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ABSTRACT 

Commercial production of apricot is severely affected by sensitivity to climatic 

conditions, an adaptive feature essential for cycling between vegetative or floral growth 

and dormancy. Yield losses are due to either late winter or early spring frosts or inhibited 

vegetative or floral growth caused by unfulfilled chilling requirement (CR). Studies in 

this dissertation developed the first high-density apricot linkage map; followed by a 

comparative mapping strategy to validate conservation of synteny, genome collinearity 

and stable quantitative trait loci (QTLs) controlling CR and bud break between apricot 

and peach; and ultimately attempt to identify key candidate genes following a linkage 

disequilibrium-based association mapping approach to fine map the major CR QTL 

genomic regions. 

Following a two-way pseudotestcross mapping strategy, two high-density apricot maps 

were constructed using a total of 43 SSR (Simple Sequence Repeats) and 994 AFLP 

(Amplified Fragment Length Polymorphism) markers that span an average of 502.6 cM 

with an average marker interval of 0.81 cM. Twelve putative CR QTLs were detected 

using composite interval mapping, a simultaneous multiple regression fit and an additive-

by-additive epistatic interaction model without dominance. An average of 62.3% ± 6.3% 

of the total phenotypic variance was explained. We report QTLs corresponding to map 

positions of differentially expressed transcripts and suggest candidate genes controlling 

CR. 
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A majority of the QTLs were shown to be stable between both Prunus species, as well as 

similar trends in their QTL effects, with the allele for increasing the trait value mostly 

originating from the high chill parents. The denser apricot maps, due to more AFLP 

marker polymorphisms, provide a higher resolution to delineate QTLs to smaller genomic 

intervals, as well as splitting each of some of the peach QTLs into two. The comparative 

QTL mapping strategy presented here reveals the transferability of genetic information 

between two Prunus species, the characterization of stable QTLs, the utility of the maps 

to consolidate each other and to further validate previously identified CR QTL loci as a 

major controlling factor driving floral bud break. 

The LD-based association mapping was limited to marker dense genomic regions within 

and around previously detected major QTLs on linkage group (LG) 1 and 7. LD decayed 

below the centimorgan scale, indicating insufficient marker density averaged at 0.44 and 

1.58 cM on LG1 and 7, respectively. Denser marker regions averaged at 0.1 and 0.7 cM 

on LG1 and 7, respectively, revealed significant LD estimates above the baseline 

threshold. We report significant marker-trait associations and underlying genes the 

markers were derived from. Our results demonstrate that an LD-based association 

mapping can be used for validating QTLs, fine mapping and detecting CGs in Prunus. 
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CHAPTER ONE 

LITERATURE REVIEW 

Introduction 

An understanding of complex triggers and molecular players regulating induction, 

maintenance and release of dormancy in plants is crucial to resolving problems associated 

with crop production. Although mostly motivated by the economic importance of crops, 

it has been the subject of several research studies concurrently leading to numerous 

fundamental findings in plant science. For over a decade now, the rate of yield increase 

for staple food crops has been dwindling and causing widespread concern that we might 

be approaching the sustainable yield barriers once overcome by the green revolution 

(Huang et al. 2002, Jung and Müller 2009). The need for new technologies is not only 

necessitated by this challenge for food security, but it is also necessitated by rising and 

competing demands for plant biomass as a source of renewable energy. For both 

generative and vegetative crops, the phenological developmental processes are critical to 

increasing crop yield. This is evident from effects of photoperiod (plant response to short 

or long day lengths) and vernalization (exposure to cold as a requirement for flowering) 

on timing and vigor of flowering. A recent study demonstrates that genes linked to the 

control of circadian-mediated physiological and metabolic pathways have a major 

influence on growth vigor and accumulation of plant biomass (Ni et al. 2009). This is of 

great significance to productivity as reflected in seed crops where floral transition is a key 

developmental switch that determines dry matter yield, in vegetative crops like fodder 
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grasses where early bolting limits potentials for high yields. This problem is mirrored in 

perennial fruit trees where fruit production is vulnerable to inconsistent late onset of 

flowering and loss of flowers and/or immature fruits to spring frost. 

Although this review centers on dormancy in floral and vegetative buds of perennial fruit 

trees, other studies on dormancy among several other plant taxa will also be mentioned as 

they relate to perennial fruit trees. Furthermore, after about a century of research on 

dormancy, the field of study has branched  into studies of the different dormancy aspects,  

such as site of dormancy (seeds, floral and vegetative buds, tubers, bulbs and stolons; 

Wareing 1969), photoperiod and other environmental effects causing the induction of 

dormancy (Wareing 1956), differences in vegetative versus floral bud dormancy 

(Romberger 1963), modification of CR by environmental factors and cultural practices 

(Nooden and Weber 1978, Lang 1987), dormancy breaking chemicals and/or stress 

treatments, chilling requirement (CR) for dormancy release and its effective temperature 

range and models for calculating CR (Doorenbos 1953, Samish 1954, Vegis 1964, Leike 

1965, Perry 1971, Erez and Lavee 1974, Saunders 1978, Saure 1985, Lang 1994, 

Champagnat 1989, Rowland and Arora 1997, Arora et al. 2003, Horvath et al. 2003). 

Recent advances absent in previous reviews will be highlighted to keep pace with the 

developments made in this discipline. These will include: mechanisms underlying bud 

dormancy from induction to release; gene pathways and signals; cell-to-cell crosstalk; 

physiological delineation of different stages of dormancy; separation of dormancy from 

other related biological processes like freezing and dehydration tolerance, hormonal 
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physiology and the genetics of dormancy in woody plants (including identification of 

associated quantitative trait loci, mapping of dormancy-related genes and gene action of 

dormancy-related genes and expression profiles of these genes. Dormancy, an adaptive 

feature, is required to synchronize development with the cyclic climatic conditions and 

involves a gradual and progressive process until state of rest is reached (Hill et al 1998, 

Lang et al 1987). This transition into dormancy is triggered by environmental cues and 

has been delineated (Fig. 1.1) into 3 stages (induction, maintenance and release), as well 

as component pathways and processes Arora et al. 2003).  

 

Regulation of growth cycles and dormancy in woody perennials 

While evidence suggests that angiosperms originated in humid tropical climates where 

temperature, day length and availability of water were fairly stable all year round, one of 

the key evolutionary forces differentiating plant species and ultimately temperate species 

was environmental change (Okubo 2000). This has a profound impact on plant growth 

habit and life cycle. In order to synchronize timing of flowering with ambient 

temperatures that are optimal for fertilization and seed/fruit development, perception and 

transduction pathways (vernalization) that sense prolonged cold winter temperatures 

evolved that translate environmental cues into increased competence for flowering in 

spring or summer. 

 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref2
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Figure 1.1: Timetable of bud development showing integration of environmental cues and 

endogenous processes underlying dormancy induction, maintenance and release in woody 

perennials. 
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Even though early studies showed that shortened growth period of shoots caused by 

water stress promoted the early induction of bud dormancy leading to reduced CR, there 

still remains a poor understanding of the molecular processes involved (Muller-Thurgau 

1885, Arora et al. 2003). This correlation of the length of shoot growth period and the 

timing of bud break was confirmed by work of Chandler and Tufts (1934) that showed 

that an extended growth period of shoots delayed bud break during the following spring 

when chill accumulation was not sufficient. 

Plants initially undergo a juvenility period of vegetative development prior to floral bud 

induction, and in woody perennials, this vegetative/juvenile stage can last for several 

years before the switch to a flowering developmental state.  In this regard, woody 

perennials can exhibit significant variation in life cycle with reference to the transition to 

flowering. Raspberries, having a biennial or perennial growth habit, mostly produce 

juvenile vegetative primocanes in the first year and adult fruiting laterals in the following 

year(s). Some varieties exhibit the primocane fruiting phenotype that is a desired growth 

habit because it allows for some berry production in the first year, although yields and 

fruit size are low (Keep 1988). Prunus species on the other hand don‟t flower and fruit 

until two to three years of a juvenile phase is fulfilled. Bernier and Périlleux (2005) 

provide an extensive review of the major factors that influence this flowering habit. Even 

though woody perennials require a juvenility period, the size of the plant rather than its 

age has been confirmed to be specifically more important (Lacey 1986). In nature, some 

plants that don‟t flower until the third to fifth vegetative phase are known to flower 

during the second year under cultivation in resource rich conditions (Lacey 1986, 
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Klinkhamer et al. 1987). Thus, it seems the best predictor of flowering time in perennials 

is a threshold size that varies across different species and ecotypes (Lacey 1986, 

Wesselingh et al. 1993). Size in turn is directly related to the amount of resources 

accumulated, which in turn depends on ambient temperature, irradiance, water/mineral 

availability and presence/absence of resource competing neighboring plants (Bernier and 

Périlleux 2005).  

Considering the difficulty of identifying QTLs in perennials that co-segregate with 

mapped photo-receptor genes (Frewen et al. 2000), there is speculation that there are 

other molecular players downstream of photo-receptors that regulate flowering and 

dormancy by transducing the light signal. Perhaps what the plant measures during the 

vegetative phase of development or before onset of flowering is biomass accumulation, 

which is a function of light, rather than light signal itself. From analysis of the phloem 

sap exported by leaves in response to floral induction, Bernier and Périlleux (2005) 

postulated that sucrose and cytokinin are potential long-distance signaling molecules. The 

increased export of sucrose in Arabidopsis in response to long-day induction might be 

partially due to increased efficiency of sucrose loading (Corbesier et al. 1998). After 

loading sucrose into the shoot apical meristem, a number of cellular and molecular events 

are initiated (Bernier 1988) as well as the hydrolysis of sucrose by local invertases i.e. 

vacuolar (Koch 2004) and cell wall (Heyer et al. 2004) invertases.  Cytokinins activate 

invertase and increase the rate of cell division, while hexoses are known to participate 

with Giberellic acids in the up regulation of LEAFY (LFY) gene expression (Bernier and 

Périlleux 2005), see below.  



 7 

In Arabidopsis, the flowering response to environmental cues involves several signaling 

pathways but they all converge towards the regulation of floral meristem identity genes 

(Mouradov et al. 2002). Downstream of this convergence are the LEAFY (LFY) and 

APETALA 1(AP1) genes that control flower morphogenesis. Genes acting upstream of 

this are the considered integrator genes and mutants of these show delay in flowering 

under different growing conditions. The integrator genes include FLOWERING LOCUS 

T (FT) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1). The primary 

environmental factors that initiate the pathways include photoperiod and temperature 

(Martínez-Zapater et al. 1994). Mutants of genes that caused late flowering and flowering 

delay in long-days were termed genes in the “long day (LD) pathway”, while mutants of 

genes in plants responsive to photoperiod but impaired in their response to cold were 

considered genes in the “vernalization pathway” (Fig. 1.2). Mutants that were sensitive to 

both photoperiod and cold temperatures were classified as part of the “autonomous 

flowering pathway” (Bernier and Périlleux 2005). 

The response to vernalization is facilitated by a cascade of gene regulatory networks, that 

are initiated during prolonged cold exposure by the induction and up-regulation of the 

homeodomain finger gene VIN3 (VERNALIZATION INSENSITIVE 3) and results in the 

chromatin-based and mitotically stable repression of the FLC (FLOWERING LOCUS C) 

gene (Sung et al. 2004). FLC, a MADS-box transcription factor, in turn acts as a 

repressor of floral transition. In the following generation, FLC expression is reset around 

the time of early embryogenesis (Sheldon et al. 2008, Choi et al. 2009), thus ensuring a 

renewed requirement for vernalization. 
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Figure 1.2: Flowering time control in Arabidopsis (a) and cereals (b). Exogenous cold ( ) 

and light ( ) signals are indicated by symbols. Positive and negative regulatory actions 

are indicated by arrows and lines with bars, respectively. Dashed lines designate more 

speculative interactions. The dashed line with a single filled circle at the end indicates a 

regulatory but yet little understood effect of LHY and CCA1 on SVP protein accumulation 

(Fujiwara et al. 2008). Lines with filled circles at either end indicate protein–protein 

interactions. The green and yellow boxes designate genes shown to affect natural 

variation in flowering time in Arabidopsis and cereal accessions, respectively. The figure 

incorporates aspects from various previously published models (He and Amasino 2005, 

Trevaskis et al. 2007, Alonso-Blanco et al 2009, Distelfeld et al. 2009) (Jung and Müler 

2009). 
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Although the FLC orthologs in other Brassica species are functionally related to the 

Arabidopsis FLC (Tadege et al. 2001, Kim et al. 2007), the extent of conservation 

outside the Brassicaceae family is still contentious (Jung and Muller 2009). Expressed 

sequence tags of the gene in rosids, asterids and caryophyllids have been identified 

(Reeves et al. 2007) but proof for the functional conservation remains inadequate (Jung 

and Muller 2009). Additionally, in temperate cereals, identification of key regulators of 

vernalization requirement and response (wheat VRN1, VRN2 and VRN3, which are 

homologs of Arabidopsis VRN gene) does not include an FLC-like gene and reveal a 

regulatory pathway whose components differ from the FLC-dependent vernalization 

pathway. 

Currently, regulatory mechanisms underlying floral induction in perennial plants remain 

poorly characterized, although attempts are being made to test pathways (Figure 1.2) 

already characterized in model plants like Arabidopsis. Floral induction in woody 

perennials differ from that of annual and biennials plants in that they comprise a 

morphogenetic transition of cells in apical meristems as well as in lateral meristems. In 

perennials, above ground meristems are not induced by strong floral promoters and 

therefore remain vegetative, thus guaranteeing a long life span. Little is known about how 

perennials achieve this but silencing of genes via DNA methylation, inaccessibility of 

floral promoters, and RNAi are potential players in this process. Additionally, repression 

floral specification may be achieved by the long time transcription during 

vegetative/juvenile phase of floral-repressing genes like FLC or similar homologs in 

perennials (Chen and Coleman 2006, Bangerth 2009). 
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Complexity of bud dormancy and its overlap with related biological processes 

Despite extensive general progress made in understanding dormancy, knowledge gaps are 

still prevalent at all stages of the dormancy process. This is due to the complexity and 

nature of the molecular pathways that also overlap with other distinct biological 

processes, some of which are difficult to dissociate from dormancy. An example of such 

biological processes includes freezing and dehydration tolerance and the complexity of 

distinguishing cause and effects between them and dormancy. The capability of 

temperate perennials to survive freezing winter temperatures depends heavily on their 

adaptation, which involves mechanisms for transitioning into a dormant state, as well as 

the acquisition of cold hardiness, a measure of freezing and dehydration (Powell 1987). 

The same environmental cues (photoperiods and colder temperatures) that cause a shift 

from summer dormancy or correlative dormancy (paradormancy) to winter dormancy 

(endodormancy) concurrently induces cold acclimatization (ability of temperate plants to 

tolerate and survive freezing temperatures), while plant tissues become more cold-hardy 

during winter dormancy (Nissila and Fuchigami 1978). Consequently, the induction and 

release from dormancy in the annual growth cycles of woody perennials is superimposed 

on the acquisition and loss of cold hardiness, respectively (Fuchigami et al. 1982). To 

resolve the physiological and molecular events associated with the regulation of bud 

dormancy and that of cold hardiness, several strategies have been employed to study 

them independently of each other.  
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The first effort at resolving dormancy and related traits involved the use of genetically 

related peach (Prunus persica) genotypes that segregated for deciduous (completely lose 

their foliage at fall and regrowing it at spring) and evergreen (having leaves all year 

round) habits. The lack of endodormancy in one genotype and cold hardiness in both 

facilitated their use for a comparative study of changes in protein content as it relates to 

seasonal changes and the degree of cold hardiness (Arora et al. 1992, Arora and 

Wisniewski 1994, Artlip et al. 1997). Another species, Vitis labruscana, was originally 

explored by Fennell and Hoover (1991) since it was able to completely transition into an 

endodormant state in response to short photoperiod but without cold acclimation. 

Salzman et al (1996) eventually utilized this species to characterize differential 

expression of proteins in buds exposed to only short photoperiods. A study in blueberry 

(Vaccinium section Cyanococcus) cultivars attempted to resolve the problem by 

observing changes in bud proteins specifically associated with dehardening based on the 

premise that only temperatures between 0
o
 and 7

o 
C are effective towards contributing to 

chilling unit accumulation (Erez et al. 1979, Erez and Couvillon 1987).  Cold acclimated 

buds (50% CR acquired) were exposed to controlled-temperature regimes warm enough 

to cause dehardening (reversal of the process of cold acclimation or hardening) without 

negating accumulated chill units of cold weather (i.e. duration of chilling temperatures 

measured as a requirement for bud break) or releasing them from winter dormancy (i.e. 

not affecting the dormancy status of the buds, Arora et al. 1997). Based on the studies 

mentioned above that show differential response as relates to dormancy and cold 

hardiness, there was a consensus that the metabolism of certain dehydrins, a subgroup of 
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late embryogenesis abundant (LEA) proteins referred to as the D-11 family (Close 1997), 

was more closely associated with cold hardiness transitions than bud dormancy (Rowland 

and Arora 1997, Rowland et al. 2003).  

Even though dehydrins are ubiquitous hydrophilic proteins considered to guard cells 

against cellular dehydration (in this case, freeze-induced dessication) and are therefore 

expected to build up in cold hardened tissues, Faust et al. (1997) postulated that they 

might not be exclusive to cold hardiness but also involved in bud endodormancy. This 

was based on MRI studies where the bound to free water ratio of buds increased during 

late fall or early winter (Faust et al. 1991), hence, it was proposed that dehydrins bind 

water after being induced by low temperatures and abscisic acid (ABA), leading to freeze 

protection and a simultaneous deepening of dormancy (Faust et al., 1997).  

Others have attempted to dissociate bud dormancy and cold hardiness by exploring the 

effects of endogenous ABA levels in each process. Numerous studies have implicated 

ABA as a stress-inducible hormone and growth inhibitor, as well as a mediator of short-

day-induced growth cessation and dormancy induction in buds (Lenton et al. 1972, 

Iwasaki and Weaver 1977, Dumbroff et al. 1979, Barros and Neill 1989).  Manipulating 

the endogenous ABA content of buds and using an ABA-deficient mutant of birch 

(Betula pubescens), the involvement of ABA in dormancy induction was examined 

(Welling et al. 1997, Rinne et al. 1998).  Wild-type plants expressed elevated levels of 

ABA before onset of cold acclimation under short-day regimes, followed by tissue 

desiccation and accumulation of dehydrin proteins, while the ABA-deficient mutant had 

lower water loss, lower tolerance to low-temperature stress and lacked accumulation of 
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dehydrins. Nevertheless, the mutant was still capable of entering dormancy (Rinne et al. 

1998), suggesting that ABA was not necessary for dormancy induction or that there were 

other pathways that augment the ABA-induced dormancy response. Increasing ABA 

content by spraying ABA on long-day exposed and water stressed plants also led to an 

increase in cold hardiness in the absence of dormancy induction in the wild type (Welling 

et al. 1997). These findings support ABA as being more directly involved with 

photoperiodic control of cold acclimation rather than in bud dormancy induction; 

although the influence of ABA in other developmental timed aspects of dormancy 

(maintenance and release) were not investigated. 

Inferences made from ABA experiments are difficult to validate when one considers that 

the promotion of flowering by primary factors (day length and vernalization) can be 

delayed or even eliminated by other less predictable factors. This has been demonstrated 

in studies where flowering was suppressed in favorable photoperiodic conditions by 

water stress in both long-day (Lolium temulentum) and short-day plants (Xanthium 

strumarium and Pharbitis nil) or by excess nitrogen input (Bernier and Périlleux 2005).  

In certain instances, these primary factors can be conditional like in Calceolaria which 

requires vernalization at low irradiance even though vernalization is not required at high 

irradiance (Bernier 1988). These interactions corroborate the fact that plants are sessile 

opportunists that must optimize the timing of the commitment to flowering in an 

environment that displays significant annually fluctuating physical conditions.  
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Dormancy induction 

Prior to growth cessation during winter, paradormancy (apical dominance or correlative 

inhibition) marks the first stage towards bud dormancy that allows for the plant to: 

allocate resources for reproduction, control plant architecture, and maximize light 

harvesting while allowing for regeneration should individual shoots become damaged. 

Historically, hormones were proposed as the major culprits for the induction of bud 

dormancy and were implicated as transducers of environmental cues (Hermberg 1949). In 

fact, the term dormin was proposed as a label for endogenous dormancy inducers (Eagles 

and Wareing 1963).  

Although it‟s quite alluring to think of dormancy on the basis of hormonal control alone, 

dormancy is controlled by several integrated plant structures and functions; and even its 

path is a continuum that begins as early as bud break in spring (Simpson 1990, Crabbe 

1994). ABA has been implicated in both short-day and water stress-induced dormancy in 

Betula pubescens (Rinne et al 1994a, 1994b, Welling et al. 1997) and Vitis vinifera 

„Merlot Noir‟ (Koussa et al. 1998) where evidence supports a relationship between ABA 

and bud water content. Additionally, endogenous ABA levels appear to relate to the 

depth of bud dormancy (Tamura et al. 1993). Faust et al. (1991) demonstrated that 

endodormant buds have less free water than ecodormant buds, implying that CR 

satisfaction is related to the conversion of water from a bound to a free state. Viccinium 

cultivars with the deepest dormancy and highest CR reportedly possess the most bound 

water (Parmentier et al. 1998), while bound water is also shown to increase in 
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endodormant and freeze tolerant peach buds in response to induction by either 

photoperiod or cold temperatures (Erez et al. 1998). Although the studies above 

concluded that bound water status was associated with cold temperature stress tolerance 

rather than directly to dormancy itself, Fennell et al. (1996) revealed an increasing 

amount of bound water after 2 weeks of short-day photoperiod exposure in Vitis riparia. 

Similarly, Fernell and Line (2001) demonstrated an increasing amount of bound water 

with endodormancy in both grape buds and the cortex/gap tissue adjacent to the bud.  

Thus, increased bound water and the endodormancy state are potentially more directly 

connected.  

Several studies initially monitored endogenous levels of hormones in whole buds, leaves, 

stems, cambium and root tissue under fall and dormancy-inducing controlled-

environment conditions (Samish 1954, Wareing 1956, Nitsch 1957, Phillips and Wareing 

1958, Dennis and Edgerton 1961) but the interpretation of the experimental results 

(measuring responses and application of hormones) suggested several pitfalls. These 

problems include: degradation and differential responses between commercial (±)-ABA 

and natural (+)-ABA (Wilen et al. 1996); reduced root uptake of ABA by casparian strip 

formation in the hypodermis (Freundl et al. 2000); loss of ABA to the medium when it is 

more alkaline than the root cortex; and finally, the pH of root zone and ABA 

concentration may modify root-to-shoot signaling as they affect apoplastic transport of 

ABA (Arora et al 2003). Strauss et al. (2001) also demonstrated experimentally that 

exogenously applied ABA was distributed differently from compartmentalized 

endogenous ABA within the cell. Proteins and other molecules that bind and/or modify 
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ABA might exist in the cytosol and/or endoplasmic reticulum and prevent ABA 

distribution based on a cellular pH gradient alone. 

The problems in the studies of hormone action are further complicated by findings 

showing that their levels vary from basal to apical parts of the plants (Arora et al. 2003). 

Some examples of factors to consider for hormone studies include the use of lateral buds 

against terminal buds, distinguishing determinate and indeterminate growth patterns, use 

of whole buds against partitioned bud tissues, sampling buds at quantitatively established 

stages of dormancy and differential photoperiodic response of young and mature leaves. 

In the case of ABA, other more recent studies have further complicated the importance of 

ABA in dormancy due to many other processes mediated by ABA particularly auxin- and 

ethylene-triggered ABA induction (Grossmann and Hansen 2000, Hansen and 

Grossmann 2000, Sharp et al. 2000). 

While the implication of basipetal transport of auxin as the primary signal regulating 

paradormancy is well documented (Horvath 2003), based on grafting studies, other 

signals have been proposed to significantly influence shoot outgrowth (Cline 1994, 

Beveridge et al. 2000). Although growth inhibition via basipetal transport of auxin is 

slightly complicated by concurrent production of auxin in growing buds and by the 

plant‟s requirement for auxin, the effect of auxin produced from the distal meristem 

seems to be different from that inside the buds once dormancy is broken, implicating 

different effectors, pathways or interacting partners. Several studies confirm that auxin 

signaling alters cell cycle directly or through crosstalk in concert with other plant 
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hormones. It has been shown to inhibit the production or sensing of cytokinin (Francis 

and Sorrell 2001, Ferguson and Beveridge 2009).  

Other plant hormones acting alongside auxin in paradormancy include ABA and GA, 

which inhibit and promote growth, respectively. ABA induces expression of an inhibitor 

(ICK1) of CDK action at the G1-S-phase transition (Wang et al. 1997), while GA induces 

S-phase progression (Sauter 1997). Auxin signaling pathways target degradation of 

specific proteins and regulation of cytokinin production in the stem segments adjacent to 

the axillary buds (Shimizu-Sato and Mori 2001, Stirnberg et al. 2002, Xiangdong and 

Harberd 2003). It has also been proposed that auxin might regulate ABA content through 

expression of a P450 mono-oxygenase gene (Shimizu-Sato and Mori 2001). Details of a 

pathway or an auxin controlled complex remain elusive.  

Besides hormones, sugars also play a complex role in paradormancy (Healy et al. 2001, 

Oakenfull et al. 2002). The role of sugars in determining the competence of a perennial 

plant for flowering during the vegetative juvenile stage and just before bud set was 

mentioned earlier (Bernier and Périlleux 2005). In a peach study, cell wall invertase 

activity and imported hexose content in the meristematic tissues had positive correlations 

with the bud break capacity (Maurel et al. 2004). 
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Bud dormancy maintenance and release 

At the onset of winter, endodormancy results from physiological changes in woody 

perennials that follow paradormancy in the growth cycle. This response is internal to the 

bud and prevents untimely growth during seasonal transitions when temperatures often 

fluctuate between favorable warm and inhibitory cold temperatures. This stage of 

dormancy reflects the plants adaptive mechanisms to maintain buds in a physiologically 

dormant state until a return of persistent favorable conditions. Compared to maintenance 

of the paradormant state the molecular components of endodormancy maintenance are 

much less well understood and seem to overlap and share similar aspects with cold 

acclimation, making it more intractable to investigation than other stages. In dicots, 

endodormancy has been studied in buds of poplar (Populus deltoids) and grape (Vitis 

vinifera) and in potato tuber buds.   

Endodormancy occurs concurrently with plant senescence during the fall in several plant 

systems (Fedoroff 2002), with ethylene and ABA been implicated in both processes. In 

potato microtubers, ethylene directly induces endodormancy (Suttle 1998); while the role 

of ABA includes growth cessation in potato tubers and inhibitory effects on seed 

germination in several plant species (Leung and Giraudat 1998). Cases of phytochromes 

acting synergistically with both ethylene and ABA have been reported (Finlayson et al. 

1998, Weatherwax et al. 1998). The signaling pathways for this molecular mechanism in 

woody perennials are still been deciphered, especially for ABA action; however no 

concrete connections have yet been identified. 
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One economically important major challenge in the horticultural industry is the 

importance of adequate chilling to temperate fruit tree production in regions with varying 

cold and warmer winter temperatures. Warmer climates often lack sufficient chilling 

required to overcome floral and vegetative bud dormancy, while trees with fulfilled CRs 

in colder regions are prone to spring frost damage during unusually early warm 

temperature spells. Varietal breeding programs need to incorporate high CR into varieties 

destined for cold climates, while cultivars with variable (for early and relatively late 

blooms) low CR are desirable in warm climates. Several studies have been published on 

the regulation of bud break (Erez et al 1971, Saure 1985, Iwahori et al. 2002), as well as, 

the use of chemicals to break dormancy (Erez et al. 1971, Erez 1987, Fernandez-Escobar 

and Martin 1987, Siller-Cepeda et al. 1992, Wood 1993). A proper understanding of 

pathways, signal molecules and target genes underlying bud dormancy maintenance and 

release may aid development of markers to assist in the breeding of varieties that match 

environmental conditions to the proper timing of bud break (Tamura et al. 1998).  

Several strategies have been utilized to elucidate the process of dormancy and bud break. 

These include approaches based on regulation within the apical meristem by changes in 

cell-to-cell communication and plasmodesmatal connections (van der Schoot 1996, Jian 

et al. 1997, Rinne et al. 2001), control of the cell cycle (Rohde et al. 1997, MacDonald 

2000), regulation of water with initial findings based on supercooling after examining the 

vascular connections into the bud (Sakai 1979, Ashworth 1984, Quamme et al. 1995), the 

sequence and regulation of water uptake into the bud (De Fay et al. 2000), water stress 

and availability during dormancy (Faust et al. 1997), studying molecular events involved 



 20 

in the reception and transduction of dormancy-breaking signals during chemical-induced 

dormancy release (Or et al. 2000, 2002) and the mechanism of dormancy induction and 

release via a metabolic and communication block or permeability barrier between the bud 

and adjacent tissues (Champagnat 1989, Crabbe and Barnola 1996, Faust et al. 1997). 

To reproduce the effect of CR on dormancy release, horticulturalists have successfully 

used chemicals such as hydrogen cyanamide (HC) for controlled dormancy release in 

grape and kiwifruit (Henzell 1991, Pérez et al. 2008). Transcript populations from HC-

treated and control buds have been used to identify a SUCROSE NON-FERMENTING 

(SNF)-like protein kinase that is upregulated during initial stages of dormancy release (Or 

et al. 2000, 2002). Although the mechanisms underlying dormancy release using the 

chemicals are unknown, there is mounting evidence that an SNF-like protein kinase plays 

a role in the signaling cascade. Since SNF-like protein kinases are known to be 

transcriptionally regulated by stress stimuli in plants (Anderberg and Walker-Simmons 

1992, Hardie 1994), Or et al. (2002) suggests that they might be involved in perception of 

stress signal induced by HC and similar chemicals (e.g. azide, cyanide, thidiazuron) in 

grape. These chemicals are theorized to transiently disrupt respiratory metabolism by 

inducing H2O2 via oxidative stress, an explanation supported by reduced catalase activity 

(a free radical scavenger) soon after HC application (Nir et al. 1986, Wang et al. 1991, 

Faust and Wang 1993, Pérez and Lira 2005). The inhibition of catalase by HC could be as 

a result of H2O2 production or H2O2 acting as a chemical signaling molecule inducing the 

up-regulation of genes related to endodormancy release (Desikan et al 2000, Neill et al. 

2002). 
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Studies in dormant apple buds indicate that dormancy release in buds coincides with the 

up-regulation of the antioxidant system, reflected by increased levels of peroxide 

scavenging enzymes (Wang and Faust 1994, Rowland and Arora 1997). The antioxidant 

machinery is also known to be up-regulated for protection against freezing stress (Guy 

1990). More recently, the MITOGEN-ACTIVATED PROTEIN KINASE (MAPK) cascade 

has been implicated to play a role in transducing signals involving reactive oxygen 

species (ROS) like H2O2 (Dóczi et al. 2007; Pitzschke and Hirt 2009) to a corresponding 

H2O2-induced dormancy release in grape (Pérez and Lira 2005) and raspberry (Mazzitelli 

et al. 2007). Several studies now show that the MAPK cascade is not only induced by 

ROS but can also regulate production of ROS (Pitzschke and Hirt 2009). MAPK, 

sometimes referred to as extracellular-signal-regulated kinases (ERKs), are some of the 

best studied signal transduction pathways that play central roles in signaling cells to 

progress past the G1/S boundary (Meskiene and Hirt 2000; Roberts et al. 2000). These 

growth factor signaling pathways are implicated in the up-regulation of CYCLIN D1 and 

CKIs (Cook et al. 2000) and in activation of CAK (Chiariello et al. 2000). Recently, 

components of the MAPK signal cascade have also been associated with oxidative stress-

induced cell cycle arrest at G2/M (Chien et al. 2000; Kurata 2000). 

As mentioned earlier, along with changes in gene expression, there is also evidence for 

more general epigenetic changes associated with endodormancy induction and release. 

Major changes in DNA methylation have been observed during bud set, dormancy 

induction and release in potato (Law and Suttle 2003) and azalea floral buds (Meijón et 

al. 2010). Increased DNA methylation and histone deacetylation act simultaneously and 
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coordinately following dormancy induction, suggesting that chromatin remodeling plays 

an important role in restructuring chromatin and regulating gene expression during this 

process. Interestingly, the previously mentioned SNF1-like protein kinase, activated in 

grape by HC, is similar to a known component of a DNA modifying protein complex 

SW1-SNF from yeast and animals (Fan et al. 2003). Other components of this complex 

interact with RB-E2F (Figure 1.2) in both plants and animals (Shen 2002).  

 

Genetic control of endodormancy-related traits in woody perennials 

In the past decades, little effort was made to understand regulation of dormancy from a 

global regulation and genetic perspective because dormancy-related traits like many other 

polygenic traits were considered too complex. This was partly due to limited genomic 

resources and the lack of analytical tools (Tanksley and Hewitt 1988, Tanksley et al. 

1989). Other obstacles that prevented performing genetic studies in woody perennials 

include a long generation time, high ploidy levels in economically important crops, 

inbreeding depression, self- and cross-incompatibility (Janick and Moore 1975, Moore 

and Janick 1983). Early genetic studies on bud dormancy estimated the heritability and 

classic Mendelian genetic behavior of a few traits, followed by genetic studies of 

evergrowing mutants in hazelnut (Thompson et al. 1985) and peach (Rodriguez et al. 

1994) which suggested that their lack of dormancy induction was due to a single 

recessive gene. Hansche (1990) reported high heritability estimates for leaf abscission 

during fall and spring bloom date in peach implying a strong genetic component for these 
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traits. Studies in apple (Malus x domestica Borkh) also confirmed a strong genetic 

component for CR and provided evidence that a major dominant gene controls low CR 

and minor genes modulate its effect (Hauagge and Cummins 1991). 

Most dormancy-related traits are inherited in a quantitative manner and display a 

continuous distribution in phenotype values among progenies of crosses segregating for 

these traits. This strongly indicates a polygenic mode of inheritance (Farmer and Reinholt 

1986, Billington and Pelham 1991, Bradshaw and Stettler 1995, Lawson et al. 1995, 

Howe et al. 1999, 2000). The first QTL analyses on dormancy-related traits in woody 

perennials were performed in an F1 population (double pseudo-testcross) of apple 

(Lawson et al. 1995) and in an F2 population of poplar (Bradshaw and Stettler 1995). 

Two QTLs for bud flush were placed on an apple genetic map; while five QTLs 

explaining 85% of the phenotypic variance were detected in the poplar map. In apple, 

another study for vegetative bud flush with a larger F1 population size (172 individuals) 

detected 8 QTLs on 6 linkage groups that explained 42 % of the phenotypic variance 

(Conner et al. 1998); however, none of these linkage groups was homologous to the 

linkage group with the QTLs from the initial study. In poplar the population size was also 

increased to 346 in an F2 population segregating for fall bud set and spring bud flush 

(Frewen et al. 2000). With the intent of mapping possible candidate genes, 3 QTLs 

distributed over 3 linkage groups were associated with bud set and 6 QTLs were 

distributed over 6 linkage groups for bud flush. The 3 bud set QTLs co-localized with 3 

of the QTLs for bud flush implying that a single QTL could have pleiotropic effects on 

both traits as a result of shared components in their biochemical pathways. After 
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comparing the 2 poplar maps, 3 QTLs were found to be common in both studies and all 3 

contained bud flush QTLs. Following the mapping of candidate genes involved in 

perception of photoperiod, PHYB1 and PHYB2, and genes involved in the signal 

transduction of ABA response signals, ABI1B, ABI1D and ABI, only PHYB2 and ABI1B 

were found to map near but not inside QTLs affecting both bud set and bud flush. The 

lack of co-localization of the sensors of photoperiod with QTLs that control dormancy, 

suggest that light may not be the direct regulator of the system. These results would be 

consistent with a model that light may act indirectly through production of sugars that 

may more directly regulate the system.   

Several other maps have been constructed for detection of QTLs controlling bud 

dormancy and related traits but with little success at identifying candidate genes. Some of 

these studies include studies in apple (Liebhard et al. 2003a,b, Segura et al. 2006), sour 

cherry (Wang et al. 2000), raspberry (Graham et al. 2009) and Douglas fir (Pseudotsuga 

menziesii Franco var. menziesii) (Jermstad et al. 2001).  Besides bud set and bud flush 

QTLs, efforts were directed towards identifying QTLs and mode of potential gene actions 

underlying CR in blueberry (Vaccinium section Cyanococcus) (Rowland et al. 1999). CR 

was chosen as a study phenotype because of interest in developing low-CR cultivars for 

warmer winter conditions (Hancock and Draper 1989, Hancock et al. 1995). The CR of a 

cultivar is known to broadly impact the timing of bud flush, preventing growth during 

transitory periods, synchronize plant growth with exposure to stable favorable conditions 

and select for cold hardiness. It is the major factor determining bud break (Ruiz et al., 
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2007; Alburquerque et al., 2008), which is an important agronomic trait affecting 

production in temperate fruit tree species.  

Vast amounts of information has been revealed from transcriptome analysis and 

expression studies that propose a plethora of plausible candidate genes in grape 

(Mathiason et al. 2009, Ophir et al. 2009), raspberry (Mazzitelli et al. 2007) and poplar 

(Rohde et al. 2007), but the short-coming of such studies lies in their inability to identify 

cause and effect genes from the differential expressions. The expression study on 

dormancy release by Mathiason et al. (2009) reported differential expression of several 

genes already characterized in vernalization pathways of model annual plants in relation 

to flowering time, indicating that some components of these pathways are conserved in 

woody perennials. These genes include FLOWERING TIME LOCUS T (FT), 

SUPPRESSOR OF OVER-EXPRESSION OF CONSTANS 1 (SOC1), LEAFY (LFY), 

FRIGIDA (FRI), FLOWERING LOCUS C (FLC), GIGANTEA (GI), CONSTANS (CO), 

VERNALIZATION INDEPENDENT 3 (VIN3), VERNALIZATION 1 (VRN1) and 

VERNALIZATION 2 (VRN2).  

In poplar, the most prominent genes revealed by differential gene expression after 

exposure to 24 short-days were identified using an amplified fragment length 

polymorphism-based (cDNA-AFLP)
 
transcript profiling (Rohde et al. 2007). These were 

three regulatory genes, AP2/EREBP (APETALA 2/ ETHYLENE-RESPONSIVE 

ELEMENT BINDING FACTOR 13), ERF4 (ETHYLENE RESPONSIVE ELEMENT 

BINDING FACTOR 4), and WRKY11 (Calmodulin binding/ transcription factor). These 
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genes were linked with critical steps in dormancy induction (Rohde et al. 2007). 

Inference from the gene functional analyses of the respective Arabidopsis homologues 

showed that they act downstream of the ethylene and/or abscisic acid (ABA) signaling 

cascade that is successively initiated during bud development (Ruttink et al., 2007). The 

closest homologue of the AP2/EREBP transcription factor in Arabidopsis (RAP2.6L), is 

an AP2-like ABA repressor 1 gene (McGrath et al. 2005, Nakano et al. 2006) that acts in 

a network regulating shoot regeneration from root explants (Che et al. 2006). The 

Arabidopsis homologue for ERF4 (McGrath et al. 2005) is induced transcriptionally by 

ethylene, ABA and jasmonate and has been identified independently during short-day-

induced bud set in poplar (Ruttink et al., 2007). It acts as a transcriptional repressor that 

modulates ethylene and ABA responses in Arabidopsis, while overexpression of this gene 

causes ethylene insensitivity and reduced ABA sensitivity (Yang et al., 2005). The role of 

sugars was verified by Mazzitelli et al. (2007) where a putative raspberry plasma 

membrane H±ATPase gene was significantly up-regulated during dormancy release. 

Sugar influx has been suggested to occur through H
+
/sugar symports based on the pH 

gradient produced by a plasma membrane H±ATPase (Alves et al. 2001). Gevaudant et 

al. (2001) also confirmed in dormancy release of peach buds that carbohydrate uptake 

capacity of buds increases concurrently with the up-regulation and increased activity of 

the plasma membrane H±ATPase. 
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Summary of chapters 

CR and dormancy in Prunus species  

Besides the mapping (Wang et al. 2002), annotation (Bielenberg et al. 2008) and 

expression studies (Li et al. 2009, Jiménez et al. 2010) of the peach DAM genes, there 

remains a lack of insight into genes associated specifically with this complex trait and 

generally with the molecular mechanisms underlying the constituent pathways. Several 

studies in Prunus species have attempted to elucidate genetic factors controlling only 

blooming date using QTL analysis and do not reflect the comprehensive biological 

processes involved in dormancy ranging from induction to release (Dirlewanger et al. 

1999, Verde et al. 2002, Silva et al. 2005). Although QTLs controlling the blooming date 

trait were detected, defining the genomic regions produced intervals spanning several cM 

(mostly > 20 cM) due to inadequate marker saturation and limited mapping population 

size. With adequate resources now available, the Prunus system provides the most 

tractable genetic system in the Rosaceae family and woody perennials in general. This is 

due to their relatively small genome size (approx. 0.6 pg/2C), which is only twice as 

much as Arabidopsis (0.3 pg/2C) and the diploid nature of their genome (including their 

cultivars), unlike the larger genome size and polyploidy observed in several other 

Rosaceae genera like Malus (1.57 pg/2C), Pyrus (1.11 pg/2C) and other systems like 

poplar (1.1 pg/2C). 
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Project rationale and current state of prunus genomics. 

Subsequent studies aim to generate a high-density map of the apricot genome using 

genetic linkage and LD-based association mapping approaches towards defining genomic 

regions (QTLs) controlling CR and bud break. The apricot genome serves as an ideal 

system amenable for genetic studies compared to peach. This is mostly due to the high 

level of heterozygosity in the genome, enabling greater ease at generating numerous 

polymorphic loci for linkage mapping. This is also reflected in the broad genetic base of 

the apricot germplasm and its outcrossing nature, making it an ideal system for resolving 

QTL regions in greater detail using the LD-based association mapping approach. 

Although, genetic resources for Prunus are mainly based on the peach genome, the 

highly collinear genomes of peach and apricot allow for easy transferability of marker 

and genetic information. Complementary studies in both species along with other 

genomic resources (BAC libraries, peach genome sequence, QTL maps and expression 

study data) available from the Rosaceae community will also be used to identify 

candidate genes within the QTLs. Additionally, comparative mapping between peach and 

apricot will provide us with stable QTLs, as well as differences, between the apricot and 

peach phenotypes, enabling the study of the evolutionary events underlying the trait. The 

study provides the genetic substrate for preliminary gene expression and methylation 

studies of buds sampled during developmental stages spanning dormancy induction, 

maintenance and release. 
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The current state of Prunus genomics will facilitate dissection of genetic and molecular 

mechanisms driving natural variations observed in this trait in an unprecedented manner. 

These resources include Prunus BAC and EST libraries, expression studies within 

Prunus and related woody perennials, and an extensive annotation of candidate genes in 

several systems. The complete sequencing and assembly of a dihaploid-derived peach 

genome also provides an unprecedented ability to mine candidate genes for QTLs as well 

as marker design for fine mapping. Reported in this dissertation are: 

1) Construction of high-density apricot linkage maps: Two parental maps 

comprising corresponding to the apricot 8 chromosomes were aligned against the 

Prunus reference map using Prunus anchor SSR marker sets to establish 

conservation of synteny.  

2) QTL mapping of CR for vegetative bud break in apricot: A total of 20 putative 

CR QTLs were detected on the apricot 8 linkage groups after applying a model 

based on an additive-by-additive epistatic interaction with and without 

dominance. Four of the 12 QTLs detected for each of the two models were stable, 

while majority of the alleles that increase trait value were contributed by the high 

chill parent.  

3) Comparative analysis of QTLs underlying CR and bud break in peach and apricot: 

A majority of the QTLs were shown to be stable between peach and apricot, as 

well as similar QTL effects that explain the parental origin of the allele that 

increases the trait value. The study reveals transferability of genetic information 

between these 2 Prunus species and validation of previously identified QTLs. 
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4) Linkage disequilibrium (LD)-based mapping of CR for floral bud break in an 

apricot germplasm: Fine mapping of 2 of the major QTLs for gene discovery 

revealed candidate genes that were strongly and siginificantly associated with the 

CR trait.  

The literature reviewed above is relevant to the next three chapters that comprise research 

studies attempting to uncover the genetic mechanisms underlying CR and bud break in 

Prunus. 



 31 

References 

 

Alburquerque, N., Garcia-Montiel, F., Carrillo, A, Burgos, L. 2008. Chilling and heat 

requirements of sweet cherry cultivars and the relationship between altitude and 

the probability of satisfying the chill requirements, Environ. Exp. Bot. 64(2): 162-

170. doi:10.1016/j.envexpbot.2008.01.003. 

Alonso-Blanco, C., Aarts, M.G., Bentsink, L., Keurentjes, J.J., Reymond, M., 

Vreugdenhil, D., Koornneef, M. 2009. What has natural variation taught us about 

plant development, physiology, and adaptation? Plant Cell. 21(7): 1877-96. 

Alves, G., Sauter, J.J., Julien, J.L., Fleurat-Lessard, P., Ameglio, T., Guillot, A., Petel, G., 

Lacointe, A., 2001. Plasma membrane H
+
-ATPase, succinate and isocitrate 

dehydrogenases activities of vessel-associated cells in walnut trees, J. Plant 

Physiol. 158(10): 1263-1271. 

Anderberg, R.J., Walker-Simmons, M.K. 1992. Isolation of a wheat cDNA clone for an 

abscisic acid-inducible transcript with homology to protein kinases. Proc. Natl. 

Acad. Sci. U.S.A. 89: 10183-10187. 

Arora, R., Rowland L.J., Panta, G.R. 1997. Cold hardiness and dormancy transitions in 

blueberry and their association with accumulation of dehydrin-like proteins. 

Physiol. Plant. 101: 8-16. 

Arora, R., Rowland, L.J., Tanino, K. 2003. Induction and release of bud dormancy in 

woody perennials: A science comes of age. HortScience. 38 (5): 911-921. 

Arora, R., Wisniewski, M.E. 1994. Cold acclimation in genetically related (sibling) 

deciduous and evergreen peach (Prunus persica [L.] Batsch). II. A 60-kilodalton 

bark protein in cold-acclimated tissues of peach is heat stable and related to the 

dehydrin family of proteins. Plant Physiol. 105: 95-101. 

Arora, R., Wisniewski, M.E., Scorza, R. 1992. Cold acclimation in genetically related 

(sibling) deciduous and evergreen peach (Prunus persica [L.] Batsch) I : seasonal 

changes in cold hardiness and polypeptides of bark and xylem tissues. Plant 

Physiol. 99: 1562–1568. 

Artlip, T.S., Callahan, A.M., Bassett, C.L., Wisniewski, M.E. 1997. Seasonal expression 

of a dehydrin gene in sibling deciduous and evergreen genotypes of peach 

(Prunus persica [L.] Batsch). Plant Mol. Biol. 33: 61–70. 

Ashworth, E.N. 1984. Xylem development in Prunus flower buds and the relationship to 

deep supercooling. Plant Physiol. 74: 862-865. 



 32 

Bangerth, K.F. 2009. Floral induction in mature, perennial angiosperm fruit trees: 

Similarities and discrepancies with annual/biennial plants and the involvement of 

plant hormones. Sci. Hortic. 122(2): 153-163. doi:10.1016/j.scienta.2009.06.014. 

Barros, R.S., Neill, S.J. 1989. The status of abscisic acid in willow as related to the 

induction of bud dormancy. Acta Physiol. Plant. 11(2): 117-123.  

Bernier, G. 1988. The control of floral evocation and morphogenesis. Annu. Rev. Plant. 

Physiol. Plant Mol. Biol. 39: 175–219.  

Bernier, G., Périlleux, C. 2005. A physiological overview of the genetics of flowering 

time control. Plant Biotech. J. 3: 3–16. 

Beveridge, C.A., Symons, G.M., Turnbull, C.G. 2000. Auxin inhibition of decapitation-

induced branching is dependent on graft-transmissible signals regulated by genes 

Rms1 and Rms2. Plant Physiol. 123(2): 689-98. 

Bielenberg, D.G., Wang, Y., Li, Z., Zhebentyayeva, T., Fan, S., Reighard, G.L., Scorza, 

R., Abbott, A.G. 2008. Sequencing and annotation of the evergrowing locus in 

peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box 

transcription factors as candidate genes for regulation of terminal bud formation. 

Tree Genet. Genomes 4: 495–507. 

Billington, H. L., Pelham, J. 1991. Genetic variation in the date of budburst in Scottish 

birch populations: implications for climate change. Funct. Ecol. 5: 403–409.  

Bradshaw, H. D., Stettler, R. F. 1995. Molecular genetics of growth and development in 

Populus. IV. Mapping QTLs with large effects on growth, form, and phenology 

traits in a forest tree. Genetics 139: 963– 973. 

Champagnat, P. 1989. Rest and activity in vegetative buds of trees. Annales des Sciences 

Forestieres 46 (suppl.): 9-26.  

Chandler, W.H., Tufts, W.P. 1934. Influence of the rest period on opening of buds of 

fruit trees in spring and on development of flower buds of peach trees. Proc. 

Amer. Soc. Hort. Sci. 30: 180-186. 

Che, P., Lall, S., Nettleton, D., Howell, S.H. 2006. Gene expression programs during 

shoot, root, and callus development in Arabidopsis tissue culture. Plant Physiol 

141: 620–637. 

Chen, K.Y., Coleman, G. 2006. Type II MADS-box genes associated with poplar apical 

bud development and dormancy. Ann. Meeting Amer. Soc. Plant Biologists. 

Abstr. pp. 118. 



 33 

Chiariello, M., Gomez, E., Gutkind, J.  2000. Regulation of cyclin-dependent (Cdk) 2 

Thr-160 phosphorylation and activity by MAP kinase in late G1 phase. Biochem. 

J. 349: 869-876. 

Chien, M., Rinker-Schaeffer, C., Stadler, W.M. 2000. A G2/M growth arrest response to 

low-dose intermittent H2O2 in normal uroepithelial cells. Int. J. Oncol. 17: 425–

432. 

Choi, J., Hyun, Y., Kang, M.J., In Yun, H., Yun, J.Y., Lister, C., Dean, C., Amasino, 

R.M., Noh, B., Noh, Y.S., Choi, Y. 2009. Resetting and regulation of 

FLOWERING LOCUS C expression during Arabidopsis reproductive 

development. Plant J. 57: 918–931. 

Cline, M. G. 1994. The role of hormones in apical dominance. New approaches to an old 

problem in plant development. Physiol Plant 90: 230-237. 

Close, T.J. 1997. Dehydrins: a commonalty in the response of plants to dehydration and 

low temperature. Physiol Plant 100: 291–296.   

Conner, P.J., Brown, S.K., Weeden, N.F. 1998. Molecular-marker analysis of quantitative 

traits for growth and development in juvenile apple trees. Theor. Appl. Genet. 96: 

1027–1035. 

Cook, S. J., Balmanno, K., Garner, A., Millar, T., Taverner, C., Todd, D. 2000. 

Regulation of cell cycle re-entry by growth survival and stress signaling 

pathways. Biochem. Soc. Trans. 28: 233–240. 

Corbesier, L., Lejeune, P., Bernier, G. 1998. The role of carbohydrates in the induction of 

flowering in Arabidopsis thaliana: comparison between the wild type and a 

starchless mutant. Planta 206: 131–137. 

Crabbe, J. 1994. Dormancy. In: Arntzen, C.J. and Ritter, E.M. (eds). Encyclopedia of 

agricultural sciences, Academic Press, New York. vol. 1: 597-611. 

Crabbe, J., Barnola, P. 1996. A new conceptual approach to bud dormancy in woody 

plants. In: ed. G.A. Lang. Plant dormancy, physiology, biochemistry and 

molecular biology. Wallingford, UK: CAB International.  

De Fay, E., Vacher, V., Humbert, F. 2000. Water-related phenomena in winter buds and 

twigs of Picea abies L. (Karst.) until bud-burst: a biological, histological and 

NMR study. Ann. Bot. 86: 1097–1100.  

Dennis, F.G., Edgerton L.J. 1961. Understanding Abscisic AcidThe relationship between 

an inhibitor and rest in peach flower buds. Amer. Soc. Hort. Sci. 77: 107-116. 



 34 

Desikan, R., Neill, S.J., Hancock, J.T. 2000. Hydrogen peroxide induced gene expression 

in Arabidopsis thaliana. Free Radic. Biol. Med. 28: 773–778.  

Dirlewanger, E., Moing, A., Rothan, C., Svanella, L., Pronier, V., Guye, A., Plomion, C., 

Monet, R. 1999. Mapping QTLs controlling fruit quality in peach (Prunus persica 

(L.) Batch). Theor. Appl. Genet. 98: 18–31. 

Distelfeld, A., Li, C., Dubcovsky, J. 2009. Regulation of flowering in temperate cereals. 

Curr. Opin. Plant Biol. 12(2): 178-84. 

Dóczi, R., Brader, G., Pettkó-Szandtner, A., Rajh, I., Djamei, A., Pitzschke, A., Teige, 

M., Hirt, H. 2007. The Arabidopsis mitogen-activated protein kinase kinase 

MKK3 is upstream of group C mitogen-activated protein kinases and participates 

in pathogen signaling. Plant Cell, 19(10): 3266–3279. 

Doorenbos, J. 1953. Review of the literature on dormancy in buds of woody plants. 

Meded. van de Landbouwhogesch. Wageningen 53: 1-23.  

Dumbroff, E.B., Cohen, D.B., Webb, D.P. 1979. Seasonal levels of abscisic acid in buds 

and stems of Acer saccharum. Physiol Plant 45: 211-214. 

Eagles, C. F., Wareing, P. F. 1963. Experimental induction of dormancy in Betula 

pubescens. Nature 199: 874–875. 

Erez, A. 1987. Chemical control of bud break, Hortic. Sci. 22: 1240-1243.  

Erez, A., Couvillon, G.A. 1987. Characterization of the influence of moderate 

temperatures on rest completion in peach, J. Am. Soc. Hortic. Sci. 112: 677-680. 

Erez, A., Couvillon, G.A., Henderschott, C.H.  1979. Quantitative chilling enhancement 

and negation in peach buds by high temperatures in a daily cycle. J. Am. Soc. 

Hortic. Sci. 104: 536-540. 

Erez, A., Faust, M., Line, M.J. 1998. Changes in water status in peach buds on induction, 

development and release from dormancy.  Sci. Hortic. 73: 111-123.  

Erez, A., Lavee, S. 1974. Recent advances in breaking the dormancy of deciduous fruit 

trees. 19th Int. Hortic. Congr., Warszawa, pp 69–78. 

Erez, A., Lavee, S., Samish, R.M. 1971. Improved methods for breaking rest in the peach 

and other deciduous fruit species. J. Am. Soc. Hort. Sci. 96: 519-522. 

Fan, H.Y., He, X., Kingston, R.E., Narlikar, G.J. 2003. Distinct strategies to make 

nucleosomal DNA accessible. Mol. Cell 11: 1311–1322.  



 35 

Farmer Jr., R.E., Reinholt, R.W. 1986. Genetic variation in dormancy relations of balsam 

poplar along a latitudinal transect in northwestern Ontario. Silvae Genet. 35:38–

42. 

Faust, M., Erez, A., Rowland, L.J., Wang, S.Y., Norman, H.A. 1997. Bud dormancy in 

perennial fruit trees: Physiological basis for dormancy induction, maintenance and 

release. HortScience 32(4): 623-629. 

Faust, M., Liu, D., Millard, M.M., Stutte, G.W. 1991. Bound versus free water in 

dormant apple buds–a theory for endodormancy. HortScience 26(7): 887-890. 

Faust, M., Wang, S.Y. 1993. Polyamines in horticuturally important plants. Hortic. Rev. 

14: 333-356. 

Fedoroff, N. 2002. Cross-talk in abscisic acid signaling. Sci. STKE 140: re10. 

Fennell, A., Hoover, E. 1991. Photoperiod influences growth, bud dormancy, and cold 

acclimation in Vitis labruscana and V. riparia. J. Am. Soc. Hortic. Sci. 116: 270 

273. 

Fennell, A., Line, M.J. 2001. Identifying differential tissue response in grape (Vitis 

riparia) during induction of endodormancy using nuclear magnetic resonance 

imaging. J. Am. Soc. Hortic. Sci. 126(6): 681-688. 

Fennell, A., Wake, C., Molitor, P. 1996. Use of 
1
H-NMR to determine grape bud water 

state during the photoperiodic induction of dormancy. J. Am. Soc. Hortic. Sci. 

121: 1112-1116.  

Ferguson, B.J., Beveridge, C.A. 2009. Dependent and independent roles of plant 

hormones in apical dominance, correlative inhibition and the RMS/Strigolactone 

pathway. Plant Physiol 149: 1929-1944. 

Fernandez-Escobar, R., Martin, R., 1987. Chemical treatments for breaking rest in peach 

in relation to accumulated chilling. J. Hort. Sci. 62: 457–461. 

Finlayson, S.A., Lee, I.J., Morgan, P.W. 1998. Phytochrome B and the regulation of 

circadian ethylene production in sorghum. Plant Physiol. 116: 17–25. 

Francis, D., Sorrell, D. 2001. The interface between the cell cycle and plant growth 

regulators: a mini review [J]. Plant Growth Reg. 33: 1–12. 

Freundl, E., Steudle, E., Hartung, W. 2000. Apoplastic transport of abscisic acid through 

roots of maize: effect of the exodermis. Planta 210: 222-231.  



 36 

Frewen, B.E., Chen, T.H., Howe, G.T., Davis, J., Rohde, A., Boerjan, W., Bradshaw Jr., 

H.D. 2000. Quantitative trait loci and candidate gene mapping of bud set and bud 

flush in populus. Genetics. 154(2): 837-45. 

Fuchigami, L.H., Weiser, C.J., Kobayashi, K., Timmis, R., Gusta, L.V. 1982. A degree 

growth stage (oGS) model and cold acclimation in temperate woody plants. In: 

P.H. Li and A. Sakai, eds. Plant cold hardiness and freezing stress. New York: 

Academic Press. 

Fujiwara, S., Oda, A., Yoshida, R., Niinuma, K., Miyata, K., Tomozoe, Y., Tajima, T., 

Nakagawa, M., Hayashi, K., Coupland, G., Mizoguchi, T. 2008. Circadian clock 

proteins LHY and CCA1 regulate SVP protein accumulation to control flowering 

in Arabidopsis. Plant Cell. 20(11): 2960-71. 

Gevaudant, F., Petel, G., Guilliot, A. 2001. Differential expression of four members of 

the H + -ATPase gene family during dormancy of vegetative buds of peach trees. 

Planta 212: 619–626. 

Graham, J., Woodhead, M., Smith, K., Russell, J., Marshall, B., Ramsay, G., Squire, G. 

2009. A decade of change; new insight into wild raspberry populations using SSR 

markers. J. Am. Soc. Hortic. Sci. 134 (1): 1-11. 

Grossmann, K., Hansen, H. 2000. Ethylene-triggered abscisic acid: a principle in plant 

growth regulation? Physiol. Plant. 113: 9-14.  

Guy, C.L. 1990. Cold acclimation and freezing stress tolerance: role of protein 

metabolism. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41: 187-223. 

Hancock, J. F., Draper, A. D. 1989. Blueberry culture in North America. HortScience 24: 

55 1-556. 

Hancock, J.F., Erb, W.A., Goulart, B.L., Scheerens, J.C. 1995. Utilization of wild 

blueberry germplasm: The legacy of Arlen Draper. J. Small Fruit Viticult. 3: 1-16.  

Hansche, P.E., 1990. Heritability of spring bloom and fall leaf abscission dates in Prunus 

persica. HortScience 25: 1639–1641. 

Hansen, H., Grossmann, K. 2000. Auxin-induced ethylene triggers abscisic acid 

biosynthesis and growth inhibition. Plant Physiol. 124: 1437-1448. 

Hardie, D.G. 1994. Ways of coping with stress. Nature 370: 599–600.  

Hauagge, R., Cummins, J. N. 1991. Genetics of length of dormancy period in Malus 

vegetative buds. J. Am. Soc. Hortic. Sci. 116: 121–126. 



 37 

He, Y., Amasino, R.M. 2005. Role of chromatin modification in flowering-time control. 

Trends Plant Sci. 10(1): 30-5. 

Healy, J.M., Menges, M., Doonan, J.H., Murray, J.A.H. 2001. The Arabidopsis D-type 

cyclins CycD2 and CycD3 both interact in vivo with the PSTAIRE cyclin-

dependent kinase Cdc2a but are differentially controlled. J. Biol. Chem. 276: 

7041–7047. 

Henzell, R.F., Briscoe, M.R., Gravett, I. 1991. Improving kiwifruit vine productivity with 

plant growth regulators. Acta Hortic. 297: 345–350.  

Hermberg, T. 1949. Growth inhibitors in terminal buds of Fraxinus. Physiol. Plant.  2: 

37. 

Heyer, A.G., Raap, M., Schroeer, B., Marty, B., Willmitzer, L. 2004. Cell wall invertase 

expression at the apical meristem alters floral, architectural, and reproductive 

traits in Arabidopsis thaliana. Plant J. 39: 161-169. 

Hill, J., Becker, H.C., Tigerstedt, P.M.A. 1998. Quantitative and ecological aspects of 

plant breeding. St. Edmundsbury Press, Suffolk, U.K. 

Horvath, D.P., Anderson, J.V., Chao, W.S., Foley, M.E. 2003. Knowing when to grow: 

signals regulating bud dormancy. Trends Plant Sci. 8(11): 534-40. 

Howe, G. T., Davis, J., Frewen, B., Saruul, P., Jeknić, Z., Bradshaw Jr., H. D., Chen, 

T.H.H. 1999. Physiological and genetic approaches to studying endodormancy-

related traits in Populus. Hortscience 34: 1174–1184. 

Howe, G.T., Saruul, P., Davis, J., Chen, T.H.H. 2000. Quantitative genetics of bud 

phenology, frost damage, and winter survival in an F2 family of hybrid poplars. 

Theor. Appl. Genet. 101: 632-642. 

Huang, J., Pray, C., Rozelle, S.  2002.  Enhancing the crops to feed the poor.  Nature 418: 

678-684. 

Iwahori, S., Gemma, H., Tanabe, K., Webster, A.D., White, A.G. 2002. Proceedings of 

the international symposium on asian pears commemorating the 100th 

anniversary of „Nijisseiki‟ pear. Acta Hort. (587). 

Iwasaki, K., Weaver, R.J. 1977. Effects of chilling, calcium cynamide, and bud scale 

removal on bud break, rooting, and inhibitor content of buds of „Zinfandel‟ grape 

(Vitis vinifera L.). J. Am. Soc. Hortic. Sci. 102(5): 584-587.  

Janick, J., Moore, J.N. eds. 1975.Advances in fruit breeding. Purdue Univ. Press, West 

Lafayette, Ind. 



 38 

Jermstad, K.D., Bassoni, D.L., Jech, K.S., Wheeler, N.C., Neale, D.B. 2001. Mapping of 

quantitative trait loci controlling adaptive traits in coastal Douglas-fir. I. Spring 

bud flush. Theor. Appl. Genet. 102:1142–1151. 

Jian, L., Li, P.H., Sun, L., Chen, T.H.H. 1997. Alterations in ultrastructure and 

subcellular localization of Ca2+ in poplar apical bud cells during the induction of 

dormancy. J. Exp. Bot. 48: 1195–1207. 

Jiménez, S., Li, Z., Reighard, G.L., Bielenberg, D.G. 2010. Identification of genes 

associated with growth cessation and bud dormancy entrance using a dormancy-

incapable tree mutant. BMC Plant Biol. doi:10.1186/1471-2229-10-25. 

Jung, C., Müller, A.E. 2009. Flowering time control and applications in plant breeding. 

Trends Plant Sci. 14(10): 563-73. 

Keep, E., 1988. Primocane (autumn)-fruiting raspberries: A review with particular 

reference to progress in breeding. J. Hort. Sci. 63: 1–18. 

Kim, S.Y., Park, B.S., Kwon, S.J., Kim, J., Lim, M.H., Park, Y.D., Kim, D.Y., Suh, S.C., 

Jin, Y.M., Ahn, J.H., Lee, Y.H. 2007. Delayed flowering time in Arabidopsis and 

Brassica rapa by the overexpression of FLOWERING LOCUS C (FLC) homologs 

isolated from Chinese cabbage (Brassica rapa L. ssp. pekinensis). Plant Cell Rep. 

26: 327–336.  

Klinkhamer, P.G.L., De Jong, T.J., Meelis, E. 1987. Life-history variation and the control 

of flowering in short-lived monocarps. Oikos, 49: 309–314.  

Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar 

sensing and plant development. Curr. Opin. Plant Biol. 7: 235–246. 

Koussa, T., Zaoui, D., Broquedis, M. 1998. Relationship between the levels of abscisic 

acid in latent buds, in leaves and in internodes of Vitis vinifera L. cv. Merlot 

during the dormancy phase. Journal International des Sciences de la Vigne et du 

Vin 32(4): 203-210.  

Kurata, S.I. 2000. Selective activation of p38 MAPK cascade and mitotic arrest caused 

by low level oxidative stress. J. Biol. Chem. 275(31): 23413–23416. 

Lacey, E.P. 1986. Onset of reproduction in plants: size- versus age-dependency. Trends 

Ecol. Evol. 1: 72–75. 

Lang, G.A. 1994. Dormancy - the missing links: molecular studies and integration of 

regulatory plant and environmental interactions. HortScience: 29: 1255-1263. 



 39 

Lang, G.A., Early, J.D., Martin, G.C., Darnell, R.L. 1987. Endo-, para- and 

ecodormancy: physiological terminology and classification for dormancy 

research. HortScience 22: 371-377. 

Law, R.D., Suttle, J.C. 2003. Transient decreases in methylation at 5'-CCGG-3‟ 

sequences in potato (Solanum tuberosum L.) meristem DNA during progression 

of tubers through dormancy precede the resumption of sprout growth. Plant Mol. 

Biol. 51: 437–447. 

Lawson, D. M., Hemmat, M., Weeden, N. F. 1995. The use of molecular markers to 

analyze the inheritance of morphological and developmental traits in apple. J. 

Am. Soc. Hortic. Sci. 120: 532–537. 

Leike, H. 1965. Neuere Ergebnisse ü ber die Ruheperiode (Dormancy) der 

Gehölzknospen. Wiss. Z. Univ. Rostock, Math.-naturwiss. R. 14: 475-492. 

Lenton, J.R., Perry, V.M., Saunders, P.F. 1972. Endogenous abscisic acid in relation to 

photoperiodically induced bud dormancy. Planta 106: 13-22.  

Leung, J., Giraudat, J. 1998. Abscisic acid signal transduction. Annu. Rev. Plant Physiol. 

Plant Mol. Biol. 49: 199-222. 

Li, Z., Reighard, G.L., Abbott, A.G., Bielenberg, D.G. 2009. Dormancy-associated 

MADS genes from the EVG locus of peach [Prunus persica (L.) Batsch] have 

distinct seasonal and photoperiodic expression patterns. J. Exp. Bot. 60: 3521–

3530 

Liebhard, R., Kellerhals, M., Pfammatter, W., Jermini, M., Gessler, C. 2003b. Mapping 

quantitative physiological traits in apple (Malus × domestica Borkh.). Plant Mol. 

Biol. 52: 511-526. 

Liebhard, R., Koller, B., Patocchi, A., Kellerhals, M., Pfammatter, W., Jermini, M., 

Gessler, C. 2003a. Mapping quantitative field resistance against apple scab in a 

„Fiesta‟ × „Discovery‟ progeny. Phytopathology 93:493-501. 

MacDonald, J.E. 2000. The developmental basis of bud dormancy in 1-year-old Picea 

and Pseudostuga seedlings. In: eds., J.-D. Viemont and J. Crabbe. Dormancy in 

plants. New York, USA: CABI Publishing.  

Martinez-Zapater, J. M., Coupland, G., Dean, C., Koornneef, M. 1994. The transition to 

flowering in Arabidopsis, pp. 403–434 in Arabidopsis, edited by E. M. 

Meyerowitz and C. R. Somerville. Cold Spring Harbor Laboratory Press, New 

York. 



 40 

Mathiason, K., He, D., Grimplet, J., Venkateswari, J., Galbraith, D.W., Or, E., Fennell, 

A. 2009. Transcript profiling in Vitis riparia during CR fulfillment reveals 

coordination of gene expression patterns with optimized bud break. Funct. Integr. 

Genomics. 9(1): 81–96 

Maurel, K., Leite, G.B., Bonhomme, M., Guilliot, A., Rageau, R., Pétel, G., Sakr, S. 

2004. Trophic control of bud break in peach (Prunus persica) trees: a possible role 

of hexoses. Tree Physiol. 24: 579-588. 

Mazzitelli, L., Hancock, R.D., Haupt, S., Walker, P.G., Pont, S.D., McNicol, J., Cardle, 

L., Morris, J., Viola, R., Brennan, R., Hedley, P.E., Taylor, M.A. 2007. Co-

ordinated gene expression during phases of dormancy release in raspberry (Rubus 

idaeus L.) buds. J. Exp. Bot. 58(5): 1035–1045. 

McGrath, K.C., Dombrecht, B., Manners, J.M., Schenk, P.M., Edgar, C.I., Maclean, D.J., 

Scheible, W.-R., Udvardi, M.K., Kazan, K. 2005. Repressor- and activator-type 

ethylene response factors functioning in jasmonate signaling and disease 

resistance identified via a genome-wide screen of Arabidopsis transcription factor 

gene expression. Plant Physiol. 139: 949-959.  

Meijón, M., Feito, I., Valledor, L., Rodríguez, R., Cañal, M.J. 2010. Dynamics of DNA 

methylation and Histone H4 acetylation during floral bud differentiation in azalea. 

BMC Plant Biol. doi:10.1186/1471-2229-10-10. 

Meskiene, I., Hirt, H. 2000. MAP kinase pathways: molecular plug-and-play chips for the 

cell. Plant Mol. Biol. 42: 791-806.  

Moore, J.N., Janick, J. 1983. Methods in fruit breeding. Purdue Univ. Press, West 

Lafayette, Ind. 

Mouradov, A., Cremer, F., Coupland, G. 2002. Control of flowering time: interacting 

pathways as a basis for diversity. Plant Cell 14: S111–S130. 

Muller-Thurgau, H. 1885. Beitrag zur Erklärung der Ruheperioden der Pflanzen. Landw. 

Jahrb. 14: 851-907. 

Nakano, T., Suzuki, K., Fujimura, T., Shinshi, H. 2006. Genome-wide analysis of the 

ERF gene family in Arabidopsis and rice. Plant Physiol, 140: 411-432. 

Neill, S.J., Desikan, R., Clarke, A., Hurst, R.D., Hancock, J.T. 2002. Hydrogen peroxide 

and nitric oxide as signalling molecules in plants. J. Exp Botany. 53: 1237-1247. 

Ni, Z., Kim, E.D., Ha, M., Lackey, E., Liu, J., Zhang, Y., Sun, Q., Chen, Z.J. 2009. 

Altered circadian rhythms regulate growth vigour in hybrids and allopolyploids. 

Nature. 457(7227): 327-31. 



 41 

Nir, G., Shulman, Y., Fanberstein, L., Lavee, S. 1986. Changes in the activity of catalase 

in relation to the dormancy of grapevine (Vitis vinifera L.) buds. Plant Physiol. 

81: 1140–1142. 

Nissila, P.C., Fuchigami, L.H. 1978. The relationship between vegetative maturity and 

the first stage of cold acclimation. J. Am. Soc. Hortic. Sci. 103: 710–711. 

Nitsch, J.P. 1957. Growth responses of woody plants to photoperiodic stimuli. American 

Society for Horticultural Science Proceedings 70: 512-525. 

Nooden, L. D., Weber, J. A. 1978. Environmental and hormonal control of dormancy in 

terminal buds of plants. Pages 221–268 in M. E. Cutter, ed. Dormancy and 

Developmental Arrest. New York: Academic Press. 

Oakenfull, E.A., Riou-Khamlichi C., Murray, J.A.H. 2002. Plant D-type cyclins (CycDs) 

and the control of G1 progression. Philos. Trans. R. Soc. London B 357: 749-760. 

Okubo, H. 2000. Growth cycle and dormancy in plants. In: eds., J.-D. Viemont and J. 

Crabbe. Dormancy in plants. New York, USA: CABI Publishing.  

Ophir, R., Pang, X., Halaly, T., Venkateswari, J., Lavee, S., Galbraith D., Or E. 2009. 

Gene-expression profiling of grape bud response to two alternative dormancy-

release stimuli expose possible links between impaired mitochondrial activity, 

hypoxia, ethylene-ABA interplay and cell enlargement. Plant Mol Biol. 71(4-5): 

403-23. 

Or, E., Vilozny, I., Eyal, Y., Ogrodovitch, A. 2000. The transduction of the signal for 

grape bud dormancy breaking induced by hydrogen cyanamide may involve the 

SNF-like protein kinase GDBRPK. Plant Mol. Biol. 43: 483–494. 

Or, E., Vilozny, I., Fennell, A., Eyal, Y., Ogrodovitch, A. 2002. Dormancy in grape buds: 

Isolation and characterisation of catalase cDNA and analysis of its expression 

following chemical induction of bud dormancy release. Plant Sci. 162: 121–130. 

Parmentier, C.M., Rowland, L.J., Line, M.J. 1998. Water status in relation to 

maintenance and release from dormancy in blueberry flower buds. J. Am. Soc. 

Hortic. Sci. 123(5): 762-769.  

Pérez, F.J., Lira, W. 2005. Possible role of catalase in post-dormancy bud-break in 

grapevines. J. Plant Phisiol. 162: 301–308. 

Pérez, F.J., Vergara, R., Rubio, S. 2008. H2O2 is involved in the dormancy-breaking 

effect of hydrogen cyanamide in grapevine buds. Plant Growth Regul. 55(2): 149-

155. doi:10.1007/s10725-008-9269-4. 



 42 

Perry, T.O. 1971. Dormancy of trees in winter. Science 171: 29-36.  

Phillips, I.D., Wareing, P.F. 1958. Studies in dormancy of sycamore. I. Seasonal changes 

in the growth-substance content of the shoot. J. Exp. Bot. 9(27): 350-364.  

Pitzschke, A., Hirt, H. 2009. Disentangling the Complexity of Mitogen-Activated Protein 

Kinases and Reactive Oxygen Species Signaling. Plant Physiol. 149: 606-615. 

Powell, L.E. 1987. The hormonal control of bud and seed dormancy in woody plants. In: 

ed. P.J. Davies. Plant hormones and their role in plant growth and development. 

Boston: Martinus Nijhoff Publishers.  

Quamme, H.A., Su, W.A., Veto, L.J. 1995. Anatomical features facilitating supercooling 

of the flower within the dormant peach flower bud.  J. Am. Soc. Hortic. Sci. 

120(5): 814-822  

Reeves, P.A., He, Y., Schmitz, R.J., Amasino, R.M., Panella, L.W., Richards, C.M. 2007. 

Evolutionary conservation of the FLOWERING LOCUS C-mediated 

vernalization response: evidence from the sugar beet (Beta vulgaris). Genetics. 

176:295–307 

Rinne, P., Saarelainen, A., Junttila, O. 1994a. Growth cessation and bud dormancy in 

relation to ABA level in seedlings and coppice shoots of Betula pubescens as 

affected by a short photoperiod, water stress and chilling. Physiol Plant 90(3): 

451-458. 

Rinne, P., Tuominen, H., Junttila, O. 1994b. Seasonal changes in bud dormancy in 

relation to bud morphology, water and starch content, and abscisic acid 

concentration in adult trees of Betula pubescens. Tree Physiol. 14(6): 549-561.  

Rinne, P., Welling, A., Kaikuranta, P. 1998. Onset of freezing tolerance in birch (Betula 

pubescens Ehrh.) involves LEA proteins and osmoregulation and is impaired in an 

ABA-deficient genotype. Plant Cell Environ. 21: 601-611.  

Rinne, P.L.H., Kaikuranta, P., Van der Schoot, C. 2001. The shoot apical meristem 

restores its symplastic organization during chilling-induced release from 

dormancy. Plant J. 26: 249–264.  

Roberts, C.J., Nelson, B., Marton, M.J, Stoughton, R., Meyer, M.R., Bennett, H.A., He, 

Y.D., Dai, H., Walker, W.L., Hughes, T.R., Tyers, M., Boone, C., Friend, S.H. 

2000. Signaling and circuitry of multiple MAPK pathways revealed by matrix of 

global gene expression profiles. Science 287:873–880.  



 43 

Rodriguez, A.J., Sherman, W.B., Scorza, R., Wisniewski, M., Okie, W.R. 1994. 

„Evergreen‟ peach, its inheritance and dormant behaviour. J. Am. Soc. Hortic. Sci. 

119(4): 789-792.  

Rohde, A., Ruttink, T., Hostyn, V., Sterck, L., Van Driessche, K., Boerjan, W. 2007. 

Gene expression during the induction, maintenance, and release of dormancy in 

apical buds of poplar. J. Exp. Bot. 58(15-16): 4047–4060. 

Rohde, A., Van Montagu, M., Inze, D., Boerjan, W. 1997. Factors regulating the 

expression of cell cycle genes in individual buds of Populus. Planta 201: 43-52.  

Romberger, J.A. 1963. Meristems, growth, and development in woody plants. Forest 

Serv. Tech. Bul. 1293. USDA. 

Rowland, L.J., Arora, R. 1997. Proteins related to endodormancy (rest) in woody 

perennials. Plant Science 126: 119–144. 

Rowland, L.J., Mehra, S., Dhanaraj, A., Ogden, E.L., Arora, R. 2003. Identification of 

molecular markers associated with cold tolerance in blueberry. Acta Hortculturae 

625: 59-69. 

Rowland, L.J., Ogden, E.L., Arora, R., Lim, C.C., Lehman, J.S., Levi, A., Panta, G.R. 

1999. Use of blueberry to study genetic control of CR and cold hardiness in 

woody perennials. HortScience 34: 1185-1191. 

Ruiz, D., Campoy, J.A., Egea, J. 2007. Chilling and heat requirements of apricot cultivars 

for flowering. Environ. Exp. Bot. 61(3): 254–263. 

Ruttink ,T., Arend, M., Morreel, K., Storme, V., Rombauts, S., Fromm, J., Bhalerao, 

R.P., Boerjan, W., Rohde, A. 2007. A molecular timetable for apical bud 

formation and dormancy induction in poplar. Plant Cell 19: 2370–2390. 

Sakai, A. 1979. Freeezing avoidance mechanism in primordial shoots of conifer buds. 

Plant Cell Physiol. 20: 1381-1390.  

Salzman, R.A., Bressan, R.A., Hasegawa, P.M., Ashworth, E.N., Bordelon, B.P. 1996. 

Programmed accumulation of LEA-like proteins during desiccation and cold 

acclimation of overwintering grape buds. Plant Cell Environ. 19: 713 720. 

Samish, R.M. 1954. Dormancy in woody plants. Annu Rev Plant Physiol 5: 183-204.  

Saunders, P. 1978. Phytohormones and bud dormancy. In: Phytohormones and Related 

Compounds. A Comprehensive Treatise. (Letham D.S., Goodwin P.B. & Higgins 

T.J., eds.), Vol. II. Elsevier, Amsterdam, pp. 423-445. 



 44 

Saure, M.C. 1985. Dormancy release in deciduous fruit trees. In: ed. J. Janick. 

Horticultural Reviews, volume 7. Westport, Conneticut: AVI Publishing 

Company  

Sauter, M. 1997. Differential expression of a CAK (cdc2-activating kinase)-like protein 

kinase, cyclins and cdc2 genes from rice during the cell cycle and in response to 

gibberellin. Plant J. 11: 181–190. 

Segura, V., Cilas, C., Laurens, F., Costes, E. 2006. Phenotyping progenies for complex 

architectural traits: a strategy for 1-year-old apple trees (Malus × domestica 

Borkh.). Tree Genet. Genom. 2: 140–151. 

Sharp, R.E., LeNoble, M.E., Else, M.A., Thorne, E.T., and Gherardi, F. 2000. 

Endogenous ABA maintains shoot growth in tomato independently of effects on 

plant water balance: Evidence for an interaction with ethylene. J. Exp. Bot. 51: 

1575–1584. 

Sheldon, C.C., Hills, M.J., Lister, C., Dean, C., Dennis, E.S., Peacock, W.J. 2008. 

Resetting of FLOWERING LOCUS C expression after epigenetic repression by 

vernalization. Proc. Natl Acad. Sci. U.S.A. 105: 2214–2219.  

Shen, W.H. 2002. The plant E2F-Rb pathway and epigenetic control. Trends Plant Sci. 7: 

505–511. 

Shimizu-Sato, S., Mori, H. 2001. Control of outgrowth and dormancy in axillary buds. 

Plant Physiol. 127: 1405–1413. 

Siller-Cepeda, J.H., Fuchigami, L.H., Chen, T.H.H. 1992. Glutathione content in peach 

buds in relation to development and release of rest. Plant Cell Physiol. 33: 867–

872. 

Silva, C., Garcia-Mas, J., Sánchez, A.M., Arús, P., Oliveira, M.M. 2005. Looking into 

flowering time in almond (Prunus dulcis (Mill) D. A. Webb): the candidate gene 

approach. Theor. Appl. Genet. 110(5): 959-68. 

Simpson, G.M. 1990. Seed dormancy in grasses. Cambridge University Press: 

Cambridge. 

Stirnberg, P., Van De Sande, K., Leyser, H.M.  2002. MAX1 and MAX2 control shoot 

branching in Arabidopsis. Development 129: 1131–1141.  

Strauss, M., Kauder, F., Peisker, M., Sonnewald, U., Conrad, U., Heineke, D. 2001. 

Expression of an abscisic acid-binding single-chain antibody influences the 

subcellular distribution of abscisic acid and leads to developmental changes in 

transgenic potato plants. Planta 213: 361-369.  



 45 

Sung, S., Amasino, R.M. 2004. Vernalization in Arabidopsis thaliana is mediated by the 

PHD finger protein VIN3. Nature 427: 159-164. 

Suttle, J. C. 1998. Involvement of ethylene in potato microtuber dormancy. Plant Physiol. 

118: 843-848. 

Tadege, M., Sheldon, C. C., Helliwell, C. A., Stoutjesdijk, P., Dennis, E.S., Peacock, 

W.J. 2001 Control of flowering time by FLC orthologues in Brassica napus. Plant 

J. 28: 545-553. 

Tamura, F., Tanabe, K., Ikeda, T. 1993. Relationship between intensity of bud dormancy 

and level of ABA in Japanese pear „Nijisseiki‟. Journal of the Japanese Society 

for Horticultural Science 62(1): 75-81.  

Tamura, F., Tanabe, K., Itai, A. 1998. Characteristics of endodormancy in Pyrus species. 

J. Japan. Soc. Hort. Sci. 67 (Suppl. 1): 97. 

Tanksley, S.D., Hewitt, D. 1988 Use of molecular markers in breeding for soluble solids 

in tomato-a re-examination. Theor. Appl. Genet. 75: 811-823. 

Tanksley, S.D., Young, N.D., Paterson, A.H., Bonierbale, M.W. 1989. RFLP mapping in 

plant breeding-new tools for an old science. Biotechnology 7: 257-264. 

Thompson, M.M., Smith, D.C., Burgess, J.E. 1985. Nondormant mutants in a temperate 

tree species, Corylus avellana L. Theor. Appl. Genet. 70: 687–692. 

Trevaskis, B., Hemming, M.N., Dennis, E.S., Peacock, W.J. 2007. The molecular basis of 

vernalization-induced flowering in cereals. Trends Plant Sci. 12(8): 352-357.  

Van der Schoot, C. 1996. Dormancy and symplasmic networking at the shoot apical 

meristem. In: ed., G.A. Lang. Plant dormancy, physiology, biochemistry and 

molecular biology. Wallingford, UK: CAB International.  

Vegis A. 1964. Dormancy in higher plants. Annu. Rev. Plant Physiol. 15: 185-224. 

Verde, I., Quarta, R., Cedrola, C., Dettori, M.T. 2002. QTL analysis of agronomic traits 

in a BC1 peach population. Acta Hortic 592: 291–297. 

Wang, D., Karle, R., Iezzoni, A. 2000. QTL analysis of flower and fruit traits in sour 

cherry. Theor. Appl. Genet. 100:535-544. 

Wang, H., Fowke, L.C., Crosby, W.L. 1997. A plant cyclin-dependent kinase inhibitor 

gene. Nature 386: 451-452.  



 46 

Wang, S.Y., Faust M. 1994. Changes in the antioxidant system associated with bud break 

in „Anna‟ apple (Malus x domestica Borkh.) buds, J. Am. Soc. Hort. Sci. 119: 

735–741. 

Wang, S.Y., Jiao, H.J., Faust, M. 1991. Changes in metabolic enzyme activities during 

thidiazuron-induced lateral bud break of apple. HortScience 82: 231–236. 

Wang, Y., Georgi, L.L., Reighard, G.L., Scorza, R., Abbott, A.G. 2002. Genetic mapping 

of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J Hered. 93(5): 

352-8. 

Wareing, P.F. 1956. Photoperiodism in woody plants. Annu. Rev. Plant Physiol. 7: 191-

214.  

Wareing, P.F. 1969. Germination and dormancy. In Physiology of Plant Growth and 

Development. Ed. M.B. Wilkins. McGrawhill, London, pp 605–644. 

Weatherwax, S.C., Ong, M.S., Degenhardt, J., Bray, E.A., Tobin, E.M.1996. The 

interaction of light and abscisic acid in the regulation of plant gene expression. 

Plant Physiol. 111: 363–370. 

Welling, A., Kaikuranta, P., Rinne, P. 1997. Photoperiodic induction of dormancy and 

freezing tolerance in Betula pubescens. Involvement of ABA and dehydrins. 

Physiol Plant 100(1): 119-125.  

Wesselingh, R. A., De Jong, T. J., Klinkhamer, P. G. L., Vandijk, M. J., Schlatmann, E. 

G. M. 1993. Geographical variation in threshold size for flowering in 

Cynoglossum officinale. Acta Botanica Neerlandica 42: 81–91. 

Wilen, R.W., Fu, P., Robertson, A.J., Abrams, S.R., Low, N.H., Gusata, L.V. 1996. An 

abscisic acid analog inhibits abscisic acid-induced freezing tolerance and protein 

accumulation, but not abscisic acid-induced sucrose uptake in a bromegrass 

(Bromus inermis Leyss) cell culture. Planta  200: 138-143. 

Wood, B.W. 1993. Hydrogen cyanamide advances pecan budbreak and harvesting. J. 

Amer. Soc. Hort. Sci. 118: 690-693. 

Xiangdong, F., Harberd, N.P. 2003. Auxin promotes Arabidopsis root growth by 

modulating gibberellin response. Nature 421: 740–743. 

Yang, Z., Tian, L., Latoszek-Green, M., Brown, D., Wu, K. 2005. Arabidopsis ERF4 is a 

transcriptional repressor capable of modulating ethylene and abscisic acid 

responses.  Plant Mol. Biol. 58(4): 585-96. 



 47 

CHAPTER TWO 

 

GENETIC LINKAGE MAPPING FOR MOLECULAR DISSECTION OF CHILLING 

REQUIREMENT AND BUD BREAK IN APRICOT (PRUNUS ARMENIACA L.) 

 

Bode A. Olukolu,
a
 Taly Trainin,

d
 Shenghua Fan,

a
 Chittaranjan Kole,

a
 Douglas G. 

Bielenberg,
b, c

 Gregory L. Reighard,
b
 Albert G. Abbott,

a
 and Doron Holland

d 

 

a
Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA. 

b
Horticulture, Clemson University, 170 Poole Agriculture Center, Clemson, SC 29634, USA. 

c
Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA. 

d
Fruit Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat 

Yishay 30095, Israel. 

 

Corresponding authors: A.G. Abbott (e-mail: aalbert@clemson.edu) and D. Holland (e-mail: 

vhhollan@volcani.agri.gov.il). 

 

As it appears in Genome 2009 Oct,52(10):819-828 

Received 14 April 2009. Accepted 3 July 2009. Published on the NRC Research Press Web site at 

http://genome.nrc.ca on 16 September 2009. 

 

Corresponding Editor: P. Gulick. 

 

The maintenance and phenotyping of the mapping population was conducted by Dr. 

Doron Holland and Taly Trainin, while genotyping of the mapping population, marker 

and data analysis, map construction and QTL mapping was performed by Bode A. 

Olukolu.

mailto:aalbert@clemson.edu
mailto:vhhollan@volcani.agri.gov.il


 48 

Abstract 

Commercial production of apricot is severely affected by sensitivity to climatic 

conditions, an adaptive feature essential for cycling between vegetative or floral growth 

and dormancy. Yield losses are due to late winter or early spring frosts and inhibited 

vegetative or floral growth caused by unfulfilled chilling requirement (CR). Two apricot 

cultivars, Perfection and A.1740, were selected for high and low CR, respectively, to 

develop a mapping population of F1 individuals using a two-way pseudo-testcross 

mapping strategy. High-density male and female maps were constructed using, 

respectively, 655 and 592 markers (SSR and AFLP) spanning 550.6 and 454.9 cM with 

average marker intervals of 0.84 and 0.77 cM. CR was evaluated in two seasons on 

potted trees forced to break buds after cold treatments ranging from 100 to 900 h. A total 

of 12 putative CR quantitative trait loci (QTLs) were detected on six linkage groups using 

composite interval mapping and a simultaneous multiple regression fit. QTL main effects 

of additive and additive × additive interactions accounted for 58.5% ± 6.7% and 66.1% ± 

5.8% of the total phenotypic variance in the Perfection and A.1740 maps, respectively. 

We report two apricot high-density maps and QTLs corresponding to map positions of 

differentially expressed transcripts and suggested candidate genes controlling CR. 

 

Key words: dormancy, bud break, peach, QTL. 
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Introduction 

Apricots, like other temperate stone fruit crops, are grown in climates with well-

differentiated seasons where species have adapted mechanisms to survive low winter 

temperatures and frost damage (Ruiz et al. 2007). Survival and reproduction of perennial 

fruit trees require adaptation to the environment by synchronizing development with the 

cyclic climatic conditions (Dietrichson 1964, Hill et al. 1998). 

A prominent adaptive feature, dormancy, involves a gradual and progressive process 

through autumn until a deep rest state is reached (Hatch and Walker 1969, Lang et al. 

1987). Transition into dormancy is triggered by environmental cues such as photoperiod, 

cold, or drought (Arora et al. 2003, Rohde et al. 2007). Cultivars introduced into a 

climate where low winter temperatures are not sufficient for breaking dormancy exhibit 

adverse effects with regard to vegetative or floral growth and fruit-bearing capacity 

(Coville 1920). On the contrary, cultivars with low chilling requirement (CR) that are 

grown in cold-winter climates quickly complete CR and bloom too early, leading to yield 

losses due to late winter or early spring frosts (Scorza and Okie 1990). 

The poor understanding of the genetics controlling CR in fruiting trees is most likely due 

to their long generation time and the complex mode of inheritance of characters related to 

plant growth and habit. However, the state of the art in fruit tree genetics and genomics 

affords a unique opportunity to characterize CR. Currently we know that there is a high 

level of conservation of synteny among the genomes of different Prunus species 

(Dirlewanger et al. 2004), facilitating transferability of genomic and genetic resources. 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref46
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref10
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref22
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref21
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref31
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref31
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref2
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref44
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref9
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref48
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref12
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Capitalizing on this fact, a Prunus reference genetic and physical map populated with 

numerous marker types, including those based on expressed sequence tags (ESTs), was 

constructed (Aranzana et al. 2003, Zhebentyayeva et al. 2008). With a number of 

important genes and quantitative trait loci (QTLs) already mapped in Prunus species, 

marker-assisted selection is now becoming a reality in some breeding programs 

(Dirlewanger et al. 2004). Numerous genetic linkage maps marking important characters 

have been constructed for several Prunus species including apricot, peach and related 

wild species, almond, plum, and cherry (Genome Database for Rosaceae, Jung et al. 

2008; available at http://www.bioinfo.wsu.edu/gdr/); however, maps identifying genes or 

QTLs controlling CR in Prunus have not been published. The Prunus reference map 

could in principle facilitate discovery of CR-related genes if appropriate mapping 

populations exist in Prunus species. 

In this communication, we report the underlying genetic basis of CR in apricot through 

the development and analysis of a mapping population segregating for CR. Using this 

mapping population and a 2-way pseudo-testcross mapping strategy, 2 high-density 

genetic linkage maps with locations of putative QTLs for CR were developed. Twelve 

QTLs for CR were located on 2 maps generated from high and low CR parents. Because 

of the utilization of core Prunus map markers that are integrated on the peach physical 

map, the physical map location of these QTL intervals is available and potential 

candidate gene ESTs have been identified. 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref1
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref65
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref12
http://www.bioinfo.wsu.edu/gdr/
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Materials and methods 

Mapping population 

A 2-way pseudo-testcross population consisting of 100 F1 individuals was developed 

from crosses between 2 cultivars (Perfection as male and A.1740 as female) with 

contrasting differences for CR and other traits. The parents and progenies were 

maintained at the Newe Ya'ar Research Center of the Agricultural Research Organization 

in Israel. Routine methods of bagging and pollination were followed (Zeaser 2001). 

DNA extraction 

Genomic DNA was extracted from fresh young leaves using a 

hexadecyltrimethylammonium bromide-polyvinyl pyrrolidone (CTAB-PVP) method as 

described in Porebski et al. (1997). This procedure is a modification of the CTAB 

protocol of Eldredge et al. (1992) for plants containing high amounts of polysaccharides 

and polyphenolic compounds. DNA concentrations were quantified by a minifluorimeter 

(TKO100, Hoefer Scientific). 

SSR markers 

Most of the simple sequence repeat (SSR) markers used were from the Prunus anchor 

marker set originally developed for peach (Aranzana et al. 2003). These markers were 

selected based on uniform distribution across the linkage groups of the Prunus reference 

map (Dirlewanger et al. 2004) to establish a framework map for apricot for studies of 

genome homology. These SSR markers were screened for polymorphism between the 2 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref40
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref15
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref1
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref12
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parents and segregation among 6 randomly selected individuals from the pseudo-testcross 

mapping population. The specific primer pairs, amplification conditions, radioactive 

labeling, and polyacrylamide gel electrophoresis were employed as described in Combes 

et al. (2000). 

PCR reactions of 10 µL contained 10 mmol/L Tris-HCl (pH 8.3), 50 mmol/L KCl, 

1.5 mmol/L MgCl2, 0.2 mmol/L of each dNTP, 10 pmol of labeled forward primer and 10 

pmol of unlabelled reverse primer, 10 ng of genomic DNA, and 0.5 U of Taq polymerase 

(Life Technologies, Inc.). Amplification was conducted with initial denaturing at 94 °C 

for 3 min followed by 35 cycles of denaturing at 94 °C for 1 min, annealing at 49–56 °C 

for 1 min, and primer extension at 72 °C for 1 min, and a final extension at 72 °C for 

5 min. Forward primers were end-radiolabeled with [γ-
33

P]ATP (PerkinElmer) and T4 

polynucleotide kinase (Promega). PCR products were separated on 6% denaturing 

polyacrylamide gels which were vacuum-dried, exposed to X-Omat blue XB-1 films 

(Kodak), and developed after 1–7 days. A DNA standard ladder (Promega, fmol DNA 

cycle sequencing system) was loaded alongside the samples to determine the sizes of the 

amplified fragments. 

AFLP protocol and markers 

Amplified fragment length polymorphism (AFLP) marker analysis was performed as 

described in Vos et al. (1995). An aliquot of 200 ng of genomic DNA was digested with 

the restriction enzymes EcoRI and MseI. Restriction fragments from the digest were 

ligated to EcoRI and MseI adapters and diluted 10-fold for pre-amplification. The pre-

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref8
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref8
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref56
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amplification reaction was set up using standard E and M primers corresponding to the 

EcoRI and MseI adapters, respectively, and containing one selective nucleotide (E+A and 

M+C) at the 3′ end. The pre-amplification reaction mixture was diluted 10-fold and used 

for selective amplification using various combinations of E primers with 1 additional 

selective nucleotide and M primers with 2 additional selective nucleotides. The 256 

primer combinations initially screened among the parents and 6 progenies include all 

combinations from EAA to ETT and MCAA to MCTT. Following screening, primer 

combinations were chosen based on the polymorphism information content (PIC) and 

used for genotyping the mapping population. 

Pre-amplification PCR conditions included 20 cycles of denaturing at 94 °C for 30 s, 

annealing at 56 °C for 1 min, and primer extension at 72 °C for 1 min, followed by a final 

extension at 72 °C for 5 min. Selective PCR conditions included 13 cycles of denaturing 

at 94 °C for 30 s, annealing at 65 °C (decreasing by 0.7 °C per cycle) for 1 min, and 

primer extension at 72 °C for 1 min; 24 cycles of denaturing at 94 °C for 30 s, annealing 

at 56 °C for 30 s, and primer extension at 72 °C for 1 min; and a final extension at 72 °C 

for 5 min. End-radiolabeling of E primers and separation and detection of PCR products 

were conducted as described under SSR markers. 

Genotyping and nomenclature of markers 

Genotyped marker data were obtained from visual scoring of the banding patterns. 

Alleles detected with primers that produced multiple loci were labeled with an alphabetic 

suffix for SSR markers and a numeric suffix for AFLP markers. The segregating loci 
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obtained from AFLP and SSR analysis were categorized into 6 classes. These included 

loci that are heterozygous in both parents and segregate in a 1:1:1:1 ratio, involving 4 

alleles (ab × cd) and 3 non-null alleles (ef × eg); loci that are heterozygous in both 

parents and segregate in a 1:2:1 ratio, with both parents having the same genotype of 

codominant alleles (hk × hk); loci that are heterozygous in both parents and segregate in a 

3:1 ratio (some mapped as dominant bridge markers); and loci that are in a testcross 

configuration between the parents and segregate in a 1:1 ratio (dominant markers), 

comprising loci that are heterozygous in the female parent and homozygous in the male 

parent (lm × ll) and those that are heterozygous in the male parent and homozygous in the 

female parent (nn × np). Only 39 AFLP markers were scored as codominant for bands 

showing polymorphism and intensity differences between heterozygous and homozygous 

allelic states (Castiglioni et al. 1999). 

Genotypic data for each parental map comprised markers segregating specifically in a 

parent as well as the bridge markers, which served as anchors to align linkage groups 

between the 2 parental maps. Raw genotypic data were recorded without any previous 

knowledge of phase relationship and inheritance, as typical of 2-way pseudo-testcross 

mapping populations. 

Linkage analysis and map construction 

Linkage map construction was performed according to the procedures described in Lodhi 

et al. (1995) for 2-way pseudo-testcross populations (Grattapaglia and Sederoff 1994, 

Maliepaard et al. 1997, Lambert et al. 2004) using JoinMap version 3.0 (Van Ooijen and 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref6
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref33
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref33
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref19
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref34
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref29
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref52
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Voorrips 2001). Genotypic data were prepared based on the JoinMap CP (cross-

pollinating) function for 2 separate parental maps. JoinMap data analysis tools were used 

to screen for missing data points, segregation distortion, and similarity between loci and 

individuals. Segregation distortion was determined by χ
2
 analysis. Linkage analysis was 

performed using a maximum recombination fraction of 0.40 and minimum critical 

logarithm of odds (LOD) scores of 6.0 and 7.3 for the Perfection and A.1740 maps, 

respectively. Marker distances were calculated based on the Kosambi mapping function 

(Kosambi 1944). 

Since the linkage phases in a 2-way pseudo-testcross are not known beforehand, a first 

round of linkage analysis was done to determine loci out of linkage phase, followed by a 

second round of analysis that included dummy variables (alternative linkage phase) of 

loci that were not in linkage phase. Map files of both parental maps were used to draw the 

linkage map in MapChart 2.2 (Voorrips 2002). 

Algorithms of the mapping software used do not take into account the 2-way pseudo-

testcross population structure for the estimation of actual centimorgan marker intervals 

(Wu et al. 2002, 2007). For instance, the CP function in JoinMap (Van Ooijen and 

Voorrips 2001) and the F2 pseudo-testcross population mapping options in MAPMAKER 

(Lander et al. 1987) do not yield exactly the same centimorgan distances. In fact, they do 

not compute an actual centimorgan distance unit, and JoinMap has been shown to 

produce a shorter map than MAPMAKER (Van Ooijen et al. 1994, Qi et al. 1996). 

Therefore, they cannot be compared directly for the distance estimates obtained from the 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref27
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref55
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref60
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref61
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref52
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref52
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref30
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref53
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref42
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Prunus maps based on F2 and backcross populations. To resolve this conundrum, we 

utilized IRILmap version 1.1 (Falque 2005), which is capable of computing actual 

centimorgan distances from recombination fraction per meiosis (rn). It takes into account 

the n generations of inter-mating by reversing Winkler‟s formula (Winkler et al. 2003) 

through iteration and finally reapplies a distance function. Since the n generations cannot 

be determined for the highly heterozygous apricot parents, the generation of inter-mating 

(n = 4) that produced expected map lengths estimated from existing Prunus maps was 

utilized. 

Evaluation of chilling requirement 

Chilling requirement evaluation was performed at the Newe Ya'ar Research Center in 

Israel under controlled conditions on the Perfection × A.1740 mapping population. Seeds 

of matured fruits from the cross were washed with water and treated with an antifungal 

solution of 0.25% Merpan 48 containing 480 g/kg Captan. Seeds were then placed in wet 

vermiculite at 4–5 °C until the beginning of germination. Upon germination, the 

seedlings were placed in 1 L plastic pots containing garden soil inside growth chambers. 

The growth chambers were set at 24 °C and diurnal cycles of 8 h dark and 16 h light in 

artificial light. Young plants of about 0.5 m length were planted in the field at Newe 

Ya'ar. 

Three-year-old flowering trees developed from the planted seedlings were used as the 

source material for stem cuttings with buds. Cuttings harvested from individual trees 

were top-grafted on 1-year-old plum rootstock (Mariana 2624) with low CR. Leaves were 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref16
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref59
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stripped in late November following the onset of sufficient low temperatures in mid-

November, marked by growth cessation and leaf senescence. Following defoliation, pots 

were placed in walk-in cold chambers at 6 °C, and 2 replicates of each individual were 

removed at 200 h intervals ranging from 200 to 600 h in 2007 and 100 to 900 h in 2008, 

with the exception of the 700 chilling hour treatment. Chilled potted trees were 

transferred to a naturally lit greenhouse at day and night temperatures of 25 °C and 13 °C, 

respectively, to force bud break under normal photoperiod and irradiance. 

Due to limitation of space in the controlled cold chambers, it was not feasible to sample 

large numbers of apricot trees with multiple replicates in the same year. Subsequently, 

intervals and the range in chilling hours in each year do not adequately represent the 

phenotypic classes segregating in the population. Pooling data from both years was 

required to reveal an all-inclusive spectrum of recombinant genotypes. The emphasis of 

the study was on vegetative bud break and the data were expressed as the time in forcing 

conditions (“days in forcing”). From analysis of the data in the greenhouse and 

comparison with similar data from the field, we concluded that the best variable 

expressing the differences in CR in the population is days to first vegetative bud opening 

followed by bud flush. This variable was used as a basis to determine CR for each 

progeny in the following manner: the chilling regime in which bud opening occurred 

within 15 days in forcing was set as the minimum amount of chilling hours required for 

bud break. Quantification of CR (chill accumulated in cold chamber) was expressed in 

chilling hours (Weinberger 1950). 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref58
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Quantative trait loci analysis 

Quantitative trait loci for CR were detected using composite interval mapping (CIM, 

Zeng 1994) and by integrating genetic information and accumulated chilling hour data 

using the PC version of PlabQTL version 1.2 (Utz and Melchinger 1996). The PlabQTL 

algorithm was proposed to improve precision of QTL mapping (Zeng 1994). The CIM 

employed the cov SELECT option of PlabQTL, which uses a forward stepwise multiple 

regression to select cofactors automatically. The LOD curve of the PlabQTL multiple 

regression is similar to that of maximum likelihood-based programs (i.e., MapQTL and 

MAPMAKER/QTL), though multiple regression-based interval mapping is more robust 

against non-normality, is statistically well known, and underestimates R
2
 (Haley and 

Knott 1992). 

Different genetic models were compared based on Akaike‟s information criterion and 

Bayesian information criterion values (Hjorth 1994) to determine the best regression fit. 

The LOD curves were created by scanning at 1 cM intervals, while a permutation test 

(1000 resamplings) was performed to determine the critical LOD score appropriate to 

empirically identify a putative QTL with a genome-wide error at a 0.05 confidence level 

(Churchill and Doerge 1994). Subsequently, the detected QTLs and their estimated map 

positions were verified using a simultaneous multiple regression, which accounts for 

effects of other linked QTLs on a chromosome (Zeng 1993). The phenotypic variance 

explained by each QTL (R
2
) was calculated as the square of the correlation coefficient 

from the final multiple regression model (Utz and Melchinger 1995, 1996). To examine 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref63
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the interaction between detected QTLs, the general linear model of variance analysis was 

implemented. 

 

Results 

Molecular marker analysis 

Out of a total of 275 SSR primer pairs screened, 225 produced amplification products and 

53 were selected based on their uniform distribution over the Prunus reference map 

(Dirlewanger et al. 2004) for genotyping 94 pseudo-testcross progenies. After genotyping 

with the 53 SSR markers, only 43 showed linkage and were mapped (Table 2.1). 

Segregation patterns of 256 AFLP primer combinations among 6 randomly selected 

progenies generated 2253 segregating loci (Appendix A). The highest number of loci per 

primer combination (30 loci) was observed using primers with AT-rich selective 

nucleotides, while the lowest frequencies of loci per primer combination (2 loci) were 

observed using primers with GC-rich selective nucleotides. For the parent Perfection, 900 

AFLP loci were analyzed, while for A.1740, 716 AFLP loci were analyzed (Table 2.2). 

The proportion of segregation distortion observed in Perfection was estimated at 10.07% 

at P < 0.01 and 24.60% at P < 0.05, while for A.1740 it was 4.97% at P < 0.01 and 

13.98% at P < 0.05. 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref12
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Table 2.1: SSR markers mapped on Perfection and A.1740 parental maps. 

Locus 
Segregation 

type 
Classes 

Position (cM) 
χ

2
 

Perfection A.1740  

CPSCT042
†
 <abxcd> [ac:ad:bc:bd] LG7:43.3 LG7:33.1 10.2

**
 

Taly <abxcd> [ac:ad:bc:bd] - LG2:36.7 1 ns 

BPPCT007
†
 <efxeg> [ee:ef:eg:fg] LG3:0.0 LG3:0.0 1.6 ns 

BPPCT025
†
 <efxeg> [ee:ef:eg:fg] LG6:43.2 LG6:43.2 3.6 ns 

CPDCT045
†
 <efxeg> [ee:ef:eg:fg] LG4:14.8 LG4:21.4 0.5 ns 

CPPCT026
†
 <efxeg> [ee:ef:eg:fg] LG1:53.0 LG1:51.3 4 ns 

PceGA025
†
 <efxeg> [ee:ef:eg:fg] LG5:33.8 LG5:28.8 11.8

***
 

PceGA034
†
 <efxeg> [ee:ef:eg:fg] LG2:57.1 LG2:42.1 1.5 ns 

Pchmgs001
†
 <efxeg> [ee:ef:eg:fg] LG2:40.9 LG2:31.3 2.5 ns 

BPPCT013a
†
 <hkxhk> [hh:hk:kk] LG2:29.9 LG2:22.3 0.2 ns 

CPPCT034a
†
 <hkxhk> [hh+hk+h-:kk] LG1:38.7 LG1:45.9 2.7 ns 

CPPCT034b <hkxhk> [hh+hk+h-:kk] - LG1:47.7 0.6 ns 

EPDCU2862
†
 <hkxhk> [hh:hk:kk] LG1:63.3 LG1:64.0 3.1 ns 

UDP96-005a
†
 <hkxhk> [hh+hk+h-:kk] LG1:38.9 LG1:37.4 1.1 ns 

BPPCT004 <lmxll> [ll:lm] LG2:23.9 - 1.7 ns 

BPPCT028 <lmxll> [ll:lm] LG1:76.1 - 0.7 ns 

BPPCT030 <lmxll> [ll:lm] LG2: 42.2 - 0.0 ns 

BPPCT040 <lmxll> [ll:lm] LG4:4.7 - 0 ns 

CPDCT025 <lmxll> [ll:lm] LG3:54.3 - 1.1 ns 

CPDCT034 <lmxll> [ll:lm] LG8:22.0 - 0.0 ns 

CPSCT044 <lmxll> [ll:lm] LG2: 28.5 - 1.2 ns 

EPDCU3083b <lmxll> [ll:lm] LG3:44.7 - 0.0 ns 

EPDCU3454 <lmxll> [ll:lm] LG8:42.2 - 0.7 ns 

Pchcms002 <lmxll> [ll:lm] LG7:43.6 - 0.8 ns 

Pchgms044a <lmxll> [ll:lm] LG3:60.1 - 0.0 ns 

Pchmgs005 <lmxll> [ll:lm] LG4:16.4 - 2.3 ns 

SSRM6a <lmxll> [ll:lm] LG8:30.9 - 0.4 ns 

UDA002 <lmxll> [ll:lm] LG3:45.6 - 0.1 ns 

UDA011a <lmxll> [ll:lm] LG8:0.0 - 1.1 ns 

UDA011b <lmxll> [ll:lm] LG3:28.9 - 0.0 ns 

UDP97-403 <lmxll> [ll:lm] LG3:17.2 - 0.2 ns 

UDP98-024 <lmxll> [ll:lm] LG4:8.9 - 0.3 ns 

UDP98-406 <lmxll> [ll:lm] LG2: 55.6 - 0.1 ns 

UDP98-409a <lmxll> [ll:lm] LG8:38.3 - 0.1 ns 

UDP98-409b <lmxll> [ll:lm] LG2: 37.0 - 0.9 ns 

UDP98-412 <lmxll> [ll:lm] LG6:58.8 - 0.2 ns 

BPPCT039 <nnxnp> [nn:np] - LG3:17.6 0.0 ns 

EPDCU3083a <nnxnp> [nn:np] - LG3:21.2 0.0 ns 

Pchgms044b <nnxnp> [nn:np] - LG7:30.5 0.0 ns 

SSRM2b <nnxnp> [nn:np] - LG7:41.0 1.5 ns 

UDP96-001 <nnxnp> [nn:np] - LG6:20.9 1.7 ns 

UDP96-005b <nnxnp> [nn:np] - LG1:38.8 0.7 ns 

UDP97-401 <nnxnp> [nn:np] - LG5:21.1 0.4 ns 

Note: LG, linkage group. χ
2
: Chi-square values for expected Mendelian segregation ratio (** and *** 

denote significance level at 0.01 and P < 0.001, respectively). Segregation types abxcd, efxeg and hkxhk 

depict segregation in both parents, while lmxll and nnxnp depict segregation in Perfection and A.1740, 

respectively.  

†Bridge-markers have corresponding map positons on both parental maps. 
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Table 2.2: AFLP and SSR marker analysis. 

Features 
Perfection  A.1740  

Dominant Codominant  Dominant Codominant Total 

Segregating AFLP loci  879
a
 21  695

a
 21 1252 

Segregating SSR loci 25 18  10 18 53 

AFLP loci after χ
2
-test 794

b
 11  668

b
 11 1136 

SSR loci after χ
2
-test 25 18  10 18 53 

AFLP loci mapped  (422) 610
c
 11  (292) 560

d
 11 994 

SSR loci mapped 22 12  7 14 43 

Total loci in linkage map 632 23  567 25  

Note: Dominant AFLP markers also include bands heterozygous and segregating in both parents, with 165 

of them serving as brigde markers:
 a
(343), 

b
(337), 

c
(188) and 

d
(268). Numbers in paratheses indicate AFLP 

markers unique to each parental map (i.e., not bridge markers). AFLP and SSR loci that did not map were 

due to lack of linkage, and unequal numbers bridge markers were not mapped between the 2 parental maps.   
e
(176 served as bridge-markers). Total AFLP markers: 422 + (188 – 165) + 292 + (268 – 165) + 165 +11 = 

1016. 
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Linkage analysis and map construction 

Of the 1059 markers (1016 AFLP and 43 SSR markers) mapped on the linkage maps, 176 

AFLP (165 dominant and 11 codominant) and 12 SSR markers (18.1% of mapped 

markers) were bridge markers mapped in both parents (Table 2.2). These bridge markers 

allowed for transferability of markers and alignment of homologous linkage groups (Figs. 

2.1 and 2.2). Totals of 632 and 567 dominant markers were mapped on the Perfection and 

A.1740 parental maps, respectively (Table 2.2). Some SSR primers detected multiple loci 

that mapped within close genomic vicinity. The average marker intervals were 0.84 and 

0.77 cM for the Perfection and A.1740 maps, respectively, while the largest gap was only 

7.5 cM. The map lengths were 550.6 cM and 454.9 cM for the Perfection and A.1740 

maps, respectively (Table 2.3). 

To further validate marker order on our maps, the 2 parental maps were compared with 

the published Prunus reference map (Dirlewanger et al. 2004) to assess colinearity. All 8 

homologous linkage groups (LGs) of our maps correspond to the homeologous linkage 

groups of the Prunus reference map based on alignments with anchor SSR markers 

(Appendix B1, B2, B3 and B4). All 32 anchor SSR markers mapped in our maps showed 

perfect conservation of synteny with the Prunus reference map (Appendix B) except for 2 

markers on LG1 and LG2 (CPPCT034 and BPPCT040, respectively). Comparison with 

other apricot maps showed that the incongruence at the CPPCT034 loci was consistent 

between our map and the map by Dondini et al. (2007), thus showing a slight variation 

within a small genetic distance between the peach and apricot genomes. 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref12
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Fig. 2.1: Genetic linkage maps (linkage groups 1, 2, 3, and 4) derived from a Perfection × A.1740 cross 

oriented with the Prunus reference map using SSR markers (gray text; purple in the Web version). AFLP 

bridge markers (bold black text) confirm colinearity between parental maps. Detected QTLs are indicated 

by solid gray (purple in the Web version) fills and bars, with common QTLs in crosshatch fill. The 

asterisks show the χ
2
 p levels of significance (*, 0.05; **, 0.01; ***, 0.001). 
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Fig. 2.2: Genetic linkage maps (linkage groups 5, 6, 7, and 8) derived from a Perfection × A.1740 cross 

oriented with the Prunus reference map using SSR markers (gray text; purple in the Web version). AFLP 

bridge markers (bold black text) confirm colinearity between parental maps. Detected QTLs are indicated 

by solid gray (purple in the Web version) fills and bars, with common QTLs in crosshatch fill. The 

asterisks show the χ
2
 p levels of significance (*, 0.05; **, 0.01; ***, 0.001). 
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Table 2.3: Data on Perfection and A.1740 maps: number of mapped markers, linkage group and map 

lengths, marker density, and marker intervals (gaps). 

LG 

Perfection  A.1740 

No. 

of 

loci 

Map 

length, 

cM 

Mean 

Distance, 

cM 

Gaps > 2 cM 

(n) 

 No. 

of 

loci 

Map 

Length, 

cM 

Mean 

Distance, 

cM 

Gaps > 2 cM 

(n) 

1 161 96.1 0.60 2.4, 3.7   149 88.2 0.59 2.4 - 6.9(4) 

2 76 59.6 0.78 2.1 - 4.3 (3)  52 44.4 0.85 2.1 -2.9 (4) 

3 97 87 0.90 2.1 - 5.9 (7)  87 58.8 0.68 2.8 

4 68 44.6 0.66 2.2, 2.5  73 58.1 0.80 2.0 - 4.3 (6) 

5 47 58.2 1.24 2.0 - 7.5 (10)  85 44 0.52 2.8, 4.1 

6 86 76.4 0.89 2.0 - 5.1 (8)  53 63.8 1.20 2.1 - 4.5 (9) 

7 64 74 1.16 2.1 - 6.2 (8)  50 43.5 0.87 2.1 - 3.7 (4) 

8 56 54.7 0.98 2.0 - 4.4 (6)  43 54.1 1.26 3.7 - 6.3 (3) 

Total 655 550.6 0.84   592 454.9 0.77  

Note: LG, linkage group. 
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Phenotypic evaluation and mapping of CR QTLs 

CR of the parents obtained from the phenotypic assay was in agreement with previous 

studies establishing CR at 600 and 300 chilling hours for Perfection and A.1740, 

respectively. CR segregated in the mapping population, with 900, 600, 500, 400, 300, and 

200 chilling hours required for 49, 4, 14, 9, 2, and 12 individuals, respectively (Fig. 2.3). 

Progenies with the parental phenotypes were the least frequent, with 4 and 2 individuals 

for Perfection and A.1740, respectively (Fig. 2.3). Transgressive segregants were 

observed for very low and very high CR i.e. 200 and 900 chilling hours, respectively. 

Following QTL analysis for co-segregation between phenotypic and genotypic markers 

using the additive and additive × additive interaction regression model, a total of 12 

unique QTLs were detected at initial LOD thresholds of 9.44 and 8.46 (as determined by 

a permutation test) for the Perfection and A.1740 maps, respectively. LOD scores of the 

QTL peaks ranged from 10.52 to 64.61, while the QTL support intervals were established 

at 2-LOD support interval (Table 2.4). The positive additive effects indicate that the 

female parent with high CR (Perfection) contributed the increasing allele, while the 

negative additive effects indicate that the male parent with low CR (A.1740) contributed 

the increasing allele. Most of the increasing QTL alleles came from the high CR parent 

(Perfection), while 4 of the increasing alleles are from the low CR parent (A.1740). 

In addition to the one-dimensional genome-wide scan, the main-effect QTLs of digenic 

interactions were estimated as shown in Table 2.5. Six main-effect QTLs detected on the 

Perfection map explained a total of 58.5% ± 6.7% of the phenotypic variance, while 8 
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main-effect QTLs detected on the A.1740 map accounted for 66.1% ± 5.8% of the 

phenotypic variance (Table 2.5). Two of the QTLs detected were common to both maps 

on LGs 1 and 8. Distorted markers were fairly evenly distributed across all linkage 

groups except for the region around the QTL on LG6 with a peak at 29 cM. The 

overrepresentation of alleles from A.1740 for all distorted markers in this genomic region 

(Fig. 2.2) corresponds with results from QTL analysis showing that the increasing allele 

is from the A.1740 parent (Table 2.4). 



 68 

 
Fig. 2.3: Frequency distribution of chilling requirement (CR) phenotypes in the 

Perfection × A.1740 mapping population. A.1740 and Perfection had CRs of 300 and 600 

chilling hours (†), respectively. Transgressive segregants are indicated by asterisks (*).
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Table 2.4: QTLs detected for chilling requirement in parental maps using composite interval mapping. 

Map LG 
Position 

(cM) 
SI

a
 

Additive 

effect 
SSR Markers within or close to SI 

Perfection 1 82 80-84 117.19 BPPCT28-76.1 

2 15 13-17 72.42 BPPCT04-23.9 

6 29 27-31 602.62 BPPCT25-43.2 

6 66 64-68 165.93 UDP98-412-58.8 

7 8 6-10 -205.37 - 

8 44 42-46 -221.19 EPDCU3454-42.2 

A.1740 1 69 67-71 400.50 EPDCU2862-64 

1 86 81-89 265.75 - 

2 4 2-6 -301.04 - 

2 36 34-38 247.04 Taly-36.7 

5 1 0-3 -595.14 BPPCT7-0.0 

5 27 25-29 112.82 EPDCU3083-21.2 

7 26 26-34 180.82 Pchgms044b-30.5, CPSCT042-33.1 

8 35 33-38 75.63 - 

Note: LG, linkage group. Position, location of the maximum LOD score of the QTL on LG; A, additive 

QTL effect. Only QTLs above empirical threshold of 9.44 and 8.46 (for the Perfection and A.1740 maps, 

respectively) are listed (LOD threshold computed by 1,000 permutations). The positive and negative 

additive effects indicate that the allele which increases the trait values is in the Perfection and A.1740 

parent, respectively. 
a
2-LOD support interval in the fit. 
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Table 2.5: Digenic interactions of QTL controlling CR. 

QTL 1 QTL 2 

A  A x A 

R
2 
(%) 

d
Std Eff  R

2
(%) 

d
Std Eff 

Perfection (LOD= 17.19, R =0.765, R
2
% = 58.5 ±  6.7) 

LG1:82 LG7:8 - -  8.9 1.29* 

LG2:15 LG8:44 - -  9.0 1.05* 

LG6:29 LG6:66 - -  12.4 -1.33** 

A.1740 (LOD= 21.15,R = 0.813, 
b
R

2
%= 66.1 ± 5.8) 

LG5:27  6.2 0.56 *  - - 

LG1:69 LG7:26 - -  16.7 0.95** 

LG1:86 LG2:36 - -  15.5 -0.89** 

LG2:4 LG2:36 - -  16.7 0.76** 

LG2:36 LG5:27 - -  14.1 1.16 ** 

LG5:1 LG8:35 - -  10.1 -1.06 ** 

Note: A and A x A values are the additive and additive x additive interaction effects of QTLs; R, Multiple 

correlation coefficient; R
2
, percentage of phenotypic variance explained by all the QTL interactions; Std 

eff., Standardized QTL effects. * and ** denote significance level at 0.05 and 0.01 respectively. 
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Discussion 

Linkage analysis and map construction 

Comparative mapping within Prunus, as well as among related genera (Malus, Pyrus, 

Rosa, Rubus, and Fragaria), has emerged as a potential strategy for genetically exploring 

economically important traits. These maps facilitate the detection of genomic intervals 

that underlie economic traits, some of which have already been shown to segregate in our 

mapping population. The high map saturation with AFLP markers reduces detection of 

spurious QTLs and could potentially provide (with conversion to sequence tagged sites) 

more tightly linked flanking markers for marker-assisted selection. 

The two high-density parental maps we constructed in apricot correspond well to the 

Prunus reference map (Dirlewanger et al. 2004), since all except 2 SSR markers were 

syntenic to those in the reference map in all 8 homeologous chromosomes. The 

incongruence of the 2 SSR markers (CPPCT034 and BPPCT040) occurred within a small 

genetic distance, while the position and incongruence of CPPCT034 were validated by 

another apricot map (Dondini et al. 2007) which was mostly syntenic with our maps. 

Because of the inclusion of the Prunus anchor SSR loci in our maps, all functional 

genomic resources (ESTs, BAC sequences, whole genome sequences, and cDNAs) from 

the Prunus database will provide more information for the genomic intervals in which 

detected QTLs exist. Our maps provide better genome coverage than the previously 

published apricot maps. The greater genome coverage observed predominantly in the 

Perfection parental map can be attributed to the availability of more markers segregating 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref12
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref14
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in this parent. Aligning the linkage groups with bridge markers in similar order provided 

evidence for regions on either end of the linkage groups that are underrepresented in the 

other parental map (9.2 to 25.8 cM). At P < 0.05, the percentages of marker distortion in 

this study (24.60% and 13.98%) were comparable with other published works (10.2% to 

17%) in apricot (Hurtado et al. 2002, Vilanova et al. 2003, Lambert et al. 2004, Lalli et 

al. 2007). 

Phenotypic evaluation and QTL mapping 

In this study, 12 unique QTLs for chilling requirement were mapped in the Perfection × 

A.1740 population. Owing to limited population size, only QTLs with large effects were 

statistically significant; hence, the number of QTLs detected in this study should be 

considered a minimal estimate (Dirlewanger et al. 1999). Our sampling in 2 years spans 

100 to 900 chilling hours, but only the central portion of this range (200–600 h) overlaps 

between years. A more robust sampling with replicates could allow for better definition 

or elimination of minor QTLs. 

As mentioned earlier, Perfection has high CR, whereas A.1740 has low CR. However, 

some progenies exhibited lower CR than A.1740. This could be attributed to epistatic 

interactions of different QTL alleles. Some individuals superseded the high CR parent. 

This may be due to contribution of some QTL alleles from the low CR parent to these 

progenies. The transgressive segregants, both positive and negative, may serve as useful 

materials for future breeding of high and low CR apricot as required for specific agro-

climates. 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref25
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref54
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref29
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref28
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref28
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref11
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QTLs detected in this study on LGs 1, 5, 6, 7, and 8 were localized to similar map 

positions in a CR study in peach (Fan et al. 2008). In addition, the SSR markers in apricot 

mapped within or close to the support intervals of the corresponding QTLs in peach. The 

similarity in QTL positions between peach and apricot deserves special attention because 

bud flush was studied in peach, while dormancy release of vegetative bud was analyzed 

in apricot. This suggests that similar genes might be involved in these two different 

physiological processes. 

Following detection of QTLs controlling CR and bud break, the next step is to associate 

these loci with known genes using functional genomics and transcriptome resources. The 

QTL on LG1 was shown to map to a region corresponding to the known location of the 

EVERGROWING (EVG) locus in peach, characterized as comprising MADS-box 

transcription factors (Wang et al. 2002, Bielenberg et al. 2004, Bielenberg et al. 2008). 

The evg mutant is known to lack responsiveness to winter temperatures (i.e., evergrowing 

trees keep growing and are killed by low winter temperatures). The presence of the wild-

type cold-responsive EVG locus within close proximity of our QTL provides us with a 

potential gene candidate in this region that has been extensively characterized in peach 

(Bielenberg et al. 2008). 

Genomic sequence-based and EST-derived SSR markers that mapped directly within 

QTLs on LGs 7 and 8 included CPSCT042 and EPDCU3454, respectively. The 

CPSCT042 genomic and EPDCU3454 EST sequences showed homology to the 

MITOGEN-ACTIVATED PROTEIN KINASE7 (MPK7) and ABSCISIC ACID 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref17
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref57
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref3
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref4
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref4
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INSENSITIVE3 (ABI3) genes, respectively. ABI3 has been confirmed in several studies to 

be primarily responsible for imposition and maintenance of seed dormancy (Rohde et al. 

2002). The processes associated with late seed development, such as reserve 

accumulation, dormancy imposition, and acquisition of tolerance of seed tissues to 

desiccation, seem to be controlled by ABI3 (Bonetta and McCourt 1998). The gene 

promoter activity of ABI3 has also been detected in vegetative meristems (Ng et al. 

2004). MPK7 is a downstream substrate of MKK3 (a MAPK kinase), and in a few recent 

studies it has been shown to have a role in transducing signals involving reactive oxygen 

species (ROS) (Dóczi et al. 2007, Pitzschke and Hirt 2009) and in turn a corresponding 

H2O2-induced dormancy release in grapevine (Pérez and Lira 2005) and raspberry 

(Mazzitelli et al. 2007). Several studies now show that the MAPK cascade is not only 

induced by ROS but can also regulate production of ROS (Pitzschke and Hirt 2009). 

Utilizing the available Prunus genomic resources (Horn et al. 2005, Zhebentyayeva et al. 

2008), we are currently expanding our search for candidate CR genes in these major QTL 

intervals. 

 

Conclusion 

In this study, we report on 2 high-density parental maps in apricot constructed by using 

Prunus SSR anchor markers and saturated by using AFLP markers. A densely populated 

map is required for map-based cloning of economically important genes (Zhang 2008) 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref43
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref43
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref5
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref37
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref37
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref13
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref39
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref38
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref36
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref39
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref24
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref65
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref65
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref64
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and dissection of complex traits to understand their genetic basis (Frewen et al. 2000). 

Based on our current map resolution and the degree of microsynteny between peach and 

apricot (Jung et al. 2006), a candidate gene approach should be possible for discovery of 

genes involved in CR and bud break, particularly as the whole genome sequence of peach 

is currently been assembled (B. Sosinski, personal communication, 2008). However, to 

assist in this candidate gene endeavor, it is necessary to detect and locate QTLs more 

precisely by fine-mapping and other approaches such as association mapping. 

 

Acknowledgements 

This research was supported by research grant No. US-3746-05 R from the United 

States – Israel Binational Agricultural Research and Development Fund (BARD). The 

authors wish to thank Tatyana N. Zhebentyayeva, Laura L. Georgi, Renate Horn, Iñaki 

Hormaza, Wu Rongling, and Aldrich Preston for expert technical help. 

http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref18
http://rparticle.web-p.cisti.nrc.ca/rparticle/RpArticleViewer?_handler_=HandleInitialGet&journal=gen&volume=52&calyLang=eng&media=html&articleFile=g09-050.pdf#ref26


 76 

References 

 

Aranzana, M.J., Pineda, A., Cosson, P., Dirlewanger, E., Ascasibar, J., Cipriani, G., 

Ryder, C.D., Testolin, R., Abbott, A., King, G.J., Iezzoni, A.F., Arús, P. 2003. A 

set of simple-sequence repeat (SSR) markers covering the Prunus genome. Theor. 

Appl. Genet. 106(5): 819–825. 

Arora, R., Rowland, L.J., Tanino, K. 2003. Induction and release of bud dormancy in 

woody perennials: a science comes of age. HortScience. 38: 911–921. 

Bielenberg, D.G., Wang, Y., Fan, S., Reighard, G.L., Scorza, R., Abbott, A.G. 2004. A 

deletion affecting several gene candidates is present in the Evergrowing peach 

mutant. J. Hered. 95(5): 436–444. 

Bielenberg, D.G., Wang, Y., Li, Z., Zhebentyayeva, T., Fan, S., Reighard, G.L., Scorza, 

R., Abbott, A.G. 2008. Sequencing and annotation of the evergrowing locus in 

peach [Prunus persica (L.) Batsch] reveals a cluster of six MADS-box 

transcription factors as candidate genes for regulation of terminal bud formation. 

Tree Genet. Genomes. 4: 495-507. 

 Bonetta, D., McCourt, P. 1998. Genetic analysis of ABA signal transduction pathways. 

Trends Plant Sci. 3(6): 231–235. 

Castiglioni, P., Ajmone-Marsan, P., van Wijk, R., Motto, M. 1999. AFLP markers in a 

molecular linkage map of maize: codominant scoring and linkage group 

distribution. Theor. Appl. Genet. 99(3–4): 425–431.  

Churchill, G.A., Doerge, R.W. 1994. Empirical threshold values for quantitative trait 

mapping. Genetics. 138(3): 963–971.  

Combes, M.C., Andrzejewski, S., Anthony, F., Bertrand, B., Rovelli, P., Graziosi, G., 

Lashermes, P. 2000. Characterization of microsatellite loci in Coffea arabica and 

related coffee species. Mol. Ecol. 9(8): 1178–1180.  

Coville, F.V. 1920. The influence of cold in stimulating the growth of plants. J. Agric. 

Res. 20: 151–192. 

Dietrichson, J. 1964. The selection problem and growth rhythm. Silvae Genet. 13: 178–

184. 

Dirlewanger, E., Moing, A., Rothan, C., Svanella, L., Pronier, V., Guye, A., Plomion, C., 

Monet, R. 1999. Mapping QTLs controlling fruit quality in peach (Prunus persica 

(L.) Batch). Theor. Appl. Genet. 98: 18–31. 



 77 

Dirlewanger, E., Graziano, E., Joobeur, T., Garriga-Calderé, F., Cosson, P., Howad, W., 

Arús, P. 2004. Comparative mapping and marker-assisted selection in Rosaceae 

fruit crops. Proc. Natl. Acad. Sci. U.S.A. 101(26): 9891–9896.  

Dóczi, R., Brader, G., Pettkó-Szandtner, A., Rajh, I., Djamei, A., Pitzschke, A., Teige, 

M., Hirt, H. 2007. The Arabidopsis mitogen-activated protein kinase kinase 

MKK3 is upstream of group C mitogen-activated protein kinases and participates 

in pathogen signaling. Plant Cell. 19(10): 3266–3279. 

Dondini, L., Lain, O., Geuna, F., Banfi, R., Gaiotti, F., Tartarini, S., Bassi, D., Testolin, 

R. 2007. Development of a new SSR-based linkage map in apricot and analysis of 

synteny with existing Prunus maps. Tree Genet. Genomes. 3(3): 239–249. 

Eldredge, L., Ballard, R., Baird, W.V., Abbott, A., Morgens, P., Callahan, A., Scorza, R., 

Monet, R. 1992. Application of RFLP analysis to genetic-linkage mapping in 

peaches. HortScience. 27(2): 160–163. 

Falque, M. 2005. IRILmap: linkage map distance correction for intermated recombinant 

inbred lines/advanced recombinant inbred strains. Bioinformatics. 21(16): 3441–

3442.  

Fan, S., Bielenberg, D., Zhebentyayeva, T., Reighard, G., Abbott, A. 2008. QTL analysis 

of chilling requirement. In 4th International Rosaceae Genomics Conference, 

Pucón, Chile, 16–19 March 2008. [Abstr.] 

Frewen, B.E., Chen, T.H.H., Howe, G.T., Davis, J., Rohde, A., Boerjan, W., Bradshaw, 

H.D., Jr. 2000. Quantitative trait loci and candidate gene mapping of bud set and 

bud flush in populus. Genetics. 154(2): 837–845.  

Grattapaglia, D., Sederoff, R. 1994. Genetic linkage maps of Eucalyptus grandis and 

Eucalyptus urophylla using a pseudo-testcross: mapping strategy and RAPD 

markers. Genetics. 137(4): 1121–1137.  

Haley, C.S., Knott, S.A. 1992. A simple regression method for mapping quantitative trait 

loci in line crosses using flanking markers. Heredity. 69(4): 315–324.  

Hatch, A.H., Walker, D.R. 1969. Rest intensity of dormant peach and apricot leaf buds as 

influenced by temperature, cold hardiness and respiration. J. Am. Soc. Hortic. Sci. 

94(3): 304–307. 

Hill, J., Becker, H.C., Tigerstedt, P.M.A. 1998. Quantitative and ecological aspects of 

plant breeding. St. Edmundsbury Press, Suffolk, U.K. 

Hjorth, J.S.U. 1994. Computer intensive statistical methods. Chapman & Hall, New 

York. 



 78 

Horn, R., Lecouls, A.C., Callahan, A., Dandekar, A., Garay, L., McCord, P., Howad, W., 

Chan, H., Verde, I., Main, D., Jung, S., Georgi, L., Forrest, S., Mook, J., 

Zhebentyayeva, T., Yu, Y., Kim, H.R., Jesudurai, C., Sosinski, B., Arús, P., 

Baird, V., Parfitt, D., Reighard, G., Scorza, R., Tomkins, J., Wing, R., Abbott, 

A.G. 2005. Candidate gene database and transcript map for peach, a model 

species for fruit trees. Theor. Appl. Genet. 110(8): 1419–1428.  

Hurtado, M.A., Westman, A., Beck, E., Abbott, G.A., Llacer, G., Badenes, M.L. 2002. 

Genetic diversity in apricot cultivars based on AFLP markers. Euphytica. 127(2): 

297–301.  

Jung, S., Main, D., Staton, M., Cho, I., Zhebentyayeva, T., Arús, P., Abbott, A. 2006. 

Synteny conservation between the Prunus genome and both the present and 

ancestral Arabidopsis genomes. BMC Genomics. 7(1): 81.  

Jung, S., Staton, M., Lee, T., Blenda, A., Svancara, R., Abbott, A., Main, D. 2008. GDR 

(Genome Database for Rosaceae): integrated web-database for Rosaceae 

genomics and genetics data. Nucleic Acids Res. 36(Database issue): D1034–

D1040.  

Kosambi, D.D. 1944. The estimation of map distance from recombination values. Ann. 

Eugen. 12: 172–175. 

Lalli, D.A., Abbott, A.G., Zhebentyayeva, T.N., Badenes, M.L., Damsteegt, V., Polák, J., 

Krška, B., Salava, J.  2007. A genetic linkage map for an apricot (Prunus 

armeniaca L.) BC1 population mapping plum pox virus resistance. Tree Genet. 

Genomes. 4(3): 481–493.  

Lambert, P., Hagen, L.S., Arus, P., Audergon, J.M. 2004. Genetic linkage maps of two 

apricot cultivars (Prunus armeniaca L.) compared with the almond Texas × peach 

Earlygold reference map for Prunus. Theor. Appl. Genet. 108(6): 1120–1130. 

Lander, E.S., Green, P., Abrahamson, J., Barlow, A., Daly, M.J., Lincoln, S.E., Newburg, 

L. 1987. MAPMAKER: an interactive computer package for constructing primary 

genetic linkage maps of experimental and natural populations. Genomics. 1(2): 

174–181. 

Lang, G.A., Early, J.D., Martin, G.C., Darnell, R.L. 1987. Endodormancy, paradormancy, 

and ecodormancy- physiological terminology and classification for dormancy 

research. HortScience. 22(3): 371–377. 

Lodhi, M.A., Daly, M.J., Ye, G.-N., Weeden, N.F., Reisch, B.I. 1995. A molecular 

marker based linkage map of Vitis. Genome. 38(4): 786–794. 



 79 

Maliepaard, C., Jansen, J., Van Ooijen, J.W. 1997. Linkage analysis in a full-sib family 

of an outbreeding plant species: overview and consequences for application. 

Genet. Res. 70(3): 237–250. 

Mathiason, K., He, D., Grimplet, J., Venkateswari, J., Galbraith, D.W., Or, E., Fennell, 

A. 2009. Transcript profiling in Vitis riparia during chilling requirement 

fulfillment reveals coordination of gene expression patterns with optimized bud 

break. Funct. Integr. Genomics. 9(1): 81–96. 

Mazzitelli, L., Hancock, R.D., Haupt, S., Walker, P.G., Pont, S.D., McNicol, J., Cardle, 

L., Morris, J., Viola, R., Brennan, R., Hedley, P.E., Taylor, M.A. 2007. Co-

ordinated gene expression during phases of dormancy release in raspberry (Rubus 

idaeus L.) buds. J. Exp. Bot. 58(5): 1035–1045.  

Ng, D.W., Chandrasekharan, M.B., Hall, T.C. 2004. The 5′ UTR negatively regulates 

quantitative and spatial expression from the ABI3 promoter. Plant Mol. Biol. 

54(1): 25–38. 

Pérez, F.J., Lira, W. 2005. Possible role of catalase in post-dormancy bud break in 

grapevines. J. Plant Physiol. 162(3): 301–308. 

Pitzschke, A., Hirt, H. 2009. Disentangling the complexity of mitogen-activated protein 

kinases and reactive oxygen species signaling. Plant Physiol. 149(2): 606–615. 

Porebski, S., Bailey, L.G., Baum, B.R. 1997. Modification of a CTAB DNA extraction 

protocol for plants containing high polysaccharide and polyphenol components. 

Plant Mol. Biol. Rep. 15(1): 8–15. 

Qi, X.Q., Stam, P., Lindhout, P. 1996. Comparison and integration of four barley genetic 

maps. Genome. 39(2): 379–394. 

Rohde, A., Prinsen, E., De Rycke, R., Engler, G., Van Montagu, M., Boerjan, W. 2002. 

PtABI3 impinges on the growth and differentiation of embryonic leaves during 

bud set in poplar. Plant Cell. 14(8): 1885–1901. 

Rohde, A., Ruttink, T., Hostyn, V., Sterck, L., Van Driessche, K., and Boerjan, W. 2007. 

Gene expression during the induction, maintenance, and release of dormancy in 

apical buds of poplar. J. Exp. Bot. 58(15-16): 4047–4060. 

Ruiz, D., Campoy, J.A., Egea, J. 2007. Chilling and heat requirements of apricot cultivars 

for flowering. Environ. Exp. Bot. 61(3): 254–263. 

Scorza, R., Okie, W.R. 1990. Peaches (Prunus persica L. Batsch). Acta Hortic. 290: 177–

231. 



 80 

Utz, H.F., Melchinger, A.E. 1995. PLABQTL: a computer program to map QTL. Version 

1.0. University of Hohenheim. 

Utz, H.F., Melchinger, A.E. 1996. PLABQTL: a program for composite interval mapping 

of QTL. JQTL 2(1). 

Van Ooijen, J.W., Voorrips, R.E. 2001. JoinMap® 3.0, Software for the calculation of 

genetic linkage maps. Plant Research International, Wageningen, the Netherlands. 

Van Ooijen, J.W., Sandbrink, J.M., Vrielink, M., Verkerk, R., Zabel, P., Lindhout, P. 

1994. An RFLP linkage map of Lycopersicon peruvianum. Theor. Appl. Genet. 

89(7–8): 1007–1013. 

Vilanova, S., Romero, C., Abbott, A.G., Llácer, G., Badenes, M.L. 2003. An apricot 

(Prunus armeniaca L.) F2 progeny linkage map based on SSR and AFLP 

markers, mapping plum pox virus resistance and self-incompatibility traits. Theor. 

Appl. Genet. 107(2): 239–247. 

Voorrips, R.E. 2002. MapChart: software for the graphical presentation of linkage maps 

and QTLs. J. Hered. 93(1): 77–78. 

Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., 

Pot, J., Peleman, J., Kuiper, M., Zabeau, M. 1995. AFLP: a new technique for 

DNA fingerprinting. Nucleic Acids Res. 23(21): 4407–4414. 

Wang, Y., Georgi, L.L., Reighard, G.L., Scorza, R., Abbott, A.G. 2002. Genetic mapping 

of the evergrowing gene in peach [Prunus persica (L.) Batsch]. J. Hered. 93(5): 

352–358. 

Weinberger, J.H. 1950. Chilling requirements of peach varieties. Proc. Am. Soc. Hortic. 

Sci. 56: 122–128. 

Winkler, C.R., Jensen, N.M., Cooper, M., Podlich, D.W., Smith, O.S. 2003. On the 

determination of recombination rates in intermated recombinant inbred 

populations. Genetics. 164(2): 741–745. 

Wu, R.L., Ma, C.X., Painter, I., Zeng, Z.B. 2002. Simultaneous maximum likelihood 

estimation of linkage and linkage phases in outcrossing species. Theor. Popul. 

Biol. 61(3): 349–363. 

Wu, R.L., Ma, C.X., Casella, G. 2007. Statistical genetics of quantitative traits: linkage, 

maps, and QTL. Springer-Verlag, New York. 

 



 81 

Zeaser D. 2001. Vegetative propagation of Gmelina arborea Roxb. In: CAMCORE. 

International Tree Breeding Short Course Book. North Carolina State University, 

Raleigh, North Carolina, USA, pp. 3-15. 

Zeng, Z.B. 1993. Theoretical basis for separation of multiple linked gene effects in 

mapping quantitative trait loci. Proc. Natl. Acad. Sci. U.S.A. 90(23): 10972–

10976. 

Zeng, Z.B. 1994. Precision mapping of quantitative trait loci. Genetics. 136(4): 1457–

1468. 

Zhang, H.B. 2008. Map-based cloning of genes and quantitative trait loci. In Principles 

and practices of plant genomics. Vol. 1. Genome mapping. Edited by C. Kole and 

A.G. Abbott. Science Publishers, Enfield, N.H. pp. 229–267. 

Zhebentyayeva, T.N., Swire-Clark, G., Georgi, L.L., Garay, L., Jung, S., Forrest, S., et al. 

2008. A framework physical map for peach, a model Rosaceae species. Tree 

Genet. Genomes. 4(4): 745–756. 



 82 

CHAPTER THREE 

 

COMPARATIVE ANALYSIS OF QTLS UNDERLYING CHILLING REQUIREMENT 

AND BUD BREAK IN PEACH (PRUNUS PERSICA L.) AND APRICOT (P. 

ARMENIACA L.) 

 

Bode A. Olukolu,
a
 Fan Shenghua,

a
 Taly Trainin,

d
 Tatyana N. Zhebentyayeva,

a
 Douglas 

G. Bielenberg,
b, c

 Chittanranjan Kole,
a
 Gregory L. Reighard,

b
 William R. Okie,

e 
Doron 

Holland,
d
 and Albert G. Abbott

a
 

 

a
Genetics and Biochemistry, Clemson University, 100 Jordan Hall, Clemson, SC 29634, USA. 

b
Horticulture, Clemson University, 170 Poole Agriculture Center, Clemson, SC 29634, USA. 

c
Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC 29634, USA. 

d
Fruit Sciences, Newe Ya'ar Research Center, Agricultural Research Organization, P.O. Box 1021, Ramat 

Yishay 30095, Israel.
  

e
ARS-USDA, Southeastern Fruit and Tree Nut Research Laboratory, Byron, GA 31008, USA

 

 

Corresponding author: A.G. Abbott (e-mail: aalbert@clemson.edu)  

 

The peach mapping population was provided by Dr. William Okie, maintained by Dr. 

Douglas G. Bielenberg and phenotyped by Dr. Douglas G. Bielenberg, Fan Shenghua and 

Bode A. Olukolu. The apricot mapping population was maintained and phenotyped by 

Dr. Doron Holland and Taly Trainin. Dr. Tatyana N. Zhebentyayeva assisted with 

developing peach SSR markers used in both maps and linkage analysisfor the peach map. 

Genotyping, linkage analysis, map construction and QTL analysis for peach and apricot 

were performed by Fan Shenghua and Bode A. Olukolu, respectively, while the 

comparative analysis of QTLs was conducted by Bode A. Olukolu. 

mailto:aalbert@clemson.edu


 83 

Abstract 

Chilling requirement (CR), a major factor that determines bud break, is a limiting factor 

for temperate fruit production, hence, a key trait breeders select for to avoid frost damage 

and to ensure uniform bud burst. In this study, we characterized common quantitative 

trait loci (QTLs) underlying the trait in mapping populations of two Prunus species 

(peach and apricot). In peach, a total of 8 QTLs detected for CR and 10 QTLs for bloom 

date mapped to 12 genomic regions, with 6 common QTLs indicating a common 

underlying genetic factor. Altogether, 20 QTLs were detected in apricot under additive-

by-additive epistatic models with and without dominance. Four of the 12 QTLs detected 

in each of the two models were consistent on linkage groups 1, 2, 6 and 8. A majority of 

the QTLs were stable between both Prunus species, as well as, similar trends in their 

QTL effects, with the allele for increasing the trait value mostly originating from the high 

chill parents. The denser apricot map provided a higher resolution to delineate QTLs to 

smaller genomic intervals, as well as, splitting each of the peach QTLs on linkage groups 

2, 4, 6 and 7 into 2 QTLs with smaller genomic intervals. The comparative QTL mapping 

strategy presented here reveals the transferability of genetic information between two 

Prunus species, characterization of stable QTLs, utility of the maps to consolidate each 

other and to further validate previously identified CR QTL loci as a major controlling 

factor driving floral bud break. 

 

Keywords: QTL effects, conservation of synteny, collinearity and marker transferability.
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Introduction 

The need for transferability of genetic information from one organism, usually a model 

organism, to a non-model organism is crucial especially for organisms that are intractable 

or that lack genetic resources for similar studies (Hall et al. 2002, Schmidt 2002). The 

core of comparative mapping for this purpose encompasses syntenic relationships 

between closely related species within the same taxonomic genus or family, consolidation 

of genetic maps, verifying quantitative trait loci (QTL), identification of candidate genes 

underlying QTLs and a better understanding of genome evolution (Sankoff and Nadeau 

2000, Kliebenstein et al. 2001, Murphy et al. 2001, Zhang et al. 2001, Schmidt et al. 

2002). This not only facilitates transfer of genetic information across different species but 

also allows for the taxonomic family to be viewed as a single genetic system (Freeling 

2001). Without sequenced and assembled plant genomes; comparative analysis frequently 

relies on molecular markers common among species (Cabrera et al. 2009). The 

application of this approach within grasses has proven successful for the positional 

cloning of important genes such as VRN1 in wheat, a species that map-based cloning was 

considered impracticable due to the large genome size and several repetitive elements in 

the genome that would impede chromosome walking (Yan et al. 2003). 

Genome colinearity, conservation of synteny and marker transferability among member 

species of Prunus has been demonstrated by several studies. These were mainly based on 

comparisons of 13 maps from different Prunus populations (Dirlewanger et al. 2004). In 

the Rosaceae, this genus provides the most detailed genetic map which was derived from 
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an interspecific almond (P. dulcis) cv. Texas × peach (P. persica) cv. Earlygold (TxE 

Prunus reference map) F2 mapping population (Joobeur 1998, Aranzana et al. 2003, 

Dirlewanger 2004).  

Recently two studies identifying QTL for chilling requirement (CR) and bloom date (BD) 

in peach and apricot were reported (Olukolu et al. 2009, Fan et al. 2010). CR is an 

agronomic trait that specifies floral and vegetative bud break. CR is the major factor 

determining bud break (Ruiz et al., 2007; Alburquerque et al., 2008), which is an 

important agronomic trait affecting production in temperate fruit tree species. CR refers 

to the duration of low temperatures necessary for the release of temperate trees from 

endo-dormancy so that initiation of growth in response to transient warm temperature is 

prevented before fulfillment of chill requirement. Consequently, frost damage during 

later winter or early spring is avoided. Unfortunately this trait which protects fruit trees 

also limits the climatic distributions of temperature fruit tree genotypes (Coville 1920, 

Scorza and Okie 1990, Sherman and Beckman 2003). Because the previously mentioned 

CR QTL studies utilized the framework SSR marker set from the general Prunus genetic 

map (Aranzana et al. 2003), we were in the unique position to compare the across species 

nature of major CR QTLs in these two closely related Prunus species each grown in very 

different environments and conditions. Additionally, in the case of peach CR 

determinations, floral bud break was scored and in the case of apricot, vegetative bud 

break was scored, thus, we could potentially identify QTL that were common for CR in 

these different tissue types as well.  Overlapping QTLs in this latter case would provide 

candidate genes that play a pivotal role to the pathway of tissue dormancy.  
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The main objective of this study was to integrate common marker data to generate a 

comparative map of the QTLs for CR and bud break. Most of the QTLs were shown to be 

stable in both Prunus species as well as possess similar trends in their QTL effects i.e. the 

high chill cultivars contribute the allele that is associated with increase in the trait value.  

 

Material and methods 

Mapping populations and linkage maps 

The peach map  (Fan et al. 2010) was constructed using an F2 population with 378 

individuals developed at ARS-USDA, Southern Fruit and Tree Nut Research Laboratory 

(Byron, GA, USA) by crossing two peach genotypes with high (1050 chilling hr) and low 

(300 chilling hr) CR values. The female parent (Contender) is a commercial peach 

cultivar in the southeastern USA developed by the North Carolina Agricultural Service 

(Raleigh, NC, USA), while the male parent (Fla.92-2C) is a selection from the University 

of Florida‟s (Gainesville, FL, USA). The apricot maps (Olukolu et al. 2009) were 

constructed using a two-way pseudo-testcross population consisting of 100 F1 

individuals. The female parent (A.1740) is a North African cultivar with 300 chilling hr, 

while the male parent (Perfection) is a commercial hybrid cultivar with 600 chilling hr. 

The parents and F1 progeny were maintained at the Newe Ya'ar Research Center of the 

Agricultural Research Organization in Israel. Routine methods of bagging and pollination 

were followed (Zeaser 2001). The TxE reference map, which was used as a reference 
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between the peach and apricot maps, was developed from an almond (cv. Texas) x peach 

(cv. Earlygold) F2 progeny (Joobeur et al. 1998). 

Marker analysis 

A set of 370 SSR markers isolated from different Prunus species were tested for 

polymorphism in the peach F2 mapping population using the female grandparent 

„Contender‟ and the F1 tree „BY01p6245‟. Most of the SSR markers used for the apricot 

maps were mostly Prunus anchor marker set originally developed for peach (Aranzana et 

al. 2003) and were selected based on uniform distribution across the linkage groups of 

the Prunus reference map (Dirlewanger et al. 2004) to establish a framework map for 

genome homology studies. The peach linkage map comprised a total of 96 SSR and 30 

AFLP loci (Fan et al. 2010), while the apricot linkage maps consists a total of 43 SSR 

and 1016 AFLP loci (Olukolu et al. 2009). Alleles detected with primers that produced 

multiple loci were labeled with an alphabetic suffix for SSR markers and a numeric suffix 

for AFLP markers.  

Linkage analysis and map construction  

Genetic linkage mapping was performed using JoinMap version 3.0 software (Van 

Ooijen and Voorrips 2001). Parameters used for linkage analysis and map construction in 

peach and apricot are described by Fan et al. 2010 and Olukolu et al. 2009, respectively. 

The orientation of the linkage groups was based on that of the TxE Prunus reference map 

and the Prunus bin map. 
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Evaluation of chilling requirement and bud break 

The trait evaluation in peach and apricot were performed as described by Fan et al. 2010 

and Olukolu et al. 2009, respectively. The peach population segregated and was scored 

for chilling requirement (CR) and blooming date (BD), while the apricot population was 

only scored for CR. For CR determinations, floral bud break and vegetative bud break 

were scored for peach and apricot, respectively. Starting at 300 chilling hr when air 

temperature drops below 7.2
0
C, the branches of each genotype were harvested 

approximately every 100 chilling hr interval until 1100 chilling hr and forced to bud 

break in a glasshouse at 25
0
C under a 16 hr photoperiod. CR data for the peach F2 

population were scored over winter 2007/ spring 2008 and winter 2008/ spring 2009, 

while BD was evaluated in spring of 2006, 2007, 2008 and 2009 on 3 replicates for each 

progeny. For each genotype, the trees were observed every 1 or 2 days in the spring to 

determine BD.  

CR evaluation on the apricot mapping population was performed with 2 replicates of 

each progeny. Whole potted trees were subjected to chilling at 6 °C and removed at 200 

hr intervals ranging from 200 to 600 hr in 2007 and 100 to 900 hr in 2008, with the 

exception of the 700 chilling hr treatment. Chilled trees were transferred to a naturally lit 

greenhouse at day and night temperatures of 25 °C and 13 °C, respectively, to force bud 

break under natural photoperiod and irradiance.  
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QTL analysis 

Quantitative trait loci were detected using composite interval mapping (CIM, Zeng 1994) 

using the PC version of PlabQTL version 1.2 (Utz and Melchinger 1996). Parameters 

used for QTL analysis are described for peach and apricot in Fan et al. 2010 and Olukolu 

et al. 2009, respectively. Different genetic models were compared based on Akaike‟s 

information criterion and Bayesian information criterion values (Hjorth 1994) to 

determine the best regression fit in both peach and apricot maps. The model with the 

minimal value was selected as the best fit. A pure additive model without dominance was 

applied to the peach QTL analysis, while two loci additive-by-additive epistatic effects 

were applied to the apricot QTL analysis with and without dominance. CR or BD trait 

with multiple overlapping QTLs in more than one year were pooled together and 

represented within the same QTL interval. 

The LOD curves were created by scanning at 1 cM intervals, while a permutation test 

(1000 resamplings) was performed to determine the critical LOD score appropriate to 

empirically identify a putative QTL with a genome-wide error at a 0.05 confidence level 

(Churchill and Doerge 1994). Subsequently, the detected QTLs and their estimated map 

positions were verified using a simultaneous multiple regression, which accounts for 

effects of other linked QTLs on a chromosome (Zeng 1993). The phenotypic variance 

explained by each QTL (R2) was calculated as the square of the correlation coefficient 

from the final multiple regression model (Utz and Melchinger 1995, 1996). To examine 

the interaction between detected QTLs, the general linear model of variance analysis was 
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implemented. One- or two-LOD intervals (c. 95% or 99% confidence interval) (Lynch & 

Walsh, 1998) for QTL detection were reported.  

 

Result  

Common QTLs between peach and apricot 

In peach, a total of 8 QTLs were detected for CR and 10 QTLs for BD, with all 18 QTLs 

mapped to 12 genomic regions (Table 3.2). Six of the CR QTLs overlap considerably 

with 6 of the BD QTLs indicating a common underlying genetic factor (Table 3.1 and 

Fig. 3.1). Altogether, 20 QTLs were detected on the apricot maps for both models used 

i.e. two loci additive×additive epistatic effects with (12 QTLs) and without (12 QTLs) 

dominance. Four of the 12 QTLs detected for each model were consistent on linkage 

groups 1, 2, 6 and 8 (Fig. 3.1 and Table 3.3). On linkage group 1 (LG1), 2 of the 4 peach 

QTL intervals map into the same genomic region as 2 of the 3 apricot QTL intervals. On 

LG2, the single QTL in peach spanned across a similar genomic region in apricot, 

although the region in apricot represents two distinct QTLs refined to a significantly 

smaller genomic interval. Likewise on LG4, two distinct apricot QTLs were localized 

inside a larger genomic interval spanned by 1 of the 2 QTLs in peach. On LG5, 1 of the 2 

apricot QTLs map in the same genomic region as the single QTL in peach. Similar to the 

trend observed on LG4 and 2, a single peach QTL on LG 6 mapped to a genomic region 

corresponding to the location of 2 of the 3 apricot QTLs. On LG7, 2 of the peach QTLs 
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have corresponding QTLs within the same genomic region in apricot. The peach QTL on 

the lower arm of the LG7 also spans a genomic region in apricot containing two distinct 

QTLs. The single QTLs on LG8 of peach and apricot didn‟t seem have overlapping 

genomic regions, although they were in close proximity to each other. The marker 

density in the region of LG8 on both maps was relatively low especially in the peach map 

which could result in the incongruence of the QTLs between the species.  

The larger QTL intervals observed in peach were better defined in apricot due to the 

higher map resolution in apricot. This is as a result of high levels of polymorphisms 

observed using the AFLP markers (Olukolu et al. 2009) in apricot as compared to peach 

where polymorphism was extremely limited. This resulted in the apricot QTLs been 

defined into smaller genomic regions with the exception of the evergrowing (EVG) locus 

(Wang et al. 2002) on the bottom part of the peach LG1, which also had a high SSR 

marker saturation in peach. Some of the peach QTLs on LG2, 4, 6 and 7, were defined as 

representing 2 QTLs on the apricot maps. The splitting of these QTL in apricot could 

result from insufficient marker density in these regions in the peach map to resolve 

multiple QTLs within close genomic proximity or alternatively, the additional QTLs 

could result from additional gene activities associated with CR for vegetative bud break 

in apricot contrasting to CR for floral bud break in peach.  
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Table 3.1: Common QTLs and associated LOD scores between peach and apricot. 

Linkage  

groups 

a
QTL support interval (cM)  LOD 

Peach Apricot  Peach Apricot 

1 43-56
BD

 52-55
A
  12.7

BD
 13.76

A
 

86-88
BD/CR

 67-71
A
  31.4

BD
/21.7

CR
 14.6

A
 

2 20-37
BD

 13-17
P
  5.1

BD
 63.6

P
 

- 18-20
P
  - 45.7

P
 

4 4-19
CR

 4-6
A
  9.8

CR
 21.9

A
 

4-33
BD

 24-26
A
  12.4

BD
 17.8

A
 

5 24-38
BD/CR

 25-29
A
  4.14

BD
/3.88

CR
 15.5

A
 

6 35-43
CR

 54-56
P
  3.3

CR
 64.5

P
 

34-42
BD

 64-68
P
  3.4

BD
 50.8

P
 

7 13-22
BD

 6-10
P
  3.9

BD
 46.2

P
 

40-47
BD

/43-59
CR

 41-43
P
/26-34

A
  33.7

BD
/21.3

CR
 11.6

A
/76.3

P
 

- 34-36
A
  - 11.8

A
 

8 36-54
CR

 42-46
P
/33-38

A
  3.6

CR
 56.5

P
/75.6

A
 

BD
Blooming date QTLs; 

CR
Chilling requirement QTLs; 

P
Perfection map; 

A
A.1740 map; LOD, logarithm of 

the odds, threshold computed by 1,000 permutations; 
a
2-LOD support interval; Only QTLs above empirical 

threshold of 9.44 and 8.46 for the Perfection and A.1740 maps, respectively, and 2.85 for the peach map 

are listed. 
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Figure 3.1: Comparative mapping of QTLs between peach (F2 mapping from Contender x 

FLa.92-2C) and apricot (F1 mapping population from Perfection x A.1740). The asterisks 

show the χ
2
 p levels of significance (*, 0.05; **, 0.01; ***, 0.001). In peach and apricot, 

only the the SSR framework markers are shown (i.e. AFLP loci excluded).   
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Figure 3.1: Continued 
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Figure 3.1: continued 
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Figure 3.1: continued 
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QTL effects in peach and apricot 

The peach QTLs were detected using only a pure additive model following a statistical 

test for the model with the best fit (Table 3.2), while the apricot QTL analysis was 

performed using an additive-by-additive gene action model to show epistatic interactions 

with dominance and without dominance (Table 3.3). The + or - effects value of the QTL 

(peach) and QTL interaction (apricot) indicates the parental origin of the allele 

responsible for increasing the trait value. The positive effect values indicate that the allele 

for increasing the trait value is from the male and vice versa. In peach, the positive and 

negative effects values correspond to the low chill FLa.92-2C male parent and the high 

chill Contender female parent, respectively, while in apricot, it corresponds to the high 

chill Perfection male parent and the low chill female A.1740 parent, respectively.  

The alleles for increasing trait values in peach and apricot QTLs are mostly from the high 

chill parents i.e. Contender and Perfection, respectively. Only 1 of the 8 CR and 2 of the 

10 BD peach QTLs had alleles increasing trait value that originated from the FLa.92-2C 

low chill parent (Table 3.2). These QTLs are localized on LG2 for BD (20-37 cM) and on 

LG6 for CR and BD (35-43 cM and 34-42 cM, respectively). Similarly, 1 of the 2 apricot 

QTLs mapping within the corresponding peach QTLs on LG 2 and 6 above had a 

negative value (i.e. allele increasing trait value in low chill A.1740; Table 3.3). 

Conversely, the QTL on the upper arm of the LG7 had alleles increasing the trait value 

originating from the low chill apricot cultivar parent instead of from the high chill parent 

as indicated in peach. Predominantly, the common QTLs between peach and apricot 
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showed similar trends in their QTL effects i.e. most of alleles that increase trait value are 

contributed by the high chill parents. Other QTL effects unique to the peach and apricot 

maps are shown in Table 3.2 and 3.3.  

 

Proportions of phenotypic variance in peach and apricot 

Most of the phenotypic variance in peach was contributed by 2 QTLs on LG1 (86-88 cM) 

and LG7 (43-57 cM) at about 40%. In the apricot genetic background, the proportions of 

partial phenotypic variance explained are presented for a QTL interaction when other 

QTL interactions effects were fixed (Table 3.4 and 3.5). The corresponding QTL 

genomic regions were consistently associated with QTL interactions that had high 

contributions to the phenotypic variance (Table 3.4 and 3.5), although these contributions 

were not as high as those observed in peach. 
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Table 3.2: The proportion of phenotypic variance contributed by each peach QTL, the 

additive QTL effect and the source of allelic dominance from either of the grandparents. 

Linkage 

group 
a
QTL SI (cM) Part R

2
 (%) A 

1 0-1
BD*

 4.0 -0.14 

0-13
CR*

 7.6 -0.29 

27-42
BD

 10.0 -0.26 

43-56
BD

 12.8 -0.42 

86-88
CR

 40.1 -0.68 

86-88
BD

 42.65 -0.74 

2 20-37
BD

 6.15 0.228 

4 4-19
CR

 9.7 -0.32 

4-33
BD

 14.4 -0.34 

40-62
CR

 5.0 -0.23 

5 24-38
BD

 4.6 -0.20 

24-38
CR

 5.3 -0.20 

6 35-43
CR

 4.2 0.19 

34-42
BD

 4.0 0.14 

7 13-22
BD

 3.5 -0.17 

40-47
BD

 21.4 -0.52 

43-59
CR

 39.9 -0.71 

8 36-54
CR

 4.4 -0.20 

Note: Part R2 (%), percentage of phenotypic variance explained by one QTL when other QTL effects are 

fixed; A, additive QTL effect. The positive (+) and negative (-) additive effects indicate that the allele 

which increases the trait values is in the FLa.92-2C and Contender parent, respectively. 
a
2-LOD support interval in the fit. 
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Table 3.3: QTLs detected for chilling requirement in parental maps using composite interval mapping.  

Map LG 

A x A(no dominance)  A x A (dominance) 

Position 

(cM) 
a
SI Add  

Position 

(cM) 
a
SI A D 

 

 82 81-83 117.2  82 81-83 -37.5 -242.2 

2 15 14-16 72.4  - - - - 

2 - - -  19 18-20 -660.1 -561.3 

3 - - -  44 43-45 - - 

6 29 28-30 602.6  - - - - 

6 - - -  55 54-56 -8401 -8491.4 

6 66 65-67 165.9  - - -  

7 8 7-9 -205.4  - - -  

7 - - -  42 41-43 - - 

8 44 43-45 -221.2  44 43-45 576.6 800 

A.1740 1 - - -  54 52-55 735.8 - 

1 69 68-70 400.5  - - - - 

1 86 82-88 265.8  84 81-88 -10.8 80.3 

2 4 3-5 -301  - - - - 

2 36 35-37 247  36 35-37 225.9 46.3 

3 - - -  12 11-13 839.3 - 

4 - - -  5 4-6 - - 

4 - - -  25 24-26 - 95469 

5 1 0-2 -595.1  - - - - 

5 27 26-28 112.8  - - - - 

6 - - -  22 21-23 80.0 -118 

7 26 25-28 180.8  - - - - 

7 - - -  35 34-36 - 397 

8 35 34-37 75.6  - - - - 

Note: LG, linkage group; Position, location of the maximum LOD score of the QTL on LG; A, additive 

QTL effect; D, dominance QTL effect; A x A, additive x additive interaction model. Only QTLs above 

empirical threshold of 9.44 and 8.46 (for the Perfection and A.1740 maps, respectively) are listed (LOD 

threshold computed by 1,000 permutations). QTLs consistent between both models, i.e. additive-by-

additive epistatic effects model with and without dominance, are listed in the same row. The positive and 

negative additive effects indicate that the allele which increases the trait values is in the Perfection and 

A.1740 parent, respectively. 
a
1-LOD support interval in the fit. 
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Table 3.4: Digenic interactions of apricot QTLs controlling CR using the additive and additive-by-additive 

epistatic interaction model. 

QTL1 QTL2 
A  A x A 

c
Part R

2
% 

d
Std Eff 

 
c
Part R

2
% 

d
Std Eff 

Perfection (LOD= 17.19, 
a
R =0.765, 

b
R

2
% = 58.5 ±  6.7) 

LG1:82 LG7:8 - -  8.9 1.29* 

LG2:15 LG8:44 - -  9.0 1.05* 

LG6:29 LG6:66 - -  12.4 -1.33** 

A.1740 (LOD= 21.15, 
a
R = 0.813, 

b
R

2
%= 66.1 ± 5.8) 

LG5:27  6.2 0.56 *  - - 

LG1:69 LG7:26 - -  16.7 0.95** 

LG1:86 LG2:36 - -  15.5 -0.89** 

LG2:4 LG2:36 - -  16.7 0.76** 

LG2:36 LG5:27 - -  14.1 1.16 ** 

LG5:1 LG8:35 - -  10.1 -1.06 ** 

a
Multiple correlation coefficient; 

b
percentage of phenotypic variance explained by all the QTL interactions; 

c
percentage of phenotypic variance explained by a QTL interaction when other QTL interaction effects 

were fixed; 
d
Standardized QTL effects; A and A x A values are the additive effect and additive x additive 

QTL interaction effects; * and ** denote significance level at 0.05 and 0.01, respectively. The positive and 

negative additive effects indicate that the allele which increases the trait values is in the Perfection and 

A.1740 parent, respectively. 
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Table 3.5: Digenic interactions of apricot QTLs controlling CR using the additive, dominance and additive 

x additive model. 

QTL1 QTL2 

A  D  A A 

c
Part R

2
% 

d
Std Eff 

 
c
Part R

2
% 

d
Std Eff 

 
c
Part R

2
% 

d
Std Eff 

Perfection (LOD= 12.71, 
a
R =0.692, 

b
R

2
% = 47.8 ± 7.6) 

LG7:42 - 11.7 1.29**  - -  - - 

LG1:82 LG3:44 - -  - -  6.9 -1.20* 

LG2:19 LG6:55 - -  - -  9.0 1.66* 

LG7:42 LG8:44 - -  - -  17.3 1.66** 

A.1740 (LOD= 21.15,  
a
R = 0.813, 

b
R

2
%= 66.1 ± 5.8) 

LG1:54 - 
11.7 234.69**  

11.8 236.19** 
 

- - 

LG2:36 -    9.7 0.60*  - - 

LG1:54 LG3:12    - -  9.2 1.67* 

LG1:54 LG4:5    - -  15.5 1.27** 

LG1:84 LG2:36    - -  18.6 -0.86** 

LG4:25 LG7:35    - -  11.8 1.50 ** 

LG6:22 LG7:35    - -  16.3 1.13 ** 
a
Multiple correlation coefficient; 

b
percentage of phenotypic variance explained by all the QTL interactions; 

c
percentage of phenotypic variance explained by a QTL interaction when other QTL interaction effects 

were fixed; 
d
Standardized QTL effects; A and A x A values are the additive effect and additive x additive 

QTL interaction effects; * and ** denote significance level at 0.05 and 0.01, respectively. The positive and 

negative additive effects indicate that the allele which increases the trait values is in the Perfection and 

A.1740 parent, respectively. 
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Discussion 

In this study, we present a comparative analysis of QTLs that provides a more 

comprehensive strategy for cataloging QTLs that cannot be achieved from one single 

population as well as an independent verification of significant QTLs that are stable 

between two populations. The stability of QTLs in turn is of utmost important since the 

utility associated markers across different genetic backgrounds are required for marker-

assisted breeding. Some of these QTLs were also been reported for bloom date (BD) in 

previous studies and in other mapping populations (Dirlewanger et al. 1999, Verde et al. 

2002, Silva et al. 2005). Although, the study aims to validate common QTLs identified in 

two different Prunus species, identifying QTLs unique to each mapping population is 

useful for elucidating inter-species trait differences and overcoming some of the 

limitations of single mapping populations. These limitations include the difficulty to 

generate a single large mapping population in trees segregating for a complex trait and 

the incidence of QTLs with large effects that obscure those with smaller effects (Paterson 

et al. 1988, 1990, Lander and Botstein 1989). 

Establishing QTLs that are stable within a genus or taxonomic-family is crucial for 

transferability and optimal use of genetic information and resources in breeding 

programs. The results above support the conservation of QTLs controlling chilling 

requirement (CR) and bud break between two Prunus species. The maps were also shown 

to consolidate each other especially in regions where marker density is inadequate on one 

map, leading to the inability to detect or refine a QTL to a smaller genomic region. This 

is evident in the marker sparse genomic regions in peach that were potentially further 
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refined to 1 or 2 smaller genomic regions in the apricot maps that possess a much higher 

marker saturation  with AFLP markers (Olukolu et al. 2009). In turn, the high density of 

SSR markers on the peach map provide informative marker information to anchor the 

two species maps and provide sequence-based markers that have utility for chromosome 

walking, isolating BACs within QTLs and defining genomic regions in the physical map 

and on the complete genome sequence of peach. This allows for transferability of genetic 

information between both species and for further enriching the genomic resources based 

on the peach genome. Some of the QTLs were also shown to be common between the CR 

and BD phenotypes after comparing the CR and BD QTLs of the peach map with the CR 

QTLs in apricot. This supports claims that CR is a major factor determining bud break 

(Ruiz et al. 2007, Alburquerque et al., 2008). 

The alleles for increasing trait value were consistent between both studies, with most of 

the alleles increasing the trait value originating from the high chill parents. This further 

implies that the underlying genetic factor or genes within the QTL regions between peach 

and apricot are also similar, thus, pointing to similar gene pathways driving the trait 

variation within the genus. The contributions to the phenotypic variance by QTLs seem to 

follow a similar trend, although the use of different effect models (best model fit 

determined statistically) prevents a more precise comparison. Most conspicuous is the 

contribution of peach QTL on LG1 (86-88 cM) and LG7 (43-57 cM) that agrees with the 

contributions by the corresponding QTLs in apricot, although the contributions by these 

peach QTLs are relatively higher compared to other detected QTLs. This probably points 

to a difference in the expression of the trait between peach and apricot or differences of 
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the response of floral buds vs. vegetative buds to CR and chemicals that induce dormancy 

release (Arora et al.  2003).  

In this report, we presented stable and potentially key CR QTL regions based on a 

comparative QTL mapping approach.  These results provide markers for: testing in 

marker-assisted breeding of CR, increasing our understanding of the genetics of this 

complex trait, and identifying and characterizing candidate genes whose study will 

establish the fundamental pathways controlling this important life history trait. The 

correspondence of the candidate genes in stable QTLs between these two taxa is crucial 

to validation of the comparative mapping approach and is the current focus of our 

continuing research in peach and apricot. 
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Abstract 

Despite accomplishments in defining genomic regions controlling dormancy-related traits 

in Prunus (peach and apricot) and a few other woody perennials, limitations imposed by 

sample size and generation cycle still persist for candidate gene (CG) discovery. We 

present a linkage disequilibrium-based (LD) mapping strategy aimed towards identifying 

CGs underlying dormancy and floral bud break (blooming date) in apricot (Prunus 

armeniaca L.). Using 100 individuals of diverse geographical origins, 240 AFLP and 8 

SSR markers were used to estimate the population structure. The LD mapping was 

limited to marker dense genomic regions within and around previously detected major 

QTLs. These QTLs positioned on linkage groups (LG) 1 and 7 are consistent between the 

apricot and peach (Prunus persica L.) QTL maps. Pair-wise marker association estimates 

were computed based on 32 LG1 and 23 LG7 SSR markers. Marker-trait associations 

were revealed using a generalized linear model to eliminate false-positives due to 

population structure. LD decayed below the centimorgan scale, indicating insufficient 

marker density averaged at 0.44 and 1.58 cM on LG1 and 7, respectively. Denser marker 

regions were averaged at 0.1 and 0.7 cM on LG1 and 7, respectively, and revealed 

significant LD estimates above the LD baseline threshold. We report significant marker-

trait associations and the genes these markers were derived from. The CGs on the LG1 

QTLs include a transposon (HARBINGER-LIKE) involved in RNAi-mediated DNA 

methylation-induced silencing; DAM2 (DORMANCY ASSOCIATED MADS-box 2); VIN3 

(VERNALIZATION INSENSITIVE 3) or VEL1 (VIN3-LIKE/VERNALIZATION 5) and 

SUT1 (a SUCROSE TRANSPORTER 1 gene). CGs on the LG 7 QTLs includes CLF 
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(CURLY LEAF), a component of a complex required for gene silencing; and SQUINT 

(SQN), which is involved in miRNA-mediated vegetative to reproductive phase 

regulatory pathway. Our results demonstrate that LD-based association mapping can be 

used for validating QTLs, fine mapping and for the detection of CGs in the Prunus genus. 

 

Keywords: Linkage disequilibrium, population structure, general linear model, candidate 

gene
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Introduction 

Detection of quantitative trait loci (QTLs) and high resolution mapping to define 

candidate genes controlling dormancy and bud break on a fine genomic scale, like many 

other complex traits especially in tree species, is not possible using the conventional bi-

parental crosses and linkage analysis. This is mostly due to the need for recombination 

events required to break up polymorphisms and resolve very small genomic regions. This 

in turn requires several thousand progenies, an expensive and difficult task. To compound 

the problem, the statistical power to detect minor QTLs especially in complex traits that 

lack major QTLs or that comprise several additional minor QTLs, is simply lacking in 

any existing mapping populations of long-lived species. To combat the problem, 

numerous recombination events maintained in natural populations have been routinely 

exploited in animal systems especially for the genetics of complex diseases in humans 

(Risch 2000). More studies are now using natural plant populations and their allelic 

variations as an alternative to standard single family mapping approaches. This approach, 

linkage disequilibrium-based association mapping, is not only becoming an alternative 

and powerful tool for identifying loci controlling complex traits but also a more realistic 

and cost-effective way for high-resolution mapping of QTLs compared to single family 

linkage mapping. Basically, association mapping explores several meiotic events 

accumulated over numerous generations, hence, establishing population genealogy, 

marker-marker association and eventually marker-trait association (Remington et al. 

2001, Thornsberry et al. 2001). According to a review by Hirschhorn and Daly (2005), 
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association mapping and linkage analysis are considered complimentary to each other 

because they incorporate prior knowledge, cross-validation and statistical power.  

The resolution captured by linkage disequilibrium-based (LD) mapping is only a function 

of the landscape of linkage disequilibrium across the genome. Linkage disequilibrium 

refers to the non-random association of alleles between loci. The landscape of the LD is 

in turn influenced by genetic and non-genetic factors like recombination, drift, selection, 

mating pattern and population admixture (Flint-Garcia et al. 2003). The structure of LD 

is reflected in the decay of LD over genetic distances in a population, which then 

determines the marker coverage required within a genomic region to perform association 

analysis.  Studies have shown that LD decay varies considerably within and between 

species as well as across genomic regions. Until recently, one of the major drawbacks of 

LD mapping has been spurious association due to population structure leading to elevated 

levels of false positives. The complex evolutionary history and breeding in plants is a 

causative factor for this. Regardless of this drawback, populations considered for 

association mapping still include breeding and gene bank collections of accessions, 

breeding lines and germplasm collections. These collections are most ideal for 

association studies because curators routinely evaluate them, thus providing a wealth of 

valuable phenotypic data readily available for QTL/gene discovery. 

Recent linkage mapping studies in peach (Fan et al. 2009) and apricot (Olukolu et al. 

2009) for bud break (floral and vegetative) and chilling requirement have identified 

several QTLs with major contribution on linkage group 1 and 7. Although most of this 
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QTLs are stable between the two species and explain most of the phenotypic variation 

(about 70%), the QTL intervals lack sufficient map resolution to determine which of the 

candidate genes within the intervals control the trait. This study aims to validate some of 

the QTLs detected in these previous linkage maps based on the variation in the blooming 

date (floral bud break) in a diverse and structured population of apricot (Prunus 

armeniaca L.).  

This study evaluates the extent of population structure in the apricot population based on 

a genome wide scan using AFLP markers (Falush et al. 2007), estimating pair-wise 

marker association, extent of LD decay within genomic regions spanning QTLs on LG1 

and 7, as well as detection of marker-trait association. SSR markers were designed 

mostly from genic regions to span and saturate these QTL intervals. The wide genetic 

diversity and the outcrossing nature of apricot (Kostina 1946, Layne et al. 1996, Faust et 

al. 1998, Zhebentyayeva et al. 2010) make it ideal for association mapping according to 

criteria designated by (Nordborg and Donnelly 1997).  In this study, we report the first 

LD-based association mapping in Prunus for identification of candidate genes underlying 

blooming date (floral bud break). These results demonstrate the power of coupling single 

family QTL analysis with association approaches to further refine QTL intervals and to 

identify potential candidate genes for traits influenced by these QTL loci. It also serves as 

a potential model for parallel studies in other Prunus species, with possible extension to 

other Rosaceae species. 
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Materials and Methods 

Plant materials 

Sampled individuals are native to diverse geographical regions (Table 4.1) and comprised 

of 100 accessions. Only accessions with documented introduction from respective 

geographical region were considered as indigenous germplasm.  The core set of cultivars 

comprised of 83 apricot accessions previously described in a genetic diversity study by 

Zhebentyayeva et al. (2003). These accessions represent Chinese, Central Asian 

(Fergana, Zeravshan, Khorezm and Kopet-Dag subs), European and hybrid cultivars of a 

known pedigree. Also included are cultivars associated with PPV resistance breeding and 

non-domesticated germplasm i.e. Dzhungar-Zailij population of P. armeniaca and wild 

species: Prunus mandshurica (Maxim), Prunus sibirica L., Prunus sibirica var. 

davidiana (Carrière), Prunus armeniaca var ansu (Maxim.) Kost., Prunus mume  (Sieb. 

et Zucc.) and alpine plum Prunus brigantina Vill. (see Zhebentyayeva et al., 2008). The 

list of indigenous cultivars was enriched with two North African (Tunisia) cultivars 

Quardi and Sayed. 

Phenotypic data 

All but 5 accessions (i.e. Goldrich, LE2904, LE3276, Sayed and Quardi) were maintained 

at the State Nikita Botanical Garden (Crimea, Ukraine). Apricot cultivars were grown 

under standard agrotechnique  in two orchards on the northern coast of the Black Sea in 

Yalta characterized by warm Mediterranean climate; one orchard (44°30' 50.81" S 34° 
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13' 52. 22" E) planted in 1973  and  another one (44° 30' 52.44"S 34°13' 59.06" E) 

planted in 1990-1991. Most of cultivars were replicated in 2 locations in Gvardejskoe 

(steppe zone of Crimean peninsula) characterized by temperate continental climate with 

fluctuating winter temperatures; one orchard (45°09' 23. 82" S 33°58' 37, 93" E) planted 

in 1973 (eradicated in 1996) and another one (45°09'01.38" S 33°59' 17.37" E) planted in 

1991 through 1994. Eastern-European cultivar Krasnoshchekii and its later blooming 

clone Jubileinyi were randomly planted in all orchards and served as control for 

normalization of bloom date across the locations.  

Phenotype evaluation was done according to certified protocol for selection and 

evaluation of new stone fruit cultivars in the South of USSR by Ryabov (1969). Yearly 

during the entire period of blooming, tree phenology has been recorded every other day 

and included 5 records on date of:  1) fully swollen buds, 2) flower bud emergence, 3) 

emergence of petals, 4) start of the bloom, and 5) full bloom (at least 50% flower buds on 

tree are open). In this association study we used a data for full bloom as blooming date 

and categorized apricots into 5 classes according to their blooming date:  1) March 1
st
 - 

10
th

, 2) March 11
th

 – 20
th

, 3) March 21
st
 – 31

st
, 4) April 1

st
 – 10

th
 and 5) April 10

th
 – 20

th
.  

Average date of blooming was calculated for entire period of observation. Cultivar 

assignments to phenotypic classes were iteratively verified for entire period of data 

collection spanning from the first year of flowering (1976) till 2009. Due to consistency 

of the ensuing phenotypic classes, several breeding programs have consistently and 

successfully used these accessions for production of hybrids with specific desirable times 

for blooming.  



 117 

Table 4.1: List of accessions, their geographical origin and serial numbers corresponding to number 

assigned in Structure analysis. 

Central Asian  sno Central Asian sno European sno 
Arzami 3 Kzyl Khorezmskii 44 Alberge de Tur 1 

B-1-11 4 Kzyl Khurmai 

Kannibadam 

45 Ananasnyi Tsurupinskii 2 

B-4-5 5 Kzyl Uryuk 46 Bergeron 8 

B-5-3 6 Lyuchak Sumbarskii 52 De Compot 13 

Badami 7 Maftobi 53 Early Gold 21 

Gulyunghi 23 Mamuri 55 Jubileinyi 27 

Iskadari 26 Mirsandzhali 59 Kantsler 30 

Kandak-10 28 Nukul Citronnyi 64 Krasnoshchekii 40 

Kandak-12 29 Oranzhevo-krasnyi 66 Luizet Krupnoplodnyi 50 

KB-12 32 Paivandi Bukharskii 74 Precoce d'Italia 76 

KB-9 33 Rukhi Dzhuvanon 

Meona 

81 Real d'Imola 80 

Khurmai 34 Rukhi Dzhuvanon Surkh 82 Tilton 93 

Khurmai Rannii 35 Samyi Rannii 83 Velkopavlovichka 95 

KK(2) N1 37 Supkhani 91 Vengerskii Krypnyi 96 

Kok-pshar 38 Tadzhabai 92 Vynoslivyi 98 

Kolon Boboi 39 Zard 100   

Kunduzi 42     

Hybrid cultivars sno Iran-Caucasian sno Chinese sno 

Dionis 14 Daradzhi ek Shabistr 

 

12 Da-bei 9 

Krimskii Amur 41 Katuni 31 Da-chuan-che N1 10 

Lunnik 51 Kurbane Marache 43 Da-chuan-che N2 11 

Medunets Krimskii 57 Mascat 56 In-ben-sin 25 

Naryadnyi 61 Nakhichevanskii 60 Kitaiskii 36 

Naslazhdenije 63 Nasera Tabris 62 Lao-yech-lian 47 

Olimp 65 Ordubad 67 Mai-che-sin 54 

Parnas 75 Shalakh 87 Mi-bada 58 

Pruisadebnyi Rannii 77 Shekarpara de Semnan 90 Pui-sha-sin 78 

Satser 84 Vaagas Vardaguin 94 Shantunski 88 

Shedevr 89   Yuan-sin 99 

Non-domesticated sno PPV resistant cultivars sno P. armeniaca, wild sno 

P. ansu 68 Goldrich 22 Dzhungarskii  8/55 15 

P. manshurica 69 Harlayne 24 Dzhungarskii 18/63 16 

P. mume, N 15 70 LE2904 48 Dzhungarskii 18/64 17 

P. mume, N18 71 LE3276 49 Dzhungarskii 18/68 18 

P. sibirica var davidiana 72 Stark Early Orange 86 Dzhungarskii 18/75 19 

P.sibirica 73 Vestar 97 Dzhungarskii 18/78 20 

Northern African sno     

Sayed 79     

Quardi 85     

Note: accession sno correspond to numbering on bar plot of population structure. 
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DNA extraction 

Genomic DNA was extracted from fresh young leaves using a modified CTAB/PVP 

method (Sivolap et al. 1998) as described by Zhebebntyayeva et al. (2003). Working 

solutions of genomic DNA at 10 ng/μl in 0.1 × TE buffer were prepared for SSR analysis 

and kept at 4 °C. 

Genotypic data 

In this study we obtained data for 10 SSR loci (generated from 8 primer combinations) 

and 240 AFLP loci (generated from 8 primer combinations) from previous studies, in 

which several geographical regions and hybrid cultivars were excluded from analysis for 

reasons described in original papers (Zhebebntyaeva et al. 2003, 2008). The Quardi and 

Sayed cultivars absent in the previous studies were treated as missing data when these 

preexisting genotypic data were used in the analysis. New set of SSR data generated for 

all 100 accessions included  45 SSR loci (generated from 44 primer combinations) 

anchored on the Prunus reference map (Aranzana et al. 2003) and the Prunus bin map 

(Howad et al. 2005). Most of these additional Prunus-based SSR markers were designed 

for further saturation within the QTL regions on LG1 and 7 detected in both peach (Fan 

et al. 2009) and apricot (Olukolu et al 2009) maps. The specific primer pairs, 

amplification conditions, radioactive labeling, and polyacrylamide gel electrophoresis 

were employed as described in Combes et al. (2000). For primer design we used genomic 

sequence derived from the annotated EVG region in peach (Bielenberg et al. 2008) and 

the whole peach genome assembly available at http://peachzome.phytozome.net. Using 

http://peachzome.phytozome.net/
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QTL flanking markers we delineated genomic regions inside of QTL interval and 

selected di-nucleotide repeats close to predicted genes or inside of 5` UTR, 3` URT or 

introns, thereafter, the markers represented mostly genic regions.  Homology searches for 

predicted proteins were done against the Arabidopsis reference protein database using a 

BLASTp program available on the NCBI website (http://www.ncbi.nlm.nih.gov/).   The 

list of primers for SSR markers and corresponding predicted genes are available in 

Appendix D and E, respectively. 

We used amplified fragment length polymorphism (AFLP) marker analysis as an 

inexpensive and fast alternative for a genome wide scan.  The AFLP analysis was 

performed according to Vos et al. (1995) as described in Zhebentyaeva et al. (2008).  

Statistical analysis 

Population structure: Eight unlinked SSR loci (UDAp485, UDA410, UPD98-4069, 

Pchgms144, Pchgms137, Pchgms106, Pchgms20b and EPDCU3454), one on each 

linkage group and 240 AFLP loci were used for evaluation of population structure. Since 

the model that STRUCTURE software is based on assumes that loci are independent 

within populations (i.e. not in LD); AFLP loci, which are supposedly unlinked or mostly 

distantly linked markers due to random distribution over the genome were used to avoid 

the structure analysis being skewed by using linked SSR markers (Falush et al. 2007). 

Studies by Falush et al. (2003) and Conrad et al. (2006) have shown that structure 

performs reasonably well despite the data not completely fitting the model provided there 

is enough independence across regions that LD within regions does not dominate the data 

http://www.ncbi.nlm.nih.gov/
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(Pritchard et al. 2000a). This was further verified in our data set by using only 8 unlinked 

SSR marker sets to assess the confidence with which accessions are assigned to 

subpopulations for which P > 0.5. All program parameters were kept uniform for each 

run. The program STRUCTURE version 2.3.2 (Pritchard et al. 2000b) was used to test 

the hypotheses of  K = 1 to K = 12 i.e. 1 to 12 populations using an admixture model, a 

burn-in phase of 10
5
 and a sampling phase of 5 x 10

5 
replicates. The optimal division of 

the population into subpopulations was determined when the probability of K was very 

small for K less than the appropriate value (effectively zero) and then more-or-less 

plateaus for larger K (documentation for STRUCTURE software, Pritchard et al. 2009).  

Within subpopulations, it is assumed that the loci are at Hardy-Weinberg equilibrium and 

are in linkage equilibrium i.e. individuals are assigned to populations in such a way as to 

achieve this (Pritchard et al. 2009). The overall and subpopulation Fst and heterozygosity 

(Falush et al. 2003) parameters estimated using the STRUCTURE version 3.2 (Pritchard 

et al. 2000b) were as a measure of genetic diversity.  

Linkage disequilibrium: The LD parameters for pair-wise significance between markers 

were estimated using the Tassel software (http://www.maizegenetics.net/). The LD 

parameters were computed by 10
5
 permutations and without the rapid permutation test. 

Prior to marker-trait association, LD using the square of the coefficient of correlation (r
2
, 

Pritchard and Przeworski 2001), was estimated separately for linked loci on the same 

QTL genomic region on LG1 and 7. The 95
th

 percentile of the square root transformation 

of the estimates was used to establish a population-specific threshold for evidence of 

http://www.maizegenetics.net/
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linkage for each genomic interval (Breseghello and Sorrels, 2006). The r
2 

values were 

plotted against the map distance (cM) on the linkage map and a regression line was 

drawn by a second-degree loess curve (Cleveland 1979) using the SAS version 9.1 (SAS 

Institute). The intersection of the loess curve (a type of regression curve) to the baseline 

(95
th

 percentile critical value of r
2
) was regarded as the estimate of the level of LD within 

each genomic region. The map position of anchored peach SSR markers were obtained 

from genetic distances from a peach F2 map (Fan et al. 2009), while newly designed 

peach SSR markers were mapped in the same peach F2 population (Zhebebntyeva et al. 

unpublished).  

Association analysis: Associations between SSR markers and the blooming date trait 

were tested using the General linear model (GLM), where the tested loci were considered 

as fixed-effects factor and the subpopulations (covariates) were considered as a random-

effects factor (Kennedy et al. 1992). The GLM model introduces population structure (Q) 

to reduce false positives due to population stratification i.e. 

GLM statistical model: Y = Xα+ Qβ + ε, 

where Y is the vector
 
of phenotypes, X is the vector of single locus genotypes, α is the 

vector
 
of fixed effects of the n–1 genotype classes, Q is the matrix

 
of the K – 1 

subpopulation ancestry estimates for each
 
individual from STRUCTURE, β is the vector 

of the fixed effects
 
for each of the subpopulations, and ε is the vector of residual errors. 

Significance of associations was based on F-test at p-adj, which corresponds to p 
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corrected for multiple testing. Corrected significance levels p-adj was computed by 10
5
 

permutations within a QTL genomic region.  

 

RESULTS 

Marker polymorphism 

A total of 240 AFLP loci were detected by 8 AFLP primer combinations, while a total of 

55 SSR loci were detected by 52 SSR markers after screening and running 102 SSR 

markers. Thirty-two SSR loci were genotyped for the LG1 QTL genomic regions, while 

23 SSR loci were genotyped for the LG7 QTL genomic regions. The total number alleles 

varied between 2 and 23 alleles for the SSR loci, while the AFLP markers were scored 

for only 2 alleles per locus i.e. dominant markers scored as absent or present.  

Population Stratification and Genetic Structure 

Based on 100 genotyped individuals, the sample was stratified into 7 sub-populations 

(Fig. 4.1). The posterior probability of the data set peaked at 7 subpopulations and 

subsequently plateaus from 7 to 12 subpopulations (Fig. 4.2). The increase in posterior 

probability was not significant after 7 populations, while more accessions were split 

between 2 or more subpopulations from 8 to 12 subpopulations. Based on the 

contribution of a subpopulation for each accession, the subpopulations comprised 11, 17, 

25, 24, 10, 2 and 11 accessions (Appendix C).  
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The subpopulations were allocated to geographical sampling locations by discretely 

assigning accessions with P > 0.5 and their corresponding origin to each subpopulation 

(Table 4.2). Following the allele-frequency divergence (net nucleotide distance) among 

subpopulations, relationships between subpopulations were established (Table 4.3). The 

European accessions split between subpopulation 1 and 7, were shown to be more closely 

related than other subpopulations, while the subpopulation 2 (Chinese), 3 (Central Asia, 

Fergana) and 4 (Central Asia, Zeravshan) were all closely related although the two 

Central Asia subpopulations were more similar. Subpopulation 5 is most related to the 

subpopulation 3 (Central Asia, Fergana) and consist mostly of hybrid cultivars, some of 

which were also observed in subpopulation 4 (Central Asian, Zeravshan). The 

subpopulation 6 comprised strictly of the two P. mume species that were the most 

distantly related from any of the subpopulations. They are most related to the Central 

Asian and Chinese subpopulations, which also contain other non-domesticated species. 

The Iran-Caucasian accessions were dispersed across the 2 Central Asian subpopulations 

and the European subpopulation 7. The northern African accessions on the other hand 

grouped together with the European subpopulation 1. The cultivars involved associated 

with PPV resistance breeding (Goldrich, Harlayne, SEO and Vestar) appear to be 

hybridizations resulting from the Chinese and European subpopulation 1. 

The confidence of assigning accessions to subpopulation was assessed between 2 

population structure analyses based on 8 unlinked SSR loci and 248 loci (240 AFLP and 

8 SSR markers) within only 3 subdivisions. At k = 3; 83.1, 77.8 and 79.2 % of the 

accessions where consistently assigned in 3 subdivisions comprising Central Asian,  
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Table 4.2: Assigning subpopulations to geographical regions based on member 

accessions and inferring accession ancestry. 

Subpopulation Predominant group Other groups 

1 European  Northern African, PPV resistant cultivars 

2 Chinese  Non-domesticated, PPV resistant cultivars 

3 Central Asian, Fergana  P. armeniaca-wild, Iran-Caucasian 

4 Central Asia, Zeravshan  P. armeniaca-wild, Iran-Caucasian, hybrid, 

Chinese 

5 Hybrid cultivars Iran-Caucasian, Europe 

6 P. mume - 

7 European group Iran-Caucasian 

Note: Accessions are grouped based on geographical origin, pedigree (PPV and hybrid cultivars) and 

taxonomic classification (P. mume and P. armeniaca). 
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Table 4.3: Allele-frequency divergence between subpopulations (net nucleotide distance) 

computed using point estimates of probability values. 

 1 2 3 4 5 6 7 
1 -       

2 48.8793 -      

3 46.2574 35.8506 -     

4 42.9624 43.5332 31.5479 -    

5 51.3395 62.0901 42.0904 47.3089 -   

6 87.9173 84.8668 77.4058 72.7285 91.4628 -  

7 42.1615 74.8547 66.9399 62.7159 62.7465 112.5728 - 

Note: Net nucleotide distance, average amount of pairwise difference between alleles from different 

populations (similar populations have distances near 0), beyond the amount of variation found within each 

population. 
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Table 4.4: Fst estimates for each sub-population and average distances between 

individuals in same cluster (expected heterozygosity). 

Subpopulation Fst Expected heterozygosity 
1 0.5711 -228.469 

2 0.4758 -215.768 

3 0.3421 -205.535 

4 0.408 -212.039 

5 0.7606 -249.524 

6 0.8391 -253.362 

7 0.9837 -278.023 
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Figure 4.1: Bar plots showing population stratification and ancestry of 100 apricot accessions under an 

admixture model. Each accession is assigned to subpopulations based of proportional membership (vertical 

bars expressed as %) at k = 7. Each subpopulation is coded by a different color; Red (European), Green 

(Chinese), Blue (Central Asian, Fergana), Yellow (Central Asia, Zeravshan), Purple (Hybrid cultivars), 

Turquoise (P. mume), Brown (European group). 

1 
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Figure 4.2: Successive differences between posterior probability values from K=1 to k12 

(subpopulations) plotted against K values to establish the appropriate number of 

subpopulation. 
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Chinese, and European populations. Fst values across the subpopulations was 0.0010, 

indicating moderate differentiation and high diversity within the apricot germplasm 

(Table 4.4). Conversely, individual subpopulations had relatively high Fst values, 

especially in the European subpopulation 7 and P. mume, which had 0.984 and 0.839, 

respectively. The Central Asian and Chinese subpopulations had the least Fst estimate 

and the most heterozygosity, indicating highest diversity, hence, suggesting these 

geographical origins as the center of domestication for apricot as reported by 

Zhebentyayeva et al. (2008).  

Linkage disequilibrium 

Linkage disequilibrium was estimated within a genomic region spanning about 14 and 25 

cM on LG1 and 7, respectively. Since the study focused mainly on identifying candidate 

genes within detected QTLs in apricot and peach crosses (Fan et al. 2009, Olukolu et al. 

2009), marker saturation was emphasized for these regions rather than flanking genomic 

regions. The average value of marker density within QTL intervals was 0.1 and 0.7 cM 

on LG1 and 7, respectively. The average marker density across the scanned genomic 

regions is 0.44 and 1.58 cM on LG1 and 7, respectively.  

The pair-wise estimates among 32 markers on the LG1 genomic region (248 estimates) 

varied between 0.0037 and 0.3006, with an average of 0.0276. On the LG7 genomic 

region, pair-wise estimates among 23 markers (127) varied from 0.0056 to 0.0681, with 

an average of 0.0198. The pair-wise LD estimates are shown in the LD plot (Appendix 

F). The 95th percentile of the distribution of these estimates was implemented as a 
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population-specific threshold and as an evidence of linkage. The 95
th

 percentile threshold 

for the r
2
 was estimated at 0.0562 and 0.0381 for the LG1 and 7 genomics regions. On the 

LD vs. genetic distance (cM) plots (Fig. 4.3), 14 and 8 of the r
2
 estimates were above the 

baseline of 0.0562 and 0.0381 for LG1 and 7 genomic regions, respectively, but the loess 

curve fitted on the distribution of the r
2
 estimates did not reach baseline at any point. This 

implies that marker density was not enough to detect consistent LD and the LD decayed 

at an average distance of 0.44 and 1.58 cM across the intervals scanned on LG1 (14 cM) 

and 7 (36.4 cM), respectively (Fig. 4.3). Most of the estimates above the baseline were 

observed within the marker dense QTL regions and at an average marker density of 0.1 

and 0.7 cM on LG1 and 7, respectively. Although there was stronger LD on the LG1 

genomic region, it decayed faster than the LD observed on that of LG7. 

Association mapping 

The association of SSR markers with the blooming date data was performed in the 

presence of population structure and tested using a general linear model (GLM). More 

than one significant marker was detected for each QTL interval indicating the presence of 

multiple candidate genes that exist in a cluster of genes underlying similar molecular 

pathways (Fig. 4.4). Four Significant markers (Fig 4.4) were detected on the LG1 QTL 

around the EVG locus (Bielenberg et al. 2008), while only one marker showed 

association on the LG1 QTL downstream of the QTL spanning EVG locus.  
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Figure 4.3: LD estimates of r

2
 plotted against genetic linkage distance on LG1 (above) 

and 7 (below). Horizontal dotted lines show the 95
th

 percentile of the distribution of 

unlinked r
2
. Curves were fitted by second-degree loess. Axis scales vary for each plot. 
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These associated markers correspond to CGs that include HARBINGER-LIKE transposon, 

DAM2 (DORMANCY ASSOCIATED MADS-box 2), VIN3 (VERNALIZATION 

INSENSITIVE 3) or VEL1 (VIN3-LIKE/VERNALIZATION 5) and SUT1 (a SUCROSE 

TRANSPORTER 1). 

The respective adjusted p-values are 0.0232, 2 x 10
-5

, 1.7 x 10
-4

, 0.0186 and 0.0011. The 

genomic contexts of 2 markers within the LG7 QTLs, Pcghms107 and Pchgms115 (Fig. 

4.4) were fully characterized and the corresponding CGs includes CLF (CURLY LEAF) 

and SQN (SQUINT) genes, while the adjusted p-values are 0.0274 and 0.028, 

respectively. The probable candidate genes corresponding to the other associated markers 

on LG7 were not resolved although likely candidate genes lie within close proximity. 

These genes include DEFICIENT IN DNA METHYLATION 1 (DDM1), a chromatin 

remodeling factor required for maintaining DNA methylation, which is positioned 19 kb 

downstream of Pchgms90 and Pchgms9; and VERNALIZATION INSENSITIVE 3-LIKE 1 

(VRN5/VIL1), which lies between Pchgms100 and Pchcms2. 
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Figure 4.4: Linkage groups 1 and 7 showing loci that are associated with blooming date. 

The asterisks show the χ2 p levels of significance (*, 0.05; **, 0.01; ***, 0.001) 
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Discussion 

We report the first LD-based association mapping of a complex trait in Prunus towards 

evaluating the utility of the fine mapping approach in diverse and well curated apricot 

germplasm and other related Rosaceae species. This will provide preliminary LD 

parameters that will be useful in improving the approach and designing tools for 

association mapping. The germplasm developed for this study represents a broad genetic 

base of apricot from diverse geographical origins where the crop has been domesticated 

as well as collected from the wild.  

Population structure 

Although the population analysis identified 7 subpopulations, 3 subdivisions can be 

delineated based on geographical origin and genetic similarity of 2 European and 2 

Central Asian subpopulations. This is in agreement with previous genetic studies by 

Zhebentyayeva et al. (2003) that produced 3 main clusters each with smaller 

subdivisions. The wide genetic diversity observed in the Chinese and Central Asian 

subpopulations in this study further support that China and Central Asia are the primary 

centers of apricot domestication (Vavilov 1951, Kryukova 1989, Zhebentyayeva et al. 

2010). Occurrence of non-domesticated wild species in the Chinese and Central Asian 

subpopulations also supports the claim by Mehlenbacher et al. (1990) that apricot 

domestication occurred in two separate regions  (i.e. in north and northeastern China 

where the wild P. armeniaca range overlaps with that of P. mandshurica and P. sibirica). 
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Our study also support inferences made from a studies about the origin of the North 

American PPV (Plum Pox virus) resistant cultivars, which suggest contribution from 

European and Chinese parental genotypes (Zhebentyaeva et al. 2008, Pedryc et al. 2009). 

Moreover, our results on population structure presented here  allow direct comparison of 

model-based clustering method using a  Bayesian approach (implemented in 

STRUCTURE) and distance-based Neighbor Joining (NJ) method used in a previous 

publication (Zhebentyayeva et al. 2008). The structure analysis in this study produced 

accurate assignment of Northern American apricots as admixed individuals from a 

European-Chinese genetic background while NJ failed to detect genetic relatedness of 

Northern American and Chinese cultivars.  

Linkage disequilibrium 

Even though linkage maps derived from small progeny numbers are inherently inaccurate 

with reference to marker order and map distances, the pattern of LD observed in this 

study was relatively consistent with the map positions (Fan et al. 2009, Olukolu et al. 

2009). Although previous studies in other plants have proposed the level of LD vs. the 

map distance required for LD decay as an arbitrary threshold value of r
2
 = 0.1 

(Remington et al. 2001, Nordborg et al. 2002, Palaisa et al. 2003), we adopted a LD 

threshold value defined in comparison with the LD observed among unlinked loci in a 

sample (Luo et al. 2000, Breseghello and Sorrels 2006, Laurie et al. 2007). The 95
th

 

percentile of the distribution of r
2
 estimates defines the sample-specific critical threshold 

value (baseline LD). The point at which regression curve (drawn with the second-degree 
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loess) intersects the baseline defines the extent of LD due to linkage. The stronger LD on 

LG1, with an average value of 0.0276 and maximum value of 0.3, confirms the paradox 

observed between high LD and marker-marker association. The higher LD on the LG1 

QTL genomic region results in a lower marker density requirement and more potential of 

detecting markers strongly associated with the target gene polymorphism even if distantly 

physically linked. Conversely, the lower LD (average of 0.0198 and maximum value of 

0.0681) on the LG7 QTL genomic region requires more marker density, although the 

resolution of diagnostic markers will be higher. 

Across the genomic regions scanned, LD was not sufficient at average genetic distance of 

0.44 and 1.58 cM on LG1 and 7, respectively. The extent of LD is similar to that 

estimated in apple (Malus x domestica Borkh), which decayed at distance greater than 1 

cM (Micheletti et al. 2010). The average map distance of markers within the marker 

dense QTL regions that demonstrated LD were estimated at 0.1 and 0.7 cM on LG1 and 

7, respectively. This suggests the required marker density for sufficient LD in future 

studies. The physical map distances in the marker dense QTL region of the LG1 

correspond to approximately 130 kb of a sequenced BAC containing the 

EVERGROWING locus (Bielenberg et al. 2008). Based on estimates from contigs of the 

peach physical map, the marker dense QTL region on LG7 corresponds to approximately 

500 kb. The LD estimates on the marker dense region of LG1 QTL are also comparable 

to that observed in Arabidopsis where r
2
 = 0.1 within about 250 kb in the genomic region 

of the FRI gene (Nordborg et al. 2002) and in the genomic region of the rice resistance 

gene, xa5, where r2 > 0.10 at a physical distance > 100 kb (Garris et al. 2003). 
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Association mapping and candidate genes 

This study focused on estimating LD and detecting marker-trait association within 

genomic regions of previously identified major QTLs on LG1 and 7. Since some markers 

were designed within genic regions, we were able to implicate candidate genes playing a 

role in the phenotypic variation observed for this trait. The DAM2 gene is one of the six 

dormancy related MADS-box genes within the peach EVERGROWING locus that are 

now being scrutinized as major candidates for dormancy, chilling and bud break. 

Characterization of this locus include several linkage mapping studies that have defined a 

QTL around their genomic location (Fan et al. 2009, Olukolu et al. 2009); sequencing 

and annotation the locus (Bielenberg et al. 2008), comparative analysis with transcription 

factor homologs in Arabidodpsis (Jiménez et al. 2009); their seasonal and photoperiodic 

expression patterns (Li et al. 2009) and validation of the role they play in leafy spurge 

and peach dormancy (Horvath et al. 2010, Jiménez et al. 2010). The peach DAM genes 

were shown to be homologous to the Arabidopsis SVP/StMADS11 lineage of type II 

MIKC
C 

MADS-box genes and were suggested to have expanded through serial tandem 

gene duplications (Jiménez et al. 2010). These genes in Arabidopsis have been associated 

with vegetative to reproductive meristem transition, with the AGL22/SVP genes acting as 

a flowering repressor (Hartmann et al. 2000); while it‟s close homolog AGL24 has a 

reverse effect (Michaels et al. 2003, Yu et al. 2004). The DAM2 gene was the only DAM 

gene consistently detected in this study. A closer look at the genomic context in which 

the 6 genes exist, current expression profiles and their functional homology with the two 

SVP gene homologs mentioned above suggests their function in controlling dormancy. 
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Sequence analysis between a Nemared BAC clone and the dihaploid Lovell-derived 

assembled peach genome reveal that the copy number of the HARBINGER-like 

transposon is variable between the two cultivars. The Nemared allele sequenced contains 

two copies while the Lovell allele contains only one copy of the transposon, suggesting a 

transposon copy number-dependent locus underlying the trait. The role the associated 

HARBINGER-LIKE candidate gene detected upstream of the DAM genes plays in RNAi-

mediated DNA methylation-induced gene silencing (Numa et al 2010) correlates with the 

seasonal expression patterns of the DAM genes (Li et al. 2009) and the seasonal 

methylation status as reflected in a woody perennial plant, azalea (Meijón et al. 2010). 

Overlaying the global methylation status in azalea and the expression of the DAM genes 

suggest that the upregulation of DAM1 to DAM4 are due to demethylation mediated by 

the HARBINGER-LIKE transposon. It appears the distal distance of the DAM5 and DAM6 

probably excludes them from this transposon-mediated regulation since their expression 

does not change during this sharp decrease in global methylation. The DAM5 and DAM6 

gene expression are proposed to be controlled by decreasing day length before winter and 

repressed by successive chilling accumulation (Jiménez et al. 2010) though this has not 

been unequivocably detemined. In addition, a Ty1-copia element on the minus strand and 

sharing the same 3` UTR with the DAM2 candidate gene might explain the difference in 

its expression pattern, since it was observed to be downregulated earlier than the DAM1, 

DAM3 and DAM4 genes, while its upregulation coincides with the onset of bud break 

(Bielenberg et al. 2008). Ty1-copia retrotransposons have been described to be also 

involved in DNA methylation (Zhong et al. 2009). These evidences implicating the 
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HARBINGER-like and Copia-like elements indicate that these mobile elements have been 

co-opted by their host genome and are now a major driving force in plant adaptation 

(Zhong et al. 2009).  

Downstream of the evg locus are 3 other candidate genes, KINESIN, VIN3/VEL1 and 

SUT1 that are well characterized in other species. KINESINs have been described 

extensively in plants and are ATP driven KINESINs possess a motor domain for binding 

to microtubules, acting as motor proteins that play a critical role in cell division (Sharp et 

al., 2000, Wittmann et al. 2001). Perhaps, KINESIN plays a role in cell cycle regulation, 

since following dormancy floral bud break, active floral bud growth is associated with the 

actions of hormones and increased cell division. During this dormancy release, gene 

expression changes are tightly coordinated with the cell cycle (Devitt and Stafstrom 

1995, Cambell et al. 1996, Horvath et al. 2002, Freeman et al. 2003).  

The VIN3/VEL1 gene family is involved in flowering within the vernalization pathway 

(Sung and Amasino 2004). The response to vernalization is facilitated by a cascade of 

gene regulatory networks, that are initiated during prolonged cold exposure by the 

induction and up-regulation of the homeodomain finger gene VIN3 (VERNALIZATION 

INSENSITIVE 3) and results in the chromatin-based and mitotically stable repression of 

the FLC (FLOWERING LOCUS C) gene (Sung and Amasino 2004), which in turn 

suppresses flowering. This implicates VIN3/VEL1 as a positive regulator of blooming 

date i.e. induction of VIN3 leads to a progressive downregulation of FLC and or in the 

case of Prunus, a flowering inhibiting AGL22/SVP-like (SHORT VEGETATIVE PHASE) 
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gene leading to floral bud break. DAM5 and DAM6 are possible functional homologs of 

AGL22/SVP since they are upregulated prior to dormancy and downregulated during 

dormancy before floralbud break (Jiménez et al. 2010). If the DAM5 and DAM6 locus 

play a similar role as the Arabidopsis FLC or AGL22/SVP, then the VIN3/VEL1 locus 

might be the DAM5 and DAM6 repression factor during vernilzation, leading to a 

progressive reduction to their transcript accumulation as reflected in expression studies 

(Li et al. 2009, Jiménez et al. 2010).  

The role played by SUCROSE TRANSPORTER 1 (SUT1) is supported by studies 

implicating sucrose and cytokinin as signaling molecules (Bernier and Périlleux 2005). 

Elevated export of sucrose in Arabidopsis in response to long-day induction is suggested 

to be partially due to increased efficiency of sucrose loading (Corbesier et al. 1998). 

Following the loading of sucrose into the shoot apical meristem, a number of cellular and 

molecular events are initiated (Bernier 1988) as well as the hydrolysis of sucrose by local 

invertases i.e. vacuolar (Koch 2004) and cell wall (Heyer et al. 2004) invertases.  

Cytokinins activate invertase and increase the rate of cell division, while the ensuing 

hexoses participate with Giberellic acids in the up regulation of LEAFY (LFY) gene 

expression, which is a central regulator of floral meristem identity along with APETALA1 

that acts downstream of it  (Bernier and Périlleux 2005, Karim et al. 2009).  

Candidates genes defined within the LG7 QTL include CLF and SQN and are well 

characterized to be functionally conserved across plant and animal systems. The 

Arabidopsis CLF is an ortholog of the Drosophila PRC2 component of Enhancer of 
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Zeste, a methyl transferase with specificity for H3K27 (Muller et al. 2002). Recent 

studies indicate a role in the repression of FLC, a repressor of flowering, by vernalization 

(Wood et al. 2006, Jiang et al. 2007). During the course of cold exposure, FLC 

expression is suppressed after several signature features of silenced chromatin 

accumulate at the FLC locus (Sheldon et al. 1999, Bastow et al. 2004, Sung and Amasino 

2004, Mylne et al. 2006, Schubert et al. 2006, Finnegan and Dennis 2007, Schmitz et al. 

2008). Changes in the amount and distribution of one of such signature, trimethylation on 

Lys-27 of H3 (H3K27me3), has been described during and after cold treatment (Schubert 

et al. 2006, Sung et al. 2006, Finnegan and Dennis 2007). H3K27me3 is carried out by 

Polycomb-Group (PcG) complexes that contain orthologs of Drosophila Polycomb 

Repressive Complex 2 (PRC2), which include CLF and VIN3 identified as candidates in 

this study. The regulation of FLC by this complex probably mirrors a possibly 

accumulation around the AGL22/SVG homologs in the Prunus (DAM5 and 6) in order to 

eliminate their repressive effect on flowering.  

SQN, an ortholog of the Drosophila CYCLOPHILIN 40 (CYP40, Galat 1993), is one of 

the first genes identified to be involved in vegetative phase change (transition from 

juvenile-adult-reproductive phase) via small RNAs that play a key regulatory role. This is 

crucial in life cycle of perennials plants that require several years of juvenile phase before 

they acquire competence to flower or in fruit trees that lose or have reduced competence 

to flower after a vigorous flowering and fruit season. Studies in Arabidopsis and maize 

show the constitutive expression of microRNA (miRNA) miRNA156 prolongs the 

expression of the juvenile phase of vegetative development (Wu and Poethig.  2006, 
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Chuck et al. 2007, Gandikota et al., 2007, Schwarz et al. 2008, Wang et al. 2008). Recent 

results suggest that SQN promotes miRNA156 activity by promoting the activity of 

ARGONAUTE (Smith et al. 2009), which is responsible for miRNA-directed 

posttranscriptional silencing (Baumberger and Baulcombe 2005, Qi et al. 2005). This 

cascade acts on SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) 

transcription factors in Arabidopsis that converge on an overlapping set of targets 

downstream of an FT (FLOWERING LOCUS T)/bZIP transcription factor FD complex. 

The FT protein and the bZIP transcription factor FD play a central role in activating 

genes that execute the switch from vegetative to reproductive development, while the 

SPLs not only acts downstream of the FT/FD complex but also directly activate flower-

promoting MADS-box genes by a separate endogenous flowering pathway (Wang et al. 

2009).  

 

Conclusion 

Since the first observation by Muller-Thurgau in 1885, several studies have noted that 

early inception of bud dormancy leads to a shortened duration of dormancy i.e. reduces 

chilling requirement (Chandler and Tufts 1934). This implies that the major gene 

controlling blooming date must have been playing a role between bud set and the onset of 

dormancy and eventually determining the duration of dormancy and blooming date. 

Current evidence around DAM2 implicates it as a major player. DAM2 is a candidate for 

AGL24, which induces flowering and like DAM2, it‟s expressed after cold treatment 
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(Horvath et al. 2010). AGL24 (also AGL19) are known to function in a vernalization 

pathway that is independent of FLC and mediated by VIN3 (Alexandre and Hennig 

2008), which acts in concert with CLF in the polycomb repressive complex to 

downregulate DAM5 and DAM6. Although DAM5 and DAM6 are required to be 

repressed by vernalization before bud break, it appears they function only to suppress 

floral growth, while additional factors are required to promote flowering. DAM2 seems a 

logical candidate for blooming date considering its expression before and after dormancy. 

Another genetic factor besides this pathway is the miRNA regulatory pathway induced by 

SQN, which probably serves as an independent floral induction pathway and an 

additional layer for the complex trait. These results presents functional homologs of 

genes with the vernalization, flowering and cell division regulation pathway models 

already characterized in model plants (e.g. Arabidopsis thialana), as well as mirroring a 

comparable gene pathway in Prunus. 
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CHAPTER FIVE 

CONCLUSION 

Molecular biology is advancing and changing rapidly and with the aid of new high-

throughput technologies. Holistic studies on an –omics platform can be conducted on 

large scale and at a fast pace for the generation of huge amounts of data. This has 

changed the playing field and made approaches that were not feasible decades ago 

possible. Gene-by-gene expression analysis and functional genomics approaches 

identifying gene interactions have opened up new frontiers in understanding regulation of 

bud dormancy. Ongoing research is shedding more light on differentiating sensing and 

signaling genes from those that maybe be regulatory or target genes. Genetic mapping 

studies are providing information about key genes containing polymorphisms that are 

crucial for regulating bud dormancy. These approaches in concert will help to define 

dormancy gene cause and effect relationships since by itself, high throughput 

transcriptome analyses of differential gene expression can implicate genes as part of a 

network; however, their candidacy for driving phenotype must be examined through 

genotype-specific responses in populations that segregate for the character under study. 

This will lead to remarkable practical value for breeding programs and judicious 

utilization of existing germplasm. A reasonable next step beyond identification of QTLs 

controlling bud dormancy will be the use of tightly linked markers for marker-assisted 

breeding and map-based cloning of causative/candidate genes from large insert libraries 

using chromosome walking approaches in unsequenced genomes or mining the sequences 
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in genomes that are already sequenced. This will provide a targeted approach for 

identifying and characterizing genes and their causative polymorphisms as well as their 

roles in signaling pathways. A detailed understanding of the molecular components and 

gene networks will be indispensable for targeted manipulations of bud dormancy in crops 

of economic importance. 

We report a concerted effort at elucidating the genetic and molecular mechanism that 

underlie chilling requirement (CR) and bud break. With the aid of studies comprising 

genetic linkage and QTL analysis; linkage disequilibrium-based association mapping and 

comparative genomics, we were able to define genomic regions and candidate genes 

controlling these dormancy-related traits. Following a functional genomics approach, 

these results in concert with other published gene expression and functional studies in 

woody perennials and other model organism, provide us with resources to define these 

candidate genes as functional homologs as well as sequence homologs of annotated and 

characterized genes.  
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Appendix A: AFLP E (EcoRI) and M (MseI) primer combinations (PC) and the number of segregating loci. 

Primer Combinations 
segregating 

loci/PC 

# of 

PCs 

Total # 

of loci 

ACCGC, AGCGT, CACGC, CTCGA, GCCCT, GGCGC, GTCTC, TGCCG, 

TTCTC 
2 9 18 

AGCCT, CCCGC, CCCGG, CCCGT, CGCAC, CGCAT, CGCCA, CGCCC, 

CGCCG, CGCTA, CTCAA, CTCGC, CTCTT, GACGC, GACGT, GCCAA, 

GCCCA, GCCCC, GCCCG, GCCGA, GCCGC, GCCGG, GCCGT, GCCTA, 

GCCTC, GCCTG, GCCTT, GGCAG, GGCGG, GGCGT, GGCTG, GTCTG, 

GTCTT, TCCCG, TGCCC, TTCAA, TTCAC, TTCAG, TTCAT, TTCCA, TTCGC, 

TTCGG, TTCGT, TTCTG 

3 44 132 

ACCCC, ACCCT, ACCGA, ATCCA, ATCGT, CACGT, CCCAA, CCCAC, 

CCCCA, CCCGA, CCCTG, CGCAG, CGCGC, CGCGT, CGCTT, CTCAC, 

CTCGG, CTCGT, GACGA, GCCAC, GCCAT, GGCCC, GGCCG, GGCGA, 

GGCTT, GTCAC, GTCGG, TCCCT, TGCCT, TGCGT 

4 30 120 

AACTG, AGCAA, AGCGG, AGCTC, ATCGC, CCCAT, CCCCC, CCCTC, 

CGCCT, CGCTC, CTCAT, CTCCG, CTCTC, CTCTG, GACCG, GGCAA, 

GGCCA, GGCTC, GTCCG, GTCGA, GTCGC, TACAA, TACCA, TACGC, 

TACGG, TCCCA, TCCCC, TCCGA, TCCGG, TGCAA, TGCAT, TGCGC, 

TGCTA, TTCCC, TTCGA, TTCTT, TCCTT 

5 37 185 

ATCCG, ATCCT, CACTT, CCCCG, CCCTA, CCCTT, CGCAA, CGCTG, 

GACGG, GACTG, GGCCT, GGCTA, TACGT, TCCGC, TGCCA 
6 15 90 

AACGG, ACCAC, AGCAG, AGCGC, AGCTA, ATCCC, ATCTG, CACCT, 

CACGG, CACTG, CGCGA, CTCAG, CTCCA, CTCTA, GACAA, GACAC, 

GCCAG, GTCAT, TACCG, TACTC, TGCAG 

7 21 147 

ACCCA, AGCAC, AGCCG, AGCTT, ATCAT, ATCGA, ATCGG, CACCG, 

CTCCC, GACCA, GGCAT, TACAG, TACAT, TACCC, TACGA, TCCAC, 

TCCGT, TGCGA, TTCCG, TTCCT, TTCTA 

8 21 168 

AACGC, ACCCG, AGCCC, AGCTG, ATCAG, CCCCT, CGCGG, GACTT, 

GGCAC, TACAC, TACTA, TACTT, TCCTC, TGCGG, AACAA, GTCTA 
9 16 144 

GTCGT, GTCCC 10 2 20 

TCCTA, ACCGT, GACCC, GACCT, TACCT 11 5 55 

ACCTG 12 1 12 

ACCAG, CTCCT, GTCAG 13 3 39 

ACCGG, ACCTT, TCCTG 14 3 42 

AACAG, ATCTA, CACGA, CACTC, CCCAG, GTCCT 16 6 96 

GACAT, GTCCA 17 2 34 

AGCAT, AGCCA, AGCGA, CACCC, TCCAG 18 5 90 

ACCTA, ATCTT, TACTG 19 3 57 

AACCA, AACCG, GACAG 20 3 60 

AACGA, ACCAT, ATCAA, CACAC, CACCA 21 5 105 

AACAT, AACCT, ATCAC, CACAG, GACTC, TGCAC 22 6 132 

ACCTC, CACAT, GTCAA, TGCTC 23 4 92 

ACCAA, TCCAT 24 2 48 

AACTT, CACAA 26 2 52 

TGCTT 27 1 27 

AACAC, AACCC, AACGT, AACTC, CACTA 28 5 140 

GACTA, TCCAA 29 2 58 

AACTA, ATCTC, TGCTG 30 3 90 

Total 424 256 2253 
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Appendix B1: Comparative analysis of common SSR markers on linkage groups 1 and 2 

among the apricot parental  (Perfection and A.1740) maps and  Prunus ref map. 



 157 

 

Appendix B2: Comparative analysis of common SSR markers on linkage groups 3 and 4 

among the apricot parental  (Perfection and A.1740) maps and  Prunus ref map. 
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Appendix B3: Comparative analysis of common SSR markers on linkage groups 5 and 6 

among the apricot parental  (Perfection and A.1740) maps and  Prunus ref map. 
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Appendix B4: Comparative analysis of common SSR markers on linkage groups 7 and 8 

among the apricot parental  (Perfection and A.1740) maps and  Prunus ref map. 
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Appendix C: Assignment of apricot accessions to subpopulations, their ancestry and proportions of 

contributions from each subpopulation. 
sno
o 

Accessions Subpopulati
on 

Geographical origin 1 2 3 4 5 6 7 

1 Alberge de Tur 1 European 0.52
8 

0.00
1 

0 0.00
1 

0.00
1 

0 0.46
8 2 Ananasnyi 

Tsurupinskii 
1 European   0.52

4 
0.00

1 
0 0.00

1 
0.00

1 
0 0.47

3 6 B-5-3 1 Central Asian   0.32
9 

0.19
3 

0.26
4 

0.06
2 

0.00
3 

0 0.14
8 21 Early Gold 1 European   0.69

9 
0.00

1 
0.00

1 
0.00

1 
0.00

2 
0.00

1 
0.29

6 22 Goldrich 1 PPV resistant cultivars 0.83
4 

0.08
9 

0.01 0.00
5 

0.03
7 

0.01
7 

0.00
9 24 Harlayne 1 PPV resistant cultivars 0.71

7 
0.12

4 
0.00

3 
0.00

8 
0.05

2 
0.05

2 
0.04

5 67 Ordubad 1 Iran-caucassian   0.45
2 

0.09
1 

0.03
3 

0.00
2 

0.41
1 

0 0.01
1 76 Precoce d'Italia 1 European   0.99 0.00

1 
0.00

1 
0.00

1 
0.00

4 
0.00

1 
0.00

3 80 Real d'Imola 1 European   0.99
5 

0.00
1 

0.00
1 

0.00
1 

0.00
1 

0.00
1 

0.00
1 85 Sayed (Tunisia) 1 Northern African 0.89

2 
0.00

8 
0.03

5 
0.02 0.01

2 
0.00

8 
0.02

6 93 Tilton 1 European   0.77
1 

0.00
1 

0.00
2 

0.10
5 

0.00
4 

0 0.11
7 9 Da-bei 2 Chinese   0.00

2 
0.99

3 
0.00

1 
0.00

1 
0.00

1 
0.00

1 
0.00

1 25 In-ben-sin 2 Chinese   0.00
2 

0.94
4 

0.00
2 

0.00
3 

0.04
5 

0.00
2 

0.00
2 36 Kitaiskii 2 Chinese   0.00

1 
0.99

7 
0.00

1 
0 0 0 0 

47 Lao-yech-lian 2 Chinese   0.00
1 

0.99
7 

0.00
1 

0 0.00
1 

0 0.00
1 48 LE2904 2 PPV resistant cultivars 0.28

6 
0.38

5 
0.00

4 
0.00

2 
0.00

2 
0.00

1 
0.32 

49 LE3276 2 PPV resistant cultivars 0.01
5 

0.79
9 

0.00
2 

0.02
5 

0.00
1 

0.00
1 

0.15
6 54 Mai-ch10-sin 2 Chinese   0.00

7 
0.83

1 
0.00

6 
0.05

3 
0.01

1 
0.08

7 
0.00

4 58 Mi-bada 2 Chinese   0.00
1 

0.99
4 

0.00
1 

0.00
1 

0.00
1 

0.00
1 

0.00
1 68 P. ansu 2 Non-domesticated sp. 0.00

6 
0.29

2 
0.06

9 
0.25

7 
0.00

2 
0.27

2 
0.10

2 69 P. manshurica 2 Non-domesticated sp. 0.00
1 

0.37
9 

0.00
5 

0.33
3 

0.00
6 

0.24
7 

0.02
8 72 P. sibirica var 

davidiana 
2 Non-domesticated sp. 0.00

2 
0.52

9 
0.01 0.43

6 
0.00

1 
0.01

8 
0.00

3 78 Pui-sha-sin 2 Chinese   0.00
1 

0.74
2 

0.15
5 

0.00
5 

0.00
2 

0.09
5 

0.00
1 84 Satser 2 Hybrid cultivars 0.23

1 
0.31

5 
0.00

2 
0.28

6 
0.00

8 
0.00

2 
0.15

7 86 SEO 2 PPV resistant cultivars 0.31
4 

0.65
8 

0.00
5 

0.00
3 

0.00
1 

0 0.01
9 88 Shantunski 2 Chinese   0.06

7 
0.73

1 
0.00

4 
0.14

3 
0.04

5 
0.00

1 
0.01 

97 Vestar 2 PPV resistant cultivars 0.23
2 

0.49
9 

0.00
1 

0.00
1 

0.00
2 

0 0.26
6 99 Yuan-sin 2 Chinese   0.01

5 
0.57

9 
0.02

6 
0.28 0.00

4 
0.06

1 
0.03

5 5 B-4-5 3 Central Asian   0.01
6 

0.00
1 

0.79
8 

0.00
3 

0.13
2 

0.04
8 

0.00
2 7 Badami 3 Central Asian   0.00

1 
0.00

2 
0.83

4 
0.13

8 
0.00

9 
0.01

5 
0.00

1 12 Daradzhi ek Shabistr 3 Iran-caucassian   0.27
3 

0.00
1 

0.31 0.12
5 

0.01
1 

0.07
6 

0.20
3 17 Dzhungarskii 18/64 3 P. armerniaca wild 

population 
0.00

2 
0.07

1 
0.59

3 
0.32

4 
0.00

6 
0.00

2 
0.00

2 19 Dzhungarskii 18/75 3 P. armerniaca wild 
population 

0.01
1 

0.16 0.57
6 

0.19
3 

0.00
2 

0.05
6 

0.00
1 23 Gulyunghi 3 Central Asian   0.00

9 
0.01

2 
0.85

5 
0.11

4 
0.00

5 
0.00

2 
0.00

3 26 Iskadari 3 Central Asian   0.00
2 

0.00
1 

0.63
3 

0.36
1 

0.00
1 

0.00
1 

0.00
1 28 Kandak-10 3 Central Asian   0.00

2 
0.00

3 
0.98

8 
0.00

1 
0.00

4 
0.00

1 
0.00

2 29 Kandak-12 3 Central Asian   0.00
2 

0.07
8 

0.80
7 

0.05
8 

0.00
2 

0.00
1 

0.05
3 32 KB-12 3 Central Asian   0.09

2 
0.04

9 
0.78

4 
0.01

9 
0.00

4 
0.04

6 
0.00

6 33 KB-9 3 Central Asian   0.14
2 

0.28
3 

0.28
8 

0.02
2 

0.09
5 

0.00
2 

0.16
9 34 Khurmai 3 Central Asian   0.00

1 
0.00

1 
0.98

9 
0.00

2 
0.00

5 
0.00

1 
0.00

1 37 KK(2) N1 3 Central Asian   0.00
5 

0.17
2 

0.72
3 

0.00
6 

0.00
9 

0.08
4 

0.00
2 39 Kolon Boboi 3 Central Asian   0.00

2 
0.00

1 
0.86

3 
0.12

1 
0.01 0.00

1 
0.00

2 41 Krimskii Amur 3 Hybrid cultivars 0.25
3 

0.00
1 

0.31
3 

0.01
5 

0.25
5 

0.00
3 

0.15
9 44 Kzyl Khorezmskii 3 Central Asian   0.00

4 
0.00

2 
0.62

8 
0.22

9 
0.05

5 
0.00

1 
0.07

9 45 Kzyl Khurmai 
Kannibadam 

3 Central Asian   0.43 0.00
1 

0.54
2 

0.00
2 

0.00
2 

0.00
1 

0.02
3 46 Kzyl Uryuk 3 Central Asian   0.10

2 
0.00

2 
0.45

4 
0.01

9 
0.01

6 
0.00

1 
0.40

7 52 Lyuchak Sumbarskii 3 Central Asian   0.07
8 

0.01 0.60
2 

0.11
5 

0.14
3 

0.04
9 

0.00
2 59 Mirsandzhali 3 Central Asian   0.00

2 
0.00

4 
0.98

8 
0.00

1 
0.00

1 
0.00

2 
0.00

2 64 Nukul Citronnyi 3 Central Asian   0.07
2 

0.00
1 

0.91
8 

0.00
2 

0.00
2 

0.00
1 

0.00
5 74 Paivandi Bukharskii 3 Central Asian   0.18

3 
0.07

7 
0.39

5 
0.14

3 
0.07

5 
0.12

4 
0.00

3 90 Shekarpara de Semnan 3 Iran-caucassian   0.00
1 

0.00
1 

0.99
3 

0.00
1 

0.00
1 

0.00
2 

0.00
1  
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Appendix C: continued 
sno

o 
Accessions Subpopulati

on 
Geographical origin 1 2 3 4 5 6 7 

91 Supkhani 3 Central Asian   0.00

4 

0.00

6 

0.59

1 

0.00

7 

0.05

7 

0.00

4 

0.33

1 92 Tadzhabai 3 Central Asian   0.00

3 

0.00

1 

0.63

6 

0.29

9 
0.01 0.05 0.00

2 3 Arzami 4 Central Asian   0.00

2 

0.00

2 

0.43

1 
0.56 0.00

2 

0.00

1 

0.00

2 4 B-1-11 4 Central Asian   0.17

4 

0.09

4 

0.11

7 
0.26 0.13

1 

0.07

1 

0.15

3 10 Da-chuan-che N1 4 Chinese   0.03

2 

0.10

1 

0.00

6 

0.46

5 

0.13

6 

0.00

1 

0.26

1 11 Da-chuan-che N2 4 Chinese   0.00

2 

0.16

2 

0.37

7 

0.45

6 

0.00

1 

0.00

1 

0.00

1 14 Dionis 4 Hybrid cultivars 0.33

2 

0.00

2 

0.00

2 

0.37

7 

0.23

9 

0.00

3 

0.04

5 15 Dzhungarskii 18/55 4 P. armerniaca wild 

population 

0.00

1 

0.00

2 

0.42

8 

0.55

5 

0.00

3 
0.01 0.00

1 16 Dzhungarskii 18/63 4 P. armerniaca wild 

population 

0.18

8 

0.00

2 

0.23

4 

0.25

5 

0.18

7 
0.06 0.07

4 18 Dzhungarskii 18/68 4 P. armerniaca wild 

population 

0.00

1 

0.00

3 

0.44

1 

0.51

3 
0.04 0.00

1 

0.00

2 20 Dzhungarskii 18/78 4 P. armerniaca wild 

population 

0.12

6 
0.24 0.21

5 
0.26 0.00

2 

0.00

2 

0.15

4 35 Khurmai Rannii 4 Central Asian   0.21

3 

0.10

6 

0.22

3 

0.29

1 

0.00

1 

0.00

2 

0.16

4 38 Kok-pshar 4 Central Asian   0.00

4 

0.00

3 

0.12

2 

0.84

4 

0.00

1 

0.02

5 

0.00

1 42 Kunduzi 4 Central Asian   0.12

6 

0.10

2 

0.00

1 

0.74

2 

0.00

3 

0.00

3 

0.02

2 43 Kurbane Marache 4 Iran-caucassian   0.32

4 

0.16

3 

0.04

1 
0.34 0.00

5 

0.00

1 

0.12

6 55 Mamuri 4 Central Asian   0.04

3 
0.1 0.13

7 

0.52

8 

0.02

8 

0.04

4 
0.12 

57 Medunets Krimskii 4 Hybrid cultivars 0.13

1 

0.00

1 

0.00

1 

0.44

4 

0.41

6 

0.00

1 

0.00

6 61 Naryadnyi 4 Hybrid cultivars 0.26

9 

0.13

9 

0.00

5 

0.29

4 

0.27

5 

0.00

3 

0.01

6 66 Oranzhevo-krasnyi 4 Central Asian   0.00

9 

0.01

1 

0.40

2 

0.55

1 

0.01

6 

0.00

1 

0.00

8 73 P.sibirica 4 Non-domesticated sp. 0.00

7 

0.32

5 

0.01

7 

0.36

9 

0.00

6 

0.27

1 

0.00

6 77 Pruisadebnyi Rannii 4 Hybrid cultivars 0.00

2 

0.00

1 

0.00

1 

0.61

7 

0.00

1 

0.00

2 

0.37

7 79 Quardi (Tunisia) 4 Northern African 0.18

6 

0.02

1 
0.12 0.41

5 
0.02 0.00

5 

0.23

3 81 Rukhi Dzhuvanon 

Meona 
4 Central Asian   0.02

5 
0.12 0.37

8 

0.47

5 

0.00

1 

0.00

1 

0.00

1 82 Rukhi Dzhuvanon 

Surkh 
4 Central Asian   0.00

2 

0.00

5 

0.25

7 

0.61

1 

0.12

1 

0.00

4 

0.00

1 83 Samyi Rannii 4 Central Asian   0.00

1 

0.00

1 

0.00

1 

0.62

8 

0.00

1 

0.00

1 

0.36

7 100 Zard 4 Central Asian   0.00

4 

0.00

1 

0.17

4 

0.81

6 

0.00

3 

0.00

1 

0.00

1 51 Lunnik 5 Hybrid cultivars 0.00

1 
0 0 0 0.99

7 
0 0.00

1 53 Maftobi 5 Central Asian   0.10

5 

0.00

3 

0.00

7 

0.68

9 

0.10

7 

0.08

8 

0.00

1 56 Mascat 5 Iran-caucassian   0.24 0.00

1 

0.24

6 

0.00

1 

0.28

9 

0.00

6 

0.21

6 63 Naslazhdenije 5 Hybrid cultivars 0.00

1 

0.00

1 

0.00

2 

0.00

8 
0.97 0 0.01

8 65 Olimp 5 Hybrid cultivars 0.00

1 

0.00

1 

0.00

1 

0.00

1 

0.75

8 
0 0.23

9 75 Parnas 5 Hybrid cultivars 0.00

3 

0.06

1 

0.00

7 

0.00

6 

0.60

8 
0.01 0.30

6 87 Shalakh 5 Iran-caucassian   0.37

9 

0.00

2 

0.00

1 

0.00

1 

0.50

5 

0.00

1 

0.11

1 89 Shedevr 5 Hybrid cultivars 0.00

1 
0 0 0 0.99

8 
0 0.00

1 94 Vaagas Vardaguin 5 Iran-caucassian   0.36

5 

0.02

6 

0.00

2 

0.00

2 

0.40

3 

0.03

3 

0.16

9 98 Vynoslivyi 5 European   0.00

4 

0.00

1 

0.00

2 

0.00

1 

0.60

1 

0.02

7 

0.36

5 70 P. mume, N 15 6 Non-domesticated sp. 0 0 0 0 0 0.99

8 
0 

71 P. mume, N18 6 Non-domesticated sp. 0 0 0 0 0 0.99

8 
0 

8 Bergeron 7 European   0.00

1 
0 0 0 0 0 0.99

8 13 De Compot 7 European   0.13

5 

0.00

4 

0.19

6 
0.27 0.00

6 

0.00

1 

0.38

9 27 Jubileinyi 7 European   0 0 0 0 0 0 0.99

8 30 Kantsler 7 European   0.04

1 
0 0 0 0.00

1 
0 0.95

7 31 Katuni 7 Iran-caucassian   0.05

9 

0.00

1 

0.03

3 

0.00

2 

0.30

8 

0.10

1 

0.49

6 40 Krasnoshchekii 7 European   0.00

1 

0.00

1 
0 0 0.00

1 
0 0.99

6 50 Luizet Krupnoplodnyi 7 European   0.00

1 
0 0 0 0 0 0.99

8 60 Nakhichevanskii 7 Iran-caucassian   0.00

1 
0 0 0 0 0 0.99

8 62 Nasera Tabris 7 Iran-caucassian   0.05

1 

0.23

4 

0.01

5 

0.20

4 
0.15 0.00

1 

0.34

5 95 Velkopavlovichka 7 European   0.00

1 
0 0 0 0 0 0.99

8 96 Vengerskii Krypnyi 7 European   0.00

1 
0 0 0 0 0 0.99

8 
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Appendix D: List of primer sequence for SSR markers used for linkage disequilibrium-based association 

mapping on LG1 and 7. 

Marker Forward primer sequence Reverse primer sequence 

M3 F-CGAGAAACTCTGCACAGAGA R-GTAGCCGATTCAAAGCCTCC 

Ampa109 F-GTGTCCCGAATTCCAATATCC R- TTTGTCTCAACACTTTCCCTCTC 

Pchgms103 F-GCCGATGACTACGATTGG R-ATGTGTTTCGGAGATGTCG 

Aprigms25 F-ACACACACGGCTCTTCGT R-CCTTGTCGCCAGTGAATAATTTGACA 

Pchgms105 F-CCGTAGTTGAGAGTAAGTGAAAGC R-GGGTTATCTCTCTGCTCATCC 

evg3 F- TCATTGACGACCCATTTGAA R- ATTTGGGCGATCATATCAGG 

evg9 F- AGAGGGAGAGAAGGGTGGAG R- GGACGGGGACAAGGATATTT 

Pchgms14 F-GCAAAGAGTACAACAATATCTACCG R-GGATGGTGAAGACGATGAGG 

evg12b F- GGAGGAGAAGGGTGCCTTTA R- GGACACCCACCTAGACGTTG 

evg15 F-GGTGTCCCCAGTTTGAGAAA R- GAAGGACACCTTTTCGGACA 

evg18 F-GCCATAAAGTCCACCAAGGA R- CAGCCCCGTAAAGAAACAAA 

Pchgms41 F-TCAAGCTCAAGGTACCAGCA R-AAGGCACTCTCCCTCTCCTC 

Pchgms10 F-GGTCACGCATCCTTTCATTT R-GACACCTCCATTTGTATCAAAGC 

evg20 F- GTTGCTTGTTGGGTTGGTCT R- GCTTTATCGCATGGTTTGGT 

Pchgms12 F-CGACACTTAGCTAGAAGTTGCCTTA R-TCAAGCTCAAGGTACCAGCA 

Pchgms11 F-AAGCAATAAAACCAGCAGCAA R-TCAATCAATTGGCATGTTCG 

evg24 F-AGGCTTGAACCAGCAGAAAA R- TCAAGGTGTGGAACAACCAA 

evg28 F- GGGCATGGTTGATTGATTCT R- TCGTTCTGCTGCTTTAATTGTT 

Pchgms29 F-CCTGAAGAAGGTGGACCAGA R-CCTCCCAATTCAAATTCCCT 

Pchgms74 F-TGTTCTATTTAGCTTCTTCCTCCAG R-TCCTTTTCTCTGTATGCCACTTC 

Pchgms75 F-CAGCCATTTTGACTGCTTTG R-TTCTTCTGGCTTGCATTGTG 

Pchgms76 F-CAAACAACTCTCCCCATACCA R-AGAGAGAGAGGGCTTTGACC 

Pchgms77 F-GGAGTGTGTTCCTTCTGGATG R-CCCAGCTACTGTTATGACTTTTCTC 

Pchgms79 F-CTCGCTTCTGGGTTGTTCAT R-TACTCGGATGCCACTTTTCC 

Pchgms86 F-CGAAACCCTAACCCTAAACC R-TGAGCTGTCCTTCACTCTGG 

Pchgms88 F-CTGTCGCAGGAACAGTAAGC R-GATTTTCCGGTACAGTCTGG 

Pchgms80 F-GCAGTGCCGTAATGGATTTTC R-TGTAGGCCCCTTAGTGGATG 

BPPCT28 F-TCAAGTTAGCTGAGGATCGC R-GAGCTTGCCTATGAGAAGACC 

Pchgms17 F-ATGCACTCAAGTGGCAAGC R-GGTTTTTGAGCAAAGATGCAC 

Pchgms18 F-TTAAGTGGCGCACGTAAGG R-TTTTGTGGGTATCTGAGCAAA 

Pchgms73 F-TGCACCTTGTTTTTGTTTGC R-GCCCGGAATATCTGTCACAA 

Pchgms46 F-ACACCAAAAGCCACTCAAGTCTC R-CGTCTTGGCTATTGGCTATTGCT 

Pchgms106 F-GCAACAAATCGTCAAACTCC R-GGAGAAACTGACGCAGAAGG 

Pchgms108 F-CTGCAGCCAGTTCAATCC R-CCCTTCCTGATTAGAGAGTCG 

Pchgms109 F-ACAAGTATGGAATGAAACAAGG R-CACGATTGTTTGTTGGTACG 

Pchgms110 F-TGTTACCATGCTTGATGAGC R-TTGGAAGGGCTTTGTATTCC 

Pchgms112 F-GCTGTTATCAGGTGGTCAGG R-TTGAGCTCTGATTGCTAGGG 

Pchgms113 F-GATAATGCGGTGGAAACAACC R-ACTGGTGAGATGGGTATTGG 

Pchgms102 F-AACATCTTCGGGTCCATCG R-AGGCACTGAAGTTAGAGAAGTCC 

CPPCT33 F-TCAGCAAACTAGAAACAAA R- CCTTGCAATCTGGTTGATGTT 

Pchgms90 F-CATTGCGAACTATTCTCAGC R-AGACTACCGGAGATCAAACG 

Pchgms91 F-AGAGAAATGTCTGGCACACC R-CCCTTCCAATGTCACTCC 

Pchgms93 F-TCTTTGCTGAACTTGAATGG R-TCGAACATTTAGGCTTACCC 

Pchgms94 F-TGTTGAAGAAATGCACTTGG TGTTTCGAAAACTTGAGATGG 

Pchgms96 F-GCTTAAGTTAGCAAAGGCAACC R-CCAGCTGGGAATGTAAAGC 

CPSCT42 F- TGGCTCAAAAGCTCGTAGTG R- CCAACCTTTCGTTTCGTCTC 

Pchgms97 F-GCACGGCTATACTTATTTTCC R-TAAGGCTCTTGGGCTATGG 

Pchgms98 F-GGTCTGCCTTTGTTTTCTCG R-ACACAGTGAACCCCAACTCC 

Pchgms99 F-AATTAAAGATGATAACTTATTGGAACG R-CTGAGTAGAAGACGCTAACACG 

Pchgms100 F-AACAACAACACATCCTATTCTCC R-ACCACCTTGTTCACTTCAGC 

Pchcms2 F-AGGGTCGTCTCTTTGAC R-CTTCGTTTCAAGGCCTG 

Pchgms20 F-AATTGCATCACAGCAAGAGC R-GGGGGTTTGGTTAAGATCG 
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Appendix E1: List of SSR marker, map position and corresponding predicted genes used for linkage 

disequilibrium-based association mapping on LG1. 

Marker Position (cM) Candidate genes 

M3 76.00 - 

Ampa109 78.8 - 

Pchgms103 85.4 - 

Aprigms25 85.50 - 

Pchgms105 85.6 - 

evg3 85.8 - 

evg9 85.9 DAM1 

Pchgms14 86.0 DAM2 

evg12b 86.1 DAM2 

evg15 86.4 DAM3 

evg18 86.6 DAM4 

Pchgms41a 86.8 DAM5 

Pchgms41b 86.8 DAM5 

Pchgms10a 86.80 DAM5 

Pchgms10b 86.80 DAM5 

evg20 86.80 DAM5 

Pchgms12 86.80 DAM6 

Pchgms11 86.80 DAM6 

evg24 86.9 - 

evg28 86.90 - 

Pchgms29 87.0 kinesin 

Pchgms74 87.0 kinesin 

Pchgms75 87.2 Kinase interacting family protein (TAIR:AT1G09720.1) 

Pchgms76 87.3 Myb family transcription factor (TAIR:AT1G58220.1) 

Pchgms77 87.5 ATR2 (ARABIDOPSIS P450 REDUCTASE 2); NADPH-hemoprotein 

reductase (TAIR:AT4G30210.2) 

Pchgms79 87.6 VIN3/VEL1 

Pchgms86 88.0 UDP-glucoronosyl/UDP-glucosyl transferase family protein 

(TAIR:AT5G65550.1) 

Pchgms88 88.0 CTR1 (CONSTITUTIVE TRIPLE RESPONSE 1); kinase/ protein binding / 

protein serine/threonine kinase/ protein serine/threonine/tyrosine kinase 

(TAIR:AT5G03730.2) 

Pchgms80 88.9 IRX9 (IRREGULAR XYLEM 9); transferase, transferring glycosyl groups / 

xylosyltransferase (TAIR:AT2G37090.1) 

BPPCT28 88.9 oxidoreductase/ zinc ion binding; basic helix-loop-helix (bHLH) family 

protein (TAIR:AT5G10570.1) 

Pchgms17 89.1 SUT1 

Pchgms18 90.0 SUT1 
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Appendix E2: List of primers for SSR markers, map position and corresponding predicted genes used for 

linkage disequilibrium-based association mapping on LG7. 

Marker Position (cM) Candidate genes 

Pchgms73 38.6 TFL 

Pchgms46 42.3 PHOSPHATIDYL INOSITOL MONOPHOSPHATE 5 KINASE: 1-

phosphatidylinositol-4-phosphate 5-kinase/ ATP binding / 

phosphatidylinositol phosphate kinase; PIP5K9 interacts with CINV1 to 

negatively regulate sugar-mediated root cell elongation. 

Pchgms106 43.0 CURLY LEAF 

Pchgms108 43.0 CURLY LEAF 

Pchgms109  45.0 6kb downstream from AT1G49620: ICK5; cyclin binding / cyclin-

dependent protein kinase inhibitor (KIP-related protein (KRP) gene, 

negative regulator of cell division. 7 kb upstream of AT4G18750 :  DOT4 

(DEFECTIVELY ORGANIZED TRIBUTARIES 4)  

Pchgms110  45.1 AT5G66810: hypothetical protein 

Pchgms112  45.4 AT5G66820: hypothetical protein 

Pchgms113  45.8 SQN (SQUINT): peptidyl-prolyl cis-trans isomerase; encodes the 

Arabidopsis homolog of CYCLOPHILIN 40 (CyP40).  

Pchgms102  47.0 AT5G49530 - SIN-like family protein: DNA-directed RNA polymerase 

activity 

CPPCT33 49.2 2kb downstream of AT3G50690: leucine-rich repeat family protein; 5 kb of 

AT4G36650: ATPBRP (PLANT-SPECIFIC TFIIB-RELATED PROTEIN); 

RNA polymerase II transcription factor/ rDNA binding 

Pchgms90 49.2 Between 2 copies of AT5G07610: F-box family protein  

Pchgms91 49.2 AT3G50670 - U1-70K (U1 SMALL NUCLEAR 

RIBONUCLEOPROTEIN-70K): RNA binding / nucleic acid binding / 

nucleotide binding; mRNA splicing  

Pchgms93  50.2 AT3G50930 which is BCS1 (CYTOCHROME BC1 SYNTHESIS): ATP 

binding / ATPase/ nucleoside-triphosphatase/ nucleotide binding 

Pchgms94  50.3 Between duplicated AT2G18190 gene: which is AAA-type ATPase family  

Pchgms96  51.8 AT2G18180: SEC14 cytosolic factor, putative / phosphoglyceride transfer 

protein  

CPSCT42 51.8 ATMPK7: MITOGEN ACTIVATED PROTEIN KINASE; involved in 

circadian rhythm, signal transduction, response to hydrogen peroxide  

Pchgms97  51.9 AT4G18905: transducin family protein / WD-40 repeat family protein  

Pchgms98  55.0 AT3G51000 epoxide hydrolase (putative).  

Pchgms99  55.0 AT3G51000 epoxide hydrolase (putative); several copies. Close to 

AT4G36390: radical SAM domain-containing protein / TRAM domain-

containing protein  

Pchgms100  55.1 AT4G36380: ROT3 ROT3 (ROTUNDIFOLIA 3): encodes a cytochrome P-

450 gene that is involved in leaf blade expansion by controlling polar cell 

expansion in the leaf length direction. Member of the CYP90C CYP450 

family  

Pchcms2 61.9 Close to AT3G18670-AT3G18670 ankyrin repeat family protein;  close to 

AT2G06025: GCN5-related N-acetyltransferase (GNAT) family protein  

Pchgms20  75.0 AT2G26580: YAB5 (YABBY5); transcription factor; Nozzle protein bound 

filamentous flower and yabby3. AT3G15790: MBD11; DNA binding / 

methyl-CpG binding. Close to AT5G20200 which is nucleoporin-related 
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Appendix F1: Strength and extent of LD within a 14 cM genomic region of LG1 

estimating pair-wise parameter estimates (r
2
). Each square in the LD matrix represents a 

comparison between a pair of polymorphic sites, with the r
2
 values displayed above the 

diagonal and the P-values for Fisher's exact test below. Points on the diagonal correspond 

to comparisons of each site with itself. Color codes for r
2
 and P-values are given. 
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Appendix F2: Strength and extent of LD within a 25 cM genomic region of LG7 

estimating pair-wise parameter estimates (r
2
). Each square in the LD matrix represents a 

comparison between a pair of polymorphic sites, with the r
2
 values displayed above the 

diagonal and the P-values for Fisher's exact test below. Points on the diagonal correspond 

to comparisons of each site with itself. Color codes for r
2
 and P-values are given. 



 167 

Appendix G: Goldrich apricot BAC clones positive (following southern hybridization) 

for probes designed from putative candidate gene sequences controlling chilling 

requirement and bud break. 

Candidate 

genes/SSR 

marker 

Linkage 

group 
Goldrich BAC clones 

MPK7/CPSCT

42 

7 G086H19,G015N20,G155O12,G176O01,G212G03,G062D17,G192

P01,G038F11,G136M05,G137D02 

AP2/AP2M 6 G004A12,G112H11,G224J17,G104G11,G118B01,G011A24,G073

O19,G187J11,G194I04 

CONSTANS 1 G203N03,G101N02,G179I08,G160P04,G195C23 

SUT1 1 G158G23 

FT 6 G049L23,G081J14,G226K05,G149C13,G174C04,G158C15,G019J

07,G218M10,G063B08,G043N08,G166E13,G197A12,G226D18  

TFL1 7 G013O10,G039O12,G061G15,G073G15,G107O03,G135E20,G141

J23,G159M19,G170H21,G170I22,G210L03,G215C09,G225B18,G

241F17 

LEAFY 5 G195M04,G180G08,G010E10,G011F24,G023F21,G216D06 

AGL2 3 G023M19,G007M17,G097E07,G178P16,G007O19,G099K05,G148

M17,G067P18,G119P20,G186H19,G048M04 

ABI3/EPDCU3

454 

8 G059G19 

Note: BAC clones in bold were used as template for sequencing candidate genes. 
 
 

 

 
 

 

 



 168 

 

 

 
Appendix H1: Map-based cloning of CONSTANS from the Goldrich cultivar apricot BAC 

library and the 2 allelic variants of Perfection and A.1740 apricot cultivars. Sequence 

alignment performed with MUSCLE v3.7. 
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Appendix H1: continued  
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Appendix H1: continued  
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Appendix H1: continued  
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Appendix H2: Gene Phylogeny of CONSTANS alleles from Goldrich cultivar apricot 

BAC library, 2 allelic variants of Perfection apricot cultivar and 2 allelic variants of 

A.1740 apricot cultivar. Phylogenetic analysis was based on Neighbour joining tree using 

PID, following alignment using MUSCLE v3.7. 
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Appendix I1: Map-based cloning of SUCROSE TRANSPORTER 1 (SUT1) from the 

Goldrich cultivar apricot BAC library and the 2 allelic variants of Perfection and A.1740 

apricot cultivars. Sequence alignment performed with MUSCLE v3.7. 
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Appendix I1: Continued 
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Appendix I1: Continued 
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Appendix I2: Gene Phylogeny of SUCROSE TRANSPORTER 1 (SUT1) alleles from 

Goldrich cultivar apricot BAC library, 2 allelic variants of Perfection apricot cultivar and 

2 allelic variants of A.1740 apricot cultivar. Phylogenetic analysis was based on 

Neighbour joining tree using PID, following alignment using MUSCLE v3.7. 
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> LFY sequence from apricot Goldrich cultivar; 53 bps missing from START CODON. 322 bps after TGA stop codon 
GCCCAGNNCCCAGNNCANNGCGTNTNGCNTCCNCATTAGCCCTCCCNNNCAAGNNCCGTCAGTTAACNNNAATATTTT

ACTATTANNTNNGAAAAGAAGATAAAGTCACAAACTTGTGAACCCTCTCGTGTTTTAATCTCCATTTTCTCTCCCNCATC

ACATCACCACTTCATCGTTCACCATTCATCATCAGAACCGTCTGCCTTGGGCACGGCTCGTGGACCACCACCACCGCAC
CAGACCNTCCGCCGTCCTCCGCGCGACACGTGGGTGGGAGCCGCAACAACATCGTATTCGTCAGGGCCACGTGTCGCT

GTATAAACGGGAACACGTAGGTGTTGATGCACCTGATCGTGACACTAGCCTAAGAAGAAGAAGATGGATATGGTTTCG

TTTGTCTTTGAGAAAGTACAGAAAAGCAGCCTTTCAGAACACCTGCCCACCTCTGTACTTCCCTGCCGCTTCTTATATCG
CCAAGGGGAACAGTAAATTTCACTCGTTATTATAACATCGAGTGGAATGACGTGTTTGCCCCTCTTGCATGCTTGGCTT

GTTCGGGTAATTAAAGCTTGAGAATCTCTACAGAGATATGGGTTTTCGTCACGTTGTCCGAGGAAGAGATGATGATGAT

GATGGTGATTGTGAAAATTACCATCTATTACACAAACGCCAATCTTAATCCCCACATTCCATTATGCCAATTTTACTAAG
CTTTGCCCCCATCAATTTCACCGTCAAAGATTTCTTGTTACTACCTACTGCCAACAATAAATAAATAAACCCAAAAATA

AGAGTGTGTGTGCATCTCAAAATCACGTCATAGAGTCAATGGGTTCTCACCATAGTGGTGGTCGTTTCCCCCTCCTCAC

GGCAACCCAGTTCGAACTCGTTCGAACTCCAATGTAACCAACAAAAATCACGTCATAGATTTTGGGCCCTTCAAAATGT
TGATTTTGTGCCATAAACTAGGAGACCACGCAGACAAGTAGACGAGAAGAAAGAAGCAAGAAAGTTTGGAAAACTTC

ACTTCTTATTAGCAGTTTTAGCACTCTGAGGAGCAACATCTACACGCATGAGTTTCATTATTAAAATCATTATGTTTATT

AAAAAATAAAAATCGTAAACTCTAGGGCTAACATAACATAACAAGTTTAAAAGTTCATTGGGTGGTGGGACCAATTAG
AAGAACCCTAAAGAGTGTTTCATTCTGAAATACCGAGTTTGAAACCATCAAACCCCAGTTTGCTTAGTTCCTCGGGAAA

CATCCCATATGTAGGAGGGTAGTTTCGGAATAAACTAAAATGGTCTTGTTTTTATAGGAACAGAAGACTACACACACCA

ACCACAGTGCCAAAGACTAAAANCAAAGCTAGAGAAGAAGCTGTGGTCTTCATCTGTGTGNGGTTTCACACNGCGGAA

AAnnnnnnnnnnGGTTGTTCCGCCGAGTCGGGCTCAGCTAGAAGCCGCCGTGACGCCTCAAGCTGCCNNNNCGGCTTACG

CTGCCGTGAGGCCCCCGAGAGAGCTCGGAGGGCTTGAGGACTTATTCCAGGCTTATGGGGTCAGATACTACACGGCAG

CGAAGATAGCCGAGCTCGGCTTTACTGTCAACACCCTTTTGGATATGAGGGACGGTGAGCTTGACGACATGATGAGTA
GCCTCTCTCAGATATTCAGGTGGGATTTGCTTGTGGGTGAGAGGTACGGTATCAAAGCCGCCGTCAGAGCAGAGCGTCG

CCGCCTCGATGACGAGGACTCCAGGCGGCGCCACACCGTCTCCGGCGACACCACCACCACCAATGCCCTAGATGCTCT

CTCCCAAGAAGGTTCGTTAGTCACTATTACATGAATTCCTGGAATGAAAATTTACATGTTAGCATAAAATTATACACGC
AATATTTCATCATAAGATGCAAAATTATTTAATCAATTTGTTACAATATTTCATCATAAAACATTTTTTTTATATGAATC

GAACAAAAAACTAATTTTTATTTAATAATATTACATGTGAAACTATTTAATTGTTACCATATTTCATCATAAAACATTTT
TAATATGTATGTATATGACATGGCGTGCATGGGATTGTAGGGTTGTCGGAGGAGCCGGTGCAACAAGAGAAGGAGATG

GTGGGGAGCGGCGGAGGGGCCGTGTGGGAAGTGGTGGCGGCGGCGGGGGNNNNNCGGAAGAAGCAGCGAAGGACGA

GGAAGGGGCAATATAGGAATTTCAATGGTATCGGAGGGGGGCATAATAATGATCATAATGAGGGTGTGGACAACGAG
GACGACAACGACATGGACGACATGAATGGGCACGGGAACGGTGCAGGAGGGCGGTTGCTGAGCGAGAGGCAGAGGG

AGCACCCGTTCATTGTGACTGAGCCTGGGGAGGTGGCACGTGGCAAAAAGAACGGCCTAGATTACCTCTTCCATCTCTA

CGAGCAGTGCCGTGATTTCTTGATCCAGGTCCAAAACATTGCAAAGGAGCGCGGTGAAAAATGTCCAACCAAGGTACG
GAGTTTACCCAACCCCCGTCTTCATAACCTAAATGCATACGCTGATTTATACTGTGGTAAATAGTAAATACTAAAATAG

TAACTTGGCGCATGGACTATCATACCTGGTCAATGTGGTCCCATTTCCGCAAGTACGAACAATTACAATCTAGTGGCCC

GACAGTTTCAATTGGAAAGGCCTGCTGACAGCATCAGTATAATGTTTGAGCTAACTCTGGACCGGGTCTGAATTTTTCA

TTGATCATGTGGCAGACTAAGTTCACAATAATTTTTTTGAAAAAGATCATTGTGAATAAGATCATATTTTAATCCTACTT

TGGTCTATATTTGATCTGCTTTGTTAGAAATATATAGTGATTCCAACAATGATGTTAATATGACGTAGAATTGGATAATT

GGTTAGCTTAATAAAGGTAGAGATTTTCACACTCGCGTTTTGTTAACTCCGCTCTTTGTTATATTTTGATGATCTATCATC
TACTTTTATTTCTCAAGTAGAAAAACAATAGAAAAGTGCAAACATATAAAATCGGAGTGTGAAAGTCGACACCCTTAG

GTATCCGATATTTGTAAATAATGAATGATTTATCTTGTGACCATGACAAGTGAATTGTTGTATTTTGGTTGTGTGAACAT

GAATTATTGTGCAGGTAACAAACCAAGTGTTTAGGTTTGCAAAAAAGGCAGGGGCAAGCTACATCAACAAGCCCAAGA
TGCGACACTACGTGCATTGCTATGCGCTGCATTGCTTGGACGAGGAGGCCTCCAATGCACTGAGGAGAGTTTTTAAGGA

GAGAGGCGAAAATGTGGGGGCCTGGAGACAGGCATGTTACAAGCCTCTTGTGGCCATTGCAGCAGGCCAAGGCTGGGA

CATTGATGCCATCTTCAATTCTCATCCCCGACTCTCCATTTGGTATGTTCCCACCAAGCTCCGTCAGCTTTGTCACACTG
AGCGCAACAATGCCACAGCCTCTAGCTCTGCCTCCGGTGGTGGTGGTGGTGGCGGCGATCACCTACCCTACTGATCAG

AGTGCATGCCCCTCGATATGAGTTTGAAGAAAGAGAGAATTTGAGGAAATGACCTAGTGGGTTTTATGTACTTTAGGTT

AGAACTTAGAACGGAGACGGTTAAATGGATGAGTCTTATTTNNNATCTTTGTGTTCTGATGTTTCAAAAGTTAGCTATA
TTTAACTGTTTTTACTAATCTACCACAATGATAAAATCTAATGNGCTTGTAAATGGAATGNGNAATTGNNNNNNGTTTT

TTANAGCACTTTCNNTCATGNNNCATGNNANNNNANGGNNNNNNNNNNTNCCTACCTTTTTTGNTTNNTTTNTCCNTNC

NN  
 

Appendix J: Map-based cloning of LEAFY (LFY ) from the Goldrich cultivar apricot 

BAC library. 
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> AP2/ERF sequence from apricot Goldrich cultivar; 53 bps missing from START CODON. 90 bps after TAG stop codon 

CATTTACAAANGGNGTTTTCATGATTTAATTGCTTATAAAACNTGATAGTCATGCACCAACCCACCCTAAACANGGATT
CATAAAAGATGTTAAGAAAACTTAGGTATTTAGGGATGACCACACTACCNTTCTATCAATTCCAATNGCAGCTTAATGT

GAACTACAAGAGTATGCTTATGCATTCTTAAGCTATAAGAACAAAAATAGAAACCCTAACAAACTAGAGTTACTAAAT

TTGTAATTCGGCCTAAAGTATGGTTTCGGTTCTTTTATTACAAGTTTTGATAGTTTAATTATTTTGTGTTGGATCATACTA
CTGAACTAGATTGGTCATATAACAATCTCAATAACAAATCCTTAAGGTATAATAACGATAATGTCGACACTTGATGTTT

AAAAAAAGTCAATTCCCATAAAATCTAGTTTTGACTTGTGACTATATTTTCATAGGGCATATGTAAACTTATAAATTCTC

TTAAATTGTAATACACGTATTATTTACTTAAACCAGAAATTCCAAATTGTGAGACTACTAATCCTACACATGTTACAATT
CTTGAATACTTGTAACACCCCATTAACATAGTCGAACTAAACTATTCAAGTGAAGGAAGGACCACAAATGGTGTGAAA

AGGAATATAGTTTGAATGAAGAAGAAGTAATCTTGTCATTTGTAAAAAATTGTTTAAGCATTAACAAGGGGAAAGATG

AAGTTGAAAGAGAAAAGNNNGGAAGAAGAGAAGAAGTGTAGGAGACGCGGGAAAGGAAGAGAGNGAGGAGAGGnnn
nnnnnnnCACANTACGANGTACAGCAAATAGGAAGGGGCATTGGTCGCTAGAAGAACGAAAGAGGCAAAGNNGCCCTCT

TCCNGTANTCTNGGATNGGACTTTTTNGNAAAGACNTTCCTTTTCCTACCATTATTCCCNTTTCCTTTTTCTGATACCAAA

CCAAACCCAGTAATAACAACCCAGTCACCACTCACCACCTCTCTCTCTCTCTCTGAGACTGAGAGAGAGAGGTCCCTGA
TTTGATAATTACACCCTTTTTTTCTTTCCCAAAATGCCCCGGTTATCCACCCACTATTTACTGCCCTTCTTCCTTATGGTA

AAAACTAAAAACCAGGTGAAACACAAGATACCTGAATATGTGAAAAAAAGTGAAATCAAATAGTTTTTTTATTAATTA

TTTATTTATTTTGTTGACTTGTGATGTGAACGTTGAAATAATTAAGTTGCTAATAAAGGCAATGGAGTAATTAGCCATCT
ATTTTAGTGTTTGGGCTGTCTACTTCCATTAGTGGGTAAATAGAAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGAGCA

GAATGCTTTTCGATTTGGTTAACGTGGGAAAGTTGTGTAAGAAAGAGATGGTTCTTTCTTTTCTCTCCCCATTACCCCAT

CTGATCCATGCTCCTTTGAACCCACCAATAACCCCAAAAAAAGAGAAAAAAAGAAAAAAAAGAAAAAAAGAAACAGA
GAAAGAGAAAGAGAGACAACAGTAAAGTAGAACTGTACACAACAAGTTTAAAGCCCAAAAACTTCAAGTTTAATCTTT

ATTTAATATAGATGCCAAAAATGCATACTACAAAATTTTATAAAATTGAGTGATTGCACAAAATAAAAAGTAAAGAGA

GAGAGAGAGAGAGAGAGAGAGAGAGAATTATGAGTCATTGAAAGGAAAAGGAAGCAAGTGGTTAGAGATGGAGAGA
GAGAGAGAGAGAGGGGTATTAAGGGTGGGGTGAGAAAGCTTGAGGCTAAGGCTTTACTGAAACTGGCCTCGTCTATGC

TGTATTGGGCAGTTTTAGGCGCCATATACAAGCACAAGATCTTGGAGTCCATAGCTCCATAGCTTCATAGCTCCATAGC

CCTCTCTCTCTCTGTCTCTCTATTAACCCTCCTCCTACTCTTGCCTTTTTGCAAAGACACAAAACCTGCAACATTACCCAC
CTCTCTCTTTTCTCTCTTTAACTTTTCCTTTTCGTGTTTCTTGTTGAGGCCTTTTTTTTTGTTTGCCACTCTGAATTCTGGGT

TTGATGTAAAAANTAATACTGAACACTGAGCAAACATCTGGTAGACAAACCCAACAAAGGGACAGAGAGAGAAAAAN
AAAnnnnnnnnnnGCGNNGATCGGAGGGNTGCTCCTCCCNGAAGACCTCGGCCGACGGAGACGAGGAAAAGGGCAAACG

GGTCGGATCCGTGTCCAATTCAAGCTCCTCGGCCGTGGTCGTCGGGGACGACGGATCAGACGAGGAAGAAGACGACGA

CGGCCCCGCCAAGCTCGCCAAGACGCGGGGAGGAGGAGGGGGCAAGATATTCGGGTTCTCCATGACCCACGAGGAGT
CCATGGATAGTGATCCGCCCGTGACCGTGACCCGACAGTTCTTTCCGGTGGAGCTAGACTCCACCTCTGAAATAATGGG

GCCCACACGAGGAGGCGTCCCGCCTCCAGCTCCTCCTTCTTCGTCGTTGTCGTCGTTTCCCAGGGCCCACTGGGTCGGG

GTCAATTTCGGGCAGTCGGATTCTGGCAGCCCCGGGAAGCCGCCGGCCGCGGTGGAGGCAGCCCACCAGCCCATGAAG
AAGAGCCGGCGTGGGCCTCGCTCCAGGAGCTCTCAGTACCGCGGCGTGACGTTTTACCGGAGGACTGGCCGATGGGAG

TCTCATATTTGGTCAGTTATTAGTTAGTTAATTTCACTTCACATAATTAGTAACTAATTTTTTCAGTTACTATTCCTATGT

TTCAAACTATATATATATATATATATATATATATATATTTCTATGTTTAATTTATTTTGTACTTTGGCACAGGGATTGTGG

GAAGCAAGTTTATCTTGGTAAGACTCTGACAAAAATGATGCAATTTTAATTTTATTTTATGGTGTGTTTACTGATGGGAC

TTTTTTTTCCTTTCTCCATAATACGATTAATAGGTGGATTTGACACAGCACATGCGGCTGCACGGTGAGCTCTTCATCTT

GAAAAACCAAGGTTTAATTTTGTGGGGGAAAATGTGGGGGCTGGAAAAAAGATGAGAATTTATTTTGTGTTATGCAGT
GCTTATGATCGAGCGGCCATCAAGTTCCGGGGAGTGGAGGCTGACATAAATTTTAGCATAGAGGATTATGAAGAAGAC

TTGAAACAGGTGAGAGAGAGTGTACGGTCCCCCAAAAAAAGAGAAAGGGCTTTGAACTTATCTTCAACAGTTTTTTTTT

TTTAATGCCTTATCTTCAACAGTTGCAGAAAATAAATAAATAAATTTCTTTTTAAATTTTTTTATTTTATTTCTGAGTTTT
GGTTTGTTATAATTTTCTTGGGATGTTTGCATGAAATGAAACACAGATGACCAATTTAACAAAGGAAGAATTTGTGCAT

GTACTTCGCCGACAAAGCACCGGGTTCCCCAGAGGTAGCTCCNAATATAGAGGGGTCACCTTGCACAAGTGTGGGAGA

TGGGAGGCCAGGATGGGCCAATTTTTAGGCAAAAAGTAATCAACCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCTCT
CTCTCTCTCTCTAGCTTTGCCCTTCAATTCTCATTTCACCAGTTTTCTTGTACTACTTCCTTGCTTCATGAATTGCTCAATG

ATTTTCATAGGTACGTGTATTTGGGCTTGTTTGATACCGAGATTGATGCTGCAAGGTACATATATATACATGATATCGTG

CTACGGATCTGCTCTCTCTCTATATATAAATATATATATATATATATATATATCTCGTAATGTTGAGTTCAGTTCCTGAA
GATTTGAGTTTTTTTTGGGGTTAATTTTATGCTACTTCAATTCTTGTAGGGCCTATGACAAAGCAGCAATCAAGTGCAAT

GGCAAGGAAGCTGTCACTAATTTTGATCCCAGCATCTACGAGAACGAGCTGAACCCCTCCTCTGGTAATTCAAATTGTA

ATAACATTATTAATGCATTGTAATTAATCTGATAATTTGGATATATGTATTTGCGTAGAATCATCCGGCGTTAATCCTGC
AGAACACAATCTCGATTTGAGTTTGGGCAATTCAAACTCGAAGAAAAACAATCAAGCTTTTGGGAGTAGTGATCATGG

CCAAAATGCTGCAATGGAAGTTCAACATTCTGCCTCAATGCAACTCGAAGCCGATTGGCGGAATCAAGGGTTTCGACA

AAAGGTTTCGTAACAAATGTTATTTTTATTTAATTACATTAATTCTTGCTTGAACGTGTGATCCATACATATTTGTATCAT
ATATCCGTCTAATTATTTTTGTTTCTTACATTTAATAGCTTAACCTACAAAGGGATCGATCTAGAGAGGAGAGTGATGCG

CACAGAAGAGATGGATACTTAGAGACAGAAGCCATGCAGCTACTACTCAGAACCAACCTTCATTCTCCAGCCCCCACT

GAAATGCATAAATATGGGCAGTTTAGTAGGAGGCCTAACGTTGGAGACACCCAAATGCCTCACACTTTCCCACCACATT
TCAACTCACCAAACAATTACCACCATGTAAGCACAATTAACTCATTTTCGACTCATGATTTGCTACGTTGATGATCAATT

TGCTTAAAATTATTGTGATTATTTTTCCTTTTGTCACAGGTTCAGTTTCCAAGCAGCAGCGAAGGAGGCCGCATCGGCAG

TGATCTTTCACTCTCGATGAGTGACCACCCACACCAACAACAATGGCAATCCGGCATGCCGACTTCCGATATATTTGCA
ACTGCTGCAGCATCATCNGNANTCCCACCTCAAATCANANCGTCCGCGCAAAATTGCTGGCTGCAGAAAAGTGGCTTC

CACTCTCTCACGAGACGCTAGCTATAGCTCCTCTCTGACCAATGAGCCATGACACACCCCCCCCCCCCCTACATTTTTCT

GCCTAATTTCCACCATGTCCCATTTCATCA 

Appendix K: Map-based cloning of APETALA 2 (AP2) from the Goldrich cultivar apricot BAC library. 
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> FT sequence from apricot Goldrich cultivar  

GAANGAAAAAAAANNNNNNAAAAANTAANNAAANTTNNNCCNNNNAGNTNGATNNTCGNGATNTTTTGACCNNTCCA
AANGANCNNGGCNCTNGNNNNNNCGGATCGTNGGGTNTAAGTTNACNCTNTAANGNNGNGAGATTCGGCAGTTGNTA

ATACTAATATANGTANNTNTTATATTTAGGAGANGAGATCAGAGACAGNCAGGACAACCGATGTATAGTGGGGAATGG

AATGGAAGTGCATGCGTAGGTACTAGGTGATGGTGGTGNGGGGTGATATNTCNTNCCCNGAAGATNTCAGTAATTAAG
CGCATGCGTGNTTCGCTGCTCATGATGTATATATNTGACTGAGACTGACTGATCACTGCTCACNNNNACTGACCATATA

TAAGTATGTATATAAACCAGTGACATGATATGATATGATGATACGATGAATATGTAGTTTACGAGTTGGCAGTGTGCAG

TGAAACCTACAGTTTTGAGTTCATGAGCTACCAAATAGTACAAGTACCACCAACTACAGGGCTACAGGGCTACAGGGC
TACAGGGCTACAGGGCTACGGGGCTACAGGGCTACAGATACAAGGACTCCAAGGAGCAAAGATATGTATGTATTCATC

ATCGTCAACTATTTCGAATCTCATAAAATCATGTATGTCCAAACTCAAAATTAACCACATTCACGCGATTCTTCTAAACC

CTTTGGTTCAATTCATCACATCCACACACGTACCCATTCCAGACTAGCTACTTTGTTTGAATCCACCAAGATTCCCTGAG
AAAGCGATCTGCCACTGCCTCGCCTATGCCACACAACCCAATAACAAAACTTAGGCTTTAATTTGCATTTATGTTTGTTT

CTCTTTCTCTTTTTATCCACTCACACTTTTACACTTTCACACTTGAGATAGCATTATCTCAAGTGTAAGAATAATTATTAT

TNTTAACCAATTCAGTTACAAGTCTCTAATCGCTGACTATTTCATATTATATACATATATGTAATGCAAAAAAGAATTTG
AATAATTTGAGATTGCCAGGTAGCTAGAATTTTCTTCTGGAGGGGAAGAGCAGATTTNGACAACATGTACGATGATGG

GGGAGCTTTTTGGACCGACAACGCATAAACTGATGAATTGGAGAATAAAGAGTGGTGGTCCACTACTTGACTTTACAG

GTTGATGAAAGAGAGGAACTTAGTAAGAATCAAAAGAAAATAAAAATATCGAGCAAAAGGCAAAAGCTTTCCACGGA
GCAATCAGAATATCTTTTTTAAGTTACTGGTTGCACAAGAAGAAAAACAAAATGGGCAGCAGAATATAAATAGCCAAT

GGCCCTCTCGAATTGGATCACCAAACCAACTCGATCTTCTCAATATCAAATACAACTAGTTATTTGGATACTTTGTGTTT

GAGTTCGAGTTTGAGCTTCGTGTATATATCTATATATATATATATATTTACTCGTCAAAAGATAAAAAGAAAGAAAGGA
AGAAAATGCCTAGGGACAGGGACCCGCTTGTTGTTGGAAGAGTGGTAGGTGATGTTTTAGACCCGTTTACAAGGTCTG

TTTCTCTCAGGGTCACTTACGGTATGAAGGAGGTTAACAATGGTTGCGAGCTCAAACCTTCCCAAGTTGTCCAACAACC

TAGAGTTGATACTGGTGGGGATGATCTTAGGACTTTCTACACTCTGGTAAGTGAAGTAATTAACGTTTAGTATACTTTTA
CTACTTTATTATAATTAGNTCTCTCTCTCTCTCTACTTTCTTCCACTCCATCTTNTTNNNNNNNATTAAGTGCATACGTAC

GGGGTCAATCCNTCCTCTTGCTTGCATGCTNNNTNNCAAnnnnnnnnnnTACATANGATACATTAATTCATTGTGCAGGTCA

TGGTGGATCNTGATGCNCCCAGCCCAAGTGACCCCANCNTTAAGGAATATTTGCATTGGTGTGTATTATTTGTAGCTTCT
CTCTCCCAAGGAATAAAGACATCTCTCTCTCTCTCTCTCCCTCCCTCTTTTCCGTAGAAATTTGTCCTATCCCAGCTATAT

AGATTGACTATATCTTCCCCCTTTGGCTTAAGCAATTTGCCATCAAAGTTGAGGTTTCGAGTTCAAATCTTCATCCCTTTT
TTGACCAAATATGTATTGGGGAAAGAGTATATATAGACGAAGAAGGATTTGCTTAGGAAAAAGAAGAATGTTCATTCA

TTTATTCCTGGTTGTTTTCGGAATATCAGTTAAATGTTGGTCTTATACTTCTGATTGTGCCAACTTTTCAGGTTGGTTACG

GATATACCAGCAACAACGGCGGCAAGCTTTGGTGAGTAGTTCCTATTATATTCTAGTTAGGGTAATGGTAGGCTTAATT
ACCACATTTTTATACCACACCGTGTACCACCTGTCAAATAGAGATGGAGCCTACCAATACAATGGGGCCCACATCTATT

AGAGAGGTTGTACATAATGTGGTATAAAAACGTGATAAATCTAGCATTTTCCTTCTAGTTATTGGGCATTTTTTCTTGGT

TTTTTTTGGTGGAGGGGGGAATATTTCACTCATTACCATATAAGTATGAGCTCCTACATTCTTACCAATAGTAATGTGAC
AGGTGTGCATAAAATTTTCAAAGAAATGTTCGATTGGTCTAGTCTACAAAGGCATAATTANNNNNCATTTGATTATATT

TTTGGATGCATGACCAATTTATAANGAAACCCCATATACGTNCATTTTCGCTTTGTTTTGGNGNTATTTCGGCAATTGGG

TAGGCAAACAGTGNNNNNNNCCGGGGTGGCGCCAGAACTTTAATACTAGAGACTTTGCGGAGCTTTACAATCTTGGAT

TACCGGTATCTGCCGTCTATTTTAACTGCCAAAGGGAGAGCGGCTCTGGAGGGAGGAGAAGATAATTAAGTTCGATAT

TATTAAGCATGTTATACTTGTAATATTATTGACGAAGCTAGTTAATCTATATATAACGTGGAAACTAATAGTAATAATA

ATTTAGCTAGCTAGTGGTAATCAATCTCCTACTAGCTAGCTAGTCCATGCCATGGCACTAGGGCACTAGGGCACCAGGG
CACAGCATGTTGTATGCTTGTTTGAGACTACATCCGTACGTCTCCACTTTCAAATTAACAAGGCTAGCTATATATATATA

TATATAATAATAATAATTAAGTAAATGTCAAAGTTCTCTTCTTCGGTCGAAGGGGATGTCGACTCCATATAAATACAAA

GTGTCGATCAAATATTCATATTATATTATATTTTCCATATTTATTATAGAGATCAATTCAATTGTCAAATGATGAATTAT
TATGTACTTTCCATTCCATGCATGTAACATGTTGTCGTCTAGTGCTACTCAGACGACATTGCGGTCAGCTCAGGCATCAT

TTCTGCNAACTTCTGCACTATAATTCCCACTAATTCTCACATCCCATTAGTTTGACTAACACCAACAAAATATGTTTTTG

GTCATACCTAGCTAATAATAATAAACACGCAATTACGAATCTGGCAAATTATTCAAATATATATATATATATATATATT
TACACAATAAATATATGTTTTTCAGTATGGCATTCCGTACAGTTCACCTACCGTCTATACATGTTGTAAAAGAATCCATG

CAAAATAAATAAACTATAACTATATGTAATCTATATATATAAAGTAAAAGACAGAGAATGGTGAAACATTTAAAATAC

CAAAAAATGTCCTTGGTTAATGCAAACATTAAGAATTGAAATTATTAATTAAATGAGGATAATATGGTAAATTCACAAT
TTTTCGTATTAAAAAAATTAAAATTAAAAGAAAATTCAGATAATGGGTCCTATTTTTATGGAACACAAATATCCATTCT

CTTTTTTAATTCTAAAATAAATTTAAATTTTTTTAAAAAAAATCTCTCGCATGCGCGGAAGCGCGTGCAGAGAGGCTAG

TATATATTAATTAAGGATTAATTACAGTTTAGTACTATAGGGTTACACCTTTAAGACATGTTAGTCCCTATCTTTTCAAT
TTTAACAATCACATATCCTGATTTTTTAAATTTGTTATAATGTAGTTTAACCGTTAGGTTTCCGTCAGATTTCTCTTTTTA

GTTGTCTGCCATTATGGGTCTCACATTTTTCAATTTTTATTACTTTTAATAAATGGATTAAAATTAAATATTTAATTTATT

TTTTTTTTAAAAAAAATCTCTCTCTCTCTCTCTCTCTCTCATGCGATTTCTTCTCCCTCCACCGCTTGTGATTTTCTAAATT
TACATATTTTAATCTATTAGTTTATATGACAACACAAAAATTAAAAGATTCTCCATTTTCCTTCACTTTCTCACCAACCA

AACACTGACTTTGCAAAAATGAAGAAACGGAAAAAATTGAGTTCGGGGTTTGGGGCTCTCGATTTCTTTCCCTCGCCCA

AATTTCTTCCTTCCCCCCGAATTTCTCCCCCCACCCAAATTTCTTCTCCCCTTACCCTCCGATTTCTTCTCCTCATCAAAC
AATCAACATCCAAGCCACAATCAAAACAGAGGAAGTGGGGAAGAAATCGGCTACTGTGATTTCAAAACTGGTTATTTG

ATCAGATCTTTATTGGTAATTGGAAGGGGGAAGAAATCGGAGGAATGAGGAGGGGGAAGAAATTGGAAGGAATGAGG

GGGAGGANGTCNAAGTANTTGCGGGNNGNGGTTTGGGTTCGTGTGNTNNNNGTTGNNNGCTCGGG 
 

Appendix L: Map-based cloning of FLOWERING LOCUS T (FT) from the Goldrich 

cultivar apricot BAC library. 
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> TFL sequence from apricot Goldrich cultivar 

GTCCAGCTTGNANNNNCNGAANNAAAAAAAAGTAGTNGGNTNNTNNTATGGAAANTCNCCNNNTTNNCATNNCGNTN
CNGGAACTNNTNTGAAAATCACTTTATTTNATCCGAGTTATATATATGAGATGNNCTNTCNCANCAAAANCAGTATANC

AGCNNNCCAGGCACTCATAGAGGTGGAGTTCCTTTATGCCCTCAGCCNGTTTTCAAAGATAGAGANTCTCTNTGAAAAT

GTTGAAATTCCCTCTGTTTCNGTATTTATATATGCACNCATTCAACATTTTCTTCTGATTACCCAAACTGCAAAAGATGA
ATTTCCTTTATAAGCTTGTGAATGTTCAGCAAGAACCATAGACATTTTGCTGTTTTTGCTGTGTATTGCTTTTTATATATA

TATACATATATAATAGCATGAATTGACAGCCATGGAAACGTAAGGACCCCACCGTGGCATGCAGGATTGTATATAATA

ATGGTTTTCTGGCCTGACCATGGAAAAACATCCCCTCGTTTTGAATAAAAATGTTCAATAATTAAGTGCACAGCCAATC
AAATCAAGAACCAATTCCAAGGGACCCAATTAATATGAGAGGCACAGATATATAACATAAGTATATTATGCATATTAT

CCTAAATAAGCAAAAATTATTGCATACACCACACAGTTAATCATAGAAAGCGTGTTAATTAGTAAAAATCTCAAAGTC

GTCATAAGAGCACATAATTCAACTTATTATGTTTGATTTTGATATGGCAAATCATTACAAGAAAAATTGGCTAGTGTAA
TGAAATTAAAAGTGACGTTTGTAAATTCGTCACATGTGGTTGGAATATATGAGGAATTTATTTGGTCGTCACTTATAGA

ATGACTAAGAAAACAACAGTTTGTGAAAAAGACCAAAGTCGTCACAAACATGAGCGCGATTCTAGGTGGGAAAGACT

AACAAGTGTTTGTGATGCCAATAGAGTCACACATAAAATTCTAATGCGTCACAAATATTACATGTTGGAATCTCTAGTG
AAAAAAGAGAATACAAAAAGAANGAGAGGAAAANTTCCCTNCCCNAAAGAAAAAATATATATTTCNGGANTTCTTTN

GGTCATCGCATATAATNAATTATGACAAATTATGTGAGGATNGGGCCTCACTTATTCACATCTAATATTGANGAAACCN

NGTTATAGAATTAATACAACCGTNANACATACAGGAATTTTTCTGGAAACGATACCACTAAACTCTGTTGATGTGACAT
AGAAAAGAGAGGGTGGGAGGTGGGGGACTGGCTAACAATATTTTCTAGAGATGTCCCTATTATTCTATGCCTTTATACT

CTTTCTTCTTCTTAATGCCTGTCTTAAAACACATAATAGAGATCTAAAGTAACTCGCTTGAAAACACTATAAATATAACC

TTACAGGAATTCCACTACCAAGCAACATAAGAAGTACATCTCTAATTCCTCCTGAGTTCTTATCTGTTAATCTTTGATCA
ATAGCTACACTTTCTTTCTCACTCCTCATTCTCTCTGTCTCAAAAAATGGCAAGAATGTCTGAGCCTTTGGTTGTTGGGA

GAGTGATAGGAGATGTTCTTGATTGTTTCACCCCAACAACAAAAATGTCTGTCACTTACAACACCAGGCTAGTCTGCAA

TGNNNATGAGCTGTATCCTTCTGCTGTCACCACCAAACCTAGAGTTGAGATTCAAGGAGGAGATATGAGAACTTTCTTT
ACTCTGGTATATATATCTATACAAATTTCCAATATTTCTCCAGACTCCCACTTCAATTAATTAGATTTTGTTTCTCTATGA

GTCTCCATTATCGGATCAATTTGATTTTACTTTGCATCTCTTGTGATATAGTTTTCTTGTTATTGCAGATCATGACAGACC

CTGATGTTCCTGGCCCTAGTGATCCTTATTTAAGGGAGCACCTGCACTGGTATACTTATTAACCCACTATCAAATTAACC
TAGCAACAAACTAATCAATTAAAAGACAAATAAATATTCACTTAATTGATTTCATGAGCATGCTACGCTAGAGCAGATG

TACTCCCCCTTTTGCCCCCCTCCTCTCACCCCCACACGTGCTGGTAGTTTAGATTAGATTAAAGTAGAACATATNNAACC
CATAAAACAATGGTCCAGATACAAGCACCTAACAGTCCTTCCGTACTTGTTAAGCATAAAAAATGACTTCAGTCAAAGC

TTCTAATAGTTTGTAAAACATTCATTGTATACCTCTACATAAACCTTGTTTTTGTTTGCGTTTCTCAATTATTTGTTCATA

AATTATATTCAGAATTTTCAAATTTCATCTAATATATATAAATATATGAACTGATACCTAGCTAGAATAGCANGCTAAA
AGTTGTCTAAGTATAAAGATACCTAGCTAGGAACTGACAAGTTTGCTTTAATTTTGAACTAAACCCAGGATTGTGACAG

ATATTCCAGGCACCACAGATGCCACATTTGGTAAGTCAAATAATGTTTTCTTTTTTGATTATTTTCCCCATTTTAATTAAC

TTAACTGTGGTTAGATTAATTGTAAATTAATTTNACAGGAAGAGAGGTGGTGAGCTATGAGATGCCAAGGCCCAACATT
GGCATCCACAGGTTTGTGTTTGTTCTCTTCAAGCAGAAAAGAAGGCAGTCTGTGAACCCTCCTTCCTCAAGGGATCATT

TCAGTGCTCGAAGCTTCGCAGCTGAAAACGACCTGGATCTTCCTGTCGCTGCCGTTTACTTCAATTGCCAGAGAGAAAC

GGCAGCTAGAAGACGCTAGCTAGCTACCCAGAACCCCAAAGCTCCTCCATAATATGTTAATTTTAAATAAAATTATTAT

CAAGTGTGTTTCATCATCCTCCCTTGTCGTTAGAGTTGTATTAGGCTAAAACTACTCACATGTAACCAGAATAATTTCCA

GTCAAGAGAGAGCAAGGTGCGTTCGGCTCTGTCATTTTGCTGCTCTCTGATCGGACTTTATGAATTAATTTGCAGAAAG

TTTGAAGTCTCACCTGACCATCTGTGAAATATCTCTCTATGGGGTTTTTAATTTATATTTTATTATAACGGGACAGGTGG
AACCAAACGTCCCACTTTTTGTCCTTTTTAAGTTAGGGTTTTGGCTTCCATTTCGACTGGAAAAGTAGAAGACCCTCTAT

TATTGACTTCATCTCTTCTTTCCAGTTTAGGGTTTTGGGTTGCACCACGTTTCAAGCTCAGAAATATGTGCGATTTGACA

GCAGTCAGTCACACCACATCCAGCTATGCCGACGCTTATAATAAAGAGGCAACTAGTATTTTTTTGCTTTTGAGAACNA
ANAAACTAAANCCTAAAACNTCTGTCANTTGATAGGAAAACAGCCTCAAATTTTATGCTTATGAACCCTAATATTATAT

GAGTTATTAAATTATTGANCTTTTCNACCNTGAATTTATGGGTTTATTTATTTCCCCTCTTCATTTTNNACATGGGTTTAA

TTTTCCCAATTATGGANNCNTGNCTATTTNAGTNNAACAAAAACGATAGTTAACGGGNTCNAGNNNNNTGAAAAATGA
TNTNAATNNCTA 

 

Appendix M: Map-based cloning of TERMINAL FLOWER (TFL) from the Goldrich 

cultivar apricot BAC library. 
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> MPK7 sequence from apricot Goldrich cultivar; STOP CODON within 2nd gap (971 bps estimated from mRNA). 
AAGCTCAAGTGGGACCCCCCACCCACCGAGCAAGCTCAAGCTAGCAAAGGCAACCGGCCTCGGGCAGCTGCCACTTTA

CACGTGGCCCGCCGCTTGCTTAAGGGAGGAGAAGTGAGCATATCATGGGAATGTTTCTTTGAAAGATTCACACGAGAG

AGAGAGAGAGAGAGAGTGAATGAATGAATTGTAGGGAAAGCAAAGGCAAACTTTCAACCTTGCCATATCTTCAAGTTG
GACTGCCACCCCTAGGGTTTTTTAGGCTTTACATTCCCAGCTGGCTAACTTAGAGCTCCCACCCACCATAAACTTTACAC

ATAGTAATATACATCAGCATTATAAAATCACTAAATCATTCCTTTTTTGTTACACATAAAATAACAAAAAGAGTGTGAG

CCATCTAGTTAACCTAATGGTTAATCTAAAGATCCTTAGATTCGGAGAGCCAAATTTTAAAACTTAATAGCAAATGACT
TTATGATTTTTTTTTCTAAGTGTTAAAAGGGTTGTAAAAGAGGTGGGAGCCAAGGCCACCTTGCACCTGGCTCTAGTTAT

GTCCGTGCTAATGGTATTTCTTTTCTGTTCAAGTTCGAAATTCCCGTATACTATCAATGTATAATCCAATATATAATTCAT

AAAAATTAAGCTATAATTACTATTAATATTTCTAAAAATAAATATTTTAGATCTCTTAACTATAATTACCATATTAAATT
TTGGTGATAATACTTTAAAATTAGAAAATTATTGTGCCGTTGAAGACATAAATTTCCAAATAAGTAAGTGTTGAAAAAA

GGTATATACATGAGTGAGAGAGACTTTCCCTGTTCCTTGTGATAAGTGATTGACTGATAAATAGTCAGCCAACCAAACC

AAGCCGAGCTGACAAGGAGCCGCCGTCGGCAGGCTGCGTTGGCGTTGGCGCTGAGCGTGAGCGTGTTTGTTTCTTTCAT
TTCCATGATTTGGTTGTGTTGATTGCACATGAAAGAAGCAAGAAAACGAAGACCGAAAGAGAGATGGATGTTAAGAAG

AGCTGTCGTTTCTGAGCAGTTTTTGTACCGAAATTTGCCGTCGTGTCATGGGTTTGGCTCATTCTCATTTCTCTGCCCCAT

TCCCCCAAACCCAAAACCAACCTTTCGTTTCTTCTCTATATAATATAACCCATGAGCCTCTCTCTCTCTCTCTCTCTCTAT
AGTATTTGCGTGCCATGTAGCGTGTCGCTAAGATCTCTCACTGATCACGACGAGATAACGAATCATAACTCGTGATGAT

CTGATCACTACGAGCTTTTGAGCCATTTGCTTTTGAGCCATTTATATCTATATATATTNATAGATAAAGGAGGGATCTGC

ATAACTACATGCCACTGTCTCCACGACCNNAGAnnnnnnnnnnCTCTTCTGGGTTTTTTTTCTTCTTCTTCAATTTTGTGTAA
AGTCGTAGAATNGAGCTGCGAATTCATGAATTGGGTATTAGGAAGTGAATTTGGGAGCTTCTTGTTGGGAAAAACCTTG

CTTTCATAGCTTAGCTTTGTTCAATTTTGAGTTTGAAGGCATGAAACAGATAGTGTAAAAGGTGGAGAGTTTTTGGTGT

GAATGGGATTTGAGAATTGCTGGGTCGACAAGGAAAAGAAAAAAAAAAAGGTTTAGGAGTGGACAGAGTGGGGTTTT
AAGAAGAAAAAGAGAAAAGCCTAAAGGGGAAGTGAAATTTTTTTATAAATATAAAAAAGGTAGGAAAAAGGCAACGA

GAATAACTCAAACAGGGAAGAGGGTGACCGGAAAAGATCCAAGCCCAGAAGTGGTAAGGGCAAGTAAGGATTGATTC

CATTCTAAAGCCTCCTTCTTCACACACGCAAATACACCAAGACGTATTGTTTTCTAGTTTTGTATTATTTTCATCTAGTGC
ATGTCATGCACTTCAACTTTTGTCACTTGTTTATGTTCCTTGTCTAAATTGTTGTTCCAACCAGCTTCACCAGTAAGTTAA

TATGGTAATTCATGTTGTTCTTATTATATTTCATTGCCTGAAGGTCACTTAAGAAGCATTTGTGGTTTTAAGTTATACTGG

GTATTGATTCATTTAGACCATTTTATGGTGATTTGCANAAGAAAAAACATGGCAACTTTAGTTGAGCCTCCAGATGGAA
TTAGGCAACGGGGGAAGCATTATTACTCAATGTGGCAAACATTGTTTGANGTTGACACCAAGTACGTTCCGATCAAACC

CATAGGGCGAGGANCATATGGNATAGTGTGCTCATCNNTCAATAGGGCAACNAATGANAAAGTTGNAATCAAGAANA

TCNATANTGTGTTTGANAACCNAATCGANGCNTTGAGGANTCTGANGGANTTGAAGCTTCTNAGGCATATCCNGNACN
ANAATGTGATTGCTTTNAAGNNNNNTATGANGCCNATCCNCNGGANNAGTTTCANGGATGNGNANTTTGNTTATGnnnn

nnnnnnAGTGTACGACTATGGTTCTGTATTATCGATAATGCATGTAAGATATTTCCTAAGAAAAACCAAGGGAATTGAAT

AAAGATGCATCTATTTTTATTATTGTTATTTTCTTCTCTCTTTTTTTCTTTTCTTGATTTCTCTACTCAATCTTAATAGGTA
GATGCATGGGTCACTTACTCAAGCATATTGTATATGTTGAAACGTTTGCTGGTCTGGTTTACCTGAAAGGAAGTTATAC

AAATCTTTCCTAAGTACTTTCACTTTATGATTTGGGCCATATGCTTAATAGTTCAATGCCCATCAGAAGTAAGAAGGCCT

ATCCTAGGGCCAGCCCAAGTGGTTCAAGAGTCATTATATAGTGAGGGCCTTACATATGGCTCTTAGGTAAGGCCGTATC
TCTTCATTGTTAGATCAGATTAGCTAATATAATCTAACGGTTAACCAATTTGATCAACAAAAAAAGAGATTATTATCAA

AGCTGCTACATGGAACGGAATGGAATGCTGCTTTTTAGGAAAGCACGCACCCTATATCCTACTCTTAAAAAGCATGTCA

CTTCCAAAAGTTCTATTAATAAAACAGAGCACACAATTTGGGACCCAAGACCCGATATGCGCCCAACTTTTCTTGACCC
CCAATACCCACTAACAGCCCACCACTGCCCACTGCTCTTGCCTGGTTTCCTTTTGCCTTCCCTCCCTTCTTTTTCGAATAA

CTGGGTCCAAGCCTCCAAGGCAACTTGCAAGACCGTGTGCTTTTTTAAGGCACAGAAAAAAGTTGCTTCAGATTTCATT

GGTTTTCATATATCTGCTTGCTTGTGTTCACTGTTCAATACGCTTGAAAAAGAAC  
 

Appendix N: Map-based cloning of candidate genes for MITOGEN ACTIVATED 

PROTEIN KINASE 7 (MPK7) from the Goldrich cultivar apricot BAC library. 
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Appendix O1: Map-based cloning ABSCISIC ACID–INSENSITIVE 3 (ABI3) from the 

Goldrich cultivar apricot BAC library and the 2 allelic variants of Perfection and A.1740 

apricot cultivars. Sequence alignment performed with MUSCLE v3.7. 
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Appendix O1: continued 
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Appendix O1: continued 
 



 185 

 

 

 
 

Appendix O1: continued 
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Appendix O2: Gene Phylogeny of ABSCISIC ACID–INSENSITIVE 3 (ABI3) alleles from 

Goldrich cultivar apricot BAC library, 2 allelic variants of Perfection apricot cultivar and 

2 allelic variants of A.1740 apricot cultivar. Phylogenetic analysis was based on 

Neighbour joining tree using PID, following alignment using MUSCLE v3.7. 
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Project Summary 

Nitrogen, the most limiting element for the nutritional needs of the ecosystem, is 

commonly assimilated as nitrate yet it is often a major source of groundwater and surface 

water contamination in the form of inorganic nitrate fertilizer. To solve the resulting 

environmental and human health problems estimated to cost many several billion dollars, 

interest has revolved around biological nitrogen fixation in plant-bacterium interactions. 

Rhizobium-Legume genes implicated in biological nitrogen fixation have been revealed 

by means of functional genomics and now provide the long-awaited insights into these 

complex interactions. Despite the vast amount of knowledge, which has provided a 

significant amount of our understanding about plant-microbe interactions, using the 

Rhizobium-Legume model systems still seem remote for utility in the genetic 

modification of commercial crops lacking the trait. With the advent of recent molecular -

omics technologies and tools, organisms which in the past were considered intractable for 

basic research are now used for cutting edge studies because they now present unique 

opportunities to broaden and enhance our understanding of the evolution of various 

specialized biological systems and their divergent functions in different plants. 

Here, we propose an approach to bridge the gap between plant-microbe symbiosis 

systems and commercial crops by implementing and integrating high throughput 

approaches including sequencing, transcriptomics, comparative genomics, 

phylogenomics and metabolic profiling. The experimental design exploits the recently 

evolved nitrogen-fixation symbiosis of the Frankia-Actinorhizal species. In view of the 
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recent emergence and diverse evolutionary lineages, the seemingly huge divergence from 

the ancestral Arbuscular Mycorrhizal symbiosis, which pervades most plant families, can 

now be tractable for in-depth scrutiny on a molecular scale. The project aims to dissect 

the molecular components of the poorly understood Frankia-Actinorhizal symbiotic 

association by: 

1. Differential expression transcript profiling of Frankia and Cercocarpus based on 

pyrosequencing and cDNA-AFLP techniques and concurrently generating EST libraries 

of symbiont and host for further studies. 

 2. Annotation, Characterization, expression studies of the transcripts and utilizing 

transgene strategies to understand specific gene pathways. 

3. Comparative studies of gene structure and expression patterns to delineate the 

evolution and biological uniqueness of the trait.  This will enable simulation of 

evolutionary trends across both nodulating systems and their closely related non-

nodulating Rosaceae species. 

4. Integration of the differentially generated transcripts and metabolites to enhance 

understanding the roles these genes and associated metabolites within the signal 

transduction pathways of nodulation. 

The feasibility of transferring this trait from a model organism to closely related crops is 

strongly supported by preliminary studies which vary from in silico to experimental 

studies. These studies range from the heritable vascular uninfected nodules in Apple 
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(Malus x domestica) to high identity matches of nodulation gene sequences lacking in 

other distantly related species. Ultimately, the novel approach holds promise to elucidate 

the molecular mechanisms conferring plant-microbe interactions within an evolutionary 

context of symbiotic nitrogen-fixation 
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Introduction 

Symbiotic associations between microbes and plants have received much attention due to 

their effects on plant morphogenesis, nutrition, infectious diseases and understanding of 

basic cell biology. These associations ranging from parasitic to mutual symbiotic 

interactions are critical to food security and nutritional needs of the ecosystem (Vance et 

al. 2002, Verghese and Misra 2002). These essentials rely heavily on the availability of 

fixed nitrogen, which is the most limiting element for the synthesis of proteins, amino 

acids, nucleotides and vitamins. Biological nitrogen fixation is a very cheap and 

sustainable source of soil nitrates unlike fertilizer application. Furthermore, fertilizer 

applications create a fully nitrogen-saturated ecosystem, which leads to several harmful 

consequences to the functioning of the ecosystem. The ensuing negatively charged 

nitrates (from ammonium build up) carry along with them positively charged alkaline 

minerals into groundwater, surface water and the atmosphere. Besides leaching of 

nutrients, the acidified soil leads to the mobilization of Aluminum ions with 

accumulations reaching toxic concentrations that damage plant roots and eventually top 

soil structure degradation (Aber 1992). The two major plant-bacterium systems involved 

in endosymbiotic nitrogen-fixation include Rhizobium-Legume and Frankia-Actinorhizal 

interactions. Based on phylogenetic analysis using rbcl chloroplast gene sequences, the 

Legumes and Actinorhizal plant families belong to the same Rosid I clade, suggesting 

that a genetic tendency to form root-nodule symbioses originated in a common ancestor 

(Soltis et al. 1995, Doyle 1998, Hocher et al. 2006). 
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Understanding the basis of symbiotic relationship is crucial to unraveling the persistent 

environmental and resource conundrums experienced before and even more intensified 

after the green revolution. We propose a concerted and coordinated genomic analysis of 

the symbionts and hosts involved in symbiotic nitrogen fixation. Genome analysis, in this 

context, refers to the structural and functional analysis of the DNA including the genes, 

expressed proteins, the metabolites involved in the signal transduction pathways, as well 

as non-coding sequences involved in genome dynamics and function. The study will 

complement the extensive databases and well studied Rhizobium-Legume symbiosis with 

the molecular studies of the basal clade of the Actinorhizal genera (Cercocarpus, 

Chamaebatia, Cowania, Dryas, Purshia) in the Rosaceae family (Potter et al. 2002). This 

study of the Rosaceae Actinorhizal symbiosis will broaden our knowledge of symbiotic 

nitrogen-fixation beyond the Rhizobium-Legume symbiosis, while providing novel 

insight to the biology of Actinorhizal species.  

 

Present State of Knowledge 

The genus Frankia, formerly considered a filamentous fungus due to its hyphal 

morphology, was revised and renamed as an Actinobacteria in the family Frankiaceae 

(Becking 1970). They consist of Gram-positive bacteria, which nodulate 8 plant families 

(Betulaceae, Casuarinaceae, Coriariaceae, Datiscaceae, Elaeagnaceae, Myricaceae, 

Rhamnaceae and Rosaceae) comprising a total of 25 genera (woody, dicotyledonous, 

perennial angiosperms). They are mostly pioneer species in nitrogen-deficient soils, 
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hence establishing and sustaining forests (Silvester, 1976). Economic importance 

includes use in regeneration of waste lands, as windbreaks, pulpwood, fuel and timber 

wood, in human diet, as forage for livestock, ornamental and horticultural applications 

(Silvester 1976, Verghese and Misra 2002).  

Though there are many similarities between the Rhizobium-Legume and Frankia-

Actinorhizal systems demonstrated within their application and functional context, 

questions abound about differences that hold promising insights into novel mechanism in 

plant-microbial interactions. Some of these questions include the incongruence in range 

of host plant family, highly variable growth rates and taxonomically diverse symbionts 

that retain similar quantum of fixed nitrogen (Verghese and Misra 2002). A major 

advance in Frankia-Actinorhizal molecular biology will require a comprehensive 

approach to dissecting genome-wide machineries exclusive to each and common to both 

host-symbiont systems. 

Nodules are commonly modified lateral roots and are mostly initiated via root hair 

infection in most Legumes and some Actinorhizal species (Alnus, Casuarina, Comptonia, 

Myrica (Torrey 1976, Callaham 1979, Berry 1983). Root hairs curl around and entirely 

encapsulate the bacteria that divide to form a micro-colony and migrate down an 

infection thread (initiated by plant host) into the inner cortical cells (Geurts et al. 2005, 

Riely et al. 2006, Stacey et al. 2006). An alternative approach to circumvent inhibition of 

root hair curling by ethylene in the aquatic Legume Sesbania rostrata allows bacterial 

(Azorhizobium caulinodans) invasion on submerged roots and stem via intercellular entry 
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(D‟Haeze et al. 2003, Den Herder 2007). Actinorhizal species such Ceanothus, 

Elaeagnus and Shepherdia also utilize this mode of infection via direct intercellular 

penetration of root epidermis cells and cortex, but unlike in the Rhizobia counterpart 

(Den Herder 2007); Frankia does not require gaps in root epidermis for entry (Miller and 

Baker 1985, Racette and Torrey 1989, Liu and Berry 1991, Vessey et al. 2005). The 

relationship culminates with a controlled exchange of fixed nitrogen and the plant carbon 

source required for the energy demanding process of nitrogen fixation in the symbiont. 

Unlike Rhizobia that utilizes simple sugars (mostly sucrose) from the photosynthetic 

plant host as its primary of carbon; Frankia strains are suggested to rather utilize lipids 

based on studies reporting lipid-rich Alnus nodules (Maudinas et al. 1982) and 

exponential growth rates of Frankia isolates in culture supplemented with long-chain 

fatty acids (Selim et al. 1996, Verghese and Misra 2002). Conversely, a report of high 

levels of sucrose synthase expression in Alnus Glutinosa nodules elicits questions about 

possible multiple carbon sources and preferences (Van Ghelue et al. 1996, Vessey 2005). 

Genes involved in nodulation 

Rapid increase in our understanding of molecular interactions between Legumes and 

Rhizobia elaborate a molecular dance in which plant and bacterial partners signal and 

respond to each other through a complex series of feedback loops resulting in 

differentiation and initiation of specialized root structures (nodules) to house the bacteria. 

According to recent studies by Normand et al. (2007), BLAST Searches for nodulation 

gene homologs in Frankia have been further enhanced with the availability of 3 
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completely sequenced genomes of Frankia strains to date. So far, evidence for nod gene 

clusters has not been confirmed in any of the genomes. The nodABC genes in Rhizobium 

code for the nod factors (decorated lipo-chitin-oligosaccharide) elicited by plant 

flavonoids and which in turn trigger a cascade of signal transduction events in the plant 

host response for bacterial infection (Long 1984, Verghese and Misra, 2002). The NodA 

ortholog was completely absent from the available Frankia genome sequence though 

orthologs of the NodB and NodC were found but at low identity levels (32-48% and 24-

43% respectively). Likewise, the NodD gene responsible for inducing nod factor genes 

and NodO gene were discovered with a low identity. These low levels of identity do not 

seem to support that the typical Rhizobium Nod factor genes are responsible for initiating 

early infection in Frankia since many organisms show similar low identity matches. 

Furthermore, the homologs lack the synteny observed in Rhizobia nod gene clusters. To 

further verify similarities in the early stage of nodule development and genetic 

components, multiple attempts at genetic complementation of Rhizobia nod mutants with 

Frankia DNA (Chen et al. 1991, Reddy et al. 1992, Ceremonie et al. 1998) and 

hybridization of both symbionts did not yield satisfactory results to implicate nod genes 

in Actrinorhizal symbiosis (Simonet et al. 1988, Verghese and Misra 2002). An 

alternative strategy has been suggested implicating the Frankia pel genes, which have a 

high sequence similarity with the pectate lyase gene from Erwinia chrysanthemi (plant 

pathogen) and is responsible for invasion of host cell by degradation of pectin (Seguin 

and Lalonde 1989, Verghese and Misra 2002).  
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Interestingly, Rhizobium strains (photosynthetic Bradyrhizobia strains: BTail and 

ORS278) forming functional nodules in Aeschynomene sp. have been reported to also 

utilize alternative signaling strategies to trigger nodule formation (Chaintreuil et al. 2001, 

Giraud and Fleischman 2004). Similar to Frankia, their genome sequences reveal the 

absence of symbiotic genes (nod, nif or fix) on islands and low levels of synteny. 

Homologs of nodA and nodC from BLAST searches yielded identity scores of 33-36% 

(Giraud et al. 2007). Transposon insertion mutagenesis libraries suggest that a purine 

derivative may be involved in initiating the symbiosis (Giraud et al. 2007). 

Downstream of the initial signal, genes with high sequence similarity have been 

implicated in functional conservation though phylogenetics studies propose a lateral gene 

transfer from Rhizobia. The uptake hydrogenases (hup) gene conserved across nitrogen-

fixing bacteria species are used for recovering loss of energy by scavenging for hydrogen 

generated during the nitrogen fixation process is an example of a gene suggestive of 

lateral gene transfer (Leul et al. 2007). The hup genes are reported in all 3 sequenced 

Frankia genomes (Normand et al. 2007) and have been confirmed to hybridize with the 

Bradyrhizobium hup gene (Verghese and Misra 2002).  

Regulation of symbiosis 

To mutually optimize benefits, interactions between host and symbiont are delicately 

synchronized to levels where the genetics and physiology of both organism appear to 

function nearly as one, however, the exact nature of controls involved are not very clear 

(Verghese and Misa 2002, Vessey 2005). At a glance though, expression patterns evocate 



 197 

three factors comprising the host, symbiont and environmental influence (Verghese and 

Misa 2002). 

Many investigations suggest a dominant though not exclusive role played by the host 

regulation in recognition and selection of strains at infection; nodule development; 

selective suppression of host defense genes leading to growth of symbiont while other 

strains or pathogens are constrained; controlling leghaemoglobin levels, thickness of 

vesicle walls and host cells barriers for proper functioning of the bacterial nitrogenase; 

regulating metabolism in nodules by altering demands for fixed nitrogen, export of 

available ATP for synthesis and regulating the amount of carbon compounds available to 

the microsymbiont (Verghese and Misra 2002). These levels of control have been 

elucidated in variable nitrogenase activities (nitrogen fixation rates) of Frankia in pure 

culture and in situ conditions for various strains found in different nodule morphologies 

(Reddell and Bowen 1985, Dawson and Sun 1981, Sougoufara et al. 1992, Verghese and 

Misra 2002) 

Evolution of nodulation 

Unlike the relatively poorly understood Frankia-Actinorhizal symbiosis; the complex 

biology, genetic components and regulatory pathways of Rhizobium-Legume symbiosis 

is one of the best-studied interactions between prokaryotes and eukaryotes. However, 

little progress has been made towards transferring this knowledge to benefit or induce 

this trait in non-nodulating species, even though this goal has been a priority. Credit has 

been given to the puzzling and complex network of feedback regulations of the symbiosis 
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and the lack of multiple genetic components in non-nitrogen fixing species. Since studies 

indicate that the nodulation pathway evolved from the more ancient Arbuscular 

Mycorrhizal symbioses found in most plant species (Duc et al. 1989, Kistner & Parniske 

2002), it is only rational to anticipate that the evolutionary divergence of nodulating and 

non-nodulating species can be bridged.  

It is striking that the single Legume family contains both perennials and annuals that form 

symbiotic root nodules, while the more taxonomically diverse Actinorhizals known till 

date are all perennials. This raises questions about a possible evolutionary significance. 

Annuals are typically known to have evolved from perennial ancestors (Laroche and 

Bousquet 1999) and have higher rates of evolution (Eyre-Walker and Gaut 1997, Muse 

2000). This trend correlates with phylogenetic inferences from molecular data rooted 

with characterized Legume fossils (Lavin et al. 2005), which reveals the order in which 

nodulation evolved among Legume subfamilies i.e. Caesalpinoideae (most primitive, 

mostly perennials), Mimosoideae (mostly perennials) and Papilionoideae (more annuals) 

are comprised of rare, common and very common nodulating member species 

respectively (Allen and Allen 1981, Sprent and James 2007). It appears Legume annuals 

have evolved at a faster rate considering that their Rhizobia symbionts have a very 

narrow host range, while the tree species studied to date show a wide range in specificity 

and are generally promiscuous in the Rhizobia with which they nodulate (Batzli et al. 

1992, Odee et al. 1995, Sprent and Parsons 2000). Indeed, most of the Rhizobial 

symbionts described have been isolated from tropical/sub-tropical Legume trees (Moreiro 

and Franco 1994, Sprent and Parsons 2000). Simonet et al. (1999) suggests an initial 
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promiscuous state in which any species in the family nodulate indifferently by a variety 

of symbionts but some associations might have evolved to an intermediate state in which 

selection favored particular associations for higher efficiency. 

Similar to the seemingly slower mutation rates in tree Legumes, some Actinorhizal 

species are known to have an even broader range of host specificity (Benson & Silvester 

1993, Kohls et al. 1994, Vanden Heuvel et al. 2004) suggestive of a recent incidence of 

the trait.  

 

Preliminary Research 

Rosaceae genomic resources 

Central to the preference for Rosaceous Actinorhizal species as taxa of choice for 

detailed study of Actinorhizal symbiotic nitrogen fixation is the available and extensive 

genomic resources in the Rosaceae community which is unparalleled by other 

Actinorhizal families. EST databases for Rosaceae species are highly enriched with 

genome-wide sequences across the family at the Genome Database for Rosaceae (GDR: 

www.mainlab.clemson.edu/gdr/). It includes annotated unigene data sets for Malus 

(82,850), Prunus (23,721), Fragaria (10,012), Rosa (2,963) and Pyrus (271). They 

represent 3 of the traditional 4 Rosaceae sub-families including Rosoideae (Strawberry, 

Raspberry, Rose); Maloideae (Apple, Pear); Amygdaloideae (Peach, Almond, Cherry, 

Apricot) and subfamily spiraeoideae (Schulze-Menz 1964). The classification of the 

http://www.mainlab.clemson.edu/gdr/
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Actinorhizal genera within Rosaceae has been unclear and they were originally placed in 

the subfamily Rosoideae along with Strawberry but recently classified (Thorne and 

Reveal 2007) in the subfamily spiraeoideae and tribe Dryadeae, which includes 

Cercocarpus, Chamaebatia, Purshia and Dryas (Morgan et al. 1994, Takhajan 1997, 

Potter 1997, Evans et al. 2000, Potter et al. 2002). Besides these EST resources, 

extensive large insert BAC libraries are available in the Abbott laboratory and through 

collaborations. Available BAC libraries include Peach, Apricot, Plum, Cherry, Raspberry 

(Scottish Crops Research Institute), Strawberry (V. Shuleav, Virginia Tech, under 

construction in the Abbott lab), Rose (T. Debener, University of Hannover, Germany) 

and Apple (S. Korban).  Furthermore, physical maps are been developed from this 

libraries for Peach (Abbott laboratory, in completion), Apple (Korban laboratory in 

progress), Strawberry and raspberry (Abbott et al. 2006, USDA grant proposal).  

Data mining for Rosaceae and Frankia orthologs of nodulation genes 

The extensive genomic resources provide an exceptional opportunity to study the system 

biology associated with the Actinorhizal nitrogen fixation.  In this regard, we mined the 

Rosaceae EST database for all known plant genes associated with nitrogen fixation in 

Legumes and have identified many of the major players with significant high similarities 

(Data available on request). Genes from several Legume species were used for the 

BLAST search and this include genes at all stages of nodulation (signaling, development 

and functional stage, Table P2 and P2).  
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Table P1: Genes Identified by mutation in model systems as being involved in nodulation. 

Gene name Gene product 

Sequence 

orthologs 

in other 

species 

EST hit in Rosacae with bit score > 60 

and E value <-12 

NFR1, NFR5, LYK3, LYK4, 

NFP, SYM2, SYM10 

LysM receptor 

kinases 

yes Prunus persica, Malus domestica,  

Pyrus pyrifolia, Pyrus communis and 

Rosa roxburghi 

DMI1, CASTOR, POLLUX ion channels 

 

yes Prunus persica, Malus domestica 

DMI2, NORK, SYMRK, SYM19 LRR receptor 

kinase 

yes Prunus persica, Malus domestica, 

Pyrus pyrifolia, Pyrus communis, and 

Rosa roxburghi 

DMI3 Ca
++

/Calmodulin 

receptor kinase 

yes Malus domestica, Fragaria x 

ananassa, Prunus armeniaca and Rose 

hybrid cultivar Asami 

NSP1,NSP2 GRAS family 

putative 

transcription 

factors 

yes Malus domestica, Prunus persica and 

Rosa roxburghi 

MtNIN, LjNIN. SYM35 putative 

transcription 

factor 

yes Malus domestica 

MtCRE1, SNF2, HIT1 Cytokinine 

receptor 

yes ? 

Mt HAP-2 CCAAT-binding 

transcription 

factor 

yes ? 

SKL EIN2 (ethylene 

signaling) 

ortholog 

yes ? 

SUNN, HAR, NARK, SYM 29 CLV1 like 

receptor kinase 

yes Prunus persica,  Malus domestica,  

Pyrus pyrifolia,  Pyrus communis and 

Rosa roxburghi 

ASTRAY BZIP 

transcription 

factor w/ RING 

finger domain 

yes ? 

LjnsRING RING finger 

protein 

yes ? 

Note: M. truncatula gene names are in black, Lotus japonicus in blue, other legumes in green. 
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Table P2: Genes identified by differential expression in model systems as being involved in nodulation. 

Gene symbol Gene function 
EST hit in Rosacae with bit score 

> 60 and E value <-12 

ENOD11 Repetitive proline-rich protein no significant hit in Rosaceae 

ENOD12 Early nodulin ( no significant hit in Rosaceae 

ENOD16 Early nodulin no significant hit in Rosaceae 

ENOD20 Early nodulin no significant hit in Rosaceae 

ENOD40 Small untranslated RNA  no significant hit in Rosaceae 

GS1 Glutamine synthase no significant hit in Rosaceae 

MtN1,3 5,6,12, 13 Nodulins significant hit, only MtN13 

MtSucS1 Sucrose synthase significant hit found 

PR-1 Pathogenesis-related gene Significant  hit found 

PRP4 Proline rich nodulin no significant hit in Rosaceae 

RIP1 Peroxidase no significant hit in Rosaceae 

LOXN2 Lipoxygenase Significant hit found 

Note: “nodulins” are genes up-regulated during nodulation- no function has been assigned to these genes 

and they occur in species outside legumes, including Arabidopsis. 
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Also, the new and completely sequenced Frankia genomes (Frankia strains: CcI3, 

Ean1pec and ACN14a) were examine for ORFs using gene prediction softwares, as well 

as annotated genes available on NCBI and TIGR. 

Expression studies of Strawberry DMI3 homolog in Medicago 

Our database searches identified a highly significant match in Strawberry (FaCDPK, 

Llop-Tous et al. 2002) as a potential ortholog for the DM13 gene in Medicago (Abbott et 

al. 2006, USDA grant proposal). Young leaf tissues were obtained from diploid 

Strawberry (Fragaria vesca; Accession PI: 551572) and total RNA was isolated according 

to modifications to the RNA miniprep protocol for peach tissue (Dr. Zhigang Li, 

Clemson University).  The cDNA of the transcript was generated using RT-PCR with 

oligos designed from the Strawberry sequences to give an expected size product (Fig. 

P1). The cDNA was cloned into pUC19 and verified by sequencing.  For expression 

studies in Medicgo truncatula (A17) via hairy root transformation, the gene construct in 

pCAMBIA2304 was designed to be driven by CaMV 35S promoter. To initiate 

spontaneous nodules, the MAX17 gene was truncated by removal of the auto-inhibitory 

domain and EF hands, using appropriate restriction enzymes and ensuring that the ORF is 

in frame.  The modification of the DMI3 gene is reported in Gleason et al. (2006) to 

result in a constitutively active kinase that triggers spontaneous nodulation. Our construct 

also initiated spontaneous nodules in Medicago roots (unpublished). 
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>Fragaria vesca calcium-dependent protein kinase (MAX17) mRNA, complete cds 

TTGGACTAATACACCGGTTTTGGGTAGATGGGTAATTGCTGTGTCACCCCTCCCCAGACGGGT

TCGCCGTTAAAGAACAAGAAGAATAAGCCAAACCCGTTTGCGATAGACTACGTTGTCGCCAA

TGGCGGCAAGCTCTCCGTTTTGAAGAACCCAACCGGCACTGAAATCGAGCAGACTTACGAGCT

GGGCCGCGAGCTCGGCCGCGGAGAGTTCGGGATTACGTATCTGTGTACTGACAAGGCCACCA

ACGAGAACTACGCTTGCAAATCGATATCGAAGCAGAAACTGAGGACGGCTGTGGATATTGAA

GATGTGAGGAGGGAAGTTGAGATCATGAAGCACTTGCCTAAGCATCCCAATATTGTGAGCTTG

AAAGATACTTACGAGGATGATAATGCTGTCCATCTTGTTATGGAGCTCTGTGAGGGCGGTGAG

CTTTTTGATCGGATCGTGTCTAGGGGACATTACACTGAGCGTGCTGCTGCTGCTGTCACTAAG

ACTATTGTGGAAGTTGTTCAGATGTGCCACAAGCATGGTGTGATGCACCGGGATCTTAAACCT

GAGAACTTTTTGTTTGCAAACAAGAAAGAAACAGCGCCCTTGAAGGCAATTGATTTTGGGTTG

TCAGTGTTCTTTAAGCCTGGTGAAAGATTCAGTGAAATTGTTGGAAGTCCATACTACATGGCT

CCTGAGGTGCTAAGACGCAATTATGGTCCTGAAGTTGATGTGTGGAGTGCTGGAGTTATACTT

TACATCTTACTTTGTGGTGTTCCGCCTTTCTGGGCAGAAACTGAACAGGGAGTTGCACAAGCA

ATTATACGGTCTGTTGTAGATTTTAAGAGGGACCCCTGGCCTAAGGTTTCTGATAATGCAAAA

GACCTTGTGAAAAAGATGCTTGATCCTGACCCGAAGCGGAGGCTTACAGCTCAGCAAGTTCTA

GATCATACTTGGTTGCAAAATGCAAAGAGAGCTCCAAATGTTTCTTTAGGTGAAACAGTGAGA

GCAAGGCTCAAGCAGTTCTCTGTAATGAACAAGCTTAAGAAAAGTGCACTGAAGGTCATAGC

TGAGCATTTGTCACAGGAGGAAGTTGCTGGCATACAAGAGGGATTTAAGATCATGGATACTA

GCAATAAGGGCAAGATTAACATTGATGAGCTAAGAGTTGGGTTACATAAACTAGGCCATCAG

ATTCCTGATGCTGATGTTCATATCCTAATGGAAGCTGGTGATGTAGATAATGATGGGTATCTG

GACTATGGGGAGTTTGTTGCCATTTCTGTTCACCTAAGAAGGATGGGCAATGATGATGAGCAC

CTTCGCAAAGCTTTTGACTTCTTTGATCAAAACAAAAGTGGGTTCATTGAAGTCGAGGAGTTG

CGAACTGCCTTGGCTACTGAAGTTGATGACCACGTTGAAGATGTTATTAGTGCCATTATCAGT

GACGTGGATACAGACAAGGATGGAAAAATAAGTTACGAGGAGTTTGCCACCATGATGAAGGC

CGGCACAGATTGGAGAAAGGCCTCAAGGCAGTATTCACGAGAGCGGTTCAATAGTCTCAGTT

TGAAATTGATGAGGGATGGATCATTGGAAGGTAAAACCGAGAGCAAATGACACATCATACAT

GTTAATGAAAGAATTGTTCATTTTTTGTTTGTGTTTTTGTAATTCTTTCTTTTGTAAGTTTTCTCT

GTTAATTTTACATCCTTTTGTAGACCCTTCTGTGATTATTAGGATATGAGCCAAGGGTTTTCTC

AT 

 

Figure P1: Strawberry MtDMI3 homolog (MAX17) cloned from cDNA reverse 

transcribed from mRNA obtained from strawberry leaf sample. 
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Studies reveal the rice DMI3 ortholog initiates nodules but lack infection within the organ 

(Godfroy et al. 2006), while the Poplar DMI3 ortholog (Pers. Comm., Netherlands) only 

initiates infected nodules when driven by the Medicago DMI3 promoter but not with its 

own native promoter. At present, studies are conducted on the full length MAX17 gene 

under the expression of Medicago DMI3 and its own native promoter to test for 

functional similarity. 

Phylogeny study based on Frankia and Rhizobia genomes and genes 

Rhizobia nodulation genes and annotated orthologs in Frankia are currently been used for 

phylogenetic inferences and sequence data includes homologs in Rhizobium, 

Bradyrhizobium, Sinorhizobium, Mesorhizobium and Frankia. Our preliminary in silico 

studies support suggestions from literature about lateral gene transfer between different 

symbiont genera (Bailly et al. 2007, Nandasena et al. 2007, Normand et al. 2007). From 

our study, Frankia is revealed to be more related to Bradyrhizobium than any other 

Rhizobia species, indicating that Bradyrhizobium might have played a major role in the 

evolution of nod genes with reference to bridging the Rhizobia and Frankia clades via 

lateral gene transfer. The genome comparisons of Bradyrhizobium and Frankia strains 

support the proposed role of Bradyrhizobium in the evolution and acquisition of 

nodulation in Frankia (Giraud et al. 2007, Normand et al. 2007). This deduction is 

subject to more analysis on acquisition of more sequence data. Whole Genome 

alignments were performed using GenomeVista (Couronne 2003) with a 611kb genomic 

region of Mesorhizobium nod gene island (Uchiumi et al. 2004) against genomes of 
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Frankia and Rhizobium (nodulating and non-nodulating species). The Frankia genome 

had greater sequence similarity with the Mesorhizobium nod gene island than closely 

related non-nodulating species of Rhizobium, further implicating functional similarity 

and horizontal gene transfers (Data available on request). 

 

Project Rationale 

With the advent of recent molecular –omics technologies and tools, organisms which in 

the past were considered intractable for basic research are now used for cutting edge 

studies because they now present unique opportunities to broaden and enhance our 

understanding of the evolution of specialized biological systems and their divergent 

functions in various plant families (Abbott et al. 2006, USDA grant proposal). The 

suitability of Rosaceae for this study is mirrored in evidences ranging from the heritable 

vascular nodulation in Malus x domestica (McIvor et al. 2001) to the high nodulation 

gene sequence matches lacking in other distantly related species. Rationales for this study 

include: 

1.Enriching knowledge of Frankia-Actinorhizal biology through dissection of gene 

regulatory networks and ultimately better understanding of nodulation symbiosis 

and the transition from the highly pervasive Arbuscular Mycorrhizal symbiosis. The 

proximity of the Actinorhizal species in the Rosid 1 clade and more recent 

evolution of nodulation offer a strategic edge for in-depth comparative study 
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between closely related species across extremes of the nodulation symbiosis 

spectrum. 

2.Generation of a comprehensive Actinorhizal ESTs database for the Actinorhizal and 

nodulation symbiosis community at large. 

3.Rosaceae features extensive genomics resources available for identification and 

characterization of genes important in nodulation (Abbott et al. 2006, USDA grant 

proposal). The resources, available in 3 of the 4 subfamilies, represent the most 

diverse family (3,000-4,000 species in 100-120 genera) of the Actinorhizal clades. 

4. The genomes of Rosaceae species are among the smallest plant genomes making 

them exceptionally amenable to large scale high throughput genomics studies 

(Abbott et al. 2006, USDA grant proposal). 

5.Closely related genera to the Actinorhizal clades that do not fix nitrogen have 

significant genomic resources available (ESTs and large insert libraries) and are 

easily transformed (Strawberry) for functional studies (Abbott et al. 2006, USDA 

grant proposal).  
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