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ABSTRACT 

 

 

Living organisms are exposed a nitrosative stress mediated by reactive nitrogen 

species (RNS) that can cause DNA damage and mutation.  DNA base deamination is a 

typical damage occurred under nitrosative stress, which results in conversion of cytosine 

(C) to uracil (U), adenine (A) to hypoxanthine (I), and guanine (G) to xanthine (X) or 

oxanine (O).  Base excision repair (BER) is an important pathway to remove deaminated 

DNA lesions in mammalian and microbial systems.  My dissertation work concerns with 

genes and enzymes involved in resistance to nitrosative stress and DNA glycosylases in 

the BER pathway.  In chapter one, I will briefly review current knowledge in these areas.  

In chapter two, I will present a genetic and biochemical investigation that identifies 

mouse thioredoxin domain-containing 5 (mTrx 5) and Escherichia coli thioredoxin 1 and 

thioredoxin 2 as genes that are involved in resistance to nitrosative stress.  This work 

indicates radical scavenging as an important resistance mechanism.  In chapter three, I 

will present an extensive biochemical, molecular modeling and molecular dynamics 

simulations study on deaminated repair activities in E. coli mismatch-specific uracil DNA 

glycoyslase (MUG).  Data obtained from cell extracts and purified enzymes indicate that 

E. coli MUG is a robust xanthine DNA glycosylase (XDG) although it is well known as a 

uracil DNA glycosylase.  Site-directed mutagenesis, coupled with molecular modeling 

and molecular dynamics simulations reveal distinct hydrogen bonding patterns in the 

active site of E. coli MUG, which account for the specificity differences between E. coli 

MUG and human thymine DNA glycosylase, as well as that between the wild type MUG 

and mutant MUG enzymes.  In chapter four, I will describe the deaminated base repair of 
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DNA glycosylases in archaea. Overall, these studies provide new insights on the cellular 

mechanisms in resistance to nitrosative stress and deaminated DNA repair mechanisms in 

mammalian and microbial systems. 
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CHAPTER ONE 

 

DAN DAMAGE AND REPAIR OVERVIEW 

 

I. Introduction 

 

DNA in an organism is subject to alteration constantly by various endogenous and 

environment factors. The maintenance of an organism’s genome integrity is very 

important for cells in all species. However, Failure of keeping genome integrity will 

cause DNA mutations, blockage of DNA transactions such as transcription, replication. 

Therefore, most of organisms including human have evolved a response to prevent 

deleterious effects of DNA damage, for example, DNA repair mechanisms. Depending 

on the types of DNA damage, several anti-DNA damage strategies have involved in 

quenching, removing and eventually repairing those are altered. This chapter provides an 

overview of thioredoxin’s role in reducing DNA damage generated by ROS and/or RNS 

and followed by relevant DNA repair pathways on both types of typical DNA mutations. 

Also, it will address the relationship of DNA repair deficiencies to diseases in human.  

 

II. Anti-ROS and Anti-RNS mechanism of thioredoxin 

Cells are always confronted to multiple factors that are able to damage DNA, 

including Reactive oxygen species (ROS) and Reactive nitrogen species (RNS). Both 

species have emerged as ubiquitous signalling molecules participating in the recognition 

of and the response to stress factors and are regarded as damaging agents to cells as well 

(1). In order to detoxifying ROS/RNS, Cells are able to reduce damage using several 

enzymes such as superoxide dismutases, glutathione peroxidases and thioredoxin. 
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A. Reactive oxygen species (ROS) 

Reactive oxygen species (ROS) are molecules that are generated continuously in 

most cells. ROS can interact with various macromolecules and thus cause damage to 

DNA (2). In this way, the major ROS (superoxide anion, hydrogen peroxide, and 

hydroxyl) are formed by the sequential reduction of O2 (3, 10) (Table 1-1). In aerobic 

organisms, products of many catabolic pathways are ended up with O2 in the 

mitochondria in order to produce energy but also including ROS as by-products at the 

mitochondria (3). ROS are generated by partial reduction of O2, which generates 

superoxide (O2
•−

) or hydrogen peroxide (H2O2) and can also be generated if O2 interacts 

with upstream complexes, particularly complexes I and III of electron transfer chain in 

mitochondria (3, 4). Several enzymatic systems in the cytosol also generate H2O2, for 

example, amino acid oxidases, cyclo-oxygenase, lipid oxygenase, xanthine oxidase and 

notable sources of ROS at the plasma membrane are the NADPH oxidases (3).  

B. Reactive nitrogen species (RNS) 

Nitric Oxide (NO
•
) plays a role in the nitrosative stress as a main RNS produced 

by cells and/or as a main source for the other RNS. NO
• 
is produced by NO synthases 

 (NOS) from L-arginine and oxygen (7). There are three isoforms of NOS. NOS 1 or 

nNOS (for neuronal), NOS 2 or iNOS (for inducible), and NOS 3 or eNOS (for 

endothelial) (8).  Both nNOS and eNOS are constitutively expressed when iNOS 

expression is induced, predominantly in macrophages, under pro-inflammatory 

conditions, large quantities of NO
•
 are produced (9).  Along with ROS, RNS and in 

particular nitric oxide (NO
•
), are now considered as major components of redox state 
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regulation although these are limited to consider as damaging agents. Indeed, NO
•
 can 

participate in specific signal transduction pathways which has been shown to be a 

Table 1-1 The Major ROS Molecules and their metabolism. Adopted from (10). 

 

ubiquitous signalling molecule in mammalian and plants (1,5). NO
•
 can interact with  

other radical ions such as O2
•− 

,and
 
thus become a peroxynitrite (ONOO-). RNS refers to 

various nitrogenous products, such as NO
•
, nitroxyl (HNO), nitrosonium cation (NO

+
), 

higher oxides of nitrogen, S-nitrosothiols (RSNOs), ONOO
•
, and dinitrosyl iron 

complexes (6, 7) (Table 1-2).   

C. Anti-ROS/RNS mechanism of thioredoxin. 

Thioredoxin 1(TrxA), a small ubiquitous 12kDa protein with a conserved active 

site sequence (Cys-Gly-Pro-Cys), was initially identified in Escherichia coli as an 

electron donor for ribonucleotide reductase (11). Thioredoxin is part of thioredoixn 

systems which include NADPH and thiroredoxin reductase. Recently, the second 

thioredoxin, E.coli Trx2 (TrxC) was identified and have additional N-terminal domain of 

32 amino acids including two CXXC motifs. Human thioredoxin1 (TRX1) was cloned as 

an adult T cell leukemia (ATL)-derived factor produced by HTLV-I transformed T cell 
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line ATL-2 cells (12, 13). Human thioredoxin 2 (TRX2) also was identified in 

mitochondria (14). Thioredoxins are highly conserved from bacteria to mammalian. 

Table 1-2 Main reactive nitrogen species. Adopted from (7). 

 

Thioredoxins from both prokaryotic and mammalian organisms are reduced by 

mammalian TrxR, while E.coli TrxR has a narrow substrate specificity and only 

catalyzes the reduction of bacterial Trx (10, 11, 18, 19, 20, 21). Thioredoxin has specific 

functions for protecting cells from toxicant, especially reactive species (10, 22) (Table 1-

3).  Besides thioredoxins that exist in all species, proteins that share the similar active site 

sequence as TRX (Cys-X–Y–Cys) are also identified in mammalian systems (15, 16, 17).  

Given that ROS/RNS play a role as a second messanger or as an oxidative/nitrosative 

stress causing agent, we have to consider their detoxification. ROS/RNS detoxification 

relies on the antioxidant defence (AD), which involves enzymatic activities (catalases, 

superoxide dismutases, peroxidases) and antioxidant molecules (glutathione, GSH, 

ascorbate, thioredoxin) (1). Taken together, ROS/RNS and AD contribute to the redox 

balance that regulate many protein’s activity such as transcription factor (10) and that 

reduce DNA damage possibly such as DNA oxidation and DNA deamination.  
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Table1-3 Functions of thioredoxin-1. Adopted from (22) 

 

Among various functions of thioredoxin, I will focus on reduction/oxidation 

reaction (redox) signaling for proteins and reactive species, in particular, the specific 

mechanism through which Trx may be exerting its modulating effects. Thioredoxins 1 

and 2 play a direct role in reducing oxidative species, as have been illustrated for 

hydrogen peroxide (23, 24). Therefore, the ability of Trx-1 to reduce thiols is critical for 

DNA binding on nuclear transcription factors such as AP-1 and NF-ĸB (29) and provides 

protection against oxidative stress, bleomycin-induced lung damage, and doxorubicin-

induced cardiotoxicity (22, 26, 27, 28).  Thioredoxin’s 2 cysteines at the active site that 

are highly conserved in the sequence (Cys-Gly-Pro-Cys) are oxidized by forming a 

disulfide bond between two cysteines while the target protein is reduced by making 

disulfide bond between transferring reducing equivalents of trx and cysteine of target 

protein (25). The oxidized active site of Trx-1 and Trx-2 are reduced by TR1 (thioredoxin 

reductase 1) and TR2 (thioredoxin reductase 2), respectively, using electrons from 

NADPH. According to the effect of trx on oxidative stress, we might also consider 

whether trx will influence nitrosative stress mediated through NO
•
, nitroxyl (HNO), 
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nitrosonium cation (NO
+
), higher oxides of nitrogen, S-nitrosothiols (RSNOs), ONOO

•
, 

and dinitrosyl iron complexes (6, 7) (Table 1-2). Signaling from Nitric Oxide (NO
•
) can 

generate S-nitrosylation of proteins including trx. Many redox-related proteins have 

active cysteines which are able to S-nitrosylation such as catalase (35), glutathione 

peroxidase (36), glutathione reductase (37), glutathione transferase P1–1 (38), and 

thioredoxin (34).  The S-nitrosylation reaction can be mediated by a direct reaction 

between NO and thiols in the presence of electron acceptors (30). The nitrosation of 

sulfhydryl (SH) groups via acidified nitrite or NO/O2 has been studied (31, 32). 

According to previous studies, researchers have showed that thioredoxin-1 can transfer 

NO to caspase-3 and thereby inactivating the enzyme (33, 34). They also found that 

purified thioredoxin-1 is S-nitrosylated at cysteine 73 and not at cysteine 69 (33) (Fig. 1-

1), which is different from the claim of Dimmeler’s group that thioredoxin-1 is S-

nitrosylated at cysteine 69 (34). Given the fact that thiroedoxin-1 can be S-nitrosylated, 

both, cysteine 69 and 73 residues, are potential site for S-nitrosylation. On the contrary, it 

has been found that S-nitrosylation of thioredoxin-1 at active-site Cys32/Cys35 leads to 

the dissociation and activation of apoptosis signal-regulating kinase 1 (ASK1) (39).  

 

Figure 1.1 Schematic representation of S-Nitrosylation of C73 of Thioredoxin by excess GSNO. 
Adopted from http://www.cchem.berkeley.edu/mmargrp/research/SNO/SNO.html 
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Taken together, thioredoxin-1 may play a role in endogenous protective mechanism for 

cells against oxidative/nitrosative stress and regulate the target proteins by means of S-

nitrosylation.  

 

III. DNA Damage on oxidative/nitrosative stress 

DNA damage plays a role in mutagenesis and carcinogenesis. Cells undergo 

constant and extensive damage from endogenously through hydrolysis, exposure to 

reactive species. It causes DNA modifications, in particular DNA oxidation and DNA 

deamination. It is important to understand that what kind of DNAs are being mutated, 

how cell could prevent DNA mutations from endogenously generated events and finally 

what happen if cell cannot take care of DNA damage.  This part of the chapter will 

present oxidatively modified DNA and nitrosatively modified DNA. 

1. Damage to DNA by reactive oxygen species (ROS) 

DNA base modifications are generated by both exogenous and endogenous 

factors. Especially, Endogenous DNA damage occurs at a high rate compared with 

exogenous damage. The types of damage produced by endogenously processes are the 

same as by exogenous (40). 

1. Sources of DNA oxidation 

Oxidation of DNA can be generated by a variety of factors such as UV light, 

ionizing radiation, cigarette smoke including endogenous cell metabolism. This process 

may include hydroxyl radical, singlet oxygen, hydrogen peroxide and one-electron 
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oxidation. They are made as by-products of the respiratory electron transport chain, by 

cytochrome P450 and xanthine oxidase metabolism, by micorsomes and peroxisomes, 

and are also produced by neutrophils, eosinophils and macrophages during inflammation 

and in various metal-catalyzed reactions (41, 42).  

2. Types of DNA oxidation 

Oxidation is the major contributor to DNA base damage, with estimates of the 

total number of oxidized bases formed approximating 10,000 adducts per cell per day 

among several different lesions such as base- or deoxyribose lesions, strand breaks and 

cross-links, base modification. (41, 43).  

a. 8-oxo-7,8-dihydroguanine (8-oxoG) 

Hydroxyl radicals can react to guanine and adenine at positions 4, 5, or 8 in the 

purine ring (41.44). 8-oxo-7,8-dihydroguanine (8-oxoG), also called 8-hydroxyguanine, 

is regarded as the most abundant oxidative damage and a marker of cellular oxidative 

stress. The addition of hydroxyl radical to C-8 of guanine produces a C-8 OH-adduct 

radical, which can also be oxidized to 8-oxoG (41, 44) (Fig. 1-2). Two or three residues 

of 8-oxoG are present per 10
6
 G sites in human leukocytes and roughly 80 8-oxoG 

residues are continuously generated per human cell per day (41, 45, 46).  

b. 2,6-diamino-4-hydroxy-5-formamidopyrimidine (FapyG) 

The formation of FapyG is also generated by reducing C-8 OH-adduct radical in 

guanine which leads to imidazole ring-opening (41, 44).  

c. 5-hydroxycytosine (5-OH-C) and 5-hydroxyuracil (5-OH-U) 
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Cytosine is oxidized only at the 5,6-double bond and main oxidative cytosine 

modifications found in DNA are 5,6-dihydroxy-5,6-dihydrocytosine (cytosine glycol, 

Cg), its deamination and dehydration products 5,6-dihydroxy-5,6-dihydrouracil (uracil 

glycol, Ug) and 5-hydroxycytosine (5-OH-C), 5-hydroxyuracil (5-OH-U) (formed from 

Ug by dehydratation or from 5-OH-C by deamination) (44, 47, 48).  

 

Figure 1.2 Modified bases resulting from the attack of reactive oxygen species. Adopted from (41, 44). 

 

2. Damage to DNA by reactive Nitrogen species (RNS) 

Exposure of DNA to reactive nitrogen species can promote deamination of DNA 

bases by changing of guanine to xanthine (X) and oxanine (O), adenine to hypoxanthine 

(I), cytosine to uracil (U), 5-methylcytosine (5-meC) to thymine. Spontaneous 

deamination is rather low, however, it can be increased in vivo by nitrogen dioxide (NO2) 

formed during inflammation or by UV (49).  
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a. Deamination of cytosine 

The extracyclic amino group at position C4 of cytosine is unstable, and is slowly 

lost by hydrolysis under physiological conditions to form uracil (55). It can occur 

spontaneously or as a result of treatment with acidified sodium nitrite. This reaction 

results in the deamination of cytosine to uracil which can be then base paired with 

adenine. Due to the fact that uracil is a normally occurs in RNA, this causes potentially a 

problem in cells. The deamination of cytosine leads to G=C→A= T point mutation and 

G→A and C→T transitions (50, 51, 52, 53, 54) (Fig. 1-3, 1-4). Most uracils in DNA are 

recognized by uracil-DNA glycosylase, but the AP-site generated is potentially 

mutagenic and cytotoxic unless repaired (54). Some studies estimate cytosine 

deamination at ~70–200 events per human cell per day (49). The rate of deamination 

occurs 200–300 fold faster from ssDNA than from double-stranded DNA (dsDNA) (45).  

5-Methylcytosine can be deaminated to form thymine with use of reagents such as 

nitrous acid which can be also G→A and C→T transitions (54) (Fig. 1-3, 1-4).  It is 

found in the DNA of all studied vertebrates and higher plants (57, 58) and mostly,  

 

Figure 1.3 The subsequent base pairing following the entry of uracil and thymine. Adopted from (54). 
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DNA methylation in higher plants can be found more than in mammals (up to 

approximately one-third DNA is to help control gene expression (59, 60). 

b. Deamination of adenine 

Deamination of adenine can occur at natural condition, except at much lower frequency 

than that of cytosine deamination (64). The deamination of adenine leads to the reverse 

A→G and T→C transitions (61, 62, 53) (Fig. 1-5, 1-6). In vivo, purine nucleotides are 

degraded by a pathway such as adenosine deaminase which can deaminate adenosine to 

inosine. Since inosine is naturally and specifically generate within the cell,  

 

 

Figure 1.4 Schematic representation of the deamination of cytosine and 5-methyl cytosine. 

it can also be integrated into the chromosomal DNA under specific environment such as 

rdgB deletion mutant (65). Inosine is allowed to incorporated to genomic DNA or 

adenosine is accumulated by lack of adenosine deaminase, those phenomena are indeed 

detrimental. 

c. Deamination of Guanine  

The mechanisms of nucleobase deamination result in the formation of xanthine 

from guanine. In addition, the reaction of nitrous acid with guanine in vitro has been 
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shown to partition to form both xanthine and oxanine as well (66). The favor for 

 

Figure 1.5 The subsequent base pairing following the entry of inosine. 

hydrolytic deamination occurs in the order 5-methylcytosine > cytosine > adenine > 

guanine (67, 68).  

 

Figure 1.6 Schematic representation of the deamination of adenine. 

The reactivity of nitrous anhydride (N2O3) with xanthine formation proposed to 

occur at twice the rate of uracil (69) and hypoxanthine (70). In human lymphoblastoid 

TK6 cells interacted with NO, the levels of both xanthine and hypoxanthine accerated 

~40-fold over untreated (70). Deamination of xanthine lead to G:C→A:T mutations (71, 

72) (Fig. 1-7, Fig. 1-8). Recently other groups presented evidence that under biological 

conditions dX is a relatively stable lesion with a half-life of 2 years at 37°C and pH 7 in 

double-stranded DNA (73, 74), although xanthine in DNA under acidic conditions is 

unstable due to depurination (66, 75).  
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Figure 1.7 The subsequent base pairing following the entry of xanthine. 

Given the steady-state kinetics of dNTP incorporation opposite X, preferred pairing for X 

is the order of T > C >> A ≈ G with Drosophila DNA polymerase α (71). The 

preferences for HIV-1RT were C ≈ T > G > A, whereas for DNA PolI(KF
-
) is C > T, with 

no discernible incorporation of either dATP or dGTP (77). Oxanine (5-amino-3-β-D-

ribofuranosyl-3H-imidazo[4,5-d]oxazin-7-one) was originally isolated from Streptomyces 

capreolus MG265-CF3 and has a antibacterial activity (81).  

In the early 1980s, it was also shown that oxanine inhibits the growth of leukemia 

cell lines in addition to nucleic acid synthesis and in vitro cell growth (82). 

 

 Figure 1.8 Schematic representation of the deamination of guanine. 
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Oxanine is, together with xanthine, a major product of guanine deamination when 

guanine reacts with N2O3 with the molar ratio of 1:3. It has been studied that the N-

glycosidic bond of oxanine is as stable as that of guanine and hydrolyzed 44-fold more 

slowly than that of xanthine (66). DNA polymerase can incorporate cytosine and thymine 

into opposite oxanine strand (78) and thus deamination of oxanine lead to G:C→A:T 

mutations (83) (Fig. 1-8, 1-9), but if oxanine exist in the template DNA, it is able to pair 

with four bases, which means oxanine in DNA is more mutagenic (80). 

 

Figure 1.9 The subsequent base pairing following the entry of oxanine. 

As oxanine react efficiently with animo groups, it is easily to form cross-link 

adducts with amino acids (79). It could also interact with peptides, proteins and other 

biomolecules.  

 

IV. DNA repair mechanisms 

Cellular DNA is subjected to various modifications resulting from endogenous 

and environmental sources such as oxidation, deamination, depurination, DNA adducts, 

as well as mismatch base pairs. Due to the existence of a variety of DNA damage, it 

requires several DNA repair mechanisms to protect cells from harmful consequences. It 
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depends on the types of damage, some organisms have evolved specific repair pathways 

or evolved broad range of repair machineries. Here we will discuss each of the types of 

DNA repair pathways, in addition to proteins involved in each respective pathway.  

A. Base excision repair pathway 

Once the damage has been detected, specific repairing molecules are recruited to 

on or near the damaged site. If damage is small or simple, cell is using BER (Base 

excision repair) system. Base excision repair (BER) is one of the major active DNA 

repair processes that allows the efficient recognition of damage site and removal of a 

damaged DNA base. Each of these lesions is either cytotoxic or mutagenic so that these 

are repaired via the BER pathway in organisms ranging from Escherichia coli to 

mammals (84, 85, 86, 87). In this pathway, damaged bases are removed by enzymes 

called DNA N-glycosylases. This is done by hydrolysis of its N-glycosidic bond that 

links the damaged base to deoxyribose-phosphate backbone of the DNA. The resulting 

apurinic/apyrimidinic (AP) sites are recognized by AP endonuclease (for monofunctional 

glycosylase) or N-glycosylases obtaining an AP-lyase activity (bifunctional enzyme). The 

gap which may require an editing reaction to generate unblocked 5΄ and 3΄ ends, are then 

filled by DNA polymerase, either with a single-nucleotide, short patch or with a longer 

repair patch, followed by a ligation step (44).  

In mammalian cells, short-patch BER (SP-BER) is the repair that involves the 

replacement of a single nucleotide mediated by POL β, which incorporates the correct 

nucleotide and removes the 5΄-dRP terminus through its dRPase activity and followed by 

LIG3/XRCC1 complex for ligation step (44) (Fig. 1-10).  



 16 

Sometimes it needed to incorporate beyond a single nucleotide, more than two to 

10 nucleotides. This alternative pathway is known as long-patch BER (LP-BER) and 

being used less often. The longer-patch pathway depends on enzymes normally involved 

in DNA replication: DNA polymerase δ (Pol δ) or ε (Pol ε), replication factor C (RFC), 

and proliferating cell nuclear antigen (PCNA), which act as cofactors for both POL δ and 

POL ε (86, 88). The replaced strand is displaced and cut away by DNAase IV or flap 

endonuclease 1 (FEN1) and followed by the ligation step that is performed by LIG1 (44, 

86) (Fig. 1-10). 

A. Repair of oxidation 

1. Oxidized purine glycosylases (FPG/Ogg1) 

Fpg belongs to the H2TH superfamily and while Ogg1 belongs to HhH DNA 

glycosylases. Ogg1 was initially discovered in S. cerevisiae by functional 

complementation (96, 100) and is also found in mammals, fungi and unicellular 

eukaryotes (101).  

Human Ogg1 is a bifunctional enzyme and has narrow range of specificity such as 

8-oxoG pair with C, faPyG, me-faPyG and 7,8-dihydro-8-oxoadenine (100, 102). In 

archaea, hyperthermophilic Pyrobaculum aerophilum has member of a new family of 

HhH DNA glycosylases, Agog which is able to excise 8-oxoG in single-stranded DNA 

(ssDNA) as efficiently as in double-stranded DNA (dsDNA) with no preference (103).   

Escherichia coli Fpg (also called MutM) excise 8-oxoG mismatched with 

cytosine, faPyG and bifunctional enzyme. Fpg has no sequence homolog in eukaryotic, 

but is functionally similar to Ogg1 homolog.  
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Figure 1.10 Schematic representation of the BER pathway. adopted from (44). 

2. Oxidized pyrimidine glycosylases (Nth/Nei) 

Nei belongs to the H2TH superfamily, while Nth belongs to HhH DNA 

glycosylases and both are bifunctional DNA glycosylases.  

Endonuclease III, is encoded by the nth gene, first identified from Escherichia 

coli, originally referred as a DNA nicking activity seen after heavy ultraviolet irradiation 

(89). From bacteria to human, Enzymes with similar substrate specificities have been 

found in other bacteria (90), in yeast (91) and in mammalian cells including human (92, 

93, 94). E.coli MutY recognizes adenine from a pair with 8-oxoG shows significant 
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homology to endonuclease III (95) and monofunctional enzyme. This 23.5 kDa protein 

recognizes a large number of oxidized pyrimidines such as thymine glycol, urea, 5,6-

dihydroxythymine, 5,6-dihydrouracil, 5-hydroxy-5-methylhydanton, uracil glycol and 5-

formyluracil (96).  

Escherichia coli Endonuclease VIII (Nei) is a paralog of Fpg with capacity of β,δ-

elimination. The enzyme also has broad substrate specificity such as thymine glycol, 5-

hydroxy-5-methylhydanton, 5,6-dihydroxythymine and urea (97, 98). In human, a family 

of three proteins (Endonuclease VIII like proteins, NEIL1, NEIL2 and NEIL3) that 

showed homology to the Escherichia coli Fpg/Nei DNA glycosylases was identified.  

B. Repair of deamination 

1. UDG superfamily 

Uracil is a normal component at the cellular level and is component of RNA, 

however, uracil itself is able to incorporate into DNA by cytosine deamination and 

eventually, it cause mutagenic effect if not repaired.  

 Initially, the enzyme for the repair of uracil was discovered 1974, which was 

purified from Escherichia coli (104). This is now called uracil-DNA glycosylase (UDG 

or UNG) and belongs Family 1 in the UDG superfamily. Here, we will discuss 5 

members of UDG superfamily.  

a. Uracil DNA glycosylase (UNG) Family 1 

UNGs recognize base uracil from single-stranded DNA and from double-stranded 

DNA which is highly specific for uracil in DNA. Apparently, it has base preference in the 

order of SSU=U/A>U/G>>U/T or U/C or uracil in RNA. UNGs typically exist among 
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prokaryotes and eukaryotes and even in some DNA viruses, however, it is absent to 

archaea. In humans, two UDG activities are found which were located to either nuclei or 

mitochondria through alternative splicing of the same gene (105). UNG1 is in 

mitochondria (105) and UNG2 is in nuclei which can interact with RFA (replication 

factor A) and proliferating cell nuclear antigen (106). N-terminal regions can determine 

the localization, but the catalytic domain is the same for both nuclear and mitochondrial 

forms. UNG2 play a role in rapid removal of dUMP residues during DNA replication and 

regulate post-replicative removal of misincorporated uracil in DNA.  The ung-/- cells 

show a strong deficiency in removal of mis-incorporated uracils and have a steady-state 

level of approximately 2000 uracil residues per cell (107). UNG mRNA levels increase 

8–12-fold late in G1 phase while activity reaches a maximum in early S phase (108).  

Crystal structures of viral (109), human (110), and more recently E. coli (111) 

UNGs show that it has a highly conserved that are five major structural motifs first, the 

minor-groove intercalation loop; second, the Pro-Rich loop; third, the Gly-Ser loop; 

fourth, the uracil-specificity region; and last, the water-activating loop. These motifs play 

a critical role in detection of uracils in DNA (111, 112).  

b. Uracil DNA glycosylase (UDG) Family 2 

Thymine DNA-glycosylase (TDG) and mismatch-specific uracil-DNA 

glycosylase (MUG) belong to Uracil DNA glycosylase (UDG) Family 2 that removes 

uracil and thymine from G:T for TDG (113, 114) and are highly specific on G:U 

mismatches in double-stranded DNA (dsDNA) for MUG (115). Both enzymes are 

insensitive by Ugi which can inhibit Family-1 UDG. The crystal structure of the E. coli 
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MUG enzyme indicated that a similar structural homology to the Family-1 UDGs 

although they have only 10% sequence identity (116). In particularly, two highly 

conserved motifs, the water activating loop (GQDPY) and the minor groove-intercalating 

loop (HPSPLS) in UNG, are equivalent to in MUG corresponding to GINPGL (identical 

in human TDG) and NPSGLS (MPSSSS in human TDG) (88). The asparagine (underline) 

in MUG cannot activate the nucleophilic water, however it is able to bind and present a 

water molecule in almost exactly the same position in the active site, as the aspartate in 

UNG (88). TDG may participate in the demethylation of CpG sites by processing G·T 

mispairs created by deamination of 5-methylcytosine which would dramatically increase 

G·T mispairs (117, 118). Most glycosylases use a bulky side chain (Asn, Arg, Gln, Leu, 

or Tyr) to intrude the helical space (empty space) created by nucleotide flipping, except 

3-methyladenine DNA glycosylase which has a Gly at this position. According to the 

crystal structure of TDG bound to abasic DNA (119) , TDG uses Arg
275

 side chain to 

penetrate the minor groove, intruding the space vacated by the flipped abasic nucleotide 

and contacting two DNA backbone phosphates that flank the target site. Interestingly, 

Drohat group reveals that the crystal structure of hTDG prefers interaction for guanine 

than adenine as the pairing partner of the target base and interactions that likely confer 

CpG sequence specificity (119, 120). The N-terminus of TDG can interact with DNA in a 

non-sequence-specific manner to process G:T mispairs while the catalytic domain scans 

for G·U mismatches, resulting in a slow enzymatic turnover. Moreover, the N-terminus 

performs regulatory functions and contains the sites for interaction and posttranslational 

modification by transcription-related activities while the C-terminus region is modified 
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by covalent conjugation of small ubiquitin-like modifier (SUMO) protein (121, 124, 125). 

According to a recent study, hTDG might be also involved in transcription of active 

regions of the genome and thus BER may be coupled to transcription (122). Interestingly, 

overexpression of TDG has shown to re-activate a hormone-regulated transgene silenced 

by CpG methylation, suggesting a role for TDG in epigenetic regulation (123).  

c. Uracil DNA glycosylase (UDG) Family 3 

SMUG1 was initially found in Xenopus laevis, as a single-strand selective 

monofunctional uracil-DNA glycosylase. More characterization of SMUG1 had been 

determined in human SMUG1. Human SMUG1 also can removes uracil efficiently from 

both U:G mismatches and U:A base pairs in addition to be active on 5-

hydroxymethyluracil, 5-hydroxyuracil, and 5-formyluracil (126, 127, 128), Recently, 

some groups have extended the substrate range of hSMUG1 to include CaU which is 

thymine methyl group oxidation (129). These results explain the hSMUG1 could play a 

role in the repair of DNA oxidation damage in vivo. Analysis of SMUG1 sequences 

revealed some similarity with those of the Family-1 and Family-2 UDG, in particularly in 

the motifs associated with their active sites, however, it should also be noted that SMUGs 

are not recognised as structural homologues of UDGs or MUG/TDG. SMUG1 was 

thought to be present only in vertebrates, however, indeed it is also found in some 

bacteria such as Geobacter metallireducens (Gme), Azoarcus species (Asp), 

Rhodopirellula baltica (Rba), and Opitutaceae bacterium (Oba) (130).  Interestingly, 

bacteria contain either the UNG-type enzyme or the SMUG1-type enzyme, usually not 

both. Studies on ung knockout, Smug1 knockdown and ung knockout/Smug1 knockdown 
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mouse cells have indicated that Smug1 and Ung2 are both required for the prevention of 

mutations and that their functions are not redundant (131, 132). Although SMUG1 and 

UNG2 have similar prospective in vivo, both are quite different enzyme such that 

SMUG1 cannot reduce mutation rates which is induced by AID, unlike UNG2 which 

alleviates the effects of AID (132). The crystal structure of xSMUG1–DNA complex 

reveals that it penetrates the double helix with a wedge motif that binds tightly to the 

abasic site with the strongest binding to AP:G (133). When SMUG1 is over-expressed, 

due to SMUG1’s strong attachment to AP-sites, it may interfere with replication, and thus 

prevent cell division (134).   

d. Uracil DNA glycosylase (UDG) Family 4 

Family 4 UDGs, which are specially found in thermophilic bacteria and archaea, 

possess a 4Fe–4S cluster. Sandigursky and Franklin have discovered uracil-DNA 

glycosylases encoded in the genomes of the thermophiles Thermotoga maritima from 

bacteria (137) and Archaeoglobus fulgidus from archaea (138) which appear to be 

different from other UDG families. The enzyme activity from both species are capable of 

removing uracil from double-stranded DNA containing either a U/A or U/G base pair as 

well as from single-stranded DNA.   

Miller and colleagues characterized Pyrobaculum aerophilum DNA glycosylase 

(Pa-UDGa) that removes uracil and thymine from G·U/ G·T and its inhibition by the 

uracil-DNA glycosylase inhibitor (Ugi).  Interestingly, its sequence is closely related to 

the Thermotoga maritima (Tma UDGa) and Archaeoglobus fulgidus (Afu UDGa) 

enzymes (139).  
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Another thermophilic bacterium, Thermus thermophilus UDG (Tth UDGa) 

processes UDG activity on both single-stranded and double-stranded DNA, regardless of 

opposing base, but does not have G:T mispair activity (140).  

e. Uracil DNA glycosylase (UDG) Family 5 

Pyrobaculum aerophilum’s genome database was available in 2002, Pa-UDGb 

was initially found as a family 5 that can remove hypoxanthine (136). Recently, another 

family of UDGs was found in Thermus thermophilus HB8, which is called Tth UDGb 

and missed a polar residue, corresponding to a catalytic residue, glutamate in the family 4 

UDGs. These novel Tth UDGb, designated family 5, have broad substrate specificity 

such as G/T mismatch, 5’-hydroxymethyluracil, 5’-fluorouracil and a distinctive 

sequence motif in the active site (135). The iron–sulfur (4Fe–4S) cluster was also found 

in family 5 UDG as in family 4 UDGs (135).  

3. AlkA (3-methyladenine DNA glycosylase II) 

The 3-mA DNA glycosylase I (E. coli Tag), 3-mA DNA glycosylase II (E. coli 

AlkA) and the Helicobacter pylori 3-mA DNA glycosylase III (MagIII) all belong to the 

HhH superfamily (141, 142). AlkA uses a loop between two α-helixes to wedge into the 

minor groove of the DNA, while Aag uses a β-hairpin motif (142). Incucible E. coli AlkA 

has a wide range of substrate specificity such as excising bases N3- and N7-substituted 

purines, O2-substituted pyrimidines, ɛA and ɛC, hypoxanthine (142). Hypoxanthine was 

initially found as a substrate for AlkA that has different substrate specificity. According 

to the crystal structure of AlkA in complex with DNA duplex containing an abasic site 
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analog, 1-azaribose, the catalytic site Asp238 is positioned close to the flipped abasic site, 

and Leu125 is inserted into the DNA stack (143).  

 4. AAG (Alkyladenine DNA glycosylase) 

3-mA DNA glycosylases from different origins such as E. coli (AlkA), yeast 

(MAG), rat (APDG), human (AAG/ANPG) are known as human alkylbase DNA 

glycosylase that can also excise hypoxanthine. Other human enzymes such as AGT, 

hABH2, and hABH3 (human AlkB homologs2 and 3) recognize different types of 

alkylation damage. AlkA has no preference for hypoxanthine pair with different base, 

whereas mammalian enzymes exhibit a strong preference for I/T and I/G base pairs (142). 

In E. coli and S. cerevisiae mutants lacking AAG are very sensitive to killing but not 

mutagenesis by methylating agents, whereas in aag–/– knockout cells, it had been shown 

that different cell type has various response to alkylating agent. For example, aag–/– 

embryonic stem cells are hypersensitive to simple alkylating agents, aag–/– neurons have 

a low sensitivity, aag–/– mouse primary embryonic fibroblasts have either low or no 

sensitivity, moreover, aag–/– myeloid progenitor cells are resistant to alkylation (144).  

B. Endonuclease V-mediated repair pathway 

Enonuclease V, called initially as deoxyinosine 3' endonuclease, is different from 

N-glycosylases.  This enzyme has no N-glycosylase activity and hydrolyzes the second 

phosphodiester bond 3' to deoxyinosine or an AP site, generating a nick with a 3' 

hydroxyl which means the lesion still remains on the DNA in the nicked duplex. In 

comparision to AlkA, deoxyinosine 3' endonuclease has no preference and exhibited 25% 
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activity on a single-stranded oligonucleotide substrate containing deoxyinosine whereas 

AlkA has preference on T/I>G/I>>C/I, A/I. In comparision to AP endonuclease, typical 

AP ndonucleases cleave the phosphodiester bond immediately 3' or 5' to the AP site. Here, 

we will discuss endoneclease V from E. coli, Thermotoga maritima and mammals. 

a. Endonuclease V in E. coli 

E. coli Endo V was initially purified as a novel hypoxanthine-specific 

endonuclease, deoxyinosine 3’-endonuclease (145). The 25-kDa protein recognizes 

hypoxanthine in both double- and single-stranded DNA. In contrast to the hypoxanthine 

DNA N-glycosylase, deoxyinosine 3’-endonuclease excises the DNA at the second 

phosphodiester bond 3’ to deoxyinosine, leaving behind a nick with 3’-OH group and 5’-

phosphate. The gene coding for endonuclease V (nfi for endonuclease V) was found to be 

identical to orf 225, located at 90 minutes of the Escherichia coli genome (GenBankTM 

ascension no. U00006) (146). Endo V has broad range of substrates by recognizing 

several well defined DNA lesions, including deoxyinosine, urea residues, AP sites, base 

mismatches, loops and hairpins, flaps, pseudo-Y DNA structures and uracil. 

Endo V requires divalent metals to facilitate its activity, such as Mg2
+
, Co2

+
 and 

Mn2
+
 (147). E. coli nfi mutant has stimulated A:T→G:C transitions and G:C→A:T 

transitions, however, nfi mutants did not cause high frequency of spontaneous mutation at 

aerobic growth in a rich medium (73). Unlike the length of the repair patch as either 

'short-patch' BER (one nucleotide) or 'long-patch' BER (LP-BER; more than one 

nucleotide),  E. coli Endo V has its own repair patch. It was identified that the size of 
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patch DNA at the endo V cleavage site was that 3 nucleotides were preferentially erased 

from 3’ end and 2 nucleotides were erased from 5’end (149).  

b. Endonuclease V in bacteria 

Endonucleae V has been conserved in several bacterial, archaeal, and lower 

eukaryotic genomes including Schizosaccharomyces pombe, Caenorhabditis elegans, 

Arabidopsis thaliana, rats, mice, and humans (150, 151).  

Hyperthermophilic bacterium Thermotoga maritima (Tma) can also cleave 

hypoxanthine, AP site, uracil and mismatches. It cleaves only on the inosine-containing 

strand when an inosine-containing DNA substrate is in excess; however, interestingly, 

when the enzyme is in excess, a free Tma endo V may bind to the complementary strand 

and make a second nick, resulting in a double-strand break (150). Site-directed 

mutagenesis revealed that Y80A, H116A and R88A had reduced affinities for double-

stranded or single-stranded inosine substrates or nicked products (152). Tma endo V is 

known to act as an endonuclease, however, it was also identified as an exonuclease with 

MnCl2 as a cofactor (153).  

The endonuclease V homologue from Archaeoglobus fulgidus (Afu) can only 

cleave deoxyinosine-containing DNA (154) whereas Salmonella typhimurium (Sty) endo 

V shows DNA cleavage activities against deoxyinosine, deoxyxanthosine, deoxyuridine 

and mismatches (151).  

c. Endonuclease V in mammals 

Mouse endo V has 32% sequence homology with E. coli endo V, while mouse 

endo V possesses DNA repair activities that are similar on hypoxanthine containing 
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DNA, but more limited (155). Based on this paper (155), the mouse enod V is dependent 

on Mg2+ and higher activity was detected on single-stranded than on double-stranded 

substrate with the following substrate preference: ss DNA containing hypoxanthine > ds 

DNA containing hypoxanthine >>> ss DNA containing uracil, while no significant 

activity was observed towards uracil residues in double-stranded DNA, nor against 8-

oxoguanine, C:C mismatches, AP-sites or 5′ flap structures.    

C. Nucleotide excision repair (NER)  

NER is a multi-step DNA repair pathway that can remove a broad range of bulky, 

helix-distorting lesions. NER is responsible for the repair of UV light-induced 

photoproducts, lipid peroxidation induced DNA adducts, cigarette smoke-induced 

benzo[a]pyrene DNA adducts, chemical carcinogen-induced 4-nitroquinoline (156), 

removal of oxidative DNA lesions (157). In Escherichia coli, the UvrABC enzyme can 

repair single strand breaks (SSBs) (158). In mammalian systems, NER is carried out by 

multi-protein complex in a stepwise manner. First, DNA damage recognition, second, 

excision of damaged site by complexed proteins, last, synthesis and ligation. Here, we 

will discuss about step one since this step is consist of two distinct pathways, namely 

global genome repair (GGR) and transcription-coupled repair (TCR), which are identical 

except for the mode of the DNA damage recognition.  

In GGR, the XPC−hHR23 complex is a major DNA damage recognition factor. 

XPC−hHR23 can sequentially recruit the transcription factor IIH (TFIIH), XPA and 

replication protein A (RPA) to form a pre-incision complex in the damage sites. TFIIH 

consists of nine components, among two helicases XPB and XPD which can unwind the 
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DNA double helix at the damaged site to form opened DNA complex. The dual incision 

process is performed by endonuclease XPG that makes 3’-incision approximately 

hydrolyse phosphodiester bonds 2–8 nucleotides of the damage site and the XPF–ERCC1 

complex that makes 5’-incision approximately hydrolyse phosphodiester bonds 15–24 

nucleotides of damage site. The resulting gap is filled in by DNA polymerases 

delta/epsilon (Pol δ/ε) which requires proliferating cell nuclear antigen (PCNA), RPA and 

replication factor C (RFC). Finally, the DNA fragments are ligated by DNA ligase I 

(Lig1) (159, 160, 161).  

In TCR, the removal of DNA lesions from the transcribed strands is much more 

efficient that GGR.  TCR is initiated by stalled RNA polymerase (RNAP) at the damaged 

site in the transcribed strand. CSB protein interacts with stalled RNAP and recruits other 

TCR protein factors to damage site such as XPG, TFIIH, RPA and XPA. After XPF is 

bound to damage site, dual incision process is occurred by CSB-dependent XPG, XPF 

endonuclease. Synthesis and ligation step are the same as GGR (159).  

D. Mismatch DNA repair (MMR)  

Mismatch repair (MMR) is the major post-replicative DNA repair system that 

increases replication fidelity up to 1000 fold (162). Microsatellite instability (MSI) is an 

established biomarker for MMR dysfunction in tumor cells (163). MMR can repair  

modified bases such as 8‑oxoG, 2-oxoadenine, carcinogen adducts, and UV-

photoproducts (162). 

 In E. coli MMR system, MutS, MutL, MutH and UvrD were identified in studies 

of mutator strains as key components (164, 165). Initially, MutS protein dimer (or 
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tetramer) binds to small insertion/deletion loops (IDLs) and unpaired bases. ATP-

dependent MutL protein is recruited in MutS to form the ternary complex of MutS- 

MutL- mismatch sites. It activates monomeric MutH endonuclease which incises an 

unmethylated GATC sequence at a site 5’ or 3’ to the mismatch, located even 1000 bp 

from the mismatch (162, 166, 167). The nick is regard as an entry point of UvrD helicase 

and SSB (single stranded DNA binding) protein. If the incision occurred 5’ to the 

mismatch, the ssDNA flap is degraded in the 5’→ 3’ direction by Exo VIII / RecJ 

exonuclease or if the incision occurred 3’ to the mismatch, it is degraded in the the 3’→ 5’ 

direction by ExoI, ExoVII or Exo X exonuclease. Finally, the SSB-stabilized single-

stranded gap is filled in by DNA polymerase III holoenzyme and DNA ends are sealed by 

LigI (162, 168, 169).  

In mammalian MMR system, several homologues of MutS, Mut L are identified 

in mammalian such as five MutS (MSH2–MSH6) and four MutL (MLH1, MLH3, PMS1, 

and PMS2) homologues (162).  MSH2-MSH6 form a heterodimer, termed MutSα, which 

recognizes mismatch sites up to about 10 unpaired nucleotides, whereas the MSH2-

MSH3 heterodimer (MutSβ) recognizes from 2 up to 16 nucleotides. Once MutSα 

recruites MutLα, MutSα–MutLα complexes may travel along the DNA helix to recognize 

mismatch site with interacting to ExoI, PCNA and high mobility group box 1 (HMGB1) 

protein, which was shown to interact with MutSα (162, 170). When a single-strand break 

is localized at the 5’ side of the mismatch, Exo1, stimulated by MutSα hydrolyzes DNA 

in the 5’→ 3’ direction in replication protein A (RPA)-dependent manner whereas single-

strand break located at the 3’ side of the mismatch, 3’→5’ excision is mediated by Pol δ 
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or Pol ε proofreading activity (162, 171).  Recently, one group has discovered that MutLα 

has an endonuclease activity, stimulated by MMR cofactors (MutSα, MutLα, PCNA, 

RFC, ATP and divalent cations) which is revelent to explain about 3’ side of the 

mismatch (172). Lastly, DNA polymerase δ fills the gap, in the presence of PCNA and 

RPA and followed by seals the ends DNA ligase (probably Lig1) (162). 

E. Double strand break (DSB) repair  

The simplest mechanism to repair of DSB is nonhomologous DNA end joining 

(NHEJ). This repair pathway rejoins blunt ends in a manner that does not require to be 

error free, however, it can lead to sequence modification at the break point when the ends 

are not compatible. Ku70, Ku80, DNA-dependent protein kinase catalytic subunit (DNA-

PKcs), XRCC4, XLF, and DNA ligase IV are required for NHEJ as a core component 

(173).  

Homologous recombition (HR) repair is directed by longer stretches of homology, 

generally more than 100 bp and is accurate pathway because the undamaged sister 

chromatid is used as a repair template. Whereas NHEJ can function throughout the cell 

cycle, HR is largely restricted to late S/G2 phases (174). MRE11, RAD50, NSB1, 

phosphorylated-histone-H2AX, RAD51, BRCA2, RAD52, RAD54, RAD54B, XRCC2, 

and XRCC3 are involved in HR (162, 175, 176).  

 

V. DNA repair deficiency-related diseases  

If the DNA-repair pathways are not properly processed or acquired defect, it will 

cause a number of disorders or syndromes such as neurologic symptoms (xeroderma 
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pigmentosum, Cockayne syndrome, ataxia–telangiectasia, Nijmegen breakage syndrome 

and Alzheimer disease), cancer (HNPCC, breast cancer and prostate cancer), and 

accelerated aging (i.e., Bloom syndrome, Rothmund–Thomson syndrome, Werner 

syndrome) (162, 177, 148).  

 Here, I will briefly discuss about what defect repair pathway might be involved in 

disorders or symptons. SCID (severe combined immunodeficiency) is resulted from 

defecting in V(D)J recombination by mutation in LIG4 and Artemis (63,56) and 

Alzheimer disease can be caused by defect of two DNA-repair pathways (76). Fanconi 

anemia (FA) is a rare recessive disease and there are at least 13 genes whose mutations 

are known to cause FA such as FANCA, FANCB, FANCC, FANCD1, FANCD2, 

FANCE, FANCF, FANCG, FANCI, FANCJ, FANCL, FANCM and FANCN. Numbers 

of studied had been on FA, it revealed that mostly NER and NHEJ related protein are 

involved in. Werner syndrome (WS) is an autosomal recessive progeroid disease 

involving the mutation of WRN gene belongs to the RecQ helicase family. Moreover, the 

human genome contains four other RecQ helicase family members, RecQ1, BLM, 

RecQ4L, and RecQ5. Mutations in BLM and RecQ4L cause Bloom syndrome (BS) 

known as Bloom–Torre–Machacek syndrome and Rothmund–Thompson syndrome 

(RTS), respectively. Those three symptons are highly related to cancer.  Ataxia–

telangiectasia (AT), Nijmegen breakage syndrome (NBS), and ataxia–telangiectasia-like 

disorder (ATLD) are thought to be chromosome-instability disorders, and the associated 

defective genes are ATM, NBS1 and MRE11, respectively. Xeroderma pigmentosum 

(XP), trichothiodystrophy (TTD) and Cockayne syndrome (CS) have mutated in the NER 
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pathway, which involves more than 20 genes. Seven complementation groups (XPA, 

ERCC3/XPB, XPC, ERCC2/XPD, DDB1/XPE, ERCC4/XPF, and ERCC5/XPG) are 

related to mutations in seven genes that play a role in the NER pathway. In CS, CSA 

(ERCC8) and CSB (ERCC6) genes have been mutated and should be required for 

transcription-coupled repair. In TTD, Mutations in three genes, XPD (ERCC2), XPB 

(ERCC3), and TTD-A. Lynch syndrome (HNPCC or Hereditary nonpolyposis colorectal 

cancer) is an autosomal dominant genetic condition which has a failure of MMR pathway 

such as MSH2, MLH1, MSH6, PMS1, PMS2, MLH3, and EXO1. Breast cancer is 

associated with germline mutations in ten different genes such as  BRCA1, BRCA2, p53, 

PTEN, CHEK2, ATM, NBS1, RAD50, BRIP1, and PALB2 and prostate cancer is 

associated with BRCA1/2, OGG1, XRCC1, CHEK2, and ADPRT (177).  
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CHAPTER TWO 

 

INVOLVEMENT OF THIOREDOXIN DOMAIN-CONTAINING 5 IN RESISTANCE 

TO NITROSATIVE STRESS 

 

I. Abstract 

Living organisms are exposed to nitrosative stress mediated by nitric oxide (NO) 

and its derivatives.  Multiple cellular mechanisms may be needed to cope with nitrosative 

stress.  This work takes advantage of a hypersensitive Escherichia coli genetic system to 

identify genes involved in resistance to nitrosative stress in mouse lungs.  Mouse 

thioredoxin domain-containing 5 (mTrx 5) was identified as one of the candidate genes.  

Its ability to complement the hypersensitive phenotype in an E. coli mutant strain was 

confirmed by genetic analysis.  Purified recombinant mouse thioredoxin domain-

containing 5 protein reduced DNA damage that is sensitive to cleavage by the 

deamination repair enzyme endonuclease V, indicating that mTrx 5 may play a role in 

scavenging the reactive nitrogen species.  E. coli thioredoxin 1 and thioredoxin 2 proteins 

also reduced the DNA damage in a similar manner.  Deletion of trxA (encodes 

thioredoxin 1) or trxC (encodes thioredoxin 2) in E. coli resulted in a slightly higher 

sensitivity to nitrosative stress.  On the other hand, deletion of both trxA and trxC greatly 

increased its sensitivity to nitrosative stress.  Complementation with the mTrx 5 gene 

rescued the sensitive phenotype of the double deletion mutant.  The potential roles that 

mTrx 5 may play in coping with nitrosative stress are discussed. 

 

II. Introduction 

 Nitrosative stress is mediated by nitric oxide (NO) and its derivatives such as 

nitrogen dioxide, dinitrogen trioxide, dinitrogen tetraoxide, nitrite, nitrosothiol and 

peroxynitrite, which are collectively known as reactive nitrogen species (RNS) or 
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reactive nitrogen intermediates (RNI) [1, 2].  Humans are exposed to nitrosative stress 

generated from the living environment, food intake, or endogenous sources.  In 

mammalian systems, NO is derived from L-arginine by NO synthases (NOS).  Three 

NOS enzymes have been found in mammalian genomes, which are nNOS from brain 

neurons, eNOS from endothelial cells, and iNOS (inducible NOS) from macrophages [3-

5].  nNOS and eNOS are expressed constitutively, while iNOS is inducible by 

lipopolysaccharide (LPS) or inflammatory cytokines.  While low levels of NO may serve 

as an intracellular signaling molecule, high doses of NO generated by inducible NO 

synthase in phagocytes play an important role in containing invading microbial pathogens 

[2, 6-8].  As an antimicrobial agent, NO is involved in killing microbial pathogens by 

inflicting damage to macromolecules such as DNA and protein [2, 4, 7].  In aerobic 

conditions, NO reacts with oxygen to form nitrous anhydride (N2O3), a potent nitrosating 

reagent capable of deaminating DNA bases [9].  NO can also react with superoxide to 

form peroxynitrite (ONOO
-
), which oxidizes and nitrates lipids and proteins.  In addition 

to enzymatic synthesis, nitrite may be converted to NO in the stomach and in the 

ischemic heart under acidic conditions [10, 11], suggesting an alternative route to 

nitrosative stress.  Additionally, airways are exposed to nitrogen oxides in the external 

environment [12-14], which impose greater nitrosative stress to the lung in particular in 

the event of pulmonary injury and asthma [15, 16]. 

 Mammalian cells have developed a multitude of mechanisms to cope with 

nitrosative stress. DNA damage caused by base deamination may be repaired by a variety 

of pathways.  Several DNA glycosylases such as UNG, SMUG1, TDG, MBD4 and AAG 
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may be involved in repair of pyrimidine and purine deamination [17-19].  In addition, 

endonuclease V can remove inosine derived from adenine deamination [20-23].  The 

nucleotide excision repair pathway may be involved in the repair of dG-dG crosslinks 

formed by RNS attack.  Methionine residues in proteins are susceptible to oxidation by 

peroxynitrite; however, methionine sulfoxide reductase (msr) is capable of reducing 

methionine sulfoxide back to the original form [24, 25].  Therefore, a lack of the msr 

gene in E. coli confers sensitivity to nitrosative stress [26].  Heme oxygenase-1 (HO-1) is 

involved in degradation of heme to carbon monoxide, iron and bilirubin.  When treated 

with NO, expression of HO-1 is activated in motor neurons and glial cells, which confers 

greater resistance to nitrosative stress [27, 28].  This adaptive resistance to NO may be 

related to the release of bilirubin, which acts as an antioxidant to cleanse NO [29]. 

To investigate other NO resistance mechanisms in mammalian systems, we 

developed an E. coli-based genetic system to screen for genes involved in resistance to 

RNS.  This system takes advantage of the hypersensitivity of an E. coli triple mutant 

strain (nfi alkA nei) to nitrosative stress imposed by RNS.  Similar to other previous 

studies [30, 31], acidified nitrite was used to induce nitrosative stress.  In this study, we 

screened a mouse lung cDNA library for candidate genes involved in resistance to 

nitrosative stress.  Thioredoxin domain-containing 5 (mTrx 5) complemented both the 

hypersensitivity of the E. coli mutant strain to nitrosative stress and the thioredoxin 

deficiencies in E. coli. 

III. Materials and Methods 
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A. Reagents, media and strains 

All routine chemical reagents were purchased from Sigma Chemicals (St. Louis, 

MO), Fisher Scientific (Suwanee, GA), or VWR (Suwanee, GA).  Restriction enzymes, 

Taq DNA polymerase and T4 DNA ligase were purchased from New England Biolabs 

(Beverly, MA).  Bovine serum albumin (BSA) and dNTPs were purchased from Promega 

(Madison, WI).  HiTrap chelating columns were purchased from GE Healthcare 

(Piscataway, NJ).  Oligodeoxyribonucleotides were ordered from Integrated DNA 

Technologies Inc. (Coralville, IA).  Sodium nitrite and sodium acetate trihydrate were 

purchased from Fisher Scientific (Suwanee, GA).  LB and SOC media were prepared 

according to standard recipes [32].  Sonication buffer consisted of 20 mM
 
Tris-HCl (pH 

7.5), 1 mM EDTA (pH 8.0), 0.1 mM DTT (dithiothreitol), 0.15 mM PMSF 

(phenylmethylsulfonyl fluoride), and 50 mM NaCl.  E. coli strains BW1466 (CC106) and 

BW1739 (BW1466 but Δnfi::(FRT-Spc-FRT) nei-1::cat alkA1) are kind gifts from Dr. 

Bernard Weiss at Emory University.  BW25113, JW5856-2 (BW25113 but Δ

trxA732::kan) and JW2566-1 (BW25113 but ΔtrxC750::kan) were obtained from E. coli 

Genetic Stock Center at Yale University.   

E. coli host strain BH214 [thr-1, ara-14, 
 
leuB6,  tonA31, lacY1, tsx-78, galK2, galE2, 

dcm-6, hisG4, rpsL, 
 
xyl-5,  mtl-1, thi-1, ung-1, tyrA::Tn10,  mug::Tn10, supE44, (DE3)] 

is a kind gift of Dr. Ashok Bhagwat at Wayne State University.  The E. coli trxA trxC 

double deletion strain was derived from JW2566-1 as described below. 
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B. Construction of mouse lung cDNA library 

The Uni-Zap XR mouse lung premade cDNA library was obtained from 

Stratagene (La Jolla, CA).  The Uni-Zap XR vector system accommodates DNA inserts 

from 0 to 10 kb in length and is designed for the in vivo excision of the pBluescript 

phagemid, allowing the insert to be characterized in a plasmid system.  Libraries 

consisting of >1 x 10
6
 cDNA containing phagemid vectors were isolated.  The phagemid 

cDNA library was made by co-infecting XL1-Blue MRF’ cells with both the lambda 

phage (containing the amplified premade library constructed in the Uni-Zap
 
XR vector) 

and the ExAssist helper phage.  The coinfection was performed using 1 x 10
7
 pfu of 

lambda phage (containing library) with a ratio of 1:10:100 for lambda phage: XL1-Blue 

MRF’ cells: helper phage, respectively, in order to ensure complete coverage of the 

mouse lung cDNA library.  Incubation of the co-infected cells for 15 min at 37ºC allowed 

the phage to attach to the cells, which were then incubated for 2.5 hr at 37ºC with 

shaking.  The cells were lysed by incubation at 70ºC for 20 min and the phage particles 

isolated by centrifugation to remove the cell debris.  To transfer the phagemid particle 

from the helper phage to an E. coli strain, SOLR cells were infected with the library 

containing helper phage lysate.  Since the helper phage contains an amber mutation that 

prevents replication of the phage genome in a non-suppressing E. coli strain (such as 

SOLR), only the excised phagemid may replicate in the host cell.  Infection of cells was 

performed by addition of 10 to 100 µl (dependent on titer of phage) of the phage lysate to 

200 µl of SOLR cells with an O.D. of 1.0 suspended in 10 mM magnesium sulfate, and 

incubated as described above.  The infected cells were then plated onto LB-ampicillin 
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media and incubated at 37ºC overnight. Colonies were scraped from the plates and 

plasmid was isolated from the cells to obtain the phagemid cDNA library. 

C. Electroporation of BW1739 cells  

 BW1739 cells were electroporated using an Electro Square Porator ECM 830 

(BTX).  Electrocompetent cells were made as described previously [32].  A 40-µl aliquot 

of cells was mixed with 1 µl of the cDNA phagemid library and incubated on ice for 3 

min.  The mixture was then placed in a sterile 100-µl 1 mm gap electroporation cuvette 

(USA Scientific) and electroporated with three eight-millisecond pulses at 500 V.  The 

cells were then immediately added to 1 ml of sterile room temperature SOC media and 

incubated at 37C for 1 hr with shaking at 200 rpm. 

D. Screening of mouse lung library under nitrosative stress  

 BW1739 cell cultures that were transformed with a portion of mouse lung cDNA 

plasmid library were plated onto ampicillin containing LB plates to ensure the growth of 

only plasmid library containing cells.  Cell density was approximated using a 

spectrophotometer and divided into five aliquots of 0.5 ml (containing approximately 3 x 

10
8 

cell number).  Each aliquot was treated with 0, 20, 30, 40 and 50 mM sodium nitrite 

acidified with acetic acid (pH 4.6) and then incubated at 37°C for 10 min. The treated 

cells from the 0 mM reaction were diluted 5 x 10
6
 times for plating, while treated cell 

suspensions from the 20 mM to 50 mM reaction were not diluted for plating.  BW 1739 

cells were transformed with pBluescript SK(+) (an empty vector as a control).  Cells were 

grown to saturation, counted and divided into each tube.  The cells were plated onto LB 

plates with ampicillin (100 µg/ml) and isopropyl-β-D-thiogalactopyranoside (IPTG) (0.5 
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mM) and the plates were incubated at 37°C for 24 hr.  Survival colonies from high 

concentrations of acidified sodium nitrite treatment were grown in LB-Amp media and 

plasmids were isolated from each culture.  Sequences of the candidate genes in the 

plasmids were analyzed by DNA sequencing and the sequences obtained were run against 

the protein sequences database or nucleotide sequence database from GenBank using the 

FASTX algorithm or BLASTN program. 

E. Complementation assay under nitrosative stress  

 Mouse thioredoxin domain-containing 5 gene (Clone ID # 4911455, Open 

Biosystems) was digested with SalI and XhoI and cloned in pBluescript to generate pBS-

mTrx5.  The resulting mTrx 5-containing plasmid was transformed in BW1466, BW1739, 

BW25113, JW2566-1 (trxC
-
), JW5856-2 (trxA

-
) and the trxA

-
 trxC

-
 deletion strain.  The 

acidified nitrite treatment and plating were conducted as described above in screening of 

the mouse lung library under nitrosative stress. 

F. Construction of E. coli trxA trxC deletion strain 

   E. coli strain JW2566-1 (BW25113 but ΔtrxC750::kan) from the Keio collection 

was used as the recipient cell.  To remove the kanamycin cassettee from the recipient 

cells, plasmid pCP20 was transformed into the JW2566-1 strain.  The ampicillin resistant 

pCP20 contains thermal inducible FLP recombinase and is curable at elevated 

temperatures due to temperature-sensitive replication [33].  Cells transformed with 

pCP20 were incubated on LB plates containing 50 µg/ml Amp at 30°C overnight.  A few 

colonies were selected and grown at 42°C on LB plates without antibiotics, with Amp or 

with Kan to select for the colonies that lost all antibiotic resistance.  To construct the 
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double deletion strain, E. coli strain JW5856-2 (BW25113 but ΔtrxA732::kan) from the 

Keio collection was used as the donor cell.  To make P1 lysate, 2 ml of overnight culture 

of the donor cells were mixed with 10 µl of P1 dam rev6 phage suspension (≥10
9
/ml) and 

incubated for 3 hr at 37°C.  For transduction, the donor phage suspension (P1 x JW5856-

2) was mixed with 2 ml of the overnight culture of the recipient cells and incubated at 

37°C for 20 min to allow for absorption of phage onto the recipient cells.  Ten µl of 

transduction mixture was mixed with 2 ml of LB and incubated at 37°C for 1.5 hr for 

induction of gene expression and then spread on a LB-Kan plate.  The absence of trxA 

trxC genes was confirmed by PCR. 

G. Cloning, expression and purification of mouse thioredoxin domain-containing 

5 

Mouse thioredoxin domain-containing 5 (mTrx 5) gene was amplified by PCR 

using the forward primer M. Trx 5 F (5’-TGG GGT ACC CAT ATG CCC CCG CGC 

CCA GGA CGC-3’; the NdeI site is underlined) and the reverse primer M. Trx 5 R (5’- 

CCC CTC GAG CTA TAG TTC ATC CTT TGC CTG GCG-3’; the XhoI site is 

underlined).  The PCR reaction mixture (50 µl) consisted of 10 ng of mouse thioredoxin 

domain-containing 5 cDNA (Open Biosystems), 200 nM forward primer M. Trx 5 F and 

reverse primer M. Trx 5 R, 1 x Taq PCR buffer (New England Biolabs), 200 µM each 

dNTP, and 5 units of Taq DNA polymerase (New England Biolabs).  The PCR procedure 

included a pre-denaturation step at 94°C for 3 min; 30 cycles of three-step amplification 

with each cycle consisting of denaturation at 94°C for 50 sec, annealing at 60°C for 50 

sec and extension at 72°C for 90 sec; and a final extension step at 72°C for 10 min.  The 
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PCR product was purified with Gene Clean 2 Kit (Qbiogene).  The PCR product and the 

plasmid vector pET16b were digested with NdeI and XhoI, purified with Gene Clean 2 

Kit and ligated by T4 DNA ligase.  The ligation mixture was transformed into E. coli 

strain JM109 competent cells by electroporation method [32].  The sequence of the mTrx 

5 gene in the resulting plasmid (pET16b-mTrx5) was confirmed by DNA sequencing. 

To express the N-terminal His-6-tagged mTrx 5 protein, pET16b-mTrx5 plasmid 

was transformed into E. coli strain BH214 (DE3) by electroporation [32].  An overnight 

E. coli culture was diluted 100-fold into an LB medium (1 L) supplemented with 100 

µg/ml ampicillin.  The E. coli cells were grown at 37°C with shaking at 250 rpm until the 

optical density at 600 nm reached approximately 0.6.  IPTG was added to a final 

concentration of 1 mM.  The culture was allowed to grow at room temperature for an 

additional 16 hr.  The cells were collected by centrifugation at 4,000 rpm with JS-4.2 

rotor in J6-MC centrifuge (Beckman Coulter) at 4°C and washed once with pre-cooled 

sonication buffer.  

To purify the mTrx 5 protein, the cell pellet from the one liter culture was 

suspended in 10 ml of sonication buffer and sonicated at output 5 for 3 x 1 min with 5 

min rest on ice between intervals using a Sonifier Cell Disruptor 350 (Branson).  The 

sonicated solution was clarified by centrifuging at 12,000 rpm in a SS-34 rotor at 4°C for 

20 min.  Since the mTrx 5 protein was found in the inclusion bodies, the pellet was 

denatured by urea, purified by Ni-NTA agarose beads and refolded by dialysis [34].  

Briefly, the pellet from sonication was re-suspended in 5 ml of Lysis Buffer B (100 mM 

NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 8.0) and stirred at room temperature for 1 hr.  
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The solution was centrifuged by 10,000 rpm at 4°C for 20 min to remove precipitates.  

One ml of the 50% Ni-NTA agarose (Qiagen) was added in the supernatant and shaken in 

a Quake shaker (Barnstead) for 1 hr at room temperature.  The lysate–resin mixture was 

carefully loaded into a 3-ml empty column, washed twice with 3 ml of Buffer C (100 mM 

NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 6.3), and three times with 1 ml of Buffer D 

(100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 5.9).  The proteins were eluted four 

times with 0.5 ml of Buffer E (100 mM NaH2PO4, 10 mM Tris-HCl, 8 M urea, pH 4.5) 

and collected in four 0.5 ml fractions.  Each fraction from Buffer C, D and E was 

examined by 10% SDS-PAGE.  The fractions containing mTrx 5 protein (fractions 1-3 

from Buffer E elution) were pooled, dialyzed in dialysis buffer (20 mM Tris-HCl, 1 mM 

EDTA, 0.1 mM DTT, pH 8.0) at 4°C overnight, and concentrated using an YM-10 

microcon column (Millipore).  The amount of protein was quantified on a 10% SDS-

PAGE using BSA as a standard. 

H.  Cloning, expression and purification of E. coli thioredoxins 1 and 2 

Since pET32a (Novagen) contains E. coli trxA gene (encodes thioredoxin 1), it 

was directly used for expression of thioredoxin 1 protein.  E. coli trxC gene (encodes 

thioredoxin 2) was amplified by PCR using the forward primer E.Trx2 F (5’-TGG GGT 

ACC CAT ATG AAT ACC GTT TGT ACC CAT - 3’; the NdeI site is underlined) and 

the reverse primer E. Trx2 R (5’-CCC GGA TCC TTA AAG AGA TTC GTT CAG 

CCA-3’; the BamHI site is underlined).  The PCR reaction mixture (50 µl) consisted of 8 

ng of E. coli genomic DNA, 200 nM forward primer E.Trx2 F and reverse primer E.Trx2 

R, 1 x Taq PCR buffer (New England Biolabs), 200 µM each dNTP, and 5 units of Taq 



 59 

DNA polymerase (New England Biolabs).  The PCR procedure included a pre-

denaturation step at 94°C for 5 min; 30 cycles of three-step amplification with each cycle 

consisting of denaturation at 94°C for 1 min, annealing at 60°C for 1 min and extension 

at 72°C for 1.5 min; and a final extension step at 72°C for 10 min.  The remaining 

molecular cloning procedures were the same as described above for mTrx 5.  The 

sequence of the E. coli trxC gene in the resulting plasmid (pET16b-E.Trx2) was 

confirmed by DNA sequencing.   

The protein expression was induced by 1 mM IPTG as described above for mTrx 

5.  To purify the E. coli thioredoxin 2 protein, the cell pellet from a 500 ml culture was 

suspended in 10 ml of sonication buffer and sonicated at output 5 for 3 x 1 min with 5 

min rest on ice between intervals.  The sonicated solution was clarified by centrifuging at 

12,000 rpm at 4°C for 20 min.  The supernatant was transferred into a fresh tube and 

loaded into a 1 ml HiTrap chelating column.  The bound protein in the column was eluted 

with a linear gradient of five column volumes of 0-0.5 M imidazole in chelating buffer B 

(20 mM sodium phosphate (pH 7.4), 500 mM NaCl).  Fractions of the eluate were 

analyzed by 10% SDS-PAGE, and those fractions containing thioredoxin 2 protein (0.2-

0.3 M imidazole) were pooled and concentrated using an YM-10 microcon column 

(Millipore).  The amount of protein was quantified on a 10% SDS-PAGE, using BSA as a 

standard.  The E. coli thioredoxin 1 protein in the pET32a was induced and purified in the 

same manner.   

I. Plasmid nicking assay 
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The reaction mixtures (200 µl) containing 3 µg of plasmid DNA pBluescript, 1 

mM acidified nitrite (pH 4.6), 10 mM potassium phosphate buffer (pH 4.7), and 4 µM 

protein (E. coli thioredoxin 1, E. coli thioredoxin 2, mTrx 5 or carbonic anhydrase) were 

incubated at room temperature for 16 hr.  An equal volume of isopropanol was then 

added to the reaction mixtures and stored at -80°C for 1 hr to precipitate DNA.  The 

DNA was collected by centrifugation and dissolved in 20 µl of deionized water.  The 

DNA solutions (10 µl) were supplemented with E. coli endonuclease V protein to 100 

nM final concentration in a buffer containing 10 mM Tris-HCl (pH 8.0), 5 mM MgCl2 

and incubated at 37°C for 1 hr.  The reaction mixtures (13 µl) were mixed with 3 µl of 6 

x agarose gel loading buffer containing 30% glycerol, 0.1% bromophenol blue.  The 

different forms of plasmid after the treatment were separated by electrophoresis on a 1 % 

agarose gel and visualized by ethidium bromide staining.   

J. Statistical analysis 

One-way and two-way analysis of variance (ANOVA) were performed using 

Programming language R.  The differences are considered statistically significant with p-

value less than 0.05. 

IV. Results 

A. E. coli-based genetic system 

To investigate the resistance mechanisms to RNS adopted by mammalian cells, we 

sought to develop a genetic system to screen genes involved in resistance to RNS.  We 

tested the idea of establishing an E. coli strain that is hypersensitive to nitrosative stress.   
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Since endo V (nfi), alkA and endo VIII are involved in repair of DNA damage            

 

Figure 2.1 Sensitivity of E. coli strains BW1466 and BW1739 to acidified sodium nitrite treatment.  
Colonies from each strain were grown to saturation in 3.5 ml of LB medium.  Cell density was 

approximated using a hemocytometer and divided into six aliquots of 0.5 ml (containing approximately 5 x 

10
5 
cell number).  Each aliquot was treated with 0, 10, 20, 30, 40, and 50 mM acidified nitrite (pH 4.6) and 

then incubated at 37°C for 10 min.  Following incubation, small portions (10 µl) of the cell mixtures were 

diluted into 1 ml of cold LB media to stop the reaction (50 µl and 100 µl for the 40 and 50 mM, 

respectively).  Cells from the 0 and 10 mM reactions were diluted 2 additional times, 20 mM once more 

and the remaining reactions were not further diluted.  Each resulting mixture was plated by adding 50 µl of 

the diluted mixture onto LB plates.  Plates were incubated overnight at 37ºC and colonies counted.  () wt 

E. coli strain (BW1466);  () DNA repair deficient E. coli strain (BW1739).  Data were obtained from five 

independent experiments and expressed as means ± SD.  All the three p-values from two-way ANOVA 

were less than 0.05. 
 

caused by RNS, we surmised that deleting these repair genes might sensitize the cells to 

nitrosative stress.  E. coli BW1739 lacks endo V alkA and endo VIII.  To test the 

sensitivity of this triple mutant strain to nitrosative stress, we treated it with different 

concentrations of acidified nitrite.  Consistent with our hypothesis, the triple mutant strain 

BW1739 was much more sensitive than the corresponding wt (wild type) strain BW1466 

(Fig. 2.1).  After treating with more than 20 mM acidified nitrite, BW1739 completely 
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lost viability (Fig. 2.2A), indicating that the triple mutant strain BW1739 became 

hypersensitive to nitrosative stress. 

 

 Figure 2.2 Screening of mouse lung cDNA library with acidified sodium nitrite.  See Materials and 

Methods for details.  A. E. coli strain BW1739 containing empty pBluescript vector.  B. E. coli strain 

BW1739 containing mouse lung cDNA library. 

 

B. Screening of candidate genes in mouse lung cDNA library 

 We reasoned that genes involved in resistance to RNS might complement the 

hypersensitive phenotype demonstrated in the triple mutant strain.  A pre-made 

commercial mouse lung cDNA phage library was converted to a plasmid expression 

library as detailed in Materials and Methods.  Mouse lung cDNA was chosen because the 

lung is constantly exposed to environmental nitrosative stress.  After electroporation into 

the BW1739 mutant strain, cells were treated with various concentrations of acidified 

sodium nitrite and plated out on LB-Amp plates.  The acidic condition or the 50 mM 

sodium nitrite alone did not cause significant reduction in survival (Fig. 2.2, 0 mM and 
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Fig. S1).  While cells with empty vector as control did not show survival above 20 mM 

concentrations, some colonies in the mouse cDNA library did (Fig. 2.2B).  Plasmids from 

those surviving colonies were then isolated and subject to DNA sequencing to identify 

the candidate genes.  The DNA sequences matched thioredoxin domain-containing 5 

(Genebank accession no. NP_663342), Zcchc14 protein (AAH05674), lysozyme 

(NP_059068), macrophage migration inhibitory factor (AAH86928.1), Zfp265 

(AAF04474), hypothetical protein LOC319587 (NP_795929.1), ubiquitination factor 

E4A (NP_663375.2), decorin (NP-031859.1), armadillo repeat-containing protein 

(NP_083116.1), unnamed protein product (CAA76142.1), unnamed protein product 

(BAC29280.1), and unnamed protein product (BAC28255.1).  The inability to identify 

  

Figure 2.3 The resistance of mTrx 5 to nitrosative stress.  See Materials and Methods for details.  A. E. 

coli strain BW1739 containing empty pBluescript vector.  B. E. coli strain BW1739 containing pBS-mTrx 

5 vector.  Data shown are a representative of three independent experiments and expressed as means ± SD 

when possible.  Statistical analysis was performed using one-way ANOVA. *: p < 0.05. 
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DNA repair genes in the screening may be caused by incomplete screening and/or a 

growth inhibition effect exhibited by DNA repair enzymes under a nitrosative stress 

background ([35] and data not shown). 

C. Verification of mouse thioredoxin domain-containing 5 

 One of the genes that caught our particular attention was the mouse thioredoxin 

domain-containing 5 (mTrx 5), which contains three thioredoxin domains in a span of 

417 amino acids.  To verify the resistance of mTrx 5 to nitrosative stress, the mTrx 5 

gene was cloned into pBluescript and transformed to the BW1739 strain.  After treating 

with acidified nitrite, the mTrx 5-containing cells were able to survive much better than 

the control (Fig. 2.3).  While the control showed a much reduced number of colonies at 

20 mM concentration and no survival above 20 mM, mTrx 5-containing cells were much 

more viable at the high level of nitrosative stress.  Since the mTrx 5 gene was 

retransformed into the BW1739 strain, this indicated that the survival in the initial screen 

was not due to chromosomal changes in the BW1739 host.   

D. Reduction of RNS-induced DNA damage by E. coli thioredoxins and mTrx 5 

 Since RNS inflict DNA damage and the BW1739 strain is deficient in deaminated 

DNA repair, we thought one of the possible mechanisms of resistance to nitrosative stress 

was to reduce RNS-induced DNA damage.  To test this possibility, we cloned, expressed, 

and purified mTrx 5 protein along with E. coli Trx 1 and Trx 2 proteins (Fig. S2).  A 

plasmid-based nicking assay was used to test the effect of these proteins on nicking of 

plasmid treated with acidified nitrite (Fig. 2.4A). For each pair, the treatment of the 

plasmid was carried out in the presence of Trx 1, Trx 2 or mTrx 5.  After the treatment, 
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one tube from each pair was treated with E. coli endo V to assess DNA damage, because 

endo V is capable of nicking all deaminated base lesions [21, 23, 36-40]. 

 Figure 2.4 Plasmid nicking assay with E. coli thioredoxins 1 and 2 and mTrx 5 after acidified nitrite 

treatment.  A. Agarose gel electrophoresis analysis of plasmid nicking products.  pBluescript was treated 

with acidified nitrite in the presence of E. coli thioredoxin 1, thioredoxin 2 or mTrx 5 as described in 

Materials and Methods.  M: lambda DNA Hind III digest.  CA: carbonic anhydrase.  Lane 1 and 2: no other 

protein added (except endo V to lane 2); lanes 3 and 4: E. coli thioredoxin 1 protein added; lanes 5 and 6: E. 

coli thioredoxin 2 protein added; lanes 7 and 8: mTrx 5 protein added; lanes 9 and 10: carbonic anhydrase 

(Sigma, C-7025).  After acidified nitrite treatment, samples from lanes 2, 4, 6, 8 and 10 were incubated 

with E. coli endo V at 37°C for 1 hr.  Lane 11: identical to the sample in lane 2 but treated with E. coli 

endonuclease IV instead of endo V.  After acidified nitrite treatment and isopropanol precipitation, the 

sample (10 µl) was incubated with 100 nM E. coli endo IV in a buffer containing 10 mM Tris-HCl (7.0), 10 

mM MgCl2, 1 mM DTT at 37°C for 1 hr.  C: closed circular plasmid; N: nicked plasmid; L: linear plasmid.  

B. Plot of remaining closed circular plasmid.  Data were obtained from two independent experiments and 

expressed as means ± SD.  Statistical analysis was performed using one-way ANOVA.  *: p < 0.05. 

 See Materials and Methods for details.  A. E. coli strain BW1739 containing empty pBluescript vector.  B. 

E. coli strain BW1739 containing pBS-mTrx 5 vector.  Data shown are a representative of three 

independent experiments and expressed as means ± SD when possible.  Statistical analysis was performed 

using one-way ANOVA. *: p < 0.05. 



 66 

    In the control reaction without any other protein, treatment with acidified nitrite 

apparently generated many endoV recognizable lesions in the plasmid (Fig. 2.4A, lanes 

1-2).  Consequently, after endo V treatment, most closed circular plasmids were 

converted to nicked and linear forms with approximately 3% left as the closed circular 

form (Fig. 2.4B).  When the treatment was performed in the presence of E. coli Trx 1 

protein, the amount of remaining closed circular form increased to approximately 30% 

(Fig. 2.4B, lanes 3-4).  Likewise, addition of E. coli Trx 2 protein to the reaction 

increased the closed circular form to approximately 45% (Fig. 2.4B, lanes 5-6).  When 

mTrx 5 protein was present in the treatment mixture, the remaining closed circular form 

increased to approximately 30% (Fig. 2.4B, lanes 7-8).  As another control, we also 

performed the same assay with carbonic anhydrase.  In this case, no apparent reduction in 

DNA damage was observed (Fig. 2.4B, lanes 9-10).  Because endo V has AP 

endonuclease activity [21, 22], we used the known AP endonuclease endo IV to assess 

the percentage of plasmid nicking in lane 2 that is related to formation of AP sites.  More 

than 50% of the acidified nitrite treated plasmid was converted to nicked plasmid (Fig. 

2.4, lane 11), suggesting significant generation of AP sites.  This is understandable given 

that the treatment was carried out under acidic conditions, which is known to accelerate 

depurination.  These results indicated that more than 40% of the RNS-mediated damage 

is non-AP site damage, and the majority of which is likely due to deamination. 

E. Complementation of trxA trxC by mTrx 5 
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 Since both the thioredoxin 1 and thioredoxin 2 proteins were able to reduce the 

RNS-induced DNA damage, we set out to test whether the lack of these genes could 

  

Figure 2.5 Complementation of trxA and trxC by mTrx 5 under nitrosative stress.  The treatment with 

acidified nitrite and plating were performed as detailed in Materials and Methods.  A. Sensitivity of E. coli 

pt 

-

trxC deletion strain (JW2566-

strain (BW25113 but trxA- trxC-) containing pBluescript vector.  Data were obtained from three 

independent experiments and expressed as means ± SD.  Two-way ANOVA was performed between wt 

and trxA deletion (p < 0.05), wt and trxC deletion (p < 0.05), and wt and trxA trxC double deletion  (p < 

0

trxC double deletion strain (BW25113 but trxA- trxC-

trxA trxC double deletion strain (BW25113 but trxA- trxC-) containing pBS-mTrx5 vector.  Data were 

obtained from three independent experiments and expressed as means ± SD.  Statistical analysis was 

performed using two-way and one-way ANOVA.  *: p < 0.05.  Post tests after two-way ANOVA were 

performed using the Bonferroni method.  The differences between each concentration and 0 mM were 

significant (p < 0.05) for both the E. coli trxA trxC double deletion strain and the same strain containing 

pBS-mTrx5 vector. 
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 result in sensitivity to nitrosative stress and whether mTrx 5 could complement them.  

Lack of trxA (encodes thioredoxin 1) or trxC (encodes thioredoxin 2) appeared to cause a 

small reduction in resistance to nitrosative stress at high acidified nitrite concentrations 

(Fig. 2.5A).  Deletion of both trxA and trxC genes led to a significantly heightened 

sensitivity to nitrosative stress (Fig. 2.5A).  To test whether mTrx 5 can complement the 

trxA trxC phenotype in vivo, we cloned the mTrx 5 gene to pBluescript and transformed it 

into the double deletion strain.  The presence of the mTrx 5 gene appeared to revert the 

trxA trxC phenotype by rendering it significantly more resistant to nitrosative stress (Fig. 

2.5B).  These results suggest that mTrx 5 could substitute some of the biological 

functions of trxA and trxC in the E. coli host. 

F. Reduction of ROS-induced DNA damage by E. coli thioredoxins and mTrx 5 

 Since thioredoxin is known to scavenge RNS, we tested the ability of E. coli 

thioredoxins 1 and 2, and mTrx 5 to reduce ROS-induced DNA damage in the plasmid-

based nicking assay.  Prior to ROS treatment, the majority of the plasmid was in the 

closed circular form (Fig. 2.6A, lane C).  After the treatment, the majority of the plasmid 

was converted to nicked/linear forms, indicating significant strand-breaking damage 

caused by ROS (Fig. 2.6A, lane 2).  The remaining closed circular plasmid apparently 

harbored Fpg-sensitive damage, which was converted to nicked/linear forms by the 

bifunctional DNA glycosylase Fpg (Fig. 2.6A, lane 3).  Addition of E. coli thioredoxins 1 

and 2, and mTrx 5 all significantly reduced the strand breaks in the absence of Fpg (Fig. 

2.6A, compare lanes 3, 5 and 7 with lane 1; Fig. 2.6B).  Furthermore, thioredoxins 1 and 

2, and mTrx 5 significantly reduced formation of Fpg-sensitive sites (Fig. 2.6A, compare 
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lanes 4, 6 and 8 with lane 2; Fig. 2.6B).  These results suggest that mTrx 5, like E. coli 

thioredoxins 1 and 2, can protect DNA from ROS-induced damage. 

V. Discussion 

 Cells are constantly exposed to reactive nitrogen species from the environment 

and endogenous sources and, under such conditions, must adopt various mechanisms to 

cope with nitrosative stress.  One of the antinitrosative stress mechanisms is to repair 

DNA damage generated by RNS.  Indeed, macrophage-residing bacterial pathogens seem 

to utilize this mechanism well.  In Salmonella typhimurium, RecB and RecC of the 

recombinational repair pathway affect its survival in macrophages [41].  In 

Mycobacterium tuberculosis and S. typhimurium, lack of uvrB of the nucleotide excision 

repair pathway contributes to mutations and sensitivity caused by nitrosative stress [30, 

42-44].  An E. coli strain such as BW1739 lacking DNA repair glycosylases is also 

hypersensitive to RNS (Fig. 2.1), underscoring the importance of DNA repair in 

attenuating the genotoxicity of RNS-induced DNA damage.  Taking advantage of the 

hypersensitive phenotype, this study screened a mouse lung cDNA library to identify 

mammalian genes that may confer resistance to nitrosative stress.  Among the genes 

identified from the library, this work focused on mouse thioredoxin domain-containing 5, 

a gene which contains three thioredoxin-like domains.  Thioredoxin was discovered in E. 

coli as a small redox protein back in 1964 [45].  Since then, thioredoxin proteins have 

been found in a variety of bactacterial, archaeal and eukaryotic organisms [46-48]. E. coli 

genome contains a second thioredoxin which plays a similar role as thioredoxin 1 but is 

induced by H2O2 in an OxyR-dependent manner [49-51].   
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 Figure 2.6 Plasmid nicking assay with E. coli thioredoxins 1 and 2 and mTrx 5 after H2O2/FeCl3 

treatment.  A. Agarose gel electrophoresis analysis of plasmid nicking products.  The assay was carried 

out similar to a previous procedure [65].  Reaction mixtures (50 µl) containing 12.5 mM Tris-HCl (pH 8.0), 

12.5 mM NaCl, 0.1 mM FeCl3, 0.4 mM EDTA, 10 mM H2O2, 3 µg of pBluescript, and 4 µM purified 

protein were incubated at room temperature for 1 hr.  The reactions were stopped by addition of dipyridyl 

(iron chelator) to a final concentration of 5 mM.  An equal volume of isopropanol was added to the reaction 

mixtures and stored at -80°C for 1 hr to precipitate DNA.  After centrifugation, the pellets were dissolved 

in 50 µl of deionized water.  The plasmid samples (10 µl) were then incubated with 100 nM E. coli Fpg 

(MutM) protein (NEB) in a buffer containing 100 mM KCl, 5 mM EDTA, 2 mM 2-mercaptoethanol at 

37°C for 1 hr.  The reaction mixtures (13 µl) were mixed with 3 µl of 6 x agarose gel loading buffer, 

electrophoresed in 1% agarose gels and visualized by ethidium bromide staining.  C: control treatment 

without H2O2 and Fpg.  Lanes 1 and 2: no protein added; lanes 3 and 4: E. coli thioredoxin 1 protein added; 

lanes 5 and 6: E.coli thioredoxin 2 protein added; lanes 7 and 8: m.Trx5 protein added; lanes 9 and 10: 

bovine serum albumin (Sigma A-8531). After H2O2/FeCl3 treatment, samples from lanes 2, 4, 6, 8, and 10 

were incubated with E. coli Fpg as described above.  C: closed circular plasmid; N: nicked plasmid; L: 

linear plasmid.  B. Plot of remaining closed circular plasmid.  Data were obtained from two independent 

experiments and expressed as means ± SD.  Pair-wise comparisons (lanes 3 and 1, lanes 5 and 1, lanes 7 

and 1, lanes 9 and 1; lanes 4 and 2, lanes 6 and 2, lanes 8 and 2, and lanes 10 and 2) were performed using 

one-way ANOVA.  *: p < 0.05. 
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Mammalian genomes encode multiple thioredoxin and thioredoxin-like proteins 

[52, 53].  Many of these proteins are involved in response to oxidative stress, protein 

folding, and acting as a hydrogen donor or disulfide reductase.  The function of mTrx 5 in 

vivo and in vitro is not well known.  Complementation analysis in yeast suggests that 

mTrx 5 plays the role of a protein disulfide
 
isomerase [54].  The finding of mTrx 5 in our 

genetic screening for resistance to nitrosative stress is in general consistent with the 

multiple functions a thioredoxin-like protein may perform.   

 The relationship between thioredoxin and oxidative stress is extensively studied 

[46-48, 55, 56].  Reactive oxygen species can be scavenged either directly by thioredoxin 

and thioredoxin-related protein TRP14 or through reduction of peroxiredoxin [57-60].  In 

addition, thioredoxin can regenerate glyceraldehyde-3-phosphate dehydrogenase 

inactivated by H2O2 treatment [56, 57], suggesting that thioredoxin can also act as a 

protein repair enzyme.   

The relationship between thioredoxin and thioredoxin-like proteins and nitrosative 

stress is not well understood.  This work provides experimental evidence that E. coli 

thioredoxin and thioredoxin-like proteins such as mTrx 5 are involved in resistance to 

nitrosative stress.  The expression level of mTrx5 in mice is not clear.  According to a 

previous report, it appears that the expression of thioredoxin domain-containing 5 protein 

is relatively higher in lung tissues than other tissues [61], which may provide protection 

to nitrosative stress in lung.  Because mTrx 5 was obtained through screening of a DNA 

repair deficient strain, we thought one of the possible mechanisms is that mTrx can 

reduce the DNA damage caused by exposure to RNS.  Indeed, in a plasmid nicking assay, 
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mTrx 5 protein reduced the nicking of endo V-sensitive damage (Fig. 2.4).  Interestingly, 

similar observations were made of E. coli thioredoxins 1 and 2.  A simple explanation of 

these data is that thioredoxins and thioredoxin-like proteins may be able to scavenge the 

RNS generated from acidified nitrite.  If so, thioredoxins and thioredoxin-like proteins 

are able to scavenge both reactive oxygen species and reactive nitrogen species; in doing 

so, the RNS-mediated DNA damage is reduced.  By scavenging RNS, thioredoxins and 

thioredoxin-like proteins may also alleviate cytotoxicity by reducing damage to other 

macromolecules such as proteins. 

The contribution of E. coli thioredoxins 1 and 2 to resistance toward nitrosative 

stress was tested in vivo using deletion strains.  A single deletion of trxA or trxC 

conferred modest sensitivity to nitrosative stress, whereas the double deletion trxA trxC 

strain become much more sensitive (Fig. 2.5A).  These results are consistent with a study 

of bacterial pathogen Helicobacter pylori, in which the trx1 trx2 double deletion strain 

was hypersensitive to nitrosative stress [62].  However, trx1 in H. pylori seems to 

contribute in large part to the sensitivity.  The defect caused by trxA trxC double deletion 

was compensated for by the mTrx 5 (Fig. 2.5B), suggesting that mTrx 5 can substitute for 

the function of trxA and trxC under nitrosative stress.  While this may be due to the 

ability of mTrx 5 to reduce endo V-sensitive DNA damage, it is possible that the 

antinitrosative function of mTrx 5 goes beyond simply scavenging the RNS.   

The other possibilities are discussed as follows.  First, cellular proteins are subject 

to S-nitrosylation under nitrosative stress [63].  The S-nitrosylation has a profound 

impact on the physiological function of many proteins.  Thioredoxin is one of the 
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physiological denitrosylases that can remove nitric oxide from a variety of proteins [64].  

The denitrosylation process mediated by thioredoxin and possibly by mTrx 5 may help 

prevent loss of functions in many proteins.  Second, under oxidative and nitrosative stress 

conditions, NO can react with superoxide to generate peroxynitrite, which then oxidizes 

methionine to methionine sulfoxide.  Methionine sulfoxide reductase (Msr) is responsible 

for reverting methionine sulfoxide back to methionine [24, 25].  During the reaction, Msr 

is oxidized to form a disulfide bond and requires thioredoxin to reduce it.  E. coli 

becomes hypersensitive to nitrosative and oxidative stress without msrA [26].  The lack 

of thioredoxins in the trxA trxC double deletion strain may impede methionine repair and 

therefore contribute to its sensitivity toward nitrosative stress.  It remains to be 

determined whether thioredoxin-like proteins such as mTrx 5 can participate in the 

catalytic cycle of methionine damage.  The involvement of these mechanisms in 

resistance to nitrosative stress requires further investigation. 
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CHAPTER THREE 

 

IDENTIFICATION OF ESCHERICHIA COLI MUG AS A ROBUST XANTHINE DNA 

GLYCOSYLASE 

I. Abstract 

The gene for the mismatch-specific uracil DNA glycosylase (MUG) was identified in the 

Escherichia coli genome as a sequence homolog of the human thymine DNA glycosylase 

(TDG) with activity against mismatched uracil base pairs.  Examination of cell extracts 

led us to detect a previously unknown xanthine DNA glycosylase (XDG) activity in E. 

coli.  DNA glycosylase assays with purified enzymes indicated the novel XDG activity is 

attributable to MUG.  Here, we report a biochemical characterization of xanthine DNA 

glycosylase activity in MUG.  The wild type MUG possesses more robust activity against 

xanthine than uracil and is active against all xanthine-containing DNA (C/X, T/X, G/X, 

A/X and single-stranded X).  Analysis of potentials of mean force (PMF) indicates that 

the double-stranded xanthine base pairs have a relatively narrow energetic difference in 

base flipping while the tendency for uracil base flipping follows the order of C/U > G/U 

> T/U > A/U.  Site-directed mutagenesis performed on conserved motifs revealed that 

N140 and S23 are important determinants for XDG activity in E. coli MUG.  Molecular 

modeling and molecular dynamics simulations reveal distinct hydrogen bonding patterns 

in the active site of E. coli MUG, which account for the specificity differences between 

E. coli MUG and human thymine DNA glycosylase, as well as that between the wild type 

MUG and the N140 and S23 mutants.  This study underscores the role of the favorable 

binding interactions in modulating the specificity of DNA glycosylases. 
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II. Introduction 

DNA is constantly assaulted by environmental and endogenous agents, causing various 

types of chemical damage.  DNA bases are subject to deamination by hydrolytic or 

oxidative reactions due to the reactivity of the exocyclic amino groups (1-3).  Uracil (U), 

xanthine (X) and oxanine (O), hypoxanthine (I), and thymine (T) are the correspon ding 

deamination products derived from cytosine (C), guanine (G), adenine (A), and 5-

methylcytosine, respectively.  The amino-to-keto conversion of base deamination alters 

the hydrogen bond properties of the damaged bases from a hydrogen donor to a hydrogen 

bond acceptor, which may result in mutation during DNA replication.                        

 Uracil DNA glycosylase (UDG), an enzyme present in organisms as simple as 

viruses or as complex as humans, initiates the repair of uracil in DNA.  Five families, 

classified according to sequence and structural homologies, constitute a UDG super 

family (4,5).  Family 1 includes the extensively studied Escherichia coli (E. coli), human 

and herpes simplex virus 1 UNGs.  Family 2 contains human thymine DNA glycosylase 

(hTDG) and E. coli mismatch-specific uracil DNA glycosylase (MUG).  hTDG is unique 

in its ability to excise thymine from a G/T mismatch generated from 5-methylcytosine 

deamination (6). Family 3 is comprised of SMUG1 (single-strand-selective monofun- 

ctional uracil DNA glycosylase) proteins found in vertebrates and some bacteria.  Family 

4 UDGs are iron-sulfur-containing enzymes found in prokaryotes.  Family 5 are found in 

a limited number of species of prokaryotic organisms such as archaea.  It is not uncom 

mon for an organism to possess more than one uracil DNA glycosylase.  In addition to 

UDG, TDG and SMUG1, humans also have another uracil DNA glycosylase called 
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MBD4 that does not belong to the UDG superfamily (7).                                         

 Xanthine is now recognized as a stable lesion under physiological conditions 

(8,9).  As such, although repair of xanthine was noted in human lymphoblast cells in an 

earlier study (10), enzymes that may repair xanthine were not identified until recently.  

Both E. coli AlkA and its functional homolog human alkyladenine DNA glycosylase 

(hAAG) have xanthine DNA glycosylase activity (9,11,12).  The SMUG1 enzymes from 

bacteria and humans are also active on xanthine-containing DNA (13).  In addition, 

several homologs of bacterial endonuclease V exhibit deoxyxanthosine endonuclease 

activity (11,14-16).                                                                                                   

 Identification of DNA repair activity in E. coli has led to the discovery of new 

repair enzymes or novel activities.  DNA repair deficient mutant strains have facilitated 

identification of functional homologs in eukaryotic systems (17-20).  We are interested in 

achieving a comprehensive understanding of xanthine DNA repair in E. coli.  Previous 

studies show that AlkA, endo VIII, and endo V in E. coli possess xanthine repair acti 

vities (11,12,16). Using an E. coli triple mutant strain (nfi nei alkA), we detected 

xanthine DNA glycosylase (XDG) activity in whole cell protein extracts.  Further bioch 

emical analysis led to the discovery of XDG activity in the mismatch-specific uracil 

DNA glycosylase MUG.  Surprisingly, kinetic analysis revealed that the XDG activity 

from MUG was more robust than UDG activity. Rather than being active with only 

double-stranded mismatch uracil base pairs, MUG can excise xanthine from double-

stranded base pairs as well as single-stranded DNA.  Structural elements that are involved 

in determining the base recognition in MUG were probed by site-directed mutagenesis.  



 86 

Mutational effects on glycosylase activities of deaminated bases, X and U, were analyzed 

by activity assays and binding analyses.  Thermodynamic properties associated with the 

flipping of deaminated base pairs were determined by calculating potentials of mean 

force.   The base recognition specificity is discussed in light of molecular modeling and 

molecular dynamics simulations of MUG interactions with deaminated bases. 

III. Experimental Procedures 

A. Preparation of E. coli Cell Extracts 

Bacterial cells (BW1466 and BW1739) from 100-ml cultures grown to late 

exponential
 
phase were harvested by centrifugation at 5,000 rpm with GSA-10 rotor in 

RC5C Sorvall centrifuge (Dupont).  The cell pellets were suspended in 5 ml sonication 

buffer and sonicated 5 times with a burst duration of 1 min each.  The lysates were 

centrifuged at 12,000 rpm at 4 °C for 20 min.  The supernatants containing soluble 

proteins were transferred to fresh tubes, filtered with 0.45 µm syringe filters (Whatman, 

Clifton, New Jersey) and dialyzed at 4 °C overnight against a buffer containing 20 mM 

Tris-HCl (pH 8.0), 1 mM EDTA (pH 8.0), and 0.1 mM DTT.  Protein concentrations 

were measured by the Bradford method using
 
bovine serum albumin as a standard (21). 

B.  Oligodeoxynucleotide Substrates 

The fluorescently labeled oligodeoxynucleotide substrates were prepared as 

described (22).  The sequences of the oligonucleotides are shown in Fig. 3.1A.  Oligo 

deoxyribonucleotides were ordered from IDT, purified by PAGE, and dissolved in TE 

buffer at a final concentration of 10 µM.  The two complementary strands with the 

unlabeled strand in 1.2-fold molar excess were mixed, incubated at 85 °C for 3 min, and 
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allowed to form duplex DNA substrates at room temperature for more than 30 min.  The 

xanthine- and oxanine-containing oliogonucleotide were constructed as previously des 

cribed (15,23).   

C. DNA Glycosylase Activity Assay 

DNA glycosylase cleavage assays for E. coli MUG were performed at 37 °C for 

60 min in a 10 µl reaction mixture containing 10 nM oligonucleotide substrate, an 

indicated amount of glycosylase protein, 20 mM Tris-HCl (pH 7.5), 100 mM KCl, 5 mM 

EDTA, and 2 mM 2-mercaptoethanol. The resulting abasic sites were cleaved by in 

cubation at 95 °C for 5 min after adding 0.5 µl of 1 N NaOH.  Reactions were quenched 

by addition of an equal volume of GeneScan stop buffer.  After incubation at 95 °C for 3 

min, samples (3.5 µl) were loaded onto a 7 M urea-10% denaturing polyacrylamide gel.  

Electrophoresis was conducted at 1500 V for 1.5 h using an ABI 377 sequencer (Applied 

Biosystems). Cleavage products and remaining substrates were quantified using Gene 

Scan analysis software. 

D. Gel Mobility Shift Assay 

The binding reactions were performed
 
on ice for 10 min in a 10-µl volume 

containing 50 nM DNA substrate, 20 mM Tris-HCl (pH 7.2), 50 mM NaCl, 5 mM
 

EDTA, 1 mM DTT, 0.1 mg/ml bovine serum albumin, 10% glycerol,
 
and the indicated 

amount of E. coli MUG protein. Samples were supplemented
 
with 2 µl of 100% glycerol 

and electrophoresed at 200 V
 
on a 6% native polyacrylamide gel in 1 x TB buffer (89 

mM Tris
 
base and 89 mM boric acid) supplemented with 5 mM EDTA. The

 
bound and 

free DNA species were analyzed using a Typhoon 9400
 
Imager (Molecular Dynamics) 
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with the following settings: photomultiplier
 
tube at 600 V, excitation at 495 nm, and 

emission at 535 nm. 

E. Molecular Modeling and Molecular Dynamics Simulations 

Molecular models of the unbound and bound conformations of wild type (wt) E. 

coli MUG were used as initial structures for subsequent computational analyses.  The 

crystal structure of E. coli MUG (pdb accession code 1mug) was used as a model for the 

unbound MUG enzyme.  The molecular model of the wt E. coli MUG complexed with a 

DNA decamer sequence containing uracil was constructed based on the crystal structure 

of UDG bound to a DNA decamer (pdb accession code 1emh). 

Molecular dynamics simulations were performed on the bound MUG structures 

using the CHARMM 32b1 molecular mechanics software package (24), and the 

CHARMM 27 force field (25,26).  Interaction energies consisting of Coulomb and van 

der Waals potential energies were calculated over the molecular dynamics trajectory 

between the active site residues and the substrates using the “coor inter” module in 

CHARMM. 

Potentials of mean force (PMF) describe free energy changes along a pre-defined 

reaction coordinate while averaging over the remaining degrees of freedom.  Here, 

potentials of mean force are used to describe the free energy changes associated with 

rotating a nucleotide from the interior of the DNA double helix into the aqueous solvent. 

A detailed description of the computational methods is provided in the Supplemental 

Data. 
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IV. Results 

A. Detection of XDG Activity in E. coli Cell Extracts 

Studies of uracil repair in E. coli has led to the discovery of a uracil DNA 

glycosylase and a mismatch-specific uracil DNA glycosylase (MUG).  Previous  

     
Figure 3. 1  Cleavage of deaminated base-containing DNA substrates by E. coli cell extracts and E. 

coli MUG from a commercial source.  Cleavege reactions were performed as described in Experimental 

Procedures with 5 µl cell extract or 1 unit of wt MUG protein (Trevigen) and 10 nM substrate.  A. 

Sequences of xanthine (X)- and oxanine (O)-, hypoxanthine (I)- and uracil (U)-containing 

oligodeoxyribonucleotide substrates.  B. Chemical structures of deaminated DNA bases.  C. DNA 

glycosylase activity on C/X in E. coli cell extracts. D. DNA glycosylase activity of MUG on X-containing 

substrate. WT: BW1466; TM: triple mutant, BW1739.  hAAG was assayed as a control with 100 nM 

hAAG protein and 10 nM substrate as described previously (23).  Under the assay conditions, the substrate 

was completely cleaved to product. 
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investigations using purified enzymes revealed that two glycosylases (AlkA and endo 

VIII) and endo V in E. coli possess xanthine DNA glycosylase activity or deoxy- 

xanthosine endonuclease activity (11,12,16).  However, XDG activities from the two 

glycosylases, particularly the latter, are quite low.  To survey whether E. coli contains 

additional XDG enzymes, we examined the cleavage activity in cell extracts of a triple 

mutant strain which had alkA, nei (endo VIII), and nfi (endo V) deleted.  The assays were 

performed using fluorescently labeled xanthine-containing deoxyoligonucleotide 

substrates (Fig. 3.1A-B).  As expected, we detected cleavage of C/X in the wild type cell 

extract (Fig. 3.1C).  Surprisingly, we also detected xanthine DNA glycosylase activity in 

the triple mutant strain that eliminated the activity of all previously known XDG enzymes 

(Fig. 3.1C).  This result indicated that the E. coli genome contained an additional XDG 

enzyme.  Given that a previous study had investigated XDG activity in purified E. coli 

AlkA, endo III, endo V, endo VIII, Fpg/MutM, MutY and UDG (11), we surmised that 

MUG, which was not included in the previous study, may be accountable for the 

observed XDG activity in the triple mutant cell extract.  A quick test was performed 

using purified MUG from a commercial source (Trevigen).  As shown in Fig. 1D, MUG 

was found to be active on all five xanthine-containing substrates, including the single-

stranded substrate.  We also tested XDG activity using a MUG single deletion strain and 

a quadruple deletion strain.  XDG activity was not detected in either case, indicating that 

MUG is the predominant activity in cell extracts. 

B. XDG Activity in Purified E. coli MUG 
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To further confirm the novel XDG activity, we set out to clone, express, and 

purify the wt MUG and an active site mutant MUG-N18A.  MUG was expressed in the 

ung mug knockout strain BH214 to avoid contaminating activity from the host.   

Figure 3.2 Cleavage of xanthine (X)-, uracil (U)-, oxanine (O)- and hypoxanthine (I)- containing DNA 

substrates by E. coli MUG.  Cleavege reactions were performed as described in Experimental Procedures 

with 100 nM wt E. coli MUG protein and 10 nM substrate.  A. Cleavage by wt E. coli MUG.  B. Cleavage 

by N18A mutant of E. coli MUG.  

We tested deaminated base repair activity on X-, U-, O-, and I-containing substrates (Fig. 

3.2A).  The purified wt MUG again showed cleavage of all five X-containing substrates 

(Fig. 3.2A).  The uracil DNA glycosylase activity observed in the wt MUG was 

essentially identical to that reported in previous studies, i.e., active on C/U, G/U and T/U 

mismatched uracil base pairs (27,28).  The XDG activity was noticeably more robust than 

the UDG activity as indicated by close-to-complete cleavage of the xanthine substrates 

(Fig. 3.2A).  No oxanine or hypoxanthine DNA glycosylase activities were detected from 

the wt enzyme under our assay conditions (Fig. 3.2A).  To further verify that the xanthine 

DNA glycosylase activity was authentic to MUG, we performed the same assay using an 

active site mutant MUG-N18A, which abolished the ability of the enzyme to activate a 

water molecule to attack the N-glycosidic bond (29,30).  No glycosylase activity on 
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deaminated bases was detected, confirming that the XDG activity was native to the MUG 

protein (Fig. 3.2B).   

Figure 3.3 Kinetic analysis of glycosylase activity of wt E. coli MUG on X- and U-containing 

substrates.  A. Time course analysis of cleavage activity on U-containing substrates.  Cleavege reactions 

were performed as described in Experimental Procedures with 100 nM wt E. coli MUG protein and 10 nM 

substrate.  E:S = 10:1.  B. Time course analysis of cleavage activity on X-containing substrates.  S = 10 

nM. () E:S = 10:1; () E:S = 1:10. 

 

  The robust XDG activity in MUG prompted us to quantitatively determine the 

deaminated base repair activity in MUG.  Under the condition that the enzyme was in 

excess (E:S ratio = 10:1), removal of uracil in the three mismatched base pairs was less 

than 50% (Fig. 3.3A).  Alternatively, excision of xanthine is significantly more efficient, 

resulting in a close-to-complete cleavage (Fig. 3.3B).  The apparent rate constants were in 

general comparable among the double-stranded xanthine substrates but appeared to be 

slightly more active on C/X and G/X substrates (Table 3.1).  However, MUG exhibited a 

much more robust DNA glycosylase activity on xanthine-containing DNA than uracil-

containing DNA.  For example, the cleavage efficiency of C/X was about 13-fold higher 

than that of C/U (Table 3.1).  Interestingly, the XDG activity on C/X base pair, the likely 
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biological substrate resulting from the direct deamination of a guanine base, is slightly 

stronger than other base pairs.  Within the uracil-containing substrates, MUG is most  

Table 3.1 Apparent rate constants for cleavage of xanthine (X) and uracil (U) substrates by E. coli 

MUG and mutants (min
–1

)
a 

MUG 
 Bottom 

Strand 

Top Strand   

 C G A T    

WT  

X 

0.24 0.23 0.21 0.21 0.36  

I17L  0.024 0.016 0.013 0.015 0.022               

S23A  0.071 0.046 0.024 0.027 0.059  

L144S  0.012 0.010 0.011 0.011 0.012  

         

WT  

U 

0.018 0.014 n.a.
b
 0.0094 n.a.  

S23A  0.032 0.031 n.a. 0.024 n.a.  

N140H  0.0029 0.0021 n.a. 0.00034 n.a.  

a
: The reactions were performed as described in Experimental Procedures with 100 nM 

MUG and 10 nM substrates.  Data are an average of two independent experiments. 
b
: n.a.: no activity was detected under assay conditions. 

 

active on C/U followed by G/U and then by T/U (Table 3.1).  No activity was detected on 

A/U or single-stranded U (Fig. 3.2 and Table 3.1).  Under the condition that the substrate 

was in excess (E:S ratio = 1:10), cleavage of xanthine-containing substrates reached a 

level of approximately 20% (Fig. 3.3B).  However, no cleavage of uracil-containing 

substrates was detected (data not shown).  Although MUG was discovered as a uracil 

DNA glycosylase, these results suggested that MUG was more efficient as an XDG than 

as a UDG. 

C. Identification of XDG Activity Determinants 

Single 

Strand 
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Figure 3.4  Binding of X-, U-containing DNA substrates by E. coli MUG.  Gel mobility shift analysis 

was performed as described in Experimental Procedures with 500 nM protein and 50 nM substrate.  Data 

are an average of two independent experiments.  A. wt MUG with X-containing DNA.  B. wt MUG with 

U-containing DNA.  C. I17L with X-containing DNA.  D. N140H with U-containing DNA.  E. S23A with 

X-containing DNA.  F. S23A with U-containing DNA. 
 

To identify amino acid residues that may play a role in recognition of deaminated 

bases, we selected eight positions, in motifs I and II that define the base recognition 

pocket, for a site-directed mutagenesis study (Fig. S1).  Six positions are located in motif 

1 and two positions are located in motif 2.  S23 and N140 were identified as major 

determinants of the XDG activities. 

Alanine substitution at the S163 position in Schizosaccharomyces pombe TDG 

results in the complete loss of XDG activity (31).  The same substitution in the equivalent 

S23 position in E. coli MUG exhibited an interesting effect.  The UDG activity on C/U, 
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G/U and T/U substrates was enhanced (Fig. S2-B and Table 3.1).  On the other hand, the 

XDG activity was reduced, ranging from 3-fold for C/X, to 5-fold for G/X, to 9-fold for 

A/X, to 8-fold for T/X, and to 6-fold for single-stranded X-containing DNA (Fig. S2-B 

and Table 3.1).  The role that S23 may play in xanthine recognition is discussed later in 

light of modeled MUG-X complex structure. 

                                 
Figure 3.5  Molecular modeling of base recogition by E. coli MUG.  A. Interactions between wt E. coli 

MUG and uracil.  Mainchain hydrogen bonding between N18, F30 and uracil are shown in blue.  B. 

Interactions between wt E. coli MUG and xanthine.  Mainchain hydrogen bonding between F30 and uracil 

is shown in blue.  Sidechain hydrogen bonding between S23 and N
7
 of xanthine is shown in red.  C. 

Energetics of wt E. coli MUG interactions with G/X (solid bars) and G/U base pairs (blank bars).  D. 

Interactions between human TDG and uracil.  Sidechain hydrogen bonding between N191 and uracil are 

shown in blue.  E. Interactions between E. coli MUG-N140H and uracil.  Hydrogen bonding between the 

sidechain of N140H and the uracil and that of the 3’-phosphate are shown in red.  Mainchain hydrogen 

bonding between N18, F30 and uracil are shown in blue.  F. Interactions between E. coli MUG-N140M and 

uracil.  Mainchain hydrogen bonding between N18, F30 and uracil are shown in blue. 
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Two mutations were constructed at the N140 position of motif 2.  N140M, which 

mimicked human TDG, resulted in a complete loss of XDG and UDG activity (data not 

shown).  N140H, which mimicked family 1 UDGs, only maintained a reduced UDG 

activity toward C/U, G/U, and a substantially reduced activity towards T/U (Fig. S2-C 

and Table 3.1).  Strikingly, no xanthine DNA glycosylase activity was detected in N140H 

under the assay conditions (Fig. S2-C).  The N140 position in motif 2 is a His residue in 

all UDG superfamily proteins except for the MUG/TDG family (Fig. S1).  This His 

residue forms a hydrogen bond with the C
2
-carbonyl oxygen of uracil in UNG and 

SMUG1 (32-34).  However, in the MUG structure, N140 is too far (>4Å) to make a 

direct contact with the C
2
-carbonyl oxygen (30).  The effect of substitutions at the N140 

position was further studied by molecular modeling as described later.   

In addition, I17L and L144S had a similar effect, i.e., a significant reduction in 

XDG activity and a loss of UDG activity (Fig. S2 and Table 3.1).  A detailed description 

of these two and other mutants is provided in the Supplemental Data. 

D. Binding Analysis 

To better understand the mutational effects on the binding affinities to deaminated 

base-containing substrates, we performed gel mobility shift analyses.  Consistent with the 

results obtained through the activity assays, the wt MUG interacted with all xanthine-

containing substrates and C/U, G/U and T/U to form a stable complex (Fig. 3.4A-B).  In 

keeping with its glycosylase activity, I17L was able to bind to all xanthine-containing 

substrates but not any uracil-containing substrates (Fig. 3.4C and data not shown).  For 

S23A, the binding to uracil-containing substrates remained similar to the wt enzyme; 
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however, binding to some xanthine-containing substrates such as A/X and T/X was 

reduced by approximately 4-fold (Fig. 3.4E-F).  Consistent with the loss of XDG activity  

Figure 3.6 Potentials of mean force (PMF) of uracil- and xanthine-containing base pairs along the 

pseudodihedral angle coordinate. Watson-Crick base pairing is approximately 10°-30° pseudodihedral 

angle and the flipped out state is approximately 190°.  A. Uracil-containing base pairs. B. Xanthine-

containing base pairs. 

and the reduction of UDG activity, N140H showed no detectable binding affinity towards 

all xanthine-containing substrates and much reduced affinity towards substrates 

containing C/U, G/U and T/U base pairs (Fig. 3.4D and data not shown).  N140M 

showed no binding to either X- or U-containing substrates (data not shown). 

V.  Discussion 

A. MUG as a Xanthine DNA Glycosylase 

E. coli MUG was initially discovered as a mismatch-specific double-stranded 

uracil DNA glycosylase that shared significant sequence homology with the glycosylase 

domain of human TDG (35).  Its substrate specificity has been broadened to include 3,N
4
-

ethenocytosine and 8-(hydroxymethyl)-3,N
4
-ethenocytosine (28,36), thymine (28,29), 5-

hydroxymethyluracil (37) and more interestingly the guanine derivative 1,N
2
-
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ethenoguanine (38).  Xanthine, as a deaminated product of guanine, can be viewed 

structurally as a fusion of a uracil ring with an imidazole ring (Fig. 3.1B).  Our 

biochemical analysis using E. coli cell extracts and purified proteins provides evidence 

that MUG can also act as a xanthine DNA glycosylase.  Notably different from other 

glycosylase activities, MUG excises xanthine from both single-stranded and double-

stranded DNA.  It was reported that MUG was more effective in removing 3,N
4
-

ethenocytosine than uracil (28).  However, MUG did not seem to be active on single-

stranded 3,N
4
-ethenocytosine-containing DNA (28).  Another surprising finding is that 

the efficiency of removing xanthine is at least 10-fold greater than that of removing uracil 

(Table 3.1), suggesting that MUG is more robust as an XDG than a UDG.  These results 

reinforce the question of whether the biological role MUG plays in a cell is more than 

just a uracil repair enzyme, rather, it may help repair xanthine or other damaged bases as 

well (5,27,28,39).  While human TDG does not have XDG activity, in contrast to E. coli 

MUG, mammalian systems may utilize alkyladenine DNA glycosylase (AAG), SMUG1 

or other DNA glycosylases to excise xanthine (9,13). 

Given the highly robust xanthine DNA glycosylase activity, we set out to 

understand how the active site of E. coli MUG accommodates a xanthine base.  

Molecular models were constructed to characterize how a xanthine base may fit into the 

active site of E. coli MUG.  Both uracil and xanthine are accommodated in the active site 

without significant distortion of the enzyme structure (Fig. 3.5A-B).  Uracil forms two 

hydrogen bonds with the mainchains of N18 and F30 (Fig. 3.5A).  On the other hand, 

xanthine is stabilized by a mainchain interaction with F30 and a sidechain interaction 
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with S23 (Fig. 3.5B).   The sidechain interaction of S23 with N
7
 of xanthine apparently 

plays a role in xanthine recognition.  Alanine substitution at the S23 position, which 

eliminates the sidechain interaction, resulted in reduced binding affinity to A/X and T/X 

substrates (Fig. 3.4E).  More profoundly, the XDG activity was also reduced, in particular 

with A/X and T/X substrates (Fig. S2-B and Table 3.1).  Although substitutions at the Ser 

residue in MUG does not cause a complete loss of XDG activity as seen in S. pombe 

TDG (31), the sidechain of S23 in MUG appears to provide a favorable interaction that 

facilitates the recognition of xanthine base.   

To further understand the interactions of MUG in the bound state, structural 

ensembles were constructed for MUG bound to uracil and xanthine through molecular 

dynamics simulations.  Electrostatic and van der Waals interaction energies between the 

deaminated base (xanthine or uracil) and active site residues (within ~8Å of substrate) 

were calculated over the 400 ps of production trajectory. Based on these calculations, 

MUG is capable of interacting favorably in the bound state with the xanthine substrate 

(Fig. 3.5C).  The average interaction energies calculated between MUG and xanthine are 

stronger than those between MUG and uracil (Fig. 3.5C).  The ability to accommodate 

xanthine is consistent with previous studies, which show that ethenocytosine derivatives 

can comfortably fit into the binding pocket (29,36).  However, the activity on deaminated 

purine bases seems to be limited to the xanthine base.  The favorable interactions with 

xanthine as shown in Fig. 3.5C may determine its specificity as a xanthine DNA 

glycosylase. 

B. Comparison of E. coli MUG and Human TDG 
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To understand the structural differences that may underlie the functional 

distinction, we created bound models of hTDG to compare the differences between how 

hTDG interacts with uracil and xanthine.  While uracil was stabilized by sidechain 

interactions provided by N191 (Fig. 3.5D), xanthine appeared to have fewer favorable 

interactions in the active site (data not shown).  The favorable sidechain hydrogen 

bonding between S23 of MUG and xanthine is not available because the position is 

occupied by an Ala residue (A145) in hTDG (Fig. S1).  The reduction of XDG activity 

observed in MUG-S23A mutant illustrates the role of this interaction in xanthine 

recognition.   

To further investigate the different activities in the wt MUG and S23A mutant, 

differences in protein-DNA interaction energies were examined within canonical ensem 

bles generated using molecular dynamics.  Unsurprisingly, the results indicate that the wt 

MUG has stronger electrostatic and van der Waals interactions with xanthine than the 

S23A mutant, as a result of the loss of a hydrogen bond between the sidechain hydroxyl 

of S23 and N
7
 in xanthine (Fig. S3-A).  Interestingly, the S23A mutant has a higher level 

of catalytic activity against C/U, G/U and T/U base pairs than the wt enzyme (Table 3.1).  

This is also consistent with the outcome of MD simulation, indicating a stronger inter 

action between S23A and uracil (Fig. S3-B).  To better understand the origin of the 

enhancement, we performed per residue decomposition of the interaction energies.  It 

appears that the mainchains of F30 and N18 form stronger hydrogen bonds with uracil in 

the S23A mutant (Fig. S3-C).  To examine the impact of the Ala substitution at the S23 

position on the dynamic motion of the protein, we calculated the mean square fluctuation 
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differences (ΔMSF) between the wt MUG and the S23A mutant.  One change observed    

during the analysis was that motif 2 became more rigid in the S23A mutant (Fig. S3-D).  

Given that motif 2 provides a wedge to occupy the space vacated by the flipped base, it is 

possible that a more rigid wedge can be more effective in keeping the damaged base in a 

flipped out conformation.  This could be the result of a reduction in the entropic penalty, 

resulting from the wedge interaction with the DNA.  These analyses are consistent with 

the experiments showing that the S23A mutant has a higher level of catalytic activity 

against C/U, G/U and T/U base pairs than the wt enzyme (Table 3.1). 

C.  N140 and Xanthine DNA Glycosylase Activity 

The role of individual amino acids in base recognition was probed by site-directed 

mutagenesis.  Most of the mutants still maintain activity on xanthine-containing DNA.  In 

a stark contrast, two of the N140 mutants we constructed (N140M and N140H) showed 

no detectable XDG activity (Fig. S2-C and data not shown).  Substitution with Met also 

results in the loss of UDG activity while substitution with His reduces the UDG activity.  

Given that the wt MUG is much more robust on xanthine than uracil, the complete loss of 

XDG activity while still maintaining some UDG activity is dramatic (Fig. 3.2 and Fig. 

S2-C).  These data underscore the role that N140 may play in modulating XDG activity.  

Molecular models of the N140 mutants bound to uracil and xanthine were constructed in 

order to investigate the interactions at position 140.  In the modeled MUG-uracil complex 

structure, N140 in MUG interacts with the phosphate backbone through hydrogen 

bonding (Fig. S4-A), which may enhance the DNA binding.  Although N140 in MUG is 

sequentially aligned with M269 in hTDG, the structural alignment of these enzymes, 
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performed with SPDBV (40), superimposes N140 of MUG with S271 of hTDG.  

Likewise, S271 of hTDG could form equivalent hydrogen bonds with the phosphate 

backbone (Fig. S4-B).  In the modeled N140H-uracil structure, N140H appears capable 

of forming a hydrogen bond with the C
2
-keto of uracil and a weak hydrogen bond with 

the 3’-phosphate (Fig. 3.5E).  The presence of these favorable interactions may 

underscore the weak but observable UDG activity of the N140H mutant (Fig. S2-C and 

Fig. 3.4D).  However, these potential interactions are lost when the uracil is substituted 

by xanthine (Fig. S4-C), which may explain the loss of XDG activity.  The loss of both 

XDG and UDG activity in N140M can be viewed as due to the loss of DNA backbone 

interactions as seen in N140 of MUG and S271 of hTDG or loss of direct hydrogen 

bonding to uracil as seen in N140H.  The lack of favorable interactions with the backbone 

or the base may lead to the complete loss of both XDG and UDG activity (Fig. 3.5F).   

D. Base Pair Stability and DNA Repair Activity  

An obvious difference between the XDG and UDG activity on the double-

stranded DNA is that E. coli MUG is active on all xanthine-containing DNA but only 

active on C/U, G/U, and T/U substrates (Figs. 3.2-3.3).  It is known that mismatched 

uracil-containing base pairs such as G/U are thermodynamically less stable than the A/U 

base pair (41).  However, data on the stability of xanthine-containing base pairs are 

limited (42).  To understand whether the difference in activity is related to 

conformational stability of the DNA, the thermodynamic stabilities of xanthine- and 

uracil-containing base pairs were determined by constructing the corresponding potential 
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of mean force (PMF) profiles of the base flipping mechanism. These PMF’s provide a 

clear description of the thermodynamic tendencies associated with DNA base flipping.  

 The potentials of mean force generated through umbrella sampling indicate a 

greater thermodynamic tendency for deaminated bases to flip out of an isolated B-form 

DNA double helix relative to undamaged bases.  Considering uracil flipping first, the 

calculated potentials of mean force demonstrate that the thermodynamic tendency for 

uracil to flip is significantly reduced when paired with adenine (Fig. 3.6A).  This has 

been noted previously and is expected given that uracil forms a stable Watson-Crick base 

pair with adenine through two hydrogen bonds (43).  Results further indicate that uracil 

has the greatest tendency to flip when paired with cytosine, followed by G/U and T/U 

base pairs (Fig. 3.6A).  Interestingly, the PMF data are quite consistent with the UDG 

activity profile reported here (Fig. 3.3A).  These results indicate that the tendency of the 

mismatched uracil-containing base pairs to flip out of the helix greatly facilitates their 

recognition by E. coli MUG.  In contrast, the umbrella sampling results indicate that the 

paired base has relatively little influence on the thermodynamic tendency of xanthine to 

flip out of the DNA.  As a consequence, the four xanthine-containing base pairs show a 

relatively narrow difference in the free energy of flipping (Fig. 3.6B).  The XDG activity 

profile is, in general, consistent with similar flipping tendencies of the xanthine-

containing base pairs (Fig. 3.3B).  The role that poor base stacking and base flipping may 

play in DNA lesion recognition has been discussed recently (44-46).  The data presented 

here on the wt E. coli MUG are in general in accord with the hypothesis that spontaneous 

base flipping plays a role in determining the catalytic efficiency.  However, one should 
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keep in mind that how a glycosylase interacts with the damaged base in the base 

recognition pocket or the wedge region will also influence the catalytic efficiency of the 

base removal. 

 In summary, this work reports that MUG is a robust xanthine DNA glycosylase 

despite the fact that it is generally considered as a uracil DNA glycosylase in the 

extensively studied organism E. coli.  The correlation of the activity profiles with base 

flipping energetics underlies the role of spontaneous base flipping in initial damaged base 

recognition and subsequent catalysis.  The ability to recognize both a deaminated 

pyrimidine base and a purine base underscores the plasticity of the active site, a feature 

that distinguishes E. coli MUG from human TDG in the same family and UNGs in family 

1 of the UDG superfamily.  The ability to favorably interact with a DNA base lesion 

provides a means to determine the specificity of DNA glycosylases. 
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Supplementary Content  

 

Reagents, Media and Strains 

All routine chemical reagents were purchased from Sigma Chemicals (St. Louis, 

MO), Fisher Scientific (Suwanee, GA), or VWR (Suwanee, GA). Restriction enzymes, 

Taq DNA polymerase and T4 DNA ligase were purchased from New England Biolabs 

(Beverly, MA). BSA and dNTPs were purchased from Promega (Madison, WI). HiTrap 

chelating and Q columns were purchased from Amersham-Pharmacia Biotech 

(Piscataway, NJ).  Oligodeoxyribonucleotides were ordered from Integrated DNA 

Technologies Inc. (Coralville, IA).  LB medium was prepared according to standard 

recipes.  Sonication buffer consisted of 20 mM
 
Tris-HCl (pH 7.5), 1 mM EDTA (pH 8.0), 

0.1 mM DTT (dithiothreitol), 0.15 mM PMSF (phenylmethylsulfonyl fluoride), and 50 

mM NaCl.  GeneScan stop buffer consisted of 80% formamide (Amresco, Solon, OH), 

50 mM EDTA (pH 8.0), and 1% blue dextran (Sigma Chemicals).  TB buffer (1 x) 

consisted of 89 mM Tris base and 89 mM boric acid.  TE buffer consisted of 10 mM 

Tris-HCl (pH 8.0), and 1 mM EDTA.  E. coli host strain BH214 [thr-1, ara-14, 
 
leuB6,  

tonA31, lacY1, tsx-78, galK2, galE2, dcm-6, hisG4, rpsL, 
 
xyl-5,  mtl-1, thi-1, ung-1, 

tyrA::Tn10,  mug::Tn10, supE44, (DE3)] is a kind gift of Dr. Ashok Bhagwat (Wayne 

State University, Detroit, MI).  E. coli strains BW1466 (CC106) and BW1739 (BW1466 

but Δnfi::(FRT-Spc-FRT) nei-1::cat alkA1) are kind gifts from Dr. Bernard Weiss at 

Emory University.  E. coli strain JM109 [e14
-
(McrA

-
) endA1, recA1, gyrA96, thi-1, 

hsdR17(rk
-
, mk

+
), supE44, relA1 (lac-proAB), [F’, traD36, proAB, lacI

q
ZM15]] is from 

our laboratory collection. 

 

Plasmid Construction, Cloning, and Expression of E. coli MUG 

The E. coli MUG gene was amplified by PCR using the forward primer Ec.MUG 

F (5’-TGG GGT ACC CCA TGG GTT GAG GAT ATT TTG GCT CCA GGG- 3’; the 

NcoI site is underlined) and the reverse primer Ec.MUG R (5’-CCC GGA TCC TTA 

TCG CCC ACG CAC TAC CAG CGC CTG GTC-3’; the BamHI site is underlined).  

The PCR reaction mixture (50 µl) consisted of 8 ng of E. coli genomic DNA, 200 nM 

forward primer Ec.MUG F and reverse primer Ec.MUG R, 1 x Taq PCR buffer (New 

England Biolabs), 200 µM each dNTP, and 5 units of Taq DNA polymerase (New 

England Biolabs).  The PCR procedure included a predenaturation step at 94 °C for 3 

min; 30 cycles of three-step amplification with each cycle consisting of denaturation at 

94 °C for 40 s, annealing at 60 °C for 40 s and extension at 72 °C for 1 min; and a final 

extension step at 72 °C for 10 min.  The PCR product was purified with GeneClean 2 Kit 

(Qbiogene).  Purified PCR product and plasmid pET32a(+) were digested with NcoI and 

BamHI, purified with GeneClean 2 Kit and ligated according to the manufacturer’s 

instructional manual.  The ligation mixture was transformed into E. coli strain JM109 

competent cells prepared by electroporation (1).  The sequence of the E. coli MUG gene 

in the resulting plasmid (pET32a(+)-MUG) was confirmed by DNA sequencing.   
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To express the N-terminal His-6-tagged E. coli MUG, pET32a(+)-MUG was 

transformed into E. coli strain BH214 (mug ung) by electroporation (1).  An overnight E. 

coli culture was diluted 100-fold into LB medium (500 ml) supplemented with 100 µg/ml 

ampicillin and grown at 37 °C with shaking at 250 rpm until the optical density at 600 nm 

reached about 0.6.  After adding IPTG to a final concentration of 1 mM, the culture was 

grown at room temperature for an additional 16 h.  Cells were collected by centrifugation 

at 4,000 rpm with GSA-10 rotor at 4 °C and washed once with pre-cooled sonication 

buffer.  

To purify the E. coli MUG protein, the cell pellet from a 500-ml culture was 

suspended in a 10 ml sonication buffer and sonicated at output 5 for 3 x 1 min with a 5 

min rest on ice between intervals. The sonicated solution was clarified by centrifugation 

at 12,000 rpm with SS-34 rotor at 4 °C for 20 min.  The supernatant was transferred into 

a fresh tube and loaded onto a 1 ml HiTrap chelating column (GE Healthcare).  The 

column was washed with chelating buffer A (20 mM sodium phosphate (pH 7.4), 500 

mM NaCl and 2 mM imidazole). The bound protein in the column was eluted with a 

linear gradient of 0-100 % chelating buffer B (chelating buffer A and 500 mM 

imidazole).  

Fractions of the eluate were analyzed by 12% SDS-PAGE and those fractions 

containing MUG (60% chelating buffer B) were pooled. The partially purified MUG 

protein was loaded onto a 1 ml HiTrap SP column, washed with HiTrap SP buffer A (20 

mM HEPES-KOH (pH 8.0), 1 mM EDTA and 0.1 mM DTT) and eluted with a linear 

gradient of 0-100 % HiTrap SP buffer B (HiTrap SP buffer A and 1 M NaCl).  Fractions 

containing MUG (30-50% HiTrap SP buffer B) were pooled and concentrated through 

Microcon YM 10 (Millipore).  The protein concentration was quantified by the Bradford 

method using
 
bovine serum albumin as a standard (2).  The MUG protein was stored in 

aliquots at -80 °C.  Prior to use, the protein was diluted in 1 x storage buffer (10 mM 

Tris-HCl (pH 8.0), 1 mM DTT, 1 mM EDTA, 200 ug/ml BSA, 50% Glycerol). 

 

Site-Directed Mutagenesis 

An overlapping extension PCR procedure was used for site-directed mutagenesis 

(3).  Taking the construction of N18A as an example, the first round of PCR was carried 

out using pET32a(+)-MUG as template DNA with two pairs of primers, Ec.MUG F and 

N18A-R (5’-TGA AAG CCC AGG GGC GAT ACC GCA AAA CAC GAC CCG-3’, the 

N18A site is underlined) pair & Ec.MUG R and N18A-F (5' GTG TTT TGC GGT ATC 

GCC CCT GGG CTT TCA TCC GCC-3', the N18A site is underlined) pair.  The PCR 

mixtures (50 µl) contained 10 ng of pET32a(+)-MUG as a template, 200 nM of each 

primer pair, 200 µM each dNTP, 1 × Taq DNA polymerase buffer (New England 

Biolabs), and 5 units of Taq DNA polymerase (New England Biolabs).  The PCR 

procedure included a predenaturation step at 95 °C for 3 min; 30 cycles of three-step 

amplification with each cycle consisting of denaturation at 95 °C for 50 s, annealing at 65 

°C for 50 s and extension at 72 °C for 1 min; and a final extension step at 72 °C for 10 

min.  The resulting two expected PCR fragments were used for overlapping PCR to 

introduce the desired mutation.  This second run of the PCR reaction mixture (100 µl), 
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which contained 1 µl of each of the first run PCR products, 100 µM each dNTP, 1 × Taq 

DNA polymerase buffer, and 5 units of Taq DNA polymerase, was initially carried out 

with a predenaturation at 95 °C for 2 min, five cycles with each cycle of denaturation at 

95 °C for 30 s and annealing and extension at 60 °C for 4 min, and a final extension at 72 

°C for 5 min.  Afterward, 100 nM outside primers (Ec.MUG F and Ec.MUG R) were 

added to the above PCR reaction mixture to continue the overlapping PCR reaction under 

the same reaction condition with 25 additional cycles.  The PCR product was cloned into 

pET32a(+) as described above. The recombinant plasmid (pET32a(+)-MUG-N18A), 

confirmed by DNA sequencing, was transformed into E. coli strain BH214 (mug ung) by 

electroporation.  The E. coli MUG-N18A protein was expressed and purified as described 

above.  

 

Molecular Modeling and Molecular Dynamics Simulations 

Construction of the initial protein models 

Using the Swiss-Pdb Viewer (SPDBV) program (4), the model of E. coli MUG bound to 

the decamer was generated by performing a structural alignment between the crystal 

structure of MUG and the crystal structure of the UDG/decamer complex.  The UDG 

structure was then removed, leaving a structural model of MUG bound to DNA.  

Mutations of MUG were generated with the program MODELLER-9v4 (5). Using the 

"selection.mutate" command within MODELLER, atomic internal coordinates were used 

to build new cartesian coordinates for mutant residues (S23A, N140H and N140M). The 

mutated enzyme was then structurally aligned with the bound wt MUG (as described 

above). 

 

Analysis of the protein models 

Molecular dynamics simulations were performed on the bound MUG structures 

using the CHARMM 32b1 molecular mechanics software package (6), and the 

CHARMM 27 force field (7,8).  The solvent molecules were represented with the explicit 

TIP3P water model.  A solvent box was constructed that resulted in a minimum water 

layer of 10 Å between the solute and the boundary of the box, which yielded ~17700 

water molecules.  Fourteen sodium atoms were added for electrical neutrality.  Periodic 

boundaries were used to maintain the density of the system and particle-mesh Ewald 

summation was applied to represent the long distance electrostatic interactions.  The 

starting structures were gently minimized with the adopted basis Newton-Raphson 

(ABNR) module in CHARMM, for 100 steps to remove any unfavorable van der Waals 

clashes.  The system was heated for 200 ps, from 200 K to 300 K in increments of 1 K.  

Using an integration timestep of 2 fs, a canonical ensemble was generated for 2 ns of 

production. 

 

Construction of the initial DNA models 

Base flipping potentials of mean force (PMF) were constructed based on the 

dodecamer sequence d(GTCAGNGCATGG), where N was the base to be flipped out of 

the helix.  This sequence was chosen because it has been used in many base flipping 

studies previously and is amenable to validation (9-11).  Using the program 3DNA (12), 
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an initial structure corresponding to the sequence d(GTCAGCGCATGG) was 

constructed.  The base complementary to N was systematically mutated in silico to 

guanine, adenine, cytosine and thymine. The N in each of these DNA models was 

mutated from cytosine into uracil and xanthine.  Mutations of the DNA were performed 

by first removing the base of interest from the DNA coordinate file (pdb file created with 

3DNA).  Coordinates for the new sequence, which included the mutated base, were then 

generated in CHARMM using the “ic build” command. 

 

Generation of base-flipping potentials of mean force   

Starting from these eight models of B-form DNA, umbrella sampling was 

performed to calculate the PMF (potential of mean force) associated with flipping the 

deaminated DNA bases following the previously described methods (9).  A 

pseudodihedral angle, described previously (9), is used to define the base-flipping 

reaction coordinate. This pseudodihedral angle was defined through the centers of mass 

corresponding to a) the base pair 3’ to the flipping base; b) the sugar 3’ to the flipping 

base; c) the sugar of the flipped base; and d) the flipped base.  This is the same 

pseudodihedral angle used as a flipping reaction coordinate in previous work (9). 

Previously, the PMF profiles for guanine flipping (G-flipping) and cytosine flipping (C-

flipping) in an explicit solvent were both reported using the CHARMM 27 force field.  

The free energy difference for C-flipping was 15-18 kcal/mol, and for G-flipping 18-21 

kcal/mol. The corresponding molecular dynamics simulations were run in an implicit 

generalized Born solvent.  The PMF profiles were created by incrementing the 

pseudodihedral angle 5° in each simulation for 0°-360° (72 windows).  A pseudodihedral 

angle of 0°-30° is defined as the base-paired state and an angle of 190° is defined as the 

base-opened or flipped out state, consistent with previous studies (9).  Starting structures 

for these simulations were created by minimizing 100 steps with the adopted basis 

Newton-Raphson algorithm, and using the miscellaneous mean field potential (MMFP) 

module in the CHARMM package to increment the pseudodihedral angle with a force 

constant of 10,000 kcal/mol/rad
2
.  Starting structures were incremented ±5° from the final 

structures of the previous minimization. These starting structures were then used in the 

simulations.  A harmonic umbrella potential wi(x) = ki (x – xi)
2
 was used to restrain the 

pseudodihedral angle with a force constant (ki) of 1000 kcal/mol/rad
2
. Positional 

restraints (force constant of 2 kcal/mol/rad
2
) were applied to the four terminal bases to 

prevent fraying.  The systems were heated for 60 ps from 250 K to 300 K, and 

equilibrated at 300 K.  Langevin dynamics were used, with an integration timestep of 1 

fs, to construct a canonical ensemble. The pseudodihedral values were recorded 

throughout the trajectory, and used to calculate a probability distribution.  The weighted 

histogram analysis method (WHAM) was used to create unbiased PMF profiles (13). The 

implicitly solvated PMF profiles showed exaggerated free energy differences of ~30 

kcal/mol for G-flipping, and ~31 kcal/mol for C-flipping.  While quantitative differences 

are expected using implicit solvent models, similarities in the shape of the PMF profiles 

and the qualitative trend in free energies suggest this approach can provide useful 

information regarding base-flipping thermodynamics. 
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Description of Additional Mutants 

An I17L substitution in motif 1 substantially reduced both the XDG and UDG 

activity (Fig. S2-A).  Evidently, the UDG activity was reduced to such an extent that it is 

not detectable even when the enzyme was in excess (E:S = 10:1) (Fig. S2-A).  Comparing 

I17L with the wt enzyme, the apparent rate constants for excision of xanthine by the 

mutant ranged from 10-fold lower for C/X, to 14-fold for G/X, to 16-fold for A/X, to 14-

fold for T/X (Table 1).  The single-stranded xanthine DNA glycosylase activity of I17L 

mutant was about 16-fold lower (Table 1).  Given that the backbone amide of I17 in the 

wt enzyme forms a hydrogen bond with C
2
-carbonyl oxygen of uracil (14), it is 

conceivable that amino acid substitutions at I17 could significantly impact DNA 

glycosylase activity.   

G20 in MUG is equivalent to Y147 in hUNG (also called hUDG).  Y147 in 

hUDG forms a rigid binding pocket to distinguish thymine from uracil (15,16).  Y147 is 

completely conserved in family 1 UDGs but not in other families (Fig. S1).  G20Y 

mutant was not active toward any deaminated base (data not shown), suggesting that the 

bulky Tyr residue was not tolerated in MUG/TDG family enzymes.   

L21H mimicked family 1 UDG enzymes while A24M resembled the family 3 

SMUG1 enzymes.  S22M corresponded to equivalent residues in hTDG (Fig. S1).  The 

activity profiles of these three mutants were similar to the wt enzyme with significant 

cleavage activity on X and U (data not shown), suggesting that these substitutions did not 

play a major role in determining the xanthine nor the uracil DNA glycosylase activities.   

The mutational effect caused by L144S is similar to I17L, i.e., a significant 

reduction in XDG activity and a loss of UDG activity (Fig. S2-D and Table 1).  It has 

been shown that L144 is part of a wedge that penetrates the DNA and interacts with the 

widowed guanine once the uracil base is flipped out (17).  The backbone of L144 forms a 

hydrogen bond with the side chain of R146.  It is proposed that MUG utilizes a push 

mechanism mediated by the P141-R146 loop to flip the uracil (or xanthine) out of the 

helix (17).  The L144S mutation may affect the ability of this loop to stabilize the flipped 

conformation of the deaminated base and act as an effective wedge.  
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 Figure S1.  Sequence alignment of UDG superfamily.  Genbank accession numbers are shown after the 

species names. Family 2 (MUG/TDG): Eco, Escherichia coli, P0A9H1; Bce, Burkholderia cenocepacia 

HI2424, YP_836419; Dra, Deinococcus radiodurans R1, NP_294438; Swi; Sphingomonas wittichii RW1, 

ZP_01607068; Csp, Caulobacter sp. K31, ZP_01418424.1; Dge, Deinococcus geothermalis DSM 11300, 

YP_605182.1; Acl, Aspergillus clavatus NRRL 1, XP_001268386.1; Spo, Schizosaccharomyces pombe, 

O59825; Hsa, Homo sapiens, NP_003202; Dme, Drosophila melanogaster, CAB93525; Family 1 (UDG): 

Eco, Escherichia coli, NP_289138; Dra, Deinococcus radiodurans R1, NP_294412; Mtu, Mycobacterium 
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tuberculosis H37Rv, CAB05436.1; Hsa, Homo sapiens, NP_003353; Mmu, Mus musculus, NP_035807; 

Xla, Xenopus laevis, NP_001085412; HSV1, Herpes Simplex Virus-1, 1UDI.  Family 3 (SMUG1): Gme, 

Geobacter metallireducens GS-15, YP_383069; Asp, Azoarcus sp. BH72, YP_935478; Rba, 

Rhodopirellula baltica SH 1, NP_869403; Oba, Opitutaceae bacterium TAV2, ZP_02013615.1; Spu, 

Strongylocentrotus purpuratus, XP_782746.1; Hsa, Homo sapiens, NP_055126; Mmu, Mus musculus, 

NP_082161; Xla, Xenopus laevis, AAD17300; Dme, Drosophila melanogastser, NP_650609.1; Ame, Apis 

mellifera, XP_396883.2; Tca, Tribolium castaneum, XP_971699.1.  Family 4 (UDGa): Pae, Pyrobaculum 

aerophilum str. IM2, NP_558739.1; Dra (DR 1751), Deinococcus radiodurans R1, NP_295474; Dra (DR 

0022), Deinococcus radiodurans R1, AAF09614; Tma, Thermotoga maritima MSB8, NP_228321.1; Nmu, 

Nitrosospira multiformis, YP_412806; Tth, Thermus thermophilus HB27, YP_004341.1.  Family 5 

(UDGb): Pae, Pyrobaculum aerophilum str. IM2, NP_559226; Sso, Sulfolobus solfataricus P2, 

NP_344053.1; Tvo, Thermoplasma volcanium GSS1, NP_111346.1; Sco, Streptomyces coelicolor A3(2), 

NP_626251.1; Mtu, Mycobacterium tuberculosis H37Rv, P64785 (Rv1259); Tth, Thermus thermophilus 

HB27,  YP_004757.1. 
 

 Figure S2.  Glycosylase activity of I17L, S23A, N140H and L144S mutants of E. coli MUG on X-, U-

containing substrates.  Cleavage reactions were performed as described in Experimental Procedures with 

100 nM E. coli MUG protein and 10 nM substrate.  A. I17L.  B. S23A.  C. N140H.  D. L144S. 
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 Figure S3.  Interactions of S23A with xanthine and uracil.  A. Energetics of E. coli MUG interactions 

with G/X.  Blank bars, MUG-WT; solid bars, MUG-S23A.  B. Energetics of E. coli MUG interactions with 

G/U. Blank bars, MUG-WT; solid bars, MUG-S23A.  C. Differences between MUG-WT and MUG-S23A 

in energy of substrate (uracil) interactions per amino acid.  Positive values indicate a more favorable 

interaction with MUG-S23A  D. Difference in isotropic mean squared fluctuations between the MUG-WT 

and MUG-S23A.  MSF values were calculated within CHARMM using the “coor dyna” command, and the 

error bars correspond to the standard error (



1
N

MSF i  MSF 
i1

N


2

)



/ N ) of the ∆MSF 

values over the MD trajectory.  Positive MSF differences indicate that C-

rigid. 
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 Figure S4.  Modeled structures of E. coli MUG and human TDG.  A. Interactions of the sidechain of 

N140 with 3’-phosphate in the DNA backbone in E. coli MUG.  DNA and N140 are shown in color.  B. 

Interactions of the sidechain of S271 with 3’-phosphate in the DNA backbone in human TDG.  DNA and 

S271 are shown in color.  C. Lack of interactions between E. coli MUG-N140H and xanthine.  DNA and 

N140H are shown in color. 
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CHAPTER FOUR 

 

A NEW FAMILY OF DEAMINATED REPAIR ENZYMES IN URACIL DNA 

GLYCOSYLASE SUPERFAMILY 

 

I. Abstract 

 Previous investigation identifies five families within the uracil DNA glycosylase 

(UDG) superfamily.  All enzymes within the superfamily studied thus far contain uracil 

DNA glycosylase activity, although some members in certain families possess additional 

deaminated base repair activity.  We identified a new class of DNA glycosylases in the 

UDG superfamily that did not show UDG activity, instead, they acted as hypoxanthine 

DNA glycosylase.  Molecular modeling and structure-guided mutational analysis allowed 

us to identify a new catalytic center in this class of DNA glycosylases.  Based on the 

biochemical properties and phylogenetic analysis, we propose this new class of DNA 

repair glycosylases as family 6 enzymes and designate it as HDG family. 

II. Introduction 

 The uracil DNA glycosylase (UDG) superfamily consists of five families based 

on conserved motifs and structural similarity.  Structurally, they are organized by a four-

stranded -sheet surrounded by -helices, while functionally, all of the DNA 

glycosylases within the superfamily studied thus far are proven biochemically as uracil 

DNA glycosylase.  Due to the need of removing deaminated cytosine from the genome, 

almost all organisms contain at least one uracil DNA glycosylase.  Uracil-N-glycosylases 

(UNG) are family 1 UDG first discovered in Escherichia coli (1). All UNGs 

characterized show exquisite specificity towards uracil in both double-stranded (ds) and 
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single-stranded (ss) DNA (2).  Family 2 enzymes are represented by human thymine 

DNA glycosylase (TDG), E. coli mismatch-specific uracil-DNA glycosylase (MUG), and 

a broad substrate specificity fission yeast Schizosaccromyces pombe TDG.  This family 

exhibits more sequence and functional diversity.  The family 3 SMUG1 enzymes (single-

strand-selective monofuntional uracil-DNA glycosylase) are considered as a hybrid with 

a MUG/TDG-like motif 1 and UNG-like motif 2, which are active on both ds and ss U 

and XDG (3,4).  While the prokaryotic family 4 UDG enzymes act on both single-

stranded and double-stranded uracil-containing DNA, family 5 UDGs are found active 

towards G/U and to a lesser degree towards T/I substrates.  Regardless which family an 

enzyme belongs to, a common biochemical feature is that they all have uracil DNA 

glycosylase activity. 

 In the course of studying deaminated DNA repair, we identified a new group of 

DNA glycosylases in the UDG superfamily.  Unlike the previously known families, 

enzymes from this new family possess no uracil DNA glycosylase activity, and instead, 

exhibit repair activity towards hypoxanthine, a deamination product of adenine.  The 

catalytic center is located to a completely conserved asparagine situated in a distinct 

orientation to the glycosidic bond.  Based on the distinct repair capacity and active site 

architecture, we propose this class of repair enzymes as family 6 in the UDG superfamily.  

The discovery of this new family enzyme underlies the functional and catalytic diversity 

in the UDG superfamily and have implications in the evolution of repair enzymes. 

III. Materials and Methods 

A. Reagents, media and strains 
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All routine chemical reagents were purchased from Sigma Chemicals (St. Louis, 

MO), Fisher Scientific (Suwanee, GA), or VWR (Suwanee, GA).  Restriction enzymes, 

Taq DNA polymerase and T4 DNA ligase were purchased from New England Biolabs 

(Beverly, MA).  BSA and dNTPs were purchased from Promega (Madison, WI).  HiTrap 

chelating and Q columns were purchased from Amersham-Pharmacia Biotech 

(Piscataway, NJ).  Oligodeoxyribonucleotides were ordered from Integrated DNA 

Technologies Inc. (Coralville, IA).  LB medium was prepared according to standard 

recipes.  Sonication buffer consisted of 50 mM HEPES-KOH (pH 7.4), 1 mM EDTA (pH 

8.0), 2.5 mM DTT, and 0.15 mM PMSF, 10% glycerol and 50 mM NaCl.  GeneScan stop 

buffer consisted of 80% formamide (Amresco, Solon, OH), 50 mM EDTA (pH 8.0), and 

1% blue dextran (Sigma Chemicals).  TE buffer consisted of 10 mM Tris-HCl (pH 8.0), 

and 1 mM EDTA.  E. coli host strain BH214 (thr-1, ara-14, 
 
leuB6,  tonA31, lacY1, tsx-

78, galK2, galE2, dcm-6, hisG4, rpsL, 
 

xyl-5,  mtl-1, thi-1, ung-1, tyrA::Tn10,  

mug::Tn10, supE44, (DE3)) is a kind gift from Dr. Ashok Bhagwat (Wayne state 

university, Detroit, MI) and JM109 is from our laboratory collection.  CC106, also called 

BW1466 (P90C (ara∆(proB-lac)xlll) F’ lacI378 lacZ proB
+
) and BW1506 (CC106 nfi-

1::cat) are a kind gift of Dr. Bernard Weiss (Emory University, Atlanta, GA) (5,6).  

Genomic DNA from Methanosarcina barkeri strain Fusaro and Methanosarcina 

acetivorans C2A are a kind gift from Dr. William Metcalf (University of Illinois, Urbana, 

IL). 

B. Cloning, Expression and Purification of Mba DNA Glycosylase  
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The Methanosarcina barkeri DNA glycosylase gene (GenBank accession 

number: YP304295.1) was amplified by PCR using the forward primer Mba.F (5'- GGG 

AAT TCC ATA TGA AAA AAC AAG GTT TCC CAC CAG TCA TT -3'; the NdeI site 

is underlined) and the reverse primer Mba.R (5'- CCG CTC GAG ACG CTT GAA AGC 

TTC TGC CCA TCC CGA TTT -3'; the XhoI site is underlined).  The PCR reaction 

mixture (50 µL) consisted of 8 ng of Mba genomic DNA, 200 nM forward primer and 

reverse primer, 1 x Taq PCR buffer (New England Biolabs), 200 µM each dNTP, and 5 

units of Taq DNA polymerase (New England Biolabs).  The PCR procedure included a 

predenaturation step at 94°C for 3 min, 30 cycles of three-step amplification with each 

cycle consisting of denaturation at 94°C for 40 sec, annealing at 60°C for 40 sec and 

extension at 72°C for 1 min, and a final extension step at 72°C for 10 min.  The PCR 

product was purified with Gene Clean 2 Kit (Qbiogene).  Purified PCR product and 

plasmid pET21a were digested with NdeI and XhoI, and followed by purifying gene 

fragments with Gene Clean 2 Kit and ligated according to the manufacturer’s instruction 

manual.  The ligation mixture was transformed into E. coli strain JM109 competent cells 

prepared by electroporation (7).  The sequence of the Mba DNA glycosylase gene in the 

resulting plasmid (pET21a-Mba) was confirmed by DNA sequencing. 

To express the C-terminal His-6-tagged Mba glycosylase, the plasmid pET21a-

Mba was transformed into E. coli strain BH214 (ung
-
 mug

-
) by electroporation (7).  An 

overnight E. coli culture was diluted 100-fold into LB medium supplemented with 100 

µg/mL ampicillin.  The E. coli cells were grown at 37°C while being shaken at 250 rpm 

until the optical density at 600 nm reached approximately 0.6.  After adding IPTG to a 
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final concentration of 1 mM, the culture was grown at room temperature for an additional 

16 h.  The cells were collected by centrifugation at 4,000 rpm at 4°C and washed once 

with pre-cooled sonication buffer.  

To purify the Mba DNA glycosylase protein, bacterial cells from a 500 ml culture 

grown to late exponential phase were harvested by centrifugation at 4,000 rpm for 10 

min.  The cell pellet was suspended in 7 ml of lysis buffer (20 mM Tris-HCl (pH 7.5), 1 

mM EDTA (8.0), 0.1 mM DTT, 0.15 mM PMSF and 50 mM NaCl) and followed by 

sonication at output 5 for 3 x 1 min with 5 min rest on ice between intervals using a 

Sonifier Cell Disruptor 350 (Branson).  The lysate was clarified by centrifugation at 

12,000 rpm for 20 min and filtered through a 25 mm GD/X syringe filter (Whatman).  

The supernatant was transferred into a fresh tube and loaded onto a 1 ml Hi-Trap 

chelating column (GE Healthcare).  The column was washed with 5 ml of chelating 

buffer A (20 mM sodium phosphate (pH 7.4), 500 mM NaCl and 2 mM imidazole).  The 

bound protein in the column was eluted with a linear gradient of 0-100 % chelating buffer 

B (chelating buffer A and 500 mM Imidazole).  

Fractions of the eluate were analyzed by 12% SDS-PAGE and those fractions 

containing Mba glycosylase protein (40% chelating buffer B) were pooled.  The partially 

purified protein was then loaded onto a HiTrap SP column, washed with 5 ml of HiTrap 

SP buffer A (20 mM HEPES (pH 8.0), 1 mM EDTA and 0.1 mM DTT) and eluted with a 

linear gradient of 0-100 % HiTrap SP buffer B (HiTrap SP buffer A and 1 M NaCl).  

Fractions containing Mba glycosylase (30-50% HiTrap SP buffer B) were pooled and 

concentrated through Microcon YM 10 (Millipore).  The protein concentration was 
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quantified by SDS-PAGE analysis using
 
bovine serum albumin as a standard.  The Mba 

glycosylase protein was stored in aliquotes at -80°C.  Prior to use, the protein was diluted 

in equal volume of 2 x storage buffer (20 mM Tris-HCl (pH 8.0), 2 mM DTT, 2 mM 

EDTA, 400 ug/ml BSA, 100% Glycerol). 

C. Cloning, Expression and Purification of Mac DNA Glycosylase  

The Methanosarcina acetivorans DNA glycosylase gene (GenBank accession 

number: YP615428.1) was amplified by PCR using the forward primer Mac.F (5’- 

GGGAATTCCATATGATAAAGCGAGGTTTTCCTGCAGTCCTT-3’; the NdeI site is 

underlined) and the reverse primer Mac.R (5’- CCGCTCGAGATGCCTGAAAACAG 

CCTCCCACTCCGATTC-3’; the XhoI site is underlined).  The cloning, expression and 

purification steps were the same as described above. 

D. Site-Directed Mutagenesis  

Site-directed mutagenesis of Mba glycosylase was performed using an 

overlapping extension PCR procedure (8). The first round of PCR was carried out using 

pET21a-Mba as template DNA with two pairs of primers, Mba.F and N39A-R (5’-

CCTCCAGAAATCAGCGCCTGGATGCCCATAGTATTG-3’) pair and and N39A-F 

(5’-TATGGGCATCCAGGCGCTGATTTCTGGAGGCTGCTT-3') and Mba.R pair; 

Mba.F and N39D-R (5’-CCTCCAGAAATCATCGCCTGGATGCCCATA GTATTG-3’) 

pair and N39D-F (5’-TATGGGCATCCAGGCGATGATTTCTGGAGGC TGCTT-3’) 

and Mba.R pair; Mba.F and N39Q-R (5’-CCTCCAGAAATCTTGGCCTG 

GATGCCCATAGTATTG-3’) pair, and N39Q-F (5’-TATGGGCATCCAGGCCAAGA 

TTTCTGGAGGCTGCTT-3’) and Mba.R pair, respectively.  The PCR mixtures (50 µl) 
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contained 10 ng of pET21a-Mba as a template, 200 nM each primer, 200 µM each dNTP, 

1× Taq DNA polymerase buffer, and 5 unit of Taq DNA polymerase.  The PCR 

procedure included a predenaturation step at 95°C for 3 min, 30 cycles of three-step 

amplification with each cycle consisting of denaturation at 95°C for 50 s, annealing at 

65°C for 50 s and extension at 72°C for 1 min, and a final extension step at 72°C for 10 

min. The resulting two expected DNA fragments were used for overlapping PCR to 

introduce the desired mutation. This second run of PCR reaction mixture (100 µl), which 

contained 1 µl of each of the first run PCR products, 100 µM each dNTP, 1× Taq DNA 

polymerase buffer, and 5 units of Taq DNA polymerase, was initially carried out with a 

predenaturation at 95°C for 2 min, five cycles with each cycle of denaturation at 95°C for 

30 s and annealing and extension at 60°C for 4 min, and a final extension at 72°C for 5 

min.  Afterward, 100 nM outside primers (Mba.F and Mba.R) were added to the above 

PCR reaction mixture to continue the overlapping PCR reaction under the same reaction 

condition with 25 additional cycles. The PCR product was cloned into pET21a as 

described above. The recombinant plasmids (pET21a-N39A pET21a-N39D, pET21a-

N39Q) containing the desired mutations were confirmed by DNA sequencing and 

transformed into E. coli strain BH214 by electroporation.  The Mba glycosylase mutant 

proteins were expressed and purified similarly as the w Mba glycosylase as described 

above.  

E. Oligodeoxynucleotide Substrates  

The fluorescently labeled inosine- and uridine-containing oligonucleotides were 

ordered from IDT, purified by PAGE, and dissolved in TE buffer at a final concentration 
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of 10 µM.  The two complementary strands with the unlabeled strand in 1.2-fold molar 

excess were mixed, incubated at 85°C for 5 min, and allowed to form duplex DNA 

substrates at room temperature for more than 30 min.  The xanthosine- and oxanosine-

containing oliogonucleotide were prepared as previously described (9,10). 

F. DNA Glycosylase Activity Assay 

DNA glycosylase cleavage assays were performed at 37°C for 60 min in a 10 µl 

reaction mixture containing 10 nM oligonucleotide substrate, 100 nM glycosylase 

protein, 20 mM Tris-HCl (pH 7.5), 5 mM EDTA and 2 mM 2-mercaptoethanol.  The 

resulting abasic sites were cleaved by incubation at 95°C for 5 min after adding 1 µl of 1 

N NaOH.  Reactions were quenched by addition of an equal volume of GeneScan stop 

buffer.  Samples (4 µl) were loaded onto a 7 M urea-10% denaturing polyacrylamide 

GeneScan gel (acrylamide : bisacrylamide = 19:1, 1 x TBE buffer (89 mM Tris, 89 mM 

boric acid, 2 mM EDTA)).  Electrophoresis was conducted at 1500 V for 1.5 h using an 

ABI 377 sequencer (Applied Biosystems).  Cleavage products and remaining substrates 

were quantified using GeneScan analysis software. 

G. Reversion of lacZ gene in E. coli CC106 

The plasmids pET21a-Mba and pET21a-Mba-N39A were digested with EcoRI 

and XhoI and the fragment containing the Mba DNA glycosylase gene was cloned to 

pBluescript SK(+) to generate pBS-Mba and pBS-Mba-N39A.  The resulting plasmids 

were transformed to E. coli strains CC106 and BW1506 (CC106 nfi-1::cat).  Tester 

cultures, inoculated as a single colony, were grown in Luria-Bertani (LB) medium at 

37°C for 16 hr.  Overnight cultures (1 ml) were transferred to 4 ml fresh LB medium and 
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incubated at 37°C for 4-5 hr until OD600 reached 0.6.  After adding IPTG to a final 

concentration of 1 mM, the cultures were incubated at 37°C for an additional 5 hr.  E. coli 

cells (2 x 10
9
) were incubated with 30 µl of 1 M NaNO2 (30 mM final concentration) and 

970 µl of 100 mM sodium acetate buffer (pH 4.6) at 37°C for 30 min.  Top agar 

consisting of 0.5 % NaCl, 0.6% agar (Difco) and 0.2 mg/ml nutrient broth (Difco) was 

autoclaved and then maintained at 45°C in a water bath.  After centrifugation, the treated 

cells were suspended with 1 ml of 10 mM MgSO4.  Molten top agar prepared above (8 ml) 

was added to the suspended cells and the mixtures were immediately overlaid onto a 

minimum lactose (ML) plate prepared according to the recipe as previously described 

(11). Cells were incubated at 37°C for four days to allow a few times of cell division to 

fix mutations in the presence of nutrient broth (12).  

H. Phylogenetic Analysis 

The phylogenetic tree was generated with neighbor-joining algorithm of the 

MEGA 5 software (http://www.megasoftware.net/) applied to a multiple alignment 

produced with the CLUSTAL W program.  The parameters for pairwise alignment are: 

gap opening penalty, 10; gap extension penalty 0.1.  The parameters for multiple 

alignment are: gap opening penalty, 10; gap extension penalty 0.2.  Other parameters are: 

protein weight matrix, Blosum; residue-specific penalities: on; hydrophilic penalities: on; 

gap separation distance: 4; end gap separation: off. 

I. Molecular Modeling 

 Sequence alignment was performed using CLUSTAL W.  pairwise alignment of 

the amino acid sequence from the Mba glycosylase (YP_304295.1) and chain A of 

http://www.megasoftware.net/
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2rba.pdb (human TDG) resulted in 19% identity between the two sequences.  Based on 

these sequence alignments and the 2rba pdb structure, a homology model was constructed 

for Mba enzyme using the NEST program (13). 

IV. Results and Discussion  

A. Deaminated Base Repair Activities 

Family 2 enzymes (MUG/TDG) in the UDG superfamily were previously found 

only in bacteria and eukaryotic systems.  In a search (Psi BLAST) for uracil DNA repair 

enzymes in archaea, we found a hypothetic protein (YP_502486.1) in archaea 

Methanospirillum hungatei that only showed insignificant E-value (E = 0.41) with E. coli 

MUG.  

 

 Figure 4.1 Sequence motifs and deaminated base repair activity from Mba DNA glycosylase.  A. 

Sequence motifs of UDG superfamily.  Genbank accession numbers are shown after the species names.  

Family 6 (HDG): Mba: YP_304295.1  Family 1 (UNG): Eco, Escherichia coli, NP_289138. Family 2 

(MUG/TDG): Hsa, Homo sapiens, NP_003202.  Family 3 (SMUG1): Gme, Geobacter metallireducens GS-

15,YP_383069; Family 4 (UDGa): Pae, Pyrobaculum aerophilum str. IM2, NP_558739.1.  Family 5 

(UDGb): Pae, Pyrobaculum aerophilum str. IM2, NP_559226.  B. Deaminated base repair activity from 

Mba DNA glycosylase.  DNA glycosylase activity assays were performed as described in Materials and 

Methods with 100 nM wt Mba glycosylase protein and 10 nM substrate. 
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 However, querying the GenBank with this protein led to identification of a large 

number of genes in archaea, eubacteria, and eukaryotes with significant homolog to UDG 

superfamily enzymes.  Alignment of proteins from this family to the UDG family 

indicated significant sequence divergence in motifs I and II (Fig. 4.1A).  Most notably, 

the position equivalent to the catalytic residue in E. coli UNG (family 1, D64) and E. coli 

MUG (family 2, N18) is occupied by a leucine residue.  To investigate the repair 

activities of this class of enzymes, we expressed the homologous gene from 

Methanosarcina barkeri (Mba) in E. coli strain lacking both ung and mug and purified 

the protein to homologeneity.  To our surprise, the recombinant protein completely 

lacked any detectable uracil DNA glycosylase activity on all four uracil-containing base 

pairs and the single-stranded uracil-containing DNA (Fig. 4.1B).   

  

Figure 4.2 Deaminated base repair activity from Mac DNA glycosylase.  DNA glycosylase activity 

assays were performed as described in Materials and Methods with 100 nM wt Mac glycosylase protein 

and 10 nM substrate. 

 

On the other hand, hypoxanthine DNA glycosylase activity was found in all four 

double-stranded substrates (Fig. 4.1B).  Some minor xanthine DNA glycosylase activities 
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were also detected in this Mba enzyme but no oxanine DNA glycosylase activities were 

detected (Fig. 4.1B).   

To verify that the lack of UDG activity and existence of HDG activity is not 

unique to the Mba enzyme, we also investigated the deaminated DNA glycosylase 

activity in the homologous gene from Methanosarcina acetivorans (Mac).  A similar 

glycosylase pattern was observed, indicating that this is a common repair property of this 

class of enzymes (Fig. 4.2).   

B. Kinetic Analysis and Catalytic Center 

 Kinetic analysis showed that this glycosylase was most active on the G/I base pair 

with an apparent rate constant of 0.085 per min, followed by T/I, A/I and C/I base pairs 

(Table 4.1).  No activity was detected on single-stranded inosine-containing DNA (Fig. 

4.1B).  The catalytic mechanisms in families 1 and 2 enzymes have been extensively 

studied.  D64 in E. coli UNG has been identified as the key catalytic residue that activates 

a water molecule (14).  In E. coli MUG, N18 utilizes the mainchain and sidechain oxygen 

to activate the water and mainchain amino to interact with uracil (15).  However, the 

residue (Asp or Asn) that can perform the catalytic function is notably missing in the 

Mba enzyme.  Instead, the equivalent position is occupied by a hydrophobic residue 

leucine (Fig.  4.1A). We constructed a model of the Mba enzyme based on the crystal 

structure of human TDG because they share some sequence homolog (Fig. 4.3A).  Within 

the 10 Å radius of the AP site, the following potential catalytic residues were identified, 

N39 (7.08 Å), N84 (9.89 Å), N113 (8.62 Å), D74 (5.55 Å), D25 (9.46 Å), D86 (8.60 Å), 

E82 (3.05 Å), E85 (8.28 Å).  
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Table 4.1 Apparent rate constants of hypoxanthine DNA glycosylase activity in Mba DNA 

glycosylase (min–1)
a
 

 

 
Bottom 

Strand 

Top Strand 
 

 

 C G A T    

WT   0.0092 0.085 0.014 0.026  n.a.
b
  

D25I   0.0052 0.034 0.0099 0.024  n.a.  

N39A  

I 

n.a. n.a. n.a. n.a.  n.a.  

N39D  n.a. 0.0011 n.a. n.a.  n.a.  

N39Q  n.a. 0.012 n.a. n.d.
 c
  n.a.  

D74A  n.a. 0.0029 n.a. n.a.  n.a.  

D74N  n.a. 0.0018 n.a. n.a.  n.a.                      

D86A   n.a. 0.011 n.a. n.a.  n.a.  

N113A  

 

n.a. 0.061 n.a. n.a.  n.a.                      

N141A  n.a. 0.093 n.a. 0.029  n.a.                      

a
: The reactions were performed as described in Materials and Methods with 100 nM Mba MUG and 

10 nM substrate, unless otherwise stated.  The apparent rate constants were determined by fitting the 

time course data into a first-order rate equation using Deltagraph (SPSS Inc.).  Data are an average of 

at least two independent experiments. 
b
: n.a.: No activity was detected under assay conditions. 

c
: n.d.: Not determined due to very low level of activity. 

 

Among the eight residues identified, only N39 is completely conserved in the Mba 

enzyme and its homologs.  D74, D86 and N113 are highly conserved.  To assess the role 

of these residues in catalysis, D74, D86 and N113 were substituted by either Ala or Asn.  

Significant portion of HDG activity on the G/I substrate was retained, suggesting that 

Single 

Strand 
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D74, D86 and N113 did not play a key role in catalysis (Table 4.1).  Given the 

completely conserved nature, N39 was substituted with Ala, Asp and Gln.   

 

Figure 4.3 DNA glycosylase activity of N39 mutants.  A. modeled structure of Mba DNA glycosylase.  

B. Hypoxanthine DNA glycosylase activity of N39A, N39D and N39Q mutants.  DNA glycosylase activity 

assays were performed as described in Materials and Methods with 100 nM wt Mba glycosylase protein 

and 10 nM substrate. 

 

The Ala substitution, which removed the functional group of the N39 sidechain, 

completely abolished the glycosylase activity (Fig. 4.3 and Table 4.1).  Conversion of the 

sidechain from an amide group to a carboxyl group (N39D) rendered the enzyme active 

only on the G/I substrate (Fig. 4.3 and Table 4.1).  Addition of a methylene group into the 

sidechain (N39Q) allowed the enzyme to retain significant activity on the G/I substrate 

but negligible activity on the T/I substrate (Fig. 4.3 and Table 4.1).  These results indicate 

that N39 played a key role as the catalytic residue and the catalytic environment required 

the presence of an Asn residue in the catalytic center. 

C. In vivo repair 

To assess the role of the new group of DNA glycosylase may play in vivo, we adopted the 

lacZ-based genetic assay (5).  E. coli CC106 strain contains G to A transition mutation at 

codon 461 that allows for detection of A to G revertants, which has been used to provide 
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evidence to implicate bacterial endonuclease V (encoded by nfi gene) as an                                        

 

 

Figure 4.4 Role of Mba DNA glycosylase in vivo.  Numbers of revertants were scored on minimal lactose 

plates after incubation at 37°C for four days. The data are the means ± SD of at least three independent 

experiments.  Open bar, N39A mutant of Mba DNA glycosylase; hatched bar: wt Mba DNA glycosylase. 
 

enzyme for the repair of adenosine deamination (6).  It is known that DNA polymerases 

predominantly incorporate dCMP to pair with inosine in DNA templates (16).  To access 

the role that the hypoxanthine DNA glycosylase activity may play in vivo, both a plasmid 

containing the wt Mba glycoysylase and a plasmid containing the N39A mutant were 

transformed into an nfi deficient CC106 strain.  While the N39A mutant failed to 

suppress A to G mutations in the CC106 nfi
-
 cells under nitrosative stress, the wt Mba 

DNA glycosylase reduced the number of revertants by more than four-fold (Fig. 4.4).  

These results suggest that the hypoxanthine DNA glycosylase activity in the Mba repair 

enzyme is responsible for the removal of hypoxanthine in vivo. 

D. UDG-less Enzymes in UDG Superfamily 
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 Since the discovery of the first uracil DNA glycosylase in E. coli in 1974, all the 

uracil DNA glycosylases studied possess UDG activity.  While repair activities on other 

deaminated bases have been found in different families in the UDG superfamily, UDG 

activity is always present.  This work for the first time reports a class of UDG enzymes 

without UDG activity.  Instead, they exhibit significant repair activity on hypoxanthine, 

the deamination product of adenine.  Data from the in vivo reversion assay are consistent 

with the notion that this class of enzymes acts as a hypoxanthine DNA glycosylase (Fig. 

4.4).  These observations suggest that different UDG families have evolved to possess 

distinct repair specificities during evolution.  Similar to the family 1 UNG enzymes, the 

repair activity of this class of enzymes appears to be limited to hypoxanthine, indicating 

that it may have a narrow specificity.  The HDG activity follows the order of G/I > T/I > 

A/I > C/I, which is consistent with the stability of inosine-containing base pairs (17-19).  

Therefore, the tendency of spontaneous base flipping appears to play an important role in 

determining the repair activity of this class of enzymes.  Hypoxanthine differs from uracil 

by missing a C
2
-keto and having an imidazole ring.  It remains to be answered on how 

this class of enzyme specifically recognizes a hypoxanthine but not uracil.  More 

structural studies are needed to address this essential question. 

E. Unique Catalytic Center 

 The catalytic mechanisms in families 1 and 2 have been extensively studied.  In 

family 1 UNG enzymes, a completely conserved Asp residue (D145 in human UNG) 

rotates 120° once bound to a uracil-containing DNA and acts as a general base to activate 

a bound water molecule (20-22).  In family 2 enzymes, the corresponding position is 
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occupied by an Asn residue, which is proposed to activate a bound water molecule 

through sidechain and mainchain interactions (15,23).  In the Mba enzyme, the equivalent 

position is occupied by a Leu residue (Fig. 4.1A).  In the modeled structure, the L22 is 

not positioned toward the scissile bond (Fig. 4.3A).  Among residues in the vicinity of the 

scissile bond, N39 emerged as the key catalytic residue that may perform the catalytic 

function similar to the Asp in family 1 and Asn in family 2.  The evidence supports this 

notion includes, 1) N39 is completely conserved among the new class of enzymes; 2) 

N35 is better positioned in the modeled structure to activate a water molecule to 

potentiate an in-line attack on the glycosidic bond; 3) N39 mutant completely losses its 

catalytic activity.   

F. A New Family Enzymes in UDG Superfamily 

Based on the unprecedented lack of uracil DNA glycosylase activity, presence of HDG 

activity, and unique location of catalytic center, we performed a phylogenetic analysis 

within the UDG superfamily.  As shown in Fig. 4.5, this new class of enzymes emerged 

as a distinct group within the superfamily.  Therefore, we propose this class of enzymes 

as family 6 in the UDG superfamily and designate it as HDG family.  The information 

provided for the family 6 enzymes could help us understand the multiplicity of UDG 

superfamily enzymes in a variety of organisms.  For example, while a family 4 enzyme in 

M. barkeri may carry out the repair function for cytosine deamination damage by acting 

as a UDG, the family 6 enzyme described here could perform the necessary repair for 

adenine deaminaiton damage by acting as a HDG.  How the UDG superfamily enzymes 

lost or acquired different deaminated base repair activity and relocated the catalytic 
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center is a subject of study that can reveal the adaptation of repair enzymes during 

millions of years of evolution. 

  

 

Figure 4.5. Phylogenetic analysis of UDG superfamily.  The phylogenetic analysis was performed using 

the Neighbor-Joining method. The optimal tree with the sum of branch length = 14.40324302 is shown. 

The tree is drawn to scale, with branch lengths in the same units as those of the evolutionary distances used 

to infer the phylogenetic tree.  The analysis involved 29 amino acid sequences. All positions containing 

gaps and missing data were eliminated. There were a total of 118 positions in the final dataset. 

Evolutionary analyses were conducted in MEGA 5 (9).  
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CHAPTER FIVE 

RESEARCH SIGNIFICANCE AND CONCLUDING REMARKS 

 

Cells are constantly attacked by endogenous and environment factors and thus it 

cause cell death or mutation by DNA damage. DNA repair mechanisms are required to 

remove DNA damage. 

Among several factors that can cause damage in DNA are reactive nitrogen 

species (RNS). NO
•
 plays a role in the nitrosative stress as a main source of RNS 

produced by cells and/or as a main source for the other RNS such as nitrogen dioxide, 

dinitrogen trioxide, dinitrogen tetraoxide, nitrite, nitrosothiol and peroxynitrite (1-2). NO
• 

is also endogenously generated by NO synthases (NOS) from L-arginine and oxygen (3). 

To detoxify RNS, cells are able to decrease the damage using several proteins such as 

thioredoxins or thioredoxin domain containing proteins. In this study, we used a mouse 

lung cDNA library for finding candidate genes that involved in resistance to nitrosative 

stress using acidified nitrite as a source of RNS (4-5). Mouse thioredoxin domain-

containing 5 (mTrx 5) was identified as one of the candidate genes.  mTrx 5 

complemented the thioredoxin deficiencies of the double deletion mutant in E. coli (∆ 

trxA/∆trxC). Purified mTrx 5 proteins can also reduced DNA damage that is generated by 

RNS. This work takes advantage of a hypersensitive Escherichia coli genetic system to 

identify genes involved in resistance to nitrosative stress in mouse lungs.    

Mismatch-specific uracil-DNA glycosylase (MUG) as a sequence homolog of the 

human thymine DNA glycosylase (TDG) that belongs to Family 2 in the UDG 
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superfamily that removes highly specific on G:U mismatches in double-stranded DNA 

(dsDNA) (6). Using cell extract from E. coli triple mutant strain (nfi, nei, alkA), we 

detected xanthine DNA glycosylase (XDG) activity. This work is the first report that E. 

coli MUG has robust XDG activity. Based on sequence alignment, we have chosen 

several amino acids to identify amino acid residues that may play a role in recognition of 

deaminated bases. It revealed that N140 and S23 are important determinants for XDG 

activity in E. coli MUG. Molecular modeling and molecular dynamics simulations 

indicate that distinct hydrogen bonding patterns in the active site of E. coli MUG, which 

account for the specificity differences between the wild type MUG and the N140 and S23 

mutants.   

 Based on their similarity of sequence and structure, the uracil DNA glycosylase 

(UDG) superfamily consists of five families and having a Uracil repair activity regardless 

of different family. In this work, we found that a new family posseses no uracil DNA 

glycosylase activity from archara Methanosarcina barkeri (Mba). Surprisingly, the 

reombonant protein of Mba has strong activity on Hypoxanthine which is deamination 

product of adenine, and a low activity on xanthine, the deamination product of guanine. 

To verify the catalytic site, we chose several potential amino acids based human TDG 

guided-model of Mba protein. Among the several candidates, we identified only N39 is 

completely conserved in the Mba enzyme and its homologs. Notably when N39 was 

substituted with Ala, N39A completely abolished the glycosylase activity. Therefore N39 

might play a key role as the catalytic residue in Mba enzyme. To further characterize the 

Mba enzyme, we used the lacZ-based genetic assay (7,8).  E. coli CC106 strain contains 
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G to A transition mutation at codon 461 that allows for detection of A to G revertants. 

We cloned wt Mba and N39A mutant and transformed them into nfi deficient CC106 

strain. While the N39A mutant failed to suppress A to G mutations in the CC106 nfi
-
 cells 

under nitrosative stress, the wt Mba DNA glycosylase reduced the number of revertants 

substantially. These results indicate that the hypoxanthine DNA glycosylase activity 

(HDG) in the Mba repair enzyme is capable of removing hypoxanthine in vivo.  
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