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ABSTRACT 
 
 

This research investigated the potential of growing marketable aquatic garden 

plants that also remediate nursery and greenhouse runoff in a subsurface-flow constructed 

wetland.  The cost of wastewater treatment is offset by the production of revenue-

generating horticultural crops.  Aquatic garden plants that offer the dual benefits of 

nutrient remediation and aesthetic value may also be used in bioretention basins, rain 

gardens, buffer zones, and filter strips.   

Fifteen commercially available aquatic garden plants were grown for 8 weeks in a 

laboratory scale subsurface wetland in a greenhouse and received nitrogen (N) and 

phosphorus (P) from Hoagland’s nutrient solution every two days for eight weeks.  The N 

and P rates (0.39 to 36.81 mg·L-1 of N and 0.07 to 6.77 mg·L-1 P, respectively), 

encompassed low to high rates of nutrients found at various points between the discharge 

and inflow points of other constructed wetland systems currently in use at commercial 

nurseries.  Plant biomass, nutrient recovery, and tissue nutrient concentration and content 

were measured.  Among rhizomatous plants, highest N recovery rate were found in 

Louisiana Iris hybrid ‘Full Eclipse’, Canna ‘Bengal Tiger’, Canna ‘Yellow King 

Humbert’, Colocasia esculenta (L.) Schott 'Illustris', Peltandra virginica (L.) Schott, and 

Pontederia cordata L. ‘Singapore Pink.’ The P recovery rates were similar for the 

cannas, Louisiana Iris ‘Full Eclipse,’ Peltandra virginica, and Pontederia cordata 

‘Singapore Pink.’  Among the fibrous-rooted aquatic garden plants, highest N and P 

recovery rates were exhibited by Thalia geniculata f. rheumoides Shuey and Oenenathe 

javanica (Blume) DC.  ‘Flamingo.’  Floating plants with the highest N recovery rates 
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were exhibited by water hyacinth (Eichhornia crassipes [Mart.] Solms.) and water lettuce 

(Pistia stratiotes L.).  Phosphorus recovery rates were similar for water hyacinth, water 

lettuce, and dwarf redstemmed parrotfeather (Myriophyllum aquaticum [Vell.] Verdc.). 

To determine the effect of N:P ratio on P recovery, Typha latifolia and Canna 

‘Bengal Tiger’ were grown in a greenhouse-based laboratory-scale subsurface 

constructed wetland system with a 4-day hydraulic retention time for 8 weeks.  Plants 

were supplied with the following N:P ratios:  6:1, 3:1, 1:1, 1:3 and 1:6.  Mean total P 

concentrations ranged from 6.9 mg·L-1 (6:1) to 252.2 mg·L-1 P (1:6); nitrate-nitrogen 

(NO3-N) was maintained at a constant mean level of 42.4 mg·L-1.  Measured endpoints at 

20, 40, and 60 d included height, biomass, nutrient recovery/allocation, and nutrient use 

efficiency.  Canna and Typha whole plant N:P concentration was linearly correlated with 

N:P ratio of treatments.  For the 1:3 and 1:6 treatments, Canna assimilated 40.7 and 

30.6% of supplied P compared to 9.7 and 6.2% for Typha.  Although both species 

exhibited luxury consumption of P, Typha latifolia was nitrogen-limited at the 1:1, 1:3, 

and 1:6 N:P ratios. The high P shoot and root concentrations of Canna in the 42N:252P 

treatment--19.8 and 11.6 mg·g-1, respectively, were significantly higher than the 3.0 and 

4.4 mg·g-1 cattail shoot and root P, respectively.  These high shoot and root P 

concentrations for Canna ‘Bengal Tiger’ have not been previously reported. 

In summary, results of this research showed the differential uptake of N and P by 

commercially available aquatic garden plants and the ability of some species to recover N 

and P at levels comparable to traditional constructed wetland plants.  Also, the N:P ratio 

of wastewater influent affects P assimilation and appears to be species-specific in nature. 
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CHAPTER I 
 

LITERATURE REVIEW 
 
 

Introduction 
 

 Traditional production of containerized nursery and greenhouse crops in soilless 

media involves inputs of fertilizers, growth regulators, insecticides, and fungicides.  

Nursery producers in the southeastern U.S. use inert, porous materials such as pine bark 

and sand or peat- and pine bark (Yeager et al., 2005).  Mixtures of sphagnum peat, 

polystyrene, vermiculite or perlite is used in the production of floriculture crops (Nelson, 

2002).  The limited cation exchange capacity and anion retention quality of soilless 

substrates may result in excessive leaching of nutrients and pesticides when production is 

not managed appropriately (Handreck and Black, 1999; Schoene et al., 2006).  These 

potential contaminants may move offsite in runoff via irrigation or precipitation events 

and pollute ground and surface water.  Nitrate-nitrogen (NO3-N) and soluble reactive 

phosphate (H2PO4
-, HPO4

2-, and PO4
3-) runoff from nursery and greenhouse operations 

may lead to excessive algal and aquatic plant growth in surface waters, resulting in 

accelerated eutrophication.  Nitrate can move freely through soil and drains easily into 

streams and lakes, whereas NH4
+ is more readily adsorbed by clay particles or organic 

matter in the soil (Horne and Goldman, 1994). 

 In a general assessment conducted by the U. S. Environmental Protection Agency 

(U. S. EPA), 44% of river and stream miles, 64% of lake, pond and reservoir acres, and 

30% of bay and estuarine waters were reported to be impaired, primarily from 

eutrophication (U. S. EPA, 2004).  Generally, freshwater systems are P-limited and more 
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prone to P inputs, while N often limits primary production in estuarine and marine 

environments (Carpenter et al., 1998).  Also, high levels of nitrates in drinking water can 

cause methemoglobinemia in infants (“Blue Baby Syndrome”) and gastrointestinal 

cancer in adults (McDonald and Kay, 1988).   

 The presence of nutrients from nonpoint sources and their impact in aquatic 

systems has resulted in increasing interest and scrutiny from the public, environmental 

groups, governmental agencies, and elected officials (Reinhardt et al. 2006).  

Specifically, P has been identified as the most critical nutrient impacting freshwater 

eutrophication, and agriculture identified as a major contributor (U. S. EPA, 1996; 

Sharpley et al., 1999).  From an economic perspective, cultural eutrophication of U. S. 

freshwaters results in potential annual losses of $2.2 billion (Dodds et al., 2009).  The 

authors concede that this value may be an underestimate of actual losses to recreational 

water usage, waterfront property, recovery costs of threatened and endangered species, 

and drinking water.   

 Since the enactment of the Clean Water Act (1972), the U. S. EPA has enforced 

provisions related to point-source pollution.  In 1999, EPA began enforcing the nonpoint 

source pollution controls specified in section 303(d) of the Clean Water Act, which 

mandates that all states implement a Total Maximum Daily Load (TMDL) program for 

all watersheds and bodies of water (U.S. EPA, 2000a).  A TMDL as defined in Section 

303(d)(1)(C) of the Clean Water Act is the maximum amount of pollutant that a 

waterbody can receive from point and nonpoint sources and still maintain its designated 

use and value (e.g., drinking water, fish and wildlife habitat, recreation, etc.).  Recently 
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TMDLs of nutrients in agricultural runoff were adopted by environmental regulatory 

agencies in every state (Yeager, 2006).  Nutrient-loading criteria for natural waters will 

eventually be established in every state.  This follows a trend where state governments 

have been passing more stringent laws and regulations assessing and regulating nonpoint 

sources of pollutants beyond the scope of the provisions of the Clean Water Act.  

Furthermore, several states, including Maryland, Delaware, and California, have enacted 

nutrient management laws to control the quantity of fertilizer applied and to monitor the 

concentration of nutrients detected in nursery runoff (Beeson, et al., 2004).  Maryland’s 

Water Quality Improvement Act made it the first state to require N and P management 

plans for almost all sectors of agriculture (Lea-Cox and Ross, 2001) leading to voluntary 

or mandatory adoption of nutrient management plans by agricultural producers in other 

U. S. states. 

 The maximum contaminant level (MCL) for NO3
-
 in drinking water is 10 mg·L-1 

(National Academy of Sciences, 1977).  No federal limits on P contamination in 

freshwater have been established due to variations in size, hydrology, and depth of rivers 

and lakes, and regional differences in P impacts.  However, U. S. EPA recommends that 

total P not exceed 0.05 mg·L-1 in any streams discharging into lakes or reservoirs and 

0.10 mg·L-1 in streams or other flowing waters that do not (U. S. EPA, 1986).  Daniel et 

al. (1998) and Heathwaite and Dils (2000) suggest that the critical P concentration that 

promotes eutrophication is even lower—from 0.01 to 0.02 mg·L-1.  Smil (2000) contends 

that the nutrient supply (loading rate) rather than P or N concentration in water may be 

the key anthropogenic factor in the cultural eutrophication process. 
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 In greenhouse production fertigation runoff can contain 100 mg·L-1 NO3-N (Wood 

et al., 1999).  In nursery crop production, nursery runoff NO3-N concentrations range 

from 0.1 to 135 mg·L-1 (Alexander, 1993; Taylor et al., 2006; Yeager et al., 1993) and P 

levels from 0.01 to 20 mg·L-1 P (Alexander, 1993; Headley et al., 2001; James, 1995; 

Taylor et al., 2006).  These cited N and P runoff ranges could be higher or lower in other 

nursery and greenhouse crop production systems.  In a recent study of runoff from 11 

production nurseries in southern California, Mangiafioco et al. (2008) detected median 

NO3-N concentrations of 40.3 and 15.6 mg·L-1 and median orthophosphate (PO4-P) 

concentrations of 2.96 and 1.18 mg·L-1 from irrigation and precipitation events, 

respectively.  Runoff nutrient concentrations vary in these studies due to differences in 

fertilizers, application rates and methods of fertilization, crops grown, greenhouse 

temperatures, available sunlight, and evaporation rates; nevertheless, these findings 

accentuate the need to manage and ameliorate discharge to comply with federal and state 

regulations.   

 Best Management Practices (BMPs) for containerized plant production (Yeager et 

al., 2005) have been used by U. S. growers to maximize production efficiency with 

minimal impact to the environment.  BMPs stress optimal fertilization rates with 

controlled-release fertilizers (CRFs), reduced irrigation volume, and cyclic irrigation 

events.  Paradoxically, the BMPs for container substrate electric conductivity levels with 

CRFs recommend concentrations of 15 to 25 mg·L-1 for NO3-N and 5 to 10 mg·L-1 P 

(Yeager et al., 2005).  These pour-through and suction lysimeter levels of container 

leachate exceed EPA-mandated MCLs for NO3-N and P.  To reduce N and P in effluent, 
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researchers have adopted a holistic approach that includes optimizing fertility rates and 

uptake efficiency, reducing irrigation water volume and timing watering applications to 

minimize leachate, amending soilless substrates to retain water and nutrients, reclaiming 

and recycling irrigation runoff in detention basins, and using constructed wetlands to 

mitigate runoff, which is the focus of this dissertation. 

 
Constructed Wetlands for Nutrient Remediation 

 
 Constructed wetlands (CWs) are engineered systems designed and constructed to 

treat wastewater with vegetation, soils, and associated microbial populations involving 

the same biological and physicochemical processes that occur in natural wetlands 

(Vymazal, 2005; Scholz, 2006).   Constructed wetlands have been used for decades 

mostly for the treatment of domestic or municipal sewage, which largely focused on 

reducing nutrients, suspended solids, heavy metals, and pathogens (Brown and Reed, 

1994; Campbell and Ogden, 1999).  Few CWS for wastewater treatment were operating 

in the U. S. before 1986 (Brown and Reed, 1994).  Success in municipal and industrial 

point source discharges led to the widespread use of CWs to treat many other types of 

wastewater including industrial and agricultural wastewaters, landfill leachate, and 

stormwater runoff (Vymazal, 2005).  Constructed wetlands are effective in treating total 

suspended solids, nitrogen, and phosphorus, as well as for reducing metals, organics, and 

pathogens (e.g., Scholz and Lee, 2005; Mungasavalli and Viraraghavan, 2006; Vymazal, 

2007; Kadlec and Wallace, 2009). 

 CWs are promoted as an inexpensive, low-cost technology to comply with 

increasingly stringent environmental regulations regarding the discharge of nonpoint 
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source pollutants in greenhouse and nursery production (Arnold et al., 1999; Berghage et 

al., 1999; Fernandez et al., 1999).  This dissertation deals with the use of constructed 

wetlands for nutrient attenuation purposes. 

 Two types of constructed wetland systems exist:  surface flow or free water 

surface (SF), and subsurface flow (SSF), which may be either horizontal or vertical flow 

CW systems (Kadlec et al., 2000).  The types of macrophytes and water flow regimes 

differentiate these two CW systems.  Free-floating, emergent, and submerged plants have 

been widely researched and used in CWs.  Less performance data is available on CWs 

comprised of floating leaved and submerged plants.  For the purposes of this dissertation, 

SSF CW wetlands are only being considered. 

 Surface-flow (SF) and SSF CWs are two commonly used wetland designs to treat 

agricultural wastewater (Berghage et al., 1999; Scholz and Lee, 2005; Taylor et al., 

2006).  A SF CW resembles a shallow (0.2-0.8 m) freshwater marsh and generally 

requires a large land area for wastewater treatment (Kadlec and Wallace, 2009) (Figure 

1.1).  To remediate nursery and greenhouse wastewater, surface area can be reduced with 

 

Figure 1.1.  Basic construction of a free water surface wetland (adopted from Kadlec and 
Wallace, 2009). 
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a concomitant increase in depth (~1.25-1.5 m), which promotes anaerobic conditions that 

facilitate denitrification.  The large land area required by typical SF constructed wetlands 

and the concomitant loss of production area has made them less attractive for greenhouse 

and nursery water treatment than SSF CWs ( Berghage et al., 1999). 

 Alternatively, greenhouse and nursery operations constrained by limited 

production space and expensive land can use a SSF CW, which consists of a lined or 

impermeable basin filled with a 0.6 m deep coarse medium having high hydraulic 

conductivity, typically gravel, and wetland plants (Hunter et al., 2001; Kadlec and 

Wallace, 2009) (Figure 1.2).  Wastewater flows horizontally or vertically below the 

  

Figure 1.2.  Basic construction of a horizontal subsurface flow constructed wetland 
(Adopted from Kadlec, 2007.) 

 

surface of the media to prevent exposure to humans or wildlife.  Subsurface flow CWs 

can be operated in continuous-flow or batch-load treatment modes with varying hydraulic 

residence times (Burgoon et al., 1995).  Pretreated wastewater flows by gravity, 

horizontally or vertically, through the bed substrate where it contacts a mixture of 

facultative microbes living in association with the substrate and plant roots.  The majority 
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of the saturated bed is anaerobic under most wastewater design loadings (Kadlec, 2009).  

In addition to agricultural effluent, horizontal flow SSF CWs are commonly used to treat 

other wastewater, such as municipal sewage, wastewaters from food processing, abattoir, 

pulp and paper production, textile industry, agriculture or landfill leachate (Vymazal et 

al., 1998; Vymazal and Kropfelova, 2008; Kadlec and Wallace, 2009). 

 Subsurface flow CWs are better for winter treatment compared to SF wetlands 

(Werker et al., 2002; Kadlec, 2009) and emit less total ammoniacal nitrogen (NH3-N + 

NH4
+-N) to the atmosphere; volatilization appears to play a more prominent role in the N 

budget of SF than SSF CWs (VanderZaag et al., 2008).  However, the gravel substrate of 

SSF CWs is costly and has a finite treatment longevity because substrate clogging may 

occur after several years of operation (Moshiri, 1993; Kadlec and Wallace, 2009). 

 
Transformation and Removal/Retention Mechanisms of Nitrogen  

and Phosphorus In Constructed Wetlands 
 
Nitrogen 
 
 The transformation, retention, and removal of nitrogen (N) involves a complex set 

of processes and mechanisms that involve ammonification, nitrification–denitrification, 

adsorption, mineralization of organic nitrogen, ion exchange, fixation, biological uptake 

and assimilation, and volatilization (Scholz, 2006; Vymazal, 2007; Kadlec and Wallace, 

2009) (Table 1.1 and Figure 1.2).  The transformation processes, ammonification and 

nitrification, convert N to other forms and may lead to increases in the quantity of N in 

the system.  Decomposition and mineralization processes in the wetlands are believed to 

convert a significant part of organic N, which is associated with particulate matter such as 
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organic wastewater solids and/or algae, to ammonia (Mayo and Mutamba, 2005).  

Nitrogen removal processes include ammonia volatilization, denitrification, plant uptake, 

ammonia adsorption, ANAMMOX and organic nitrogen burial. 

 
Table 1.1.  Major nitrogen transformation, retention, and removal processes in 
constructed wetlands. (Adopted from Vymazal, 2007.) 
 
Ammonification 
(mineralization) 

organic-N → ammonia-N SF and SSF 

Nitrification ammonia-N → nitrite-N → nitrate-N SF and SSF 
Nitrate-ammonification nitrate-N → ammonia-N Horizontal SSF 
Denitrification nitrate-N → nitrite-N → gaseous N2, N2O SF and SSF 
N2 Fixation gaseous N2 → ammonia-N (organic-N)  Mainly SF 
Ammonia adsorption  SSF 
Plant/microbial uptake  
(assimilation)  

ammonia-, nitrite-, nitrate-N → organic-N SF and SSF 

Volatilization ammonia-N (aq) → ammonia-N (g) SF and SSF 
Organic nitrogen burial  SF 
ANAMMOX (anaerobic 
ammonium oxidation) 

ammonia-N → gaseous N2 SF and SSF 

 

Figure 1.3. Nitrogen transformation and removal processes in a wetland.  (Adopted from 
Mayo and Mutamba, 2005.)  
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 Biological nitrification and denitrification are usually the most significant 

nitrogen removal mechanisms in SF and SSF CWs (Gersberg et al., 1984; Kadlec et al., 

2005) and the dominant pathway of N removal from a wetland (Kadlec and Wallace, 

2009).  Other mechanisms such as plant uptake, substrate adsorption and ammonia 

volatilization are generally of less importance (Green, 1997; Kadlec and Wallace, 2009).  

Nitrification is a two-step acidifying that yields process that yields NO3 with nitrite (NO2) 

and protons as intermediary products.  These chemical processes (Eq.[1], Eq.[2]) 

progress only when nitrifying bacteria (Nitrosomonas, Nitrosoccus Nitrobacter, 

Nitrospira, and Nitrosovibrio) are present to biologically oxidize NH4
+ (Kadlec et al., 

2000; Faulkner, 2004): 

2NH4
+ + 3O2 → 2NO2

- + 2H2O + 4H+   (1) 
            Nitrosomonas 

 

2NO2
- + O2 →  2NO3

-         (2) 
                                    Nitrobacter 
 

Nitrification is influenced by temperature, alkalinity and pH of the water, inorganic C 

source, moisture, microbial population, and concentrations of ammonium-N and 

dissolved oxygen (Vymazal, 2005).  This process is generally more efficient in SF than 

SSF CWs (U.S. EPA, 2000b).  Dissolved oxygen concentrations above 1.5 mg·L-1 are 

essential for nitrification to occur (Ye and Li, 2009). 

 Denitrification requires a carbon source, such as methanol or another equivalent 

carbon source and an anaerobic environment for denitrification to occur (Kadlec and 

Wallace, 2009).  The denitrification process involves the transfer of electrons to nitrate 
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which results in the production of nitrogen gas (N2), nitrous oxide (N2O), or nitric oxide 

(NO): 

 
NO3

- + 1.08CH3OH + 0.24H2CO3 → 0.056C5H7NO2 + 0.47N2 + 1.68H2O + HCO3
- 

 
 

The process is mediated by facultative bacteria that use nitrate as a final electron 

acceptor.   

 The N-removal efficiencies vary according to the type of CW (Table 1.2).  

Surface flow and horizontal flow SSF CWs provide anaerobic conditions that are more 

conducive to NO3-N removal than vertical flow SSF CWs (Table 1.3).  Alternatively, the 

highly oxygenated environment of vertical flow SSF CWs remove more NH3-N than SF 

or horizontal flow SSF CWs.  Thus, removal of both ammonium-N (NH3-N) and NO3-N 

species may best be accomplished in hybrid CW designs that provide anaerobic and 

aerobic conditions as exemplified by hybrid systems (e.g., Vymazal, 2005, 2007; Ye and 

Li, 2009) rather than single-stage CWs. 

 
Biotic Assimilation of N 
 
 Ammonium and NO3-N are the two forms of N assimilated by vegetation.  

However, biological assimilation includes microorganisms and algae.  Plant species differ 

in their preferred forms of N; most plants, however, are capable of absorbing any form of 

soluble nitrogen, especially if acclimated to its presence (Atkin, 1996).  The ammonium-

nitrogen form is common in wetland habitats, especially where nitrification is restricted 

(Kadlec et al., 2000; Mitsch and Gosselink, 2007).  
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Table 1.2. Removal of total nitrogen (TN) in various types of constructed wetlands (mean 
values; adopted from Vymazal, 2007.)  
 

CW Type Unit TN in TN out Efficiency N 
FFPz mg·L-1 14.6 6.6 54.8 14 
FWSy mg·L-1 14.3 8.4 41.2 85 
HSSFx mg·L-1 46.6 26.9 42.3 137 
VSSFw mg·L-1 68.4 37.9 44.6 51 

 
Loadings  Removed load 

FFP g·m-2·yr-1 838 431 407 14 

FWS g·m-2·yr-1 466 219 247 85 
HSSF g·m-2·yr-1 644 394 250 113 
VSSF g·m-2·yr-1 1222 592 630 42 

 
zFFP = free-floating plants (results from SE U.S., FWSz = free water surface systems 
(results from Australia, Canada, China, New Zealand, Poland, Sweden, The Netherlands, 
U.S.) 
xHSSF = horizontal sub-surface flow (Australia, Austria, Brazil, Canada, Czech 
Republic, Denmark, Germany, India, Mexico, New Zealand, Poland, Slovenia, Sweden, 
UK, U.S.) 
wVSSF = vertical sub-surface flow (Australia, Austria, China, Denmark, France, 
Germany, Ireland, Poland, Norway, The Netherlands, Turkey, UK).  
 
Table 1.3.  Removal of ammonia-N and nitrate-N in various types of constructed 
wetlands (mean values; adopted from Vymazal, 2007.)  
 

CW Type Inflow Outflow Efficiency (%) N 
 Concentration (mg·L-1)    

FWS NH4-N 12.9 5.8 55.1 64 
 NO3-N 5.6 2.2 60.7 57 
HF NH4-N 38.9 20.1 48.3 151 
 NO3-N 4.4 2.9 38.5 79 
VF NH4-N 55.0 8.7 84.2 80 
 NO3-N 0.7 24.4 NRz 62 
Loading (g N m-2·yr-1)    
FWS NH4-N 137 71 66 72 
 NO3-N 34 18 16 47 
HF NH4-N 388 255 133 90 
 NO3-N 98 67 31 66 
VF NH4-N 780 129 651 65 
 NO3-N 19.6 376 NR 46 
zNR = not reported. 
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 The potential rate of nutrient uptake by plant is limited by its net productivity 

(growth rate) and the concentration of nutrients in the plant tissue.  Nutrient storage or 

standing stock is similarly dependent on plant tissue nutrient concentrations, and also on 

the ultimate potential for biomass accumulation: that is, the maximum standing crop. 

Therefore, desirable traits of a plant used for nutrient assimilation and storage would 

include rapid growth, high tissue nutrient content, and the capability to attain a high 

standing crop (Reddy and DeBusk, 1987). 

 In the literature there are many reviews on nitrogen concentrations in plant tissue 

as well as nitrogen standing stocks for plants found in natural stands and constructed 

wetlands (e.g., Reddy and DeBusk, 1987; Vymazal, 1995; Vymazal et al., 1999; Mitsch 

and Gosselink, 2007).  Reddy and DeBusk (1987) reported the nitrogen standing stock 

for emergent species in the range of 14 to 156 g N·m-2, but the authors indicated that 

more than half of this amount could be stored belowground.  Aboveground N standing 

stock values were reported in the range of 0.6 to 72 g N·m-2 (Johnston, 1991), 22 to 88 g 

N·m-2 (Vymazal, 1995), 2 to 64 g N·m-2 (Vymazal et al., 1999) or 2 to 29 g N·m-2 (Mitsch 

and Gosselink, 2007).  Nitrogen standing stock may amount up to 250 g N·m-2 for water 

hyacinth (Eichhornia crassipes); multiple harvesting may yield N removal rates of 600 g 

N·m-2·yr-1 (Vymazal, 1995, 2001).  Kadlec et al. (2005) reported that between 6 and 48% 

of nitrogen is retained by macrophytes planted in gravel-bed SSF CWs. 

 Various removal rates of total nitrogen by vegetation also exist in the literature.  

Brix (1994) reported N-uptake capacity of 200–2500 kg N·ka·yr-1 of harvested emergent 

macrophytes, whereas the capacity of harvested submerged macrophytes is lower (<700 
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kg N·ka·yr-1).  Vymazal (2007) reported total N removal rates by vegetation between 40 

and 55% with removed load ranging between 250 and 630 g N·m−2·yr-1 depending on 

CWs type and inflow loading for various types of CWs. 

 
Phosphorus Transformations, Retention, and Removal 
 
 Phosphorus in runoff is transported in either inorganic or organic forms and 

complexes that are soluble or insoluble (Table 1.4).  The principal inorganic form of P is 

orthophosphate or soluble reactive phosphorus, the biologically available form of P.  

Orthophosphates are derived from inorganic fertilizer or released via decomposition of 

organic matter (e.g., vegetation and manures) and can be exported in dissolved, 

bioavailable forms—soluble reactive phosphorus.  This labile dissolved P is removed via 

biological uptake (bacteria, phytoplankton, periphyton, and macrophytes) (Wetzel, 1990; 

Brix, 1997; Tanner, 1996), retained by amorphous and crystalline Fe or Al oxides, or by 

Ca (Khalid et al., 1978; Richardson, 1985), adsorbed to chemical compounds (iron, 

aluminum and calcium) in soils and sediments, and may be precipitated and/or co-

precipitated in the water column (DeBusk et al., 2005).  Free orthophosphate is the only 

form of P believed to be used directly by algae and macrophytes, which represents a 

major link between organic and inorganic phosphorus cycling in wetlands.  

 Dissolved organic compounds must first be converted into more labile forms 

before assimilation by aquatic biota (Newman and Robinson, 1999).  Some P is readily 

released from dissolved organic compounds following exposure to UV radiation or to 

enzymes (Wetzel et al., 1995).  In wetlands that successfully treat P to extremely low 

concentrations, recalcitrant dissolved organic P and particulate P compounds often 
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comprise the bulk of the outflow P (Dierberg et al., 2002). 

 In natural waters orthophosphate occurs in ionic equilibrium as  

H3PO4 → H2PO-1
4  + H+  (pK = 2.2); H2PO4 → HPO-2

4 + H+ (pK = 7.2); and   
HPO4 → PO-3

4 + H+ (pK = 12.3) 
 

 These forms are distributed in water at 25 oC as shown in Figure 1.4.  Solubility 

of P in aquatic systems is regulated by temperature (Holdren and Armstrong, 1980), pH 

(Mayer and Kramer, 1986), redox potential (Moore and Reddy, 1994), interstitial soluble 

P level (Kamp-Nielson, 1974), and microbial activity (Gachter et al., 1998; Gachter and 

Meyer, 1993). 

 Dissolved P contained in inorganic fertilizer and released via decomposition of 

organic matter such as vegetation and manures, can be exported in dissolved, bioavailable 

forms—soluble reactive phosphorus.  Dissolved P forms that enter a CW range from  

quite labile to extremely recalcitrant.  Another group of inorganic phosphorus compounds 

are polyphosphates linearly condensed and cyclic.  Dissolved organic P and insoluble 

forms of organic and inorganic P are generally not biologically available until they are 

transformed into soluble inorganic forms.  Organic P forms can be generally grouped into 

1) easily decomposable P (nucleic acids, phospholipids or sugar phosphates) and 2) 

slowly decomposable organic P (inositol phosphates or phytin) (Dunne and Reddy, 

2005). 

 Phosphorus transformations, retention, and removal during wastewater treatment 

in CWs include the following processes:  adsorption/desorption, precipitation/dissolution, 

plant and microbial uptake, fragmentation, leaching, mineralization, sedimentation 

(peat/soil accretion or deposition), and burial.  Their pathways and various permanent and 
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Figure 1.4.  Distribution of phosphorus species expressed as a function of aqueous 
solution pH (adopted from Havlin et al., 2005) 
 

 
 

temporary sources and sinks are illustrated in Figure 1.5.  The major P removal processes 

are adsorption, precipitation, plant uptake (with subsequent harvest) and peat/soil 

accretion of new sediments and soils (Kadlec and Wallace, 2009).  Horizontal-flow SSF 

systems have higher potential as the substrate is constantly flooded and there is not much 

fluctuation in redox potential in the bed.  Vertical-flow SSF CWs may not be as effective 

because oxygenation of the bed caused by intermittent additions of wastewater may cause 

desorption and subsequent release of P.  However, inert materials are commonly used in 

SSF CWS, such as washed gravel or crushed rock, and usually provide very low capacity 

for sorption and precipitation. 

 Precipitation involves the reaction of phosphate ions with metallic cations such as 

Fe, Al, Ca or Mg to form amorphous or poorly crystalline solids.  These reactions 

typically occur at high concentrations of either phosphate or metalloid cations (Rhue and 
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Figure 1.5.  Phosphorus biogeochemical cycle. (Adopted from Mitsch and Gosselink, 
1986; Havlin et al, 2005; Kadlec and Wallace, 2009.) 
 

 

Harris, 1999).  Some important mineral precipitates in the wetland environment are in 

Table 1.4.  In addition to direct chemical reaction, phosphorus can co-precipitate with 

other minerals, such as ferric oxyhydroxide and the carbonate minerals, such as calcium 

carbonate.  The availability of Al, Fe, and Ca ions induces the precipitation of P into 

insoluble compounds depending on the pH and redox potential.  At pH less than 5 the Al 

and Fe hydrous oxdides adsorb P.  At pH greater than 7 Ca is the dominant adsorber.  

Low redox potential promotes solubilization of P (Sloey et al, 1978), which also 

transforms Al and Fe into amorphous forms that have a higher P sorption capacity 

(Patrick and Khalid, 1974).  

Adsorption, precipitation, and biotic assimilation are saturable processes and 
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Table 1.4.  Major types of soluble and insoluble phosphorus in the wetland environment 
(adopted from Reddy and D'Angelo, 1994; Devai et al., 1988; Devai and Delaune, 1995; 
Mitsch and Gosselink, 2007; Kadlec and Wallace, 2009). 
 

Phosphorus Soluble Forms 
Insoluble Forms and 

Complexes 
orthophosphates (H2PO4

-, HPO4
-2, PO4

-3) clay-phosphate complexes  
condensed phosphates: (pyro-,meta-, and 
poly- phosphates) 

 

soluble reactive phosphorus: mainly  
PO4-P with some condensed phosphates 

 

ferric phosphate (FeHPO4
+)  metal hydroxidephosphate 

apatite (Ca5(Cl,F)(PO4)3; 
hydroxylapatite  
(Ca5(OH)(PO4)3; 
variscite Al(PO4)·2H2O; 
strengite  Fe(PO4)·2H2O; 

calcium phosphate 

vivianite Fe3(PO4)2·8H2O; 
and wavellite 
Al3(OH3)(PO4)2·5H2O  

Inorganic 

phosphine (PH3), gaseous water-soluble 
form of P 

 

Organic dissolved organics, e.g., sugar phosphates, 
inositol, phosphates, phospholipids, and 
phosphoproteins 

insoluble organic P bound in 
organic matter 

 
 

therefore cannot contribute to long-term sustainable removal (Dunne and Reddy, 2005; 

Vymazal, 2007).  Sedimentation is an important mechanism for removal of particulate 

inorganic and organic P and is considered to be the major long-term P storage in SF CWs 

where water overlies the sediment (Howard-Williams, 1985; Reddy et al., 1999; White et 

al., 2000).  SSF CWs that use filtration substrate/particulate media and allow for contact 

between wastewater and filtration substrate can be designed to possess a large potential 

for P removal via adsorption and precipitation.  Iron- and aluminum-rich materials, 

limestone media, and specially prepared clays have all been employed to enhance this 
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removal mechanism (Geohring et al., 1995; Jenssen and Krogstad, 2003; Vohla et al., 

2007; Kadam et al., 2009). 

 
Biotic Assimilation of Phosphorus  
 
 Both biotic and abiotic processes regulate phosphorus removal by wetlands.  

Biotic processes include uptake by vegetation and microorganisms, as well as 

mineralization of plant litter and soil organic phosphorus.  Microbial uptake is considered 

in all treatment systems only as temporary storage of phosphorus with very short turnover 

rate.  Phosphorus which is taken up by microbiota is released back to the water after the 

decay of the organisms. 

 The concentration of P in plant tissue varies among species and sites and during 

the season.  Reddy and DeBusk (1987) reported P standing stock, i.e., the amount of 

phosphorus stored in aboveground biomass, for emergent species in the range of 1.4 to 

37.5 g P·m-2 with more than 50% of this amount stored belowground.  Aboveground P 

standing stock values were reported in the range of 0.1–6.8 g P·m-2 (Johnston, 1991), 0.1–

11 g P m- 2 (Vymazal, 1995), 0.01–19 g P·m-2·yr-1 (Vymazal et al., 1999) or 3–15 g P·m-2 

(Brix and Schierup, 1990).  Phosphorus standing stock may amount up to 45 g P·m-2·yr-1 

for Eichhornia crassipes.  Due to its high productivity, the annual amount of P taken up 

by E. crassipes could be as high as 126 g P·m-2yr-1 (Vymazal, 1995). 

 Annual P uptake rates by various macrophytes range between 0.77 and 40 g  

P·m-2·yr-1 for emergent species and between 10.5 and 126 g P·m-2·yr-1 for floating species 

(Vymazal, 2007).  Phosphorus storage in aboveground biomass of emergent macrophytes 

is usually short-term, with a large amount of P being released as plant material senesces 
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and decomposes (Gaudet, 1977; Wetzel, 1990; Keuhn and Suberkropp, 1998; Keuhn et 

al., 1999).  The rapid initial release of nutrients by leaching has been demonstrated in 

many wetland plants—up to 30% of nutrients are lost by leaching alone during the first 

few days of decomposition (Vymazal, 2007).  However, dead roots decompose 

underground, therefore adding refractory compounds to sub-surface soils and leachates to 

the porewater in the root zone.  Thus, the aboveground portions of macrophyte returns P 

to the water, while belowground portions decompose and add refractory P compounds to 

the soil returns P to the soil (Reddy et al., 1999).  Removal of total phosphorus varied 

between 40 and 60% in all types of constructed wetlands with removed load ranging 

between 45 and 75 g P·m-2·yr-1 depending on CWs type and inflow loading (Vymazal, 

2007). 

Effect of N:P Ratios on N and P Assimilation 
 
 Nitrogen is the critical limiting element for growth of most plants (Smil, 1999; 

Socolow, 1999; Graham and Vance, 2000).  Phosphorus is second only to N as the most 

limiting element for plant growth due to its unavailability (Bieleski, 1973; Vance et al., 

2000).  Both N and P are involved in plant metabolism and growth, and there are 

numerous points of interaction between N- and P-dependent processes.  According to the 

Sprengel-Liebig Law of the Minimum (Epstein and Bloom, 2005), the most limiting 

nutrient controls plant growth.  Therefore, if plants are deprived of an optimal P supply, 

then growth could be altered significantly.  This has been demonstrated in experiments 

where plants assimilate nitrogen as NO3- (Sutcliffe, 1962; Rufty et al., 1990).  

Alternatively, adding the limiting nutrient will increase nutrient uptake and growth. 



21 

 This differential influence of N availability on uptake of other nutrients is 

reflected in the ratios of N to these other nutrients.  By definition, N-ratios are a direct 

function of N uptake and an inverse function of the uptake of the other nutrient in the 

ratio (Gusewell, 2004b).  The term “nutrient stoichiometry” is used to describe the 

nutrient ratios in plants (Mendez and Karlsson, 2005).  Nutrient ratios long have been 

used to predict nutrient limitations.  The Redfield ratio has been used as a measurement 

of nutrient limitations in natural waters (Redfield, 1958; Ketchum, 1969).  It is based on 

the traditional view that phytoplankton and zooplankton need a relatively fixed atomic 

ratio of carbon to nitrogen to P of 106 to 16 to 1 (106 C: 16 N: 1 P).  Removing C as a 

limiting nutrient, several primarily laboratory-based studies indicated that the average 

N:P ratio changes significantly relative to the conditions of the aquatic environment (Rast 

and Thornton, 1997; and references therein).  The atomic ratios of N and P were changed 

to concentration ratios by Rast and Lee (1978) to allow for better measuring of N and P 

contents of waterbodies, yielding a 7.2 N:1 P ratio.  Even though internal N:P ratios in 

algae differ from species to species (similar to plant species; Marschner, 1995) the 

Redfield ratio can be a useful tool for identifying limiting nutrient situations, if 

concentrations of the nutrients are static for at least a few days and light limitations are at 

a minimum (Hecky and Kilham, 1988). 

 In wetland ecology Koerselman and Meuleman (1996) proposed that critical foliar 

N:P values (i.e., threshold values) could be used to predict species and community-level 

N and/or P limitations.  This proposal was based on 40 separate N and P nutrient addition 

experiments in European wetlands (bogs, fens, wet heathlands, dune slacks, and wet 
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grasslands).  Their analysis demonstrated that N:P <14 was indicative of N limitation, 

N:P > 16 was indicative of P limitation, and N:P between 14 and 16 was indicative of N-

P co-limitation.  Although these critical N:P values were determined at the community 

level, the authors proposed that critical N:P values do not differ between individual plant 

species, citing that 11 of 40 studies were near monocultures.  However, the universality 

of this ratio was disputed by Drenovsky and Richards (2004) who found species-specific 

critical N:P values for North American desert shrubs Chrysothamnus nauseosus ssp. 

consimilis and Sarcobatus vermiculatus, and that the N:P tool does not effectively predict 

desert shrub nutrient limitations. 

 In terrestrial ecology literature vegetation N:P ratios < 10 are indicative of N-

limited environments (Gusewell, 2004b) and in certain agronomic crops N:P ratios < 5 

are indicative of N-limted growing conditions (Duivenbooden et al., 1996).  There is 

agreement that low N:P ratios indicate N limitation, but there is no consistent 

interpretation of high N:P ratios (Gusewell, 2004b).  An important limitation of N:P 

ratios as predictors of nutrient limitation is they can only be applied to plants that are not 

limited by factors other than N or P (Koerselman and Meuleman (1996), which may be a 

problem in situations involving wastewater. 

 N:P ratio has been suggested as a tool for analyzing nutrient limitations and 

determining fertilizer requirements in agriculture and forestry (Gusewell, 2004a, 2004b; 

Koerselman and Meuleman, 1996; Tessier and Raynal, 2003).  The Diagnosis and 

Recommendation Integrated System (DRIS) goes much further than the single nutrient 

ratio approach, in that it employs a minimum of three nutrient ratios per diagnosis, and 
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often as many as six or seven (Walworth and Sumner, 1987).  DRIS was developed by 

Beaufils (1957, 1971) and has been shown to be capable of diagnosing the N, P, and K 

and in some cases Ca and MG requirements of a number of crops (Beverly, 1991). 

 In other words, the sufficiency status of an individual nutrient in plant tissue is 

diagnosed on the basis of its abundance relative to the abundances of at least two, and 

often as many as eight, other plant nutrients, thereby taking account of the state of 

nutrient balance within plant tissue.  What is more, by simultaneously comparing the 

effects of different nutrients on crop yield, DRIS automatically ranks nutrient deficiencies 

or excesses in order of importance (Walworth and Sumner, 1987). 

 The N:P ratio of aquatic macrophytes is approximately 12:1 by weight (26.6 

molar basis), although N:P ratios may differ between and among depending on nutrient 

availability, growth conditions, and the morphological stage of growth (Duarte, 1992).  In 

many constructed wetland studies actual or simulated wastewater effluent is used without 

any regard for the N:P ratio in the effluent (e.g., Cizkova-Koncalova et al., 1996; Romero 

et al., 1999; Xie et al., 2004; and Kyambadde et al., 2005).  Therefore, the proper N and P 

availability are of principal concern in the growth of wetland plants in constructed 

wetlands.  However, the concentrations of nutrients, most importantly N and P, in the 

wastewater effluents and loading rate to the constructed wetlands vary depending on the 

quality of wastewater, type of wastewater treatment facilities, and the season.  These 

changes to nutrient availability may influence plant growth responses and resource 

allocation in constructed wetlands (Adler et al., 2008; Zhang et al., 2008). 
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 Numerous constructed wetland plant studies investigating effects of N and P on 

biomass and nutrient uptake of wetland plants typically vary N supply with the other 

nutrients remaining constant and nonlimiting or vary P supply with the other nutrients 

present at sufficient, nonlimiting levels.  Alternatively, different amounts of the same 

nutrient solution with a N:P ratio less than 10 (mass:mass) or more than 70 were used 

(e.g., Elberse and Berendse, 1993; Cary and Weerts, 1984; Steinbachova-Vojtiskova et 

al., 2006).  Plant growth was limited by N or P, and any differences in responses by 

species to treatments was primarily due to N or P supply.  In other cases actual or 

simulated wastewater effluent was used without any regard for the N:P ratio in the 

effluent (e.g., Cizkova-Koncalova et al., 1996; Romero et al., 1999; Jing et al., 2001; 

Kyambadde et al., 2005).  Fewer experiments compare plant growth responses and 

nutrient uptake to P supply or to combined variations in N and P supply and (e.g., Shaver 

and Melillo, 1984; Ulrich and Burton, 1985; Xie et al., 2004). 

 Gusewell (2005) proposed that responses to N and P may be specifically 

determined by the supply of N or P or by the supply of one relative to the other.  This 

may be because the N:P supply ratio (supply of N relative to P) determines which of the 

two nutrients limits plant growth (Gusewell and Koerselman, 2002).  Furthermore, 

functional differences may exist between N- and P-limited plants (Aerts and Chapin III, 

2000).  Some species appear to be most successful at high N:P supply ratios (e.g., 

Molinia caerulea; Kirkham, 2001; Tomassen et al., 2003), and others at low N:P supply 

ratios (e.g., Typha glauca; Woo and Zedler, 2002), suggesting that these species respond 

differently in terms of biomass production, morphology and/or physiology to the relative 
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supplies of N and P.  Van der Heijden and Kuyper (2001) found that N:P supply ratio 

affects carbon gain, N and P-content, and root length of Salix repens and colonization of 

ectomycorrhizal fungi. 

 The few studies on the interactive effect of N and P on plant growth are 

inconsistent among wetland plant species.  For example, Ulrich and Burton (1988) found 

that nitrate-nitrogen (NO3-N) and P treatments and their interaction strongly affected 

plants growth and biomass of Typha latifolia L., T. angustifolia L., Sparganium 

eurycarpum Engelm., and Phragmites austarlis (Cav.) Trin. Ex. Steudel.  However, Cary 

and Weerts (1984) and Romero et al. (1999) did not observe an interactive effect of N 

and P for either Typha orientalis Presl or P. australis.  Romero (1999) found N supply 

affected growth of P. australis  whereas P did not have any effect but imbalanced supply 

of N and P suppresses growth of P. australis.  

 Knowing how N:P supply ratios affect the growth and uptake of N and P may 

lead to improved plant selection in vegetated constructed wetlands and enable us to 

understand and predict how changes in relative supplies of N and P in wastewater affect 

N and P recovery. 

 

Role of Plants in Constructed Wetlands 
 
 One of the many factors that control the efficiency of nutrient and bacterial 

removal in wetlands is vegetation type (Hammer, 1989), and macrophytes have both 

dominant and supporting roles in N and P recovery.  Besides the direct assimilation of N 

and P from wastewater, the submerged portions of plants growing in SSF CWs provide a 
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large surface area for biofilms (Gumbricht, 1993, Chappell and Goulder, 1994), which 

are colonized by dense communities of photosynthetic algae and bacteria (Gumbricht, 

1993; Chappell and Goulder, 1994; Brix, 1997).  Microorganisms have the main role in 

the transformation and mineralization of nutrients and organic pollutants microorganisms 

(Stottmeister et al, 2003; Faulwetter et al., 2009).  The plant species and types of 

substrate used in SSF CWs influence the dynamics and diversity of the rhizospheric 

bacterial community (Calheiros et al., 2009; Sleytr et al., 2009).  In addition, roots 

support microbial activity through the exudation of carbohydrates, sugars, amino acids, 

enzymes, and many other compounds into the rhizosphere (Rovira, 1965, 1969; Ryan et 

al., 2001).  The organic carbon exuded by the roots is the carbon source for denitrification 

by microbes (Rovira, 1965, Barber and Martin, 1976), which mediate most of the 

pollutant transformations occurring in wetlands (Kadlec et al., 2000).  The metabolic 

investment in root exudates can be substantial: exudates of proteoid species can represent 

5 to 25% of photosynthate production and can exceed 20% of total plant dry weight 

(Gardner et al., 1983; Dinkelaker et al., 1989; Johnson et al., 1996a, b). 

 Certain wetland plants oxidize the rhizosphere (Gersberg, 1986; Moorhead and 

Reddy, 1988; Burgoon et al., 1995), which also supports microbial growth and aids in the 

decomposition of organic matter.  The release of oxygen by plant roots may increase the 

adsorption capacity of wetlands for P (Walhugala et al., 1987).  Termed radial oxygen 

loss, this process has been well-described in numerous studies (Green and Etherington 

1977; Mendelssohn and Postek, 1982; St-Cyr and Crowder, 1989; Roden and Wetzel, 

1996).  In addition, some species possess another more effective mechanism--through-
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flow convection driven by pressure differences--to transport oxygen to belowground 

structures (Dacey, 1980, 1981).  Some of the oxygen molecules support aerobic root 

respiration, while the rest diffuses toward the rhizosphere via the root surface.  The 

oxygen-releasing root surface forms an oxidative layer that prevents the plant from 

absorbing phytotoxic reduced substrates such as Fe2+, Mn2+, and sulfide, which tend to 

accumulate in anoxic wetland sediments (Armstrong and Armstrong, 1988; Conlin and 

Crowder, 1988; Christensen et al., 1994). 

 Widely used plants in CWs include reed canarygrass (Phalaris arundinacea L.), 

common reed (Phragmites australis [Cav.] Trin. Ex Steud.), reed mannagrass (Glyceria 

maxima [Hartman] Holmb.), softstem bulrush (Schoenoplectus tabernaemontani [C. C. 

Gmel.] Palla), pickerel-rush (Pontederia spp.), Scirpus spp., Juncus spp., sedge (Cyperus 

spp.), yellow flag (Iris pseudacorus), and cattail (Typha spp. L.) (Wolverton, et al., 1983; 

Ansola et al., 1995; Cronk and Fennessy, 2001; Kadlec et al., 2000; Brisson and 

Chazarenc, 2009).  These wetland plants have not been widely used commercially 

because of their potential invasiveness.  Additionally in certain ecosystems and their high 

rates of biomass production, which necessitates periodic harvesting and removal to 

prevent the seasonal export of nutrients, particularly P via vegetative decomposition 

(Hunter et al., 2001).  According to Tanner (1996) and Kvet et al. (1999), plants used in 

constructed wetlands should be tolerant of waterlogged conditions, have rapid 

propagation rates and easy to propagate sexually or asexually, establish rapidly, and have 

a high pollutant removal capacity and a long season of active vegetative growth. 
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 Instead of traditional wetland plants, commercially available aquatic garden plants 

can be used in a production/remediation system that could generate revenue.  Few studies 

have examined the ability of aquatic garden plants to thrive in SSF CWs and recover 

nursery runoff rates of nitrogen and phosphorus (Arnold et al., 1999; Holt et. al, 1999; 

Arnold et al., 2003; Belmont and Metcalfe, 2003; Zhang et al., 2007).  The commercial 

value of aquatic garden plants offsets their production costs, which offers producers a 

sustainable, cost-effective and low maintenance remediation solution compared to 

conventional wastewater treatment technologies.  Their usefulness could be expanded to 

other phytoremediation applications depending on the outcome of additional research 

assessing their ability to assimilate pesticides (e.g., Fernandez et al., 1999) and other 

anthropogenic pollutants (i.e., hydrocarbons, and metals) (e.g., Fritioff and Greger, 

2003). 

 
Plants Evaluated in These Studies 

 
Apiaceae 
 
 Rainbow water parsley (Oenenathe javanica (Blume) D.C. ‘Flamingo’ ) is a low-

growing Korean native with aromatic pink, white, and green leaves and an aroma of 

parsley.  White umbels emerge in summer through fall and reaches a height of 15 cm. 

Araceae 
 
 Imperial taro (Colocasia esculenta (L.) Schott var. antiquorum (Schott) Hubbard 

& Rehd. 'Illustris') has blackish-purple leaves highlighted with green veins and grows 0.3 

to 0.9 m tall (Speichert and Speichert 2004). 
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 Arrow- or bog arum (Peltandra virginica (L.) Schott.) has glossy, dark green 

arrow-shaped leaves that grows to a height of 0.6 to 0.9 m (Dalton and Novelo R., 1983; 

(eFloras.org, 2009).  A green, tubular pointed spathe nearly conceals the clublike spadix 

of pale yellow to white flowers (Dalton and Novelo R., 1983; McIninch and Garbisch, 

2003).  The basal portion of the spadix contains pistillate flowers while the upper portion 

contains staminate flowers.  Eventually green berries are produced in the fall.  

 Water lettuce (Pistia stratiotes L.) is a free-floating, stoloniferous aquatic that 

produces a rosette of light to lime-green velvety leaves; it can reach a mature height of 

30.5 cm (Speichert and Speichert, 2004).  It reproduces by offsets that grow from the 

base of the mature plant (Slocum, 1990).  It is used to shade the surface of aquatic 

gardens to reduce algal problems. 

 
Cannanaceae 
 
 Bengal Tiger canna (Canna ‘Bengal Tiger’; syn. ‘Pretoria’) is a green and yellow-

variegated canna that grows 1.2 to 1.8 m tall and produces panicles of orange and red-

orange flowers (Ogden, 2007).  It is adapted to terrestrial and water-inundated conditions. 

 Yellow King Humbert canna (Canna ‘Yellow King Humbert) is a sport of the 

red-flowered ‘King Humbert’ canna (syn. ‘Roi Humbert’; Ogden, 2007).  It is a large-

leaved herbaceous rhizomatous perennial cultivated for its broad, bananalike leaves and 

flowers that range in color from red, orange, or yellow or any combination of those 

colors.  Often the flowers may be dotted or streaked with crimson.  It can reach a height 

of 1.2 to 1.5 m in terrestrial landscapes and can also be grown in shallow aquatic 

environments (Speichert and Speichert, 2004; Ogden, 2007).  
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Cyperaceae 
 
 Chinese water chestnut (Eleocharis dulcis (Burman f.) Trin. ex Henschel) has 

been cultivated for centuries in China and southeast Asia.  Its bright green hollow 

cylindrical shoots grow 0.3-0.1 m high, and edible nutlike tubers are borne at the ends of 

rhizomes (Slocum et al., 1996).    

 Starrush whitetop (Rhyncospora colorata (L.) H. Pfeiffer) is a free-flowering, 

rhizomatous North American native that ranges from SE VA south to south FL and west 

thru southern Texas and continues south through Mexico and Costa Rica (McMillan, 

2007).  It grows 30-61 cm tall and produces white starlike inflorescence comprised of 5-

50 spikelets.  It can be found in moist, saturated, or seasonally inundated environments. 

 
Haloragaceae 
 
 Myriophyllum aquaticum is a perennial aquatic plant classified as a creeping 

emergent roots that freely in floating mats or anchored in substrate where it reproduces 

primarily by stem fragmentation (Sytsma, 1989).  Dwarf redstemmed parrotfeather 

(Myriophyllum aquaticum [Vell.] Verdc.) is a compact selection with bright red prostrate 

or ascending stems bearing whorls of gray-green feathery leaves (Speichert and 

Speichert, 2004).  Sexual reproduction also occurs by way of axillary, unisexual and 

perfect flowers present on the same plant.  This species is considered a noxious weed in 

some areas due to its aggressive growth and reproduction; however, it is sold as an 

aquatic garden plant for its ability to oxygenate. (Speichert and Speichert, 2004). 
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Iridaceae 
 
 ‘Full Eclipse’ Louisiana iris Iris x louisiana ‘Full Eclipse’ was introduced in 1978 

by Ben Hager.  This late midseason iris produces very dark purple flowers and reaches a 

height of 0.9 to 1.2 m. (Caillet et al., 2000).  ‘Full Eclipse’ received the American Iris 

Society Award of Merit in 1985. 

 
Pontederiaceae 
 
 Water hyacinth (Eichhornia crassipes [Mart.] Solms.) is a free-floating plant 

comprised of a rosette of petiolate leaves, an attractive lavender-blue inflorescence, and 

extensive submerged roots (Gopal, 1987; Speichert and Speichert, 2004).  Although 

water hyacinth is used in aquatic gardens, it is considered one of the world’s worst weeds 

(Holm et al, 1997).  In natural systems water hyacinth propagates rapidly forming dense 

mats that spread out across the water surface, blocking traffic, destroying natural 

landscapes, affecting water quality, decreasing biodiversity, providing conditions for 

mosquitoes to breed, and retarding agricultural development (Holm et al. 1997; Mehra et 

al. 1999).).  

Singapore Pink pickerel-rush is a sport of the native North American pickerel-

rush (Pontederia cordata L. ‘Singapore Pink’) (Speichert and Speichert, 2004).  This 

rooted emergent hydrophyte produces short, thick prostrate rhizomes and has long-

petioled, parallel-veined leaves (Speichert and Speichert, 2004).  Singapore Pink grows 

0.3 to 0.6 m tall and produces pink flower spikes (Speichert and Speichert, 2004). 
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Marantaceae 
 
 Red-stemmed alligator flag (Thalia geniculata f. rheumoides Shuey) has reddish-

purple petiole, sheath, and pulvinus and bears long arching flower spikes of silvery-

purple flowers; grows 0.6 to 3 m tall and 0.6-1.8 m wide.  It is widely distributed in parts 

of the Americas and W. Africa (eFloras.org, 2009). 

 
Typhaceae 
 
 Common or broadleaved cattail (Typha latiifolia L.) is an emergent hydrophytic 

plant that grows up to 1.5-3 m in height in marshes and shallow water throughout the 

world.  It tolerates a wide range of soil and water conditions--fresh to slightly brackish 

water; and is often among the first species to invade areas impacted by human activities 

(eFloras.org, 2009; USDA, 2009).  Pale- to grayish-green leaves are distichously 

arranged, erect, essentially flat, and pale- to grayish-green in color (Correll and Correll, 

1975; eFloras.org, 2009).  Inflorescense is a dense, cylindrical spike comprised of two 

portions:  upper contains staminate flowers and lower contains pistillate flowers.  The 

pistillate flowers persist giving rise to dark brown showy fruit up to 7 inches long and 2 

inches wide.  Small single-seeded fruits are up to 20,000 to 70,000 per inflorescense.  

Plants spread by creeping rhizomes and seed dispersion.  Cattails spread by creeping 

rhizomes and seed dispersion.” 

 Miniature cattail (Typha minima Hoppe) is native to parts of the Middle East and 

central Asia.  It reaches a garden height of 30-46 cm; brown marble-sized catkins rise 

above its 3-6 mm wide blue-green leaves (Speichert and Speichert. 2004).  

 



33 

Verbenaceae 
 
 Lanceleaf frogfruit (Phyla lanceolata [Michx.] Greene) is a creeping North 

American native that grows 5-10 cm high, tolerates light foot traffic, and produces tiny 

white flowers that fade to yellow and then pink (Speichert and Speichert, 2004).  Foliage 

turn crimson-purple in the fall. 
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CHAPTER II 
 

NUTRIENT RECOVERY BY SEVEN AQUATIC GARDEN PLANTS IN A 
LABORATORY-SCALE SUBSURFACE CONSTRUCTED WETLAND 

 
 

Abstract 
 

 Commercial nurseries use large amounts of water and nutrients to produce 

container-grown plants.  The large volume of runoff containing nitrogen (N) and 

phosphorus (P) that leaves nurseries can contaminate surface and groundwater.  

Subsurface-flow constructed wetlands have been shown to effectively treat agricultural, 

industrial, and residential wastewater and to be well-suited for growers with limited 

production space.  We investigated the possibility of using commercially available 

aquatic garden plants in subsurface constructed wetlands to remove nutrients in a 

laboratory scale, gravel-based system.  Seven popular aquatic garden plants received 

nitrogen (N) and phosphorus (P) from Hoagland’s nutrient solution every two days for 

eight weeks.  These rates (0.39 to 36.81 mg·L-1 of N and 0.07 to 6.77 mg·L-1 P, 

respectively) encompassed low to high rates of nutrients found at various points between 

the discharge and inflow points of other constructed wetland systems currently in use at 

commercial nurseries.  Plant biomass, nutrient recovery, and tissue nutrient concentration 

and content were measured.  Whole plant dry weight positively correlated with total N 

and P supplied.  Louisiana Iris hybrid ‘Full Eclipse’, Canna ‘Bengal Tiger’, Canna 

‘Yellow King Humbert’, Colocasia esculenta (L.) Schott 'Illustris', and Pontederia 

cordata L. ‘Singapore Pink’ had the greatest N recovery rates.  The P recovery rates were 

similar for the cannas, Colocasia esculenta ‘Illustris’, Louisiana Iris ‘Full Eclipse,’ 
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Peltandra virginica (L.) Schott, and Po. cordata ‘Singapore Pink.’  The potential exists 

for creating a sustainable nursery and greenhouse production system that incorporates a 

subsurface constructed wetland planted with marketable horticultural crops that provide 

remediation and revenue. 

Traditional production of container-grown plants involves the input of water, 

fertilizers, pesticides, and other agricultural chemicals.  Excessive leaching of nutrients 

and pesticides from containerized crops grown in soilless substrate may occur when 

production is not managed appropriately (Schoene et al., 2006).  The resulting runoff can 

be discharged from production areas and pollute surface and ground water.  Excess 

nutrients, notably nitrate-nitrogen (NO3-N) and soluble reactive phosphorus (PO4
3-, 

H2PO4
-, H2PO4

2-, and H3PO4-), encourage algal growth and accelerate eutrophication, 

primarily in freshwater systems.  Also, high levels of nitrates in drinking water can cause 

methemoglobinemia in infants (“Blue Baby Syndrome”).  To protect drinking water 

quality, the U. S. Environmental Protection Agency (EPA) mandates maximum allowable 

NO3-N contaminant levels in any discharged water at 10 mg·L-1 (U. S. EPA, 1986).  

Federal limits on P concentrations in freshwater have not been set, but the U. S. EPA 

recommends that total phosphates and total P levels not exceed 0.05 mg·L-1 and  

0.1 mg·L-1, respectively (U. S. EPA, 1986).  Greenhouse wastewater typically contains 

100 mg·L-1 NO3-N (Wood et al., 1999), while nursery runoff levels of NO3-N range from 

0.1 to 135 mg·L-1  (Alexander, 1993; Yeager et al, 1993; Taylor et al., 2006).  A range of 

0.01 to 20 mg·L-1 P has been reported in nursery runoff (Alexander, 1993; Headley et al., 

2001; Taylor et al., 2006). 



 51 

The future of container nursery irrigation, according to twelve irrigation scientists, 

growers, and nursery organization directors, will be shaped by increasingly stringent 

regulations as many provisions of the 1972 Federal Clean Water Act are enforced 

(Beeson, et al., 2004).  Environmental concerns and regulatory pressure to reduce nutrient 

loadings in surface waters have led to the EPA enforcing its Total Maximum Daily Load 

(TMDL) program for all watersheds and bodies of water (U. S. EPA, 2000).  Section 

303(d)(1)(C) of the Clean Water Act defines the TMDL as the “level necessary to 

implement the applicable water quality standards.”  U. S. states are mandated to develop 

an appropriate TMDL for each water body and for each identified pollutant, which 

involves quantifying the total amount of pollutant loading a water body can receive from 

point and nonpoint sources and still maintain its designated use and value (e.g., drinking 

water, fish and wildlife habitat, and recreation).  TMDLs of nutrients in agricultural 

runoff were recently adopted by environmental regulatory agencies in every state 

(Yeager, 2006).  Nutrient-loading criteria for natural waters will eventually be established 

in every state.  Furthermore, several states, including Maryland, Delaware, and 

California, have enacted nutrient management laws to control the quantity of fertilizer 

applied and to monitor the concentration of nutrients detected in nursery runoff (Beeson, 

et al., 2004). 

 To comply with stricter environmental regulations, constructed wetlands have 

been promoted as a low cost technology for reducing nutrient levels, pesticides, and other 

organic contaminants from nursery and greenhouse discharge water (Berghage et al., 

1999; Fernandez et al., 1999).  Two constructed wetland designs, surface-flow and 
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subsurface-flow constructed wetlands, are commonly used to treat agricultural 

wastewater (Berghage et al., 1999; Scholz and Lee, 2005).  The large land area required 

by typical surface-flow constructed wetlands, which resemble natural wetlands, and the 

concomitant loss of production area has made them less suitable for greenhouse and 

nursery water treatment than subsurface-flow constructed wetlands (Berghage et al., 

1999). 

 Subsurface-flow constructed wetlands consist of a lined or impermeable basin 

filled with a coarse medium having high hydraulic conductivity, typically gravel, and 

wetland plants (Kadlec and Knight, 1996).  They can be operated in flow-through or 

batch treatment modes with varying hydraulic residence times (Burgoon et al., 1995).  

Removal or transformation of N and P occurs via microbial assimilation/transformation, 

decomposition, plant uptake, adsorption-fixation, sedimentation, and volatilization (Brix 

and Schierup, 1989).   

 Plants have both dominant and supporting roles in N and P recovery.  Besides the 

direct assimilation of N and P from wastewater, plant roots and rhizomes support 

microbial activity and facilitate microbial nitrification in gravel-based constructed 

wetlands (Gersberg et al., 1986; Huett et al., 2005).  Their roots offer colonizing sites and 

exude carbohydrates, sugars, amino acids, enzymes, and many other compounds (Rovira, 

1969).  Certain plants oxidize the rhizosphere (Gersberg et al., 1986; Moorhead and 

Reddy, 1988), which also supports microbial growth and aids in the decomposition of 

organic matter. 
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 Widely used aquatic emergent plants in subsurface-flow constructed wetland 

designs include reed canarygrass (Phalaris arundinacea L), common reed (Phragmites 

australis [Cav.] Trin. ex Steud.), reed mannagrass (Glyceria maxima [Hartman] Holmb.), 

softstem bulrush (Schoenoplectus tabernaemontani [C. C. Gmel.] Palla), yellow flag (Iris 

pseudacorus L.), and cattail (Typha spp. L.) (Conley et al., 1991; Hunter et al., 2001).  

Although the performance of these aforementioned “wetland” plants in wastewater 

treatment has been well-documented, their widespread use has been tempered by 

concerns of invasiveness in certain ecosystems, and high rates of biomass production and 

subsequent decomposition, which necessitates harvesting and removal. 

 Our study investigated a sustainable alternative to traditional wetland plants in 

constructed wetlands, specifically saleable horticultural plants with remediation potential.  

Similar to obligate wetland species, aquatic garden plants also thrive in waterlogged 

environments and offer the potential benefits of phytoremediation and economic value.  

In addition, they provide aesthetic value to subsurface-flow treatment wetlands, which is 

important to nurseries and greenhouses located in highly populated urban areas (Wood et 

al., 1999; Fraser et al., 2004).  Few studies have examined the survival of aquatic garden 

plants in subsurface-flow constructed wetlands and their ability to recover nursery runoff 

rates of nitrogen and phosphorus (Arnold et al., 1999; Holt et al., 1999; Arnold, et al., 

2003; B. K. Maynard, personal communication).  Our objective was to evaluate 

commercially important species and cultivars of aquatic garden plants in a simple 

laboratory scale wetland system within the controlled environment of a greenhouse for 

their ability to grow and recover nitrogen and phosphorus. 
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Materials and Methods 
 

Plant Culture 
 

 Seven herbaceous emergent plants were chosen for their aesthetic properties, 

commercial importance, and ease-of-propagation (Table 2.1) and maintained in a 

greenhouse at Clemson University's Biosystems Research Complex (lat. 34o N, Clemson, 

SC, USA) during 2003-2004.  Bengal Tiger canna (Canna ‘Bengal Tiger’), Yellow King 

Humbert canna (C. ‘Yellow King Humbert’), imperial taro (Colocasia esculenta 

‘Illustris’, and Full Eclipse Louisiana iris were propagated from rhizome divisions of 

donated stock plants (Carolina Nurseries, Inc., Moncks Corner, SC).  Corms and offsets 

were removed from Chinese waterchestnut (Eleocharis dulcis [Burman f.] Trin. ex 

Henschel) and green arrow arum (Peltandra virginica) stock plants, respectively 

(Charleston Aquatic Nursery, Johns Island, SC).  Tissue-cultured plantlets of Singapore 

Pink pickerel-rush (Pontederia cordata 'Singapore Pink') were purchased from a 

commercial tissue culture lab (Agri-Starts II, Apopka, FL).  Individual rooted plants were 

transplanted into 3601 cell packs (~ 5 cm pots) containing a peat/vermiculite growing 

substrate (Fafard Germination Mix, Fafard Inc., Anderson, SC) and maintained on the 

greenhouse bench in water-filled plastic-lined trays.  Plants were watered and fertilized as 

needed. 

 A simple laboratory-scale wetland system modeled after Fraser et al. (2004) and 

Wood et. al (1999) simulated a subsurface treatment wetland and was approximated as a 

batch system instead of a flow-through system.  The wetland system was comprised of 

two polyethylene pots:  a 16.5 cm diameter “azalea” pot (12.4 cm bottom diameter, 12.2  
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Table 2.1.  Species, family, cold hardiness, and description of the seven aquatic garden 
plants evaluated for their ability to recover runoff rates of N and P (Caillet et al., 2000; 
Speichert and Speichert, 2004). 
 

 
 
 

Species 

 
 
 

Family 

USDA 
cold 

hardiness 
zone 

 
 
 

Description 
Canna ‘Bengal 
Tiger’ 

Cannaceae 7 to 10 Imported from India in 1963, this 
green and yellow-variegated canna 
grows 1.2 to 1.8 m tall and bears 
bright orange flowers. 

Canna ‘Yellow 
King Humbert’ 

Cannaceae 7 to 10 This sport of the red-flowered King 
Humbert canna bears yellow 
flowers dotted with orange and 
grows 1.2 to 1.5 m tall. 

Colocasia 
esculenta 'Illustris' 

Araceae 7 to 10 Imperial taro has blackish-purple 
leaves highlighted with green veins 
and grows 0.3 to 0.9 m tall. 

Eleocharis dulcis Cyperaceae 9b to 11 Chinese waterchestnut has been 
cultivated for centuries in China 
and southeast Asia.  Its bright green 
hollow shoots grow 0.9 m high, and 
edible nutlike tubers are borne at 
the ends of rhizomes. 

Iris, Louisiana Iris 
hybrid ‘Full 
Eclipse’ 

Iridaceae 6b to 10b Introduced in 1978 Full Eclipse 
Louisiana iris produces very dark 
purple flowers and reaches a height 
of 0.9 to 1.2 m. 

Peltandra 
virginica 

Araceae 5a to 9b Arrow or bog arum has glossy, dark 
green arrow-shaped leaves and 
produces a fleshy spike of green, 
pale yellow, to white flowers and 
grows 0.6 to 0.9 m tall. 

Pontederia 
cordata 'Singapore 
Pink' 

Pontederiaceae 6a to 11 This sport of pickerel-rush grows 
0.3 to 0.6 m tall and produces pink 
flower spikes. 
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cm tall; Belden Plastics, St. Paul, MN.) with bottom drainage holes, filled with pea 

gravel, and placed inside a 16.7 cm diameter aquatic pot with no drainage holes (13.2 cm 

bottom diameter, 16.5 cm tall; ITML, Brantford, Canada) so their rims were even (Figure 

2.1).  The pea gravel had the following size distribution (% weight):  <8 mm (33%); 8-15 

mm (55% ), and 15-20 mm (12%). 

 
Determination of P-sorption by Gravel 
 
 An equilibrium isotherm experiment was conducted to rule out the possibility of 

P-sorption by pea gravel.  Approximately 31 g of gravel were placed into each of 36, 50 

mL acid-washed polyethylene centrifuge tubes.  Aliquots (35 mL) of a 0.01 M KCl and 

Milli-Q water solution were spiked with ascending quantities of KH2PO4 to yield one of 6 

P levels (0, 0.1, 1.0, 10, 100, and 1,000 mg·L-1 P).  The bottles were sealed with screw 

caps and continuously agitated in a rotary shaker table (Lab-Line Instruments, Melrose 

Park, Ill.) for 24 h at 22 ºC.  After settling, two aliquots (1.5 mL) of supernatant from 

each sample were filtered through 0.2 mm polytetrafluoroethylene (PTFE) membrane 

filters, and the samples were analyzed for phosphorus using a Dionex AS50 IC with 

AS50 autosampler (Dionex Corp., Sunnyvale, CA.).  The P amount removed from 

solution by sorption to gravel was calculated by comparing the final aqueous P-

concentration with the initial aqueous P-concentration.  The data were then plotted using 

sorbed (dependent) and aqueous (independent) P-concentrations.  The appropriate 

isotherm relationship was determined from these plots and their correlation coefficients.  

Our data showed no definitive isotherm (Temkin, Freundlich, or Langmuir) relationship, 

which indicated no detectable adsorption of P by the pea gravel (Figure 2.1). 
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Figure 2.1.  Sideview diagram of the laboratory scale wetland comprised of a pea gravel-
filled 16-cm. diameter azalea pot inserted inside a 3-L aquatic pot. 

 

 

 
 Two to four weeks before the initiation of an experiment, 40 to 50 liners of each 

species were removed from their containers, their roots washed free of substrate, 

weighed, and transplanted into gravel-filled azalea pots.  After inserting the azalea pot 

into the aquatic pot, about 1.350 L of a 10% modified Hoagland’s solution (Hoagland and 

Arnon, 1950) was added to each pot until water appeared at the gravel surface.  During 

the acclimation period, plants were watered every two or three days to maintain the water 

level just below the gravel surface. 

 The average daily temperatures, relative humidity, and daily light integral (PAR) 

over the course of the greenhouse study are listed in Table 2.2.  During winter a 16-h 

photoperiod was maintained with 1000 W metal halide lights. 
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Table 2.2.  Experiment dates, average daily temperature, relative humidity, and total PAR 
for each species in two replicated experiments conducted in the Biosystems Research 
Complex greenhouses, Clemson University, Clemson, SC. 
 
 Experiment 1 Experiment 2 

 
 

Species 

 
Temperature 

(oC) 

Relative 
Humidity 

(%) 

Daily light 
integral 

(mol·m-2·d-1) 

 
Temperature 

(oC) 

Relative 
Humidity 

(%) 

Daily light 
integral 

(mol·m-2·d-1) 
 11-Feb-04 to 7-Apr-04 7-Jan-04 to 2-Mar-04 
Canna 
‘Bengal 
Tiger’ 

23.3 ± 0.2 47.4 ± 1.5 16.1 ± 1.0 21.5 ± 0.2 48.4 ± 1.0 10 ± 0.8 

 6-Aug-03 to 30-Sep-03 5-Jan-04 to 2-Mar-04 
Canna 
‘Yellow 
King 
Humbert’ 

26.7 ± 0.2 70.0 ± 0.8 21.0 ± 0.5 21.6 ± 0.2 48.8 ± 1.1 10.1 ± 0.8 

 24-Jun-03 to 18-Aug-03 8-Sep-03 to 3-Nov-03 
Colocasia 
esculenta 
'Illustris' 

27.3 ± 0.07 74.3 ± 0.3 22.1 ± 0.8 24.6 ± 0.2 61.5 ± 1.0 19.1 ± 0.9 

 24-Jul-03 to 19-Sep-03 9-Dec-03 to 3-Feb-04 
Eleocharis 
dulcis 

27.1 ± 0.1 71.4 ± 0.7 21.6 ± 0.4 21.4 ± 0.2 49.7 ± 1.2 9.8 ± 0.7 

 10-Sep-03 to 6-Nov-03 18-Sep-03 to 14-Nov-03 
Louisiana 
iris hybrid 
‘Full 
Eclipse’ 

24.5 ± 0.2 61.9 ± 1.1 18.5 ± 1.0 24.3 ± 0.2 61.0 ± 1.2 17.0 ± 0.9 

 13-Aug-03 to 7-Oct-03 8-Dec-03 to 3-Feb-04 
Peltandra 
virginica 

26.3 ± 0.2 67.0 ± 1.1 20.5 ± 0.5 21.4 ± 0.1 49.8 ± 1.1 9.9 ± 0.6 

 6-Oct-03 to 1-Dec-03 2-Oct-03 to 26-Nov-03 
Pontederia 
cordata 
'Singapore 
Pink' 

23.5 ± 0.2 58.9 ± 1.5 13.6 ± 0.8 23.8 ± 0.2 59.2 ± 1.4 14.4 ± 0.8 
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Treatments 
 
 Five treatment levels of a modified Hoagland’s solution (“Solution 1” using 

nitrate-nitrogen) contained the following average concentrations (mg·L-1) of N and P:  (1) 

0.39 N; 0.07 P; (2) 1.75 N; 0.18 P; (3) 10.44 N; 1.86 P; (4) 21.57 N; 3.63 P; and (5) 36.81 

N; 6.77 P.  Mean concentrations of the nutrient solutions, derived from random sampling 

and analyzing by ICP over the course of the study, encompassed the typical range of 

nutrients found in constructed wetland discharge, nursery runoff, and nursery irrigation 

water (Taylor et al., 2006).  The initial pH of the nutrient solution was adjusted to 6.2 

with 6 N H2SO4. 

 Thirty acclimatized plants and five gravel-only pots were lifted from their aquatic 

containers, flushed with deionized water, and then returned to aquatic pots that had been 

emptied and rinsed with deionized water.  On day 0 the appropriate treatment solution 

was batch-loaded into the pots with plants until it was visible at the gravel surface.  

Gravel-only pots received 10.44 and 1.86 mg·L-1 N and P, respectively.  Thereafter, 

nutrient solution was added every two days to maintain the water level at the gravel 

surface.   

 Containers were arranged in a randomized complete block design with 6 

replicates.  The number of replicates was determined in a preliminary experiment with 

Ca. ‘Yellow King Humbert.’  Experiments were replicated twice for each species during 

the time periods listed in Table 2.2. 
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Data Collection 
 
 Volumes of nutrient solution supplied to each container were recorded during the 

eight-week experiment.  After termination, water samples from the aquatic containers 

were filtered through 0.2 mm PTFE membrane filters into 1.5 mL IC vials and stored at 

4ºC until anion analysis with a Dionex AS50 IC with AS50 autosampler to determine the 

percentage of recovered nutrient [(mg N or P supplied – mg nutrient remaining in 

solution ÷ mg N or P supplied) x 100]. 

 Above-ground portions of each plant were removed at the gravel surface and 

weighed.  Below-ground portions, which included roots that had grown through the 

drainage holes of the gravel-filled azalea pots, were placed over a screen and washed 

with tapwater, rinsed with distilled water, and then weighed.  Roots and shoots were 

dried at 80ºC, weighed, and ground in a Wiley mill to pass through a 40-mesh (0.425-mm 

screen).  N concentration was determined using 100 mg of tissue and assayed by an 

Elementar Vario Macro Nitrogen combustion analyzer (Mt. Laurel, NJ) with tissue 

analysis procedures described by Clemson University’s Agricultural Service Laboratory 

(Anonymous, 2000).  Phosphorus was assayed by wet acid digestion procedure using the 

nitric acid and hydrogen peroxide method (Mills and Jones, 1996; Anonymous, 2000).  

Phosphorus concentration was determined by inductively coupled plasma emission 

spectrophotometer (61E Thermo Jarrell Ash, Franklin, MA). 

 Since growth may dilute concentration, N and P contents were determined by 

multiplying plant part dry weight by nutrient concentration.  Above- and below-ground 

mineral contents were combined to provide whole plant N and P content. 
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Statistical Analysis 
 
 Analysis of variance (ANOVA) was used to test for significant treatment (N and 

P concentrations), rep, and block effects.  Since ANOVA indicated no rep and block 

effects but significant treatment effects, data were pooled.  To determine the nature of the 

treatment effect, regression analyses were performed for each species to describe changes 

in biomass and nutrient recovery relative to N or P supplied.  Regression analysis showed 

a significant slope for biomass and nutrient use efficiency for each species.  Therefore, 

slopes among species were compared using linear contrasts and F tests.  Differences 

between shoot and root concentration and content were determined by Student’s t tests.  

All calculations were performed with SAS (version 9.1 for Windows; SAS Institute, 

Cary, NC), and all tests used P ≤ 0.05. 

 
Results and Discussion 

 
Biomass Production 
 
 Growth rates for the 7 species increased linearly and were highly correlated with 

increasing levels of nitrogen and phosphorus over the eight-week period (Figure 2.2A 

and B), indicating that as plants increased in size and dry weight (DW), they assimilated 

correspondingly greater amounts of N and P.  Due to their higher evapotranspiration 

rates, Ca. ‘Bengal Tiger’ (Canna ‘BT’) and C. ‘Yellow King Humbert’ (Canna ‘YKH’) 

were supplied with greater amounts of N and P than the other species.  Gravel-only pots 

receiving 10.44 and 1.86 mg·L-1 N and P, respectively, were supplied with 62 to 86% less 

N and 52 to 86% less P than planted pots receiving the same level of N and P (data not 

presented).  
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Figure 2.2.  The effect of N (A) and P (B) on whole plant dry weight of seven, 
greenhouse-grown containerized aquatic garden plants over an eight-week period.  Five 
concentrations of modified Hoagland’s solution (Table 3, footnote z) were initially batch-
loaded and then supplied every two days to maintain the water level at the gravel surface.  
Vertical bars = ± SE.  Data points are the means of 12 plants.  Slopes of the regression 
lines were compared using linear contrasts and F tests; species with different letters have 
significantly different slopes (P ≤ 0.05). 
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 Over the eight-week period the rate of dry weight accumulation in the cannas was 

greater than the rest of the species (Figure 2.2A and B).  Co. esculenta ‘Illustris’ 

(Colocasia), Pe. virginica (Peltandra) and Po. cordata ‘Singapore Pink’ (Pontederia) 

produced  biomass more rapidly than E. dulcis (Eleocharis) and I. ‘Full Eclipse’ (Iris).  

Interestingly, Peltandra received the least amount of N and P over the eight-week period 

but exhibited a higher DW accumulation rate than Eleocharis and Iris (Figure 2.2A and 

B).  When supplied with the two lowest levels of N and P, the cannas exhibited more 

severe visual nutrient deficiency symptoms than the other 5 species, which included 

stunted growth and chlorotic older leaves. 

 
N and P Recovery 
 
 Nitrogen and phosphorus recovery rates of the seven species were evaluated by 

comparing the amount of N or P supplied and recovered in whole plant tissues to a 

theoretical recovery rate in which the amount of N or P supplied equaled the amount of N 

or P recovered in the tissues.  Nitrogen and phosphorus content of whole plant tissues for 

all 7 species increased linearly with increasing concentrations of N and P and was highly 

related to the amount supplied to each species (Figure 2.3A and B).  Canna ‘BT’ and 

‘YKH’ received the greatest N amounts; however, their N recovery rates were less than 

Iris and Pontederia (Figure 2.3A).  The N recovery rate of Iris was similar to the 

theoretical recovery rate of N (total N supplied = total N in tissues).  Eleocharis and 

Peltandra had the lowest N recovery rates (Figure 2.3A). 

The cannas also received more P than the other five species over the eight-week 

period; however, the recovery rate of Canna ‘BT’ and ‘YKH’ were similar to Iris,  
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Figure 2.3.  Nitrogen (A) and phosphorus (B) recovered in whole plant tissues of seven 
greenhouse-grown aquatic garden species over an eight-week period.  Five 
concentrations of modified Hoagland’s solution (Table 1.3, footnote z) were initially 
batch-loaded and then supplied every two days to maintain the water level at the gravel 
surface.  Vertical bars = ± SE.  Data points are the means of 12 plants.  The dashed line 
represents an ideal 100% recovery rate.  Slopes of the regression lines were compared 
using linear contrasts and F tests; species with different letters have significantly different 
slopes (P ≤ 0.05). 
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 Peltandra, and Pontederia, which were supplied with less P (Figure 2.3B).  

Colocasia and Eleocharis exhibited the lowest P assimilation rate.  None of the seven 

species assimilated P similar to the theoretical P recovery rate.  The least amount of P 

supplied was similar to the P concentration in treated nursery runoff water, suggesting 

that nursery and greenhouse crops receive P in excess of their needs.  Thus, fertilization 

rates for these species could be significantly reduced without affecting growth. 

 An analysis of the water that remained in the pots after eight weeks revealed no 

significant differences in the concentration of remaining N and P.  Less than 4% of the 

original amount of N and P supplied to the plants remained regardless of species and 

treatment level (data not shown).  Of the original amount of N and P supplied to gravel-

only pots, 35 to 48% of N and 18 to 37% of P remained (data not shown).  These finding 

were consistent with other studies that showed an improvement in nutrient removal when 

plants were present (Tanner et al., 1995; Hunter et al., 2001; Huett et al., 2005). 

Depletion of P in the gravel-only pots could have resulted from assimilation by the thin 

film of algae present near the gravel surface and from microorganisms in biofilm 

(Costerton et al., 1995), while N depletion may have occurred via denitrification 

processes. It is unlikely that P precipitation occurred in the gravel-only pots because the 

pH was not basic enough (mean pH of 7.1) to promote precipitation of calcium-phosphate 

complexes.  Modeling with Visual Minteq 2.52, a chemical equilibrium computer 

program that calculates the speciation, solubility, and equilibrium of solid and dissolved 

phases of minerals in aqueous systems, further confirmed that P precipitation was not a 



 66 

likely transformation pathway for P removal from the nutrient solution (Gustafsson, 

2007). 

 
Nitrogen and Phosphorus Concentration   
 
 Mineral concentrations are typically reported in wetland plant nutrient recovery 

research, although the contents or weights of nutrients reveal differences in nutrient 

accumulation by plants.  As expected, the differences in nutrient allocation in the shoots 

and roots within species varied by both concentration and content.  The N shoot 

concentration exceeded the amount in roots at every N level supplied for Canna ‘YKH’, 

Colocasia, and Peltandra (Table 2.3).  Pontederia and Iris shoots had greater N 

concentrations than roots at treatment levels exceeding 10.4 and 21.6 mg·L-1 N, 

respectively. 

 Concentrations of P in Canna ‘BT’ and Pontederia were greatest in shoots at 

every P treatment level.  Pontederia ‘Singapore Pink’ responded similarly to a natural 

community of Po. cordata from Lobo Reservoir, Sao Paulo Brazil (Barbieri and Esteves, 

1991).  In an earlier study, Barbieri et al. (1984) had found that Po. cordata was capable 

of storing 10 times more P in its tissues than was present in the surrounding water.  In 

contrast, there were no P differences between the Peltandra shoots and roots at any 

treatment level.  No trends were observed with other species. 

 Mills and Jones (1996) reported a N concentration from “five mature leaves from 

new growth” of a “hybrid canna lily (Ca. xgeneralis [sic])” twice as great as we 

measured in our cannas.  Phosphorus concentration in their hybrid canna was the same as 

the highest P treatment level in our study.  In a four-month microcosm study in Florida, 
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Table 2.3.  Nitrogen (N) and phosphorus (P) concentration and content of shoots and 
roots of seven aquatic garden plants grown for eight weeks in a laboratory scale wetland 
and receiving five treatment levels of N or P incorporated in a modified Hoagland’s 
nutrient solution containing all other nutrients at levels to support normal plant growth.  
Treatments were initially batch-loaded and then supplied every two days to maintain the 
water level at the gravel surface.  Refer to Appendix A for other mineral concentrations. 
 

Concentration Content Treatment 
levelz N P N P 

 shoots roots shoots roots  shoots roots shoots roots 
 ------------------(mg·g-1)-------------------- --------------------------(mg)---------------------- 

Canna ‘Bengal Tiger’ 
 
 
 
 

1 11.74 11.05 3.03** 2.29  85.52 134.46**  22.39  27.66 
2 11.12 10.41 2.54* 2.17  96.11 124.76 22.06  25.76  
3 12.40** 9.41 2.45** 1.92  133.50 149.11 26.24 30.41 
4 14.29** 9.43 2.48** 1.94  216.63 180.68 39.08 37.16 
5 17.18** 10.46 3.06** 2.18  411.25** 243.62 75.01** 50.32 

Canna ‘Yellow King Humbert’ 
1 8.09** 6.78 1.82 1.73  34.15 63.67* 7.11 16.11**  
2 8.31** 6.92 1.79 1.78  40.25 83.03* 8.29  20.95** 
3 11.07** 7.23 1.90** 1.54  72.36 95.92 12.11 21.38* 
4 13.48** 7.95 1.95** 1.69  142.69 131.06 20.46 28.92 
5 16.03** 8.98 2.27* 2.01  315.62** 201.84 44.64  45.61 

Colocasia esculenta  ‘Illustris’ 
1 9.89** 6.91 1.06 0.91  17.97 32.28** 1.95 4.29** 
2 10.32** 7.51 1.12 0.94  21.57 33.00* 2.22  3.91** 
3 11.02** 7.81 1.28* 1.08  44.39 45.80 5.24 6.25 
4 12.00** 9.13 1.60** 1.28  80.70** 59.88 10.85** 8.43 
5 15.39** 10.25 2.21** 1.71  224.38** 96.71 32.21** 16.56 

z1 = 0.39 N mg·L-1/0.07 P mg·L-1; 2 = 1.75 N mg·L-1/0.18 P mg·L-1; 3 = 10.44 N mg·L-

1/1.86 P mg·L-1; 4 = 21.57 N mg·L-1/3.63 P mg·L-1; 5 = 36.81 N mg·L-1/6.77 P mg·L-1; 1 
mg·L-1 = 1 ppm. 
*, ** Mean separation by t test comparing N and P in shoots and roots within species at 
each treatment level with significant differences at P ≤ 0.05 and P ≤ 0.01, respectively. 
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Table 2.3.  Nitrogen (N) and phosphorus (P) concentration and content of shoots and 
roots of seven aquatic garden plants grown for eight weeks in a laboratory scale wetland 
(continued). 
 

Concentration Content Treatment 
levelz N P N P 

 shoots roots shoots roots  shoots roots shoots roots 
 ------------------(mg·g-1)-------------------- --------------------------(mg)---------------------- 

Eleocharis dulcis 
1 6.68 6.58 1.93** 1.23  54.12 42.68 14.90* 8.29 
2 6.61 6.73 1.82** 1.26   60.42 50.48  16.08  10.36 
3 7.69 7.50 1.88** 1.38  84.91 65.02 20.77 13.19 
4 8.73 8.63 2.03 1.75  101.24 76.76 24.09 17.18 
5 12.93* 10.29 2.35 2.28  169.40** 83.08 31.34* 20.00 

Louisiana Iris hybrid ‘Full Eclipse’ 
1 9.13 9.30 1.38* 1.09  109.02** 9.31 16.50** 1.07 
2 10.15 10.47  1.53 1.37  108.69** 11.56  16.82** 1.56  
3 12.22 11.05 1.76 1.64  148.38** 17.31  21.63** 2.60 
4 15.53** 11.76 2.22 1.97  193.50** 19.78 27.06** 3.25 
5 19.81** 16.12 2.89** 2.32  286.91** 33.97 42.04** 4.89 

Peltandra virginica 
1 11.46* 9.03 2.11 1.96  32.17 71.63** 5.60 14.970** 
2 13.56** 8.98 2.23 2.13  40.15 86.02** 6.53 20.200** 
3 14.94** 9.96 2.48 2.33  50.61 81.80 8.22 18.343** 
4 16.97** 11.65 2.86 2.77  76.78 121.02** 12.45 28.752** 
5 19.17** 12.59  2.94 2.89  126.27 138.52 19.39 32.491** 

Pontederia cordata ‘Singapore Pink’ 
1 9.93 9.28 1.43** 0.91  54.67** 29.43 7.88** 2.90 
2 9.12 8.70 1.43** 0.90  47.70** 30.79  7.46** 3.20  
3 10.98** 9.20 1.69** 0.95  78.50** 47.96 12.10** 4.98 
4 13.48** 10.05 2.11** 1.07  124.78** 55.32 19.40** 6.00 
5 18.13** 12.80  2.88** 1.52  284.85** 88.65 45.16** 10.51 

z1 = 0.39 N mg·L-1/0.07 P mg·L-1; 2 = 1.75 N mg·L-1/0.18 P mg·L-1; 3 = 10.44 N mg·L-

1/1.86 P mg·L-1; 4 = 21.57 N mg·L-1/3.63 P mg·L-1; 5 = 36.81 N mg·L-1/6.77 P mg·L-1; 1 
mg·L-1 = 1 ppm. 
*, ** Mean separation by t test comparing N and P in shoots and roots within species at 
each treatment level with significant differences at P ≤ 0.05 and P ≤ 0.01, respectively. 
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DeBusk et al. (1995) reported that water canna (Ca. flaccida Salisb.) and Pe. virginica 

receiving “enriched” (75.7 mg·L-1 N, 29.2 mg·L-1 P) and “unenriched” (9.7 mg·L-1 N, 1.7 

mg·L-1 P) dairy wastewater accumulated concentrations of N and P that were similar to 

those accumulated by the hybrid cannas and Pe. virginica in our study.  Both N and P 

concentrations for Pe. virginica were within the range of natural stands growing in a tidal 

freshwater marsh in Virginia (Chambers and Fourqurean, 1991). 

 The concentration of P in Po. cordata from the DeBusk et al. (1995) study was 

within the range we found for Po. cordata ‘Singapore Pink’; however, their highest N 

tissue concentration (25.7 mg·L-1 N) was less than our highest N concentration (30.9 

mg·L-1 N).  In contrast, a pond community of Po. cordata in South Carolina had much 

lower N concentrations (Boyd, 1975), but P concentrations were comparable to that 

accumulated in our 1.86 mg·L-1 P treatments levels.  Nitrogen concentration of Po. 

cordata ‘Singapore Pink’ at our highest treatment level was comparable to that found for 

Po. cordata in a gravel-soil subsurface-flow constructed wetland treating restaurant and 

resort wastewater in Nairobi, Kenya (Nyakang'o and Van Bruggen, 1999).  The four-fold 

higher P concentration measured by Nyakang'o and Van Bruggen was likely due to the 

greater P composition in their effluent. 

 Nitrogen and P concentrations for Eleocharis dulcis were lower than the 

concentrations for a natural stand of E. quandrangulata ([Michx.] Roem. & J. Schult.) in 

South Carolina (Boyd, 1975), but within the range of E. acuta R. Br., E. philippinensis 

Svenson, and E. sphacelata R. Br. growing in a constructed wetland in Australia 

(Greenway and Woolley, 1999). 
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N and P Content 
 
 Total nitrogen content/plant [plant dry weight x tissue N concentration] was 

greater in canna roots than shoots at the lower N treatment levels.  At greater 

concentrations there was more N in shoots than roots.  Canna ‘YKH’ exhibited this 

change in sink strength with roots containing nearly 46% more N than shoots at the 

lowest N treatment level; however, shoots contained 36% more N than roots at the 

greatest N treatment level.  Leaf sink strength may have been compromised by N-

deficiency as manifested by the chlorotic older leaves and stunted growth.  Canna 

apparently was not adapted to low levels of nutrients in water, which is similar to 

Phragmites australis (Romero et al., 1999).  Colocasia reacted similarly and contained 

64% less N in the shoots at the lowest N treatment level, but it stored 57% and 70% more 

N in shoots than in roots at the two greatest N treatment levels, respectively. 

 Iris and Pontederia shoots had more N content than roots at every N treatment 

level.  Greater than 90% of N was recovered in Iris shoots, in contrast to 61 to 76% of N 

found in Pontederia shoots.  Conversely, roots were the dominant sink for Peltandra, 

storing more than 50% of the N at every treatment level, which was similar to the 

response of Phragmites australis growing in a subsurface-flow constructed wetland in 

New South Wales, Australia (Huett et al., 2005). 

 Canna ‘YKH’ contained 64 to 72% more P in roots than in shoots at 

concentrations ≤ 1.86 mg·L-1 P.  There were no statistical differences at the two greatest P 

concentrations, although the trend indicated an increase in shoot P with increasing P 
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levels.  Canna ‘BT’ responded similarly in shoot and root P content with 40% more P in 

shoots than in roots at the greatest P treatment level. 

 Phosphorus contents of Iris and Pontederia at every treatment level were ≥ 90% 

and ≥ 70%, respectively, in shoots. Pontederia was the only species that concentration 

and content followed identical trends.  Peltandra had ≥ 63% P in roots at every treatment 

level.  Phosphorus content of Colocasia shoots exceeded roots only at the two greatest P 

treatment levels.  

 Direct comparisons of N and P recoveries with other studies are confounded due 

to different retention times, water depths, initial nutrient concentrations, plant densities, 

and harvesting regimens.  However, our results support the sustainable approach of using 

aquatic garden plants in constructed wetlands to absorb N and P from wastewater versus 

using traditional obligate wetland plants, especially those with the potential for becoming 

invasive. 

 According to Tanner (1996), plants used in constructed wetlands should be 

tolerant of waterlogged conditions, have rapid propagation rates, establish rapidly, and 

have a high pollutant removal capacity.  All of the taxa in our study except for Eleocharis 

satisfied these requirements.  The low N and P recovery rates of Eleocharis, along with 

its hollow stems, which are prone to breaking, negate its usefulness to remediate nursery 

and greenhouse runoff.  All other species showed promise in remediation/production 

systems.  For example, plants with highly efficient N and P recovery rates, such as 

Pontederia and Iris can be placed at the discharge end of constructed wetlands.  Cannas 

are best sited near the inflow end of constructed wetlands because they assimilate high N 
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and P concentrations.  Additionally, cannas are well-suited for subsurface-flow 

constructed wetlands because of their ability to “process” high volumes of nutrient-rich 

water, which reduces the amount of effluent that has to be discarded.  This, however, 

reduces the availability of recycled wetland-treated water for irrigation, which is an 

important water conservation practice. 

 Besides commercial floriculture and nursery production, these attractive species 

have the potential to be used in retention ponds and rain gardens to capture and filter 

runoff in commercial and residential landscapes and golf courses.  Of growing 

international interest are “natural swimming pools” that rely on potted, gravel-grown 

aquatic plants to maintain water quality by absorbing nutrients and supporting microbial 

growth (Dunnett, 2005; Kingsbury, 2006). 

 Further work needs to be done to determine hydraulic loading rates and retention 

times, and species-specific tolerance of pesticides to allow nursery and greenhouse 

producers with limited growing space to customize their remediation/production areas.  

Also, research is needed with pilot scale constructed wetlands to determine the effects of 

various mono- and polycultural plant densities on nutrient recovery, propagation and 

production, and marketable plant quality.  
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CHAPTER III 
 

DIFFERENTIAL NITROGEN AND PHOSPHORUS RECOVERY BY FIVE 
AQUATIC GARDEN SPECIES IN LABORATORY-SCALE SUBSURFACE 

CONSTRUCTED WETLANDS 
 
 

Abstract 
 

 Intensive production of container-grown nursery and greenhouse crops in soil-less 

substrate may result in significant leaching of nutrients and pesticides.  The resulting 

runoff can escape from production areas and negatively impact surface and ground water.  

Constructed wetlands (CWs) have been shown to be a simple, low-technology method for 

treating agricultural, industrial, and municipal wastewater.  We investigated the nitrogen 

(N) and phosphorus (P) removal potential by a vegetated, laboratory-scale subsurface 

flow (SSF) CW system.  Over an eight-week period five commercially available aquatic 

garden plants received a range of N and P (0.39 to 36.81 mg•L-1 N and 0.07 to 6.77 

mg•L-1 P) that spanned the rates detected in nursery runoff.  Whole plant dry weight was 

positively correlated with N and P supplied.  Highest N and P recovery rates were 

exhibited by Thalia geniculata f. rheumoides Shuey and Oenenathe javanica (Blume) 

DC.  ‘Flamingo.’ Phyla lanceolata (Michx.) Greene also had high P recovery rates.  The 

potential exists for using SSF CWs to concomitantly produce aquatic garden plants and 

attenuate nutrients in a sustainable nursery enterprise. 

 
Introduction 

 
 Container production in nursery and greenhouse operations using soilless media 

involves inputs of fertilizers, growth regulators, insecticides, and fungicides.  Repeated 
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excessive irrigation leads to leaching and loss of nutrients and chemicals in runoff.  The 

presence of nutrients in runoff and concerns of their impact on surface and groundwater 

quality has undergone increasing interest and scrutiny from the public, environmental 

groups, governmental agencies, and elected officials.  Since its enactment the U. S. 

Environmental Protection Agency (EPA) has enforced provisions of the Clean Water Act 

(1972) related to point-source pollution.  In 1999, EPA began enforcing the nonpoint 

source pollution controls specified in section 303(d) of the Clean Water Act, which 

mandates that all states implement a Total Maximum Daily Load (TMDL) program for 

all watersheds and bodies of water (U. S. EPA, 2000).  A TMDL as defined in Section 

303(d)(1)(C) of the Clean Water Act is the maximum amount of pollutant that a 

waterbody can receive from point and nonpoint sources and still maintain its designated 

use and value (e.g., drinking water, fish and wildlife habitat, recreation, etc.).  The Clean 

Water Act (U. S. EPA, 1994) lists N and P as potential pollutants of impaired water 

bodies.  Offsite movement of nitrate-nitrogen (NO3
-) and soluble reactive phosphate 

(H2PO4
-, HPO4

2-, and PO4
3-) from nursery and greenhouse operations may lead to excessive 

algal and aquatic plant growth in surface waters, resulting in accelerated eutrophication.  

In general, freshwater systems are P-limited and more prone to P inputs, while N often 

limits primary production in estuarine and marine environments (Carpenter et al., 1998).  

 The maximum contaminant level for NO3
-
 in drinking water is 10 mg•L-1 

(National Academy of Sciences, 1977).  No federal limits on P contamination in 

freshwater have been established due to variations in size, hydrology, and depth of rivers 

and lakes, and regional differences in P impacts.  However, U. S. EPA recommends that 



 79 

total P not exceed 0.05 mg•L-1 in any streams discharging into lakes or reservoirs and 

0.10 mg•L-1 in streams or other flowing waters that do not (U. S. EPA, 1986). 

 Fertigation runoff in greenhouse crop production can contain 100 mg•L-1 NO3-N 

(Wood et al., 1999).  In nursery crop production, nursery runoff NO3-N concentrations 

range from 0.1 to 135 mg•L-1 (Alexander, 1993; Taylor et al., 2006; Yeager, et al., 1993) 

and P levels from 0.01 to 20 mg•L-1 P (Alexander, 1993; Headley et al., 2001; James, 

1995; Taylor et al., 2006).  These cited N and P runoff ranges could be higher or lower in 

other nursery and greenhouse crop production systems. 

 Recently TMDLs of nutrients in agricultural runoff were adopted by 

environmental regulatory agencies in every state (Yeager, 2006).  This follows a trend 

where state governments have been passing more stringent laws and regulations assessing 

and regulating nonpoint sources of pollutants beyond the scope of the provisions of the 

Clean Water Act. 

 CWs have been promoted as an inexpensive, low-technology approach to comply 

with increasingly stringent environmental regulations regarding the discharge of nonpoint 

source pollutants in greenhouse and nursery production (Arnold et al., 1999; Berghage et 

al., 1999).  Surface-flow (SF) and SSF CWs are two commonly used wetland designs to 

treat agricultural wastewater (Berghage et al., 1999; Scholz and Lee, 2005).  A SF CW 

resembles a shallow (0.2-0.8 m) freshwater marsh and generally requires a large land area 

for wastewater treatment (Kadlec and Knight, 1996).  To remediate nursery and 

greenhouse wastewater, surface area can be reduced with a concomitant increase in depth 

(~1.25-1.5 m), which promotes anaerobic conditions that facilitate denitrification. 
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 Alternatively, greenhouse and nursery operations constrained by limited 

production space and expensive land can use a SSF CW, which consists of a lined or 

impermeable basin filled with a coarse medium, typically gravel, and wetland plants 

(Hunter et al., 2001; Kadlec and Knight, 1996).  Wastewater flows horizontally or 

vertically below the surface of the media to prevent exposure to humans or wildlife.  SSF 

CWs can be operated in continuous-flow or batch-load treatment modes with varying 

hydraulic residence times (Burgoon et al., 1995). 

 Nitrogen removal from SSF CWs is accomplished primarily by denitrification and 

plant uptake (Vymazal, 2007).  Inorganic or organic P, which has no valency changes 

during its biotic assimilation or microbial decomposition, is mainly removed via 

microbial and plant uptake (Vymazal, 2007).  Roots and rhizomes support rhizospheric 

microorganisms by providing colonizing sites, exuding carbohydrates, sugars, amino 

acids, enzymes, and many other compounds (Rovira, 1969), and oxidizing the 

rhizosphere (Wießner et al., 2002), which fosters microbial activity. 

 One of the many factors that control the efficiency of nutrient and bacterial 

removal in wetlands is vegetation type (Hammer, 1989).  Wetland plants have species-

specific efficiencies regarding their abilities to aerate water, grow within the constraints 

of the wetland environment, and remove nutrients and heavy metals (Maschinski, et al., 

1999).  Previously studied aquatic emergent plants for CWs include reed canarygrass 

(Phalaris arundinacea L.), common reed (Phragmites australis  [Cav.] Trin. Ex Steud.), 

reed mannagrass (Glyceria maxima [Hartman] Holmb.), softstem bulrush 

(Schoenoplectus tabernaemontani [C. C. Gmel.] Palla), yellow flag (Iris pseudacorus L.), 



 81 

and cattail (Typha spp. L.) (Ansola et al., 1995; Hunter et al., 2001; Wolverton et al., 

1983).  They have not been widely used because of their potential invasiveness.  

Additionally, their high rates of biomass production necessitates periodic harvesting to 

prevent the seasonal export of nutrients, particularly P via vegetative decomposition 

(Hunter et al., 2001). 

 In this study we investigated a cost-effective approach suggested by Adler et al. 

(2003):  “One way to reduce water treatment costs is to produce a product of value 

concomitant with treatment of the water.”  Instead of traditional wetland plants, 

commercially available aquatic garden plants can be used in a production/remediation 

system that could generate revenue.  Few studies have examined the ability of aquatic 

garden plants to thrive in SSF CWs and recover nursery runoff rates of nitrogen and 

phosphorus (Arnold et al., 1999; Holt et. al, 1999; Arnold et al., 2003).   

 In an earlier study, we investigated the potential of 7 aquatic garden plants to 

assimilate N and P in a laboratory scale, gravel-based SSF CW system (Polomski et al., 

2007).  Louisiana Iris hybrid ‘Full Eclipse’ exhibited the highest N recovery rate, while 

similar P recovery rates were observed in Canna ‘Bengal Tiger,’ Canna ‘Yellow King 

Humbert,’ Iris ‘Full Eclipse,’ Peltandra virginica (L.) Schott, and Pontederia cordata L. 

‘Singapore Pink’ (Polomski et al., 2007).  Our objective was to investigate five additional 

commercially available aquatic herbaceous emergent garden plants—three upright and 

two creeping—for their ability to thrive and recover N and P in a laboratory scale 

wetland system that approximated a SSF CW. 
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Materials and Methods 
 

 Experimental procedures were similar to those described by Polomski et al. 

(2007); however, an abbreviated description follows with an emphasis on the 

experimental setup and nutrient solution treatments. 

 
Plant Culture 
 
 This greenhouse study was conducted from 2003-2004 in Clemson University's 

Biosystems Research Complex (lat. 34o N, Clemson, SC, US).  Five herbaceous emergent 

aquatic plants were chosen for their aesthetic features and commercial availability (Table 

3.1).  Divisions of miniature cattail (Typha minima Hoppe), Rhyncospora colorata (L.) 

H. Pfeiffer and Oenanthe javanica ‘Flamingo’ were separated from stock plants 

(Charleston Aquatic Nursery, Johns Island, SC).  Micropropagated plantlets of Thalia 

geniculata f. rheumoides were purchased from a commercial tissue culture lab (Agri-

Starts II, Apopka, FL).  Phyla lanceolata (Charleston Aquatic Nursery) was rooted from 

7.6 to 10.2 cm long stem cuttings and then individual plants were transplanted into 15-cm 

diameter containers containing a peat/vermiculite growing substrate (Fafard Germination 

Mix, Fafard Inc., Anderson, SC).  Plants were maintained on the greenhouse bench in 

water-filled plastic-lined trays and watered and fertilized as needed. 

 The laboratory subsurface treatment wetland was simulated by two polyethylene 

containers:  a 16.5-cm. diameter “azalea” container filled with pea gravel and placed 

inside a 16.7-cm diameter aquatic container (2.8-L container with no drainage holes) so 

their rims were even.  An equilibrium isotherm experiment indicated no detectable P-

adsorption by the pea gravel (Polomski et al., 2007). 
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Table 3.1.  Species, family, cold hardiness, and description of five commercially 
available aquatic garden plants examined for their ability to recover runoff rates of N and 
P (Speichert and Speichert, 2004; USDA, NRCS, 2007; eFloras.org, 2007). 
 

 
 
 

Species 

 
 
 

Family 

USDA 
Cold 

hardiness 
zone 

 
 
 

Description 
Oenenathe 
javanica 
‘Flamingo’ 

Apiaceae 5-11 Low-growing Korean native, rainbow 
water parsley has aromatic pink, white, and 
green leaves with the aroma of parsley, and 
grows 15 cm high.  White umbels emerge 
in summer through fall. 

    
Phyla 
lanceolata 

Verbenaceae 5-11 Creeping North American native, lanceleaf 
frogfruit grows 5-10 cm high, tolerates 
light foot traffic, and produces tiny white 
flowers that fade to yellow and then pink; 
foliage turns reddish-pink in autumn. 

    
Rhyncospora 
colorata 

Cyperaceae 8-11 Native to North America, white-top sedge 
grows 30-61 cm tall and produces white 
starlike flowers. 

    
Thalia 
geniculata f. 
rheumoides 

Marantaceae 8-11 Widely distributed in parts of the Americas 
and W. Africa, red-stemmed alligator flag 
has reddish-purple petiole, sheath, and 
pulvinus and bears long arching flower 
spikes of silvery-purple flowers; grows 0.6 
to 3 m tall and 0.6-1.8 m wide. 

    
Typha minima Typhaceae 3-9 Native to parts of the Middle East and 

central Asia, miniature cattail reaches a 
garden height of 30-46 cm; brown marble-
sized catkins rise above its 3-6 mm wide 
blue-green leaves. 

 
 
 Two to four weeks prior to the start of an experiment, 40 to 50 plants of each 

species or cultivar were removed from their containers, their roots washed free of 

substrate, weighed, and transplanted into gravel-filled azalea containers.  Single plantlets 
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of Thalia, Oenanthe, and Phyla and 3 each of Rhyncospora and Typha were planted in 

each container.  After placing the azalea inside the aquatic container, ~1.35 L of a 10% 

modified Hoagland’s solution (21.57 mg•L-1 N and 3.63 mg•L-1 P) (Hoagland and Arnon, 

1950) was added until water appeared at the gravel surface.  During acclimation plants 

were watered every two or three days to maintain water levels just below the gravel 

surface. 

 Average daily temperatures, relative humidity, and daily light integral are listed in 

Table 3.2.  A 16-h photoperiod was maintained during the winter months with 1000 W 

metal halide lights. 

 
Treatments 
 
 Five treatment levels of a modified Hoagland’s solution (“solution 1” using NO3-

N) contained the following mean concentrations of N and P (mg•L-1):  (1) 0.39 N; 0.07  

P; (2) 1.75 N; 0.18 P; (3) 10.44 ; 1.86 P; (4) 21.57 N; 3.63 P; and (5) 36.81 N; 6.77 P.  

These concentrations encompassed the typical range of nutrients found in constructed 

wetland discharge and nursery runoff, and used in nursery irrigation.  The initial pH of 

the nutrient solution was adjusted to 6.2 with 6 N H2SO4. 

 At the start of the experiment, 30 acclimatized plants were removed from their 

aquatic containers, flushed with deionized water, and then returned to the aquatic 

containers that had been emptied and rinsed with deionized water.  The appropriate 

treatment solution was batch-loaded into the containers with plants until it was visible at  
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Table 3.2.  Experiment dates and selected environmental variables (mean ± SE) for the 
two replicates of each species conducted in the Biosystems Research Complex 
greenhouses, Clemson University, Clemson, SC. 
 

 Experiment 1 Experiment 2 
 
 

Species 

 
Temperature 

(oC) 

Relative 
Humidity 

(%) 

Daily light 
integral  

(mol·m-2·d-1) 

 
Temperature 

(oC) 

Relative 
Humidity 

(%) 

Daily light 
integral  

(mol·m-2·d-1) 
 17-July-03 to 11-Sep-03 24-Oct-03 to 18-Dec-03 
Oenenathe 
javanica 
‘Flamingo’ 

27.4 ± 0.1 72.9 ± 0.5 21.7 ± 0.5 22.9 ± 0.2 58.3 ± 1.1 10.6 ± 0.6 

 22-Jan-04 to 17-Mar-04 20-Jan-04 to 16-Mar-04 
Phyla 
lanceolata 

22.3 ± 0.2 48.6 ± 1.4 11.8 ± 0.9 22.2 ± 0.2 48.6 ± 1.3 11.6 ± 0.9 

 12-Sep-03 to 6-Nov-03 28-Oct-03 to 23-Dec-03 
Rhyncospora 
colorata 

24.6 ± 0.2 61.7 ± 1.1 15.9 ± 0.8 22.2 ± 0.2 51.7 ± 1.5 12.0 ± 0.7 

 17-Sep-03 to 13-Nov-03 18-Sep-03 to 14-Nov-03 
Thalia 
geniculata f. 
rheumoides 

24.3 ± 0.2 60.9 ± 1.2 17.2 ± 0.9 24.3 ± 0.2 61.0 ± 1.2 17.0 ± 0.9 

 22-Jul-03 to 15-Sep-03 28-Oct-03 to 23-Dec-03 
Typha minima 27.2 ± 0.1 72.2 ± 0.6 21.3 ± 0.5 22.8 ± 0.3 57.2 ± 1.1 10.8 ± 0.6 
 
 
the gravel surface.  Six containers without plants (gravel only) received 10.44 and 1.86 

mg·L-1 N and P, respectively.  Thereafter, nutrient solution was supplied every two days 

to maintain the water level at the gravel surface.   

Containers were arranged in a randomized complete block design with 6 replicates.  

Experiments were repeated twice for each species during the time periods listed in Table 

3.2. 
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Data Collection 
 

During the course of each experiment the volume of nutrient solution supplied to 

each wetland unit was recorded over the eight-week period.  When the experiment was 

terminated, the above- and below-ground portions of each plant were severed at the 

gravel surface and weighed.  The below-ground portions, which included roots that had 

grown through the drainage holes of the gravel-filled azalea containers were placed over 

a screen and washed with tapwater, rinsed with distilled water, and then weighed.  Dried 

roots and shoots (80 ºC to constant dry weight) were ground separately in a Wiley® Mill 

(Thomas Scientific, Swedesboro, NJ) to pass through a 40-mesh (0.425-mm) screen.  N 

and P tissue concentrations were determined as described by Polomski et al. (2007).  To 

normalize differences in nutrient concentrations as a result of growth differences between 

treatments, N and P plant tissue nutrient content was calculated by multiplying plant part 

dry weight by nutrient concentration.  Whole plant N and P content was derived by 

adding above- and below-ground mineral content. 

 The water that remained in the aquatic containers was sampled and stored at 4 ºC 

until anion analysis with a Dionex AS50 IC with AS50 autosampler (Dionex Corp., 

Sunnyvale, CA) to determine the percentage of recovered nutrient ([mg N or P supplied – 

mg nutrient remaining in solution ÷ mg N or P supplied] x 100). 

 
Statistical Analysis 
 
 Data from repetitions of the experiments were pooled because analysis of 

variance (ANOVA) indicated no significant treatment interactions with replication and 

block.  Regression analyses were performed for each species to describe changes in 
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biomass and nutrient recovery relative to N or P supplied.  The analysis indicated 

significant slope for biomass and nutrient uptake efficiency (i.e., the proportion of 

nutrient applied that is assimilated by the plant) for each species.  Comparison of slopes 

among the species was accomplished using linear contrasts and F tests.  Differences 

between shoot and root concentration means and content means were determined by 

Student’s t tests.  All analyses were performed with SAS (version 9.1 for Windows; SAS 

Institute, Cary, NC), and all tests were conducted with α = 0.05. 

 
Results and Discussion 

 
Biomass Production  
 
 Growth rates increased linearly and were highly correlated with levels of N and P 

supplied (Figure 3.1A and B).  Thalia was supplied with greater amounts of N and P than 

the other species due to its higher evapotranspiration rate.  Higher quantities of nutrients 

resulted in the highest rate of dry weight accumulation.  Rhyncospora received the least 

amount of N and P over the eight-week period and had the lowest growth rate compared 

to Thalia, Phyla, and Oenanthe (Figure 3.1A and B).  Gravel-only containers receiving 

10.44 and 1.86 mg·L-1 N and P, respectively, were supplied with 62 to 86% less N and 52 

to 86% less P than planted containers receiving the same level of N and P (data not 

presented).  Although Oenanthe and Phyla received nearly equal amounts of N and P, 

Phyla exhibited a higher growth rate than Oenanthe.  When supplied with the two lowest 

treatment levels of N and P, all species exhibited visual deficiency symptoms that 

included spindly growth and chlorotic, senescent older leaves.  Symptoms were more 

pronounced in Thalia than in the other four species. 
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Figure 3.1.  The effect of N (A) and P (B) on whole plant dry weight of 5 greenhouse-
grown containerized aquatic garden plants over an eight-week period.  Five 
concentrations of modified Hoagland’s solution (N and P [mg•L-1]:  (1) 0.39 N; 0.07  P; 
(2) 1.75 N; 0.18 P; (3) 10.44 ; 1.86 P; (4) 21.57 N; 3.63 P; and (5) 36.81 N; 6.77 P) were 
initially batch-loaded and then supplied every two days to maintain the water level at the 
gravel surface.  Vertical bars = ± SE.  Data points are the means of 12 plants.  Slopes of 
the regression lines were compared using linear contrasts and F tests; species with 
different letters have significantly different slopes (P ≤ 0.05). 
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Nitrogen and Phosphorus Recovery 
 
 Nitrogen and P recovery rates were determined by comparing the amount of N or 

P supplied and assimilated in whole plant tissues to an optimal recovery rate where all N 

or P supplied was recovered in the tissues.  Nitrogen and P content of whole plant tissues 

increased linearly and was highly correlated with the amount supplied to each species 

(Figure 3.2A and B).  Nitrogen recovery rate of Thalia and Oenanthe was similar to the 

optimal recovery rate of N.  Their N assimilation rates were higher than Phyla and 

Rhyncospora (Figure 3.2A).  Typha had the lowest N recovery rate (Figure 3.2A), 

contrary to previous research on cattail species (Typha latifolia L., T. angustifolia L., T. 

orientalis L., and T. domingensis Pers.) in CWs (e.g., Scholz and Lee, 2005).  Our N 

source may have affected uptake by Typha, since NH4
+ is the predominant form of 

inorganic N in acidic, waterlogged, wetland soils (Mitsch and Gosselink, 2007).  

However, Typha orientalis showed no preference for N source in a hydroponics study 

with four different N sources (2 to 20 mg/L of NO3
-, NH4

+, NH4NO3
-, and urea) (Cary et 

al., 1984).  T. latifolia produces optimal growth with either NH4
+ or NO3

- at pH 5.0-7.0 

(Brix et al., 2002).  With NH4
+ T. latifolia has a higher relative growth rate, greater tissue 

concentration of major nutrients, greater content of adenine nucleotides, and a higher 

affinity for inorganic N uptake than with NO3
-.  Maximum uptake rate (Vmax) was highest 

for NH4
+ at pH 6.5 and at pH 5.0 for NO3

- (Brix et al., 2002). 

 None of the species had P assimilation rates that were similar to the optimal P 

recovery rate (Figure 3.2B).  Thalia received more P than the other species and had the 

highest P recovery rate, followed by Oenanthe and Phyla (Figure 2.2B). 
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Figure 3.2.  Nitrogen (A) and phosphorus (B) recovered in whole plant tissues of five 
greenhouse-grown aquatic garden species over an eight-week period.  Five 
concentrations of modified Hoagland’s solution (N and P [mg•L-1]:  (1) 0.39 N; 0.07  P; 
(2) 1.75 N; 0.18 P; (3) 10.44 ; 1.86 P; (4) 21.57 N; 3.63 P; and (5) 36.81 N; 6.77 P) were 
initially batch-loaded and then supplied every two days to maintain the water level at the 
gravel surface.  Vertical bars = ± SE.  Data points are the means of 12 plants.  The dashed 
line represents an ideal 100% recovery rate.  Slopes of the regression lines were 
compared using linear contrasts and F tests; species with different letters have 
significantly different slopes (P ≤ 0.05). 
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Rhyncospora had the lowest P recovery/assimilation rate compared to Thalia, Oenanthe, 

and Phyla (Figure 3.2B). 

 Compared to a similar study with seven other aquatic garden species (Polomski et 

al, 2007), Thalia, Rhyncospora, and Oenanthe had N recovery rates similar to Louisiana 

iris hybrid ‘Full Eclipse’ and Pontederia cordata L. ‘Singapore Pink.’  P recovery rates 

of Thalia were similar to Canna ‘Bengal Tiger,’ Peltandra virginica (L.) Schott, and 

Pontederia cordata ‘Singapore Pink.’ 

 There were no differences between species or treatment levels in the 

concentration of N and P remaining in the containers at harvest.  Less than 4 and 7% of 

the original amount of N and P supplied to the plants, respectively, was detected in the 

remaining solution (data not shown).  Of the original amount of N and P supplied to 

gravel-only containers, 37 to 53% N and 27 to 54% P remained (data not shown).  These 

findings were consistent with other studies that showed an improvement in nutrient 

removal when plants were present in SSF wetlands (Jing et al., 2002; Huett et al., 2005). 

 Depletion of P in the gravel-only containers could have resulted from assimilation 

by the thin film of algae present near the gravel surface and from biofilm--single cells or 

pools of microorganisms embedded in a matrix of microbial-derived polymers attached to 

the gravel substrate (Zhang and Bishop, 1994).  Phosphorus precipitation was highly 

unlikely because the pH was not alkaline enough (mean pH of 7.1).  Nitrogen depletion 

may have occurred via denitrification processes.   
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Nitrogen and Phosphorus Concentration   
 

To characterize differences in N and P tissue accumulation among species, we 

reported concentration of tissue nutrients in accordance with typical wetland plant 

nutrient uptake and mass balance studies.  Nitrogen concentration in roots exceeded the 

amount in shoots at every level of N supplied for Phyla (Table 3.3).  A similar trend was 

observed with Oenanthe at concentrations < 21.57 mg•L-1 N.  However, at the highest 

treatment level, N concentration was comparable between roots and shoots (Table 3.3).  

Similar results were reported for Oenanthe javanica receiving 16.8 mg•L-1 and 33.6 

mg•L-1 N in sand culture (Wang et al., 2002) and Oenanthe sarmentosa sampled from 

agricultural drainage waterways in central California (Rejmankova, 1992).  Similar to 

Oenanthe sarmentosa, more biomass was allocated in O. javanica to the aboveground 

than belowground plant parts with increasing levels of nutrients (data not presented).  

This preferential allocation of nutrients to belowground parts rather than aboveground 

parts in response to reduced nutrient status commonly occurs in plants growing in 

infertile habitats (Chapin III, 1980). 

 Typha and Thalia had higher N concentration in the shoots than the roots at levels 

≥ 0.39 and ≥ 1.75 mg•L-1 N, respectively, similar to the trend that Canna ‘Yellow King 

Humbert,’ Colocasia esculenta (L.) Schott var. antiquorum (Schott) Hubbard & Rehd. 

‘Illustris,’ and Peltandra virginica exhibit (Polomski et al., 2007).  Phosphorus 

concentration in Thalia and Phyla was highest in shoots at every treatment level, whereas 

the highest P concentration in Typha was in roots at every treatment level. 

Contrary to Typha minima, N concentration of T. angustifolia roots and rhizomes 



 93 

Table 3.3.  Nitrogen (N) and phosphorus (P) concentration and content of shoots and 
roots of five aquatic garden plants grown for eight weeks in a laboratory scale wetland 
and receiving 5 treatment levels of N or P from a modified Hoagland’s nutrient solution.  
Values are means of 12 plants.  Treatments were initially batch-loaded and then supplied 
every two days to maintain the water level at the gravel surface. Refer to Appendix B for 
other mineral concentrations. 
 

Concentration Content Treatment 
levelz N P N P 

N P shoots roots shoots roots  shoots roots shoots roots 
(mg·L-1) ------------------(mg·g-1)--------------------------- -----------------------------(mg)-------------------------------------- 

Oenanthe 
 
 
 
 

0.39  0.07 10.30 11.88** 1.63 1.48  29.826** 11.667 5.100** 1.552 
1.75  0.18 10.22 11.91** 1.69* 1.42  35.267** 12.885 6.136** 1.596 

10.44  1.86 11.43 14.54** 1.80 2.04  79.857** 16.443 12.666** 2.133 
21.57  3.63 14.82 16.13* 2.23 2.01  149.792** 26.137 22.609** 3.222 
36.81  6.77 21.12 21.83 3.28** 2.40  320.046** 36.374 48.832** 3.938 

Phyla 
0.39  0.07 7.30 9.49** 1.69* 1.46  41.507** 16.969 9.679** 2.576 
1.75  0.18 6.60 10.30** 1.67** 1.30  47.576** 20.341 11.313** 2.596 

10.44  1.86 8.32 11.65** 1.70** 1.30  80.199** 22.128 16.059** 2.498 
21.57  3.63 9.13 12.89* 1.70** 1.42  153.663** 28.997 28.624** 3.234 
36.81  6.77 11.58 15.55** 2.03** 1.82  283.853** 43.879 49.542** 5.089 

Rhyncospora 
0.39  0.07 7.10* 5.63 0.85 1.05  37.190** 21.826 4.486 4.045 
1.75  0.18 7.76** 5.58 0.98 1.12  36.185** 19.810 4.570 3.999 

10.44  1.86 10.02** 7.44 1.29 1.32  68.229** 30.173 8.820** 5.294 
21.57  3.63 13.00 11.43 1.81 1.81  111.072** 44.491 15.514** 6.992 
36.81 6.77 18.03 21.46** 2.58 2.83  206.837** 79.698 29.594** 10.362 

Thalia 
0.39  0.07 6.83 6.48 0.89** 0.73  30.732** 19.312 3.986** 2.180 
1.75  0.18 6.77* 6.19 0.95** 0.71  35.124** 20.851 4.825** 2.387 

10.44  1.86 7.48** 6.10 1.06** 0.78  73.666** 36.541 10.407** 4.652 
21.57  3.63 8.58** 6.63 1.21** 0.89  133.335** 65.418 18.770** 8.793 
36.81 6.77 11.39** 8.45 1.80** 1.24  288.997** 119.308 45.192** 17.631 
*, ** Mean separation by t test comparing N and P in shoots and roots within species at 
each treatment level with significant differences at P ≤ 0.05 and P ≤ 0.01, respectively. 
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Table 3.3.  Nitrogen (N) and phosphorus (P) concentration and content of shoots and 
roots of five aquatic garden plants grown for eight weeks in a laboratory scale wetland 
and receiving 5 treatment levels of N or P from a modified Hoagland’s nutrient solution.  
Values are means of 12 plants (continued). 
 

Concentration Content Treatment 
level N P N P 

N            P shoots roots shoots roots  shoots roots shoots roots 
(mg·L-1) --------------(mg·g-1)------------- --------------------(mg)----------------------- 

Typha 
0.39 0.07 9.30** 6.60 1.19 2.00**  25.741 33.821* 3.255 10.397** 
1.75 0.18 9.87** 6.91 1.33 2.02**  27.903 31.925 3.707 9.454** 

10.44 1.86 11.85** 7.72 1.27 2.40**  45.246 41.752 4.888 13.213** 
21.57 3.63 14.80** 9.28 1.58 2.72**  89.575** 61.797 9.749 18.672** 
36.81 6.77 20.93** 13.04 2.23 4.00**  204.108** 91.845 21.514 28.708* 
 
*, ** Mean separation by t test comparing N and P in shoots and roots within species at 
each treatment level with significant differences at P ≤ 0.05 and P ≤ 0.01, respectively. 

 

(Steinbachova-Vojtiskova et al., 2006) and T. latifolia rhizomes (Cizkova-Koncalova et 

al., 1996) increases with increasing nutrient availability in contrast to shoots.  T. minima 

shoot N concentration was similar to T. angustifolia shoot N at comparable N treatment 

levels (Steinbachova-Vojtiskova et al., 2006); however, root and rhizome N 

concentration of T. angustifolia exceeded the concentration of Typha minima.  This 

discrepancy could be explained by the diminutive size of T  minima and the propensity of 

T. angustifolia to allocate resources to belowground structures, which contributes to its 

ability to thrive and compete in eutrophic habitats (Steinbachova-Vojtiskova et al., 2006).  

T. angustifolia shoot dry weight increases and root dry weight decreases with increasing 

nutrient availability (Steinbachova-Vojtiskova et al. (2006), similar to T. minima (data 

not presented). 
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 In natural stands of Typha latifolia from Aiken, SC (Boyd, 1978), whole plant N 

and P concentrations were 1.7- and 2.3-fold less, respectively, than those of Typha 

minima receiving the lowest treatment level in our study.  Boyd (1978) expected these 

concentrations to be 1.5 to 2 times higher if T. latifolia received nutrient-rich effluent. 

 Breen (1990) evaluated Typha orientalis in an experimental wetland system in 

Australia comprised of 10 L polytethylene buckets with gravel (3-7 mm diameter).  Mean 

influent nutrient concentration was 31.83 mg•L-1 total N and 11.47 mg•L-1 P during the 

50-day experiment.  Above- and belowground tissue N values of Typha orientalis was 

comparable to Typha minima at the 10.44 mg•L-1 N treatment level.  Phosphorus 

rhizome and root concentrations of Typha orientalis were similar to Typha minima at our 

highest P treatment level, but above-ground growth of Typha orientalis contained twice 

as much P as T. minima at our highest treatment level.  Cary and Weerts (1984) grew 

Typha orientalis for 7 weeks hydroponically and the nutrient solution was replaced every 

3.5 days. Top-growth N and P concentrations of T. orientalis receiving 40 mg•L-1 N and 

10 mg•L-1 P were similar to T. minima at our highest treatment level. 

 Rhyncospora shoots had a higher N concentration than roots at nutrient levels < 

10.4 mg•L-1 N, but N root concentration exceeded N shoot concentration at 36.8 mg•L-1 

N.  There were no differences in P between the shoots and roots of Rhyncospora at any 

treatment level.  No trend was observed with Oenanthe.  However, our P concentrations 

in Oenanthe shoots were within the range reported by Wang et al. (2002). 
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N and P Content 
 
 Nitrogen content of Oenanthe, Phyla, Rhyncospora and Thalia shoots was > 61% 

higher than roots at every N treatment level (Table 3.3).  Similar sink strength of shoots 

was reported for Louisiana iris ‘Full Eclipse’ and Pontederia cordata ‘Singapore Pink’ 

(Polomski et al., 2007).   

 Typha roots were a dominant N sink at 0.39 mg•L-1 N treatment level, containing 

57% more N in roots than shoots; however, at the two highest treatment levels, shoots 

stored 59% and 69% more N, respectively, than roots.  A similar change in sink strength 

with increasing levels of N was observed with two canna cultivars (Canna ‘Bengal Tiger’ 

and ‘Yellow King Humbert’) and Colocasia esculenta var. antiquorum ‘Illustris,’ 

(Polomski et al., 2007).  

 Phosphorus content of Oenanthe, Phyla, and Thalia was greater in shoots than 

roots at every treatment level.  Oenanthe and Phyla shoot P exceeded 86% in shoots at 

treatment levels ≥ 1.86 mg•L-1 P, similar to Louisiana iris ‘Full Eclipse,’ (Polomski et al., 

2007).  Thalia shoots contained between 65 and 69% more P compared to roots at every 

treatment level, similar to Pontederia cordata ‘Singapore Pink.’  P concentration and 

content followed identical trends in Thalia and Phyla at each treatment level, similar to 

Pontederia ‘Singapore Pink’ (Polomski et al., 2007).  In contrast, Typha P root content 

followed a similar trend to P root concentration:  P root content was 57 to 61% greater 

than shoot P at every treatment level. 

 There were no statistical differences between Rhyncospora shoot and root P 

content at the two lowest treatment levels, but shoot P exceeded root P at treatment levels 
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≥ 1.86 mg•L-1 P.  This partitioning of P to shoots instead of roots with increasing levels 

of P was also observed in Canna ‘Bengal Tiger’ and Colocasia esculenta var. antiquorum 

‘Illustris’ (Polomski et al., 2007). 

 Taxa that preferentially allocate nutrients to aboveground biomass allow for the 

harvesting and removal of topgrowth.  Continuous and longterm removal of excess P 

from CWs can be ensured by regularly harvesting pollution-tolerant species (Jing et al., 

2001).  In nursery/greenhouse production systems, container-grown aquatic garden plants 

receiving runoff channeled into nutrient attenuation/production CW beds can also be 

“harvested” to remove nutrients from the system.  Removal of entire plants avoids P 

export to outflow and downstream environments from senescent, decomposing tissues 

(Hunter et al., 2001).  Plants with highly efficient N and P recovery rates such as Thalia 

and Oenanthe can be placed at the discharge end of a CW to “polish” the effluent.  Also, 

they can be located at the inflow end of CWs because of their ability to assimilate high N 

and P concentrations.  Thalia, Oenanthe, and Phyla may also be suited for SSF CWs in 

greenhouse production systems because of their ability to assimilate high volumes of 

nutrient-rich water, which reduces the amount of effluent that must be discarded.   

 The commercial value of aquatic garden plants offsets their production costs, 

which offers producers a sustainable, cost-effective and low maintenance remediation 

solution compared to conventional wastewater treatment technologies.  Their usefulness 

could be expanded to other phytoremediation applications depending on the outcome of 

additional research assessing their ability to assimilate pesticides (e.g., Fernandez et al., 

1999) and other anthropogenic pollutants (i.e., hydrocarbons, and metals) (e.g., Fritioff 
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and Greger, 2003).  The aesthetic features of aquatic garden plants create markets and 

opportunities in commercial and residential landscape applications, such as infiltration 

trenches (i.e., basins and rain gardens), retention ponds, and wet or dry detention basins. 

 Direct comparison of N and P recovery by the aquatic garden plants in this study 

with other investigations is precluded by differing hydraulic characteristics, such as 

retention time, water level depth, and wastewater loading, along with differences in 

species compositions and densities, media, and design and size of the systems.  

Nevertheless, the results support the use of aquatic garden plants as aesthetic and 

economically viable alternatives to traditional, obligate wetland plants in CWs and the 

need for further investigation to optimize species selection, cycling time, and production 

system design.   
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CHAPTER IV 
 

NITROGEN AND PHOSPHORUS REMEDIATION BY THREE FLOATING 
AQUATIC MACROPHYTES IN GREENHOUSE-BASED LABORATORY-SCALE 

SUBSURFACE CONSTRUCTED WETLANDS 
 
 

Abstract 
 

 In the greenhouse and container nursery production industry there is potential for 

runoff of nitrogen (N) and phosphorus (P), which may contaminate surface and 

groundwater.  Since the 1950s constructed wetlands (CWs), as a simple, low-technology 

method, have been shown to effectively treat agricultural, industrial, and municipal 

wastewater.  We investigated the N and P attenuating potential of three floating 

hydrophytes planted in a laboratory-scale subsurface flow (SSF) CW system.  Over an 

eight-week period plants were supplied with N and P (0.39 to 36.81 mg•L-1 N and 0.07 to 

6.77 mg•L-1 P) that spanned the rates detected in nursery runoff between the discharge 

and inflow locations of a commercial nursery currently employing CWs.  Whole plant 

dry weight was positively correlated with N and P supplied.  Highest N recovery rates 

were exhibited by water hyacinth (Eichhornia crassipes [Mart.] Solms.) and water lettuce 

(Pistia stratiotes L.)  P recovery rates were similar for water hyacinth, water lettuce, and 

dwarf redstemmed parrotfeather (Myriophyllum aquaticum [Vell.] Verdc.).  These floating 

hydrophytes can be cultivated in a SSF CW to remediate runoff losses of N and P.  The 

possibility exists for integrating them into a polycultural remediation system that includes 

emergent aquatic macrophytes for processing and polishing nursery/greenhouse 

wastewater. 
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Introduction 
 

 Irrigation of nursery and greenhouse container crops may lead to leaching and 

loss of fertilizers and other agricultural chemicals.  This can pose a threat to groundwater 

and result in surface water contamination.  Runoff containing nitrate-nitrogen (NO3
--N) 

and soluble reactive phosphate (H2PO4
-, HPO4

2-, and PO4
3-) may lead to excessive algal 

and aquatic plant growth in surface waters, resulting in accelerated eutrophication, 

primarily in freshwater streams, rivers, lakes, and reservoirs (Carpenter et al., 1998).  

 The U. S. Environmental Protection Agency (U. S. EPA) has established the 

maximum contaminant level for NO3
--N in drinking water to be 10 mg•L-1 (U. S. EPA 

1986).  No federal limits on P contaminant levels in freshwater exist; however, the U. S. 

EPA recommends that total P not exceed 0.10 mg•L-1 in streams or other flowing waters 

and 0.05 mg•L-1 in any streams that enter lakes or reservoirs (U. S. EPA 1986). 

 Greenhouse crop production may result in NO3-N runoff levels of 100 mg•L-1 

NO3-N (Wood et al. 1999).  Nitrate-nitrogen concentrations in nursery crop runoff can 

range from 0.1 to 135 mg•L-1 (Alexander 1993; Yeager et al., 1993; Taylor et al., 2006) 

and P concentrations from 0.01 to 20 mg•L-1 P ( Alexander, 1993; James, 1995; Taylor et 

al., 2006).  To reduce the discharge levels of these nonpoint source pollutants and to 

comply with increasingly stringent environmental regulations at state and federal levels, 

CWs have been promoted as inexpensive, low-technology alternatives to conventional 

water treatment systems.  Similar to natural wetlands, CWs treat wastewater with 

physicochemical and biological processes that involve vegetation, soils, and associated 

microbial populations in a controlled environment.  These engineered wetlands are 
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defined by their vegetation:  free-floating, floating-leaved, emergent, and submerged 

plants (Vymazal, 2007).  In temperate regions emergent macrophytes are commonly used 

in surface-flow (SF) and SSF CWs to treat agricultural wastewater (Arnold et al., 1999; 

Berghage et al., 1999; Taylor et al., 2006).  Due to the large land area required by typical 

SF CWs and the concomitant loss of production area, SSF CWs have been recommended 

as a viable alternative for greenhouse and nursery water treatment (Arnold et al., 1999; 

Berghage et al., 1999). 

 In tropical and subtropical regions free-floating hydrophytes are the dominant 

vegetation in CWs because of their ability to overwinter (Nahlik and Mitsch, 2006).  

Details of floating aquatic plant CWs are described by DeBusk and Reddy (1987) and 

Vymazal et al. (1998).  Many studies have documented their ability to remediate various 

anthropogenic pollutants that include nutrients (Gopal, 1987; Vymazal, 2007), herbicides 

(Wilson et al., 2001; Knuteson et al., 2002), heavy metals (Odjegba and Fasidi, 2004;  

Liao and Chang, 2004; Padmavathiamma and Li, 2007) and antibiotics (Gujarathi et al., 

2005).  The high rates of biomass production by floating hydrophytes necessitates 

periodic harvesting to prevent the export of nutrients, particularly P, via vegetative 

decomposition and to maintain open water areas to permit increased oxygen exchange 

(Masifwa et al., 2004; Kadlec, 2005). 

 Recently, Polomski et al. (2007) proposed a sustainable nutrient remediation 

strategy that involves the production of economically important emergent macrophytes in 

a SSF CW that remediates wastewater runoff.  The objective of this study was to take an 

unconventional approach and determine the ability of water hyacinth, water lettuce, and 
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parrotfeather, to thrive and recover nursery runoff levels of N and P in a similarly 

constructed laboratory-scale subsurface CW system. 

 
Materials and Methods 

 
 Experimental procedures were similar to those described by Polomski et al. 

(2007).  However, a brief description follows with an emphasis on the experimental setup 

and nutrient solution treatments. 

 
Plant Characterization and Culture 
 
 This greenhouse study was conducted from 2003-2004 at Clemson University's 

Biosystems Research Complex (Clemson, SC, USA; latitude 34°40'8''; longitude 

82°50'40'').  Water hyacinth, water lettuce, and parrotfeather were selected for their 

remediating ability and their commercial importance as biological filters in water gardens 

(Speichert and Speichert, 2004).  Water hyacinth is a free-floating plant comprised of a 

rosette of petiolate leaves, an attractive purple inflorescence, and extensive submerged 

roots (Gopal, 1987).  Despite its free-floating habit, water hyacinth can also root in 

substrate, which has been postulated as an ancestral trait (Gopal, 1987).  Water hyacinth 

rapidly propagates vegetatively and sexually, although vegetative propagation via 

fragmentation is the primary form of reproduction.  The free-floating, stoloniferous water 

lettuce produces a rosette of light to lime-green velvety leaves; it can reach a mature 

height of 30.5 cm (Speichert and Speichert, 2004).  It reproduces by offsets that grow 

from the base of the mature plant.  Dwarf redstemmed parrotfeather is a compact 

selection with bright red prostrate or ascending stems bearing whorls of gray-green 
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feathery leaves (Speichert and Speichert, 2004).  This creeping emergent roots freely in 

floating mats or anchored in substrate where it reproduces primarily by stem 

fragmentation (Sytsma, 1989). 

 Water lettuce and dwarf red-stemmed parrotfeather (Charleston Aquatic Nursery, 

Johns Island, SC) were floated in tapwater-filled 3.8 L aquatic pots, fertigated with 20-

20-20 (Peter’s Professional®) water-soluble fertilizer as needed, and maintained in the 

greenhouse.  Water hyacinth stock plants were collected from drainage canals near Cape 

Coral, Florida, U.S., transferred to 60 L containers and fertigated as needed with 20-20-

20 water soluble fertilizer.  

 Two to four weeks prior to the start of an experiment, 40 to 50 plants were 

removed from their containers, their roots washed in running tapwater to remove 

microalgae, and weighed.  They were transplanted into the simulated laboratory 

subsurface CW comprised of two polyethylene pots:  a 16.5-cm. diameter “azalea” pot 

filled with pea gravel and placed inside a 16.7-cm diameter aquatic pot (3.8 L pot with no 

drainage holes) so their rims were even.  Single ramets (vegetatively produced plants) of 

water hyacinth, individual plantlets of water lettuce, and five 14 cm long rooted stem 

fragments of parrotfeather were planted in each pot.  After fitting the azalea pot into the 

aquatic pot, ~ 1.350 L of a 10% modified Hoagland’s solution (21.57 mg•L-1 N and 3.63 

mg•L-1 P) (Hoagland and Arnon, 1950) was added to each pot until water appeared at the 

gravel surface.  During the acclimation period, plants were watered every two or three 

days to maintain the water level just below the gravel surface.  The average daily 

temperatures, relative humidity, and daily light integral are listed in Table 4.1.  A 16:8 h 
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light:dark photoperiod was maintained during the winter months with 1000 W metal 

halide lights. 

 
Nitrogen and Phosphorus Treatment Solutions 
 
 Five treatment levels of 0.1, 1, 5, 10 and 20% modified Hoagland’s solution 

(“Solution 1” using NO3-N) were prepared and contained the following mean 

concentrations of N and P (mg•L-1):  (1) 0.39 N; 0.07  P; (2) 1.75 N; 0.18 P; (3) 10.44 ; 

1.86 P; (4) 21.57 N; 3.63 P; and (5) 36.81 N; 6.77 P.  These concentrations encompassed 

the typical range of nutrients found in nursery CW discharge and nursery runoff, and 

used in nursery irrigation.  The initial pH of the nutrient solution was adjusted to 6.2 with 

6 N H2SO4. 

 At the start of the experiment, 30 acclimatized plants and 6 gravel-only pots were 

removed from their aquatic containers, flushed with deionized water, and then returned to 

the aquatic pots that had been emptied and rinsed with deionized water.  The appropriate 

treatment solution was batch-loaded into the pots with plants until it was visible at the 

gravel surface.  Gravel-only pots received 10.44 and 1.86 mg·L-1 N and P, respectively.  

Thereafter, nutrient solution was supplied every two days to maintain the water level at 

the gravel surface.  Containers were arranged in a randomized complete block design 

with 6 replicates.  Experiments were replicated twice for each species during the time 

periods listed in Table 4.1. 
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Table 4.1.  Experiment dates and selected environmental variables (mean ± SE) for the 
two replicates of each species conducted in the Biosystems Research Complex 
greenhouses, Clemson University, Clemson, SC. 
 

 Experiment 1 Experiment 2 
 
 

Species 

 
Temperature 

(oC) 

Relative 
humidity 

(%) 

Daily light 
integral 

(mol·m-2·d-1) 

 
Temperature 

(oC) 

Relative 
humidity 

(%) 

Daily light 
integral  

(mol·m-2·d-1) 
 25-Jun-03 to 20-Aug-03 9-Sept-03 to 3-Nov-03 

Eichhornia  
crassipes 

27.3 ± 0.07 72.3 ± 0.3 25 ± 1 24.5 ± 0.2 61.5 ± 1.1 19 ± 1 

 26-Jun-03 to 21-Aug-03 20-Jan-04 to 15-Mar-04 
Myriophyllum 
aquaticum 

27.3 ± 0.07 74.5 ± 0.3 22 ± 1 22.2 ± 0.2 48.0 ± 1.3 12 ± 1 

 17-July-03 to 11-Sep-03 24-Oct-03 to 18-Dec-03 
Pistia stratiotes 24.6 ± 0.2 61.0 ± 1.1 15 ± 1 24.3 ± 0.2 61.0 ± 1.2 16 ± 1 
 
 
Plant and Water Analysis 
 
 Over the course of each experiment the volume of nutrient solution supplied to 

each wetland unit was recorded over the eight-week period.  When the experiment was 

terminated, each plant was severed at the gravel surface and the above- and below-ground 

portions were weighed.  The below-ground portions, which included roots that had grown 

through the drainage holes of the gravel-filled azalea pots, were placed over a screen and 

washed with tapwater, rinsed with distilled water, and then weighed.  Dried roots and 

shoots (80 ºC to constant dry weight) were ground separately in a Wiley Mill® (Thomas 

Scientific, Swedesboro, NJ) to pass through a 40-mesh (0.425-mm screen).  N and P 

tissue concentrations were determined as described by Polomski et al. (2007).  N and P 

content was calculated by multiplying plant part dry weight by nutrient concentration.  

Whole plant N and P content was derived from combining above- and below-ground 

mineral content. 
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 The water that remained in the aquatic pots was sampled and stored at 4 ºC prior 

to anion analysis with a Dionex AS50 IC with AS50 autosampler (Dionex Corp., 

Sunnyvale, CA).  Percentage of recovered nutrient was determined with the following 

equation:  (mg N or P supplied – mg nutrient remaining in solution ÷ mg N or P supplied) 

x 100. 

 
Statistical Analysis 
 
 Data from both replicated experiments were pooled because analysis of variance 

indicated no significant treatment interactions with rep and block.  Changes in biomass 

and nutrient recovery relative to N or P supplied for each species was determined by 

regression analyses.  For each species the analyses indicated significant slope for biomass 

and nutrient uptake efficiency (i.e., amount of nutrient supplied that is assimilated by the 

plant).  Linear contrasts and F tests compared slopes among the species.  Differences 

between shoot and root concentration means and content means of each species were 

determined by Student’s t tests.  All analyses were performed with SAS (version 9.1 for 

Windows; SAS Institute, Cary, NC), and all tests were conducted with α = 0.05. 

 
Results and Discussion 

 
Biomass Accumulation 
 
 Over the eight-week period the growth rates of the 3 species increased linearly 

and were highly correlated with increasing levels of nitrogen and phosphorus (Figure 

4.1A and B).  Due to its higher evapotranspiration rate (Gopal, 1987), water hyacinth was 

supplied with greater amounts of N and P than the other two species, which yielded the  
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Figure 4.1.  The effect of N (a) and P (b) on whole plant dry weight of three, greenhouse-
grown floating hydrophytes growing in a laboratory scale subsurface flow constructed 
wetland over an eight-week period.  Five concentrations of modified Hoagland’s solution 
(N and P [mg•L-1]:  (1) 0.39 N; 0.07  P; (2) 1.75 N; 0.18 P; (3) 10.44 ; 1.86 P; (4) 21.57 
N; 3.63 P; and (5) 36.81 N; 6.77 P) were initially batch-loaded and then supplied every 
two days to maintain the water level at the gravel surface.  Vertical bars represent 
standard error of N or P content.  Data points are means of 12 plants.  Slopes of 
regression lines were compared using linear contrasts and F tests; species with different 
letters have significantly different slopes (P ≤ 0.05). 
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highest rate of dry weight accumulation.  Water lettuce received the least amount of N 

and P over the eight-week period but had a similar growth rate to water hyacinth (Figure 

4.1A and B).  Parrotfeather had the lowest growth rate compared to water hyacinth and 

water lettuce.  Gravel-only pots receiving 10.44 and 1.86 mg·L-1 N and P, respectively, 

were supplied with 62 to 86% of N and 52 to 86% of P than planted pots receiving the 

same level of N and P (data not presented). 

 At the lowest treatment level, all species exhibited visual nutrient deficiency 

symptoms that included marginal to complete foliar necrosis, chlorotic, senescent leaves, 

and spindly growth.  Some water hyacinths produced inflorescences, which was not 

unexpected since water hyacinth has been reported to survive and grow under a wide 

range of water nutrient concentrations as low as 0.05 mg·L-1 nitrogen supplied either as 

nitrate (Shiralipour et al. 1981) or ammonia (Tucker 1981) and 0.1 mg·L-1 P, which 

Haller et al. (1970) determined as the lower critical level for growth of water hyacinth in 

a hydroponic environment. 

 
N and P Recovery 
 
 Nitrogen and phosphorus recovery rates of the three species were evaluated by 

comparing the amount of N or P supplied and assimilated in whole plant tissues to an 

optimal recovery rate where the amount of N or P supplied equaled the amount of N or P 

recovered in the tissues.  Nitrogen and P content of whole plant tissues for all three 

species increased linearly with increasing concentrations of N and P and was highly 

correlated with the amount supplied to each species (Figure 4.2A and B).  The N 

recovery rate of water hyacinth and water lettuce was similar to the optimal recovery rate 
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Figure 4.2.  Nitrogen (a) and phosphorus (b) recovered in whole plant tissues of three 
greenhouse-grown floating hydrophytes growing in a laboratory scale subsurface flow 
constructed wetland over an eight-week period.  Five concentrations of modified 
Hoagland’s solution (N and P [mg•L-1]:  (1) 0.39 N; 0.07  P; (2) 1.75 N; 0.18 P; (3) 
10.44; 1.86 P; (4) 21.57 N; 3.63 P; and (5) 36.81 N; 6.77 P) were initially batch-loaded 
and then supplied every two days to maintain the water level at the gravel surface.  
Vertical bars represent standard error of N or P content.  Data points are means of 12 
plants.  Dashed line represents hypothetical 100% recovery rate.  Slopes of regression 
lines were compared using linear contrasts and F tests; species with different letters have 
significantly different slopes (P ≤ 0.05). 
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of N (mg N supplied = mg N in tissues) and higher than the N assimilation rate of dwarf 

red-stemmed parrotfeather (Figure 4.2A).  Compared to similar studies with herbaceous 

emergent aquatic plants, water hyacinth and water lettuce had N uptake efficiencies 

similar to Louisiana iris hybrid ‘Full Eclipse,’ Pontederia cordata ‘Singapore Pink,’ 

Thalia geniculata f. rheumoides Shuey, Rhyncospora colorata (L.) H. Pfeiffer, and 

Oenenathe javanica (Blume) DC. ‘Flamingo’ (Polomski et al., 2007; 2008). 

 None of the three species had P assimilation rates that were similar to the optimal 

P recovery rate (Figure 4.2 B).  The P recovery rates were similar for water hyacinth, 

parrotfeather, and water lettuce.  Their P recovery rates were similar to Canna x generalis 

Bailey (pro sp.) ‘Bengal Tiger,’ Peltandra virginica (L.) Schott, Pontederia cordata L. 

‘Singapore Pink,’ and Thalia geniculata f. rheumoides (Polomski et al. 2007; 2008).  P 

assimilative capacity of these floating macrophytes could have been affected by the N 

source and N:P ratio of treatment solutions.  Equal amounts of NH4+ and NO3- and an 

optimum N:P ratio range of 2.3-5 in water result in maximum biomass yields in water 

hyacinth (Reddy and Tucker, 1983).  Other N and P uptake studies with water hyacinth 

also suggest that N:P ratio of wastewater affects P removal (Reddy et al., 1989; Reddy et 

al., 1990; Jayaweera and Kasturiarachchi, 2004); however, this concept was not tested 

directly. 

 An analysis of the water that remained in the pots after eight weeks revealed no 

significant differences between species and treatment levels in the concentration of 

leftover N and P.  Less than 4 and 7% of the original amount of N and P supplied to the 

plants, respectively, was detected in the remaining solution (data not shown).  Of the 
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original amount of N and P supplied to gravel-only pots, 38 to 48% N and 22 to 58% P 

remained (data not shown).  Depletion of P in the gravel-only pots could have resulted 

from assimilation by the thin film of algae present near the gravel surface and from 

microorganisms in biofilm.  N depletion may have occurred via denitrification processes.  

It is unlikely that P precipitation occurred in the gravel-only pots because the pH was not 

alkaline enough (mean pH of 7.1) to promote precipitation of insoluble tricalcium-

phosphate [Ca3(PO4) 2] complexes (Richardson, 1985).  Using Visual Minteq 2.52, a 

chemical equilibrium computer program that calculates the speciation, solubility, and 

equilibrium of solid and dissolved phases of minerals in aqueous systems, further 

confirmed that P precipitation was an unlikely transformation pathway for P removal 

from the nutrient solution (Gustafsson, 2008). 

 
Nitrogen and Phosphorus Tissue Concentration 
 
 Mineral concentrations are typically reported in wetland plant nutrient recovery 

research, although the contents or the weights of nutrients reflect differences in nutrient 

accumulation by plants.  As expected, the differences in allocation of the nutrients to 

shoot and roots within species varied by the method in which the results were expressed, 

i.e., concentration vs. content.  N concentration of water hyacinth shoots was greater than 

roots at the two highest N treatment levels (Table 4.2).  A similar trend was observed 

with P as water hyacinth shoots exhibited a higher sink strength with increasing P 

treatment levels.  Allocation of N and P to above- rather than below-ground water 

hyacinth parts with increasing N and P levels has been observed by other researchers in 

free-floating hydroponic experiments (Shiralipour et al. 1981; Reddy and Tucker 1983;  
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Table 4.2.  Mean (n=12) nitrogen (N) and phosphorus (P) concentration and content of 
shoots and roots of three floating hydrophytes grown for eight weeks in a laboratory-
scale subsurface constructed wetland and receiving five treatment levels of N or P 
incorporated in a modified Hoagland’s nutrient solution containing all other nutrients at 
levels to support normal plant growth.  Treatments were initially batch-loaded and then 
supplied every two days to maintain the water level at the gravel surface. Refer to 
Appendix C for other mineral concentrations. 
 

Concentration Content Treatment 
level N P N P 

N P shoot root shoot root  shoot root shoot root 
(mg·L-1) ------------------(mg·g-1)-------------------- --------------------------(mg)---------------------- 

Eichhornia crassipes 
 
 
 
 

0.39  0.07 11.51 10.70 1.54** 1.29  134.400** 19.144 17.954** 2.287 
1.75  0.18 10.16 10.19 1.30 1.18  143.480** 22.865 18.804** 2.708 

10.44  1.86 11.29 10.38 1.45** 1.26  158.060** 22.749 20.647** 2.763 
21.57  3.63 13.042* 11.55 1.78 1.67  284.000** 23.470 38.617** 3.429 
36.81  6.77 17.78** 13.08 2.53** 1.71  559.790** 26.784 80.134** 3.502 

Myriophyllum aquaticum 
0.39  0.07 8.45 7.39 1.19 1.31  48.538** 15.935 7.304 3.865 
1.75  0.18 7.59 7.48 1.23 1.33  43.174** 20.568 6.968 4.775 

10.44  1.86 9.28** 7.52 1.45 1.26  84.083** 27.607 13.323** 5.505 
21.57 3.63 11.30* 9.28 1.81* 1.41  130.990** 32.313 21.189** 6.211 
36.81 6.77 18.15 16.76 2.73* 2.18  257.480** 46.522 38.721** 8.397 

Pistia stratiotes 
0.39  0.07 13.93 16.46 2.20 2.66  33.011** 7.472 5.401** 1.097 
1.75   0.18 13.19 15.97** 1.88 2.04  34.102** 9.263 5.053** 1.137 

10.44   1.86 14.14 16.78** 1.96 2.33*  68.688** 14.718 9.843** 2.039 
21.57   3.63 15.75 16.36 2.18 2.22  107.720** 15.392 14.927** 2.111 
36.81   6.77 21.08 19.08 3.07** 2.35  217.790** 21.090 31.736** 2.624 
*, ** Mean separation by t test comparing N and P in shoots and roots within species at 
each treatment level with significant differences at P ≤ 0.05 and P ≤ 0.01, respectively.. 
 
 
Xie et al., 2004).  Agami and Reddy (1990) also found N concentration of water hyacinth 

shoots was ~ two-fold higher than roots, but P accumulation was evenly distributed 

comparable to values reported in dairy lagoon wastewater (DeBusk et al., 1995; Tripathi 
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and Upadhyay, 2003) and free-floating hydroponic studies (Boyd, 1976; Tucker and 

DeBusk, 1981). 

 Parrotfeather shoot N was higher than root N at 10.44 and 1.86 mg·L-1 N and P, 

respectively, and 21.57 and 3.63 mg·L-1 N and P, respectively, suggesting N partitioning 

to shoots with increasing N treatment levels.  N concentration of dwarf redstemmed 

parrotfeather at the highest treatment level was comparable to the N concentration of 

field-collected parrotfeather sampled from natural stands growing in agricultural drainage 

canals or from creeks and pools receiving agricultural runoff in central California 

(Rejmankova, 1992).  Phosphorus concentration in parrotfeather was higher in shoots 

rather than roots at the two highest treatment levels, which indicated an increasing 

allocation of P to shoots than to roots with increasing P levels. 

 No N concentration trend was evident with water lettuce, but P concentration 

indicated a greater allocation of P to shoots with increasing P treatment levels.  Shoot P 

was greater in shoots than roots at 10.44 and 1.86 mg•L-1 N and P, respectively, and at 

the highest treatment level.  Our N and P concentrations in water lettuce were similar to 

other studies (Tucker and DeBusk, 1981; Agami and Reddy 1990) and in CWs 

(Greenway and Woolley, 1999). 

 N concentration was greater in water lettuce than water hyacinth (data not 

presented), which was similar to other studies (Tucker, 1981; Reddy and DeBusk, 1985).  

We attribute the difference to N dilution caused by water hyacinth’s growth rate--among 

the highest of any plant known (Gopal, 1987); its greater biomass production diluted N 

assimilated by water hyacinth.  Contrary to these findings, Aoi and Hayashi (1996) 
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reported greater (~ 1.5 times) N and P concentrations in water hyacinth than water lettuce 

in an outdoor study in Japan involving a continuous flow and batch culture system. 

Upadhyay et al. (2007) reported “initial” P concentrations of water hyacinth and water 

lettuce that were 1.3- and 2-fold greater in leaves and roots, respectively, and 1.8- and 

3.5-fold higher in water lettuce leaves and roots, respectively, compared to our highest 

treatment level, but “initial” N concentrations were comparable to ours.  The 

discrepancies in N and P concentration could have resulted from variations in 

experimental design that includes plant density, temperature, duration of the experiment, 

solar radiation, and the concentration and ratio of nutrients.  The effect of mechanical 

impedance by the pea gravel substrate on root architecture and nutrient absorption 

warrants further investigation. 

 
Nitrogen and Phosphorus Tissue Content 
 
 Nitrogen content (plant dry weight x tissue N concentration) of the three species 

was higher in shoots than roots at every treatment level.  Water hyacinth allocated ≥ 86% 

N to shoots compared to roots (Table 4.2).  Greatest amount of assimilated N was in 

water lettuce and parrotfeather shoots (≥ 78% and ≥ 59%, respectively) than roots.  This 

dominant sink strength of shoots at every N treatment level was observed in the marginal 

aquatic garden plants Louisiana iris hybrid ‘Full Eclipse,’ Pontederia cordata L.  

‘Singapore Pink,’ Oenenathe javanica (Blume) DC.  ‘Flamingo,’ Phyla lanceolata 

(Michx.) Greene, Rhyncospora colorata (L.) H. Pfeiffer, and Thalia geniculata f. 

rheumoides Shuey (Polomski et al., 2007; 2008). 
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 Phosphorus content was also greatest in above-ground organs at every treatment 

level for the three species.  Water hyacinth, water lettuce, and parrotfeather shoots 

contained ≥ 87, 79, and 59% P, respectively, compared to roots.  Also, we observed this 

partitioning of P to shoots instead of roots with increasing levels of P in Canna x 

generalis Bailey (pro sp.) ‘Bengal Tiger’ and Colocasia esculenta (L.) Schott var. 

antiquorum (Schott) Hubbard & Rehd. ‘Illustris (Polomski et al., 2007). 

 The potential application of water hyacinth, parrotfeather, and water lettuce for 

nutrient attenuation of nursery/greenhouse wastewater must be tempered by their well-

documented reputations as noxious weeds in certain regions and ecosystems.  Water 

hyacinth, in particular, possesses a dichotomous nature:  one of the world’s worst weeds 

that devastates environmental systems, but demonstrates substantive phytoremediating 

ability (Holm et al., 1997; Mehra et al., 1999). 

 
Conclusions 

 
 Over an eight-week period water hyacinth, water lettuce, and parrotfeather thrived 

in a gravel-based, laboratory-scale subsurface CW receiving nursery runoff levels of N 

and P.  Nitrogen uptake efficiency was highest in water hyacinth, and N content was 

greatest in above-ground tissues at every treatment level.  Phosphorus recovery rates 

were similar for the three species and P was preferentially stored in shoots.   

 Similar to the recommendations of Hadad and Maine (2007), our study supports 

the possibility of integrating floating aquatic macrophytes with emergent macrophytes in 

a self-contained polycultural SSF CW system that can be used to remediate runoff from 

nursery and greenhouse operations.  Floating macrophytes may have an important role in 
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greenhouse production in temperate areas where they can be cultivated indoors in SSF 

CWs to assimilate NO3
-, and soluble PO4

3-, and heavy metal trace elements, which are 

often applied year-round (Biernbaum, 1992).  In addition, their ability to process high 

volumes of nutrient-rich water reduces the amount of effluent that has to be discarded. 
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CHAPTER V 
 

EFFECT OF N:P RATIO OF INFLUENT ON BIOMASS, NUTRIENT ALLOCATION 
AND RECOVERY OF TYPHA LATIFOLIA AND CANNA ‘BENGAL TIGER’ IN A 

LABORATORY-SCALE CONSTRUCTED WETLAND 
 
 

Abstract 
 

 Constructed wetlands (CWs) are an effective low-technology approach for 

treating agricultural, industrial, and municipal wastewater.  Recovery of phosphorus by 

constructed wetland plants may be affected by wastewater nitrogen to phosphorus (N:P) 

ratios.  Varying N:P ratios were supplied to Canna ‘Bengal Tiger’ and Typha latifolia in 

a laboratory-scale subsurface flow (SSF) CW system with a 4-d hydraulic retention time 

in a climate-controlled greenhouse. Typha latifolia and Canna ‘Bengal Tiger’ received 

the following five treatments that comprised the following N:P ratios:  6:1, 3:1, 1:1, 1:3 

and 1:6.  Mean total P concentrations ranged from 6.9 mg·L-1 (6:1) to 252.2 mg·L-1 P 

(1:6); nitrate-nitrogen (NO3-N) was maintained at a constant mean level of 42.4 mg·L-1.  

At 60 d Canna shoot P concentration was 13.91 and 19.77 mg·g-1 in the 1:3 (126 mg·L-1 

P) and 1:6 treatments, respectively, which greatly exceeded Typha shoot P concentration 

of 2.4 and 3.0 mg·g-1 in the 1:3 and 1:6 treatments. Typha and Canna whole plant N:P 

concentration was linearly correlated with N:P treatment ratios.  For the 1:3 and 1:6 

treatments, Canna assimilated 40.7 and 30.6% of supplied P compared to 9.7 and 6.2% 

for Typha.  Although both species exhibited luxury consumption of P, Typha latifolia 

may have been nitrogen-limited at the 1:1, 1:3, and 1:6 N:P ratios.  Differential 

accumulation of P relative to N suggests that N:P of wastewater and the N:P assimilation 
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ability of plants used in constructed treatment wetlands should be considered when 

designing treatment wetlands for nutrient attenuation. 

 

Introduction 

Nitrogen and P are critical nutrients in the life cycles of wetland plants (US EPA, 

2000; Kadlec and Knight, 2006), and are traditionally considered in studies of plant 

mineral nutrition.  Both N and P are involved in plant metabolism and growth, and there 

are numerous points of interaction between N- and P-dependent processes.  According to 

the Sprengel-Liebig Law of the Minimum (Epstein and Bloom, 2005), the most limiting 

nutrient controls plant growth.  Therefore, if plants are deprived of an optimal P supply, 

the uptake or transport of other nutrients can be altered significantly, which has been 

well-documented in the literature (e.g., Sutcliffe, 1962; Havlin et al., 2005; Sanchez, 

2007). 

  Chapin et al. (1990) viewed the acquisition and allocation of resources in plants in 

economic terms where plants attempt to “balance” shortages or excesses to optimize their 

performance.  This homeostatic adjustment of resource concentrations involves 

physiological and architectural alterations, including root-to-shoot ratio, uptake efficiency 

of scarce or overabundant resources, and resource allocation patterns (Chapin et al., 

1990; Bazzaz, 1997). 

Nutrient ratios, termed “nutrient stoichiometry” by Mendez and Karlsson (2005), 

are used to predict nutrient limitations in ecological sytems.  Single elemental ratios, such 

as N:P, are successfully used to measure nutrient limitations of phytoplankton and 
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zooplankton communities in natural waters (i.e., Redfield ratio; Redfield, 1958; 

Ketchum, 1969) and in wetland ecosystems (Koerselman and Meuleman, 1996; Gusewell 

and Koerselman. 2002), and terrestrial environments (Tessier and Raynal, 2003; 

Gusewell, 2004) ecosystems. Nutrient ratios may also reflect excess storage of an 

abundant nutrient rather than the limitation of another (Chapin and Cleve, 1991).  An 

important caveat of N:P ratios to predict nutrient limitation is that it can only be applied 

to plants that are not limited by other nutrients other than N or P (Koerselman and 

Meuleman, 1996).   

In many constructed wetland studies actual or simulated wastewater effluent is 

used without regard for the N:P ratio in the effluent (e.g., Cizkova-Koncalova et al., 

1996; Romero et al., 1999; Xie et al., 2004; and Kyambadde et al., 2005).  Nutrient 

concentrations in wastewater effluent, mainly N and P, and loading rate vary depending 

on wastewater quality, wastewater treatment facility type, and season.  Changes to 

nutrient availability may influence plant growth responses and resource allocation, which 

ultimately affects CW performance and the dynamics of the treatment system (Adler et 

al., 2008; Zhang et al., 2008a). 

Responses to N and P may be specifically determined by absolute N or P supply 

or by the supply of one relative to the other (Gusewell, 2005).  The few studies on the 

interactive effect of N and P on plant growth are inconsistent among wetland plant 

species.  For example, Ulrich and Burton (1988) found that NO3-N and P supply and N:P 

ratios strongly affect growth and biomass of Typha latifolia L., T. angustifolia L., 

Sparganium eurycarpum Engelm., and Phragmites australis (Cav.) Trin. Ex. Steudel.  
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However, Cary and Weerts (1984) and Romero et al. (1999) did not observe an 

interactive effect of N and P for either Typha orientalis Presl or P. australis.  Romero 

(1999) found N supply affects growth of P. australis, whereas P did not have any effect; 

however, an imbalanced supply of N and P suppresses growth of P. australis.   

Some species appear to be most successful at high N:P supply ratios (e.g., Molinia 

caerulea; Kirkham, 2001; Tomassen et al., 2003), and others at low N:P supply ratios 

(e.g., Typha glauca; Woo and Zedler, 2002).  Interestingly, eutrophic species, such as 

Typha domingensis Pers., demonstrate a high degree of flexibility in low P conditions 

(0.01-0.04 mg·L-1), with increased P uptake capacity comparable to a low-nutrient 

acclimated species Cladium jamaicense Crantz (Lorenzen et al., 2001).  These studies 

suggest that species respond differently in terms of biomass production, morphology 

and/or physiology to the relative supplies of N and P.  Knowing how N:P supply ratios 

affect the growth and uptake of N and P may lead to improved plant selection in 

vegetated constructed wetlands and enable an understanding and prediction of how 

changes in relative supplies of N and P in wastewater affect N and P recovery. 

The two species evaluated in this study are the monocots Canna ‘Bengal Tiger,’ 

an upright, rhizomatous herbaceous perennial native to tropical America (Ogden, 2007; 

Hart Canna, 2009).  Canna ‘Bengal Tiger’ has green and yellow-variegated foliage, 

grows 1.2 to 1.8 m tall, and bears panicles of orange to red-orange flowers (Speichert and 

Speichert, 2004).  Canna indica L., an upright perennial rhizomatous herb native to 

tropical America, and other related species and cultivars, such as Canna flaccida and 

Canna ‘Red King Humbert,’ and Canna ‘Yellow King Humbert,’ have been used in 
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constructed wetlands for water quality improvement and landscape restoration due to 

relatively high nutrient removal efficiency and aesthetic value (Fernandez et al., 1999; 

Tanner, 2001; Yang et al., 2001; Konnerup et al., 2009; Zhang et al., 2009).  Canna 

‘Bengal Tiger’ (Canna) was included in this study for the following reasons:  (a) it 

flourished in static, waterlogged conditions; (2) it exhibited high rates of biomass 

accumulation; (3) it recovered N and P near optimal levels in an earlier study (Polomski 

et al., 2007); (4) its aesthetic features makes it a suitable candidate for production/nutrient 

attenuation in nurseries and for remediation in commercial and residential landscapes; 

and (5) Canna can be cultivated in aquatic and terrestrial environments, which increases 

its marketability and utilization. 

Broadleaf cattail (Typha latifolia L.) was included as a point of comparison because 

of its widespread use in constructed wetlands for remediation of nutrients, pesticides, and 

heavy metals (Surrency, 1993; Kvet et al., 1999; Scholz and Lee, 2005; Brisson and 

Chazarenc, 2009).  Typha latifolia is a rhizomatous perennial that ranges in height from 

1.2–3 m and produces extensive lateral rhizomes, up to 70 cm in length (Holm et al., 

1997).  T. latifolia grows in wet or saturated soils in wet meadows, marshes, along 

streams and lakes, and in roadside ditches throughout North America, from central 

Alaska to Mexico (Grace and Harrison, 1986).  Although native to North America, the 

rapid clonal growth of T. latifolia, particularly in disturbed, high nutrient environments, 

has transformed entire wetlands into monotypic cattail stands, classifying T. latifolia as a 

serious aquatic weed (Holm et al., 1997). 
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Our objective was to investigate differences in N:P ratio (N supply constant) and 

its effects on growth, nutrient recovery/allocation, and nutrient use efficiency of Typha 

latifolia and Canna ‘Bengal Tiger.’ 

 
Materials and Methods 

 
Study Site   
 
 This greenhouse study was conducted from July 13 to September 10, 2008, in 

Clemson University's Biosystems Research Complex (Clemson, SC, USA; latitude 

34o40’8”; longitude 82o50’40”).  During the experiment average daily temperatures (oC), 

relative humidity, and daily light integral (PAR) in the greenhouse were 27.66 oC ± 0.03, 

64.01% ± 0.17, and 21.1 ± 0.7 mol·m-2·d-1, respectively. 

 
Microcosms  
 

The laboratory-scale microcosm constructed wetland system consisted of 7.6 L 

white HDPE buckets (24.1-cm height; 20.8-cm bottom diameter, and 24.6-cm top 

diameter) filled to within 2.5 cm of the top with approximately 52.9 kg washed quartz 

pea gravel having the following size distribution (% weight):  less than 8 mm (33%); 8 to 

15 mm (55%), and 15 to 20 mm (12%).  The microcosms mimicked subsurface treatment 

wetlands with the water level maintained at or just beneath the gravel surface (Kadlec and 

Wallace, 2009).  The buckets were placed on gray cinder blocks (20.3-cm x 20.3-cm x 

40.6-cm) to allow for drainage via a 13-cm long translucent Tygoprene™ XL-60 pump 

tubing (12.8 mm OD and 9.6 mm ID) attached to a male adapter nylon fitting (9.5 mm x 

9.5 mm [hose ID x male NPT]) secured with 100% silicon and positioned 0.5 cm above 
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the base of the bucket.  A mesh covering the hole was fastened on the inside of the 

microcosm to prevent loss of gravel during water drainage. 

 
Plant Establishment 
 

Two-inch dormant plugs of Typha latifolia (Environmental Concerns, St. 

Michaels, MD) and individual micropropagated plants of Canna ‘Bengal Tiger’ (AG3, 

Apopka, FL) were washed free of medium and planted in 16.7-cm diameter 2.8-L aquatic 

pots filled with sand in Nov and Dec 2007, respectively.  All plants were topdressed at a 

standard rate of 3 g·pot-1of 14N-6.1P-11.6K Osmocote (The Scotts Co., Marysville, OH) 

and watered as needed.  A 16-h photoperiod was maintained during the winter months 

with 1000 W metal halide lights. 

About 40 d prior to the start of the experiment each species was washed free of 

sand, weighed, and transplanted into individual microcosms.  Unplanted gravel systems 

were used as controls.  Each microcosm was filled to the gravel surface with 50 mg·L-1 N 

of 15-2.2-12.5 (Jack’s Professional® Water-Soluble Fertilizer, J. R. Peters, Allentown, 

PA).  Every 3 d the buckets were emptied, flushed with tapwater, and replenished with 

fertilizer solution.  Plants were considered ready for experimental use at a growth stage 

when rhizomes and ramets were produced by the primary shoot system.  Three d prior to 

the start of the experiment, microcosms were flushed and refilled daily with tapwater.  

 
Fertilizer N:P Treatments   
 

Five treatments provided a constant mean level of NO3-N (42.4 ± 0.6 mg·L-1) and 

the following mean total P concentrations (mg·L-1) and N:P ratios:  6:1 (6.9 ± 0.3; 
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N42:P7); 3:1 (13.7 ± 1.8; N42:P14); 1:1 (41.59 ± 0.4; N42:P42); 1:3 (126.4 ± 0.4; 

42N:126P); and 1:6 (252.2 ± 0.6; 42N:252P).  The following actual mean concentrations 

of macro- and micronutrients (mg·L-1):  K 66.4 ± 0.5; Ca 45.3 ± 0.3; Mg 10.1 ± 0.1; Zn 

1.03 ± 0.03; Cu 0.41 ± 0.02; Mn 2.09 ± 0.02; Fe 0.93 ± 0.08; SO4-S 103.7 ± 7.84; Na 

177.75 ± 1.02 ; B 0.34 ± 0; Cl 9.86 ± 0.26.  These concentrations approximated a 20% 

modified Hoagland’s nutrient solution no. 1 (Hoagland and Arnon, 1950), which met 

normal growth requirements of Canna ‘Bengal Tiger,’ Canna ‘Yellow King Humbert,’ 

Typha minima, and several other species in a pea gravel-based laboratory-scale 

constructed wetland system (Polomski et al., 2007; 2008). The treatments were prepared 

from commercially available fertilizers and food/laboratory grade chemicals (Table 5.1).   

Sodium was used as the counter cation in the 1N:1P and higher N:P treatments.  Sodium 

sulfate (Na2SO4) was supplied to each treatment to provide constant levels of Na+ in all 

treatments.   

Treatments were prepared in individual green polyethylene vertical bulk water 

storage tanks (378.5 L; 162.6-cm height, 58.4-cm diameter (The Tank Depot, Inc., 

Pompano Beach, FL) with tapwater and continuously agitated with submersible water 

pumps (ViaAqua™ VA306) to avoid any stratification.  Tapwater pH was 6.0 and the 

electric conductivity was 0.09 mmhos·cm-1.  Tapwater contained the following nutrient 

concentrations (mg·L-1):  0 NO3-N, 0.1 PO4-P, 1.7 K, 3.5 Ca, 1.0 Mg, 3 SO4-S, 0.01 Zn, 

0.03 Cu, 0 Mn, 0.01 Fe, and 0.01 B.  After each preparation mineral concentrations of 

each treatment were determined with a FIALab nitrate analyzer (FIAlab Instruments, 

Inc., Bellevue, WA) for NO3-N and the Spectro ARCOS ICP (Spectro, Mahwah, NJ ) for 
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Table 5.1.  Fertilizer sources used to produce the five N:P ratio treatments supplement 
with macro- and micronutrients. 
 

Nutrient Analysis Company 
 

Calcium nitrate (15.5-0-0) 
YaraLiva™ Calcinit™ 
greenhouse grade calcium 
nitrate:  1% NH4-N; 14.5% 
NO3-N; and 19% Ca 

Yara North America, 
Tampa, FL 

 
0-52-34 

Multi-MKP®  
Monopotassium phosphate 
(0-22.7-28.7) 

Haifa Nutritech, 
Altamonte Springs, FL 

K2SO4 (0-0-52) Microsulfate of potash Harrell’s, Lakeland, 
FL, USA 

MgSO4 
 

Magnesium sulfate 
heptahydrate, technical grade 

Harrell’s, Lakeland, 
FL, USA 

Na2SO4 Anhydrous natural sodium 
sulfate, industrial use 

Baddley Chemicals, 
Inc., Baton Rouge, LA  

NaH2PO4 Anhydrous Monosodium 
phosphate, food grade 

Baddley Chemicals, 
Inc. Baton Rouge, LA  

Peters Professional® 
S.T.E.M. Soluble Trace 

Element Mix 

13.00% S; B 1.35% B; 2.30% 
Cu; 7.50% Fe; 8.00% Mn; 
0.04% Mo; 4.50% Zn. 

The Scotts Co., 
Marysville, OH 

 

macro- and micronutrients.  The pH was maintained at 5.8-5.9 with 2N H2SO4 or 10 N 

NaOH. 

Each microcosm was manually drained through a tube positioned at the bottom of 

the container, flushed with tapwater, and then batch-loaded from the top with 2500 mL of 

treatment solution to maintain the water level at the gravel surface.  This 4-d hydraulic 

residence time (HRT) was acceptable for the removal of N and P species in other 

constructed wetland studies (Jing et al., 2001; Huett et al., 2005), and was within the 2 to 

6 d HRT time of large-scale constructed wetlands (Hunter et al., 2001).  Due to 

extenuating circumstances, this 4-d HRT was not implemented until after two sampling 

events on Day 1 (initiation) and Day 7, when recorded volumes of treatment solution 
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were supplied.  Between sampling events tapwater was added to replace the water lost to 

evapotranspiration.  Treatments were applied 15 times over the duration of the 

experiment. 

 
Plant Growth 
 
 Canna and Typha height was measured at 1, 10, 20, 40, and 60 d after initiation.  

Height was measured from the top of the container to the highest leaf or tip of the 

inflorescence.  The presence and number of inflorescences were recorded over the 60-d 

experiment. 

 
Plant Tissue Analysis 
 

Every 20 d plants were harvested to provide sequential plant N and P uptake, 

partitioning, and recovery data.  An initial harvest at treatment initiation was conducted 

to provide baseline dry weight (reported on a mass and areal basis) and N and P content 

data. 

At each harvest shoots were severed at the gravel surface and roots were hand-

washed with a high-pressure water stream and rinsed with distilled water.  Plant tissues 

were weighed and then dried at 80 oC until a constant weight was obtained.  After 

recording their dry weights, stems, inflorescences, and roots were ground separately in a 

Wiley mill to pass through a 40-mesh (0.425-mm screen).  The wet ash procedure was 

used for all routine minerals using HNO3 and H2O2.  Total plant N concentration was 

determined with a LECO FP-528 (LECO Corp., St. Joseph, MI).  Total plant tissue was 

prepared for analysis with the wet-ashing procedure and subsequently P concentration 
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was determined by inductively coupled plasma emission spectrophotometer (Thermo 

Jarrell Ash TJA 61E, Thermo Fisher Scientific Inc., Waltham, MA).  N and P content 

was determined by multiplying plant part dry weight by nutrient concentration, which 

normalized differences in nutrient concentrations as a result of growth differences 

between treatments.  Whole plant N and P content was derived from combining above- 

and below-ground mineral content. 

Baseline dry weight (reported on a mass and areal basis) and N and P content data 

were obtained from both species (n=10) at initiation (d 1).  They were handled as 

previously described to determine initial shoot dry weight, root dry weight, and nutrient 

concentrations.  The baseline data was then subtracted from each harvest value for each 

treatment giving total dry weight and N and P uptake for each treatment every 20 d.  

 
Effluent Analysis 
 

Every 4 d effluent was drained, collected, and volumes recorded from each 

microcosm in 2 L HDPE containers and refrigerated at 4º C.  Nitrite + nitrate (NOx-N) 

and orthophosphate (PO4-P) effluent samples were filtered through 0.45 uM nylon 

membrane filters into 1.5-mL IC vials and analyzed with a Dionex AS50 ion 

chromatograph (IC) with AS50 autosampler (Dionex Corp., Sunnyvale, CA).  Samples 

for total P and non-purgeable organic carbon (NPOC) were collected in 28 mL LDPE 

Nalgene® and 24 mL glass vials, respectively, preserved with 2 mL 2 N sulfuric acid, 

and stored at 4 ºC until analysis.  Total P concentrations were quantitatively determined 

using an inductively coupled plasma-optical emission spectrometer (ICP-OES) (Thermo 

Electron Corp., model IRIS 1000 HR, Franklin, Mass.).  Nonpurgeable organic carbon 
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(NPOC) concentration of effluent collected on 20, 30, 40, and 60 d was analyzed with a 

Shimadzu TOC-V CPH total organic carbon analyzer (Shimadzu Scientific Instruments, 

Kyoto, Japan).  Total P and NPOC contents were calculated by multiplying the 

concentration of each ion by the total volume of the effluent. 

 
Statistical Analysis 
 

The experiment was conducted as a randomized complete block design initially 

with 12 replicates of each treatment.  Four replicates were removed at each harvest at 20, 

40, and 60 d.  Data were analyzed using Statistical Analysis Software (SAS Institute Inc., 

Cary, NC) and all tests used P ≤ 0.05.  Final dry weight and mineral concentration and 

content data among treatments within and between species were analyzed using analysis 

of variance.  Mean separations were done using least significant difference.  Root-to-

shoot ratio data were transformed with the square root transformation to obtain normality 

before analysis.  Analysis of variance of unplanted microcosms associated with Canna 

and Typha indicated no rep and block effects, but significant treatment effects, so data 

were pooled.  PROC GLIMMIX was used to analyze differences between vegetated and 

unvegetated microcosms.  Linear regressions were performed to determine significance 

between N:P ratios of whole plant tissues and N:P ratios of treatments. 

Results and Discussion 
 

Height and Biomass Production 
 
Typha and Canna height and growth index rapidly increased up to d 20 and then slowed 

thereafter (Appendix; Figure D.1 A and B, Figure D.2).  There were no differences 

between N:P treatments in either species relative to plant height.  Increasing P 
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concentrations (decreasing N:P ratios) did not result in any significant trend among 

treatments in total plant dry weight accumulation or shoot and root dry weight in Typha  

or Canna (Table 5.2).  Typha shoot:root ratios were constant between treatments at every 

harvest, but at 60 d the 42N:252P (1:6) treatment resulted in the highest Canna shoot:root 

ratio compared to the other treatments.  No differences were observed in biomass 

accumulation between Typha and Canna at 20 and 40 d.  At 60 d Typha root dry weight 

was 25% greater than Canna in the N42:P7 and N42:P14 treatments.  These treatments 

resulted in greater total dry weight in Typha than Canna.  Also, Typha total dry weight in 

the N42:P7 and N42:P14 treatments was 23 and 18% greater than Canna.  Shoot:root 

ratio differed between species only at 60 d in the highest P treatment, where Canna 

shoot:root ratio was two-fold greater than Typha.  The number of inflorescences 

produced by each species was unaffected by N:P treatments, but Canna produced more 

inflorescences than Typha for each treatment at 20 and 40 d (Table 5.2).  Biomass 

accumulation trends were similar when reported on an areal basis (Appendix; Table A.1). 

Dry weight partitioning between shoots and roots was highly influenced by P 

availability in both species (Table 5.2), which was consistent with data from other species 

where low P conditions favor root production (Lynch et al., 1991; Borch et al., 1998; 

Hansen and Lynch, 1998; Zhang et al., 2002; Ristvey et al., 2007).  Our findings agree 

with other studies observing shoot dry weight increases and root dry weight decreases 

with increasing nutrient availability in C. indica (Zhang, et al., 2008a), T. angustifolia 

(Steinbachova-Vojtiskova et al., 2006) , and T. latifolia (Cizkova-Koncalova et al., 1996).  

These changes in biomass allocation in response to high N and high P relative to low 
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nutrient availability are well-documented (Chapin, 1990; Marschner, 1995; Ericsson, 

1995; Lorenzen et al., 2001) 

 
NOx–N and PO4–P effluent   
 

No differences in NOx–N effluent occurred in treatments in either species up to 20 

d (Figure 5.1 A and B); subsequently, the N42:P7 treatment in both Canna and Typha 

had higher NOx–N effluent concentrations than the other treatments, especially during the 

last 20 d of the study.  This negligible NOx–N effluent concentration was markedly below 

the U.S. Environmental Protection Agency (EPA) maximum allowable contaminant level 

of 10 mg·L-1 NO3–N in any discharged water (U.S. EPA, 1986).  Phosphorus 

concentration may have been limiting in the N42:P7 treatment, resulting in reduced 

uptake and transport of NO3
- from roots to xylem, which precedes large reductions in 

growth (Lee, 1982; Rufty et al., 1990; Schjorring, 2007).  

Unvegetated microcosms had a higher amount of NOx–N effluent than vegetated 

microcosms at all sampling dates (Figure 5.2).  The higher concentration of NOx-N 

remaining in the unplanted systems was consistent with other studies that showed 

enhance removal of N in vegetated than unvegetated CW systems (Coleman et al., 2001; 

Yang et al., 2001; Lin et al., 2002; Iamchaturapatr et al., 2007). 

In general, Typha and Canna PO4–P effluent levels were similar over the duration of the 

experiment in the N42:P7, N42:P14, and N42:P42 treatments (Figure 5.3 A and B).  The 

two highest P treatments resulted in the highest levels of PO4–P effluent at every 

sampling event in both species.  Typha generally had higher PO4–P effluent levels than 

Canna in the N42:P42, 42N:126P, and 42N:252P treatments.  Orthophosphate effluent 
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Figure 5.1.  Incremental NOx-N (mg·L-1) effluent (July-August) of broadleaf cattail 
(Typha latifolia) and Canna ‘Bengal Tiger’ (A and B, respectively).  Vertical bars = ± 
SE.  Each point is the mean of n=12 (d 4-20), n=8 (d 24-40), and n=4 (d 44-60). 
 

 

N:P 
N/P  

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 bAz cA cA bA bA bA cA cA aA bA bA bA bB bA 
3:1 42/14 abA bB bA bA aA aA bcA bcA aA aA aA aA aA aA 
1:1 42/42 abA bA abA abA aA aA bcA abA aA aA aA aA aA aA 
1:3 42/126 aA aA abA bB aA aA aA abA aA aA aA aA aA aA 
1:6 42/252 abA aA aA aA aA aA abA aA aA aA aA aA aA aA 

zMeans followed by different lowercase letter are significantly different within species at 
each sampling date according to Least Significant Difference test (P ≤ 0.05).  Uppercase 
letters indicate significant differences between treatment means of species at each 
sampling event. 

levels in Canna were > 79 mg·L-1 and > 178 mg·L-1 for the 42N:126P and 42N:252P 

treatments, respectively, compared to Typha whose PO4–P effluent levels exceeded 
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Figure 5.1.  Incremental NOx-N (mg·L-1) effluent (July-August) of broadleaf cattail 
(Typha latifolia) and Canna ‘Bengal Tiger’ (A and B, respectively).  Vertical bars = ± 
SE.  Each point is the mean of n=12 (d 4-20), n=8 (d 24-40), and n=4 (d 44-60) 
(continued). 
 

 

N:P 
N/P  

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 bAz cA cA bA bA bA bA cA bA cA bA bA bA bA 
3:1 42/14 aA abA bcA abA aA aA abB bA aA bA aA aA aA aA 
1:1 42/42 aA bcB cB abA aA aA aA abA aA abA aA aA aA aA 
1:3 42/126 aA aA abA aA aA aB aA abA aA abA aA aA aA aA 
1:6 42/252 aA aA aA aA aA aA aA aA aA aA aA aA aA aA 

zMeans followed by different lowercase letter are significantly different within species at 
each sampling date according to Least Significant Difference test (P ≤ 0.05).  Uppercase 
letters indicate significant differences between treatment means of species at each 
sampling event. 
 

106 mg·L-1 and 219 mg·L-1 for 42N:126P and 42N:252P treatments, respectively.  Highest 

effluent PO4–P levels of both species occurred at 24-36 d in the 42N:126P and 42N:252P 

treatments.  Orthophosphate levels were highest in Typha with PO4–P levels in the 
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Figure 5.2.  Incremental NOx-N (mg L-1) effluent (July-August) in unplanted gravel-filled 
microcosms.  Vertical bars = ± SE.  Each point is the mean of n=8 containers.  Note: 
NOx-N concentrations were significantly higher in unplanted microcosms at each 
treatment at each sampling event compared to the planted microcosms. 
 

 

N:P 
N/P 

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 az a ab a b bc b ab a a ab a a a 
3:1 42/14 b b a a a a a a a a a a a a 
1:1 42/42 a b ab a a ab ab bc a ab a a ab a 
1:3 42/126 a ab b ab a bc ab ab a a ab a b a 
1:6 42/252 b ab b b ab c b c b b b a c b 

zMeans followed by different lowercase letter are significantly different at each sampling 
date according to Least Significant Difference test (P ≤ 0.05). 
 

42N:252P treatment that were 45 and 57% higher than Canna at 28 and 32 d, 

respectively. 

Orthophosphate effluent concentration was highest in the unplanted microcosms 
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Figure 5.3.  Incremental PO4-P (mg·L-1) effluent (July-August) for Typha latifolia and 
Canna ‘Bengal Tiger’ (A and B, respectively).  Vertical bars = ± SE.  Each point is the 
mean of n=12 (d 4-20), n=8 (d 24-40), and n=4 (d 44-60). 
 

 

N:P 
N/P 

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 aAz aA aB aA aB aA aA aA aA aA aA aA aA aA 
3:1 42/14 aA aB aB aB aB aA aB aB aA aA aA aA aA aB 
1:1 42/42 aA aB aB bB aB bB bB bB aB aA bB bA bB bB 
1:3 42/126 bA bB bA cB bB cB cB cB bB bA cB cB cB cB 
1:6 42/252 cA cB cB dB cB dB dB dB cA cB dA dA dB dB 

zMeans followed by different lowercase letter are significantly different within species at 
each sampling date according to LSD test (P ≤ 0.05).  Uppercase letters indicate 
significant differences between treatment means of species at each sampling event. 
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Figure 5.3.  Incremental PO4-P (mg·L-1) effluent (July-August) for Typha latifolia and 
Canna ‘Bengal Tiger’ (A and B, respectively).  Vertical bars = ± SE.  Each point is the 
mean of n=12 (d 4-20), n=8 (d 24-40), and n=4 (d 44-60) (continued). 

 

N:P 
N/P  

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 aAz aA abA aA aA aA aA abA aA aA abA abA aA aA 
3:1 42/14 aA aA aA aA aA aA aA aA aA aA aA aA aA aA 
1:1 42/42 aA aA bA aA aA aA aA bA aA aA bA bA aA bA 
1:3 42/126 bA bA cA bA bA bA bA cA bA bA cA cA bA cA 
1:6 42/252 cA cA dA cA cA cA cA dA cA cA dA dA cA dA 

zMeans followed by different lowercase letter are significantly different within species at 
each sampling date according to LSD test (P ≤ 0.05).  Uppercase letters indicate 
significant differences between treatment means of species at each sampling event. 
 

compared to the plant microcosms for the N42:P7 and N42:P14 treatments (Fig. 5.4).  

Orthophosphate effluent concentrations of unplanted microcosms in the N42:P42 

treatment were higher than Canna at every sampling event, but comparable or higher than 



 146 

Typha, particularly from 28-40 d. (Figure 5.4).  In general, PO4–P effluent concentrations 

in the 42N:126P and 42N:252P treatments were similar in gravel-only and Canna 

microcosms.  The high concentration of PO4–P effluent in the Typha microcosms resulted 

from water losses due to evapotranspiration, which increased the concentration of PO4–P 

(mg·L-1) remaining in solution that was not absorbed by Typha.  From a mass balance 

approach, the content of PO4–P (mg) that remained was consistently less than the amount 

of PO4–P supplied to each species for each treatment and at every sampling event 

(Appendix D, Figure D.3.). 

Rhizodeposition may have contributed to the addition of P in effluent.  NPOC levels were 

higher in vegetated microcosms than in gravel alone, and NPOC levels were highest in 

Canna compared to Typha at 30 and 60 d in all treatments (Figure 5.5).  Root exudates 

contribute to nitrification and microbial activities and include carbohydrates, sugars, 

amino acids, enzymes, vitamins such as thiamine, riboflavin, and pyridoxine, etc., 

antibiotics, organic acids such as malate, citrate, amino acids, benzoic acids, and phenol 

and other organic compounds (Rovira, 1969; Brix, 1997; Stottmeister et al., 2003; Bai et 

al., 2004).  Canna indica exudes phosphatase in the presence of triazophos [(O, O-

diethyl-O-(1-phenyl-1, 2, 4-triazole-3-base) sulfur phosphate] and in the absence of 

inorganic P (Cheng et al., 2007).  Current knowledge of composition of root exudates of 

helophytes is very limited and further investigation is required to determine how root 

exudates influence microbial activity and nutrient uptake and transformation. 
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Figure 5.4.  Incremental PO4-P (mg L-1) effluent (July-August) in unplanted gravel-filled 
microcosms.  Vertical bars = ± SE.  Each point is the mean of n=8 containers. 

 
Unplanted 

N:P 
N/P 

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 aB aB aB aB aC aB aB aB aB aB aB aB aB aB 
3:1 42/14 aC aB aB bC aC aC aC bC bC aB aC aC bC aC 
1:1 42/42 bB bB bC cC bB bB bB cB cB bA bB bB cB bC 
1:3 42/126 cA cA cA dB cA cA cA dA dA cAB cB cB dB cB 
1:6 42/252 dA dA dA eA dA dA dA eA eA dA dA dA eA dB 

Typha latifolia  

N:P 
N/P 

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 A A A A B A A A A A A A A A 
3:1 42/14 A A A B B B B B B A B B B B 
1:1 42/42 B B B B B C C C C A B B B B 
1:3 42/126 B B A C B C B C B B C C C B 
1:6 42/252 B B B B C C C C B B B B C B 

Canna ‘Bengal Tiger’ 

N:P 
N/P 

(mg·L-1) 4 11 15 20 24 28 32 36 40 44 48 52 56 60 
6:1 42/7 A A A A A A A A A A A A A A 
3:1 42/14 A A A A A A A A A A A A A A 
1:1 42/42 A A A A A A A A A A A A A A 
1:3 42/126 A A A A A B A B A A A A A A 
1:6 42/252 AB A A A B B B B AB A A A B A 

zMeans followed by different lowercase letter are significantly different within species at each 
sampling date according to LSD test (P ≤ 0.05).  Uppercase letters indicate significant 
differences between treatment means of species at each sampling event. 
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Figure 5.5.  Effect of N:P treatments on nonpurgeable organic carbon (NPOC) in Typha 
latifolia (A) and Canna ‘Bengal Tiger’ (B) at 20, 40 and 60 d (n=4) in a greenhouse 
experiment conducted from July-August 2008.  Vertical bars = ± SE.  Unplanted gravel 
microcosms were included as controls. 
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Figure 5.5.  Effect of N:P treatments on nonpurgeable organic carbon (NPOC) in Typha 
latifolia (A) and Canna ‘Bengal Tiger’ (B) at 20, 40 and 60 d (n=4) in a greenhouse 
experiment conducted from July-August 2008.  Unplanted gravel microcosms were 
included as controls (continued). 
 

Typha latifolia 
Treatment 

N/P 
(mg·L-1) N:P 20 d 30 d 40 d 60 d 
42N/P7 6:1 bB aA aB aB 

42N/14P 3:1 ab aA aB aB 
42N/42P 1:1 bAB aA aB aB 
42N/126P 1:3 aB aA aB aB 
42N/252P 1:6 bB aAB aB aB 

Canna ‘Bengal Tiger’ 
42N/P7 6:1 aB abB abC bcC 

42N/14P 3:1 aC aB abC aB 
42N/42P 1:1 aB abB abC abC 
42N/126P 1:3 aC bB bC cC 
42N/252P 1:6 aB abB aB aC 

Unplanted gravel microcosms 
42N/P7 6:1 aA aA aA bA 

42N/14P 3:1 aA aA aA abA 
42N/42P 1:1 aA abA aA aA 
42N/126P 1:3 aA abA aA aA 
42N/252P 1:6 aA bA aA abA 

zMeans followed by different lowercase letter are significantly different within species at 
each sampling date according to LSD test (P ≤ 0.05).  Uppercase letters indicate 
significant differences between treatment means of species at each sampling event. 

 

Nitrogen and Phosphorus Recovery In Plant Tissues   
 

Mineral concentrations are typically reported in wetland plant nutrient recovery 

research, although the contents (plant dry weight x tissue N or P concentration) of 

nutrients reveal differences in nutrient accumulation by plants.  In general, there were no 

trends in Canna and Typha shoot and root N concentration or content between treatments 
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at 20, 40, or 60 d (Table 5.3).  Between species Canna and Typha shoot N concentration 

were similar at 20 and 40 d in each treatment, but at 60 d Canna shoot N concentration 

was higher than cattail in the four highest P treatments.  Canna root N concentration was 

highest at every treatment at 40 and 60 d.  Both species allocated > 64% N in shoots at 

every harvest and every treatment.  Our results were consistent with Ulrich and Burton  

(1988) who found that aboveground N concentration of Typha latifolia was higher than 

belowground when N was limiting growth.  In our study N became limiting with 

increases in P, thereby resulting in greater partitioning of N to shoots than roots.  

Contrary to our study, N concentration increased in heterotrophic structures instead of 

aboveground tissues with increasing nutrient availability in roots and rhizomes of T. 

angustifolia and rhizomes of T. latifolia (Cizkova-Koncalova et al., 1996).  However, N 

probably was not limiting in those studies. 

Phosphorus accumulation increased with P availability in both species with concentration 

and content following identical trends in Canna and Typha.  Canna shoot P concentration 

was greater than roots with increasing P concentration and content in shoots and roots 

with increasing P supply concentration (Table 5.4).  Canna allocated 65% of P uptake to 

shoots in all treatments, similar to an earlier study with Canna ‘Bengal Tiger’ (Polomski 

et al., 2007), and Canna indica allocated > 56% to shoots at all low, medium, and high 

N:P ratios (Zhang et al., 2008a).  

Typha followed a trend of increasing P concentration and content with increasing 

levels of P, shoot P concentration was highest at 42N:252P than other treatments at 40 

and 60 d, and root P concentration was highest in 42N:252P at 60 d.  Shoot P content was 
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highest at 40 and 60 d for 42N:252P treatment.  Typha root P content increased with 

decreasing N:P ratios at every harvest date.  Typha root P content was similar between 

N42:P42, 42N:126P, and 42N:252P treatments at 20 and 60 d.  At d 40 root content was 

highest at 42N:252P compared to other treatments.  Typha shoot sink strength declined at 

every harvest date across all treatments with > 52%, > 47%, and > 42% P allocated to 

shoots at 20, 40, and 60 d respectively.  This storage of excess P in belowground 

structures was also found by Ulrich and Burton (1988) with Typha latifolia.  The higher 

level of P accumulation in Typha roots than shoots could contribute to P discharge into 

solution via decomposition and rhizodeposition, and also has consequences on the 

practice of harvesting as a mechanism for P-removal from the system. 

Canna shoot P concentration exceeded shoot P concentration of Typha for every 

treatment at 40 and 60 d.  Canna root P concentration was higher than Typha root P 

concentration at 40 and 60 d for the N42:P42, 42N:126P, and 42N:252P treatments.  

Canna shoot P content followed a similar trend as concentration, with higher Canna 

shoot P content in nearly every treatment and nearly at every harvest.  Root P 

concentration was greater than Typha at 40 and 60 d in the N42:P42, 42N:126P, and 

42N:252P treatments.  Root P content showed no evident trend in any of the Canna and 

Typha treatments.  Shoot N concentrations of Canna were lower than the 28.7 mg·g-1 N 

concentration of “five mature leaves from new growth” of a “hybrid canna lily (Canna x 

generalis [sic])” reported by Mills and Jones (1996), and lower than the leaf N and shoot 

N concentrations of Canna ‘Red King Humbert’ (35.4 and 19.0 mg·g-1, respectively), 

which received 23 mg·L-1 N (NH4-N:NO3-N =14:1) and 6 mg·L-1 P 
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 (Konnerup et al., 2009).  P concentration reported by Mills and Jones (1996) was similar 

to our N42:P14 treatment.  In a four-month microcosm study in Florida, DeBusk et al. 

(1995) reported that water canna (Canna. flaccida Salisb.) receiving “enriched” (75.7 

mg·L-1 N, 29.2 mg·L-1 P) and “unenriched” (9.7 mg·L-1 N, 1.7 mg·L-1 P) were similar to 

the above-ground tissues N42:P7and N42:P14 for 20, 40, 60 d dairy wastewater for 20, 

40, and 60 d accumulated N and P concentrations similar to that of Canna ‘Bengal Tiger’ 

in our study. 

The high P shoot and root concentrations of Canna in the 42N:252P treatment--

19.8 and 11.6 mg·g-1, respectively, were significantly higher than the 3.0 and 4.4 mg·g-1 

in cattail shoot and root P, respectively.  These high shoot and root P concentrations for 

Canna ‘Bengal Tiger’ have not been previously reported. Delorme et al. (2000) suggested 

that an attractive “P hyperaccumulator” must exhibit high P content (tens of g of P per kg 

dry weight or higher), high biomass, and have some form of post-harvest economic 

value.  Delorme et al. (2000) found highest shoot P content in collard and corn (6.3 mg·g-

1 and 4.9 mg·g-1, respectively) in response to growing on a high P soil (572.6 mg·kg-1 P), 

less than their anticipated foliar P concentration of 20 mg·g-1.  The exceptionally high 

shoot P content in Canna and the ability to actively translocate a particular element from 

the root to the shoot—one of the definitions of a hyperaccumuator, makes it a suitable 

candidate for further research in remediating high P wastewater.  N concentrations were 

within the range reported by Boyd and Hess (1970) for natural stands of Typha latifolia 

sampled from 30 sites farm ponds, vernal ponds, drainage ditches, and swamps in 

Georgia, Alabama, Mississippi, and Florida for all treatments.  Aboveground N and P 
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values for Typha latifolia were within the range reported by Ulrich and Burton (1988) in 

a microcosm study using varying combinations of NO3-N and PO4-P that ranged from 0 

to 93.6 g·m-2 and 0 to 25.0 g·m-2, respectively. 

Whole plant N:P concentration of Canna and Typha declined with increasing 

levels of P (Table 5.4).  Whole plant N:P ratios of Typha were higher than Canna at 

every harvest date in the N42:P42, 42N:126P, and 42N:252P treatments, which occurred 

as a result of the higher P accumulation of Canna in contrast to Typha.  Also, whole plant 

N:P concentration of both species were linearly correlated with N:P ratios of nutrients 

supplied in solution (Figure 5.6), similar to the findings of Zhang et al. (2008a) who 

found a linear correlation of individual plant tissues of Canna indica Linn. with N:P 

ratios of nutrients supplied in growth medium.  Canna ‘Bengal Tiger’ whole plant N:P 

concentration differed from Typha at each harvest, and more closely matched the N:P 

ratios of the treatments than cattail. 

 Canna and Typha N tended to be partitioned in shoots at all treatment levels 

across all harvest dates.  The pattern in Canna was regardless of N:P ratio, > 64% of N 

was in shoots at 20, 40, and 60 d which was similar to the response of Phragmites 

australis growing in a subsurface-flow constructed wetland in New South Wales, 

Australia (Huett et al., 2005).  Similarly in Typha N:P ratio had no effect on N 

accumulation in shoots with > 64% allocated to shoots in all treatments. 

Shoot P content increased with increasing concentrations of P in both species.  In 

every treatment Canna shoot P content was > 65% at each harvest, similar to the findings 

with Canna indica Linn. with more than 56% of N and P located in aboveground tissues 
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Figure 5.6.  Effect of N:P treatments at 20, 40, and 60 d on whole plant N:P concentration 
of Typha latifolia and Canna ‘Bengal Tiger’ (A and B, respectively) vs. N:P ratios of 5 
treatments (mg·L-1):  6:1 (N42:P7); 3:1 (N42:P14); 1:1 (N42:P42); 1:3 (42N:126P); and 
1:6 (42N:252P).  Vertical bars = ± SE.  Data points are the means of 4 plants.  The 
dashed line represents N:P supply ratio = whole plant N:P ratio.  Slopes of the regression 
lines were compared using linear contrasts and F tests.  Lowercase and uppercase letters 
indicate significantly different slopes (P ≤ 0.05) within and between species, respectively. 
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in response to high P levels (Zhang et al., 2008a).  Unlike Canna, Typha shoot P declined 

across all treatments with > 52% in shoots at 20 d, > 47% in shoots at 40 d, and > 42% in 

shoots at 60 d.  This increase in Typha root P accumulation can be explained on the basis 

of competition or sink/source relationship between root and shoot.  The low N:P ratios 

were N-limiting in Typha, and since the root is the plant source for N, a low N 

concentration in nutrient solution restricts shoot growth more than root growth (Brouwer 

and de Wit, 1968).  The reduced sink strength of Typha shoots resulted in the increase in 

root P assimilation, despite no statistical difference in biomass allocation between 

treatments, which supports the findings of other wetland studies where N and P 

accumulation did not reflect patterns of biomass allocation (Zhang et al., 2008a).  There 

was no difference in total, shoot, or root dry weight among the five treatments, the greater 

P content in Canna and Typha at the 42N:127P and 42:254 treatments shows luxury 

consumption and storage, which has been demonstrated by other aquatic species 

(Spangler et al., 1976; Kadlec and Tilton, 1979; Cronk and Fennessy, 2001). 

Table 5.5 shows average dry weight and N and P accumulation at 20, 40, and 60 

d.  Plant nutrient uptake (N and P) is the accumulation of each nutrient during the study, 

i.e., the difference in nutrient content from initial harvest to final harvest.  Whole plant 

dry weight increased in both species at each harvest date, but generally no significant 

difference between treatments in either species (Table 5.5).  No difference in whole plant 

dry weight between species at 20 and 40 d, but at 60 d Typha had significantly greater 

whole plant dry weight than Canna in the N42:P7 and N42:P14 treatments.  Typha’s 

higher biomass production at the high N:P ratios contrasted with Canna’s ability to 
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assimilate higher levels of P at the lowest N:P treatments. 

Whole plant N uptake showed no significant trends between treatments of each 

species or between species.  Whole plant P uptake increased in both species at each 

treatment with increasing P levels and at each harvest date.  Canna whole plant P uptake 

was greater than cattail at every harvest date in the three highest P treatments.  At 60 d 

whole plant P uptake of Canna was 2.5-, 4-, and 5-fold higher than Typha in the 

N42:P42, 42N:126P, and 1N:6P treatments, respectively. 

As P increased relative to a constant level of N, Canna acquired more P than 

Typha.  Nitrogen source may have affected N and P uptake by Typha, since NH4
+ is the 

predominant form of inorganic N in acidic, waterlogged, wetland soils (Mitsch and 

Gosselink, 2007) and is the preferred form of inorganic N for most wetland macrophytes 

(e.g., Brix et al., 2002; Tylova-Munzarova et al., 2005; Fang et al., 2007; Jampeetong and 

Brix, 2009).  Nevetheless, T. latifolia produces optimal growth with either NH4
+ or NO3

- 

at pH 5.0-7.0 (Brix et al., 2002), but with NH4
+ T. latifolia has a higher relative growth 

rate, greater tissue concentration of major nutrients, greater content of adenine 

nucleotides, and a higher affinity for inorganic N uptake than with NO3
-.  In a study of 

four wetland plants, Fang et al. (2007) observed that Bacopa monnieri and Azolla spp. 

prefer NO3–N, whereas Ludwigia repens requires both N forms and Canna indica shows 

no preference for N forms (Zhang et al., 2009). 
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Mass Balance   
 
 Nitrogen (% content) for Typha was generally similar between treatments at each 

harvest date (Table 5.6).  Nitrogen content was more variable between treatments for 

Canna, but levels were not different compared to Typha.  Highest P recovery in Canna 

and Typha were the N42:P7 and N42:P14 treatments.  Typha P content decreased 58% at 

40 and 60 d in the N42:P42 treatments.  At the N42:P42, 42N:126P, and 42N:252P 

treatments, Canna absorbed significantly more P than cattail at every harvest date with 2- 

to 5-fold differences between species.  Less P remained in the Canna effluent at these 3 

treatments than with Typha at 40 and 60 d.  Generally, no treatment differences in 

unrecovered P occurred within and between species.  Canna P removal exceeded Typha 

at the low N:P ratios.  The improved efficiency was due to luxury consumption of P and 

storage predominantly in above-ground Canna tissues.  Luxury consumption is defined as 

increased nutrient content and concentration with no change in plant weight (Aerts and 

Chapin, 2000). 

Greater P removal in vegetated microcosms over unvegetated microcosms confers 

with many other studies that showed that vegetated wetland treatment beds remove a 

greater percentage of P from wastewater than gravel beds alone (Yang et al., 2001; Huett 

et al., 2005; Brisson and Chazarenc, 2009).  Phosphorus uptake can be attributed to plant 

uptake (Brix, 1993) and bacterial uptake because plant rhizospheres support larger 

populations of bacteria than gravel media alone (Hatano et al. 1993).  The presence of 

oxidized rhizospheres around plant roots also may have increased phosphorous removal 

by enhancing adsorption reactions that occur under oxic conditions 
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Table 5.6.  Nitrogen and phosphorus mass balance (% of input) in Typha latifolia and 
Canna ‘Bengal Tiger’ at 20, 40, and 60 d of treatment (n=4).  Means within columns 
followed by the same letter are not significantly different (P ≤ 0.05) by LSD.  Lowercase 
letters indicate differences between treatments at each harvest d.  Uppercase letters 
indicate differences between species at each treatment at each harvest d. 
 

20 days 

Typha latifolia 

Treatment 

N/P (mg·L-1) N:P 

N content 
uptake 

(%) 

Effluent 
N 

(%) 
Unrecovered 

N (%)  

P 
content 
uptake 

(%) 
Effluent 

P (%) 
Unrecovered 

P (%) 
42N/7P 6:1 51.9 aA 0.5 cA 47.6 aA  43.7 dA 4.2 aA 52.1 bA 
42N/14P 3:1 48.4 aA 0.2 bA 51.4 aA  56.3 eA 2.2 aA 41.5 abA 
42N/42P 1:1 53.4 aA 0.1 bA 46.5 aA  32.5 cA 32.9 bB 34.6 aA 

42N/126P 1:3 70.5 aA 0.1 aA 29.4 aA  13.4 bA 52.1 cA 34.5 aA 
42N/252P 1:6 44.4 aA 0.1 aA 55.5 aB  8.1 aA 61.5 cB 30.4 aA 

 
Canna ‘Bengal Tiger’ 

Treatment 

N/P (mg·L-1) N:P 

N content 
uptake 

(%) 

Effluent 
N 

(%) 
Unrecovered 

N (%)  

P 
content 
uptake 

(%) 
Effluent 

P (%) 
Unrecovered 

P (%) 
42N/7P 6:1 50.7 aA 0.4 cA 48.9 cA  54.8 bA 2.4 aA 42.8 bA 
42N/14P 3:1 80.4 bcA 0.1 abA 19.5 abA  70.0 cA 2.2 aA 27.8 aA 
42N/42P 1:1 73.9 bcA 0.2 bA 25.9 bcA  65.4 bcB 11.1 bA 23.5 aA 

42N/126P 1:3 64.9 abA 0.1 abA 35.0 bcA  40.7 aB 36.7 cA 22.6 aA 
42N/252P 1:6 89.1 cA 0.1 aA 10.8 aA  33.8 aB 41.1 cA 25.1 aA 

 
 
(Wolstenholme and Bayes, 1990). 

Over the course of the experiment unrecoverable N ranged from 11 to 49% in 

Canna and 26 to 56% in Typha (Table 5.6).  Unrecovered N was due to immobilization 

and denitrification by microorganisms or volatilization (Vymazal, 2007).  Denitrification 

is a significant removal mechanism in both planted and unplanted systems (Breen, 1990).  

Nitrogen adsorption to gravel could have occurred to a certain degree, as found in other 

mass balance studies using gravel and sand substrates (Breen, 1990; Burgooon et al.,  
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Table 5.6.  Nitrogen and phosphorus mass balance (% of input) in Typha latifolia and 
Canna ‘Bengal Tiger’ at 20, 40, and 60 d of treatment (n=4).  Means within columns 
followed by the same letter are not significantly different (P ≤ 0.05) by LSD.  Lowercase 
letters indicate differences between treatments at each harvest d.  Uppercase letters 
indicate differences between species at each treatment at each harvest d (continued). 
 

40 days 
Typha latifolia 

Treatment 

N/P (mg·L-1) N:P 
N content 
uptake (%) 

Effluent 
N (%) 

Unrecovered N 
(%)  

P content 
uptake 

(%) 
Effluent 

P (%) 
Unrecovered P 

(%) 
42N/7P 6:1 64.6 aA 0.2 cA 35.1 aA  73.0 cA 1.9 aA 25.1 aA 
42N/14P 3:1 73.6 aA 0.1 bA 26.3 aA  69.9 cA 5.3 bA 24.8 aA 
42N/42P 1:1 66.8 aA 0.1 abA 33.2 aA  29.2 bA 41.7 cB 29.1 aB 

42N/126P 1:3 58.0 aA 0.1 aA 42.0 aA  9.8 aA 61.4 dB 28.8 aA 
42N/252P 1:6 69.4 aA 0.1 aA 30.6 aA  7.5 aA 59.1 dB 33.3 aB 

 
Canna ‘Bengal Tiger’ 

Treatment 

N/P (mg·L-1) N:P 

N content 
uptake 

(%) 

Effluent 
N 

(%) 
Unrecovered 

N (%)  

P 
content 
uptake 

(%) 
Effluent 

P (%) 
Unrecovered 

P (%) 
42N/7P 6:1 76.7 aA 0.4 cB 22.9 aA  81.1 dA 1.6 aA 17.4 aA 
42N/14P 3:1 78.4 aA 0.2 bA 21.5 aA  74.4 cdA 1.0 aA 24.6 aA 
42N/42P 1:1 76.0 aA 0.1 abA 23.9 aA  68.3 cB 11.4 bA 20.4 aA 

42N/126P 1:3 73.4 aA 0.1 aA 26.6 aA  41.8 bB 37.1 cA 21.1 aA 
42N/252P 1:6 82.8 aA 0.1 aA 17.2 aA  30.4 aB 45.1 dA 24.6 aA 

 
 

1991) coupled with the relatively high plant growth rate and a relatively low N loading 

rate compared to P loading rate.  A mass balance study by Zhang et al. (2007) recovered 

6 and 23% of sorbed N in the unvegetated, washed river sand “high” and “low” nutrient 

treatments, respectively, and 15 and 23% in the Canna indica high and low treatments 

and 19 and 33% sorbed P in the unplanted microcosms.  Depletion of N could have also 

resulted from assimilation by the thin film of algae present near the gravel surface and 

 from biofilm--single cells or pools of microorganisms embedded in a matrix of  



 165 

Table 5.6.  Nitrogen and phosphorus mass balance (% of input) in Typha latifolia and 
Canna ‘Bengal Tiger’ at 20, 40, and 60 d of treatment (n=4).  Means within columns 
followed by the same letter are not significantly different (P ≤ 0.05) by LSD.  Lowercase 
letters indicate differences between treatments at each harvest d.  Uppercase letters 
indicate differences between species at each treatment at each harvest d (continued). 
 
 

60 days 

Typha latifolia 

Treatment 

N/P (mg·L-1) N:P 

N content 
uptake 

(%) 

Effluent 
N 

(%) 
Unrecovered 

N (%)  

P 
content 
uptake 

(%) 
Effluent 

P (%) 
Unrecovered 

P (%) 
42N/7P 6:1 73.9 aA 0.3 cA 25.8 aA  72.2 eA 2.4 aA 25.3 aA 
42N/14P 3:1 68.1 aA 0.2 bA 31.7 aA  61.9 dA 9.8 bB 28.2 aA 
42N/42P 1:1 67.6 aA 0.1 bA 32.3 aA  26.0 cA 46.9 cB 27.0 aA 

42N/126P 1:3 62.5 aA 0.1 aA 37.4 aA  9.7 bA 63.8 dB 26.4 aA 
42N/252P 1:6 65.4 aA 0.1 aA 34.6 aB  6.2 aA 67.8 dB 25.9 aB 

 
Canna ‘Bengal Tiger’ 

Treatment 

N/P (mg·L-1) N:P 

N content 
uptake 

(%) 

Effluent 
N 

(%) 
Unrecovered 

N (%)  

P 
content 
uptake 

(%) 
Effluent 

P (%) 
Unrecovered 

P (%) 
42N/7P 6:1 73.7 aA 0.4 dA 25.9 bA  75.3 dA 4.0 aA 20.7 aA 
42N/14P 3:1 78.8 abA 0.2 cA 21.1 abA  72.1 cdA 1.1 aA 26.8 aA 
42N/42P 1:1 79.7 abcA 0.1 cA 20.2 abA  63.8 cB 12.2 bA 24.1 aA 

42N/126P 1:3 82.2 bcA 0.1 bA 17.7 abA  40.7 bB 38.7 cA 20.6 aA 
42N/252P 1:6 87.5 cB 0.1 aA 12.4 aA  30.6 aB 49.3 cA 20.1 aA 

 

microbial-derived polymers attached to the gravel substrate (Zhang and Bishop, 1994; 

Consteron et al., 1995; Bigambo and Mayo, 2005).  There is also evidence in the 

literature that N drawdown in soilless media leads to a high percentage of N 

immobilization and denitrification by microorganisms, which is manifested as 

unrecoverable or unaccountable N in mass balance studies.   

Unrecovered P ranged from 17 to 43% Canna and from 25 to 42% in Typha, 

possibly due to formation of biofilm that was not quantified in the present study.   
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Breen (1990) found that biofilm represented a total of 11 and 10% of the influent N and 

P, respectively.  Although comparatively small, the complex films of microbial cells and 

organic materials form the interface between plant and substratum surfaces and the 

interstitial water and influent load.  As such, this component is directly involved in the 

transformation and availability of nutrients. 

Direct comparison of N and P recovery by the aquatic garden plants in this study 

with other investigations is precluded by differing hydraulic characteristics, such as 

retention time, water level depth, and wastewater loading, along with differences in 

species compositions and densities, media, and design and size of the systems.  Care must 

be exercised when attempting to to generalize the results from the microcosm or 

mesocosm experiments to field-scale wetlands, especially with regard to the quantitative 

role of plant uptake as a nutrient removal mechanism (Busnardo, et al., 1992).  For 

illustrative purposes, the removal efficiencies of N and P (Table 5.6) were comparable to 

reported studies on other plant species.  For example, the removals of total N and P in an 

artificial wetland were 95 and 99% of the input, respectively (Breen, 1990).  In pilot-

scale constructed wetlands, the removal was 90% of total added N and 55% of added P 

(Ayaz and Akça, 2001).  Huett et al. (2005) reported that > 96% of added N and P was 

removed from simulated nursery runoff by the planted small-scale subsurface flow 

wetlands during the 19-month study period. In the microcosm, the high ratio of plant 

biomass to wetland volume is likely to have enhanced contact between plant roots and 

wastewater, thus providing a relatively large plant sink for nutrients.  However, the high 
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N and P removal recorded by Headley et al. (2001, 2005) in a large-scale wetland during 

the establishment phase indicated that scale was not the sole factor. 

Phosphorous removal is typically highly variable in constructed wetlands systems, 

ranging from 0–98% (Steiner and Freeman 1989; Watson et al. 1989).  In a review of 

various vegetated constructed wetlands, Vymazal (2007) reported total N removal 

between 40 and 55% with removed load ranging between 250 and 630 g N·m-2·yr-1.  Total 

P removal varied between 40 and 60% with removed load ranging between 45 and 75 g 

P·m-2·yr-1. 

The high capacity for P-absorption by Canna was due to physical and 

physiological mechanisms.  Canna indica possesses a fibrous root system; its rhizomes 

lack aerenchyma and are primarily used for storage (Chen et al., 2007).  In a study of 

eight wetland plant species, C. indica had the most developed root system compared to 

other species studied, with the highest number of roots and root surface area compared to 

the rhizomatous helophytes Acorus calamus, Hymenocallis littoralis, Phragmites 

communis, and Typha angustifolia (Chen et al., 2007).  Chen et al. (2007) observed that 

root growth is significantly faster, and root surface area considerably larger, with fibrous 

than with rhizomatic root systems in wastewater culture systems. 

In a comparative kinetic uptake study of NH4-N, NO3-N, and P uptake, Zhang et 

al. (2009) found that the P uptake rate constant (Km) of Canna indica was higher (157 

µmol·L-1) than S. validus (60 µmol·L-1), showing that Canna’s capacity for P uptake is 

greater when P concentration in the substrate is relatively high. 
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Plant Tissue Concentrations of Other Nutrients   
 

Both species received the same concentration of nutrients throughout the duration 

of the study.  Species differed in their abilities to acquire and store these minerals 

(Appendix, Table D.2).  K concentration was highest in Canna shoots at 40 and 60 d 

compared to Typha.  Zinc concentration was highest at 60 d in both species at the three 

highest P treatments.  Copper concentration was highest in Canna shoots and roots at 

every harvest date compared to Typha, and manganese was highest in Canna roots at 

every treatment level. 

Sodium concentration was highest in Canna ‘Bengal Tiger’ shoots and roots at 

every treatment level (Appendix, Table D.2).  The concentrations were less than the Na 

concentrations observed in an earlier study (Polomski et al., 2007).  Sodium 

concentration in Typha was much lower than in Canna.  Typha latifolia is a freshwater 

species that is widely distributed in North America; it has been found in wetlands or 

drainage channels that undergo frequent influx of brackish and/or salt water 

(McNaughton and Fullem, 1970; Grace and Harrison, 1986; Holm et al., 1997). 

In summary, the results of this study shows that phosphorus uptake of Canna and 

Typha was affected by N availability.  Plant uptake and incorporation into plant tissue 

was the major factor responsible for N and P removal.  Determining the optimal N:P ratio 

of aquatic species in order to maximize P-absorption prior to exposure of wastewater 

should be a design parameter in the establishment of constructed wetlands or vegetative 

filters (Adler et al., 2008).  In cases where N:P ratio of wastewater is suboptimal or N-

limited, Canna ‘Bengal Tiger’ may be a more viable economic and environmentally 
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appropriate alternative to the invasive Phragmites australis (Marks et al., 1994; 

Saltonstall, 2002).  Further work needs to be done in pilot scale constructed wetlands to 

determine the effects of N:P ratio on nutrient recovery, propagation and production, 

marketable plant quality, and harvestability of Canna ‘Bengal Tiger.’  
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CHAPTER VI 
 

SUMMARY AND CONCLUSIONS 
 
 

 This research investigated the potential use of commercially available aquatic 

garden plants to provide a sustainable, cost-effective, and low maintenance remediation 

solution compared to conventional wastewater treatment technologies.  The marketable 

value of these plants offsets their production costs in the remediation of N and P from 

wastewater.  Fifteen commercially available aquatic garden plants were evaluated for 

their ability to recover N and P, and in a subsequent study the effect of N:P ratio in the 

influent on P-assimilation was investigated. 

Plants with highly efficient N and P recovery rates, such as Pontederia cordata L. 

‘Singapore Pink.’, Louisiana Iris hybrid ‘Full Eclipse, ’ Thalia geniculata f. rheumoides 

Shuey, and Oenenathe javanica (Blume) DC.  ‘Flamingo.’  can be placed at the discharge 

end of constructed wetlands.  Canna ‘Bengal Tiger,’ ‘Yellow King Humbert,’ Thalia, 

Oenanthe, and Phyla are best sited near the inflow end of constructed wetlands because 

they assimilate high N and P concentrations.  Additionally, these species and cultivars 

may also be suited for subsurface-flow constructed wetlands in greenhouse production 

systems because of their ability to assimilate high volumes of nutrient-rich water, which 

reduces the amount of effluent that must be discarded; however, this will reduce the 

availability of recycled wetland-treated water for irrigation, which is an important water 

conservation practice.  

 Of the floating macrophytes evaluated in our study, water hyacinth (Eichhornia 

crassipes [Mart.] Solms.) exhibited the highest nitrogen uptake efficiency.  Phosphorus 
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recovery rates were similar for the water hyacinth, water lettuce (Pistia stratiotes L.), and 

dwarf redstemmed parrotfeather (Myriophyllum aquaticum [Vell.] Verdc.).  These 

floating aquatic macrophytes can be integrated with emergent macrophytes in a self-

contained polycultural subsurface flow constructed wetland system that can be used to 

remediate runoff from nursery and greenhouse operations.  Also, they may have an 

important role in greenhouse production in temperate areas where they can be cultivated 

indoors to assimilate NO3
-, and soluble PO4

3-, and heavy metal trace elements, which are 

often applied year-round.  Similar to the cannas and Thalia, these floating plants have the 

ability to process high volumes of nutrient-rich water that reduces the amount of effluent 

that has to be discarded. 

 The N:P ratio study showed that phosphorus uptake of Canna and Typha was 

affected by N availability.  Plant uptake and incorporation into plant tissue was the major 

factor responsible for N and P removal.  Determining the optimal N:P ratio of aquatic 

species in order to maximize P-absorption prior to exposure of wastewater should be a 

design parameter in the establishment of constructed wetlands or vegetative filters.  In 

situations where N:P ratio of wastewater is suboptimal or N-limited, Canna ‘Bengal 

Tiger’ may be a more viable economic and environmentally appropriate alternative to 

Typha latifolia. 

 This study supports the use of aquatic garden plants as aesthetic and economically 

viable alternatives to traditional, obligate wetland plants in constructed wetlands and the 

need for further investigation to optimize species selection, cycling time, and production 

system design.  Hydraulic loading rates and retention times, and species-specific 
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tolerance of pesticides are other important areas that need to be examined to allow 

nursery and greenhouse producers with limited growing space to customize their 

remediation/production areas.  Also, further work needs to be done in pilot scale 

constructed wetlands to determine the effects of N:P ratio on nutrient recovery, 

propagation and production, marketable plant quality, and harvestability of Canna 

‘Bengal Tiger’ and other important aquatic garden species. 
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Appendix A 
 

Tissue Mineral Concentrations 
 
 
Table A.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots 
and roots of of seven aquatic garden plants grown for eight weeks in a laboratory-scale 
wetland and receiving five treatment levels of N or P incorporated in a modified 
Hoagland’s nutrient solution containing all other nutrients at levels to support normal 
plant growth.  Treatments were initially batch-loaded and then supplied every two days to 
maintain the water level at the gravel surface. 
 

Canna ‘Bengal Tiger’ 
Shoots 

Treatmentz K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 16.97 7.47 1.40 41.83 9.92 566.92 79.92 5079.25 
2 16.96 6.08 1.33 31.58 8.33 582.75 75.08 4968.58 
3 15.69 7.15 1.57 32.92 7.25 487.75 167.25 9844.67 
4 17.58 7.06 2.08 30.67 6.83 373.92 78.50 15504.17 
5 22.97 6.83 3.23 27.17 6.83 276.67 102.75 20355.92 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 11.06 2.03 1.26 108.17 16.75 178.42 379.00 5591.83 
2 10.90 1.93 1.32 37.00 15.17 197.92 464.25 6534.58 
3 10.02 2.49 1.63 28.83 12.17 137.42 424.50 11849.17 
4 11.28 3.22 2.13 21.33 9.42 109.00 362.83 18054.17 
5 12.83 4.71 3.00 17.33 8.33 90.50 473.92 27980.33 

 

z1 = 0.39 N mg·L-1/0.07 P mg·L-1; 2 = 1.75 N mg·L-1/0.18 P mg·L-1; 3 = 10.44 N mg·L-

1/1.86 P mg·L-1; 4 = 21.57 N mg·L-1/3.63 P mg·L-1; 5 = 36.81 N mg·L-1/6.77 P mg·L-1; 1 
mg·L-1 = 1 ppm. 
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Table A.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots 
and roots of of seven aquatic garden plants grown for eight weeks (continued). 
 

Canna ‘Yellow King Humbert’ 
Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 19.30 11.68 2.78 40.83 5.33 
1062.6

7 128.17 3613.50 
2 

19.78 11.76 2.89 42.25 5.42 
1098.0

0 139.92 3829.42 
3 19.31 9.15 2.50 41.58 8.50 831.83 118.75 10001.83 
4 17.39 7.60 2.73 33.58 4.67 567.67 99.42 15728.83 
5 20.48 7.28 3.06 25.83 4.33 364.58 103.50 16070.92 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 11.46 2.73 2.62 45.67 9.08 239.17 779.00 8032.08 
2 11.81 2.92 2.69 44.58 8.92 175.25 1605.92 10118.92 
3 10.24 2.88 2.49 40.25 7.17 145.50 638.42 14603.42 
4 10.42 3.10 2.56 35.67 5.83 103.92 524.17 19330.58 
5 12.47 4.35 3.26 18.00 4.42 68.42 756.00 24982.00 

 
Colocasia esculenta ‘Illustris’ 

Shoots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 11.06 4.88 1.74 55.17 5.25 454.25 178.42 1969.83 
2 10.65 5.21 1.68 103.00 5.50 343.08 163.75 3720.58 
3 12.02 6.28 1.89 36.50 4.08 280.17 202.75 5422.00 
4 13.57 7.04 2.13 27.33 3.08 109.00 157.83 7404.92 
5 16.53 8.74 2.64 21.42 3.00 23.58 124.83 10213.33 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 7.75 2.98 1.07 51.17 4.25 158.83 275.75 2263.25 
2 7.78 3.38 1.15 96.50 4.33 132.92 298.83 3899.00 
3 7.27 3.49 1.23 49.58 3.58 77.00 439.50 6601.58 
4 7.48 3.80 1.36 26.00 2.92 39.42 333.67 9059.75 
5 8.06 4.57 1.82 26.83 2.83 23.83 209.67 13559.75 
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Table A.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots 
and roots of of seven aquatic garden plants grown for eight weeks (continued). 
 

Eleocharis dulcis 
Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 19.08 2.93 1.63 40.25 3.75 363.33 63.58 1572.42 
2 18.73 2.54 1.46 32.92 3.75 285.08 51.25 2437.75 
3 20.65 2.90 2.03 28.92 3.08 230.50 74.33 5319.17 
4 22.45 2.95 2.28 22.08 2.33 226.58 52.50 6153.58 
5 24.67 2.92 2.23 18.42 3.08 119.33 51.17 7830.58 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 7.58 1.24 0.72 24.67 8.67 173.83 2357.92 1656.58 
2 7.12 1.50 0.74 23.00 8.50 133.75 2565.58 2859.42 
3 7.73 2.12 0.85 17.83 6.42 61.42 1816.83 4850.75 
4 10.16 2.46 1.03 17.50 6.17 64.08 1510.92 4834.17 
5 13.88 3.08 1.22 16.92 7.00 40.50 815.08 5100.75 

 
Louisiana iris hybrid ‘Full Eclipse’ 

Shoots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 11.27 6.34 1.08 22.25 3.42 155.17 54.42 2444.58 
2 11.69 6.58 1.20 20.33 3.83 179.25 51.58 3164.33 
3 13.24 6.93 1.40 15.00 5.08 139.83 63.00 4434.25 
4 18.05 10.00 2.09 22.58 3.08 84.58 73.08 5983.25 
5 22.40 9.25 2.11 29.92 4.92 66.00 81.83 5828.83 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 8.82 5.11 1.73 121.00 10.50 263.08 892.50 14894.75 
2 11.27 4.76 1.56 102.17 11.92 245.50 812.08 17888.83 
3 14.62 4.48 1.79 48.25 7.92 121.58 592.08 23787.75 
4 19.33 4.22 2.06 28.17 6.42 74.58 488.33 26278.00 
5 26.91 5.19 2.22 30.83 7.25 58.75 466.50 24053.42 
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Table A.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots 
and roots of of seven aquatic garden plants grown for eight weeks (continued). 
 

Peltandra virginica 
Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 14.28 11.18 1.53 32.25 2.42 593.33 282.50 7441.00 
2 14.22 12.98 1.92 30.92 3.33 822.08 113.08 8010.83 
3 15.98 13.24 1.88 30.17 2.25 557.25 108.50 12814.58 
4 18.12 12.66 2.12 24.83 2.17 461.58 96.00 16414.67 
5 17.45 11.01 1.98 19.58 1.67 242.33 103.17 20390.17 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 16.23 4.35 1.61 64.33 3.58 178.42 331.67 4437.67 
2 17.05 4.61 1.91 69.08 4.33 171.67 328.33 5982.83 
3 17.26 5.48 2.10 75.83 4.00 115.42 396.33 9485.75 
4 19.33 6.62 2.28 62.42 3.92 82.83 476.67 10689.25 
5 20.79 5.43 2.00 42.75 3.17 51.83 296.67 12581.17 

 
Pontederia cordata ‘Singapore Pink’ 

Shoots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 10.58 14.79 2.66 46.33 12.00 306.83 54.75 4631.67 
2 10.73 15.39 2.92 42.75 12.67 289.92 71.67 5171.50 
3 14.30 14.99 3.41 28.50 8.08 274.92 64.50 5976.67 
4 18.39 14.03 3.72 26.33 6.92 227.00 112.75 7063.17 
5 25.38 12.90 4.26 17.58 5.17 144.42 68.33 11530.67 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 8.12 5.34 0.67 90.75 18.58 66.00 751.83 5896.67 
2 8.53 5.61 0.63 73.58 15.58 51.58 659.00 8086.33 
3 7.33 5.68 0.73 48.08 13.92 47.50 706.58 10250.33 
4 7.32 5.91 0.97 50.92 14.67 46.83 862.25 11779.25 
5 7.78 7.30 1.49 40.75 17.75 36.83 733.67 15429.33 
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Appendix B 
 

Tissue Mineral Concentrations 
 
 
Table B.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots and 
roots of five aquatic garden plants grown for eight weeks in a laboratory-scale wetland 
and receiving five treatment levels of N or P incorporated in a modified Hoagland’s 
nutrient solution containing all other nutrients at levels to support normal plant growth.  
Treatments were initially batch-loaded and then supplied every two days to maintain the 
water level at the gravel surface. 
 

Oenanthe 
Shoots 

Treatmentz K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 14.35 11.21 2.06 31.58 4.50 183.75 142.67 3271.92 
2 13.43 10.39 1.93 57.58 4.25 123.42 113.58 4190.08 
3 13.91 7.39 1.83 26.00 2.67 46.67 60.58 7393.83 
4 17.88 9.16 2.52 23.75 3.42 39.83 78.83 6774.42 
5 27.67 9.05 3.10 24.42 3.25 64.50 81.75 11075.00 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 9.32 5.43 3.42 60.00 9.33 335.00 932.25 10728.25 
2 7.48 5.98 3.24 244.25 11.08 229.92 930.83 12755.08 
3 7.36 7.79 4.94 47.42 16.42 130.92 802.58 17071.75 
4 8.00 7.27 4.95 28.58 8.83 108.25 919.50 18799.33 
5 11.23 9.49 6.63 20.33 8.00 149.92 855.83 21059.42 

 
z1 = 0.39 N mg·L-1/0.07 P mg·L-1; 2 = 1.75 N mg·L-1/0.18 P mg·L-1; 3 = 10.44 N mg·L-

1/1.86 P mg·L-1; 4 = 21.57 N mg·L-1/3.63 P mg·L-1; 5 = 36.81 N mg·L-1/6.77 P mg·L-1; 1 
mg·L-1 = 1 ppm. 
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Table B.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots and 
roots of of seven aquatic garden plants grown for eight weeks (continued). 
 

Phyla 
Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 8.77 6.63 1.71 12.17 3.33 307.50 71.42 6359.25 
2 9.96 7.12 2.08 13.42 3.42 219.08 66.92 7753.08 
3 12.36 7.22 2.38 12.42 3.08 129.58 64.33 10955.75 
4 14.93 7.79 2.62 11.92 3.00 110.00 72.58 12301.25 
5 19.18 7.91 3.06 13.58 3.50 93.50 144.75 15942.75 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 4.87 1.28 0.44 32.50 7.67 134.50 519.17 2014.00 
2 5.29 1.60 0.50 31.08 8.50 87.58 533.75 3200.83 
3 7.83 1.75 0.66 26.25 6.00 66.17 607.25 3997.67 
4 9.94 1.95 0.84 27.17 9.83 67.42 479.42 3718.75 
5 9.64 2.19 1.08 47.00 7.42 62.00 434.25 3763.50 

 
Rhyncospora 

Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 8.77 6.63 1.71 12.17 3.33 307.50 71.42 6359.25 
2 9.96 7.12 2.08 13.42 3.42 219.08 66.92 7753.08 
3 12.36 7.22 2.38 12.42 3.08 129.58 64.33 10955.75 
4 14.93 7.79 2.62 11.92 3.00 110.00 72.58 12301.25 
5 19.18 7.91 3.06 13.58 3.50 93.50 144.75 15942.75 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 4.87 1.28 0.44 32.50 7.67 134.50 519.17 2014.00 
2 5.29 1.60 0.50 31.08 8.50 87.58 533.75 3200.83 
3 7.83 1.75 0.66 26.25 6.00 66.17 607.25 3997.67 
4 9.94 1.95 0.84 27.17 9.83 67.42 479.42 3718.75 
5 9.64 2.19 1.08 47.00 7.42 62.00 434.25 3763.50 
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Table B.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots and 
roots of of seven aquatic garden plants grown for eight weeks (continued). 
 

Thalia 
Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 7.85 6.63 1.71 12.17 3.33 307.50 71.42 6359.25 
2 9.96 7.12 2.08 13.42 3.42 219.08 66.92 7753.08 
3 12.36 7.22 2.38 12.42 3.08 129.58 64.33 10955.75 
4 14.93 7.79 2.62 11.92 3.00 110.00 72.58 12301.25 
5 19.18 7.91 3.06 13.58 3.50 93.50 144.75 15942.75 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 4.87 1.28 0.44 32.50 7.67 134.50 519.17 2014.00 
2 5.29 1.60 0.50 31.08 8.50 87.58 533.75 3200.83 
3 7.83 1.75 0.66 26.25 6.00 66.17 607.25 3997.67 
4 9.94 1.95 0.84 27.17 9.83 67.42 479.42 3718.75 
5 9.64 2.19 1.08 47.00 7.42 62.00 434.25 3763.50 

 
Typha minima 

Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 17.13 14.83 2.34 54.42 3.92 500.50 101.67 2697.17 
2 18.97 14.38 2.52 51.17 3.92 477.25 97.17 3737.17 
3 20.90 13.01 2.61 40.50 3.25 260.58 81.83 5665.75 
4 23.72 11.13 2.84 32.83 3.58 154.50 73.08 7043.50 
5 28.68 9.89 2.47 24.42 3.67 100.00 81.33 9887.58 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 10.21 3.46 1.16 79.08 12.25 168.58 1464.83 4439.25 
2 10.07 3.88 1.32 76.17 11.75 156.67 1135.67 6632.00 
3 11.48 4.43 1.70 58.83 12.17 100.33 1110.58 11309.58 
4 11.77 4.63 2.13 51.17 11.67 77.17 787.83 13908.83 
5 17.88 4.32 2.12 42.00 11.17 64.08 634.33 14584.17 
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Appendix C 
 

Tissue Mineral Concentrations 
 
 
Table C.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots and 
roots of three floating hydrophytes grown for eight weeks in a laboratory scale wetland 
and receiving five treatment levels of N or P incorporated in a modified Hoagland’s 
nutrient solution containing all other nutrients at levels to support normal plant growth.  
Treatments were initially batch-loaded and then supplied every two days to maintain the 
water level at the gravel surface. 
 

Eichhornia crassipes  
Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 10.93 22.88 1.43 14.92 5.58 111.58 85.17 5803.67 
2 10.57 19.10 1.43 12.83 4.58 114.42 50.75 6001.42 
3 12.79 19.21 2.05 20.33 4.33 147.25 73.42 14392.50 
4 14.71 14.96 2.53 15.58 4.08 157.58 57.08 16480.58 
5 20.77 13.88 3.38 13.92 3.92 63.58 57.58 16526.83 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 5.58 9.30 1.40 24.83 7.00 84.33 659.17 11545.75 
2 4.29 7.77 1.07 29.75 7.00 74.58 552.75 10288.42 
3 5.32 8.53 1.33 135.33 7.33 56.17 570.42 16799.00 
4 7.33 7.79 1.10 35.83 7.00 56.00 917.17 17376.33 
5 7.45 9.76 1.33 18.50 7.00 52.00 1120.25 23043.92 

 
z1 = 0.39 N mg·L-1/0.07 P mg·L-1; 2 = 1.75 N mg·L-1/0.18 P mg·L-1; 3 = 10.44 N mg·L-

1/1.86 P mg·L-1; 4 = 21.57 N mg·L-1/3.63 P mg·L-1; 5 = 36.81 N mg·L-1/6.77 P mg·L-1; 1 
mg·L-1 = 1 ppm. 
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Table C.1.  Tissue concentrations of K, Ca, Mg, Zn, Cu, Mn, Fe, and Na in the shoots and 
roots of three floating hydrophytes grown for eight weeks (continued). 
 

Myriophyllum aquaticum  
Shoots 

Treatment K Ca Mg Zn Cu Mn Fe Na 
 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 14.35 11.21 2.06 31.58 4.50 183.75 142.67 3271.92 
2 13.43 10.39 1.93 57.58 4.25 123.42 113.58 4190.08 
3 13.91 7.39 1.83 26.00 2.67 46.67 60.58 7393.83 
4 17.88 9.16 2.52 23.75 3.42 39.83 78.83 6774.42 
5 27.67 9.05 3.10 24.42 3.25 64.50 81.75 11075.00 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 9.32 5.43 3.42 60.00 9.33 335.00 932.25 10728.25 
2 7.48 5.98 3.24 244.25 11.08 229.92 930.83 12755.08 
3 7.36 7.79 4.94 47.42 16.42 130.92 802.58 17071.75 
4 8.00 7.27 4.95 28.58 8.83 108.25 919.50 18799.33 
5 11.23 9.49 6.63 20.33 8.00 149.92 855.83 21059.42 

 
Pistia stratiotes 

Shoots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 

1 23.75 13.18 3.18 66.58 5.08 259.08 121.50 13638.00 
2 22.16 12.18 3.13 54.92 4.17 290.17 134.50 15866.75 
3 20.95 11.71 2.96 55.33 4.25 195.33 75.25 18978.67 
4 20.26 12.94 3.05 45.75 3.25 122.00 65.08 20638.08 
5 25.55 16.79 4.00 39.25 53.17 76.42 128.17 25203.58 

Roots 
Treatment K Ca Mg Zn Cu Mn Fe Na 

 -----------mg·g-1---------- -----------------------mg·kg-1---------------------------- 
1 19.95 8.58 1.01 172.82 12.55 262.27 1829.00 5671.00 
2 16.29 8.61 0.85 120.36 11.64 269.91 1458.00 6820.64 
3 18.57 8.34 0.99 105.09 10.18 150.36 1094.27 9661.55 
4 22.44 8.99 1.32 82.64 10.45 98.91 938.91 12480.00 
5 21.50 10.04 2.99 50.82 10.09 93.27 931.73 16125.18 
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Appendix D 
 

Influence of N:P Ratio on Height, Biomass, and Mineral Concentrations  
 
 
Figure D.1.  Effect of N:P treatments on average height of Canna ‘Bengal Tiger’ (A) and 
Typha latifolia (B) from July-August 2008.  Each point is the mean of n=12 (day 4-20), 
n=8 (day 24-40), and n=4 (day 44-60).  Vertical bars are ± SE; ns = not significant (P ≤  
0.05) by LSD. 
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Figure D.2.  Effect of N:P treatments on growth index (widest width measurement + 
perpendicular width measurement + height)/3) of Canna ‘Bengal Tiger’ from July-
August 2008.  Each point is the mean of n=12 (day 4-20), n=8 (day 24-40), and n=4 (day 
44-60).  Vertical bars are ± SE; ns = not significant (P ≤  0.05) by LSD. 
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Figure D.3.  Incremental P (mg) effluent (July-August) of Typha latifolia and Canna 
‘Bengal Tiger’ (A and B, respectively).  Vertical bars = ± SE.  Each point is the mean of 
n=12 (day 4-20), n=8 (day 24-40), and n=4 (day 44-60).  
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Table D.1.  Effect of N:P treatments on biomass data areal basis in Canna ‘Bengal Tiger’ 
and Typha latifolia at 20, 40 and 60 days of treatment (n=4).  Means within columns 
followed by the same letter are not significantly different (P ≤ 0.05) by LSD.  Lowercase 
letters indicate differences between treatments at each harvest date.  Uppercase letters 
indicate differences between species at each treatment at each harvest date. 
 

                Typha latifolia                                                              Canna ‘Bengal Tiger’ 
                               20 d 

Treatment 

N/P (mg·L-1) N:P 
Total dry wt. 

(g·m-2) 
Shootz dry wt 

(g·m-2) 
Rooty dry wt. 

(g·m-2)  
Total dry wt. 

(g·m-2) 
Shoot dry wt 

(g·m-2) 
Root dry wt. 

(g·m-2) 
42N/P7 6:1 1464.90 aA 976.63 aA 488.26 aA  1456.11 aA 874.17 aA 581.94 aA 
42N/14P 3:1 1538.52 aA 996.05 aA 542.47 aA  1664.30 bA 990.84 abA 673.46 abA 
42N/42P 1:1 1533.15 aA 977.11 aA 556.05 aA  1690.35 bA 988.47 abA 701.87 bA 
42N/126P 1:3 1659.77 aA 1003.68 aA 656.09 aA  1624.25 bA 953.16 aA 671.09 abA 
42N/252P 1:6 1519.42 aA 952.95 aA 566.47 aA  1768.60 bA 1109.04 bA 659.56 abA 

                               40 d 
 Total dry wt. 

(g·m-2) 
Shoot dry wt 

(g·m-2) 
Root dry wt. 

(g·m-2)  
Total dry wt. 

(g·m-2) 
Shoot dry wt 

(g·m-2) 
Root dry wt. 

(g·m-2) 
42N/P7 6:1 2789.18 abA 1630.78 aA 1158.40 abA  2376.28 aA 1419.11 aA 957.16 aA 
42N/14P 3:1 2703.61 abA 1707.87 aA 995.74 aA  2421.17 aA 1522.05 aA 899.12 aA 
42N/42P 1:1 2739.55 abA 1582.68 aA 1156.88 abA  2447.48 aA 1392.96 aA 1054.52 aA 
42N/126P 1:3 2488.63 aA 1470.42 aA 1018.21 abA  2371.91 aA 1499.32 aA 872.59 aA 
42N/252P 1:6 2926.74 bA 1687.45 aA 1239.29 bA  2352.91 aA 1490.16 aA 862.75 aA 

                                60 d 
 Total dry wt. 

(g·m-2) 
Shoot dry wt 

(g·m-2) 
Root dry wt. 

(g·m-2)  
Total dry wt. 

(g·m-2) 
Shoot dry wt 

(g·m-2) 
Root dry wt. 

(g·m-2) 
42N/P7 6:1 4082.57 aB 2449.64 aA 1632.93 aB  3163.67 abA 1926.32 aA 1237.34 aA 
42N/14P 3:1 3718.19 aB 2091.46 aA 1626.72 aB  3065.47 aA 1849.44 aA 1216.03 aA 
42N/42P 1:1 3925.27 aA 2092.67 aA 1832.60 aA  3068.41 aA 1821.49 aA 1246.92 aA 
42N/126P 1:3 3856.80 aA 2019.21 aA 1837.60 aA  3401.59 bA 2087.62 abA 1313.97 aA 
42N/252P 1:6 3795.28 aA 2190.93 aA 1604.36 aB  3368.22 abA 2335.75 bA 1032.47 aA 

 
zIncludes leaves, stems, and inflorescences (if present). 
yIncludes rhizomes. 
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