Recipes (Cambridge University Press, 2007). 

24. L. Ingber, "Very fast simulated re-annealing," Mathematical and Computer 
Modelling 12, 967-973 (1989). 

25. S. W. Mahfoud, and D. E. Goldberg, "Parallel recombinative simulated annealing: 
A genetic algorithm," Parallel Computing 21, 1-28 (1995). 

26. I. G. Tsoulos, and I. E. Lagaris, "Genanneal: Genetically modified simulated 
annealing," Computer Physics Communications 174, 846-851 (2006). 

27. A. Basu, and L. N. Frazer, "Rapid determination of the critical temperature in 
simulated annealing inversion," Science 249, 1409-1412 (1990). 

28. W. Ben-Ameur, "Computing the initial temperature of simulated annealing," 
Computational Optimization and Applications 29, 369-385 (2004). 

29. H. Cohn, and M. Fielding, "Simulated annealing: Searching for an optimal 
temperature schedule," SIAM Journal on Optimization 9, 779-802 (1999). 

30. M. Fielding, "Simulated annealing with an optimal fixed temperature," SIAM 
Journal on Optimization 11, 289-307 (2000). 

31. J. P. B. Leite, and B. H. V. Topping, "Parallel simulated annealing for structural 
optimization," Computers & Structures 73, 545-564 (1999). 

32. M. Miki, T. Hiroyasu, M. Kasai, K. Ono, and T. Jitta, "Temperature parallel 
simulated annealing with adaptive neighborhood for continuous optimization 
problem," International Journal of Computational Intelligence and Applications, 
149-154 (2002). 

33. A. Sohn, "Parallel n-ary speculative computation of simulated annealing," IEEE 
Transactions on Parallel and Distributed Systems 6, 997-1005 (1995). 

34. E. E. Witte, R. D. Chamberlain, and M. A. Franklin, "Parallel simulated annealing 
using speculative computation," IEEE Transactions on Parallel and Distributed 
Systems 2, 483-494 (1991). 

35. C. J. Geyer, and E. A. Thompson, "Annealing Markov chain Monte Carlo with 
applications to ancestral inference," Journal of the American Statistical Association 
90, 909-920 (1995). 

36. U. H. E. Hansmann, "Effective way for determination of multicanonical weights," 
Physical Review E 56, 6200-6203 (1997). 



 

97 
 

37. Y. Li, V. A. Protopopescu, N. Arnold, X. Zhang, and A. Gorin, "Hybrid parallel 
tempering and simulated annealing method," Applied Mathematics and 
Computation 212, 216-228 (2009). 

38. K. Kimura, and K. Taki, "Time-homogeneous parallel annealing algorithm," in 
Proceedings of the 13th IMACS World Congress on Computation and Applied 
Mathematics,  (1991). 

39. D. E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine 
Learning (Addison-Wesley Reading, Menlo Park, 1989). 

40. A. Sari, and K. Kaygusuz, "Thermal energy storage system using stearic acid as a 
phase change material," Solar Energy 71, 365-376 (2001). 

41. K. Cho, and M. Choi, "Experimental study on the application of paraffin slurry to 
high density electronic package cooling," Heat and Mass Transfer 36, 29-36 (2000). 

42. X. M. Fang, and Z. G. Zhang, "A novel montmorillonite-based composite phase 
change material and its applications in thermal storage building materials," Energy 
and Buildings 38, 377-380 (2006). 

43. Z. L. Liu, Z. Y. Wang, and C. F. Ma, "An experimental study on the heat transfer 
characteristics of a heat pipe heat exchanger with latent heat storage. Part II: 
simultaneous charging/discharging modes," Energy Conversion and Management 
47, 967-991 (2006). 

44. I. O. Salyer, and A. K. Sircar, "A review of phase change materials research for 
thermal energy storage in heating and cooling applications at the University of 
Dayton from 1982 to 1996," International Journal of Global Energy Issues 9, 183-
198 (1997). 

45. R. Akhilesh, A. Narasimhan, and C. Balaji, "Method to improve geometry for heat 
transfer enhancement in PCM composite heat sinks," International Journal of Heat 
and Mass Transfer 48, 2759-2770 (2005). 

46. R. H. Henze, and J. A. C. Humphrey, "Enhanced heat-conduction in phase-change 
thermal-energy storage devices," International Journal of Heat and Mass Transfer 
24, 459-474 (1981). 

47. V. V. Calmidi, and R. L. Mahajan, "The effective thermal conductivity of high 
porosity fibrous metal foams," Journal of Heat Transfer 121, 466-471 (1999). 

48. Y. K. Joshi, and D. Pal, "Application of Phase Change Materials to Thermal 
Control of Electronic Modules: A Computational Study," in Proceedings of the 
International Packaging Conference 10, (1995). 



 

98 
 

49. M. Kaviany, Principles of Heat Transfer in Porous Media (Pringer-Verlag, 1995). 

50. A. D. Brent, V. R. Voller, and K. J. Reid, "Enthalpy-porosity technique for 
modeling convection-diffusion phase-change - application to the melting of a pure 
metal," Numerical Heat Transfer 13, 297-318 (1988). 

51. S. Patankar, Numerical Heat Transfer and Fluid Flow (Hemisphere, 1980). 

52. K. Peippo, P. Kauranen, and P. D. Lund, "A multicomponent PCM wall optimized 
for passive solar heating," Energy and Buildings 17, 259-270 (1991). 

53. H. Zhao, and N. Ladommatos, "Optical diagnostics for soot and temperature 
measurement in diesel engines," Progress in Energy and Combustion Science 24, 
221-255 (1998). 

54. M. C. Thurber, and R. K. Hanson, "Simultaneous imaging of temperature and mole 
fraction using acetone planar laser-induced fluorescence," Experiments in Fluids 
30, 93-101 (2001). 

55. L. Ma, S. T. Sanders, J. B. Jeffries, and R. K. Hanson, "Monitoring and control of a 
pulse detonation engine using a diode-laser fuel concentration and temperature 
sensor," Proceedings of the Combustion Institute 29, 161-166 (2003). 

56. J. B. Swithenbank, J. M. Beer, D. S. Taylor, D. Abbot, and G. C. McCreath, "A 
laser diagnostic technique for the measurement of droplet and particle size 
distribution," in 14th AIAA Aerospace Sciences Meeting,  (1976). 

57. W. D. Bachalo, and M. J. Houser, "Phase/doppler spray analyzer for simultaneous 
measurements of drop size and velocity distributions," Optical Engineering 23, 583-
590 (1984). 

58. R. A. Dobbins, and G. S. Jizmagia, "Optical scattering cross sections for 
polydispersions of dielectric spheres," Journal of the Optical Society of America 56, 
1345-1349 (1966). 

59. R. A. Dobbins, and G. S. Jizmagia, "Particle size measurements based on use of 
mean scattering cross sections," Journal of the Optical Society of America 56, 
1351-1352 (1966). 

60. L. Ma, and R. K. Hanson, "Measurement of aerosol size distribution functions by 
wavelength-multiplexed laser extinction," Applied Physics B-Lasers and Optics 81, 
567-576 (2005). 



 

99 
 

61. L. A. Melton, A. M. Murray, and J. F. Verdieck, "Multiple parameter fuel spray 
analysis using Exciplex visualization: temperature, vapor/liquid concentrations, and 
oxygen pressure," in Proceedings of the Combustion Institute, (1985). 

62. A. C. Chraplyvy, "Nonintrusive measurements of vapor concentrations inside 
sprays," Applied Optics 20, 2620-2624 (1981). 

63. J. M. Tishkoff, D. C. Hammond, and A. C. Chraplyvy, "Diagnostic measurements 
of fuel spray dispersion," Transactions of the ASME. Journal of Fluids Engineering 
104, 313-317 (1982). 

64. T. C. Hanson, D. F. Davidson, and R. K. Hanson, "Shock tube measurements of 
water and n-dodecane droplet evaporation behind shock waves," in Proceedings of 
the 43rd Aerospace Sciences Meeting, AIAA-2005-0350, (2005). 

65. T. C. Hanson, "The development of a facility and diagnostics for studying shock-
induced behavior in micron-sized aerosols," Ph.D. Thesis, Stanford University, 
Stanford, CA., (2005). 

66. C. F. Bohren, and D. R. Huffman, Absorption and Scattering of Light by Small 
Particles (Wiley-Interscience, 1983). 

67. N. C. Wickramasinghe, Light Scattering Functions for Small Particles, with 
Applications in Astronomy (Adam Hilger, 1991). 

68. G. M. Hale, and M. R. Querry, "Optical constants of water in the 200-nm to 200- 
mu m wavelength region," Applied Optics 12, 555-563 (1973). 

69. L. Kou, D. Labrie, and P. Chylek, "Refractive indices of water and ice in the 0.65- 
to 2.5- µm spectral range," Applied Optics 32, 3531-3540 (1993). 

70. P. C. Ariessohn, S. A. Self, and R. H. Eustis, "Two-wavelength laser 
transmissometer for measurements of the mean size and concentration of coal ash 
droplets in combustion flows," Applied Optics 19, 3775-3781 (1980). 

71. N. L. Swanson, B.D. Billard, and T.L. Gennaro, "Limits of optical transmission 
measurements with application to particle sizing techniques," Applied Optics 38, 
5887-5893 (1999). 

72. K. L. Cashdollar, C. K. Lee, and J. M. Singer, "Three-wavelength light transmission 
technique to measure smoke particle size and concentration," Applied Optics 18, 
1763-1769 (1979). 

73. X. S. Cai, G. Zheng, and N. N. Wang, "A new dependent model for particle sizing 
with light extinction," Journal of Aerosol Science 26, 685-688 (1995). 



 

100 
 

74. E. Winklhofer, and A. Plimon, "Monitoring of hydrocarbon fuel-air mixtures by 
means of a light extinction technique in optically accessed research engines," 
Optical Engineering 30, 1262-1268 (1991). 

75. K. Deb, and S. Agrawal, "Understanding interactions among genetic algorithm 
parameters," Foundations of Genetic Algorithms 5, 265-286 (1999). 

76. A. Kone, and D. A. Kofke, "Selection of temperature intervals for parallel-
tempering simulations," The Journal of Chemical Physics 122, 206101 (2005). 

77. A. Schug, and W. Wenzel, "All-atom folding of the TRP-cage protein with an 
adpative parallel tempering method," Europhysics Letters 67, 307 (2004). 

 
 


	Clemson University
	TigerPrints
	12-2011

	An Investigation of the Application of Phase Change Materials in Practical Thermal Management Systems
	David Ewing
	Recommended Citation


	Microsoft Word - $ASQ121029_supp_undefined_1F9B3996-19DD-11E1-B590-AA092E1BA5B1.doc

