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ABSTRACT 

There is abundant evidence that many students in the United States are not adequately 

prepared for college calculus. How to design and implement instruction to adequately 

prepare secondary students for college calculus is a concern to both college mathematics 

professors and secondary mathematics teachers.  While both groups agree that rigorous 

instruction promotes mathematical understanding, they hold different opinions about how 

to optimally prepare high school students for single variable college calculus.  This is 

important because readiness for success in college calculus is a known gatekeeper for 

success in STEM majors. The data used in this study was drawn from the Factors 

Influencing College Success in Mathematics (FICSMath) project, which focuses on 

finding evidence for effective strategies that prepare students for college calculus success.  

Funded by the National Science Foundation (NSF award #0813702), FICSMath is a 

large-scale study from the Science Education Department at the Harvard-Smithsonian 

Center for Astrophysics, which surveyed a nationally representative sample of college 

students who were enrolled in single variable college calculus courses in the fall semester 

of 2009. The purpose of the FICSMath study was to gain insight into what high school 

teachers did that had a significant effect on single variable college calculus performance. 

The development of the FICSMath survey was informed by several components in order 

to establish content validity.  One particularly informative source was the open-ended 

responses gathered from mathematics professors and secondary mathematics teachers 

across the nation, via an online survey.  The mathematics professors were asked, “What 

do high school teachers need to be doing to prepare their students for college calculus 
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success?” and the mathematics teachers were asked, “What are you doing that you think 

prepares students for college calculus success?” An unequal status concurrent mixed-

method design was used to analyze the data. Phenomenographical analysis compared the 

variation between the mathematics professors’ and secondary mathematics teachers’ 

responses. The quantitative data came from students who were in two and four-year 

large, medium, and small colleges and universities across the nation who completed the 

FICSMath survey. Participating schools of higher-ed administered the 61-item FICSMath 

survey in the beginning of the fall semester of 2009.  The professors held the surveys 

until the end of the semester, at which time they recorded the grades earned, and then 

returned the surveys to Harvard University. The surveys included questions on students’ 

demographics, academics, and pedagogical practices from their last high school 

mathematics course.  The sample included in the analysis were pre-calculus, non-AP 

Calculus, AP Calculus AB, and AP Calculus BC students who moved directly from 

secondary mathematics to single variable college calculus where the FICSMath survey 

was administered. The dependent variable was performance in college calculus and the 

independent variables were pedagogical variables that aligned with components of the 

Four Component Instructional Design (4C/ID) model.  This model was designed from 

cognitive load theory and has four distinct components.  The support, procedure, learning 

task, and part-task components were placed together by van Merriënboer and other 

cognitive load researchers in order to assist with the instruction of complex tasks and to 

enhance transfer of learning.  Using multiple-regression analysis, two models were 

created that are predictive of college calculus performance, one for pre-calculus students, 
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and one by combining all three levels of secondary calculus students together.  The pre-

calculus model (n=964) had four significant pedagogical variables, one with positive 

effect on performance, and three with negative effects.  The predicted difference for those 

experiencing positive verses negative predictors was a total predicted difference of 19.9 

points earned in students’ final college calculus grade.  Because there was no significant 

difference between the mean high school performance across the three levels of 

secondary calculus, or in the mean performance in college calculus, all three levels of 

secondary calculus were grouped together to create the calculus model. The calculus 

model (n=1,999) revealed 11 significant pedagogical variables.  Four variables had a 

positive effect on performance and seven had negative effects.  The predicted difference 

for those experiencing positive verses negative predictors was 25.29 points in college 

calculus performance.  Seven of the eleven categories from the phenomenography 

aligned with significant variables from the two multiple regression models.  The 

triangulation of findings led to functions being classified as a learning task variable, 

meaning working with functions is a specific complex task for students. Triangulation 

also revealed that even though professors and teachers believed that connecting 

mathematics to the real world is important, such pedagogy was not predictive of future 

performance in college calculus. Chapter 6 addresses the change in variability in the data 

that is explained when student affect variables are added to the models, and also provides 

an implications section for teachers. The 4C/ID model was modified to the 3C/ID Pre-

Calculus Model for College Calculus Performance and the 3C/ID Secondary Calculus 

Model for College Calculus Performance. 
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CHAPTER 1 
 

INTRODUCTION 

Secondary Preparation for College Calculus 

There is abundant evidence that many students in the United States are not 

adequately prepared for their first college level mathematics course (Harwell et al., 

2009).  Most often single variable calculus is the first college level mathematics course 

that counts toward degree credits (Smith, 1998). There is agreement among college 

mathematics professors and secondary mathematics teachers that rigorous instruction 

promotes mathematical understanding, but there is less agreement on how to implement 

instruction in order to better prepare secondary students for college calculus (Harwell et 

al., 2009).   

Empirical findings from science, technology, engineering, and mathematics 

(STEM) research reveal that factors such as environment, demographics, and pre-college 

preparation impact college performance (Crisp, Nora, & Taggart, 2009). How to prepare 

secondary students for college level mathematics so the first calculus course is not a “gate 

keeper” which discourages students from pursuing STEM degrees has been a concern 

since the New Math era in the 1960s.  At first curriculum changes were considered to be 

the correct way to add rigor to the learning of mathematics (Harwell et al., 2009). The 

defenders of the Commercially Developed (CD) mathematics curricula and the National 

Science Foundation-Funded (NSFF) curricula had opposing views, which resulted in the 

“math wars” of the 1980s (Harwell et al., 2009).  For example, the CD curricula focused 

mainly on algorithms and procedures while the NSFF curricula aligned with problem 
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solving and conceptual understanding as advocated in the Curriculum and Evaluation 

Standards for School Mathematics (Harwell et al., 2009).  Research revealed that both the 

CD and NSFF curriculum prepared students to enroll in a college course that should have 

been completed in high school (Harwell et al., 2009).  Therefore it was shown that neither 

curriculum was predictive of college mathematics preparation for the average student.  

As a result, the research focus shifted to teacher instructional practices and student 

reasoning in the mathematics classroom (NCTM, 1989, 2008). Attempts in mathematics 

education research to understand the complexity of variables that influence teachers’ 

instructional practices, and how these variables impact student achievement, have been 

largely inconclusive (Mewborn, 2007).  What is known is that each student’s 

mathematical understanding and problem solving ability is primarily shaped by the 

teaching experiences they encounter in school (Mewborn, 2007). 

A better understanding of what prepares students for college level mathematics, 

specifically college calculus, is important since calculus is the foundation for many 

STEM degrees. More schools are adopting the goal of preparing all students for college, 

yet American College Testing (ACT) research revealed that too few high school 

graduates leave high school prepared for college level work in mathematics and science 

(Camacho & Cook, 2007).  Some researchers claim that students are underprepared for 

college calculus because teachers tend to focus on procedural instruction instead of 

conceptual understanding (Tall, 1992).  Furthermore, research has shown that when 

secondary mathematics teachers incorporate opportunities for students to develop 

conceptual understanding they are more likely to be able to problem solve (Haskell, 
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2001).  The term problem solve has multiple meanings but it is most often associated 

with solving nonstandard problems (Darken, Wynegar, & Kuhn, 2000).  Schoenfeld 

(1992) stated that when problems are placed in the back of a section as examples of how 

the mathematics can be useful students come to believe that mathematics should have a 

ready method for problem solving, and the method was just covered in that chapter. Such 

problems are considered to be standard problems.  Non-standard problems require 

students to “grapple with new and unfamiliar tasks when the relevant solution methods 

are not known” (Schoenfeld, 1992, p. 56). 

 

AP Calculus Trends 

In 1965 the Mathematical Association of America (MAA) expressed concern over 

the small number of students who took the Advanced Placement (AP) calculus exam 

(Bressoud, 2009). At that time there were 1.4 million students who began college in the 

fall, but only 9,000 of those students had taken the AP calculus exam the previous spring. 

Comparatively, in 2008 there were 21 million students who began college in the fall, and 

300,000 of them had taken the AP Calculus exam the previous spring. The percent 

increase of students who had taken the AP Calculus exam with respect to the overall 

college entrance population more than doubled from 0.6 percent to 1.4 percent across 43 

years.  Additionally, the MAA reported there were at least 200,000 more students who 

completed some other form of secondary calculus (Bressoud, 2009).  These numbers 

indicate that more students are taking AP or another type of calculus course at the 

secondary level than ever before (Bressoud, 2009).  It is conceivable, then, that colleges 
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and universities should be seeing an increase in the number of students that are prepared 

for college level calculus.  However, the last longitudinal study by The National 

Education Longitudinal Study of the high school class of 1992 reported that one-third of 

all students who studied calculus in high school had to take pre-calculus in college 

(Bressoud, 2009).   

The US Department of Education stated that of the 430,000 students who took 

calculus in high school in 2004, only 52 percent of them took the AP calculus exam 

(Bressoud, 2009). However, in 2009 it was predicted that 575,000 students would be in 

secondary calculus and the College Board estimated that 75 percent of them would take 

the AP calculus exam (Bressoud, 2009). From the college professor perspective, it is not 

well known how AP Calculus benefits students in college calculus, and most certainly not 

known how non-AP calculus benefits students in college calculus (Bressoud, June 14, 

2010, personal communication). The students who take AP Calculus may receive credit 

for college level work and exempt single variable or multiple variable college calculus.  

The College Board claims that high performance on the AP Calculus AB exam is 

equivalent to material learned in single variable college calculus, and high performance 

on the AP Calculus BC exam is equivalent to multi-variable college calculus (Pieronek, 

2007). While receiving college credit is based on policy, typically if a student earns a 3 

(qualified), 4 (well qualified), or 5 (extremely well qualified) on the AP Calculus exam, 

they may receive college credit and opt to exempt college calculus courses (Pieronek, 

2007).  There is limited research on student performance for those who choose to exempt 
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calculus because of AP Calculus credits earned.  A detailed review of these studies is 

presented in chapter two.  

 

College Calculus Trends 

A trend concerning first semester college calculus since the 1980s is one that 

should receive serious consideration (Friedler, 2004).  Between 1980 and 2000 there was 

a 99 percent increase in the number of students enrolled in post-secondary institutions for 

higher learning, but a 3.4 percent decrease in the number of students who took first 

semester college calculus.  However, in terms of raw numbers, there are more students 

than ever before taking both secondary and college level calculus, making this an 

increasing important area to examine.  Research about success in college calculus 

indicates there has been a consistent trend of 65 percent of students earning a C or better 

in college calculus since 1985 (Maggelakis & Lutzer, 2007).  This means that 35 percent 

of students who enter college calculus either fail the course or pass with a D.  This should 

not be viewed just as students who were unsuccessful in college calculus, but as students 

who may be transferring out of STEM areas of study.  

 

Powerful Learning Environments 

 How to help students understand mathematics in a meaningful way to elicit 

conceptual understanding has been a concern for many years in the mathematics 

education community.  In the 1960s and 1970s, instructional design theories were used in 

education research to gain an understanding of how instructional strategies helped 
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students develop sophisticated mathematical reasoning and problem solving abilities 

(Gravemeijer, 2004).  During this time instructional designs were considered to be in 

vogue within the research community, but eventually interest faded as instructional 

designs were perceived as being in conflict with constructivism (Gravemeijer, 2004). 

From the constructivist point of view, learners of mathematics must be active participants 

in constructing understanding and not just passive recipients of instruction (Von 

Glassersfeld, 1987b).  Some viewed instructional design models as following the task 

analysis approach, which infers that the models were based on procedures that experts 

used to solve problems (Gravemeijer, 2004).  Basing mathematics instruction on 

proceduralized problem solving steps was seen to be in conflict with how students 

construct their own understanding. However, some contrasting research over the past 

decade has focused on instructional designs for “powerful learning environments” (van 

Merriënboer & Paas, 2008). 

Powerful learning environments, as described by van Merriënboer and Paas 

(2008), should enhance the learning of complex material, aid in the transfer of learning 

from one environment to another, encourage collaboration, and enable students to 

construct their own understanding. Transferring mathematical knowledge from secondary 

mathematics to single variable college calculus is one example of transferring learning to 

different environments. Secondary mathematical preparation for single variable college 

calculus involves learning complex mathematical information.  For example, calculus is 

often the first time that students are confronted with limits, continuity, differentiation, 

integration, and the real life applications of displacement, optimization, related rates, 
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area, and volume problems.  All of these topics require understanding of many complex 

mathematical ideas and require vertical transfer from previous mathematics courses.  

Vertical transfer occurs when prior learning is transferred to a new learning environment 

that is higher in a knowledge hierarchy (Haskell, 2001).   

 

The Four Component Instructional Design Model 

Van Merriënboer, a cognitive load researcher, developed an instructional model 

based on powerful learning environments and the human cognitive architecture in the 

early 1990s, called the Four Component Instructional Design (4C/ID) Model. This model 

was designed for environments where complex learning occurs, but it was not 

specifically designed for mathematics instruction. The 4C/ID model was created by 

cognitive load theorists to enhance the learning of complex material, to aid in the transfer 

of learning from one environment to another, to encourage collaboration, and to enable 

students to construct their own understanding (Van Merrienboer et al., 2008). Cognitive 

load theory is based upon the idea that working memory, which was previously referred 

to as short-term memory, is limited in space and duration, while long term memory is 

unlimited in both (Sweller, van Merriënboer, & Paas, 1998; Paas & van Merriënboer, 

1994; Paas, Renkl, & Sweller, 2003; Sweller & Chandler, 1991). The definition of 

learning, from a cognitive load perspective, is defined as a permanent change in long-

term memory (Sweller et al., 1998; Sweller et al., 1991; Sweller & Candler, 1994).  This 

has specific implications since the goal of instruction is to create schemas in long-term 

memory (Sweller et al., 1998).  According to schema theory, knowledge is stored in long-



                                                                       

 

  8 

term memory in the form of schemas, which categorize elements of information based on 

the manner in which the information will be used (Sweller et al., 1998).  More 

information about cognitive load theory will be discussed in chapter two.  

 The 4C/ID model is based upon the idea that learning environments for complex 

tasks can be described using four components.  These components will be discussed in 

detail in chapter two, but briefly, the model is designed from: (1) support component;  (2) 

procedure component; (3) learning task component; and (4) the part-task component (van 

Merriënboer & Paas, 2008).  According to van Merriënboer et al., (2006) complex 

learning tasks have “many different solutions, are ecologically valid, cannot be mastered 

in a single session, and pose a very high load on the learners cognitive system” (p. 343). 

From the learning for transfer perspective, learning tasks must be considered as a whole 

first and foremost, and then the parts needed to accomplish the task are considered.  This 

is based on the whole-part method of decreasing cognitive load, which increases the 

potential of learning for transfer. Supportive information is based upon conceptual 

understanding and reasoning of new information, problem solving, collaboration, and 

cognitive assessment (van Merriënboer, Clark, de Croock, 2002).  Procedural information 

is based upon examples and previous learning, or schemas in long-term memory, which 

help process complex tasks. Part-task practice promotes the compilation of procedures or 

rules, such as teaching for automaticity (van Merriënboer et al., 2008; van Merriënboer, 

Kirschner, & Kester, 2003; van Merriënboer & Sluijsmans, 2008; van Merriënboer et al., 

2006; Feldon, 2007; Schankman, 2006).  
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Learning Mathematics is a Complex Task 

Cognitive load theorists would refer to secondary preparation for single variable 

college calculus as a complex task. Each of the aforementioned descriptions of a complex 

task may be mapped to the learning of mathematics.  For example, mathematics problems 

can have different solutions depending upon algebraic, graphic, or symbolic 

representation. Cognitive load theory states that problems based in real life help to create 

complex learning environments.  The National Council for Teachers of Mathematics 

(NCTM) states that good mathematical tasks relate to familiar everyday worlds of 

students, but not always (NCTM, 1991).  Some tasks are theory based or are “fanciful” 

tasks, which challenge students intellectually such as number theory problems or formal 

proofs for mathematical ideas (NCTM, 1991). Thus, all mathematics can be connected to 

real-life applications, but not all complex problems in mathematics are connected to real 

life.  Some problems are mathematical in nature and the complexity resides in seeking 

patterns and solutions, which may eventually be used to solve real-world problems. In 

reference to the inability to master complex tasks in one session, mathematical reasoning 

and sense making takes time.  The NCTM has defined reasoning and sense making in 

high school mathematics.  By definition, reasoning is observing generalizations, making 

connections between numbers and ideas, and drawing conclusions on the basis of 

evidence or stated assumptions (NCTM, 2009). Sense making refers to developing 

mathematical understanding of a situation, context, or concept by connecting learning to 

previous knowledge (NCTM, 2009).  The NCTM (2009) states that, “Reasoning and 

sense making are intertwined across the continuum from informal observations to formal 
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deductions” (p. 9).  Relative to sense making, cognitive load theory describes this 

processing as encoding new information in working memory for storage into long-term 

memory (Sweller & Chandler, 1991).  This process changes the learners’ schema 

structure, or conceptual understanding of mathematics.  Lastly, learning a complex task is 

stated to cause a high working memory load on the learners’ cognitive system. If working 

memory load is too high, mathematical information cannot be processed or encoded for 

storage into long-term memory. A high working memory load is considered to be that 

which limits processing and encoding of new mathematical information for storage into 

long term memory.  Thus, a high working memory load hinders mathematical sense 

making.  The connection between studying how students learn information and 

mathematics began years ago when it was evident that learning mathematics is difficult.  

The development of a meaningful curriculum in mathematics was slow to be developed, 

and in fact, the first widely accepted curriculum was only established a little more than 30 

years ago. 

 

Historical Background 

The MAA is the professional organization for college mathematics professors, 

and the NCTM is the professional organization for K-12 mathematics educators. 

Mathematics professors and educators have worked together to establish mathematics 

content and curriculum since the creation of the MAA in 1915 (Straley, 2010) and of the 

NCTM in 1920 (Gates, 2003). Historically, both groups have addressed challenges such 

as limited course requirements, the need for students to be exposed to meaningful 
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problem solving, and the need for rigor in mathematics courses (Bressoud, 2009; NCTM, 

2008). The Joint Commission of the MAA and the NCTM in 1935 was established to 

unify attempts of mathematics professors and teachers to establish new objectives for the 

study of secondary school mathematics (Garrett & Davis, 2003). The consensus was that 

the high school curriculum needed to include less arithmetic, more meaningful 

mathematics, and more problem solving, yet little direction was offered from the 

commission regarding how to develop such programs for all students. The creation of a 

meaningful secondary mathematics curriculum was essentially left to colleges of 

education and secondary education systems.   

A decade later, mathematics professors complained about their students’ lack of 

college readiness and blamed “colleges of education and the administrative circles in the 

secondary school system” for low expectations and limited standards in high schools 

(Kempner, 1948, p. 415).  Some professors did acknowledge that they had been “willing 

to let the professional educators do all the hard and dirty work” of creating a credible 

curriculum (Garret & Davis, 2003; Kempner, 1948, p. 415).  In the 1980s there was, for 

the first time, considerable data from the National Science Foundation (NSF) Priorities in 

School Mathematics (PRISM) studies that could offer evidence and new directions in the 

creation of a secondary mathematics curriculum.  These results laid the foundation for the 

NCTM’s Agenda for Action: More Math Study. The Agenda included three 

recommendations relevant to secondary preparation for college calculus: (1) School 

districts should increase the amount of time students spend in the study of secondary 

mathematics; (2) mathematics educators and college mathematicians should reevaluate 
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the role of calculus in high school mathematics programs; and (3) a curriculum that 

stresses problem solving must focus on the problem solving process, not just content 

(NCTM, 1980).  

In 1989 the NCTM Principles and Standards for School Mathematics provided 

the first specific guidelines for a secondary mathematics curriculum. Initially the 1989 

NCTM Standards caused controversy between the MAA and the NCTM for reasons most 

easily described as a conflict between content and pedagogy (Klein, 2001). If 

instructional decisions are based on content considerations then the choices of pedagogy 

may be limited, and conversely, the choices of pedagogy can also limit the amount and 

type of content that can be covered (Klein, 2001).  Mathematicians have typically 

focused on mathematical content while mathematics educators have been trained to focus 

on content and pedagogical strategies for heterogeneous groups of students who may or 

may not be college bound. The concerns over the 1989 Standards led the MAA to appoint 

The President’s Task Force on the NCTM Standards, which served as a review group and 

provided advice concerning how to resolve the disagreements between the NCTM and 

the MAA (Ross, 2000). The MAA stated, “The members of the Task Force applaud the 

NCTM for its courage in formulating a set of standards for school mathematics” (MAA, 

1997).  They also presented nine specific concerns that they believed needed to be 

addressed.  The NCTM addressed the concerns of the MAA and revised the 1989 

Standards. The new version of the Principles and Standards for School Mathematics was 

published in April of 2000.  
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The fundamental idea of the 2000 Standards has been that problem solving, 

reasoning and proof, mathematical connections, communication and collaboration, and 

representation are all involved in the process of learning mathematics (NCTM, 2008).  

The 2000 Standards document provided the first widely accepted secondary mathematics 

curriculum in the United States (US).  However, each state in the US determines 

independently what standards are followed, which has caused inconsistencies across the 

nation. Currently, a new paradigm shift is moving the curriculum away from the NCTM 

Standards to the Common Core State Standards initiative in order to align mathematics 

standards and curriculum across all states.   

The Common Core State Standards (CCSS) initiative has been an effort 

coordinated by the National Governors Association Center for Best Practices to create 

common mathematics standards across the US (Common Core State Standards, 2010). As 

of November 29, 2010, 42 states have officially adopted the new CCSS.   The CCSS 

align with college expectations, are clear and understandable, include rigorous content 

and application knowledge, are informed by top performing countries, and have been 

built upon the strengths and lessons of the NCTM 2000 Standards (Common Core 2010).  

Just as it is important to have well-established standards that are used across the nation, it 

is also important that the autonomy of the teacher in the classroom be respected. 

Mewborn (2007) stated that each student’s mathematical understanding and problem 

solving ability is primarily shaped by the teaching experiences they encounter in school.    

Therefore research in what teachers to do help prepare students for college calculus 

success is important.  
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The Focus of this Research 

The purpose of this research is to gain a better understanding of what instructional 

practices secondary mathematics teachers employ that prepare pre-calculus and calculus 

students for success in single variable college calculus.  There is currently no 

instructional model that is based on pedagogies that prepare pre-calculus and calculus 

students for single variable college calculus. The 4C/ID model is appropriate to use as a 

theoretical lens through which to view secondary preparation for college calculus because 

three of the four components of the model explicitly consider instruction for transfer of 

learning (van Merriënboer, Kester, Paas, 2006). The qualitative data from mathematics 

professors and secondary mathematics teachers, and the quantitative data from students in 

single variable college calculus courses, were analyzed concurrently in an un-equal status 

concurrent mixed methods design. The results were triangulated to modify the 4C/ID 

model.  Two models based upon pedagogical practices that best prepare students for 

single variable college calculus success have been created.   

 

Research Questions 

Three research questions are addressed in this study:  

Research Question 1: What categories from the phenomenography of college 

mathematics professors and high school mathematics teachers align with the 

4C/ID model?   
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Research Question 2:  How well do the components in the 4C/ID model represent 

pedagogies that predict pre-calculus and calculus students’ success in single 

variable college calculus? 

           Research Question 3: How can the 4C/ID model be modified to reflect pedagogies           

 that are predictive of pre-calculus and calculus students’ success in single variable 

           college calculus?  

 

Theoretical Perspective 

 Van Merriënboer and other cognitive load theorists developed the 4C/ID model in 

the early 1990s.  The basic premise of the model is that learning tasks should always be 

combined with methods that have been shown to enhance learning for transfer. Complex 

tasks are often considered to be that which connects learning to ‘real life’ tasks since real 

life connections provide opportunities to present overarching concepts to learners 

(Merrill, 2002; van Merriënboer et al., 2008).  The assumption is that the interacting 

elements in complex learning tasks can be limited in order to enhance memory and thus 

augment transfer of learning (Merrill, 2002; van Merriënboer et al., 2008).   The model 

was not designed specifically for mathematics instruction but for learning environments 

where transfer of learning is the goal, and complex problems are the basis of instruction.  

The components of the 4C/ID model are designed to guide instruction to increase the 

likelihood of transfer of learning by creating a way of scaffolding the whole-part 

instructional method (van Merriënboer et al., 2006). The 4C/ID model shares the same 

assumptions about the human cognitive architecture as cognitive load theory.  The 



                                                                       

 

  16 

assumptions are that working memory is limited in space and duration while there 

appears to be no limit to either the space or duration of long-term memories. It is also 

assumed that there are three sources of working memory load. The first is extraneous 

cognitive load, which comes from how the material is presented during instruction. The 

second is intrinsic cognitive load, which comes from the element interactivity of the 

mathematics to be processed in working memory (J. Sweller et al., 1994; van 

Merriënboer et al., 2006). Element interactivity occurs because of the interacting parts of 

the mathematics that must be addressed in solving complex tasks.  Element interactivity 

is inherent in secondary preparation for college calculus because of the many interacting 

mathematical concepts involved in pre-calculus and calculus problem solving. The third 

is germane cognitive load, which is the only load in working memory that is necessary 

for learning (Van Merriënboer, Jeroen, & Sweller, 2005) Germane cognitive load hooks 

new information that has been processed and encoded for storage into long term memory 

to existing schemas.  Thus the new information becomes part of the learners’ schema and 

can be brought back into working memory as a chunk of information to help process 

more new mathematics. Both intrinsic cognitive load and germane cognitive load will be 

discussed in detail in chapter two.   

 

Sources of Data 

The research team for Factors that Influence College Success in Mathematics 

(FICSMath) conducted the first large-scale national study seeking to better understand 

secondary preparation for college calculus. The purpose of the FICSMath study was to 
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gain insight into what high school teachers do that best prepare students for single 

variable college calculus success.  “Sadler’s conundrum” is the name given for the 

disconnect between the claim from high school teachers that they prepare their students 

for college mathematics and mathematics professors who lament that their students are 

not prepared for college level mathematics (Sadler, June 14, 2010). The qualitative data 

came from mathematics professors and high school mathematics teachers’ open-response 

on-line surveys. The mathematics professors were asked, “What do high school teachers 

need to be doing to prepare their students for college calculus success?” and the 

mathematics teachers were asked, “What are you doing that you think prepares students 

for college calculus success?”  

The quantitative data comes from students’ responses to items on the FICSMath 

survey.  A random sample of schools across the nation were contacted by a team of 

recruiters, one of whom was the researcher for this study, asking college and university 

mathematics department chairs if their calculus students could participate in the 

FICSMath study. A random sampling of schools was conducted to ensure a nationally 

representative sample of students attending college calculus courses. Participation 

required students in single variable college calculus courses to complete a 61-item 

survey. At the end of the 2009 fall semester, the professors recorded the students’ final 

grades on the survey and 10,492 surveys were sent back to Harvard with no student 

identifiers.  The students’ grade is the dependent variable, and the independent variables 

are the items from the FICSMath survey that align with the components of the 4C/ID 

model. 
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Significance of the Study 

This study is significant because: (1) it utilizes data from the first large-scale 

nation-wide study on what factors from secondary mathematics instruction prepare 

students for success in single variable college calculus; (2) there is currently no 

instructional model designed from the correlation between secondary pre-calculus and 

calculus pedagogical practices and college calculus performance; and (3) there is 

currently no model that is predictive of future performance in college calculus that has 

been designed from the 4C/ID model.  Controls were put in place to only include data 

from students who transferred directly from secondary pre-calculus or calculus to single 

variable college calculus in an effort to better understand what teachers do that helps 

students vertically transfer mathematical knowledge to college calculus.   There were 

1,287 pre-calculus students and 2,160 calculus students across the nation who moved 

directly from secondary pre-calculus or calculus to a single variable college calculus 

course where the FICSMath survey was completed. The large sample size of students in 

the study may allow small differences in responses about teacher instructional practices 

to be statistically significant. These findings may indicate variables worthy of future 

experimental research.  

 

Limitations of the Study 

The open ended nature of the survey for the mathematics professors and 

secondary mathematics teachers was beneficial in obtaining rich data, however, the 

discrepancy between the number of professors and teachers who responded to the survey 
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may be a limitation of this study.  In an effort to limit the effect from the unequal group 

size, all data was converted to percentage of statements from professors for each category 

and for the clustered statements. Likewise, the same was done for the teachers’ 

statements, which allowed for comparison of the descriptions for each category across 

groups.   

The students are in different calculus courses at different colleges and 

universities, which means hierarchical linear modeling could be used because of the 

different levels represented in the quantitative data.  However, only seven percent of the 

variability of the data came from the course level, four percent came from the school 

level, while 89 percent came from the student level. Therefore linear modeling will be 

used instead of hierarchical linear modeling since the course and school levels captured 

so little variability.   

There are many variables that can influence performance in first semester single 

variable college calculus.  Variables such as roommate situation, college or university 

activities, course load, instructional practices of the mathematics professor, and student 

commitment to attend class and study can all effect performance. Such questions are not 

within the scope of this study. This study is seeking to measure what pedagogies from 

students’ senior year in pre-calculus or calculus effected single variable college calculus 

performance. Even though the questions on the FICSMath survey were carefully 

constructed to have high content validity, concerns remain because what students read 

and what they understand may be different than the intent of the question.   
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The 4C/ID model has been proposed as a theoretical model for teaching complex 

tasks to increase the likelihood of transfer of learning.   However, this model has not been 

used as a framework to structure pedagogical practices that are predictive of college 

calculus success in the past.  Therefore the components of the model may not capture the 

essence of what teachers do to prepare students for college calculus success.   

 

Definitions and Key Terms 

A complex task is defined in cognitive load literature as having many different solutions, 

as being ecologically valid, as being content that cannot be mastered in a single session, 

and as content that places a high cognitive load on the learner’s cognitive system (Van 

Merriënboer et al., 2006; Van Merriënboer, Jeroen J. G. & Sweller, 2005a). 

Extraneous cognitive load originates from poorly designed instruction and can be a cause 

of high working memory load (F. Paas, Renkl, & Sweller, 2003). 

Four Component Instructional Design (4C/ID) model is an instructional model based on 

cognitive load theory that focuses on complex learning environments and teaching for 

transfer of learning.   

Germane cognitive load encodes working memory and sends the encoded information to 

be stored in long-term memory (Van Merriënboer et al., 2006). 

 Intrinsic cognitive load comes from element interactivity, or the multiple elements that 

must be considered in a complex problem-solving task. It is determined by the interaction 

between the nature of the learning tasks that must be learned and the expertise of the 

learner (Van Merriënboer, Jeroen J. G. & Sweller, 2005a). 
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Learning task component of the 4C/ID model is the complex task that requires the 

support of the other components in the model.  Such tasks are often real life, whole task 

problems (Van Merriënboer et al., 2006). 

Long-term memory is a major aspect of human cognitive architecture and is considered to 

be quantitative due to its seemingly limitless size (J. Sweller & Chandler, 1991). 

The Outcome space from a phenomenography, as described by Marton (1994) is the 

“ordered and related set of categories of description” of the concept being studied. 

A schema is a cognitive construct that allows multiple elements of information to be 

treated as a single element categorized according to its use (Birney, Fogarty, & Plank, 

2005). 

Part task component of the 4C/ID model aligns with part-whole scaffolding and is based 

on sufficient practice for automaticity. 

Phenomenography research has the goal of capturing the variability, both the similarities 

and differences, in the ways a phenomenon is perceived by different groups and 

expressed in qualitative data (Dahlin, 1999).  For this research the two different groups 

are mathematics professors and secondary mathematics teachers.  

Procedures, when learning complex upper level mathematics content, is defined as 

knowledge of the order of steps, goals and subgoals of steps, knowledge of the situation 

where the procedure is used, and consideration of constraints and heuristics inherent in 

the situation (Star, 2000). 
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Procedural information component of the 4C/ID model is supported by conceptual 

understanding and reasoning, which aligns with the mathematics education perspective 

that procedures do not stand alone. 

Powerful learning environments aim at the development of complex learning, deep 

conceptual understanding, and for learners to accept responsibility and regulate their 

learning.  

Real-life learning experiences allow for the simultaneous use of non-recurrent (new 

information to be learned) and recurrent information (information learned earlier and 

recalled back into working memory from long term memory) and confront learners with 

all of the multiple parts that combine to create a complex learning task. 

Supportive information component of the 4C/ID model supports the learning of complex 

tasks and focus on learning new content by elaborating on conceptual understanding, 

reasoning, problem solving, and cognitive assessment (Van Merriënboer et al., 2002; Van 

Merriënboer et al., 2003). 

Working memory is the seat of consciousness, and has been referred to in the past as 

short-term memory (F. Paas et al., 2003; J. Sweller & Chandler, 1994).   
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CHAPTER 2 

THE LITERATURE REVIEW 

  A better understanding of what prepares students for single variable college 

calculus is important since this course is often the foundation for many STEM degrees. In 

the past there has been a lack of consensus on what secondary preparation for college 

calculus should be, especially since each state independently established mathematics 

requirements for high school graduation (Reys, Dingman, Nevels, Teuschner, 2007).  It is 

not yet known if the alignment of mathematics standards across the nation with the 

recently adopted Common Core State Standards (CCSS) will create a greater consensus 

of what secondary practices align with college calculus success.  What is known is that 

since 1985 there has been an upward trend of two factors that have served as indicators of 

college calculus success (Ferrini-Mundy & Gaudard, 1992). One factor is an increase in 

the number of mathematics courses required at the secondary level across the nation 

(Ferrini-Mundy & Gaudard, 1992) while the other factor is the growth in the number of 

students who take the Advanced Placement (AP) calculus exam (Bressoud, 2009). These 

two factors indicate that more students are pursuing mathematics beyond the minimum 

requirements in the high school curriculum than ever before (Bressoud, 2009).  Before 

the 2010 adoption of the CCSS, five states required four mathematics credits for 

graduation, 26 states required three, and 15 required two, while nine states’ requirements 

were not provided on the 2010 Education Commission of the States website 

(ecs.org/html/IssueSection.asp).  It is not known how the CCSS will impact mathematics 

courses needed for graduation, but it is expected that course requirements will become 
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more standardized across the states because of the common state standards.  Rigorous 

preparation for college mathematics was defined seven years ago as passing three high 

school mathematics courses (Greene & Forster, 2003).  Typically these three courses 

would be Algebra I, Algebra II, and Geometry (Reys et al., 2007).  Research indicates 

there is a gap between requirements for high school graduation and what colleges and 

universities require for admittance (Greene & Forster, 2003).  The CCSS may help to 

reduce this gap since one of their claims is that these standards are aligned with college 

and work expectations.  In 2007, it was found that College Board AP exam participation 

and performance were two of the strongest predictors of college mathematics preparation 

(Byrd, 2007).  However Bressoud (2009), a college mathematics professor and the 2009 

president of MAA, stated that the benefits of secondary calculus are not well known.  

 

AP Calculus and College 

The research on student performance in college mathematics for those who 

choose to exempt college calculus courses because of AP Calculus exam scores is 

limited. However, what follows is a summary provided by various researchers in the 

field.  Education Testing Service (ETS) research indicates that 24 percent of students who 

earned a three on the AP Calculus AB exam took no additional calculus and 17 percent 

took a remedial course (Klopfenstein & Thomas, 2005). The need for remedial 

mathematics courses is determined by additional placement tests required by individual 

college mathematics departments (Klopfenstein et al., 2005). The National Research 

Council (NRC) also determined that secondary calculus prepares students for the rigors 
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of college when teachers are not pressured to sacrifice depth for breadth (Klopfenstein & 

Thomas, 2005). For example, the NRC stated that the inclusion of too much content in 

the College Board calculus curriculum might prevent students from achieving a deep 

understanding of calculus concepts (Klopfenstein et al., 2005). Furthermore, Klopfenstein 

and Thomas (2005) researched the effect of AP Calculus on early college success using 

the Texas Schools Micro-data Panel and determined that AP Calculus had no effect in 

early college success for the average college student (Klopfenstein et al., 2005).  

 A study in 2002 investigated what happened to students that received a 3 or 

higher on an AP Calculus exam (Bressoud, 2009).  Research on 435 randomly selected 

students was carried out to investigate what percent of students take advantage of earning 

a score of three or higher and exempt single variable college calculus. For AP Calculus 

AB, 84 percent of the students who made a score of 5, 82 percent of the students who 

earned a score of 4, and 60 percent of those who received a score of 3 chose to receive 

college credit (Bressoud, 2009).  If credit was not received, about half of the students said 

it was because the college did not give credit and the other half stated they chose to enroll 

in single variable college calculus even though they could have exempted the course 

(Bressoud, 2009). For AP Calculus BC, 79 percent of students who scored a 3, 4, or 5 

exempted single variable college calculus. This study did not provide information of how 

students who exempted single variable calculus performed in multi-variable calculus 

(Bressoud, 2009). 

 Bressoud (2009) provided results of a large-scale study conducted in the fall of 

1994 at 22 colleges and universities that received the greatest number of AP Calculus 
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scores. The advantage of this study is that these researchers not only provided average 

calculus grades for the different levels of AP exam scores, and the average grade for the 

students who earned single and multi-variable calculus the traditional way (in college), 

but they also adjusted the SAT grades of the students who exempted single and multi-

variable calculus (Bressoud, 2009). These comparisons are presented in Table 2.1, which 

indicates that students who chose to exempt calculus are the students who are predicted to 

be successful in college, as indicated by their SAT scores. Colleges have accepted the 

SAT as an indicator of students’ ability for academic success in college; however, Sadler 

and Tai (2007a) stated that high school grades are considered to be the best predictor of 

college performance. What Table 2.1 may really show is that characteristics of students 

may be the true indicator of college success instead of their AP scores (Dougherty, 

Mellor, & Jian, 2005). Students who take AP courses typically have better academic 

preparation, stronger motivation, and more family advantages than non-AP  

Table 2.1  
 
AB and BC Calculus Grades and Adjusted SAT Grades For Comparison of Calculus II  
 
Performance For Students Who Did and Did Not Take AP Calculus AB 
             

Average  SAT     Average  SAT 
  Calculus II Adjusted   Calculus III Adjusted 
Placed via Grade  Grade  Placed via Grade  Grade   
 
Calculus I     2.43   -------    Calculus II     2.50  ------- 

3 on AB exam     2.69  2.64  3 on BC exam     3.00  2.92 

4 on AB exam     2.90  2.78  4 on BC exam     3.45  3.35 

5 on AB exam     3.34  3.15  5 on BC exam     3.46  3.27   
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students (Dougherty et al., 2005).  It is reasonable to expect that these characteristics 

would also be an advantage when taking the SAT test as well. 

Researchers at Notre Dame examined the performance of AP Calculus students 

who earned at least a four on the AP Calculus BC exam and compared their performance 

in differential equations, or the third level of calculus, to the students who entered the 

course because of earning the previous two calculus credits the traditional way in college 

(Pieronek, 2007). In 2005 and 2006, 45 percent of the students in differential equations 

exempted single and multi-variable calculus because of AP credits (Pieronek, 2007). The 

analysis of the performance of students in differential equations revealed that students 

with AP credits earned higher average final grades and had a higher proportion of top 

grades than students who entered into differential equations the traditional way (Pieronek, 

2007). However, there is more to this story. The students who earned AP credits and 

scored high in differential equations also entered Notre Dame with 10 or more AP credits 

(Pieronek, 2007). Again, it appears that the personal characteristics of students may be 

the true indicator of success instead of AP scores.  

Other research finds no conclusive evidence that the AP experience provides 

superior college preparation when compared to a non-AP curriculum that is rich in 

mathematics and science (Klopfenstein et al., 2005).  Sadler and Tai (2005a) found that 

students with low grades in honors and AP courses perform worse in college courses than 

students who had courses from the standard curriculum and earned high grades. Bressoud 

(2009) stated the most glaring observations from the few studies available about AP 
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calculus students’ performance in college indicate that little is known about the effects of 

secondary calculus instruction.  

 

Problem Solving 

The 1989 NCTM Standards focused on problem solving and called for 

mathematics instruction to abandon curricula that promoted thinking about mathematics 

as a rigid system of rules (Battista, 1994). A mathematics curricula based on algorithms 

without meaning is limited because mathematics is dynamic, it reveals patterns and 

relationships, and learners can use it to seek solutions, formulate conjectures, and solve 

meaningful problems (Schoenfeld, 1992).  Curricula standards for high school 

mathematics provide learning expectations that should be the focus of mathematics 

instruction, yet since the 1989 NCTM Standards there has been inconsistency across 

states concerning what standards are used and how they are used (Reys et al., 2007). 

Most states have referred to the NCTM Standards and have organized high school 

mathematics curricula using the 9th through 12th grade band based on the traditional 

subjects of Algebra 1, Geometry, Algebra II, Pre-calculus, Trigonometry, Probability and 

Statistics, and Calculus (Reys et al., 2007).  The new paradigm shift in mathematics 

education from the NCTM Standards to the CCSS is expected to align standards across 

all states for more consistency in mathematics education across the nation.  
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Traditional Problem Solving 

Historically textbooks have included problem-solving sets that are contrived to 

illustrate the mathematical techniques provided by the instructor (Schoenfeld, 1992). 

Such problems have typically been added at the end of chapters as if they justify why 

students are to learn the mathematical material (Schoenfeld, 1992). A consequence of this 

type of problem solving in the traditional mathematics curricula is that students get the 

impression that there is only one right way to solve the problems, and that way was just 

demonstrated by the instructor (Schoenfeld, 1992).  Traditional problem solving has been 

perceived as being superficial because it typically introduces a technique, illustrates the 

technique, and then provides similar problems for students to practice (Schoenfeld, 

1992).  This type of problem solving leads students to believe there is a fixed algorithm 

for every problem, and solving problems should require little time and effort (Schoenfeld, 

1992).  Traditional problem solving requires students to cognitively process less 

information since their thinking is limited to the examples just provided by the instructor 

(Schoenfeld, 1992).  

 

Real Problem Solving 

 The NCTM call for mathematics educators to change their pedagogical practices 

from procedural instruction to “real” problem solving provided an opportunity for 

transformative changes for both curricular content and pedagogy (Schoenfeld, 1992). The 

types of problem solving advocated by the NCTM Standards were to enable students to 

apply mathematics with flexibility and resourcefulness (Schoenfeld, 1992).  Hence forth 
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in this document, problem solving is defined as that which requires students to grapple 

with new and unfamiliar tasks when the method to solve the problem and the solution is 

not readily known. Students who engage in such problem solving must learn to work with 

complex problems of significant difficulty (Schoenfeld, 1992).  The 4C/ID model was 

designed under the assumption that powerful learning environments exist where learners 

grapple with whole-task, complex problems (van Merriënboer et al., 2006).   

 

The Complexity of Learning Mathematics 

 Real life applications help students understand the connections between content, 

mathematical reasoning, and sense making  (NCTM, 2009) but real-life tasks are not 

what makes learning mathematics a complex task.  Learning mathematics is a complex 

task because mathematics is abstract, and reasoning is required to understand abstract 

information (Russell, 1999).  A focus on reasoning and sense making implies that 

“covering” mathematics in the curriculum is insufficient and that the goal of instruction 

should be mathematical reasoning and sense making (NCTM, 2009).  Sense making is 

developing an understanding of a situation, context, or concept by connecting 

mathematics with existing knowledge (NCTM, 2009).  Thus the goal of instruction 

should be that students both understand and can use what they have been taught (NCTM, 

2009).   

The complexity of learning mathematics can be better understood by considering 

the problem solving process.  When presented with a mathematics problem, students 

must: (1) analyze the problem; (2) consider a strategy to solve the problem; (3) make 
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connections to prior mathematical knowledge; and (4) reflect on the solution (NCTM, 

2009). The first step, analyzing a mathematics problem, involves students being able to 

identify relevant mathematical concepts, procedures, or representations that reveal 

information about the problem; define relevant variables and conditions given; seek 

patterns and relationships; look for hidden structure; consider special cases or simpler 

analogs; make connections across various mathematical domains, contexts, and 

representations; make preliminary deductions and conjectures; and decide if a statistical 

approach is appropriate (NCTM, 2009).  For the second step, implementing a strategy, 

the students must make a purposeful use of procedures; organize calculations, algebraic 

manipulations, and data displays; make logical deductions based on current progress by 

verifying conjectures and initial findings; and they must monitor progress toward a 

solution (NCTM, 2009). The third step, making connections to prior mathematical 

knowledge, requires students to recall previously learned mathematics in problem solving 

(NCTM, 2009).  For example, algebra is fundamental to solving calculus problems and if 

students cannot recall essential algebraic elements, they cannot solve calculus problems.  

Lastly, students need to revisit initial assumptions while being mindful of special cases 

and extraneous solutions; reconcile different problem solving approaches; effectively 

provide the solution; and then in order to make significant mathematical connections, 

they need to generalize the solution to a broader class of problems while looking for 

connections with other problems (NCTM, 2009).  Also, if the problem is statistical in 

nature, students must recognize and consider the scope of inference (NCTM, 2009).   
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Conceptual Understanding and Procedural Knowledge  

There has been criticism, based on students inappropriate use of algorithms, that 

mathematics instruction focuses on rote memorization of procedures while neglecting 

conceptual understanding required for meaningful problem solving (Bosse & Bahr, 

2008). The criticism stems from the fact that students tend to learn algorithms by rote 

without developing any understanding of what the algorithm is for or how to use it 

(Hiebert & Lefevre, 1986; Star, 2000).  Problem solving in mathematics requires both 

conceptual understanding and procedural knowledge, and the NCTM Standards states 

there should be a balance between them (NCTM, 2008; Bosse et al., 2008).   

Research in this area has often addressed which occurs first, learning concepts or 

procedures, but Star (2000) claims this is less important than understanding what each 

means when learning advanced mathematics. The current assumption in mathematics 

education research is that the end goal for conceptual understanding is knowledge that 

can be used to “recognize, identify, explain, evaluate, judge, create, invent, compare, and 

choose; in other words, when such knowledge is understood”  (Star, 2000, p. 82).  By 

contrast, the end goal for the acquisition of procedures is when “skills become routine 

and can be executed with fluency; in other words, when such knowledge has become 

automatized”  (Star, 2000, p. 82).  Such distinction about knowledge of concepts and 

procedures has its origins in a philosophical framework, which relates conceptual 

understanding as “knowing how” and procedural knowledge as “knowing that” with the 

latter being perceived as straightforward and rather uninteresting (Star, 2000, p. 82). 

However, considering procedures is more complex when examining abstract algebraic 
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and geometric procedures required in learning pre-calculus and calculus content. 

Superficially, procedures may be represented simply as a chronological list of actions or 

steps (Star, 2000), such as finding common denominators in order to add fractions. On a 

more abstract level, procedures in complex mathematical tasks and in the mathematics 

classroom may include:  

Planning knowledge -- knowledge of such things as the order of steps, the goals 

 and subgoals of steps, the environment or type of situation in which the procedure 

 is used, constraints imposed upon the procedure by the environment or situation, 

 and any heuristics or common sense knowledge which are inherent in the 

 environment or situation. This knowledge is abstract (and deep), but not 

 necessarily conceptual (Star, 2000, p. 85). 

The calculus curriculum has been at the center of the procedural skills verses 

conceptual understanding debate (Chappell & Kilpatrick, 2003).  One common example 

is the criticism from mathematics professors that the College Board AP calculus 

curriculum is so broad that the students move through the course by learning procedures 

instead of concepts, which will not be beneficial in college calculus (Bressoud, 2009).  A 

specific example is the research by Chappell and Kilpatrick (2003) based on the charge 

that the calculus reform movement watered down secondary and post secondary calculus 

courses by teaching only a superficial use of skills.  Star’s definition of procedural 

knowledge may be different than that of Chappell & Kilpatrick’s “superficial use of 

skills” (p. 18).  However, Chappell & Kilpatrick (2003) claim that the reform movement 

has significantly impacted the beliefs of secondary and post-secondary teachers; therefore 
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their study should be presented despite the possible difference in the definition of 

procedural knowledge. 

 Chappell & Kilpatrick’s (2003) research at a large state university involved one 

class with a focus on conceptual understanding and seven classes with a focus on 

procedure-based instruction.  The focus of the conceptual understanding course was to 

link students’ entry knowledge to more formal concepts; to use multiple methods of 

representation, such as numeric, graphic, and algebraic; and for students to explain the 

variety of methods employed as they problem solved (Chappell et al., 2003).  The focus 

for the procedures courses were the teaching of procedures, algorithms, and skills where 

algebraic solutions were emphasized over non-algebraic solutions, and students were not 

required to explain their problem solving methods (Chappell et al., 2003).  Other qualities 

of the courses were kept constant, except for the number of students in each treatment 

group. Table 2.2 show the results of the first study, which indicate that the concepts based 

group performed significantly better on their midterm than the procedural groups. A 

replication study ensured that the difference did not come from the initial mathematics 

abilities of the students in the concepts based group (Chappell & Kilpatrick 2003).  In the 

replication study students in the concepts-based group performed better not only on their 

midterm, but also on their final exam. In the discussion the authors state, “Results from a 

variety of assessment measures demonstrate that it is possible to devote significant class 

time to the development of conceptual understanding without sacrificing skill 

proficiency” (p. 32). The 4C/ID model, introduced in chapter one, has a support 

component, based on reasoning and conceptual understanding, and a procedural 
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component.  The discussion provided here should help in understanding and defining the 

procedural component relative to learning complex mathematics.  

Table 2.2  

Descriptive Statistics and Univariate Results for Conceptual/Procedural Study One  
 
(n=1,164) 
             

    Concept Based Course Procedure Based Course   
  

Exam        No.    Means (Std. Dev)      No.    Means (Std. Dev)         t-value   Effect  
Skills 1     72    85.63 (15.52)  231 87.34 (14.09)        0.879 
 
Skills 2     70    79.36 (17.34)  213 82.32 (17.73)          1.221 
 
Midterm    72    119.38 (19.95)  232 104.61 (23.96)         4.743*    0.64  
 
Final       69    129.80 (27.36)  205 125.85 (29.89)          0.969   
*p<0.05 
 

Theoretical Framework 

 Cognitive Load Theory and the 4C/ID model provide guidelines for lowering 

working memory load associated with learning rich complex tasks (van Merriënboer et 

al., 2008; van Merriënboer et al., 2006). Both theories share the same assumptions about 

the human cognitive architecture and both distinguish three types of working memory 

load.  First, a brief description of the assumptions will be discussed followed by a 

discussion of the three different types of cognitive load.  

There are five assumptions concerning the human cognitive processing system 

(Sweller et al., 1998). The first assumption is that long-term memory holds cognitive 

schemata, which vary in complexity and provide organization to knowledge (van 

Merriënboer et al., 2005a; Sweller, 2009).  It is assumed that a huge amount of 
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information is accumulated and stored in long-term memory (Leahy & Sweller, 2008), 

however, humans are not directly conscious of that information (Sweller et al., 1998). 

Awareness of long-term memory content is only known when schemas are filtered back 

into working, or conscience, memory as chunks of knowledge (Sweller et al., 1998). 

When a person reads a mathematics problem, a number of nodes in that person’s 

schematic network begin to fire, which spreads and activates other nearby semantically 

related nodes (Mestre, 2005).  Soon there is a chunk of memory activated that can assist 

in the encoding of new mathematics that is recalled back into working memory. Schemas 

are referred to in mathematics education as a “web” of mathematical memory (Russell, 

1999).  The web means that mathematical ideas are connected and work together to 

create a large memory base of previously learned mathematics.  

The second assumption is that the bulk of stored information in long term 

memory is borrowed from other people through reading what they write, listening to what 

they say, or by imitating what they do (Leahy et al., 2008; Sweller, 2009).  “Borrowing” 

does not imply that meaningful information becomes part of ones own repertoire of 

knowledge simply because one paid attention to what others know.  Rather, it is 

understood that learners are exposed to information, and they must make it their own if 

there is to be any application or transfer of learning, either in or outside of the knowledge 

domain. Schoenfeld (1992) also addressed learning mathematics in this way by stating 

that students learn mathematics by observing the process of mathematics, listening to 

explanations of mathematics, and by practicing mathematics.  
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The third assumption is that all human learning is critically dependent on a 

“random generation and test of effectiveness process during problem solving” (Sweller, 

2009, p. 13 & 14).  When faced with problem solving, the choices of how to proceed may 

be so many that they seem like random trials, so humans have no choice but to make a 

move, test the move for its effectiveness, discard ineffective moves, and then proceed to 

the next step  (Sweller, 2009).  In mathematics education, this is similar to the idea of 

seeking strategies for problem solving and flawed reasoning (NCTM, 1999).  During 

mathematical reasoning and problem solving, students must try a strategy from their 

repertoire of mathematical memory, and sometimes problem solving strategies seem to 

work, when in fact they do not.  Even though the incorrect process did not further the 

solution, the student can learn from the flawed reasoning process. Thus the strategy that 

led to “flawed reasoning” is “discarded” and a different strategy must be used. 

The fourth assumption is that the structure of working memory limits the 

“explosive growth” in the potential number of possible combinations that can be 

processed in working memory (Sweller, 2009).  According to Sweller (2009), “Working 

memory acts as an intermediary between long term memory and the environment” (p. 

14). Therefore there is a massive amount of information that can be brought into working 

memory from the environment through our senses.  The structure of working memory 

limits the processing capacity to about seven plus or minus two items of information at a 

time (Miller, 1956). Knowledge of the limits of working memory suggests that humans 

are particularly poor at complex reasoning unless most of the elements with which we 

reason have previously been stored in long term memory (Sweller et al., 1998).  Working 
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memory is simply not capable of processing complex interactions between elements that 

have not been previous stored in long-term memory (Sweller et al., 1998). Thus, sense 

making in mathematics aligns directly with this assumption.  Sense making states that 

mathematical understanding of concepts and content should be connected to existing 

knowledge, which is in long term memory, because working memory is not capable of 

processing complex mathematical ideas independent of mathematical memory (NCTM, 

2009; Sweller et al., 1998).    

The last assumption is that there are no limitations in working memory when 

dealing with chunks of previously organized schemas from long-term memory (Sweller, 

2009).  In fact, the capacity and duration of working memory, when dealing with chunks 

of information from schemas in long-term memory, are considered to be limitless 

(Sweller, 2009).  Thus, a leading premise of cognitive load theory is that the seat of 

human intellectual ability resides in long-term rather than in working memory (Sweller et 

al., 1998). However, the process of moving items from working memory into long-term 

memory can be hindered because of working memory load.   

Cognitive load theory has described working memory load as coming from two distinct 

sources that limit learning, extraneous and intrinsic load, and one source that is necessary 

for learning, germane cognitive load. Figure 2.1 presents an image, modified from 

cognitive information processing theory, of the three loads on working memory and the 

learning process. Van Merriënboer et al., (2006) claim that teaching complex tasks 

requires the learning process. Van Merriënboer et al., (2006) claims that teaching 

complex tasks requires intrinsic load to be balanced, or limited, in order to enhance 
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germane cognitive load.  When this occurs then students can transfer complex learning to 

a new and different environment (van Merriënboer et al., 2006).  

 
Figure 2.1.  Cognitive Load Theory, Image modified from Driscoll (2005). 

 

 

Extraneous Cognitive Load 

Extraneous cognitive load may occur from instructional practices, which has the 

potential to limit the processing ability in working memory (van Merriënboer et al., 

2005a). Considering a graph with multiple sources of information that are not integrated 

provides an example of how high extraneous cognitive load can occur. If a graph of 

simultaneous equations is presented with both graph and text, but the text is captioned at 

the bottom of the graph, instead of with the appropriate function, this may cause the split-

attention effect (van Merriënboer et al., 2005a).  Theoretically, this means the learner 
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must use two of the seven available processing capabilities in working memory in order 

to understand the graph (van Merriënboer et al., 2005a).  If the text is integrated into the 

graph next to the appropriate function, then extraneous cognitive load is limited because 

there is not a need to integrate the two disparate information sources (van Merriënboer et 

al., 2005a).  Even if extraneous cognitive load is low, working memory can still be 

hindered because of the complexity of the material to be learned since extraneous and 

intrinsic cognitive load are considered to be additive (Sweller et al., 1998; van 

Merriënboer et al., 2002; van Merriënboer et al., 2005a).   

 

Intrinsic Cognitive Load 

Intrinsic cognitive load exists from the complexity of the content to be learned 

(Ayres & Gog, 2009).  Element interactivity refers to how individual elements of a task 

interact with other tasks in a specific learning activity and is considered to be the main 

generator of intrinsic cognitive load (Ayres, 2006). High element interactivity imposes a 

high working memory load (Ayres, 2006) and is inherent in mathematics due to the 

complexity of learning mathematics. The descriptions of analyzing a problem, 

implementing a strategy, seeking connections across mathematical domains, and 

reflecting on the solution to a problem presented earlier is an example of high element 

interactivity.  If each one of the processes presented were considered individually, and 

not as a chunk of information from schema, then the seven available processing 

capabilities in working memory would be used just by analyzing the problem.  This 

means there would be no processing capability left for reasoning, sense making, or 
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solving the problem. Even if there is no extraneous cognitive load, intrinsic cognitive 

load can be so high that learning is hindered.  Learning occurs only if there are some of 

the “seven plus or minus two” processing capabilities in working memory available for 

germane cognitive load (Sweller et al., 1998; van Merriënboer et al., 2002).   

 
 
Germane Cognitive Load 
 

Germane cognitive load is required for schema formation, and is the only working 

memory load that is necessary for learning (Ayres et al., 2009).   Germane cognitive load 

processes and encodes information for storage into long-term memory, and then hooks 

the information to existing schemas (van Merriënboer et al., 2005a). After new 

information is stored in long term memory, as part of a schema, or part of the 

mathematical web of knowledge, it can then be brought back into working memory later 

as a chunk of knowledge (Sweller et al., 1998).  Cognitive load theorist believe infinite 

chunks can be sent back into working memory to help process more new information 

(Sweller et al., 1998; van Merriënboer et al., 2002). Therefore, sense making in 

mathematics means that learners are processing mathematical information for storage into 

long-term memory as part of the mathematical memory.  If this process occurs, then 

students are learning mathematics for understanding and later use. 
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The 4C/ID Model 

 Since the late 1990s, authentic learning tasks have been considered to help 

learners integrate knowledge and abilities needed for understanding and performance 

(van Merriënboer et al., 2003). The philosophy is that such tasks allow learners to 

transfer what is learned in their current environment to a new and different environment 

(van Merriënboer et al., 2003). The risk of such tasks is that element interactivity can be 

high and learning can be hindered.  As a result, cognitive load theory states that whole-

part practice should be used to scaffold complex learning tasks (van Merriënboer et al., 

2003; van Merriënboer et al., 2006).  Scaffolding is useful in that it allows learners to 

achieve a goal or action not achievable without that support (van Merriënboer et al., 

2003).  

Whole-part instruction means a complex problem is presented in its full 

complexity right from the beginning, but teachers focus the learners’ attention on subsets 

of the interacting elements (van Merriënboer et al., 2003; van Merriënboer et al., 2006).  

For example, a typical calculus related rates problem may read, “Water flows into a 

cylindrical tank at a steady rate of 15 cubic feet per minute. The tank is 16 feet wide and 

30 feet deep.  Find the rate the height of the water is changing when there is 10 feet of 

water in the tank.” One way to emphasize the interacting elements of this problem is to 

require learners to focus attention on the parts of the problem. These could be described 

as: (1) the set up; (2) similar triangles from geometry to solve for the radius in term of the 

height; (3) algebraic manipulation to restate the volume equation in terms of height; 
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 (4) calculus to take the derivative; (5) algebraic substitution of what is known into the 

derivative; and (6) algebraic manipulation to simplify and solve the problem.  However, 

in mathematics education, it is perceived as unbeneficial to parse the problem into 

geometry, algebra, and calculus as if mathematics is disconnected.  This method is 

similar to the part-whole, or simple-to-complex method, which has been shown to make 

complex problem solving too “piece meal and fragmented to allow for transfer to new 

problem situations” (van Merriënboer et al., 2003, p. 6). Instead, when learning 

mathematics, it is perceived as more beneficial to focus on the concepts of the problem, 

using reasoning and sense making to choose the strategies needed to solve the problem 

(NCTM, 2009).  The 4C/ID model can be helpful in this process.  The four distinct parts 

of the model are the learning task component, support component, procedure component, 

and part-task component (van Merriënboer et al., 2002; van Merriënboer et al., 2003; van 

Merriënboer et al., 2006). Figure 2.2 shows van Merriënboer & Paas (2008) conceptual 

framework of the 4C/ID model.  The observer should notice that the largest component 

for complex learning tasks is the supportive information component, which in 

mathematics education is related to conceptual understanding and reasoning.  The 

foundation for procedural information is also the support component, and together the 

concepts and procedures support learning complex authentic tasks.  The part task practice 

component is relative to instruction when enough practice is available for the information 

to become automatized.  
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Figure 2.2.  The 4C/ID Model Components (van Merriënboer  & Paas, 2008) 

 

The Learning Task Component 

The learning task component should engage the learner in meaningful problem 

solving that requires mental processes to move from the initial state of the problem to an 

acceptable solution (van Merriënboer et al., 2003). Preferably learning tasks are 

authentic, real life problems that are presented with the whole part scaffolding method 

(van Merriënboer et al., 2002; van Merriënboer et al., 2003; van Merriënboer et al., 

2006). The NCTM (2009) states, “High school mathematics prepares students for 

possible post-secondary work and study in three broad areas: (1) mathematics for life; (2) 

mathematics for the workplace; and (3) mathematics for the scientific community” (p. 3).  

Van Merriënboer and colleagues describe the 4C/ID model as connecting the world of 

work and education through the use of authentic real-life problems. 
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The Support Component 

 Supportive information is best presented before learners begin the complex 

learning task (van Merriënboer et al., 2003).  Cognitive load theorists believe this will 

allow schema to be constructed in long-term memory, which can ultimately be sent back 

to working memory in chunks of information and assist with the learning task (van 

Merriënboer et al., 2003).  Conceptual understanding, reasoning, problem solving, and 

cognitive assessment are all parts of this component that aid in creating a supportive 

learning environment (van Merriënboer et al., 2002; van Merriënboer et al., 2003; van 

Merriënboer et al., 2006).  Each will be discussed relative to how these fit in the support 

component and in the learning of mathematics.   

Supportive information promotes schema construction through elaboration by 

helping students establish non-arbitrary relationships (van Merriënboer et al., 2002).  

Supportive information aids in conceptual understanding, and provides knowledge of 

structures and causal relationships in complex learning tasks (van Merriënboer et al., 

2002).  Conceptual models focus on how elements are interrelated, structural models 

describe how elements are organized, and causal models help to interpret processes, give 

explanations for events, and make predictions (van Merriënboer et al., 2002).  The 

integration of such cognitive models helps students understand nonarbitrary relationships 

in complex learning tasks.  For example, relative to the aforementioned related rate 

problem, understanding conceptually that as the water flows into the tank, the volume, 

height, and radius of the water are all changing with respect to time as the water rises, 

which should help the learner understand why implicit differentiation is needed to solve 
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related rates problems. Structural organization of the problem reveals that there are three 

unknowns, the volume, the radius, and the height, but only information for two of these 

have been provided.  Thus, there must be a method of solving for one unknown in terms 

of another.   Finally, the units in the problem assist in interpreting the solution since the 

unknown is the rate that the water is rising in the tank, meaning a final solution should be 

in feet per minute.  

 During problem solving students must analyze a problem, implement a strategy, 

and reflect on a solution, which aligns with what van Merriënboer et al., 2003 stated as 

the problem solving process where students use heuristics unique to interacting elements.  

Literally supporting the problem solving process, the support component connects 

complex elements to theories, contains concrete, abstract and general knowledge, and 

provides reasoning opportunities (van Merriënboer et al., 2002).  

 Lastly, cognitive assessment and feedback are also part of this component.  The 

idea is that cognitive assessment promotes schema construction and stimulates learners to 

reflect on the quality of their problem solving processes (van Merriënboer et al., 2002).  

The goal is for cognitive feedback to encourage learners to seek more effective mental 

models and problem solving strategies.  This is contingent upon the teachers’ feedback 

being valuable and providing opportunities for reflection.   

 

Support Component Summary 

 The classroom environment where mathematics is learned should be one that is 

focused on conceptual understanding, mathematical reasoning, problem solving, and 
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cognitive assessment.  When this exists there is a supportive environment for learning 

mathematical information and solving complex problems.  Learning mathematics is 

complex; therefore, instead of the support component existing only when real-life 

authentic learning tasks are integrated into the curriculum, the support component in 

mathematics education should be considered as the supportive environment in which 

meaningful mathematics is learned.  

 

Procedure Component 

The relationship between learners’ knowledge of concepts and their ability to 

execute procedural skills has been a concern in mathematics education research for many 

years (Star, 2000). The concern is that learners of mathematics tend to learn algorithms 

by rote without developing an understanding of what the procedure is for, why it is 

important, and how and when to use it (Star, 2000).  In cognitive psychology both the 

understanding of concepts and the acquisition of procedures has been researched, but the 

relationship between them is not well understood (Star, 2000). Procedural information is 

presented to learners because it helps them perform routine aspects of complex learning 

tasks (van Merriënboer et al., 2006).  The recall and manipulation of algebra, when 

problem solving with new pre-calculus and calculus concepts, may be anything but 

routine. A plausible example of a routine aspect of learning in a secondary mathematics 

class may be the level of complexity in which graphing calculators are used. The NCTM 

states, “Technology can relieve students of burdensome computations giving them the 

freedom and the need to think strategically” (NCTM, 2009, p. 14). A traditional approach 
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to procedural information has been memorization, however neither the NCTM nor 

cognitive load theorists advocate learning by memorization (van Merriënboer et al., 2002; 

van Merriënboer et al., 2003, NCTM, 1999). 

Van Merriënboer et al., (2002) stated that supportive information pertains to 

learning new information, while procedural information pertains to knowledge previously 

learned that is stored in long-term memory (van Merriënboer et al., 2002).  Considering 

which occurs first, conceptual or procedural knowledge, has not been established as 

important in mathematics education.  In mathematics there is agreement that knowledge 

of concepts and procedures are positively correlated and the two are learned in tandem 

rather than independently (Star, 2000).   

    One of the goals of the 4C/ID model is to connect rules, or procedures that 

combine rules, to knowledge elements such as concepts through examples or 

demonstrations when the learners need the information (van Merriënboer et al., 2002). 

Presenting procedural information when it is needed helps to prevent the split attention 

effect (van Merriënboer et al., 2002; van Merriënboer et al., 2003). Van Merrienboer et 

al., (2003) states if procedural information is presented at the time that the learner needs 

it then integration with concepts is more likely.  The split attention effect may cause a 

misapplication of procedures that results in errors, and van Merriënboer et al., (2002) 

stated, “It is important that learners learn to recognize their own errors and how to 

recover from them” (p. 53). When learning a complex task it is practically impossible to 

prevent errors, therefore it is important to give meaningful corrective feedback as soon as 
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possible after the misapplication of a procedure or rule occurs (van Merriënboer et al., 

2002).   

Worked examples may help students learn the connection between procedures and 

concepts because examples can focus the learners’ attention on particulars of the complex 

learning task (van Merriënboer et al., 2006).  When whole part scaffolding is used the 

complex task is presented in its entirety, and worked examples are one way to focus the 

learners attention on specific parts of the problem without making the task be too 

piecemeal as in part-whole scaffolding. Schoenfeld (1992) stated that worked examples 

are often contrived to illustrate why specific mathematical information is needed when 

such problems in real life would rarely be encountered. This view aligns with 

Gravemeijer & Doorman (1999) perspective that contextual problems used to be limited 

to applications addressed at the end of a learning sequence “as a kind of add on” (p. 111).  

Currently worked examples of contextual problems have a more central role in learning 

the connection between concepts and procedures because of the emphasis on student 

understanding that mathematics is useful and also because of the presumed motivational 

power (Gravemeijer & Doorman, 1999).   

Authentic learning tasks is the terminology used by cognitive load theorists to 

describe problems placed in context, and are described as problems that have “many 

different solutions, are ecologically valid, cannot be mastered in a single session, and 

pose a very high load on the learners cognitive system” (van Merriënboer et. al, 2006, p. 

343). The related rate problem presented earlier is an example of an authentic real life 

complex problem where whole-part instruction could scaffold understanding with a 
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worked example. When such a complex problem is presented in its entirety the 

complexity may be overwhelming, but an example can focus attention on the dimensions 

of the tank and the changing dimensions of the water as it fills the tank over time. 

Assuming students understand implicit differentiation, observing a knowledgeable 

teacher provide an example of related rates has the potential of helping students 

understand why they need to know and be able to correctly work through the 

mathematical process of implicit differentiation.  After students have observed how 

related rates problems are set up and solved, then they can begin to use what they have 

observed to help them solve problems themselves.  However, in mathematics education 

there is a concern that worked examples give students the impression that there is one 

way to solve the given set of problems and that method was just provided by the 

instructor (Schoenfeld, 1992).  When dealing with complex mathematical topics such as 

related rates, each problem may appear completely different, which requires students to 

consider the worked example but to think about each problem individually.  For example, 

the sequential related rates problem may read, “A car is traveling north toward an 

intersection at a rate of 60 mph while a truck is traveling east away from the intersection 

at a rate of 50 mph.  Find the rate of change of the distance between the car and the truck 

when the car is 3 miles south of the intersection and the truck is 4 miles east of the 

intersection.” This problem is very different from the tank problem, but both problems 

are dealing with changing phenomenon over time.  Thus students would need to: (1) 

consider the worked example; (2) consider the similarities of the changing dimensions of 

water rising in a tank and movement relative to an intersection; (3) find a mathematical 
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way to express the changing rates for the intersection by considering what is given in the 

problem; and (4) apply implicit differentiation to solve and ultimately answer the 

problem.  Even though a worked example has been provided, the learning task is still 

complex and requires students to grapple with the problem in order to understand and 

solve it.  Teachers should be aware that a disadvantage of worked examples relative to 

learning mathematics is that learners may not study them carefully (Renkl, Stark, Gruber, 

& Mandl, 1998).  Learners may only briefly refer to examples when they have difficulties 

performing task (Renkl et al., 1998). In this case, worked examples are not beneficial for 

learning. 

 

Procedure Component Summary 

The procedural information component has been placed in the 4C/ID model 

because it promotes schema automation by embedding new information in situation 

specific rules that connect particular conditions to particular actions, and this process is 

called “proceduralization” (van Merriënboer et al., 2008, P. 11).  Relative to learning 

complex mathematics in pre-calculus and calculus that will transfer to single variable 

college calculus, it is the researchers perspective that Star’s (2000) definition of 

procedures being: 

Knowledge of such things as the order of steps, the goals and subgoals of steps, 

 the environment or type of situation in which the procedure is used, constraints 

 imposed upon the procedure by the environment or situation, and any heuristics or 

 common sense knowledge which are inherent in the  environment or situation. 
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 This knowledge is abstract (and deep), but not necessarily conceptual” (p. 85).  

What is most important to consider, relative to the 4C/ID model, is that procedures do not 

stand alone.  Procedures must be supported by conceptual understanding and reasoning 

within the supportive information component (see Figure 2.2). 

 

Part Task Component 

 When learning has occurred to levels of automaticity this means some specific 

task can occur with little effort, requires little conscious monitoring, can occur rapidly, 

and utilizes few cognitive resources (Feldon, 2007).  The part-task component is part of 

the 4C/ID model because there are times that instruction allows repeated practice of 

information to the point of automaticity.  This can both benefit and hinder meaningful 

learning of mathematics.  For example, finding solutions to quadratic equations is a 

common task in pre-calculus and calculus, and if students can efficiently work through 

the steps of completing the square then they can focus on complex algebraic 

manipulations in order to find the solutions.   However, if completing the square is 

difficult students may become overwhelmed with both the process of completing a square 

and complex mathematical manipulations.  This is an example of automaticity being 

beneficial.  A counter example is when students know the unit circle and can draw it with 

correct quadrants, angles, degrees, and polar and rectangular coordinates, yet they do not 

know how to use the information.  This type of automaticity, or memorization in 

mathematics, is not beneficial for learning complex pre-calculus and calculus concepts.  
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Part Task Summary 

Van Merriënboer et al., (2003) stated that the part task practice component had 

not yet been substantiated in the whole-task theoretical framework.  As stated previously, 

the whole-task scaffolding method is more appropriate for considering complex tasks, 

such as solving related rate problems, than the part task scaffolding method.  The part 

task method made the complex task too “piece meal” for conceptually understanding 

concepts such as related rates.  In general, overreliance of instruction for automatization, 

or for part task practice, is not helpful in complex learning (Van Merriënboer et al., 

2003).   
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CHAPTER 3 

METHOD 

The Factors that Influence College Success in Math (FICSMath) is a cross-

sectional study that gathered data from calculus students in single variable calculus across 

the nation from two and four year small, medium, and large colleges and universities.  

Data from this study was used to determine what pedagogies teachers employ that best 

prepare students for college calculus. Dr. Phil Sadler, the principal investigator of the 

FICSMath study, is located at the Science Education Department within the Harvard 

Smithsonian Center for Astrophysics. FICSMath is Sadler’s fourth nation-wide study of 

freshman at randomly selected colleges and universities. The first study was a pilot 

program, followed by the Factors Influencing College Science Success (FICSS) study, 

which began in 2002.  The third study was the Persistence Research in Science and 

Engineering (PRiSE) study, which began in 2006.  The FICSS study revealed important 

information about secondary mathematical preparation for college science courses. 

Collectively, these studies add to the validity of the FICSMath survey.  The FICSMath 

study is funded through the National Science Foundation (NSF award # F15226-105), 

and is the first nationwide study seeking to identify secondary mathematics teachers’ 

pedagogy, assessment practices, along with other techniques that lead to success in single 

variable college calculus. An epidemiological research method was used in the design of  

the FICSMath study.  
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Epidemiological Research Method 

The epidemiological method of research relies on the natural variation within the 

students’ experiences, backgrounds, and personal decisions rather than on explicit 

comparison of treatment and control groups (Hazari, 2006).  When natural variation 

exists in a large sample from a heterogeneous population, it is advantageous to use a 

research method that allows for capturing this variation. For example, the FICSMath 

randomized sample from two and four year small, medium, and large colleges and 

universities has variability in three distinct areas: the college or university level, the 

course level, and the student level.  Relative to the college or university level, there was 

four percent variability in college calculus performance (Sonnert, 2010).  The course 

level, whether designed for engineers, mathematics, science, or for non-STEM majors, 

captured seven percent variability in college calculus performance (Sonnert, 2010). At 

the student level, 89 percent of the variability in college calculus performance was 

captured from the wide range of experiences from students’ last high school mathematics 

courses (Sonnert, 2010). The epidemiological research method has the power to 

simultaneously test many variables across all levels, but with the variability from the 

school and course level being small, in comparison to the student level, the research 

focused only on the student level. Epidemiological studies are based on correlations, and 

such information can reveal relationships that exist, or fail to exist.   
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Development of FICSMath Survey 

The development of the FICSMath survey was guided by five major components. The 

first was an extensive literature review of mathematics education journals from the past 

ten years with special attention given to demographic and academic variables that 

affected performance in high school or college mathematics (Sadler, 2010). The second 

component was the transcribed report of the first FICSMath advisory board meeting, 

comprised of board members from the field of mathematics and mathematics education 

(Sadler, 2010). The third component examined what was learned from the FICSS and 

PRiSE studies (Sadler, 2010). The fourth was open response information from students in 

college calculus who were asked what their high school mathematics teacher did that 

helped to prepare them for college calculus (Sadler, 2010). The fifth component was an 

online survey sent to mathematics professors and mathematics teachers across the nation. 

The mathematics professors were asked, “What can high school teachers do to prepare 

students for success in college calculus courses?” Secondary mathematics educators were 

asked, “What do you do, as a mathematics teacher, that you think make a positive 

difference in helping your students succeed in college calculus?” This information was 

obtained through an online survey and collectively there were 185 mathematicians and 84 

mathematics teachers who responded to surveys (Watson, 2010). The information from 

these five components was synthesized and used to create the FICSMath survey.  
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FICSMath Survey 

 The FICSMath survey had a total of 61 questions divided into 9 different sections 

that questioned students regarding content, teacher instructional practices, and assessment 

methods used in their last high school mathematics class. There was a demographic 

section along with an area for the students to report all of the secondary mathematics 

courses taken, along with their grades. The survey included a section where the student’s 

calculus professor recorded their final grade in the course. For this study, this grade is the 

dependent variable, and the independent variables are the pedagogical practices that align 

with the components of the 4C/ID model.  

 

Validity of FICSMath Survey 

The content validity for the FICSMath survey was established through the five 

components that were used to create the survey. Each component addressed specific 

levels of concern in the area of mathematics education. The literature review provided 

what researchers are currently addressing, and the FICSMath advisory board meeting 

addressed legitimate concerns from both the secondary classroom and the college 

calculus classroom. The FICSS and PRiSE survey items that had high correlation 

between college calculus students and secondary mathematics educator responses were 

used on the FICSMath survey (Sadler, 2010).  The responses from the college calculus 

students about their high school mathematics teacher was a way to ensure that the 

information gained from other sources aligned with what is currently happening in the 

secondary mathematics classroom (Sadler, 2010). Lastly, the online surveys provided 
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views unique to mathematics professors who teach college calculus, and to secondary 

mathematics teachers who seek to prepare students for college level mathematics.  All of 

these sources of information were used to ensure that the content on the FICSMath 

survey addressed what is “currently on the mind” of the various groups of people who 

have an invested interest in secondary preparation for college calculus (Sadler, 2010).  

 

Reliability of the FICSMath Survey 

The reliability of the survey was established by the test-retest method. Students in 

calculus classes at four different universities were given the same FICSMath survey two 

weeks apart.  The professor for the calculus classes would leave twenty minutes early and 

the researchers would enter with the surveys for the students to take.  There were 148 

students in the fall of 2009 that took both the test and retest surveys. The comparison of 

the test-retest responses revealed symmetry where some responses were one or two 

higher or lower than the first, but for all types of questions there was an identical 

response spike with an overall shape of symmetry (Tai, 2010).  Even though all responses 

were not the same, the identical response spike allows the researchers to have a high 

confidence in the reliability of the FICSMath survey (Tai, 2010).  

 

The Study Population and Sample  

 There were 633 small, medium, and large two-year colleges, and 1,591 small, 

medium, and large four-year colleges and universities across the nation that were 

randomly chosen to participate in the FICSMath study. The researcher was part of a team  
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Figure 3.1.  FICSMath Sample (FICSMath Advisory Board Meeting, June 14, 2010) 
Legend:  Red=2-year small schools, Blue=2-year medium schools, Purple=2-year large schools. 
Green=4-year small schools, Yellow=4-year medium schools, Orange=4-year large schools 

of recruiters who began to contact mathematics departments early in the fall semester of 

2009.  Figure 3.1 shows the location of the colleges and universities from the population 

of schools across the nation that participated in the FICSMath study.  Schools that did not 

offer mathematics, or mathematics departments that did not offer single variable calculus, 

were eliminated from the list.  Mathematics departments that offered single variable 

calculus were asked for course numbers, which were used to classify the different type of 

calculus courses represented in the study, such as courses for engineering, mathematics, 

science or non-STEM majors. There were 485 two-year schools that were contacted by 

either email, voicemail, or by person-to-person phone contact, and 94 of these schools 

agreed to participate.  Likewise, 625 four-year schools were contacted in the same 

manner and 89 agreed to participate in the study.  The surveys were sent to mathematics 

departments that had indicated they would participate in the study in the fall of 2009. Of 
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the 94 two-year colleges that agreed to participate 73 returned the surveys, and of the 89 

four-year colleges and universities that agreed to participate 62 returned the surveys.  

Table 3.1 below provides the corresponding colors with the name of the state in 

which the college or university is located, the number of calculus courses that are offered 

at that institution for the fall semester of 2009, and the average student grade.  In the 

spring of 2010, a database of 10,492 survey responses with almost 500 variables was 

created.  This represents 135 colleges and universities, 224 single variable calculus 

courses, and 336 calculus professors.  

Table 3.1 

Color Coded Sample of Colleges and Universities Correlated to Map in Figure 3.1 
  

 
College or 

University* 

State Where 
College or 
University 

Located 

Number 
Calculus 
Courses 

Number 
Students 
in Class 

Percent of 
Sample 

Average 
Grade 

Standard 
Deviation 

2-Year Small Colleges or Universities 
1 Colorado 1 11 0.10% 75.54 7.06 
2 North Carolina 1 14 0.13% 72.73 22.68 
3 Montana 1 24 0.23% 70.05 12.87 
4 Georgia 1 15 0.14% 81.53 14.75 
5 Minnesota 1 9 0.09% 87.83 7.07 
6 Kansas 1 20 0.19% 84.50 8.58 
7 Minnesota 1 9 0.09% 87.00 7.07 
8 Pennsylvania 1 17 0.16% 88.03 9.96 
9 Alabama 2 37 0.35% 83.44 12.88 

Totals and Grand Mean  
2-Year Small 10 156 1.49% 81.18  11.44  

2-Year Medium Colleges or Universities 
10 New Jersey 3 75 0.71% 77.56 13.37 
11 California 1 31 0.30% 72.73 22.68 
12 California 1 11 0.10% 87.50 10.59 
13 California 2 46 0.44% 80.45 12.05 
14 California 2 47 0.45% 85.48 12.03 
15 New York 1 8 0.08% 70.94 20.84 
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16 Wisconsin 1 16 0.15% 86.47 8.42 
17 New Jersey 1 23 0.22% 77.89 15.54 
18 Maryland 2 66 0.63% 85.22 8.75 
19 Pennsylvania 2 32 0.30% 81.93 13.48 
20 Iowa 1 15 0.14% 85.00 7.90 
21 New York 3 64 0.61% 68.48 19.07 
22 Minnesota 1 22 0.21% 83.88 9.21 
23 Indiana 2 34 0.32% 84.55 13.07 
24 Michigan 1 37 0.35% 86.23 12.13 
25 Illinois 1 19 0.18% 80.69 18.94 
26 California 1 12 0.11% 78.63 16.13 
27 California 1 7 0.07% 81.43 7.80 
28 Massachusetts 1 18 0.17% 83.36 12.97 
29 New Jersey 1 144 1.37% 79.33 11.97 
30 Minnesota 1 30 0.29% 79.33 11.97 
31 Minnesota 1 134 1.28% 83.26 10.17 
32 Texas 2 42 0.40% 78.96 14.42 
33 Mississippi 1 38 0.36% 73.95 17.18 
34 Texas 4 84 0.80% 81.88 12.41 
35 Kentucky 1 10 0.10% 73.50 21.12 
36 Missouri 1 14 0.13% 81.65 9.95 
37 Arizona 3 63 0.60% 72.44 14.75 
38 Massachusetts 1 23 0.22% 76.66 16.54 
39 New Jersey 2 75 0.71% 83.76 13.62 
40 Tennessee 1 3 0.03% 95.67 2.02 
41 Minnesota 1 9 0.09% 83.56 12.15 
42 Illinois 1 35 0.33% 85.13 10.68 
43 New York 2 76 0.72% 74.17 20.35 
44 New Mexico 1 19 0.18% 79.00 13.34 
45 California 1 21 0.20% 72.62 22.44 
46 Tennessee 1 21 0.20% 60.48 21.12 
47 Washington 1 34 0.32% 76.05 21.32 
48 Arizona 1 34 0.32% 79.18 12.01 

Totals and Grand Mean: 
 2-Year Medium 56 1492 14.22% 79.72   13.96 

2-Year Large Colleges or Universities 
49 California 1 21 0.20% 72.21 14.21 
50 California 3 88 0.84% 80.44 15.43 
51 Illinois 2 88 0.84% 75.3 16.2 
52 Maryland 3 90 0.86% 77.06 15.55 
53 Iowa 2 45 0.43% 75.45 17.77 
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54 Texas 1 68 0.65% 81.99 12.62 
55 California 1 26 0.25% 76.55 15.16 
56 Illinois 1 184 1.75% 75.49 14.94 
57 Florida 1 24 0.23% 86.26 9.46 
58 Kansas 3 124 1.18% 78.83 14.7 
59 Texas 3 73 0.70% 80.81 16.94 
60 Michigan 3 172 1.64% 81.71 12.46 
61 New York 2 95 0.91% 77.77 16.58 
62 Maryland 1 50 0.48% 85.63 11.1 
63 Illinois 3 72 0.69% 80.09 12.58 
64 California 1 28 0.27% 80.48 12.42 
65 Florida 2 61 0.58% 75.13 15.52 
66 California 1 32 0.30% 73.46 17.09 
67 Arizona 1 59 0.56% 60.58 20.6 
68 Utah 1 31 0.30% 75.59 22.11 
69 Texas 1 21 0.20% 68.42 15.27 
70 California 1 32 0.30% 79.54 11.02 
71 Florida 1 132 1.26% 78.06 14.87 
72 California 2 42 0.40% 78.89 11.17 
73 New Jersey 3 131 1.25% 70.88 18.44 

Totals and Grand Mean: 
 2-Year Large 44 1789 17.05% 77.06 14.97 

4-Year Small Colleges or Universities 
74 Minnesota 1 24 0.23% 82.35 10.04 
75 South Dakota 1 29 0.28% 82.97 11.2 
76 Maine 1 19 0.18% 81.02 13.73 
77 Indiana 6 242 2.31% 85.71 9.63 
78 Maryland 1 33 0.31% 85.27 11.19 
79 Arizona 1 23 0.22% 74.8 16.72 
80 New York 1 22 0.21% 82.14 16.64 
81 Texas 1 16 0.15% 76.44 17.36 
82 South Dakota 1 10 0.10% 87.15 8.61 
83 Pennsylvania 1 100 0.95% 86.91 11.39 
84 Nebraska 1 43 0.41% 82 13.42 
85 Texas 1 28 0.27% 87.29 8.57 
86 New York 1 25 0.24% 86.94 6.46 
87 Virginia 3 41 0.39% 76.61 13.5 
88 Florida 1 43 0.41% 82.67 11.6 
89 North Carolina 1 21 0.20% 83 12.09 
90 New York 1 53 0.51% 85.11 9.21 
91 Texas 3 55 0.52% 75.42 14.31 
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92 California 1 68 0.65% 78.13 19.16 
93 Illinois 1 10 0.10% 89.5 7.07 
94 Oklahoma  1 8 0.08% 77.71 20.11 
95 Montana 1 35 0.33% 83.9 7.87 
96 Tennessee 1 22 0.21% 84.86 10.94 

Totals and Grand Mean: 
 4-Year Small 32 970 9.25%  82.52   12.21  

4-Year Medium Colleges or Universities 
97 Ohio 1 42 0.40% 84.69 8.64 
98 California 1 9 0.09% 73.33 20.1 
99 Illinois 2 88 0.84% 77.81 11.53 

100 Idaho 3 104 0.99% 80.09 16.45 
101 Virginia 2 252 2.40% 82.37 12.51 
102 Pennsylvania 1 45 0.43% 78.26 15.39 
103 Tennessee 4 178 1.70% 85.33 11.98 
104 Florida 2 89 0.85% 81.31 11.96 
105 New York 1 65 0.62% 82.92 9.62 
106 Louisiana 2 152 1.45% 79.17 11.9 
107 Minnesota 1 25 0.24% 81.88 12.83 
108 North Dakota 1 255 2.43% 77.45 15.34 
109 Oklahoma 1 37 0.35% 80.51 13.18 
110 Pennsylvania 1 38 0.36% 75.88 10.69 
111 Virginia 2 88 0.84% 79.58 14.05 
112 Connecticut  3 49 0.47% 73.54 14.93 
113 Massachusetts 1 18 0.17% 82.86 10.78 
114 New York 3 198 1.89% 76.81 14.59 
115 New York 1 12 0.11% 85.32 7.99 
116 Texas 1 43 0.41% 80.98 15.32 
117 New Jersey 1 100 0.95% 84.94 9.17 
118 Michigan 1 38 0.36% 85.39 11.05 
119 Massachusetts 1 49 0.47% 76.72 15.36 
120 Minnesota 1 320 3.05% 75.22 18.63 
121 Alabama 1 36 0.34% 75.22 18.63 
122 North Dakota 2 113 1.08% 75.09 15.21 
123 Colorado 3 65 0.62% 76.64 19.58 
124 South Carolina 2 60 0.57% 77.67 13.26 

Totals and Grand Mean: 
 4-Year Medium 46 2568 24.48% 79.54  13.60 

4-Year Large Colleges or Universities 
125 Alabama 7 465 4.43% 83.33 12.35 
126 Indiana 2 65 0.62% 75.05 17.13 
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127 Iowa 12 1162 11.08% 80.67 13.56 
128 Oklahoma 1 209 1.99% 78.87 14.47 
129 Oregon 2 83 0.79% 82.43 11.13 
130 Minnesota 1 111 1.06% 66.94 19.59 
131 Texas 1 176 1.68% 73.07 16.53 
132 Texas 2 292 2.78% 77.34 16.38 
133 Kentucky 5 373 3.56% 82.53 11.27 
134 North Carolina 2 312 2.97% 78.63 13.38 
135 South Carolina 1 269 2.56% 78.56 15.55 

Totals or Total Average: 
 4-Year Large 36 3517 33.52%  77.95 14.67 

Totals and Grand Mean:  
All Participating Colleges or 

Universities 224 10492 100% 79.66 13.48 

* Names of Colleges and Universities not provided 

 

Analysis 

  The unequal status-concurrent mixed-method design was used to analyze the data.  

A phenomenography was used to answer the research question, “What categories from 

the phenomenography of college mathematics professors and high school mathematics 

teachers align with the 4C/ID model?”  A phenomenography seeks to represent the 

relationship between some phenomena that is experienced by different groups (Johnson 

& Onwuegbuzie, 2004). The phenomenon of preparing students for college calculus 

experienced by the secondary mathematics teachers is different from the phenomenon of 

teaching single variable college calculus.  The phenomenographic method can help 

identify the commonalties and variances experienced at both levels.   

 Mapping the questions from the FICSMath survey to the components of the 

4C/ID model, and multivariate linear regression was used to answer the research 

question, “How well do the instructional components in the 4C/ID model represent 
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pedagogies that are predictive of pre-calculus and calculus students performance in single 

variable college calculus?” Data from students who had either pre-calculus or calculus 

(non-AP, APAB, or APBC) in the twelfth grade was used to build the model. The 4C/ID 

instructional model was designed to enhance transfer of learning of complex tasks.  

Therefore the sample was comprised of students who moved directly from their last high 

school mathematics class to the single variable college calculus course where the 

FICSMath survey was taken.  Controls were used in an effort to assure the significant 

variables were from secondary pedagogical practices and not other variables such as 

gender and ability.  Stepwise regression was used to find the significant variables for 

each component of the 4C/ID model beginning with the supportive information 

component. The model was built in the following order: controls and foundation 

knowledge component, support component, procedure component, learning task 

component, and finally the part-task component. Each variable was entered into the 

model progressively as the model was built in order to assure that variables in the model 

remained significant.   

 Results from the phenomenography and multiple regression were triangulated to 

answer the research question, “How can the 4C/ID model be modified to better reflect 

pedagogies that best prepare pre-calculus and calculus students for single variable college 

calculus?”  Triangulation of data was used to discover similarities, paradoxes, and 

contradictions (Johnson & Onwuegbuzie, 2004). More focus was placed on the 

quantitative results than qualitative results during triangulation.   
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CHAPTER 4 

QUALITATIVE RESULTS 

 

A PHENOMENOGRAPHY OF MATHEMATICS PROFESSORS’ AND 

MATHEMATICS TEACHERS’ PERSPECTIVES OF SECONDARY 

 PREPARATION FOR COLLEGE CALCULUS 

 

 The data used for this phenomenography was drawn from the Factors Influencing 

College Success in Mathematics (FICSMath) project, which focused on finding evidence 

for effective strategies that prepare students for college calculus success. FICSMath is a 

large-scale study conducted within the Science Education Department at the Harvard-

Smithsonian Center for Astrophysics, which surveyed a nationally representative sample 

of college students who were enrolled in single variable college calculus courses in the 

fall semester of 2009.  The survey included questions on students’ demographics, 

academics, interest in mathematics, and high school mathematics experiences.  The 

development of the FICSMath survey was led by several components in order to establish 

content validity.  One particularly informative source was open-ended responses gathered 

from mathematics professors and secondary mathematics teachers across the nation, via 

an online survey.  The survey gathered open response data concerning what professors 

believe teachers should be doing, and what teachers state they are doing, to optimally 

prepare students for single variable college calculus. These responses have been analyzed 

using a phenomenographic approach and the results are presented in this chapter.  
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 The mathematics professors responded to the question, “What can high school 

teachers do to prepare students for success in college calculus courses?” The mathematics 

teachers responded to the question, “What do you do, as a high school mathematics 

teacher, that you think prepares students for college calculus success?” Success is 

considered to be that which prepares students to move through the first college calculus 

course, or single variable college calculus, and be prepared for the subsequent multi-

variable calculus course required in a STEM major.  The respondents were asked to 

describe up to three interventions they considered to be beneficial to students’ preparation 

for single variable college calculus. Responses were collected from 185 mathematics 

professors (62 percent male) and 84 mathematics teachers (52 percent male) responded to 

the survey.  Because more professors than teachers responded to the survey, the numbers 

of statements in all categories were converted to percent of statements from the 

professors and teachers groups, which allowed for equitable comparison of statements 

across groups.  Relative to teaching experience, 30 percent of professors had less than 10 

years experience teaching single variable college calculus while 67 percent had 10 or 

more years experience, with three percent not responding; 91percent of the teachers had 10 

or more years experience teaching secondary mathematics.  

 

Phenomenographic Approach 

 The objective of phenomenographic research is to capture the variability, both the 

similarities and differences, in the ways a phenomenon is perceived by different groups 

and expressed in qualitative data (Dahlin, 1999). The phenomenographic research method 
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assumes the different categories that emerge from coding describe ways of experiencing a 

phenomenon, and the categories are logically related to one another (Akerlind, 2005). 

High school mathematics teachers and college mathematics professors are two different 

groups with distinct beliefs based on their education and teaching experiences. Secondary 

mathematics teachers form beliefs about student readiness for college calculus, and 

professors’ perceptions about student preparation are developed when these same 

students are in their college calculus courses. Consequently, professors and teachers have 

similar yet different perspectives concerning student preparation for college calculus. 

Thus a phenomenography is an appropriate method for seeking to understand the ways 

professors and teachers experience, conceptualize, and understand the aspects of 

preparing students for success in college calculus.  

 

Data Analysis 

In phenomenographical analysis, the meaning of each statement is considered 

holistically within groups, not as individual responses. Statements within groups are 

organized together to form categories, and the categories create an outcome space 

(Dahlin, 1999; Akerlind, 2005). An outcome space, as described by Marton (1994) is the 

“ordered and related set of categories of description” of the concept being studied.  Open 

coding was used to find categories of description, meaning all responses were considered 

to be important and were carefully read.  For each group, responses were organized into 

categories with similar statements, which captured holistic beliefs for the professors and 

teachers. Figure 4.1 displays the outcome space of this research created from the 
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comparison of categories across groups.  Figure 4.1 reveals the percentage of statements 

in each category and indicates how strongly the professors and teachers believe the 

phenomenon addressed some aspect of college calculus success.  However, it should be 

noted that the percentage of statements does not reveal the commonalities or disparities 

between their beliefs, but only reveals the percent of statements made by each group. 

Figure 4.1 show that professors had significantly more statements addressing algebra and 

pre-calculus content than teachers.  Likewise, teachers made significantly more 

statements concerning classroom environment and real world problems than  

 

Figure 4.1.  Categories of Beliefs Compared Across Professors and Teachers 
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professors. This aligns with Akerlind (2005), who stated that categories in a 

phenomenography create an outcome space that provides a way of looking at a collective 

experience holistically from more than one perspective.  Typically, mathematics 

professors tend to focus on content while secondary teachers focus on pedagogical 

interventions in an attempt to make mathematics understandable to students who may or 

may not be college bound.  

 The categories in the center region of Figure 4.1 do not have a significant 

difference in the percent of statements between groups, but there is a significant 

difference between the percent occurrence of the statements and zero, therefore these 

categories will be discussed. There were seven categories with very few statements from 

professors and teachers, causing the percentage of statements to not be significantly 

different from zero.   The categories of geometry, vocabulary, additional support for 

learning, student motivation, memorization, multiple representations, and textbooks are 

not included in the comparative analysis or the discussion.  In order to compare the 

categories presented in Figure 4.1 across groups, the statements within the categories 

were clustered together into similar topics, and descriptions were provided of the 

comparative qualities for the categories.   This step was critical because it provided a way 

to discuss the categories using the voice of the respondents.  

 

Validity and Reliability  

 The validity of phenomenographic research is based on three factors (Dahlin, 

1999).  The first factor is the logic of the system of categories that emerged from the 
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analysis; the categories must be logically separate and exclusive. The second factor is the 

correspondence between results and what is known from previous studies of mathematics 

professors and secondary mathematics teachers. The last factor is the plausibility that the 

categories represent actual or possible human experiences.    

The reliability in the coding was established through inter-rater reliability, which 

is the extent that two raters agreed on the coding of statements that created the categories. 

The first rater created precise definitions of the categories (available in the appendix) and 

the second rater used these definitions in order to code 10 random responses from each 

group.  Each response had multiple components so the total number of statements coded 

was 55.  A contingency table was created from responses and Cohen’s Kappa was 

computed.  The measure of agreement between the two raters was calculated as 0.74, 

which is considered good agreement between the raters (Landis & Koch, 1977).  

 

Phenomenography Categories and the 4C/ID Components 

 Research Question 1 states, “What categories from the phenomenography of 

college mathematics professors and high school mathematics teachers align with the 

4C/ID model?”  To answer Research Question 1 the categories from Figure 4.1 were 

related to the components of the 4C/ID model that were discussed in detail in Chapter 2.   

The categories from Figure 4.1 were placed on the appropriate component as seen in 

Figure 4.2.  
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 The Support Component was summarized in Chapter 2 as being a classroom 

environment where the focus of mathematics instruction is conceptual understanding, 

mathematical reasoning, problem solving, and cognitive assessment. Because learning  

 
Figure 4.2.  The 4C/ID Model With Phenomenography Categories Placed Into The 

Corresponding Components 
  

mathematics is complex, and the 4C/ID model is being connected specifically to the 

learning of mathematics, the support component does not only exist when real-life 

authentic learning tasks are integrated into the curriculum.  Instead the support 

component is considered as a supportive environment in which meaningful mathematics 

is learned.  The model places the procedures and learning task component on the support 

component because, based on the model, without the support component learning for 

transfer cannot occur. Van Merriënboer (2002) stated that the support component 

promotes schema construction through elaboration by helping students establish non-
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arbitrary relationships in complex learning tasks.  The NCTM (2010) stated that 

reasoning in mathematics is often understood to encompass formal proofs that are 

logically deduced from assumptions and definitions, thus proofs are one way that 

teachers may present mathematical content, which requires students to use reasoning for 

schema construction and to establish non-arbitrary mathematical relationships. When 

students work toward understanding complex mathematical ideas during problem solving 

they must analyze a problem, understand the concepts, implement a strategy, and reflect 

on a solution.  The solution reveals how well the concepts were understood and cognitive 

assessment provides opportunities for learners to reflect on the quality of the problem 

solving process (van Merriënboer et al., 2003). Van Merriënboer et al., (2002) stated that 

students use heuristics unique to interacting elements in the problem solving process, and 

high element interactivity hinders the process of understanding concepts.  For 

mathematical understanding to transfer from one topic to another, and to subsequent 

mathematics or otherwise courses, concepts must be stored in long term memory and 

accessed during recall to help process more new mathematical material. A supportive 

classroom environment literally supports conceptual understanding and mathematical 

reasoning for transfer of learning. Students must be able to make sense of mathematical 

ideas presented formally by understanding a situation, context, or concept by connecting 

it to existing knowledge (NCTM, 2010).  

The procedural component was placed in the 4C/ID model because it promotes 

schema automation by embedding new information in situation specific rules that connect 

particular conditions to particular actions, and this process is called “proceduralization” 
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(van Merriënboer et al., 2008, P. 11).  The cognitive load definition of proceduralization 

for the use of calculators or for recalling previously learned algebra or pre-calculus 

content is not as appropriate as Star’s definition.  Star (2000) stated that procedures are  

Planning knowledge -- knowledge of such things as the order of steps, the goals 

 and subgoals of steps, the environment or type of situation in which the procedure 

 is used, constraints imposed upon the procedure by the environment or situation, 

 and any heuristics or common sense knowledge which are inherent in the 

 environment or situation. This knowledge is abstract (and deep), but not 

 necessarily conceptual (Star, 2000, p. 85). 

What is most important to consider, relative to the 4C/ID model and the learning of 

mathematics, is that procedures do not stand alone.  Procedures must be supported by 

conceptual understanding and reasoning within the supportive information component 

(see Figure 4.2).  

The learning task component in the 4C/ID model represents learning tasks that are 

preferably authentic, real life problems that are presented using the whole part 

scaffolding method (van Merriënboer et al., 2002; van Merriënboer et al., 2003; van 

Merriënboer et al., 2006). Van Merriënboer and colleagues (2003) describe the 4C/ID 

model as connecting the world of work and education through the use of authentic real-

life problems. Cognitive load theorists describe a complex, authentic learning task as real 

life problems that have “many different solutions, are ecologically valid, cannot be 

mastered in a single session, and pose a very high load on the learners cognitive system” 

(van Merriënboer et. al, 2006, p. 343).  There are no categories from Figure 4.1 that 
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connect to the part task component of the 4C/ID model, therefore this component is not 

addressed.  

 

Results of Phenomenography 

  The discussion of categories reveals the commonalities and differences between 

professors’ and teachers’ beliefs.  The broad categories from Figure 4.1 with the largest 

variability are presented with graphs that compare the percent of professors’ and 

teachers’ beliefs. The graphs also have a line of equal emphasis that indicates where there 

is agreement, if any, and allows for comparison of the differences of beliefs for each 

group.  Any emphases within the quotes are from the respondents.   

 The frequency with which professors and teachers advocated specific aspects of 

students’ algebra background (e.g. symbolic manipulation, focus on functions) is 

summarized in Figure 4.3.  Although both groups had concerns about students’ algebra 

knowledge, professors mentioned the importance of focusing on algebra significantly 

more than teachers.  Both groups shared concerns that “students should begin algebraic 

reasoning and symbolic notation earlier” and agreed that it is important to focus on 

functions.  One professor stated: 

 Students need an operational understanding of functions by focusing on proper 

 function notation, function concepts, function composition, and function families 

 while emphasizing basic algebra rules so students know how to rearrange 

 formulas, factor complex statements, and solve equations. 
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A few professors de-emphasized the importance of a high school calculus background.  

One stated, “A low level understanding of calculus benefits students much less than a 

high level of algebraic understanding when they get to a college course.” The professors  

 
 

Figure 4.3. Percent of Teachers’ versus Percent of Professors’ Beliefs  
for Algebra Category 

 

had concerns that “students with the weakest algebra skills are the students to most likely 

drop out of the calculus sequence” and were convinced that “they [professors] could 

teach the upper level content if teachers would just teach the basics of algebra.” Teachers 

also stressed that the “mastery of algebra is essential because the concepts of calculus are 

relatively easy but they produce very difficult algebra problems.”  However, teachers 

stressed the importance of solving and graphing equations.  One advocated focusing on 

“all types of functions from a graphical point of view with emphasis on their general 

behavior and, as much as possible, without the use of a graphing calculator.” Several 
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teachers encouraged students to develop algebra skills.  For example, one stated, they 

“encourage students to develop rigor and to be proud when they solve a long difficult 

algebra problem.”  

  Professors and teachers shared concerns that students have weak algebra II and 

geometry background knowledge needed to learn pre-calculus content (see Figure 4.4).  

One professor stated, “the students have learned to solve pre-calculus problems by rote.” 

 
 

Figure 4.4. Percent of Teachers’ versus Percent of Professors’ Beliefs for  
Pre-Calculus Category 

 

There was agreement that there should be more focus on the unit circle, trig functions and 

the trig identities.  The following statement by one professor typified professors’ beliefs, 

“teachers should provide a greater depth in their coverage of trigonometry, dig deeper.” In 

support, one teacher stated, “I choose to teach a few topics well, rather than trying to skim 

over a broad range of topics.” Often the same teachers that taught calculus also taught pre-
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calculus and they stated that their “choices of what to teach in pre-calculus are influenced 

by their experiences as a calculus teacher,” which did not align with beliefs of the 

professors.  

 Professors and teachers agreed that a classroom environment should: (1) be a 

positive atmosphere where students can “learn mathematics without being intimidated;” 

(2) be supportive of “students working together so they can discuss their problem solving 

strategies;” (3) build the confidence level of students (see Figure 4.5).  

 
 

Figure 4.5. Percent of Teachers’ versus Percent of Professors’ Beliefs for  
Classroom Environment Category 

 
More than 50 percent of the statements from professors in this category stated that 

teachers should hold students individually responsible for learning.  One professor stated, 

“Teachers need to help students realize that learning mathematics requires work—it isn’t 

enough to understand when the teacher explains a solution.  They must work thorough it 

themselves.”  Teachers use different types of group work activities, for example, one 
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teacher stated, “I use guided practice that bleeds into independent practice and 

incorporate a lot of group-oriented activities using homogeneous grouping.” Several 

teachers thought it was important to prepare students for the quick pace that material will 

be covered in college.  One teacher stated, “Sometimes I do a unit called College Role 

Play where the teacher role plays a college professor, moving through material much 

faster than normal.  We cover an entire chapter in 3 lecture days.”      

 Both professors and teachers believed that other courses such as physics and 

chemistry connect mathematics to real life problems; however, about 30 percent more of 

professors than teachers believed that mathematics should be connected to real life (See 

Figure 4.6). Professors conveyed, “One reason real world problems are beneficial is that 

they place mathematics in context and allow out of the box problems.” Professors also 

believed that real world problems provide reasons for students to check their work.  One 

 
 

Figure 4.6. Percent of Teachers’ versus Percent of Professors’ Beliefs for 
Real World Problems Category 
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stated, “Teachers should ask their students if it would make sense for a satellite to orbit 

the earth 10 feet above the surface.” A few professors stressed concern that real life 

problems may distract from learning mathematics because, “teachers sacrifice instruction 

for student discovery of real world problems when time would be better spent with 

teacher directed development of concepts.” Teachers provide examples of why students 

need to learn mathematics and assign hands on projects that require students to think 

problems through.  

 There is more disagreement than agreement between professors and teachers in 

the category of assignments and assessments (See Figure 4.7). Professors and teachers 

agreed that students should justify their solutions, but a greater percentage of professors 

stated that teachers should require homework and assess students’ performance in some  

 
 

Figure 4.7. Percent of Teachers’ versus Percent of Professors’ Beliefs for 
Assignments and Assessments Category 
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meaningful way. Professors believed teachers should “stop teaching to the AP Test and 

base their assignments more on important foundations.” Professors also believed that 

teachers should “stop giving extra credit in lieu of learning material and help students 

take responsibility for their own learning.” One professor stated:  

 High school teachers need to ask more of their students-- no more extra credit, re-

 taking exams, or open book exams because students come out of high school 

 thinking that seat time should equal passing. 

 On the other hand, teachers seek to align assessments with AP Calculus content and with 

the types of questions they will see on college exams.  One teacher stated, “I use AP test 

items as test and quiz questions” and another stated they create tests that have, 

“conventional questions similar to what a college professor might give and an AP part 

consisting of multiple choice and free response questions similar to questions on past AP 

exams.”  Teachers “do not want students to become discouraged from taking hard classes 

in high school,” which can lower their GPA, therefore they give students “opportunities 

to learn from their mistakes by correcting errors, which helps them understand better 

what they need to know.”   

 Professors and teachers shared concerns that students are too dependent on 

calculators. There is no figure for this category since there was less variance in the 

responses between groups. The groups agreed that: (1) calculators can enhance the 

understanding of concepts; (2) calculators should be used for complicated computations; 

and (3) students should not be allowed to use graphing calculators on all sections of 

formal assessments.  Professors believe teachers should help students learn that graphing 
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calculators provide “approximation techniques” which should not be used as 

“replacement for mathematical thought.” Many professors believed teachers should not 

allow students to use calculators in mathematics class.  One stated, “teachers should have 

higher expectations of their students than to allow them to use calculators” while several 

professors specifically stated that “teachers should make students throw away the 

calculators” because students think, “if I don't know how to use my calculator to solve 

this problem, then I don't know how to solve this problem.” Aligning with the idea of 

limiting calculator use, teachers stated they: (1) “wean students away from calculators 

while working on logs, rational expressions, and radicals;” (2) “incorporate meaningful 

graphing calculator activities, using the calculator as a tool to bring a concrete picture to 

the mathematics;” (3) discourage students from using a calculator just as a “number 

cruncher” and instead encouraged the use of calculators to “connect mathematical 

concepts.”  

  There is agreement between professors and teachers that the focus of instruction 

should be conceptual understanding (see Figure 4.8).  Both groups agreed that the focus of 

instruction should be on understanding concepts rather than test preparation.  One teacher 

stated they encouraged their students to get past “the academic bulimia of learning 

material just to regurgitate it on an examination.” More teachers than professors stated 

that there should be a balance between concepts and procedures during instruction; 

however, many professors stated that they believe that teachers tended to focus on 

procedures much more than on concepts.  For example, one professor stated: 
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 If teachers teach calculus, the focus should be conceptual understanding, not a  

  ‘plug-and-chug’ approach that the students will have to (resentfully) abandon in  

  favor of a deeper conceptual understanding when they arrive in college calculus.   

 

 
 

Figure 4.8. Percent of Teachers’ versus Percent of Professors’ Beliefs for 
Conceptual Understanding Category 

 
 Teachers help students make connections and focus on concepts by, “making 

mathematics visual at all levels, and by connecting the calculation part to the picture.”  

One teacher stated they “work very hard to help students understand the why of 

mathematics and not just the how.”  

  Professors and teachers agreed that it is important to provide students with 

problem solving opportunities.  There is no figure for this category due to limited 

variability between professors and teachers beliefs.  They agreed that: (1) students should 

be given challenging problems that take more than a few minutes to solve; (2) students 

should be required to think instead of just manipulate an algorithm; and (3) students 



                                                                       

 

  84 

should solve problems that have “various representations and multiple problem solving 

paths.” Professors stated they wanted teachers to “help students realize that simple 

calculation problems are not reflective of the problems they will encounter in college 

courses.”  Professors believe teachers should allow the students to struggle with problems 

before providing guidance.  One professor stated teachers should require students to:  

  Identify what is given, identify the theoretical basis of the problem, draw and  

  label a picture  of the problem, identify the variables, determine what is requested  

  as an answer, apply the rules of the theory, and isolate the solution. 

Teachers stated they provided lots of problem solving opportunities and provided 

“problems that required students to critically think and work with paper and pencil.”  

  Professors and teachers both believe that secondary calculus should be a rigorous 

course (see Figure 4.9), but professors also believe teachers should focus more on  

 
 

Figure 4.9. Percent of Teachers’ versus Percent of Professors’ Beliefs for 
Calculus Category 
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foundations and less on teaching calculus.  One professor stated: 

  Teachers should stop teaching bad calculus courses because knowing algebra   

  would be better for students than having the misunderstanding that the only thing  

  in calculus that matters is knowing how to take a derivative. 

Professors believe there is too much focus on the AP Calculus curriculum and not enough 

on concepts in secondary calculus.  One professor stated:  

  AP calculus is beneficial for some students but not most because MOST high  

  school  students planning on going to college would  be better served by focusing  

  more on the PRE-Calculus mathematics and getting more repetition, linkage  

  and depth in their study of mathematics, rather than our current method of making 

  the high school mathematics curriculum a mile wide, and a half-inch deep - if  

  you know what I mean....It's NOT a race to see who can get there FIRST. 

Teachers stated they focused on students understanding the concepts of derivatives and 

integrals.   For example, one teacher stated, “I stress to the students THE DERIVATIVE 

GIVES THE SLOPE OF A CURVE AT EVERY POINT(!), using no rules (shortcuts) for 

derivatives, just concepts.” Many teachers addressed AP Calculus exam preparation and 

believe the AP curriculum is rigorous and prepares students for success in college 

calculus.  One teacher stated: 

  I begin a formal review for the AP test in late February. Each student is given  

  a notebook with every free response question since 1990, and every released  
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  multiple-choice test since 1985.  They are assigned 3 free response and 10   

  multiples choice every day and are all scored based on the standards.  

Even though teachers seek to prepare students to pass the AP Calculus exam, they also 

stressed that “students should also take single variable calculus in college for a multitude 

of reasons.” 

  There is no agreement between groups in the category of proofs.  While there is a 

figure for this category (see Figure 4.10) it should be noted by the reader that only a small 

percent of professors and teachers mentioned this category (see Figure 4.1).  One 

professor stated that more teachers should emphasize proofs, which could “help students 

avoid proof by erasure.” Professors also believe teachers need to do a better job of 

explaining theories to students.  One professor stated:   

 I'm not sure how much formal reasoning is done in HS anymore, but it seems that 

 students are less familiar with theory and are more schooled in doing  

 computational  problems, practicing problem solving methods, and using their 

 calculators. As a result they have a very difficult time understanding theories and 

 justifying their approach.  

Another professor stated teachers needed to help students to reason mathematically by:  

 Teaching mathematics the old-fashioned way, with proofs of fundamental 

 statements so students get a feeling that mathematics is powerful, universal, 

 logically united and politically independent. 
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Figure 4.10. Percent of Teachers’ versus Percent of Professors’ Beliefs for 
Proof Category 

 
Teachers, on the other hand only referred to formal proofs in terms of geometry and the 

epsilon-delta definition of limits.  One teacher stated they, “help students think and 

reason through elementary proofs in geometry” while another stated they, “Teach the 

epsilon-delta proofs the first couple of weeks of school to prepare students for college--

not AP since these proofs aren't required for AP.”  

 The category “Qualified Teachers” did not specifically the answer the questions, 

“What can high school teachers do to prepare students for success in college calculus 

courses?” or  “What do you do, as a high school mathematics teacher, that you think 

prepares students for college calculus success?” However, the Qualified Teachers 

category addresses these questions from the perspective of curriculum policies, teacher 

preparation, or professional development. Because there was a significant difference 

between the percent of statements and zero, the graph showing the similarities and 
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disparities of beliefs are presented in Figure 4.11 with a discussion following.  Both 

groups believe that mathematics teachers needed stronger mathematics preparation, but 

more professors made statements concerning this than teachers.  One professor stated: 

 Too many high school teachers lack the academic background to teach 

 mathematics and high schools should only employ math teachers with a BS 

 degree in mathematics or a closely related discipline (i.e., physics or engineering).  

 A math ed degree should not be recognized as an equivalent or substitute. 

Relative to this, one teacher stated, “What we need are more teachers with strong 

mathematics backgrounds (maybe more pay for math and science teachers?)”  Professors 

believe the certification process of teachers should be re-examined.  One professor stated, 

“certifying teachers based on the number of math credits without mandating specific 

courses creates a loophole in the certification system.” Another professor stated “a 

 
Figure 4.11. Percent of Teachers’ versus Percent of Professors’ Beliefs for  

Qualified Teachers Category 
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bachelor degree to teach secondary mathematics is not enough, one should have at least a 

Masters Degree to be certified to teach.” More teachers than professors mentioned 

curriculum issues.  One professor stated schools should “mandate ALL high school 

seniors to take a math course in their last year, preferably Pre-Calculus or higher.” 

Teachers relayed their frustration with policies that dictated curriculum that inhibits 

instruction of rigorous content.  One teacher stated:  

 Our district adopted Contemporary Math in Context, therefore we now teach math 

 appreciation and NONE of our students will ever be adequately prepared for 

 anything let alone Calculus. Teachers need to be able to teach what is needed 

 for college preparation- and- “No child left behind = No child gets ahead.” 

More teachers than professors mentioned professional development.  Professors stated 

that teachers should use professional development to “brush up on their own skills and 

understanding of not only the material they are teaching but also the subsequent material 

so teachers can show students what is to come.”  One teacher stated, “The most effective 

reform in public education today is high quality professional development.”  

 

Discussion 

 Figure 4.1 identified categories that had a significant difference between the 

percent of statements and zero on a 95 percent confidence interval.  The categories 

outside of the lower and upper bounds had a significant difference of statements between 

the professors and teachers.  The professors made significantly more statements 

concerning algebra and pre-calculus content than teachers, and teachers made 
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significantly more statements addressing classroom environment and real world problems 

than professors. All of the categories in Figure 4.1 represent unique findings and 

plausible phenomena within the context of secondary preparation for college calculus 

success.  This aligns with two of the factors that establish content validity for a 

phenomenography.  Another factor that establishes content validity is the connection of 

the results to previous studies. The 1997 Presidents Task Force Report (PTFR) and the 

MAA outlined concerns from mathematics professors relative to the 1989 NCTM 

Standards, which provided guidelines for secondary mathematics instruction.  Comparing 

the results of this phenomenography to the PTFR allows for a comparison between what 

mathematics professors considered important a little more than a decade ago and what 

they consider important now.  

 There were originally nine concerns presented in the PTFR to the NCTM 

concerning 1989 Standards for School Mathematics. The concerns from the PTFR that 

relate to this phenomenography are:  (1) conceptual understanding; (2) proofs; (3) too 

many standards to teach; and (4) technology.  First the concerns from the PTFR with 

comments from the MAA will be presented, and then findings from the 

phenomenography will be discussed, which will allow a comparison to determine if and 

how the concerns have changed.  

 CONCERN 2 presented in the PTFR stated that the mastery of basic skills was 

not sufficiently addressed in the 1989 NCTM Standards. The authors agreed that drills of 

important algorithms enabled students to master topics and learn mathematical reasoning.  

The MAA’s comment was that teachers must maintain a balance between helping 
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students develop conceptual understanding and procedural facility (Ross, 2000).  This 

phenomenography revealed that more than 75 percent of the descriptors from professors 

in the conceptual understanding category addressed the need for teachers to teach 

conceptually (see Figure 4.8). Professors’ concerns about procedural instruction were 

often connected to teachers preparing students for the AP Calculus exam. Bressoud, the 

2009-2010 President of MAA, stated that many colleges now teach a more theoretical 

differential calculus and postpone integration techniques and applications until the second 

semester of calculus (Bressoud, 2010).  This is different from the AP Calculus 

curriculum, which covers application material from both derivatives and integrals.  The 

AP Calculus curriculum is considered by many mathematics professors as a “breadth of 

material to be mastered” and professors believe students often earn a satisfactory grade 

by focusing on algorithms and procedures instead of understanding (Bressoud, 2010, p. 3 

of 4). The statement from the PTFR that “drills of important algorithms enabled students 

to master topics and learn mathematical reasoning” is not reflective of the professors 

concerns revealed in this phenomenography.  For example, professors stated:   

(1) “Teachers should provide more exploration of concepts rather than rote algorithms” 

and (2) “Many students believe that math is a bunch of algorithms to be memorized, 

rather than a cohesive system of thought.”  These statements indicate that mathematics 

professors’ do not currently believe that teachers should stress the use of algorithms. 

 CONCERN 3 presented in the PTFR stated, “the [1989] Standards did not 

sufficiently address issues of mathematical reasoning, the need for precision in 

mathematical discourse, and the role of proof in the curriculum” (Ross, 2000, p. 3). 
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Figure 4.1 reveals less than five percent of both groups addressed the category of proofs, 

yet the statements from professors indicate strong beliefs about the importance of proofs.  

One professor’s statement typified beliefs that teachers should, “Include ideas crucial for 

proof, such as making logical, sequential mathematical arguments that rely on these 

skills.”  The findings in this phenomenography align to some extent with the previous 

concern that teachers should address reasoning and formal proofs.    

 CONCERN 6 of the PTFR stated “the 1989 Standards recommended the inclusion 

of more topics,” which led the mathematicians in the MAA to have concerns that the 

secondary curriculum would become “superficial” and be a “mile wide and an inch deep” 

(Ross, 2000).  Over 50 percent of professors stated there should be greater depth of 

content in pre-calculus (Figure 4.4), and almost 50 percent of statements within the 

category of calculus (Figure 4.9) described that professors want teachers to provide a 

greater focus on foundations and less on calculus.  One professor stated teachers covered 

so much material that mathematics instruction is “a mile wide and a half-inch deep” (see 

calculus discussion).   

 CONCERN 9 in the PTFR was that “technology should not be used as a 

replacement for basic understanding and intuitions; rather it can and should be used to 

foster those understandings and intuitions” (Ross, 2000). This phenomenography 

revealed that both groups shared the view that calculators should be used appropriately.  

One professor expressed concerns about calculator usage with the same tone as the PTFR 

by stating, “teachers should not allow students to use calculators to replace mathematical 
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thought.” There was limited variability in the comparison of beliefs across groups for this 

category. 

 The discussion of the remaining categories is not connected to the PTFR since the 

findings were not listed as concerns that the MAA had relative to the 1989 NCTM 

Standards.  Teachers made more statements addressing assignments and assessments than 

any other category, and the percent of statements from professors was second only to 

algebra (see Figure 4.1). Professors believe that high school grades should be valid and 

representative of students’ mathematical knowledge and ability.  One professor stated: 

 Give realistic grades!!!!!  If students don't know what they are doing then they 

 shouldn't get “A”s (or even “B”s or “C”s).  The students are too used to being 

 coddled. It's a real shock to these students when they get to college and fail the 

 courses when they don't know how to do the problems. 

While this is a valid concern, the teachers stated that such grade adjustments “allowed 

more students to take the class [calculus] that otherwise would never have taken a senior 

course because of the I don’t want to lower my GPA argument.” Therefore teachers 

considered formal assessment as an opportunity for students to learn from their mistakes.  

Teachers may also be more aware of the motivational aspects of assessment than 

professors.  Poor performance on assessments may depress student’s motivation toward 

learning mathematics.   

 The “Real World Problems” category is on the outside border of the 95 percent 

confidence interval (shown in Figure 4.1), which indicates there was more than two 

standard errors difference in the percent of statements from teachers and professors. 
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Within this category more teachers specifically stated how they connected mathematics to 

real life while professors made more general statements that teachers should connect 

mathematics to the real world.  Discovery learning is one type of inquiry learning 

methods that is often related with teaching real world problems.  Some professors 

believed such methods were a waste of class time.  One professor stated, “Recognize that 

the traditional methods of instruction are the best - they do not need to be improved on 

least of all by the calculus reform movement or other such woolly-minded groups.”  

 

Limitations of the Phenomenography and Future Research 

The open-ended nature of the survey was beneficial in obtaining the rich data that 

was presented in this phenomenography, however, the discrepancy between the number 

of professors and teachers who responded to the survey may be a limitation of the study.  

Also, the possibility of obtaining responses from professors and teachers that are not 

representative of the population of college mathematics professors and secondary 

mathematics teachers are a limitation as well.  The open-ended nature of the survey may 

have allowed respondents to express strong opinions and did not compel fence sitters to 

respond. In an effort to limit the effect from the unequal group size, all data was 

converted to percentage of statements from professors for each category and for the 

clustered statements. Likewise, the same was done for the teachers’ statements.  This 

allowed for comparison of the descriptions for each category across groups even though 

the group sizes were different.   
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Conclusion 

 Overall professors believe high school mathematics teachers should not push 

students into calculus but should instead provide a greater depth of understanding of 

algebra and pre-calculus concepts. If students do take secondary calculus, professors 

want them to take AP Calculus and not a “watered down version of calculus” however, 

teachers should not be teaching to the AP Calculus exam.   Professors have concerns that 

the secondary mathematics curriculum and the AP Calculus syllabus covers too much 

content therefore teachers and students focus on procedures instead of concepts.  Many 

professors stated that teachers should focus on student understanding of concepts, and 

one way they believe this can be done is by connecting mathematics to real life problems 

so students can consider the reasonableness of their answer. Professors also believe 

teachers should base their instruction on theory, hold students individually accountable 

for reasoning, and not allow students to earn extra points on formal assessments.  

 Teachers, on the other hand, encourage students to take secondary calculus and 

believed this course helps to deepen student understanding of algebra concepts.  One 

teacher stated, “the concepts of calculus are easy but they produce very difficult algebra 

problems.” Teachers use AP Calculus materials for covering calculus concepts and for 

preparing students for the AP Calculus exam.  Teachers allow students in secondary 

calculus to earn points back on formal assessments and believe this helps them to learn 

from their mistakes. Teachers also believe students should plan to take single variable 

college calculus independent of AP calculus test scores.   

 The variance across groups reveals professors and teachers are their own 
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professional communities of practice, yet not all professors and teachers fall into the 

profiles described in this phenomenography. Often what professors believe teachers 

should be doing teachers state they are doing, as evidenced in the calculator and problem 

solving category. Klein (2001) stated that the conflict between mathematics professors 

and mathematics teachers could be described as a conflict between pedagogy and content.  

Pedagogy, in mathematics education, is considered to be that which teachers do to help 

students understand and be able to do and use mathematics (Brown & Smith, 1997).  

Figure 4.1 reveals that teachers think the classroom environment and integrating real 

world problems into instruction are significantly more important than professors, and 

professors believe that algebra and pre-calculus content knowledge is more important 

than teachers.  However, Figure 4.1 only represents how often statements were made for 

each category, not the level of agreement or disagreement within categories between 

groups.  

 The responses to the FICSMath survey from students in college calculus courses 

across the nation can provide insight into what secondary pre-calculus and calculus 

teachers did that helped to prepare students for college calculus success.  The quantitative 

findings can reveal if what the professors believed the teachers should be doing and what 

the teachers did helped students transfer learning from secondary mathematics to college 

calculus.  The quantitative results are reported in Chapter 5. 
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CHAPTER 5 

QUANTITATIVE RESULTS 

 
MULTIPLE REGRESSION MODELS DESIGNED FROM THE 4C/ID MODEL THAT 

ARE PREDICTIVE OF SECONDARY PRE-CALCULUS AND CALCULUS 

STUDENTS’ PERFORMANCE IN SINGLE VARIABLE COLLEGE CALCULUS 

 

 The 4C/ID model was designed by cognitive load theorists for the instruction of 

complex tasks to enhance transfer of learning (van Merriënboer, 2002).   This model is an 

appropriate framework for modeling pedagogical practices that enhance transfer of 

learning from high school mathematics to college calculus.  The definition of learning, 

based on cognitive load theory, is that learning only occurs when there is a permanent 

change in long-term memory.  Only mathematical information that is stored in long-term 

memory will transfer from one environment to another.  Vertical transfer occurs when 

prior learning is transferred to a new learning environment that is higher in a knowledge 

hierarchy (Haskell, 2001).  Transferring knowledge from high school mathematics to 

college calculus is an example of vertical transfer.  Henceforth in this document, 

secondary calculus refers to AP Calculus AB, AP Calculus BC, and non-AP calculus, 

unless otherwise noted. Likewise, college calculus refers to single variable calculus, 

unless specified differently.  Typically single variable college calculus is the first calculus 

course at the college level.  The models have been created based on performance in single 

variable college calculus only and are not predictive of performance in multivariable 

calculus for students who opt to exempt courses because of AP Calculus credit. 
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FICSMath Data Included in Analysis 

 The FICSMath survey had a total of 61 questions divided into 9 different sections 

to which 10,492 students in college calculus courses across the nation responded to.  

Students from two and four year small, medium, and large colleges and universities 

completed surveys that addressed content, pedagogy, and assessment methods used in 

their last high school mathematics course.  The survey included a broad demographic 

section, which included what secondary mathematics courses were taken with 

corresponding final grades earned.  At the end of the 2009 fall semester the FICSMath 

surveys were returned to Harvard University with the students’ final grades reported by 

the calculus professors of record for each course.  This grade is the dependent variable 

and the independent variables are the survey questions that align with the components of 

the 4C/ID model. 

 Data from respondents who had taken either pre-calculus or calculus courses their 

senior year in high school were chosen for analysis.  Students from these courses were 

most likely to be prepared to move directly from high school mathematics to college 

calculus.  The goal was to analyze what teachers did that helped students be successful in 

college calculus therefore controls were put in place to only include students in the 

analysis who moved directly from high school mathematics to college calculus.   There 

were 2,483 students who completed the FICSMath survey that were in a secondary pre-

calculus course their senior year, and 1,287 of them moved directly from high school 

mathematics to their first college calculus course where the FICSMath survey was 

administered.  For this later group, no college level pre-calculus course was taken in 
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between high school mathematics and college calculus, and no college level calculus 

course was taken previous to the calculus course where the FICSMath survey was 

completed.  Likewise, there were 4,229 students from secondary calculus and 4,159 of 

them moved directly to college calculus course where the FICSMath survey was taken.  

The sample sizes are reported in the tables that present the regression results.  

 

Analysis Method 

 The respondents who completed the FICSMath surveys were nested in a hierarchy 

where effects from high school preparation for college, college calculus content and 

pedagogy, and college or university requirements could affect performance.  Under such 

conditions hierarchical linear modeling is appropriate to use as the analysis tool, 

however, only four percent of variability in the data came from college or university 

entrance requirements (Sonnert, 2010). Likewise, only seven percent of variability in the 

data came from the design of the calculus course for either STEM or non-STEM majors 

(Sonnert, 2010).  At the student level, 89 percent of the variability was captured from a 

wide range of experiences including the respondents’ last high school mathematics 

course, as well as a wide range of control variables from students’ demographics and 

foundation knowledge variables (Sonnert, 2010).  Therefore multiple-regression was used 

for analysis instead of hierarchical linear modeling because the other two levels captured 

only a small percent of the total variability.    

 Stepwise multiple-regression was used to find the significant variables for the 

controls and for each of the components of the 4C/ID model.  This type of multiple-
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regression is particularly useful when there are a large number of possible predictors, the 

sample size is large, and the analysis goal is prediction (Keith, 2006).  First, all variables 

for one component were entered using stepwise regression to find the significant 

variables.  Then the model was built, one component at a time, by entering the significant 

variables individually and progressively. This method assured the variables in the model 

remained significant as additional variables and components were added.  

 

Reporting of Effect Size  

 The effect size is reported for each component and for both models in the order of 

controls, the support component, the procedure component, and the learning task 

component. All variables reported were statistically significant, and the reporting of the 

effect size addressed the practical importance of the results. The findings from this 

research address what teachers do in secondary pre-calculus and calculus courses that 

enhance transfer of learning from high school mathematics to college calculus.  Such 

information has practical importance, and will be reported using the adjusted R2 value. 

The adjusted R2 value is considered to be more stable with larger samples (Keith, 2006). 

The effect sizes are small conservative estimates, but this is reasonable since it is unlikely 

that a large amount of variance from college calculus performance is explained only by 

secondary mathematics teachers’ pedagogical practices.  There are many secondary and 

post-secondary variables that may predict college calculus performance, however this 

study is only focused on secondary mathematics teachers pedagogical practices that 

predicted performance.  Therefore the small effect sizes are reasonable.  The impact that 
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small effect sizes have on performance is demonstrated in examples at the end of each 

component and for the entire model. These examples demonstrate the effect that teachers’ 

pedagogical practices have on the subsequent learning of mathematics. Learning, as 

defined by cognitive load theorists, is a permanent change in long-term memory.  Only 

what students store in long-term memory can be transferred to a different learning 

environment.    

 

Alignment of FICSMath Items With 4C/ID Model Components 

 In order to answer Research Question 2, “How well do the components in the 

4C/ID model represent pedagogies that predict pre-calculus and calculus students’ 

success in single variable college calculus?” the questions from the FICSMath survey 

were first aligned with the components in the 4C/ID model.  Pedagogy, in mathematics 

education is described as, “The ways in which mathematics teachers help their students 

come to understand and be able to do and use mathematics”  (Brown & Smith, 1997, p. 

138).  The independent variables address many different strategies and classroom 

procedures used during instruction. The pedagogical variables from the FICSMath survey 

that aligned with each component of the 4C/ID model are presented in the order that the 

models were built. The models for pre-calculus and calculus were built successively and 

the effect size is reported for each component as well as cumulatively for the composite 

model. 

 All variables from the FICSMath survey that aligned with the 4C/ID model 

components are presented, both significant and non-significant variables.  Observing all 
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variables from the FICSMath survey that aligned with the 4C/ID components provides 

information about what teachers did that had a significantly positive or negative effect, or 

no effect, on preparation for college calculus success. There were no FICSMath variables 

that aligned with the part-task component for either set of data.  This does not mean that 

automaticity is not important in learning and processing new mathematical information, 

but only implies that the independent variables were believed to not measure this 

component.  The variables that addressed memorization of formulas or procedures 

aligned better with the procedure component based on the mathematics education 

literature.  The variables that end with the letter ‘l’ are variables that have been 

linearized. This means the original variable was recoded so that the scale was linear.  For 

example, the responses for connecting mathematics to everyday life (Q31everydaylifel) 

were: (1) very rarely; (2) once a month; (3) once a week; (4) two to three times a week; 

and (5) every class.  These responses are different than responses that were on a linear 

scale, such as responding to how strongly mathematical reasoning was emphasized 

(Q18reason), with a range of responses from one to six for not emphasized at all to 

emphasized heavily.  All linear scales from one to six were rescaled so that zero aligned 

with the response choice of not at all. Often linearized variables have different max or 

min values than non-linearized variables.  

 

Support Component Variables 

 Conceptual understanding, reasoning, problem solving, and cognitive 

assessment are all parts of the support component (van Merriënboer et al., 2002; van 
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Merriënboer et al., 2003; van Merriënboer et al., 2006). Supportive information: (1) 

promotes schema construction through elaboration by helping students establish non-

arbitrary relationships (van Merriënboer et al., 2002); (2) aids in conceptual 

understanding; (3) provides knowledge of structures and causal relationships in complex 

learning tasks (van Merriënboer et al., 2002); (4) provides feedback through cognitive 

assessment by providing opportunities for students to reflect on the quality of their 

problem solving processes (van Merriënboer et al., 2002). Literally supporting the 

problem solving process, the support component connects complex elements to theories, 

contains concrete, abstract and general knowledge, and provides reasoning opportunities 

(van Merriënboer et al., 2002). The questions that align with the support component are 

listed in Table 5.1.  

 

Procedure Component Variables 

 The procedure component promotes schema automation by embedding new 

information in situation specific rules that connect particular conditions to particular 

actions, and this process is called “proceduralization” (van Merriënboer et al., 2008, P. 

11).  Procedural information is presented to learners because it helps them perform 

routine aspects of complex learning tasks (van Merriënboer et al., 2006). Van 

Merriënboer et al., (2002) stated that supportive information pertains to learning new 

information, while procedural information pertains to knowledge previously learned that 

is stored in long-term memory (van Merriënboer et al., 2002).  One of the goals of the 
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Table 5.1 

Variable Names and FICSMath Items that Align With the Support Component of the 

4C/ID Model  

Variable Name     Category and Description of Variable      
Variables that require conceptual understanding or mathematical reasoning 

Q14concept  Extent of conceptual understanding required in most advanced HS math course 
Q18funct  Emphasis on functions in most advanced HS math course 
Q18vocab  Emphasis on vocabulary in most advanced HS math course 
Q18def  Emphasis on precise mathematical definitions in most advanced HS math course 
Q18proof  Emphasis on mathematical proofs in most advanced HS math course 
Q18reason  Emphasis on mathematical reasoning in most advanced HS math course 

Variables that may support the problem solving process 
Q19ask  Frequency of feeling comfortable asking questions in class discussions in most 

advanced HS math course 
Q19value  Frequency of students’ questions and comments being valued in class discussions 

in most advanced HS math course 
Q19useful Frequency of class discussions being useful in most advanced HS math course 
Q19teachval Frequency of teacher’s answers being valuable in class discussions in most 

advanced HS math course  
Q30smallgroupl Regarding class and teacher interaction small group discussion/work was held 
Q30alldiscl Regarding class and teacher interaction whole class discussions were held 
Q30indivl Regarding class and teacher interaction students spent time doing individual work 

in class 
Q30peerteach  Regarding class and teacher interaction classmates taught each other 
Q30youteach  Regarding class and teacher interaction you taught your classmates 
Q27alternat  Teacher highlighted more than one way of solving a problem 
Q32variousmethl Teacher presented various methods for solving problems 
Q32board  Students solved problems on board 

Frequency of types of problems solved in class 
Q23tfl Frequency of problems with multiple choice/true-false 
Q23blankl Frequency of problems with fill-in the blank  
Q23multl  Frequency of problems with multiple parts 
Q23wordl Frequency of word problems 
Q23estiml  Frequency of problems with estimation  
Q23graphhl  Frequency of problems with graphing by hand 
Q23graphcl Frequency of problems with graphing by calculator 
Q23proofl Frequency of problems with proofs  
Q24checkl  Frequency of checking whether numerical answer calculated was reasonable 

Variables that align with cognitive assessment 
Q25nocalc  Tests and quizzes required calculation without calculator 
Q25table  Tests and quizzes involved data presented in tables 
Q25prevtest  Tests and quizzes concerned material tested earlier in course 
Q25homework  Tests and quizzes included questions that were drawn from homework 
Q25essay  Tests and quizzes required essay responses 
Q25sketch  Tests and quizzes required sketching, drawing, or graphing by hand 
Q25standard  Tests and quizzes included questions from standardized exams 
Q25insight  Tests and quizzes required new insight and creativity 



                                                                       

 

  105 

4C/ID model is to connect rules, or procedures that combine rules, to knowledge 

elements such as concepts through examples or demonstrations (van Merriënboer et al., 

2002). Worked examples may help students learn the connection between procedures and 

concepts because examples may focus the learners’ attention on particulars of the 

complex learning task (van Merriënboer et al., 2006).  Research has also shown that 

examples designed to prepare students for standardized test have led to a decrease in 

students’ higher order thinking skills (Shepard & Dougherty, 1991).  It has been shown 

that teachers that placed a high emphasis on standardized tests preparation often led 

students to memorize procedures and to focus on the surface features of problems 

(Cankoy & Tut, 2005).  Cognitive load theory states when teachers provide blocked 

practice of similar type problems for test preparation they are creating a low contextual 

interference learning environment (Van Merriënboer, Kester, & Paas, 2006). 

The procedural information component is part of the 4C/ID model because it was 

designed to promote schema automation by embedding new information in situation 

specific rules that connect particular conditions to particular actions (van Merriënboer et 

al., 2008, P. 11). Star’s (2000) definition of procedures is particularly helpful in 

understanding procedures in the learning of mathematics: 

 Knowledge of such things as the order of steps, the goals and subgoals of steps,   

 the environment or type of situation in which the procedure is used, constraints   

 imposed upon the procedure by the environment or situation, and any heuristics   

 or common sense knowledge which are inherent in the environment or situation. 

 This knowledge is abstract (and deep), but not necessarily conceptual” (p. 85).  
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The questions that align with the procedure component are listed in Table 5.2.  

Table 5.2 

Variable Names and FICSMath Items that Align With the Procedure Component of the 

4C/ID Model  

Variable Name      Category and Description of Variable      
Proceduralization of content in most advanced HS math class 

Q14mem Extent of memorization of procedures  
Q18memor Emphasis on memorization of formulas  
Q25mem Required memorization of terms and facts 

Environment or type of situation procedure is used in most advanced HS math course 
Q16simple  Allowed to use calculators for simple calculations  
Q16derivint  Allowed to use calculators to computer numeric values of derivatives/integrals  
Q16graph Allowed to use calculators to plot graphs of functions  
Q16trig Allowed to use calculators for trigonometric functions  
Q16exam Allowed to use calculators on exams  
Q16home Allowed to use calculators for homework  
Q16after Allowed to use calculators only after a technique had been practiced with paper 

and pencil  
Q17graphcalcl Frequency of using graphing calculator  
Q17compl Frequency of using computer  

Reviewing knowledge previously learned  
Q34prepl Class time spent preparing for class-related quizzes/tests 
Q34homel Class time spent going over assigned homework 
Q34reviewl Class time spent reviewing past lessons 
Q34standardl Class time spent preparing for standardized math exams 
Q34correctl Class time spent correcting your own work 

Aids for accessing knowledge from long-term memory 
Q26prep Teacher gave study guides or practice exams before tests or quizzes 
Q26cheatsheet Teacher allowed cheat sheets on tests or quizzes 
Q26retake Teacher allowed students to retake or rework an exam for a grade 
Q26bonus Teacher allowed additional bonus points or extra credit on tests or quizzes 

Examples or demonstrations 
Q27illust Teacher used graph, tables, and other illustrations 
Q27clear Teacher explained ideas clearly 
Q30lecturel Teacher lectured to the class 
Q32exampleprobl Teacher solved example problems after presenting new material 

 

What is most important concerning the procedure component for the learning of 

mathematics is that procedures do not stand alone but must be supported by conceptual 

understanding and reasoning, or the support component.   
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Learning Task Component Variables 

 Van Merriënboer et al., (2006) stated that the learning task component should 

represent complex tasks that have “many different solutions, are ecologically valid, 

cannot be mastered in a single session and pose a very high load on the learners cognitive 

system” (p. 343). Complex problems in secondary pre-calculus and calculus courses that 

are not based in real life may still have: (1) many different solutions such as an algebraic, 

graphical, or analytical solutions; (2) provide application problems for trig ratios, 

derivatives, and integrals; (3) typically cannot be mastered in a single session; and (3) 

pose a high working memory load on the learners cognitive system (Van Merriënboer et 

al., 2006). The difficulty of assigning variables from the FICSMath survey to the learning 

task component existed because secondary preparation for college calculus is a complex 

task. Van Merrienboer et al., (2006) define a learning task as being “preferably based on 

real-life tasks” (p. 349). Therefore the variables from the FICSMath survey that aligned 

with real life tasks were assigned to this component. The questions that align with the 

learning task component are listed in Table 5.3. Also, variables that addressed specific 

complex mathematical tasks, such as working with functions, mathematical reasoning, 

and mathematical proofs, which are complex tasks that can connect concepts for 

understanding, are also placed in this component.  Conceptual understanding, the essence 

of the support component, and learning tasks are not mutually exclusive.   
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Table 5.3  

Variable Names and FICSMath Items That Align With The Learning Task Component of 

the 4C/ID Model  

Variable Name      Category and Description of Variable Description of Variable   
Connecting mathematics to real world problems 

Q31everydaylifel Connected math to your everyday life 
Q31realappl Connected math to real-life applications 
Q31othersubl Connected math to other subject areas 
Q31examplesl Examples from everyday world were used 

Specific mathematical complex tasks (also listed in support component above because these tasks can 
also connect mathematical concepts together for understanding) 

Q18funct  Emphasis on functions in most advanced HS math course 
Q18proof Emphasis on mathematical proofs in most advanced HS course 
Q18reason Emphasis on mathematical reasoning in most advanced HS course 

Scaffolding real world problems  
Q33objectl Regarding teaching aids manipulation of physical objects was used 
Q33compl Regarding teaching aids teacher used computer simulations or applets 
Q18handson Emphasis on hands-on activities or labs 

 

 

Model for Pre-Calculus 

 There were 2,483 (62 percent male) students who took pre-calculus their senior 

year in high school. There were 1287 (60 percent male) that moved directly from 

secondary pre-calculus to the college calculus course where the FICSMath survey was 

taken. The first part of creating the model to predict performance in college calculus, 

based on pedagogical practices in secondary pre-calculus, was to identify the significant 

variables that create the control and the foundation knowledge component. The control 

and foundation knowledge component was generated from significant variables that 

measured gender, SES, and previous performance in secondary mathematics courses.  

The phenomenography findings in Chapter 4 informed that algebra, pre-calculus, and 
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secondary calculus is foundational knowledge for learning single variable college 

calculus. Controls were variables such as gender, size of graduating class, education of 

parents or guardians, support for learning mathematics at home, just to name a few. 

Performance on the SAT and/or ACT mathematics section, and performance in secondary 

mathematics courses were considered as foundational knowledge needed for vertical 

transfer of knowledge to single variable college calculus. The control and foundation 

knowledge component captured 15 percent of the variability in the pre-calculus model.  

The significant variables are presented in Table 5.4. Females were coded as zero and 

males were coded as one, meaning females’ final average in college calculus was about 

three points higher than males.  Only algebra and pre-calculus grades have the same scale 

while the others have different scales, so the standardized coefficients must be observed 

to determine the strongest effect for the component.  By observing the standardized 

coefficient it is confirmed that performance in pre-calculus is the strongest predictor of 

performance from this component, which would be expected based on the idea of transfer 

of learning. 

 The intercept for the pre-calculus model is 43.75. An example is provided to 

demonstrate how the significant parameter estimates predict performance. In the calculus 

model, presented in the next section, the degree of home environment supportive of 

learning mathematics was not a significant variable.  In order to compare to the calculus 

model, the variable for support for learning mathematics in the home is set to zero.  

Assume a female student scored an above average SAT/ACT math concordance score 

(600); made a B in algebra 2 (3); and a B in pre-calculus (3). The equation that predicts 



                                                                       

 

  110 

performance would be: 43.750 + 

€ 

0.016 × 600.000 + 2.334 × 3.000 + 5.022 × 3.000{ } 

which predicts performance in college calculus to be 75.418. The R2 for this component 

is 0.15, meaning the effect size is 15 percent, or that 85 percent of performance in college 

calculus is explained by variables other than gender, support for learning mathematics in 

the home, and teachers’ pedagogical practices.   

Table 5.4 

Significant Controls and Foundational Knowledge for Pre-Calculus Model (n=1007)  

Variable Description 
and Name 

Parameter 
Estimate and 
Significance 

Standard 
Error 

Standardized 
Coefficients 

 
Min 

 
Max 

 
Mean 

Gender 
 

-2.839** 0.915 -0.096 F=0.000 M=1.000 -------- 

Degree of home 
environment 
supportive of 
learning 
mathematics 

1.179** 0.365 0.098 0.000 5.000 3.930 

SAT/ACT Math 
Concordance Score 
 

0.016** 0.005 0.101 240.000 800.000 597.870 

HS Algebra 2 
Grade 
 

2.334** 0.806 0.102 0.000 4.330 3.600 

HS Pre-Calculus 
Grade 
 

5.022*** 0.713 0.250 0.000 4.330 3.500 

p<0.01,**;  p<0.001,*** 
 

Significant Support Component Variables 

 The significant support variables from Table 5.1 were added to the control 

variables in Table 5.5.  This captured an additional 2.2 percent of the variability in the 

pre-calculus data.  The total variability explained with the controls and the support 

component is 17.2 percent. The significant support component variables are presented in 
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Table 5.5.  Mewborn (2007) stated that each student’s mathematical understanding and 

problem solving ability is primarily shaped by the teaching experiences they encounter in 

school.  Thus, it is reasonable to believe that more support variables, other than the ones 

listed in Table 5.5, may significantly impact learning pre-calculus in high school but were 

not predictive of college calculus performance.  It is also reasonable to believe that 

vertical transfer from secondary pre-calculus to college calculus is so great that how 

teachers made pre-calculus content understandable is less predictive of performance than 

for secondary calculus students; secondary calculus covers more material that aligns with 

college calculus than pre-calculus. The strongest predictor of performance for the support 

component was that tests and quizzes required new insight and creativity (Q25insight).  

This was a dichotomous variable (0=no, 1=yes) and 21 percent of the respondents stated 

that their tests from pre-calculus required new insight and creativity. This variable may 

be a positive predictor of college calculus performance because tests in college calculus 

may be perceived as challenging, which may align with “new insight and creativity.” 

Several comments from professors from the phenomenography (Chapter 4) revealed their 

belief that teachers created exams that were too easy.  One professor stated: 

 University mathematicians almost always devise questions that have the purpose    

 of trying to distinguish between students who really understand and those who   

 don't.  The HS teachers were asking questions that were, somehow, entirely 

 predictable and very similar to those of the examples worked in the text.  Our 

 research show that university exams typically had at least 20 - 30% questions that  

 were a bit more difficult.  
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Table 5.5 

Significant Support Variables for Pre-Calculus Model (n=1005) 

 
Variable Description and 

Name 

Parameter 
Estimate and 
Significance 

Standard 
Error 

Standardized 
Coefficients 

 
Min 

 
Max 

 
Mean 

Tests and quizzes 
required new insight 
and creativity 
(Q25insight) 
 

4.128*** 1.053 0.118 0.000 1.000 0.210 

Teacher highlighted 
more than one way to 
solve a problem 
(Q27alternat) 

-1.084** 0.331 -0.101 0.000 5.000 3.630 

p<0.01,**;  p<0.001*** 
 

Highlighting more than one way to solve a problem (Q27alternat) was a negative 

predictor of college calculus performance. Van Merriënboer et al., (2006) stated that 

complex learning tasks have more than one solution, and typically different solutions are 

presented to students by using various methods of problem solving.  Such methods may 

be based on solving problems algebraically, graphically, and analytically.   Van 

Merrienboer et al., (2006); Van Merrienboer et al., (2002); stated that teaching complex 

tasks requires scaffolding for processing and storing complex mathematical knowledge in 

long-term memory. Cognitive load research has shown that the split-attention effect 

occurs when multiple sources of information are not integrated well (van Merriënboer & 

Sweller, 2005).  The NCTM (2009) stated that “covering mathematical topics is not 

enough, students need to experience and develop mathematical reasoning themselves” (p. 

9). This indicates that the importance is on students working to make sense of multiple 

ways to solve problems, not the teacher presenting multiple ways to students.  Also, 
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highlighting multiple ways of solving a problem may be beneficial for learning pre-

calculus content, but this method of instruction was not predictive of future performance 

in college calculus.   

 Assume the same female student from the previous example had a pre-calculus 

teacher who required new insight and creativity and often highlighted more than one way 

to solve a problem.  The second bracketed computation shows how this may affect 

college calculus performance: 

€ 

43.750 + 0{ .016 × 600.000+

€ 

2.334 × 3.000+ 

€ 

5.022 × 3.000}+

€ 

4.128 ×1.000 −1.084 × 3.000{ }.  With the intercept, the controls and 

foundational knowledge component, and the support component, the student is predicted 

to score 76.294 in college calculus.  This predicted performance score is almost a point 

more than the previous example. Thus insight and creativity on assessments boosted 

college calculus performance more than average use of alternative solutions hurt. 

 
Significant Procedure Component Variables 

 The 1997 MAA President’s Task Force report, discussed in Chapter 4, stated 

that teachers needed to balance instruction in order to help students develop conceptual 

understanding and to use procedures in an effective manner. Bosse & Bahr (2008) stated 

that pedagogy that is based on procedures has received criticism because students tend to 

use procedures in an inappropriate way.  Pedagogy that proceduralizes instruction has 

been shown to lead to memorization and to neglecting conceptual understanding (Bosse 

& Bahr, 2008).  Such research reveals that there have been concerns about procedures 

and the learning of mathematics.  The NCTM (2008) stated that there should be a balance 

between conceptual understanding and procedural knowledge.  
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 There was only one variable from the procedure component that was a significant 

predictor of future performance in college calculus, and this variable is shown in Table 

5.6. As will be seen in Table 5.10, there are more significant variables in the procedure 

component for the calculus model, which may point to vertical transfer of content from 

secondary pre-calculus to college calculus.  The procedure component only added 0.6 

percent to the explained variability in the pre-calculus data, for a cumulative total of 17.8 

percent of the variance explained with both components and the controls.  Research has  

Table 5.6 

Significant Procedure Variables for Pre-Calculus Model (n=985) 

Variable Description and 
Name 

Parameter Estimate 
and Significance 

Standard 
Error 

Standardized 
Coefficients 

Min Max Mean 

Time spent preparing 
for standardized math 
exams (linearized) 
(Q34standardl) 

 

-1.016** 

 

0.338 

 

-0.089 

 

0.100 

 

5.000 

 

0.918 

p<0.01,**   
 

shown that when teachers’ focus on preparing students for standardized tests that their 

worked examples parallel closely to test questions (Shepard & Dougherty, 1991).  The 

negative parameter indicates that such instruction in pre-calculus does not enhance 

transfer of learning to college calculus. Assume the female student had a pre-calculus 

teacher that placed a less than average emphasis on standardized test preparation (0.5).  

The model predicts that her performance in college calculus would be 75.786, which is 

almost one-half of a point less than with just the support component.  
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Significant Learning Task Component Variables 

 There was also only one significant variable for the learning task component, 

which is shown in Table 5.7.  Manipulation of physical objects during instruction may be 

a negative predictor for college calculus performance because such instructional 

strategies may not be used in college calculus.  Secondary pre-calculus instruction 

presents information to students with high element interactivity.  Many connections are 

needed in order to compress mathematical knowledge, or create schema, that can be 

recalled in a different environment that requires vertical transfer.   Manipulating objects, 

Table 5.7 

Significant Learning task Variables for Pre-Calculus Model (n=964) 

Variable Description 
and Name 

Parameter Estimate 
and Significance 

Standard 
Error 

Standardized 
Coefficients 

Min Max Mean 

Manipulation of 
physical objects 
(Q33objectl) 

-1.068* 0.431 -0.075 0.100 5.000 0.669 

p<0.05,*    
 

as an aid to instruction, may not assist student understanding unless the students 

themselves manipulate the object and construct their own understanding.  It takes work to 

process why and not just how when learning mathematics, and the goal of manipulating 

objects during instruction should be to emphasize both. Assume the same female student 

had a pre-calculus teacher that manipulated objects as teaching aids about once a week 

(1).  The equation that predicts college calculus performance from all components is 
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43.750+

€ 

−2.839 × 0 +1.179 × 0.000 + 0.016 × 600.000 + 2.334 × 3.000 + 5.022 × 3.000{ }+

€ 

4.128 ×1{ .000

€ 

−1.084 × 3.000}+

€ 

−1.016 × 0.500{ }+

€ 

−1.068 ×1.000{ } which renders a 

predicted score of 74.718.   

  

Conclusion of Pre-Calculus Model 

 The pre-calculus model explains a total of 18.100 percent of the variance in 

college calculus performance for pre-calculus students that transferred knowledge 

directly from high school to college calculus.  This means that 81.900 percent of the 

variability in college calculus performance came from other variables. Only 3.100 

percent of the variability is explained specifically by pedagogical practices from pre-

calculus teachers.  If only the pedagogical practices with negative parameter estimates are 

applied at the highest level, while the positive practices are applied at the lowest level, 

the predicted college calculus grade may decrease by 15.800 points.  Conversely if only 

the positive pedagogical practices are applied at the highest levels, and the negative 

practices at the lowest level then college calculus performance may increase by 4.100 

points.  The point increase is less than the point decrease because there were more 

pedagogical practices that negatively effected college calculus performance.  According 

to the model an overall difference of 19.900 points in college calculus performance can 

be explained by teachers’ pedagogical practices.  The significant variables have been 

placed on the 4C/ID model in Figure 5.1.  
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Figure 5.1.  Significant Pre-Calculus Pedagogical Practices Placed on the 4C/ID Model 

 

Model for Secondary Calculus 

 There were 4,021 students that completed either non-AP Calculus, AP Calculus 

AB, or AP Calculus BC their senior year in high school mathematics, and 2160 of them 

transferred knowledge directly to a single variable college calculus course where the 

FICSMath survey was completed. Figure 5.2 displays the comparison of these two groups 

for the three different levels of secondary calculus.  There is a significant difference 

between the total number of students that took college calculus and the number of 

students that moved directly from high school mathematics to the course where the 

FICSMath Survey was taken.  The red group is one that has been analyzed to discover 

how pedagogical practices from high school mathematics instruction effected college 

calculus performance.  All respondents in the red group were placed together for analysis. 

Initially there were concerns about grouping students from non-AP Calculus, AP 

Calculus AB, and AP Calculus BC together because the three courses may be different in 

the amount of content they cover and the speed at which the content is covered.  For  
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Figure 5.2. Comparison of Students in Three Levels of Secondary Calculus and Number 
of Students that Moved Directly to the College Calculus Course Where the FICSMath 

Survey was Taken 
 

example, some AP Calculus teachers try to finish teaching course content early in order 

to prepare students for the AP Calculus Exam.  Also, AP Calculus BC covers sequences 

and series.  These concerns were addressed by comparing the performance in high school 

calculus and in college calculus across the three levels.  Figure 5.3 show that the high 

school grade point average for the three levels of secondary calculus were all between 

3.42 and 3.57, or in the B range. The error bars indicate there is not a significant 

difference between the mean grades across the three levels.  Figure 5.3 also shows the 

average performance for all three levels in college calculus was 3.90. The error bars 

indicate more variance in the performance of AP Calculus BC students, but there is not a 

significant difference in college calculus performance across the three levels. AP 

Calculus BC covers more content at a faster pace yet the mean performance of this group 

was the same as the group that took non-AP Calculus. Because of the similarity of 
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performance in secondary calculus and college calculus for the three groups, all groups 

were combined for analysis.  

 

Figure 5.3.  Three Levels of Secondary Calculus and Average High School Grades 

 The control and foundational knowledge component explained 15.7 percent of the 

variability in college calculus performance. This component is presented in Table 5.8. 

The constant in the model, or the y-intercept, is 47.34.  As in the pre-calculus model, the 

females’ predicted performance is higher than males. The standardized coefficients reveal 

that the largest coefficient is the secondary calculus grade, which is expected since 

students are transferring knowledge from secondary calculus to college calculus.  

Because there are three different scales presented in the model, the standardized 

coefficients are needed to determine the parameter with the strongest effect in the 

component. There is no AP Calculus exam score included in the control and foundational 

knowledge component because inclusion of this variable would exclude the group of 

students in non-AP Calculus.  
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Table 5.8 

Significant Control and Foundational Knowledge Variables for Secondary Calculus  
 
Model (n=2151) 
 

Variable 
Description and 

Name 

Parameter 
Estimate/Significance 

Standard 
Error 

Standardized 
Coefficients 

Min Max Mean 

Gender -2.040*** 0.494 -0.087 F=0.000 M=1.000 -------- 

SAT/ACT 
Math 
Concordance 
Score 
 

0.022*** 0.003 0.156 200.000 800.000 625.760 

HS Algebra 2 
grades 
 

2.133*** 0.462 0.102 0.000 4.330 3.650 

Secondary 
Calculus 
grades 

3.858*** 0.356 0.240 0.000 4.330 3.490 

p<0.001,***     
 
 Assume that a female college calculus student had scored about average on the 

SAT/ACT math test (600); had earned a B in Algebra-2 (3) and an average in secondary 

calculus (3).  The model predicting his performance would be calculated by 47.320+ 

€ 

0.022 × 600.000 + 2.133× 3.000 + 3.858 × 3.000{ } .  This renders a predicted performance 

of 78.493 in college calculus. Compared to the pre-calculus predicted performance of 

75.418, with the same levels placed into the significant variables, this is three points 

higher. 

 

Significant Support Component Variables 

 The significant support variables were found using the same method as described 

in the pre-calculus model and are displayed in Table 5.9. Students who took secondary 
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calculus have more content knowledge that may transfer to college calculus; therefore the 

teachers’ pedagogical practices may be more predictive of performance for calculus 

students than for pre-calculus students.  This may explain why there are more variables in 

the support component for this model than for the pre-calculus model.  

Table 5.9 

Significant Support Variables for Secondary Calculus Model (n=2076) 
 

Variable Description  
and Name 

Parameter Estimate       
and Significance 

Standard 
Error 

Standardized 
Coefficients 

Min Max Mean 

Extent of conceptual 
understanding 
(Q14concept) 
 

0.772*** 0.214 0.078 0.000 5.000 3.680 

Emphasis on 
vocabulary 
(Q18vocab) 
 

0.575** 0.182 0.069 0.000 5.000 2.370 

Frequency of 
checking whether 
numerical answer was 
reasonable 
(Q24check) 

-0.470** 0.179 -0.055 0.000 5.000 3.350 

 p<0.01,**;  p<0.001*** 
 

 Conceptual understanding is the largest positive coefficient for the support 

component. Tall (1991) stated that mathematics instructors typically make the error of 

breaking up complex mathematical information into small pieces when teaching calculus.  

This may provide an ordered sequence from the experts view, but the student may 

perceive instruction as in separate pieces and not perceive the overall concepts (Tall, 

1991).  Students may perceive instruction broken into pieces “like separate pieces of 

jigsaw puzzles for which no total picture is available (Tall, 1991, p.17). This aligns with 

what van Merriënboer & Kester  (2008) describes as part-whole instruction, which is 
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claimed to cause instruction of complex tasks to be too “piecemeal” (p. 444.)   Tall 

(1991) also argued for more emphasis on visualizing overarching mathematical concepts, 

which aligns with what van Merriënboer et al., (2002) and van Merriënboer et al., (2006) 

describe as whole-part instruction. The 4C/ID model was designed as an instructional 

tool to help teachers present complex tasks using the whole-part scaffolding method. The 

support component is representative of overarching concepts scaffolding instruction for a 

complex learning task. 

 The support component explains an additional 2.2 percent of the variability in the 

calculus data, meaning that 17.9 percent of the overall variance in college calculus 

performance is explained by both the foundation knowledge and the support components.  

The variability captured by the amount of emphasis placed on functions (variable 

Q18funct) is reported in the learning task component instead of the support component 

even though it is listed in both Table 5.1 (because functions are foundational to 

understanding concepts in mathematics) and Table 5.3 (because functions are a specific 

complex task for students).  The variable Q18funct was a significant variable predictive 

of future performance in college calculus, but it was discussed in the Learning Task 

Component (Table 5.11) because: (1) there were 34 statements, made by professors 

across eight of the 11 categories presented in the phenomenography, that revealed that 

students struggle with functions at the college level, indicating this is a specific complex 

task for students; and (2) the learning task component is supported by the understanding 

of concepts in the support component. The Pearson Correlation coefficient between 
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conceptual understanding and the emphasis on functions was r=0.27, which is a positive 

but weak relationship between conceptual understanding and the emphasis on functions.   

 The emphasis on vocabulary (Q18vocab) is the second and last positive parameter 

estimate for the support component.   Vocabulary was not discussed in the 

phenomenography (Chapter 4) because the percent of statements from teachers and 

professors for the vocabulary category was not significantly different than zero. This 

indicates that very few statements were made that addressed vocabulary from both 

groups.  On the FICSMath survey, the mean response reported by students that their last 

high school mathematics teacher placed an emphasis on vocabulary was 2.370 out of a 

scale of not emphasized at all (0) to emphasized heavily (5), indicating that teachers 

somewhat emphasized vocabulary.  Tall (1993) stated that calculus is the first time 

students are exposed to vocabulary such as, “limit as x approaches some value, towards 

infinity the limit tends to, as small as we please, a variable getting arbitrarily large, N 

approaches infinity” (p. 2).  He also stated that such terms are used colloquially but have 

specific unique meanings in calculus.  

 Teachers requiring students to check whether their numerical answer was 

reasonable was a negative predictor of performance.  This question from the FICSMath 

survey was placed in the support component because checking the reasonableness of an 

answer is linked to understanding the concepts in a problem.  In the phenomenography, 

professors stated that teachers should provide real world problems because it gave 

students a reason to check if their answer was reasonable.  However, students being 

required to check the reasonableness of their answer was not a positive predictor of 
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performance in college calculus.  One explanation of the variable Q24check being a 

negative predictor of future performance in college calculus may be explained by 

considering the validity of the term “reasonable”. Yakel and Hanna (2007) stated 

“reasoning in mathematics is complicated by the term reasoning,” which is used widely 

with the implicit assumption that there is agreement on its meaning (p. 228).  This may 

explain why Q18reason was not a significant predictor, either negative or positive, of 

college calculus performance. The NCTM (2009) stated that reasoning is often 

understood to encompass formal reasoning, or proof, but instead can take many forms 

ranging from informal explanation and justification of formal deduction or inductive 

observations. The NCTM (2010) stated, “As students develop a repertoire of increasingly 

sophisticated methods of reasoning and proof during their time in high school, “standards 

for accepting explanation should become more stringent” ” (p. 4; NCTM 2000a, p. 342).  

Requiring students to check the reasonableness of their answer may be one way to 

increase the rigor of student explanation, however, the NCTM (2010) may be addressing 

the process more than the final answer.  The practice of requiring students to check their 

final answer may be beneficial for secondary calculus instruction, but it was not a 

positive predictor of future performance in college calculus. 

 Assume the same student discussed in the control and foundation knowledge 

component had a secondary calculus teacher who: focused on conceptual understanding a 

lot (5); emphasized vocabulary very little (2); and required students to check whether 

their numerical answer was reasonable in every class (5).  This student’s predicted 
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college calculus performance from the model with control and support components 

would be: 47.34+ 

€ 

0.022 × 600{ + 2.133× 3.000+

€ 

3.858 × 3.000}+

€ 

0.772 × 5.000 + 0.575{  

€ 

×2.000 − 0.470 × 5.000} .  This renders a predicted score of 81.153 for college calculus 

performance. Again, this model explains 17.9 percent of the variability in the college 

calculus performance.  The remaining variability would most likely be captured by other 

variables, such as those from the actual calculus course and the effort of the student.  

 

Significant Procedure Component Variables  

 The 1997 MAA President’s Task Force report, discussed in Chapter 4, stated that 

teachers needed to balance instruction in order to help students develop conceptual 

understanding and to use procedures in an effective manner. Bosse & Bahr (2008) stated 

that pedagogy that is based on procedures has received criticism because students tend to 

use procedures in an inappropriate way.  Pedagogy that proceduralizes instruction has 

been shown to lead to memorization and to neglecting conceptual understanding (Bosse 

& Bahr, 2008). The NCTM (2008) stated that there should be a balance between 

conceptual understanding and procedural knowledge. Van Merriënboer et al., (2002) 

stated the procedure component (1) provides support of the concepts presented in the 

support component through examples; (2) provides directions during practice; (3) 

describes rules for procedures and knowledge elements; and (4) that support should fade 

as learners gain more expertise. Also, Star (2000) defined procedures in the learning of 

mathematics as knowledge of the order of steps, or the environment or type of situation in 

which the procedure is used.   Such research reveals that there have been concerns about 
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procedures, about what procedures are, and how they are beneficial in the learning of 

mathematics. The 4C/ID model was designed as an instructional model to emphasize the 

whole-part scaffolding method, indicating that the procedure component does not stand 

alone but is supported by conceptual understanding, or the whole overarching concepts, 

in the support component. 

 The procedure component explained an additional 1.1 percent of the variability in 

the calculus data for an overall explained variance of 19.0 percent of the variability 

explained for college calculus performance. The significant procedure variables are listed 

in Table 5.10. Again, as for the support component, there are more significant variables 

for the procedure component than there were for the pre-calculus model. The first three 

variables are dichotomous variables where the students answered no (0) or yes (1) by 

marking all that applied.  There are no averages provided for these variables in Table 

5.10 but the percent that stated yes (1) will be presented in the discussion.  Out of six 

significant variables in the procedure component, only one is a positive predictor of 

performance in college calculus.  

 Using the calculator in class to plot graphs of functions (Q16graph) had the 

second largest negative parameter estimate.  There were 81 percent of students that 

reported their teachers allowed them to use calculators to plot graphs of functions. Many 

professors stated in the phenomenography that students should be able to work 

mathematics problems and graph functions without calculators.  Many teachers stated 

they taught content first by hand and then added the calculator, however, the variable, 

“Calculator was allowed for use only after a technique had been practiced with paper and 
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pencil” was not a significant variable. The sample has two different levels of AP Calculus 

included in it, and the AP Calculus exam has a multiple choice calculator section.  

Therefore it is reasonable that AP students were expected to learn how to use graphing 

calculators to help them answer the multiple choice sections of the AP exam, however, 

independent of the exam, allowing students to use their calculators to plot graphs of 

functions was a negative predictor of college calculus performance. The negative 

parameter may also indicate that students could not graph by hand without their 

calculators, which hurt their performance in college calculus.  

Table 5.10 

Significant Procedure Variables for Secondary Calculus Model (n=2032) 
 

Variable Description and Name Parameter 
Estimate/ 

Significance 

Standard 
Error 

Standardized 
Coefficients 

Min Max Mean 

Allowed to use calculator to 
plot graphs of functions 
(Q16graph) 
 

-1.907** 0.614 -0.063 0.000 1.000 ------ 

Teacher allowed cheat sheets 
(Q26cheatsheet) 
 

-2.125** 0.677 -0.064 0.000 1.000 ------ 

Teacher allowed additional 
bonus points or extra credit on 
tests or quizzes 
(Q26bonus) 
 

-1.260** 0.459 -0.056 0.000 1.000 ------ 

Class time spent preparing for 
class-related quizzes/test, 
linearized 
(Q34prepl) 
 

-0.372* 0.188 -0.042 0.100 5.000 1.370 

Time spent going over assigned 
homework, linearized  
(Q34homel) 
 

0.326* 0.135 0.052 0.100 5.000 3.220 

Time spent reviewing past 
lessons, linearized 
(Q34reviewl) 

-0.475** 0.182 -0.058 0.100 5.000 1.340 

p<0.05,*;  p<0.01,**  
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 The negative parameter estimates for teacher allowing bonus points or extra 

credit and the use of cheat sheets were all discussed by professors and teachers in the 

phenomenography for the assignments and assessments category (Figure 4.7).  Such 

pedagogy was perceived by professors as: (1) enabling students to believe that seat time 

equaled passing; and (2) reporting performance scores from secondary calculus that were 

not predictive of what students actually knew and could do.  Teachers, on the other hand, 

stressed that they used such pedagogical practices because it encouraged seniors to take a 

rigorous mathematics class without using the “I do not want to lower my GPA” 

argument. There were 13 percent that reported their teacher allowed the use of cheat 

sheets, and 48 percent that reported their teachers gave bonus points or extra credit on 

tests or quizzes. 

 The variables Q34 prepl and Q34 reviewl may be negative parameter estimates 

because such pedagogy is typically not part of a college calculus class.  Most professors 

expect students to prepare for formal assessments on their own time.  College calculus 

courses typically have a syllabus that details the topics that will be covered each day, and 

students that need extra help reviewing past lessons are expected to obtain extra help on 

their own time.  Time spent going over homework was a positive predictor (Q34homel), 

yet some college calculus courses do not spend class time discussing students’ problems 

with assignments.  Again, if students have a difficult time with homework they are most 

often expected to see the professor for individual help.  The positive parameter estimate 

for spending time going over homework may be explained with cognitive load theory.  

When teachers address students’ questions about problems they have attempted, they may 
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be breaking down the interacting elements of the complex task, which allows germane 

cognitive load in working memory to process and store the information in long term 

memory for future recall.  Van Merriënboer et al., (2002) stated that worked examples 

may be one way teachers answer questions, provide an understanding of rules, procedures 

that combine rules, and unite other knowledge elements together that support learning the 

overarching concept.  

 Assume the same female student had a secondary calculus teacher that regularly 

allowed the class to use calculators to plot graphs of functions (1); did not allow students 

to use cheat-sheets on tests and quizzes (0); regularly gave bonus points on tests and 

quizzes (1); spent time in class preparing for quizzes or tests about once a month (0.25); 

spent time going over assigned homework daily (5); and typically spent time reviewing 

past lessons once a week (1). The predicted performance in college calculus with the 

control and foundation knowledge, support, and procedure component is 79.048.  This is 

a little more than two points less than the predicted performance with just controls and 

the support component.  

 

Significant Learning Task Component Variables  

 The learning task component explains an additional 0.4 percent of the variability 

in college calculus performance from the calculus data, for a total of 19.3 percent of the 

total variability explained from the components in the calculus model.  Without the 

variable Q18funct there was no additional variability explained in college calculus 
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performance even though there is one addition variable in the learning task component.  

The variables in the learning task component are listed in Table 5.11. 

Table 5.11 

Significant Learning Task Variables for Secondary Calculus Model (n=1999) 
 
Variable Description 

and Name 
Parameter 

Estimate/Significance 
Standard 

Error 
Standardized 
Coefficients 

Min Max Mean 

Manipulation of 
physical objects 
(Q33objectl) 
 

-0.791*** 0.210 -0.078 0.100 5.000 0.836 

Emphasis on 
functions 
(Q18funct) 

0.724** 0.272 0.059 0.000 5.000 3.860 

p<0.01, **;   p<0.001, *** 
 

 The emphasis on functions was placed in the learning task component because the 

findings from the phenomenography (Chapter 4) revealed that functions is a specific 

complex task for college calculus students, and it is the professors’ belief that more focus 

on functions may better prepare secondary mathematics students for college calculus 

success.  The placement of the variable Q18funct in the learning task component is 

appropriate because the learning task component is supported by the overarching (whole) 

concepts in the support component.  Van Merriënboer et al., (2002); Van Merriënboer et 

al., (2003); Van Merriënboer et al., (2006) state that such instruction, along with the 

algorithms (parts) in the procedure component, increases the likelihood of transfer of 

learning.  The mean emphasis on functions (Q18funct) was 3.86 out of a scale of not 

emphasized at all (0) to heavily emphasized (5). This indicates that, on the average, 

secondary calculus teachers emphasized functions, but not heavily. Tall (1997) stated one 
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purpose of the function is to represent how things change, and calculus is often referred 

to as the mathematics of change. Functions are used in calculus to “do and undo” visual-

spatial, numeric, symbolic, and graphic, representations of change in mathematics (Tall, 

1997, p. 7).   

 The only other significant variable in the learning task component was 

Q33objectl, which was also a significant variable in the pre-calculus model. The mean 

response of the linearized variable indicates that calculus teachers manipulated objects 

during instruction about once a week.    From a cognitive load perspective, if the 

manipulation of objects was not integrated well with the learning task then instruction 

may have cause a split attention effect.  This means the connection between the teachers’ 

manipulation of objects and what the student needed to do to problem solve was not well 

connected. Students often have a difficult time visualizing what an integral is 

representing.  For example, understanding a volume by slicing or rotation problem can be 

difficult if the students cannot visualize the problem. Students observing their teacher 

manipulate physical objects are most likely not what would help students understand such 

complex calculus concepts. 

 What is interesting about this component is that no variables that measured the 

connection between mathematics and real life applications were significant predictors of 

college calculus performance. Problems such as displacement problems, related rates, 

optimization, area and volume problems, are all problems that connect calculus to 

changing phenomenon related to “real life”.  Such problems may be considered as real 

life problems, but they may also be considered “as problems included in the mathematics 
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curriculum because they provide justification for teaching mathematics at all 

(Schoenfeld, 1992, p. 13). It is reasonable to believe that students perceived such 

problems not as connected to real life but as complex word problems. Van Merriënboer et 

al., (2006) stated the benefit of real life problems is they present opportunities to present 

context as a whole from the start.  However, secondary preparation for college calculus is 

a complex task even without real life application problems, and complex mathematical 

concepts can be presented from the whole conceptually from the start without real life 

applications.  

 Assume the same student from the previous calculus model examples had a 

calculus teacher that placed a lot of emphasis on the functions (4) and manipulated 

physical objects during instruction about once a week (1).  The predicted college calculus 

performance is 81.153.  This is a little more than five points higher than the predicted 

performance from the control and foundational knowledge component.  

 

Conclusion of Calculus Model 

 Mewborn (2007) stated that what is known about learning mathematics is that 

each student’s mathematical understanding and problem solving ability is primarily 

shaped by the teaching experiences they encounter in school.   By observing only the 

pedagogical practices from the support, procedure, and learning task components with the 

highest possible positive parameter estimates and the lowest possible negative parameter 

estimates the college calculus performance may increase by 11.82 points.  Conversely, if 

the negative parameter estimates are quantified at the highest amount of pedagogical 
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practices and the positive parameter estimates at the lowest amount then the college 

calculus performance is predicted to decrease by 15.79 points.  This indicates there is a 

total difference of possible performance in college calculus of 27.61 points.  This could 

be the difference between passing and failing college calculus.  All of the significant 

variables have been placed on van Merrienboer’s et al., (2002) model and are displayed 

in Figure 5.4. 

 

 
 

Figure 5.4. The Significant Pedagogies from Secondary Calculus Sample  
Placed on the 4C/ID Model 

 

Summary of Models 

  Research Question 2 asked, “How well do the components in the 4C/ID model 

represent pedagogies that predict pre-calculus and calculus students’ success in single 

variable college calculus?” If the pre-calculus and calculus models have positive 

predictors of performance in the support and procedure components then the components 

represent pedagogies that may be predictive of future success in single variable college 
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calculus. The learning task component represents a complex task that must be supported 

by concepts first and foremost and then with procedures, or algorithms, required to move 

from a problem to an accepted solution.  Concerning the learning task component, van 

Merriënboer et al., (2006) stated that a complex task “has many different solutions, are 

ecologically valid, cannot be mastered in a single session, and pose a high load on the 

learners cognitive system” (p. 343).  Each of these descriptors of a complex task was 

related to learning mathematics in Chapter 2. Figure 5.5 displays the number of 

significant variables for each component for both models.   

 

Figure 5.5. Comparison of Significant FICSMath Variables in the 4C/ID 
Components for Both Models 

 

 The pre-calculus model had only one positive predictor of performance and one 

negative predictor for each component. There are concerns that there were no other 
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positive predictors of future performance in college calculus, which could indicate that: 

(1) the components do not model pedagogies that predict success in single variable 

college calculus well; (2) the content gap between secondary pre-calculus and college 

calculus might be so great that how teachers presented pre-calculus content may have a 

limited effect; (3) secondary pre-calculus content did not adequately prepare students to 

learn college calculus content; or (4) as expressed by the professors and teachers in the 

phenomenography, so much content was covered, “a mile wide and a half-inch deep” 

which resulted in shallow preparation for the deep understanding required to learn college 

calculus.  There may be more reasons why the model for pre-calculus had so few 

significant variables, which indicates the need for more understanding concerning 

secondary pre-calculus preparation for college calculus success.  

 Figure 5.5 shows the 4C/ID instructional model components are more likely to be 

predictive of secondary calculus success than the pre-calculus model.  The calculus 

model had positive predictors of performance in all three components. Also, the 

significant positive predictors were “focus on conceptual understanding” and “focus on 

vocabulary,” which can be used to structure whole concepts.  The positive predictor of 

performance in the procedure component, “teacher goes over assigned homework” 

provides opportunities for “just in time” information (van Merriënboer et al., 2002, p. 

51), which provides learners with knowledge they need in order to move from a problem 

situation to an acceptable solution. Figure 5.5 also shows the component that is most 

predictive of lower performance in college calculus is the procedure component. The 

reader should note that the effect size and the strength of the variables, as determined by 
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the standardized coefficient and the parameter estimates, are not considered in the 

comparisons in Figure 5.5.  Only the number of significant variables in each component 

was considered.  
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CHAPTER 6 

4C/ID MODEL MODIFIED AS TWO DIFFERENT MATH MODELS FOR  

COLLEGE CALCULUS PERFORMANCE 

 

 The FICSMath survey provided valuable information from college calculus 

students’ perspectives concerning what their last high school mathematics teacher did to 

prepare them for college calculus success. Cognitive load theory provided a theoretical 

framework for learning, and the 4C/ID model provided an instructional model for 

teaching complex tasks for transfer of learning. These three have been merged in an 

unequal status-concurrent mixed-method design to study what pedagogical practices are 

predictive of college calculus performance.  A phenomenography analyzed what 

professors believed secondary mathematics teachers should be doing, and what secondary 

mathematics teachers are doing to prepare students for college calculus success.  Two 

multiple regression models were built, one from the sample of pre-calculus students, and 

the other from the sample of calculus students that moved directly from secondary 

mathematics to college calculus where the FICSMath survey was administered.  The 

models are based on the correlations between what the respondents reported their 

secondary mathematics teacher did to prepare them for college calculus and their college 

calculus performance.  The alignment of the results from the phenomenography and the 

findings from pre-calculus and calculus models are shown in Table 6.1. 

 

 



                                                                       

 

  138 

Table 6.1 

Alignment of Categories from Phenomenography with Findings from Secondary Pre-
Calculus and Calculus Models with Positive (P) or Negative (N) Effect on Performance 
in College Calculus 
 
4C/ID Component Pre-Calculus Model 

Significant Variables 
Calculus Model 
Significant Variables 

Phenomenography 
Categories  

Extent of conceptual 
understanding (P) 
 

Tests and Quizzes 
required new insight and 
creativity (P) 

Focus on 
vocabulary (P) 
 

Support-Supports 
learning and 
performance of new 
information.  Promotes 
schema construction 
through elaboration of 
mental models, 
cognitive strategies, and 
cognitive assessment. 

Teacher highlighted more 
than one way of solving 
problems (N) 

Require students to 
check whether their 
numerical answer was 
reasonable (N) 

 
-Conceptual 
understanding,        
-problem solving,   
-classroom 
environment,          
-assignments and 
assessments 

Go over assigned 
homework (P) 
-Teacher gave bonus 
points or extra credit on 
tests or quizzes (N) 
-Teacher allowed cheat 
sheets on tests or 
quizzes (N) 
-Class time spent 
preparing for tests or 
quizzes (N) 

 
 
 
 
 
-Assignments and 
assessments,           
-classroom 
environment 

-Time spent reviewing 
past lessons in class (N) 

 

 
 
 
 
 
 
 
Time spent preparing for 
standardized math 
exams (N) 

-Allowed to plot graphs 
of functions on 
calculator (N) 

 
Calculator use 

 
 
 
 
Procedure-Prerequisite 
knowledge needed to 
learn new information, 
examples and 
demonstrations, 
knowledge of order of 
steps, environment or 
situation in which 
procedure is used 

Significant Foundational 
knowledge-Algebra 2, 
and pre-calculus (P) 

-Significant 
Foundational 
knowledge-Algebra 2 
and calculus (P) 

Algebra, pre-
calculus, and 
calculus 

Focus on functions (P) Learning Task 
Authentic whole task 
experiences.  Best if use 
whole-part scaffolding 
for learning complex 
tasks. Scaffolding fades 
as material is learned 

 
Teacher manipulated 
objects during instruction 
(N) 

 
Teacher manipulated 
objects during 
instruction (N) 

 
Algebra, pre-
calculus, calculus 
content (functions) 
and problem 
solving 

 
Categories from the phenomenography that did not align with models 

Real world 
problems, proofs 
and qualified 
teachers 
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 There were 35 statements from the professors across seven of the categories 

presented in Figure 4.1 that addressed the fact that students struggle with functions, and 

that teachers need to focus more on a broad range of algebraic, trigonometric, and 

transcendental functions, as well as families of functions, operations on functions, and 

generating functions from given information or from patterns.  For sure, functions are 

foundational to understanding concepts in mathematics, but they were revealed in the 

phenomenography as a unique complex task with which students struggle. Therefore the 

variable, “focus on functions” was moved from the support component to the learning 

task component, as discussed in Chapter 5.  

 

Creation of New Models from Findings 

 The 4C/ID model was created to help teachers with the instruction of complex 

tasks, but not specifically for the instruction of mathematics. Even though the learning 

task component had the fewest significant variables from the FICSMath survey, and the 

part-task component was dropped because there were no items that aligned with this 

component from the FICSMath survey, the 4C/ID model is appropriate to use as a 

framework.  This is because: (1) secondary preparation for college calculus is a complex 

task (as stated in Chapter 2); and (2) Van Merriënboer et al., (2003) stated that the part-

task component had not yet been substantiated in the whole-part theoretical framework. 

The 4C/ID model was created to help teachers with the difficulty of structuring complex 

learning tasks with a focus on the “whole” over arching concepts first, and then 

incorporating procedures needed to move from an initial problem to an acceptable 
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solution.  Such instruction is perceived to help students create schemata in long term 

memory by decreasing intrinsic cognitive load, or element interactivity, so chunks of 

knowledge can be transferred back into working memory in order to process more new 

(mathematical) information.  Thus whole-part instruction is claimed to help students 

transfer learning to a new and different environment.  Tall (1991) stated that once 

mathematical concepts are understood there is often a tremendous mental compression 

and mathematical ideas can be filed away, recalled quickly, and used when needed in just 

one step in some other metal process (p. 4).  Both professors and teachers made 

statements in the phenomenography that secondary pre-calculus students had “weak 

preparation for pre-calculus” (see Figure 4.4). It is possible that students were taught the 

correct content to prepare pre-calculus students for college calculus, but the content did 

not transfer to a different environment.  Haskell (2001) stated: “Part of the problem of 

transfer is that our learning tends to be welded to a place” (p. 10). The struggle to recall 

information from secondary pre-calculus to help with the process of learning college 

calculus may be an example of learning being “welded to a place.” 

 The 4C/ID model was used in this study to determine if pedagogical practices 

that align with the components are predictive of college calculus performance. The 

significant findings from the pre-calculus and calculus models, and the findings from the 

phenomenography, were used to modify the 4C/ID model and answer Research Question 

3, “How can the 4C/ID model be modified to reflect pedagogies that are predictive of 

pre-calculus and calculus students’ success in single variable college calculus?”  
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Van Merriënboer et al., (2002); van Merriënboer et al., (2003); van Merriënboer et al., 

(2008) image of the 4C/ID model is a complex network of components represented by 

various shapes and circles with partial shading representing decreased scaffolding over 

time as students learn the content.  The goal of the modifying the 4C/ID model was to 

present the findings from the FICSMath study in a clear and concise way that can be 

easily understood by those who have an invested interest in secondary preparation for 

college calculus. The findings from the pre-calculus model are presented in Figure 6.1.  

 

Figure 6.1.  The 3C/ID Pre-Calculus Model for College Calculus Performance 

 The maximum performance increase was computed by multiplying the positive 

parameter estimates with the highest possible numeric response (e.g. 6=emphasized 

heavily) and the negative parameter estimates with the lowest possible response (e.g. 

0=none, or 0.1=very rarely, linearized). The maximum performance decrease was 
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computed by multiplying the negative parameter estimates with the highest possible 

numeric response (e.g. 6=emphasized heavily) and the positive parameter estimates with 

the lowest possible response (e.g. 0=none, or 0.1=very rarely, linearized).  These 

extremes were used to reveal the large predicted change in final college calculus grade 

based solely upon teachers’ pedagogical practices.  The only parameter estimates used in 

the maximum performance increase and decrease computations were significant 

pedagogical variables from the support, procedure, and learning task components. In 

Figure 6.1, the students’ baseline knowledge is the foundation upon which the model is 

built.  The phenomenography revealed that algebra and pre-calculus content are 

foundational to learning college calculus.  The SAT/ACT concordance score for 

mathematics was a positive predictor of college calculus performance, as revealed in 

Chapter 5, and this variable was also included as part of the students baseline knowledge. 

It should be observed that the small amount of variability captured from teachers’ 

pedagogical practices (3.1 percent) reveal a large predicted difference in points earned in 

final college calculus grade. The positive and negative sloped lines in the model represent 

the effect on future performance and align with the positive and negative parameter 

estimates from the models presented in Chapter 5. 

 Bressoud (2010) stated that it is not known what effect AP Calculus or non-AP 

calculus has on college calculus performance. The mean performance of the pre-calculus 

group is the only group that performed lower in college calculus than in secondary 

mathematics.  The error bars indicate a larger variance in the performance of the pre-

calculus group in college calculus.  Based on the mean performance across groups it 
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appears that taking secondary calculus was beneficial for college calculus performance.  

Some professors stated that high schools should stop teaching calculus and let calculus be 

a college level course (Chapter 4).  Many of the professors believed that high school 

mathematics should focus on foundational knowledge needed to learn calculus, such as 

functions, algebra, and pre-calculus content. However, these views do not align with the 

mean performance of pre-calculus and calculus students in college calculus that are 

presented in Figure 6.2. 

 

 

Figure 6.2. Comparison of Pre-Calculus and Three Levels of Secondary Calculus 
Performance and College Calculus Performance 

 

 The results of the secondary calculus model are displayed in Figure 6.3.  There 

are more variables predictive of performance in this model, possibly because of less 

content knowledge difference between secondary calculus and college calculus.  Similar 

to the pre-calculus model, there are more pedagogical practices that predicted future 
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performance in college calculus negatively than practices that had a positive effect on 

future performance. The maximum performance increase and decrease was computed 

using the same method described for the pre-calculus model. Also, the only parameter 

estimates used to compute the performance increase or decrease were from the support, 

procedure, and learning task components. The students’ baseline knowledge is the same 

for the pre-calculus model except that performance in secondary pre-calculus was not a 

significant predictor for secondary calculus students’ performance in college calculus. 

Thus performance in secondary calculus is a part of the students’ baseline knowledge, 

 

Figure 6.3.  The 3C/ID Secondary Calculus Model for College Calculus Performance 
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since this was a positive predictor of future success in college calculus performance. The 

small amount of variability captured from teachers’ pedagogical practices (3.6 percent) 

indicates a large predicted difference in points earned in the final college calculus grade. 

 

Effect Size Discussion 

 The pre-calculus model explained 18.1 percent of the variability in the data from 

students’ that had pre-calculus their senior year, while the calculus model explained 19.3 

percent of the variability in the data from students’ that had calculus their senior year. 

The intent was to study teachers’ pedagogical practices that transferred from one course 

to the next course hierarchically, and how these practices were predictive of college 

calculus success.  The 4C/ID model provided a framework for this study. The variability 

captured explained how gender, student experiences, foundational knowledge, and 

pedagogical practices predicted future performance in college calculus. When 

considering exclusively teachers’ pedagogical practices, only 3.1 percent of the 

variability in the pre-calculus data, and 3.6 percent of the variability from the calculus 

data explained future performance in college calculus. In order to better understand 

where more of the variability in the data may be captured, 12 variables that were 

designed to measure student affect were included into both models.  

 

Student Affective Variables and the Pre-Calculus Model 

 Variables were placed on the FICSMath survey with the intent of measuring 

student affect concerning their beliefs about learning mathematics.  These variables were 
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not originally included into the models because student beliefs about learning 

mathematics are different than pedagogical practices used to communicate the complex 

ideas of mathematics in a way that is understandable to others. These variables were 

added to the pre-calculus model and the significant variables are presented in Table 6.2.  

Also presented in Table 6.2 are the variables from the pre-calculus model that remained 

significant predictors of future performance in college calculus.  The model presented in  

Table 6.2 

Pre-Calculus With Student Affective Variables (n=1098) 

Control and Foundational Knowledge Component; n=1,181; Adjusted R2=0.11 
Variable Description and 

Name 
Parameter 

Estimate and 
Significance 

Standard 
Error 

Standardized 
Coefficients 

Min Max Mean 

Gender -4.02*** 0.77 -0.14 0.00 1.00 ----- 
Grade in pre-calculus 4.10*** 0.52 0.21 0.00 4.33 3.86 

With Support Component Added; n=1,163; Adjusted R2=0.12 
Tests or quizzes required new 
insight and creativity 

 
3.46*** 

 
0.92 

 
0.10 

 
0.00 

 
1.00 

----- 

Teacher highlighted more than 
one way of solving a problem  

 
-1.06*** 

 
0.29 

 
-0.10 

 
0.00 

 
5.00 

 
3.63 

With Procedure Component Added; n=1,152; Adjusted R2=0.13 
Time spent preparing for 
standardized math exams 
(linearized) 

 
-0.89** 

 
0.30 

 
-0.08 

 
0.10 

 
5.00 

 
0.92 

With Student Affective Variables Added; n=1,098; Adjusted R2=0.31 
I can do well on exams 8.271*** 0.998 0.230 0.00 1.00 ----- 
I wish I did not have to take 
math 

-2.245** 0.83 -0.07 0.00 1.00 ----- 

I understand the math I have 
studied 

7.45*** 1.12 0.19 0.00 1.00 ----- 

Math teacher sees you as a 
math person 

1.49*** 0.29 0.15 0.00 5.00 3.21 

p<0.01, **;   p<0.001, *** 
 

Chapter 5 (and Figure 6.1) changed because some of the pedagogical variables were no 

longer significant after including the student affect variables. The variables that were no 

longer significant were: (1) degree to which home environment was supportive of 
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learning math; (2) SAT/ACT math concordant score; (3) grade in algebra 2; and (4) 

teacher manipulated physical objects during instruction. The significant student affect 

variables in Table 6.2 may measure student motivation to learn mathematics, anxiety 

about leaning mathematics, or student efficacy or identity. The model shows that 

teachers’ pedagogical practices, along with gender and grade in pre-calculus, captured 13 

percent of the variability in the data.  This is 5.1 percent less than the model presented in 

Chapter 5 because of the variables that dropped out of the model.  What should be 

noticed is the large jump in the adjusted R2 value when student affect variables were 

added to the model. The significant student affect variables explained an additional 18 

percent of the variability in the pre-calculus data, for a total of 31 percent of the 

variability explained in the model with all of the components together.  The standardized 

coefficients should be observed since they reveal the variables with the strongest effect 

on the model since the scales are not the same.  Next to grade in pre-calculus, the 

variables “I can do well on exams” and “I understand the math I have studied” were the 

strongest predictors of performance in college calculus.  This information is only 

provided to show where additional variability of the data may be captured.  The 

instructional model presented by van Merriënboer et al., (2002); van Merriënboer et al., 

(2003); and van Merriënboer et al., (2008) does not include components for student 

motivation.  More research should be done relative to the significant student affect 

variables in order to determine what motivational constructs are represented in the 

significant affect variables presented in Table 6.2. The intent is not to create a new model 

that has both, teacher pedagogical practices and student affective variables. The 
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researcher is not a motivation or identity expert, so more research is needed in order to 

determine how to best design a model that includes teachers pedagogical practices and 

student affective variables that will be predictive of secondary pre-calculus students’ 

performance in college calculus.  

 

Calculus Model with Affective Variables 

 The same process described above for the pre-calculus model was also applied to 

the calculus model from Chapter 5.  There was one variable, “time spent going over 

assigned homework” that was no longer significant after the affective variables were 

added into the calculus model. Table 6.3 displays the calculus model with the additional 

variables. The total variability explained in the calculus model increased 10.7 percent 

because of the significant student affect variables included in the model, which increased 

the total explained variability to 30 percent.  Table 6.3 is presented to display in a concise 

way the large change in the explained variability that occurs because of adding the 

significant student affect variables to the model. The parameter estimates are close to 

being the same as reported in Chapter 5, but different because this research is based on 

correlations.  Removing one variable from the procedure component and adding four 

significant student affect variables changed the number of respondents that survived the 

model slightly, as well as the parameter estimates and other reported values.   It is 

interesting that the significant pedagogical practices predictive of college calculus 

performance for the pre-calculus and calculus models are all different except for the  
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Table 6.3 
 
Calculus Model Including Control and Foundation Knowledge, Calculus Teachers’ 

Pedagogical Practices, With Student Affective Variables 

Control and Foundational Knowledge Component; n=2,125; Adjusted R2=0.16 
Variable Description and 

Name 
Parameter 

Estimate and 
Significance 

Standard 
Error 

Standardized 
Coefficients 

Min Max Mean 

Gender -2.58*** 0.47 -0.11 0.00 1.00 ----- 
SAT/ACT math score 0.01*** 0.00 0.09 200.00 800.00 625.76 
Grade in algebra 2 1.69*** 0.44 0.08 0.00 4.33 3.65 
Grade in secondary calculus 
course 

2.67*** 0.35 0.17 0.00 4.33 3.49 

With Support Component Added; n=2,081; Adjusted R2=0.18 
Extent of conceptual 
understanding 

0.40* 0.20 0.04 0.00 5.00 3.68 

Emphasis on vocabulary 0.48** 0.17 0.06 0.00 5.00 2.37 
Frequency of checking 
whether numerical answer 
was reasonable 

 
-0.58** 

 
0.17 

 
-0.07 

 
0.00 

 
5.00 

 
3.35 

With Procedure Component Added; n=2,039; Adjusted R2=0.19 
Allowed to plot graphs of 
functions 

-1.57** 0.58 -0.05 0.00 1.00 ----- 

Cheat sheets allowed on 
tests or quizzes 

-1.61* 0.64 -0.05 0.00 1.00 ----- 

Bonus points or extra credit 
allowed on tests or quizzes 

-1.06* 0.43 -0.05 0.00 1.00 ----- 

Class time spent preparing 
for class related quizzes or 
tests (linearized) 

 
-0.44* 

 
0.18 

 
-0.05 

 
0.10 

 
5.00 

 
1.37 

Time spent reviewing past 
lessons (linearized) 

 
-0.33* 

 
0.17 

 
-0.04 

 
0.10 

 
5.00 

 
1.34 

With Learning Task Component Added; n=2014; R2=0.193 
Manipulation of physical 
objects 

-0.79*** 0.197 -0.08 0.100 5.000 0.73 

Emphasis on functions 0.52* 0.26 0.04 0.000 5.000 3.86 

With Student Affective Variables Added; n=1,959; Adjusted R2=0.30 
I can do well on exams  6.65*** 0.73 0.19 0.00 1.00 ----- 
I wish I did not have to take 
math 

-1.41** 0.52 -0.06 0.00 1.00 ----- 

I understand the math I have 
studied 

3.59*** 0.92 0.08 0.00 1.00 ----- 

Math teacher sees you as a 
math person 

1.44*** 0.19 0.16 0.00 5.00 3.21 
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common variable “manipulation of physical objects.” However, the same four out of 12 

affect variables were significant for both the pre-calculus and the calculus model.  

 

Implications for Instruction 

 The 4C/ID model has also been used as a framework to consider teachers’ 

characteristics because teaching secondary mathematics is a complex task.  Feldon (2007) 

stated that when teachers must “meet the needs and behaviors of an entire classroom 

while also trying to remember and implement a lesson plan” they might experience 

cognitive overload; such concerns especially exist for novice teachers (p. 123).  When 

teachers gain expertise in the classroom they develop elaborate schemas to process 

information, which requires less mental effort (Feldon, 2007).  Teaching is complex, and 

it is important that research in mathematics education inform practice in practical and 

meaningful ways that will help secondary pre-calculus and calculus teachers with the task 

of making mathematical ideas understandable to students.  Therefore considerations of 

some of the “take away points” for practioners from this study are important.  A 

discussion of some of the negative predictors of future performance in college calculus 

that seemed contradictory to what may be expected follows.  

 The variable “teacher highlighted more than one way to solve a problem” was a 

negative predictor for secondary pre-calculus students’ future performance in college 

calculus.  The NCTM (2010) stated that teachers implement reasoning and sense making 

in the classroom is by “monitoring student progress toward a solution including 

reviewing a chosen strategy and other possible strategies generated by oneself (the 
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teacher) or others” (italics and parenthesis added) (p. 10).  Therefore if the teacher 

presents various strategies to solve a problem, it is important that the connections are 

provided for the students concerning why the various strategies work.  Otherwise, as 

cognitive load theory describes, the split attention effect may occur (van Merrienboer & 

Sweller, 2005).  When split attention effect occurs multiple sources of information are 

not integrated, which causes disjointed understandings to occur instead of one method 

increasing understanding of the other.  Therefore, more consideration from the teacher 

concerning why various methods solve one problem may be beneficial for teachers as 

they seek to help students make better connections between mathematical ideas. 

 The variable “Regarding teaching aids, how often did the teacher manipulate 

physical objects” was a negative predictor of both pre-calculus and calculus students’ 

future performance in college calculus. The NCTM (2010) stated that in order to develop 

reasoning habits in the classroom teachers should “require students to figure things out 

for themselves” and “allow students to explore problems further by using models” which 

indicates that what is important is that students manipulate the objects for understanding, 

not the teachers.  If teachers do provide such instruction, it should be as van Merrienboer 

et al., (2002) stated as “just in time” guidance where the students’ need-to-know has been 

established.  It is best if teachers are patient and allow students to struggle, and then when 

students ask questions teachers can provide “just in time” scaffolding to advance students 

ability to use models for problem solving (p. 51).    

 The variable “for problems involving calculation, how often were you required to 

check whether your numerical answer was reasonable” was a negative predictor of 
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secondary calculus students’ future performance in college calculus.  Concerning this, the 

professors made many statements in the phenomenography that addressed the difference 

between the “process of solving a problem” and the “final answer for a problem.”  For 

example:  (1) “Make students show their work.  Math is about the process as well as the 

answer.  If you cannot see the process, how do you know where the answer came from?” 

(2) Students need to move away from “getting the right answer” to “learning the correct 

process” and (3) “Take away their calculators.  Students loose the ability to move through 

the process of solving a problem and when asked what is a reasonable answer they do not 

know.”  Therefore, it seems the focus should be on the process of problem solving 

instead of the final answer.  Maybe a better question would be, “How often were you 

required to check if your problem solving process was reasonable?” 

 

Future Research 

 The epidemiological research method was described in Chapter 3 as having the 

power to simultaneously test many independent variables at one time and identify 

important variables for future research. This method is different from quasi-experimental 

research designs where the researcher seeks to hold other classroom variables constant, 

which is a difficult task in the messiness of classroom research.  Regardless of the 

research design, the 16 significant pedagogical variables identified from the large sample 

of pre-calculus and calculus students provide important information about variables 

worthy of future research in secondary mathematics education relative to pedagogical 

practices that are predictive of college calculus performance.                                                                
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 The significant affect variables shown in Table 6.2 and Table 6.3 also reveal 

variables concerning student beliefs about learning mathematics that should be studied 

further. The respondents completing the FICSMath survey were in college calculus and 

answered questions concerning their last high school mathematics class.  Future research 

should investigate if such affective characteristics as “I can do well on exams” and “Math 

teacher sees you as a math person” transfer from one mathematics class to another.  If 

students believe that they perform well on exams in high school, but then move to college 

calculus and do poorly on exams, do they have the tenacity to continue, or do they 

transfer out of a STEM major because of performing poorly on exams in college 

calculus? Also, what framework should be used that combines teachers’ pedagogical 

practices and students’ beliefs about mathematics, especially in light of the additional 

variability that the affective variables explained in the pre-calculus and calculus models.                                         

 One variable from the affect group of questions on the FICSMath survey, that was 

not a significant predictor of future performance in college calculus, was “Math is 

relevant to real life.”  This aligns with the fact that none of the learning task variables 

presented in Table 5.3 under the heading, “connecting math to real world problems” were 

significant pedagogical practices predictive of future performance in college calculus.  It 

is possible that the models presented in Chapter 5 may have captured more variability if 

students perceived mathematics as being connected to real world problems. The 

constructivist perspective is that no one context can offer real world applications that are 

meaningful for all students (Boaler, 1993), however, none of the variables that addressed 

how teachers connect instruction to real world problems were significant predictors of 
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future performance in college calculus.  One factor from previous research, which 

identified how to help prepare students to learn college level STEM content, was to 

increase the relevance of the course content to real world problems (McKenna et al., 

2001).  Single variable college calculus is often the first mathematics course required for 

STEM majors.  The fact that real world problems have been the focus in inquiry methods 

of instruction, yet such pedagogical practices were not predictive of pre-calculus or 

calculus students future performance in college calculus reveal that further research is 

needed concerning: (1) what teachers consider as real world problems; (2) what students 

consider as real world problems; (3) how to write survey questions so students are not 

interpreting “real world problems” as “just hard word problems” and (4) how to 

effectively implement real-world problems in the classroom. 

 The professors and teachers expressed concerns about the broad range of 

standards in secondary mathematics in the phenomenography.  Professors stated that 

secondary mathematics teachers needed to focus on foundational topics in mathematics, 

and some stated that secondary mathematics teachers did not need to teach secondary 

calculus.  The NCTM (2010) stated that the new Common Core State Standards (CCSS) 

provide “fewer and more rigorous standards” with the “goal of increased clarity” that 

“aligns with college and career expectations” (Slide 6, CSSM_HighSchool_120210v.2(1) 

ppt). The new high school CCSS provide a “common core-domain” that focuses on 

“Overarching “big ideas” that connect topics across the grades” (slide 17, CSSM_ 

HighSchool_120210v.2(1) ppt).  The CCSS, like the NCTM standards, stress the 

importance of a balance between concepts and procedures.  These concepts align with the 
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support and procedure components of the 3C/ID Math Models for College Calculus 

Performance.  The procedure component does not stand alone but is supported by the 

schema formation of concepts in the support component.  The paradigm shift in 

mathematics education from the NCTM mathematics standards to the CCSS provides an 

opportunity to study if the change in standards effect secondary preparation for college 

calculus.  The structure of the 3C/ID Math Models for College Calculus Performance 

should be studied further, and the significant variables identified by the two models 

should be studied further because they correlated with secondary pre-calculus and 

calculus students’ increased future performance in college calculus. 
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APPENDICES 
 

A.  Hard copy FICSMath Survey available only 
 
B. Inter-Rater Reliability for Coding of Statements for Phenomenography 

 Directions for Coder Reliability 

 For each response below place a number (1-18, or 19 if you create your own 
 category) AFTER statements within the response indicating the appropriate 
 category for the statement. If you believe the response only addresses one 
 category then place the appropriate number after the entire response. 

Number  Category  Description of Category 
1  Support for 

learning 
mathematics 

Spending time outside of regular class to help students 
learn course content, encouraging students to study in 
groups outside of class. 

2  Assignments 
and 

assessments 

Type of assignments (e.g. from informal to formal 
assignments) and what professors believe teachers should 
expect from students, including AP Calculus content, 
standardized tests, and how assignments are assessed (or 
should be assessed) by teachers. 

3  Calculators  How teachers allow calculators to be used in class, how 
teachers use other technology in class 

4  Classroom 
Environment 

Whole class, small group, and individualized instruction in 
class; student reasoning and communication about 
mathematics in class 

5  Conceptual 
Understanding 

Teaching for the understanding of concepts and 
emphasizing mathematical reasoning during instruction, 
focusing on the process instead of the just the right 
answer. 

6  Real World 
Problems 

Hands on activities, real-world applications, teachers using 
models of motion, area, and volume, discovery learning 

7  Memorization  Rote instruction or using methods to enforce memorization 
of formulas, focus on memorization instead of conceptual 
understanding 

8  Multiple 
Representations 

Demonstrating multiple methods of instruction such as 
teaching analytically, algebraically, and graphically 

9  Problem Solving  Types of problems provided to students, and how problem 
solving is presented to students 

10  Review  What teachers do to help students remember mathematics 
previously covered, or previously learned 

11  Student 
Motivation 

What teachers do to motivate the learning of mathematics 
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12  Textbooks  How textbooks and supplementary materials are used in 
the class 

13  Vocabulary  The correct use of mathematical terms during instruction 
14  Algebra  Statements relative to algebra content, students 

performance with algebra content, or what algebraic 
content should be covered 

15  Calculus  Statements relative to AP or non-AP calculus content, 
students performance with calculus, or AP Calculus exams 
and AP Calculus expectations  

16  Geometry  Statements relative to Geometry content, students 
performance with Geometry, or lack of geometric focus 

17  Pre‐Calculus  Statements relative to pre-calculus content, students 
performance with pre-calculus, or lack of focus on correct 
instruction of content 

18  Proofs  Statements relative to Proofs, students performance with 
proofs, or proofs/logic that teachers need to teach 

19  Other  Please specify 
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