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ABSTRACT 
 
 

In recent years, there has been substantial interest in the development of 

microelectro-mechanical systems (MEMS) and even nanoelectro-mechanical systems 

(NEMS) for use in a wide variety of applications both as experimental tools (refs) and in 

a continuing effort to decrease the size and cost and increase the efficiency of electrical 

components. In particular, cantilevered nanometer beams have been a recent focus due to 

a number of interesting properties, including enhanced field emission, high tensile 

strength, and piezoelectric properties. The ability to accurately determine the electrical 

and mechanical properties of these cantilevers is paramount in assessing their feasibility 

as MEMS and NEMS components, as well as developing technology to utilize them. 

In this thesis, a unique method for determining these properties is presented. By 

developing a fully electrical system for the actuation and detection of a nano-cantilever’s 

mechanical resonance, an important step in furthering the development of NEMS 

technology has been achieved. The mathematics of this system are developed in-depth, 

for a pair of synthesized nanostructures, multi-walled nanoubes (MWNTs), and coiled 

carbon nanotubes (cCNTs), measurements of their material properties are calculated from 

their resonant behavior and a number of potential applications are explored. 
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CHAPTER ONE 
 

INTRODUCTION 
 
 

1.1 Introduction 

The scale of scientific exploration and technological interest has moved to encompass 

more and more the very small. As scientific tools improve to study objects on the 

micrometer or even nanometer scale, new physics is constantly being discovered, which 

motivates the development of more precise instruments to study the new phenomena. 

Instrumentation has advanced so far, that not only can objects nanometers in size be 

reliably observed and studied, but complex, functional systems and devices can be built 

with fine detail on this scale.  

Some of the most interesting materials to be utilized in these systems are nano-

cantilevers. Because of their high aspect ratio, over 10,000:1 in the case of the longest 

MWNTs, and essentially one dimensional character, they are valuable tools for both pure 

scientific inquiry and as components in larger devices. Synthesis methods are 

continuously improving, making the study and use of both metallic and semiconducting 

nano-cantilevers increasingly commonplace. Thanks to their high yield stress and, in 

particular, the ease with which they can be driven to mechanical resonance,  they have 

shown great promise over a wide range of platforms, including use as chemical mass and 

force sensors, high frequency signal generators, photodetectors, batteries, lasers, radios, 

and for energy storage and as a laboratory for one dimensions physics.  

However, in order to be useful in any of these contexts, reliable methods to actuate 

the cantilever and, more critically, detect its response to actuation are needed. Purely 
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electrical actuation and detection methods allow for precise characterization of micro- 

and nano-cantilevers in both their mechanical and electrical properties.  

This thesis presents such a purely electrical method for the actuation and detection of 

mechanical resonance in micro- and nano-cantilevers. After a presentation of the elastic 

theory and synthesis and characterization of the cantilevers used, this method, the 

harmonic detection of resonance (HDR) is examined in-depth, including a description of 

the electrical actuation and mechanical response of the cantilever. From this response, the 

measurement of the electrical signal, which is at the heart of the method, is examined in 

detail. I then present a variation of this method and its effective use as a real-time gas 

sensor. Finally, a pair of experiments are presented, utilizing HDR, which, while 

interesting in their own right, also display the versatility of this method. These include: 

the successful vibration of a coiled carbon nanowire (cCNW) and the calculation of its 

material properties from its resonance and the observation of amplitude sensitive 

damping in a MWNT. 

 

1.2 Modern Nano-Cantilevers 

Ever since the discovery of multi-walled carbon nanotubes (MWNT) by Iijima [1] 

in 1991, investigations of these and other nanocantilevers have increased exponentially. 

Successful synthesis of single-walled carbon nanotubes [2], metallic and semiconducting 

nanowires, and even more esoteric geometries including nanobelts [3], nanosprings [4], 

and coiled nanotubes [5] quickly followed over the next 2 decades, and it was quickly 

clear that they had a number of promising applications. While less sturdy than a doubly 



 3

clamped beam, they have seen greater use because of their relative ease of production, 

and the high responsivity to external stimulus. 

Uses for nano-cantilevers in modern devices are virtually limitless. The zepto-

gram mass sensor has at its core a nanocantilever. They have shown use in a large 

number of capacities including in textiles [6], and as nano-generators [7], and lasers [8]. 

They show incredible sensitivity in sensing, acting as high precision biological and 

chemical sensors [9], pressure sensors [10], and force sensors [11]. They have also shown 

promise in electronics, being used as electrical switches [12]. As these structures become 

cheaper and easier to mass produce, mesoscopic and macroscopic uses for these highly 

sensitive, highly versatile objects will continue to increase. 

 

1.3 Nano-cantilever Excitation 

One of the great advantages of nano-cantilevers as high sensitivity devices is the 

ease with which they can be driven to resonance. By applying a periodic force to a 

singly-clamped cantilever at or near the natural frequency of the cantilever, relatively 

large amplitude oscillations can be induced in the cantilever. As was shown with the 

advent of non-contact atomic force microscopy, the properties of these oscillations are 

highly sensitive to factors both internal and external. In fact, the sensitivity of particular 

modes of vibration in AFM is so high that cantilevers have been specifically designed to 

take advantage of them.  

In particular, small external forces or the addition of mass will cause a measurable 

shift in the resonance frequency of the cantilever and larger forces can even cause 
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quantifiable changes in the shape of its resonance peak (i.e. its amplitude as a function of 

driving frequency). In addition, the high sensitivity to frequency allows nano-cantilevers 

to be “tuned” for specific purposes including, in the most amazing case, as functional 

radios [13]. 

The methods of actuating these cantilevers to resonance are varied. They can be 

piezoelectrically driven, wherein the mount holding the cantilever is resonated by a 

piezoelectric device. By applying an oscillating voltage to the piezoelectric device, it will 

drive the mount at the frequency of the voltage. The signal will be transduced through the 

mount and into the cantilever, where it can drive it to resonance at the natural frequency 

of the cantilever. This has the advantage of working with any well mounted cantilever, 

and not requiring any geometric considerations, as the proper excitation frequency should 

produce excitation of the desired mechanical mode. 

Alternatively, the cantilever can be driven electrically. This method is generally 

preferred for cantilevers which conduct or hold charge because of the ease with which it 

can be implemented and because there is no need for extra mechanical elements, such as 

a piezoelectric device.  

 

1.4 Electrical Actuation and Detection in Nanocantilevers 

As was first observed by Poncharal et al. [14], metallic nanocantilevers can be 

actuated by an alternating electrical field, driving the cantilever at its resonant frequency. 

As the cantilever is conducting, it will acquire a charge opposite to that of the field 

source, causing an attractive force. As the field alternates, the cantilever will oscillate. 
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Using this method, Poncharal was able to observe, using a scanning electron microscope 

(SEM) the resonance of several modes of a MWNT. Also, by measuring the amplitude of 

the oscillation in the SEM, a rough estimate of the quality factor of the nanotube 

resonator was made. In addition, measuring static deflection created by a large direct 

voltage bias, controllable, high stress deformations could be created and observed. Since 

then, several other experiments have been done on a variety of different nanocantilevers 

using this same method [15, 16]. 

Because electrical actuation relies heavily on the electrical properties of the 

resonating structure, in particular the induction of charge onto the cantilever, it is 

intuitive to investigate the electrical properties of the cantilever through this actuation 

method, and indeed, to use the electrical properties of the cantilever to detect the 

mechanical resonance. Several methods have been used to measure the resonance of a 

nano-cantilever electrically, that is to say, measuring current entering or leaving the 

cantilever. While an electrical actuation method is not necessarily required for an 

electrical detection scheme, it does significantly simplify the design of a device and, as 

we shall she for capacitive detection, can cause the flow of current by itself, giving a 

natural candidate signal to try to observe and measure. 

 

1.4.1 Piezoresistive and Piezoelectric Detection 

Piezoresistive and piezoelectric detection methods rely on the change of electrical 

properties of the cantilever as a result of applied stress. For piezoresistive detection, the 

resistance of the cantilever changes as a function of applied stress and by measuring the 
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change in a current flowed through the cantilever, deflection can be sensed. For 

piezoelectric detection, the stress causes a separation of charge in the cantilever which 

can then be measured as a current [17]. Both of these methods require either extensive 

engineering of the cantilever, particularly in the case of piezoresistive devices such as the 

one shown in figure 1.1. Because these devices must be specially designed so as to 

produce a net change in either resistance or charge, these detection methods would be 

impractical to study the physical properties of a synthesized nanotube or nanowire, and 

are better suited for use in silicon devices. In addition, the ability to fabricate such 

devices is limited by the scale at which the metal wiring can be deposited, forcing this 

technology out of the nanometer scale we are concerned with. 

 

1.4.2 Field Emission Detection 

A novel method of detecting electrical resonance in some nanocantilevers is based 

on their capability of field-emitting electrons when exposed to an electric field. In 

particular, in a nanocantilever such as a MWNT, an electric field will induce electrons to 

be emitted from the free end of the nanotube creating an emission current. Resonance can 

be observed by noticing the change in current due to change in the field enhancement 

factor resulting from the motion of the nanotube. In fact, using precise time resolution, 

amplitude and frequency modulated signals can be broadcast to the nanotube which can 

then demodulate them. This is the basis for the nanotube radio [13]. However, despite 

this impressive display, the method is still limited to cantilevers which display effective 

field emission. In addition, the precision with which the motion of the cantilever can be 
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determined is limited, as the variation of field enhancement will be a second order effect 

for normal cantilever motion.  

 

1.4.3 Capacitive Detection 

When the cantilever moves in response to the applied electric field, the 

capacitance of the system changes. This change results in a change in the amount of 

charge on the cantilever and current flows. The current responding to this dynamic 

change of capacitance should increase with the amplitude of oscillation of the cantilever, 

leading to a straightforward method of detecting the resonance by simply observing the 

flow of electricity through connections to the cantilever [18]. However, as will be shown 

in Chapter 2, parasitic signals from the rest of the capacitive system, normally overwhelm 

the smaller signal of interest. The difficulty in dealing overcoming these parasitic signals 

has prevented the effective measurement of the dynamic signal. Despite this, because of 

its relative ease and direct one-to-one relationship with the motion of the cantilever, much 

work has been done to try to design devices to optimally preserve the capacitive signal 

[19, 20]. However, through careful filtering, components of the dynamic signal can be 

observed in regions where the background from the parasitic capacitance is several orders 

of magnitude smaller than in the normal case. Using the same geometric considerations 

which give rise to the parasitic capacitance, it is possible to observe the dynamic signal 

for nano-cantilevers as small as 10 nm in diameter or smaller.  

These geometric issues will be dealt with generally, along with the physics of 

electrical actuation and capacitive detection in Chapter 2. Chapter 3 will present a 
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technique related to HDR, which utilizes pulsed electrical signals and under-damped 

mechanical signal decay as a detection scheme. An effective gas sensor will be presented 

using this method. Finally, Chapters 4, and 5 will address particular discoveries made 

using the full power of the detection technique developed in Chapter 2.  
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CHAPTER TWO 

THE HARMONIC DETECTION OF RESONANCE METHOD 

 
2.1 The Need for Harmonic Detection of Resonance 

In this section, the general model for electrostatically driving cantilevers is 

developed. While it can be directly seen that driving conducting cantilevers in this way 

will lead to an electrical output depending directly on the motion of the cantilever, it will 

be shown that, in addition to this signal, a parasitic signal, due to capacitances inherent in 

the electronic setup, will create a large background signal, preventing direct measurement 

of this signal. Harmonic Detection of Resonance (HDR) will then be introduced to 

circumvent this parasitic capacitance. 

 

2.1.1 Electrostatic Driving of Cantilevers 

By placing an electric field in the vicinity of a conducting cantilever, an 

electrostatic force can be generated on the cantilever. This force will work to minimize 

the capacitance of the cantilever-counter-electrode (CCE) system. In general, this force 

will act in 3 dimensions over the entire cantilever. However, it has been shown using 

numerical studies [21] that the majority of charge stored in the cantilever when the 

system is charged is located in the tip. Furthermore, since this force will create a regular, 

repeatable motion in the cantilever, we can describe the relative motion of the cantilever 

from equilibrium with just 1 degree of freedom (DOF), x, which will, generally speaking, 

refer to the displacement of the tip from the equilibrium position in the absence of an 
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electric field. This capacitive force will depend on the geometry of the CCE system used, 

but it can be generally written as: 

 

�� �  �� � � ��	 � �	 �� � �	  
�
� (2.1) 

 

where FC is the capacitive force, E is the energy of the capacitor, C is the capacitance, 

and V is the applied voltage. In the final equality we have adopted the 1DOF x as 

mentioned above. 

The resulting change in capacitance will change the total charge on the capacitor 

as:  

 

� � ��     (2.2) 

 

If an alternating voltage, Vac, with dc bias, Vdc, is used to drive the cantilever at frequency 

ω, 

 

� � �� � ��� cos �� (2.3) 
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the motion of the cantilever will produce a current as the capacitance changes and the 

total charge fluctuates. However, the oscillating voltage will also produce a current I, 

which will scale linearly with the frequency, creating a parasitic signal.   

 

� � �� � ����� � �� � � �� � � �� ��� � ��� cos ��� � ����� sin �� (2.4) 

 

At resonance, the derivative in the first term should be large as the geometry 

changes rapidly. However, in practice, the parasitic signal, the second term, proportional 

to ω, is much larger than the dynamic capacitive signal associated with the motion of the 

cantilever, making it normally unobservable in real experiments. 

Let us examine the driving force in more detail. Substituting Eq 2.3 into Eq. 2.1, 

we find the force, as derived above will have frequencies at both ω and 2ω 

 

�� � �� �V�	 � V�V��cos �� � ���	 cos	 ��� �
��  V�	 � !"���	 � V�V��cos �� � !" ���	 cos 2��$ (2.5) 

 

while the voltage oscillates only with frequency ω. Reexamining Eq. 2.4, we can see that 

if we only observe signals at 2ω, the parasitic signal will not be present, while the 

dynamic signal will remain. This is the basis of the HDR method.  
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2.2 Characterization of HDR 

This section will develop the mathematical theory behind the HDR method. First, 

the governing driving equation will be developed. This equation will them be solved 

approximately to give the actuated motion of the cantilever, using the method of 

harmonic balance. Then, the electrical signal predicted by this analysis will be calculated 

[22]. 

 

2.2.1 Equation of Motion for a Simple Harmonic Oscillator 

Written in the displacement, x, we can write the equation of motion of a damped, 

driven, simple harmonic oscillator (SHO): 

 
"��" � 2% �� � �&	' � (�),��+  (2.6) 

 
where, γ is the damping factor of the oscillator, ω0

2=k/m is the square of the natural 

resonance frequency, k is the spring constant and m is the mass of the cantilever. In the 

case of a simple, periodic driving force 

 

� � cos ��  (2.7) 

 

The periodic motion of the cantilever can be solved assuming a solution of the form 
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'��, �� � ,��� cos��� � -�  (2.8) 

 

Plugging this into Eq. 2.6 above, we can solve for the amplitude and phase as a function 

of driving frequency: 

 

,�.� � /
0 )1"2)"$"3�	4)�"  (2.9) 

 

tan -��� � 	4))"2)1"  (2.10) 

 

There also exists the possibility of a solution that is not periodic in w. However, 

the magnitude of these solutions will decay to zero with a time constant of approximately 

1/γ. In chapter 3 we shall deal more with transient solutions to the force equation above, 

but for now, we shall only consider the periodic solutions, noting that any observations 

can be made after sufficient time for the transient solutions to have died off. 

We also mention here that a polar plot of (A, φ) will be a circle (see appendix A). 

This will be particularly relevant when we examine experimental data looking for 

resonance peaks. While significant noise or background signals may distort the 

appearance of A or φ individually as a function of ω, the circular pattern in the polar plot 
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will remain, confirming the existence of the resonance. It will also be of interest when we 

explore the consequences of our HDR theory and see deviations from this behavior. 

 

2.2.2 Equation of Motion of HDR 

For our driven cantilevers, the force equation is 

 

"��" � 2% �� � �&	' � (7+  (2.11) 

 

where FC is the capacitive force given in Eq. 2.5. To attempt to solve this equation, we 

will first write the capacitance as a Taylor expansion in the displacement of the 

cantilever. 

 

��'� � �& � '�/ � �"�"	 � �8�89 � :  (2.12) 

 

where Cn = dnC/dxn|x=0. So the force, FC becomes 

 

�� � 12 <�/ � '�	 � '	�=2 � : > 

 ?!"�@7" 3�A7" 3	�A7�@7 BCD�)��3!"�@7" BCD�	)��E  (2.13) 
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Plugging this force into Eq. 2.11, the equation becomes intractable. Even if the 

capacitance is truncated after a finite number of terms, the cantilever will still be driven 

by several forces at different frequencies, the amplitudes of which depend on the 

displacement. This makes the equation highly nonlinear and difficult to solve by normal 

calculus methods. However, using the solution of the simple harmonic oscillator as a 

guide and making several approximations, borne out by experiment, we can reduce this 

nonlinear, 2nd order differential equation to a set of coupled algebraic equations. 

 

2.2.3 Simplifying approximations and the method of harmonic balance 

To solve Eq. 2.11 we will first truncate our expansion of C after three terms, 

assuming that Cn+1x<<Cn for the amplitudes of oscillation involved. That is to say, the 

capacitance expansion converges quickly over the scale of amplitudes of vibration. We 

then employ the method of harmonic balance and assume the solution takes the form: 

 

'��, �� � ∑ 'G��, ��HGI& J ∑ ,G cos�K�� � -G�HGI&   (2.14) 

 

where xn is the motion of the cantilever at frequency nω, An is the amplitude of that 

motion and φn is the phase relative to the driving signal. Again any other motion will be 

transient and should die off exponentially with time constant 1/ γ. We must, for now, be 

willing to include terms arbitrarily large in n, because of the nonlinear nature of the 

equation; however, assumption #1 below will truncate the range of xn we need to explore. 

Notice also that we do not dismiss the possibility of a static displacement (A0), moving 



 16

the cantilever, on average, closer to the counter-electrode. Because the cosine functions 

are orthogonal to each other, we can isolate terms based on their frequency and solve 

those algebraic equations for x and φ individually. Substituting into equation 2.13 we 

employ trigonometric identities to write equations that are linear in cos (nωt). However, 

this results in over a dozen terms for our equation at frequency ω, almost 50 terms for 

2ω, and over a staggering 100 terms for 3ω. In addition, these equations are coupled, 

with A1 depending on A2 and vice versa, but also nonlinear. In order to simplify these 

equations, we will make the following assumptions. 

 

1. An<<Am for m>n 

2. Cn+1Am<<Cn for all m, n 

3. AnAm=0 for m≠n 

 

As will be shown below, all of these assumptions are borne out by experiment 

under normal conditions. The one notable possible exception to these (assumption #2) 

will be explored below. After eliminating the terms made negligible by these 

approximations, we are left with 4 algebraic equations, with only the smaller amplitudes 

(A2, A3) depending on larger ones, effectively decoupling them: 
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,&�&	 � !L�M1�"3�!�N!"�@7" 3�A7" O (2.15) 

 

,/��&	 � �	� cos��� � -/� � 2,/%� sin��� � -/� �
!L?!"P!Q@7" R" BCD�)�3S!�3P!QA7" R" BCD�)�3S!�3	�@7�A7�! BCD�)��E  (2.16) 

 

,	��&	 � 4�	� cos�2�� � -	� � 4,	%� sin�2�� � -	� �
!LU P"R"N!"Q@7" VQA7" O BCD�	)�3S"�3

Q@7" R! BCD�	)��3M!�@7�A7�" BCD�	)�3S!�W  (2.17) 

 

,=��&	 � 9�	� cos�3�� � -=� � 6,=%� sin�3�� � -=� �
!L[ P8R"N!"Q@7" VQA7" O BCD�=)�3S8�3!\P!R"Q@7" BCD�=)�3S!�3M"�!�@7�A7 BCD�=)�3S"�]  (2.18) 

 

We will at this point notice that A0 is, in fact, non-zero. However, we are free at 

this point to redefine the zero of our displacement, x, around this new equilibrium 

position. This will eliminate its influence from higher order equations. We notice that 

each of these equations (2.15-2.18) has two similar terms which will act to reduce the 

effective spring constant of the oscillator. We define ω0`
2= ω0

2 −m−1 C2 (½Vac
2 +Vdc

2) as 

the new resonant frequency to simplify the equations. We notice the effect these terms is 



 18

to reduce the natural frequency of the oscillator. This “spring softening” has been 

observed previously in the electrostatic resonance of microcantilevers [23]. In fact, as we 

shall see later, because of the voltage dependence on ω0`, we can tune the resonant 

frequency of the cantilever by changing the magnitude of the driving voltage. We also 

note that we can continue this process for A4, A5, etc. However, because the assumptions 

made above prevent these variables from affecting those in the equations above, we will 

stop at the 3rd harmonic of the driving frequency. There will, however, be peaks at these 

frequencies, both in the physical and electrical signal and they have been observed 

experimentally [23, 24]. 

Eqs. 2.16-2.18 can be solved in a straight forward, if tedious, manner: 

 

,/��� � 	�!�A7�@7
+0 )1̂"2)"$"3�	4)�" (2.19) 

 

tan -/��� � 	4))"2)1̂"  (2.20) 

 

,	��� � �@7+ _��"M!�A7�"3!\��!�@7�"3�!�"�A7�@7 BCD S!
 )1̂"2`)"$"3�`4)�"  (2.21) 
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tan -	��� � �!�@7 Dab S"̂3	�!M!�A7 Dab S"̂3S!$�!�@7 BCD S"̂3	�!M!�A7 BCD S"̂3S!$ (2.22) 

 

tan -	c ��� � `4)`)"2)1̂"  (2.23) 

 

,=��� � �@7+ _!\��"M!�@7�"3`��"M"�A7�"3	�""M!M"�A7�@7 BCD�S!2S"�
 )1̂"2d)"$"3�94)�"   (2.24) 

 

tan -=��� � !"M!�@7 Dab S8̂3	M"�A7 Dab S8̂3S!2S"$!"M!�@7 BCD S8̂3	M"�A7 BCD S8̂3S!2S"$  (2.25) 

 

tan -=c ��� � 94)d)"2)1̂" (2.26) 

 

where we have introduced φ2` and φ3` , the phases of the oscillation ignoring the  

contributions from x1 and x2 respectively, for ease of notation and also to provide insight 

into the source of the components of the output. 

As noted in Eq. 2.2, we can calculate the charge on the cantilever, and, 

differentiating, the current which will give our electrical signal. Separating as before into 
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harmonics and again assuming Cn >> AmCn+1, neglecting the smaller terms if they have 

the same phase, we have 

 

�/ � e�& � 14 �,/	 � ,		 � ,=	��	f ��� cos���� � 

,/�/�� cos��� � -/� � /	 ,	�/��� cos��� � -	� �
/g ,/	�	��� cos��� � 2-/�  (2.27) 

 

�	 � 12 ,/�/��� cos�2�� � -/� � ,	�/�� cos�2�� � -	� � 

12 ,=�/��� cos�2�� � -=� � 14 ,/	�	�� cos�2�� � 2-/� � 

/̀g ,/=�=��� cos�2�� � 3-/�  (2.28) 

 

�= � 12 ,	�/��� cos�3�� � -	� � ,=�/�� cos�3�� � -=� � 

18 ,/	�	��� cos�3�� � 2-/� � 18 ,		�	��� cos�3�� � 2-	� � 

/	` ,/=�=�� cos�3�� � 3-/�  (2.29) 
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We note here that including terms of higher order in the capacitance will distort 

the form of the observed resonant peaks, but will not generate any new ones; also, since 

we include the higher order terms with different phases, we will be able to see any 

interesting structure in the resonance. 

 

2.2.4 Features of Our Solution 

We note in both the physical amplitudes, An, and in the electrical charge Qn, there 

will be several peaks depending on the harmonic examined and the frequency supplied to 

the cantilever. As expected, the cantilever will resonate when driven by a signal at its 

natural frequency, exactly analogous to the SHO, but also at half of this frequency, due to 

the frequency doubling of the force described above. In addition, because of the 

nonlinearity in the system, the cantilever will also be excited to resonance at its natural 

frequency when driven at one third this frequency (and at 1/4, 1/5, 1/6 etc.). This is not 

particularly surprising as the electrostatic force is the product of several terms each 

depending on the driving frequency, causing frequency doubling, tripling, and more. 

What is unusual is that, due to the recursive nature of the equations for the Ans, A2 has a 

peak when A1 does, and A3 has a peak when A1 and A2 do. This means that the cantilever 

will be excited at frequencies other than its natural frequency. This is a purely nonlinear 

effect which significantly complicates the cantilever motion. 

We further note here that including terms of higher order in the capacitance will 

distort the form of the observed resonant peaks, but will not generate any new ones; also, 

since we include the higher order terms with different phases, we will be able to see any 
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interesting structure in the resonance. Figure 2.1 shows Q1, Q2, and Q3, plotted on an 

arbitrary scale, to aid the reader in the following discussion. Examining the electrical 

current (= dQ/dt) output for the first harmonic, term by term, we see that at the input 

frequency there is a “dynamic” component, proportional to A1, which should appear as a 

normal resonance, and a parasitic component, proportional to C0, which, because the 

factor of ω in the current, will increase with frequency. There is also a term which looks 

like the second harmonic of the motion of the cantilever, although this should be difficult 

to see on top of the parasitic signal. There are also terms in phase with the parasitic 

signal, which may distort the peak at ω and ω/2, but should have no other effect. The 

term proportional to A1 is similar to another term in the second harmonic, and we will 

consider its effects shortly. Though this term is relatively small, it should have a similar 

effect, if diminished, to the term in the second harmonic. 

At the second harmonic of the input frequency 2ω there is no parasitic component 

in the output. Instead, there are only terms proportional to the mechanical amplitudes, 

with no constant terms which alter the output. This is also the case for the third harmonic. 

Using the information about the mechanical motion given above, details about the current 

flowing from the resonating structure can be found. At the second harmonic of the 

driving frequency, we expect peaks at ω =ω0/2 and ω=ω0. At ω=ω0/2, A1 is vanishingly 

small, so only A2 should contribute to the current, and the peak should be similar in form 

to the same peak in A2, which should be Lorentzian, as demonstrated previously. 

 

 



 

 

Figure 2.1: Theoretical electrical signal from a cantilever with

kHz measured at (Q1) the driving frequency, (Q

three times the driving frequency. The parasitic capacitance, creating the linear trend in 

Q1 is not present at higher harmonics.
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Theoretical electrical signal from a cantilever with resonant frequency of 15 

) the driving frequency, (Q2) twice the driving frequency, and (Q

three times the driving frequency. The parasitic capacitance, creating the linear trend in 

is not present at higher harmonics. 

 

resonant frequency of 15 

) twice the driving frequency, and (Q3) 

three times the driving frequency. The parasitic capacitance, creating the linear trend in 
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2.2.5 Anomalous Limaçon behavior 

At ω=ω0, however, we will see contributions from three components, proportional 

to powers of A1, each having a phase shift relative to the others (similar to the peak in the 

first harmonic). For our purposes, we will ignore the term proportional to A1
3, as it should 

be at least an order of magnitude smaller than the first two. We will assume these two 

terms dominate any small resonance at ω0 due to A2. Using polar coordinates, as we did 

to identify the circle for the SHO and then transforming to Cartesian ones (ζ and ξ, to 

avoid confusion with the x used above), it can be seen that the complex output amplitude 

will closely resemble a limaçon [25] offset by a constant along the ζ-axis. 

 

i��� � /	 j�/,/��� cos -/ � �"	 ,/	�� cos 2-/k �
/	 j�/,/��� cos -/ N1 � �"M!�A7�!�@7 cos -/O � �"	 ,/	��k (2.30) 

 

l��� � 12 e�/,/��� sin -/ � �	2 ,/	�� sin 2-/f 
� /	 j�/,/��� sin -/ N1 � �"M!�A7�!�@7 cos -/Ok (2.31) 

 

The result is that for values of the input parameters where the two terms are 

approximately equal in magnitude, the amplitude will decrease sharply around the 

mechanical resonance as they interfere destructively with each other. 
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For the third harmonic of the output signal 3ω we again expect nearly Lorentzian 

peaks around ω=ω0/3 and ω=ω0/2, from the term proportional to A3 and A2 respectively. 

At ω=ω0, the curve will be complicated in a manner similar to that above, driven by 

terms that peak at the same value, but with varying phases. At certain points along the 

resonance, the terms will interfere constructively, at some points, destructively.  

 

2.3 Experimental Verification of HDR 

In order test the predictions of our model above, a CCE geometry was constructed 

in an Atomic Force Microscope (AFM) with an AFM cantilever used as the cantilever to 

be resonated, as reported previously [22]. The schematic for the electrical setup can be 

seen in Figure 2.2. It is comprised of a silicon microcantilever (Mikromasch NSC12 

series, cantilever E with approximate dimensions 350 µm x 35 µm x 2 µm) which is 

driven into resonance using a relatively shorter microcantilever (Mikromasch NSC12 

series, cantilever B with approximate dimensions 90 µm x 35 µm x 2 µm) as the counter 

electrode. Since the resonant frequencies of the long and short cantilevers were ~15.5 

kHz and 300 kHz respectively, input frequencies in the range of the long cantilever’s 

resonance should not influence the mechanical motion of shorter cantilever. A function 

generator and a variable applied dc bias were used to charge the counter electrode. The 

cantilever used for measurement was then placed in an Atomic Force Microscope (AFM, 

Veeco CP-II), so the displacement of the cantilever tip could be measured, and also 

connected electrically to an operational amplifier (Amptek, A250) whose output was 

connected to a lock-in amplifier, the output of which is our measured the electrical signal.  



 

Figure 2.2: Schematic of the system used to simultaneously measure electrical output and 

mechanical motion of the osci

a Lock-In amplifier to measure the motion at various harmonics of the driving frequency, 

Vac. 
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Schematic of the system used to simultaneously measure electrical output and 

mechanical motion of the oscillating cantilever. The position detector is also connected to 

In amplifier to measure the motion at various harmonics of the driving frequency, 

 

Schematic of the system used to simultaneously measure electrical output and 

llating cantilever. The position detector is also connected to 

In amplifier to measure the motion at various harmonics of the driving frequency, 
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The displacement signal from the AFM is also connected to a separate lock-in, so 

the mechanical oscillation and the electrical output could be measured independently and 

concurrently. The cantilevers were aligned in a parallel plate arrangement, and separated 

by a distance of ~10 µm. Measurements were taken at ambient conditions and only the 

first mode of vibration of the microcantilever is examined in detail in this study.  

Figure 2.3 shows the physical amplitude of vibration at each of the first 3 

harmonics, along with a fit using Eqs. 2.19, 2.21, and 2.24 above with the constants 

C1,C2, etc., the damping γ, and ω as the fitting parameters. As can be seen, good 

agreement is found between the two. In addition, using the relative phase of the motion, 

the circular polar behavior of the first 2 harmonics can also be seen. 

Figure 2.4 shows the electrical signal from the same cantilever for the first 3 

harmonics of the driving frequency. All of the salient features predicted above can be 

seen, including the parasitic and partially obscured dynamic signal in the first harmonic 

as well as the multiple, clear peaks evident in the 2nd and 3rd harmonics. Of particular 

note is the variation in signal-to-noise ratio in the 3rd harmonic, clearly much higher in 

the electrical signal.  

 

 



 

Figure 2.3: Observed mechanical motion of the microcantilever at (a) the fir

second, and (c) third harmonic of the driving frequency. Black traces give theoretical fits 

based on equations for the motion of the cantilever. (Inset) Polar plots showing the 

circular behavior of the resonance peak.
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Observed mechanical motion of the microcantilever at (a) the fir

second, and (c) third harmonic of the driving frequency. Black traces give theoretical fits 

based on equations for the motion of the cantilever. (Inset) Polar plots showing the 

circular behavior of the resonance peak. 

 

Observed mechanical motion of the microcantilever at (a) the first, (b) 

second, and (c) third harmonic of the driving frequency. Black traces give theoretical fits 

based on equations for the motion of the cantilever. (Inset) Polar plots showing the 



 

Figure 2.4: Observed electrical signal of the microcantilever through HDR at (a) the first, 

(b) second, and (c) third harmonic of the driving frequency. (d) The smaller peaks at 

and ω/3 in the third harmonic. (Insets) Polar plots of the same. The improved signal t

background ratio at higher harmonics beyond the first can be clearly seen. In addition, the 

limaçon behavior at the second and third harmonic is evident.
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Observed electrical signal of the microcantilever through HDR at (a) the first, 

(b) second, and (c) third harmonic of the driving frequency. (d) The smaller peaks at 

/3 in the third harmonic. (Insets) Polar plots of the same. The improved signal t

background ratio at higher harmonics beyond the first can be clearly seen. In addition, the 

limaçon behavior at the second and third harmonic is evident. 

 

Observed electrical signal of the microcantilever through HDR at (a) the first, 

(b) second, and (c) third harmonic of the driving frequency. (d) The smaller peaks at ω/2 

/3 in the third harmonic. (Insets) Polar plots of the same. The improved signal to 

background ratio at higher harmonics beyond the first can be clearly seen. In addition, the 
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Figure 2.5 shows the polar plots of the experimental electrical resonance at ω=ω0 

for the second harmonic at varying dc voltages. As noted above, this peak should closely 

resemble a limaçon. We see, as the dc voltage increases, the curve changes from a circle 

(a normal resonance peak), to a cardioid, and eventually to a circle centered on the origin, 

where the resonance can no longer be seen in the amplitude plot. This agrees well with 

the theoretical model given above. One will notice that, when the cancellation between 

the two signals is largest, the amplitude change occurs very rapidly, more rapidly than 

anywhere else in the spectrum. This change in amplitude could be useful in various 

sensing applications, where a shift in the amplitude is measured. Because the change in 

amplitude is so great, smaller changes in the resonant frequency can be accurately 

measured, allowing for greater sensitivity.  

 



 

Figure 2.5: Limaçon behavior of the resonance at a driving frequency of 

electrically at the second harmonic for several different bias voltages. As the bias 

changes, the shape on the polar pl

cardioid, to a circle centered on the origin. 
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Limaçon behavior of the resonance at a driving frequency of 

electrically at the second harmonic for several different bias voltages. As the bias 

changes, the shape on the polar plot changes from a circle beginning at the origin, to a 

cardioid, to a circle centered on the origin.  

 

Limaçon behavior of the resonance at a driving frequency of ω0 observed 

electrically at the second harmonic for several different bias voltages. As the bias 

ot changes from a circle beginning at the origin, to a 
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2.4 Nonlinear Behavior 

While the approximations made earlier made possible the solutions for the 

physical and electrical amplitudes which match the observed experimental evidence, 

there are a number of situations, readily observable in various HDR experiments where at 

least one of these assumptions fails. Assumptions 1 and 3 are in place to decouple Eqs 

2.15-2.18 and, were they to fail, it would create substantial back-action, causing our 

solutions to become coupled, which may give rise to additional peaks in A1 or A2, or 

create small deviations in their lineshape, which have not been yet observed in any HDR 

experiment. Assumption 2, however, exists to linearize the equations. If terms of the form 

A1
3 are allowed to remain, the EOM of the amplitudes An will resemble Duffing’s 

equation [24]: 

 

"��" � 2% �� � �&	' � m'= � (7+  (2.32) 

 

What this means is that, depending on the sign of alpha, the resonant lineshape will be 

asymmetrically tilted towards either higher or lower frequencies. For the largest 

nonlinearities, due either to large amplitude or large α, a bifurcation of stable solutions 

will actually occur (Fig. 2.6). In practice, this means that, depending on the direction the 

frequency is scanned from, the peak will have a different shape, staying on either the 

higher or lower branch, until it is forced, due to the lack of a stable solution at the driving 

frequency, to switch.  
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Figure 2.6: The shape of a resonant peak for positive α for (a) no Duffing, (b) critical 

Duffing, characterized by the strong asymmetry of the peak, and (c) strong Duffing, 

characterized by the bifurcation of stable solutions. The dashed red line represents the 

unstable solution, not observable in practice. The shape of the peak observed will depend 

on the direction of the applied frequency change, as shown by the black arrows. 
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Due to nonlinearities in the capacitance being essential to HDR (to see this, set C2 

and C3 to zero in the equations above and notice how many peaks disappear), Duffing 

behavior is common at higher amplitudes as will be seen below, and has been studied in 

HDR systems in detail [24]. While this behavior can complicate data acquisition, the 

features of a resonance can still be easily approximated using the polar plot method from 

before. Moving through the resonance still results in a (nearly) circular trace. As shown 

in red in Fig 2.4.1, the unstable solution, never seen experimentally, for strong Duffing 

past the critical point simply corresponds to a missing arc of the circle in the polar plot. 

The full circle can still be interpolated and, from it, the peak frequency and quality factor 

can easily be determined. 
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CHAPTER 3 

ELECTRICAL DETECTION OF RINGDOWN BEHAVIOR IN A 

MICROCANTILEVER AS A GAS SENSOR 

 

3.1 Transient Oscillator Behavior 

A novel variation of the HDR method exists using the ringdown of an undriven 

cantilever [26]. In order to investigate such an undriven system, the transient behavior of 

our oscillator must be examined. As mentioned previously, transient solutions to the 

harmonic oscillator equation will exist in addition to the periodic solutions utilized for 

HDR. These will be the solutions to the homogenous SHO equation: 

 

"��" � 2%�& �� � �&	' � 0   (3.1) 

 

In the absence of any external driving force, the solution will take different forms 

depending on the damping parameter: γ. Depending on the solutions for the parameter, β, 

of the characteristic equation for the oscillator: 

 

o	 � 2%�&o � �&	 � 0  (3.2) 

There are three possible forms for the solution of the homogenous equation. For 

overdamping, where γ >1, and Eq. 3.2 has 2 real solutions, the oscillator motion will be 

of the form 
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'��� � ,pq!� � rpq"�  (3.3) 

 

where β1 and β2 are the 2 solutions and A and B depend on the initial conditions. For 

critical damping where γ =1, Eq. 3.2 has 1 solution and 

 

'��� � �, � r��p2)1�  (3.4) 

 

Finally, for underdamping, γ <1, the solutions to 3.2 will be imaginary and 

 

'��� � N, cos N�&s1 � %	O � r sin N�&s1 � %	OO p24)1�  (3.5) 

 

For sufficiently small damping, by observing the ringdown behavior associated with Eq. 

3.5, it is possible to extract both the resonant frequency, ω0 and the damping γ. 

 

3.2 Damping 

Damping in a cantilever structure typically comes predominately from 2 sources: 

intrinsic friction and interaction with its atmosphere. While the intrinsic friction can be 

very interesting for novel cantilevers (as will be seen later), at atmospheric pressure it is 
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much smaller than that due to the atmosphere.  We will deal here predominately with that 

external damping from the environment.  

The acceleration on our cantilever in a gaseous environment is typically written 

with 2 additional parameters [27]: 

 

"��" � N�t' � �o/ � u� �� � ��O / Nw � q") O   (3.6) 

 

where m is the effective mass,  and x is the position of the cantilever, k is its spring 

constant, FC is the capacitive force as before, c is the intrinsic damping in the cantilever, 

and β1 and β2 are the coefficients of the dissipative and inertial damping respectively. β1 

governs what is more commonly thought of as drag, dissipating energy from the 

cantilever into the gas. This drag will increase the damping of the cantilever, decreasing 

its amplitude and causing an undriven cantilever to relax to equilibrium. β2 is due to the 

mass of the gas (or liquid) molecules which are moved along with the cantilever when it 

vibrates. As can be seen, the effect of this drag is to increase the effective mass of the 

cantilever, decreasing its natural frequency.  

For a given geometry, calculation of the parameters β1 and β2 depends on the 

solution to the Navier-Stokes equation. Closed solutions to this equation are not known 

for arbitrary geometries, so for purposes of calculation the drag force, the cantilever is 

modeled as a series of spheres with diameter approximately equal to the width of the 



 38

cantilever and enough spheres such that their total length is approximately equal to the 

length of the cantilever. In this case, β1 and β2 are given by [27]: 

 

o/ � 6xyz <1 � z {| >  (3.7) 

 

q") � 	= xz=} <1 � 9 2| { z| >  (3.8) 

 

where η is the viscosity of the gas, R is the radius of the sphere, ρ is the density of the 

fluid, and  

 

{ � 02y }�|   (3.9) 

 

is the thickness of the boundary layer. It is important to note that the 2 independent 

characteristics of a gas which determine damping, namely its density and viscosity, can 

be calculated if one knows β1 and β2. It is also significant that β1 and β2 influence the 

motion of a cantilever in distinct ways, as mentioned above. 

Assuming the cantilever is underdamped, it is possible, by measuring the 

ringdown of a cantilever to calculate β1 and β2 independently as fitting parameters to Eq. 

3.5. As we will see below, we can use an electrical method, as before, to observe the 
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motion of the cantilever, and, from its ringdown, determine β1 and β2 and calculate η and 

ρ. 

 

3.3 Electrical Detection of Ringdown Behavior 

The effects of gaseous environments on the quality factor and ringdown of 

microcantilever resonators has been considered previously [28-30]. However, electrical 

detection of this phenomenon adds increased capabilities for this technology. If we 

consider the electric charge on a cantilever as we did before, but now eliminate the 

external oscillating field, we find a current: 

 

���� � �� ��   (3.10) 

 

So if the cantilever is in motion, it will produce an electrical signal without the parasitic 

capacitance (compare to Eq. 2.4). As shown above, in the case of the underdamped 

oscillator, this signal will oscillate and can persist for a great number of cycles. By 

driving the cantilever to resonance and then removing the external driving force, it is 

possible to observe the motion of the cantilever, and, in particular, its damping 

electrically. This is the basis for the ringdown detection method. 

  By assuming that the capacitance will be monotonic in the deflection of the 

cantilever, we can determine that, for a particular initial setup and geometry, there will be 

a one-to-one correspondence between the electrical output and the position of the 
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cantilever. If this relation is known, the deflection of the cantilever will be known 

through the electrical position. 

 

3.4 Numerical Model 

In order to determine the relation between electrical signal and physical 

deflection, we must first develop a numerical model to describe the capacitance of our 

cantilever counterelectrode system. The counterelectrode to be modeled was, as above, a 

sharpened Tungsten tip, and the cantilever was a silicon microcantilever (Mikromasch 

NSC12 series, cantilever B). The closest approximation to this system would be a 

conducting cone with its radial axis parallel to a conducting plane. However, a closed 

form for the capacitance of this system is not known in general. However, the capacitance 

of a wire parallel to a plane is known: 

Using systems of this known capacitance, we can decompose the geometry into a 

system of wires of varying dimension parallel to a plane (see Fig 3.3.1), in order to 

approximate a conic shape. The resulting capacitance, Cm is [26]: 

 

�+�~� � /	 x�&� ∑ Ncosh2/ N ��� � 1OO2/� � ��  (3.11) 

 

Where 
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here, ri is the radius of the ith segment of wire, y = ½ r1 / (req+r1), ε0 is the permittivity of 

free space, L is the length of a wire segment and r is the distance of the wire from the 

plane. Cs is the capacitance of a half sphere with the plane, used as a termination for the 

conical counterelectrode. 

Now, knowing the total force on the cantilever, as a function of deflection, we can 

model its motion with β1 and β2 as free parameters, depending on the environment. 

Knowing the capacitance, it is also straightforward to determine the electrical signal as a 

function of amplitude, using Eq. 3.10 above which we can invert numerically to 

determine the position of the cantilever from the electrical signal.  

 

3.5 Gas Sensing  

As an application of this method of extracting the ringdown motion of the 

cantilever from the electrical signal, the sensitivity of the electrical signal to both 

parameters of the gaseous damping will be tested, along with its ability to identify 

unknown gases species or binary mixtures.  

 

3.5.1 Experimental Setup 

The electrical setup used was identical to that presented in Fig. 2.2, except in 

place of a lock-in amplifier, an oscilloscope was used to measure the output in time 

instead of frequency space. The CCE was placed in a vacuum chamber which could be 

filled to atmospheric pressure with the desired gas. The cantilever was driven to 

resonance to produce a high initial amplitude (higher than would be available from static 



 42

dc attraction alone) and then the ac signal was switched off, allowing the cantilever to 

relax to equilibrium. This process of excitation and relaxation was repeated at a 

frequency 10 Hz so sampling could be done to improve the signal-to-noise ratio. This 

sampling allowed the ringdown of the cantilever to be observed (Fig. 3.1).  

The electrical output, averaged over several thousand cycles, could then be 

matched to the predicted output with good precision (Fig. 3.2) to determine the 

mechanical motion of the cantilever. From the mechanical motion, the two fitting 

parameters, β1 and β2 could be determined. As mentioned previously. As β1 will primarily 

affect the lifetime of the oscillations while β2 will affect the frequency of the oscillations, 

they can be effectively decoupled in the measurement. 
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Figure 3.1: Sample electrical output for the ringdown of the cantilever exposed to two 

different gases. The lower viscosity of Hydrogen is evident immediately due to the longer 

time it takes the signal to decay. 
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Figure 3.2: (Red diamonds) The observed electrical signal for the ringdown of the 

cantilever and (black line) the theoretical fit using β1 and β2 as fitting parameters. The 

good agreement between theory and experiment can be seen. 
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3.5.2 Experimental Results 

In order to confirm that the intrinsic damping of the microcantilever is small 

compared to beta1 and to quantify it, we performed the ringdown measurement on the 

system in vacuum (10-5 torr). From these measurements it can be seen that the intrinsic 

damping is much smaller than the damping from the lowest viscosity gas used (H2) with a 

viscosity of 8.91µPa s. This agrees well with observations made previously [28]. 

To measure each gas, or binary mixture, the vacuum chamber was filled to 

atmospheric pressure each gas so measurements could be taken. The values for ρ and η 

for each gas observed, as well as the NIST values (for comparison) can be found in Fig. 

3.3. As can be seen, this ringdown method was able to accurately determine both 

parameters independently. In particular, note that gases with very similar density, but 

different viscosity (H2 and He) were easily differentiated by the method and the same for 

similar viscosities and different densities (CH4, C2H6). In addition, various concentrations 

of O2 in N2 were measured to show the sensitivity to altered concentrations. Table 3.1 

shows density and viscosity of the various mixtures compared to the values predicted by 

this method. Again, good agreement between the two can be seen. 
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Figure 3.3: (Red dots) Values for the viscosity and density for the gases measured 

according to NIST standards. (Points with error bars) The values for the same parameters 

determined by the electrical ring-down method. Gases with similar density, such as H2 

and D2, can be easily differentiated with a single measurement using this method as both 

parameters can be measured simultaneously. Previously, differentiation at this specificity 

for two different parameters could not be obtained with a single measurement.  
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Table 3.1: Densities and viscosities of mixtures of N2 and O2 based on both standard 
values and those observed by the electrical ring-down method. Good agreement with 
previously reported values and high specificity for the concentration are observed. 
 

Gas 
Density 

kg/m3 

Predicted 

Density 

Viscosity 

µPa s 

Predicted 

Viscosity 

N2 1.121 1.124 17.74 17.74 

20%O2 1.153 1.126 18.22 18.25 

30%O2 1.170 1.134 18.49 18.55 

40%O2 1.186 1.190 18.76 18.80 

O2 1.281 1.280 20.38 20.39 
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CHAPTER 4 

RESONANCE IN CARBON NANOCOILS 

 

4.1 Properties of Carbon Nanocoils 

Due to their unique geometry (Fig. 4.1) coiled nanostructures, including silicon 

and boron carbide nanosprings [31], coiled carbon nanotubes, and carbon nanocoils have 

been the subject of much study [32]. They have shown many interesting potential 

applications including as dampeners [33], and as field emitters [34], alone and in 

composites. In particular, carbon nanosprings have shown promise of altering 

macroscopic properties when incorporated into mesoscopic systems [33, 35]. In addition, 

the growth mechanism of these structures (as they self-assemble) has been the subject of 

much study, owing to the high degree of periodicity they can display [32, 36-38]. 

Carbon nanosprings generally occur in one of two large categories, coiled carbon 

nanotubes (cCNT) and carbon nanocoils (CNC). cCNTs have a lattice structure similar to 

straight carbon nanotubes with pairs of 5,7 defects in the lattice creating the coiled shape. 

CNCs, by contrast are solid structures approximately homogenous throughout. They are 

amorphous in structure. The two can be distinguished in an electron microscope as the 

hollow nature of the cCNTs can be seen. The uses for these objects in NEMS devices are 

almost limitless as their spring geometry makes them incredibly pliable despite the 

material strength common to carbon nanostructures.  
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Figure 4.1: SEM image of as prepared cCNW samples 

 

Because the geometry is central to their novelty, their mechanically properties are 

of particular interest. The information about their resonant behavior which can be 

obtained from HDR is significantly interesting from this perspective alone. The potential 

for novel electrical properties [39] due to their geometry only enhances the appeal of 

HDR as a method for exploring these structures. To this end, the resonant behavior of 

CNCs has been observed using HDR to help determine its material properties [40]. Care 

was taken to separate the motion from any potential effect from the electron beam. 
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4.2 CNC Synthesis Method 

Coiled carbon nanowires were synthesized in a two–stage thermal CVD reactor. 

The pre-heater and the heater were maintained at 2000C and 7000C respectively in the 

presence of Ar (800 sccm). A mixture of xylene and ferrocene was prepared into which 

tin isopropoxide (source of tin) was added with the ratio of Fe:Sn of 4:1. This precursor 

was immediately injected into the CVD, using a syringe pump, at the rate of 1 mL/hr. At 

the same time, 50 sccm of acetylene was passed through the tube at atmospheric pressure.  

After 2 hr of reaction time, the furnace was shut off along with the acetylene flow for 

rapid cooling in the presence of Ar.  The resultant thick layer of carbon nanocoils grows 

on a bare quartz substrate. 

The growth mechanism for CNCs is still not well understood. In general, it is 

known that the tube or wire growth is catalyzed, as in straight tube growth, usually by Fe. 

However, a number of different mechanisms, possibly depending on the synthesis 

method used and the variety of coils formed, could result in the bending of the structure 

to form a coil. These include twisting due to asymmetry in the catalyst particle [36] and 

energy minimization due to In vapors [37]. 

 

4.3 Experimental Setup and Approach 

Because of the small size of the cCNWs compared to the microcantilevers 

examined earlier, it was necessary to mount the CCE in an SEM, both for vacuum, to 

increase the amplitude of vibration and thus the electrical signal, and also to observe the 

motion to confirm resonance while the beam was on. As such, a jig was constructed using 
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piezoelectric motors (PI Block Nano Positioning System) to alter the geometry and gap 

distance of the CCE. The jig was then placed in an electron microscope (SU-6600). Ports 

were designed for the microscope to allow the input and output signals to enter and leave 

the vacuum chamber. In addition, because of limited space, and electrical pickup, the 

amplifier had to be redesigned. 

In general, pick-up noise in the output wire will be the largest source of noise in 

our signal after the parasitic signals inherent in the CCE and in the system in general. 

There are two primary methods of reducing this noise, the first is to shield wires with a 

common ground, which was done extensively, using coaxial cable whenever possible and 

adding custom shielding when either space was limited or flexibility in the wire was 

required. The second method of reducing noise is to reduce the distance from cantilever 

to amplifier. In order to minimize this distance, our A250 amplifier was modified to 

accept an external FET, which could then be placed on the jig (see figure 4.2). This was 

particularly necessary as the nanocantilevers used here were much smaller and thus 

would hold less charge and output a lower dynamic signal than the microcantilevers used 

previously.  
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Figure 4.2: Schematic of HDR setup using SU6600 SEM vacuum chamber. The FET is 

located inside the chamber (left side).  

 

In order to examine the resonance of a cCNW, a small amount of the sample was 

gathered on a piece of SEM tape and mounted over a darkfield microscope. A sharpened 

W tip was then used to pull individual coils, held on the tip by Van der Waals forces. 

This tip was then be mounted in the jig for observation. The cCNW could then be driven 

to resonance. A detailed description of the electrical configuration can be found in 

Appendix B. 

Because of the small signal to background ratio, it is helpful to perform 

background subtraction to better analyze the resonant signal. To do this, the (A, φ) polar 

representation (Chapter 2) is used. A vector from the static cantilever position to the 

origin in this space is subtracted from the signal (Fig 4.3). This new data can be replotted 
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as A vs. ω or φ vs. ω to better visualize the peak. Calculation of peak parameters can be 

done either with the replotted data, or in the polar representation (See appendix A).  

Because of the high pliability of coiled structures, CNCs provide a wonderful 

opportunity to study nonlinear behavior at large amplitudes. However, to avoid a pull-in 

instability, the mechanical motion had to be carefully monitored at higher voltages, and 

the gap distance carefully controlled. While no difference was ever observed in the 

electrical signal depending on the presence of an electron beam, recorded data was taken 

with the beam off, to avoid any possible complications from it since electron beam 

irradiation can significantly affect the electrical properties of nanostructures [41]. 

In addition to large-amplitude, nonlinear behavior, coils, due to their geometric 

complexity, are capable of several interesting modes, most more easily accessed than in a 

straight wire [42-45]. In particular, higher order flexural modes, containing nodal points 

in their motion, should be more easily observed, as well as axial compression modes. 

There are two main issues in the actuation and detection of these more exotic 

modes. The first are the material constraints on these modes, requiring extremely high 

frequencies to excite and only creating small amplitudes due to their high energy. 

Nanocoils naturally overcome most of these due to their flexibility. The second involves 

the method of actuation. As was discussed in Chapter 2, electrostatic actuation depends 

on the change in capacitance of the CCE as a function of the deflection or deformation of 

the cantilever. If the motion of a given mode does not significantly affect the capacitance 

(compared to say, the change in mechanical energy due to the motion) then the mode will 

not be sufficiently actuated for any detection scheme, optical or electrical. 
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Figure 4.3: (green) Raw data collected for cCNW (a) in the polar representation and (b) 

as a function of frequency. (red) The same data with a vector added (black line in (a)) to 

remove background. (c) The resonant peak can be more clearly observed as a function of 

frequency after this subtraction has been made.  
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For example, while a nanocoil can be physically driven into a torsional mode much more 

easily than a wire, the driving force from the counterelectrode on this mode should be 

very small. As such, even when driving at the natural frequency for this mode, we do not 

expect significant actuation of it. In addition, if the capacitive change is not large, even 

for large actuation, the electrical signal will be small (see Eq. 2.4). 

In the case of higher order flexural modes, Euler-Bernoulli beam theory gives 

predictions about the frequencies at which they will occur and they should be relatively 

easy to actuate, as has been done with other, non-coiled nanostructures [14, 46, 47]. 

However, because of the nodal points in these higher modes, we expect the electrical 

signal to be relatively small. While some parts of the cantilever/coil will be moving 

towards the counterelectrode, increasing the capacitance, others will be simultaneously 

moving away, decreasing it. As a result, though we may expect to observe the mode 

physically, detecting it electrically should be considerably more difficult. 

 

4.4 Experimental Results 

For the coil examined (material parameters are given in Table 4.1) the resonance 

of the first mode was observed, simultaneously using the SEM and HDR, at driving 

frequencies of 14.9 and 29.8 kHz. As before, comparing the two (the amplitude of 

vibration for the coil and the output of the amplifier) shows that they closely match (Fig. 

4.4), verifying both the source of the electrical signal and the reliability with which it 

represents the physical motion. The presence of amplitude at both frequencies is expected 

since, as discussed extensively in Chapter 2, the cantilever will effectively be driven at 
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both ω and 2 ω. The second mode of oscillation was also observed at a driving frequency 

of 190 kHz. However, for the reasons mentioned above, no electrical signal could be 

observed, only the physical motion (Fig. 4.4.2). For similar reasons, no motion was seen 

at 95 kHz (where the 2 ω frequency should give rise to a peak). In this case, the normally 

smaller amplitude actuated when driven at half the resonant frequency (see Fig 2.3.3) is 

the biggest factor.  

We note the ratio of the second mode of vibration to the first is 190 kHz/29.8 kHz 

= 6.375. For the ideal Euler-Bernoulli beam, this ratio should be 6.267. This small 

discrepancy shows both that the motion of the nanocoil is not exactly that of a free 

cantilever (due both to its geometry and to the complicated driving force) and that the 

second mode is indeed at 190 kHZ as opposed to 380 (driven by the 2ω term).  

Additionally, at larger amplitudes of vibration (due to higher driving voltage and 

smaller gap distance for the CCE), the characteristic nonlinear Duffing behavior was 

observed (Fig. 4.6). Because of the softness of the coil (as opposed to more rigid 

geometries) higher amplitudes could be more easily obtained and more extreme Duffing 

behavior could be observed, such as the hysteresis depending on the direction of scanning 

seen in Figure 4.6. Beyond this, when the nonlinearity of the restoring force was 

increased further (for extremely small gap distances) two new resonances were observed 

with different polarizations from those observed at lower amplitudes. At a frequency near 

the linear resonance, a combination mode was observed, with both an axial and lateral 

component. At the maximum amplitude for this mode the change in length as the coil 

resonates can be clearly observed (Fig. 4.7). This peak was asymmetric, although no  



 

 

Figure 4.4: The visual amplitude is shown by the red squares and the electrical

by the green circles. As can be seen, the electrical peak closely matches the observed 

mechanical resonance, showing that the electrical signal does represent the mechanical 

motion. 
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The visual amplitude is shown by the red squares and the electrical amplitude 

by the green circles. As can be seen, the electrical peak closely matches the observed 

mechanical resonance, showing that the electrical signal does represent the mechanical 
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Figure 4.5: SEM image of the cCNW driven (a) away from resonance, (b) at its first 

mode (~30 kHz) and (c) at its second mode (~190 kHz). The counterelectrode can be 

seen in the upper corner of (b), and the different mode shapes can be clearly observed 

between (b) and (c). 

 

 

 

 

 



 59

 

Figure 4.6: Electrical output from the cCNW resonance at a driving voltage of 6V. The 

red points were for increasing frequency, the green for decreasing. The super-critical 

Duffing behavior and hysteretic effects can be clearly seen.  

 

hysteresis was observed. At a slightly higher frequency, the other nonlinear mode 

observed appears to be circularly polarized as opposed to the normal linear polarization 

observed for all samples previously (Fig. 4.8). Clear hysteresis could be seen in this peak 

(Fig. 4.9). Interesting, while electrical signals could be seen for both peaks, the linear 

peak showed a much greater amplitude than the circularly polarized one. This is probably  
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Table 4.1: Parameters of the cCNW observed to determine its material parameters 

ρ  N  r R L 

2 g/cm3 52 400 nm 800 nm 42 µm 

 

 

 

Figure 4.7: SEM image of the combination mode. The stretching and compression of the 

cCNW can be seen on the left and right sides of the motion respectively.  
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Figure 4.8: SEM image of the circularly polarized mode. The counterelectrode is pictured 

on the left.  
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Figure 4.9: Electrical signal in the (green) increasing and (red) decreasing frequency 

directions for the combination and circularly polarized resonances. The large, lower 

frequency peak is due to the combination mode. The asymmetry of this mode can be 

clearly seen, although there is no hysteresis. The small, high frequency mode is due to the 

circular polarization. Significant hysteresis can be seen between the forward and back 

directions.  
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due to the relative change in capacitance caused by the two different motions as 

mentioned above. 

 

4.5 Discussion 

From the above experimental results we will focus on a pair of useful results, both 

of which emphasize the usefulness and applicability of the HDR method. For the first, we 

will use the resonant frequency, which can be precisely determined from the electrical 

output to determine the lateral spring constant of the CNC, which could, in principle, be 

using to further investigate its material properties. For the second, we will examine the 

unique nonlinear behavior we observed to investigate this larger nonlinear regime and our 

ability to explore it. 

 

4.5.1 Linear Results: Determination of the Lateral Spring Constant 

Using the resonant frequency of the first mode (or in principle of any mode) we 

can calculate the lateral spring constant of the nanocoil, as has been done previously with 

carbon nanotubes [48]. We can write the Euler-Bernoulli beam equation with appropriate 

fixed free boundary conditions for the coil: 
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��0, �� � 0  (4.2) 

 

���0, �� � 0  (4.3) 

 

�����, �� � 0  (4.4) 

 

������, �� � 0  (4.5) 

 

where E is the Young’s modulus of the beam, I is its moment of area, ρ is the density, A 

is the cross sectional area, x is the position along the beam, t is time, and y is the 

deflection of the beam a distance, x, from the held end at time, t. Primes denote 

differentiation with respect to x. We assume here that the CNC can be approximated as a 

thin wire. This equation can be solved for the natural frequencies of vibration (assuming, 

for now, a simple narrow wire): 

 

�/,	 � NG!,""
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where f is the frequency of the mode, m is the mass of the beam, and k=EI/L3 is the 

compliance, or lateral spring constant. The number nk, is the solution to the 

transcendental equation: 

 

cos K� cosh K� � �1  (4.7) 

 

derived from the Euler-Bernoulli equation where k is the number of the mode in question. 

The first two of these values are n1 ≈ 1.875 and n2 ≈ 4.694. Theoretical models have 

approximated the effective mass of a fixed free cantilever (necessary because the motion 

of any point on the cantilever is dependent on the distance from the base) as 0.23 m, 

where m is the actual mass. We can approximate the mass of our coil using:  

 

w � 2x	}~	�_z	 � <� 2�x| >	
  (4.8) 

 

where r is the small radius of the wire comprising the coil, R is the radius of the coil 

itself, and N is the number of coils. The equation can be derived in a straight forward 

manner by calculating the total arc length of the CNC and assuming a circularly cross 

section and uniform density along this length. Plugging in our values from Table 4.1, the 

mass is calculated to be 260 picograms, for an effective mass of 61 picograms. Plugging 
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into Eq. 4.5 along with the natural frequency of the first mode (29.8 kHz), we find the 

lateral spring constant to be 176 uN/m. 

For a simpler geometry, we could use this information to determine the material 

parameters of the CNC, namely the Young’s modulus. Much work has been done 

analyzing the motion of coiled cantilevers [40, 44, 45]. However, even using very general 

approximations, the equations relating both the Young’s modulus and the sheer modulus 

are complicated and hopelessly entangled. Sato et al. [49], give the following equation for 

the spring constant, using only the sheer modulus as a free parameter: 

 

t � 3�&~`�z	 � �z � 2~�	� 16z=�	�|   (4.9) 

 

where G0 is the sheer modulus. Using our lateral spring constant, we can derive a value 

for the sheer modulus of 2.7 GPa similar to what has been observed in other carbon 

structures. However, this equation, using only a sheer modulus, assumes only sheer 

motion in the CNC, accurate only for a very small pitch and long length compared to the 

radius of both the coil and the wire and the deflection respectively.  

 

4.5.2 Nonlinear behavior 

Perisanu et al. [50] have previously observed a circularly polarized mode in 

MWNTs and SiC nanowires. The behavior they observe is similar to that seen in the 

CNC, including the relative spring softening for the CP and the spring hardening for the 
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Duffing behavior. They explain this mode using a coupling between the two linear 

polarizations, which should be nearly identical (ignoring the direction of actuation) for an 

isotropic wire or coil. The only coupling required by their method, and the source of their 

nonlinear terms, is the constraint that the length of their nanotube or nanowire be 

constant. This gives rise directly to a resonance near the linear resonant frequency, but 

always with a hard-spring behavior. 

The situation is similar for our CNC sample. For large enough amplitude motion, 

it becomes more favorable for the nanocoil to move in a circular motion, keeping its 

length relatively constant, than to deform and remain linearly polarized. The CP mode, 

however, because of its motion out of the CCE plain, does not effect nearly the same 

change in capacitance as the linear polarization in the Duffing regime or otherwise. In 

addition, depending on the exact shape of the modes, the Duffing regime can display 

either a hard or soft spring behavior. Under certain excitations (depending on gap 

distance, driving voltage and the individual coil), Duffing behavior could be observed 

deviating from the natural frequency of the cantilever in the same direction (higher 

frequency) as the circularly polarized mode.  

We can even see, in the combination mode, that it experiences spring hardening, 

evident from the asymmetry of the resonant peak. However, as can be seen in Fig. 4.9, 

the two peaks occupy separate regions in the frequency spectrum. The combination peak 

indicates that observation of a purely axial mode for some cCNWs is indeed possible and 

should give rise to a detectable electrical response. By simply changing the relative angle 

between the coil and the gap with the counterelectrode, the combination response can 
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contain more or less of the lateral and axial components respectively, with the response 

being almost entirely lateral in the normal configuration and entirely axial in an end-on 

configuration with the coil pointing towards the counterelectrode. If a fully axial mode 

can be observed, more accurate calculations can be made on the material parameters of 

the cCNW, as this geometrically simple motion allows for easier computation of the 

sheer modulus. 
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CHAPTER 5 

INTRINSIC DAMPING IN A MWNT 

 

5.1 Multi-Walled Carbon Nanotubes 

Multi-walled carbon nanotubes (MWNTs) present one of the most interesting and 

versatile areas of development in nanotechnology. Thanks continuing innovation in their 

synthesis , MWNTs can now be produced on industrial scales at a reasonable cost. Recent 

work has been done functionalizing MWNTs for use in nanocomposites [51, 52], 

chemistry [53, 54], and even medicine [55-57].Interestingly, technology has recently 

been developed to produce spinnable MWNTs from ultra-long, aligned samples. These 

may be pulled from their substrate and spun and woven into threads [58], with a variety 

of material uses. 

In addition, MWNTs are an interesting opportunity to test low dimensional 

physics. As they are essentially graphite sheets, curled into a tube, they display a number 

of interesting mechanical and electrical properties that can be modeled and explained 

with simple theoretical considerations, although the complicated interaction among layers 

of the nanotube introduce computational difficulties over single-walled carbon nanotubes 

(SWNTs). They are known to be conducting [59, 60], even though SWNTs can be either 

metallic or semi-conducting, depending on the chirality. This is due to interaction 

between layers. MWNTs are also very strong, having a theoretical Young’s modulus of 1 

TPa or higher, with experiments giving similarly large results [61-63]. This extremely 

high strength opens up amazing possibilities for nanotube based materials and devices. 
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As noted above, the interaction among layers in a MWNT is particularly interesting, as it 

complicates both the electrical and mechanical properties of the tube. Of particular 

interest is the dissipation mechanisms caused by this interaction and others in the 

nanotube. By observing the intrinsic damping in a resonating MWNT, we can obtain 

information regarding the source of this damping. As the quality factor of a resonator is a 

significant factor in its practicality as a device component, understanding these 

mechanisms is an important step towards implementing MWNT based technology. 

 

5.2 Sources of Damping in a Resonating MWNT 

If a MWNT (or any real structure) is driven to resonance, dissipative mechanisms 

will convert the mechanical energy into other forms. This dissipation will increase γ 

(from Eq. 2.11): 

 

"��" � 2% �� � �&	' � (7+   (5.1) 

 

which will in turn will increase the observed damping and decrease the quality factor, Q, 

of the resonator: 

 

� � �& 2%|    (5.2) 
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where γ is the damping of the cantilever as defined in Chapter 2. We differentiate here 

between external damping, such as from a gaseous environment (see Chapter 3) and 

intrinsic damping due to mechanisms in the cantilever itself. There are several 

mechanisms for intrinsic damping in a MWNT which are suspected to affect the resonant 

motion, including telescoping motion, (5,7) defects, interaction with phonons, and poor 

junction contact.  

Modeling has been done related to the telescoping motion of layers in a MWNT 

[64]. This is essentially the sliding of layers against each other and it will be a significant 

source of dissipation in a MWNT if actuated. It will also cause a change in the total 

length of the nanotube (hence, telescoping). Because the layers of a MWNT are relatively 

loosely bound, motion of this type should be easily actuated. 

As a MWNT bends in response to an external force (for example electrostatic 

driving), it has been shown that pairs of (5,7) defects (so named because of the pentagon 

and heptagon shapes which appear in the deformed lattice) can be an energetically 

favorable transition to accommodate the stress on the nanotube [65]. In a resonating 

MWNT, a number of these defects would be constantly forming and relaxing to minimize 

the energy of the MWNT lattice. The rate at which the lattice can create and eliminate 

these defects will be critical to their appearance in a resonating MWNT. 

Inherent in any real material, phonon creation will be a mechanism for 

dissipation. The mechanical energy of resonance will be converted into phonons in the 

lattice which can then propagate through the lattice, increasing its temperature. This 

dissipation will be unavoidable, but can be reduced by working at a low temperature. It 
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should also occur even for extremely small amplitudes of vibration, as opposed to some 

other dissipation mechanisms (see below). In addition, heat flow due to the thermal 

gradient across the cantilever will cause the dissipation of energy as the compressed side 

of the coil and the elongated side of the coil exchange energy. 

Finally, the junction between the MWNT and the W tip can be a source of 

dissipation. Ideally, the MWNT should be rigidly connected so the boundary conditions 

for a cantilever (Eq. 4.2, 4.3) are maintained. However, if the nanotube can slip slightly at 

this point, friction will produce heat and damp the motion of the cantilever. In addition, if 

the contact is too weak, resistance between the MWNT and W tip may prevent an 

electrical output from being observed. In order to reduce this possibility, an electrical 

current was supplied through the MWNT. Because of its small diameter, the large 

amount of heat produced by this current effectively welded the nanotubes to the tip. As 

will be discussed below, however, it is evident the contact is still a significant source of 

dissipation. 

It is important to note that the advent of these mechanisms in the motion of the 

MWNT is, in several cases, dependent on a critical deflection being reached. For the 

telescoping motion, the pull on an inner layer must be enough for it to slide one site 

further along the layer containing it. Below this critical force, the layers will not slide 

against one another and no dissipation will occur through this mechanism. Similarly, 

below a critical deflection, the creation of defects in the MWNT will not be favorable and 

the lattice will remain unchanged. At finite temperatures, particularly at room 
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temperature under which the HDR experiments have been performed, phonon creation 

should occur essentially continuously for any detectable deflection. 

Because telescoping motion and defect creation should occur discretely as a 

function of deflection, we can expect the measured intrinsic damping in the MWNT 

should vary depending on the amplitude of vibration. Ideally, the onset of a new 

dissipation mechanism should create discrete changes in the quality factor of the 

resonator, which could then be observed. However, because of the large number of layers 

in a typical MWNT, the number of dissipation mechanisms is large and a continuously 

changing quality factor as a function of amplitude of vibration is expected. The goal, 

therefore, is the observation of this essentially nonlinear damping (γ=γ(x)). Similar 

observations of an amplitude dependent quality factor have been made for a doubly 

clamped nanotube at ultra-low temperatures [66]. 

 

5.3 Synthesis 

Long MWNTs were synthesized in a two–stage thermal CVD reactor. The pre-

heater and the heater were maintained at 2500C and 8500C respectively in the presence of 

Ar (200 sccm). A mixture of xylene (10 mL) and ferrocene (400 mg) was prepared. This 

precursor was immediately injected into the CVD, using a syringe pump, at the rate of 9 

mL/hr. At the same time, 240 sccm H2 and 1.5 sccm O2 was passed through the tube.  

After 1 hr of reaction time, the furnace was shut off along with the reactive gas flow for 

rapid cooling in the presence of Ar.  The resultant thick layer of MWNTs grows on a bare 

quartz substrate. 
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5.4 Experimental Results 

A MWNT was mounted and placed in the SU6600 exactly as described for the 

CNC (chapter 4). Mechanical resonance was observed at a frequency around 84 kHz 

(Fig. 5.1). However, poor contact with the W tip caused the resonant frequency to drift 

while the nanotube was in motion. Over time, the resonant frequency would decrease as 

measurements were taken. Mostly likely the motion of the MWNT was separating it from 

the W tip, increasing the effective length and decreasing the resonant frequency. If the 

MWNT was allowed to sit without resonating for a long period of time, the frequency 

would gradually increase back to its original value as electrostatic forces reattached it to 

the tip. Ion beam deposition could not be effectively used for the MWNT, as it was for 

the nanocoil, due to the smaller size of the MWNT. The effective spot size of deposition 

for the ion beam system available was large enough to coat the entire MWNT (partially 

through capillary action) as opposed to just the base where it was connected. 

Regardless, the shape of the resonant peak did not vary with repeated trials, only 

the frequency (Fig. 5.2). In order to measure the effects of nonlinear damping, resonant 

spectra were taken for the MWNT for several values of the driving voltage, ranging from 

3 to 8 V. Background subtraction could be performed (as in Chapter 4) to more easily 

visualize the peak. In order to calculate the quality factor, the polar representations of the 

resonant peaks were used. As discussed previously (Chapter 2), in polar coordinates (A, 

φ), a normal resonant peak should form a circle. If we bisect the circle with a line 

connecting the maximum amplitude and a point out of resonance, a line bisecting this 
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Figure 5.1: SEM image of MWNT in close proximity to the W counterelectrode (left) out 

of resonance and (right) resonating at its first mode. 

 

will connect 2 points which can be used for the full-width at half maximum (See 

appendix A). By using this method, we are able to accurately calculate a quality factor 

even in the presence of a background and even in the Duffing regime. 

 

5.5 Discussion 

As can be seen (Figs. 5.3, 5.4), the quality factor does undergo a change as the 

amplitude increases. While the uncertainty in the measurement of quality factor makes it 

difficult to determine the nature of this change, it does not occur linearly as a function of 

amplitude, with a few regions where the quality factors changes rapidly between values 

of the driving voltage. As discussed above, this is possibly due to exceeding critical 

amplitudes where new defects can affect the resonant motion. Duffing behavior was also 

observed, as before, with critical Duffing behavior and the resulting hysteresis occurring 

at driving voltages over 6 V. While the onset of this behavior should not change the 
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Figure 5.2: Electrical output of resonating MWNT for the same driving voltage (8V) 

taken an hour apart. The frequency can clearly be seen to drift. The shape of the peak, 

however, remains relatively constant. 

 

observed damping, it does complicate the calculation of the quality factor for these curves 

as the unstable region of the solution to the Duffing equation cannot be directly observed. 

This is alleviated by the using polar representations to calculate Q, but the shift in the 

maximum frequency (spring hardening in this case) does increase the uncertainty of the 

calculation for larger driving voltages. 
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From the decrease in quality factor as a function of amplitude, we can conclude 

that nonlinear damping plays a significant role in the resonant behavior of MWNTs. Once 

the precision of this technique increases, and SWNTs can be effectively studied, it is 

reasonable to expect observation of clearly delineated discrete changes in quality factor 

as a function of amplitude due to the onset of individual defects. For larger, more 

complicated MWNTs, the large number of these defects, as well as large dissipation at 

the nanotube/W tip junction, blur these steps into a continuum. Surprisingly, there still do 

appear to be regions of rapid change versus amplitude, probably due to the onset of a 

large number of defects around critical amplitudes (i.e. where the Euler-Bernoulli beam 

equation begins to break down or the onset of Duffing behavior).  
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Figure 5.3: Electrical output from the resonating MWNT for a driving voltage of 3V 

(bottom curve) increasing by 1V up to 8V (top curve). Hysteresis can be observed for 6V, 

7V, and 8V driving voltage.  
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Figure 5.4: The quality factor of the observed resonance, driven at ω. As the driving 

voltage increases, the quality factor can be seen to decrease irregularly. 
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Appendix A 

Polar Representation of Resonance Peaks and Associated Calculations 

 

A.1 Polar representation 

From Chapter 2, the equations describing the amplitude, A, and phase, φ, of a 

SHO (Eq. 2.6) being driven at frequency, ω, are 

 

,��� �
(1 +|

0 )1"2)"$"3�	4)�"  (2.9) 

 

tan -��� � 	4))1"2)"  (2.10) 

 

where ω0 is the resonant frequency, and γ is the damping factor. Using trig identities, we 

can solve for A in terms of φ: 

 

sin -��� � 	4)
0 )1"2)"$"3�	4)�"  (A.1) 

 

,��� � (1+ Dab S�)�	4) � Dab S�)�) � sin -���  (A.2) 
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which, when plotted in a polar representation will produce a circle. The last 

proportionality assumes that ω0 is much larger than ∆ω, the width of the resonance. In 

addition, when measuring the time derivative of the amplitude (such as the current output 

in HDR), the signal should be exactly a circle: 

 

���� � �& cos �� � { � �� � � ,��� cos ��  (A.3) 

 

�&��� � � ,��� � sin -���  (A.4) 

 

By searching for this circular behavior, the observation of resonance peaks 

becomes much easier in the presence of background which may not be constant as a 

function of frequency. However, it is also important to note frequency dependence of A 

and φ, respectively. Performing background subtraction as described in chapter 4 allows 

the recovery of curves which can be fit to Eq. 2.2.4 and 2.2.5. 

In addition, as discussed in chapter 2, the resonant features involved in the 

harmonic detection of resonance, especially at higher harmonics, are more complicated 

than those of a SHO. Normally, however, they can be decoupled, in the polar 

representation, into circles, each of which is being traversed at an integer multiple of the 

frequency. The limaçon, for example, can be considered as 2 circles added together, with 

one moving through frequency space twice as fast as the other.  
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A.2 Quality Factor Determination 

The quality factor, Q, of a resonator is defined by: 

 

� � �& 2%|   (A.5) 

 

where γ is the damping factor as above. A typical method for determining Q for a 

resonator is the full width at half-maximum technique. In this approximation, the 

resonant frequency is divided by the width of the power spectrum of the oscillator 

(proportional to A2). The width is defined by points on either side of the peak at half the 

amplitude of the maximum frequency (~ω0). This is effective since: 

 

,	��&� � /`4")1"  (A.6) 

 

,	 �&�1 � %�$ � /g4")1"  (A.7) 

 

ignoring terms in the denominator of order higher than γ
3. So the full width at half 

maximum will be 2γ and the method will give a close approximation of Q for sufficiently 

small damping. 



 84

In order to perform this calculation in the polar representation (useful the in the 

case of super-critical Duffing behavior), we realize that the half-maximum points of the 

power spectrum will be 1/√2 of the maximum amplitude in the observed spectrum. This 

leads to a straight-forward bisection of the circle to determine the full width (see Fig. 

A.1). Even if points on the circle are not observed (for example if they fall in the unstable 

region of a Duffing-type peak), by approximating their position in the polar 

representation, a frequency can be determined. 
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Figure A.1: Typical circular resonance behavior in (A, φ) polar coordinates. The point 

labeled O is off resonance and A is at the resonance peak. Points B and B` are used to 

determine the FWHM of the peak. 
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Appendix B 

Configuration of HDR Setup for Use in an SEM 

 

The electrical schematic can be seen in Figure 4.2. A Stanford Research Systems 

function generator (DS345 Synthesized Function Generator) was used to generate the 

driving signal and as a reference for the Lock-In Amplifier. The driving signal was biased 

by a custom built dc offset box powered by a 9V battery and tunable through the use of a 

potentiometer. BNC vacuum feedthroughs allowed the signal to be sent through the wall 

of the SEM (Hitachi SU6600) (Fig. B.1) and onto the custom built jig (Fig. B.2). Coaxial 

cable was used wherever the geometry of the setup permitted it to shield the signal. 

The electrical signal produced by actuation of the cantilever was then sent to an 

FET (2N4416) mounted on the jig to reduce pickup and noise. The FET was remotely 

connected to a charge sensitive preamplifier (Amptek A250) raising the electrical signal 

to levels which could be observed by a Lock-In Amplifier (SRS SR844). Both the 

function generator and the Lock-In Amplifier were connected to a PC and controlled 

using a custom written LabView program which incremented the driving frequency and 

collected amplitude and phase data from the Lock-In. The external electrical setup can be 

seen in Figure B.3. 
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Figure B.1: SU6600 Scanning Electron Microscope 
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Figure B.2: Custom-built jig for manipulation of CCE setup. Three separate piezoelectric 

motors can be used to control the fine relative position of the cantilever and 

counterelectrode in each of the three spatial dimensions. Coarse positioning is achieved 

with the large gold colored screws, which move on tracks to change two spatial 

dimensions and 1 angular degree of freedom. The FET can be seen on the left hand 

mount, connected remotely to the preamplifier (not pictured). 
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Figure B-3: External electrical setup for HDR experiments under vacuum. From top: 

monitor for use with controlling PC (not pictured) and dc bias unit, function generator 

and preamplifier power supply, lock-in amplifier. 
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Appendix C 

Equipment List 

1. Stanford Research Systems SR844 Lock-in Amplifier 

2. Stanford Research Systems SR850 Lock-in Amplifier 

3. Stanford Research Systems DS345 Synthesized Function Generator 

4. Amptek A250 Charge Sensitive Preamplifier 
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