Clemson University

TigerPrints

All Dissertations Dissertations

12-2011

ELECTRICAL DETECTION OF
MECHANICAL RESONANCE IN
NANOTUBES AND SEMICONDUCTING
NANOWIRES

Doyl Dickel
Clemson University, ddickel@g.clemson.edu

Follow this and additional works at: https://tigerprints.clemson.edu/all _dissertations

b Part of the Condensed Matter Physics Commons

Recommended Citation

Dickel, Doyl, "ELECTRICAL DETECTION OF MECHANICAL RESONANCE IN NANOTUBES AND SEMICONDUCTING
NANOWIRES" (2011). All Dissertations. 841.
https://tigerprints.clemson.edu/all_dissertations/841

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by

an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.


https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/197?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/841?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F841&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

ELECTRICAL DETECTION OF MECHANICAL RESONANCE IN NANOTUBS&
AND SEMICONDUCTING NANOWIRES

A Dissertation
Presented to
the Graduate School of
Clemson University

In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
Physics

by
Doyl Edward Dickel
December 2011

Accepted by:
Dr. Apparao M. Rao, Committee Chair
Dr. Malcolm J. Skove
Dr. Murray S. Daw
Dr. Catalina Marinescu



ABSTRACT

In recent years, there has been substantial interest in the development of
microelectro-mechanical systems (MEMS) and even nanoelectbamieal systems
(NEMS) for use in a wide variety of applications both as experimental te@$ and in
a continuing effort to decrease the size and cost and increase the effafietextrical
components. In particular, cantilevered nanometer beams have been a recent feexus due
a number of interesting properties, including enhanced field emission, high tensile
strength, and piezoelectric properties. The ability to accurately detethe electrical
and mechanical properties of these cantilevers is paramount in assessiiegsiality
as MEMS and NEMS components, as well as developing technology to utilize them.

In this thesis, a unique method for determining these properties is presented. By
developing a fully electrical system for the actuation and detection of acaatitever’'s
mechanical resonance, an important step in furthering the development of NEMS
technology has been achieved. The mathematics of this system are develdgetth,
for a pair of synthesized nanostructures, multi-walled nanoubes (MWNTSs), ardl coile
carbon nanotubes (cCNTs), measurements of their material propertiecalatedlfrom

their resonant behavior and a number of potential applications are explored.
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CHAPTER ONE

INTRODUCTION

1.1 Introduction

The scale of scientific exploration and technological interesti@ved to encompass
more and more the very small. As scientific tools improve to stlggcts on the
micrometer or even nanometer scale, new physics is conshemtly discovered, which
motivates the development of more precise instruments to studyethegphenomena.
Instrumentation has advanced so far, that not only can objects etmsnn size be
reliably observed and studied, but complex, functional systems and deaiceés built
with fine detail on this scale.

Some of the most interesting materials to be utilized in tlsgseems are nano-
cantilevers. Because of their high aspect ratio, over 10,000:1 icaeeof the longest
MWNTSs, and essentially one dimensional character, they are valigadd for both pure
scientific inquiry and as components in larger devices. Synthemthods are
continuously improving, making the study and use of both metallic @mitenducting
nano-cantilevers increasingly commonplace. Thanks to their hagd gtress and, in
particular, the ease with which they can be driven to mecHame®anance, they have
shown great promise over a wide range of platfointdyding use as chemical mass and
force sensors, high frequency signal generators, photodetectorsgbattesers, radios,
and for energy storage and as a laboratory for one dimensions physics.

However, in order to be useful in any of these contexts, reliabthauds to actuate

the cantilever and, more critically, detect its responsectoation are needed. Purely



electrical actuation and detection methods allow for preciseactesization of micro-
and nano-cantilevers in both their mechanical and electrical properties.

This thesis presents such a purely electrical method forctbateon and detection of
mechanical resonance in micro- and nano-cantilevers. Afteesemation of the elastic
theory and synthesis and characterization of the cantilevers ussdmétihod, the
harmonic detection of resonance (HDR) is examined in-depth, incladdggcription of
the electrical actuation and mechanical response of the cantifeven this response, the
measurement of the electrical signal, which is at the loédine method, is examined in
detail. | then present a variation of this method and its effeaBeeas a real-time gas
sensor. Finally, a pair of experiments are presented, utilizing?,H®hich, while
interesting in their own right, also display the versatilitytho§ method. These include:
the successful vibration of a coiled carbon nanowire (cCNW) andatbalation of its
material properties from its resonance and the observation ofitadeplsensitive

damping in a MWNT.

1.2 Modern Nano-Cantilevers

Ever since the discovery of multi-walled carbon nanotubes (MWNTIijima [1]
in 1991, investigations of these and other nanocantilevers have increpseérdially.
Successful synthesis of single-walled carbon nanotubes [2],limetadl semiconducting
nanowires, and even more esoteric geometries including nanobelt&af®kprings [4],
and coiled nanotubes [5] quickly followed over the next 2 decades, and duickdy

clear that they had a number of promising applications. While testyshan a doubly



clamped beam, they have seen greater use because of tiarerease of production,
and the high responsivity to external stimulus.

Uses for nano-cantilevers in modern devices are virtuallytlées. The zepto-
gram mass sensor has at its core a nanocantilever. They have gbevim a large
number of capacities including in textiles [6], and as nano-gengrdprand lasers [8].
They show incredible sensitivity in sensing, acting as high gcibiological and
chemical sensors [9], pressure sensors [10], and force sensofBhdyl have also shown
promise in electronics, being used as electrical switchesA$Zhese structures become
cheaper and easier to mass produce, mesoscopic and macroscopor tisesefhighly

sensitive, highly versatile objects will continue to increase.

1.3 Nano-cantilever Excitation

One of the great advantages of nano-cantilevers as high sensiévites is the
ease with which they can be driven to resonance. By applyingriadfe force to a
singly-clamped cantilever at or near the natural frequenayefcantilever, relatively
large amplitude oscillations can be induced in the cantilever. Asshasn with the
advent of non-contact atomic force microscopy, the properties o thasllations are
highly sensitive to factors both internal and external. In factséimsitivity of particular
modes of vibration in AFM is so high that cantilevers have beerifsadly designed to
take advantage of them.

In particular, small external forces or the addition of madscailse a measurable

shift in the resonance frequency of the cantilever and largeesfacan even cause



guantifiable changes in the shape of its resonance peak (aeptgude as a function of
driving frequency). In addition, the high sensitivity to frequency alloaso-cantilevers
to be “tuned” for specific purposes including, in the most amaeasg, as functional
radios [13].

The methods of actuating these cantilevers to resonance are Vdggdcan be
piezoelectrically driven, wherein the mount holding the cantileseresonated by a
piezoelectric device. By applying an oscillating voltage topilkeeoelectric device, it will
drive the mount at the frequency of the voltage. The signal willdmsduced through the
mount and into the cantilever, where it can drive it to resonartbe atatural frequency
of the cantilever. This has the advantage of working with arlym@unted cantilever,
and not requiring any geometric considerations, as the propertiexcitaquency should
produce excitation of the desired mechanical mode.

Alternatively, the cantilever can be driven electrically. Thisthod is generally
preferred for cantilevers which conduct or hold charge because easgewith which it
can be implemented and because there is no need for extra meoblanieants, such as

a piezoelectric device.

1.4 Electrical Actuation and Detection in Nanocantilevers

As was first observed by Ponchasrtlal. [14], metallic nanocantilevers can be
actuated by an alternating electrical field, driving the caweil at its resonant frequency.
As the cantilever is conducting, it will acquire a charge opedsitthat of the field

source, causing an attractive force. As the field alterntitesgantilever will oscillate.



Using this method, Poncharal was able to observe, using a scarettrgrelmicroscope
(SEM) the resonance of several modes of a MWNT. Also, by meagsiné amplitude of
the oscillation in the SEM, a rough estimate of the qualityofaof the nanotube
resonator was made. In addition, measuring static deflectiotedrbég a large direct
voltage bias, controllable, high stress deformations could be craadedbserved. Since
then, several other experiments have been done on a varietyepéulifhanocantilevers
using this same method [15, 16].

Because electrical actuation relies heavily on the elattpcoperties of the
resonating structure, in particular the induction of charge onto dhélaver, it is
intuitive to investigate the electrical properties of the taver through this actuation
method, and indeed, to use the electrical properties of the cantteveetect the
mechanical resonance. Several methods have been used to measaserthace of a
nano-cantilever electrically, that is to say, measuring otreatering or leaving the
cantilever. While an electrical actuation method is not neabssaquired for an
electrical detection scheme, it does significantly simpliky tesign of a device and, as
we shall she for capacitive detection, can cause the flow oértuby itself, giving a

natural candidate signal to try to observe and measure.

1.4.1 Piezoresistive and Piezoelectric Detection
Piezoresistive and piezoelectric detection methods rely orhdrege of electrical
properties of the cantilever as a result of applied stresi€poresistive detection, the

resistance of the cantilever changes as a function of amtiess and by measuring the



change in a current flowed through the cantilever, deflection @rsdmsed. For
piezoelectric detection, the stress causes a separationrgeédhathe cantilever which
can then be measured as a current [17]. Both of these methods réteireexensive
engineering of the cantilever, particularly in the case ofgpe=zstive devices such as the
one shown in figure 1.1. Because these devices must be speciatipedesio as to
produce a net change in either resistance or charge, thestotleteethods would be
impractical to study the physical properties of a synthesiaewtube or nanowire, and
are better suited for use in silicon devices. In addition, thetyalkdi fabricate such
devices is limited by the scale at which the metal wiriag be deposited, forcing this

technology out of the nanometer scale we are concerned with.

1.4.2 Field Emission Detection
A novel method of detecting electrical resonance in some nanocantileveseds ba

on their capability of field-emitting electrons when exposed rioekectric field. In
particular, in a nanocantilever such as a MWNT, an elec#id fill induce electrons to
be emitted from the free end of the nanotube creating an emessi@mt. Resonance can
be observed by noticing the change in current due to change ireltheefihancement
factor resulting from the motion of the nanotube. In fact, usingiggdone resolution,
amplitude and frequency modulated signals can be broadcast to the nanottbeam
then demodulate them. This is the basis for the nanotube radio [13]. Hpowespite
this impressive display, the method is still limited to cantiiewehich display effective

field emission. In addition, the precision with which the motion of trgilever can be



determined is limited, as the variation of field enhancemeht&ih second order effect

for normal cantilever motion.

1.4.3 Capacitive Detection

When the cantilever moves in response to the applied electrid, fiek
capacitance of the system changes. This change resultghange in the amount of
charge on the cantilever and current flows. The current respomalitigis dynamic
change of capacitance should increase with the amplitude ib&ati@c of the cantilever,
leading to a straightforward method of detecting the resonanseripyy observing the
flow of electricity through connections to the cantilever [H8)wever, as will be shown
in Chapter 2, parasitic signals from the rest of the capacitive systenallyoorerwhelm
the smaller signal of interest. The difficulty in dealing overit@nthese parasitic signals
has prevented the effective measurement of the dynamic sigrsglit®this, because of
its relative ease and direct one-to-one relationship with the motion of the eamtifeich
work has been done to try to design devices to optimally presencaplaeitive signal
[19, 20]. However, through careful filtering, components of the dynamgal can be
observed in regions where the background from the parasitic caygacisaseveral orders
of magnitude smaller than in the normal case. Using the same gieocoasiderations
which give rise to the parasitic capacitance, it is possibtEbserve the dynamic signal
for nano-cantilevers as small as 10 nm in diameter or smaller.

These geometric issues will be dealt with generally, aloitly tie physics of

electrical actuation and capacitive detection in Chapter 2. Gh8pteill present a



technique related to HDR, which utilizes pulsed electrical ssgaad under-damped
mechanical signal decay as a detection scheme. An effecivaegaor will be presented
using this method. Finally, Chapters 4, and 5 will address particideowdiries made

using the full power of the detection technique developed in Chapter 2.



CHAPTER TWO

THE HARMONIC DETECTION OF RESONANCE METHOD

2.1 The Need for Harmonic Detection of Resonance

In this section, the general model for electrostatically dgivaantilevers is
developed. While it can be directly seen that driving conductingleaats in this way
will lead to an electrical output depending directly on the motiohetantilever, it will
be shown that, in addition to this signal, a parasitic signal,aoagacitances inherent in
the electronic setup, will create a large background signal, miregedirect measurement
of this signal. Harmonic Detection of Resonance (HDR) will thenintroduced to

circumvent this parasitic capacitance.

2.1.1 Electrostatic Driving of Cantilevers

By placing an electric field in the vicinity of a conducting demer, an
electrostatic force can be generated on the cantilever. ditus Will work to minimize
the capacitance of the cantilever-counter-electrode (CCEmsys$n general, this force
will act in 3 dimensions over the entire cantilever. However, st l@en shown using
numerical studies [21] that the majority of charge stored incHmilever when the
system is charged is located in the tip. Furthermore, sincéothis will create a regular,
repeatable motion in the cantilever, we can describe the retatitien of the cantilever
from equilibrium with just 1 degree of freedom (DOJ¥)which will, generally speaking,

refer to the displacement of the tip from the equilibrium pmsiin the absence of an



electric field. This capacitive force will depend on the geoyneftthe CCE system used,

but it can be generally written as:

Fo=VE=VCV2=V2pC=V2 2.1)

whereF¢ is the capacitive forces is the energy of the capacit®,is the capacitance,
and V is the applied voltage. In the final equality we have adofited1DOFx as
mentioned above.

The resulting change in capacitance will change the thtaige on the capacitor

as:
Q =CV (2.2)

If an alternating voltageé/sc, with dc biasVy, is used to drive the cantilever at frequency

@,

V =Vyi +V,.coswt (2.3)
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the motion of the cantilever will produce a current as the capaeitehanges and the
total charge fluctuates. However, the oscillating voltage Jsib goroduce a currerit

which will scale linearly with the frequency, creating a parasitjoadi

I_dQ_d(CV)_dC
T dt dt  dt

V+ Z—ZC = % (Ve + Ve cos wt) — wCV,. sinwt (2.4)

At resonance, the derivative in the first term should be lagg¢he geometry
changes rapidly. However, in practice, the parasitic signakdgbend term, proportional
to w, is much larger than the dynamic capacitive signal assdcigith the motion of the
cantilever, making it normally unobservable in real experiments.

Let us examine the driving force in more detail. Substituting Eqn2a3Eq. 2.1,

we find the force, as derived above will have frequencies atdbatid 2o

d
Fc = d—; (Vo%c + V.V, .cos wt + V2cos? wt) =

% (VZ: + V2 + VycVaecos ot + 2V cos 2wt) (2.5)

while the voltage oscillates only with frequenocyReexamining Eq. 2.4, we can see that
if we only observe signals atw2 the parasitic signal will not be present, while the

dynamic signal will remain. This is the basis of the HDR method.
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2.2 Characterization of HDR

This section will develop the mathematical theory behind the Hetwd. First,
the governing driving equation will be developed. This equation wilintlhhe solved
approximately to give the actuated motion of the cantilever, utegmethod of
harmonic balance. Then, the electrical signal predicted byattalysis will be calculated

[22].

2.2.1 Equation of Motion for a Simple Harmonic Oscillator
Written in the displacement, we can write the equation of motion of a damped,

driven, simple harmonic oscillator (SHO):

Syt wjx=—" (2.6)

where, y is the damping factor of the oscillatabs’=k/m is the square of the natural
resonance frequencly,is the spring constant amd is the mass of the cantilever. In the

case of a simple, periodic driving force
F = coswt (2.7)

The periodic motion of the cantilever can be solved assuming a solution of the form

12



x(w,t) = A(w) cos(wt + @) (2.8)

Plugging this into Eq. 2.6 above, we can solve for the amplitude and pkasfunction

of driving frequency:

A(w) = . (2.9)
\/(w(z)—wz)2+(2yw)2
. 2yw
tan ¢(w) = P (2.10)

There also exists the possibility of a solution that is not perindic. However,
the magnitude of these solutions will decay to zero with a tonstant of approximately
1/y. In chapter 3 we shall deal more with transient solutions téotice equation above,
but for now, we shall only consider the periodic solutions, noting thabhservations
can be made after sufficient time for the transient solutions to have died off.

We also mention here that a polar plot &f ¢) will be a circle (see appendix A).
This will be particularly relevant when we examine experimedtda looking for
resonance peaks. While significant noise or background signals mayt dise

appearance dh or ¢ individually as a function ab, the circular pattern in the polar plot

13



will remain, confirming the existence of the resonance. Itaisb be of interest when we

explore the consequences of our HDR theory and see deviations from this behavior.

2.2.2 Equation of Motion of HDR

For our driven cantilevers, the force equation is

d? d F,
d—t’;+2yd—f+a)§x :; (211)

whereF¢ is the capacitive force given in Eq. 2.5. To attempt to solgeeituation, we
will first write the capacitance as a Taylor expansion he tisplacement of the
cantilever.

x2C2 x3C3

C(x) =Cy+xCy +

+

+ o (2.12)

whereC,, = d"C/dx"|x=0. So the forcel-c becomes

1 x2Cy
FC:E C1+XC2+ 2 + .-

[%Vc%c'FVc%c"‘ZVchac cos(wt) +%ch¢ cos(Zwt)] (2.13)
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Plugging this force into Eqg. 2.11, the equation becomes intractalde. iEthe
capacitance is truncated after a finite number of terms;ahglever will still be driven
by several forces at different frequencies, the amplitudesvtoth depend on the
displacement. This makes the equation highly nonlinear and diftcsiblve by normal
calculus methods. However, using the solution of the simple harmonitatoscas a
guide and making several approximations, borne out by experiment, wedtare this

nonlinear, 2 order differential equation to a set of coupled algebraic equations.

2.2.3 Simplifying approximations and the method of harmonic balance

To solve Eq. 2.11 we will first truncate our expansionCoéfter three terms,
assuming thaC,.1x<<C, for the amplitudes of oscillation involved. That is to say, the
capacitance expansion converges quickly over the scale of amplgusidgsation. We

then employ the method of harmonic balance and assume the solution takes the form:

x(w, t) =Yoo xp(w, t) = X7 oA, cos(nwt + @) (2.14)

where x, is the motion of the cantilever at frequenay, A, is the amplitude of that
motion andy, is the phase relative to the driving signal. Again any ati@ion will be
transient and should die off exponentially with time constant We must, for now, be
willing to include terms arbitrarily large in, because of the nonlinear nature of the
eqguation; however, assumption #1 below will truncate the rangewsd need to explore.

Notice also that we do not dismiss the possibility of a sthsiplacement (4, moving

15



the cantilever, on average, closer to the counter-electrode. Bebausestne functions
are orthogonal to each other, we can isolate terms based orfrélgeiency and solve
those algebraic equations ferand ¢ individually. Substituting into equation 2.13 we
employ trigonometric identities to write equations that aredr in cosriwt). However,

this results in over a dozen terms for our equation at frequeneymost 50 terms for
2w, and over a staggering 100 terms far. 3n addition, these equations are coupled,
with A; depending orA; and vice versa, but also nonlinear. In order to simplify these

equations, we will make the following assumptions.

1. Ar<<An, form>n
2. Chi1An<<C, for allm, n

3. AvA=0 for m#£n

As will be shown below, all of these assumptions are borne oukmsriment
under normal conditions. The one notable possible exception to these (assu#)ti
will be explored below. After eliminating the terms made neglegiby these
approximations, we are left with 4 algebraic equations, with dr@ysmaller amplitudes

(A2, As) depending on larger ones, effectively decoupling them:
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Aowg = (A0C2+C1)(%V§C+Vc%c) (2.15)

1
m

A (wi — w?) cos(wt + @) + 24, yw sin(wt + @) =

%[%Alvéccz cos(wt+@1)+A1VE.Co cos(wt+91)+2VqcV gcCq cos(wt)] (2.16)

Ay (w§ — 4w?) cosQwt + @) + 44,yw sinQwt + @) =

1 AZCZ(%V56+V§C) cosQQwt+@,)+ (2.17)

Mly2.cq cosQRwt)+A1VacV 3cCe cosQwt+@q)

Az (w§ — 9w?) cos(Bwt + ¢3) + 6A3yw sin(Bwt + ¢3) =

1
) A3C2(§V§1C+V§C) cos(3wt+@3)+

m

(2.18)

%Alczvéc cos(Bwt+®1)+A,C1VacV gc cos(Bwt+¢,)

We will at this point notice thady, is, in fact, non-zero. However, we are free at
this point to redefine the zero of our displacement, x, around this newbeguoi
position. This will eliminate its influence from higher order etret. We notice that
each of these equations (2.15-2.18) has two similar terms whiclaatito reduce the
effective spring constant of the oscillator. We defing?= wo® -m * C, (YVai> +Vgc)) as

the new resonant frequency to simplify the equations. We noticeffdat these terms is

17



to reduce the natural frequency of the oscillator. This “spring rénfié has been
observed previously in the electrostatic resonance of microcamsili2&]. In fact, as we
shall see later, because of the voltage dependenee, orwe can tune the resonant
frequency of the cantilever by changing the magnitude of tivengrvoltage. We also
note that we can continue this processAgrAs, etc. However, because the assumptions
made above prevent these variables from affecting those in thioaguzbove, we will
stop at the 8 harmonic of the driving frequency. There will, however, be petikiseae
frequencies, both in the physical and electrical signal and thegy heen observed
experimentally [23, 24].

Egs. 2.16-2.18 can be solved in a straight forward, if tedious, manner:

2C1VacVac

A (w) = (2.19)
m\/(wéz—wz)2+(2yw)2

2
tan ¢, (w) = % (2.20)

1
v, (C2A1V3c)?+(C1Vqa)?+C1CoV g Vg €OS @
A, (a)) = &< 4 (2.21)

m (w62—4a)2)2+(4yw)2
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_ C1VqcSin@+2C1A1V g sin(@+91)

tan w) = 2.22
gDZ( ) C1Vac €OS po+2C1 A1V gc cos(@ph+@1) ( )
I} _ 4yw
tan ¢2(w) - 40)2—0)62 (223)
1
Vae |3(C2A1Vac)?+4(C2A2V )2 +2C5 A1A5V 4 Vac cos(@1—¢2)
Ag(a)) = ﬁ 4 ac - c — ¢ ac (224)
(we?—9w?) +(6yw)?
%A1Vac sin p3+24,Vqcsin(@3+91-93)
tan 03 () = 1 , , (2.25)
ZA1Vac €0s @3 +24,V gc cos(p3+91-¢2)
6yw
tan 5 (w) = ——7 (2.26)

2_
Iw?—wy

where we have introduced, and ¢3 , the phases of the oscillation ignoring the
contributions fromx; andx, respectively, for ease of notation and also to provide insight
into the source of the components of the output.

As noted in Eg. 2.2, we can calculate the charge on the cantilever, and,

differentiating, the current which will give our electricadinal. Separating as before into

19



harmonics and again assumi@g >> A.C..1, neglecting the smaller terms if they have

the same phase, we have

1

01 = [Co + 5 (43 + 43 + AD)C, | Vi cos(n) +

A{C,V,. cos(wt + @) + %A2C1Vac cos(wt + @,) +

%A%CZVM cos(wt + 2¢4) (2.27)
1

Q, = §A1C1Vac cos(Qwt + @) + A,C,V,. cosQRwt + ¢,) +

1 1,

EAgClvaC cos(2wt + @3) + ZA1C2Vdc cos(Qwt + 2¢4) +

4—18,43631/“ cosRwt + 3¢,) (2.28)
1

Qs = EAzClVaC cos(3wt + @,) + A3C, V. cos(Bwt + ¢3) +

1 12

§A1C2Vac cos(3wt + 2¢4) + §A2C2Vac cos(3wt + 2¢,) +

iA:ngVdc cos(3wt + 3¢,) (2.29)
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We note here that including terms of higher order in the capeeitaill distort
the form of the observed resonant peaks, but will not generate angrmesyalso, since
we include the higher order terms with different phases, Webe&iable to see any

interesting structure in the resonance.

2.2.4 Features of Our Solution

We note in both the physical amplitudég, and in the electrical chargg, there
will be several peaks depending on the harmonic examined anddberfoy supplied to
the cantilever. As expected, the cantilever will resonate wheerdby a signal at its
natural frequency, exactly analogous to the SHO, but also aiftthit frequency, due to
the frequency doubling of the force described above. In addition, becautes of
nonlinearity in the system, the cantilever will also be exditecksonance at its natural
frequency when driven at one third this frequency (and at 1/4, 1/5, 1/6Tétis)is not
particularly surprising as the electrostatic force is pheduct of several terms each
depending on the driving frequency, causing frequency doubling, triplingmame.
What is unusual is that, due to the recursive nature of the equfdiahe A,s, A, has a
peak wherA; does, andd; has a peak whe#y, andA; do. This means that the cantilever
will be excited at frequencies other than its natural frequéerug. is a purely nonlinear
effect which significantly complicates the cantilever motion.

We further note here that including terms of higher order in thecitapee will
distort the form of the observed resonant peaks, but will not gereargtnew ones; also,

since we include the higher order terms with different phases,ileenable to see any
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interesting structure in the resonance. Figure 2.1 sligw€),, andQs, plotted on an
arbitrary scale, to aid the reader in the following discussioauritixng the electrical
current (=dQ/dt) output for the first harmonic, term by term, we see thahatinput
frequency there is a “dynamic” component, proportionatovhich should appear as a
normal resonance, and a parasitic component, proportion@, tavhich, because the
factor ofw in the current, will increase with frequency. There is al$erm which looks
like the second harmonic of the motion of the cantilever, althougtshiauld be difficult
to see on top of the parasitic signal. There are also terrphase with the parasitic
signal, which may distort the peak @atand w/2, but should have no other effect. The
term proportional tdA; is similar to another term in the second harmonic, and we will
consider its effects shortly. Though this term is relatigshall, it should have a similar
effect, if diminished, to the term in the second harmonic.

At the second harmonic of the input frequeneytBere is no parasitic component
in the output. Instead, there are only terms proportional to the meahamplitudes,
with no constant terms which alter the output. This is also tleefoaghe third harmonic.
Using the information about the mechanical motion given above, datbailg the current
flowing from the resonating structure can be found. At the secondoharnof the
driving frequency, we expect peakswatwy/2 andw=wo. At w=wy/2, A; is vanishingly
small, so onlyA; should contribute to the current, and the peak should be similar in form

to the same peak #y, which should be Lorentzian, as demonstrated previously.
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2.2.5 Anomalous Limagon behavior
At w=wo, however, we will see contributions from three components, proportional
to powers of A, each having a phase shift relative to the others (similduet peak in the
first harmonic). For our purposes, we will ignore the term proportimnf®, as it should
be at least an order of magnitude smaller than the first twowllVassume these two
terms dominate any small resonance@tlue toA,. Using polar coordinates, as we did
to identify the circle for the SHO and then transforming tot€3&n ones{{and{, to
avoid confusion with th& used above), it can be seen that the complex output amplitude

will closely resemble a limagon [25] offset by a constant along-thes.

1 C

(@) = 3[CuAaVac cos @y + L A3V, cos 20| =

1 c

E [C1A1Vac COS @4 (1 + chlacd oS gol) &2 A%Vdc] (2.30)
1 . CZ 2 .

$(w) = 5 lClAlVaC sin @, + 7A1Vdc sin 2<p1]

= % [C1A1Vac sin ¢4 (1 + %cos gol)] (2.31)

1Vac

The result is that for values of the input parameters wherewtbeterms are
approximately equal in magnitude, the amplitude will decreaseplgharound the

mechanical resonance as they interfere destructively with each other.
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For the third harmonic of the output signal @&e again expect nearly Lorentzian
peaks aroun=wo/3 andw=wy/2, from the term proportional # andA; respectively.
At w=wy, the curve will be complicated in a manner similar to that abdseen by
terms that peak at the same value, but with varying phases. tAinceoints along the

resonance, the terms will interfere constructively, at some points, destiyic

2.3 Experimental Verification of HDR

In order test the predictions of our model above, a CCE geometrgamatructed
in an Atomic Force Microscope (AFM) with an AFM cantileverdiss the cantilever to
be resonated, as reported previously [22]. The schematic for ttdoalesetup can be
seen in Figure 2.2. It is comprised of a silicon microcantileMekrObmasch NSC12
series, cantilever E with approximate dimensions @80x 35um x 2 um) which is
driven into resonance using a relatively shorter microcantileMétr¢masch NSC12
series, cantilever B with approximate dimensiongu®0x 35um x 2um) as the counter
electrode. Since the resonant frequencies of the long and shoktveastwere ~15.5
kHz and 300 kHz respectively, input frequencies in the range dbtite cantilever’'s
resonance should not influence the mechanical motion of shorter cantidedunction
generator and a variable applied dc bias were used to chargaeutitercelectrode. The
cantilever used for measurement was then placed in an Atomde Ficroscope (AFM,
Veeco CP-Il), so the displacement of the cantilever tip coulanbasured, and also
connected electrically to an operational amplifier (Amptek, A250pse output was

connected to a lock-in amplifier, the output of which is our measured thecaésignal.
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The displacement signal from the AFM is also connected to aadepack-in, so
the mechanical oscillation and the electrical output could be measwuiependently and
concurrently. The cantilevers were aligned in a parallel plasngement, and separated
by a distance of ~1Qlm. Measurements were taken at ambient conditions and only the
first mode of vibration of the microcantilever is examined in detail in this study.

Figure 2.3 shows the physical amplitude of vibration at eachheffitst 3
harmonics, along with a fit using Egs. 2.19, 2.21, and 2.24 above with the constants
C.,Cy, etc., the damping, and w as the fitting parameters. As can be seen, good
agreement is found between the two. In addition, using the relative ph#ése motion,
the circular polar behavior of the first 2 harmonics can also be seen.

Figure 2.4 shows the electrical signal from the same cantifevethe first 3
harmonics of the driving frequency. All of the salient featymesdicted above can be
seen, including the parasitic and partially obscured dynamnalsin the first harmonic
as well as the multiple, clear peaks evident in tifeafd 3' harmonics. Of particular
note is the variation in signal-to-noise ratio in tff&t&armonic, clearly much higher in

the electrical signal.
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Figure 2.5 shows the polar plots of the experimental electesahance ab=wo
for the second harmonic at varying dc voltages. As noted aboveetilksshould closely
resemble a limagon. We see, as the dc voltage increases,\tbeckanges from a circle
(a normal resonance peak), to a cardioid, and eventually to @ o@eiered on the origin,
where the resonance can no longer be seen in the amplitude ploagides well with
the theoretical model given above. One will notice that, whenaheetiation between
the two signals is largest, the amplitude change occurs veryyapidle rapidly than
anywhere else in the spectrum. This change in amplitude could hé usearious
sensing applications, where a shift in the amplitude is meadBeeduse the change in
amplitude is so great, smaller changes in the resonant frequamcye accurately

measured, allowing for greater sensitivity.
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2.4 Nonlinear Behavior

While the approximations made earlier made possible the solut@nshé
physical and electrical amplitudes which match the observedriey@#al evidence,
there are a number of situations, readily observable in variouseéxp&iments where at
least one of these assumptions fails. Assumptions 1 and 3 are entpldecouple Eqs
2.15-2.18 and, were they to fail, it would create substantial backiadausing our
solutions to become coupled, which may give rise to additional peaks an A,, or
create small deviations in their lineshape, which have not been yt/edsn any HDR
experiment. Assumption 2, however, exists to linearize the equations. If terinesfofrh
A% are allowed to remain, the EOM of the amplitudgswill resemble Duffing’s

equation [24]:

d?x dx 2 3 _ F
F+2ya+a)0x+ax = (2.32)

What this means is that, depending on the sign of alpha, the resoeshiipe will be
asymmetrically tilted towards either higher or lower frequesi For the largest
nonlinearities, due either to large amplitude or laxrga bifurcation of stable solutions
will actually occur (Fig. 2.6). In practice, this means that, depgnadin the direction the
frequency is scanned from, the peak will have a different shap@gtan either the
higher or lower branch, until it is forced, due to the lack stiadle solution at the driving

frequency, to switch.
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Due to nonlinearities in the capacitance being essential to ftb$te this, sdi,
and C3 to zero in the equations above and notice how many peaks disappdang Du
behavior is common at higher amplitudes as will be seen below, arfekba studied in
HDR systems in detail [24]. While this behavior can complickta acquisition, the
features of a resonance can still be easily approximated usipgldreplot method from
before. Moving through the resonance still results in a (neargilar trace. As shown
in red in Fig 2.4.1, the unstable solution, never seen experimentallstréoig Duffing
past the critical point simply corresponds to a missing arc ofithke in the polar plot.
The full circle can still be interpolated and, from it, the peakudency and quality factor

can easily be determined.
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CHAPTER 3
ELECTRICAL DETECTION OF RINGDOWN BEHAVIOR IN A

MICROCANTILEVER AS A GAS SENSOR

3.1 Transient Oscillator Behavior

A novel variation of the HDR method exists using the ringdown ofratriven
cantilever [26]. In order to investigate such an undriven systemraih&ient behavior of
our oscillator must be examined. As mentioned previously, transiemioss to the
harmonic oscillator equation will exist in addition to the periodilutsons utilized for

HDR. These will be the solutions to the homogenous SHO equation:

d?x dx
FIe) + Zya)oa + a)gx =0 (3.1)

In the absence of any external driving force, the solutidintake different forms
depending on the damping parameteDepending on the solutions for the parameier,

of the characteristic equation for the oscillator:

B? + 2ywef + wi =0 (3.2)

There are three possible forms for the solution of the homogenous egtation.
overdamping, where >1, and Eq. 3.2 has 2 real solutions, the oscillator motion will be

of the form
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x(t) = AeP1t + Bebat (3.3)

where 1 andf, are the 2 solutions andl and B depend on the initial conditions. For

critical damping where =1, Eqg. 3.2 has 1 solution and

x(t) = (A + Bt)e @ot (3.4)

Finally, for underdamping, <1, the solutions to 3.2 will be imaginary and

For sufficiently small damping, by observing the ringdown behavswaated with Eq.

3.5, it is possible to extract both the resonant frequencsnd the damping

3.2 Damping
Damping in a cantilever structure typically comes predominéiteiy 2 sources:
intrinsic friction and interaction with its atmosphere. While ithteinsic friction can be

very interesting for novel cantilevers (as will be seen )asgratmospheric pressure it is
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much smaller than that due to the atmosphere. We will deapredeminately with that
external damping from the environment.
The acceleration on our cantilever in a gaseous environment isltypigitten

with 2 additional parameters [27]:

d?x

== = (—kx — (B +©) % + FC) / (m + &) (3.6)

dt? W

wherem is the effective massand x is the position of the cantilevek is its spring
constantfc is the capacitive force as beforas the intrinsic damping in the cantilever,
andf;, andp, are the coefficients of the dissipative and inertial dampisgeively.f;
governs what is more commonly thought of as drag, dissipating eriergy the
cantilever into the gas. This drag will increase the dampirtheotantilever, decreasing
its amplitude and causing an undriven cantilever to relax to edquitibp, is due to the
mass of the gas (or liquid) molecules which are moved along wittathtdever when it
vibrates. As can be seen, the effect of this drag is to irctbaseffective mass of the
cantilever, decreasing its natural frequency.

For a given geometry, calculation of the paramegferand f, depends on the
solution to the Navier-Stokes equation. Closed solutions to this equagioroiaknown
for arbitrary geometries, so for purposes of calculation the firag, the cantilever is

modeled as a series of spheres with diameter approximape§ ® the width of the
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cantilever and enough spheres such that their total length is apptelyirequal to the

length of the cantilever. In this cage,andp, are given by [27]:

By = 6mnR (1 + R/5> (3.7)

B2 2 g, (1 +9, 6/R> (3.8)

wherey is the viscosity of the gaR is the radius of the sphere,s the density of the

fluid, and

is the thickness of the boundary layer. It is important to note llea® tindependent
characteristics of a gas which determine damping, namelynstdeind viscosity, can
be calculated if one know$ andps,. It is also significant thag; andp, influence the
motion of a cantilever in distinct ways, as mentioned above.

Assuming the cantilever is underdamped, it is possible, by meastireng
ringdown of a cantilever to calculae andp, independently as fitting parameters to Eq.

3.5. As we will see below, we can use an electrical method, asehéd observe the
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motion of the cantilever, and, from its ringdown, deternfinendf, and calculatey and

p.

3.3 Electrical Detection of Ringdown Behavior

The effects of gaseous environments on the quality factor and ringdown of
microcantilever resonators has been considered previously [28-30]. Howtaatrical
detection of this phenomenon adds increased capabilities for this techntloge
consider the electric charge on a cantilever as we did beforejdouteliminate the

external oscillating field, we find a current:
ac

So if the cantilever is in motion, it will produce an electrgighal without the parasitic
capacitance (compare to Eq. 2.4). As shown above, in the case ohdbedamped
oscillator, this signal will oscillate and can persist fograat number of cycles. By
driving the cantilever to resonance and then removing the externaigdforce, it is
possible to observe the motion of the cantilever, and, in particulardaitsping
electrically. This is the basis for the ringdown detection method.

By assuming that the capacitance will be monotonic in the tiefleof the
cantilever, we can determine that, for a particular initilaland geometry, there will be

a one-to-one correspondence between the electrical output and thienposithe
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cantilever. If this relation is known, the deflection of the cawitewill be known

through the electrical position.

3.4 Numerical Model

In order to determine the relation between electrical bigmal physical
deflection, we must first develop a numerical model to describeapacitance of our
cantilever counterelectrode system. The counterelectrode to beethadkd, as above, a
sharpened Tungsten tip, and the cantilever was a silicon midteeant(Mikromasch
NSC12 series, cantilever B). The closest approximation to tlaermywould be a
conducting cone with its radial axis parallel to a conducting planeeier, a closed
form for the capacitance of this system is not known in general. However ptigtaace
of a wire parallel to a plane is known:

Using systems of this known capacitance, we can decompose thetryeiotoea
system of wires of varying dimension parallel to a plane (3ge3B.1), in order to

approximate a conic shape. The resulting capacit&hcis, [26]:
1 -1 Tr -1
Cp(r) = STEoL i (cosh (; + 1)) + Cs (3.11)

Where

3 4

1+y-y3 y y y°
C. = 2me,r ( + 3.12
s OTT\ 1-y2 " 1-2y2 ' 1-3y24y*  1-4y243y* ( )
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here,r; is the radius of thé&" segment of wire, y = ¥ / (regtr1), €0 is the permittivity of
free spacel. is the length of a wire segment ands the distance of the wire from the
plane.C;s is the capacitance of a half sphere with the plane, useteasiaation for the
conical counterelectrode.

Now, knowing the total force on the cantilever, as a function of deffeave can
model its motion withg; and g, as free parameters, depending on the environment.
Knowing the capacitance, it is also straightforward to deterrhimelectrical signal as a
function of amplitude, using Eq. 3.10 above which we can invert numerically t

determine the position of the cantilever from the electrical signal.

3.5 Gas Sensing

As an application of this method of extracting the ringdown motion of the
cantilever from the electrical signal, the sensitivity oé telectrical signal to both
parameters of the gaseous damping will be tested, along withbilisy to identify

unknown gases species or binary mixtures.

3.5.1 Experimental Setup

The electrical setup used was identical to that presentedgin2Fd, except in
place of a lock-in amplifier, an oscilloscope was used to medkar®utput in time
instead of frequency space. The CCE was placed in a vacuum chamble could be
filled to atmospheric pressure with the desired gas. The camtilgas driven to

resonance to produce a high initial amplitude (higher than would balaleaifom static
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dc attraction alone) and then the ac signal was switched affyiai the cantilever to
relax to equilibrium. This process of excitation and relaxation vegseated at a
frequency 10 Hz so sampling could be done to improve the signal-tonatise This
sampling allowed the ringdown of the cantilever to be observed (Fig. 3.1).

The electrical output, averaged over several thousand cycles, d¢mndbe
matched to the predicted output with good precision (Fig. 3.2) to deterthene
mechanical motion of the cantilever. From the mechanical motiontwhbefitting
parametersf, andpg, could be determined. As mentioned previouslySAsill primarily
affect the lifetime of the oscillations whif® will affect the frequency of the oscillations,

they can be effectively decoupled in the measurement.
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Experimental Ringdown Data
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Figure 3.1: Sample electrical output for the ringdown of theileaet exposed to two
different gases. The lower viscosity of Hydrogen is evident imatelgi due to the longer

time it takes the signal to decay.
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Experimental and Model Ringdowns
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Figure 3.2: (Red diamonds) The observed electrical signal forinigelown of the
cantilever and (black line) the theoretical fit usifigand, as fitting parameters. The

good agreement between theory and experiment can be seen.

44



3.5.2 Experimental Results

In order to confirm that the intrinsic damping of the microcavniteis small
compared to betal and to quantify it, we performed the ringdown messuren the
system in vacuum (I0torr). From these measurements it can be seen that theiintrins
damping is much smaller than the damping from the lowest viscosity gasHjisedth a
viscosity of 8.91Pa s. This agrees well with observations made previously [28].

To measure each gas, or binary mixture, the vacuum chamberiligdstd
atmospheric pressure each gas so measurements could be takenu&sdovalandy
for each gas observed, as well as the NIST values (for compgadan be found in Fig.
3.3. As can be seen, this ringdown method was able to accuratelynidetdsoth
parameters independently. In particular, note that gases with weitgrsdensity, but
different viscosity (H and He) were easily differentiated by the method and the gam
similar viscosities and different densities (£82Hg). In addition, various concentrations
of O, in N, were measured to show the sensitivity to altered concentrafiabte 3.1
shows density and viscosity of the various mixtures compared to thesvaledicted by

this method. Again, good agreement between the two can be seen.
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Figure 3.3: (Red dots) Values for the viscosity and density forgses measured
according to NIST standards. (Points with error bars) Theesdor the same parameters
determined by the electrical ring-down method. Gases withairdénsity, such as,H
and D, can be easily differentiated with a single measuremeng tisis method as both
parameters can be measured simultaneously. Previously, diff¢gi@ntt this specificity

for two different parameters could not be obtained with a single measurement.
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Table 3.1: Densities and viscosities of mixtures gfaNd Q based on both standard
values and those observed by the electrical ring-down method. Gooanegtesith
previously reported values and high specificity for the concentration are alhserve

Density Predicted | Viscosity Predicted
Gas

kg/m® Density pPas Viscosity
N> 1121 1.124 17.74 17.74
20%0, 1.153 1.126 18.22 18.25
30%0, 1.170 1.134 18.49 18.55
40%0, 1.186 1.190 18.76 18.80
O, 1.281 1.280 20.38 20.39
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CHAPTER 4

RESONANCE IN CARBON NANOCOILS

4.1 Properties of Carbon Nanocoils

Due to their unique geometry (Fig. 4.1) coiled nanostructures, inclsidingn
and boron carbide nanosprings [31], coiled carbon nanotubes, and carbon nanocoils have
been the subject of much study [32]. They have shown many intergsitegtial
applications including as dampeners [33], and as field emitters &dhe and in
composites. In particular, carbon nanosprings have shown promise ofngalteri
macroscopic properties when incorporated into mesoscopic systems [38, &&dlition,
the growth mechanism of these structures (as they self-blegdms been the subject of
much study, owing to the high degree of periodicity they can display [32, 36-38].

Carbon nanosprings generally occur in one of two large categasiks] carbon
nanotubes (cCNT) and carbon nanocoils (CNC). cCNTs have a latticeust similar to
straight carbon nanotubes with pairs of 5,7 defects in the latBedirgy the coiled shape.
CNCs, by contrast are solid structures approximately homogenaugttwut. They are
amorphous in structure. The two can be distinguished in an electovosoope as the
hollow nature of the cCNTs can be seen. The uses for these objBIEdMS devices are
almost limitless as their spring geometry makes them irdsedtliable despite the

material strength common to carbon nanostructures.
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S4800 10.0kV 7.7mm x4.00k SE(M)

Figure 4.1: SEM image of as prepared cCNW samples

Because the geometry is central to their novelty, their medibnproperties are
of particular interest. The information about their resonant behavioch can be
obtained from HDR is significantly interesting from this pecsppe alone. The potential
for novel electrical properties [39] due to their geometry only enhances the appeal of
HDR as a method for exploring these structures. To this endeslo@ant behavior of
CNCs has been observed using HDR to help determine its matenperties [40]. Care

was taken to separate the motion from any potential effect from theoalbetam.
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4.2 CNC Synthesis Method

Coiled carbon nanowires were synthesized in a two—stage theiiak€actor.
The pre-heater and the heater were maintained 4c280d 708C respectively in the
presence of Ar (800 sccm). A mixture of xylene and ferrocese pvepared into which
tin isopropoxide (source of tin) was added with the ratio of Fe:3nhlofThis precursor
was immediately injected into the CVD, using a syringe pumiheatate of 1 mL/hr. At
the same time, 50 sccm of acetylene was passed through the tube at aimpsgdgsire.
After 2 hr of reaction time, the furnace was shut off along withdcetylene flow for
rapid cooling in the presence of Ar. The resultant thick laffeadyon nanocoils grows
on a bare quartz substrate.

The growth mechanism for CNCs is still not well understood. Ireiggnit is
known that the tube or wire growth is catalyzed, as in straightgidveth, usually by Fe.
However, a number of different mechanisms, possibly depending omsytithesis
method used and the variety of coils formed, could result in the beoflthg structure
to form a coil. These include twisting due to asymmetry inctitalyst particle [36] and

energy minimization due to In vapors [37].

4.3 Experimental Setup and Approach

Because of the small size of the cCNWs compared to theocaitilevers
examined earlier, it was necessary to mount the CCE in an $&tM for vacuum, to
increase the amplitude of vibration and thus the electrical signdlalso to observe the

motion to confirm resonance while the beam was on. As such, a jig was construaged usi
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piezoelectric motors (Pl Block Nano Positioning System) to #tiergeometry and gap
distance of the CCE. The jig was then placed in an electrommsaope (SU-6600). Ports
were designed for the microscope to allow the input and output signetger and leave
the vacuum chamber. In addition, because of limited space, andcelepiokup, the
amplifier had to be redesigned.

In general, pick-up noise in the output wire will be the largestce of noise in
our signal after the parasitic signals inherent in the CCE manldei system in general.
There are two primary methods of reducing this noise, the fitst shield wires with a
common ground, which was done extensively, using coaxial cable whextssdle and
adding custom shielding when either space was limited or fleyibiitthe wire was
required. The second method of reducing noise is to reduce the distanceantilever
to amplifier. In order to minimize this distance, our A250 amplifirs modified to
accept an external FET, which could then be placed on the gdigsee 4.2). This was
particularly necessary as the nanocantilevers used here wemie smaller and thus
would hold less charge and output a lower dynamic signal than thecantilevers used

previously.
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Figure 4.2: Schematic of HDR setup using SU6600 SEM vacuum chaitieeFET is

located inside the chamber (left side).

In order to examine the resonance of a cCNW, a small amoum shinple was
gathered on a piece of SEM tape and mounted over a darkfield mpeogcsharpened
W tip was then used to pull individual coils, held on the tip by VanVdaals forces.
This tip was then be mounted in the jig for observation. The cCbhiWW¢hen be driven
to resonance. A detailed description of the electrical configuratan be found in
Appendix B.

Because of the small signal to background ratio, it is helpful tdorpe
background subtraction to better analyze the resonant signal. To dihéh§s, ¢) polar
representation (Chapter 2) is used. A vector from the statittleseer position to the

origin in this space is subtracted from the signal (Fig 4.3). Adusdata can be replotted
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asA vs.w or ¢ vs.w to better visualize the peak. Calculation of peak parameserbe
done either with the replotted data, or in the polar representation (See appendix A).

Because of the high pliability of coiled structures, CNCs provideoaderful
opportunity to study nonlinear behavior at large amplitudes. Howevevptd a pull-in
instability, the mechanical motion had to be carefully monitoteaigher voltages, and
the gap distance carefully controlled. While no difference was elserved in the
electrical signal depending on the presence of an electron beeorged data was taken
with the beam off, to avoid any possible complications from ntesielectron beam
irradiation can significantly affect the electrical properties of nancisires [41].

In addition to large-amplitude, nonlinear behavior, coils, due to themegem
complexity, are capable of several interesting modes, mosteasily accessed than in a
straight wire [42-45]. In particular, higher order flexural moaesitaining nodal points
in their motion, should be more easily observed, as well as axial compression modes.

There are two main issues in the actuation and detection of nin@®e exotic
modes. The first are the material constraints on these modegjngaxtremely high
frequencies to excite and only creating small amplitudes duthetio high energy.
Nanocoils naturally overcome most of these due to their flexibilihe second involves
the method of actuation. As was discussed in Chapter 2, electr@statation depends
on the change in capacitance of the CCE as a function of thetaefler deformation of
the cantilever. If the motion of a given mode does not significaffdgtahe capacitance
(compared to say, the change in mechanical energy due to the mogiortihié mode will

not be sufficiently actuated for any detection scheme, optical or eédctric
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Figure 4.3: (green) Raw data collected for cCNW (a) in ther pef@esentation and (b)
as a function of frequency. (red) The same data with a vedti@da(black line in (a)) to
remove background. (c) The resonant peak can be more clearly obseédnction of

frequency after this subtraction has been made.
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For example, while a nanocoil can be physically driven into a tolswode much more
easily than a wire, the driving force from the countereteletron this mode should be
very small. As such, even when driving at the natural frequenchimode, we do not
expect significant actuation of it. In addition, if the capacitfiange is not large, even
for large actuation, the electrical signal will be small (see Eq. 2.4).

In the case of higher order flexural modes, Euler-Bernoulli bdeeary gives
predictions about the frequencies at which they will occur andgheyld be relatively
easy to actuate, as has been done with other, non-coiled nanossyauy 46, 47].
However, because of the nodal points in these higher modes, we expe&tcinieal
signal to be relatively small. While some parts of the camtleoil will be moving
towards the counterelectrode, increasing the capacitance, ottiebe wimultaneously
moving away, decreasing it. As a result, though we may expeabgerve the mode

physically, detecting it electrically should be considerably more ditfic

4.4 Experimental Results

For the coil examined (material parameters are given ineTélfll) the resonance
of the first mode was observed, simultaneously using the SEM and HEDdR{ving
frequencies of 14.9 and 29.8 kHz. As before, comparing the two (thdtuhepbf
vibration for the coil and the output of the amplifier) shows that thesely match (Fig.
4.4), verifying both the source of the electrical signal and thabriy with which it
represents the physical motion. The presence of amplitude at égtieficies is expected

since, as discussed extensively in Chapter 2, the cantileveefietively be driven at
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bothw and 2w. The second mode of oscillation was also observed at a driving hi®gque
of 190 kHz. However, for the reasons mentioned above, no electrical sarid be
observed, only the physical motion (Fig. 4.4.2). For similar reasons, homvadis seen

at 95 kHz (where the @ frequency should give rise to a peak). In this case, the normally
smaller amplitude actuated when driven at half the resorequidncy (see Fig 2.3.3) is
the biggest factor.

We note the ratio of the second mode of vibration to the first is 1928HzkHz
= 6.375. For the ideal Euler-Bernoulli beam, this ratio should be 6.267. i@l s
discrepancy shows both that the motion of the nanocoil is not exaetlyof a free
cantilever (due both to its geometry and to the complicated driaireg) and that the
second mode is indeed at 190 kHZ as opposed to 380 (driven hy teen?d).

Additionally, at larger amplitudes of vibration (due to higher driwogage and
smaller gap distance for the CCE), the characteristic nonliba#fing behavior was
observed (Fig. 4.6). Because of the softness of the coil (as opposedreaorigid
geometries) higher amplitudes could be more easily obtainecharel extreme Duffing
behavior could be observed, such as the hysteresis depending on thendafestianning
seen in Figure 4.6. Beyond this, when the nonlinearity of the restéoncg was
increased further (for extremely small gap distances) tworasanances were observed
with different polarizations from those observed at lower amplitutles.frequency near
the linear resonance, a combination mode was observed, with both aarakialteral
component. At the maximum amplitude for this mode the change irhlasgthe coil

resonates can be clearly observed (Fig. 4.7). This peak was asymntawiogtaino
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Figure 4.4:The visual amplitude is shown by the red squarestlaa electrici amplitude
by the green circles. As can be seen, the elecieak closely matches the obser
mechanical resonance, showing that the electrigalak does represent the mechan

motion.
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Figure 4.5: SEM image of the cCNW driven (a) away from resoma(b) at its first
mode (~30 kHz) and (c) at its second mode (~190 kHz). The countevdecan be
seen in the upper corner of (b), and the different mode shapes carathe abserved

between (b) and (c).
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Figure 4.6: Electrical output from the cCNW resonance at angrivoltage of 6V. The
red points were for increasing frequency, the green for decgeaBlive super-critical

Duffing behavior and hysteretic effects can be clearly seen.

hysteresis was observed. At a slightly higher frequency, ther atonlinear mode
observed appears to be circularly polarized as opposed to the nioaaldolarization

observed for all samples previously (Fig. 4.8). Clear hysteresid be seen in this peak
(Fig. 4.9). Interesting, while electrical signals could bengee both peaks, the linear

peak showed a much greater amplitude than the circularly polarized one. Thisalslypr
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Table 4.1: Parameters of the cCNW observed to determine its materiakpens

P N r R L

2 glen? 52 400 nm 800 nm 42m

SU6600 15.0kV 12.0mm x4.00k SE 10/24/2011 I

Figure 4.7: SEM image of the combination mode. The stretching anpression of the

cCNW can be seen on the left and right sides of the motion respectively.
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SU6600 15.0kV 10.5mm x7.00k SE

Figure 4.8: SEM image of the circularly polarized mode. The coeletdrode is pictured

on the left.
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Figure 4.9: Electrical signal in the (green) increasing and) (decreasing frequency
directions for the combination and circularly polarized resonances.|arge, lower
frequency peak is due to the combination mode. The asymmetry of dlois can be
clearly seen, although there is no hysteresis. The small, high frequedeyisrdue to the
circular polarization. Significant hysteresis can be seendstvthe forward and back

directions.
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due to the relative change in capacitance caused by the twaediffmotions as

mentioned above.

4.5 Discussion

From the above experimental results we will focus on a pair @ilussults, both
of which emphasize the usefulness and applicability of the HDRaadeFor the first, we
will use the resonant frequency, which can be precisely deterrfrimedthe electrical
output to determine the lateral spring constant of the CNC, whickl,couprinciple, be
using to further investigate its material properties. For goersd, we will examine the
unique nonlinear behavior we observed to investigate this larger nonlinear regimera

ability to explore it.

4.5.1 Linear Results: Determination of the Lateral Spring Constant

Using the resonant frequency of the first mode (or in principlengfraode) we
can calculate the lateral spring constant of the nanocoil, dseleasdone previously with
carbon nanotubes [48]. We can write the Euler-Bernoulli beam equatiompptopriate

fixed free boundary conditions for the coil:

0%y (x,t) — pA 0%y(x,t)

El
Ox* ot2

(4.1)
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y(0,t) =0 (4.2)

y'(0,8) =0 (4.3)
y'(Lt) =0 (4.4)
y"'(L,t) =0 (4.5)

whereE is the Young’s modulus of the bealris its moment of area, is the densityA

is the cross sectional area,is the position along the bearn,s time, andy is the
deflection of the beam a distance, from the held end at timd, Primes denote
differentiation with respect te&. We assume here that the CNC can be approximated as a
thin wire. This equation can be solved for the natural frequencibration (assuming,

for now, a simple narrow wire):

fiz = (nzinz) \} O.ZI;m (4.6)
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where f is the frequency of the mode, m is the mass of the eahhk=EI/L* is the
compliance, or lateral spring constant. The numbgr ia the solution to the

transcendental equation:

cosny coshn, = —1 (4.7)

derived from the Euler-Bernoulli equation where k is the number of the mode in question.
The first two of these values arge m 1.875 and n= 4.694. Theoretical models have
approximated the effective mass of a fixed free cantilevergssary because the motion

of any point on the cantilever is dependent on the distance from theasade23 m,

where m is the actual mass. We can approximate the mass of our coil using:

2
m = 2m?pr*N |R? + (L/ZNn> (4.8)

wherer is the small radius of the wire comprising the cRilis the radius of the coil
itself, andN is the number of coils. The equation can be derived in a straigharfibrw
manner by calculating the total arc length of the CNC andn@sg a circularly cross
section and uniform density along this length. Plugging in our sdhoen Table 4.1, the

mass is calculated to be 260 picograms, for an effective m&ismé€ograms. Plugging
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into Eq. 4.5 along with the natural frequency of the first mode (298, kivk find the
lateral spring constant to be 176 uN/m.

For a simpler geometry, we could use this information to deterthanenaterial
parameters of the CNC, namely the Young’'s modulus. Much work has dmen
analyzing the motion of coiled cantilevers [40, 44, 45]. However, even usiggyeneral
approximations, the equations relating both the Young’s modulus and thevsitadus
are complicated and hopelessly entangled. Sato et al. [49], give the followatgpadar

the spring constant, using only the sheer modulus as a free parameter:

_ 3Gor*(R* + (R — 2r)2)/

k (4.9)

16R3L2N

where G is the sheer modulus. Using our lateral spring constant, we dae devalue

for the sheer modulus of 2.7 GPa similar to what has been obsenaher carbon
structures. However, this equation, using only a sheer modulus, assumesheaty
motion in the CNC, accurate only for a very small pitch and length compared to the

radius of both the coil and the wire and the deflection respectively.

4.5.2 Nonlinear behavior
Perisanu et al. [50] have previously observed a circularly polanzede in
MWNTs and SiC nanowires. The behavior they observe is similénaioseen in the

CNC, including the relative spring softening for the CP and thegvardening for the
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Duffing behavior. They explain this mode using a coupling betweenwhbelinear
polarizations, which should be nearly identical (ignoring the doeaif actuation) for an
isotropic wire or coil. The only coupling required by their Inoet, and the source of their
nonlinear terms, is the constraint that the length of their nanotubwmarmwire be
constant. This gives rise directly to a resonance near thar liesonant frequency, but
always with a hard-spring behavior.

The situation is similar for our CNC sample. For large enoughlitude motion,
it becomes more favorable for the nanocoil to move in a circularomadkieeping its
length relatively constant, than to deform and remain linearlyripeth The CP mode,
however, because of its motion out of the CCE plain, does not effety tiea same
change in capacitance as the linear polarization in the Dufiggne or otherwise. In
addition, depending on the exact shape of the modes, the Duffing regnuispiay
either a hard or soft spring behavior. Under certain excitationgeidéng on gap
distance, driving voltage and the individual coil), Duffing behavior couldtserved
deviating from the natural frequency of the cantilever in theesdirection (higher
frequency) as the circularly polarized mode.

We can even see, in the combination mode, that it experiences spra@ning,
evident from the asymmetry of the resonant peak. However, dsecaeen in Fig. 4.9,
the two peaks occupy separate regions in the frequency spectrarnombination peak
indicates that observation of a purely axial mode for some cCiWdeed possible and
should give rise to a detectable electrical response. By schplyging the relative angle

between the coil and the gap with the counterelectrode, the combimesponse can
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contain more or less of the lateral and axial components resggcivith the response
being almost entirely lateral in the normal configuration andedptaxial in an end-on
configuration with the coil pointing towards the counterelectrode. flilly axial mode
can be observed, more accurate calculations can be made on thel patameters of
the cCNW, as this geometrically simple motion allows foriegasomputation of the

sheer modulus.
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CHAPTER 5

INTRINSIC DAMPING IN A MWNT

5.1 Multi-Walled Carbon Nanotubes

Multi-walled carbon nanotubes (MWNTS) present one of the mosestteg and
versatile areas of development in nanotechnology. Thanks continuing ilemovatheir
synthesis , MWNTSs can now be produced on industrial scales at a reasonablecerdt. Re
work has been done functionalizing MWNTs for use in nanocomposites [5]1, 52]
chemistry [53, 54], and even medicine [55-57].Interestingly, technokaypy recently
been developed to produce spinnable MWNTs from ultra-long, aligned sarmpkese
may be pulled from their substrate and spun and woven into threads {84 variety
of material uses.

In addition, MWNTs are an interesting opportunity to test low dinoeradi
physics. As they are essentially graphite sheets, curlea iutioe, they display a number
of interesting mechanical and electrical properties that camdmeled and explained
with simple theoretical considerations, although the complicatedatten among layers
of the nanotube introduce computational difficulties over single-wakeblon nanotubes
(SWNTSs). They are known to be conducting [59, 60], even though SWNTs c@hdre e
metallic or semi-conducting, depending on the chirality. This is duénteraction
between layers. MWNTSs are also very strong, having a thealr&oung’s modulus of 1
TPa or higher, with experiments giving similarly large res{ft1-63]. This extremely

high strength opens up amazing possibilities for nanotube based mmaedadevices.
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As noted above, the interaction among layers in a MWNT is patiguhteresting, as it
complicates both the electrical and mechanical properties ofuthe Of particular
interest is the dissipation mechanisms caused by this intgraahd others in the
nanotube. By observing the intrinsic damping in a resonating MWNT, aneobtain
information regarding the source of this damping. As the qualityr of a resonator is a
significant factor in its practicality as a device component, rstaleding these

mechanisms is an important step towards implementing MWNT based technology.
5.2 Sources of Damping in a Resonating MWNT
If a MWNT (or any real structure) is driven to resonance, pigsie mechanisms

will convert the mechanical energy into other forms. This dissipatvill increasey

(from Eq. 2.11):
—+2y—x+a)0x=% (5.1)

which will in turn will increase the observed damping and decrimesquality factorQ,

of the resonator:

Q ="/, (5.2)
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wherey is the damping of the cantilever as defined in Chapter 2. Wereliiate here
between external damping, such as from a gaseous environment (seer Ghagoid
intrinsic damping due to mechanisms in the cantilever itself. Tlaeee several
mechanisms for intrinsic damping in a MWNT which are suspdotaffect the resonant
motion, including telescoping motion, (5,7) defects, interaction with phonadsp@or
junction contact.

Modeling has been done related to the telescoping motion of layersIVWNAT
[64]. This is essentially the sliding of layers against eabler and it will be a significant
source of dissipation in a MWNT if actuated. It will also caasehange in the total
length of the nanotube (hence, telescoping). Because the layav®/@Na are relatively
loosely bound, motion of this type should be easily actuated.

As a MWNT bends in response to an external force (for exankpdérastatic
driving), it has been shown that pairs of (5,7) defects (so hameaddeeof the pentagon
and heptagon shapes which appear in the deformed lattice) can beergetieally
favorable transition to accommodate the stress on the nanotube [65}esorating
MWNT, a number of these defects would be constantly forming andnglexminimize
the energy of the MWNT lattice. The rate at which thadatcan create and eliminate
these defects will be critical to their appearance in a resonating MWNT

Inherent in any real material, phonon creation will be a mechariam
dissipation. The mechanical energy of resonance will be codvetie phonons in the
lattice which can then propagate through the lattice, increasntgmperature. This

dissipation will be unavoidable, but can be reduced by working at #eloyerature. It
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should also occur even for extremely small amplitudes of vibratiooppssed to some
other dissipation mechanisms (see below). In addition, heat flow altieetthermal
gradient across the cantilever will cause the dissipation ofgm@erthe compressed side
of the coil and the elongated side of the coil exchange energy.

Finally, the junction between the MWNT and the W tip can be a sonfrce
dissipation. Ideally, the MWNT should be rigidly connected so the bourudagitions
for a cantilever (EqQ. 4.2, 4.3) are maintained. However, if the nanotube can $iily sitg
this point, friction will produce heat and damp the motion of the caetilén addition, if
the contact is too weak, resistance between the MWNT and W dip prevent an
electrical output from being observed. In order to reduce this possilaih electrical
current was supplied through the MWNT. Because of its small demmtte large
amount of heat produced by this current effectively welded the ulze®to the tip. As
will be discussed below, however, it is evident the contactlisastignificant source of
dissipation.

It is important to note that the advent of these mechanisms indtennof the
MWNT is, in several cases, dependent on a critical deflectiomg beached. For the
telescoping motion, the pull on an inner layer must be enough for itd® @he site
further along the layer containing it. Below this critical fortteg layers will not slide
against one another and no dissipation will occur through this mechabismharly,
below a critical deflection, the creation of defects in the MWNT will reotdvorable and

the lattice will remain unchanged. At finite temperatures, q@ddrly at room
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temperature under which the HDR experiments have been performed, phoatoncre
should occur essentially continuously for any detectable deflection.

Because telescoping motion and defect creation should occur elgcast a
function of deflection, we can expect the measured intrinsic dampirtige MWNT
should vary depending on the amplitude of vibration. Ideally, the onset ofwa ne
dissipation mechanism should create discrete changes in the dgiaalioy of the
resonator, which could then be observed. However, because of thadarger of layers
in a typical MWNT, the number of dissipation mechanisms is langeaacontinuously
changing quality factor as a function of amplitude of vibratioexpected. The goal,
therefore, is the observation of this essentially nonlinear dampmgx)). Similar
observations of an amplitude dependent quality factor have been madedtorbly

clamped nanotube at ultra-low temperatures [66].

5.3 Synthesis

Long MWNTs were synthesized in a two—stage thermal CVDtoeaThe pre-
heater and the heater were maintained af@%s®d 858C respectively in the presence of
Ar (200 sccm). A mixture of xylene (10 mL) and ferrocene (400 wag prepared. This
precursor was immediately injected into the CVD, using a ggripjump, at the rate of 9
mL/hr. At the same time, 240 sccny Fnd 1.5 sccm Owas passed through the tube.
After 1 hr of reaction time, the furnace was shut off alond) Wie reactive gas flow for
rapid cooling in the presence of Ar. The resultant thick layer of MWNTsgjoowa bare

guartz substrate.
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5.4 Experimental Results

A MWNT was mounted and placed in the SU6600 exactly as describédefor
CNC (chapter 4). Mechanical resonance was observed at arfoygaeound 84 kHz
(Fig. 5.1). However, poor contact with the W tip caused the resdmaptency to drift
while the nanotube was in motion. Over time, the resonant frequendg decrease as
measurements were taken. Mostly likely the motion of the MWIE$ separating it from
the W tip, increasing the effective length and decreasingetenant frequency. If the
MWNT was allowed to sit without resonating for a long period oktithhe frequency
would gradually increase back to its original value as eld@atiodorces reattached it to
the tip. lon beam deposition could not be effectively used for the MVéNTt was for
the nanocoil, due to the smaller size of the MWNT. The effespet size of deposition
for the ion beam system available was large enough to coantine MWNT (partially
through capillary action) as opposed to just the base where it was connected.

Regardless, the shape of the resonant peak did not vary with cepésts only
the frequency (Fig. 5.2). In order to measure the effects ofneamnldamping, resonant
spectra were taken for the MWNT for several values of tivendrvoltage, ranging from
3 to 8 V. Background subtraction could be performed (as in Chapter 49rto easily
visualize the peak. In order to calculate the quality factorptiter representations of the
resonant peaks were used. As discussed previously (Chapter 2), inquotinates A,
¢), a normal resonant peak should form a circle. If we bisect the circle wita a li

connecting the maximum amplitude and a point out of resonance, a line bisecting this
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OkV 10.8mm x kK S 2.0kV 10.8mm x4.50k S 10.0um

Figure 5.1: SEM image of MWNT in close proximity to the W ceuwelectrode (left) out

of resonance and (right) resonating at its first mode.

will connect 2 points which can be used for the full-width at hadiximum (See
appendix A). By using this method, we are able to accuratelylatdca quality factor

even in the presence of a background and even in the Duffing regime.

5.5 Discussion

As can be seen (Figs. 5.3, 5.4), the quality factor does undergo ae Gsarige
amplitude increases. While the uncertainty in the measurement laf daetor makes it
difficult to determine the nature of this change, it does not docwarly as a function of
amplitude, with a few regions where the quality factors chaungeidly between values
of the driving voltage. As discussed above, this is possibly due todixgeeritical
amplitudes where new defects can affect the resonant motionndb#havior was also
observed, as before, with critical Duffing behavior and theltiag hysteresis occurring

at driving voltages over 6 V. While the onset of this behavior should not change the
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Figure 5.2: Electrical output of resonating MWNT for the sainging voltage (8V)
taken an hour apart. The frequency can clearly be seen toTdr shape of the peak,

however, remains relatively constant.

observed damping, it does complicate the calculation of the quality factor for timess c
as the unstable region of the solution to the Duffing equation canmulirieloly observed.

This is alleviated by the using polar representations to eaéc@, but the shift in the
maximum frequency (spring hardening in this case) does inctieasencertainty of the

calculation for larger driving voltages.
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From the decrease in quality factor as a function of amplitude;am conclude
that nonlinear damping plays a significant role in the resonant behavior of Td\Whhce
the precision of this technique increases, and SWNTs can be\afedtudied, it is
reasonable to expect observation of clearly delineated disd¢ratges in quality factor
as a function of amplitude due to the onset of individual defects.laFger, more
complicated MWNTSs, the large number of these defects, as wédirge dissipation at
the nanotube/W tip junction, blur these steps into a continuum. Surprisimgylg,still do
appear to be regions of rapid change versus amplitude, probably thes doset of a
large number of defects around critical amplitudes (i.e. wher&uker-Bernoulli beam

equation begins to break down or the onset of Duffing behavior).
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Figure 5.3: Electrical output from the resonating MWNT for asiidg voltage of 3V
(bottom curve) increasing by 1V up to 8V (top curve). Hysteresis can bevetiser 6V,

7V, and 8V driving voltage.
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Figure 5.4: The quality factor of the observed resonance, driven At the driving

voltage increases, the quality factor can be seen to decrease irregularly
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Appendix A

Polar Representation of Resonance Peaks and Associated Calculations

A.1 Polar representation
From Chapter 2, the equations describing the amplitddend phaseyp, of a

SHO (Eq. 2.6) being driven at frequenay,are

Fo/m
Alw) = = (2.9)
\/(w(z,—wz) +(2yw)?
tan ¢(w) = a:z)]f:ﬂ (2.10)

wherewy is the resonant frequency, ants the damping factor. Using trig identities, we

can solve foA in terms ofp:

2Yw

sing(w) = (A1)
\/(wg—wz)2+(2yw)2
Fy sin ¢ (w) sin p(w) .
Alw) = m 2y o ——— o sin o(w) (A.2)
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which, when plotted in a polar representation will produce a cirTlee last
proportionality assumes thaiy is much larger thanw, the width of the resonance. In
addition, when measuring the time derivative of the amplitude (suitte asirrent output

in HDR), the signal should be exactly a circle:

I(w) =Iycoswt + 6 = Z—f = %A(w) cos wt (A.3)
Ih(w) < w A(w) « sin@(w) (A.4)

By searching for this circular behavior, the observation of resmngeaks
becomes much easier in the presence of background which may nobhdiant as a
function of frequency. However, it is also important to note frequenpgrakence oA
andg, respectively. Performing background subtraction as describetapter 4 allows

the recovery of curves which can be fit to Eq. 2.2.4 and 2.2.5.

In addition, as discussed in chapter 2, the resonant features involved in the

harmonic detection of resonance, especially at higher harmonicsioaeecomplicated

than those of a SHO. Normally, however, they can be decoupled, in the pol

representation, into circles, each of which is being traversad etteger multiple of the
frequency. The limacon, for example, can be considered as 2 added together, with

one moving through frequency space twice as fast as the other.
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A.2 Quality Factor Determination

The quality factorQ, of a resonator is defined by:

Q ="/, (A.5)

where y is the damping factor as above. A typical method for determiQngr a
resonator is the full width at half-maximum technique. In this appratkon, the
resonant frequency is divided by the width of the power spectrum obgbidator
(proportional toA?). The width is defined by points on either side of the peak attmlf

amplitude of the maximum frequencyg). This is effective since:

1
A*(w0) = 3 (A6)
1
A (001 £7)) ~ 55 (AT)

ignoring terms in the denominator of order higher thanSo the full width at half
maximum will be 2 and the method will give a close approximatioQdbr sufficiently

small damping.
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In order to perform this calculation in the polar representatiogfLghe in the
case of super-critical Duffing behavior), we realize thath@ié-maximum points of the
power spectrum will be 42 of the maximum amplitude in the observed spectrum. This
leads to a straight-forward bisection of the circle to deterrthieefull width (see Fig.
A.1). Even if points on the circle are not observed (for exampheyf fall in the unstable
region of a Duffing-type peak), by approximating their position tire polar

representation, a frequency can be determined.
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Figure A.1: Typical circular resonance behavior &) ¢) polar coordinates. The point
labeled O is off resonance and A is at the resonance peak. Boamis B™ are used to

determine the FWHM of the peak.
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Appendix B

Configuration of HDR Setup for Use in an SEM

The electrical schematic can be seen in Figure 4.2. A Stanford ReseashsSys
function generator (DS345 Synthesized Function Generator) was used to generate the
driving signal and as a reference for the Lock-In Amplifier. The drivigiged was biased
by a custom built dc offset box powered by a 9V battery and tunable through the use of a
potentiometer. BNC vacuum feedthroughs allowed the signal to be sent through the wall
of the SEM (Hitachi SU6600) (Fig. B.1) and onto the custom built jig (Fig. B.2). @loaxi
cable was used wherever the geometry of the setup permitted it to shielchie sig

The electrical signal produced by actuation of the cantilever was then sant to a
FET (2N4416) mounted on the jig to reduce pickup and noise. The FET was remotely
connected to a charge sensitive preamplifier (Amptek A250) raising theaakesignal
to levels which could be observed by a Lock-In Amplifier (SRS SR844). Both the
function generator and the Lock-In Amplifier were connected to a PC and controlled
using a custom written LabView program which incremented the driving fregaeic
collected amplitude and phase data from the Lock-In. The external eleseiap can be

seen in Figure B.3.
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K '
Figure B.1: SU6600 Scanning Electron Microscope
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Figure B.2: Custom-built jig for manipulation of CCE setup. Three separatespeetric

motors can be used to control the fine relative position of the cantilever and
counterelectrode in each of the three spatial dimensions. Coarse positionimgusdc
with the large gold colored screws, which move on tracks to change two spatial
dimensions and 1 angular degree of freedom. The FET can be seen on the left hand

mount, connected remotely to the preamplifier (not pictured).
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Figure B-3: External electrical setup for HDR experiments under vacum. tep:

monitor for use with controlling PC (not pictured) and dc bias unit, function generator

and preamplifier power supply, lock-in amplifier.
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Appendix C

Equipment List

1. Stanford Research Systems SR844 Lock-in Amplifier
2. Stanford Research Systems SR850 Lock-in Amplifier
3. Stanford Research Systems DS345 Synthesized Function Generator

4. Amptek A250 Charge Sensitive Preamplifier
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