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ABSTRACT 

 

Numerical models for one- and two-dimensional shallow water flows are 

developed using discontinuous Galerkin method.  Formulation and characteristics of 

shallow water equations are discussed.  The well-balanced property and wetting/drying 

treatment are provided in the numerical models.  The shock-capturing property is 

achieved by the approximate Riemann solvers in the schemes.  Effects of different 

approximate Riemann solvers are also investigated.  The Total Variation Diminishing 

property is achieved by adoption of slope limiters.  Different slope limiters and their 

effects are compared through numerical tests.  Numerical tests are performed to validate 

the models.  These tests include dam-break flows, hydraulic jump and shocks in channels, 

and flows in natural rivers.  Results show that the numerical models developed in present 

work are robust, accurate, and efficient for modeling shallow water flows. 

The one-dimensional model shows that the area based slope limiter provided the 

best solution in natural channels.  The slope limiter based on the water depth or water 

surface elevation performs progressively poorer as the cross-section shape deviates from 

rectangular.  In the approximate Riemann solver, the wave speeds are based on the 

original form of the equations, although the pressure force and the gravity force terms are 

combined for solving the shallow water equations with discontinuous Galerkin method.  

The combined term is discretized, in one- and two-dimensional models, such that the 

stationarity property is preserved.  Different wetting and drying procedures are evaluated 
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for the one- and two-dimensional models.  Analytical, laboratory, and field tests are 

conducted to verify the accuracy of the wetting and drying procedures. 
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CHAPTER ONE 

INTRODUCTION 

 

Numerical modeling of open channel flows has been of great interest to 

hydraulics researchers and engineers.  The governing equations for shallow water flows 

are the well-known Saint-Venant equations.  For most practical cases of river flow 

problems, the shallow water hypothesis is valid.  Over recent decades, many numerical 

schemes have been developed to solve the Saint-Venant equations (Fennema and 

Chaudhry, 1990; Capart et al., 2003).  The difficulties in modeling these equations come 

from the treatment of the convective flux and source terms (Garcia-Navarro and 

Vázquez-Cendón, 2000).  

Improper treatment of source term results in non-physical flows in the simulation 

domain.  Nujić (1995) proposed a non-oscillatory scheme in rectangular channels, where 

the pressure force term was extracted from the flux term and discretized to achieve 

compatibility with the bed slope term.  Garcia-Navarro and Vázquez-Cendón (2000) 

discussed the difficulties associated with the correct treatment of the geometrical source 

term, and proposed an upwind treatment for this term.  Perthame and Simeoni (2001) 

presented a kinetic approach for the treatment of the source term in rectangular channels.  

Zhou et al. (2001) proposed the water surface gradient method for the treatment of the 

source term in the data reconstruction step.  Sanders et al. (2003) provided an exact 

expression for the source term in a trapezoidal channel, which included forces due to 

channel width changes and bed elevation.  Ying et al. (2004) developed a weighted 
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average water surface gradient approach based on the Courant number criterion to deal 

with the source term.  Catella et al. (2008) proposed a predictor-corrector method based 

on the Froude number, where the bed elevation change term and the wall pressure force 

term were discretized to guarantee the elimination of nonphysical flows due to changes in 

the bed topography with a constant water surface elevation.  Modified shallow water 

equations (Ying et al., 2009; Kesserwani and Liang, 2010) or flux modification (Ern et al, 

2008; Xing et al. 2010) can also be used to deal with source term. 

Since the shallow water equations are hyperbolic, a discontinuous solution may be 

generated even if the initial conditions and boundary conditions are smooth.  In recent 

decades, the Discontinuous Galerkin (DG) method has gained popularity in modeling 

shallow water flows as it combines the advantages of the finite element method and the 

finite volume method (Schwanenberg and Harms, 2004; Kesserwani et al., 2008).  The 

DG method was first introduced by Reed and Hill (1973) for the solution of neutron 

transport equation.  Later, Cockburn and Shu (1988, 1989, and 1998) and Cockburn et al. 

(1989, 1990) introduced the Runge-Kutta Discontinuous Galerkin (RKDG) method to 

solve the nonlinear, time-dependent, hyperbolic conservation laws.  In the DG method, 

higher order interpolation functions can be utilized to attain higher order spatial accuracy.  

Since the DG method allows solutions to be discontinuous across element boundaries, it 

provides better solution strategy for problems including shocks and discontinuities.  

According to Li (2006), the RKDG method provides additional advantages, for example, 

the RKDG method can easily deal with a source term as can the finite element method.  

By decoupling the elements using boundary flux, a local formulation is achieved that 
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does not require assembling the global matrix and explicit time schemes can be 

implemented.  The local formulation is also efficient in cases of nonlinear problems that 

require iterative solutions (Dolejší, 2010).  In practical applications, where millions of 

elements may be used, the RKDG method will prove advantageous in terms of computing 

speed and memory demand.  The RKDG method is a conservative scheme, which is a 

suitable choice for physical problems, since most physical properties such as mass and 

momentum are conservative quantities.  In addition, the hp-adaptive algorithm is much 

easier to apply to the RKDG local formulation. 

Schwanenberg and Köngeter (2000) were the first to implement the RKDG 

method for shallow water equations for applications to practical problems like shocks, 

dam-break problem, and oblique hydraulic jump.  Later, Schwanenberg and Harms 

(2004) investigated the accuracy and convergence of the RKDG method in transcritical 

flows.  Aizinger and Dawson (2002) and Dawson and Aizinger (2005) applied the RKDG 

method to two-dimensional and three-dimensional shallow water flows.  Kubatko et al. 

(2006) demonstrated the applicability of the hp-adaptive algorithm for the RKDG 

method.  In recent years, significant progress has been achieved in the application of the 

DG method to dam-break flows in channels (Fagherazzi et al., 2004; Schwanenberg and 

Harms, 2004), coastal wave disturbance and tidal flows (Eskilsson and Sherwin, 2004; 

Aizinger and Dawson, 2002), and flooding and drying (Bokhove, 2005; Ern et al, 2008; 

Xing et al., 2010). 

In solving hyperbolic conservation laws, exact and various approximate Riemann 

solvers are employed to achieve accurate approximations for the flux terms.  Godunov 
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(1959) was the first to introduce a discontinuous solution for the flux terms by using the 

exact formulation of a Riemann problem.  Roe (1981) introduced a solution to the 

linearized Riemann problems for conservation laws and it is known as the Roe flux.  

Harten et al. (1983) introduced the HLL (Harten-Lax-van Leer) flux where upstream 

differencing and Godunov-type schemes were utilized for hyperbolic conservation laws.  

Einfeldt (1988) proposed the positively conservative HLLE (Harten-Lax-van Leer-

Einfeldt) flux for conservation laws.  Toro (1989) suggested a weighted average flux 

method for hyperbolic conservation laws based on the wave speeds of the system.  Toro 

et al. (1994) presented the HLLC (Harten-Lax-van Leer Contact wave) flux, a 

modification of the HLL flux, to take into account the contact and shear waves for 

equations with three distinct eigenvalues or characteristic wave speeds. 

Like most higher-order methods, oscillations are observed in numerical solutions 

near discontinuities, and additional efforts are needed to eliminate these oscillations.  The 

Essentially Non-oscillatory (ENO) scheme (Harten et al., 1987) and the Total Variation 

Diminishing (TVD) scheme are the two widely used methods to reduce oscillations.  The 

key idea in the ENO scheme is to choose the locally smoothest stencil with a nonlinear 

adaptive procedure at the approximation level.  Later, Liu et al. (1994) constructed the 

Weighted Essentially Non-oscillatory (WENO) scheme in a similar way.  The ENO and 

WENO schemes were originally constructed within the framework of the finite volume 

method and the finite difference method.  Qiu and Shu (2005) applied the WENO limiters 

with the discontinuous Galerkin finite element method.  Schemes that satisfy the Total 

Variation Diminishing (TVD) criterion are oscillation-free schemes as well.  Flux limiters 
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and slope limiters are widely used to achieve the TVD property.  The key idea for flux 

limiter and slope limiter is the same.  The flux limiter would be applied directly to the 

fluxes while slope limiter would be applied to the conservative variables or primitive 

variables.  For this reason, slope limiters are preferred, since it may better preserve the 

conservative property and reduce oscillations.   

The goal of this research is to develop robust, accurate, and efficient numerical 

models for shallow water flows in one and two dimensions.  A suitable choice of 

governing equations and the treatment of the source term that provides a well-balanced 

scheme will be illustrated.  This research will advance the application of the 

discontinuous Galerkin method to natural rivers with wetting/drying episodes modeled 

with complex geometries.  Various schemes to approximate numerical fluxes will be 

investigated.  Different slope limiters will be tested and their effects will be compared.  A 

number of numerical tests will be performed to validate these models.  Numerical scheme 

development for the one-dimensional shallow water flows is presented in Chapter 2, 

followed by numerical tests in Chapter 3.  The numerical scheme for two-dimensional 

shallow water flows is given in Chapter 4, with numerical tests presented in Chapter 5.  

Summary and conclusions are provided in Chapter 6. 



 6 

CHAPTER TWO 

NUMERICAL SCHEME FOR ONE-DIMENSIONAL FLOWS 

 

This chapter provides the details of the numerical scheme using discontinuous 

Galerkin finite element method to model the one-dimensional shallow water flow 

equations.  Implementation of the approximate Riemann solver for numerical fluxes and 

slope limiters used to achieve TVD property are discussed.  The time integration of the 

governing equations using TVD Runge-Kutta scheme is illustrated. 

 

2.1 Shallow water flow equations 

The governing equations of one-dimensional shallow water flows for natural 

rivers with irregular cross-section are known as the Saint-Venant equations.  The 

continuity and momentum equations are based on several assumptions, including mild 

slope, uniform velocity over cross-section, vertical accelerations are negligible, and so 

on.  The one-dimensional governing equations are given by 

0A Q
t x

∂ ∂
+ =

∂ ∂
 (2.1) 

2
1

2
( / ) ( )o f
Q A gIQ gI gA S S

t x
∂ +∂

+ = + −
∂ ∂

 (2.2) 

where the hydrostatic pressure force I1, wall pressure force I2, bed slope So, and friction 

slope Sf  are defined, respectively, as 
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( , ) ( , )

1 20 0

( , )( ) ( , ) ; ( )
h x t h x t b x yI h y b x y dy I h y dy

x
∂

= − = −
∂∫ ∫  (2.3) 

2

4/3 2;b
o f

n Q QzS S
x R A

∂
= − =

∂
 (2.4) 

In the equations described above, Q = flow rate, A = cross-section area, 

n = Manning’s roughness coefficient, b = channel width at the water surface, 

bz = channel bed elevation, h = water depth, g = gravitational acceleration, and 

R = hydraulic radius.  A sketch of a natural channel cross-section geometry is shown in 

Figure 2.1.  The eigenvalues and eigenvectors for the Saint-Venant equations are given, 

respectively, by Equations (2.5) and (2.6). 

1

2

Q A gA b u c

Q A gA b u c

λ

λ

 = − = −


= + = +
 (2.5) 

1

2

[1 , ]

[1 , ]

T

T

u c
u c

 = −


= +

k
k

 (2.6) 

 

 

zb 

h 

y 

Datum 

b 

Z 

A 

 

Figure 2.1 Natural channel cross-section 
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Due to the known difficulty in calculating and generalizing the hydrostatic and 

wall pressure force terms, Equation (2.2) can be simplified following Leibnitz’s rule as 

follows (Cunge et al., 1980) 

2( / )
f

Q Q A ZgA gAS
t x x

∂ ∂ ∂
+ = − −

∂ ∂ ∂
 (2.7) 

where Z is the water surface level, as shown in Figure 2.1,  that combines the pressure 

force and bed elevation change terms.  An advantage of this equation is that it 

circumvents unphysical bed slope generated flow due to inadequate treatment of the bed 

slope term.  That is, if the water in the channel is at rest initially it will remain at rest.  As 

part of the flux term in the original momentum equation, Equation (2.2), is combined 

with the source term, special attention has to be paid to calculate the numerical flux at the 

cell interface accurately.  The accuracy of the numerical flux is controlled by the 

convective flux term (Nujić, 1995).  The incomplete flux function in Equation (2.7) will 

give an accurate solution if the pressure force term is treated properly.  The details of the 

pressure force term treatment will be given latter.  In addition, the above equation is 

easier to solve numerically than Equation (2.2) as integral terms for pressure force 

calculations are eliminated. 

            As described before, the flux terms in the Saint-Venant equations are generally 

discretized using approximate Riemann solvers (e.g., Roe flux, HLL, HLLE, or HLLC).  

These approximate Riemann solvers achieve upwinding along the characteristic 

directions that are given by the eigenvalues.  Eigenvalues represent characteristics speeds 

or physical speeds with which disturbances move in the channel.  Since the physical 
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characteristics of the equations are independent of the mathematical form of the 

equations, the actual eigenvalues and eigenvectors based on Equations (2.1) and (2.2) are 

used for the approximate Riemann solver (i.e., HLL and Roe flux) in this study to solve 

Equations (2.1) and (2.7). 

 

2.2 Discontinuous Galerkin method formulation and source term treatment 

            The one-dimensional domain of length L is divided into m elements with m+1 

nodes ( 1 2 10 mx x x L+= < ⋅⋅⋅ < = ).  A typical spatial discretization in the discontinuous 

Galerkin method is illustrated in Figure 2.2 with linear non-overlapping elements.  The 

channel geometry and roughness coefficient are specified at the nodes.  For linear 

elements, this means that these properties are specified at the end of an element. 

 

 

 

x 

 

 

6 5 3 4  

Figure 2.2 Spatial discretization for discontinuous elements 

 

The discontinuous Galerkin formulation is written for each element in local 

coordinate system [ 1,1]ξ ∈ −  corresponding to an element with global coordinate system 

[ , ]s ex x x∈ , where sx  and ex  are the start and end coordinates, respectively.  Linear 
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interpolating functions (also known as basis or shape functions) are used to describe the 

variation of the nodal values within an element.  In an element, the variation of A, Q, and 

any function f (like friction slope) can be written as (note Einstein summation notation is 

assumed) 

( ) ( )ˆˆ ˆ ˆ ˆ; ; , , ; 1, 2j j j jA N A Q N Q f A Q f A Q j= = = =  (2.8) 

where 1 0.5(1 )N ξ= −  and 2 0.5(1 )N ξ= +  are the basis functions, and j refers to number 

of nodes in an element (2 for linear elements).  The conversion from global to local 

coordinates is achieved by recognizing that 0.5dx xdξ= ∆ , where x∆  is the size of the 

element, and any spatial derivative in the global coordinate ( )x  can be transformed into 

the local coordinate (ξ ). 

The discontinuous Galerkin finite element method is applied to Equations (2.1) 

and (2.7).  First the equations are multiplied by weight or test functions, Ni ( 1, 2i =  for 

linear elements), and are assumed to be the same as shape functions Nj in the Galerkin 

method.  Next, integration over an element is carried out.  The resulting equations, after 

integration by parts of the flux terms, can be written as 

2 1
ˆ ( ) ( )

e
e

s
s

xx j i
i j i e i sx x

A NN N dx Qdx N x P N x P
t x

∂ ∂  = − +   ∂ ∂
⌠
⌡∫  (2.9) 

2

2

2

1 4 3

ˆ
( )ˆ

ˆ ˆˆˆ( ) ˆˆ

e
e

s
s

e

s

x
x j i

i j i ex
x

x

i s i

x

Q N QN N dx dx N x G
t x A

gn Q QZN x G N gA dx
x R A

∂ ∂  = − +   ∂ ∂

 ∂ + − −
 ∂
 

⌠

⌡

⌠


⌡

∫
 (2.10) 
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where ( , )P x t Q= and 2( , ) /G x t Q A=  are the numerical fluxes at  the element boundary 

and are computed using Riemann solvers.  The final step is to transform Equations (2.9) 

and (2.10) into the local coordinate system.  The transformed equations can then be 

integrated easily using Gauss-Legendre quadrature rules. 

The water surface gradient term on the right hand side of Equation (2.10) is 

discretized using the following expression (see Figure 2.2) 

1 1 1 1

2 2 2 2

ˆ ( ) ( )ˆ
2 ( )

ˆ ( ) ( )ˆ
2 ( )

s e e s

s e e s

x x x x

e s

x x x x

e s

A A Z ZZgN A gN N C
x x x

A A Z ZZgN A gN N C
x x x

− − − −

+ + + +

 + −∂
− = − =

∂ −


+ −∂− = − = ∂ −

 (2.11) 

where 
sxA− and 

sxA+ are the values of A at boundary xs from the left and right elements, 1N , 

2N  ( 1, 2)i =  correspond to test functions at nodes 1 and 2 of the element, respectively, 

and C1, C2 are treated as constants during integration. 

The discretization scheme for the combined pressure force and bed elevation 

change terms given by Equation (2.11) will not produce unphysical bed slope generated 

flows referred to as a numerical imbalance problem (Kesserwani et al, 2010) under still 

water condition.  For a constant water surface elevation with zero flow, Equation (2.11) 

will maintain the still water steady state (or stationary solution) as the water surface 

gradient term will vanish, that is, 
e sx xZ Z− −= , 

e sx xZ Z+ += , and the time derivative terms in 

Equations (2.9) and (2.10) are equal to zero.  In addition, the discretization in Equation 

(2.11) is similar to central difference and models diffusive flux accurately.  If pressure 

force and bed elevation change terms are separated, special care has to be exercised to 
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achieve a well-balanced scheme (preserving constant water surface and zero discharge in 

a channel with irregular bed topography, also known as stationarity test). 

 

2.3 Numerical flux functions and dry bed treatment 

Some widely used approximate Riemann solvers have been discussed before.  In 

this study, the HLL flux and Roe flux are adopted for the one dimensional two-wave 

system.  The wave speeds are calculated using a method suggested by Fraccarollo and 

Toro (1995).  For the conserved-variable vector [ , ]TA Q=U  and flux vector 

2[ , ] [ , ]T TQ Q A P G= =F , the approximate numerical fluxes at the boundaries of an 

element are given as 

( ) ( )
;                                                0

, ; 0

;                                                  0

L

R L L RHLL
L R

R L

R

S

S S S S
S S

S S
S

−

− + + −
+

+

 ≤


− + −
= < < −

 ≥

-

F

F F U U
F U U

F

 (2.12) 

( )( )
( )( )

min / ,

max / ,

L

R

S u g A b u c

S u g A b u c

−− ∗ ∗

++ ∗ ∗

 = − −

 = + +


 (2.13) 

( ) ( )1 ( ) / /
2

u u u g A b g A b− +∗ − += + + −  (2.14) 

( ) ( )1 1( / / ( )
2 4

c g A b g A b u u− +∗ − += + + −  (2.15) 

where ( )− = -F F U and ( )+ +=F F U . 
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In Roe’s (1981) method, the original non-linear conservation law is replaced by a 

linearized system with constant coefficient, called the Roe Jacobian matrix.  That is, the 

original Riemann problem is replaced by the approximate Riemann problem.  Following 

Garcia-Navarro and Vázquez-Cendón (2000), the approximate numerical flux is given by 

( )
2

1

1 1
2 2

Roe
i i i

i
α λ− +

=

= + − ∑F F F k   (2.16) 

1 2
( ) ( );

2 2
c u A Q c u A Q

c c
α α+ ∆ − ∆ − ∆ + ∆

= =
   

 

 

 (2.17) 

1 2;u c u cλ λ= − = + 

     (2.18) 

1 2(1, ) ; (1, )T Tu c u c= − = +k k 

     (2.19) 

( )
Q A Q Au
A A A A

+ − − +

− + − +

+
=

+
  (2.20) 

( ) ( )
2
gc A b A b− + = +   (2.21) 

;  A A A Q Q Q+ − + −∆ = − ∆ = −  (2.22) 

For HLL flux, the wave speeds for a dry bed to the right or left of the element 

under consideration are, respectively, given by 

( ) ( )/ ; 2 /L L R LL L
S u g A b S u g A b= − = +  (2.23) 

( ) ( )2 / ; /L R R RR R
S u g A b S u g A b= − = +  (2.24) 

For the Roe flux function, the corresponding wave speeds are given by 

( ) ( )1 2/ ; 2 /L LL L
u g A b u g A bλ λ= − = +   (2.25) 
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( ) ( )1 22 / ; /R RR R
u g A b u g A bλ λ= − = +   (2.26) 

 Two different methods are tested to handle flow over a dry bed.  In the first 

method, a sufficiently small depth hdry (e.g., 10-8 m) and zero velocity are defined at the 

dry nodes (Ying et al. 2004).  At an element boundary, if water depth on one side is 

greater than hdry and water depth on the other side is less than or equal to hdry, the 

numerical flux is computed according to the dry bed location and flux function.  If the 

water depths on both sides of the boundary are less than or equal to hdry, the numerical 

flux in Equation (2.12) or Equation (2.16) would be zero.  After every time step the water 

depth at every node is checked.  If the water depth at a node is less than hdry, the water 

depth is set to h =  hdry and the flow rate is set to zero.   

In the second method, zero depth and zero velocity are specified at all the dry 

nodes, and a small depth hdry is used to check wet/dry front (Sanders, 2001).  If the water 

depth on one side of an element face is larger than hdry and the other side is less than hdry, 

the numerical flux is calculated; if the water depths on both sides are less than hdry, the 

numerical flux is set to zero.  In the event that the computed water depth is less than hdry 

(but positive), the velocity is set to zero.  If the computed water depth is less than zero, 

both depth and velocity at the node are set to zero.  The two methods are found to provide 

the same level of accuracy for the tests conducted in the one-dimensional case, and mass 

and momentum are conserved.  The results shown in next chapter are based on the second 

method. 
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2.4 Runge-Kutta TVD time integration 

To diminish oscillation for hyperbolic conservation laws, the TVD Runge-Kutta 

time integration is preferred (Gottlieb and Shu, 1998).  Former studies have shown that 

the TVD Runge-Kutta time integration scheme should be one order higher than the space 

discretization (Cockburn and Shu, 1989; Cockburn et al., 1989; Cockburn et al., 1990).  

The second order TVD Runge-Kutta scheme is used here.  Equations (2.9) and (2.10) can 

be written in the following form after numerical integration 

( )L
t

∂
=

∂
U U  (2.27) 

To advance the solution from time step t to t+∆t, the second order TVD Runge-Kutta 

scheme, as given by Gottlieb and Shu (1998), can be written as 

( )
( )

[1]

[1] [1]1 1
2 2 2

t t

t t t

tL

t L+∆

 = + ∆

 ∆

= + +


U U U

U U U U
 (2.28) 

For the explicit scheme adopted here, the Courant-Friedrichs-Lewy (CFL) condition must 

be fulfilled and is given by 

( ) 1max
2 1

t u c
x p

∆ + ≤ ∆ + 
 (2.29) 

where p is the order of polynomial used for space discretization (Cockburn, 1999). 

 

2.5 Slope limiting procedure 

To achieve TVD property in a numerical scheme, flux limiters and slope limiters 

are often applied in combination with TVD time integration.  Generally, the slope limiter 
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is applied to the water depth or water surface elevation in addition to discharge.  This is 

generally satisfactory for rectangular channels.  However, for natural channels the flow 

area is another alternative for applying the slope limiter.  Here, the slope limiter is used 

on the variables A and Q.  The flow area slope limiter is compared with the water depth 

and water surface elevation slope limiters. 

In an element, the slope limiter for a variable φ  can be written as 

( ) ( ) ;mp s ex x x x x xφ φ σ= + − ≤ ≤
 

 (2.30) 

where φ


is the average value of a variable over an element and xmp is the midpoint of the 

element.  The variable φ  can be water depth, water surface, cross-section flow area, or 

flow rate.  The two values of φ , corresponding to sx x=  and ex x= , represent the values 

of a variable at the two nodes of an element.  A monotonized central slope limiter (Li, 

2006) is used, and for an element   it can be written as 

( ) ( )( )
min ,2 ,2

2 2
sign a sign b a b

a bσ
+  + 

=  
 



 (2.31) 

The upwind slope a, the downwind slope b, and the central slope (a+b)/2 are, 

respectively, given by 

1

, 1,( )mp mp

a
x x

φ φ −

−

−
=

−
 

 

 (2.32) 

1

1, ,( )mp mp

b
x x

φ φ+

+

−
=

−
 

 

 (2.33) 

1 1

1, 1,2 ( )mp mp

a b
x x

φ φ+ −

+ −

+ −
=

−
 

 

 (2.34) 
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where ,mpx


 is the midpoint of element   and so on. 

        The procedure to apply the slope limiter on cross-section A and flow rate Q is briefly 

described below.  First, A and Q are determined at the end nodes for each element in the 

domain using Equations (2.9) and (2.10).  Next, the limiter variable φ  (A and Q) is 

calculated for each element using Equation (2.30).  Finally, the water surface Z or water 

depth h is computed from A based on the channel cross-section geometry.  In case of 

water depth or water surface slope limiter, the first step is the same as above.  In the next 

step, the water depth or water surface for each node is computed from the cross-sectional 

flow area and the limiter variable φ  (Z or h) is calculated for each element.  Finally, the 

area is calculated from water surface Z or water depth h based on channel geometry. 
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CHAPTER THREE 

NUMERICAL TESTS FOR ONE-DIMENSIONAL FLOWS 

 

In this chapter, the one-dimensional numerical model with the RKDG method is 

validated through a number of numerical tests, including idealized dam-break, wetting 

and drying in a parabolic bowl, hydraulic jump in a divergent channel, partial dam-break, 

and flows in natural rivers.  Numerical results are compared with analytic solutions or 

measured data to evaluate the performance of the model. 

 

3.1 Dam-break in a triangular channel 

A classical dam-break problem in a frictionless, horizontal, triangular channel is 

simulated.  The channel is 1000 m long with side slope of 1H:1V (Sanders, 2001).  The 

dam was located at the middle of the channel.  Both wet bed and dry bed conditions 

downstream of the dam are considered.  The upstream water depth was 1 m for both 

cases, and the downstream water depth was 0.1 m for the wet bed test.  For the wet bed 

case, 400 elements are used with x∆ = 2.5 m and t∆ = 0.125 s.  For the dry bed test, 1000 

elements are used with x∆ = 1 m, t∆ = 0.05 s, and hdry = 10-16 m.  The wet bed test results 

for the water surface elevation and flow rate are shown in Figure 3.1 and Figure 3.2 at 80 

s after the dam removal.  The dry bed test results for water surface elevation and velocity 

are shown in Figure 3.3 and Figure 3.4 at 45.16 s after the dam removal. 

Throughout this work, ‘HLL-Z’ means the HLL flux is adopted and the slope 

limiter is applied to the water surface.  Similarly, ‘A’ and ‘h’ signify that the slope limiter 
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is applied to the flow area and water depth, respectively.  For a horizontal channel, water 

surface and water depth slope limiters will produce identical results.  The exact solution 

for dam-break problems in a horizontal channel of any shape can be found in Henderson 

(1966). 

Results in Figure 3.1 and Figure 3.2 show that the numerical results with slope 

limiter on flow area are in good agreement with the exact solution for both flux functions 

and capable of capturing the shock accurately.  The water surface based slope limiter 

produces errors in wave speed, wave amplitude, and flow rate with both flux functions.  

The HLL and Roe flux functions provided similar results for all other tests as well.  From 

here onward, only results for HLL flux are shown for easier interpretation. 
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Figure 3.1 Comparison of water surface for dam-break problem in triangular channel 
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Figure 3.2 Comparison of flow rate for dam-break problem in a triangular channel 

 

For the dry bed test in the triangular channel, the water surface based slope limiter 

failed to provide results for the grid size and time step size mentioned before.  It is found 

that a minimum water depth of 0.007 m as initial condition downstream of the dam and a 

reduced time step of 0.00025 s have to be used for the water surface based slope limiter 

to work.  The results for the water depth (Figure 3.3) show that the small initial 

downstream depth changes the solution at the leading edge of the wave.  In the case of 

water surface slope limiter a shock is visible at the leading edge of the wave front.  The 

area based slope limiter scheme is capable of capturing the leading edge of the wave 

front.  The dependency of results on the mesh size is shown in Figure 3.5 and Figure 3.6 

with HLL-A scheme.  As predicted, higher resolution provides more accurate results. 
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Figure 3.3 Comparison of water surface for dry bed dam-break in triangular channel 
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Figure 3.4 Comparison of flow velocity for dry bed dam-break in triangular channel 
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Figure 3.5 Water surface for dry bed problem in triangular channel with different mesh 
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Figure 3.6 Velocity for dry bed problem in triangular channel with different mesh 
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3.2 Dam-break in a parabolic channel 

In this test, a 1000 m long horizontal, frictionless, parabolic channel with top 

width b = h0.5 is used.  The dam was located at 500 m from the upstream end of the 

channel.  The water depth upstream of the dam was 1.0 m and downstream water depth 

was 0.1 m.  The test is run using 400 elements with x∆ = 2.5 m and t∆ = 0.125 s.  

Numerical solutions of water surface and flow rate at 100 s after the removal of the dam 

are shown in Figure 3.7 and Figure 3.8, respectively. 
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Figure 3.7 Comparison of water surface for dam-break problem in a parabolic channel 
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Figure 3.8 Comparison of flow rate for dam-break problem in a parabolic channel 

 

Numerical results in the parabolic channel show similar performance to that in a 

triangular channel with the flow area slope limiter providing results that are more 

accurate.  As can be observed from the results, the water surface slope limiter incurs less 

error for a parabolic channel than in a triangular channel. 

 

3.3 Dam-break in a trapezoidal channel 

In this test, the classical dam-break problem is simulated in a horizontal, 

frictionless, trapezoidal channel.  The channel has a length of 1000 m with side slope of 

2H:1V (β = 2) and bottom width of 1 m.  The dam was located at the middle of the 

channel.  Initially the upstream water depth was 1 m, and the downstream water depth 
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was 0.1 m (Sanders, 2001).  The test is run using 400 elements with x∆ = 2.5 m and 

0.125 st∆ = .  The numerical solutions at 103.1 s after the dam removal for water surface 

and flow rate are presented in Figure 3.9 and Figure 3.10, respectively.  The results show 

similar trend as for triangular and parabolic channels.  As before, the flow area slope 

limiter gives numerical results in agreement with the exact solution, while the water 

surface slope limiter generates larger errors.  However, the errors in the water surface and 

flow rate are less than the previous two tests. 

Further investigations show that as the side slope ( )β  decreases, the differences 

between the results based on the flow area and water surface slope limiters decrease.  

That is, as the channel cross-section deviates from rectangular channel the differences in 

the results based on the two slope limiters increase.  It is obvious and as shown in the 

next test, the two slope limiters are mathematically the same and provide exactly the 

same results for a rectangular, prismatic channel. 
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Figure 3.9 Comparison of water surface for dam-break problem in a trapezoidal channel 
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Figure 3.10 Comparison of flow rate for dam-break problem in a trapezoidal channel 
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3.4 Dam-break in a rectangular channel 

As discussed before, the results obtained from the two slope limiters should be the 

same for a rectangular, horizontal, prismatic channel for both dry and wet bed conditions.  

A horizontal, frictionless, rectangular channel is considered in this test.  The channel is 

1200 m long and 10 m wide.  The dam was located at 500 m from upstream end of the 

channel.  The upstream water depth was 10 m and downstream water depth was set to 2 

m.  In this test, 120 elements are used with x∆ = 10 m and t∆ = 0.25 s.  Numerical 

solutions for the water surface and flow rate at 30 s after dam removal are shown in 

Figure 3.11 and Figure 3.12, respectively. 
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Figure 3.11 Comparison of water surface for dam-break problem in a rectangular channel 
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Figure 3.12 Comparison of flow rate for dam-break problem in a rectangular channel 

 

The accuracy of the results obtained using the two slope limiters for the previous 

four prismatic channels are shown in Table 3.1.  The average error is based on the 

difference between the predicted and analytical water surface levels over the whole 

domain.  The flow cross-section is shown as functions of water depth.  As the exponent 

of the depth decreases, the accuracy of the results obtained using water surface slope 

limiter improves. 
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Table 3.1 Accuracy of slope limiters in prismatic channels 

Channel 
Type Area (A) Order of 

h 
Average Error of Z 

Limiter 
Average Error of A 

Limiter 
Triangular h2 

2 12.0% 1.2% 

Parabolic (2/3)h3/2 1.5 6.8% 1.1% 

Trapezoidal bh+βh2 1~2 6.0% 1.2% 

Rectangular bh 1 1.0% 1.0% 
 

3.5 Dam-break in a rectangular flume with friction 

In this test, the numerical model is applied to a dam-break problem in a 

rectangular, horizontal flume for which measured water surface profiles after the dam-

break event are available (Schoklitsch, 1917).  The flume used was 0.096 m wide, 0.08 m 

high and 20 m long.  The dam was located at the middle of the flume, with water ponded 

to a height of 0.074 m upstream of the dam and a dry bed downstream.  The flume was 

made of smooth wood.  The Manning’s roughness coefficient of 0.009 s/m1/3 is used in 

the simulation.  The removal of the dam is assumed instantaneous, and the water flow 

after the dam removal is simulated.  Element size of 0.1 m and time step of 0.0001 s are 

used in this test. 

Figure 3.13 shows the computed water surface profiles with measured data at 3.75 

seconds and 9.40 seconds after the removal of the dam.  The computed water surface 

profiles are in good agreement with the measured profiles.  The results show that the 

scheme is capable of modeling the progressive wave after the dam removal over an 

initially dry bed with friction. 
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Figure 3.13 Computed and measured water surface at 3.75 s and 9.40 s 

 

3.6 Wetting and drying in a parabolic bowl 

Thacker (1981) derived analytical solutions for the one-dimensional shallow 

water flow equations in a frictionless, parabolic bowl with a moving shoreline.  The 

analytic solutions are useful for testing the wetting and drying capability of numerical 

schemes of the shallow water flow equations (Xing et al., 2010). 

The parabolic bed profile of the domain is defined by 

( )
2

2 1b o
xz x h
a

 
= − 

 
 (3.1) 
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with constants h0 and a as shown in Figure 3.14.  In the region where water depth is 

nonzero, the analytic solutions for the water surface and velocity are given, respectively, 

as 

( ) ( )2 2cos 2 4 cos
( , )

4
B t B B t x

Z x t
g

ω ω ω− − −
=  (3.2) 

( , ) sin( )u x t B tω=  (3.3) 

where B is a constant and 

22 ogh
T a
πω = =  (3.4) 

The location of the moving shoreline is given by 

( )
2

cos
2 o

a Bx t a
gh
ω ω= − ±  (3.5) 
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Figure 3.14 Parabolic bowl bed profile 
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The constants used in this test are a = 2500 m, oh = 10 m, and B = 5 m/s, which 

give the oscillation period of T = 1121 s, and the parabolic bowl is of unit width.  The 

computational domain extends from -4000 m to 4000 m and 100 elements are used with 

x∆ = 80 m and t∆ = 1.121 s.  The dry bed criterion (hdry) of 10-2 m is used.  The initial 

water surface and velocity are given by Equations (3.2) and (3.3).  The simulation is 

conducted for one full period.  The numerical results for the water surface and flow rate 

are shown in Figures 3.15-3.18 and Figures 3.18-3.22, respectively.  Results show that 

the area based slope limiter gives a better solution than that based on water surface, and 

the scheme with area slope limiter is capable of conserving mass and momentum during 

the wetting and drying episodes.  Water volume calculated at different times is the same 

as the initial volume with area slope limiter. 
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Figure 3.15 Comparison of water surface in the parabolic bowl at t=T/4 
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Figure 3.16 Comparison of water surface in the parabolic bowl at t=2T/4 
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Figure 3.17 Comparison of water surface in the parabolic bowl at t=3T/4 
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Figure 3.18 Comparison of water surface in the parabolic bowl at t=T 
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Figure 3.19 Comparison of flow rate in the parabolic bowl at t=T/4 
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Figure 3.20 Comparison of flow rate in the parabolic bowl at t=2T/4 
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Figure 3.21 Comparison of flow rate in the parabolic bowl at t=3T/4 
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Figure 3.22 Comparison of flow rate in the parabolic bowl at t=T 
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3.7 Hydraulic jump in a rectangular channel 

Gharangik and Chaudhry (1991) undertook a physical model study to measure 

water surface profiles of hydraulic jumps for various upstream and downstream boundary 

conditions.  The study was conducted in a 14 m long and 0.46 m wide rectangular, 

horizontal flume.  Two cases (labeled as ‘a’ and ‘b’) are selected to validate the current 

model.  For the cases ‘a’ and ‘b’, the upstream velocities were 3.831 m/s and 1.826 m/s, 

the upstream depths were 0.031 m and 0.064 m, and downstream depths were 0.265 m 

and 0.168 m, respectively.  These conditions correspond to upstream Froude numbers of 

6.947 and 2.305, and downstream Froude numbers of 0.278 and 0.542, respectively.  The 

given discharge and upstream water depth are used as upstream boundary conditions 

(compatible with supercritical flow at the upstream end of the channel).  At the 

downstream end, the water depth maintained in the physical model at the end of the 

channel is used as a boundary condition.  The initial condition for the water surface is set 

by linearly varying the water depth between the inlet and outlet.  The Manning’s 

roughness coefficient is set to 0.008 s/m1/3. 

The final computed water surface and flow rate for the two cases are shown in 

Figure 3.23 and 3.24, respectively.  Element size of 0.1 m and time step of 0.002 s are 

used in this test.  Figure 3.23 shows that the locations and water surface profiles for the 

two hydraulic jumps are predicted accurately by the model.  In Figure 3.24, small 

oscillations at the toe of the jumps are observed in the discharge and may be due to the 

breakdown of the hydrostatic pressure assumption.  Overall, the scheme is capable to 

model hydraulic jumps accurately. 
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Figure 3.23 Computed and measured water surface profiles for hydraulic jumps 
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Figure 3.24 Computed flow rate variation for hydraulic jumps 
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3.8 Hydraulic jump in a divergent channel 

Khalifa (1980) measured water surface profiles in hydraulic jumps in a divergent 

channel.  The experiments were performed in a 2.5 m long horizontal channel with a 

rectangular cross-section.  The channel width (m) was given as 

( )
0.155;                                   0 0.65

( ) 0.155 0.236 0.65 ;  0.65 1.94
0.46;                                 1.94 2.5   

x
b x x x

x

≤ ≤
= + − < <
 ≤ ≤

 (3.6) 

The inlet discharge was set at 0.0263 m3/s and the upstream water depth was 

maintained at 0.088 m to impose a supercritical flow condition.  The water depth at the 

downstream boundary was 0.195 m, ensuring that a hydraulic jump would form in the 

diverging section of the channel.  The above conditions are used to simulate the physical 

model test.  The test is simulated using a time step size of 0.00375 s and a constant 

element size of 0.025 m. 

Numerical results along with the measured data are shown in Figure 3.25 and 

Figure 3.26.  The computed water surface profiles are compared with the measured data 

along the centerline.  The jump location and water surface profile are well predicted 

using the one-dimensional model.  The flow rate is conserved by both schemes as shown 

in Figure 3.26.   
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Figure 3.25 Comparison of water surface for hydraulic jump in a divergent channel 
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Figure 3.26 Comparison of flow rate for hydraulic jump in a divergent channel 
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3.9 Dam-break in a converging/diverging flume 

Bellos et al. (1992) conducted a variety of experiments to investigate the 

movement of two-dimensional flood waves after an instantaneous dam-break in a 

converging/diverging channel.  The authors conducted various experiments for different 

bed slopes under both wet and dry bed conditions.  The flume had a rectangular cross-

section with variable width.  A gate was installed at the minimum width of the flume 

(  8.5 m)x = .  The geometry of the flume is provided in Table 3.2 and the plan view is 

shown in Figure 3.27.  The wet-bed and dry-bed numerical tests with horizontal bed are 

used in this study.  Based on the experiment data, the depth upstream of the gate is set to 

0.30 m for both cases, and the downstream depth for wet bed case is 0.101 m.  The 

Manning’s roughness coefficient is chosen to be 0.012 s/m1/3.  Element size of 0.1 m is 

used for both cases.  The time step sizes of 0.003 s for wet bed and 0.0002 s for dry bed 

problems are used.  The dry bed criterion of 10-4 m is used in this test.  Numerical results 

are compared with data collected in the physical model tests at four observational stations 

located at x = 0 m, 4.5 m, 13.5 m, and 18.5 m. 
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Figure 3.27 Geometry of converging/diverging flume 
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Table 3.2 Channel width variation for converging/diverging flume 

x (m) 0.0 5.0 5.5 6.0 6.5 7.0 7.5 8.0 8.5 

b (m) 1.4 1.4 1.22 1.05 0.90 0.77 0.67 0.62 0.60 

x (m) 9.0 9.5 10.0 10.5 11.0 11.5 12.0 12.5 13.0 

b (m) 0.61 0.62 0.64 0.68 0.75 0.82 0.91 0.99 1.08 

x (m) 13.5 14.0 14.5 15.0 15.5 16.1 16.5 21.2  

b (m) 1.15 1.24 .28 1.33 1.37 1.39 1.40 1.40  
 

Numerical results for the dry bed test are shown in Figure 3.28 for observational 

stations P1 and P4 along with the available measured data.  Numerical results for the wet 

bed test are shown in Figure 3.29 for observational station P2 and P3.  In Figure 3.28, 

numerical results provide accurate results for the dry bed test.  In Figure 3.29, numerical 

results have small oscillations at locations where the water surface changes rapidly.  In 

general, all the schemes are capable of accurately simulating both dry bed and wet bed 

conditions in this test. 
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Figure 3.28 Water surface at P1 and P4 for dry bed case in converging/diverging flume 
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Figure 3.29 Water surface at P2 and P3 for wet bed case in converging/diverging channel 
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3.10 WES partial dam-break 

Hydraulic experiments for a partial dam-break with minimum bed resistance were 

conducted at the Waterways Experiments Station (WES) by the U.S. Army Corps of 

Engineers (1960) are used to compare the accuracy of the numerical model for real world 

partial dam-break scenarios.  The test flume was 121.92 m (400 ft) in length, 1.2192 m (4 

ft) in width, with bed slope of 0.005.  The 0.3048 m (1 ft) high dam was located in the 

middle of the flume.  The water surface upstream was initially as high as the top of the 

dam, while the bed was dry downstream.  Following Khan (2000), the Manning’s 

coefficient is taken to be 0.009 s/m1/3 for the minimum bed resistance case.  The domain 

is discretized using 484 elements with x∆ = 0.25 m and t∆ = 0.0125 s.  The dry bed 

criterion (hdry) of 10-4 m is used in this test.  Based on the experimental conditions, the 

width of the partial dam opening is set to 0.7315 m (2.4 ft).  The channel configuration is 

illustrated in Figure 3.30. 
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Figure 3.30 Channel configuration of WES partial dam-break test 
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Numerical results for the water surface level variation with time at stations 6.096 

m (20 ft) upstream (P1) and 7.62 m (25 ft ) downstream (P2) of the dam are shown in 

Figure 3.31.  The wave front arrival time is predicted accurately by all schemes with 

different slope limiters.  However, the water surface profile at P1 is under predicted by 

the water surface and water depth based slope limiters.  In Figure 3.32, a comparison 

between computed and measured velocity profiles at P2 is presented.  Numerical results 

are in good agreement with the measured data with the area based slope limiter providing 

better performance.  The higher velocity predicted at the beginning may be due to the 

initial conditions related to dam removal. 
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Figure 3.31 Water surface at P1 and P2 for WES partial dam-break 
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Figure 3.32 Velocity at P2 for WES partial dam-break 

 

3.11 Teton dam failure 

The one-dimensional numerical model is applied to model the Teton dam failure 

that took place on June 5, 1976.  The Teton dam was a 92.96 m (305 feet) high earth-fill 

dam with a 914.4 m (3000 feet) long crest located on the Teton River in southeastern 

Idaho.  The inundated area after the dam-break is shown in Figure 3.33.  River cross-

sections, Manning’s roughness coefficient, reservoir storage depletion, and the flow rate 

at the dam site were documented by the U.S. Geological Survey (Ray and Kjelstrom, 

1978).  The flooded area and measured cross-sections, shown as straight lines across the 

river, are shown in Figure 3.33.  The cross-sections used in the computation are 

interpolated from the available data.  Results using different mesh sizes showed that the 
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effects of the mesh size on accuracy are minimal.  This may be because of the relatively 

long simulation period and linearly interpolation of the cross-section from survey data.  

The discharge at the dam site is shown in Figure 3.34.  The dam site discharge and water 

surface level are used as inflow boundary conditions, corresponding to the supercritical 

inflow condition.  Since the initial flow conditions before the dam-break were not 

specified, a downstream dry bed is assumed as an initial condition for simulation.  In 

addition, inflows from Henry’s Fork and Snake River are ignored as these inflows are 

small compared to the large flood event.  The simulation ended at 10 hours after the dam-

break. 
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Figure 3.33 Flood area downstream of Teton River 
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Figure 3.34 Discharge at the dam site after dam-break 

 

Figure 3.35 and Figure 3.36 show the computed water surface and Froude number 

at 10 hours after the dam-break.  Figure 3.37 shows the maximum water surface during 

the flood event along the river.  As shown in Figure 3.35, the water surface exhibits large 

variation in the study reach.  In Figure 3.37, the computed maximum water surface 

elevation along the river reach compares well with the measured data.  The difference 

between the computed result and the measured data in the middle of the river (30-50 km) 

is mainly due to omission of the side flow from the Snake River.  The results demonstrate 

that the numerical scheme is capable of modeling dam-break problems in natural rivers 

and can provide satisfactory results. 
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Figure 3.35 Water surface along the river at time=10 hour after dam-break 
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Figure 3.36 Froude number along the river at time=10 hour after dam-break 
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Figure 3.37 Maximum water elevations during the flood event 

 

3.12 Toce River case 

A physical model at a 1:100 scale of a reach of the Toce River valley (Northern 

Alps, Italy) was developed at the ENEL-HYDRO laboratory in Milan, Italy.  The 

physical model tests were used in the CADAM project (Soares Frazão and Testa, 1999).  

Modeling parameters, such as topographic data, inflow hydrograph, and Manning’s 

coefficient, were specified by Electricité de France (EDF).  Results of the physical model 

tests were also provided so that modelers could make an objective comparison of their 

numerical modeling results. 

The topography of Toce River physical model is shown in 3.38, covering an area 

of approximate 50 m × 12 m.  To measure the water surface level, 32 water level gauges 
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were installed in the physical model.  Selected gauges along the main river axis (P1, P5, 

P18, P21, and P26) are used to compare the simulated results.  For simulation, 62 cross-

sections are used (Figure 3.39).  The elements used in the computation are of non-

uniform size and their lengths vary from 0.25 m to 1.94 m. 
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Figure 3.38 Plan view of Toce River topography    
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Figure 3.39 Location of computational cross-section of Toce River 
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A rectangular tank was located at the upstream (left) end of the physical model.  

The inflow hydrograph at the rectangular tank is shown in Figure 3.40 and is used as the 

inflow boundary condition.  The flow conditions at the inlet and outlet ends of the 

physical model were forced to be critical and the same conditions are applied in the 

computation.  The channel downstream of the tank was initially dry. 
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Figure 3.40 Inflow boundary conditions at the river inlet 

 

The value of Manning’s roughness coefficient is taken to be 0.0162 s/m1/3 based 

on the value proposed in the physical model study.  The numerical simulation is run for 

180 seconds.  The computed water surface and Froude number at 100 seconds are shown 

in Figure 3.41 and Figure 3.42.  The predicted water surface level, as displayed in Figure 
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3.41, shows a lot of variation due to bed slope and channel width changes.  Several 

hydraulic jumps can be identified as confirmed by the Froude number variation along the 

channel shown in Figure 3.42. 

The computed results of maximum water level are plotted along with measured 

data from the physical model study and results from ISIS model in Figure 3.43.  The ISIS 

model was based on the finite difference Preissmann implicit scheme (Rosu and Ahmed, 

1999).  The computed results of maximum water level, as shown in Figure 3.43, are in 

good agreement with the physical model measurements.  The root-mean-square error 

(RMSE) is 0.0473 m between ISIS model and measured data, and is 0.0347 m between 

the present model and measured data.  The present model provides better results than the 

ISIS model at the downstream end of the river. 

Figure 3.44 shows a comparison of computed stage hydrographs with the 

measured data at five gauge points.  Besides the coarse mesh in Figure 3.39, a refined 

mesh with four elements between every cross-section is used to investigate the effect of 

mesh size.  The arrival time of the surge and the variation of the water surface elevation 

with time show good agreement with the measured data.  The refined mesh gives better 

prediction of the arrival times at P1 and P5, while the coarse mesh performs better at P18, 

P21 and P26.  These two meshes give similar result for water surface at P1 and P5, while 

the refined mesh performs better at P21 and P26. 
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Figure 3.41 Computed water surface profile at time=100 s 
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Figure 3.42 Computed Froude number along the river at time=100 s 
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Figure 3.43 Computed maximum water level of Toce River 
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Figure 3.44 Computed and measured stage hydrographs 
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3.13 East Fork River case 

In this test, the numerical scheme is used to model a flood event in the East Fork 

River, Wyoming.  The East Fork River flows in the Wind River Range of Wyoming, west 

of the Continental Divide and east and southeast of Mt. Bonneville.  The study reach 

configuration is shown in Figure 3.45.   

 

Figure 3.45 Map of the 3.3 km study reach in the East Fork River (Emmett et al., 1980) 

 

The meandering study reach is approximately 3.3 km in length and terminates 

downstream at a bedload trap constructed across the river.  The number shown at each 

cross-section in the figure is the centerline distance (in meters) upstream from the 

bedload trap (section 0000).  Bed elevation at 39 cross-sections were measured daily 

during a month-long period (Meade et al., 1980).  Simulations performed with different 
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mesh sizes showed that the results were independent of mesh size.  The influence of the 

sediment transport and changes of channel bed (due to short simulation period) are not 

considered in this test. 

The simulation period of the river flow is 12 days from June 1 to June 12, 1979.  

The hourly discharge measured at section 3295 is used as the inflow boundary condition 

(Emmett et al., 1980), while the hourly gage height at section 0000 is used as outflow 

boundary condition.  Subcritical flow condition existed at the inflow and outflow 

boundary and the boundary conditions used in the model reflect that fact.  The average 

water depth on June 1 is used as initial depth, while the initial flow rate is set to 6.0 m3/s 

throughout the study reach.  Since the value of the roughness coefficient is unavailable, 

the dependency of numerical results on roughness coefficient is investigated.   

The computed and measured water surface at sections 2505 and section 3295 are 

shown in Figure 3.46, while the discharges at section 0000 are shown in Figure 3.47.  In 

Figure 3.48, the computed water surface at noon on June 12, 1979 is compared with the 

measured water surface.  Results show that a constant Manning’s roughness coefficient 

of 0.028 s/m1/3 gives the best results that are in agreement with measured data, increase of 

roughness would increase water surface and vice versa.  For the case of n = 0.028, the 

difference in the measured and computed values at the beginning is mostly due to the 

uncertainty in the initial conditions, the difference during the last four days may originate 

from the sediment transport within the reach.  In general, the numerical results with 

n = 0.028 are in good agreement with the measured data and the test demonstrates that 

the model is capable of simulating flood flows in natural rivers. 
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Figure 3.46 Water surface at section 3295 and section 2505 (lower line) 
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Figure 3.47 Computed and measured discharge at section 0000 
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Figure 3.48 Computed and measured water surface around noon June 12, 1979  
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CHAPTER FOUR 

NUMERICAL SCHEME FOR TWO-DIMENSIONAL FLOWS 

 

In this chapter, the two-dimensional shallow water equations are presented.  

Details of the numerical scheme to model the two-dimensional shallow water equations 

with discontinuous Galerkin finite element method are provided.  The treatment of 

numerical flux and slope limiters used in the study is presented.  The wetting and drying 

procedure is also outlined. 

 

4.1 Governing equations 

The two-dimensional shallow water equations are derived by integrating the 

Navier-Stokes equations along the depth of the fluid body.  Several assumptions are made 

such as hydrostatic pressure distribution and uniform velocity profile in the vertical 

direction.  The advantage is that free surface location is determined as part of the 

solution.  The two-dimensional shallow water flow equations can be applied in situations 

where vertical acceleration may be neglected and the horizontal extent is much greater 

than the depth of flow (Li and Liu, 2001; Lai, 2010). 

The widely used form of the depth-averaged, two-dimensional, shallow water 

flow equations can be written as 

( ) ( )
t x y

∂ ∂ ∂
+ + =

∂ ∂ ∂
U E U G U S  (4.1) 
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where the vectors of conserved variables U, fluxes (E, G) in the x and y directions, and 

the sources term S can be written, respectively, as follows 

2 2 2

7/3

2 2 2

7/3

2 2

2 2

0

;       

( ) 2 ; ( )
2

b

b

h
z n u u vhu gh g
x h

hv
z n v u vgh g
y h

hu hv
hu gh huv

huv hv gh

 
 
    ∂ + = = − −   ∂  

   ∂ + − − ∂ 
   
   = + =   

   +  

U S

E U G U

 (4.2) 

where h = water depth, bz = bottom elevation, u  and v  are the velocity components in the 

x and y directions, respectively, g = gravitational acceleration, and n = Manning’s 

roughness coefficient. 

The eigenvalues and eigenvectors for the shallow water equations are given, 

respectively, by Equations (4.3) and (4.4). 

1 2 3; ; x y x y x yun vn gh un vn un vn ghλ λ λ= + − = + = + +  (4.3) 

1 2 3

1 1 1

; ; x y x

y yx

u ghn ghn u ghn

v ghn v ghnghn

     
     

= − = − = +     
          − +     

k k k  (4.4) 

The two-dimensional shallow water equations can also be written in following 

form 
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    +  ∂ = = − −  ∂      +∂ − − ∂ 

  
  

= =   
       

U S

E U G U  

(4.5) 

where Z = water surface level, xq hu=  and yq hv=  are the unit width flow rates in the x 

and y directions, respectively.  In this formulation, the net hydrostatic pressure is included 

in the source term.  The numerical treatment of this new source that accounts for an 

accurate estimate of numerical flux needs to be provided.  The advantage of this form is 

that it eliminates unphysical bed slope generate flow as in one-dimensional case.  Similar 

to the one-dimensional case, since the physical characteristics of the equations are 

independent of the mathematical form of the equations, the actual eigenvalues and 

eigenvectors based on Equation (4.2) should be used for the approximate Riemann solver. 

 

4.2 Formulation of Discontinuous Galerkin method 

Eq. (4.1) can be written in a vector form as 

t t x y
∂ ∂ ∂ ∂

+ ∇ • = + + =
∂ ∂ ∂ ∂
U U E GF S  (4.6) 

where ( , )=F E G .  A typical layout of non-overlapping triangular elements in the DG 

method is shown in Figure 4.1.  The main element (0) for which the computations are 
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performed and the three surrounding elements (1, 2, and 3) are shown in the figure.  The 

number of vertices at a node depends on the number of elements sharing that node. 
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n2 
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                               Figure 4.1 Formulation of triangular elements in DG method 

 

The discontinuous Galerkin formulation is written for each element.  The 

variation of any variable with an element is represented by the values of the variable at 

vertices and shape or interpolating functions.  The modified variables and any function of 

these variables can be written as 

ˆˆ ˆ ˆ ˆ; ( ); ( )j j= = =U N U F F U S S U  (4.7) 

where jN  is a diagonal matrix of basis or interpolating functions, jU  are the 

approximations of the conserved variables at vertices, and the summation notation is 

assumed.  Equation (4.6) is then multiplied by the weight functions, iN , taken to be the 

same as the shape functions, jN , for the Galerkin method.  The flux term is integrated by 

parts and the resulting equation can be written as 
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ˆ ˆˆ ˆ( )
e e e

e

i i i id d d d
t Γ Ω Ω

Ω

∂
Ω + Γ − ∇ Ω = Ω

∂
⌠

⌡ ∫ ∫ ∫

UN N F n N F N S   (4.8) 

where F̂ n  is the numerical intercell flux, n  is an outward unit normal vector at an 

element’s boundary, eΩ  represents element area, and eΓ  is the perimeter of the element.  

Since discontinuous elements are connected by numerical flux across the boundaries of 

elements, it is crucial to calculate the numerical flux accurately in the DG method. 

 

4.3 Numerical flux and dry bed treatment 

The numerical flux in Equation (4.8) can be evaluated using upwind numerical 

flux functions.  Since discontinuous elements are dealt with in the discontinuous Galerkin 

method, a generalized local Riemann problem can be solved for the numerical flux.  The 

two-dimensional shallow water flow equations is a three-wave system, numerical results 

show that the HLLC flux is more accurate than the HLL and Roe flux (Erduran et al., 

2002).  The HLLC flux for two-dimensional shallow water equations are given below.  

Introducing the rotation matrix and its inverse as follows 

1

1 0 0 1 0 0
0 ;  0
0 0

x y x y

y x y x

n n n n
n n n n

−

   
   = = −   
   −   

T T  (4.9) 

where xn  and yn  are the components of the unit normal vector in the x  and y  directions, 

respectively.  The rotational invariance of the flux yields 

1 ( )x yn n −= + =F n E G T E TU  (4.10) 
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and defining =Q TU , the numerical flux F̂ n  can be obtained through the evaluation of 

numerical flux Ê by using Equation (4.11) given below 

1ˆ ˆ ( )−=F n T E Q  (4.11) 

where ˆ ( )E Q  follows the same functional relationship between Ê  and Q as that between 

ˆ ( )E U  and U .  The HLLC flux is based on the assumption of a three-wave system, as 

illustrated in Figure 4.2, which is the case for the two-dimensional shallow water flow 

equations. 
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Figure 4.2 Structure of a three-wave HLLC solver 

 

The numerical flux, Ê , computed from HLLC flux function is given by (Toro et 

al., 1994; Eskilsson and Sherwin, 2004) 

( )

( )
( ) ( )
( ) ( )
( )

                              if 0

  if 0ˆ
 if 0

                              if 0

L L

L L L L L

R R R R R

R R

S

S S S

S S S

S

∗ ∗

∗ ∗

≥


+ − < ≤= 
+ − < <

 ≤

E Q

E Q Q Q
E Q

E Q Q Q

E Q

 (4.12) 
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where subscripts L and R stand for the left- and right-hand side of the element boundary, 

respectively.  Moving in counterclockwise direction along the element boundary, the left-

hand side always refers to the boundary of the element under consideration and the right-

hand side indicates the boundary of the adjacent element.  To determine the wave speed, 

the average velocities along the left and right boundaries under consideration are 

determined.  The normal and tangential components of these velocities are determined 

and denoted as nu  and tu , respectively.  The wave speeds and rotated conserved 

variables in the star region can then be estimated as 

( )min ,L nL L nS u gh u gh∗ ∗= − −  (4.13) 

( )max ,R nR R nS u gh u gh∗ ∗= + +  (4.14) 

( )1
2n nL nR L Ru u u gh gh∗ = + + −  (4.15) 

( ) ( )1 1
2 4L R nL nRgh gh gh u u∗ = + + −  (4.16) 

( ) ( )
( ) ( )

L R nR R R L nL L

R nR R L nL L

S h u S S h u S
S

h u S h u S∗

− − −
=

− − −
 (4.17) 

( ) ( )
( ) ( )

( )
( )

, ,
, ,

,
,

1
L R n L R

L R L R
L R

t L R

S u
h S

S S
u

∗∗
∗

 
 −  
 =   −   

 

Q  (4.18) 

 For dry bed problems, the numerical flux is evaluated through a two-wave HLL 

flux function given below 
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( )

( )
( ) ( ) ( )

( )

                                                         if 0

ˆ  if 0

                                                         if 0

L L

R L L R L R R L
L R

R L

R R

S

S S S S
S S

S S
S

≤


− + −= < < −
 ≥

E Q

E Q E Q Q Q
E Q

E Q

 (4.19) 

where the wave speed for right-hand dry bed and left-hand dry bed boundaries are given, 

respectively, as 

; 2L nL L R nL LS u gh S u gh= − = +  (4.20) 

2 ;L nR R R nR RS u gh S u gh= − = +  (4.21) 

Dry bed treatment similar to one-dimensional case is adopted here, a small depth 

is defined at dry node or a small depth criterion to track wet/dry front with zero depth at 

dry node.  Numerical tests show that for horizontal beds or channel bed with small 

variation, these two dry bed treatments provide similar results.  However, for large 

variations in bed geometry, the dry bed treatment with zero depth and small depth to 

track wet/dry front give more accurate results. 

 

4.4 Source term treatment 

Using the notation for the elements shown in Figure 4.1, the calculation of the 

water level slope in the source term can be determined with Green’s theorem as given 

below (Ying et al., 2009) 

0

3

0 0 01 2 1 02 3 2 03 1 3
1

( ) ( ) ( )k k n n n n n n
k

Z Zdy Z y Z y y Z y y Z y y
x =Γ

∂
Ω = = ∆ = − + − + −

∂ ∑∫  (4.22) 
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3

0 0 01 2 1 02 3 2 03 1 3
10

( ) ( ) ( )k k n n n n n n
k

Z Zdx Z x Z x x Z x x Z x x
y =Γ

∂
−Ω = = ∆ = − + − + −

∂ ∑∫  (4.23) 

where 0kZ  is the water level at the boundary of elements 0 and k, and Ω0 is the area of 

element 0.  The water level, 0kZ , can be determined using the water surface elevations of 

elements 0 and k.  First, the average water surface elevations at the center of all elements 

are determined and then the water surface elevations at the boundaries are interpolated 

using distance weighting.  The discretization guarantees that if the water surface in the 

main element and the surrounding element is the same, then there will be no bed 

topography generated unphysical flows.  Numerical results show that this treatment of 

source term is accurate. 

The well-balanced property in wet domain is satisfied with Equation (4.5).  The 

still water condition with a partially wet domain can be easily achieved by setting the 

source term S to zero in both the partially wet elements and dry elements.  In addition, 

the slope limiter is not applied in elements with zero velocities.  Although the source term 

in partially wet elements is forced to be zero, numerical tests in dam-break flows show 

that the flood waves are still accurately modeled. 

 

4.5 Slope limiting procedure 

It is well established that nonphysical oscillations are produced around 

discontinuities when higher order numerical schemes are used.  Slope limiters are widely 

used to minimize the oscillations and stabilize numerical schemes.  Jawahar and Kamath 

(2000) developed a six-step van Albada-type slope limiting procedure for finite volume 
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method.  Tu and Aliabadin (2005) modified the slope limiter of Jawahar and Kamath 

(2000) to establish a five-step slope limiter for compressible flows.  In this study, a four-

step slope limiter scheme is introduced for the two-dimensional incompressible flows.  

Tu and Aliabadi (2005) applied the slope limiter on the primitive variables in 

compressible flows.  In this study, the slope limiter is applied on the conserved variables 

for incompressible flows in order to conserve mass and momentum. So this procedure 

would be one step less.  A concise and consistent way to calculate the element gradient is 

used here. The limiting procedure includes the following four steps. 

Step 1: Compute the average solution of the conserved variable at the element centroid.  

Arithmetic mean of solutions at each node of an element is taken as the average solution. 

3

0 0,
1

1
3 i

i
U U

=

= ∑  (4.24) 

Step 2: Compute the unlimited gradient in each element.  Solution in each element is 

approximated by interpolation functions and vertex solutions. 

3 3

0, 0,
1 1

;   j j
j j

j j

N NU UU U
x x y y= =

∂ ∂∂ ∂
= =

∂ ∂ ∂ ∂∑ ∑  (4.25) 

Step 3: Compute the limited gradient in each element.  The limited gradient in an element 

is computed by taking the weighted average of the unlimited averages surrounding that 

element. 

( ) ( ) ( ) ( )1 2 30 1 2 3

lU w U w U w U∇ = ∇ + ∇ + ∇  (4.26) 

where the weighted factors are given as 
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2 3 1 3 1 2
1 2 32 2 2 2 2 2 2 2 2

1 2 3 1 2 3 1 2 3

;  ;  
3 3 3

g g g g g gw w w
g g g g g g g g g

ε ε ε
ε ε ε

+ + +
= = =

+ + + + + + + + +
 (4.27) 

where ε is a small number introduced to prevent indeterminacy and   

2 2 2
1 1 2 2 3 3( ) ;  ( ) ;  ( )g U g U g U= ∇ = ∇ = ∇  (4.28) 

which are the square of the L2 norm of the unlimited element gradients. 

Step 4: Compute the limited conservative variables at vertices of each element.  The 

requirements for the reconstructed solution to satisfy each component of limited gradient 

and preserve the average at the element centroid result in the following 
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 (4.29) 

Equation (4.29) is solved to obtain the limited variable 0,
l

jU  at each node in an element.  

  This slope limiter is also compared with the 2D Superbee slope limiter 

(Anastasiou and Chan, 1997).  Numerical tests show this slope limiter is more accurate 

than or at least similar to the Superbee limiter. 

 

4.6 Time integration 

Previous studies (Cockburn and Shu, 1989; Cockburn et al., 1989; Cockburn et 

al., 1990) have shown that to conserve the TVD property, the Runge-Kutta time 

integration scheme should be one order higher than the spatial discretization.  Since linear 
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interpolation or basis functions are used in this study, the second order two-stage TVD 

Runge-Kutta scheme is employed.  Equation (4.8) can be written in the following form 

after numerical integration 

( )L
t

∂
=

∂
U U  (4.30) 

To advance the solution from time step n to n+1, the second order TVD Runge-

Kutta scheme, as given by Gottlieb and Shu (1998), can be written as 

( )
( )

[1]

1 [1] [1]1 1
2 2 2

n n

n n

tL

t L+

 = + ∆

 ∆

= + +


U U U

U U U U
 (4.31) 

and the time step, t∆ , is restricted by the Courant-Friedrichs-Levy conditions, C, 

(Fagherazzi et al., 2004) as follows 

( ) ( )2 2 2max max 1,
minLt C

u v gh p

 
 ∆ <  + + 
 

 (4.32) 

where Lmin is the length of the smallest edge of the element and p is the order of the basis 

function.  Based on the one-dimensional model, the value of C is restricted to 0.33 in this 

study. 
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CHAPTER FIVE 

NUMERICAL TESTS FOR TWO-DIMENSIONAL FLOWS 

 

In this chapter, the two-dimensional numerical model with DG method is 

validated through a number of numerical tests, including an oblique hydraulic jump, 

shock wave in channel contraction, wetting and drying in a parabolic bowl, circular dam-

break, partial dam-break, flows in bends, and flows in natural rivers.  Numerical results 

are also compared with analytical solutions or field measurements, if available. 

 

5.1 Oblique hydraulic jump 

The numerical scheme is first tested by simulating an oblique hydraulic jump in a 

horizontal, frictionless channel for which an exact solution is available.  Researchers 

often used this test to examine the numerical schemes for the shallow water equations 

(Ying et al, 2009; Yoon and Kang, 2004; Anastasiou and Chan, 1997; Alcrudo and 

Garcia-Navarro, 1993).  The plan view of the channel and the mesh used (with 5112 

elements) are shown in Figure 5.1.  An oblique hydraulic jump forms inside the channel 

when a supercritical flow is deflected by a converging wall.  Water depth and velocities 

in the x and y directions at the inflow boundary are set to be 1.0 m, 8.57 m/s, and 0 m/s, 

respectively.   

Figure 5.2 shows the computed water surface and Figure 5.3 shows the computed 

depth contours at steady state.  The average water depth behind the jump is 1.51 m.  The 

angle between the shock front of the hydraulic jump and x coordinate is 30°.  These 
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results are in good agreement with the analytic solution of 1.5049 m depth and 30° angle 

(Alcrudo and Garcia-Navarro, 1993).  The simulated and exact solutions of the water 

depth along the solid line (shown in Figure 5.1) are shown in Figure 5.4.  The Superbee 

limiter provides results that are similar to the slope limiter proposed in Equations (4.24) – 

(4.29).  Numerical results show that the scheme is capable of capturing the oblique shock 

in converging supercritical flow. 
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Figure 5.1 Computational domain and grid for the oblique hydraulic jump test 
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Figure 5.2 Computed water surface for the oblique hydraulic jump test 
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Figure 5.3 Computed water surface contour for the oblique hydraulic jump test 
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Figure 5.4 Computed and exact depth along solid line aa′  

 

5.2 Shock wave in channel contraction  

The steady supercritical shock wave due to channel contraction is simulated to 

test the numerical scheme.  The plan view of shock wave in a symmetric channel 

contraction is illustrated in Figure 5.5.  In the figure, Lab is the length of the channel 

contraction, α2 is the angle of wall deflection, β2 and β3 are the shock front angles.  The 

flow velocities in regions 1, 2, and 3 are V1, V2, and V3, respectively.  Ippen and Dawson 

(1951) showed that a proper width ratio B1/B3 could minimize the disturbance in region 3 

and limit the standing shock waves within the contraction part.  In the following, the 

channel contraction suggested by Lin et al. (2005) is adopted, so that results can be 

compared with exact solutions and other numerical schemes.  The geometry and 
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computational mesh of the channel is shown in Figure 5.6.  The channel width at the 

upstream end is 20 m and the width at the downstream end is 10.548 m, angle of wall 

deflection (α2) is 12 degrees, and the length of contraction (Lab) is 22.234 m.   

For the inflow boundary conditions, the Froude number is 2.7, the water depth is 

1 m, the longitudinal velocity is 8.4566 m/s, and the lateral velocity is zero.  The exact 

solution of shock wave angles is found to be as β2=33.69° and β3=48.10°, while the water 

depth in region 2 and region 3 are 1.868 m and 2.562 m, respectively.   

Steady flow solutions for water depth are shown in Figure 5.7 and Figure 5.8 with 

a coarse mesh (3632 elements, see Figure 5.6).  Figure 5.9 and Figure 5.10 show a 

comparison of the exact solution and the simulated water depth along the dash line and 

the solid line, respectively (see Figure 5.6).  Results from the coarse mesh and a refined 

mesh (14528 elements) are compared to show that the numerical scheme can perform 

adequately even for a coarse mesh.  Results using the refined mesh show better resolution 

at the shock, and weaker oscillation after the shock. 
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Figure 5.5 Plan view of shock wave in a symmetric channel contraction 
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Figure 5.6 Computation domain and mesh for the symmetric channel contraction 
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Figure 5.7 Water surface profile for in the symmetric channel contraction 
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Figure 5.8 Water depth contour in the symmetric channel contraction 
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Figure 5.9 Comparison of water depths along the dash line 
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Figure 5.10 Comparison of water depths along the solid line 
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5.3 Wetting and drying in parabolic bowl 

Thacker (1981) provided an analytical solution for the case of two-dimensional 

axisymmetric oscillating free surface in a parabolic bowl with a moving shoreline.  The 

exact solution has been used by various researchers (Song et al., 2011; Bunya et al., 

2009; Ern et al., 2008) to model the drying and wetting capabilities of the numerical 

schemes. 

The bottom profile, bz , of the parabolic bowl (Figure 5.11), is given by 

2
2 2

2 1 ;b o
rz D r x y
L

 
= − = + 

 
 (5.1) 

where Do is the distance to the bed from the datum at the center of the parabola and L is 

the distance from the center point to the zero elevation on the shoreline for the leveled 

water surface.  The analytic solution for the water surface (initial profile as well as profile 

at any time) and the velocity components in the frictionless bowl in the region where 

water depth is nonzero are given by (Thacker, 1981) 

( )
( )

( )
( )

( )( )

2 22

22

1 1
, , 1 1

1 cos 1 cos
o

A ArZ x y t D
A t L A tω ω

  − −  = − − − −  −   

 (5.2) 

( ) ( )( ) ( )
( ) ( )sin1, , , , , ,

2 1 cos
A t

u x y t v x y t x y
A t

ω ω
ω

=
−

 (5.3) 

where ω  and A  are given by 

82 ogD
T L
πω = =  (5.4) 
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( )
( )

2 2

2 2
o o o

o o o

D Z D
A

D Z D
+ −

=
+ +

 (5.5) 

and Zo is the initial water surface elevation at the center of the bowl measured from 

datum.  The region in which the water depth was nonzero was given by 

( )( ) 0.52 2 21 cos( ) 1r L A t Aω
−

< − −  (5.6) 
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Figure 5.11 Bed profile and initial water surface level 

 

In this numerical test, Do is 3 m, Zo is 1 m, and L is 3000 m, which gives 

oscillation period, T, of 2457 seconds.  The computational domain extends from -4000 m 

to 4000 m in x and y directions and is triangulated with 27648 elements and 14033 nodes 

as shown in Figure 5.12 along with the initial water surface level.  Simulated results for 

water surface and flow rate at different times along the line y=0 are shown in Figures 

5.13 – 5.24 with two slope limiters.  The results show that the wetting and drying process 
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are handled accurately by the scheme.  In addition, the water surface profiles show that 

the mass is conserved.  Overall, the simulated results are in excellent agreement with 

analytical solutions except for the flow rate at t T= , where the flow rate should be zero.  

The two limiters provide similar results in the beginning, but the Superbee limiter 

deteriorates in the drying process ( 5 / 6 t T=  and t T= ) and mass is not conserved. 
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Figure 5.12 Computational domain and initial water depth for parabolic bowl problem 
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Figure 5.13 Comparison of simulated and exact water surface at t=T/6 
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Figure 5.14 Comparison of simulated and exact water surface at t=2T/6 
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Figure 5.15 Comparison of simulated and exact water surface at t=3T/6 
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Figure 5.16 Comparison of simulated and exact water surface at t=4T/6 
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Figure 5.17 Comparison of simulated and exact water surface at t=5T/6 
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Figure 5.18 Comparison of simulated and exact water surface at t=T 
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Figure 5.19 Comparison of simulated and exact flow rate at t=T/6 
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Figure 5.20 Comparison of simulated and exact flow rate at t=2T/6 
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Figure 5.21 Comparison of simulated and exact flow rate at t=3T/6 
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Figure 5.22 Comparison of simulated and exact flow rate at t=4T/6 
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Figure 5.23 Comparison of simulated and exact flow rate at t=5T/6 
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Figure 5.24 Comparison of simulated and exact flow rate at t=T 
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5.4 Circular dam-break 

To test the symmetric shock capturing capability of the scheme, the idealized 

circular dam-break problem is used (Alcrudo and Garcia-Navarro, 1993; Anastasiou and 

Chan, 1997; Lin et al., 2003).  The problem domain with horizontal bed is shown in 

Figure 5.25.  The radius of the dam is 11 m.  Initially, the water depth inside the dam is 

set to 10 m and water depth outside is 1 m.  The circular dam is removed instantaneously 

and the flow in the domain is computed.  Numerical results at 0.8 seconds after the 

removal of the dam are shown in Figure 5.26 and Figure 5.27.  The corresponding 

velocity field is shown in Figure 5.28.  The symmetry of the forward moving wave is 

well preserved.  The initial water volume is 5909 m3, and the water volume at 0.8 

seconds is 5910 m3, showing the mass is well conserved. 
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Figure 5.25 Configuration of circular dam-break test 
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Figure 5.26 Computed water surface at 0.8 s after dam removal 
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Figure 5.27 Computed water surface contour at 0.8 s after dam removal 
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Figure 5.28 Computed velocity field at 0.8 s after dam removal 

 

5.5 Shock wave in circular dam-break 

        The same domain as used in the previous test is adopted here with different initial 

conditions.  The initial water depth is 1 m inside the dam and 10 m outside the dam.  

After removing the dam, the circular shock moves inwards, passes through the singularity 

and then expands outwards.  The shock at 2 seconds is shown below in Figure 5.29 and 

Figure 5.30 as water surface in 3D view and water depth contour, respectively.  The 

velocity field is shown in Figure 5.31.  Water surface in Figure 5.29 shows the scheme is 

oscillation free and the diffusion effects are minimal.  Water depth contours in Figure 

5.30 show that the flow symmetry is well preserved with unstructured elements.  The 

initial water volume is 21591 m3, and the water volume at 2 seconds is 21590 m3, 

showing the mass conservation is well preserved in this model. 
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Figure 5.29 Computed water surface at 2 s 
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Figure 5.30 Computed water surface contour at 2 s 
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Figure 5.31 Computed velocity field at 2 s 

 

5.6 Partial dam-break 

The idealized partial dam-break problem has been investigated by previous 

researchers (Lin et al., 2003; Anastasiou and Chan, 1997; Alcrudo and Garcia-Navarro, 

1993) to test the shock capturing capability of numerical schemes.  In this study, both wet 

bed and dry bed partial dam-break problems over a horizontal bed are examined.  The 

domain configuration and numerical discretization (using 5280 elements) are shown in 

Figure 5.32.  The dam is located at the middle of the channel.  The water depth upstream 

of the dam is 10 m and the downstream water depth is initially set at 5 m and 0 m for the 

wet bed and dry bed tests, respectively.  The dam is assumed to fail instantaneously in 

both tests, and water is released through a 75 m wide breach.  Simulation results for the 

water depth are computed at 7 seconds and 6 seconds after the dam failure for the wet 
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bed and dry bed tests, respectively.  Results for water surface in 3-D view and water 

depth contour are shown in Figure 5.33 – 5.36.  The two tests show that the scheme is 

capable of modeling shocks resulting from dam-break flows over dry and wet beds in 

irregular geometry. 
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Figure 5.32 Computational domain and mesh discretization for the partial dam-break tests 
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Figure 5.33 Computed water surface for wet bed partial dam-break test 
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Figure 5.34 Computed water surface contour for wet bed partial dam-break test 



 96 

0

50

100

150

200

0

50

100

150

200

0

5

10

x (m)y (m)

Z 
(m

)

 

Figure 5.35 Computed water surface for dry bed partial dam-break test 
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Figure 5.36 Computed water surface contour for dry bed partial dam-break test 
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5.7 Dam-break in a channel with 45° bend 

Physical models were built in the Civil Engineering Department Laboratory, 

Université Catholique de Louvain (UCL, Belgium) to model dam-break and strong 

transient flows in sharp bends.  Experimental data were collected and used to validate 

numerical models developed by the CADAM group (Soares Frazão et al., 1999).  

The plan view of the channel with horizontal bed and 45° bend is shown in Figure 

5.37.  The gauge points are also shown in the figure and their positions are listed in Table 

5.1.  The dam is represented by a gate at the outlet of the reservoir.  The gate is pulled up 

rapidly to simulate the instantaneous failure of the dam.  The initial water level in the 

upstream reservoir is 0.25 m above the horizontal channel bed, and the channel 

downstream is dry.  The Manning’s roughness coefficients of 0.0095 s/m1/3 for bottom 

and 0.0195 s/m1/3 for wall, as suggested by Soares Frazão et al. (1999), are adopted.  

These values for Manning’s roughness are based on the steady uniform flow. 
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Figure 5.37  Plan view of channel with 45° bend 
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Table 5.1 Gauge point locations in 450 bend 

Gauge Point G1 G2 G3 G4 G5 G6 G7 G8 G9 

x (m) 1.59 2.74 4.24 5.74 6.74 6.65 6.56 7.07 8.13 

y (m) 0.69 0.69 0.69 0.69 0.72 0.80 0.89 1.22 2.28 
 

After the removal of the gate, water flows rapidly into the channel and reaches the 

bend.  The water reflects against the wall and a shock forms and moves upstream.  The 

velocity field at 3 seconds is shown in Figure 5.38 and the water surface at 10 seconds is 

shown in Figure 5.39.  The velocity field shows that the flow is two-dimensional at the 

inlet and in the bend region.  The reflected shock wave can be clearly seen in the water 

surface profile.  The simulated hydrographs at 9 gauging points are compared with 

measured data in Figures 5.40 – 5.48.  Numerical results are in good agreement with the 

measured data, except at G2, which is located at the exit of the reservoir.  At G2, the 

magnitude of the reflected wave and its arrival time are predicted accurately.  The 

difference in the water level drop immediately after the gate opening may be related to 

difference in the manner in which the gate is actually opened and simulated.  It should be 

mentioned that the simulated results are similar to or better than that reported by previous 

studies. 

 



 99 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

x (m)

y 
(m

)

6 6.5 7 7.5 8
0.5

1

1.5

2

 

Figure 5.38  Velocity field at 3 s after dam-break 
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Figure 5.39  Water surface at 10 s after dam-break 
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Figure 5.40  Comparison of simulated and measured hydrographs at G1 
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Figure 5.41 Comparison of simulated and measured hydrographs at G2 
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Figure 5.42 Comparison of simulated and measured hydrographs at G3 
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Figure 5.43 Comparison of simulated and measured hydrographs at G4 
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Figure 5.44 Comparison of simulated and measured hydrographs at G5 
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Figure 5.45 Comparison of simulated and measured hydrographs at G6 
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Figure 5.46 Comparison of simulated and measured hydrographs at G7 
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Figure 5.47 Comparison of simulated and measured hydrographs at G8 
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Figure 5.48 Comparison of simulated and measured hydrographs at G9 

 

5.8 Dam-break in a channel with 90° bend 

The shape of the horizontal channel with 90° bend is shown in Figure 5.49 and 

gauge points location at Table 5.2.  The dam is represented by a gate at the outlet of the 

reservoir.  The initial water level in the upstream reservoir is 0.2 m above the horizontal 

channel bed, and the channel downstream is dry.  The Manning’s roughness coefficients 

of 0.0095 s/m1/3 for bottom friction and 0.0195 s/m1/3 for wall friction are adopted as 

suggested (Soares Frazão and Zech 2002).  The computational domain is triangulated 

with 8546 elements.  The dry bed depth of 0.0001 m and time step of 0.002 s are used. 
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Figure 5.49 Plan view of channel with 90° bend 

 

Table 5.2 Gauge point locations in 900 bend 

Gauge Point G1 G2 G3 G4 G5 G6 

x (m) 1.19 2.74 4.24 5.74 6.56 6.56 

y (m) 1.20 0.69 0.69 0.69 1.51 3.01 
 

After the removal of the gate, water flows rapidly into the channel and reaches the 

bend.  The water reflects against the wall and a shock forms and moves upstream.  The 

simulated hydrographs at six gauging points are compared with measured data in Figures 

5.50 – 5.55.  Numerical results are in good agreement with the measured data.  The 

arrival time of the flood wave and reflected bore are well predicted except at G2, where 

the simulated bore arrival time is too early.  Overall, the simulated results give 

satisfactory performance. 
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Figure 5.50 Comparison of simulated and measured hydrograph at G1 
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Figure 5.51 Comparison of simulated and measured hydrograph at G2 
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Figure 5.52 Comparison of simulated and measured hydrograph at G3 
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Figure 5.53 Comparison of simulated and measured hydrograph at G4 
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Figure 5.54 Comparison of simulated and measured hydrograph at G5 
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Figure 5.55 Comparison of simulated and measured hydrograph at G6 
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5.9 Dam-break flow over a triangular bump 

In this test, the numerical scheme is used to model dam-break flow over a 

triangular bump (Hiver, 1997) as proposed by the CADAM project.  Numerical results 

are compared with experimental data obtained from Laboratoire de Recherches 

Hydrauliques, Châtelet (Belgium).  The rectangular channel is 38 m long, 0.75 m wide 

with a gate located at 15.5 m from upstream end.  The symmetric triangular bump (6 m 

long, 0.4 m high) is situated at 13 m downstream of the gate.  The initial condition and 

bed bottom is shown in Figure 5.56.  Water depth upstream of the gate is 0.75 m with dry 

bed downstream.  The Manning’s roughness coefficients are 0.0125 and 0.011, 

respectively, for bed and the walls as suggested (Hiver, 1997).  Free outflow boundary 

condition is applied at the outflow end.  The computational domain is triangulated with 

4352 elements.  The dry bed depth of 0.001 m and time step of 0.006 s are used.  

Simulated and measured hydrograph at 90 seconds after the dam removal at gauge points 

G2, G4, G8, G10, G11, G13 and G20 are shown in Figure 5.57-5.63.  Gauge points 

denote distance from the gate, for example, G2 is located 2 m downstream of the gate.  

The simulated results are in good agreement with the measured data.  The flood wave 

arrival time and water depth are well predicted at all gauge points.  The wetting and 

drying effect at the critical point G13, which is located at the vertex of the bump, is 

modeled correctly.  Difference between simulated and measured results at the last point 

G20 mostly comes from the uncertainty of the actual outflow boundary condition. 
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Figure 5.56 Geometry and experimental set up in the channel with triangular bump 
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Figure 5.57 Simulated and measured hydrograph at gauge point G2 
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Figure 5.58 Simulated and measured hydrograph at gauge point G4 
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Figure 5.59 Simulated and measured hydrograph at gauge point G8 
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Figure 5.60 Simulated and measured hydrograph at gauge point G10 
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Figure 5.61 Simulated and measured hydrograph at gauge point G11 
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Figure 5.62 Simulated and measured hydrograph at gauge point G13 
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Figure 5.63 Simulated and measured hydrograph at gauge point G20 
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5.10 Stationarity test over bumps 

The well-balanced property of the scheme is tested by simulating initial still water 

over a channel with three bumps (Kawahara and Umetsu, 1986) and constant water 

surface level.  The channel is 75 m long and 30 m wide with closed wall, and channel 

bottom is defined as: 

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2 2 2

2 2

1 1, max 0,1 30 6 ,1 30 24 ,
8 8

3                                                                     1 47.5 15
10

bz x y x y x y

x y

= − − + − − − + −
− − + − 

 (5.7) 

The water surface elevation is initially 0.5 m in the whole channel, covering 

partially the bumps.  The domain is triangulated with 5006 elements.  Time step of 0.01 s 

is used.  Computed water surface at 100 s is shown in Figure 5.64, showing the 

stationarity state is well preserved. 
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Figure 5.64 Water surface at 100 s for stationarity test with bumps 

 

5.11 Dam-break flow over bumps 

The channel with three bumps in the previous test is used in this test with 

different initial conditions as shown in Figure 5.65.  The dam is located at 16 m and 

retains water to the depth of 1.875 m upstream, while the bed is dry downstream of the 

dam.  The Manning’s roughness coefficient is 0.018 s/m1/3.  The dam is assumed to be 

removed instantaneously, and the dam-break flow afterward is simulated.  This test case 

has been used by other researchers to validate the flooding and drying treatment in their 

numerical schemes (Brufau et al., 2002; Liang and Borthwick, 2009).  The dry bed depth 

criterion of 0.001 m and time step of 0.01 s are used.  Numerical tests show that decrease 

in dry bed depth criterion requires decrease in time step to achieve stable results. 
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Numerical results of water surface at different times after the removal of the dam, 

are presented through Figures 5.66 – 5.70 to show the flood propagation and wetting and 

drying capability of the numerical scheme.  At time 2 seconds, the flood wave reaches the 

two smaller bumps and begins to run up.  At time 6 seconds, flood wave overtops the two 

smaller bumps and the water accumulates behind the highest bump.  A reflective bore is 

moving upstream.  At time 12 seconds, the floodwater passes the highest bump and 

begins to flood the lee side.  The drying of the highest bump and the reflective bore 

moving further upstream is clear.  At time 30 seconds, wave interaction between the 

bump and the downstream wall is shown.  The steady state water surface at 300 second 

shows the peaks of the smaller bumps are no longer submerged.  The flooding and drying 

effect on this complicated bed topography is properly simulated. 
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Figure 5.65 Initial condition of dam-break flow over three bumps 
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Figure 5.66 Water surface at 2 s for the dam-break flow with three bumps 
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Figure 5.67 Water surface at 6 s for the dam-break flow with three bumps 
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Figure 5.68 Water surface at 12 s for the dam-break flow with three bumps 
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Figure 5.69 Water surface at 30 s for the dam-break flow with three bumps 
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Figure 5.70 Water surface at 300 s for the dam-break flow with three bumps 
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5.12 The Toce River dam-break 

A physical model at a scale of 1:100 of a reach of the Toce River valley 

(occidental Alps, Italy) was reproduced at the ENEL-HYDRO Laboratory in Milan.  

Dam-break tests in the physical model were used in the CADAM project (Soares Frazão 

and Testa, 1999).  Modeling parameters such as topographic data, inflow hydrograph, and 

Manning’s coefficient were specified by Electricité de France (EDF).  The value of 

Manning’s roughness coefficient was suggested as 0.0162 s/m1/3. 

The topography of Toce River physical model is shown in Figure 5.71.  The 

physical model approximately covered an area of 50 m 12 m× .  The riverbed was initially 

dry.  A rectangular tank was located at the upstream end of the physical model.  Two 

different test cases were conducted in the physical model, one corresponding to the 

overtopping of the reservoir in the middle of the river and one without overtopping.  

Inflow hydrographs at the rectangular tank is used as inflow boundary condition for 

numerical simulations in this study.  Critical inflow and outflow boundary conditions are 

applied in the computation as described in the physical model study.  The domain is 

discretized using 13316 elements.  The inflow hydrograph corresponding to overtopping 

(HY2) and without overtopping (HY1) at the upstream end of the physical model are 

shown in Figure 5.72.  
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Figure 5.71 3D view of the Toce River topography 

 

Table 5.3 Gauge point locations in Toce River 

Gauge Point P1 P5 P13 P21 P26 

x (m) 2.917 11.264 20.879 33.115 45.794 

y (m) 6.895 6.083 4.130 6.090 9.437 
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Figure 5.72 Inflow conditions at the river upstream boundary 
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Water depth and flooded area at time 30, 45, and 60 seconds are shown in Figures 

5.73 – 5.78 for both test cases.  Results show that the flood flow path is well predicted 

along the channel.  In addition, reflections and deflections due to irregular boundaries and 

bed geography are handled accurately.  Computed stage hydrographs at five gauge points 

are shown in Figure 5.79 and Figure 5.80 along with the measured data.  Coordinates of 

the gauge points are shown in Table 5.3.  Computed results are in good agreement with 

measured data in terms of magnitude and arrival time of the wave at these gauge points.  

There is a discrepancy between computed and measured flood arrival time at P26, mainly 

because the buildings and bridges at the downstream end are not considered in the 

simulation.  This test shows that the numerical scheme is capable of modeling extreme 

flood events in natural rivers. 
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Figure 5.73 Water depth at t=30s for Toce dam-break test without overtopping 
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Figure 5.74 Water depth at t=45s for Toce dam-break test without overtopping 
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Figure 5.75 Water depth at t=60s for Toce dam-break test without overtopping 



 124 

0 10 20 30 40 50
0

5

10

15

0.01 0.03 0.05 0.07 0.08 0.10 0.12 0.14

 

Figure 5.76 Water depth at t=30s for Toce dam-break test with overtopping 
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Figure 5.77 Water depth at t=45s for Toce dam-break test with overtopping 
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Figure 5.78 Water depth at t=60s for Toce dam-break test with overtopping 
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Figure 5.79 Computed stage hydrographs without overtopping 
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Figure 5.80 Computed stage hydrographs with overtopping 
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5.13 Paute River dam-break event 

In this test, the numerical scheme is used to model a dam-break flood in Paute 

River, Ecuador.  In 1993, a landslide created a natural dam, which blocked the flow and 

created a reservoir upstream of Paute River.  Due to high water level in the reservoir, the 

dam was subsequently overtopped and caused a dam-break type flood.  River topography 

and triangulation data are available from BreZo (Sanders and Begnudelli, 2010).  The 

dam-break case is used to test the numerical scheme’s ability to handle flow in natural 

rivers with complex geometry and sharp bends, though field data are not available.  The 

computational mesh with 74224 elements and initial water depth are shown in Figure 

5.81 (units in meter).  The dam is considered as a straight line between (x, y) coordinates 

of (739602 m, 9684690 m) and (739616 m, 9684530 m), and separates upstream and 

downstream region.  The initial upstream water level is 2362 m above sea level and 

downstream bed is dry.  The bed elevations range from 2155.2 m to 2917.8 m above sea 

level.  The Manning’s roughness coefficient is set to be 0.033 in the domain.  The dam is 

assumed to be removed completely and instantaneously.  The dam-break flood afterward 

is simulated.  The dry bed depth criterion of 0.04 m and time step size of 0.01 s are used.  

The computed water depth contour (flood inundation map) at 10 min, 20 min, and 40 min 

after the dam-break are presented in Figures 5.82-5.84.  The numerical results are similar 

to results reported by Song et al. (2011).  The flood wave travels about 6000 m in the first 

10 min, then encounters a sharp bend and travels about 6000 m during 20-40 min.  

Numerical results show the scheme is able to model flow in natural rivers with wet/dry 

bed conditions and sharp bends. 
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Figure 5.81 Initial water depth contour for Paute River dam-break test 

 

Figure 5.82 Computed water depth contour for Paute River dam-break test at t=10 min 
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Figure 5.83 Computed water depth contour for Paute River dam-break test at t=20 min 

 

Figure 5.84 Computed water depth contour for Paute River dam-break test at t=40 min 
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5.14 Malpasset dam-break event 

The Malpasset dam was located in a narrow gorge of the Reyran River Valley in 

France.  The dam was 66.5 m high with variable thickness and the upper crest had an 

elevation of 223 m, and formed a reservoir with capacity of 55×106 m3.  In 1959, the dam 

failed due to intense rainfall and rapid increase of water level in the reservoir.  The 

maximum water levels along the Reyran River Valley after the dam failure were obtained 

from a police survey (these points are denoted P1-P17).  In 1964, a physical model with a 

scale of 1:400 was built by Laboratoire National d’Hydraulique to study the dam-break 

flow.  The maximum water level and flood wave arrival time were recorded at 9 points in 

the physical model (these points are denoted S6-S14). 

Due to the availability of the measured data and complex bottom topography, the 

Malpasset dam-break event was adopted as a benchmark test for CADAM projects 

(Goutal, 1999).  This event is simulated to validate the numerical model.  The 

computational domain with 26000 elements and measured points are shown in Figure 

5.85.  The domain covers an area approximate of 17500 m × 9000 m.  The bed elevations 

range from -20 m below sea level to 100 m above sea level.  The Reyran River has two 

sharp narrow bends immediately downstream of the dam and eventually reaches the 

coastal floodplain. 

The dam is considered as a straight line between (x, y) coordinates of (4701.18 m, 

4143.41 m) and (4656.5 m, 4392.1 m).  The initial water level inside the reservoir is set 

to 100 m above sea level, and the computational domain downstream of the dam is 

considered as dry bed.  The initial discharge in the Reyran River before dam failure is 
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neglected because of the relatively huge amount of flow caused by the dam failure.  The 

model is simulated until the water reaches the sea, so no boundary condition is applied at 

the downstream end.  The Manning’s roughness coefficient is estimated to be in the range 

of 0.025-0.033 s/m1/3, equivalent to a Strickler coefficient in the range of 30-40 m1/3/s as 

suggested by EDF (Hervouet and Petitiean, 1999).  The dry bed depth of 0.02 m and time 

step size of 0.01 s are used.  

The computed and measured flood arrival time at gauges (S6-S14) are shown in 

Figure 5.86.  The computed and measured maximum water level at gauges and surveyed 

points (P1-P17) are presented in Figure 5.87 and Figure 5.88, respectively.  The effect of 

Manning’s roughness coefficient is investigated; simulated results using uniform value of 

0.025 and 0.033 in the entire computational domain are compared with the measured 

data.  Lower roughness (0.025, solid line) corresponds to a faster moving front (Figure 

5.86) and lower water levels (Figures 5.87-5.88).  A roughness coefficient of 0.029 gives 

the best estimation.  The maximum water level is relatively insensitive to different 

roughness coefficients.  The computed results for both flood arrival time and maximum 

water levels are generally in good agreement with the field data. 

The water depth contour (flood inundation map) at 800 s, 1800 s, and 2400 s with 

roughness coefficient of 0.029 are presented in Figures 5.89 – 5.91 (units in meter).  The 

flood wave propagation and inundation area are well modeled with high mountains at 

downstream floodplain.  The results show that the present scheme is capable of dealing 

with dam-break flows over wet/dry bed with complex topography. 
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Figure 5.85 Mesh and locations of surveyed points and gauges 
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Figure 5.86 Comparison of computed and measured wave front arrival time 
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Figure 5.87 Comparison of computed and measured maximum water levels at gauges 
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Figure 5.88 Computed and measured maximum water level at surveyed points 
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Figure 5.89 Computed water depth contour for Malpasset dam-break test at t=800 s 

 

Figure 5.90 Computed water depth contour for Malpasset dam-break test at t=1800 s 

 

Figure 5.91 Computed water depth contour for Malpasset dam-break test at t=2400 s
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CHAPTER SIX 

CONCLUSIONS 

 

Numerical models for one- and two-dimensional shallow water flows have been 

developed using the discontinuous Galerkin finite element method.  A number of 

numerical tests, which including idealized dam-break problems, hydraulic jump, shock 

wave, wetting/drying problems, and flow in natural rivers, have been performed to 

validate these numerical models.  Numerical results show that these models are simple, 

robust, accurate, and efficient to simulate shallow water flows under different flow 

regimes with complex channel geometry.  

Governing equations for shallow water flows in one and two dimensions and their 

properties are discussed.  Modified form of the shallow water equations are chosen in the 

numerical models.  In the one-dimensional case, the hydrostatic pressure term and wall 

pressure term are combined into the water surface gradient term in the momentum 

equation.  The resulting momentum equation circumvents the calculation of integral 

terms.  In addition, it would not generate unphysical oscillations due to improper 

treatment of bed slope term.  Similar to the one-dimensional case, the hydrostatic 

pressure term and the bed slope term is also combined into the water surface gradient 

term in the two-dimensional momentum equations.  Discretization for the combined 

terms in both one- and two-dimensional cases are proposed.  These formulations preserve 

the well-balanced property for initially still water problems with wet domain. 
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To achieve the well-balanced property in partially dry/wet problems, the source 

term is set to zero in both partially wet elements and dry elements.  In addition, the slope 

limiter is not applied in elements with zero velocities.  Although the source term in 

partially wet elements is forced to be zero, numerical tests show that the flood waves are 

still accurately modeled. 

To provide the shock-capturing property in the numerical models, the 

approximate Riemann problem solvers, i.e., the Roe flux, HLL flux and HLLC flux, are 

employed to evaluate the intercell numerical flux.  Even though different forms of the 

governing equations are adopted in the numerical models, it is found that the 

characteristic eigenvalues and eigenvectors should be used in the calculation of numerical 

flux.  In the one-dimensional case, the effect and accuracy achieved by the Roe flux and 

HLL flux are compared.  In the two-dimensional case, the HLLC is the complete 

Riemann solver for the three-wave system like the two-dimensional Saint-Venant 

equations. 

Slope limiting procedures using the discontinuous Galerkin method for shallow 

water equations are presented.  These slope limiters are oscillation-free even with shock 

wave.  In the one-dimensional case, comparisons are made between slope limiter on 

cross-section, water surface elevation, and water depth.  Numerical results show that the 

slope limiter on the conserved variables, cross-section area and flow rate, provides the 

most accurate scheme.  For the two-dimensional shallow water flow equations, the slope 

limiter is modified and is applied to the conserved variables.  The proposed slope limiter 
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is compared with the Superbee limiter.  Numerical results show that the proposed limiter 

is more accurate and suitable for DG scheme. 

Water flow over an initially dry bed is also simulated with the numerical models.  

Two types of dry bed treatment are compared in both one- and two-dimensional cases, 

one with sufficiently small depth defined at dry node, and one with zero depth at dry 

node with sufficiently small depth to track the wet/dry front.  In one-dimensional tests, 

these two types of method give similar performance and accuracy.  However, in two-

dimensional tests, the second method with zero depth at dry node provides more accurate 

results in rivers with large bed variations.  For horizontal beds, the two methods provide 

similar results. 

The performances of the proposed numerical models are validated through 

extensive numerical tests.  These tests include steady and unsteady flows, transcritical 

flow, wetting and drying effects, and flows in field-scale natural rivers with complex 

topography.  Numerical results prove the effectiveness, robustness, and accuracy of the 

numerical models under different flow regimes with complex geometry.  In conclusion, 

the proposed one- and two-dimensional numerical models for shallow water flows are 

useful tools for flow prediction and simulation. 

In future, the models can be extended to incorporate Legendre polynomials as 

basis and test functions.  The models can also be extended to incorporate pollutant and 

sediment transport.  The method can be improved by utilizing higher order Riemann 

solver and slope limiters.  Selective use of slope limiters based on the gradient of the 

conserved variables can be investigated.  
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