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Abstract

This dissertation describes the research that we have done concerning reversible Markov

chains. We first present definitions for what it means for a Markov chain to be reversible. We then

give applications of where reversible Markov chains are used and give a brief history of Markov chain

inference. Finally, two journal articles are found in the paper, one that is already published and

another which is currently being submitted.

The first article examines estimation of the one-step-ahead transition probabilities in a re-

versible Markov chain on a countable state space. A symmetrized moment estimator is proposed

that exploits the reversible structure. Examples are given where the symmetrized estimator has

superior asymptotic properties to those of a naive estimator, implying that knowledge of reversibil-

ity can sometimes improve estimation. The asymptotic mean and variance of the estimators are

quantified. The results are proven using only elementary results such as the law of large numbers

and the central limit theorem.

The second article introduces two statistics that assess whether (or not) a sequence sampled

from a time-homogeneous Markov chain on a finite state space is reversible. The test statistics are

based on observed deviations of transition sample counts between each pair of states in the chain.

First, the joint asymptotic normality of these sample counts is established. This result is then used

to construct two chi-squared-based tests for reversibility. Simulations assess the power and type one

error of the proposed tests.
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Chapter 1

Introduction to Reversible Markov

Chains

A Markov chain is a random process controlled by probability laws with many applications

to finance, biology, statistics, queueing theory, chemistry, and more. Consider this simple example,

start a knight at a random square, according to the initial distribution π
(0), on an otherwise empty

8 × 8 chessboard. Move the knight at random around the board according to valid moves that

a knight can make, where each square is given a number 1 to 64. If the knight is currently in

square i, the probability it moves next to square j is pi,j independent of all previous moves. The

probability that the knight moves to the successive states i1, i2, . . . , ik is π
(0)
i1

pi1,i2pi2,i3 · · · pik−1,ik .

Thus determining how the knight moves among the squares is determined by π
(0)
i and the pi,j ’s.

This dissertation considers statistical questions about the pi,j ’s. One such question is whether or

not the knight moves randomly among the squares. In this case we would test whether or not the

pi,j ’s are uniform in their rows for all distinct i. When the rows are uniform the process would

be reversible. We note, for future reference of reversibility, the backwards movement of the knight

among the squares would also be random.

A Markov chain is then a sequence of random variables {Xt}∞t=0 taking values in the set

{1, 2, . . . ,m} with the property that

P(Xt+1 = j|X0 = i0, . . . , Xt = i) = pi,j ,
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this is called the Markov property. When Xt = j, we say the Markov chain is in state j at time t. A

Markov chain has the property that the probability of being in state j is conditionally independent

of all previous states visited given the current state is i and the conditional probability is pi,j . The

finite dimensional distributions and hence the probability laws of the Markov chain are determined

by the initial distribution, π(0), and the pi,j’s. Any probability statement about a Markov chain

can be answered in terms of π(0) and the pi,j ’s. Thus the pi,j ’s are the key parameters in a Markov

chain and the dissertation considers statistical questions about them.

One important topic in Markov chain theory is determining when the stationary and limiting

distributions exist. An irreducible Markov chain has stationary distribution π, which satisfies

π = πP,

where P is the m ×m matrix of the pi,j ’s. Note π is determined by the pi,j ’s. When the Markov

chain is aperiodic π is also a limiting distribution in that

πj = lim
t→∞

P(Xt = j|X0 = i).

A Markov chain is stationary when

(Xτ , Xτ+1, . . . , Xτ+t)
D
= (X0, X1, . . . , Xt)

for all τ, t ∈ Z+, where
D
= denotes equal in distribution. For an irreducible Markov chain a necessary

and sufficient condition for stationarity is that the initial distribution is π.

This dissertation considers statistical problems in reversible Markov chains. A Markov chain

is reversible if the chain has the same distribution in forward and backward time, or

(X0, X1, . . . , Xt)
D
= (Xt, Xt−1, . . . , X0)

for every t. Since a reversible Markov chain must be stationary, a necessary and sufficient condition

for reversibility is the detailed balance equations;

πipi,j = πjpj,i
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for all states i and j. As will be seen in the next chapters, much of the statistical analysis developed

in this dissertation is based upon the detailed balance equations. The next section will provide a

survey of the relevant Markov chain literature.

1.1 History

There is an abundance of literature relating to the theory and applications of Markov chains.

The literature relating to reversibility and statistical inference; however, is much smaller and refer-

ences intersecting the two topics is nearly nonexistent. The book by Kelly (1979) is an exception, he

does a wonderful job exploring reversibility in stochastic processes. One important topic in Markov

chain theory is to determine the convergence rate of a Markov chain to its stationary distribu-

tion (Fill (1991)), this is an example where exploiting reversibility (as we aim to do) can give us

a better result. If the Markov chain is known to be reversible, then we get a better convergence

rate to stationarity (Desai and Rao (1993)). Other topics of interest include moments in stationary

Markov chains (Tweedie (1983)), sensitivity of the stationary distribution (Meyer (1994)), maxima

of stationary chains (Rootzén (1988)), etc.

Statistical inference on stochastic processes initiated in the 1950’s with the dissertation of

Grenander (1950) on inference in stochastic processes. The dissertation demonstrated that hypoth-

esis testing and estimation apply to stochastic processes. The thrust of his work showed how the

methods apply to time series. Bartlett (1950) sought to find a goodness of fit test for the frequency

counts Ni,j , the number of times the chain makes a transition from state i to state j, for a Markov

chain. In doing so, he used maximum likelihood principles to find

p̂i,j =
Ni,j

Ni
1[Ni=0] (1.1)

and also established asymptotic normality of Ni,j . Whittle (1955) used a spectral representation

of pi,j to derive the joint distribution of (Ni,j , Nk,l). Using results by Feller, Derman (1956) states

that Ni,j − Lπipi,j has the same asymptotic distribution as Ni,j − E(Ni,j) and established joint

asymptotic normality of the Ni,j ’s. In the appendix, we provide a straightforward approach for

calculating the covariances in this asymptotic normality. Anderson and Goodman (1957) view the

Ni,j ’s as multinomial random variables given Ni = ki for some constant ki, i ∈ S. They also devised

many hypothesis tests for Markov chains, which include testing if the transition probabilities are

3



constant and the order of the Markov chain. Billingsley (1961) also discusses multinomial properties

of the Ni,j ’s and uses them to construct χ2 hypothesis tests. Other authors (Basawa and Rao (1980),

Bhat and Miller (2002)) used previous knowledge to construct new hypothesis tests for stationar-

ity or testing for specified values in the one-step-ahead transition matrix. Part of this dissertation

expands on the result by Greenwood and Wefelmeyer (1999), who show that there is a better sym-

metrized estimator for the one-step-ahead transition probabilities if it is known that the Markov

chain is reversible. They show that

p̂
(R)
i,j =

Ni,j +Nj,i

2Ni
1[Ni=0] (1.2)

is a more efficient estimator than (1.1) for reversible chains.

We point out two things in particular that have been done previously and strive to do the

same under reversibility; developing the estimator p̂i,j, and creating a hypothesis test for stationarity.

In the next chapter, we show in some cases that p̂
(R)
i,j is twice as efficient as p̂i,j , and in others gives

the same efficiency. The other part of our work devises statistical tests for reversibility.

1.2 Applications

Markov chains have many applications; any board game that is played with dice (Monopoly,

Life, Candy Land), random walks, birth and death processes, Markov chain Monte Carlo methods,

telephone exchanges, statistical mechanics (in particular the Ehrenfest model), migration processes,

etc. Some of these form reversible Markov chains while others do not. To stick with our theme we

will only present examples here were the Markov chain is reversible.

A simple application of our work arises in thermodynamics. Thermodynamics is the science

of energy and its transformation; engineers are often interested in equilibrium processes. Classical

thermodynamics deals with variables that can be measured in a laboratory; i.e. heat, pressure,

etc. Statistical thermodynamics explains what happens to particles at a microscopic level; one such

example is the Ehrenfest model of diffusion. In this model, N particles in total are floating around

in a container with two compartments (0 and 1). The particles change compartments at rate λ, see

figure 1.1 below. Let X(t) be the number of particles in compartment 0 at time t. Then X(t) is

a birth-and-death process and the transition rates are known to be qi,i−1 = iλ for i = 1, 2, . . . , N ,

qi,i+1 = (N − i)λ for i = 0, 1, . . . , N − 1. This chain has equilibrium distribution πi = 2−N
(

N
i

)

.

4



Figure 1.1: Ehrenfest Model of Diffusion

Using the detailed balance equations, we can easily confirm that this is a reversible process. This

process is known to always be reversible. Hence, if we did not know the rate λ at which the particles

change containers, we could estimate these transition probabilities efficiently by using the above

proposed estimator p̂
(R)
i,j .

Resnick (1992) presents a good example in exercise 2.22 of a case where a branching process

with immigration is reversible. The process {Zn} obeying

Zn+1 = In+1 +

Zn
∑

j=1

Znj

governs a branching process with immigration, where the random variables {In, n ≥ 1} count the

number of immigrants per generation and {Znj, n ≥ 1, j ≥ 1} are i.i.d. random variables that count

the number of offspring that member j of generation n produces ({In} and {Znj} are assumed

independent). It is easy to see that {Zn} is a Markov chain. Certain criteria guarantee that {Zn}

has a stationary distribution and {Zn} can be found to be reversible. We could quickly do a test for

reversibility to verify this claim.

Many communication systems are modeled as queueing networks; Jackson networks are one

classic example. A Jackson network consists of J nodes. For j = 1, 2, . . . , J , node j behaves like a

M/M/sj queue. Customers arrive to the network according to a Poisson process having rate λ, an

arrival chooses node j with probability p0,j , independent of all other events, where 0 corresponds to

arrivals from outside of the network. A customer completing service at node j goes next to node k

with probability pj,k and leaves the network with probability pj,0 independent of all other transitions.

Let Qj(t) be the number of customers at node j at time t and let Q(t) = (Q1(t), . . . , QJ(t)). The

process {Q(t); t ≥ 0} is a vector-valued continuous time Markov chain. Let P denote the J+1×J+1

matrix whose (i, j)th element is pi,j , i = 0, 1, . . . , J , j = 0, 1, . . . , J . Assume P is irreducible and let

γ be an invariant probability vector for P. It is well known (Jackson (1963)), that if λγj < sjµj for

5



all j, that {Q(t)} has a limiting distribution which has a product form. It is also true, but slightly

less known Melamed (1982) that {Q(t)} is reversible as a Markov process if and only if P is the

transition matrix for a reversible Markov chain, again we could use our test for reversibility on the

transition matrix to determine if the process is reversible.

For more examples of reversible Markov chains, see the books by Kelly (1979), Kijima

(1997), Ross (2007), and Stroock (2005).

1.3 Organization

This dissertation will proceed as follows. Our first paper compares one-step-ahead transition

estimates to determine which one is better. We show in some instances that the estimator (1.2) is

no more efficient than (1.1), but in some cases it is twice as efficient and prove that this is the best

one can do. The next paper explores testing for the property of reversibility itself in a realization of

a Markov chain. We present two test statistics, derive their asymptotic distributions, and present a

simulation study.

6



Chapter 2

Estimation in Reversible Markov

Chains

The following article is joint work with David H. Annis, Peter C. Kiessler and Robert Lund.

It was published Annis et al. (2010) by The American Statistician in May 2010. Reprinted with

permission from The American Statistician. Copyright 2010 by the American Statistical Association.

All rights reserved.

2.1 Introduction

This article studies estimation of the transition probabilities in a time-reversible Markov

chain {Xt}∞t=0. The chain’s state space S is taken as a countable subset of {0, 1, . . .}. The chain

is assumed to be irreducible, aperiodic, and positive recurrent. Such chains have a unique limiting

distribution with limt→∞ Pr[Xt = j|X0 = i] = πj for every i ∈ S, where πj > 0 for j ∈ S. The

one-step-ahead transition matrix P = (pi,j)i,j∈S has (i, j)th entry pi,j = Pr[Xt+1 = j|Xt = i]. The

chain is assumed to be time-homogeneous in that pi,j does not depend on t. The data are assumed

sampled from a stationary chain; sufficient for this is that Pr[X0 = k] = πk for all states k ∈ S.

The chain is said to be reversible if

πipi,j = πjpj,i

7



for each pair of states i and j. Reversibility implies that the long-term flow rate from state i to j

equals that from state j to i. Kolmogorov’s criterion allows one to assess reversibility directly from

the pi,j ’s; specifically, the chain is reversible if and only if

pi,i1pi1,i2 . . . pik,i = pi,ikpik,ik−1
. . . pi1,i (2.1)

for each k ≥ 2 and all states i, i1, . . . , ik (Kijima 1997; Ross 2007). It is not clear whether one can

statistically assess reversibility from a realization of a chain; however, the chain cannot be reversible

if there exist i and j with pi,j > 0 and pj,i = 0. The works by Diaconis and Stroock (1991), Kijima

(1997), Chen (2005), Stroock (2005), and Ross (2007) are good references for general properties of

reversible chains.

Several broad classes of Markov chains, including random walks on graphs, birth and death

chains, and many Markov chain Monte Carlo generated chains, are known to be reversible. For one

example, a discrete-time birth and death chain on S = {0, 1, . . .} is a chain that can only move one

unit from its current position, either up or down, in any non-boundary transition. Specifically, the

non-zero entries in the transition matrix have the form pi,i+1 = αi and pi,i−1 = 1 − αi when i ≥ 1

(we take p0,1 = α0 and p0,0 = 1 − α0 where α0 > 0 so that the chain will be aperiodic). A second

example of a reversible chain is a random walk on a graph. Here, S is a finite set and there is a

collection of bivariate pairs of states called edges. The walk can transition from i to j only when the

state pair (i, j) is an edge. It may be helpful to think of various U.S. cities as the states in the chain,

with an edge existing between cities i and j when it is possible to fly directly from city i to j. The

cost of traveling directly from city i toj is wi,j . Symmetry is assumed in that one can fly directly

from j to i if it is possible to fly directly from i to j; we also take wi,j = wj,i. The probability of

undergoing a transition from i to j is proportional to its cost in that

pi,j =
wi,j

∑

j∈S wi,j
.

See the books by Kijima (1997), Stroock (2005), and Ross (2007) for further examples of reversible

chains.

Suppose we observe the data X0, . . . , Xt and wish to estimate the one-step-ahead transition

8



probabilities pi,j for all states i 6= j ∈ S. The classical (naive) estimator of pi,j is

p̂
(N)
i,j (t) =

Ni,j(t)

Ni(t)
1[Ni(t)>0], (2.2)

where 1[A] is an indicator that is one when the event A occurs and zero otherwise, Ni,j(t) is the

number of one-step ahead transitions from i to j, and Ni(t) is the number of times state i is visited

up to time t. The indicator 1[Ni(t)>0] in (2.2) is introduced to avoid division by zero. The counts

Ni,j(t) and Ni(t) are

Ni,j(t) =

t−1
∑

ℓ=0

1[Xℓ=i∩Xℓ+1=j], and Ni(t) =

t
∑

ℓ=0

1[Xℓ=i]. (2.3)

One may ask if a priori knowledge of a chain’s reversibility aids transition probability esti-

mation. In particular, is p̂
(N)
i,j (t) in (2.2) the best asymptotic estimator? This question is beautifully

answered by Greenwood and Wefelmeyer (1999) and Greenwood, Schick, and Wefelmeyer (2001)

who showed that the symmetrized (reversible) estimator

p̂
(R)
i,j (t) =

Ni,j(t) +Nj,i(t)

2Ni(t)
1[Ni(t)>0] (2.4)

is not only preferable, but also asymptotically most efficient. Since the joint distributions of

(X0, . . . , Xt) and (Xt, . . . , X0) are identical in reversible chains, the estimator in (2.4) can be viewed

as merely averaging forwards and backwards versions of (2.2).

The goal of this article is to further understand estimation for reversible chains. In Section 2,

the reversible and naive estimators are reformulated from a renewal-based perspective. In Section 3,

we show that both estimators are asymptotically unbiased and calculate their asymptotic variances

in a straightforward manner, using only the classic limit theorems from probability. Our work will

show that the asymptotic variance of the reversible estimator is never larger than that of the naive

estimator, that

lim
t→∞

Var(p̂
(R)
i,j (t))

Var(p̂
(N)
i,j (t))

∈
[

1

2
, 1

]

,

and that both bounds are tight (i.e., there are examples where the reversible estimator is, asymp-

totically, twice as efficient). Implications of our results are that the naive and reversible estimators

have the same asymptotic performance for a birth and death chain, but that the reversible estimator

9



is more efficient in the case of a random walk on a graph.

2.2 Reformulation of the estimators

This section uses renewal theory to express p̂
(N)
i,j (t) and p̂

(R)
i,j (t) in a form which facilitates

their asymptotic analysis. Observe that the two estimators are identical when i = j; hence, we

assume that i 6= j. The times at which the chain visits state i form a renewal sequence. Let Ni(t)

be the number of visits (renewals) to state i which have occurred up to time t. The renewal times

partition the observed states into cycles, the ℓth cycle consisting of the succession of states visited

between the ℓth and (ℓ+ 1)st visits to state i. An initial sojourn of states prior to the beginning of

the first cycle exists unless X0 = i. Likewise, time t typically occurs during the interior times of a

cycle; hence, the last cycle may be incomplete.

Let Cℓ = 1 if the ℓth cycle begins with a transition from state i to state j; otherwise, set

Cℓ = 0. It follows that

Ni,j(t) =

Ni(t−1)
∑

ℓ=1

Cℓ,

and

p̂
(N)
i,j (t) =

∑Ni(t−1)
ℓ=1 Cℓ

Ni(t)
1[Ni(t)>0]. (2.5)

Set Dℓ = 1 if the ℓth cycle ends in state j; otherwise, set Dℓ = 0. For edge effects induced by

the initial and possibly incomplete last cycle, set E1(t) = 1 if the trajectory of states before the first

cycle (before visiting state i for the first time) ends in state j; otherwise, take E1(t) = 0. Take E2(t)

as unity only when the observed data ends with a transition from j to i: E2(t) = 1[Xt−1=j,Xt=i].

Then

Nj,i(t) = E1(t) +

Ni(t−1)−1
∑

ℓ=1

Dℓ + E2(t).

It now follows that

p̂
(R)
i,j (t) =

∑Ni(t−1)−1
ℓ=1

(

Cℓ+Dℓ

2

)

+ E1(t) + E2(t) + E3(t)

Ni(t)
1[Ni(t)>0], (2.6)
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where E3(t) = CNi(t−1) is a third edge effect. Other renewal representations are possible, but we

have taken care to write all statistics as functions of X0, . . . , Xt only.

We now collect a few limiting results needed to calculate the asymptotic bias and variance of

the estimators. All convergences are as t → ∞. Since the chain is aperiodic and positive recurrent,

Ni(t) → ∞ and Ni(t)/t → πi with probability 1. The random vectors (Cℓ, Dℓ) are independent

and identically distributed (iid). By the strong Markov property, the probability that a cycle begins

with a transition from i to j is pi,j ; hence, E[Cℓ] = pi,j. Since the chain is reversible, the probability

that a cycle ends with a transition from j to i is the same that a cycle begins with a transition from

i to j: E[Dℓ] = pi,j . Using Cℓ = C2
ℓ and Dℓ = D2

ℓ , we have

Var(Cℓ) = Var(Dℓ) = pi,j − p2i,j .

We next compute E(CℓDℓ). Observe that CℓDℓ is either zero or unity, with unity occurring

if and only if Cℓ = 1 and Dℓ = 1. But Cℓ = 1 and Dℓ = 1 when the ℓth cycle begins with a transition

from i to j and ends in state j. Since state i cannot be visited during the interior times of this cycle,

CℓDℓ = 1 with probability pi,j
∑∞

k=0 ip
(k)
i,j pj,i, where ip

(k)
i,j is the “taboo probability” that starting

from state i, the chain is in state j at time k and the first return time to state i is greater than k.

Here, the adjective “taboo” indicates that state i must be avoided during the interior times in the

cycle. It follows that E(CℓDℓ) = pi,j
∑∞

k=0 ip
(k)
i,j pj,i and the variance of (Cℓ +Dℓ)/2 is

Var

(

Cℓ +Dℓ

2

)

=
1

4

[

2pi,j + 2pi,j

∞
∑

k=0

ip
(k)
i,j pj,i − 4p2i,j

]

=
1

2

[

(pi,j − p2i,j) +

(

pi,j

∞
∑

k=0

ip
(k)
i,j pj,i − p2i,j

)]

.

Finally, note that Ek(t)/Ni(t)
p → 0 with probability 1 for k = 1, 2, 3 and any p > 0.

2.3 Expectation and Variance

The three theorems to follow show that both estimators are consistent and asymptotically

unbiased and determine their asymptotic variances. All convergences are as t → ∞ unless otherwise
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noted.

Theorem 2.3.1. The asymptotic mean of p̂
(N)
i,j (t) and p̂

(R)
i,j (t) is pi,j.

Proof. By the strong law of large numbers, as m → ∞,

1

m

m
∑

ℓ=1

Cℓ → pi,j and
1

m

m
∑

ℓ=1

(

Cℓ +Dℓ

2

)

→ pi,j

with probability 1. But sinceNi(t) is integer-valued and converges to infinity andNi(t−1)/Ni(t) → 1

with probability 1,

1

Ni(t)

Ni(t−1)
∑

ℓ=1

Cℓ → pi,j and
1

Ni(t)

Ni(t−1)−1
∑

ℓ=1

(

Cℓ +Dℓ

2

)

→ pi,j

with probability 1. Also, Ek(t)/Ni(t) → 0 for k = 1, 2, 3 and 1[Ni(t)>0] → 1 with probability 1.

Using these results and (2.5) and (2.6), we infer that p̂
(N)
i,j (t) → pi,j and p̂

(R)
i,j → pi,j with probability

1. Since both p̂
(N)
i,j (t) and p̂

(R)
i,j (t) are nonnegative and bounded above by unity, the convergence of

E[p̂
(N)
i,j (t)] and E[p̂

(R)
i,j (t)] to pi,j follows from the dominated convergence theorem.

Theorem 2.3.2. As t → ∞, we have the following distributional convergence:

√
t
(

p̂
(N)
i,j (t)− pi,j

)

D−→ N

(

0,
pi,j − p2i,j

πi

)

D
= N

(

0,
Var(C1)

πi

)

. (2.7)

Proof. A careful analysis based on (2.5) and cases provides

(

p̂
(N)
i,j (t)− pi,j

)

=

[

∑Ni(t−1)
ℓ=1 (Cℓ − pi,j)

Ni(t− 1)

]

Ni(t− 1)

Ni(t)
1[Ni(t−1)>0] − pi,j1[Ni(t−1)=0]. (2.8)

To handle the edge-effect term in (2.8), note that

√
tpi,j1[Ni(t−1)=0]

P−→ 0

due to Pr[Ni(t− 1) = 0] = Pr(τ1 > t− 1) ≤ E[τ1]/(t− 1), which is justified by Markov’s inequality.

Here, τ1 is the first time the chain visits state i; E[τ1] is finite by the assumed positive recurrence.

Observe that Ni(t − 1)/Ni(t) → 1 and 1[Ni(t−1)>0] → 1 (all with probability 1). An application of
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Slutzky’s theorem now shows that our work is done if we simply prove that

√
t

Ni(t− 1)

Ni(t−1)
∑

ℓ=1

(Cℓ − pi,j)
D−→ N

(

0,
Var(C1)

πi

)

. (2.9)

To verify (2.9), apply the central limit theorem to the iid sequence {Cℓ} to infer that as

m → ∞,

1√
m

m
∑

ℓ=1

(Cℓ − pi,j)
D−→ N(0,Var(C1)).

Since Ni(t) → ∞, Theorem 17.1 in the book by Billingsley (1968) gives

1
√

Ni(t− 1)

Ni(t−1)
∑

ℓ=1

(Cℓ − pi,j)
D−→ N(0,Var(C1)),

which implies (2.7) and (2.9) when combined with
√

t/Ni(t− 1) →
√

1/πi and Var(C1) = pi,j −

p2i,j .

A similar argument proves the following result, the essential change being that (2.6) is used

in place of (2.5), and Var((C1 +D1)/2) replaces Var(C1).

Theorem 2.3.3. As t → ∞

√
t
(

p̂
(R)
i,j (t)− pi,j

)

D−→ N

(

0,
(pi,j − p2i,j) + (pi,j

∑∞
k=0 ip

(k)
i,j pj,i − p2i,j)

2πi

)

D
= N

(

0,
Var((C1 +D1)/2))

πi

)

.

(2.10)

In terms of asymptotic efficiencies, we have now shown that

lim
t→∞

Var(p̂
(R)
i,j (t))

Var(p̂
(N)
i,j (t))

=
Var

(

C1+D1

2

)

Var(C1)
=

σ2
R

σ2
N

, (2.11)

where

σ2
N =

pi,j − p2i,j
πi

and σ2
R =

(pi,j − p2i,j) + (pi,j
∑∞

k=0 ip
(k)
i,j pj,i − p2i,j)

2πi
. (2.12)

Observe that
∑∞

k=0 ip
(k)
i,j pj,i ≤

∑∞
k=0 Pri[ηi = k+1] ≤ 1, ηi denoting the time of first return to state

i and Pri indicating the initial condition X0 = i. Using this in (2.12) shows that σ2
R ≤ σ2

N . In the
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next section, we will show that σ2
R/σ

2
N ≥ 1/2.

2.4 Lower bounds for σ2
R/σ

2
N

We start with two examples. In the first, Cℓ and Dℓ are perfectly correlated and the

asymptotic efficiency of the naive and reversible estimators is unity. In the second example, Cℓ and

Dℓ are uncorrelated and the reversible estimator is twice as efficient as the naive estimator.

Consider a birth and death chain. This chain is skip-free in that from state i ≥ 1, the only

possible transitions are to states i − 1 and i + 1. The transition probabilities are pi,i+1 = αi and

pi,i−1 = 1−αi, where αi ∈ [0, 1] (at state 0, we take p0,1 = α0 and p0,0 = 1−α0). Assuming αi > 0

for all i ≥ 0 and αi < 1/2 for all large i, the chain is irreducible, aperiodic, positive recurrent, and

reversible and has a limiting distribution with form

πj =











K j = 0

α1···αj−1

(1−α1)···(1−αj)
K j > 0

.

Here, the constant K is such that the limiting distribution has unit mass.

The only nonzero pi,j ’s occur when j = i− 1 or j = i + 1. When j = i+ 1, then if Cℓ = 1,

the ℓth cycle starts with a transition from i to i+1 and, by the skip free property, must end with a

transition from i + 1 to i. Hence, Dℓ = 1 for this cycle. If Cℓ = 0, then the ℓth cycle starts with a

transition from i to i− 1 and, by the skip-free property, must end with a transition from i− 1 to i.

Hence, Dℓ = 0 for this cycle. It now follows that Var((Cℓ +Dℓ)/2) = Var(Cℓ). Thus, for skip-free

chains, the reversible and naive estimators have the same asymptotic efficiency.

As a second example, consider an iid chain. Specifically, X0, X1, . . . are independent and

have the common probability mass function Pr[Xi = j] = πj with πj > 0 for all j. Such a sequence

can be regarded as a Markov chain with the transition probabilities pi,j = πj . The stationary

distribution is {πi}∞i=0 and the chain is easily shown to be irreducible, aperiodic, positive recurrent,

and reversible.

To calculate σ2
R, note that the taboo probability is

∞
∑

k=0

ip
(k)
i,j =

∞
∑

k=0

(1− πi)
kπj = π−1

i πj .
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It follows from (2.12) that

σ2
R =

1

2

(

πj − π2
j + πjπ

−1
i πjπi − π2

j

)

=
πj − π2

j

2
=

σ2
N

2
.

Hence, p̂
(R)
i,j (t) is asymptotically twice as efficient as p̂

(N)
i,j (t).

We close by showing that Cov(Cℓ, Dℓ) ≥ 0. With this and (2.11), we have 1/2 ≤ σ2
R/σ

2
N ≤ 1

and the two examples above provide cases where the relative efficiencies of 1/2 and 1 are achieved.

Theorem 2.4.1. Cℓ and Dℓ are non-negatively correlated; that is, Cov(Cℓ, Dℓ) ≥ 0.

Proof. Because of the binary structure of Cℓ and Dℓ, it suffices to show that Pr(Cℓ = 1, Dℓ = 1) ≥

Pr(Cℓ = 1)Pr(Dℓ = 1). To this end, we note that since

Pr(Cℓ = 1)Pr(Dℓ = 1)

= [Pr(Cℓ = 1, Dℓ = 1) + Pr(Cℓ = 1, Dℓ = 0)] [Pr(Cℓ = 1, Dℓ = 1) + Pr(Cℓ = 0, Dℓ = 1)]

= Pr(Cℓ = 1, Dℓ = 1)[1− Pr(Cℓ = 0, Dℓ = 0)] + Pr(Cℓ = 1, Dℓ = 0)Pr(Cℓ = 0, Dℓ = 1),

it suffices to show that

Pr(Cℓ = 1, Dℓ = 1)Pr(Cℓ = 0, Dℓ = 0) ≥ Pr(Cℓ = 1, Dℓ = 0)Pr(Cℓ = 0, Dℓ = 1). (2.13)

Since Pr(Cℓ = 1, Dℓ = 0) is the probability that a cycle begins with a transition from i to j and

ends with a transition from some state other than j to i, we have

Pr(Cℓ = 1, Dℓ = 0) =
∑

A

pi,jpj,k1 · · · pkn,i,

where A = ∪∞
n=1{(k1, . . . , kn); kh 6= i for h = 1, . . . , n and kn 6= j}. Similarly, since Pr(Cℓ = 0, Dℓ =

1) is the probability a cycle begins with a transition from i to some state other than j and ends with

a transition from j to i,
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Pr(Cℓ = 0, Dℓ = 1) =
∑

B

pi,l1 · · · plm,jpj,i,

where B = ∪∞
m=1{(l1, . . . , lm); lh 6= i for h = 1, . . . ,m and l1 6= j}.

Thus,

Pr(Cℓ = 1, Dℓ = 0)Pr(Cℓ = 0, Dℓ = 1) =
∑

A

∑

B

pi,jpj,k1 · · · pkn,ipi,l1 · · · plm,jpj,i.

An application of Kolmogorov’s criteria for reversibility in (2.1) gives

Pr(Cℓ = 1, Dℓ = 0)Pr(Cℓ = 0, Dℓ = 1) = pi,jpj,i

(

∑

A

∑

B

pi,kn
· · · pk1,jpj,lm · · · pl1,i

)

.

Since n and m are both at least 1 and l1 and kn do not equal j, each term in the double summation

is the probability of some cycle that begins with a transition from i to some state other than j and

ends with a transition from some state other than j to i. Thus, the term inside the parentheses is

less than or equal to Pr(Cℓ = 0, Dℓ = 0) and

Pr(Cℓ = 1, Dℓ = 0)Pr(Cℓ = 0, Dℓ = 1) ≤ pi,jpj,iPr(Cℓ = 0, Dℓ = 0). (2.14)

Because one way for a cycle to have Cℓ = 1 and Dℓ = 1 is to make a transition from i to j and then

immediately back to i, we have

pi,jpj,i ≤ Pr(Cℓ = 1, Dℓ = 1). (2.15)

Combining (2.14) and (2.15) gives (2.13) and completes the proof.

2.5 Conclusion and Comments

Reversibility is a structural property inherited by many Markov chains. Reversibility can

be exploited in some cases to obtain transition probability estimates that have smaller asymptotic

variances than naive estimators based on ratios of counts. The improvement in the asymptotic
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efficiency of a reversible estimate, relative to a naive estimate, is quantified in (2.11). In cases where

the chain possesses the so-called skip-free property, such as the birth and death chain in Section 1,

there is no improvement; in other cases, such as the random walk on a graph, some improvement

may be possible. In any case, the reversible estimator’s asymptotic variance can be no lower than

half the naive estimator’s asymptotic variance.
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Chapter 3

Testing for Reversibility in Markov

Chain Data

The following is joint work with Peter C. Kiessler and Robert Lund. It is being submitted

to the Annals of the Institute of Statistical Mathematics.

3.1 Introduction

Let {Xt}∞t=0 be a time-homogeneous Markov chain on the finite state space S = {1, 2, . . . ,m}

with one-step-ahead transition probability matrix P = (pi,j)i,j∈S with entries pi,j = P [Xn+1 =

j|Xn = i]. Without a priori information, it is natural to estimate pi,j by

p̂
(N)
i,j =

Ni,j

Ni
1[Ni>0],

where Ni,j is the number of times the chain transitions from state i to state j in one step and Ni is

the number of times the chain visits state i in a data realization of length L. Anderson and Goodman

(1957), Basawa and Rao (1980), Billingsley (1961), and Derman (1956) explore properties of p̂
(N)
i,j

in depth. Some of their results are reviewed/stated in the next section.

Suppose that the chain is aperiodic and irreducible. Due to the finite state space, the chain

is positive recurrent and admits a unique stationary distribution π = (π1, . . . , πm) (this is also a

limiting distribution). The chain is called reversible if it satisfies the so-called detailed balance
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equations

πipi,j = πjpj,i, for all i, j ∈ S. (3.1)

Markov chain Monte Carlo chains (MCMC), birth and death chains, and random walks on graphs are

known to be reversible chains. In many settings, reversibility can be rationalized through physical

reasoning without computation of π. More examples of reversible Markov chains can be found in

Kijima (1997), Ross (2007), and Stroock (2005).

Knowing whether or not a chain is reversible is advantageous. A reversible chain contains

fewer parameters than a non-reversible chain. Elaborating, there are m(m − 1) free parameters

in the one-step-ahead transition matrix of a chain whose state space has cardinality m (one free

parameter is lost in each row since all transition matrix row sums are unity). However, if a chain is

known to be reversible, there are only m(m− 1)/2 free parameters due to the restrictions in (3.1).

Diagnostics are another application of the methods here. For example, any MCMC generated chain

flunking a reversibility test would be suspect as these chains are reversible.

The rest of this paper proceeds as follows. The next section introduces two test statistics that

assess chain reversibility. Section 3 establishes their asymptotic distributions under a null hypothesis

of reversibility. Section 4 presents a simulation study showing the efficiency of the statistics in

identifying reversibility. Section 5 presents coincluding remarks and an Appendix establishes two

technical calculations.

3.2 Test Statistics

Suppose that state i is visited k times in the first L−1 time units; that is, supposeNi(L−1) =

k (we work with time L− 1 instead of time L because we do not have an observed transition from

time L to L + 1). Then Ni(L − 1) = (Ni,1(L − 1), ..., Ni,M (L − 1))′ is a multivariate multinomial

random variable with k trials and success probability vector pi = (pi,1, . . . , pi,M )′. Using this and

the central limit theorem for renewal sequences, Basawa and Rao (1980), Anderson and Goodman

(1957), Billingsley (1961), and Derman (1956) argue that for each i, j ∈ S,

√
L(p̂

(N)
i,j − pi,j)

D−→ N

(

0,
pi,j(1 − pi,j)

πi

)
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as L → ∞. For joint inferences, they also show that

√
L







p̂
(N)
i,j − pi,j

p̂
(N)
i′,j′ − pi′,j′







D−→ N













0

0






,ΣP






, (3.2)

where

ΣP =







pi,j(1− pi,j)/πi δi,i′pi,j(δj,j′ − pi,j′ )/πi

δi,i′pi,j(δj,j′ − pi,j′)/πi pi′,j′(1− pi′,j′)/πi′







and δi,j = 1[i=j] is the Kronecker delta indicator. For completeness, we argue (3.2) in Appendix

A from elementary principles. Part of the reason we prove this is that most of the above cited

authors state but do not prove the result, and the reader may be surprised that p̂
(N)
i,j and p̂

(N)
i′,j′ are

asymptotically uncorrelated when i 6= i′. In fact, since the chain cannot be in state i′ when it is in

state i, one might erroneously rationalize negative dependence when i 6= i′.

When the chain is reversible, there are actually more efficient estimators of pi,j than p̂
(N)
i,j .

Annis et al. (2010) and Greenwood et al. (2001) show that the symmetrized estimator

p̂
(R)
i,j =

Ni,j +Nj,i

2Ni
1[Ni>0]

is asymptotically more efficient than p̂
(N)
i,j and quantify the efficiency gain. For example, p̂

(N)
i,j and

p̂
(R)
i,j have unit efficiency when the chain is skip free. Skip free means that when the chain is in state

i, the next transition must go to either state i− 1 or i+ 1. We estimate πi with

π̂i =
Ni

L
.

In view of (3.1), the deviations

π̂ip̂
(N)
i,j − π̂j p̂

(N)
j,i =

Ni,j −Nj,i

L
(3.3)

should be small for each pair (i, j) with i < j when the chain is reversible. Hence, the quadratic

form

∑∑

i<j

(

Ni,j −Nj,i

L

)2

(3.4)
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should be statistically small under reversibility. The sum in (3.4) is inconvenient to quantify asymp-

totically. This is because the quantities Ci,j := (Ni,j −Nj,i)/L are correlated for varying pairs (i, j)

with j > i.

To handle this issue, define the m(m− 1)/2-dimensional discrepancy vector

C =
1

L















































N1,2 −N2,1

...

N1,m −Nm,1

N2,3 −N3,2

...

N2,m −Nm,2

...

Nm−1,m −Nm,m−1















































. (3.5)

For notation, we denote the element ofC corresponding to L−1(Ni,j−Nj,i) as Ci,j . While this indexes

a vector with bivariate subscripts, the notation is natural given the transition count components it

involves.

Let ΣC = limL→∞ LVar(C) denote the asymptotic information matrix of C. If one can

establish asymptotic normality of C, then the quadratic form statistic

T1 = LC′Σ̂+
C
C. (3.6)

will have an asymptotic χ2 distribution. The degrees of freedom of T1 will be the rank of ΣC, which

is not necessarily m(m−1)/2. Specifically, ΣC is not always invertible and the notation Σ+
C
signifies

the Moore-Penrose pseudoinverse in (3.6). These aspects are elaborated upon in detail below.

A second test statistic that could be used to assess reversibility is the maximum of the

square of terms in (3.4); specifically,

T2 = max
i<j

D2
i,j , (3.7)

where Di,j is the (i, j)th component in D defined by D =
√
L(Σ̂+

C
)1/2C. Observe that D is an

m(m − 1)/2 dimensional vector and we have indexed its components akin to those in C. We show

below that T2 converges asymptotically to the max of κ independent random variables, each of which
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has a chi-squared distribution with one degree of freedom. Here, κ is the rank of ΣC.

Small values of T1 and T2 suggest the null hypothesis of reversibility; that is, reversibility

is rejected when T1 and/or T2 are statistically too big. To quantify how big the statistics need to

be to warrant rejection of reversibility, we now derive the asymptotic distributions of T1 and T2 as

L → ∞ under the null hypothesis of reversibility. In the analysis below, we assume that the data

sequence X1, . . . , XL is drawn from a time-homogeneous chain that is in its stationary state. As the

initial state will not influence limiting behavior, one can apply the results below to any arbitrary

initial state.

3.3 Asymptotic Distribution of the Test Statistics

This section derives the asymptotic distributions of T1 and T2 when the chain is reversible.

We begin with the following lemma that quantifies the joint normality of the Ni,j/L’s. The result

does not follow readily from the joint asymptotic normality of the p̂i,j ’s in (3.2) because of the

randomness in the π̂i’s. Although joint normality holds for any collection of the Ni,j/L’s, we state

the result for two (i, j) pairs only for notational convenience. The proof of the result is presented in

Appendix B.

Lemma 3.3.1. Suppose that {Xt}Lt=1 is a sample taken from a time-homogeneous aperiodic irre-

ducible Markov chain on the finite state space S whose cardinality is m < ∞. Then

√
L







Ni,j

L − πipi,j

Ni′,j′

L − πi′pi′,j′







D−→ N (0,ΣN) ,

where

ΣN =







γ2
i,j γij,i′j′

γij,i′j′ γ2
i′,j′ .







Here,
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γ2
i,j = 2πipi,jrj,ipi,j + πipi,j(1− πipi,j);

γij,i′j′ = πipi,jrj,i′pi′,j′ + πi′pi′,j′rj′,ipi,j − πipi,jπi′pi′,j′ ;

γi′,j′ = 2πi′pi′,j′rj′,i′ + 2πi′pi′,j′(1 − πi′pi′,j′);

and rk,ℓ is the (k, ℓ)th entry in the matrix R = (Im×m − P + Πm×m)−1 with Πm×m being an

m × m dimensional matrix with each row containing the limiting distribution π, and Im×m is the

m-dimensional identity matrix.

Observe that on a chain whose state space has cardinality m, ΣN is an m2×m2 dimensional matrix.

We will need to derive forms of ΣC and ΣN under a null hypothesis of reversibility. These

quantities are denoted by Σ
(R)
C

and Σ
(R)
N

, respectively. To compute these information matrices

under reversibility, one simply replaces πjpj,i with πipi,j when j > i; these expressions are left

unaltered when j ≤ i. For example, under reversibility, the limiting information for N1,2 is written

as π1p1,2r2,1p1,2+π1p1,2(1−π1p1,2); the limiting information for N2,1 is written as 2π2p2,1r1,2p2,1+

π2p2,1(1−π2p2,1) in preference to 2π1p1,2r1,2p2,1+π1p1,2(1−π1p1,2). The estimators Σ̂
(R)
N

and Σ̂
(R)
C

are computed by plugging in π̂i for πi and p̂
(N)
i,j for pi,j under the above “reflection scheme”.

Theorem 3.3.2. Under the assumptions of Lemma 1, T1 = LC′(Σ̂(R)
C

)+C
D−→ χ2

κ as L → ∞,

where κ is the rank of ΣC. In the case where P has no zero elements or parameter restrictions,

κ = (m− 1)(m− 2)/2.

Proof. Throughout this proof, we assume that the null hypothesis of reversibility is in force. Then

πipi,j = πjpj,i for all (1, j) ∈ {1, . . . ,m}. Let

N = L−1



















N1,1 − Lπ1p1,1

N1,2 − Lπ1p1,2
...

Nm,m − Lπmpm,m



















.

Observe that C is a linear transformation of N; hence, we write C = VN, where V is a m(m −

1)/2 ×m2 dimensional matrix whose only non-zero entries are positive or negative one. The form
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of V is messy to write down but the ones and minus ones lie in the following described locations.

V is written as m − 1 blocks with block i containing m − i rows, for i = 1, 2, . . . ,m − 1.

That is, V has the form



















b(1)

b(2)

...

b(m− 1)



















.

Row r of the matrix V is in block i if (i − 1)(m − i/2) + 1 ≤ r ≤ im− i(i+ 1)/2. For block i, the

entries in b(i) are

b(i)k,ℓ =























1, if ℓ = (i − 1)m+ i+ k

−1, if ℓ = (i − 1)m+ i+ km

0, otherwise

.

When m = 3, for example, we have

C = L−1













0 1 0 −1 0 0 0 0 0

0 0 1 0 0 0 −1 0 0

0 0 0 0 0 1 0 −1 0

































































N1,1 − Lπ1p1,1

N1,2 − Lπ1p1,2

N1,3 − Lπ1p1,3

N2,1 − Lπ2p2,1

N2,2 − Lπ2p2,2

N2,3 − Lπ2p2,3

N3,1 − Lπ3p3,1

N3,2 − Lπ3p3,2

N3,3 − Lπ3p3,3





















































.

Under the reversible null,
√
LN

D−→ N(0,Σ
(R)
N

) by Lemma 1 and hence
√
LC

D−→ N(0,Σ
(R)
C

),

where Σ
(R)
C

= VΣ
(R)
N

V′. Theorem 4.7.1 in Graybill (1976) and Slutzky’s theorem give

(
√
LCT )(Σ̂

(R)
C

)+(
√
LC) = LCT (Σ̂

(R)
C

)+C
D−→ χ2

κ,

where κ is the rank of Σ
(R)
C

.
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To finish the proof, we need to determine the rank of Σ
(R)
C

. This calculation caused the

authors considerable consternation.

SinceΣ
(R)
C

is anm(m−1)/2×m(m−1)/2 dimensional matrix, the rank ofΣ
(R)
C

ism(m−1)/2

minus the rank of the null space of Σ
(R)
C

. Perhaps surprisingly, the rank of the null space of Σ
(R)
C

is

not zero. To see this, we must show that there exist non-zero vectors u such that

ΣC
(R)u = 0

and identify how many linearly independent such u exist.

To do this, let Ni,· =
∑m

k=1 Ni,k and N·,j =
∑m

k=1 Nk,j . Then Ni,· is the total number of

transitions out of state i in the data record and N·,i is the total number of transitions into state i

in the data record. Physical reasoning shows that |Ni,· −N·,i| ≤ 1 for each i ∈ {1, 2, . . . ,m}. As we

show below, the lack of full rank for Σ
(R)
C

arises from these restrictions (and not reversibility).

For i ∈ {1, 2, . . . ,m}, define the m(m− 1)/2 dimensional vector u(i) componentwise via

u
(i)
h,ℓ =























1, if h = i and ℓ ∈ {i+ 1, i+ 1, . . . ,m},

−1, if ℓ = i and h ∈ {i− 1, i− 2, . . . , 1}

0, otherwise

.

Here, we have indexed u(i) with two components (h, ℓ) drawn over the set {1, 2, . . . ,m} with h < ℓ.

For example, when m = 3,

u(1) =













1

1

0













, u(2) =













−1

0

1













, u(3) =













0

−1

−1













.

We now show that u(i) belongs to the null space of Σ
(R)
C

for i = 1, 2, . . . ,m. To see this,

observe that for i = 1, 2, . . . ,m,

Ni,· −N·,i =
∑

j>i

(Ni,j −Nj,i)−
∑

j<i

(Nj,i −Ni,j). (3.8)

The element of Σ
(R)
C

corresponding to Ch,ℓ and Ch′,ℓ′ is
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lim
L→∞

L−1E[(Nh,ℓ −Nℓ,h)(Nh′,ℓ′ −Nℓ′,h′)] = lim
L→∞

LE[Ch,ℓCh′,ℓ′ ].

Thus, for i = 1, 2, . . . ,m, the (h, ℓ)th element of Σ
(R)
C

u(i) is

lim
L→∞





∑

j>i

E[(Nh,ℓ −Nℓ,h)(Ni,j −Nj,i)]−
∑

j>i

E[(Nh,ℓ −Nℓ,h)(Nj,i −Ni,j)]



 .

To show that this is zero, use Equation (3.8) to get that the (h, ℓ)th element of Σ
(R)
C

u(i) is

lim
L→∞

L−1
∑

j>i

E



(Nh,ℓ −Nℓ,h)





∑

j>i

(Ni,j −Nj,i)−
∑

j<i

(Nj,i −Ni,j)









= lim
L→∞

L−1E[(Nh,ℓ −Nℓ,h)(Ni· −N·i)].

Since |Ni,· −N·,i| ≤ 1 and Var(
Nh,ℓ−Nℓ,h√

L
) < ∞ (by Lemma 1), the Cauchy-Schwarz inequality gives

lim
L→∞

L−1E[(Nh,ℓ −Nℓ,h)(Ni· −N·i)] = lim
L→∞

E

[

(Nh,ℓ −Nℓ,h)√
L

(Ni· −N·i)√
L

]

≤ lim
L→∞

(

Var

(

Nh,ℓ −Nℓ,h√
L

))1/2
1√
L

= 0.

Hence, the (h, ℓ)th element of Σ
(R)
C

u(i) is zero and u(1), . . . ,u(m) are in the null space of Σ
(R)
C

.

It is easy to see that there are m − 1 linearly independent vectors amongst u(1), . . . ,u(m).

This can be seen by putting all u(i) as rows in a matrix and row reducing. A rank of one is lost

from m because

m
∑

i=1

u(i) = 0,

which is a consequnce of

m
∑

i=1

(Ni,· −N·,i) = 0.
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It follows that the rank of the null space of Σ
(R)
C

is at least m− 1. When there are no other

parametric constraints on the entires of P (such as zeros), there are no other elements in the null

space of Σ
(R)
C

besides linear combinations of those illuminated above. In this case, we obtain

κ =
m(m− 1)

2
− (m− 1) =

(m− 1)(m− 2)

2

which completes our proof.

Theorem 3.3.3. As L → ∞, T2
D−→ max1≤ℓ≤κ χ

2
ℓ , where {χ2

ℓ}κℓ=1 are independent and identically

distributed chi-squared random variables each having one degree of freedom and κ is the rank of Σ
(R)
C

.

In the case where P has no zero elements or parameter restrictions, κ = (m− 1)(m− 2)/2.

Proof. This result follows from the joint asymptotic normality of the Ci,j ’s and the fact that the

Di,j ’s are asymptotically uncorrelated.

3.4 Simulation Examples

This section presents a simulation study assessing the performance of T1 and T2 as test

statistics for reversibility. We consider a variety of transition matrices, some reversible, some non-

reversible, and some non-reversible but close to reversible. In each case, ten thousand independent

chains were generated from each transition matrix with the sample lengths L = 250, 1000 and 2500.

For reversible chains, one expects about 5% of the test statistics to exceed the 95% critical

value. For non-reversible chains, one hopes for good power — that most of the test statistics exceed

the 95% critical value.

We present five total examples. The first three examples have m = 3 with no zeros or other

parameter restrictions in P. In this case, the rank of Σ
(R)
C

is 1 and the 95% critical value for both

T1 and T2 is 3.841. Example four takes m = 5 with no zeros or other parameter restrictions in P.

Here, the rank of Σ
(R)
C

is 6, the 95% critical value of T1 is 12.592, and the 95% critical value of T2

is 17.219. Example 5 considers a one-step-ahead transition matrix with several zero entries when

m = 4. Here, the rank of Σ
(R)
C

is κ = 2, which gives 95% critical values for T1 and T2 as 5.991 and

7.352, respectively.

Our first example uses the transition matrix
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P =













1/5 2/5 2/5

2/5 1/5 2/5

2/5 2/5 1/5













.

This chain is reversible, irreducible, and aperiodic with stationary distribution π = (1/3, 1/3, 1/3).

Figure 3.4 plots a kernel density estimate of the generated values of T1 and T2 against a chi-squared

probability density function with one degree of freedom. Here, the Epanechnikov kernel function

K(x) =
3(1− x2)

4
, − 1 ≤ x ≤ 1,

was used with a smoothing bandwidth of 0.25 in all plots. Because the densities in question are

supported on [0,∞), we have wrapped any probability mass that is assigned to (−∞, 0) back to

the positive reals. As L → ∞, it is seen that the test statistics match the χ2 distribution with one

degree of freedom reported in theorems 3.3.2 and 3.3.3, the fit improving with increasing L (the fit

is so good in some cases that differences are hard to discern from the graphics).
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Figure 3.1: Sample Kernel Density Estimates Against the χ2(1) Density.

For our second example, we consider
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P =













1/6 1/3 1/2

5/8 3/16 3/16

5/24 23/48 5/16













.

This chain is not reversible, but is irreducible and aperiodic. In this case, the generated values of T1

and T2 are consistently above the 95% rejection threshold, even for the smaller values of L. Table

3.1 shows empirical powers of rejection for various L. These powers are reasonable, becoming perfect

when L = 1000. In our first two examples, the test statistics are making good conclusions.

Table 3.1: Empirical Powers for Example 2
L 250 1000 2500
T1 99.99% 100.00% 100.00%
T2 99.99% 100.00% 100.00%

Our third example seeks to fool the methods by considering

P =













8/15 1/3 2/15

9/33 20/33 4/33

1/3 1/3 1/3













.

This chain is irreducible and aperiodic, but is not reversible. The chain’s stationary distribution is

π = (55/144, 11/24, 23/144). While technically non-reversible, the equations in (3.1) are close to

being satisfied. In particular, Table 3.3 shows values for both sides of the three reversible balance

equations; two of these three equations “nearly hold”.

Table 3.2 shows that the generated test statistics are close to zero and consistently below

the 95% critical value. We attribute the slight non-monotonicity of the empirical powers (in L) to

asymptotics not “kicking in”. As expected, T1 and T2 have difficulty identifying non-reversibility

with such small sample sizes.

Table 3.2: Empirical Powers for Example 3
L 250 1000 2500
T1 7.88% 7.19% 9.45%
T2 7.51% 7.14% 9.45%

To investigate this case more deeply, we ran additional simulations with much larger sample sizes,

particularly L = 10000 and L = 100000. The empirical reversibility rejection powers reported in
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Table 3.3: Detailed Balance Equations for Example 3
π1p1,2 = 55

432 ≈0.1273148148 π2p2,1 =
1
8 ≈0.125

π1p1,3 = 1
72 ≈0.152777777 π3p3,1 =

23
432 ≈0.0532407407

π2p2,3 = 1
18 ≈0.055555555 π3p3,2 =

23
432 ≈0.0532407407

Table 3.4 show that the methods do distinguish reversibility from non-reversibility asymptotically,

but that it takes a large sample size L to do this effectively.

Table 3.4: Empirical Powers for Example 3 with Larger L
L 10000 100000
T1 19.67% 94.08%
T2 19.65% 94.07%

Our fourth example considers a larger state space — one where m = 5. Here, states one

through five correspond to weather conditions of sunny, rainy, foggy, cloudy, and partly cloudy,

respectively. We take the transition probabilities as

P =

























1/2 1/16 1/16 1/8 1/4

1/4 3/10 1/20 1/4 3/20

1/16 3/8 5/16 3/16 1/16

1/10 1/4 1/10 1/4 3/10

3/20 3/10 1/10 1/5 1/4

























.

This chain is not reversible, but is irreducible and aperiodic. Table 3.5 gives empirical

powers of rejection at the 95% percentile. The numbers appear reasonable and the powers increase

with increasing L. Here, T2 performs much worse than T1.

Table 3.5: Empirical Powers for Example 4
L 250 1000 2500
T1 96.86% 100.00% 100.00%
T2 61.14% 99.95% 100.00%

Our last example consider a case where the rank of Σ
(R)
C

is not the largest possible. We do

this by taking m = 4 and imposing several elements of the transition matrix to be zero:
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P =



















1/2 1/4 1/4 0

1/4 1/4 1/4 1/4

1/4 1/4 1/4 1/4

0 1/4 1/4 1/2



















.

This chain is reversible, aperiodic, and irreducible. The limiting distribution is π = (1/4, 1/4, 1/4, 1/4).

Suppose that physical reasoning dictates that p1,4 = p4,1 = 0 but that the other transition proba-

bilities are non-zero. Here, the rank of null space of Σ
(R)
C

is κ = 2. This is seen by writing out the

linear system for the asymptotic null space of Σ
(R)
C

as in the Proof of Theorem 1:

C1,2 + C1,3 + C1,4 = 0

−C1,2 + C2,3 + C2,4 = 0

−C1,2 − C2,3 + C3,4 = 0

−C1,4 − C2,4 − C3,4 = 0

However, since we know that p4,1 = 0 and p1,4 = 0, N1,4 = N4,1 = 0 and the above linear system

reduces to

C1,2 + C1,3 = 0

−C1,2 + C2,3 + C2,4 = 0

−C1,2 − C2,3 + C3,4 = 0

−C1,4 − C2,4 − C3,4 = 0,

which is easily verified to have rank 4. Hence, the rank of Σ
(R)
C

is κ = 6− 4 = 2.

The Type I error probabilities in Table (3.6) are close to the designed 5% for the T1 statistics,

but smaller than 5% for T2.
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Table 3.6: Empirical Powers for Example 5
L 250 1000 2500
T1 8.84% 7.41% 6.72%
T2 5.01% 3.93% 3.56%

Overall, it seems that T1 is superior to T2, as can be seen by the slightly higher powers in

the examples above when the chain is not reversible. However, the superiority is not not uniform

(see Example 4 above). Overall, both statistics seem to function well.

3.5 Concluding Remarks

This paper considered the problem of detecting reversibility in a Markov chain data sequence.

Two statistics were proposed and their asymptotic properties were derived. Both statistics performed

reasonably well in a simulation study. The crux of the mathematical analysis lied with determining

the asymptotic rank of an information matrix in a quadratic form.
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Appendices
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Appendix A Proof of Equation (3.2)

Proof. Write the counts up to time L− 1 (the value of XL does not affect the asymptotic analysis)

as

Ni =

L−1
∑

n=0

1{i}(Xn), Ni,j =

L−1
∑

n=0

1{i,j}(Xn, Xn+1).

Then it is easy to see that Ni,j −Nipi,j =
∑L−1

n=0 1{i}(Xn)(1{j}(Xn+1)− pi,j) has expectation 0. To

handle the covariance term E[(Ni,j −Nipi,j)(Ni′,j′ −Ni′pi′,j′ )], use

L−1
∑

n=0

1{i}(Xn)(1{j}(Xn+1)− pi,j)

L−1
∑

m=0

1{i′}(Xm)(1{j′}(Xm+1)− pi′,j′)

=

L−1
∑

n=0

1{i}(Xn)(1{j}(Xn+1)− pi,j)1{i′}(Xn)(1{j′}(Xn+1)− pi′,j′ )

+
L−2
∑

n=0

L−1
∑

m=n+1

1{i}(Xn)(1{j}(Xn+1)− pi,j)1{i′}(Xm)(1{j′}(Xm+1)− pi′,j′)

+

L−2
∑

m=0

L−1
∑

n=m+1

1{i′}(Xm)(1{j′}(Xm+1)− pi′,j′)1{i}(Xn)(1{j}(Xn+1)− pi,j).

Consider the second piece in the expression above, for m > n, using the Markov property at time

m,

E[1{i}(Xn)(1{j}(Xn+1)− pi,j)1{i′}(Xm)(1{j′}(Xm+1)− pi′,j′)]

= E[1{i}(Xn)(1{j}(Xn+1)− pi,j)1{i′}(Xm)E[(1{j′}(Xm+1)− pi′,j′)]|Xm = i′]

= 0,

since E[(1{j′}(Xm+1) − pi′,j′)]|Xm = i′] = pi′,j′ − pi′,j′ = 0. A similar result holds when n < m.

Hence, the crux lies with evaluating the first term in (9). When i 6= i′ this expectation is zero;

however, when i = i′ we get
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L−1
∑

n=0

E[1{i}(Xn)(1{j}(Xn+1)− pi,j)(1{j′}(Xn+1)− pi′,j′)]

=

L−1
∑

n=0

E[1{i}(Xn)E[1{j}(Xn+1)1{j′}(Xn+1)− pi,j1{j′}(Xn+1)

−pi,j′1{j}(Xn+1) + pi,jpi,j′ |Xn = i]].

From here we see that when j = j′, the inside conditional expectation equals pi,j−p2i,j = pi,j(1−pi,j)

and when j 6= j′, it equals −pi,jpi,j′ . Since the chain is assumed to be in stationarity, E[1{i}(Xn)] =

πi and we get

E[(Ni,j −Nipi,j)(Ni′,j′ −Ni′pi′,j′)] =























Lπipi,j(1− pi,j) i = i′ j = j′

−Lπipi,jpi,j′ i = i′ j 6= j′

0 i 6= i′

Applying Slutsky’s Theorem, using the fact that Ni/L → πi almost surely, and

√
L(p̂i,j − pi,j) =

√
L

(

L

Ni

(

Ni,j −Nipi,j
L

))

,

we get the central limit theorem presented by Anderson and Goodman (1957), Basawa and Rao

(1980), Billingsley (1961) and Derman (1956)

√
L







p̂i,j − pi,j

p̂i′,j′ − pi′,j′







D−→ N






0,







pi,j(1 − pi,j)/πi δi,i′pi,j(δj,j′ − pi,j′)/πi

δi,i′pi,j(δj,j′ − pi,j′ )/πi pi′,j′ (1− pi′,j′)/πi′












.
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Appendix B Proof of Lemma 3.3.1

Proof. Derman (1956) establishes the asymptotic normality of the counts; however, he does not

derive the asymptotic information matrix, which we now pursue. For this, express Ni,j as the sum

of indicator functions

Ni,j =

L−1
∑

k=0

1{(i,j)}(Xk, Xk+1)

and let Yk = (Xk, Xk+1) for simplicity. Then

E[Ni,j ] = E

[

L−1
∑

k=0

1{(i,j)}(Yk)

]

=

L−1
∑

k=0

P (Xk = i,Xk+1 = j)

=

L−1
∑

k=0

P (Xk = i,Xk+1 = j|Xk = i)P (Xk = i)

=
L−1
∑

k=0

πipi,j

= Lπipi,j .

A similar tactic allows us to calculate the variance of Ni,j . Observe that

(Ni,j − Lπipi,j)
2 =

L−1
∑

k=0

L−1
∑

ℓ=0

(1{(i,j)}(Yk)− πipi,j)(1{(i,j)}(Yℓ)− πipi,j)

=

L−1
∑

k=0

(1{(i,j)}(Yk)− πipi,j)
2

+ 2

L−2
∑

k=0

L−1
∑

ℓ=k+1

(1{(i,j)}(Yk)− πipi,j)(1{(i,j)}(Yℓ)− πipi,j).

The expectation of the first term is simply a sum of variances of indicator functions:

E

[

L−1
∑

k=0

(1{(i,j)}(Yk)− πipi,j)
2

]

=

L−1
∑

k=0

E[(1{(i,j)}(Yk)− πipi,j)
2] = Lπipi,j(1− πipi,j).
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For the second term, we introduce some notation. For a one-step-ahead transition matrix P with

invariant measure π, we define Π as a matrix whose all rows are π. Define Q = P−Π and observe

that by stationarity that ΠP = Π, PΠ = Π, and Πn = Π. Hence, Qn = Pn −Π.

For ℓ > k,

E[(1{(i,j)}(Yk)− πipi,j)(1{(i,j)}(Yℓ)− πipi,j)] = E[1{(i,j)}(Yk)1{(i,j)}(Yℓ)]− (πipi,j)
2

= πipi,jp
(ℓ−k−1)
j,i pi,j − (πipi,j)

2

= πip
2
i,j(p

(ℓ−k−1)
j,i − πi)

= πip
2
i,jq

(ℓ−k−1)
j,i ,

where the convention qi,j(0) = δi,j has been used. Summing the above equation over k and ℓ gives

L−2
∑

k=0

L−1
∑

ℓ=k+1

q
(ℓ−k−1)
j,i =

L−2
∑

k=0

L−k−1
∑

ℓ′=0

q
(ℓ′)
j,i

=

L−2
∑

k=0

L−2
∑

ℓ′=0

1{ℓ′≤L−k−1}q
(ℓ′)
j,i

=

L−2
∑

ℓ′=0

L−2
∑

k=0

1{k≤L−ℓ′−1}q
(ℓ′)
j,i

=

L−2
∑

ℓ′=0

(L− ℓ′ − 1)q
(ℓ′)
j,i .

Combining the above and using that E[Ni,j ] = Lπipi,j gives

Var(Ni,j) = 2πip
2
i,j

L−2
∑

ℓ=0

(L− 1− ℓ)q
(ℓ)
j,i + Lπipi,j(1− πipi,j).

To compute Cov(Ni,j , Ni′,j′), we assume that either i 6= i′ or j 6= j′ (else, one recalculates

Var(Ni,j)). Then
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(Ni,j − Lπipi,j)(Ni′,j′ − Lπi′pi′,j′) =
L−1
∑

k=0

(1{(i,j)}(Yk)− πipi,j)
L−1
∑

ℓ=0

(1{(i′,j′)}(Yℓ)− πi′pi′,j′ )

=

L−2
∑

k=0

L−1
∑

ℓ=k+1

(1{(i,j)}(Yk)− πipi,j)(1{(i′,j′)}(Yℓ)− πi′pi′,j′ )

+

L−2
∑

ℓ=0

L−1
∑

k=ℓ+1

(1{(i′,j′)}(Yℓ)− πi′pi′,j′)(1{(i,j)}(Yk)− πipi,j)

+

L−1
∑

k=0

(1{(i,j)}(Yk)− πipi,j)(1{(i′,j′)}(Yk)− πi′pi′,j′).

(9)

Arguing as above, the expectation of the last term in (9) is −Lπipi,jπi′pi′,j′ . As evaluating the

expectation of the first and second terms in (9) are similar, we only consider the first term. For

ℓ > k,

E[(1{(i,j)}(Yk)− πipi,j)(1{(i′,j′)}(Yℓ)− πi′pi′,j′ )] = E[1{(i,j)}(Yk)1{(i′,j′)}(Yℓ)]− πipi,jπi′pi′,j′

= πipi,jp
(ℓ−k−1)
j,i′ pi′,j′ − πipi,jπi′pi′,j′

= πipi,jpi′,j′(p
(ℓ−k−1)
j,i′ − πi′ )

= πipi,jpi′,j′q
(ℓ−k−1)
j,i′ .

Hence,

L−2
∑

k=0

L−1
∑

ℓ=k+1

E[(1{(i,j)}(Yk)− πipi,j)(1{(i′,j′)}(Yℓ)− πi′pi′,j′)] = πipi,jpi′,j′
L−2
∑

ℓ=0

(L− 1− ℓ)q
(ℓ)
j,i′ .

When ℓ < k, we have

L−2
∑

k=0

L−1
∑

ℓ=k+1

E[(1{(i,j)}(Yk)− πipi,j)(1{(i′,j′)}(Yℓ)− πi′pi′,j′)] = πi′pi′,j′pi,j

L−2
∑

ℓ=0

(L− 1− ℓ)q
(ℓ)
j′,i.

Combining the three expectations above gives
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Cov(Ni,j , Ni′,j′) =
L−2
∑

ℓ=0

(L− 1− ℓ)[πipi,jpi′,j′q
(ℓ)
j,i′ + πi′pi′,j′pi,jq

(ℓ)
j′,i]− Lπipi,jπi′pi′,j′ .

To get the asymptotic covariance matrix of the sample counts, we first note that Qn → 0

almost surely and R :=
∑∞

n=0 Q
n = (I −Q)−1. By Kronecker’s Lemma (see Theorem 6.1.3 in Ash

and Dolèans-Dade), we have

1

L

L−2
∑

ℓ=0

(L − 1− ℓ)Qℓ =
L−2
∑

ℓ=0

Qℓ − 1

L

L−2
∑

ℓ=0

(ℓ+ 1)Qℓ →
∞
∑

ℓ=0

Qℓ = R.

Using the above expectations and taking limits gives

lim
L→∞

LVar

(

Ni,j

L

)

= lim
L→∞

1

L
Var(Ni,j)

= 2πip
2
i,jrj,i + πipi,j(1− πipi,j)

and

lim
L→∞

LCov

(

Ni,j

L
,
Ni′,j′

L

)

= lim
L→∞

1

L
Cov(Ni,j , Ni′,j′)

= πipi,jpi′,j′rj,i′ + πi′pi′,j′pi,jrj′,i − πipi,jπi′pi′,j′ .
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