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Abstract

In this thesis we investigate two graph products called double vertex graphs and

complete double vertex graphs, and two vertex partitions called dominator partitions

and rankings.

We introduce a new graph product called the complete double vertex graph and

study its properties. The complete double vertex graph is a natural extension of the

Cartesian product and a generalization of the double vertex graph. The complete

double vertex graph of G, denoted by CU2(G), is the graph whose vertex set consists

of all
(

n+1
2

)
unordered pairs of elements of V (duplicates allowed). That is, the vertex

set consists of all 2-element multisets of the form {a, a} and unordered pairs of the

form {a,b}, where a 6= b. Two vertices {x, y} and {u, v} are adjacent if and only if

|{x, y}
⋂
{u, v}| = 1 and if x = u, then y and v are adjacent in G.

We establish many properties of complete double vertex graphs, including re-

sults involving the chromatic number of CU2(G) and the characterization of planar

CU2(G). We also investigate the important problem of reconstructing the factors of

double vertex graphs and complete double vertex graphs. We reconstruct G from

U2(G) and CU2(G) for different classes of graphs, including cubic graphs.

Next, we look at the properties of dominator partitions of graphs. A dominator

partition of a graph G is a partition Π = {V1, V2, . . . , Vk} of V (G) such that every

vertex v ∈ V (G) is a dominator of at least one class Vj ∈ Π; that is, v is adjacent
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to every vertex in Vj. A dominator partition Π = {V1, V2, . . . , Vk} is minimal if

any partition Π′ obtained from Π by forming the union of any two classes into one

class, Vi ∪ Vj, i 6= j, is no longer a dominator partition. The dominator partition

number of a graph G is the minimum order of a dominator partition of G and the

upper dominator partition number of a graph G is the maximum order of a minimal

dominator partition of G.

We characterize minimal dominator partitions of a graph G. This helps us to

study the properties of the upper dominator partition number and establish bounds

on the upper dominator partition number of different families of graphs, including

trees. We also calculate the upper dominator partition number of certain classes of

graphs, including paths and cycles, which is surprisingly difficult to calculate.

Properties of rankings are studied in this thesis as well. A function f : V (G) →

{1, 2, . . . , k} is a k-ranking of G if for u, v ∈ V (G), f(u) = f(v) implies that every

u− v path contains a vertex w such that f(w) > f(u). By definition, every ranking

is a proper coloring. The rank number of G, denoted χr(G), is the minimum value of

k such that G has a k-ranking. A k-ranking f is a minimal k-ranking of G if for all

x ∈ V (G) with f(x) > 1, the function g defined on V (G) by g(z) = f(z) for z 6= x

and 1 ≤ g(x) < f(x) is not a ranking. The arank number, denoted ψr(G), is defined

to be the maximum value of k for which G has a minimal k-ranking.

We establish more properties of minimal rankings, including results related to

permuting the labels of minimal χr-rankings and minimal ψr-rankings. In addition,

we investigate rankings of the Cartesian product of two complete graphs, also known

as the rook’s graph. We establish bounds on the rank number of a rook’s graph and

calculate its arank number using multiple results we obtain on minimal rankings of a

rook’s graph.
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Chapter 1

Introduction

How many colors are needed to color a political map of the world? This is a very

simple question, and yet it took more than a century to settle.

Let us look at the small example shown in Figure 1.1. Suppose we need to know

the minimum number of colors needed to color the regions such that two regions who

share a boundary receive different colors. Since it is a small map, we can easily see

that we require at least 4 colors, and in fact only 4 colors are required.

A

B

C

E
D

Figure 1.1: A political map

We can think about this problem using a graph theoretical model as shown in

Figure 1.2. (A formal definition of a graph and other terminologies are given in

Section 1.1.) The vertices of the model represent the regions, and two vertices are

adjacent if and only if the corresponding regions share a common boundary. Now
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our problem is as follows: what is the minimum number of colors required to color

the vertices of this graph such that two adjacent vertices receive different colors? As

before, since the graph is small, we can see that the answer is 4. (Note that vertices B,

C, D and E need to each receive a distinct color in order to satisfy our requirement.)

����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

�����������
�����������
�����������
�����������
�����������
�����������
�����������
�����������

C

B

A

ED

Figure 1.2: Graph theoretical model for the coloring problem

Now, how about the minimum number of colors required for the political map of

the world? In 1852, a student named Francis Guthrie at University College London

made the curious observation that he could color the counties of a map of England

with 4 colors and discussed it with his brother, Frederick. Frederick Guthrie then

asked his professor Augustus De Morgan, and thus came the Four Color Conjecture.

For more than a century, this conjecture remained one of the simplest unsolved

problems in mathematics in that the problem can be explained to anyone. Many

people worked on the Four Color Conjecture, to the point that it was even called the

“Four Color Disease”. The Four Color Conjecture became the Four Color Theorem

in 1976 after Kenneth Appel and Wolfgang Haken produced a proof using the help

of computers.

The coloring problem is a kind of vertex partitioning problem in which the vertices

of a graph are partitioned into different sets such that each set or each vertex satisfies

some property P . In the case of the coloring problem, each set needs to satisfy
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the property that no two vertices in the same set are adjacent. There are different

variations on colorings that have been studied in the literature. There are multiple

books on graph colorings, for example [28, 30]. For a brief survey on different coloring

problems, the reader is referred to the survey by Laskar, Jacob and Lyle [31].

Depending on the definition of property P , one can investigate the minimum num-

ber of sets in a partition, and the maximum number of sets provided two sets cannot

be merged. Similarly, for some property P the invariants that are relevant would be

the maximum number of sets in a partition and the minimum number of sets provided

that none of the sets can be split.

For example, for the coloring problem, the chromatic number is the minimum

number of colors that are needed to color the vertices of a graph. That is, what is the

minimum number of sets allowed in a partition such that no two vertices in the same

set are adjacent? The achromatic number denotes the maximum number of sets that

are allowed in a partition such that no two vertices in any set are adjacent and no

two sets can be merged while satisfying the first requirement.

On the other hand, there are some problems which require partitioning the vertices

into two sets and counting the minimum or maximum number of vertices in one set

having some property P . Examples include dominating sets and independent sets.

(Formal definitions are in Chapter 3 and Section 1.1.) In the case of independent

sets, the vertices are required to be partitioned into two sets such that one set has the

property that no two vertices in the set are adjacent. The independence number is

the size of the largest independent set. Also, one can ask what the size of the smallest

independent set is such that if any vertex is added to the set then the resultant set

is no longer independent.

There are many applications that involve studying vertex partitions, or to be more

precise, calculating the minimum or maximum number of sets in a partition where

3



each set has some prescribed property P . However, it might be difficult to calculate

certain graph parameters related to vertex partitions for some large graphs. Graph

products play a significant role in finding these parameters for large and complicated

graphs. Some popular graph products include the Cartesian product and the strong

product among others.

The main appeal of studying graph products is that they allow us to consider large

and complicated graphs as combinations of smaller graphs under the product, and to

study the larger graph by studying its factors. For example, in the case of coloring,

it is known that the chromatic number of a Cartesian product of two graphs is the

maximum of the chromatic numbers of its factors.

Suppose we need to find the chromatic number of a large, complicated graph. If

we can recognize the larger graph as the Cartesian product of smaller graphs, then

we can find the chromatic number of the factors and calculate the chromatic number

of the complicated graph. Note that there are algorithms to find factors of Cartesian

products.

However, for some parameters such as the domination number, it is still unknown

how the domination numbers of the factors affect the domination number of the

Cartesian product in general. Note that for some classes of graphs like trees, this

problem is solved.

Thus, other graph products are also being studied in the hope that they will provide

a way to calculate some invariants of complicated graphs by studying those of the

factors.
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1.1 Definitions

In this section, we give definitions of the concepts and terminologies used in this

thesis.

A graph G = (V,E) consists of two sets of objects, V = {v1, v2, . . .} called vertices

and E = {e1, e2, . . .} called edges such that every edge ek is associated with two

vertices vi and vj called its end-vertices. Note that this definition permits the end-

vertices of an edge to be the same (not distinct). In that case we call the edge a loop.

However, throughout this thesis, the graphs we consider are simple finite graphs,

which means that there are no loops or multiple edges between any two vertices and

the graph has finite number of vertices.

Two vertices u and v are adjacent if they are the end-vertices of an edge. In this

case we say u and v are neighbors. The degree of a vertex v in G, denoted degG(v), is

the number of edges of which v is an end-vertex. A graph is regular if the degrees of

all vertices are the same. A complete graph on n vertices, denoted by Kn, is a graph

on n vertices such that every pair of vertices is adjacent.

A function f : V (G) → {1, 2, . . . , k} is a k-coloring of a graph G if for any two

vertices u and v, f(u) = f(v) implies that u and v are not adjacent. In other words,

adjacent vertices receive different colors under f . The chromatic number of a graph

G, denoted by χ(G), is the minimum k such that G has a k-coloring. Thus a k-

coloring of a graph G is a partition Π = {Vi, V2, . . . , Vk} of the vertices of G such that

for any Vi, no two vertices in Vi are adjacent. A k-coloring is complete if for every

1 ≤ i < j ≤ k, there is a vertex u ∈ Vi and a vertex v ∈ Vj such that u and v are

adjacent. The achromatic number, denoted by ψ(G), is the maximum k such that G

has a complete coloring. In other words, the achromatic number is the maximum k

such that the vertices can be partitioned into k color classes provided no two classes
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can be merged together and still have a coloring.

For a graph G, S ⊆ V (G) is an independent set if no two vertices of S are adjacent.

The size of the largest independent set in G is called the independence number of G

and is denoted by β0(G). Thus, we can view a coloring of a graph as the partitioning

of the vertices of the graph into sets such that each set is an independent set.

Let G and H be two graphs. The Cartesian product of G and H, denoted by

G2H, is defined as follows. The vertex set of G2H is the Cartesian product of sets

V (G) and V (H), that is, V (G) × V (H). Two vertices (u, x) and (v, y) are adjacent

in G2H if and only if either u = v and x and y are adjacent in H, or x = y and u

and v are adjacent in G. An example of a Cartesian product is shown in Figure 1.3.

u

v

x

y

(a) Graph G

a

b
(b)
Graph
H

(v,a)

(u,a)

(v,b)

(x,b)

(x,a)

(u,b)

(y,b)

(y,a)

(c) Graph G2H

Figure 1.3: Example of a Cartesian product

1.2 Overview

In this section, we give an overview of this thesis. In Chapter 2 we introduce a new

graph product called the complete double vertex graph, and investigate the properties
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of the new product. The complete double vertex graph is a natural extension of the

Cartesian product and is a generalization of the double vertex graph. In the same

chapter we also study the important problem of reconstructing the graph G from the

double vertex graph and the complete double vertex graph of G.

In Chapters 3 and 4 we look at two different vertex partitioning problems. In

Chapter 3 we study the dominator partitions of graphs, which partition the vertex

set of a graph based on some domination properties. In particular, we look at the

properties of the upper dominator partition number, and calculate the upper domi-

nator partition number of certain graphs, including paths and cycles.

In Chapter 4 we study a vertex partitioning problem called ranking. This is a

variation of the vertex coloring problem. We establish further properties of mini-

mal rankings, and study rankings of the Cartesian product of two complete graphs,

Kn2Kn, also known as the rook’s graph. We establish bounds for the rank number

of Kn2Kn and calculate the arank number of Kn2Kn.

Chapter 5 contains some open problems related to graph products and vertex

partitions.
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Chapter 2

Double Vertex Graphs and

Complete Double Vertex Graphs

There are many graph functions with which one can construct a new graph from a

given graph or set of graphs, such as the Cartesian product and the line graph. One

such graph function is called the double vertex graph. This was introduced by Alavi

et al. in [1], and studied in [2, 3] inter alia. For a survey, see [6].

Let G = (V,E) be a graph with order n ≥ 2. The double vertex graph of G, denoted

by U2(G), is the graph whose vertex set consists of all
(

n

2

)
unordered pairs of V such

that two vertices {x, y} and {u, v} are adjacent if and only if |{x, y}
⋂
{u, v}| = 1 and

if x = u, then y and v are adjacent in G. An example of a double vertex graph is

given in Figure 2.1.

The motivation for graph products includes the advantage of studying properties

of a given larger graph by studying those properties on a set of smaller graphs, which

are the factors of the larger graph under some graph product. Graph products can

also be viewed as a tool to systematically produce new graphs from a graph or a set

of graphs.
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Figure 2.1: The double vertex graph
of a 4-cycle, abcda Figure 2.2: The complete double ver-

tex graph of a 4-cycle, abcda

If we consider the Cartesian product as a unary operation, that is, the Cartesian

product of G with itself, the vertex set of the Cartesian product consists of ordered

pairs of vertices of G. What happens if we allow the vertex set of the product to be

unordered pairs of vertices of G? In [26] we introduced this concept and called the

new product the complete double vertex graph. This product was implicitly introduced

by Chartrand et al. in [10], and used in [20]. The complete double vertex graph of

G, denoted by CU2(G), is the graph whose vertex set consists of all
(

n+1
2

)
unordered

pairs of elements of V (duplicates allowed). That is, it contains all the vertices of

U2(G) and all 2-element multisets of the form {a, a}. Again, two vertices {x, y} and

{u, v} are adjacent if and only if |{x, y}
⋂
{u, v}| = 1 and if x = u, then y and v are

adjacent in G. Figure 2.2 gives an example of a complete double vertex graph.

The complete double vertex graph is a natural extension of the Cartesian product

and also a generalization of the double vertex graph. We study properties of double

vertex graphs and complete double vertex graphs, and also investigate the important

problem of reproducing the original graph from these two graph functions.

Most of the results in this chapter are obtained by Jacob, Goddard and Laskar in

[26].
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2.1 Basics of Double Vertex Graphs

In this section we look at some basic properties of double vertex graphs, which will

help us study the problem of reconstructing G from U2(G).

Observation 2.1.1. [1] If G has n vertices and m edges, then the double vertex graph

of G has n(n− 1)/2 vertices and m(n− 2) edges.

Indeed for each edge of G there are n− 2 edges of U2(G).

Observation 2.1.2. [1] The degree of the vertex {x, y} in U2(G) is:

(i) degG(x) + degG(y), if xy /∈ E(G),

(ii) degG(x) + degG(y) − 2, otherwise.

Corollary 2.1.3. [1] If G is a connected graph, then U2(G) is regular if and only if

G is either a complete graph or K(1, 3).

The following results have been proved by the respective authors.

Theorem 2.1.4. [1, 6] a) U2(G) is a tree if and only if G = K2 or G = P3.

b) U2(G) is a cycle if and only if G = K3 or G = K(1, 3).

c) If G is connected, U2(G) is Eulerian if and only if the degrees of all vertices in G

have the same parity.

d) U2(Kn) is the line graph of Kn.

Theorem 2.1.5. [1] G is connected if and only if U2(G) is connected. Indeed, if G

has k components each of order at least two, then U2(G) has k(k + 1)/2 components.

Theorem 2.1.6. [6, 41] If G is a k-connected graph with k ≥ 3, then U2(G) is

(2k − 2)-connected.

Theorem 2.1.7. For any graph G, χ(U2(G)) ≤ χ(G).
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Proof. Let f be a chromatic coloring of G. For any vertex {a, b} of U2(G), define

g({a, b}) = f(a) + f(b) mod χ(G).

Clearly g uses at most χ(G) labels.

Let {a, b} ∈ V (U2(G)). By the definition of U2(G), any vertex adjacent to {a, b}

is of the form {a, c} with bc ∈ E(G) or {d, b} with ad ∈ E(G). Wlog, assume {a, b}

is adjacent to {a, c}. We will show that g({a, b}) 6= g({a, c}).

{a, b} is adjacent to {a, c} implies, since f is a χ(G)-coloring of G, f(b) 6= f(c)

and max{f(b), f(c)} ≤ χ(G).

g({a, b}) = f(a) + f(b) mod χ(G)

6= f(a) + f(c) mod χ(G)

= g({a, c})

Thus g is a proper coloring of U2(G). Since g uses at most χ(G) labels, we have

χ(U2(G)) ≤ χ(G).

This bound is sharp as the following observation shows.

Observation 2.1.8. χ(U2(C4)) = χ(C4) = 2.

However, there are graphs where χ(U2(G)) 6= χ(G).

Observation 2.1.9. χ(U2(K4)) = 3 < χ(K4) = 4.

Proof. U2(K4) is the line graph of K4, shown in Figure 2.3, and thus χ(U2(K4)) =

3.

Theorem 2.1.10. If G contains k triangles, then U2(G) contains k(n− 2) triangles,

where n = |V (G)|.
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Figure 2.3: U2(K4)

Proof. For any triangle abc in G, the vertices {a, b}, {b, c} and {a, c} form a triangle

in U2(G). Also for any d 6= a, b, c, the vertices {d, a}, {d, b} and {d, c} form a triangle

in U2(G). Since there are n − 3 choices for d, for each triangle in G, U2(G) has at

least 1 + (n− 3) = n− 2 triangles. Thus if G has k triangles, then U2(G) contains at

least k(n− 2) triangles.

On the other hand, consider any triangle T ′ in U2(G). Let two of its vertices be

{a, b} and {b, c}. Then the third vertex is either {a, c} or {b, e} for some e and there

are n − 3 choices for e. It follows that T ′ has one of the above forms which implies

U2(G) has at most k(n− 2) triangles.

In particular, U2(G) has a triangle if and only if G has one.

For more results on double vertex graphs, see [1, 2, 3, 6].

2.2 Properties of Complete Double Vertex Graphs

We now explore some properties of complete double vertex graphs, CU2(G).

Observation 2.2.1. If G has n vertices and m edges, then CU2(G) has n(n + 1)/2

12



vertices and nm edges.

As in the case of double vertex graphs, if G is empty then so is CU2(G).

Observation 2.2.2. Let x and y be vertices of a graph G. Then the degree of the

vertex {x, y} of the complete double vertex graph of G is:

(i) degG(x), if x = y, and

(ii) degG(x) + degG(y), otherwise.

Proof. The vertex {x, x} in CU2(G) is adjacent all vertices {x, a} where a is adjacent

to x in G. Thus degree of the vertex {x, x} is degG x.

The vertex {x, y} with x 6= y in CU2(G) is adjacent to all vertices {x, a} where a

is adjacent to y in G and to all vertices {y, b} where b is adjacent to x in G. Thus

degree of the vertex {x, y} is degG x+ degG y.

Corollary 2.2.3. If the graph CU2(G) is regular, then it is empty.

Proof. Assume CU2(G) is regular. Let x and y be distinct vertices in G. Then the

vertices {x, x}, {y, y} and {x, y} all have the same degree in CU2(G). By Observation

2.2.2, this can occur only if deg x = deg y = 0.

For example, CU2(G) is never a cycle.

Theorem 2.2.4. The graph U2(G) is an induced subgraph of CU2(G) and the graph G

is an induced subgraph of CU2(G). Indeed, the edges of CU2(G) can be partitioned

into n sets such that each set induces a copy of G.

Proof. Suppose V (G) = {1, 2, . . . , n}. Consider S = { {i, i} | 1 ≤ i ≤ n }. By the

definition of U2(G) and CU2(G), CU2(G)−S = U2(G) and hence U2(G) is an induced

subgraph of CU2(G).
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Let Si = { {i, j} | 1 ≤ j ≤ n } for 1 ≤ i ≤ n. By the definition of CU2(G) and Si,

any edge in CU2(G) is contained in a unique 〈Si〉, where 〈Si〉 is the graph induced by

Si. Also, each 〈Si〉 will be a copy of G.

Corollary 2.2.5. If G contains a cycle of length r, then CU2(G) contains a cycle of

length r.

Theorem 2.2.6. The chromatic number of CU2(G) is the same as the chromatic

number of G.

Proof. By Theorem 2.2.4, CU2(G) contains a copy of G. Thus

χ(CU2(G)) ≥ χ(G). (2.1)

Let f be a chromatic coloring of G. For any vertex {a, b} of CU2(G), define

g({a, b}) = f(a) + f(b) mod χ(G).

Clearly, g uses at most χ(G) labels. As in the case of double vertex graphs, we can

show that g is a coloring of CU2(G) and hence

χ(CU2(G)) ≤ χ(G). (2.2)

From inequalities 2.1 and 2.2 we get χ(CU2(G)) = χ(G).

Corollary 2.2.7. CU2(G) is bipartite if and only if G is bipartite.

Theorem 2.2.8. G is connected if and only if CU2(G) is connected. Indeed, if G has

k components, then CU2(G) has k(k + 1)/2 components.

Proof. We will show, using induction on k, that if G is a graph with k components

then CU2(G) has k(k + 1)/2 components.
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Suppose k = 1. This means G is connected. Let {a, b} and {x, y} be two vertices

of CU2(G). We will show that there is a path between {a, b} and {x, y} in CU2(G).

Since G is connected, let au1u2 . . . uix be an ax path in G. Also let bv1v2 . . . vjy

be a by path in G. Then by the definition of CU2(G),

{a, b}{a, v1}{a, v2} . . . {a, vj}{a, y}{u1, y}{u2, y} . . . {ui, y}{x, y}

is a path in CU2(G). Thus CU2(G) is connected.

Assume that if G is a graph with k − 1 connected components, then CU2(G) has

(k − 1)k/2 components.

Let G be a graph with k components, say G1, G2, . . . , Gk. Consider G′ = G−Gk.

By the induction hypothesis, CU2(G
′) has (k − 1)k/2 connected components. Let

Si = { {a, u} | a ∈ V (Gk), u ∈ V (Gi) }. Using similar arguments as in the case when

k = 1, one can show that 〈Si〉 is connected. Also, by the definition of CU2(G) and

Si, if {x, y} ∈ Si is adjacent to any vertex {p, q} then {p, q} ∈ Si. Thus, CU2(G) =

CU2(G
′) ∪ 〈S1〉 ∪ 〈S2〉 ∪ . . . ∪ 〈Sk〉. Therefore, CU2(G) has k(k + 1)/2 connected

components. This implies that if G is disconnected, then CU2(G) is disconnected and

hence the proof.

Observation 2.2.9. If G = ∪k
i=1Gi then CU2(G) = ∪k

i=iCU2(Gi) ∪
k
i,j=1,i6=j Gij where

Gij is isomorphic to Gi2Gj, the Cartesian product of Gi and Gj.

Corollary 2.2.10. Let G be a connected graph. The graph CU2(G) is Eulerian if

and only if degG(v) is even for every v ∈ V (G).

Theorem 2.2.11. [20] If G is k-connected, then so is CU2(G).

Theorem 2.2.12. The complete double vertex graph of G is a tree if and only if

G = K1 or K2.
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Proof. The graph CU2(P3) contains a cycle and thus, if G contains a P3 as subgraph,

then CU2(G) is not a tree. Also, by Theorem 2.2.8, if G is disconnected then CU2(G)

is disconnected. Hence, if CU2(G) is a tree then G must be a K1 or K2. On the other

hand, CU2(K1) = K1 and CU2(K2) = P3. Hence the proof.

2.3 Planarity

Definition 2.3.1. A graph G is a planar graph if G can be drawn on a plane such

that no two edges of G crosses each other.

Alavi et al. determined for which graph G the double vertex graph is planar.

Theorem 2.3.1. [3] Let G be a connected graph. The graph U2(G) is planar if and

only if G is either a path or a connected subgraph of any of the six graphs shown in

Figure 2.4.

A similar result holds for complete double vertex graphs:

Theorem 2.3.2. Let G be a connected graph. The graph CU2(G) is planar if and

only if either G is a path or a connected subgraph of any of the six graphs shown in

Figure 2.5.

Proof. (⇒) If G is one of the five graphs in Figure 2.5 or a path, then by construction,

CU2(G) is planar.

(⇐) Now assume that CU2(G) is planar. We know that U2(G) is an induced

subgraph of CU2(G) and hence U2(G) is planar. Thus by Theorem 2.3.1, G is a path

or a subgraph of one of the six graphs shown in Figure 2.4. If G is a path, then we

are done. If G is not a path, then one can check that the maximal subgraphs of the

graphs in Figure 2.4 whose complete double vertex graphs are planar are listed in

Figure 2.5.
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Figure 2.4: Graphs whose double vertex graphs are planar

2.4 Hamiltonian Properties

Definition 2.4.1. A Hamiltonian graph is a graph with a spanning cycle, also called

a Hamiltonian cycle.

The following results about Hamiltonicity have been obtained.

Theorem 2.4.1. [4] For n = 4 or n ≥ 6, U2(Cn) is not Hamiltonian.

A cycle with an odd chord is a graph obtained by adding the edge 1k to Cn, where

k is odd, assuming that the cycle has vertices 1, 2, . . . , n.

Theorem 2.4.2. [5, 6] Let G be a Hamiltonian graph of order n ≥ 4. Then U2(G) is

Hamiltonian if and only if some Hamiltonian cycle of G has an odd chord or if n = 5.

We believe similar results hold for the complete double vertex graph. We provide

a result for a specific chord in Theorem 2.4.5.
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Figure 2.5: Graphs whose complete double vertex graphs are planar

Definition 2.4.2. [11] A graph G is t-tough if for any vertex cut S the number of

components of G− S is at most |S|/t.

Theorem 2.4.3. [11] Every Hamilton graph is 1-tough.

Theorem 2.4.4. For n ≥ 4, CU2(Cn) is not Hamiltonian. In fact it is not 1-tough.

Proof. Let the vertices of Cn be labeled 1, 2, . . . , n and let S = { {1, 2}, {2, 3}, . . .,

{n, 1} }. Note that for the example shown in Figure 2.6, the vertices in S are the

vertices adjacent to the outer (degree 2) vertices.

Thus, the graph CU2(Cn) − S has at least n isolated vertices, since the neighbors

of the vertices {i, i}, 1 ≤ i ≤ n, in CU2(Cn) are contained in S. Thus CU2(Cn) − S

has at least n + 1 components, if n ≥ 4. However, |S| = n and so CU2(Cn) is not

1-tough for n ≥ 4. Thus, CU2(Cn) is not Hamiltonian for n ≥ 4.

For a smaller example to follow the proof of Theorem 2.4.5, see Figure 2.2.
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Figure 2.6: CU2(C13)

Theorem 2.4.5. Let G be a cycle on n vertices. Let G′ be obtained from G by adding

a chord between two vertices of G having distance two between them. Then CU2(G
′)

is Hamiltonian.

Proof. Case 1: n is odd.

The idea is that CU2(Cn) has a spanning 2-factor when n is odd, and edges that

correspond to the chord will serve as bridges between the factors.

Assume that the vertices of G are numbered 0 to n − 1 and let the chord added

to get G′ be 02. Let H = CU2(G). For any vertex {i, j} in H, the distance d(i, j)

between i and j in G is in the range 0 ≤ d ≤ (n−1)/2. Construct a spanning 2-factor

for H as follows:

For 0 ≤ i ≤ ⌊n−3
4
⌋, let Si be the graph induced by vertices of the form {u, v} such

that d(u, v) ∈ {2i, 2i + 1}. Each Si is a cycle on 2n vertices, and if n ≡ 3 mod 4,

then S = {Si | 0 ≤ i ≤ ⌊n−3
4
⌋} forms a spanning 2-factor. If n ≡ 1 mod 4, then let

j = ⌊n−3
4
⌋ + 1 and let Sj be the cycle induced by the n vertices of the form {u, v}

such that d(u, v) = 2j. Thus, when n ≡ 1 mod 4, S ∪ Sj forms a spanning 2-factor

of H.
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Now, let H ′ = CU2(G
′). Adding the chord to G adds n edges to H; call each such

edge a bridge-edge. In each cycle Si except for i ≥ (n−3)/4 there are two consecutive

vertices {0, (n− 2i) mod n} and {0, n− 2i− 1}, and two bridge-edges joining these

to {2, (n− 2i) mod n} and {2, n− 2i− 1}, which are consecutive in cycle Si+1. We

use these bridge-edges to go between cycles to form a Hamiltonian cycle of H ′.

A Hamiltonian cycle obtained using this idea for C11 with the chord 02 is given in

Figure 2.7.

Case 2: n is even.

Let G be a cycle of the form {0, n−1, 1, 2, . . . , n−2} and G′ be obtained by adding

the chord 01. Consider C = G′−{n− 1}. Now C is a cycle on n− 1 vertices where n

is even, and hence as in Case 1 we can find a spanning 2-factor S for CU2(C). Also,

the subgraph of CU2(G
′) induced by S ′ = { {0, n− 1}, {1, n− 1}, . . . {n− 1, n− 1} }

is a cycle on n vertices and S ∪ S ′ is a spanning 2-factor for H ′ = CU2(G
′).

For each Si ∈ S, the consecutive vertices {0, 2i} and {0, 2i+1} are adjacent to the

consecutive vertices {2i, n− 1} and {2i + 1, n− 1} respectively in S ′. Hence we can

form a Hamiltonian cycle in H ′ = CU2(G
′).

2.5 Reconstruction of G from CU2(G) and U2(G)

One of the major challenges in the study of graph products is to reproduce the

original graph from the graph product. In this section we examine some more prop-

erties of these graph products which help us to reconstruct some classes of graphs

from CU2(G) and U2(G).

Note that reconstructing the graph G from the Cartesian product G2G is solved.

But the techniques do not seem to be applicable here. For more details on recon-

structing a graph from its Cartesian product see [25].
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Figure 2.7: A Hamiltonian cycle in CU2(G) where G = C11 with the chord 02.

2.5.1 Reconstructing G from CU2(G)

We start with the complete double vertex graph case. We call the vertices of the

form {x, x} twin-pairs.

Theorem 2.5.1. Let G be a graph. Then xy ∈ E(G) if and only if the twin-pairs

{x, x} and {y, y} have a common neighbor in CU2(G).

Proof. The only possible vertex that could be a common neighbor of the pairs {x, x}

and {y, y} in CU2(G) is the pair {x, y}. This is a common neighbor if and only if

xy ∈ E(G).

Corollary 2.5.2. If one can identify the twin-pairs of CU2(G), then one can construct

the line-graph of G, and hence one can reconstruct the graph G.
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Note that the line graphs of K3 and K1,3 are isomorphic. However, one can dis-

tinguish CU2(K3) from CU2(K1,3) by the number of vertices.

Corollary 2.5.3. If G is either regular or the degree of every vertex in G is odd, then

one can reconstruct G from CU2(G).

Proof. If all vertices of G are of degree r, then the degree of the twin-pairs is r and

that of the non-twin-pairs is 2r. So one can identify the twin-pairs and reconstruct G.

If the vertices of G are of odd degree, then the twin-pairs of CU2(G) have odd

degree, while any other vertex of CU2(G) has even degree. So one can identify the

twin-pairs and hence reconstruct G.

2.5.2 Reconstructing G from U2(G)

We next consider the double vertex graph case. We call {a, b} ∈ V (U2(G)) a line-

pair if and only if ab ∈ E(G). Hence each vertex of a double vertex graph is either a

line-pair or a non-line-pair.

Theorem 2.5.4. Two line-pairs in U2(G) are adjacent if and only if the corresponding

edges lie in a triangle.

Proof. Assume line-pairs {a, b} and {a, c} are adjacent in U2(G). By the definition

of the double vertex graph, bc ∈ E(G), and hence ab, ac, bc forms a K3.

If ab, ac are edges in a K3 in G, then by the definition of U2(G), the pairs {a, b}

and {a, c} will be adjacent.

Theorem 2.5.5. Two line-pairs in U2(G) have a common neighbor in U2(G) if and

only if the corresponding edges are either adjacent in G or lie in a 4-cycle of G.

Proof. (⇐) If edges ab and bc are adjacent, then {a, c} is a common neighbor to {a, b}
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and {b, c} in U2(G). If edges ab and cd lie in a 4-cycle of G, say abcda, then {a, b}

and {c, d} have common neighbors {a, c} and {b, d}.

(⇒) Suppose two line-pairs {a, b} and {x, y} have a common neighbor in U2(G).

If the two line-pairs overlap, say a = x, then clearly the corresponding edges are

adjacent. If the line-pairs don’t overlap, then the common neighbor has one element

from {a, b} and one element from {x, y}. Say the common neighbor is {a, x}. Then,

abxya forms a 4-cycle in G.

Corollary 2.5.6. Suppose G has no 4-cycle. If one can identify the line-pairs in

U2(G), then one can construct the line graph of G and hence one can reconstruct G.

Note that the line graphs of K3 and K1,3 are isomorphic. However, as in the case

of CU2(G), one can distinguish U2(K3) from U2(K1,3) by the number of vertices.

Corollary 2.5.7. If G is regular and has no 4-cycle, then one can reconstruct G from

U2(G).

Proof. IfG is regular, then the line-pairs of U2(G) have degree 2 less than the non-line-

pairs, by Observation 2.1.2. So one can recognize them, and hence by Corollary 2.5.6

one can reconstruct G.

2.5.3 Reconstructing Cubic Graphs

As one can see from Theorem 2.5.5, the presence of 4-cycles in G seems to make the

reconstruction a little harder. To overcome this, we restrict our attention to 3-regular

graphs, also called cubic graphs.

Theorem 2.5.8. Let G be a cubic graph. The corresponding edges of two line-pairs

lie in an induced 4-cycle in G if and only if the line-pairs lie in an induced K2,4 in
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U2(G) with the 4 line-pairs as one partite set and the 2 non-line-pairs as the other

partite set.

Proof. (⇒) By the definition of U2(C4), as shown in Figure 2.1.

(⇐) Consider an induced H = K2,4 in U2(G) as in the hypothesis. Let a be any

vertex in a line-pair of H. Then a cannot occur in all 4 line-pairs, since G is cubic.

Suppose a occurs in 3 line-pairs; say {a, b}, {a, c}, {a, d}. Then a must occur in

both of the non-line-pairs of H; say {a, x} and {a, y}. Then the fourth line-pair

is {x, y}. This implies that x is adjacent to all of b, c, d and y in G, which is a

contradiction. Thus, it follows that a occurs in at most 2 line-pairs. Let {a, b} be

such a line-pair. Then, by the definition of U2(G), one of the non-line-pairs must be

either {a, x} or {b, x} for some x ∈ V (G).

Consider a non-line-pair of H, say the pair {a, x}. Then x is in at most two

line-pairs by the previous paragraph. It follows that vertices a and x each lie in

exactly two line-pairs of H, because all four line-pairs of H are adjacent to {a, x}.

Also, if the other non-line-pair contains a or x, then it contains the other one too,

a contradiction. Thus, the two non-line-pairs do not overlap. Wlog, say the other

non-line pair is {b, y}.

Then the line-pairs are {a, b}, {a, y}, {b, x} and {x, y}. These four line-pairs induce

a 4-cycle in G. Hence the proof.

Hence, in a cubic graph one can identify the line-pairs, and hence one can identify

the induced 4-cycles as well as the non-induced 4-cycles. The idea is to construct the

line graph, except that at this point in some cases one can only identify the 4 vertices

which form a cycle, without knowing the order of the vertices.

Theorem 2.5.9. Let G be a cubic graph. Suppose two line-pairs lie in K2,4 repre-

senting an induced C4 in G, but not in a second K2,4. Then the two line-pairs are
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adjacent in G if and only if in U2(G) there exists a line-pair {p, q} which does not lie

in the same K2,4 as the two line-pairs, and {p, q} is at a distance 2 from at least one

of the line-pairs, but has a path of length 2 from the other line-pair.

Proof. (⇒) Suppose ab and ac lie in an induced 4-cycle in G. Since G is a cubic graph,

there exists d ∈ V (G) such that ad ∈ E(G). However, since we assumed that neither

ab nor ac lie in a second K2,4, we have cannot have both bd ∈ E(G) and cd ∈ E(G).

Let cd /∈ E(G). Therefore, in U2(G), the line-pair {a, d} is at a distance 2 from {a, c}

and has a path of length 2 from {a, b} through the vertex {b, d}.

(⇐) Suppose that two distinct line-pairs {a, b} and {x, y} have a line-pair at dis-

tance 2 from at least one of them and a path of length 2 from the other. If the

elements of the line-pair are distinct from the line-pairs {a, b} and {x, y}, say {c, d},

then there is a 4-cycle in G containing either ab or xy, and cd. This implies that either

{a, b} or {x, y} will lie on a second K2,4 in U2(G). In any case, we get a contradiction,

as we assumed that the line-pairs {a, b} and {x, y} do not lie in a second K2,4. Also,

the line-pair cannot overlap with both line-pairs {a, b} and {x, y}, because if it does

then it will be in the same K2,4 as {a, b} and {x, y}. If the line-pair overlaps with one

line-pair, say {a, b}, then {x, y} will be part of a second K2,4 in U2(G).

Hence if we assume that {a, b} and {x, y} do not overlap, then we get a contradic-

tion, and hence the proof.

One can therefore determine the order of the edges in the case of 4-cycles. If two

4-cycles overlap, then one can identify the overlapping K2,4 and hence determine the

overlapping edges.

Corollary 2.5.10. Given U2(G), one can reconstruct G if any of the following is

true.

(i) G is a cubic graph
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(ii) G is regular and contains no 4-cycles

(iii) G contains no 4-cycles and one can identify the line-pairs in U2(G)

2.5.4 Reconstruction of Trees

Trees are one of the popular classes of graphs studied when some properties or

techniques are difficult to apply to arbitrary graphs. In [1], Alavi, Behzad, Erdős and

Lick made the following observation and stated Theorem 2.5.12.

Observation 2.5.11. [1] If a connected graph H whose order is at least three is the

double vertex graph of some graph G of order n, then G has a vertex of degree one

if and only if H contains n − 2 independent edges whose removal from H = U2(G)

results in exactly two components, one of which is G− v and the other, U2(G− v).

Theorem 2.5.12. [1] Let T and T ′ be trees. Then U2(T ) ∼= U2(T
′) if and only if

T ∼= T ′.

However, [1] does not provide full proofs for these results. In regards to complete

double vertex graphs, we are able to prove one direction of the equivalent result.

Theorem 2.5.13. Let H = CU2(G) be connected. Then there exist (n−1)δ(G) edges

whose deletion will result in a graph with more than one component, one of which is

isomorphic to G.

Proof. Let V (G) = {v1, v2, . . . , vn}. Note that for any vertex vi of G, the subgraph

of H induced by S = {{vi, v1}, {vi, v2}, . . . {vi, vn}}, denoted by H[S], is isomorphic

to G and H − S is isomorphic to CU2(G− v).

Let degG(v1) = δ = δ(G). Let S = { {v1, vi} | 1 ≤ i ≤ n }. The vertex {v1, vi} of

CU2(G), 2 ≤ i ≤ n, is adjacent to exactly δ vertices not in S. Let M be the set of

edges joining the vertices in S to the vertices not in S. Clearly, |M | = (n− 1)δ and
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H −M has more than one component, one of which is the graph induced by S which

is isomorphic to G.

We are unable to show that one can reconstruct a tree from its complete double

vertex graph. However, we have verified by computer up to order 10 that different

trees give different complete double vertex graphs. Thus we conjecture:

Conjecture 2.5.14. Let T and T ′ be trees. Then CU2(T ) ∼= CU2(T
′) if and only if

T ∼= T ′.
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Chapter 3

Dominator Partitions of Graphs

Let G = (V,E) be a graph with vertex set V = {v1, v2, . . . vn}. Partitioning

the vertices of G into disjoint sets such that each set satisfies some property P is a

commonly studied and interesting problem in graph theory. One well-studied vertex

partitioning problem is the vertex coloring. In the case of coloring, the property that

needs to be satisfied is that every set must be an independent set. Dominator parti-

tions of graphs, which require the sets to satisfy some property related to domination,

are introduced by Hedetniemi et al. in [23].

A set S ⊆ V is a dominating set of G if every vertex in V −S is adjacent to at least

one vertex in S. The domination number γ(G) of G is the minimum cardinality of a

dominating set S in G, in which case S is called a γ-set. A vertex v ∈ V dominates a

set S ⊆ V , denoted by v ≻ S, if it is adjacent to every vertex w ∈ S, in which case we

say that v is a dominator of S. Domination and its many variations are well-studied

topics in graph theory, for example see [22, 24].

The study of dominator partitions is part of a larger study of vertex partitions

Π = {V1, V2, . . . , Vk} where each class Vi or each vertex v ∈ V has some domination

property. The first well-studied domination partition concepts were that of the do-
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matic number d(G) and idomatic number id(G), introduced in 1977 by Cockayne and

Hedetniemi [12].

Another kind of partitioning of the vertex set is introduced by Hedetniemi et al.

in [23]. A dominator partition of a graph G is a partition Π = {V1, V2, . . . , Vk} of

V (G) such that every vertex v ∈ V (G) is a dominator of at least one class Vj ∈ Π;

that is, for every v ∈ V (G) there exists a j, 1 ≤ j ≤ k, such that v ≻ Vj. Note

that a vertex v ∈ Vi is a dominator of its own class if Vi ⊆ N [v], where N [v] = {u |

uv ∈ E(G)} ∪ {v}. Since every vertex dominates itself, it follows that the trivial

partition Π = {{v1}, {v2}, . . . , {vn}} is a dominator partition. Thus, every graph has

a dominator partition.

A dominator partition Π = {V1, V2, . . . , Vk} is minimal if any partition Π′ obtained

from Π by forming the union of any two classes into one class, that is Vi ∪ Vj, i 6= j,

is no longer a dominator partition. The dominator partition number of a graph G,

denoted πd(G), is the minimum order of a dominator partition of G. The upper

dominator partition number of a graph G, denoted Πd(G), is the maximum order of

a minimal dominator partition of G.

In this chapter, we will discuss some new results we obtained in [27], which lead

to finding the upper dominator partition number of paths and cycles. In [27], we also

calculated bounds for the upper dominator partition number of a tree.

3.1 Bounds for πd(G) and Πd(G)

The following observations are made by Hedetniemi et al. in [23].

Observation 3.1.1. [23] For any graph G of order n,

1. 1 ≤ πd(G) ≤ Πd(G) ≤ n.
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2. πd(G) = 1 = Πd(G) ⇔ G = Kn.

3. πd(G) = n = Πd(G) ⇔ G = Kn.

A very tight bound for πd(G) is proved in [23].

Theorem 3.1.2. [23] For any graph G, γ(G) ≤ πd(G) ≤ γ(G) + 1.

In regards to Πd(G), the only bound known for Πd(G) is in terms of the minimum

and maximum degree of the graph. The following inequality is proved in [23].

Theorem 3.1.3. [23] For any graph G of order n,

n

1 + ∆(G)
≤ πd(G) ≤ Πd(G) ≤ n− δ(G).

Example 3.1.1. Πd(Km,n) = max {m,n} = (n +m) − δ(Km,n). In particular, if G

is a star on n vertices, K1,n−1, then Πd(G) = n− δ(G) = n− 1.

However, for a general graph, especially when G is a tree, this upper bound may

not be a tight bound. We will see that n− δ(G) is not a tight bound for a path or a

cycle by calculating Πd(G) when G is a path or a cycle.

3.2 Private Dominator Classes and Πd of Trees

Let Π = {V1, V2, . . . , Vk} be a dominator partition of a graph G. A class Vi ∈ Π is

said to be a private dominator class, abbreviated as PDC, if there exists v ∈ V (G)

such that v is a private neighbor of Vi; that is, v ≻ Vi and v does not dominate any

other class of Π.

Example 3.2.1. Π = {{v1}, {v2, v4}, {v3, v5}, {v6}}, shown in Figure 3.1, is a domi-

nator partition of P6, and every class of Π is a PDC.
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Figure 3.1: A dominator partition of P6 where all classes are PDCs.

Example 3.2.2. Consider P4 = {v1, v2, v3, v4} where vivi+1 ∈ E(P4) for i = 1, 2, 3,

and a partition of P4, Π = {{v1}, {v2, v3}, {v4}}. Here the class {v2, v3} is not a PDC

because there is no vertex in P4 which dominates only {v2, v3}.

In [27], we obtained a characterization for a dominator partition to be minimal.

Theorem 3.2.1. Let Π be a dominator partition of a graph G. Π is a minimal

dominator partition if and only if there is at most one class in Π which is not a PDC.

Proof. (⇒) Let Π = {V1, V2, . . . , Vk} be a minimal dominator partition of a graph G.

Assume that there exist Vi, Vj ∈ Π such that Vi and Vj are not PDCs. Consider the

partition Π̂ obtained from Π by merging Vi and Vj. Let v ∈ V (G). Since Π is a

dominator partition, v ≻ Vm for some m, 1 ≤ m ≤ k in Π. If m 6= i, j then v ≻ Vm

in Π̂ also. Wlog, if we assume that m = i, then since Vi is not a PDC, v should

dominate at least one more class, say v ≻ Vr. If r 6= j then v ≻ Vr in Π̂ also. If r = j,

then v ≻ Vi ∪ Vj in Π̂. So in any case, Π̂ is a dominator partition, which contradicts

the minimality of Π.

(⇐) Let Π = {V1, V2, . . . , Vk} be a dominator partition of a graph G such that

there is at most one class which is not a PDC. Let Vi, Vj ∈ Π. Since Π has at most
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one class which is not a PDC, either Vi or Vj or both must be PDCs. Wlog assume

that Vi is a PDC. So there exists v ∈ V (G) such that v dominates only Vi in Π and in

particular v does not dominate Vj. Thus in a partition Π̂ obtained by merging Vi and

Vj, v does not dominate any classes, and so Π̂ is not a dominator partition. Hence Π

is a minimal dominator partition.

Theorem 3.2.2. For any graph G, Πd(G) ≥ β0(G), where β0(G) is the independence

number of G.

Proof. We will construct a minimal dominator partition of order at least β0 for G.

Let S be an independent set of vertices of G such that |S| = β0(G). Construct Π

by taking all the vertices in S as singleton classes, and V − S as one class. Since

S is a maximal independent set, any vertex not in S is adjacent to a vertex in S,

and hence Π is a dominator partition. If all the singleton classes formed using the

vertices in S are PDCs, then Π is a minimal dominator partition by Theorem 3.2.1

and |Π| = β0(G) + 1.

So, for some x ∈ S, suppose {x} is not a PDC. Then, since S is a set of independent

vertices, we must have x ≻ V − S. Now, form a partition Π′ from Π by merging

x into V − S. Since S is a set of independent vertices and x ∈ S, no vertex of

S − {x} dominates (V − S) ∪ {x}, and hence all the classes of Π′ are PDCs. So, by

Theorem 3.2.1, Π′ is a minimal dominator partition and |Π′| = β0. Thus, we have

Πd(G) ≥ β0(G).

For a bipartite graph G, β0(G) ≥ n/2. Thus we have the following corollary.

Corollary 3.2.3. If G is a bipartite graph on n vertices, then Πd(G) ≥ n/2.

We saw in Example 3.1.1 that the complete bipartite graph Km,m has Πd = m.

Thus the lower bound is sharp for bipartite graphs. However, we show now that it is

not quite sharp for trees. We will need the following lemma.

32



Lemma 3.2.4. Let T be a tree and v ∈ V (T ). Consider a tree T ∗ formed by adding

two vertices x and y such that x is adjacent to y and y is adjacent to v. Then

Πd(T
∗) ≥ Πd(T ) + 1.

Proof. Let Π be a minimal dominator partition of T such that |Π| = Πd(T ). Consider

Π′ = Π∪ {x, y}. Since x and y dominate the class {x, y}, Π′ is a dominator partition

of T ∗. Further, since x is adjacent only to y, x dominates only {x, y} in Π′ and hence

{x, y} is a PDC. Also, since no vertex other than x and y dominates {x, y}, any PDC

in Π is a PDC in Π′ as well. So Π′ has at most one class which is not a PDC. Hence by

Theorem 3.2.1, Π′ is a minimal dominator partition of T ∗ and |Π′| = |Π| + 1. Thus,

Πd(T
∗) ≥ Πd(T ) + 1.

Theorem 3.2.5. For any tree T on n vertices, n ≥ 4, Πd(T ) ≥
⌈

n+1
2

⌉
.

Proof. By Corollary 3.2.3, we know for any tree T , Πd(T ) ≥ n
2
. We will show using

induction on n that for any tree T with more than three vertices, Πd(T ) > n
2
. When

n = 4, Πd(T ) > n
2
, because Πd(K1,3) = 3 and Πd(P4) = 3. Assume that for any tree

with k vertices where 3 < k < n, Πd(T ) > k
2
.

Suppose T ∗ is a tree on n vertices such that Πd(T
∗) = n

2
. By Theorem 3.2.2

and the fact that the independence number of a bipartite graph on n vertices is at

least n/2, we get β0(T
∗) = n

2
. Thus it follows that T ∗ has a perfect matching. Now

consider a diametral path in T ∗. Since T ∗ has a perfect matching, the diametral path

must end in a leaf x which is adjacent to a vertex y such that deg
T∗

(y) = 2. Now

T = T ∗ − {x, y} is a tree in n− 2 vertices and by the induction hypothesis, we have

Πd(T ) > n−2
2

. Thus, by the Lemma 3.2.4,

Πd(T
∗) ≥ Πd(T ) + 1

>
n− 2

2
+ 1
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=
n

2
.

This contradicts our assumption that Πd(T
∗) = n

2
, and hence the theorem.

This bound is sharp as the following observation shows.

Observation 3.2.6. Consider the octopus Ob which is constructed as follows: take

a star with b edges, b ≥ 1, and subdivide every edge exactly once. The octopus has

order n = 2b+ 1. Then Πd(Ob) = n+1
2

.

Proof. We will use induction on b to prove show that Πd(Ob) ≤
n+1

2
. When b = 1, Ob

is a P3 and Πd(P3) = 2. Assume that Πd(Ob−1) ≤ b = n−1
2

.

Let Π be a minimal dominator partition of Ob. If all the leaves of Ob are singleton

classes, then |Π| = n+1
2

. Suppose there exists a leaf v of Ob such that Vi = {u, v}

forms a class in Π, where u is adjacent to v. In this case, consider Π′ = Π − Vi. No

vertex of Ob except u and v dominates Vi, and hence Π′ is a dominator partition of

Ob − {u, v} = Ob−1. Also, in Π the class Vi is a PDC because v dominates only Vi.

Let Vj such that j 6= i be a PDC in Π, and w be a private neighbor of Vj. Since

u dominates Vi and v does not dominate any class other than Vi, we get w /∈ {u, v}.

Thus w ∈ V (Ob−1) and w is a private neighbor of Vj; hence Vj is a PDC of Π′.

Therefore every PDC in Π, except Vi, is a PDC in Π′ too. Since Π has at most one

class which is not a PDC, Π′ has at most one class which is not a PDC, and hence

Π′ is a minimal dominator partition of Ob−1, by Theorem 3.2.1. By the induction

hypothesis,

|Π| = |Π′| + 1

≤
n− 1

2
+ 1

=
n+ 1

2
.
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On the other hand, suppose none of classes of Π are of the form {u, v} where v is a

leaf of Ob and uv ∈ E(Ob). As discussed earlier, if all leaves form singleton classes,

then we are done. So, let class Vi contain a leaf, say v, and let |Vi| > 1. Then the

neighbor of v, say u, must form a singleton class. This implies, since |Vi| > 1 and

v ∈ Vi, that the class Vi is not a PDC in Π. Since Π is a minimal dominator partition

of Ob, by Theorem 3.2.1, every class Vj with j 6= i is a PDC in Π.

In this case we will show that the root r of Ob is contained in Vi, where the root

of Ob is the vertex that is not adjacent to a leaf. Suppose r ∈ Vj, where j 6= i. Since

Vj is a PDC, there exists a vertex w such that w dominates only Vj. However, r

dominates the class {u}, and thus w 6= r. Moreover, since r ∈ Vj and r 6= w, we have

rw ∈ E(Ob). Since w dominates only Vj and r ∈ Vj, the leaf, say x, adjacent to w

must form a singleton class. However, this would imply that w dominates {x} 6= Vj

also. This is a contradiction to the assumption that w dominates only Vj. Therefore

r ∈ Vi.

Also, since we assumed that there are no classes in Π of the form {p, q}, where p

is a leaf and p is adjacent to q, for any leaf p we have either p ∈ Vi or q ∈ Vi where p

is adjacent to q because Π has at most one class which is not a PDC and Vi is not a

PDC. In other words, we have |Vi| > 2.

Now consider Ob−1 = Ob − {u, v}. Also consider Π′ = Π− ({u} ∪ Vi)∪ (Vi − {v}).

We will show that Π′ is a minimal dominator partition of Ob−1. Consider any vertex

x in Ob−1. If x dominates Vj in Π where Vj 6= {u}, then x dominates Vj ∈ Π′. If x

dominates only {u} in Π, then x = r. In this case, all neighbors of r except u are

in Vi, and no leaves other than v are in Vi. This implies r dominates Vi − {v} in Π′.

Therefore Π′ is a dominator partition.

Now we will show that Π′ is a minimal dominator partition. Consider Vj ∈ Π′.

Suppose Vj is a PDC in Π and let x be a private neighbor of Vj. If x dominates
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Vi−{v} in Π′, then Vj must be of the form {y} where y is a leaf. In this case y is also

a private neighbor of Vj, and hence Vj is a PDC in Π′. If x does not dominate Vi−{v}

in Π′, then x dominates only Vj in Π′, and hence Vj is a PDC in Π′. Therefore Π′ has

at most one class which is not a PDC, and hence Π′ is a minimal dominator partition

of Ob−1 by Theorem 3.2.1. By the induction hypothesis we have,

|Π| = |Π′| + 1

≤
n− 1

2
+ 1

=
n+ 1

2
.

Therefore, Πd(Ob) ≤ n+1
2

. However, by Theorem 3.2.5, Πd(Ob) ≥ n+1
2

and thus

Πd(Ob) = n+1
2

.

3.3 Πd for a Path and a Cycle on n Vertices

Establishing the exact value of Πd for a path or a cycle turns out to be surprisingly

hard. A lot of cases must be considered even when we try to calculate a slightly tighter

upper bound than n− δ(G). In [27], however, we provided the exact values of Πd(Pn)

and Πd(Cn).

Theorem 3.2.1 has an immediate corollary when the graph is a path or a cycle.

Corollary 3.3.1. Let Π be a minimal dominator partition of Pn or Cn. Then all the

classes of Π, except at most one, must be K1, K2, K2 or P3.

3.3.1 The Upper Dominator Partition Number of Pn

Observation 3.3.2. Πd(P6) ≥ 4.
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A minimal dominator partition Π of P6 with |Π| = 4 is given in Example 3.2.1.

Theorem 3.3.3. Πd(Pn) ≥
⌊

2n+1
3

⌋
.

Proof. We will prove this by constructing a minimal dominator partition Π of size
⌊

2n+1
3

⌋
for Pn, n ≥ 6. (If n < 6, then we can easily find a minimal dominator partition

of the required size).

• n ≡ 0 mod 6 : Repeat the pattern for P6 as in Example 3.2.1 for every six

vertices.

• n ≡ 1 mod 6 : Repeat the pattern for P6 as in Example 3.2.1 for every six

vertices and keep the last vertex as a singleton class.

• n ≡ 2 mod 6 : Repeat the pattern for P6 as in Example 3.2.1 for every six

vertices and keep the last two vertices as a K2 class.

• n ≡ 3 mod 6 : Repeat the pattern for P6 as in Example 3.2.1 for every six

vertices and keep the last three vertices as a K2 class and a K1 class.

• n ≡ 4 mod 6 : Repeat the pattern for P6 as in Example 3.2.1 for every six

vertices starting from the third vertex. Keep the first and the last vertices as

K1 classes, and the second and the last-but-one vertex as a K2 class.

• n ≡ 5 mod 6 : Repeat the pattern for P6 as in Example 3.2.1 for every six

vertices and keep the last five vertices in the pattern K1 class, P3 class, K1

class.

One can verify that for each of the above cases Π has at most one class which is

not a PDC and |Π| =
⌊

2n+1
3

⌋
.

Note that in the above construction when all the classes of Π are PDCs, we have

|Π| =
⌊

2n+1
3

⌋
=

⌊
2n
3

⌋
.
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Observation 3.3.4. Let Π be a minimal dominator partition of Pn where all the

classes are PDCs. Then there will be even number of K2 classes and they occur in

pairs in the pattern of K1, K2, K2, K1 forming a P6.

Proof. Let Vi be a K2 class and let Vi = {u, v}. Since Vi is a PDC, there exists a

vertex x such that x dominates only Vi, in particular x is adjacent to both u and v.

Let x ∈ Vj. Since Vi is a K2 class and x is adjacent to both vertices of Vi, we have

Vi 6= Vj. Since x dominates only Vi, there exists a vertex y such that y ∈ Vj. We

assumed that all classes of Π are PDC, and so Vj is a PDC. Let z be the private

neighbor of Vj. However, x is adjacent to both u and v, and deg(x) ≤ 2, so z must

be either u or v and |Vj| = 2. Also, Vj must be a K2 class, because x is not adjacent

to y. Moreover, since Π is a dominator partition, y must dominate a K1 class and

the vertex in Vi that does not dominate Vj must dominate a K1 class. Hence the

proof.

Theorem 3.3.5. Let Π be a minimal dominator partition of Pn, n > 1, such that all

the classes of Π are PDCs. Then |Π| ≤
⌊

2n
3

⌋
.

Proof. We will prove this theorem using induction on n. For the base case with n = 2

the theorem clearly holds. Assume that for all paths with less than n vertices the

theorem holds. Consider a minimal dominator partition Π of Pn such that all the

classes of Π are PDCs. Since all the classes of Π are PDCs, the classes must be K1,

K2, K2 and P3. Moreover, since Π is minimal, not all the classes can be K1. Let Vi

be a class of Π which is not a K1.

Suppose Vi is a K2. By Observation 3.3.4, there exists K2 class, say Vj, which

pairs up with Vi. Delete the vertices of Vi and Vj from the path to obtain two paths

Pn1
and Pn2

with n1 and n2 vertices respectively. While deleting the vertices of Vi

and Vj, if the K1 classes adjacent to Vi and Vj do not have a private neighbor other
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than themselves and the vertices of Vi and Vj, then delete them too. (This ensures

that n1 6= 1 and n2 6= 1.) Now the classes of Π can be classified into Π1 and Π2 such

that Π1 contains the classes of Π with vertices of Pn1
, and Π2 contains the classes

with vertices of Pn2
. Now, Π1 and Π2 are minimal dominator partitions of Pn1

and

Pn2
respectively and all the classes are PDCs. Thus depending on whether we deleted

the K1 classes adjacent to Vi and Vj,we have the following.

|Π| = |Π1| + |Π2| + 2

≤

⌊
2n1

3

⌋
+

⌊
2n1

3

⌋
+ 2

≤

⌊
2(n− 4)

3

⌋
+ 2

≤

⌊
2n

3

⌋
.

Or,

|Π| = |Π1| + |Π2| + 3

≤

⌊
2n1

3

⌋
+

⌊
2n1

3

⌋
+ 3

≤

⌊
2(n− 5)

3

⌋
+ 3

≤

⌊
2n

3

⌋
.

Or,

Π = |Π1| + |Π2| + 4

≤

⌊
2n1

3

⌋
+

⌊
2n1

3

⌋
+ 4

≤

⌊
2(n− 6)

3

⌋
+ 4
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≤

⌊
2n

3

⌋
.

If Vi is a K2 class, then delete Vi and use similar arguments as above. If Vi is a P3

class, then delete Vi and the K1 classes adjacent to Vi if necessary as in the case where

Vi is a K2 class, and use similar arguments as above.

Theorem 3.3.6. Let Π be a minimal dominator partition of Pn such that Π has

exactly one class Vi which is not a PDC. However, suppose there exists w ∈ V (Pn)

such that w ≻ Vi. Then, |Π| ≤
⌊

2n+1
3

⌋
.

Proof. Let Π be a minimal dominator partition of Pn satisfying the hypothesis of the

theorem. Since w ≻ Vi, which is not a PDC, and degPn
(w) ≤ 2, Vi must be K1 or K2

or K2.

Suppose Vi is a K2. Since Vi is not a PDC, w ≻ Vk, k 6= i. But deg(w) ≤ 2 and so

Vk = {w}. Let Vi = {u, v}. Also, either u or v, or both are not adjacent to a K1 class

other than Vk, because Π is minimal. Delete u,w, v and any K1 class adjacent to u

or v if necessary, as in the proof of Theorem 3.3.5. This results in at most two paths,

viz. Pn1
and Pn2

with n1 and n2 vertices respectively. As before, let Π1 and Π2 be

the classes of Π with vertices from Pn1
and Pn2

respectively. Since the only class in

Π which is not a PDC is Vi, Π1 and Π2 are minimal dominator partitions of Pn1
and

Pn2
respectively and all the classes are PDCs. Now, by applying Theorem 3.3.5 for

Π1 and Π2, and using similar algebra as in the proof of Theorem 3.3.5, one can show

that |Π| ≤
⌊

2n+1
3

⌋
.

If Vi is a K1 class, then delete the vertex of Vi and apply Theorem 3.3.5. If Vi is

a K2 class, then delete the vertices of Vi and the necessary adjacent K1 classes and

apply Theorem 3.3.5.
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Theorem 3.3.7. Let Π be a minimal dominator partition of Pn such that there exists

a class Vi ∈ Π where no vertex of Pn dominates Vi. Then |Π| ≤
⌊

2n+1
3

⌋
.

Proof. Suppose Π is a minimal dominator partition of Pn satisfying the hypothesis.

Clearly, any vertex of Vi dominates either a K1 class or a K2 class. Also note that if

any vertex v of Vi dominates a K2 class, Vj, then v is the only private neighbor for Vj.

Case 1: All vertices of Vi dominate K2 classes.

In this case Vi contains only isolated vertices. Suppose |Vi| = 2 and let Vi = {u, v}.

(If |Vi| > 2, then we can make |Vi| = 2 by merging all but two vertices of Vi with

the K2 class each vertex dominates. The resultant partition is a minimal dominator

partition of Pn and has the same number of classes as Π.) Let v ≻ Vj = {x, y}, where

Vj is a K2 class, and let x ≻ Va = {a} and y ≻ Vb = {b}.

Case 1a: The class Va has a private neighbor other than x and a.

Delete v and Vj from the path to form two paths, Pn1
and Pn2

. Let Π1 and Π2

respectively be the classes of Π having vertices from Pn1
and Pn2

. Now merge u with

the K2 class that u dominates to form a P3. Wlog, assume that Vb ∈ Π2. Π1 and Π2

are minimal dominator partitions of Pn1
and Pn2

, because all classes of Π1 are PDCs

and the only class which could be a non-PDC in Π2 is Vb. However, in that case, Π2

satisfies the hypothesis of Theorem 3.3.6. Note that a cannot be an end-vertex of Pn

in this case and so n1 > 1. Thus applying Theorems 3.3.5 and 3.3.6, we have

|Π| = |Π1| + |Π2| + 2

≤

⌊
2n1

3

⌋
+

⌊
2n2 + 1

3

⌋
+ 2

≤

⌊
2(n− 3) + 1

3

⌋
+ 2

≤

⌊
2n+ 1

3

⌋
.
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Case 1b: The class Va does not have a private neighbor other than x and a, and the

class Vb does not have a private neighbor other than y and b.

In this case consider u instead of v. Let u ≻ Vk = {r, s}, where Vk is a K2 class,

and let r ≻ Vc = {c} and s ≻ Vd = {d}. If Vc has a private neighbor other than r and

c, then we have case 1a. Suppose Vc does not have a private neighbor other than r

and c and Vd does not have a private neighbor other than s and d. Delete the vertices

u, v, x, y, a, b, r, s, c and d from the path. This creates paths Pn1
, Pn2

, and Pn3
. Let

Π1, Π2 and Π3 be the classes in Π having vertices from Pn1
,Pn2

and Pn3
respectively.

Moreover, ni 6= 1 because of the minimality of Π. Πi is a minimal dominator partition

of Pni
and all classes of Πi are PDCs. So we have,

|Π| = |Π1| + |Π2| + |Π3| + 7

≤

⌊
2n1

3

⌋
+

⌊
2n2

3

⌋
+

⌊
2n3

3

⌋
+ 7

≤

⌊
2(n− 10)

3

⌋
+ 7

≤

⌊
2n+ 1

3

⌋
.

Case 2: All vertices of Vi dominate K1 classes.

Let |Vi| = k.

Case 2a: Every K1 class which is dominated by vertices of Vi also has a private

neighbor not in Vi.

Delete Vi from the path to form at most k+1 paths. (Note that in this case, any K2

class which is not Vi is a PDC and hence has the property mentioned in Observation

3.3.4.) Let Πi be the class in Π with vertices from Pni
. So for all i, all of the classes
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of Πi are PDCs, and thus Πi is a minimal dominator partition of Pni
. So, we have,

|Π| = |Π1| + |Π2| + . . .+ |Πk+1| + 1

≤

⌊
2n1 + 1

3

⌋
+

⌊
2n2 + 1

3

⌋
+ . . .+

⌊
2nk+1 + 1

3

⌋
+ 1

≤

⌊
2(n− k) + k + 1

3

⌋
+ 1

≤

⌊
2n+ 1

3

⌋
, if k > 2.

(Note that here we cannot apply Theorem 3.3.5 as some of the paths produced may

be P1.)

Since no vertex of Pn dominates Vi, |Vi| = k > 1. Suppose |Vi| = k = 2. Since no

vertex of Pn dominates Vi and Π is minimal, ni > 1 for some i. Let n1 > 1. We have,

|Π| = |Π1| + |Π2| + |Π3| + 1

≤

⌊
2n1

3

⌋
+

⌊
2n2 + 1

3

⌋
+

⌊
2n3 + 1

3

⌋
+ 1

≤

⌊
2(n− 2) + 2

3

⌋
+ 1

≤

⌊
2n+ 1

3

⌋
.

Case 2b: There exists a vertex v ∈ Vi such that v ≻ Vj = {x} and v is the only private

neighbor of Vj.

Merge v into Vj to form a K2 class. If Vi − v can be combined with a class Vk ∈ Π

to form a dominator partition (such a partition is minimal since all the classes are

PDCs), then 2 ≤ |Vi| ≤ 3. Wlog, assume that |Vi| = 2. (If |Vi| = 3, then there exists

a vertex in Vi which can be merged into the K1 class it dominates to make |Vi| = 2

maintaining the cardinality and the minimality of Π.) Delete Vi, Vj and Vk from the
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path. (If there is a tie for Vk, then select Vk to be the one such that the path created

after the deletion is not P1. Such a choice is always possible because of the minimality

of Π.) The deletion of these classes creates at most 3 paths, Pn1
, . . . , Pn3

(note that

ni 6= 1, ∀i), and defining Πi as above we have,

|Π| = |Π1| + |Π2| + |Π3| + 3

≤

⌊
2(n− 4)

3

⌋
+ 3

≤

⌊
2n+ 1

3

⌋
.

Suppose Vi − v cannot be combined with any class to form a dominator partition. If

Vi − v has a vertex with the same property as v then do the same procedure again.

(Stop the process if Vi reduces to a K1 or K2 and apply Theorem 3.3.6). If there is

no vertex in Vi − v with the same property as v, then we have case 2a.

Case 3: There exists v ∈ Vi such that v dominates a K2 class, say Vp = {x, y}, and

there exists u ∈ Vi such that u dominates a K1 class.

Merge v into Vp to form a P3. If Vi − v can be combined with a class Vk ∈ Π to

form a dominator partition, then we know 2 ≤ |Vi| ≤ 3. Again, as in case 2b assume

|Vi| = 2. Let x ≻ Va = {a} and y ≻ Vb = {b}.

If Va does not have a private neighbor other than x and a, and Vb does not have

a private neighbor other than y and b, then delete the vertices of Va, Vb, Vi, Vk and Vp

from the path. Each path thus produced has more than one vertex. Define Πi as

before. Then all the classes of Πi are PDCs. So we have,

|Π| = |Π1| + |Π2| + |Π3| + 5

≤

⌊
2(n− 7)

3

⌋
+ 5
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≤

⌊
2n+ 1

3

⌋
.

However, if Va has a private neighbor other than x and a, and Vb does not have a

private neighbor other than y or b, then delete the vertices of Vi, Vk, Vb and Vp. We

then have,

|Π| = |Π1| + |Π2| + |Π3| + 4

≤

⌊
2(n− 6)

3

⌋
+ 4

≤

⌊
2n+ 1

3

⌋
.

Finally, if Va has private neighbors other than x and a, and Vb has private neighbors

other than y and b, then delete the vertices of Vi, Vk and Vp and we have

|Π| = |Π1| + |Π2| + |Π3| + 3

≤

⌊
2(n− 5)

3

⌋
+ 3

≤

⌊
2n+ 1

3

⌋
.

Suppose Vi − v cannot be combined with any of the classes of Π. If no other

vertices of Vi dominate K2 classes, then we have case 2 and we are done. If there

exists m ∈ Vi − v such that m dominates a K2 class, then repeat case 3. (Stop the

process if we end with a K1 or K2 and apply Theorem 3.3.6.) Hence the proof.

From Theorems 3.3.3, 3.3.5, 3.3.6 and 3.3.7 we have the following corollary.

Corollary 3.3.8. Πd(Pn) =
⌊

2n+1
3

⌋
for n ≥ 1.
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3.3.2 The Upper Dominator Partition Number of Cn

In [27], we calculated the upper dominator partition number of a cycle on n vertices.

Note that Πd(C3) = 1 and Πd(C4) = 2.

Theorem 3.3.9. Πd(Cn) ≥
⌊

2n+1
3

⌋
, for n > 4.

Proof. We will construct a minimal dominator partition of size
⌊

2n+1
3

⌋
of Cn, n > 4,

as follows.

• n ≡ 0 mod 6. Delete an edge in Cn to form a Pn. Find a minimal dominator

partition Π of Pn, using the construction in the proof of Theorem 3.3.3. Π is a

minimal dominator partition of Cn with |Π| = ⌊2n+1
3

⌋.

• n ≡ i mod 6, where i = 1, 2, 5. Delete two edges of Cn to form paths Pi

and Pn−i with i and n − i vertices respectively. Find a minimal dominator

partition Π1 for Pi, and using the construction in the proof of Theorem 3.3.3

find a minimal dominator partition Π2 for Pn−i. Now Π = Π1 ∪Π2 is a minimal

dominator partition for Cn and |Π| =
⌊

2n+1
3

⌋
.

• n ≡ i mod 6, where i = 3, 4. Delete two edges from Cn to form paths Pi+6

and Pn−(i+6). Π1 = { {v1}, {v2, v4}, {v3, v7}, {v5}, {v6, v8}, {v9} } and Π1 =

{ {v1}, {v2, v4}, {v3, v8}, {v5}, {v6}, {v7, v9}, {v10} } is a minimal dominator par-

tition for Pi+6 when i = 3 and i = 4 respectively. Find a minimal dominator

partition Π2 for Pn−(i+6) using the construction in the proof of Theorem 3.3.3.

Now Π = Π1 ∪ Π2 is a minimal dominator partition of Cn and |Π| =
⌊

2n+1
3

⌋
.

So we have Πd(Cn) ≥
⌊

2n+1
3

⌋
, n > 4.

Theorem 3.3.10. Πd(Cn) ≤
⌊

2n+1
3

⌋
, n ≥ 3.
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Proof. Let Π be a minimal dominator partition of Cn. We produce a minimal domi-

nator partition for a path from Π. We will consider the following 6 cases.

1. There exists a K2 class in Π. Delete the vertices of the K2 class from Cn to form

a path and delete the K2 class from Π to form Π′. Π′ is a minimal dominator

partition of Pn−2 and so |Π| = |Π′| + 1 ≤
⌊

2n+1
3

⌋
.

2. Two K1 classes are adjacent. Delete the edge connecting two K1 classes to

produce Pn. Now, Π is a minimal dominator partition of Pn and hence |Π| ≤
⌊

2n+1
3

⌋
.

3. There is a P3 class in Π. In this case delete the vertices of P3 and the vertices of

the K1 classes adjacent to P3 if if they do not have a private neighbor other than

vertices of the deleted P3 class. In any case, using simple algebra, |Π| ≤
⌊

2n+1
3

⌋
.

4. There are two K2 classes in Π that are adjacent. In this case delete the vertices

of both K2 classes. Also delete the vertices of the K1 classes adjacent to the

K2 classes if the K1 classes do not have a private neighbor other than vertices

of the deleted K2 classes. In any case, using simple algebra, |Π| ≤
⌊

2n+1
3

⌋
.

5. If Π does not have any of the above four situations, then there must be a class

Vi ∈ Π which is not a PDC. So if there is aK2 class other than Vi, say Vj = {p, q}

then Vj must have a private neighbor in Vi. If both K1 classes that are adjacent

to Vj have private neighbors other than the vertices of Vj and themselves, then

delete the vertices of Vj and its private neighbor v ∈ Vi to form Pn−3. Then

depending on whether Vi − v can be merged with a class of Π, we have

|Π| ≤

⌊
2(n− 3) + 1

3

⌋
+ 1 or

⌊
2(n− 3) + 1

3

⌋
+ 2

≤

⌊
2n+ 1

3

⌋
.
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If a K1 class, say {x}, adjacent to Vj does not has a private neighbor other than

x and one vertex of Vj, say p, then delete the edge incident with x other than

xp. Now we have Pn and Π is a minimal dominator partition of Pn. Hence

|Π| ≤
⌊

2n+1
3

⌋
.

6. Π has only K1 classes and a non-PDC. In this case, since none of the K1 classes

are adjacent (because case 2 is not satisfied), the vertices of the K1 classes form

an independent set. Hence the number of K1 classes is at most
⌊

n
2

⌋
, and thus

|Π| ≤
⌊

n
2

⌋
+ 1 ≤

⌊
2n+1

3

⌋
, n ≥ 3.

So in any case we have |Π| ≤
⌊

2n+1
3

⌋
, n ≥ 3.

By Theorems 3.3.9 and 3.3.10 we have the following corollary.

Corollary 3.3.11. Πd(Cn) =
⌊

2n+1
3

⌋
, n > 4.
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Chapter 4

Minimal Rankings of Graphs

In the last chapter we looked at a vertex partitioning problem, the dominator

partitions. As mentioned in the previous chapter, one of the well studied vertex

partitioning problem is the vertex coloring problem. In this chapter we will discuss a

variation of the coloring problem called ranking.

Let G = (V,E) be an undirected graph. A function f : V (G) → {1, 2, . . . , k} is a

(vertex) k-ranking of G if for u, v ∈ V (G), f(u) = f(v) implies that every u− v path

contains a vertex w such that f(w) > f(u). By definition, every ranking is a proper

coloring. The rank number of G, denoted χr(G), is the minimum value of k such that

G has a k-ranking. If the value of k is unimportant, then f will be referred to simply

as a ranking of G.

Ghoshal, Laskar and Pillone introduced minimal rankings in [18]. A k-ranking f

is a minimal k-ranking of G if for all x ∈ V (G) with f(x) > 1, the function g defined

on V (G) by g(z) = f(z) for z 6= x and 1 ≤ g(x) < f(x) is not a ranking.

In other words, a ranking is minimal if the reduction of any one label violates the

ranking conditions. The arank number, denoted ψr(G), is defined to be the maximum

value of k for which G has a minimal k-ranking [18].
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(a) A ranking.

(b) A minimal χr-ranking.

(c) A χr-ranking, but not minimal.

(d) A minimal ranking, but not a χr-ranking.

Figure 4.1: A few examples of ranking for P8.

The problem of finding the rank number of a graph is studied because of its

many applications including the design of very large scale integration layouts (VLSI),

Cholesky factorization of matrices in parallel, and scheduling problems of assembly

steps in manufacturing systems [13, 15, 35, 36, 39].

One early result dealing with rankings of graphs is given in [8] by Bodlaender

et al. As mentioned before, Ghoshal, Laskar and Pillone introduced the concept of

minimal rankings [18]. Later, Laskar and Pillone considered some complexity issues

of minimal rankings as well as properties of minimal rankings [19, 32, 33].

Figure 4.2: χr-ranking of K1,4 Figure 4.3: ψr-ranking of K1,4
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Finding the rank number and the arank number of an arbitrary graph is difficult,

so attempts have been made to find the rank and the arank numbers of classes of

graphs. Some examples include:

• χr(K1,n−1) = 2 and ψr(K1,n−1) = n.

• χr(Pn) = ⌊log2 n⌋ + 1. [8]

• ψr(Pn) = ⌊log2(n+ 1)⌋ + ⌊log2(n+ 1 − (2⌊log2 n⌋−1))⌋. [29]

• χr(P22Pn) = ψr(Pn) + 1. [38]

In this chapter we consider the Cartesian product of complete graphs, Kn2Kn.

Kn2Kn is also studied in the context of statistical design of experiments, and is a

two-class association scheme first introduced by Bose [9].

The Cartesian product Kn2Kn is also called the rook’s graph, denoted Rn,n. A

rook’s graph is a graph that represents all legal moves of the rook chess piece on

an n × n chessboard. Thus, vertices represent squares on the chessboard, and two

vertices are adjacent if and only if a rook, when placed on one square, can reach the

other square in one legal move, which is either horizontally or vertically. Recently

much interest has been developed in studying various graph parameters related to the

legal moves of different chess pieces on an n × n chessboard. The graph parameters

studied are usually domination-related parameters and the chess pieces are queens,

kings, bishops, rooks, and knights. The reader is referred to an excellent survey article

in [21].

In general, a χr-ranking may not be a minimal ranking. Here, however, by χr(G)-

ranking we mean a minimum ranking of G which is also minimal. If f is a ranking

and x ∈ V (G), then f(x) is the label of x. If f(x) = f(y) implies x = y, then the label

is distinct ; otherwise it is a repeated label. The concept of a reduction, introduced in
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[18], is as follows: given a graph G = (V,E) and a subset S ⊆ V (G), define a graph

G∗ = (V − S,E∗) where for u, v ∈ V − S, uv ∈ E∗ if and only if either uv ∈ E(G),

or there exists a path u− w1 − w2 − . . .− wm − v in G where wi ∈ S for 1 ≤ i ≤ m.

We say that the graph G∗ is the reduction of G by S and use the notation G∗
S. An

example of a graph and its reduction is given in Figure 4.4.

(a) S = {1, 2} (b) G∗

S

Figure 4.4: Example of a reduction process

4.1 Properties of Rankings

In this section, we cite some of the already established results on rankings that

will be useful for the rest of this chapter.

1. If H is a subgraph of G, then χr(H) ≤ χr(G) [14].

2. If H is an induced subgraph of G, then ψr(H) ≤ ψr(G) [8].

3. A minimal k-ranking is an onto function [18].

4. If G is a graph on n vertices, then ψr(G) = n if and only if ∆(G) = n− 1 [18].

5. If f is a minimal k-ranking and Si = {x|f(x) = i} for 1 ≤ i ≤ k then |S1| ≥

|S2| ≥ . . . ≥ |Sk| [18].

6. If f is a minimal ranking, then the set R of vertices with repeated labels is a

dominating set for G [18].
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7. Let G be a graph and let f be a minimal χr-ranking of G. If S1 = {x|f(x) = 1},

then χr(G
∗
S1

) = χr(G) − 1 [18].

8. Let G be a graph and let f be a minimal ψr-ranking of G. If S1 = {x|f(x) = 1},

then ψr(G
∗
S1

) = ψr(G) − 1 [18].

9. For any graph G, χr(G) ≥ 1 + δ(G) and ψr(G) ≥ 1 + ∆(G) [18].

10. A k-ranking f is minimal if and only if for all u with f(u) = i > 1 and for

each j such that 1 ≤ j < i, one of the following is true [19].

(a) There exist vertices x and y with f(x) = f(y) ≥ j, and u is the only vertex

on some x− y path such that f(u) > f(y).

(b) There exists a vertex w with f(w) = j, and there exists a u−w path such

that for every vertex x on the path f(x) ≤ f(w).

11. Let G be a graph and suppose f is a minimal k-ranking of G. Let S = {x|f(x) >

j} where 1 ≤ j < k and let C be a connected component of 〈V − S〉, the induced

subgraph of V − S. Then fC , the restriction of f to C is a minimal ranking

of C [19].

In the rest of the chapter, Property i will refer to the ith property in the above list.

One of the main results in [18] is that if G is a graph and f is a ranking of G,

then the function g(x) = f(x) − 1 is a ranking for G∗
S1

, where S1 = {x|f(x) = 1}. In

fact, if the original ranking, f , is a minimal χr(G)-ranking then g will be a minimal

χr(G
∗
S1

)-ranking. If f is a minimal ψr(G)-ranking then g is a ψr(G
∗
S1

)-ranking. This

process can be repeated, as shown in Figures 4.5a, 4.5b and 4.5c. This is the essence

of Property 7 and Property 8.
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Figure 4.5: An illustration of the reduction process.

Laskar, Pillone, Jacob and Eyabi established further properties of minimal rankings

in [34]. The authors also considered the rook’s graph, established bounds for the rank

number of a rook’s graph and calculated its arank number in [34].

4.2 Further Properties of Minimal Rankings

The following bounds for the rank number of an arbitrary graph G are immediate.

Lemma 4.2.1. If G is a graph on n vertices then ω(G) ≤ χ(G) ≤ χr(G) ≤ n −

β0(G) + 1.

Proof. We know that if G has a clique of size k, then any coloring of G requires at

least k colors. Therefore ω(G) ≤ χ(G). By the definition of ranking, any ranking is

a proper coloring and hence χ(G) ≤ χr(G).

We will now show that χr(G) ≤ n− β0(G) + 1. Let S be an independent set of G

such that |S| = β0(G). Construct a labeling f as follows. Label the vertices in S using

the label 1 and the rest of the n− β0(G) vertices using labels 2, 3, . . . , n− β0(G) + 1

such that f is of order n − β0(G) + 1. Thus, vertices with repeated labels are in

S and vertices which are not in S have labels from 2 to n − β0(G) + 1, which are

distinct labels. However, S is an independent set, and therefore any path between

two vertices in S, that are labeled 1, must have at least one vertex which is not in S.
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Thus f is a ranking, and hence χr(G) ≤ n− β0(G) + 1.

Theorem 4.2.2. Let f be a minimal χr-ranking of a graph G such that there exist

two vertices u and v with distinct labels. Then the function g defined by

g(x) =






f(x), if x 6= u, v

f(u), if x = v

f(v), if x = u

is a minimal χr-ranking. In other words, swapping labels of two distinct label vertices

does not destroy the minimality condition of ranking.

Proof. We will first show that the function g is a ranking. Suppose for two distinct

vertices a and b, g(a) = g(b). Since g is the same as f for vertices with repeated

labels we have f(a) = g(a) = g(b) = f(b). Let Pab be a path from a to b in G. Since

f is a ranking there exists w ∈ V (Pab) such that f(w) > f(a). If u 6= w and v 6= w,

then by the definition of g we have g(w) = f(w) > f(a) = g(a). So, wlog, assume

u = w. Then we have,

g(w) = g(u)

≥ min{f(u), f(v)}

> f(a), by Property 5

= g(a).

Thus the function g is a ranking.

Now we will show that g is a minimal ranking. Let x ∈ V (G) and let h be a

labeling obtained from g by reducing g(x) to a smaller label. That is, let h(z) = g(z)

for all z ∈ V (G) − {x} and 1 ≤ h(x) < g(x). We will show that h is not a ranking.
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Case 1: g(x) is a repeated label.

In this case, by the definition of g, g(x) = f(x). Consider the subgraph of G

induced by H, denoted by 〈H〉, where H = {z ∈ V (G)|f(z) ≤ f(x)}. By Property 11,

f restricted to 〈H〉 is minimal, which implies f(x) cannot be reduced to a smaller

label. Since f(x) = g(x), it follows that h is not a ranking.

Case 2: g(x) is a distinct label.

In this case we will consider two subcases.

Case 2a: g(x) is reduced to a repeated label of g. That is, h(x) is a repeated label

under h.

Consider the function h′ such that h′(z) = f(z) for all z ∈ V (G) − {x} and

h′(x) = h(x). Since f is a minimal ranking, h′ is not a ranking. This implies

that for some a, b ∈ V (G) with h′(a) = h′(b) there exists a path Pab such that for all

s ∈ V (Pab), we have h′(s) ≤ h′(a). Note that h′(z) = h(z) for all z ∈ V (G)−{u, v} and

in particular, if h′(z) ≤ t, where t is the largest repeated label in f , then h′(z) = h(z).

Thus h(s) ≤ h(a) for every s ∈ V (Pab) and h is not a ranking.

Case 2b: g(x) is reduced to a label which is equal to a distinct label of g, i.e, t <

h(x) < g(x), where t is the largest repeated label of g. That is, h(x) = g(y) = h(y)

where x 6= y and h(x) > t.

Let Rf = {z|1 ≤ f(z) ≤ t}. By Property 7, it follows that χr(G
∗
Rf

) = χr(G) − t.

Since χr(G) = n− |Rf |+ t, we now have χr(G
∗
Rf

) = n− |Rf |. However, |V (G∗
Rf

)| =

n − |Rf | and thus using Lemma 4.2.1 we get β0(G
∗
Rf

) = 1. This implies G∗
Rf

is a

complete graph on n − |Rf | vertices. This implies that in G for any two vertices a

and b with distinct labels under f , either ab ∈ E(G) or there exists a path Pab in G

such that the internal vertices of Pab are in Rf .

This implies that x and y are either adjacent in G or have a path between them

with all internal vertices from Rf . Since h(z) = f(z) for any z ∈ Rf , it follows that
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h is not a ranking.

Thus g is a minimal ranking. Since g has χr(G) labels, g is a minimal χr-ranking

as required.

Corollary 4.2.3. If f is a minimal χr-ranking, then any permutation of the distinct

labels is also a minimal χr-ranking.

Corollary 4.2.4. If f is a minimal χr-ranking of a graph G and t is the largest

repeated label, then G∗
{z|f(z)≤t} is a clique.

With ψr-rankings, the situation is a little different. It is not necessarily true that

the smallest distinct label can be swapped with another distinct label, because the

resulting ranking might not be minimal. Figure 4.6 shows an example of a ψr-ranking

in which swapping the smallest distinct label with another distinct label produces a

ranking which is not minimal.

Figure 4.6: The smallest distinct label, 2, cannot be swapped with a larger label.

However, the next theorem shows that the labels of two vertices in a ψr-ranking

can be swapped if the labels are both greater than the smallest distinct label.

Theorem 4.2.5. Let f be a minimal ψr-ranking of a graph G and let t be the largest

repeated label. If u and v are vertices of G such that u 6= v , f(u) > t + 1 and
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f(v) > t+ 1, then the function g defined by

g(x) =






f(x), if x 6= u, v

f(u), if x = v

f(v), if x = u

is a minimal ψr-ranking.

Proof. As in the case of the proof of Theorem 4.2.2, the function g will be a ranking.

We will show that g is a minimal ranking. Let h(z) = g(z) for all z ∈ V (G)−{x} and

1 ≤ h(x) < g(x). We will show that h is not a ranking. We consider three cases as in

the proof of Theorem 4.2.2. For Case 1 and Case 2a, we can use the same arguments

as in the proof of Theorem 4.2.2 to show that h is not a ranking, so here we will prove

only one case, Case 2b.

Case 2b: g(x) is reduced to a label which is equal to a distinct label in g, i.e, t <

h(x) < g(x).

As before, let Rf = {z|1 ≤ f(z) ≤ t}. By Property 8, we have, ψr(G
∗
Rf

) =

ψr(G) − t. Since ψr(G) = n − |Rf | + t, we now have ψr(G
∗
Rf

) = n −Rf . However,

|V (G∗
Rf

)| = n − |Rf | and this implies, by Property 4, that G∗
Rf

contains a vertex y

adjacent to all vertices in G∗
Rf

.

As explained in Figure 4.5, restricting f to G∗
Rf

and subtracting t from each label

will give rise to a ψr-ranking for G∗
Rf

. This implies that g(y) = f(y) = t + 1. If

h(x) = t + 1, then y and x have the same label under h and xy ∈ E(G∗
Rf

). This

implies that either xy ∈ E(G) or there is a path between x and y in G with all

internal vertices from Rf . Since h(z) = f(z) for any z ∈ Rf , it follows that h is not

a ranking. On the other hand if h(x) > t+ 1, then G∗
{z|f(z)≤t+1} is a complete graph,

and using a similar argument to Case 2b in the proof of Theorem 4.2.2, we can show
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that h is not a ranking.

Thus g is a minimal ranking with ψr labels and hence g is a minimal ψr-ranking.

Corollary 4.2.6. Let f be a minimal ψr-ranking of a graph G and let t be the largest

repeated label. Any permutation of the distinct labels which are greater than t + 1 is

a minimal ψr-ranking.

Corollary 4.2.7. If f is a minimal ψr-ranking of a graph G and t is the largest

repeated label, then G∗
{z:f(z)≤t+1} is a clique.

4.3 Minimal Rankings of a Rook’s Graph

As mentioned in the beginning of this chapter, a rook’s graph, Rn,n, is a graph that

represents all legal moves of the rook chess piece on an n × n chessboard. In other

words, vertices of Rn,n can be represented as ordered pairs (i, j), i = 1, 2, . . . , n and

j = 1, 2, . . . , n. Two vertices are adjacent if and only if they have one coordinate in

common.

For simplicity, for the rest of the chapter, Rn,n will be drawn as an n× n grid.

Figure 4.7: R4,4

Figure 4.8: A simpler representation
of R4,4

.

Theorem 4.3.1. Let f be a minimal ranking of Rn,n. Then every row and every

column of Rn,n contains a repeated label and a distinct label under f .
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Proof. First we will show that every row of Rn,n has a repeated label under f . On

the contrary, assume Rn,n has a row i which does not contain a repeated label. That

is, for j = 1, 2, . . . , n, we have f(vi,j) > t, where t is the largest repeated label. Let

a = f(vi,j) for some 1 ≤ j ≤ n. Since f is a minimal ranking, by Property 10, for

every k such that 1 ≤ k < a, one of the following is true.

1. There exist vertices x and y with f(x) = f(y) ≥ k, and vi,j is the only vertex

on some x− y path such that f(vi,j) > f(y).

2. There exists a vertex w with f(w) = k, and there exists a vi,j − w path such

that for every vertex x on the path f(x) ≤ f(w).

Suppose for some 1 ≤ k < a, Condition 1 is true, and let P be such a path. Since all

the vertices of row i have labels greater than t, P will not contain any vertices from

row i other than vi,j. This implies that P ′ = P − {vi,j} is a path from x to y such

that f(z) ≤ f(x) for all z ∈ V (P ′). This is a contradiction because f is a ranking.

Thus Condition 2 must be true for all 1 ≤ k < a.

However, if k = 1, then vi,j must be adjacent to a vertex labeled 1. This implies

that for every j such that 1 ≤ j ≤ n, vi,j is adjacent to a vertex labeled 1. This is

not possible because row i does not have a vertex labeled 1, and no row can have two

vertices labeled 1. Thus f is not minimal, which is a contradiction. Hence every row

of Rn,n contains a repeated label under f . Using the same arguments we can show

that every column of Rn,n has a repeated label.

We will now show that every row and column of Rn,n has a distinct label. Again,

on the contrary assume row i contains only repeated labels. Let vi,j have the largest

label in row i. Since f(vi,j) is a repeated label, let vk,l be such that f(vk,l) = f(vi,j).

Now, since vi,j has the largest repeated label in row i it follows that f(vi,l) < f(vi,j),

and thus the path vi,j − vi,l − vk,l will not have any vertex labeled higher than f(vi,j).
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This is a contradiction. Hence every row must have a vertex with distinct label.

Using the same arguments we can show that every column of Rn,n contains a distinct

label.

Lemma 4.3.2. Let f be a minimal ranking of Rn,n. There exist a row i and a

column j such that the total number of distinct labels in row i and column j together

is at least n.

Proof. Let the vertices vij and vkl be labeled t, where t is the largest repeated label

under f . That is, let f(vij) = f(vkl) = t. Since f is a ranking, every path between

vij and vkl has a vertex with a higher label than t. This means that every path

between vij and vkl has a distinct label. Therefore the paths vij − vrj − vrl − vkl and

vij − vir − vkr − vkl must have a distinct label for all r where 1 ≤ r ≤ n. This implies

either column j or l has at least ⌈n
2
⌉ distinct labels and either row i or row k has at

least ⌈n
2
⌉ distinct labels. Hence the lemma.

Lemma 4.3.3. Let f be a minimal ranking of Rn,n. Also, let t be the largest repeated

label in f and Si = {v|f(v) = i}. If t = n − 1 − k, where k ≥ 0, then
∑t

i=1 |Si| ≥

2n− (k + 2).

Proof. Let t = n−1−k, where k ≥ 0. We want to show that
∑t

i=1 |Si| ≥ 2n−(k+2).

On the contrary, assume that
∑t

i=1 |Si| ≤ 2n− (k+ 3). By Theorem 4.3.1, every row

and every column of Rn,n has a repeated label. Suppose there are δr rows with exactly

one repeated label. This implies that n − δr rows have at least two repeated label

vertices. Thus we have,

2n− (k + 3) ≥
t∑

i=1

|Si| ≥ δr + 2(n− δr)

= 2n− δr. (4.1)
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It follows from Equation (4.1) that δr ≥ k + 3. Similarly, if δc is the number of

columns with exactly one repeated label, then δc ≥ k + 3.

Case 1: Among the δr rows and δc columns, there exists a row i and a column j such

that vi,j is a repeated label vertex and f(vi,j) > 1.

Note that in this case every other label in row i and column j is a distinct label.

Consider the labeling g defined as follows:

g(vk,l) =






1, if k = i and l = j

f(vk,l), otherwise.

Since f is a minimal ranking, g will not be a ranking. This means there exist u, v ∈

V (G) such that g(u) = g(v) and a path P between u and v such that g(z) ≤ g(u)

for every z ∈ V (P ). If vi,j /∈ V (P ), then g(z) = f(z) for every z ∈ V (P ). Since f

is a ranking, there exists z ∈ V (P ) such that f(z) > f(u), that is g(z) = f(z) >

f(u) = g(u). This is a contradiction, so assume vi,j ∈ V (P ). Let z be the vertex

adjacent to vi,j in P . However, z is in column j or row i which implies that z is a

vertex with distinct label under f and thus g(z) = f(z) > t ≥ f(u) ≥ g(u). This is a

contradiction.

Case 2: Among the δr rows and δc columns, there does not exist a row i and a column

j such that vi,j is a repeated label vertex and f(vi,j) > 1.

Note that if |S1| ≥ k + 2, then

t∑

i=1

|Si| ≥ k + 2 +
t∑

i=2

|Si|

≥ k + 2 + 2(n− 2 − k)

= k + 2 + 2n− 4 − 2k

= 2n− (k + 2), which is a contradiction.
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Thus the number of vertices with label 1 is at most k + 1. We know that there are

δr ≥ k + 3 rows and δc ≥ k + 3 columns with exactly one repeated label. Thus there

exist at least two rows among the δr rows and at least two columns among the δc

columns with a repeated label greater than 1. Since we assumed that
∑t

i=1 |Si| ≤

2n− (k + 3) and Case 1 does not hold, it follows that one of the following is true.

1. There exist a row, say row i, among the δr rows, and a column, say column j,

such that vi,j is a repeated label vertex, f(vi,j) > 1 and column j does not

contain a vertex labeled 1.

2. There exist a column, say column j, among the δc columns, and a row, say

row i, such that vi,j is a repeated label vertex, f(vi,j) > 1 and row i does not

contain a vertex labeled 1.

Wlog, assume condition 1 is true. Note that every vertex in row i other than vi,j

is a distinct label vertex. That is, we have,

• 1 < f(vi,j) ≤ t

• f(vi,l) > t, if l 6= j

• f(vk,j) > 1, 1 ≤ k ≤ n.

Define g as follows:

g(vk,l) =






1, if k = i and l = j

f(vk,l), otherwise.

Since f is a minimal ranking, g will not be a ranking. This means there exist

u, v ∈ V (G) such that g(u) = g(v) and a path P between u and v such that

g(z) ≤ g(u) for every z ∈ V (P ). As proved in Case 1 we must have vi,j ∈ V (P ).
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Since row i and column j do not contain a vertex labeled 1 under f , row i and column

j will not contain a vertex labeled 1 other than vi,j under g.

Therefore, if u = vi,j, then P will contain at least one vertex labeled greater than 1

under g, which is a contradiction. Therefore, assume P = uz1z2 . . . zkvi,jzk+1 . . . zrv.

An example is shown in Figure 4.9.
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Figure 4.9: A uv path containing the vertex vi,j.

Then zk and zk+1 will be in column j (because every vertex in row i, except vi,j, has

a higher label than t and g(z) ≤ g(u) ≤ t for every z ∈ V (P )). Thus P ′ = P − {vi,j}

will be a path from u to v and g(z) = f(z) for all z ∈ V (P ′). Therefore, we have

f(z) = g(z) ≤ g(u) = f(u) for all z ∈ V (P ′), which is a contradiction because f is a

ranking.

Thus, in both cases we get a contradiction, and hence
∑t

i=1 |Si| ≥ 2n−(k+2).

4.4 Results on χr(Rn,n) and ψr(Rn,n)

In this section we will find bounds for χr(Rn,n) and determine the exact value of

ψr(Rn,n).

Theorem 4.4.1. For all n ∈ Z+, χr(Rn,n) ≤ 2n2

3
+ n

3
.
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Proof. We will use induction on n to prove this theorem. When n = 1, the result

is true. Assume that the result is true for values less than or equal to n. Consider

Rn+1,n+1.

Case 1: n+ 1 is even.

In this case, construct a ranking for Rn+1,n+1 using a ranking for Rn+1

2
, n+1

2

by

dividing Rn+1,n+1 as shown in Figure 4.10.

I II

III IV

Figure 4.10: Rn+1,n+1

Label regions I and IV with labels 1 to χr(Rn+1

2
, n+1

2

). Label regions II and III with

labels χr(Rn+1

2
, n+1

2

)+1 to χr(Rn+1

2
, n+1

2

)+2
(

n+1
2

)2
. The resulting labeling is a ranking

for Rn+1,n+1. Therefore we have,

χr(Rn+1,n+1) ≤ χr(Rn+1

2
, n+1

2

) + 2

(
n+ 1

2

)2

≤
2

3

(
n+ 1

2

)2

+
1

3

(
n+ 1

2

)
+ 2

(
n+ 1

2

)2

=
2

3
(n+ 1)2 +

n+ 1

6

≤
2

3
(n+ 1)2 +

n+ 1

3
.

Case 2: n+ 1 is odd.

In this case we divide Rn+1,n+1 into 4 regions as in the previous case, with the

following sizes. Region I will be of size n
2
×

(
n
2

+ 1
)
, region II will be of size n

2
× n

2
,

region III will be of size
(

n
2

+ 1
)
×

(
n
2

+ 1
)

and region IV will be of size
(

n
2

+ 1
)
× n

2
.
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Note that we can label regions I and IV using χr(Rn
2

, n
2
) + n

2
labels. Again as in

the previous case, label regions II and IV using labels from χr(Rn
2

, n
2
) + n

2
+ 1 to

χr(Rn
2

, n
2
) + n

2
+

(
n
2

)2
+

(
n
2

+ 1
)2

. Thus we have,

χr(Rn+1,n+1) ≤ χr(Rn
2

, n
2
) +

n

2
+

(n
2

)2

+
(n

2
+ 1

)2

≤
2

3

(n
2

)2

+
1

3

(n
2

)
+
n

2
+

(n
2

)2

+
(n

2
+ 1

)2

=
2n2

3
+

5n

3
+ 1

=
2

3
(n+ 1)2 +

n+ 1

3
.

This completes the proof.

An example of a ranking constructed in Theorem 4.4.1 for R5,5 is shown in Figure

4.11.

1 2 4 6 7
3 1 5 8 9
10 11 12 4 5
13 14 15 2 1
16 17 18 1 3

Figure 4.11: A ranking for R5,5

Lemma 4.4.2. χr(Rn,n) ≥ χr(Rn−1,n−1) + n, for n ≥ 2.

Proof. Consider a χr-ranking f for Rn,n. By Lemma 4.3.2 there exist a row i and a

column j such that the total number of distinct labels in row i and column j together

is at least n.

By Corollary 4.2.3 we can permute the distinct labels, so wlog assume that row i

and column j contain the largest distinct labels. Deleting row i and column j from

Rn,n we will get Rn−1,n−1. Let fn−1 be f restricted to Rn−1,n−1. We will show that
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fn−1 is a ranking. Suppose P is a path in Rn−1,n−1 between vertices u and v such

that fn−1(u) = fn−1(v). Since P is in Rn−1,n−1, it follows that P does not contain

vertices from row i or column j and since f is a ranking, there exists z ∈ V (P ) ⊆

V (Rn−1,n−1) such that f(z) > f(u). However, since z, u ∈ V (Rn−1,n−1) it follows that

fn−1(z) = f(z) and fn−1(u) = f(u). Thus fn−1 is a ranking of Rn−1,n−1 and hence

χr(Rn−1,n−1) ≤ |fn−1| ≤ χr(Rn,n) − n.

Theorem 4.4.3. χr(Rn,n) ≥ n2+n
2

.

Proof. We will use induction on n. When n = 1, the result is true. Assume the result

is true for n. Consider Rn+1,n+1. By Lemma 4.4.2 we have,

χr(Rn+1,n+1) ≥ χr(Rn,n) + n+ 1

≥
n2 + n

2
+ n+ 1

=
(n+ 1)2 + (n+ 1)

2
.

This completes the proof.

However, this bound is not necessarily a sharp bound when n > 2. When n = 3,

χr(Rn,n) = 7. Nonetheless, from Theorems 4.4.1 and 4.4.3 we have the following

result.

Corollary 4.4.4. n2+n
2

≤ χr(Rn,n) ≤ 2n2

3
+ n

3
.

We now consider the arank number of a rook’s graph.

Theorem 4.4.5. ψr(Rn,n) ≥ n2 − n+ 1.

Proof. We will construct a minimal ranking for Rn,n of size n2 − n+ 1. Consider the
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function f : V (Rn,n) → {1, 2, . . . , n2 − n+ 1} defined as follows:

f(vi,j) =






j, if i = 1

n− (i− 1), if j = n

(i− 1)(n− 1) + j + 1, otherwise.

The labels 1, 2, . . . , n− 1 are repeated once, and occur once in the first row and once

in the last column. Thus, any path between the repeated labels will have either the

label n or a label larger than n and hence f is a ranking.

Now we will show that f is minimal. Since the first row contains the labels

1, 2 . . . , n, none of these labels can be reduced. The same argument holds for the

last column.

Let i and j be such that 1 < i ≤ n and 1 ≤ j < n. Let g be defined as follows.

g(vk,l) =






a < f(vi,j), if k = i and l = j

f(vk,l), otherwise.

To show that f is a minimal ranking, we need to show that g is not a ranking.

Case 1: 1 ≤ g(vi,j) = a ≤ n.

If g(vi,j) ≥ g(v1,j), then consider the path P = vi,j − v1,j − v1,k, where g(v1,k) = a.

However, g(v1,j) ≤ a and so g is not a ranking. Therefore assume g(vi,j) < g(v1,j).

Wlog, assume g(v1,j) ≥ g(vi,n). Consider the path P = v1,j − vi,j − vi,n − vk,n, where

g(vk,n) = g(v1,j). However, g(vi,j) = a < g(v1,j) and g(vi,n) ≤ g(v1,j), which implies

that g is not a ranking.

Case 2: n+ 1 ≤ g(vi,j) = a < n2 − n+ 1.

Consider the path P = vi,j − v1,j − v1,l − vk,l, where g(vk,l) = g(vi,j) = a. g(v1,j) ≤

n < a and g(v1,l) ≤ n < a and hence g is not a ranking.

68



Thus in any case g is not a ranking. Therefore, f is a minimal ranking and

ψr(Rn,n) ≥ |f | = n2 − n+ 1.

1 2 3 4 5
6 7 8 9 4
10 11 12 13 3
14 15 16 17 2
18 19 20 21 1

Figure 4.12: A minimal ranking of size n2 − n+ 1 for Rn,n when n = 5.

Theorem 4.4.6. Let f be a minimal k-ranking of Rn,n. Then k ≤ n2 − n+ 1.

Proof. Let t be the largest repeated label in f . Let Si = {v|f(v) = i}.

If t > n− 1, then we have

k = n2 −
t∑

i=1

|Si| + t

≤ n2 − 2t+ t

= n2 − t

< n2 − (n− 1).

Suppose t ≤ n − 1. Let t = n − 1 − r, where r ≥ 0. By Lemma 4.3.3, we have
∑t

i=1 |Si| ≥ 2n− (r + 2). Thus,

k = n2 −
t∑

i=1

|Si| + t

≤ n2 − (2n− (r + 2)) + n− 1 − r

= n2 − n+ 1.

This completes the proof.
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From Theorem 4.4.5 and Theorem 4.4.6, we get the following result.

Theorem 4.4.7. ψr(Rn,n) = n2 − n+ 1.
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Chapter 5

Open Problems

In this chapter, we will discuss some of the open problems that are related to the

topics discussed in this thesis.

Conjecture 1. Let T and T ′ be trees. Then CU2(T ) ∼= CU2(T
′) if and only if T ∼= T ′,

where CU2(T ) is the complete double vertex graph of T .

One challenging graph product problem is to reconstruct the factors from the graph

products. In the case of Cartesian products, the problem of reconstructing the factors

from the Cartesian product is solved. In Chapter 2, we showed that for some classes

of graphs we can reconstruct G from its double vertex graph and complete double

vertex graph.

Problem 2. For any arbitrary graph H, can we recognize whether H is a double

vertex graph of some graph G?

Problem 3. Is it possible to develop an algorithm to reconstruct G from U2(G)?

Answering the above questions involves answering the following.

Problem 4. Is it true that for any two graphs G and H, G ∼= H if and only if
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U2(G) ∼= U2(H)?

The above questions are open in the case of the complete double vertex graphs as

well.

Problem 5. Is it true that for any two graphs G and H, G ∼= H if and only if

CU2(G) ∼= CU2(H)? Is it possible to recognize whether a given graph is a complete

double vertex graph? How can one reconstruct G from its complete double vertex graph

for all classes of graphs?

For Cartesian products, one well-investigated problem is the domination number of

the Cartesian product. Vizing [40], in 1963, conjectured that γ(G2H) ≥ γ(G)γ(H).

Vizing’s conjecture is verified for some classes of graphs, most notably when one of

the factors is a tree by Barcalkin and German [7].

Conjecture 6. For any two arbitrary graphs G and H, γ(G2H) ≥ γ(G)γ(H).

In the case of complete double vertex graphs, since CU2(G) contains a copy of G,

we get γ(CU2(G)) ≤ γ(G)|V (G)|.

Problem 7. What else can we say about the domination number of CU2(G) and

U2(G)?

Problem 8. How does the dominator partition number and the upper dominator

partition number of the factors affect that of the graph products, especially that of

Cartesian products, double vertex graphs and complete double vertex graphs?

Problem 9.[23] For which graphs is πd(G) = Πd(G)?

Some examples of graphs in which the above equality holds are complete graphs,

the complement of a complete graph and the cycle on 4 vertices.
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The authors in [23] discuss two variations of dominator partitions. One is called

the total dominator partition, in which each vertex is required to be a dominator of at

least one class other than its own. It is observed in [23] that γt(G) ≤ πtd ≤ γt(G)+1,

where πtd(G) is the total dominator partition number of G, which is analogous to

dominator partition number, and γt(G) is the well-known total domination number

of G.

Problem 10. What more can we say about the total dominator partition number of

G?

Problem 11. What about the upper total dominator partition number of any arbitrary

graph? Calculating the upper total dominator partition number of an arbitrary graph

seems to be difficult, as is the upper dominator partition number. However, can we

find the upper total dominator partition number of some classes of graphs as in the

case of upper dominator partition number?

The other variation of the dominator partition mentioned in [23] is called the

independent dominator partition, where each class is required to be independent in

addition to the requirements of being a dominator partition. Independent dominator

partitions are also called dominator colorings of graphs. The authors of [23] and

Gera et al. [16, 17] are independently investigating dominator colorings of graphs.

However, not much attention has been made to the dominator achromatic number,

which is analogous to the upper dominator partition number.

Problem 12. What can we say about the dominator achromatic number of graphs?

In Chapter 4 we calculated the arank number of Rn,n = Kn2Kn. However, we

were unable to find the rank number of Rn,n.
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Conjecture 13. χr(Rn,n) =
⌊

2n2+n
3

⌋
.

Problem 14. What can we say about the rank and arank number of graph products

such as the Cartesian product, the double vertex graph and the complete double vertex

graph?

Note that since G2H contains copies of both G and H, we have χr(G2H) ≥

max{χr(G), χr(H)} and ψr(G2H) ≥ max{ψr(G), ψr(H)}. Similarly, since CU2(G)

contains copies of G, we have χr(CU2(G)) ≥ χr(G) and ψr(CU2(G)) ≥ ψr(G).

Problem 15. What is the rank number and the arank number of Pn2Pn? In [38],

Novotny et al. showed that χr(P22Pn) = ψr(Pn) + 1. However, the authors posed

ψr(P22Pn) as an open problem.

Problem 16. Does there exist a graph G such that for every integer k, where χr(G) ≤

k ≤ ψr(G), there is a minimal k-ranking of G? Not all graphs possesses this property;

for example Kn does not. Narayan [37] showed that paths have this property. What

other classes of graphs satisfy this property?

Problem 17. We know that χ(G) ≤ χr(G). Is there any relation between ψ(G) and

ψr(G)?

Naturally, these are not the only questions one might consider from the topics

discussed in this thesis. Hopefully, they will provide us with some interesting insights

into the topics of graph products and vertex partitions.
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