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ABSTRACT

Functional representations are often used in the conceptuak sthggesign

because they encourage the designer to focus on the intended use and purpose of a system

rather than the physical solution. Function models have been proposedry m
researchers as a tool to expand the solution search space andoguielet generation,
and many design tools have been created to support function-basgl d€hese tools
require designers to create function models of new or existtifgcts, but there is
limited published research describing what types of functions shouidcheled in a
model or the appropriate level of abstraction to model artifactsthét, there is little
experimental evidence that function models are useful for cogeegtration. Therefore,
this research focuses on how artifacts should be modeled to suppatibriden
conceptual design.

In this research, three functional representations are studiection models,
interaction models, and pruned function models. First, a user stedydsicted to test
the level of understanding of functional representations by designé&econd, a
computational similarity metric is used to identify the appwedprievel of abstraction for
creating models. Third, a user study is conducted to determimedfelots and usefulness
of functional representations in concept generation. The three sthdigsisat pruned
function models are easier to understand, improve the use of the nyodekigners,
improve the quality of concepts generated, and are more useful fputogifunctional

similarity.  Function models contain additional, solution-specifiesadiptions of



functionality that are not useful in conceptual design for ideatsamilarity, or

interpretation. The interaction model, which is developed in this ndgeprovides a
preliminary representation capable of capturing user actiothsrderactions in addition
to artifact functionality, and shows potential for describing nontfanal requirements
in a manner that is useful to designers. These outcomes agraefoundation for
guidelines for creating conceptual-level models that support ideatiotonceptual

design.
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CHAPTER 1: INTRODUCTION

1.1 Systematic Design Methods

One main goal of engineering design research is to understanerigineers
should solve design problems in a manner that is consistent anthldpedf a general,
repeatable process or set of design tools can be developed anddaeighineers, then
engineers will be able to address any design problem usirgaithe approach, ensuring
success with any project. Many design textbooks have been pdbligseribing
systematic design processes, most of which follow the samalloapproach, shown in

Figure 1-1 [1-4].

| Problem Definition |

v

| Conceptual Design |

| Embodiment Design |

| Detailed Design |

Figure 1-1: General Mechanical Design Process

The problem must first be understood and defined in the problem definition
phase. To define the problem, designers must understand the ndédscaktomer,
which can be identified through interviews, focus groups, previous desigrather
methods. Engineers use these customer needs to identify engjneguirements for
the design problem, which are more quantitative than customer nekbtgegin to define

the scope of the problem.



After defining the problem, designers move to the conceptual design plirese
they decompose the overall problem into sub-problems and identify means for solving the
smaller problems. In conceptual design, engineers may idéigifylevel ideas of how
to solve the problem and begin to sketch out these ideas. Typicallgetigner will
develop many concepts and will evaluate them, narrowing them dowaeiaisthat are
plausible. Designers will continue development of these plausibleeptsnin the
embodiment design phase.

During embodiment design, designers further develop each conceptngribati
the ideas can be accomplished. Designers may build prototypeso@®f-concepts and
lay out the preliminary architecture of the final designsiBeers begin to identify more-
specific means for accomplishing the sub-problems identifiedmeeptual design, and
begin sizing components and subsystems based on the information kribanpatint in
the process. Through embodiment design, designers are able to cangpasgious
concepts that were pursued and typically choose one design—the besinswiuhe
problem—to carry to the detailed design phase.

During detailed design, engineers know the layout of the arti@iclg designed
and can begin to specify existing components (e.g., motors, gears, $mkws) or
design new components for the final product (e.g., housing). Designgrsreste
Computer Aided Design (CAD) models of the design, build complete ppat®tfor
testing, or analyze the design using Computer Aided Engine€CiAg) tools, such as

Finite Element Analysis (FEA) or Computational Fluid Dynamics (CFD).



To this end, design research focuses on the development of tools and methods that

support a systematic approach to engineering problems. Foplexatevelopment of
FEA and related software tools has significantly enhanced thigy aifi engineers to
analyze systems without building a physical prototype. Many wesiguse Failure
Modes and Effects Analysis (FMEA), in which they identify dad modes and their
likelihood, severity, and detection, prioritizing specific componentsystess that are
critical. Likewise, tools and methods have been developed for conlcdpsiign to help
designers systematically approach concept development. One sigcla ttunction

model, can be used in conjunction with a function-based approach to conceptual design.

1.2 Function-based Conceptual Design

Many design processes prescribe a function-first approach to coakdpsign,
where designers establish the function of an artifact aftemtifgi@g engineering
requirements [1-4]. There are many differing definitions oftdren function [1, 5-8],
but all function-based approaches focus on what the designedtastifadd do to satisfy
the requirements, rather than what the design will look like. ¥ample, if designing an
electric drill, a designer may focus on the fact that thié st create rotational output
instead of focusing on using a motor. This allows the designekplore other ideas
besides a motor to accomplish the task of creating rotation. dnrthnner, a designer
may be able to develop ideas such as a pneumatic or gas-poweredothilbf which
exist in the consumer market.

The use of function in engineering design has been promoted byresmaychers

as a means for problem decomposition and concept generation. Altiheugltare many



definitions and views of function, it has become an underlying theme behind many design
processes, primarily due to its ability to aid in the conceptuagdestage where form is

not yet critical [1-4, 7, 9-14]. However, many researchersgmaze that function-based
approaches have limitations and pursue other concepts, such asna#srfla 15-17],
interfaces [18], or usage [19-22]. These approaches have not yetiokednaccepted,

but they have been introduced more recently than function and ateesttdl developed.

In this research, it is postulated that function-based approac&mdamental to design

but do not sufficiently address all aspects of a designed artifHwerefore, the use of
function modeling in conceptual design is studied in addition to complemesuar

alternative approaches to function in conceptual design.

1.3 Motivation

Many design tools and methods have been developed within the design
community to support function-based design. These tools and meyipoctdly rely on
previous design knowledge and function models of existing artifadieseTmodels are
created through reverse-engineering and include many deaild a device that would
not be known at the conceptual phase of design. However, function modeizaded
to support conceptual design. If a designer creates a model in a@iagsign, it will
be more abstract than a model of an existing system. Whendesign tools that are
based on previous knowledge, it is important to understand the apprdpviateof
abstraction to create a model of both the existing systemlhasabe archived artifacts.
There is limited published research describing what typasnatibns should be included

in a function model of a new artifact or the appropriate levelbstraction to model an



existing artifact. Further, the modeling methods that have beenlbs have not been
validated through user testing. Therefore, this research focudesioartifacts should
be modeled in conceptual design. The development of a modeling methdadide the
scope of this research, but the outcomes of this research caredtéydised to create a
modeling method that should be validated through user experiments. ovEnall

research question pursued is:

Overall Research QuestionHow should the functionality of mechanica

artifacts be modeled to support ideation in conceptual design?




CHAPTER 2: REVIEW OF RELEVANT LITERATURE

2.1 Function-Based Design

2.1.10verview

Function models are often used in the conceptual stages of designebtaus
encourage the designer to focus on the intended use and purpose of a&ysethan
the physical solution. Function models have been proposed by margneatesi
researchers as a tool to expand the solution search space andoguielet generation.
For example, Pahl and Beitz [1] suggest that function models proviceaas for
systematically creating design variants and better ergldhe solution space by linking
product functions in several ways. Ulrich and Eppinger [2] and Uli3arpropose
problem decomposition, specifically functional decomposition, as a nigaaddressing
a complex design problem, finding solutions for individual functions, andraiteg
these solutions into the system. Otto and Wood [4] propose the usetdh models as
a reverse engineering tool to understand the purpose of system®rapdnents of
existing products.

Function-based approaches to conceptual design are prescribed bylesay
texts [1-4], and one focus of recent design research is theohfeaction modeling.
Views and definitions of function vary among researchers [23], lmst focus on what
an artifact does rather than how it does it. Designers use vagpussentations to
describe “what” an artifact must do as opposed to “how” afaartmust complete a task
during the conceptual design phase [4]. The definition of function ugbi iresearch is

a transformative view of function, defined by Pahl and Beitz = ‘intended



input/output relation of a system whose purpose is to perform a thskThe primary
representation pursued in this research is the function structure) vghec graphical
representation of the transformation of flows through an artifibe basic elements of
this representation, shown in Figure 2-1, are material flows (babdvg energy flows

(thin arrow), and information flows (dashed arrow) which are toam®d by a function

(block).
Material m—— - Material'
Energy ——»| Function |——» Energy'
Information — — — — p»| L — — — p Information'

Figure 2-1: Generic Function Block with Flows of Material, Energy, and
Information [1]

An artifact can perform many functions, which can be modeled usingple
function blocks and the passage of flows into the artifact's syséenong function
blocks, and out of the system. An example of a function structuam electric drill,
shown in Figure 2-2, includes four functions performed by the tjlconvert human
energy to on/off signalvhich is performed by a switch, (2ktuate electricitywhich is
also performed by a switch, (8pnvert electricity to rotationwhich is performed by a
motor, and (4)ncrease torquewhich is performed by a gear box. Flowsetéctricity
and human energyenter the drill, andotational energyis an output. The level of
abstraction at which the drill is modeled affects the functioasided in the model. For

example, the functionality of wires or shafts in the drill could be included in diglelm



Electricity | Actuate EleC"iCitL E|§§2\éﬁ;t o Rotatiog Increase “Rotation
Electricity Rotation Torque I
A

| i
| .
Human Energy COE\:'.eerich:?an— I On/off signal I

| | onoffSignal |

Figure 2-2: Function Structure of a Drill

Function model formalization is important for repeatable and meaninggults
[24], and current design research has assisted the formalizatfanatibnal modeling,
such as the development of a Functional Basis [24], a design repd&&dr pruning
rules for function structures [26], and development of a physics-bapegsentation of
functions [27]. However, much of this research focuses on the eegaggineering and
modeling of existing artifacts. Models of existing artitacan be useful for information
archival and a function-based search for solutions to a new desigtermpro The
modeling process can also be useful to the modeler by forcingmivar to understand
how the artifact functions and communicate it clearly. The nmoglekocess for forward
design may help the designer decompose the problem functionally, undetbta
problem better, and identify several ways to solve the problem. ‘hating a function
model for a new artifact, the designer must make decisions abaugthdesign as he or
she creates the model, resulting in a model or several mbdelsan be used to address
the given design problem.

The information gained through modeling a new artifact is diffefemh that
gained by modeling an existing artifact. Likewise, the valtighe model of a new

artifact is different from the value of a model of an erptartifact. Therefore, the



purpose of modeling an existing or new artifact must be coupledtiwgtmethods used
to create the models. The appropriateness of models should te@igatventual usage
by designers, whether for communication, archival, ideation, analystgher design

activities.

Summary
e Function-based design approaches focus on transformations of
material, energy, and information through an artifact.
e Function models can be used to describe the functionality of existing
or new mechanical artifacts.
e Methods for creating function models should be coupled with the juse

of the models for design activities.

2.1.2Functional Basis and Design Repository

Recent efforts in function modeling have focused on the formalizatimction
models using a controlled vocabulary [12, 13, 24]. The Functional Basisimstsonal
vocabulary that includes 53 function terms and 45 flow terms and dafmitf each.

The Functional Basis function and flow sets are each organizetthieealevel hierarchy.
Primary-level terms, such amergy are more abstract while tertiary-level terms, such as
rotational mechanical energgontain more detail. Previous research has shown that the

secondary level is the most informative [28, 29] and is used almabisevely by



modelers [30]. Thus, when the Functional Basis vocabulary is usad iresearch, all
functions and flows are modeled using the secondary level.

The Functional Basis has been used to describe the functionadippdximately
130 artifacts, ranging from consumer artifacts to naturakesystin an online design
repository [31]. The repository contains functional information abatlt eemponent of
the 130 artifacts in the repository. Each component of an aigfassigned functions in
the form <input flow> <function> <output flow>, where the input and outlmwd are
chosen from the flow vocabulary and the function is chosen from theidnnct
vocabulary. Further, a graphical function structure of each drtifat be stored as an
image in the design repository describing the functionalityhefentire artifact, rather
than individual components. Most artifacts in the repository arédat@ppliances,
power tools, toys, or electronics, but the repository also includgactstfrom other
domains, such as living organisms (e.g., “fly,” “lichen,” and “heaatiijl component
failure data (e.g., “asm volume 1,” “cpsc failure”). Thmdtional information in the
repository has been used with many computational design tools, suabt@mated
concept generation [32-39], function-based similarity measures [40fadlife and risk
analysis [42-47], behavior modeling [48, 49], and biomimicry [50-53]. Sthese
design tools use the functional information in the repository, itmigortant that the
models stored in the repository capture the appropriate functional information.

The information contained in the repository is used in this researahsource of
design knowledge. It is assumed that the information in the repository wanatysady

obtained using the reverse-engineering methods described by ¢hechess associated
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with the design repository [12, 54, 55]. However, these methods allowfsesdem for
modelers to deviate from the vocabulary (for graphical models)aaleling guidelines.
Modelers may use the vocabulary at any hierarchical leieberanguage as they see fit
[30, 56]. The functions in the models are not required to follow lave®mdervation of
mass or energy, so the resulting models may be logicatlgnsistent [27, 57].
Furthermore, the traditional transformative view of function hasnbeformally
extended in some models to include interactions and assembly rdigigynshich are

explored in more detail in Section 2.1.3.

Summary

e Function models in the design repository do not always adhere to the
Functional Basis vocabulary or modeling rules.

e Function models in the design repository have informally extended the
traditional definition of function.

e These extensions can be identified and evaluated to deterntivesy if

are appropriate for function-based conceptual design.

2.1.3Current State of Function-Based Design

There are many aspects of artifacts that cannot be debcrdiey the traditional
definition of function—a transformation of flows. However, recent asde has
extended this view of function to include assembly relationships, enwémtam

interactions, and human interactions [24]. As an example, the BladRexker Jigsaw
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Attachment (Figure 28 is a consumer power tool that can be attached universa

driver (Figure 2-B) to create a typical jigsavFigure 2-3c).

il
[
o B

=_—

{
W

o
-~

Figure 2-3 Black and Decker (a) Jigsaw Attachment, (b) Univesal Driver, and (c)
Driver-Attachment Assembly image source: www.blackanddecker.co))

Thedesign repositol containsa function structure of the jigsaw attachn [31],
reproduced in Figure 2-4In addition to the function of the artifact, shmodel contain
interactions with the user and other artifactststi-the chain of functionimport humar
material, guide human material, export human mat (labeled 1) represents the u
physically picking up the artifact and carryingraanipulating it. Second, the functi
chainimport solid, guide solid, export so and the functionimport rotational energ
(labeled 2) represents the physical conion between the universal driver and the jig:
Third, the functicimport human energflabeled 3) represents the use

attachment.
control of the driveiattachment system by pressing the switch. Fothé&import solid,

12



secure solid, export soliiinction chain (labeled 4) represents the physical connection of
a saw blade to the jigsaw attachment. These functions take atat®e jigsaw
attachment’s system boundary, not within the system, and are eddguthe user. The
artifact is designed to allow these interactions to take plageit does not actively

perform these functions.

@ N

Human - Import . Guide - Export Human
Material »  Human »  Human »  Human »  Material
Material Material Material
\ J

@
Power . Import o Secure o Export Power
Pack Solid Solid Solid Pack
I

Rotational Energy

Import Actuate Convert RE to| Translate T ational
Rotational »| Rotational » Translational > |—ransational,
Blade Energy
Energy Energy Energy

f 3

I
On/Off }

Il
Convert Human
Energy to
Control Signal

4)
Import . Secure - Export
Blad > > Blad
Saw Blade Solid Solid Solid Saw Blade

Figure 2-4: Function Structure of a Black and Decker Jigsaw Attachm& Showing
User and Artifact Interactions (adapted from [31])

Human
Energy

y

Eleven of the functions used to describe the Black and DeclsawJigttachment
are not actively performed by the artifact; they are pagsiveions that do not represent
transformative actions.Passive functiongre defined in this research as functions in
which the artifact of interest does not carry the energy tesedntrol the outcome of the

function. For example, the Black and Decker Jigsaw Attachmentradgsrovide the

13



energy to import the driver—the user provides the energy. Thealseprovides the

energy to secure the blade to the jigsaw attachment.

Passive functionsre functions in which the artifact of interest do

114
(2]

not carry the energy used to control the outcome of the function.

A type of passive function appears in previous literaturehm form of a
supporting function, which is used to describe assembly relationshipgedret
components [58]. Supporting functions are modeled separately fromtebfusicucture
and show physical connections and assemblies. Supporting functions daenot
incorporated into the system-level function structure because compafehis system
are flows in the supporting function. For example, the supporting function of a screw in a
drill assembly may be taouple the left and right housingvhere the left and right
housing are two plastic components that hold the drill assembljheogand form the
handle of the drill. As shown in Figure 2-5, some components of thensyghe left
and right housing—are flows in the model, while the screw is repted by a function.
The modeling of supporting functions requires the designer to seesgineer the
artifact because supporting functions describe the functiondlihdividual components
[58]. The goal of the model proposed in this research is to desotdractions at a
higher level of abstraction than the component level. For this reasssjve and

supporting functions are not included in function structures used in this research.
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left housing N
left and right housin
right housing | couple left and rig 9

Figure 2-5: Supporting Function of a Screw

Conversely, some of the functions in the previous two examples are
transformative functions, which are actively performed by thiéaar being modeled.
Active functionsre defined as functions in which the artifact of interagi@s an energy
flow that is used to control the outcome of the function. For exarti@efunction of
converting electrical energy to rotational enengyactive because the artifact carries the
electrical energy that is used to produce the desired outcorhe @irtiction—rotational

energy.

Active functionsare functions in which the artifact of interest carries

an energy flow that is used to control the outcome of the function.

Function structures also frequently contain user activities, hwidoe not
performed by the artifact, but are performed on the artifBetcause the energy in user
activities is provided by the user, they are passive. Kostoviclt@lghgues have also
identified user activities in function structures and have intentiooambined activity
models and function structures into an “actionfunction diagram,” captinatiy user
activities and artifact functions [59]. However, in these aatioction diagrams, both
user activities and artifact function are used to describe wusertias. The passive
functions remain in the model; the functions are simply grouped angalithe activity

being performed on the artifact when the function is carried dedr example, the

15



authors present an actionfunction diagram of a typical box cutternsimfigure 2-6.

The diagram describes the purpose of the handle in two different firgyswith the

series of functiongmport hand, position hand, secure haadd second with the activity

grab handle The latter is a simpler representation of the same eventustrepicking

up the artifact. Therefore, one of the two representationsdismdant; in the model

proposed in this research, user activities are used instead negasstions to simplify

the representation. Additionally, the user activity approach entit@gsassive functions

to be represented actively as user activities, since theyemnsed to perform these

activities is usually carried by the user.

—_———ee e ] E,—————

[ ransiate Device 1

|Grab Handle Human | |Release Blade/ Translate Device
| Energy | IRetract Blade : Ito Cut :
| [
| 1 I I Human
! Ll ] ' | Energy
| Hand Import Position > Secure : Hur-r:raanng:;r = Transiate [+  Export
| Hand o Hand o Hand e ) nergy Hand Hand
||| (slide switch)
| L | | Han
C o ] I I I I
Human | |
Energy Hand | |
| ] | Humanl
| Solid I y | Energy|
(cardboard) Import Positi S t Solid | I
| pol > osition > eparate oli
| Solid Solid | Solid (cardboard) | Y |
| | ] : Convert Human :
Iposition Cutter | E"ergy.to
- 4 I'| Mechanical |l
Human and | Energy |
Mechanical | |
Energy —_———

Mechanical Energy

Figure 2-6: Actionfunction Diagram of a Typical Box Cutter [59]

Summary

supporting functions, and interactions.

e Function models have been extended to include passive functjons,
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by the artifact being modeled.

e Supporting functions describe assembly relationships am
components, do not transform the components, and are not f
independent.

e Function models should include only active functions.

e Passive functions are performedan artifact by an outside entity, no

~—+

ong

DIrm-

2.1.4Pruning Rules for Conceptual Modeling

In previous research [26, 60], a set of pruning rules has been deveayaetdn

the Functional Basis [24] to increase the level of abstraction of functiotus&sic

These

rules specify the removal of highly decomposed functions that ssectétical at early

stages of design [26, 60] as well as passive functions that at@amsformative.

are nine function rules (PR 1-9) and six flow rules (PR 10-15). Tbeegu

There

re for

applying the rules to a function structure is discussed in detdibd]. The fifteen

pruning rules are:

PR1. Remove alimportandexportfunctions.

PR2. Remove allchanne] transfer, guide transport transmit translate rotate,

andallow DOF functions referring to any type ehergy signals or human

material
PR3. Remove altouple join, andlink functions referring to any type eb6lid.

PR4. Remove alsupport stabilize secure andpositionfunctions.

17



PRS.

PRG.

PRY.

PRS8.

PRO.

PR10.

PR11.

PR12.

PR13.

PR14.

PR15.

Remove allcontrol magnitude actuate regulate change stop increase
decrease increment decrement shape condition prevent and inhibit
functions.

Remove allprovision store supply contain andcollect functions referring
to any type oknergyor signal.

Remove allistributefunctions referring to any type ehergy.

Remove allsignal sense indicate process detect measure track, and
displayfunctions.

Combine adjacertonvertfunctions if the output flows of the first function
block are identical to the inputs of the second function block.

If a flow enters and exits a function block, then the two sepdiates
should be combined into one flow.

If a flow enters a function block but does not exit the function block, then
the flow should enter the succeeding function block.

If branch, separate, or distribute is removed, then the flow entdengock
should be divided without the use of the function.

If two convert functions are combined, then the flow between djgcant
functions should be removed.

If a flow exists without a function, then the flow should be removed.

If identical flows have the same origin and destination, then ltesf

should be combined into one flow.

18



These pruning rules have been demonstrated through their applicagtevén
function models of consumer, electromechanical artifacts [26, G@dhggtonfidence that
the rules can be used to achieve high levels of abstraction thatbenayseful in
conceptual design. However, there is an opportunity to test thefubkese rules by
human designers and within computational tools to understand their usefuine

conceptual design.

Summary
e Pruning rules have been developed to achieve a consistent, highilevel

of abstraction of function structures.
e There is an opportunity to test the pruning rules to understand their

usefulness in conceptual design.

2.2 Alternative Approaches to Function-Based Design

Function-based approaches to design, which have been accepted by many
researchers, intentionally focus on transformations of materiaigynand information
through the artifact. In some cases, proponents of function-based desigourposely
ignore non-functional aspects of an artifact early in the desapeps, viewing this as an
advantage of function-based design. In other cases, function-baseddygsrhave been
extended to include some of these non-functional aspects, such ablpsstationships
or human interactions. Other researchers, however, have identifiecltieein these
non-functional aspects of artifacts and taken non-functional appsassiag concepts

such as affordances or interactions.

19



Affordances, which describe what one artifact provides othéacs and users,
have been extended to mechanical design from the field of percepyealofpgy [15].
Artifact-artifact and artifact-user affordances descrile tperceived relationships
between two artifacts or between an artifact and user, tesggc For example, gears
afford mating with other gears, and a lightweight artifdfiirds being picked up by a
user. Affordances are not limited to these relationships; dheyused to describe the
entire lifecycle of an artifact. Artifacts afford improvemhesustainability, maintenance,
manufacturing, and desired purposes, to name a few [16]. Aff@daan also be used
to describe services, structures, and space. Kim and collehguesanalyzed user
activities to determine perceived affordances of a buildingyldb]. In addition,
affordances can be an evaluation tool used to identify poteatzartis and failure modes
in design [5, 62]. The scope of affordances—the complete lifeayfclan artifact,
structure, or space—is greater than the scope of this reseéich,isvfocused on artifact
design. Because of this large scope, affordances are not punstied research as a
complement to function-based design.

An artifact may interact with other artifacts, a user, oreh@ronment in various
ways. Affordances can describe these interactions, but theycelseer many other
aspects of artifacts. Galvao and Sato describe interactionsdsetm artifact and a user
through functional-level and operational-level affordances [17]. s Ithis subset of
affordances—interactions—that is of interest in this rebeaHowever, interactions with
other artifacts are considered in addition to user interactiooss$isd by Galvao and

Sato [17].
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Nagel and colleagues have extended function modeling to support variolss leve
of abstraction, including the environment at the highest level [63]. eR@onment
interacts with the system as a flow of material into trstesy, requiring all interactions
be modeled as flows through a system.

Chandrasekaran and Josephson [6] discuss various views of function, @sterfac
and interactions within an ontological model of artifacts. Ofi@aer interest are causal
interactions, which are physical interactions that exist éetwartifacts [6]. The model
developed by Chandrasekaran and Josephson is a computational model to support
automated reasoning and requires detailed information about actarsifich as design
variables, causal interactions, and structural relations. Whi¢e ttetails are not fully
known during conceptual design, the ontology and representation may belspplc
this research, so it can be pursued as a potential solution toansfetmative aspects of
artifacts. However, this approach alone is not sufficient sinoelds a different view of
function and does not support graph-based modeling.

Warell [64] discusses three types of functions: operative, stalctind usability
functions. Of interest are usability functions, which describerttegactions between an
artifact and the user and other systems. Warell demonsttaesise of usability
functions through an example of a mobile phone. The usability functionrmusa
components, such as the cover or hinges, is described using nangahge. The
graphical models proposed in this research can extend Waredlsarch, relating
usability functions, or user interactions, to the artifact’s teetritcction in a graphical

model.
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Summary

e The scope of affordances is inappropriate for application to this
research.

e Current integrations of transformative functions with non-
transformative functions are limited to directional interactionth
material that can be modeled as a flow through the system.

e Alternative approaches have different definitions of function, which|do

not support a graphical modeling tool.

2.3 Limitations of Function-Based Design

Function-based design approaches intentionally focus on function waistages
of design, so the type of information that can be modeled within furictised
approaches is limited. However, customer needs, which arenstateabout an artifact
from a prospective user [2], have a much larger scope in terrhe tfe of information
that they can capture. In this section, customer needs are edvtewdetermine how
various types of needs can be modeled using a function structuyeneads that cannot
be modeled in a function structure are identified as opportunitiesxtending function-
based design tools.

Customer needs statements describe the desires of eventual ergstane
developed before any solution is known, and can be identified through interyemus
groups, and analysis of existing artifacts [2]. A set of custoreed statements for a

bicycle suspension is shown in Table 2-1 (bold statements from RB@cause this
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artifact exists, the customer needs can be related to ftfectstembodiment and its
functionality. In this context, a function is defined as a transfobomaof material,

energy, or information by the artifact of interest. Using theéinition, each customer
need is viewed from a functional perspective to determine ifritlem modeled as a
system flow or a transformation of flows. A high-level functgiructure of a bicycle

suspension, shown in Figure 2-7, is used in this analysis.

Force, displacement —-| Dissipate [ Force', displacement’
Stiffness ——w»  Energy | —» heat

Figure 2-7: High-level Function Structure of a Mountain Bicycle Sgpension

The analysis, shown in Table 2-1, relates each customer needestatenthe
suspension’s architecture and identifies any functional elementcdimabe associated

with the given need.
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Table 2-1: Bicycle Suspension Customer Needs (Bold statementsrir [2])

Analysis of Customer Need Functional
Element
1 The suspension reduces vibration to the hanc This customer need energy
leads to the functionality of dissipating energy. The input to the artifact input
is mechanical energy, and the output is another form of energy, such as
heat.
2 The suspension allows easy traversal of slow, difficult terrai This energy
customer need describes the energy input into the artifact, “sldieylif input

10

terrain,” implying a low-frequency input with varying amplitude.
Therefore, this requirement describes the intended functionalitye of t
suspension.

The stspension enables hic-speed descents on bumpy trail Like energy
the second customer need, this need describes the energy input, force aigput
displacement, to the system.

The suspension allows sensitivity adjustmer This customer need signal
leads to a user-adjustable input to the system. Therefore, it can be input
represented as a signal entering the function block.

The suspension preserves the steering characteristics oethike The none
bicycle suspension design does not transform material, energy, or

information to meet this need—it simply has a similar form as a

traditional bicycle fork. Therefore, this customer need leadstma

functional solution.

The suspension remins rigid during hard cornering. The response of energy
the suspension to various inputs can be shown through various inputs to input
the function structure.

The suspension is lightweigh The weight of the artifact is a property none
of the system and cannot be represented as a flow or as a transformation
of flows.

The suspension provides stiff mounting points for the brake This none
customer need describes the interaction required between thessospen

and typical bicycle brakes. This interaction cannot be describefloas a

through the suspension or as a transformation by the suspension.

The suspension fits a wide variety of bikes, wheels, and tir Like the none
previous customer need, this describes the interaction between the
suspension and other bicycle components and cannot be represented in a
function structure.

The suspension is easy to inste The ease of installation describes how none
a user interacts with the system. The installation cannot be shown as a
function because it would require that the suspension itself be a material

flow.
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Functional

Analysis of Customer Need Element

11

12

13

14

15

16

17

18

19

20

The suspension works with fender: Similar to the seventh and eighth none
customer needs, this customer need requires that the suspension interact
with typical fenders. This interaction cannot be shown as a function of

the suspension; if the fender enters the function structure, it cannot be
transformed by the suspension.

The suspensiorinstills pride. The user’s perception of the suspensic none
subjective and cannot be represented by a transformation of material,
energy, or information. Thus, it is non-functional.

The suspension is affordable for an amateur enthusia The cost of none
the suspension cannot be shown in a function structure as a flow or a
transformation of flows.

The suspension is not contaminated by wate This need may be material
represented in a function structure by introducing a new flow of water  input
into the system and showing a transformation of the location of water.
However, this need can also lead to the use of corrosion-resistant

materials; the designer may choose to represent it using a function

structure.

The suspension is not contamirted by grunge As in the fourteenth material
customer need, it is possible to represent this need in a function&ructu input
The suspension can be easily accessed for maintena This none

customer need describes the speed that the user can assemble or
disassemble the suspension to access components that require
maintenance. If this process were shown as a function, it would require
that components be flows of material. Since components cannot be
flows, this customer need is non-functional.

The suspension allows easy replacement of worn pa As in the none
sixteenth customer need, this need cannot be shown in a function
structure.

The suspension can be maintained wi readily available tools As in none
the previous two customer needs, this need describes maintenance, which
cannot be shown as a transformation of flows. Therefore, it is non-
functional.

The suspension lasts a long tim The life of the product cannot be none
described using a flow or a transformation of flows.

The suspension is safe in a cras The safety of suspension is related to energy
its strength, especially in bending. The crash scenario could be shown innput
a function structure as a different input to the system.
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As shown in Table 2-1, only eight of the twenty customer needs carotheled
using a function structure element, and many could be improved. Fopkexaeeds 2,
3, 6, and 20 must all be modeled through different energy inputs intosteensyWhile
this is possible, there may be alternative models than can cép#ses needs in a more
meaningful or useful manner. Many systematic design processasilpeethe use of
function after identifying customer needs and engineering requirem&ihce many of
the customer needs cannot be described using a transformation gifthese needs are
not addressed through traditional function structures. Therefodgtidral function-
based methods should be supplemented so that designers can addressorthese

functional needs early in the design process.

Summary
e Function-based design methods support only a subset of custpomer
needs.
e Many customer needs describe interactions, which cannot be modeled
using a function structure.
e Some customer needs that can be modeled using function strugtures

can likely be better modeled with other approaches.

2.4 |deation

Design thinking has been described as a divergent-convergent protess
designers may ask both divergent and convergent questions [65]. Divqtgestions

lead to many possibilities that can be explored, while convergestigue lead to a
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deeper understanding of the problem based on engineering knowledge Igais.afde
divergent thinking process has been a focus of engineering designchgsehere the
goal is to generate novel solutions to a problem [66-70]. Thigghwue thinking is
important in design since it expands the solution space exploredsignees and may
lead to innovative ideas. The convergent thinking process is also ampfwt ideation
since it may help designers understand concepts that have betpdéyevaluate their
feasibility, and ultimately converge on a solution to the problem. ddmeergent
thinking process is the focus of this research, and the goal is to sappeergence on a
high-quality concept rather than a novel or innovative concept. Téefulinctional
representations as a seed for ideation is studied to deterntimeyifyield high-quality
functional concepts. The ideation process and ideation techniques dhe iotus of
this research, but the outcome of the ideation process is used totamd¢ne effects of

seed models on ideation.

2.5User Studies in Design Research

User studies have been conducted in engineering design reseanctierstand
the effects of design tools and methods on design activities.eXaonple, Linsey and
colleagues studied fixation within design teams by giving deggms of engineering
faculty a sample solution to a design problem, intending to indwagoh, along with
methods to reduce fixation [71]. Chan and colleagues deterrtiinmagh a user study
that far-field, less-common analogies as provocative stimulidugs the novelty of
solutions generated by designers [66]. Many other user studtesfieltd of engineering

design have been conducted and use students as participants to elesigatenethods
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[67-69, 72-78]. These user studies typically require participantgeherate sketches,
which are quantified to test the effects of the factors beindjest. Metrics of quality,
guantity, novelty, and variety [79] or a subset of these metricsfeme used to evaluate
the sketches. In this research, metrics of quality and quarditysad due to the focus on
convergent rather than divergent ideation processes.

Frey and Dym suggest that design research should borrow methodghigom
medical research field since medical research methods hameubed and developed
extensively for medical treatments [80]. Frey and Dym dtateuser studies conducted
in a controlled laboratory setting are analogous to in vitro expetsnin the medical
field, which are part of the overall validation process for médiesatments [80].
Therefore, user studies are conducted in this research with spaitBaipants to provide
experimental evidence of the effects of functional representadio®ncept generation
in design, providing an experimental layer of validation of the aidunctional

representations in conceptual design.
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CHAPTER 3: RESEARCH APPROACH

3.1 Research Gaps and Opportunities

Based on the review of function-based design, the following research

opportunities exist:

Function-Based Design

¢ Function-based design approaches focus on transformations of matesraly,e
and information through an artifact.

e Function models can be used to describe the functionality of rexisti new
mechanical artifacts.

e Methods for creating function models should be coupled with the use of the

models for design activities.
Functional Basis and Design Repository

e Function models in the design repository do not always adhere taticéidnal
Basis vocabulary or modeling rules.

e Function models in the design repository have informally exterigettaditional
definition of function.

e These extensions can be identified and evaluated to determireyif are

appropriate for function-based conceptual design.
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Current State of Function-Based Design

e Function models have been extended to include passive functions, supporting
functions, and interactions.

e Passive functions are performed an artifact by an outside entity, noy the
artifact being modeled.

e Supporting functions describe assembly relationships among components, do not
transform the components, and are not form-independent.

e Function models should include only active functions.
Pruning Rules for Conceptual Modeling

e Pruning rules have been developed to achieve a consistent, high-level of
abstraction of function structures.
e There is an opportunity to test the pruning rules to understand thaifnessf in

conceptual design.
Alternative Approaches to Function-Based Design

e The scope of affordances is inappropriate for application to this research.

e Current integrations of transformative functions with non-transfovmat
functions are limited to directional interactions with matethak can be modeled
as a flow through the system.

e Alternative approaches have different definitions of function, which do not

support a graphical modeling tool.
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Limitations of Function-Based Design

¢ Function-based design methods support only a subset of customer needs.

e Many customer needs describe interactions, which cannot be modetgdausi
function structure.

e Some customer needs that can be modeled using function structutéslgabe

better modeled with other approaches.

Many function-based conceptual design methods in literature unsendé&ations
to show usefulness of the methods, but few quantitative researclesstuaie been
conducted to test the use functional methods and tools by designersefoiid)ethis

research seeks to both assess and extend function modeling in conceptual design.

3.2 Research Questions

Many function-based design tools have been developed to support ideation in
conceptual design, but the models used within these tools may not hg fosef
conceptual design since they may contain non-transformative descriptitaractions,
component-specific functions, or other extensions of function models. The
appropriateness of these extensions and functional descriptionscantteptual stage of

design is the focus of this research. Specifically, the overall researctloquss

Overall Research QuestionHow should the functionality of mechanicg

artifacts be modeled to support ideation in conceptual design?
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Designers may generate or use function models for a vari¢agkd, such as (1)
understanding and defining a problem by functionally decomposing ian@yzing a
functional solution using computational design tools, or (3) generatin@etniocased on
the artifact’s desired functionality. In each case, a mumast interact with a function
model either by creating it and/or using it in the design process. Thergfigrimportant

to understand how humans interact with a model. The first main research question is:

RQ1: How well do designers understand and use functional representations

conceptual design?

In previous research, a method for creating an abstract descrgftan artifact
from a highly-decomposed description is proposed through function model pruning [26,
60]. The resulting pruned model may be appropriate for use in conceesigh since it
is more abstract than the initial, reverse-engineered msdadt, is investigated in this
research. Further, a new representation—an interaction maleleveloped in this
research that integrates the pruned representation with a models#r actions and
interactions, addressing many of the limitations of current fondiased modeling
methods. These two representations, the pruned model (PM) and iateractel (IM),
are studied in this research to understand if the way in whiidacés are modeled using
each representation is appropriate for conceptual designefdtesrthe second and third

research questions pursued are:

RQ2: In what ways do pruned function models support ideation?

RQ3: In what ways do interaction models support ideation?
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When generating concepts, Ulrich and Eppinger describe an intehakgernal
search for solutions to the design problem [2]. An external lséactudes interviewing
users, consulting experts, searching literature, or other assivithat draw from
knowledge outside the design team. Internal searches include braingt@nd other
methods that draw from individual and team knowledge [2]. These concepatiyeme
classifications are similar to ideation categories intuibwel logical defined by Shah
[79]. Intuitive methods draw ideas from designers, while logicghats draw from
historical data or use analytical methods to generate ideas F#jction models have
potential to be used as a stimulus for intuitive methods (intermatigeor to drive
logical methods based on historical data (external searchacdoig explored in this
research (the termsaternal and externalfrom Ulrich and Eppinger are used from this

point forward). The fourth and fifth research questions are:

RQ4: How well do functional representations support internal sefoch
solutions in conceptual design?
RQ5: How well do functional representations support external sefmc

solutions in conceptual design?

3.3Research Tasks

The following three research tasks are pursued to addresBvéheesearch
guestions: (1) investigate the interpretability of functional regm&ations by humans
(interpretability user study), (2) investigate the use of foneli representations and

abstraction within a similarity metric (similarity stugdygnd (3) investigate the effects of
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functional representations on concept generation (ideation user stlildg)relationship
between the tasks and research questions is shown in Table 3-1 ars$atism the

sections that follow.

Table 3-1: Research Questions and Supporting Research Tasks

Task 1: Task 2: Task 3:
Interpretability Similarity Ideation

Research Question

Overall How should the functionality of mechanical
artifacts be modeled to support ideation in v v v
conceptual design?

RQ1 How well do designers understand and use
functional representations in conceptual v v
design?

RQ2 In what ways do pruned function models v v
support ideation?

RQ3 In what ways do interaction models support
ideation?

RQ4 How well do functional representations
support internal search for solutions in v v
conceptual design?

RQ5 How well do functional representations
support external search for solutions in v
conceptual design?

3.3.1Interpretability User Study

In the interpretability study, participants are provided with fiencstructures and
asked to identify an artifact from its function structure aloff@vo factors—function
language and type—are varied in the function models for this usdy.st The
interpretability study addresses RQL1 since participants’ level of stateing of function
models is tested by asking them to interpret the model andfidémé artifact being
modeled. This study addresses RQ2 since the function tyme feed two treatments,

pruned and reverse-engineered models, assessing the strehgthsied models for
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human processing. Finally, RQ4 is addressed by this study bat@isaportant for a

human to be able to understand a model if he or she will be using it to generate concepts.

3.3.2Similarity Study

Design knowledge captured in function models of existing artifeatsheen used
in previous research to identify artifacts functionally simitara new design problem,
inspiring the development of new concepts. In this study, a publishédrgymmetric is
extended and artifacts are compared functionally at three diffieneels of abstraction to
understand the benefits of each level of abstraction in conceptugh.deshis study
addresses RQ2 since the highest level of abstraction used siuthe is the pruned
model. It addresses RQ5 since the similarity metricoeansed to help a designer search

externally for solutions to a design problem.

3.3.3ldeation User Study

Design researchers postulate that function models support dsemticonceptual
design because they are abstract models of an artifact, prowied@upm for designers to
develop many new ideas. However, the focus of this reseanrh genvergent, rather
than divergent, thinking. The intent of function models in this study el designers
converge on a high-quality solution. In this user study, participanerate concepts for
a new artifact based on a problem statement, a set of reguitgnand a experimental
treatment. One of four treatments is provided to each participafitnction model,
interaction model, pruned model, or no model. The concepts generated ibipaas

are analyzed for quality of the ideas and conformance (defsvédwa well the concepts
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agree with model provided). This study addresses RQ1 througbrif@moance metric
that evaluates whether a designer used the model or deviated.fr&mce two of the
treatment groups are the pruned model and interaction model, and lsencgutly
requires participants to generate ideas based on their own knowldudgestudy

addresses RQ2, RQ3, and RQ4 as well.
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CHAPTER 4: PROPOSED DESIGN APPROACH AND REPRESENTATION

4.1 Integrated Function- and Interaction-Based Design

As demonstrated in Section 2.1.3, there are many non-functional aspects
consider when designing an artifact. Many design texts, howpkescribe a linear,
function-based approach to conceptual design, shown in Figure 4-1 [DeHigners
begin with customer needs and translate them into engineeringereguis. A sub-set
of the engineering requirements lead the designer to identifyrtifigct’s function, and a
function model is created. Working principles are then identifbecté&ch function and,
using a morphological chart, working principles are combined into palteohcepts. In
this approach, the designer intuitively chooses a sub-set of neguite to address

through the artifact’s functionality.

Customer
Needs

'

Engineering
Requirements

'

Function
Requirements

v

Function
Structure

'

Working
Principles

'

Concept(s)

Figure 4-1: Function-based Approach to Conceptual Design
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The function-first approach to design does not consider non-functiqredtasof
the artifact being designed, such as user activities, environnterdactions, and artifact
interactions. Some researchers use passive functions, sumpas humanto address
these aspects (see Section 2.1.3). However, the approach proposedeisetirish uses
only active functions in a function-based path and includes a complegentaraction-
based path, as shown in Figure 4-2. The function-based approach isdnalube left
path in the figure, where active functionality of the artifact is adeks In the right path,
interactions are addressed in a similar manner as function:

1. Interaction requirements are identified from the complete listegliirements.
Interaction requirements state the context—interactions with ,useifact, and
the environment—of the artifact being designed.

2. A solution-independent interaction model is created in conjunction with the
function structure. The two models are created together and havéeenoa
each other, as shown by the arrows in the figure between thentwels. A
decision made about one model affects the outcome of the other.

3. High-level form principles are identified in conjunction with workipgnciples
to embody the interactions in the interaction model. These formigdaagclike
working principles, do not specify an exact geometry; instead, deeyify major
principles that can be used to satisfy the interaction requite(eeg., handle,
friction-fit, wheels).

4. The working principles and form principles can then be combined using a

morphological chart to identify concepts for the artifact being designed.
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Figure 4-2: Function-based Design Approach with Complementary leraction-
based Approach

Since interactions do not conform to the traditional definition of fon¢ta new
model is proposed to capture user and artifact interactions sdpdram an artifact’s
function. Artifacts that lie outside the system boundary of thiéaetrtof interest are
explicitly modeled and mapped to the artifact of interest throughaictions. In Section
4.2, an interaction model is presented that incorporates functionsciitesa and user
activities and is demonstrated with the Black and Decker Jigsaw Attachment.

Customer needs may describe an artifact in a manner that edheaot be
represented in a function structure or is non-transformative seTtiescriptions include
passive functions, user activities, environment interactions, aritfi@caictions, and user

interactions. Since many extensions of function structuresdactome or all of these
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types of descriptions, it is important to clearly define eacthabthey can be identified

and appropriately placed when creating new models.

Function — the transformation of material, energy, and/or information frormput
state to an output state [1]

Active Function — a function in which the artifact of interest carries angnéow
that is used to control the outcome of the function

Passive Function— a function in which the artifact of interest does not carry the
energy used to control the outcome of the function

User Activity — a change in a property of the artifact or a changelowavithin the
artifact in which the user provides the energy to make the change

Artifact of Interest — a clearly defined set of components being studied

Environment — anything that lies outside the artifact of interest; therenment can
be decomposed into the natural environment, artifacts, and users

Natural Environment — anything that exists in nature

Artifact — an entity that has been altered from its natural state

User — an entity external to the artifact of interest that it@8anteractions with the
artifact of interest

Natural Environment Interaction — exists when the artifact of interest changes a
property of the environment or when the environment changes a propéngy
artifact of interest

e Artifact changes a property of the environmensubmarine interacts with

the environment by changing the water pressure locally near the propeller
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e Environment changing a property of the artifaetater interacts with a
submarine through corrosion of the hull
Artifact Interaction — exists when the artifact of interest physically contantsther
artifact or energy or information flows to/from the artifadtinterest from/to
another artifact
e Physical contactif a flashlight is the artifact of interest, it interagtgh a
battery because it physical must contact the flashlight to function properly
e Information flow to the artifact of interest from another artifadt:a
television is the artifact of interest, it interacts with tleenote control
because it receives a signal from the remote control
e Information flow from the artifact of interest to another artifadt:a
television remote is the artifact of interest, it interastth a television
because it sends a signal to the television
User Interaction — exists when a user physically contacts the artifact ofeistter
energy or information flows to/from the artifact of interest from/to the use
e Physical contactA user interaction exists between a drill and a user when
the user carries the drill because the user is physically contactidglthe
e Information flow to the artifact of interestA user interaction exists
between a user and computer because information flows to the computer

from the user.
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e Information flow from the artifact of interesA user interaction exists
between a user and a vehicle’s fuel system because infornasiban the
amount of fuel in the tank is displayed to the user.

Context — the set of all interactions between the artifact of isteaad the natural
environment, artifact, and users
The context of a typical vacuum cleaner includes:
e Environment Interactions
- air, since the vacuum changes a property of the air (pressure)
- dirt, since the vacuum changes a property of the dirt (location)
e Artifact Interactions
- the wall outlet, since the vacuum physically contacts the wall
outlet
- the floor, since the vacuum sits on the floor
- floor carpet in a vehicle, if the vacuum is being used to clean the
vehicle
e User Interactions
- A user interacts with the vacuum when he carries it around
because he is physically contacting it.
- A user interacts with the vacuum when he turns it on because he

is physically contacting it.

The interaction model, presented in the following section, is dewtlogaged on

these elements and their definitions.
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4.2 Interaction Model

The proposed design approach incorporates a function- and an iotetzesied
approach, which will be supported by a graphical model. The current rbede
pursued is the interaction model, which integrates a pruned fundtiociuse, a user
activity model [4], and interactions between these elements. inteection model
entities, shown in Figure 4-3, consist of an system boundary, functiomsaaiséties,
and flows of material, energy, signal, and artifact. The sybtmmdaries are shown by a
dashed line and used to indicate what is being modeled within aactmif user.
Functions (rectangles) and user activities (hexagons) are eacludhin the artifact and
user boundaries, respectively. The functions can have inputs and outpogdeatl,
energy, and signals, while the activities can have these sgées and outputs in
addition to an artifact flow. The artifact flow representstiadling of an artifact by a
user, and the artifacts may flow through the user’s system. The flawatefial, energy,
and signal may enter or exit a function or user activity, and riy cross boundaries,

passing from the user to an artifact and vice versa.

o= — Material ﬂtifa_ct>
- Artifact/ l User Ener

! User I Function Activity _9_X>

— e = §|grlal>

Figure 4-3: Interaction Model Entities

The interaction modeling entities are explained in detail vighexample of the
Black and Decker Jigsaw Attachment (see Section 2.1.3). Thadtiégr model, shown

in Figure 4-4, includes four artifacts: a battery, universal drivggaw attachment, and
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jigsaw blade. The active function of each artifact is shown amherted to the
functionality of other artifacts through flows among them.
e The battery supplies electrical energy to the driver.
e The driver converts human energy to a signal, which actuatesldbgical
energy. These two functions are accomplished by the switch on the driver.
e The driver then converts the electrical energy to rotational grtergugh the
motor contained inside the driver.
e The driver then changes the rotational energy by reducing theaanglbcity
through a set of planetary gears.
e The rotational energy flows from the driver to the attachment via a shaft.
¢ The attachment then converts the rotational energy to tramslbgnergy using a
cam.
e The translational energy exits the driver's system boundary asskpdhrough
the blade.
e The translational energy exits the blade’s system boundary and #meuser’s
boundary, showing that the user is in control of the translational eertgut

from the system.
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Figure 4-4: Interaction Model of a Black and Decker Jigsaw Attachment

The user and the activities that the user performs are shepanasely from the

function of the artifact inside the boundary of the user. The lo&sag the model show

these activities with flows of artifacts between thevéotis. The user can carry or

control the artifact, cut wood, assemble the artifacts, or penfoany other activities. It

is important to note that the activity model shown in this example doeinclude the

entire lifecycle of the artifact, as in examples in previdtesature [4] (e.g., purchasing,

maintaining, recycling). The focus of this model is on routine ojperély the end user,

so only typical end user activities are shown.

Additionally, ribtpatential user

activities are shown as the focus of this research ispgtureathe relationship between

user activities and artifacts.
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The flows between artifacts or between the user and the artifact in theshode
the interactions among the systems. An interaction must be erdbwediea physical
form to enable the flow to pass between two artifacts or tifacirand user. The five
interactions in the model are explained below.

e The battery and driver interact with each other through a flogleattrical energy
from the battery to the driver, represented by the flow betwesse two artifacts.
This flow is embodied through electrical contacts on both the battery andakiver
well as other features that enable the battery to be locked in place.

e The driver and jigsaw attachment interact with each other thraufibw of
rotational energy between the two artifacts, as shown in the mdde. driver
and attachment both have features that allow them to be secureth ttteer and
two shafts coupled together to allow the passage of rotationalyefierg one
artifact to the other.

e The interaction between the jigsaw attachment and the blatewsn by the flow
of translational energy from the jigsaw attachment into theeblabhis flow is
enabled by a clamping mechanism that secures the blade to the foutpuhe
jigsaw attachment.

e The interaction between the blade and a piece of wood is shoviowbfrém the
blade to the activitgut wood The cutting force between the jigsaw’s blade and
the wood enable this energy passage. The passage of translaterggliato the
user boundary also shows that the user is in control of the translational energy that

is output from the system.
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e The user interacts with the system through the flow of human effengythe
user to the system. This interaction is embodied by a surfacallthas physical
contact between the user and the system to take place. The hungnesiks
the user boundary and enters the driver boundary, indicating that thes use

longer in control of this energy.

4.3 Comparison of Interaction Model and Function Structure

The interaction model of the Black and Decker Jigsaw Attachemmtins the
same information as the function structure (see Section 2.1.3), butfdineation is
represented differently. In the function structure, the sefidanctionsimport human
material, guide human material, export human mate(i@produced in Figure 4-5)
describe the human activity of holding the system and manipuliatinthese functions
are passive because the jigsaw attachment does not providethg ®r these functions
to be carried out. Human material does not enter the jigsaghiaéat; the two interact
with each other. The interaction model describes the relationstvjgdre the user and
the artifact as a user activity (reproduced in Figure 4-@ptuwring the passive

functionality described in the original function structure in a more active manne

Human
Material

Import
Human
Material

Guide
Human
Material

Export
Human
Material

\ J

Human
Material

Figure 4-5: User Manipulation of the Black and Decker Jigsaw Attachmen
Represented Using Passive Functions
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Figure 4-6: User Manipulation of the Black and Decker Jigsaw Attachmen
Represented Using an Interaction Model

The function structure uses four passive functions to describe thebhgsd the
jigsaw attachment to the driver (labeled “power pack”) andlthve of rotational energy
between the two (reproduced in Figure 4-7). The interaction ndehpler, describing
the assembly through a user activity and the flow of rotatiamaigy from the driver to
the jigsaw attachment as a flow, rather than a function alwva(ifeproduced in Figure

4-8).

y

|

@
Power Import Secure Export Power
Pack ~ Solid ~ Solid Solid Pack
I

Rotational Energy

Import
Rotational >
Energy

Figure 4-7: Artifact Interaction in the Black and Decker Jigsaw Attachment
Represented Using Passive Functions
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Figure 4-8: Artifact Interaction in the Black and Decker Jigsaw Attachnent
Represented Using an Interaction Model

The jigsaw attachment function structure describes the usecs that is input to
the system to control whether the artifact is on or off withghassive functionmport
human energyreproduced in Figure 4-9). The artifact itself does notilibrdoring
human energy into the system; rather, the human energy is prawvideel system. The
interaction model captures this information more actively by sigwhat the user
controls the assembly and human energy flows from the user to tiee (iee Figure

4-10).

Import
Human
Energy

Human
Energy

Figure 4-9: User Control of the Black and Decker Jigsaw Attachment Regisented
Using a Passive Function
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Figure 4-10: User Control of the Black and Decker Jigsaw Attachment Repsented
Using an Interaction Model

The function structure uses three passive functions to show thaattedan be

secured to the jigsaw attachment (reproduced in Figure 4-11)fuiiti®ons are passive

because the energy to perform these functions must be provided something extemal

artifacts. The interaction model captures this same informhati@ghowing that the user

assembles the two components, and that translational energy flomstlie jigsaw

attachment to the blade (see Figure 4-12).

Saw Blade

4)

Import
Solid

Secure

Solid

- Export
o Solid

%—» Saw Blade

Figure 4-11: Artifact Interaction of the Black and Decker Jigsaw Attachnent

Represented Using
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Figure 4-12: Artifact Interaction of the Black and Decker Jigsaw Attachnent Using
an Interaction Model

Interaction models capture the function of artifacts, interactiomsng artifacts,
interactions between artifacts and users, and user activilieis. model describewhat
functions and activities the artifacts and users accomplisthawathey accomplish the
functions and activities. The functions, activities, and interactiomslescribed at an
abstract level to prevent solution-specific models. A sepams@ping between
interactions and an artifact's form may be used to cagtore an artifact and user
interact for later phases of design or information archival. Homvekies mapping is
outside the scope of this research.

The modeling of functions, activities, and interactions using anaictien model
has been demonstrated through the example of the Black and Deskesv Aigachment,
capturing all of the information contained in the initial function modEhe interaction
model, therefore, is able to capture functional requirements and asspdtential to
address requirements related to user and artifact interactiorthie review of function

modeling (see Section 2.3) function structures were shown to be @bdeldress
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requirements related only to material, energy, and informatipats. In the bicycle
suspension example, this covers only eight of the twenty-two custueeedr statements
(see Section 2.3). The interaction model for this example coulat@de double the
number of customer needs addressed compared to the function strnciuding the
following customer needs.
The suspension:

e preserves the steering characteristics of the bike

e provides stiff mounting points for the brakes

¢ fits a wide variety of bikes, wheels, and tires

e is easy to install

e works with fenders

e can be easily accessed for maintenance

¢ allows easy replacement of worn parts

can be maintained with readily available tools [2]

The interaction model is not intended to address all types afrmastneeds, so
there will be some customer needs that cannot be addressedhisingptel. These
types of needs include inherent properties of the system, wiadiaaed on the system’s
form. In the bicycle suspension example, these properties includeight, durability,
appearance, and cost (see Section 2.3). Thus, the following custeess remain

unaddressed by both function structures and the interaction model.
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The suspension:
e is lightweight
e instills pride
¢ is affordable for an amateur enthusiast

e lasts a long time [2]

The interaction model presented in this section demonstrates how this
representation can be used to model the functionality of sevefatt@rthat interact with
each other as well as the user’s interaction with the da(sjac The activity model [4]
was selected to model the user’s actions because the aotitgl is a graphical, flow-
based representation, similar to function structures. Manynatiee representations
have potential to be combined with the function structure more effgctian the
activity model, but a complete review of user and process represestand their
potential for merging with the function structure is outside the scope of thisclkse

The key elements of this representation are the pruned function mbadl w
contains active, conceptual-level artifact functions, a user modeldéscribes the
actions a user performs when using the artifact, and the passdimvefbetween

artifacts and between artifacts and the user.
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CHAPTER 5: INTERPRETABILITY USER STUDY

This interpretability study was designed, executed, and anailyzsalaboration
with Thomas and colleagues [78], and a complete description of tperieent is
included in [81]. Thomas analyzed the results of this study usirgijgkege statistics
and qualitative feedback from participants [81]. There is an opporttménalyze the
results statistically, so the data from this study areyaadland presented in this research
using a statistical approach to draw conclusions primarily orbémefits of function

structure pruning. Thus, new contributions are included in Sections 5.4 and 5.5.

5.1 Motivation

In either forward design or reverse engineering, inigdrtant for a modeler to be
able to communicate his or her ideas clearly using the model. d&gign problems may
not be performed by a single person, so the function models must bstaaddsy an
entire design team. Reverse engineered models may be usgdrioation archival and
reuse, so the models created for existing artifacts must bestowteby anyone using the
information. Thus, for any use of a function model, it is importaritttteideas in the
model are clearly communicated. Multiple models of an artifaay exist, but each
model should clearly communicate the functions that the artifafdrpes. The overall
goal of this research is to understand the limitations of curramttibn modeling
methods and to improve the usefulness of function models for conceletsigh and

reverse engineering. As a first step in this overall ,gib& level of understanding of
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reverse engineered function models is assessed by studgiingédrpretability of models
of existing artifacts.

The interpretability of reverse engineered function models pudlide insights
into the use of these models for communication and archival of funictirdoemation.
The principles of communication learned through studying the intelirigtaf reverse
engineered function models can then be extended to new design prohblkers,

communication is also essential within design teams.

5.2 Frame of Reference

5.2.1Interpretability

Research in function structures has focused on consumer, eledismoat
artifacts, such as handheld power tools and household appliances. urfidt®nf
structures developed for these artifacts are relativelyl amé can be created by a single
person, so the intent of each element in the model is fully uoddrdy the modeler.
However, when a observer unfamiliar with the model uses it, heher may not
understand what the modeler intended. For example, in the hairfdnggion structure
(see Figure 5-1), the functionsmport, guide,and export human energgould be
interpreted as movement of the whole system or movement of a compainéhe
system, such as a switch. The goal of this research is tostenttthe interpretability of
function structures, or how well designers unfamiliar with a modal understand what
is modeled. In this study, interpretability is defined as thktyaof a human to correctly

identify an artifact by looking only at a model of its function.
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Figure 5-1: Hair Dryer Function Structure (adapted from [31])

5.2.2 Ambiguity

The goal of function modeling in conceptual design is to identifyt Wieartifact
should do independent of its final form. Since the final form is not knoviunction
model supports uncertainty in the design. However, this uncertaintydsheutlearly
identified and communicated by the function model, rather than contaamngguity
that can be misinterpreted by readers [82]. In conceptual dasignimportant to
explore as much of the available design space as possible, andraotabstel such as
a function structure can support this exploration. However, an ahstoael should not
be ambiguous, but it should clearly outline the design space thataiglbde for
exploration. An ambiguous model may seem to be abstract, but ialiloaya designer
to misinterpret the model and explore areas that are outsiddefign space. |f
ambiguity exists in function models of reverse engineered @gjfthen similar models
used in forward design may also be ambiguous. This research usasnhetability of
function models to understand if ambiguity exists within function moaleds if so, to
identify ways to reduce this ambiguity, improving function-based comcation and

information archival in engineering design
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5.3Research Approach

A user study is conducted to test human interpretability of funstimctures. A
previous study tested the interpretability of three levels otratign of function
structures [78], leading to the identification of two dimensions diratison and further
refinement of the experiment [78]. The study was revised anditezpavith a larger
sample size and an additional level of abstraction that was disdotreough the initial
study. The primary difference in the refined study is théngof two independent
abstraction factors and the measurement of interpretation speaediiion to accuracy.
The two factors tested are the specificity of terms usdukimiodels (Functional Basis or
free language) and the type of functions included in the model (ecsgaggneered or
pruned). In the study, participants are provided with a function madmheaof four
combinations of abstraction levels and asked to identify the arb&sed solely on its

function structure.

5.3.1Function Structure Abstraction Levels

Two levels of abstraction are tested in each of the two diorens The function
level is tested at the reverse engineered level (RE) tatiek @oruned level (see Section
2.1.4). The language specificity is tested at the free lgmglewvel (Free) and using the
secondary level of the Functional Basis (FB). Thus, the following feuels of
abstraction are obtained: RE-Free, RE-FB, Free-FB, and Free-Pruned.

Four different existing artifacts were selected for thigdgt and the function
model was obtained from the design repository (see Section 2.1.2)TB&]models in

the repository were created independent of this research, andati@yn free language
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as well as Functional Basis terms [30]. Since the atsifaxist, the models have been
created at the reverse-engineering abstraction level, comfamany specific details
about the artifact and many of its individual components. Thereforeyddels obtained
from the repository are considered to be at the RE-Free leablstfaction. An example
of a RE-Free function structure of a rice cooker is shown in Eigt. The key features
of this model relative to the FB level of language abstraetrerthe inclusion of context-
specific free language terms, suchlkemwl, rice, water, on, and off. In the function
dimension, this model contains auxiliary functions and interactions ssidmport
electrical energy transfer thermal energyand import solid which can be identified

through reverse engineering but may not be specified in conceptual design.

EE EE - > EE Regulate EE Convert EE ThE Transfer
— Import EE > Transfer EE| | Actuate EE > EE ™ oThE ™  ThE
e
T
1 |
| Regulate !
. T TT=== 1
HE HE A
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|
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Import Solid > Soid Export Solid > Bowl
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N Bowl —Y
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- |MpOIt Solicl e~ Store Solid Ric MI)I(_iiz:ldd & _R> ,5:;532 = Rice
4 ice
‘ Bowl
Water Water Water
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Figure 5-2: Rice Cooker Function Structure at the RE-Free Abstraiion Level
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The RE-FB level of abstraction is obtained by translating & language terms
in the RE-Free model to Functional Basis terms using guideliregdpd with the
Functional Basis vocabulary as well as knowledge about thacrtifThe number of
functions and flows and the relationships among these are identic@leloethe RE-Free
and RE-FB levels of abstraction. The RE-FB level of abstraaif the rice cooker is
shown in Figure 5-3, where FB terms that required translatiosha@ed gray. In this
model, terms such dsowl andrice have been translated $olid, on andoff to control
signal andwaterto liquid. The auxiliary functions and interactions remain in the model,

as in the RE-Free level of abstraction.
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Figure 5-3: Rice Cooker Function Structure at the RE-FB AbstractionLevel

The Pruned-FB level of abstraction is obtained by applying prunileg to the
RE-FB model (see Section 2.1.4). The pruning rules remove auxiliaryidiusmicand

interactions from the models, resulting in a more conceptual-levééhcompared to the
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reverse engineered models in the repository (see Section 2.1.4)prueg process
reduces the number of functions and flows in the models but does not change the
language. In the Pruned-FB rice cooker model, shown in Figureundtidns such as

import human energyransfer electrical energyandexport solidhave been removed.

csi lEE
i
P CoRIHE o Cpien EE
Th.E
i ) A
= e Solg o SIS 6 g S

Liquid | Water
=P Store Liquid

Figure 5-4: Rice Cooker Function Structure at the Pruned-FB Abstction Level

The final level of abstraction, Pruned-Free, is created by ciomye¢he FB terms
in the Pruned-FB model back to the free language terms used REtheee level of
abstraction, providing additional context that is not included in thed@l-FB model. As
shown in the example of a rice cooker model at the Pruned-Fréelelestraction (see
Figure 5-5), the Pruned-Free level of abstraction containswa denceptual-level
functions with context-specific terms, such rase, water, and on, rather thansolid,

liquid, andcontrol signal
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Figure 5-5: Rice Cooker Function Structure at the Pruned-Free Abtraction Level

Rice

The following four consumer artifacts were chosen for this stualy,emch was
modeled at the four combinations of abstraction levels, resultingxiees unique
models:

e Black and Decker Rice Cooker
e DeWalt Sander
e Shopvac Vacuum Cleaner

e Black and Decker Electric Screwdriver

5.3.2Experimental Design

The experiment was conducted in a graduate-level advanced desitgge at
Clemson University during the Fall 2009 semester. Eighteen stuplariicipated in the
study during their regularly-scheduled class period. Raatitcs had experience in
function modeling through the design course, so they were given tapsesentation to
remind them of the basics of function structures. Each panmicipas given the sixteen
unique function models (4 artifacts at 4 levels of abstraction eachpsked to identify

the artifact that was modeled from a list of 48 artifacifie models were provided in
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groups of four to prevent the participants from recognizing regeattifacts, and
participants were not aware that artifacts were used muliipés. The complete details
of the experiment, including the models given to participant$aeirselection sheet, and
the sequence of models given to participants are discussed in [81].

In the study, participants were presented with an unidentifiadtibn structure
and asked to identify what artifact was modeled. The participaesgonses were
classified as exact, non-exact, similar, and dissimilar. cEs@sponses are those that
exactly identify the artifact being modeled, while non-exasponses are the remaining
47 incorrect answer choices. The non-exact responses are fortthk@n down into
similar and dissimilar responses. Similar responses areifidgénas artifacts in the
answer packets are functionally similar to the exact answele wissimilar artifacts are
those that are not functionally similar. Similar artifastesre defineda priori by a panel

of design researchers based on the high-level purpose of the artifact.

5.3.3Research Hypotheses

The two factors in this study, language specificity and tffenction, are tested
to determine if either factor has an effect on the interprétabfl function structures and
the amount of time required to interpret the function structures.mEa@ interpretability
and time for each factor are compared, with the primary rdsdégmotheses shown in

Table 5-1.

62



Table 5-1: Primary Interpretability Research Hypotheses

Research Hypothesis

The interpretability of function structures using free language &earéhan leree? leg
the interpretability of function structures using the secondary té\tbke

Functional Basis.

The interpretability of pruned function structures is greater than the lpruned? Ire
interpretability of reverse-engineered function structures.

The time required to interpret a free-language function structliess than the  tree# trs
time required to interpret a Functional Basis function structure.

The time required to interpret a pruned function structure is lesghbdime teruned? tre
required to interpret a reverse-engineered function structure.

Note:
| — Interpretability
t—time

Free — Free Language
FB — Functional Basis
RE — reverse engineered

The secondary research hypotheses test the simple effanterpfetability and

time:

® Ipruned-Freé” lPruned-FB

* IRe-Frec” IRE-FB

® Ipruned-Fred IRE-Free

* lpruned-ret IrRe-FB

® tpruned-Free tPruned-FB

® tre-Freef RE-FB

® tpruned-Fred [RE-Free

® tpruned-re¥ tRE-FB

The interpretability hypotheses are tested using two scoppgpaches: (1) an

exact response is given a score of 1, and a non-exact responsmia gcore of 0; and
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(2) an exact or similar response is given a score of 1, andimniligs response is given a
score of 0. The definition of exact, non-exact, similar, and rdiksi responses is
discussed in Section 5.3.2. The time hypotheses are testedrusma@pproaches: (1) all
times are considered, (2) only times of exact responses alidareqdls and (3) the times

of exact and similar responses are considered.

5.4 Statistical Analysis

5.4.1Interpretability

As discussed in Section 5.3.3, the data collected are used to detéfrriine
function level (Pruned or RE) or language level (Free or DR) masfect on
interpretability of function structures. For the interpretabsiigtistical tests, each of the
two scoring approaches discussed in Section 5.3.2 are analyzed rgssuminomial
distribution of the responses. Participants and artifacts arerbotieled as random
effects. The GLIMMIX procedure within SAS/STAT® softwareused to analyzed the
data and the LSMEANS procedure used to compare the means pfatdbility. The
interpretability hypotheses and results are shown in Table f&rewthe values in the
table represent the mean interpretability on a scale from O fBhé. p-values have not

been adjusted for multiple comparisons, as this research is exploratory in nature
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Table 5-2: Results of Statistical Tests of Interpretability

Exact=1 Exact = 1
Hypothesis Non-Exact =0 D.S'm”z.ilr :_10 ngo_th_ess
(n — 262) ISSimilar = ecision
(n = 262)
1) lrree# Ire 0.68# 0.060 0.91£0.37 Accept
p < 0.0001 p < .0001
2) lpruned# Ire 0.33#0.22 0.75#0.68 Fail to Accept
p=0.13 p=0.29
3) IPruned_Fre@é |Pruned_FB 0.72?é 0.088 0.92# 0.43 Accept
p < 0.0001 p < 0.0001
4) IRE-Free? |RE-FB 0.64+0.041 0.91£0.31 Accept
p <0.0001 p < 0.0001
5) IPruned_Freaé |RE_Free O.72¢ 0.64 0.92# 0.91 Fall tO Accept
p=041 p =0.65
6) lpruned-re# IRe-FB 0.088# 0.041 0.43#0.31 Fail to Accept
p=0.19 p=0.28

The interpretability of free language models, using both scorinthads, is
significantly better than the interpretability of FunctionalsBamodels (p < 0.0001).
Using the exact/non-exact scoring, free language models hadeaage interpretability
of 0.68 on a scale from 0 to 1, while Functional Basis models had aagave
interpretability of 0.066. Using the exact/similar/dissimilpp@ach, the free language
models had an average interpretability of 0.91 while the Functiorsss Beodels had an
average interpretability of 0.37. Therefore, the use of freeutsgey significantly
improves the interpretability of function structures.

The average interpretability of pruned and reverse-enginéenetion structures

using the exact/non-exact scoring method is 0.33 and 0.22, respectiviegn using the
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exact/similar/dissimilar scoring system, the average®.@®and 0.68, respectively. The
comparison of these values results in p-values of 0.06 and 0.15, respectiMaty
hypothesis test was also performed using additional scoring @pesyasuch as exact
responses receiving a score of 2, similar responses a schraraf dissimilar responses
a score of 0; or non-responses scored as non-exact. In emtlonasf the analysis, the
p-value for this hypothesis test was approximately 0.15. Since the levehifitarmce in
this research is 0.05, the second interpretability research hypothesis isepdéecc

The third through sixth hypotheses test for simple effectseofvilo factors. The
results of these hypotheses are consistent with the resufts fofst two hypotheses, and

there are no significant mixed effects.

5.4.2Time

The time required to interpret each function structure was amblyzieg three
approaches: (1) all times are considered, (2) only times of esgponses are considered,
and (3) only times of exact and similar responses are considefé@. procedure
GLIMMIX within SAS was also used in the time data analysis. The intedgligy times
were assumed to be normally distributed, and participants afat&rtivere modeled as
random effects. The time hypotheses and results are showrble 38, where the
values in the table represent the mean time, in seconds, takenrpveinte function

structure.
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Table 5-3: Results of Statistical Tests for Time

. Times from Times from
Research Time from All Exact Exgc'_[ and Research
Hypothesis Responses Responses Only, Similar Hypo.th.e5|s
(n =262) (n = 96) Responses Only Decision
(n=162)
1) trree# tra 70.0#127.6 70.4+#106.7 67.7+#103.2 Accept

2) tPruned?'é tRE

p<0.0001  p=0.014 p = 0.0002

79.9#£117.6 81.7£95.4 70.9+#100.0 Accept
p <0.0001 p=0.35 p = 0.0010

FB

4) tRe-Free# RE-FB

p<0.0001  p=0.0015 p = 0.0003

91.3#144.0 86.7#104.0 86.8#113.2  Accept
p < 0.0001 p = 0.45 p = 0.0506

6) teruned-re7 tRe-FB

p<0.0001  p=0.0024 p = 0.0001

111.1#144.0 109.3#104.0 93.1#1132  Accept
p =0.003 p = 0.8402 p = 0.1640

When the times from all responses or exact and similar respanseonsidered,

all of the hypothesis tests are accepted with a significaaves 6f 0.05. Free language

models are interpreted significantly faster than FunctiorediBmodels, and pruned

models are interpreted significantly faster than reversereaggd models. Hypotheses

3-6, which test for simple effects, are consistent with thetfirs hypothesis, so there are

no mixed effects.

The fastest level of abstraction, thereferthei Pruned-Free level,

which took approximately 49 seconds to interpret.

When the times from only exact responses are considered, the tnefidse

required to interpret the models are similar but not alwaysfiignt. The sample size is
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much smaller in this approach because the times from non-exsmbnses are not
considered. Therefore, the results of the other two approachesedréousccept all of

the time research hypotheses.

5.50utcomes and Discussion

The interpretability of function structures has been studied tondiete how well
human users of function structures understand a model. A user stadymgucted in
which participants were given an function structure and asked tofydehiat artifact is
represented by the model. Function structures varied in tertasgafage specificity and
the level of abstraction of functions to better understand the aspkasfunction
structure that aid in interpretation. A limitation of the stuslythat all free language
terms in the models were used to describe flows, not functions. efoher all
conclusions drawn on the Functional Basis are relevant for the floabutary and not
necessarily for the function vocabulary. Two major conclusiongddaen from this
study:

1) The use of free language increases the accuracy and speethtdrpretability
compared to a controlled vocabulary.

The statistical analysis shows that free language functiootstes had a
much greater interpretability than Functional Basis function strest The high
specificity of flow terms in free language models providegiteonal context in
the model that helps the user interpret it. In the Functional Basikls, less-
specific terms create more ambiguity in the model, and pantisizae not able to

understand the content of the model. One purpose of the Functional Basis i
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2)

improve the communication of function models through the use of a codtrolle
vocabulary and specific definitions of terms. This interpretalstigly, however,
shows that Functional Basis terms, specifically flow terrasse ambiguity in a
model rather than clarity. Even though definitions of each teave been
provided, the specificity of the terms are not adequate for human woication

and interpretability. Thus, either free language should be used itiofunc
structures or a more specific flow vocabulary should be developeciabtes
contextual information to be included in the models.

The speed of interpretation of free language models is signtfy higher
than Functional Basis models. Participants identified these coaligxtich free-
language terms and used them to quickly understand the model. InoRahcti
Basis models, the terms were less clear, so they requiredtimer¢o interpret.
The use of free language in communication between human designesgrthe
is enhanced in terms of speed and accuracy when free languaged in the
model.

Removing auxiliary functions and interactions from a reverse-engeered
function structure increases the speed of interpretatiorwithout decreasing
interpretability.

Pruning rules specify the removal of auxiliary functions and interactions in
a function model. When this specific set of functions is removexlaverage
interpretability does not significantly change. Although there isnocease in

interpretability, there is also no reduction in interpretability edusy the removal
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of these functions. Therefore, for human interpretation, auxiliarytibng and
interactions do not add value to the model. Further, the time redqainetérpret
pruned function structures is significantly lower than that of revengineered
functions structures, indicating that the auxiliary functions andaatiens divert
the interpreter’s attention to less important elements in tbdem Overall,
pruned models are a more efficient representation of functionthiegere faster
to interpret without a sacrifice in accuracy, so pruned models Ghmulused

when humans are reading function structures.

The results and conclusions of this study can be used to improve the
understanding of artifact functionality in engineering designhe Tollowing three
applications of this study have been identified:

1) Model Communication
When designers use function models to communicate their ideas to other
designers, such as in a design report, they should use the Pruneathsiraetion

level. Free language will provide context to those readingrtbdel that will

increase the speed and accuracy of their interpretations, redueipgtential for

misinterpretation.  Further, pruned function structures are moreieeff in

communication and do not increase the risk of misinterpretation by a reader.
If a designer desires to communicate auxiliary functions oractiens, he

or she can include these in a function structure without significegdlucing the

ability of the receiver to interpret the model. However, the desigould instead

use a separate, complementary model, such as an assembly diagraradal of
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2)

3)

interactions, maintaining the efficiency of a pruned functiomcstre while
communicating the additional information captured in a revergsreered
model.
Model Creation

When creating models in conceptual design, the use of free langudg
the exclusion of auxiliary functions and interactions from a function structaye m
support faster identification and increased understanding of Criitdact
functionality. Therefore, the pruning rules can be used as guidelores f
identifying the types of functions that should be identified fisstagoroblem is
decomposed. After a pruned function model is created, auxiliary dascéind
interactions can be added to the model if desired.
Information Archival

If functional information is to be captured in a database ancevettiby
human users, free language should be used in addition to a controlled apcabul
The advantage of a controlled vocabulary is increased reasoning on the
information, but when this information is returned to a usehatil include free
language for easy interpretation. A database should also hawabithe to
provide pruned models to a human user to further increase the ease of
interpretation of models. If free language is captured and prunires rul
implemented within a database, all four levels of abstraction igaéstl in this
research will be supported, each of which have different applicatiorse

Pruned-Free level supports quick, accurate communication of functional
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descriptions between humans, while the RE-Free level supportseacomaplete

but less efficient description of an artifact.
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CHAPTER 6: SIMILARITY STUDY

6.1 Motivation

After understanding the function of an artifact and developingnatibn model,
designers can search for potential solutions to each function throunghnberking,
patent searches, or catalogs, or they can use their own knowteddgeatify solutions [1,
2]. Research in design-by-analogy is currently being conducteskwgral groups to
assist designers in this search for solutions by formalkckea for ideas from different
domains. Linsey and colleagues have studied the cognitive proceskesigners use
when searching for analogies and have shown that function-basegptiaserimprove
designers’ ability to identify potential solutions [83]. Goel andeagues show that
functional and causal design patterns allow designers to identifg@pigd analogies in
design problems [84]. McAdams and colleagues use functional siyndara basis for
analogical comparisons and have demonstrated a method for desigalbgyathrough
the application of a similarity metric [40] to new design problgr]. The use of
function, therefore, has great potential to help designers makeahaegies, aiding in
concept generation. However, the level of abstraction at which functo@éogies
should be made has not been specified in previous research.fofdetleree levels of
abstraction are explored for comparing artifacts functiondllye goal of this study is to
identify an appropriate level of abstraction for finding existingifeants that are
functionally similar to a new design solution for adaptive desigiblpms [1]. It is

assumed that a set of artifacts functionally similar to aaesign solution can be used as
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a seed for the new design, similar to the demonstration in [41]. The level afcéibstis

not intended to be used to identify analogies for novel concept generation.

6.2 Frame of Reference

6.2.1Function-Based Similarity Metric

A quantitative similarity metric has been developed by McAdantscolleagues
[40] that uses customer needs and a product function matrix (PFM) to complaetgimi
A PFM contains all functions performed by a set of artifacttherleft of the matrix and
the list of artifacts across the top of the matrix. Thesaalthe matrix show the number
of times the given artifact performs the given function. For exampl®FRMeof a coffee
maker, vacuum cleaner, and flashlight would include at leassubset of functions
shown in Table 6-1. The coffee malaemverts electrical energy to thermal enexe
time. The coffee maker may alsonvert electrical energy to electromagnetic energy
(light) to indicate that it is turned on. The flashlight also performs this function, but it is a
more important function for the flashlight than for the coffekena For this reason,
customer needs are used in the similarity metric to givehvéigeach function for each
artifact. The weighted functions are then used in the sityilaretric to determine the

overall similarity between artifacts.
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Table 6-1: Sample Functions in a Product Function Matrix

Artifacts
coffee  vacuum

Functions flashlight
maker  cleaner

convert electrical energy to thermal energy 1 0 0

convert electrical energy to mechanical energy 0 1 0

convert electrical energy to electromagnetic energy 1 0 1

Functional information for over 130 artifacts is stored in the dessgository
[31] (see Section 2.1.2) and the product function matrix (PFM) for thddacts is
obtained and used in this research with the similarity metfiastomer needs for each
artifact are not included in the design repository, so it is asdumthis research that all
functions have equal weighting. Thus, the PFM for all artifacthe repository can be
directly used to compute similarity using the metric developgdMcAdams and
colleagues [40, 41]. In this metric, each column inrth& n PFM is treated as &
dimensional vector and is normalized so that it has a magnitude .offtweesimilarity of
two artifacts is calculated by taking the projection of thesetors [40, 41]. An x n
artifact similarity matrix can be created that includesé¢heector projections between
each artifact. For example, the similarity of a selectiowamfuum cleaners from the
repository is shown in Table 6-2. The matrix is symmetric, andilgonal has values
of one since an artifact is exactly similar to itself. The resultinglarity values are used
for relative comparisons of similarity between artifacts, reoaa absolute measure of
similarity [40]. Specific details about this similarity metcan be found in research

conducted by McAdams and colleagues [40, 41].
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Table 6-2: Similarity of Various Vacuum Cleaners
A B C D E F G

A Black and Decker Dustbuster 1.00 0.74 059 064 083 0.52 0.75
B Bissell Hand Vac 0.74 100 072 070 0.60 087 094
C Blowervac 059 072 100 049 055 072 0.73
D Bugvac 0.64 070 049 100 0.34 078 0.77
E Dirt Devil Vacuum 0.83 060 055 034 100 040 0.65
F IRobot Roomba 0.52 087 072 078 040 100 0.93
G Shopvac 0.75 094 073 077 065 093 1.00

6.2.2DSM Clustering

Design Structure Matrices (DSM) can be used to capturgomdaips between
two identical domains. The similarity matrix shown in Table i8-2 DSM because it
captures artifact-artifact similarity. Algorithms havesbaleveloped to help manage the
domain of interest by rearranging the rows and columns of tihé Diebeau developed
a clustering algorithm to improve modularity of components in aratde system [85].
Since the algorithm identifies and groups closely relatedsiiena DSM, it can be used
to identify clusters of similar artifacts in an artifaomilarity matrix. The algorithm has
several input parameters, such as the maximum cluster sazeemialty for large clusters,
that can be changed by the user [85]. In this research, thaltde&lues for these
parameters are used to ensure an unbiased comparison of abstraction levels.

The clustering algorithm intentionally uses a random startingg poi clustering,
so each run of the algorithm produces different results. A “lg&nmetric is used to
compare multiple runs of the algorithm with identical input patarse The likeness of
one cluster to another is twice the intersection of elementeitwio clusters divided by
the total number of elements in the two clusters. To deteriminkkeness of one run to

another run, the likeness of each cluster in the first run is cothpuite respect to each
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cluster in the second run. The closest matching clusters fromvtheuns are used to
determine the likeness of the two runs. A complete discussion xamdpke of the

likeness metric can be found in Thebeau’s research [85].

6.2.3Levels of Abstraction

Previous research has identified two dimensions of abstraction iniciunct
models—model size and term specificity—through an interpretabsigy study [78]. In
this research, term specificity is held constant through thefufee secondary level of
the Functional Basis, while model size is used to vary the tdadbstraction of function
models. A larger model will tend to describe more details aheuartifact than a small
model, so the large model is more decomposed, or less abstraet,dimatl model. It is
important to note that model size is used for relative comparisoaisstfaction within a
single artifact, not for comparisons across artifacts. Theremany factors that can
affect the size of a model, such as the artifact's complesd the size of models for
different artifacts are not compared. The three levels ofaaisin, from lowest to
highest, are:

Level One — Including Supporting Functions

Level Two — Excluding Supporting Functions

Level Three — Pruning Rules Applied

6.2.3.1Supporting Functions

The functions stored in the design repository are identified as supporti

functions if they describe assembly relationships of the ar{8}t For example, many
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screws in the repository perform the functmouple solid which describes the assembly
relationship between two components fastened to each other byrélae sSupporting
functions represent a greater level of decomposition than non-supporticgnaaptual
level, functions because they describe the physical connectiongdmetvomponents
[58]. Supporting functions can exist only if the artifact's amgttitre is already known.
When supporting functions are included in the model, the model is awiestllevel of
abstraction available in the design repository, defined as Level One iagbach.

All functions in the repository are identified as supporting or not, badPFMs
can be obtained from the repository either including or excluding sumppdunctions.
When supporting functions are not included, the size of the model is dgdiniceasing
the level of abstraction. Further, the functions that remain areeptwat functions, so

models that exclude supporting functions are defined as Level Two in trasatese

6.2.3.2Pruning Rules

To further increase the level of abstraction of the function modeitional
functions are removed from the models. Therefore, pruning ruleSéstien 2.1.4) are
used to remove highly decomposed functions. The pruning rules weremkxVdbr
graphical function models in the repository, so they have been moidifiegplication to
PFMs, which relate functions to artifacts by the numbemoési an artifact accomplishes
a particular function. Rules that referred to flows in the foncstructure are no longer
applicable as PFMs are not graph-based. A rule specifyingcahgbination of
consecutive convert functions cannot be applied because the order tdrfsiis not

captured in PFMs. A rule is also added to removeuilie solidfunctions, which are
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frequently used to describe assembly relationships in PFMs but didppear in the
function structures that were used when developing the pruning rlllediary terms
have been removed from the rules since they are not used in #asctes The following
nine rules were applied to PFMs to increase their level ofraaibsin, resulting in
conceptual-level models:
e Remove alimportandexportfunctions.
e Remove alchanne] transfer, andguidefunctions referring to any type ehergy
signals or humanmaterial
¢ Remove alcouplefunctions referring to any type eblid.
e Remove alkupport stabilize securg andpositionfunctions.
e Remove alcontrol magnitudeactuate regulate change andstopfunctions.
e Remove alprovision store andsupplyfunctions referring to any type ehergy
or signal
e Remove aldistributefunctions referring to any type ehergy
¢ Remove alkignal sensegindicate andprocesgunctions.

e Remove alguide solidfunctions.

An example of the three levels of abstraction used in this ms&aishown in
Table 6-3. The initial PFM, which includes supporting functions, eastE35 functions.
When supporting functions are removed, the functamgple solid guide solid position
solid, and secure solidare removed from the PFM, resulting in 49 total functions.

Pruning further removes 32 functions, resulting in 17 functions in the pruned model.
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Table 6-3: Shopvac PFM at Three Levels of Abstraction

Representation Level

Including Excluding Pruning
. Supportin Supportin Rules
Function Fu?ﬁ:tionsg Fu?ﬁ:tionsg Applied
(One) (Two) (Three)
actuate control to electrical 1 1
actuate electrical 1 1
convert electrical to mechanical 1 1 1
convert human energy to control 1 1 1
convert mechanical to pneumatic 1 1 1
couple solid 34
export electrical 1 1
export gas 2 2
export human material 1 1
export mixture 1 1
guide gas 5 5 5
guide human material 1 1
guide mixture 4 4 4
guide solid 16
import electrical 1 1
import human energy 1 1
import human material 3 3
import mixture 3 3
position solid 12
secure solid 24
separate mixture 1 1 1
separate mixture to gas 1 1 1
stop mixture 1 1
store control 1 1
store electrical to acoustic 1 1
store electrical to mechanical 1 1
store electrical to pneumatic 1 1
store human energy to mechanical 1 1
store human material 1 1 1
store mixture 1 1 1
store mixture to gas 1 1 1
transfer electrical 10 10
Sum 135 49 17
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6.3 Similarity Calculations

It is hypothesized in this research that pruned models are atmteact than
unpruned models since they do not contain assembly- and component-spetaiiis
about the artifact. To test this general hypothesis, the prunieg are applied to
function models and the similarity of these artifacts is detmdhusing a functional
similarity metric. Since this similarity metric haselpeused in previous research within a
conceptual design-by-analogy method [41], the similarity me#it e used to test the
usefulness of the pruning rules for this conceptual design activity.u3éfalness of the

rules for other conceptual design activities is outside the scope of this paper.

6.3.1Study of Large Artifact Set

The similarity among 128 artifacts was computed using thdimxisimilarity
metric and an equal weighting of all functions (see Section 6.2.43cht of the three
levels of abstraction. Due to the size of the results (128 x 128&)ntte specific values
are not presented, but general trends are discussed. The sinmiatrix was then
clustered using the DSM clustering algorithm (see Section 6.2.ReseTresults are

summarized due to their length.

6.3.1.1Results of Similarity Metric

The results of similarity at the each level of abstraction are showonésur plots
in Figure 6-1, Figure 6-2, and Figure 6-3. The values of sinyilaré not shown, but the
trends are depicted by the shading, where darker cells repres@ghex level of

similarity and lighter cells represent a lower level of similaoggween artifacts.
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Figure 6-2: Similarity of All Artifacts at Abstraction Level Two
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At Level One (Figure 6-1), all artifacts are highly simiiareach other, as shown
by the darker cells, with the exception of a few artifaci®he light rows represent
artifacts that are dissimilar to most other artifacts. niaf these rows correspond to
atypical artifacts in the repository: “brake system,” “fljfjeart,” “jar opener,” “lichen,”
“nasa anomaly,” “natural sensing,” “power station,” and “two componegulatory
system.” These lighter rows are expected since the #stifagith the exception of the
jar opener—are not the typical power tools, appliances, toys, otral&s in the
repository. However, beyond this observation, it is difficult to deawclusions about
the similarity of the remaining artifacts since the valuesimilarity are all close to each

other. A wider distribution of similarity would give greater ddehce in the results

when comparing pairs of artifacts.
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At Level Two (Figure 6-2), pairs of artifacts with a higm8garity are easier to
identify compared to Level One. The average similarity lohmiifacts is smaller, and a
greater distinction exists among similarity values, causiogety related artifacts to
stand out from the remaining values. This increase in distimgs caused by the
exclusion of supporting functions in the models. Supporting functions degbebe
assembly of components to each other, and are modeledsé®n solid guide solid
couple solid or secure solidn the repository 99.7% of the time. Furthermore, there are
almost as many supporting functions as non-supporting functions, so dt Qeee
approximately half of all functions are one of these four suppontingtibns. Therefore,
when including supporting functions, these four functions cause the #iyniérall
artifacts to be closer together and higher. When the suppdutictions are excluded,
artifacts are not evaluated on how they are assembled, but onhelaatifact does. For
this reason, pairs of similar artifacts are more pronouncedgurd-6-2 than in Figure
6-1. It is important to note that the average similarity easares of the spread of values
in the matrix cannot be used to draw conclusions since the desired spmot known.
The average similarity or spread should not necessarily incoe@gerease with a higher
level of abstraction because it will depend on the artifacts being compared.

Abstraction Level Three—with pruning rules applied—results in an gveater
distinction of similarity among artifacts, as shown in Figure 6P3uning rules further
increase the level of abstraction of the model by removing ibngfrom the reverse-
engineered function structure that would not likely be addresist#te conceptual stage

of design, such asransfer electrical energyor distribute electrical energy Like
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supporting functions, these pruned functions are performed frequentlpioy artifacts,
so they increase the similarity among artifacts and rethecdistinction between values
at Level Two compared to Level Three. After removing thesetions, closely related
pairs of artifacts are more apparent in the figure. Thetggrebstinction in similarity
values may also give more confidence when comparing an artfadt two other
artifacts, B and C. If the artifacts are compared at ILéu®e, it is likely that the
similarity between A and B and the similarity between B andliifers by a small
amount. At Level Three, however, these similarity values magrday a much higher
amount, providing a greater confidence that one pair is actually smoilar than another
pair.

The results of the similarity metric at three levels lagteaction show that higher
levels of abstraction provide a greater distinction in similaviyues. Thus, when
searching for similar artifacts, there will be a snrallet of artifacts that are closely
related to the artifact of interest. For example, the siityilaf a vacuum cleaner to all
other artifacts in the repository is shown for all threelkeweé abstraction in Figure 6-4.
The 128 artifacts are sorted from most similar to leasiairon the horizontal axis. At
Level One, the sorted list of similar artifacts slowly @ases in similarity for the first
sixty artifacts, all of which have a similarity greaterrti@8. At Level Two, there are
only a few highly similar artifacts and the remaining actfadecrease in similarity at a
steady rate. At Level Three, the similarity decreageskly with each artifact, but at a
decreasing rate. At this level of abstraction, a few attifare highly similar to the

vacuum cleaner, while the remainder, which are of less intemestnhuch less similar.
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These trends can also be seen in Table 6-4, where the numbeifactsarh various
similarity ranges is given for each level of abstraction.Lé&tel One, 59 artifacts have a
similarity of greater than 0.80, while only one artifact hashigh degree of similarity at
Levels Two and Three. Level One has a high percentage of @rtifath a high

similarity, while Level Three has a high percentage of artifacts it values.
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Figure 6-4: Similarity of a Vacuum Cleaner to All Other Artifacts in the Repository
at Three Levels of Abstraction

Table 6-4: Degree of Similarity Between a Vacuum Cleaner and All Other wifacts

Representation Level

Similarity Value One Two Three
0.80-1.00 59 1 1
0.60 - 0.80 33 24 2
0.40 - 0.60 20 29 8
0.20-0.40 4 23 11
0.00 - 0.20 8 39 66

The similarity metric used in these calculations has been used in previoushresea

for a design-by-analogy demonstration by computing the similafitg new artifact’s
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function model to the functionality of existing artifacts. Thefacts are then ranked
according to similarity and an artifact with a high similaig chosen on which to base
the new design [41]. If artifacts are compared at Level Thheesorted set of results
will give more confidence that the first few results in liseare of greater interest than
the rest of the artifacts because the similarity decreases quickly.

The high degree of similarity at Level One is caused bystipporting functions
in the models. Since most of the artifacts compared contaimblsséeatures, such as
screws, then they are found to be highly similar to each other. a$b&smnbly-dominated
similarity result is not helpful for function-based design-bylagya In design-by-
analogy, similarity should be used to draw analogies at a funttiena, allowing
analogies to be made across domains. The similarity atitmg at Level One do not
provide this type of analogy. At Level Two, artifact simifais dominated by the means
for achieving functions, rather than the functions themselves. Matyions at Level
Two represent a one-to-one mapping with system components, suctesswiiich are
included only to achieve higher-level functions. Since most ofattiéacts contain
similar means (used to achieve different high-level functiohg),similarity metric at
Level Two is a means-dominated metric, which will not prodheedesired results for
design-by-analogy. At Level Three, the assembly- and measestifanctions are absent
from the model, so the similarity results are based only on gkelével function of the
artifact. These high-level functions are best for drawing aealogies across domains
because they focus on the transformative purpose of the artddwotr rthan its

embodiment.
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6.3.1.2Results of Clustering

The previous section demonstrates that similarity at higherslefehbstraction
results in a smaller set of highly similar artifacts, which cae greater confidence in the
results. However, the accuracy of the results has not been edglaluaterder to assess
the accuracy of the results from the similarity metriDSM clustering algorithm is used
to identify groups of similar artifacts in the similarity tm&a These clusters are then
evaluated to understand the quality of the values in the matrixdisBgssed in Section
6.2.2, the clustering algorithm produces different results eachitirmeexecuted. The
clustering algorithm was executed many times at each &dvagbstraction and trends in
the clusters were observed. The results of one representegimgtion of the algorithm
at each level of abstraction are presented.

The first five clusters identified by the algorithm at edmkel of abstraction are
shown in Table 6-5. Clusters are labeled A through E in the tablefrmencing only.
There is no relationship between clusters across abstractids. leVae asterisks (*)
indicate artifacts that belong to more than one cluster. TétesBrveral clusters typically
contain five or six artifacts; beyond these first few clustérs size decreases to two or
three artifacts per cluster. The sizes of the resultingtethisare based on input
parameters to the clustering algorithm. The default parameteign a penalty to large
clusters, so the largest clusters contained approximatety seven artifacts. When the
penalty was reduced, the clusters increased significantlyz@ and it was difficult to
determine the similarity between artifacts in a given ctusie they differed greatly.

With smaller clusters, typically there were several aotg that performed similar
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functions, so it was assumed that these similar artifactsetbtime basis for the cluster.
For example, the second cluster at Level Two is assumed tpd®df power tools. The

number of clusters in each run varied from approximately fifty to sixty chister

Table 6-5: First Five Resulting Clusters of Artifacts at Each Level oAbstraction

Cluster Level One Level Two Level Three

A b and d dustbuster b and d drill attachment*black 12 cup deluxe coffee
b and d jigsaw b and d sander dishwasher
dirt devil vacuum attachment durabrand iron
*nasa anomaly razor scooter tractor sprinkler
vibrating razor stapler white 4 cup economy coffee
yoda doll vise grip

B b and d power pack b and d power pack b and d mini router
dryer *delta drill attachment
hair trimmer delta jigsaw delta circular saw
skil circular saw delta sander delta jigsaw
skil flashlight versapak sander firestorm drill

giant bicycle

C b and d can opener  *delta drill ball shooter
b and d sliceright *delta nail gun first shot nerf gun
datsun truck firestorm drill stapler
*holmes fan irobot roomba *tippman paintball gun
irobot roomba mac cordless dril-driver

D air hawg toy plane b and d palm sander *b and d power pack
brother sewing machineb and d screwdriver  delta drill
*delta circular saw b and d sliceright delta sander
*delta nail gun giant bicycle slow cooker
firestorm drill vibrating razor

E *b and d drill attachmer air purifier *pblack 12 cup deluxe coffee
b and d jigsaw coolit drink cooler black 12 cup economy
attachment shopvac coffee
b and d sander supermax hair dryer  black 4 cup regular coffee
attachment yoda doll white 12 cup regular

tractor sprinkler
*ub roller coaster

The results of at least five executions of the clustering iéthgorwere studied to

determine trends at each level of abstraction. At Level @es;lusters typically did not
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include many similar artifacts. At most, two or threefacts in the cluster were similar
to each other (based on overall functionality). For example, Clésteontains two
vacuum cleaners. It could be argued that the razor and jigsasinalar because they
both remove material, but beyond these two possibilities, thesactati&ire not very
similar.

Level Two produced better clusters than Level One, as demodstrgtehe
second column in Table 6-5. Typically, more than half of the adifecceach cluster
were closely related to each other. For example, four of thaffifacts in Cluster C are
power tools. However, some clusters, such as Cluster A, did meisesp a group of
similar artifacts.

The clustering algorithm produced the best clusters at Tdwele. Most of the
artifacts in each cluster were related by some high-leweltionality. For example, all
of the artifacts in Cluster A transport water, and four of theat thee water significantly.
In Cluster B, four of the five artifacts are power tools, an@lurster C, three of the four
artifacts are toy guns. These results are the most meaningful fanfubesed similarity
because the algorithm results in clusters of functionally-smaittifacts. These types of
results would be useful in conceptual design when searching for mEsaloga new
design problem. If the high-level function of a new artifagtentified, its similarity to
known artifacts can be computed and the clustering algorithm grailp it with
functionally similar artifacts. The artifacts in the sathester as the new design can then

be used to help the designer begin to embody the idea.
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6.3.2Study of Three Groups of Artifacts

To better understand the quality of the abstraction levels for carggiimilarity,
a subset of artifacts is chosen for a more in-depth study. The subset ctbmésgrgroups
of artifacts that are assumed to be similar based on the&lbparposes: making coffee,
removing dirt from a floor, or producing light. Furthermore, they arelax because
they accomplish these high-level purposes with similar working piegi The
following three groups of known similar artifacts—coffee makerspyuen cleaners, and
flashlights—were selected for this study:
e Coffee Makers — artifacts that heat water
- black 12 cup deluxe coffee
- black 12 cup economy coffee
- black 4 cup regular coffee
- white 12 cup regular
- white 4 cup economy coffee
e Vacuum Cleaners — artifacts that remove dirt from a floor
- bissell hand vac
- blowervac
- bugvac
- dirt devil vacuum
- irobot roomba

- shopvac
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e Flashlights — artifacts that produce light
- delta flashlight
- firestorm flashlight

- skil flashlight

In addition to these fourteen artifacts, an artifact simdagach group is chosen
from the repository to determine if the similarity metric ahalstering algorithm finds
them to be similar. An iced tea maker (“mr coffee itea maker”) is chosen as the
artifact most similar to the coffee makers since it sha@mmon functionality with a
coffee maker, such as heating water and dripping it over coffesa. The tea maker has
also been used to validate the results of the similarity nd®ic The artifact similar to
the vacuum cleaner is a hair dryer (“supermax hair dryer”)esiiclike the vacuum
cleaner, creates a flow of air through the system. Thereadarany artifacts closely
related to the flashlights, so a camera is chosen becauseradagc purpose of the
camera is to produce light. In addition to these three artifastsstifact not similar to
coffee makers, vacuum cleaners, and flashlights is chosen to detefmiappears in its
own cluster. This dissimilar artifact is a computer mous@gle usb mouse”), since it
does not share overall functionality with these artifacts.

In order to validate the use of pruning rules for similarity, tbeueacy and
precision of the clusters are computed at each level of absiraciihe accuracy and
precision metrics are explained in Sections 6.3.2.3 and 6.3.2.4. Further, aonatddit
random level of abstraction is created to ensure that the spselifiction of functions

removed from Level Three is responsible for the results, not randante. To achieve
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the random level of abstraction, 313 functions—the same number removedhthrou
pruning—are randomly removed from the 128-artifact PFM at abstnatevel One.

The similarity of these artifacts is computed and the results are usdédsferiag.

6.3.2.1Results of Similarity Metric and Clustering

The similarity of the 18 artifacts was computed and the reguliSM clustered
as explained in Section 6.3.2 at the four levels of abstraction. li$terang algorithm
was run ten times for each level of abstraction and the trendseirctlusters were
analyzed. One representative data set from clusterirepcit level of abstraction is
shown in Figure 6-5, Figure 6-6, Figure 6-7, and Figure 6-8. Thedstifre grouped
according to the clusters identified by the clustering algoritima the similarity values
are included in the matrices. The cells are shaded fromttighdrk based on the lowest

and highest values in the given matrix.
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1 2 3 4 5 6
C E|FlclH]1]J]K MIN]JO]lP]OIR

Alblack 12 cup deluxe coffee 00 0.96 0.92 0.96 0.92 0.76 0.91 0.93 0.84 0.87 0.81 0.90 0K3s] 0.40 0.30 0.38/0.58

B |black 4 cup regular coffee  [{ORSISRMMe[oMNoR={ ORISR ORI 0.91 0.89 0.83 0.86 0.81 0.85/0.68 0.89 eRsyMF:ZNRK] 0.74
1] Clirobot roomba 0.92 0.86 1.00 0.87 0.89 0.87 0.91 0.96 0.93 0.78 0.87 0.94 0 0X74 0.52 0.40 0.44 0.50

D Jwhite 12 cup regular 0.96 0.98 0.8 00 0.970 0.93 0.92 0.86 0.89 0.83 0 0Xe74 0.53 0.48 0.52 loifs

E Jwhite 4 cup economy coffee JORZARORI Mo R: IS II0Ke 00 0.83 0.96 0.93 0.91 0.82 0.84 0 4 0.95/0.68 0.78

F |bissell hand vac 0.76 0 0.87 0 0.8 00 0.85 0.88 0.94 0.70 0.86 0 0.890.69 0.58 0.56
2 G|black 12 cup economy coffedieRkREIRKROANRNORC KR ORC SRR 00 0.95 0.94 0 0.82 0 68 0.920.66 0.54

H|mr coffee iced tea maker 0.93 0.89 0.96 0.92 0.93 0.88 0.9 00 0.95 0.84 0.90 0 70Kl 0.58 0.51 0.48

| |shopvac 0.84 0.83 0.93 0.86 0.91 0.94/ 0.94 0.9 00 O 0.89 0.94/0 0.950.70 0.58

J |bugvac 0.87 0.86 0.78 0.89 0.82 0.70 0 0.84 0 OOJNORSISIORCIE 0.49 JORsYA 0.32 0.34 0.34 fofe
3] K |delta flashlight 0.81 0.81 0.87 0.83 0.84 0.86 0.82 0.90 0.89 0.8 SR RePA0 )y (0 JloRes] 0.55 0.49 0.54 [ofis

L Jsupermax hair dryer 0.90 0.85 0.94 0.89 0.88 0.88 0.90 0.97 0.94 0.88 0.9 00 0Xe%Y 0.48 0.46 0.37 0.55
4 M]blowervac 0.68 O 0.74 0 0.68 0.67 O 0.49 Neivfe 00 0 0 (0511 0.79 0.6

N [firestorm flashlight 0.88 0.89 0.92 0.92 0.95 0.89 0.92 0.95 0.95 0.87 0.96 0.94 0 o) 0)55) 0.58 0.76
5 O |apple usb mouse 0.40 0.51 0.52 0.53 HecteReAcRoA:(s) 0.58 Hojy(0) 0.320.55 0.48 {8 0.6 00 0.83 0.85/0.66

P Idirt devil vacuum 0.30 0.42 0.40 0.48 0.51 0.34 0.49 0.46 0.55 0.58J0k: 00 O
6 QJcamera 0.38 0.53 0.44 0.52 0.58 0.54 0.48 0.58 0.34 0.54 0.37 JoN£ 0.85 0 00/0.80

R |skil flashlight 0.58 JONZ3 0.50 Ko/ JeN¢:] 0.56 0.69 0.68{0)=] 0.67 0.76 0.66 0.80 1.00

Figure 6-5 Similarity and Clustering of Subset of Artifacts at Abstaction Level One

2 3
Hl1lJlk]LIM]IN]O
Albugvac (3 0.16 0.15 0.20 0.17 0.13 0.31 0.16 0.23
B |delta flashlight (o374l 0.03 0.07 0.04 0.05 0.05/0.30 0.23 0.22
C [firestorm flashlight (4]0} 0.04 0.08 0.06 0.06 0.06 0.32 0.22 0.22
1] D|irobot roomba (U¢(¢) 0.02 0.03 0.02 0.02 0.04- 0.28 0.37
E |mr coffee iced tea maker . (Uy£3 0.08 0.19 0.16 0.14 0.19 0.27 0.18 0.25
F |skil flashlight 0.14 0.19 0.24 0.17 0.16 0.25 0.27 0.24
G Jsupermax hair dryer hMefo) 0.02 0.04 0.02 0.02 0.03 0.37 0.14 0.35
H Jblack 12 cup deluxe coffee ]0.16 0.03 0.04 0.02 0.08 0.14 0.02| 0.07 0.05 0.07
| |black 12 cup economy coffed 0.15 0.07 0.08 0.03 0.19 0.19 0.04 0.11 0.05 0.15
2| J Jblack 4 cup regular coffee  ]0.20 0.04 0.06 0.02 0.16 0.24 0.02 0.08 0.09 0.08
K Jwhite 12 cup regular 0.17 0.05 0.06 0.02 0.14 0.17 0.02 0.07 0.06 0.08
L Jwhite 4 cup economy coffee] 0.13 0.05 0.06 0.04 0.19 0.16 0.03 0.07 0.08 0.15
M[blowervac 0.31 0.30 0.32J8%T 0.27 0.25/0.37 0.07 0.07|F¥Y 036
3| NJcamera 0.16 0.23 0.22 0.28 0.18 0.27 0.14 0.05 0.05 0.09 0.06 0.08 jMels] 0.23
O dirt devil vacuum 0.23 0.22 0.22 0.37 0.25 0.24 0.35 0.07 0.15 0.08 0.08 0.15 0.23 o]
P Japple usb mouse 0.08 0.10 0.11 0.01 0.20 0.16 0.09 0.03 0.03 0.07 0.03 0.12 0.07/0.39 0.09
4] Qbissell hand vac 0.35]0K¢f§] 0.07 0.09 0.06 0.06 0.11 0.30 0.34 0.40
R Jshopvac 0.69 0.71 0.73 (%1 0.14 0.12 0.08 0.10 0.10/0.31 0.15 0.38

Figure 6-6: Similarity and Clustering of Subset of Artifacts at Absraction Level
Two
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1 2 3 4
clH|l 1 ]Jlk]L]ImM[N]JO]P]OQIR

Alblack 12 cup deluxe coffee RES 0.18|XEEH 0.02 0.00 0.18 0.09 0.09 0.00 0.00 0.00 0.01 0.07 0.00 0.00
B |black 12 cup economy coffe OE:] 0.35 JoR:RoReNN 0.09 0.10 0.15 0.12 0.14 0.07 0.00 0.09 0.03 0.09 0.00 0.00

1 kE]plack 4 cup regular coffee R0ls] 0.27 FROeKeyd 0.03 0.00 0.22 0.12 0.11 0.00 0.00 0.00 0.02 0.09 0.00 0.00
D |mr coffee iced tea maker 0.06 0.20 0.00 0.00 0.14 0.21 0.14/0.35 0.14 0.18 0.00 0.04
E |white 12 cup regular 1.oo FRVOIORYd 0.03 0.00 0.22 0.12 0.11 0.00 0.00 0.00 0.02 0.09 0.00 0.00
F Jwhite 4 cup economy coffee 0.97 {45 0.97 0.00 0.00 0.02 0.08 0.00 0.00
G|bissell hand vac 0.06 0.03 0.03[H PEARZ] 0.00 0.07 1058 0.07 0.00 0.00
H|blowervac 0.00 0.10 0.00 0.20 0.00 0.22 1.00 0.00 0.22 0.13 0.00 0.20 0.31

,|-Hpugvac 0.18 0.15 0.22 0.00 0.22 O. KR 1.00 0.38 0.13]0.00 0.00§0%8 0.17 0.00 0.00
J [dirt devil vacuum 0.09 0.12 0.12 0.00 0.12 1.00 0.00 0.00 0.13 0.27 0.00 0.00
K [shopvac 0.09 0.14 0.11 0.14 0.11 ERVOON&] 0.00 0.06/0.40] 0.00 0.00 0.00
L Jsupermax hair dryer 0.00 0.07 0.00 0.21 0.00 0.00js}&] 0.35 O. (o) JEH] 0.00 0.16 0.05 0.00 0.00 0.00
M|delta flashlight 0.00 0.00 0.00 0.14 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.14

5| firestorm fiashiight 0.00 0.09 0.00/0.35 0.00 0.00 0.07 0.22 0.00 0.00 0.06 0.16 0.00 0.18
O [irobot roomba 0.01 0.03 0.02 0.14 0.02 0.02J0%3 0.13J0/48 0.13[6%4 0.05 0.00 0.14
P [skil flashlight 0.07 0.09 0.09 0.18 0.09 0.08 0.07 0.00 0.17 0.27 0.00 0.00

4 [Q]apple usb mouse 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00
R|camera 0.00 0.00 0.00 0.04 0.00 0.00 0.00 0.31 0.00 0.00 0.00 0.00 0.14 0.18 0.14

Figure 6-7: Similarity and Clustering of Subset of Artifacts at Absraction Level

Three
1 2 3 4 5 6
A Jblack 12 cup deluxe coffee
B [black 4 cup regular coffee
1] € Jbugvac . .13 0.29 0.38 0.34 0.40
D [supermax hair dryer
E Jwhite 12 cup regular
F Japple usb mouse . .00 0.86
G [blowervac b .86 1.00
2 HJcamera b b .88 0.94
| |dirt devil vacuum . .76 0.89
J [bissell hand vac . .76 0.75
3] K ]Jirobot roomba 0.81 0.78 0.92
L |shopvac 0.79 0.79 0.86
4 M{black 12 cup economy coffee 0.92 0.76
N Jwhite 4 cup economy coffee 0.96 0.75
5 O mr coffee iced tea maker 0.94 0.72
P Iskil flashlight 0.97 0.71
6 Q |delta flashlight (ORX 0.74
R [firestorm flashlight 0.93/0.65 0.76

Figure 6-8: Similarity and Clustering of Subset of Artifacts at Ranem Level of
Abstraction

At Level One (Figure 6-5), the clusters are inconsistent. In the ten hnust all
of the clusters contain artifacts from at least two categoand many of the clusters
contain artifacts from all three categories. For exampkesecond cluster contains two

vacuum cleaners and a coffee maker as well as an addedr simiilact, the iced tea
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maker. The added similar artifacts usually have at leassionkar artifact in its cluster,
but in some instances these artifacts are clustered with daisgimilar artifacts.
Furthermore, the mouse is clustered with all three typeartdbcts, and in one run
appears in three clusters. The clusters at Level One areulditb identify from the
figure based on the shading of the cells alone. As with theedhugtof all 128 artifacts,
the clusters are closely related to each other. By inspegftibigure 6-5, it appears that
clusters 1, 2, 3, and potentially 4 should be one large cluster.

At Level Two, which excludes supporting functions, the clusters nanee
consistent between runs of the algorithm. The coffee makeraost always clustered
together (Figure 6-6), but the tea maker does not appear in erchist a coffee maker
in any of the runs. Other clusters typically have a majofitgrtifacts that are from one
category of artifacts, but almost every non-coffee maker eslusas flashlights and
vacuum cleaners as well as some of the additional artif&ctsexample, the first cluster
in Figure 6-6 contains three flashlights, two vacuum cleanersgedeea maker, and the
hair dryer. The second cluster contains all of the coffee maetst does not include
the tea maker, which would be desired. The relationship between clusters isstioce di
at this level than the first. For example, the relationshipvden the first and fourth
clusters can be identified by a group of darker shaded cdlishws expected since both
clusters contain vacuum cleaners. Furthermore, the coffee wlak®&sr is not strongly
related to any other artifacts, as demonstrated by the ligalisrin the rows containing

coffee makers.
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At Level Three (Figure 6-7), when pruning rules are appliedh& function
models, the clusters are much more consistent between runs agonghm. Distinct
clusters of each type of artifact are apparent in each of the runs at ¢hisflafstraction.
The hair dryer is always clustered with vacuum cleaners, lamdced tea maker is
clustered with coffee makers in three of the five runs. The @@anm@wever, is not
clustered with the flashlights, but instead is paired with thasa in all five runs. This
result, while not anticipated, is acceptable since the camatadsan electronic device.
The clustering demonstrates that the camera is more sitoilne mouse than the
flashlights. The relationship between clusters of artifactauch lower at Level Three
than Levels One and Two, as none of the clusters are strongldrétaother clusters.
The flashlight cluster is slightly related to the vacuumratealuster because the “irobot
roomba” is clustered with the flashlights. This point is discussglier in the next
paragraph. Aside from this relationship, all clusters are deflhed and make logical
sense in terms of similarity.

One interesting result at Level Three is the clustering of‘ilobot roomba”
vacuum cleaner with flashlights in all five runs. Upon further inspecthe PFM of the
this artifact contains eight instancescohverting electrical energy to electromechanical
energy performed by various sensors, causing it to be more sitaitae flashlights than
vacuum cleaners. However, this result is not desirable singe forationality of the
“irobot roomba” is not to produce light. This discrepancy can potentially be adilfgsse
using customer needs to assign weights to functions in the B&Mescribed in the

similarity metric used in this research [40]. This would alkbw function ofconvert
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electrical energy to pneumatic enerigythe vacuum to be weighted much higher than the
function of the eight sensors, causing it to be more similar tauaccleaners than
flashlights. However, this requires knowledge of the customer reeetishe mapping
between each function and customer needs. A second approach to addressing
problem requires an extension of current functional representatiomscitale flow
attributes. If attributes of flows are captured, such as teasity of the output energy,
then the similarity metric could use this information to deterntivag the sensors on a
vacuum cleaner do not fulfill the function of a flashlight. The rfeeattributes of flows

in function models has been identified in related research [30, 86is andently being
investigated. This approach would also require an additional vocabofafpw
attributes, knowledge of the attributes of all flows, and refinemietite similarity metric

to compare the magnitudes of flows.

The results from the random level of abstraction (Figure 6-8g gienilar to the
results from Level One. Artifacts from all three groups fretjyeoccurred in a single
cluster, and it is difficult to distinguish clusters in the figur€he clusters are highly
related to each other and are not intuitive. Therefore, the improseitsrat Level Three
are caused by the specific functions removed, not by simply remawiy functions at

random.

6.3.2.2Discussion of Similarity Results

The similarity among artifacts within this subset of vacuueameérs, flashlights,
and coffee makers varies greatly depending on the level of etimtraised to compute

similarity. In order to understand the similarity metric aeduits at each level, the
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“shopvac” is compared to the three groups of artifacts, as showigureF5-9 through
Figure 6-11. The abstraction level in which functions are randonmhpved is not
discussed in this section because it does not represent a trueflabstraction and
cannot be placed in the sequence of Levels One, Two, and Three.

The similarity between the “shopvac” and coffee makers is higleeel One, as
shown in Figure 6-9, and it is more similar to many of the coffieé&ers than other
vacuum cleaners (compare to Figure 6-11). This high level ofasityils caused by the
inclusion of supporting functions, which describe assembly relationshpenga
components. Since both the “shopvac” and coffee makers are asbdotdséher in
some manner, they share many common supporting functions, causingthawe tthis
high degree of similarity. At Level Two, the exclusion of supporting functiaoses the
similarity between the *“shopvac” and coffee makers to decresagaficantly to
approximately 0.1. These values are more desirable than theysesince the
“shopvac” and coffee makers do not share the same high-level pufspkevel Three,
the similarity remains approximately the same, indicating tievel Three does not
change the level of similarity in this particular casehug; the pruning rules used to
arrive at Level Three successfully remove the supporting fundiiomsthe models that

cause a high degree of similarity at Level One.
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Figure 6-9: Similarity Between Shopvac and Coffee Makers at Three Levetd
Abstraction

The similarity between the “shopvac” and the three flashlights (see FglLOgis
relatively high at Level One, which is caused by the supportindifunsc At Level Two,
the similarity between the “shopvac” and flashlights decreasegipas the similarity
between the “shopvac” and other vacuums (see Figure 6-11), resultiagp of the
flashlights being more similar to the “shopvac” than four of taeuum cleaners. The
removal of supporting functions from flashlight function models, therefores doé
improve the similarity results between the “shopvac” and flastdjgand an additional
level of abstraction is required. The pruning rules provide this ldmwel, resulting in a
low degree of similarity between the flashlights and the “shopwes’shown in Figure

6-10.
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Figure 6-10: Similarity Between Shopvac and Flashlights at Three Lelseof
Abstraction

The similarity between the “shopvac” and all other vacuummelesaat Level One
is relatively high (see Figure 6-11), and similarity deaeast Level Two. At Level
Three, the similarity increases between the “shopvac” and twieovacuum cleaners,
indicating that the pruning rules are improving the results of thdasity metric.
Although the similarity of the remaining vacuum cleaners dsessahey do not decrease

as much as the flashlights, so the overall results are improved.
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Figure 6-11: Similarity Between Shopvac and Vacuum Cleaners at Threeelels of
Abstraction
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The average similarity between the “shopvac” and coffee rmakashlights, and
vacuum cleaners is shown in Figure 6-12 and Table 6-6. At Level G@meatuum
cleaners, on average, are least similar to the “shopvac,” anelecofékers are most
similar. At Level Two, the coffee makers are least similar, but the “shbvatill more
similar to flashlights than other vacuum cleaners. Only aelL&liree is the “shopvac”

most similar to vacuum cleaners.

Table 6-6: Average Similarity Between Shopvac and Three Artifact Typeat Three
Levels of Abstraction

Representation Level

Artifact One Two Three
Coffee Makers 0.87 0.11 0.11
Flashlights 0.82 0.63 0.02

Vacuum Cleaners 0.80 0.55 0.49

1.00
828 k --l-- coffee makers
0.70 NS == flashlights
0.60 N A

DA~ —X—vacuum cleaners
0.50 \\ =
0.40 .
0.30 S
0.20 R
0.10 Bl
0.00 : A

Level One Level Two Level Three

Similarity

Level of Abstraction

Figure 6-12: Average Similarity Between Shopvac and Three Artifact Typeat
Three Levels of Abstraction

6.3.2.3Similarity Precision
The qualitative observations made in Section 6.3.2.1 are further iratestig

through a quantitative analysis of the precision and accuradystégng. The precision
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is measured by computing the average likeness (see Section 6.%1)rahs to each
other at each level of abstraction. The likeness metric, developd&thdbeau [85],
guantitatively determines the likeness between each run and allrotiser Each run is
given a score between 0 and 1, representing how similar thateamsared to all other
runs of the algorithm. The average of these scores is used pathe consistency, or
precision, of the clusters at each level of abstraction.

The results of the likeness calculations for the ten runs atl@agof abstraction
are shown in Table 6-7. A two-sample t-test is used to contparaneans. The
hypotheses and resulting t- and p-values are shown in Table 6-8.prdinag rules
significantly increase the consistency of the clustering resaltgpared to Level One (p
< 0.0001), Level Two (p = 0.074), and random function removal (p = 0.0018)dafhe
also show that clusters computed at abstraction Level Two arecomsestent than those
computed at Level One (p < 0.0001).

Abstraction Level Three is significantly more precise than Ise@me and Two,
so similarity and clustering at Level Three is the mosfuls At Levels One and Two,
the higher degree of similarity of the models causes the ™dusiebe less consistent,
resulting in extra noise in the algorithm’s output. At Level Thtlkere is less noise, so
there will be fewer artifacts clustered with an artifalcinterest, reducing the amount of

work required by the designer after the clustering results are obtained.
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Table 6-7: Average Likeness Of Each Run to all Other Runs
Representation Level

One Two Three Random
Mean 0.603 0.718 0.759 0.657
Variance 0.0016 0.0011 0.0061 0.0032
Observations 10 10 10 10

Table 6-8: Hypothesis Tests for Clustering Precision

Alternative Hypothesis Test Statistic, t p-value
Level Three Precision > Level One Precision 5.63 1.2E-05
Level Three Precision > Level Two Precision 1.51 0.074
Level Three Precision > Random Precision 3.33 0.0018
Level Two Precision > Level One Precision 6.99 7.9E-07

6.3.2.4Similarity Accuracy

The accuracy of clustering is determined by computing the ldsené an ideal
run to the ten runs at each level of abstraction. The ideal run tsookihe following
four clusters: (1) all vacuum cleaners and the hair dryeral(2offee makers and the
iced tea maker, (3) all flashlights and the camera, and (4)cim@uter mouse. The
likeness of this ideal run to all other runs is shown in Table 6-9t-te&t is used to
compare the means at each level of abstraction. The hypotmesessalting t- and p-
values are shown in Table 6-10. The data show that the accuracy ofusers
identified by the pruning rules is significantly better than #lceuracy of clusters at
abstraction Level One (p < 0.0001), Level Two (p = 0.0002), and the randotiofunc
removal (p < 0.0001). The data do not show that the Level Two agcgraetter than
Level One (p = 0.298).

Functional analogies for conceptual design of adaptive design probtemkl be

focused on the high-level function of an artifact rather then rmheans or assembly
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relationships within the artifacts. Level Three has been shovwocus on these high-
level functions, since the ideal clusters were defined in this emani.evel Three,
therefore, should be used when making functional comparisons acrosstaréhd

drawing high-level analogies between them.

Table 6-9: Average Likeness of Each Run to Ideal Run

Representation Level

One Two Three Random
Mean 0.609 0.628 0.753 0.566
Variance 0.00333 0.00310 0.00579 0.00278
Observations 10 10 10 10

Table 6-10: Hypothesis Tests for Clustering Accuracy

Alternative Hypothesis Test Statistic, t p-value
Level Three Accuracy > Level One Accuracy 4.79 3.97E-06
Level Three Accuracy > Level Two Accuracy 3.64 2.43E-04
Level Three Accuracy > Random Accuracy 6.39 5.47E-09
Level Two Accuracy > Level One Accuracy 0.53 0.298

6.4 Outcomes and Discussion

Two abstraction levels of function models are obtained from exisésgarch,
and pruning rules are used to provide a more abstract artifact fopdse in conceptual
design. The proposed pruning rules are tested using a functionargymihetric to
understand their usefulness in conceptual design for design-by-analethods
Functional similarity is computed using a metric developed by daoAs [40] and
colleagues, and the resulting DSM clustered using the algoritheioged by Thebeau
[85]. The similarity of 128 electromechanical artifacts heeen evaluated at the

following three levels of abstraction:
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Level One — Including Supporting Functions
Level Two — Excluding Supporting Functions

Level Three — Pruning Rules Applied.

Similarity computed at Level One compares artifacts baset$ dnniction as well
as its assembly. Since there are many instances of sugpfmictions in the models,
they have a significant influence on similarity. Thereforethe level of abstraction,
similarity is heavily based on the number of physical connectiotisnsan artifact. For
this reason, the similarity between many artifacts is higtl,the accuracy and precision
of clusters at this level is low. Similarity at Level dweduces the emphasis on
component relationships because supporting functions are excluded. @hdy-level
functions are used in the models, improving the precision of the reSilésaccuracy of
the results, however, is not significantly better than at Lé&vel (see Table 6-8, Row 4).
At Level Three, the application of pruning rules further incredsesetvel of abstraction
by removing functions that contain a high level of detail about thiactti The Level
Three comparison reduces the similarity among many artifauispaly a few artifacts
have at a high degree of similarity. This causes an inciaaseth the accuracy and
precision of similarity calculations compared to Levels One arnd {See Table 6-8,
Rows 1-2 and Table 6-10, Rows 1-2). These results show that the pruresg rul
effectively remove decomposed functionality from a model, resulting high-level
model that is useful for design-by-analogy in the conceptual design phase.

Abstraction Levels One and Two presented in this paper are suppoyrtthe

design repository containing the function models used in this resedimiever, Level
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Three has been proposed through the pruning of these models followegificsset of
rules. The pruning rules used to achieve abstraction Level Tiaree been shown to
significantly improve the accuracy and precision of similarity. Fuarihbas been shown
that this improvement is caused by pruning, not by chance, by shéwahgruning is
significantly better in terms of accuracy and precision thadomly removing functions
from the models. Therefore, the pruning rules have been validatedmesares for
abstracting a function model when comparing the similarity ansamer
electromechanical artifacts. However, the rules have beentealida a complete set, so
the effects and validity of each rule individually is not yet known.

Many design researchers suggest the use of function modalsderstanding
existing artifacts through reverse engineering as welaréifact development during
conceptual design. However, the amount of detail known about an exastiiagt is
much greater than that of a new artifact, so the function madeach will be created at
different levels of abstraction. If a designer uses a iomdiased similarity metric to
identify artifacts that are similar to a concept being develpfheen similarity should be
computed at the conceptual level, not a reverse-engineered leveefofagthe pruning
rules proposed in this research should be used to convert revenseeeedi(Level One)
models to conceptual (Level Three) models before using a simitaeityic in conceptual
design. Using the pruned models, the similarity metric witbre accurately and

consistently identify existing artifacts that can be used as a seaeésign-by-analogy.
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CHAPTER 7: IDEATION USER STUDY

An initial user study was designed, executed, and analyzed incdtiaboration
with Ramachandran [87, 88], and a complete description of the initial susey is
included in [87]. The outcomes of this initial study have been usetndicntly
extend the study in the following ways: revise the statisticatlel, verify statistical
assumptions, identify appropriate participants, introduce a newmeaat group,
introduce a new baseline group, introduce new evaluation metrics, andrpéréostudy
with forty-three additional participants. The discussion and outcoimé&® initial study
and these extensions are new contributions to the initial resaadclare presented in

Sections 7.2.2,7.2.4,7.25, 7.3, and 7.4.

7.1 Motivation

Recent function modeling research has extended the transformatwe o¥i
function to include interactions with users, other artifacts, andrieoement [89] (see
Section 2.1.3). The appropriateness of these extensions for use by mummamseptual
design has not been studied. Rather, these extensions have been githethe
context of computational tools. The usefulness of these extensidma wanceptual
design, specifically ideation, is the focus of this section.

To understand the usefulness of functional representations foroigeat user
experiment is conducted in which designers are provided diffenpreasentations of an
artifact for a new design problem, a consumer burrito-folding machiftee burrito-

folding artifact was selected because participants in the swelyfamiliar with both
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household appliances and burritos, the artifact requires both mecHanatanality and

human interactions, participants can generate ideas for the tairtifacsmall amount of
time, and the artifact has been used in previous research [76, @d}. nfetrics for

evaluating sketches commonly used in literature are quality, gganbvelty, and

variety [79]. As mentioned in Section 2.4, the focus of ideation B risearch is a
convergent rather than divergent process. Since the desired outcdhe idéation

process in this research is a high-quality design, novelty retyaof concepts is not
studied. These metrics could be studied in the future without afjettte results and
conclusions based on quality and quantity.

An overview of the initial experiment procedure is shown in Figase.
Participants were provided with a problem statement, requirensemtsa seed model.
The participants were then asked to draw from their past experience&tatgaroncepts
that satisfy the problem. The outcome, sketches, were th&ratdiusing quality and
guantity metrics. In the initial study, one group of participastgived a function model

to aid in concept generation while the other group received an interaction model [89]

Individual ideation
based on past
experiences

Figure 7-1: Overview of Initial Experiment Procedure

Problem Statement .| Seed Model
Requirements " (FM or IM)

Sketches

A 4

A 4

In an extended study, the same design problem and requirement ivearetq
participants, who then received a function model (FM), interaction n{tdgl pruned

model (PM), or no model (NM). An overview of the extended stucghasvn in Figure
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7-2. The details of the extended experiment and motivation for theoaddlitreatment

groups are discussed in Section 7.3.

Individual ideation
based on past
experiences

Problem Statement .| Seed Model
Requirements "I (FMorIMorPM) | 1

A 4
A 4

Sketches

Control Group
Figure 7-2: Overview of Extended Experiment Procedure

In both studies, the focus is on understanding the effects of usingohaict
representations as a seed for convergent thinking, and participantsnateoeted to
draw from their past experiences to solve the design problem. tadhevsas performed
in a setting that was not intended to stimulate ideas, partisipegrte not allowed to
work together, and participants were allowed to use both textual gemgohical
representations to describe their concepts. Thus, while particywanésnot forced to
use certain ideation techniques, they were limited in the technibjaeshey could use
based on the experiment design and setting. The particulaordéathniques used by
participants was not evaluated; only the design outcome is assessed iruttiese st

To understand if designers are using the models provided, fifteemerie
modeled in each representation are analyzed to determime designer addresses each
element in his or her sketch (referred to as “sketch conforfjan@éis information
includes: seven functions, four user actions, and four artifact-ogenactions. The

general statistical hypotheses tested are:

Null Hypothesis: The average sketch conformance by participants using each

type of representation type is equal.
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Research Hypothesis:The average sketch conformance by participants using

each type of representation is not equal.

The function, activity, and interaction information in the model tegarically
tested to understand whether or not the participants consideredethecspformation

when creating the sketches:

Function Sub-hypothesis:The functional conformance of sketches generated by
participants using each type of representation is not equal.

Activity Sub-hypothesis: The activity conformance of sketches generated by
participants using each type of representation is not equal.

Artifact-User Interaction Sub-hypothesis: The interaction conformance of
sketches generated by participants using each type of egpagsn is not

equal.

To understand the effect of the representations on the concepts tg@gnera
sketches are evaluated to determine how well the concept sekltbe design problem
(referred to as “sketch quality”). The quality of a sketclbased on the level of
satisfaction of each of nine requirements provided to the partisipanthe problem

statement. The statistical hypotheses to be tested for quality are:

Null Hypothesis: The average quality of sketches generated by participants using
each representation is equal.
Research HypothesisThe average quality of sketches generated by participants

using each representation is not equal.
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The requirements are also categorized as functional, human actority
performance requirements. The functional and human activity requitense
compared to understand if the representations affect a subset of the requirements

To further assess the creativity of the designers usioly egpresentation, the
guantity of sketches is also measured and compared. Theacsthtetearch hypotheses

are:

Null Hypothesis: The average number of sketches produced by participants using
each representation is equal.
Research HypothesisThe average number of sketches produced by participants

using each representation is not equal.

7.2 Initial Study

The goal of this study is to understand the effects of functiepagésentations on
concept generation. Close conformance with a model is desicaddgeit demonstrates
that the model is well understood by the designer and it usethietaesigner for an
adaptive design problem. Designers may deviate from the motkayiffeel that they
have a better idea than that shown in the model. However, the imeaach
representation—FM or IM—were held as closely to each other atleos® it can be
assumed that the variation in conformance due to the designer intdptignating the
model is equal for both groups. Therefore, the sketch conformancenmdtlet provides
insight into whether or not the designers use the model. The fot¢he obnformance

analysis is on whether or not the designer considered the parfiouddion, activity, or
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interaction, rather than how well each is satisfied. Sketchtguslalso measured to
understand the effect of the models on concept quality and ensutbeltptality of the

ideas is not negatively affected by using a model.

7.2.1Experiment Design

The user experiment conducted in this research is a singte;facmpletely
randomized design. The factor, the representation given to theigzart, has two
levels: function model or interaction model. Forty students—both undeejeadnd
graduate—participated in the study at Clemson University dthiedrall 2010 semester.
Participants were assigned to treatment groups in eithereainadibg or random manner
(depending on other conditions of the experiment) to prevent experimgiat
Participants were first trained in the representation beforegbgiven the design
problem. After training, the participants were given a probl&tement, requirements,
and the appropriate model for the new design problem, a consumer idéo The
participants were then allowed to draw multiple sketches for 3ites. The sketches
are analyzed to determine how the participants used the moolejththe conformance
metrics discussed in Section 7.2.2. An in-depth discussion of this mepériesign and
procedure is included in [87, 88], where the quality of the sketcheeasured for this
experiment. In this research, the sketch conformance mettevedoped and measured

to understand how the models influence the designers’ sketches.
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7.2.2Conformance Scale Development

The function model and interaction model given to each participasttawn in
Figure 7-3 and Figure 7-4. The information contained in each of thanwdels is
approximately equal [87], but the information is modeled differently.the function
model, functions and activities are modeled in the same manner, addsigaer must
infer which functions that the user or the artifact accommishe the interaction model,
three of the functions are explicitly shown to be performed by teearsl are included

in the user boundary in the upper portion of the model.

|
Fillings, F F |
g5 Insert Store
j Fillings Fillings |
| :
! Fill Tortilla| ~ F+T Wrap Burrito | Burrito
| with  ———t Tortila- [Eo| COMEY Fomove
_ * Fillings Fillings |
Tortill T T it T
oa L) Insert | | Store | _| Position Y Y i Y
Tortilla Tortila Tortilla |
|
. |
|
: |
H E ME
uman Energy Convert HE to |
| = ME ME
: ME |
| HE |

Figure 7-3: Burrito Folder Function Model
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Fillings Burrito Burrito
Toriilla ™\Insert Tortila\_Folder Usset'aEtew Foider \ Remove
BLmD ﬂdeLF / and Fillings machine Burrito | Burrito
Iy :
|

|
HE
Tortilla Fillings
Burrito
| Burrito- I T
lFoIding Convey |
'Machine L Store Fillings F ;#Eﬁglas g ﬁirtip%ﬁ:"f B finished | |
| 9 9 Burrito
| Y Y y |
| Ll Posit ! |
. osition
! —-| Store Tortilla Tortilla |
|
| |
HE ME |
| _|Convert HE to ME
g ME ME |
|
|

Figure 7-4: Burrito Folder Interaction Model

The two models used in this experiment each contain 15 model elements

categorized as function, activities, and interactions:
Functions:

F1: The artifact stores tortillas

F2: The artifact stores filling

F3: The artifact moves the tortilla into position

F4: The artifact fills the tortilla with fillings

F5: The artifact wraps the tortilla

F6: The artifact conveys the burrito

F7: The artifact converts human energy input into mechanical energy

115



User Actions:

Al: The user inserts tortillas into the artifact

A2: The user inserts fillings into the artifact

A3: The user operates the artifact

A4: The user removes the burrito
Artifact-User Interactions

11: The artifact allows the tortilla to enter

12: The artifact allows the fillings to enter

13: The artifact allows the human energy to enter

14: The artifact allows the user to remove a burrito

The interaction model clearly shows who or what is performingctiers in the

model, while the function model does not. The goal of the conformaetec is to
determine if the designer follows the ideas in the model or @sviedm these ideas. For
example, the models specify that human energy is the only inpbetsystem. If a
designer uses only human energy to accomplish the functions, theketbh conforms
to the model. If, on the other hand, the concept contains an input oicgechen the
sketch does not conform to the model. The intent of the informatidre ifubction and

interaction models is described in Table 7-1.
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Table 7-1: Intent of Information Contained in the Burrito Folder Models

Interaction Model  Function Model Intent of Information

The artifact is able to store the fillings, either
Store Fillings F‘T’I:icr’]'ges individually or together, for some period of
time.
Store Tortila Store The artifact is able to store multiple tortillas
Tortilla for some period of time.
Position Position The artifact moves a tortilla from the storage
Tortilla Tortilla location to the location in where it is filled.
Fil Tortl Fill Tortilla ' N _
with Fillngs with The artifact adds fillings to the open tortilla.
Fillings
Wrap Tortilla Wrap The artifact wraps the tortilla around the
with Fillings -;ﬁ;t:gas fillings.
f?rifs‘r‘::g Convey The artifact moves the folded burrito away
Burrito Burrito from the folding location.
Remove Remove i i
Burrito Burrito The user removes the buritto from the artifact.
F'ﬂfr?;s The user places fillings in the artifact.
Insert Tortilla
and Fillings ]
Insert . . .
Tortilla The user places tortillas in the artifact.
Use HE to
operate The user provides energy to the artifact.
machine Convert HE to
ME . .
Convert HE to The artifact uses human input to perform an
ME action.
Fillings Fillings Filtl_ifng? are passed from the user to the
artifact.
Tortilla Tortilla Tortillas are passed from the user to the
— —— artifact.

Human energy is passed from the user to the

Human Epergy Human Egergy artifact

: . Burritos are passed from the artifact to the
Burrito Burrito
— — user.
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7.2.2.1Function Conformance Scale

Each of the seven blocks in the burrito folder IM are considerddartiinctions,
and the sketches are analyzed to determine if the concept addeash function. A
guantitative conformance scale was developed based on the intentimfothgation in
the models. First, a three-category rating scale waslapmg for the seven artifact

functions. The following general scale was used:

Good (1): The function is clearly incorporated in the concept.

Neutral (0): The function is implicitly incorporated in the concept or the fioncis
plausible but not explicitly shown.

Poor (-1): There is a complete absence of the function or there is anatietioh

that contradicts the particular function.

Two sketches were fully analyzed and discussed using this scadethese
examples were used to train sketch raters. A random sanigle sketches was selected
from all sketches generated in the study, and the ten sketchesndependently rated
by two raters for each of the seven functions. The interrgreement (IRA) of this
scale was determined using Cohen’s Kappa [90] (see Equation i subistantial (0.61 -

0.80) to almost perfect (0.81 - 1.00) agreement desired [91].

Po— P
— Mo c 1
K —1_pc (1)

where p, is the proportion of ratings in which the two raters agree, and
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pc is the proportion of ratings in which the two raters are expdotegjree by

chance.

The actual agreement, chance agreement, and Kappa values for each function (F1-
F7) in this first iteration are shown in Table 7-2. As shown int#ide, only two

functions had substantial or perfect agreement, so the scales should lae refine

Table 7-2: Interrater Agreement for First Iteration of Function Conformance Scale
FL F2 F3 F4 F5 F6 F7

Actual Agreement 030 090 0.70 070 0.80 0.60 0.60
Cohen's Chance Agreement 029 046 040 040 044 0.44 0.30
Cohen's Kappa 0.01 081 050 050 064 029 043

Based on the results of the initial scale, the raters disdus® differences in
individual sketch ratings and the scale was refined. A refergmeet with examples of
good and bad concepts for each function was developed to assist the fidie raters
individually rated ten additional randomly-selected sketches, andRtesl shown in

Table 7-3.

Table 7-3: Interrater Agreement for Second Iteration of Function Confomance

Scale
F1 F2 F3 F4 F5 F6 F7
Actual Agreement 090 100 060 100 0.80 0.70 0.60
Cohen's Chance Agreement 034 068 041 068 044 038 0.38
Cohen's Kappa 0.85 100 032 100 0.64 052 0.35

The IRA for many functions improved due to the discussion of diffesgnce
clarification of the scale, and the development of the referdremt.s Through discussion
of differences in the second iteration, it was determined thatetal rating (0) in the

three-category scale was highly inconsistent. Most of thereliftes in ratings included
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a neutral rating by one of the raters. Therefore, in the itieiration of the conformance
scale, a binary scale was used. The final functional conformsoade used for this

research is:

Good (1): The function is clearly incorporated in the concept.
Poor (0): The function is implicitly incorporated in the concept, the function not
explicitly shown, there is a complete absence of the function, or theanother

function that contradicts the particular function.

Using the above scale and a revised reference sheet with esathgl two raters
achieved substantial agreement on six out of seven function conformatrims.m&he
seventh metric (F7) had 80% actual agreement, but due to the higte chgreement,
IRA is lower than desired. The chance agreement is based artubévalues chosen by
the two raters for the ten concepts. Since the ten concepts ¢bosleis iteration have
many poor conformance values (7 of 10), the chance agreentaghes, reducing the
IRA. Since the actual agreement of this metric is highs ttansistent with the actual
agreement for other metrics, and the IRA still lies in a “moderate” mgneterange (0.41-

0.60) [91], the value is acceptable and the scale development is complete.

Table 7-4: Interrater Agreement for Third Iteration of Function Conf ormance Scale
FL F2 F3 F4 F5 F6 F7

Actual Agreement 1.00 090 090 100 0.90 0.80 0.80
Cohen's Chance Agreement 068 074 050 068 050 050 0.58
Cohen's Kappa 1.00 062 080 100 080 0.60 0.52

It is important to note that added functionality or activities hastebeen included

in this analysis since participants were not instructed to aperader a closed world
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assumption. For example, if a designer included a heating eléoneatm the tortillas,
the sketch has not been penalized for deviating from the model, whicimaloeslude
heat flows. However if a designer requires other sources af\ertben the sketch does
not conform to activity A3, “The user operates the artifact.”

Two examples of functional conformance ratings are discussednondérate the
final iteration of the functional conformance scale (see Figdbseand Figure 7-6), and

the reference sheet used by the raters is shown in Table 7-5.
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Figure 7-5: Burrito Folder Sketch — Example 1 (text modified to improve
readability)
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The analysis of each functional conformance metric for thedastple sketch is

discussed below (see Figure 7-5):

F1: The artifact stores tortillas. The sketch shows a container for storing tortillas,
so the designer considered and explicitly addressed this functiga.gilten a
rating of 1.

F2: The artifact stores filling. The sketch shows a container for storing fillings, so
the designer considered and explicitly addressed this functiog giltan a rating
of 1.

F3: The artifact moves the tortilla into position. The sketch shows a conveyer belt
for moving tortillas into position, so the designer considered amdicely
addressed this function. The sketch is given a rating of 1.

F4: The artifact fills the tortilla with fillings. The storage container in the sketch
includes a spout showing that the tortilla will be filled by #réfact, so the
sketch is given a rating of 1.

F5: The artifact wraps the tortilla. Section A-A in the sketch shows the wrapping
functionality of the burrito folder. The quality of the folding pregas not
evaluated. As long as some form of folding is explicitly shown,ctireept is
given a rating of 1.

F6: The artifact conveys the burrito. The sketch includes a conveyor system that

will move the burrito after being wrapped, so the sketch is given a rating of 1.
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F7: The artifact converts human energy input into mechanical mergy. The
sketch does not show a mechanical user input, such as a crank, sa¢hdsske

given a rating of 0.

The analysis of each functional conformance metric for the sesangle sketch

is discussed below (see Figure 7-6):

\‘L\\\ | |

Explanation:

Hinged chamber sides moved by mechanical levers

Figure 7-6: Burrito Folder Sketch — Example 2 (text modified to impove
readability)

F1. The artifact stores tortillas. There is no mention of tortilla storage in the
sketch. It appears that the tortillas will be folded in theeskocation as they are
placed in the artifact, so the designer likely did not considesttrage function.

The sketch is given a rating of O.
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F2: The artifact stores filling. There is no mention of filling storage in the sketch.
It is likely that the fillings must be added directly by tieer, so the sketch is
given a rating of 0.

F3: The artifact moves the tortilla into position. The is no mention of movement
of the tortilla in the sketch, and the tortilla is likely foldedthe same location
where it is placed in the artifact. The sketch is given a rating of O.

F4: The artifact fills the tortilla with fillings. There is no mention of how fillings
are added to the tortilla. It is likely that the user mustthdch directly because
there is no container of fillings incorporated in the sketch. Th&kks given a
score of 0.

F5: The artifact wraps the tortilla. The description of the artifact states that the
sides of the artifact are hinged and have mechanical leversse Teatures
demonstrate that the designer considered how the artifact caravioatilla, so
the sketch is given a score of 1.

F6: The artifact conveys the burrito. The concept does not move the burrito after
being folded, and it is likely that the user must remove it manudhe sketch is
given a rating of 0.

F7: The artifact converts human energy input into mechanical mergy. The
sketch does not show a mechanical user input, such as a crank. Hildepibmt
the user manipulates the mechanical arms, but it is not expkt#ted, so the

sketch is given a rating of 0.
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Table 7-5 Function Conformance Reference Sheet

Good (1) Poor (0)
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Good (1) Poor (0)

conveyer, foubar mechanism; ar  the tortilla is filled in the location where it
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Good (1) Poor (0)
conveyer, foubar mechanism; ar  burrito isremoved by the user from the locat
movement of théolded burrito (afte where it is folded;

being filled) by thertifaci no burrito exists in the concept
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tortilla, fillings, or burrito;crank, arm, a human does not move any system compo
handle at least one conversion of +
to ME

(NOT handfolding the burrito; NOT
an electric switch)

F7 N
M
) |

_Ei—l . —

Pt |

i
CRLANK

7.2.2.2Activity Conformance Sce

Each of the three activity blocks in the interaatimodel (seeFigure 7-4)
represents actions performed by the user. Theitgcinsert tortilla and fillings exists as
a single block in the activity model due to the itations of the model in capturir
independent, parallel activities. This activitysaseparated into the two distinct activi
of insert tortilla and insert fillings for this analysis because tlaetivities can bt

performed independent of each oth
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The activity conformance scale was developed based on thdifr@al function
conformance scale. Based on the lessons learned from the fuhctof@mance scale
development, a strict activity conformance scale was usedhelactivity conformance
scale, if the sketch did not explicitly state that a user peg@n activity, it is assumed
that the user does not perform that activity. Two examplesaarference sheet were
developed to train the raters in the activity conformance sdaésre two raters
individually rated ten randomly selected concepts. The firsatiten of the activity
conformance scale yielded perfect or substantial levels ofemgmt, so no further
iterations were necessary. The results of this iteratienshown in Table 7-6. Two
example sketch ratings are discussed in detail below and the referertde stubdeded in

Table 7-7.

Table 7-6: Interrater Agreement for Activity Conformance Scale
Al A2 A3 A4

Actual Agreement 090 100 0.90 1.00
Cohen's Chance Agreement 050 052 054 0.52
Cohen's Kappa 0.80 100 0.78 1.00

The analysis of each activity conformance metric for th&t Bample sketch is

discussed below (see Figure 7-5):

Al: The user inserts tortillas into the artifact. The tortilla starting location is a
hopper. There is no mention of a user placing the tortillas imtpgper, so it is

given a score of 0.
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A2: The user inserts fillings into the artifact. The filling starting location is a
hopper. There is no mention of a user placing the fillings in this hoppet is
given a score of 0.

A3: The user operates the artifact. The sketch does not mention the use of human
power to drive part of the artifact, so it is given a rating of 0.

A4: The user removes the burrito. The sketch indicates that the tortillas are rolled
and placed on a conveyor. There is no mention of a user removingldied f

burrito, so the sketch is given a rating of 0.

The analysis of each activity conformance metric for the secamgle sketch is

discussed below (see Figure 7-6):

Al: The user inserts tortillas into the artifact. The user is not mentioned in the
sketch, so it is given a score of 0.

A2: The user inserts fillings into the artifact. The user is not mentioned in the
sketch, so it is given a score of 1.

A3: The user operates the artifact. The sketch does not mention the use of human
power to drive part of the artifact, so it is given a rating of 0.

A4: The user removes the burrito. The sketch does not mention a human removing

the burrito, so the sketch is given a rating of O.
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Table 7-7 Activity Conformance Reference Shet
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7.2.2.3Interaction Conformance Scale

Each of the four flows that pass between the user and atidacdaries in the
IM are identified as interactions. Since interactions are'§lbetween systems, rather
than actions performed by a system, the interactions areesaddr passively by the
design. Interactions are closely related to their corresporidimggion and activity, but
they must be analyzed independently of functions and activitiess plossible for an
interaction to be addressed without its corresponding activity or umctor example, a
sketch may address the interactitre artifact allows the tortilla to entewithout
addressing the functiostore tortilla or the activityinsert tortilla. However, if the
activity insert tortilla or the functionstore tortilla is addressed, then the interaction has
been addressed. The four interactions in the model¢herartifact allows the tortilla to
enter, the artifact allows the fillings to entethe artifact allows the human energy to
enter, andthe artifact allows the user to remove a burrito

The interaction conformance scale was developed in the same nasrlee
activity conformance scale. The same general binary sadeused, and a strict scale
was developed to ensure a high interrater agreement. Ongplexavas developed
describing the rating system and a reference sheet vatnm&s of both good and poor
ratings for each of the four interactions was used for traiamyrating. Ten randomly
selected sketches were independently evaluated by two rateétfealRA was computed
for each of the four interactions. In the first iteration of sbale, substantial or perfect
agreement was achieved, as shown in Table 7-8. The rating fxaample sketch is

discussed below and the reference sheet is provided in .
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Table 7-8: Interrater Agreement for Interaction Conformance Scale
11 12 13 14

Actual Agreement 090 090 0.80 1.00
Cohen's Chance Agreement 062 050 048 0.52
Cohen's Kappa 0.74 080 0.62 1.00

The analysis of each interaction conformance metric for thesfraple sketch is

discussed below (see Figure 7-5):

I1: The artifact allows the tortilla to enter. The artifact contacts a tortilla, so it is
given a rating of 1.

I2: The artifact allows the fillings to enter. The artifact contacts fillings, so it is
given a rating of 1.

I3: The artifact allows the human energy to enter. The sketch does not show if
and how a user interacts with the artifact. There are no hawdieks, etc., so
the sketch is given a rating of O.

14: The artifact allows the user to remove a burrito. The sketch does not show

how a user will remove the folded burritos, so the sketch is given a rating of 0.
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Table 7-9: Interaction Conformance Reference Sheet
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7.2.3Quality Scale Development

The quality of the ideas generated for this design problem wasumeal by rating
the sketch on a three-level scale for each of the nine requirerenisied with the
design problem to participants. This scale was developed in cldabaration with
Ramachandran and the complete details of the scale discussed in T8é].same
procedure used to achieve high levels of interrater agreemehefophformance scales
(see Section 7.2.2) was used to achieve substantial agreement (Ongl)Caken’s
Kappa value. Complete details of this scale development amgssietin [87], and the

guality scale for each requirement is reproduced in Table 7-10 [87].
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Table 7-10: Sketch Quality Scale [87]

Requirement Low (1) Medium (3) High (9)

Position empty No storage areaor  Human has to manually The tortilla is moved
from its stack to the

tortilla to store conveyor mechanism place the tortilla form

fillings available storage to filling filling zone through any

conveyor mechanism

Fill the tortilla A chamber is present butHopper, funnel, box or

Filling device no other detail is given; any holding device with a
after proper . - - !
ositionin completely missing  Incomplete filling provision to fill the empty
P 9 mechanism. tortilla.

Wrap burrito  Wrapping mechanism

- N 2 sided folding 3 or more sided folding
over the fillings is missing

Deliver When the above three A chain or gear drive
completed . 9 A belt, band or cable
. requirements also has mechanism is used to : .
burritos at rate . drive mechanism is
low scores. The user transfer burritos. The use
of at least 4 . ollowed. Completely
. does most of the has to do some actions
burritos per " . " : automated.
: activities. like position, fill or wrap.
minute
More than five human Four or five human Three human activities.
Easy to use activities. Either wrapping-ully automated for both

activities . o . . .
or inserting is automatedwrapping and inserting

Length= Height and total

The device musfThe size is too big and Either size or stability is size is less than 12 “.

fit on a counter will not stable if

top mounted on a table not satisfied. Satisfjes bpth size and
stability criteria
More than 3 The device looks
Easy to instal independent parts to Has 3 independent parts _complete or has two
assemble for the first to assemble independent parts to
time. assemble.
Disassembly is neededRollers, chains and otherThe device must offer no
The device mus to clean the machine. surfa_lces which has spillage when moving
be easy to cleantl.—he user trans_fers crevices. o from one zone to another.
after use filling an_d burritos by Fill, wrap and d_ellvermg After being f|IIed,_ the
hand, with more completed burritos zonedransfer mechanism must
chances of spilling.  are not continuous. be uninterrupted.

All parts are completel
exposed without a
cover. Sharp edges or

The device mustpinch points which

be safe to use might cause injury
during the operation
(motor/electrically
driven).

Either one (or few) sharp
extruding parts or pinch
points are present. Hing
(hand driven pinch
points). No serious injury
will be caused even if
some parts are exposed.

®No sharp extruding or
exposed pinch points
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7.2.4Preliminary Results

The study was conducted in two sessions, one with graduate studepauats,
and one with undergraduate student participants. The graduatensessi conducted
during an advanced design methods course at Clemson University. Taereldy
participants divided into two groups. Since the participants wé&regtaan advanced
design methods course, all participants had already been tawgtttoh modeling
methods. Therefore, all participants were presented a reviewnaidn models and a
discussion of interaction models before participating in the expetime The
undergraduate session was conducted during an senior-level design atoGiseison
University with 26 participants. Since the participants had noivestéormal training in
function modeling, they were divided into two groups before the repegsemtraining
began. Participants received training only on the appropriate eepaon: function or

interaction.

7.2.4.1Selection of Participant Scores

There were 40 participants in this study and a total of 106 slsetcbated by the
participants. Each sketch was evaluated for quality and conforragmiscussed in the
previous sections. Since the participants were allowed to sketébwaor as many
concepts as they desired, there were multiple sketches genfratmost participants.
The participants, however, were the experimental unit in the ,samdy the additional
sketches can be used only to understand the variation within participantsetween
treatment groups. Since the number of sketches generated by daipaodarvaries and

some participants produced only one sketch, it is difficult to déterrthe within-
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participant quality or conformance variation. Further, this vamai$ not of interest in
this study, so each participant is given a single scoredb@sall of the sketches he or
she generated. Several approaches to determining a participard’svece investigated,
and two final approaches are used to analyze the data. The approachsesuased with
respect to the conformance metrics, but the same approashés aised for the quality
metrics as well.

The first participant scoring approach considers the participaets score for
each of the fifteen conformance elements, taking into account whetlperticipant
addressed the particular function, activity, or interactioarig of his or her sketches.
For example, the results of a hypothetical participant’s cordace ratings are shown in
Table 7-11. The last row in the table shows the participarige ghat would result from

taking the maximum score for each element, F1-F7, A1-A4, and 11-14.

Table 7-11: Participant Best Score by Individual Elements
Sketch F1 F2 F3 F4 F5 F6 F7 A1 A2 A3 A4 11 12 I3 14

1 1 o0 o o 1 0o O O 1 o 1 1 0 OO

2 o 1 o 0 1. 0 O OO O 1 1 1 1 1

3 11 o 1 0 O O O 1 o O 1 0 o0 1
Score 11 o0 1 1 0o O O 1 O 1 1 1 1 1

The second participant scoring approach considers the participastsskatch
within each category (function, activity, or interaction). Thipraach considers the
functional conformance score for all sketches by a participanusesl the values from
the sketch with the best functional conformance. The activity aachstion categories
are considered independently. For example, if a participant prodkeezhes with the

ratings shown in Table 7-12, the participant’s functional score wouldabed on the
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third sketch, the participant’s activity score would be basederfitst sketch, and the
participant’s interaction score would be based on the second sketchpaficgant’s

final score using this approach is shown in the final row of the table.

Table 7-12: Participant Best Score by Category

Sketch F1 F2 F3 F4 F5 F6 F7 A1 A2 A3 A4 11 12 I3 14
1 1 0 0 0 1 0O OO 1 O 1 1 0 O0 O
2 o 1.0 0 1 O O O O O 11 1 1 1
3 1 1 0o 1. 0o 6 0 0O 1 O O 1 O O 1

Score 1 1 0 1 O O O O 1 O 1 1 1 1 1

The third scoring approach considers the participants’ best overathske
independent of individual scores or categorical scores. The sunt cdrdbrmance
values is used to determine the participant’s best sketch, and ties fam that sketch
are used for the final score. For example, if a participant pestigketches with the
ratings shown in Table 7-13, the second sketch would be used asttbipareis score

since it has an overall conformance score of 7, while thednd third sketches have

overall scores of 5 and 6, respectively.

Table 7-13: Participant Best Score Overall

Sketch F1F2 F3 F4 F5 F6 F7 A1 A2 A3 A4 11 12 I3 14
1 1 0 0 0 1 0o O O 1 O 1 1 O O O

The final scoring approach is to use the participants’ averkgehs scores,

considering the average level of conformance for all sketchest ekample, if a
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participant produced sketches with the rating shown in Table 7-d4vérages for each

column would be taken and used for the participant’s score.

Table 7-14: Participant Average Score

Sketch F1 F2 F3 F4 F5 F6 F7 Al A2 A3 A4 11 12 13 14
1 1 0O 0 O 1 0 0 O 1 0 1 1 0O O
2 0 1 0 O 1 0 0 O O oO 1 1 1 1 1
3 1 1 0 1 0 0 0 ©O 1 0 O 1 0 1

Score 0.670.67 O 033067 O O O 067 0O 067 1 0.330.330.67

There are many other participant scoring approaches that caselde each of
which has advantages and disadvantages. The difficulty of usirtmgpsheategorical or
overall sketches is in the event of a tie. If the sketches boththewsame sum but have
achieve it through different conformance combinations, then determiviiich set of
scores to use is difficult. For example, if a participant prodidiceee sketches with the
functional conformance scores shown in Table 7-15, there would bebattveen the
first and third sketches, which conform to different functions innioglel. This same
problem arises with the best overall sketch scoring approach s Wweladdress this
issue, when a categorical best is used, the average scoretherasdividual ratings is
used and the individual ratings themselves are no longer used. déxahmle below,
rather than using the individual conformance scores (F1-F7) usengdst categorical
approach, the average is used, which is equal for sketches 1 and 3. This samé &pproac

used for the overall best sketches as well.
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Table 7-15: Ambiguity Arising in Categorical Best Scoring Approach
Sketch F1 F2 F3 F4 F5 F6 F7 Average

1 1 0 0 1 1 0O 0 043
2 0 1 0 0 1 O O 029
3 1 1 0 1 0 0 0 043

The selection of appropriate scoring approaches is determined imcbon with
the descriptive statistics from this preliminary study. pheiminary data show that the
comparison of individual elements (e.g., F1) between treatment groupd nat likely
identify significant differences (see 7.2.4.2). Further, a compaagédese individual
elements is specific to this design problem, a burrito folding dewaicé its individual
requirements and model elements. For more general findings, andntdyiaeore
significant differences, the treatment groups are compared aatbgorical and overall

levels, rather than at the individual requirement and model element levels.

7.2.4.2Conformance Descriptive Statistics

The results of this study are first analyzed using basicrigése statistics to
understand relationships and identify statistical tests that showldnoleicted. The data
are analyzed using the four participant scoring approaches didcoissgously: best

sketch by element, best sketch by category, best sketch overall, and sketgb.avera

Sketch Scoring Approach: Participant Best by Element

The two types of participants, graduate and undergraduate, are tegalua
separately to identify any qualitative differences betwden groups. The results of
sketch conformance for each function, activity, and interaction warengd for each

group and shown in Table 7-16. The numbers in the cells represent the mfmber
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participants within the group that conformed to the model in at teastof his or her

sketches.

Table 7-16: Conformance Results Using Best Sketch by Element Scoring@koach

Group Treatmentn F1 F2 F3 F4 F5 F6 F7 A1 A2 A3 A4 11 12 13 14
Undergrad IM 13 4 1310 13 13 7 7 1 2 3 3 1313 4 3
Undergrad FM 13 3 12 9 1212 6 6 5 2 7 4 1212 6 3
Graduate IM 7 3 7 4 6 7T 3 4 4 1 5 2 7 7 5
Graduate FM 7 3 7 4 7 5 5 3 3 3 3 3 7 7 3
Combined IM 207 20 14 19 20 10 11 5 3 8 5 2020 9 5
Combined FM 206 19 13 19 17 11 9 8 5 107 1919 9 6

2
3

There are several key observations and outcomes from these descrip$siiesstat
First, there does not appear to be a large difference betwessgmént groups for any
particular function, activity, or interaction. Most differencesconformance for an
individual element are small, and will likely not be significaising a statistical test.
Therefore, comparisons of individual element scores will not be tested fiprmal

Second, the undergraduate and graduate participant results are teobndtor
the function conformance, undergraduate participants with the IMrieedtconsistently
conformed to the model better than participants with the FM treatm&Vhile the
differences are small for each element, the sum of alltiimad elements may be
significant and will be investigated at the category levehe Graduate participants,
however, were inconsistent in differences, with three functionglegual (F2, F2, F3),
two function conformance sums better within the IM group (F5, F¥),tavo function
conformance sums better within the FM group (F4, F6). For the tgatonformance
sums, undergraduate participants in the FM group consistently outpedfomegualed

participants in the IM group. The graduate participants, however, m@avasistent in
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differences. Due to the differences in undergraduate and grazhréitgpant results, the
participant classification (graduate or undergraduate) willmoeleled as a blocking

factor in this preliminary study.

Sketch Scoring Approach: Participant Best by Category

The results of the best sketch by category scoring approacthawn in Table 7-
17. The numbers in the cells represent the average categoomfrnoance for
participants based on the participant’s sketch that best conformed to the nibotethait

individual category (see Section 7.2.4.1).

Table 7-17: Conformance Results Using Best Sketch by Category Scoring Appich
Function Activity Interaction

Group n Treatment (F1-F7) (AL-Ad)  (11-14)
Undergrad 13 IM 4.62 0.54 2.46
Undergrad 13 FM 3.77 1.38 2.23
Graduate 7 IM 4.71 1.71 3.00
Graduate 7 FM 4.57 1.57 2.86
Combined 20 IM 4.65 0.95 2.65
Combined 20 FM 4.05 1.45 2.45

The outcomes from these results support the outcomes from the presooug s
approach. The graduate and undergraduate participants do not follownthdreads,
and the differences in treatment groups within the graduate pantigaes not appear
to be significant for any category. These results further supgbacking of the two

participant groups.
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Sketch Scoring Approach: Participant Best Overall

The results of the best sketch overall scoring approach are sholable 7-18.
The values represent the average participant conformance basedhopagticipant’s
sketch that best conformed to the model. The data show theartf@mance of the IM
treatment group is better than the conformance of the FM traatgneup for both

undergraduate and graduate participants.

Table 7-18: Conformance Results Using Best Sketch Overall Scoring Apprdac

Group n Treatment Overall
Undergrad 13 IM 7.62
Undergrad 13 FM 7.38

Graduate 7 IM 9.43
Graduate 7 FM 9.00
Combined 20 IM 8.25
Combined 20 FM 7.95

Sketch Scoring Approach: Participant Average Conformance

The results of sketch conformance for each function, activity, andadtiten
using the participant average conformance scoring approacth@sa sn Table 7-19.
The conformance is averaged for sketches within a participanthendverage across
participants is shown in the cells of the table. The trendsoiMormance using this
scoring approach support the previous observations mentioned: the graaitiaipant
outcomes are not consistent with the undergraduate participant outcantkeshe

differences between treatments within individual elements is small.

143



Table 7-19: Conformance Results Using Participant Sketch Average Scog
Approach
Group n Trt F1 F2 F3 F4 F5 F6 F7 A1 A2 A3 A4 I1 12 I3 |4
Undergrad 13IM 0.21 0.79 0.58 0.79 0.83 0.35 0.34 0.03 0.04 0.15 0.14 0.95 0.79 0.20 0.14
Undergrad 13FM 0.12 0.56 0.40 0.56 0.64 0.30 0.31 0.19 0.06 0.33 0.19 0.75 0.56 0.31 0.18
Graduate 7 IM 0.19 0.93 0.29 0.86 0.93 0.29 0.57 0.38 0.14 0.57 0.21 0.95 1.00 0.57 0.21
Graduate 7 FM 0.26 0.84 0.45 0.81 0.68 0.39 0.35 0.24 0.23 0.24 0.25 1.00 0.84 0.27 0.25
Combined 20IM 0.20 0.84 0.48 0.81 0.86 0.33 0.42 0.15 0.08 0.30 0.17 0.95 0.86 0.33 0.17
Combined 20FM 0.17 0.66 0.42 0.64 0.66 0.33 0.32 0.21 0.12 0.30 0.21 0.84 0.66 0.29 0.20

7.2.4.3Quality

Concept quality for this study has been evaluated in collaboratibn w
Ramachandran, and a detailed discussion is presented in [87]. Eathveke evaluated
against the following nine requirements provided to participantg tlsenscale discussed
in Section 7.2.3:

e R1: Position empty tortilla to store fillings

e R2: Fill the tortilla after proper positioning

e R3: Wrap burrito over the fillings

e R4: Deliver completed burritos at rate of at least 4 burritos per minute
e R5: Be easytouse

e RG6: Fit on a counter top

e R7: Be easy to install

e R8: Be easy to clean after use

e R9: Be safe to use

Requirements were categorized as functional (R1-R3), non-funciiBdaR9),

and/or human activity (R5, R7, R8) in the analysis, and the treatgnenps were
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compared at the overall level, category level, and individual reeint level. Concept
guality was evaluated using all sketches developed by panisipather than using the
participant scoring approaches discussed in Section 7.2.4.1, and grazhdhte
undergraduate participants were treated collectively in thlysia. Although a different
approach was used, the results are similar to the conformasceptiee statistics (see
7.2.4.2). There were significant differences in the overall geetmiality of sketches
between the two treatment groups, as with categories of reguitemThe outcomes of
this initial quality study are used to identify the analysig #eould be completed in a
follow-up study that includes additional treatment groups. Baseleointdings through
the conformance investigation and this quality study, quality in tiae stedy will be
approached in a manner similar to conformance with respecbotmg@pproaches and

participants.

7.2.4.4Quantity

Quantity of ideas was measured by counting the number of skqiobduced by
each participant. The participants receiving a function model prddsigaificantly
more concepts than participants receiving an interaction model [87, 88]. Sirecwéne
differences in concept quantity in this study, it will be meadun the same manner in

follow-up studies.

7.2.5Limitations and Outcomes of the Initial Study

The quality and quantity of concepts generated using these tweseepations

have been evaluated statistically and the results are presef®&d 88]. Further, sketch
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conformance has been quantified and shown to have a high internrsedemagt. The
quality and quantity results in [87, 88] and the descriptive statisficonformance in
Section 7.2.4.2 are used to develop a new study to more fully test thedf ad#fact

representations in conceptual design.

7.2.5.1Scoring Approaches

In the previous study, sketches produced by participants weredeetsi
independent observations on the design problem. However, the sketeltspandent
on the participant drawing the sketch and multiple sketches prodycadphrticipant
provide additional information about the variation within the participatiterathan
within the treatment group. Since the within-participant vanais not a focus of this
study and since participants were allowed to create only #esskgtch if he or she
desired, a single score will be determined for each panticipsing several different
approaches. Comparisons of sketch conformance will be compldtesl Gitegory level
(functions, activities, or interactions) rather than at the indivithwadl (e.g., F1), due to
the small differences between groups at the individual level artetdesire for more
general conclusions. Overall conformance will not be assesses additional
treatments are introduced in the new study that do not contaitiastand interactions
and an overall conformance assessment would not be fair toeatin&nt groups.
Similarly, quality of concepts will be compared at the catggevel (functional
requirements, activity requirements) rather than at the individaal Ifor the same
reasons as conformance. In addition, quality will be compare abvitxall level to

understand the effect of the treatment on the overall quality afdheepts. Both the
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average and best approaches will be used for conformance and quality to ensurera broade

assessment of the participant.

7.2.5.2Participants

In the initial study, both graduate and undergraduate students paeticipathe
study. However, the graduate participant conformance datanewasistent with the
undergraduate data. One explanation for this difference isodile tway in which the
experiment was conducted for graduate participants. Since itheagggparticipants had
an understanding of function modeling prior to the study, they all alscetrained in
interaction modeling to ensure that each had a similar levetaofirtg. Although
participants in the FM group did not receive an interaction model, tlagyhave been
influenced by the discussion of interaction and human activities diatety before the
design problem was given. Further, the background of graduate stisgddivisrse since
it includes both domestic and international students, students fromrediffe
undergraduate institutions and majors, and a wider age range oftstedenpared to
undergraduate students. Additionally, after the study was condsoci®é, international
students expressed that they did not know what a burrito was. Ferrdesons, only
senior-level undergraduate students at Clemson University wilcipate in the new

study, and the graduate participant data will not be used.

7.2.5.3Control Group

The goal of the initial study was to compare the interaction modéle function

model, a model well-promoted within the design research communiitg. results show
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that the interaction model increases the quality of concepts cethparthe function
model. However, the effect of the function model on concept qualigtiknown and
has not been rigorously tested through quantitative studies. Itsbleothat the models
have a negative effect on concept quality, and that the function rhadea greater
negative effect than the interaction model. For this reason, atoadtireatment group
is added that receives only a problem statement and requirementso@el, NM) with

the design problem. This will provide a true baseline to understanddepresentations
affect a designer in the concept generation process. In addition, a puacgon model

is tested in the new study since it has been shown previously &siee ® interpret than
a function model (see Chapter 5) and to understand the effect of the gty of the

interaction model. This model is discussed further in Section 7.3.1.

7.3 Extended Study

The initial user experiment was conducted primarily to undeidiae differences
in the effects of two artifact models on concept quality and quaniibese differences
and the statistical analysis and conclusions are discussed iinrdgad, 88]. The study
has also been used to understand the experiment design and improve upoanit for
extended user study based on the initial study. The initialexgariment was used to
complete the following tasks:

e create a reliable, quantitative metric of concept quality basedproblem
requirements [87]

e create a reliable, quantitative metric of sketch conformance
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e identify limitations of the statistical model and revise the rméatethe extended
study
e identify scoring approaches to use with the revised statistical model

e identify new treatment groups to further understand the problem

The new treatment groups identified through the previous analysithearido
Model (NM) and Pruned Model (PM) groups. The NM treatment isdiced to serve
as a true baseline for the effect of using artifact modelgeinerate concepts. The
previous baseline, FM, was used because it is used often in tha desigqwunity (e.g.,
see [12, 24, 25, 32, 40-44, 50, 55, 92, 93]). However, after discussing the retulis of
study and drawing conclusions, the need for a baseline for the ¢iN) gras identified.
The FM has not been quantitatively shown to support concept generatitive Bivi
group is introduced to understand the effect of the FM on ideation.

The PM treatment is introduced into this experiment for seveesons. First,
the activity portion of the interaction model (see Figure 7-4)rw been researched to
the extent of function models. There are many different waysoel human actions
and/or processes. The activity model [4], which was chosen to bewiedhe
interaction model, has not been tested for its usefulness in debignevaluation and
selection of an appropriate activity modeling method to be mergddtie function
modeling method is outside the scope of this research, so the Rivienéas introduced
to understand if the selected activity modeling method is advantage The PM
treatment, shown in Figure 7-7, is the functional subset of thedtimranodel (compare

to Figure 7-4). The PM is identical to the IM with the acyiyabrtion removed from the
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model. The PM has all flows entering the system from the environment, ratheoitir@an s
entering from the user. The PM is also a subset of the FMrewtne periphery,
interaction-focused functionality (e.g., insert tortilla) hasnbeemoved (compare to
Figure 7-3). The addition of the pruned model allows for better ulatheliag of specific

aspects of the model.

- . . . Convey .
Fillings - F Fill Tortila |_T+F| Wrap Tortilla | T+F = | Burrito
- " = > —
—E—T—>| StoreFFilings with Fillings with Fillings f'é“s".ed
urrito |
| Y Y i |
Tortila | T Posi '
offa Store Tortilla Toosrltlill‘ljan |
|
|
|
| ME I
Human Energy Convert HE to ME |
| ME ME
|

Figure 7-7: Burrito Folder Pruned Model

7.3.1Experiment Overview

The extended experiment is a single factor, completely randdndesign.
Participants were solicited from senior design classesens@in University to ensure
that they had a common educational background and design knowledgeipdtds
were asked by email and in person to participate, and wereedfiersmall gift for
participating. The goal for the study was to obtain approximdi®lyarticipants per
treatment groups. The extended user experiment was conducteiimilasa manner to
the initial experiment, so the undergraduate participant data fienmitial study were
used with the results of the extended study. Thus, 50 new participangtslesired, and
43 eligible participants completed the study over a three-weesdpduring the Fall

2011 semester. Participants were randomly assigned to mdrgagroup. Due to the
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reuse of some data, the assignment to a new treatment grouponadikely than to a
previous treatment group. The potential for bias from this unequal weightingusshsc
in Section 7.3.2.

The study took approximately one hour to complete, depending on the tieatme
group. Participants were scheduled either individually or in groupsrticipate based
on the treatment group to which they were assigned. The generdulecha the user
study is shown in Table 7-20. Participants were first read BnstRtement asking for
their consent to participate in the study. The general studgguoe was then explained
to participants. For the FM, IM, and PM treatment groups, a short presentai@iven
on either function modeling (FM and PM groups) or interaction modelivigyfoup) to
explain the basics of the representation, how it can be usediésigner, and how the
participant should use the model during ideation. Participants iNNhgroup did not
receive any training in the use of a representation. ciatits were then explained the
expectations for sketching concepts. Participants were ingtrtieie the content of the
sketch was being evaluated rather than their artistic abilitand participants were
encouraged to include textual descriptions of the concept to aickeskarchers in the
evaluation process. Participants were then given the problermstdterequirements,

and the appropriate treatment and were allowed to sketch ideas for 30 minutes.
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Table 7-20: User Study Schedule

Event Time Allotted
Read Institutional Review Board Statement and 5 minutes
explain general experiment procedure

Train participants in appropriate representation 20 minutes
(NM group did not receive any training)

Explain expectations for sketching/concepts 5 minutes

Sketch concepts for design problem 30 minutes

7.3.2Sources of Variation®

There are several sources of variation that will be accounted floe experiment

design and statistical models used to analyze the data.

Treatment: The representation provided to the participants (FM, IM, PM, or M)
the source of variation that is being studied. Differences in coafure) quality,
and quantity between treatment groups will be studied.

Participant Experience: The participants in this study may vary in terms of design
experience, work experience, GPA, and their ability to genetass. Since all
participants are senior-level undergraduate students from Cldomseersity, the
participants’ experience and prior ability to generate ideas nea measured in
this study. Participants are randomly assigned to groups, so pmattici
experience is accounted for in the error term of the statistical model.

Participant Environment: The time and location of the study may affect the
participants’ interest in the training and the design probleni. stAdies were
conducted during the day and in conference rooms within the mechanical

engineering building at Clemson University. Participants viemaliar with the
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room setting and participated during hours that classes arelly@cheduled.
Thus, the testing environment was held constant across all participants.

Conformance and Quality Ratings:The reliability of both conformance and quality
ratings was tested using Cohen’s Kappa and is discussed in Sé&cfdhand
7.2.3. After establishing a reliable rating system, a single raterdyadidsketches
for conformance and quality in this extended study.

Participant Recruiting: The initial study was performed during a regularly
scheduled class, so all students attending class on that partiaulparticipated
in the study. In the extended study, participants were askeduoteet outside
of class to attend the study. Participants in the extended\strdyalso provided
a thank-you gift of digital calipers, valued at approximately $8.00. reT e
potential that participants of the initial study were not agested in the study
and may not have put in as much effort since it was conducted durirsg clas
However, participants in the extended study may also not have rideegsted if
they attended to receive the gift. Additionally, since a lgnggortion of the
participants the FM and IM groups were from the initial studyethe potential
that the FM and IM scores are biased due to the level of intefest differences
within each of these groups between the initial and extended partgipants
can be tested to determine if there is a significant eifiee. However, due to the
small sample size of participants in the new study for themgpg, the tests will
not be meaningful. The proportion of participants in the extended studyehat

drawn from the potential candidate pool is large—approximately orte thinere
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were many participants that signed up as a favor to tharokses rather than a
desire to perform a design problem. Due to the large propaftiparticipants
needed and the thank-you gift in the extended study, the particigargst in
performing the study was likely not different from the initial study.

Training Presenter: The training presentation conducted during the study to
introduce the representation to the participants was conducted ifyrilmaione
individual. During one study session in the extended study and duringjttbk i
study, an additional presenter was needed to deliver the trainparatiel. In
each case, the additional presenter was highly involved in the dlesaad

familiar with the modeling method that was being presented.

7.3.3Sample Size Calculations

The data from this initial study are analyzed to approxinfaemean squared
error (MSE) term and compute the sample size required for tieaded study. The
sample size is determined using the desired length of confideeceals, the 90% upper
confidence limit fors®, and Fisher's LSD comparison procedure. The desired length of
the confidence interval is 10% of the difference in the maximursilglesscore and the
minimum possible score, or 0.1 for conformance metrics and 0.8 fbtyquatrics. The
sample sizes required for the desired interval lengths for conmficerand quality using
each scoring approach is shown in Table 7-21 and Table 7-22. The peodedur

calculating sample size is included in Appendix D.
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Table 7-21: Conformance Sample Size Calculations

Category Scoring MSE  o290% UCL interval replicates per
Approach length group
Functional Average  0.1153 0.1767 0.1 137 548
Best 0.0437 0.0670 0.1 53 212
Activity Average  0.0055 0.0084 0.1 8 32
Best 0.0121 0.0185 0.1 15 60
Interaction Average 0.0307 0.0471 0.1 37 148
Best 0.0166 0.0254 0.1 21 84
Table 7-22: Quality Sample Size Calculations
Scoring 2 interval replicates per
Category Approach MSE ¢ 90% UCL length group
Overall Average 1.0714 1.6421 0.8 21 84
Best 1.1007 1.6870 0.8 21 84
Functional Average 3.448 5.2847 0.8 65 260
Best 2.6923 4.1265 0.8 51 204
Activity Average  1.2269 1.8805 0.8 24 96
Best 2.0940 3.2095 0.8 40 160

As shown in the tables, the number participants required depends on both the
metric and the scoring approach used. The sample size calculei@a the large
amount of error associated with the participants relative to thieededifference in the
groups. Due to resource constraints and the availability oicipartts, the required
sample sizes cannot be achieved, so as many participants asepoadtibé used. The
experiment, therefore, will only be able to detect large diffe@germmnong the means of
groups, and small differences will not be identified as stadistisignificant. This
limitation is recognized, but the study will still be conducteddentify large effects
among groups. To identify smaller differences, the MSE mustdigced. This can be
accomplished by measuring covariates or blocking participants basedome
characteristics and incorporating the covariates or blockingriadhto the model.

However, the appropriate covariates and participant charac®riste not known.
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Therefore, the experiment will be conducted with the maximum lgessample size to
identify large effects and to understand more about conducting exmesinwith
designers. The goal for this experiment was set at 19 partisi per group, or 76 total.
This number is based on the number of available participants and tteetdesclude at
least one third new participants with the previous data collectegkioBsly, two of the
treatment groups contained 13 participants, so six additional partgifmanthese two

groups would reduce potential bias caused by using data from the previous study.

7.3.4Quantification of Concept Sketches

Since some of the data from the initial study are used in tleeaded study, the
conformance and quality scales were again tested for iraxgteement to account for
a change in the rater’s preferences over time. The previoess®yaped scales were used
to rate ten of the initial sketches for conformance. The satenv scores were checked
against the past scores using Cohen’s Kappa. All functions, athdtitsns, and two
activities had acceptable levels of IRA. Two of the acésitiRA were low due to the
rater being too liberal in rating. This bias was identifiedrexted, and checked with ten
different sketches from the initial study. The IRA for wasegtable for the second set
of concepts, and the final kappa values for all fifteen conformeleceents are shown in
Table 7-23. Since the rater was consistent across time ussngctie, the conformance
ratings from the previous study were used and the new sketenesated by the same

rater.
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Table 7-23: Conformance Scale IRA Over Time
Actual Cohen's Chance Cohen's

Agreement Agreement Kappa

F1 1.00 0.68 1.00
F2 1.00 0.58 1.00
F3 0.90 0.54 0.78
F4 1.00 0.58 1.00
F5 1.00 0.52 1.00
F6 1.00 0.68 1.00
F7 0.90 0.50 0.80
Al 1.00 0.52 1.00
A2 1.00 0.58 1.00
A3 1.00 0.50 1.00
A4 1.00 0.58 1.00
11 1.00 0.68 1.00

12 1.00 0.58 1.00

13 0.80 0.52 0.58

14 0.90 0.54 0.78

The quality scale was also checked for reliability over tuseng the same
approach as the conformance scale. The quality scale regewredilsiterations for a
few of the requirements, but overall maintained a high levej@feanent. The final IRA
for the quality metrics by a single rater over time is shown in Table 7-24.

Table 7-24: Quality Scale IRA Over Time
Actual Cohen's Chance Cohen's

Agreement  Agreement Kappa
R1 1.00 0.42 1.00
R2 0.90 0.46 0.81
R3 1.00 0.38 1.00
R4 0.80 0.35 0.69
R5 0.60 0.29 0.44
R6 0.90 0.50 0.80
R7 1.00 0.82 1.00
R8 0.80 0.66 0.41
R9 0.80 0.52 0.58

7.3.5Quantitative Analysis

The conformance and quality of concepts are measured for atheketreated

during the study. The scoring approaches discussed in Section 7.2.50& wdkd to
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determine an individual participant’'s conformance and quality scorés. quantity of
sketches is also measure for each participant. These theesm-conformance,
guality, and quantity—are fit using a linear model:

Y, =u+rt, +¢, @)
where Y, is the response for th8 participant within the'l treatment

u is the overall average response

7 is the effect of thé"itreatment on response

&t is the error of thé'tparticipant of the" treatment

A one-way analysis of variance (ANOVA) is conducted to test @yuai the

means of all treatments on the response:
Ho! Tem =T =Tpm =Tnm

Ha: at least one; differs fori = FM,IM,PM,NM (3)

Due to the exploratory nature of this research, a significaae, b, of 0.1 is
used with the F-test to determine if any of the means aferafit. If a significant
difference is found, all pairwise contrasts are conducted tondieewhich means are
significantly different from the others. The six pairwisanitasts are computed with

confidence intervals using the general equation:
Y. - Y, W, - SE (4)

crit

where i #S
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y.is the mean response for tHetieatment

¥, is the mean response for thieteeatment

Werit IS the critical coefficient for the confidence interval, and

SEis the standard error of the difference.

When multiple contrasts or hypothesis tests are conducted, thel @revalrate
of the experiment is controlled through multiple comparison procedurdhis research,
Tukey’'s method for all pairwise comparisons is appropriate sintepalwise
comparisons are being made if the ANOVA reveals a differentteatment means. The
critical value for Tukey’s method in this experiment for a 9@¥hify-wise confidence
level is 2.34¢ =4, n —v = 65,0 = 0.1). However, since this research is exploratory in
nature, Fisher's Least Significant Difference (LSD) methoy @mlao be used, but the
experimental error rate is not controlled. The critical vatweHisher's LSD using a
significance level of 0.1 is 1.67 (nv—= 65,0/2 = 0.05). Thus, Tukey’s method is a much
more conservative comparison than Fisher's LSD since it contiads overall
experimental error rate. As a compromise between thesmétlwmds, Fisher's LSD will
be used with a significance level of 0.05 rather than 0.1, resultingiitical value of
2.00 (n —=v = 65,0/2 = 0.025). This approach is a balance between the two methods,
allowing smaller differences to be explored as is approprate¢hfs type of research.
Further, the consequences of a Type | error are minimal, $ieceutcomes from this

study will be used to further study the representations ratherfulig rejecting some or
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all of them. Thus, Fisher’'s LSD with an individual significancesleaf 0.05 will be used

for all pairwise contrasts, resulting in an uncontrolled experimental rater

7.3.6Experiment Validity
Verification and validation of the results will be completed udimg methods

presented by Blessing and Chakrabarti [94]:

Statistical conclusion validity: Model assumptions will be checked after all data are
collected, and interrater agreement is used to ensure that tpenges
measurements are reliable. The data were collected owerakeveeks and in
slightly different settings, but all factors were controléedclosely as possible to
maintain statistical conclusions validity (see discussion in Section 7.3.2).

Internal validity: The causality of the relationship is ensured by randomly assigning
participants to treatment groups. Participants are given onljtreament, so
there is no potential for bias from learning about the design doafesign
problem through practicing within the study. There is potential the
participants to discuss the study with other participants, but thieipants were
asked not to discuss the design problem with others. The sampl®rseach
treatment was relatively large with at least sixteertigpants in each group,
reducing the chance that one group is randomly assigned a lsasedf
participants.

Construct validity: The construct validity for model conformance is ensured by

measuring a variety of functional, activity, and interaction mfation. This
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coverage tests many different aspects of the model and theigzants’ level of
understanding of these categories in general, rather than theippaitts’
understanding of a specific function for this specific design prabl@uonstruct
validity for concept quality is ensured by measuring a waoétequirements that
cover functional, activity, and performance characteristicsonc{tisions are
drawn at the category and overall level rather than at the ispemifuirement
level to test the representations’ influence on higher level cmtstrather than
on specific requirements for this specific design problem. Comnstalidity is
also ensured by not communicating to the participants what is beiaguned, so
the participants did not explicitly consider whether or not the igetsir sketch
matched the information in the model. Participants were alsowenreaof the
guality scale developed to assess the sketches and were netlatajuantity of
concepts was being measured.

External validity: The study participants are senior-level undergraduate mechanical
engineering students in the first two design courses. Mostiparits have little
work experience, so the results can be generalized to mechaniggledesvith
little formal training in design and little to no work experiencehe study was
conducted using a single design problem, a burrito-folding device, whiah is
threat to the generalizability of the findings. This actifawas selected to be
representative of a consumer artifact with basic mechafuoationality as well
as human interactions, but the findings may be specific to this prodileme.

Further testing on a variety of design problems will give cemog in this
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generalization. The findings will be helpful for understandimg influence of
artifact models on novice designers within the conceptual phasesaindof

consumer mechanical artifacts.

7.3.7Results

The data analysis is completed using R statistical softy@feand packages
mul t conp [96] andvcd [97]. All code is included in Appendix E. Each model is
checked to ensure that the following assumptions are met: madeltliers, constant
variance, and normality. Since participants’ names were notiagsd with the sketches
generated, the sequence of participation is not known and independassensd to be
satisfied. Model fit is checked by plotting standardized residaghinst treatments.
Data are considered to be potential outliers if they aratgrehan three standard
deviations away from the mean. Constant variance is checked hpglstiindardized
residuals against fitted values and by comparing the largesinent variance to the
smallest treatment variance. Normality is checked by ptptstandardized residuals
against their normal scores. The plots and discussion of these a@essnapé included
in the Appendices. In the case of non-normal data, the KruskaisWatlk sum test is

used rather than the linear model and ANOVA.

7.3.7.1Conformance
The functional, activity, and interaction conformance is compared ubieag
participant average and participant best scoring approachesst, ffie functional

conformance data are fit with a linear model and a oneAN®VA performed. The
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ANOVA tables for the participant average scoring approach tfavers in Table 7-25.
All model assumptions are satisfied for participant averageingc approach, but
normality is not satisfied for the participant best scoring @gpr (see Appendix B).
Therefore, the linear model and one-way ANOVA cannot be used to cotmgagroups
means using the participant best scoring approach, and its nonfsaramalogue, the
Kruskal Wallis test [98] is used. This test does not requira tatbe normally
distributed.

The null hypothesis for the Kruskal-Wallis test states thatftlwe treatment
distributions (FM, IM, PM, NM) are equal, and the alternative hymihstates that at
least one of the populations yields different results [99]. Astsistic is computed and
compared to a critical value of the Chi-square distribution. Uslmg procedure
kruskal . t est in R, the Kruskal-Wallis rank sum test is performed and the iassdc
p-values computed. The test reveals that there is no signifi¢Baredce between any of

the groups (p = 0.31, Chi-square = 3.58).

Table 7-25: Functional Conformance ANOVA Table — Participant Average Scong
Approach

Source of Degrees of Sum of Mean
Variation Freedom Squares Square

F Value p-value

Treatment 3 0.330 0.1101 2.073 0.112
Error 65 3.451 0.0531
Total 68 3.781

The significance level for the hypothesis test that altrireat means are equal is
not significant for either scoring approach £ 0.1). However, the p-value for the

participant average scoring approach is small, so the pairwispacons between
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treatment groups will be performed. Descriptive statistiessaown in Table 7-26, and
the 95% confidence intervals shown in Table 7-27 are used for Figl8id'fypothesis
tests. If the confidence interval includes 0, then there is no significamtethitfe between
the two treatment groups. If the interval does not include 0, thea ither significant
difference. See Section 7.3.5 for a discussion on multiple compariscedpres.
Therefore, the average functional conformance by participamg aspruned model is
greater than that of participants using a function model, usinghdicigce level of 0.05.

No other significant differences exist in terms of functional conformance.

Table 7-26: Descriptive Statistics for Functional Conformance — Paidipant
Average Scoring Approach

Standard

Treatment Mean L Observations
Deviation
FM 0.469 0.263 18
IM 0.534 0.191 16
NM 0.515 0.242 18
PM 0.655 0.215 17

Table 7-27: 95% Confidence Interval for All Pairwise Comparisons of Functioal
Conformance — Participant Average Scoring Approach
Lower  Upper
Bound Bound
IM—-FM 0.066 -0.093 0.224
NM — FM 0.046 -0.108 0.199
PM - FM 0.187 0.031 0.342
NM — IM -0.020 -0.178 0.138
PM —IM 0.121 -0.039 0.282
PM — NM 0.141 -0.015 0.297

Contrast Estimate

The activity conformance data are fit with a linear model andahassumptions

are checked. All assumptions are satisfied for each scqrprgach, with the exception
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of normality. As shown in Figure 7-8, the normal probability plotsnatdinear. Many
of the sketches received a score of 0, causing the distribution teom@&ormal.

Therefore, the Kruskal Wallis test is used.
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Figure 7-8: Normal Probability Plots for Activity Conformance — Participant
Average Scoring Approach (left) and Participant Best Scoring Approach (ght)

The resulting test statistics and p-values from the Kruskal-Wahis sum test for
each scoring approach are shown in Table 7-28. The resultinggsussing this test are
close to the p-values for the linear model and ANOVA, which are 0/22®.845 for the
participant average and participant best scoring approaches;tiesiye This result is
expected since the ANOVA F-test is robust against non-normaddgpe for extreme
non-normality [99]. Since there is a significant differencevieen the groups using the
participant best scoring approach, pairwise comparisons are magevain-Whitney’s
U test. As with multiple comparison procedures for paramettia (ke 7.3.5), these
tests can be corrected to control the experiment error Hadgever, since this research
is exploratory, the overall experimental error rate is not cdettobut a two-sided tests
with significance levels of 0.05 are used to compare the groupsasimithe Fisher’s

LSD procedure with normal distributions. The median values are shoWwabie 7-29.
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The pairwise Mann-Whitney U tests (see Table 7-30) revealhkadistribution of the
FM group is significantly higher than the distribution of the I (p = 0.036) and
PM group (p = 0.015). The test does not reveal a significant difiefegteveen the FM
and NM groups (p = 0.056). However, the p-values are approximat® digs in the

data, so a difference between these two groups is possible.

Table 7-28: Kruskal-Wallis Rank Sum Test for Activity Conformance

Chi-square |
Test Statistic P3¢
Participant Average Scoring Approach 4.969 0.174
Participant Best Scoring Approach 7.830 0.050

Table 7-29: Descriptive Statistics for Activity Conformance — Pargipant Best

Scoring Approach
Treatment Mean Median Observations
FM 0.319 0.25 18
IM 0.141 0.00 16
NM 0.167 0.00 18
PM 0.118 0.00 17

Table 7-30: All Pairwise Comparisons of Activity Conformance — Partiipant Best
Scoring Approach
Mann-Whitney
p-value
IM - FM 0.036
NM — FM 0.056
PM - FM 0.015
NM — IM 0.858
PM — IM 0.679
PM — NM 0.860

Contrast

The interaction conformance data are fit with a linear model model

assumptions are checked. Using the participant average scoring appraacietieewo
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potential outliers in the function model group (FM), one greater theee standard
deviations above the mean (3.10) and one close to three standard dewabhtivashe
mean (-2.77). These two data points were further investigated, ahowszore was
considered to be an outlier based on the participant’s sketches.s ktl@a from the
sketches that this particular participant was not awaréhefsketching expectations.
Rather than sketch a design concept, the participant created &unction model and
calculated the power required to warm a burrito in the allotte@. tinThis same
participant’s data were also removed when using the participahtsbering approach,
since it was 3.12 standard deviations below the mean. The high scoring particigant’s da
were not removed because further inspection of the sketches revealed thnaréhgpod
concepts that conformed to the model well. Complete details ofntbdeling
assumptions and outlier removal is included in Appendix B. Afteovamg outliers, the
linear model is fit to the data and assumptions are checked. ddheing assumptions
for the participant average scoring approach are all sdtisfibile the assumption of
normality is not satisfied for the participant best scoripgreach. Therefore, the
Kruskal-Wallis rank sum test is performed for the particifast scoring approach. The
ANOVA table for the participant average scoring approachasva in Table 7-31. The
Kruskal-Wallis rank sum test reveals no significant differebetveen the groups for
interaction conformance (p = 0.13). Descriptive statisticssamvn Table 7-32 and

Table 7-33.
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Table 7-31: Interaction Conformance ANOVA Table — Participant Average Soring
Approach

Source of Degrees of Sum of Mean
Variation Freedom Squares Square

F Value p-value

Treatment 3 0.143 0.0477 1.731 0.170
Error 64 1.762 0.0275
Total 67 1.905

Table 7-32: Descriptive Statistics for Interaction Conformance — &ticipant
Average Scoring Approach

Treatment Mean Sta_nd_ar( Observations
Deviation
FM 0.500 0.220 17
IM 0.499 0.143 16
NM 0.442 0.154 18
PM 0.570 0.132 17

Table 7-33: Descriptive Statistics for Interaction Conformance — Pdicipant Best
Scoring Approach

Treatment  Mean Median Sta_nd_ar( Observations
Deviation
FM 0.632 0.50 0.200 17
IM 0.609 0.50 0.182 16
NM 0.500 0.50 0.210 18
PM 0.618 0.50 0.129 17

7.3.7.2Quality

The overall, functional, and activity quality are compared using thicipant
average and participant best scoring approaches. The overaty gizadi are fit with a
linear model and a one-way ANOVA is performed. All model agdioms are satisfied
for overall quality data using the participant best scoring apbrdad normality is not
satisfied using the participant average scoring approach (seadip®. Therefore, the

Kruskal-Wallis rank sum test is used for the participant avesageing approach.
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Descriptive statistics for each are shown in Table 7-34 and T&akte and the ANOVA

table for the participant best scoring approach is shown in Table 7-36.

Table 7-34: Descriptive Statistics for Overall Quality — ParticipantAverage Scoring

Approach
Standare .
Treatment Mean . . Observations
Deviation
FM 4,933 0.982 18
IM 5.146 0.940 16
NM 5.138 0.971 18
PM 5.502 1.098 17

Table 7-35: Descriptive Statistics for Overall Quality — ParticipantBest Scoring

Approach
Treatment Mean Sta'nd'ar( Observations
Deviation
FM 5.654 0.983 18
IM 5.583 0.949 16
NM 5.494 0.945 18
PM 5.980 0.988 17

Table 7-36: Overall Quality ANOVA Table — Participant Best Scoring Appoach

Source of Degrees of Sum of Mean
Variation Freedom Squares Square

F Value p-value

Treatment 3 2.318 0.7728 0.827 0.484
Error 65 60.737 0.9344
Total 68 63.055

The Kruskal-Wallis rank sum test reveals no significanted#fice between
treatment groups (p = 0.477, Chi-square = 2.49) in overall quality usingattieipant
average scoring approach, and the ANOVA reveals that theredgfence between
the overall quality group means using the participant best scappigach (p = 0.484).

The descriptive statistics show that the pruned treatment grauphé@aighest average
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guality of concepts, but the differences in group means is not sanific either scoring
approach. Therefore, pairwise comparisons between group means are not made.
The functional quality data are fit with a linear model and aveag-ANOVA
performed for each of the two scoring approaches. All modahgsfns are satisfied
for functional quality using the participant average approach Appendix C). The
ANOVA table for this scoring approach and the descriptive itatiare shown in Table

7-37 and Table 7-38.

Table 7-37: Functional Quality ANOVA Table — Participant Average Scorimg
Approach

Source of Degrees of Sum of Mean
Variation Freedom Squares Square

F Value p-value

Treatment 3 26.328 8.7760 2.474 0.069
Error 65 230.584 3.5475
Total 68 256.912

Table 7-38: Descriptive Statistics for Functional Quality — Partiqgpant Average
Scoring Approach

Standare

Treatment  Mean .. Observations
Deviation
FM 4.483 1.869 18
IM 4.689 1.570 16
NM 5.154 1.990 18
PM 6.092 2.044 17

The functional quality ANOVA table shows that there is a sigaift difference
in at least one of the treatment means, so all pairwise caoparwill be made for the
participant average scoring approach. The contrasts and asgo@i# confidence
intervals are shown in Table 7-39. The pruned model group had an avereigenain

guality of 6.09 compared to 4.69 and 4.48 for the interaction and function modpkgr
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respectively. Participants receiving the pruned model perfosigadicantly better than
participants receiving the interaction model or the function model, as demeaddiyatihe
confidence intervals. The pruned model, however, did not result in a Huglational

quality score over the no model group using this scoring approach.

Table 7-39: 95% Confidence Interval for All Pairwise Comparisons of Functnal
Quiality — Participant Average Scoring Approach

Lower  Upper
Bound Bound

IM - FM 0.206 -1.086 1.499
NM - FM 0.672 -0.582 1.925
PM — FM 1.609 0.337 2.881
NM — IM 0.465 -0.827 1.758
PM - IM 1.403 0.092 2.713
PM — NM 0.937 -0.335 2.209

Contrast Estimate

When fitting the data for the participant best scoring approach avilimear
model, the normality assumption is not satisfied. Therefore, ek#&lrgallis rank sum
test is performed. This test reveals a significant difieseebetween at least one of the
groups (p = 0.044, Chi-square = 8.11), so pairwise comparisons are maderiptive
statistics are shown in Table 7-40, and the resulting p-values fll pairwise
comparisons using Mann-Whitney U tests are shown in Table 7-41.exgiezimental
error rate in uncontrolled in these comparisons, so two-sided coommrand a
significance level of 0.05 is used. The results show thatrtireed model is significantly
better than all three other treatments, and the other tle&intent groups did not differ

significantly from each other.
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Table 7-40: Descriptive Statistics for Functional Quality — Particignt Best Scoring

Approach
Treatment  Mean Median Stano[art Observations
Deviation
FM 5.630 6.333 1.672 18
IM 5.167 5.000 1.388 16
NM 5.667 5.000 1.786 18
PM 6.961 7.000 1.848 17

Table 7-41: All Pairwise Comparisons of Functional Quality — ParticipanBest
Scoring Approach
Mann-Whitney
p-value
IM - FM 0.394
NM — FM 0.935
PM - FM 0.041
NM — IM 0.646
PM — IM 0.009
PM — NM 0.045

Contrast

For both scoring approaches, the average functional quality of concepts ddvelope
by participants using a pruned model is greater than that ofiparis using a function
model or an interaction model, using a significance level of 0.06onidering the best
sketch only, the average functional quality produced by participasitg) @ pruned
model is greater than that of participants using no model, usiignificance level of
0.05.

The activity quality data are fit with a linear model and masgumptions are
checked. The plot of treatments against the standardized residudle participant
average scoring approach revealed a potential lack of fit of tlaestae many of the
data points were below zero. Further, there were three poteutiigls identified in the

participant average scoring approach, which had standardized resifdRas, 2.65, and
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3.13. These points were not removed, however, since there was nothing alaiwutal
the sketches. The normality assumption is not satisfied sincetheal probability plot
reveals a heavy-tailed distribution. Using the participant besting approach, all
assumptions are satisfied except normality, since the normalliligbplot is not linear
among other problems. The two normal probability plots for activityityuale shown
in Figure 7-9. Since normality is not satisfied for eith@risg approach, the Kruskal-

Wallis rank sum test is used to compare groups.

Normal Probability Plot Normal Probability Plot
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Figure 7-9: Normal Probability Plots for Activity Conformance — Participant
Average Scoring Approach (left) and Participant Best Scoring Approach (ght)

The Kruskal-Wallis rank sum test is performed for both scoring appes, and
the resulting test statistics and p-values are shown in TaB2 Since there are no

significant differences between the groups, pairwise comparisons arefootneel.

Table 7-42: Kruskal-Wallis Rank Sum Test for Activity Quality

Chi-square |
Test Statistic P "21¢
Participant Average Scoring Approach 1.705 0.634
Participant Best Scoring Approach 0.481 0.923
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Table 7-43: Descriptive Statistics for Activity Quality — Participant Average Scoring

Approach
Treatment  Mean Median Observations
FM 5.088 5.000 17
IM 5.551 5.778 15
NM 5.630 5.000 18
PM 5.410 5.000 16

Table 7-44: Descriptive Statistics for Activity Quality — ParticipantBest Scoring

Approach
Treatment Mean Median Observations
FM 6.148 6.333 18
IM 6.375 6.666 16
NM 6.148 5.666 18
PM 6.020 5.000 17

7.3.7.3Quantity

The quantity of concepts produced by each participant is measyrealibting
the number of sketch sheets that each participant used. Sirdteadicipant must
produce at least one sketch, quantity is defined by the countbfasklitional sketch
beyond the first. The observed and expected count frequencies assurRibigson
distribution are shown in Table 7-45. A Chi-square goodness of fitsteshducted to
test the hypothesis that the sketch quantity data follow a Poissiwtion. The null
hypothesis is that the data are Poisson-distributed and the @terngpothesis is that
they are not. The Chi-square test statistic, computed usirgpthdf i t function in R,
is 2.49, resulting in a p-value of 0.478. Therefore, the null hypotlses rejected, and

the data are Poisson-distributed.
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Descriptive statistics for the quantity data are shown ineT@al6. The quantity
data are fit with a generalized linear model and all pa@gwentrasts are conducted to
identify any differences in concept quantity between treatmenifpgr The group means
are compared using Tukey's multiple comparison procedure, using idy-feise
confidence level of 0.90. The contrast estimates and confidence sitareashown in
Table 7-47. The quantity of concepts generated by participantsvingcéne function
model is significantly greater than the quantity of concepts gexktat participants
using the pruned model or no model. There are no other significaneddés between

groups.

Table 7-45: Expected Counts for Concept Quantity Assuming a Poisson Disution

Sketch Count Observed Expected
(beyond 1) Counts Counts

0 16 18.46
1 27 24.34
2 19 16.05
3 4 7.05
4 3 2.33

Table 7-46: Descriptive Statistics for Quantity of Concepts

Treatment Mean Sta_nd_ar( Observations
Deviation
FM 3.000 1.085 18
IM 2.250 1.000 16
NM 2.000 0.840 18
PM 1.882 0.857 17
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Table 7-47: Tukey’s 90% Family-Wise Confidence Intervals for All Pairwse
Comparisons of Concept Quantity

Lower  Upper

Bound Bound

IM—FM -0.470 -1.107 0.167

NM-FM -0.693 -1.353 -0.033

PM-FM -0.818 -1.521 -0.116

NM—IM -0.223 -0.966 0.520

PM-IM -0.348 -1.129 0.432

PM-NM -0.125 -0.924 0.674

Contrast Estimate

7.3.7.4Quality Density

Based on the findings above that there are significant diffesem the quantity
of concepts produced, but no differences in overall quality or actiuglity, a new
metric is developed, quality density. The quality density inddfas the participant’s
best quality score (either overall or categorically) dividgdtie number of sketches
produced by the participant, as shown in Equation 5.

Participart'sBestQualityScore
Numberof Sketche®roducedy Participan

Quiality Density= (5)

This quality density is important for concept sétat procedures, where a set of
good concepts would be selected from a set ofoaltepts. The quantity of concepts is
in the denominator of the metric because a smallerber of concepts would result in a
faster concept selection process since the desigioed be selecting from fewer
concepts.

The quality density data are not expected to benally distributed, so the
Kruskal-Wallis rank sum test is used for these .d&aly one scoring approach is used,

the participant best scoring approach. The Kru®¥allis rank sum test for the overall
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guality density reveals a significant differenceainleast one of the groups (p = 0.027,
Chi-square = 9.182), so pairwise comparisons amem@escriptive statistics for overall
quality density are shown in Table 7-48, and thaloies from all pairwise comparisons

using Mann-Whitney U tests are shown in Table 7-49.

Table 7-48: Descriptive Statistics for Overall Quality Density

Treatment  Mean Median Sta_nd_ar( Observations
Deviation
FM 2.258 1.755 1.304 18
IM 3.044 2.389 1.714 16
NM 3.420 2.611 1.904 18
PM 3.889 3.167 1.887 17

Table 7-49: All Pairwise Comparisons of Overall Quality Density
Mann-Whitney
p-value

IM - FM 0.098

NM — FM 0.041

PM-FM 0.007

NM = IM 0.616

PM — IM 0.134

PM — NM 0.321

Contrast

Since the overall experimental error is not cotgdyl the significance level for
individual contrasts is 0.05. Therefore, the gyatlensity generated by participants
using a pruned model (p = 0.041) or no model (pGOD) is significantly greater than
that of participants using a function model. Nbestsignificant differences exist among
the groups (see Table 7-49).

The groups are compared in terms of functionalityudénsity using the Kruskal-
Wallis rank sum test, which finds that there iggmigicant difference in at least one of

the groups (p = 0.018, Chi-square = 10.04). Alhpiae comparisons are made using

177



Mann-Whitney U tests, and the resulting p-valuesnfthese tests are shown in Table 7-
51, and descriptive statistics are included in @abli50. The results show that the
functional quality density of concepts producedplayticipants receiving a pruned model
is significantly greater than that of participamgeiving either a function model (p =
0.003) or an interaction model (p = 0.036). Noeotsignificant difference occur among

the groups.

Table 7-50: Descriptive Statistics for Functional Quality Density

Standare

Treatment  Mean Median . . Observations
Deviation
FM 2.302 2.111 1.529 18
IM 2.853 2.417 1.809 16
NM 3.698 2.333 2.631 18
PM 4.603 4.500 2.548 17

Table 7-51: All Pairwise Comparisons of Functional Quality Density

Mann-Whitney
p-value

IM—-FM 0.324
NM - FM 0.087
PM - FM 0.003
NM — IM 0.467
PM —IM 0.036
PM — NM 0.191

Contrast

The Kruskal-Wallis rank sum test is also used tst fer differences among
groups in terms of activity quality density. Thest determines that there is a significant
difference in at least one group (p = 0.028, Chiasgq = 9.06), so pairwise comparisons
are made between all groups. Descriptive stagistic these data are shown in Table 7-
52, and the p-values resulting from all pairwisenktVhitney U tests are shown in

Table 7-53. The data show that participants réegimo model (p = 0.012) or a pruned
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model (p = 0.008) produce concepts with a highetiviac quality density than
participants receiving a function model, usinggngicance level of 0.05. There are no

other significant differences among the groups.

Table 7-52: Descriptive Statistics for Activity Quality Density

Treatment Mean Median Sta_nd_ar( Observations
Deviation
FM 2.392 1.667 1.207 18
IM 3.458 3.333 1.966 16
NM 3.802 3.000 2.058 18
PM 3.858 3.500 1.801 17

Table 7-53: All Pairwise Comparisons of Activity Quality Density
Mann-Whitney
p-value
IM - FM 0.078
NM — FM 0.012
PM - FM 0.008

Contrast

NM — IM 0.715
PM —IM 0.413
PM — NM 0.714

7.4 Outcomes and Discussion

The results of all significant differences idemdi in conformance, quality,
guantity, and quality density are shown in Tabl&47-and descriptive statistics for each
are shown in Table 7-55. As shown in the tables,gruned model outperforms other
models in several areas, including functional canfince, functional quality, and all
quality density metrics, and it appears to be tlustneffective model. The following

conclusions are drawn based on significant diffeesndentified in this study (see Table

7-54):
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Table 7-54: Summary of Results of All Statistical Tests Comparing Tement
Groups

Participant Average Participant Best

Metric Category Scoring Approach  Scoring Approach
Conformance Functional PM > FM no_3|gn|f|cant
differences
o no significant FM > IM
Activity differences FM > PM
. no significant no significant
Interaction . .
differences differences
. no significant no significant
Quality Overall differences differences
PM > FM
Functional I;'\ICI >> II:I\'>|/I PM > IM
PM > NM
Activit no significant no significant
y differences differences
. FM > NM
Quantity EM > PM n/a
. : PM > FM
Quiality Density Overall n/a NM > EM
: PM > FM
Functional n/a PM > IM
- PM > FM
Activity n/a NM > EM
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Table 7-55: Descriptive Statistics for All Metrics and Scoring Approabes

Participant Average Participant Best

Metric Categor . )

gory Scoring Approach  Scoring Approach

Mean Median Mean Median

_ FM 0.469 0458 FM 0.611 0.643

Conformance Functional IM 0.534 0.548 IM 0.661 0.714
NM 0.515 0.500 NM 0.603 0.643

PM 0655 0714 PM 0.731 0.714

Mean Median Mean Median

FM 0.177 0.158 FM 0.319 0.25

Activity IM 0.098 0.000 IM 0.141 0.00

NM 0.079 0.000 NM 0.167 0.00
PM 0.109 0.000 PM 0.118 0.00

Mean Median Mean Median
FM 0.500 0.500 FM 0.632 0.500
Interaction IM 0.500 0.500 IM  0.609 0.500
NM 0.442 0.500 NM 0.500 0.500
PM 0570 0.500 PM 0.618 0.500

Mean Median Mean Median
FM 4.933 4.778 FM 5.654 5.444
Quality Overall IM 5146 5111 IM 5583 5.333

NM 5.138 4.944 NM 5.494 5556
PM 5502 5222 PM 50980 6.111

Mean Median Mean Median
FM 4.483 4.083 FM 5.630 6.333
Functional IM 4.689 4.833 IM 5.167 5.000
NM 5.154 5.000 NM 5.667 5.000
PM 6.092 5.667 PM 6.961 7.000

Mean Median Mean Median
FM 5250 5000 FM 6.148 6.333
Activity IM 5767 5.778 IM  6.375 6.667

NM 5630 5.000 NM 6.148 5.667
PM 5562 5.000 PM 6.020 5.000

Mean Median
FM 3.000 3.000
Quantity IM 2250 2.000
NM 2.000 2.000
PM 1.882 2.000

Mean Median
FM 2258 1.755
Quiality Density Overall IM  3.044 2.389
NM 3.420 2611
PM 3.889 3.167

Mean Median
FM 2.302 2.111
Functional IM 2.853 2.417
NM 3.698 2.333
PM 4.603 4.500

Mean Median
FM 2.392 1.667
Activity IM 3.458 3.333
NM 3.802 3.000
PM 3.858 3.500
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1. Pruning a function model increases the usage of the modelfsnctions by
designers. The pruned model results in better functional connce than the
function model using the participant average scprapproach. The pruned
model contains fewer functions than the functiondelp and these functions
describe only the functionality of the artifact et than the actions a user
performs or the interactions between the artifaxt the user. This condensed
description of the artifact’s function made the mloghore useful for the designer,
helping them address the functions included inntleelel. When used as a seed
for ideation, the model was intended to guide desig toward a particular
functional solution. The pruned model did a bejtdr of directing designers
toward the desired functions than the function nhodtes interesting that there is
no significant difference between the control gramgl the pruned model group,
indicating that the pruned model may not actualiveadd designers toward a
particular solution. However, there is a largefaddnce in the means and the
medians in these two groups, with the pruned medédiorming better than no
model (see Table 7-55). Due to the high MSE, theqy of the test is low, so it is
possible that a difference does exist but is ntéaed by this study.

2. Pruning a function model reduces the usage of activities ithe model. The
function model results in higher activity confornganthan the pruned model
using the participant best scoring approach. Tésult seems intuitive, since
pruning removes the user activities described enntodel. However, it identifies

an advantage of including activities in a model daetheir ability to direct
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designers toward activities that can be used teestile design problem. The
interaction model, like the function model, contairser activities described in an
active manner, but the function model outperforrnedinteraction model as well.
This result was not expected and points to diffiealin the activity conformance
metric. To ensure high reliability, the activityetric was strict, allowing for little
interpretation by the rater. The metric requiteak the sketch explicitly contain a
description of a user performing an activity orrawdng of a user performing an
action. Many of the designers probably intended &auser to perform some
actions but did not explicitly state it. Since theeraction model explicitly states
that a user is performing certain activities, tlesigners were probably less likely
to explicitly include the information in their skét, since the information would
be redundant with the model. This could have dhuke interaction model to
perform poorly on this metric. Follow-up interviswvith participants would have
been helpful to clarify this issue, but were natf@ened in this study.

Pruning a function model increases the functional quality ofdeas generated.
The pruned model results in higher functional dyalhan the function model
using both scoring approaches. The pruned modtiekefore, is useful to
designers, helping them generate ideas that satsfyfunctional requirements
well. The activities and interactions in a funaotimodel are likely taking some of
the designer’s attention away from the artifactiadtion. The activity quality,
however, is not significantly improved by the fuoat model, so the diverting of

the designer’s attention away from the functionhaf artifact is not useful. If the
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4.

activities were modeled in a way that the actitality is improved, then the
tradeoffs would need to be explored. However, ithisot the case as the activity
quality is not improved.

A pruned function model increases the functional qualityof ideas compared
to no model. The pruned model resulted in higher functional dqyalbmpared to
no model using the participant best scoring apgroda this study, the intent of
the function model is to help a designer understasgstem’s functionality and
generate ideas based on the desired functionaftyuned models, therefore, can
be used in conceptual design to improve the funatiquality of ideas generated.
The inclusion of activities in an interaction model reduce the functional
quality of ideas generated. The pruned model results in higher functional
guality than the interaction model using both sograpproaches. As previously
mentioned, the activities in the interaction modek likely diverting the
designer’s attention away from the artifact’'s fumet without improving the
activity quality. However, the interaction modélosvs promise that it may help
improve the activity quality. The effect may beahand is not detectable with
this study, but the interaction model results ie thighest mean and median
activity quality using both scoring approaches. eTimodeling of activities,
therefore, may be useful to a designer and shoelgursued using alternative
modeling approaches or a more fully developed #égtiaodel.

Function models increase the quantity of ideas generatedThe quantity of

concepts generated by designers using the funaotimotel is greater than that of
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designers with a pruned model. The function maxeitains descriptions of
passive functions and interactions, but it doesspetify whether the user or the
system will accomplish these activities. This agnlity gives freedom to the
designer to generate concepts in which the uséorpes the passive functions as
well as concepts in which the artifact performs filnections. The pruned model
does not include these passive functions, so desglikely do not generate
alternative solutions for them, reducing the totaber of concepts generated by
the designer. Function models also increased tingber of concepts generated
compared to designers without a model. The retwahis finding is not known,
but a possible explanation is that the function ehostimulates the concept
generation process in designers without restrictivegn to a particular solution.
The inclusion of ambiguous, passive functions skaes additional ideas.
However, this type of ideation is not the focugto$ research, which is to direct a
designer to a high-quality, functional solution.

Pruned models improve concept generation efficiency. Pruned models
increase the overall, functional, and activity gyadensity compared to function
models, and they increase the functional qualitysdg compared to the
interaction model. The pruned model results indieaoncepts than the function
model and increases the functional quality and dussreduce the overall or
activity quality of the concepts. This resultsaisignificant increase in the quality
density of ideas. The pruned model yields greatequal quality at a lower cost

(number of concepts), so the pruned model incretse®fficiency of concept
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generation (overall, functional, and activity) ovlee function model. The pruned
model also is more efficient functionally than timeraction model, which is
expected since the pruned model does not inclutMtess that capture some of
the designers’ attention and time.

8. Function models reduce concept generation efficiency. The overall and
activity quality density of the function model igsificantly less than that of no
model, and the difference in functional quality siénis close to significant (p =
0.086). Designers using a function model were édfssient in generating quality
concepts than those using no model, indicatingttteafunction model hinders the
efficient generation of ideas. The function monhelreases quantity of concept
without increasing the quality, so the additionahcepts are not very valuable in

the concept generation process.

Overall, the pruned model provides functional digect for designers, improving
the functional quality of ideas generated compdcethe function model. The pruned
model also results in a more efficient concept gaien process compared to the
function model. The interaction model did not pem better than other models, but it
shows potential for improvement in activity qualityhile the results are not significant,
the mean and median activity quality resulting frdme interaction is greater than all
other groups. The way in which activities are mede-using an activity model
discussed in [4]—has not been studied extensivelthis research. The separation of
activities and functions shows promise for improeeamin functional quality, so a more

effective activity model within the interaction neldhould be identified and tested.
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There are only a few instances in which designeithowt a model were
outperformed by designers with a model, suggestival function-based models in
conceptual design may not be useful as ideatiodsse&Vhile possible, there are two
reasons that models should still be pursued agiotietools. First, the high amount of
variation within groups allows for only large difesices among groups to be detected by
this study. Therefore, significant differences neyst when they were not found. In
order to state with confidence that there is néed#nce, either the sample size must be
increased or a new experiment design must be u$had.increase in sample size is not
practical due to the number of samples required $etion 7.3.3), SO a new experiment
design would be the better approach. The new arpat design should better model the
variation among participants using covariates, lkhag factors, or other approaches.
Second, the quality of ideas resulting from the atedre dependent on the content of the
models. The models provided to designers represeatfunctional approach to the
problem, and the quality of this idea was not ass@s It is possible that the ideas
contained in the models were of low quality, rasgltin participants deviating from the
ideas in the model or the model reducing the qualitthe concepts. The quality of the
model likely influences the quality of concepts @exted using the model, so alternative
models with different working principles should b&plored in future studies before

eliminating the use of representations as a seaddation in conceptual design.
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CHAPTER 8: CONCLUSIONS AND RESEARCH OPPORTUNITIES

8.1 Conclusions

The three tasks performed for this research colielgt address the overall
research question and the five sub-questions. d&iswers to each of these five
guestions, discussed in Section 8.1.1, constithee technical contributions of this
research. The outcomes of the individual tasks plevide insight into the research
methods used, and the contributions and lessonselgédy conducting this research are

discussed in Section 8.1.2.

8.1.1Technical Contributions

The overall question addressed in this research is:

Overall Research Question: How should the functionality of mechanica

artifacts be modeled to support ideation in coneapdesign?

Three tasks—an interpretability user study, a sinty study, and an ideation
user study—were performed to address five sub-munsst The research questions are
answered based on the outcomes of the tasks pe&dornihe relationship between the

research questions and tasks is shown in Table 8-1.
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Table 8-1: Research Questions and Supporting Research Tasks

Task 1: Task 2: Task 3:
Interpretability Similarity Ideation

Research Question

Overall How should the functionality of mechanical
artifacts be modeled to support ideation in v v v
conceptual design?

RQ1 How well do designers understand and use
functional representations in conceptual v v
design?

RQ2 In what ways do pruned function models v v
support ideation?

RQ3 In what ways do interaction models support
ideation?

RQ4 How well do functional representations
support internal search for solutions in v v
conceptual design?

RQ5 How well do functional representations
support external search for solutions in v
conceptual design?

8.1.1.1Designer Understanding and Use of Functional Representations (RQ1)

The first research question, “How well do designerderstand and use functional
representations in conceptual design?” is firstreskked through the interpretability user
study (Task 1). The interpretability study testld effects of the language (Functional
Basis or free language) and type of functions @s+engineered or pruned) on a user’s
understanding of models (see Chapter 5). The sshbws that interactions and
component-specific functions do not improve a sarderstanding of the model. When
these types of functions are pruned from the maithel, level of understanding (i.e.,
interpretability) is unaffected. Further, the wudefree language within a model greatly
increases the level of understanding of the modehbse free language terms contain

context that helps the user. Therefore, functioearesentations used by humans in

189



conceptual design should include context througle fanguage terms as well as high-
level conceptual functions (i.e., functions remagnafter pruning the model) to ensure a
high level of understanding of the model. A higévdl of understanding will be
beneficial for both communication within design neaas well as model creation in
conceptual design.

This research question is also addressed throughlé¢h&on user study (Task 3),
which tests the usage of models in ideation (seap®@h 7). The conformance metric
developed to evaluate sketches tests how welldbasi contained in a sketch align with
the ideas in the model. The study shows that dessguse the functions in a pruned
model more than a function model for ideation. c8ithe pruned model contains fewer,
more-active functions than the function modelsimore useful to designers. However,
the activities in the function model were used lgigners more than the pruned model
or interaction model. This may be a result of strect conformance scale created rather
than a true outcome, but it is possible that tmetion model is more useful for modeling
activities than the pruned model or interaction elodNo other significant differences in
usage of a model were identified through this studgluding differences between the
baseline group (no model), and other groups. Theyss limited to detection of large
effect sizes, so there may be medium or small réiffees between these groups that are
not detected by the study. Therefore, the usadbesie models by designers should be

further investigated.
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Based on these two tasks, pruned models are the usetul to designers for
conceptual design since they are easy to understaddthey improve the usage of

functions within the model.

8.1.1.2Advantages of Pruning for Ideation (RQ2)

The second research question, “In what ways doeggrdunction models support
ideation?” is addressed through all three rese@sits. The first task, the interpretability
study, shows that the pruned model is a more efficconceptual representation of an
artifact (see Chapter 5). Here, efficiency is dedi as a benefit-to-cost ratio. In terms of
interpretability, efficiency is the accuracy of enpretation (benefit) compared to the
speed of interpretation (cost). The pruned magletuich faster to interpret with the same
level of accuracy as a function model, so it is enefficient in conceptual design. This
more efficient representation reduces the time irequto understand a model and
generate ideas for a new design problem, allowasgef idea generation and/or more
ideas to be generated in the same time frame ngadihigher quality solutions.

The second task, the similarity study, also adeésedhis research question by
testing the appropriateness of the level of abstna@chieved through pruning. This
task shows that the pruning rules convert a revenggneered function model into a
consistent, conceptual-level description that igemarecise and accurate for similarity
calculations (see Chapter 6). A more precise antemaccurate similarity metric will
result in better seed examples (accuracy) and fpaer seed examples (precision) in a

design-by-analogy method, saving a designer timéngothrough the results of the
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metric. The pruned representation, therefore, aenefficient for identifying similar
artifacts that can be used as seeds for ideatioarineptual design.

The third task, the ideation user study, addresbes research question by
comparing the quality of ideas generated from thumg@d model to other representations
(see Chapter 7). The pruned model significanttyaases the functional quality of ideas
generated by designers. The pruned model is @esff representation of functionality
and is easily understood by designers, so a desigingg the model can quickly generate
high quality concepts. The pruned model also emes the quality density of concepts,
making it a more efficient representation than othedels. Quality density is defined as
the quality of the best concept created by a ppaitt divided by the number of concepts
generated by that participant, or a benefit (qualftthe best concept)-to-cost (number of
concepts that must be evaluated) ratio. The promasdel, therefore, is more efficient for
concept generation by designers.

Overall, the pruned model is an efficient represgon in terms of designer
understanding, similarity, and idea generation.unBd models are created from a
reverse-engineered description of an artifact, nohing rules specify the removal of
functions from a model. The pruning rules, themefeshould be inverted to describe
what should be modeled at the conceptual desigye §t& new designs. This topic is

discussed in more detail in Section 8.1.1.6.

8.1.1.3Advantages of Interaction Models for Ideation (RQ3)

The third research question, “In what ways do axtgon models support

ideation?” is addressed through the ideation usgtys which compares the usage and

192



quality resulting from the interaction model to @tlepresentations (see Chapter 7). The
study does not show a significant improvement irigpmance by the interaction model
over other models, but the study is only able tiectdarge differences between groups.
There are smaller effects that indicate that theraetion model may increase the activity
guality of concepts generated, so the interactiodehshould be further studied.

The interaction model is still in development, ahé activity model that was
integrated with the pruned model should be furtleeplored. There are other
representations for modeling users, processessis tthat may be compatible with the
function structure and more effective in modelihg actions a user performs. Further
exploration of modeling user actions and incorpogathem with the interaction model is
discussed in Section 8.2.1.

The integrated model of functions and user acteamssupport ideation within the
parallel function- and interaction-based designreagh (see Section 4.1), where the
interactions and functions of an artifact can besped simultaneously in a single model.
Initially, the approach anticipated a representatibinteractions separate from functions
(see Figure 4-2), but the latest iteration of the&eraction model incorporates both
functions and user actions and the interactionsvdet them. Therefore, a single
representation is used to model both paths in #nallpl process, and the parallel paths
focuses on functions and user actions, as illesdrat Figure 8-1. The interaction model
and design approach may be useful for ideation olungtion-user continuum, as

discussed in Section 8.2.2.1.
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Figure 8-1: Parallel Function- and Interaction-based Design Approaclshowing the
Location of Application of the Interaction Model

8.1.1.4Use of Functional Representations for Internal Search (RQ4)

The fourth research question, “How well do funcéibrepresentations support
internal search for solutions in conceptual desiga7Zaddressed by the interpretability
and ideation user studies. The interpretabilitgrustudy (Task 1) shows that pruned
models with free language are easier for desigiweunderstand. Therefore, when using
function models for internal solution search, aigles should use a the pruned model
with free language since it supports a quick urtdading of the model. Since the
designer understands the model quicker, the comadgteloped can more easily be
verified to ensure that they meet the functionatigscribed in the model, resulting in
more thorough concepts that better address theidmadity. The function model is more

difficult to interpret, so designers using thisnegentation for ideation will take longer to
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begin generating ideas and will iterate slowerh&y tverify that their concept addresses
the functions.

The ideation user study (Task 3) addresses thearels question by comparing
the conformance and quality of concepts generasaagudifferent models to concepts
generated without a model. The study shows thiaigus pruned model significantly
increases the functional quality of concepts, dedpgruned model group outperforms the
control group in many other categories, but theatfsize is too small to detect with
significance in this study. The study providesdewvice that the pruned model supports
ideation in many ways, but further studies must dmnducted to support these
conclusions statistically. This study also shohet the function model reduces overall
and activity quality density, suggesting that thendtion model hinders concept
generation in terms of efficiency. The functiondebdoes not reduce the overall quality,
but it causes more concepts to be developed witinotwtasing the overall quality. The
usefulness of the interaction model for internduson search is not significant, so this
representation may not be useful for ideation imceptual design. Therefore, the pruned
model supports ideation, the function model dogssapport ideation, and the interaction
model may or may not support ideation in concepdeaign.

The ideation study tested the use of a single mddel each functional
representation as a seed for ideation in concepgesgin. The use of multiple functional
solutions to a design problem may lead to more-Qighlity concepts. If designers are

creating the models and generating ideas from thieepruned representation may allow
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faster generation of models and exploration of temhg since they are easier to

understand and increase the functional qualitycaradity density of concepts.

8.1.1.5Use of Functional Representations for External Search (RQ5)

The fifth research question, “How well do functibmapresentations support
external search for solutions in conceptual desigmaddressed through the similarity
study (Task 2), where the pruned model is compévethe function model with and
without supporting functions. The similarity studilows that the pruned model best
supports the similarity metric since it resultsnrore accurate and precise similarity
calculations. The similarity metric is useful fi@sign-by-analogy methods, which is one
type of external search for solutions. The prunemtel, therefore, best supports this
external search compared to the function modeheeitwith or without supporting
functions. The pruned model is a subset of theragtion model, so the interaction
model could also be used to identify functionaliyitar artifacts as an external search
for solutions. The interaction model also has piaé to search for similar artifacts
based on activities, interactions, or any combamatof functions, activities, and
interactions. The interaction model supports extkesolution search functionally and
may support external solution search based on iteesivand interactions, but these

metrics have not yet been developed.

8.1.1.6Functional Representations in Conceptual Design

The five sub-questions support the overall reseguadstion, “How should the

functionality of mechanical artifacts be modeled dopport ideation in conceptual
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design?”. Based on the results of the three tasles,pruned model is an efficient
representation for ideation in conceptual desighe pruned model is easy to understand,
supports conceptual-level similarity, improves thenctional quality and overall,
functional, and activity quality density of ideasngrated by designers using the model.
Thus, mechanical artifacts should be modeled usiagpruning rules as guidelines for
creating conceptual-level models. The function elabes not represent interactions and
user activities in a way that is useful for ideatio conceptual design, and the interaction
model provides an alternative manner that doesinoler ideation compared to a pruned
model. Therefore, the interaction model shouldusther developed for application to
conceptual design, and the pruning rules shoulinberted to provide guidelines for
creating conceptual-level models.

The pruning rules were developed for models tha te Functional Basis
vocabulary. Since the interpretability study shadhest free language should be used to
ensure that designers understand the model, thelmg@dajuidelines should be based on
another vocabulary or other modeling principleteathan the Functional Basis. These
principles have not yet been identified, but a falrmphysics-based modeling approach
developed by Sen [27] shows promise that it wipmart formal modeling guidelines for
conceptual design.

While the goal of this research is to identify f@mmodeling guidelines, as in the
case of the pruning rules, several general modglindelines are presented based on the
outcomes of this research. These potential guiegliserve only to demonstrate the

potential to invert the pruning rules and to use’'Sevork to formalize conceptual
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modeling guidelines. Further, the pruning rulesenbeen tested as a set rather than
individually to first develop confidence that thdes are useful. Each of the guidelines
developed through inverting the pruning rules stidad individually tested to understand
its effectiveness and appropriateness for concepesgn activities. It is important to
note that function modeling guidelines are discddsedesign texts [1-4] but they serve
only as general guidelines rather than formal durde for creating function models.
The guidelines presented below are intended toobedlized in the future based on a

formal representation of function, such as thees@ntation presented in [27].

Potential Guidelines for Creating a Conceptual-level Model

¢ Model active functions. Active functions require that the energy usegdddorm
the function be carried by the artifact being medel Passive functions, which
are performed to or on an artifact, should not loeleted. If a designer wishes to
include passive functions, an alternative repredimt, such as the interaction
model, should be explored. This guideline is basedhe discussion of active
functionality, user actions, and interactions (Smxtion 2.1.3) and addresses
Pruning Rule 1, “Remove alnport andexportfunctions.” The functiongnport
andexportare typically passive and describe only interadiof an artifact with
its environment. It is possible that these fun®iaescribe active functions if
they require energy to be performed (e.g., a pumgomrtswater into a system), so
this modeling guideline better describes the intérhis first pruning rule.

e Model flows of artifacts only if the function of those artfacts is not in the

model. This modeling guideline is based on Pruning Ryl&kemove alcouple
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join, and link functions referring to any type dfolid’ and Pruning Rule 4,
“Remove allsupport stabilize secure and position functions,” which describe
assembly relationships within an artifact. Forragée, it is appropriate to model
the flow of an artifact, such as a battery, in aseably process since the function
of the artifact is not described within the funatimodel of the assembly process.
However, the artifact flow of a battery within anfttion model of a drill is not
appropriate if the functionality of the batteryalso included in the model. The
assembly process should be modeled in a complengentadel.

Model conduction and radiation of energy as a flow. Sen decomposes the
transfer of all types of energy into conductionnwection, and radiation [27],
where conduction of any type of energy does natirenet displacement of the
material through which the energy flows and radratdoes not require any
material medium [27]. This guideline describes thient of Pruning Rule 2,
“Remove allchanne] transfer, guide transport transmit translate rotate and
allow DOF functions referring to any type ehergy signals or humanmaterial”
When these functions are used to descehergyand signals they typically
describe conduction processes (e.gransfer electrical energy  The
formalization of conduction and radiation [27] sogs a more formal modeling
guideline that is based on the physical princiglescribed in the model rather
than the vocabulary used. Additionally, conducteord radiation of energy are
passive changes in the location of energy thatoearepresented by a flow rather

than a function to improve the level of understagdiy designers.

199



e Model convection of energy as a function. Sen defines convection as the
transfer of energy through bulk movement of a niatéiow [27]. This modeling
guideline addresses Pruning Rule 2, “Remove cabhnne] transfer, guide
transport transmit translate rotate, andallow DOF functions referring to any
type of energy signals or humanmaterial” in conjunction with the previous
modeling guideline. When energy is transferre@dugh convection, a material
flow must be transferred within the artifact torgathe energy, and Pruning Rule
2 does not specify the removal of functions desugilonaterial transfer (unless it
is human materigl which is outside the scope of this discussioihis bulk
material movement is important to consider in cgbgeal design, so it should be

included in a conceptual-level model.

Therefore, mechanical artifacts should be modetadguguidelines developed by
inverting pruning rules and using a formal functibmepresentation to describe them.
Non-functional or passive aspects of an artifaciusth be described in a complementary
model such as the interaction model. However, tieigresentation is still being

developed and has not been proven to be more ubaful pruned representation.

8.1.2Contribution to Design Research Methods

This research explores the use of functional rgmtesions in conceptual design
and validates their use using two main approachredogous to medical research
validation, as discussed by Frey and Dym [80]. Titst validation approach, used in

Task 1 and Task 3, is a laboratory experiment witinan subjects, analogous to in vitro
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experiments in medicine. The two experimentsttestuse of functional representations
for interpretability and ideation using human salgan a controlled lab setting. There is
risk associated with testing in a lab setting sinas different from industry practice,
where designers work as part of a team and mawtbrately familiar with a domain.
The experimental results from students performiagigh tasks in a controlled setting
may not be representative of designers in industiygeneralization to industry may not
be appropriate. However, generalization to a stugepulation is appropriate, and it is
beneficial to understand the usefulness of desigis tfor students. If these tools are
found to be useful for students, then further tesia be conducted in industry to
understand their benefits in industry. Furtheesthlab experiments can provide insights
into proper experimental procedures, which can fyg@ied to the design of controlled
experiments for industry. Lab experiments, thaef@re an appropriate step toward
validation since controlled studies in industry qeret many challenges and can be
expensive.

The second validation approach, used in Task 2 detailed simulation of a
design method, analogous to animal models in me&lig80]. The similarity study
simulates a designer searching for artifacts thatfanctionally similar to a model of a
new design problem. The “new” design problem is #tudy is a set of function models
with an known level of similarity to a group of ifeitts. The similarity of the new design
problems to the group of artifacts is determined @@ results are compared for different

representations. This use of a simulation to eddicthe representation is appropriate
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since a computational similarity metric and repwsitof knowledge exists, and the
metric has been shown applicable to design-by-ayalo

The ideation user study (Task 3) is a thorough g@tarand documentation of a
completely randomized design applied to ideationcamceptual design. The study
includes the development of quantitative metricevaluate qualitative data, ensuring the
reliability of the ratings through interrater agment, developing hypotheses, calculating
sample size, and checking model assumptions. &sieedof these researchers is that this
study would help inform other researchers desittngalidate design tools and methods
through controlled laboratory experiments. Thedes learned from this experiment can
be used to improve future experimental designs w of the practical lessons learned
from the ideation user study are discussed:

e A pilot study should be conducted to obtain sandglgign concepts.

- A reliable rating scale should be developed from toncepts in the pilot
study. A scoring reference sheet with examplesilshioe created and two (or
more) raters should independently evaluate conceplte ratings should be
compared using interrater agreement metrics, sscdBchen’s Kappa value.
If the level of agreement is not acceptable, thea differences in ratings
should be discussed among raters and the rating skeauld be refined and
the process repeated until acceptable levels eeagent are achieved.

- The mean squared error (MSE) should be estimated the pilot study and

used to predict the sample size.
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MSE using senior-level students at a single uniiyeis large in a completely
randomized design. This design is only able tedetarge differences among
groups, and is not powerful for detecting smallnoedium effect sizes. Other
designs should be explored to reduce MSE if laiifferdnces among treatment
groups are not anticipated.

Concept scores for conformance and quality weredas the average of several
categorical or binary ratings. For example, thecfional conformance score was
the average of seven binary function ratings. Thsulting scores were
approximately normal, but were some problems witivaies, since many of the
participants scored poorly on activities. Thengtscales, therefore, should not
be too strict or too generous, resulting in manycepts receiving the same score,
especially since the goal of the rating system as separate concepts.
Additionally, when only a few individual ratingseaaveraged into a score, the
data tend to be more discrete and there are manyirtithe data. A different
experiment design may alleviate some of this proBl€ it includes covariates or

another predictor of the response.

8.2 Research Opportunities

8.2.1Development and Testing of Functional Represemtatio

Three representations of function—the function nhodgeraction model and

pruned model—have been evaluated in this researdhcampared to a baseline of no
model. The studies conducted show that the pramadel is more useful for conceptual

design than the function model, but it is not knawthe pruned model is more useful
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than the interaction model or no model. Therefdne, interaction model and pruned
model should continue to be developed and testeck she interaction model may be a
useful way to model non-functional requirementsjcivhare not captured in the pruned
model and are improperly captured in the functi@mdel. The research question that will

be explored is:

RQ: How can user actions and interactions be mddelesupport ideation in

conceptual design?

8.2.1.1Development of the Interaction Model

The activity model representation [4] was integilatgth the pruned model in this
research to create the interaction model. Theulrsess of the activity model is not
known, and did not significantly improve the usekgs of the model for conceptual
design. Therefore, this representation and altemaepresentations of user actions
should be investigated to understand their usefslfer conceptual design. Other
representations, such as task or process modeyshbenadapted and integrated with the
pruned model to create a useful representationrtdb@ function, user actions, and
interactions between users and artifacts. Thesdelmmf user actions can be studied
independently of function models before integratimgm with functional representations.

Therefore, the research question pursued is:

RQ: What representation is appropriate to integraith pruned models to

capture user actions?
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After identifying an appropriate user modeling noethand developing the
interaction model, the model should be formalizethva grammar and method for
creating the models. The function modeling forzwtion developed by Sen [27] can
likely be used within the functional portion of tlmteraction model (see Section 8.1.1.6),
but user and interaction modeling must also be &imad as each is integrated with the
pruned model. Once formalized, interaction modgtimethods can be created and tested

for repeatability among designers.

8.2.1.2Testing of the Pruned and Interaction Models

Since the ideation user study conducted in thisaieh is exploratory and since
significant differences between the pruned moaeé&raction model, and no model were
not frequently identified, these models should cw# to be tested for their usefulness in

conceptual design. The research question pursuad eéxtension to RQ2 and RQ3:

RQ: In what ways to pruned models and interactiaal@s support ideation in

conceptual design?

The following areas for further testing have bedentified to address this
research question:
e Revise the experiment design:The ideation user study was effective for
identifying large differences among models, but lnaeffects cannot be
identified due to the high variation among partits. Therefore, a more

effective statistical model and experiment desigoutd be identified and used in
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future studies to reduce sample size and provideerbéetection of smaller
effects.

Consider other experimental approaches: The quantitative experimental
approach is effective for identifying differences the representations, but the
reasons for these differences cannot be identifigdl this approach. Qualitative
methods may be more effective, especially during tlevelopment of the
representations, for understanding how and whygdess use the representations
for ideation. These qualitative studies may rezgimaller sample sizes and may
provide more insights for the development process iterations on the
representations can be faster and more effective.

Test additional factors: The ideation user study tests a single functisoaition

to the burrito-folding design problem using thre#edent representations to
model the functional solution. There are manyedéht functional solutions that
could be used to solve the design problem, ranfyorg a user-centered solution
where a human performs all activities in the barfdlding process to an artifact-
centered solution where the process is completetpnaated. The effect of
different models, each containing a different dolutto the problem, should be
studied using both the pruned model and interaatimadel, and no model as a
baseline. The effect of the representations oatiode may be dependent on the
solution described by the model, and different éspntations may be more

appropriate for different types of solutions. Fample, an artifact-centered
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solution may have few interactions between thdaattaind user, so an interaction
model may not be appropriate for this type of sohut

e Test a broader set of participants and design problemsThe ideation study is
limited to a single design problem and participartsall senior-level mechanical
engineering students at Clemson University. Tipeesentations should be tested

across broader participants and design problemsré@ader generalization.

8.2.1.3Testing of the Modeling Process

In the ideation user study, participants were ptestia model that was used as a
seed for concept generation. Designers may natalyp be provided with a model; they
may create the model before using it to genera&asid The process of creating the model
may provide more benefit to the designer than theah model itself, since the designer
must understand the problem and identify a funeli@pproach to the problem as he or
she creates the model. The modeling process miaythe designer understand and
define the problem through decomposition, and ¢lselting model may be of less benefit
to the designer than the insights gained througleiercise.

If the modeling process is more useful than the ehadelf for ideation, then the
representation used to model functionality may afteéct the outcome of ideation when
the designer generates the model. Further, ifsgyder creates a model, he or she will
know the intent of each element in the model, sol¢hrel of understanding of the model
by other designers should not affect the outcomiledtion through internal search by

the modeler(s). Therefore, the modeling processildhbe further studied to understand
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the usefulness of functional representations inceptual design. The following two

research questions can be pursued:

RQ: How does the model development process aftiztion in conceptual
design?
RQ: Does the functional representation used toter@a model affect the

information gained by a modeler?

8.2.2Integrated Function- and Interaction-based Desigthiids

Many systematic design methods prescribe a funditishapproach, but in this
research a parallel function- and interaction-bagsatoach is proposed (see Section 4.1).
The interaction model may be a useful tool withirs tapproach, but methods for using

this representation must be developed to suppsitjaers.

8.2.2.1Model Generation Methods on a Function-User Continuum

Since the interaction model contains both artifacictionality and user actions,
models can be generated for a design problem ounetibn-user continuum. For
example, if a design problem requires that a usércarved shapes out of wood, the

designer could generate a range of solution ideses Eigure 8-2).
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User

Action Function

Figure 8-2: Example of Solutions to Wooc-Cutting Problem on a Functior-User
Continuum (image sources, left to right: sears.com, sears.cosears.com
rockler.com)

At the user end of the continuum, the user wouldope many actions an
designed artifact would perform only a few transfative unctions (if any). A copin
saw would lie at the user end of this continuunt.th® functional end of the continuu
the designed artifact would perform many functiansl the user would only perform
few actions. In the woodutting problem, a CNC wd cutting machine would lie at tt
functional end of the continuum. Interact-based design methods could be cre
around this continuum, encouraging designers tatera broad range of models that

be used for concept generat

RQ: How does modereation on a functic-user continuum affect the qual

of ideas generat by designers?

8.2.2.2Model EvaluatiorMethod:

If a designer uses this interact-based design approach to devetogny model:
on a functiondser continuum, then the designer may gete a large number of concej
from the models. The desigrmaythen evaluate many concepts, reducing them do\

a few good concepts to pursue for the final desiinhowever, the models rather th
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the concepts could be evaluated for performanan the designer could evaluate and
eliminate models before generating concepts fromh eaodel, reducing the effort
required by the designer. Therefore, interactioodeh evaluation metrics should be
developed for comparing models and selecting theetsothat will lead to the best

solutions.

RQ: Can models, rather than sketches or conceptsffbctively evaluated in

conceptual design to identify high-quality ideas?

8.2.2.3Computational Tools to Support Ideation

After creating an interaction model of a new adifadesigners may identify
potential solutions to functions, user actions, imteractions through an internal or
external search [2]. Internal searches rely ord#sgners’ knowledge and/or experience
for idea generation, while external searches requiesigners to look for existing
solutions to the problem or similar problems. Newls may be developed based on the

parallel design approach that better support ideati

RQ: What new computational tools can be createsufgport external search

for solutions in conceptual design?

A formal similarity metric may enable designergtmerate an interaction model,
compare it to models of existing artifacts, and trse identified similar artifacts as a
source for ideas. Function-based similarity metagist (see Chapter 6), but user action
and interaction similarity metrics must be devetbpgnd integrated with function

similarity metrics for a complete comparison of @adpects of the artifact captured in an
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interaction model. This hybrid similarity metricaym enable designers to identify
artifacts with similar functions, user actions, amdinteractions, supporting concept
generation that addresses not only the artifactisctfon, but also user actions and

interactions with users and other artifacts.

RQ: How does a hybrid similarity metric support atlen in conceptual

design?

The complete similarity metric will require identithg or developing an
interaction model vocabulary, grammar, and metlaydathieving a consistent level of

abstraction.

8.2.3Design Method Validation

Controlled user studies are gaining popularityhie tesign research community
and are used to evaluate design tools and methddsst of these user studies are
performed in classroom settings with undergradustiegdents, which may not be
representative of designers in industry. The sinties and differences between students
and designers in industry should be studied to rstaied if user studies can be used to
validate design methods targeted at industry. dlssr studies could be conducted with
both designers in industry and students as paatitgoand the results compared. If the
design outcomes are consistent between industigra@s and students, then these types
of experiments will be more useful to researchatlywing for generalization from

students to designers in industry. Thus, the Walg research question is identified:
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RQ: Are students appropriate participants for \alwh of design tools and

methods?

User studies are a logical method for design metradidiation, but they present
many challenges due to the nature of design andahwubjects. Research methods
using human subjects should continue to be expliorether areas and applied to design.
Frey and Dym [80] suggest that medical researcthoadkst be applied to design research,
but there are differences between medical researdldesign research that will allow for
different experimental designs. For example, isigie research, participants are given a
design problem that is controlled by the researched the participant could be given
multiple design problems. In medical researchtigpants must be found that already
have a condition that is being studied. Therefoepetition within participants is not
possible in medical research, but it is possibled@sign research. Design is also
performed by teams in many cases, and medical rds@aethods may not be relevant
for testing groups. Therefore, research methodsildhbe explored from many other
areas and applied to design. The following twaeaesh questions can be pursued to

further research in validation techniques:

RQ: Are user studies appropriate for validatingglesools and methods?
RQ: What other techniques, within or outside theigle community, are

appropriate for validating design tools and metRRods
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APPENDIX A: EXPERIMENT PACKETS

Each participant in the ideation user study wasvigeml with: (1) a problem
statement, (2) either a function model, interactimydel, pruned model, or no model, and
(3) five sketching sheets. The problem statemadtraodels for each treatment group
are shown in Figure A-1, Figure A-2, Figure A-3ddfigure A-4. The sketching sheet

provided to all treatment groups is shown in Figh+8.
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Figure A-2: Burrito Folder Problem Statement and Interaction Model

216



AS1au3 URMTY - TH LASIaUF [EIUEYIAN - T ST - 4 BMel - 1

e
_ YiBieug
_ e n _
0] JH LaAudD) * AGlaug uBung
N i _ T
| _
_
enio | uonIung
J -—
| | vonsod |9 ERUOL S0 | oL
! ¥ v ¥
_ | -
ojung
sumi4 yum sBuipg yum |
-— pays - - - sbu .l|_|m_..|
opung | S::w_ur_ del | ENMOL dRIM, [Je) | EIEHOL N 4 i 8IS | sBum Aiepunog |
- — —
| J
Aay

HITTOL OLIHHNE ¥ 40 THALIELS NOLLINN

‘195N M O LMD O S5TRY - 785 S 1SN STASP YL

‘{7000 Rr2eds oU PUR SANOT 5T} 25T Talfe URS[D 01 ASES 3 ISNM 0P YL
‘asn o) Aseg

“[reasTr o1 Asum

‘Bury a3 Jane oxpumg deayy

‘Fumonisod sadosd 1ayre BTIRI0Y O ([

‘sHUITY A0l O BRI Aduamontsod

dion JUMo B W0 17 1SN STEP #L

MITET Jad SO0ILLNG ¥ 158 1R JO 1R 1B S01LEMq patapdmod saateg
pymatmarmbag ufisap Surao(o) g 0l

AIMYPR 1STLU A3WEP Sffl “sunprewm Furplog oltLmyg 5T amIoY ' 107 wEisap Mmau v sawem s sandwar[oo sy paataa sey puR puom en Ared v Funsor) st qunms oy

INIWELVLS KIT1304dd

Figure A-3: Burrito Folder Problem Statement andPruned Model
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Figure A-4: Burrito Folder Problem Statement andNo Model
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Foimis 1o remember,

Please specify the view for vour concepts, (Top, Front, Perspective)

Either a froat, top of perspective view is encugh Do not draw the same concep in different view.
Flease provide properly dimensioned and labeled sketches

Provide explanation for vour sketch ar the botrom

Omly one concept per page.

W P

VIEW: TOP/ FRONT, PERSPECTIVE

Explanation

Figure A-5: Participant Sketch Sheet
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APPENDIX B: EXTENDED STUDY MODEL ASSUMPTIONS FOR

CONFORMANCE DATA

The data from each conformance metric and sconupgoach are first fit with a
linear model and all assumptions checked. Thengssons for each model are shown

and discussed below.

Functional Conformance — Participant Average Scpfipproach

To check the fit of the model, the standardizeddieds are plotted against the
factor levels . As shown in Figure B-1, the residuappear to exhibit a random pattern,

so the linear model is appropriate.
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Figure B-1: Linear Model Fit for Functional Conformance — Participant Average
Scoring Approach

To check for outliers, the standardized residuats sorted from smallest to

largest. The maximum and minimum standardizeddoe¢s are 2.37 and -1.97,
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respectively. These values are not consideredeasitsince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeduals are first plotted against
the fitted values. As shown in Figure B-2, thexy@o trend in variance so the data appear
to satisfy the constant variance assumption. €kersd check for constant variance is to
compare the largest variance estimate with thelestalariance estimate. The ratio for

this scoring approach is 1.9, which is small. Ef@me, the constant variance assumption

is satisfied.
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Figure B-2: Plot of Standard Residual versus Fitted Values for Funainal
Conformance — Participant Average Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure B-3, the normal prdiigtplot shows a linear trend, so the

normality assumption is satisfied.
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Figure B-3: Normal Probability Plot for Functional Conformance Model —
Participant Average Scoring Approach

Functional Conformance — Participant Best Scorippiach

To check the fit of the model, the standardizeddieds are plotted against the
factor levels . As shown in Figure B-4, the residuappear to exhibit a random pattern,

so the linear model is appropriate.
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Figure B-4: Linear Model Fit for Functional Conformance — Participant Best
Scoring Approach
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To check for outliers, the standardized residuas sorted from smallest to
largest. The maximum and minimum standardizeddveds are 1.99 and -2.40,
respectively. These values are not consideredeasitsince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeduals are first plotted against
the fitted values. As shown in Figure B-5, thexy@o trend in variance so the data appear
to satisfy the constant variance assumption. €kersd check for constant variance is to
compare the largest variance estimate with thelestalariance estimate. The ratio for

this scoring approach is 2.4, which is small. Efame, the constant variance assumption

is satisfied.
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Figure B-5: Plot of Standard Residual versus Fitted Values for Funainal
Conformance — Participant Average Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal

scores. As shown in Figure B-6, the normal prdiigitplot is not linear at the ends, so
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the data may not be normally distributed. A Shapifilk normality test reveals that the

distribution is not normal (p = 0.04). Therefanenparametric tests will be performed.
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Figure B-6: Normal Probability Plot for Functional Conformance Model —
Participant Best Scoring Approach

Activity Conformance — Participant Average Scorigpproach

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure B-7, the residuappear to exhibit a random pattern,
but they are not equally distributed about the mdarthe first treatment group, there are
many points below the overall mean, while in thheotthree groups there are many

points above the mean. Thus, the model may natdmod fit for the data.
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Standardized Residuals
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Figure B-7: Linear Model Fit for Activity Conformance — Participant Average
Scoring Approach

To check for outliers, the standardized residuats sorted from smallest to
largest. The maximum and minimum standardizeddveds are 2.72 and -1.23,
respectively. These values are not consideredeaitkince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeiduals are first plotted against
the fitted values. As shown in Figure B-8, thex@o trend in variance so the data appear
to satisfy the constant variance assumption. Eaersl check for constant variance is to
compare the largest variance estimate with thelestatariance estimate. The ratio for

this scoring approach is 1.9, which is small. Ef@e, the constant variance assumption

is satisfied.
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Figure B-8: Plot of Standard Residual versus Fitted Values for Activit
Conformance — Participant Average Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure B-9, the normal prdiigplot is not linear, so the data are

not normally distributed. Therefore, nonparametsis will be performed.
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Figure B-9: Normal Probability Plot for Activity Conformance Model — Partici pant
Average Scoring Approach
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Activity Conformance — Participant Best Scoring Agach

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure B-10, the rasid appear to exhibit a random pattern
around the mean, so the linear model is appropridtee residuals are evenly spaced

since the participant best scoring approach resuttatively discrete data.
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Figure B-10: Linear Model Fit for Activity Conformance — Participant Best Scoring
Approach

To check for outliers, the standardized residuas sorted from smallest to
largest. The maximum and minimum standardizeddoeds are 2.64 and -1.44,
respectively. These values are not consideredeatkince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeduals are first plotted against
the fitted values. As shown in Figure B-11, thexeno trend in variance so the data
appear to satisfy the constant variance assumptidbhe second check for constant

variance is to compare the largest variance estinéh the smallest variance estimate.
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The ratio for this scoring approach is 2.3, whishsmall. Therefore, the constant

variance assumption is satisfied.
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Figure B-11: Plot of Standard Residual versus Fitted Values for Actity
Conformance — Participant Best Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal

scores. As shown in Figure B-12, the normal prdibalplot is not linear, so the data are

not normally distributed. Therefore, nonparametits will be performed.
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Figure B-12: Normal Probability Plot for Activity Conformance Model —
Participant Best Scoring Approach
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Interaction Conformance — Participant Average SwpApproach

The initial check of assumptions for this modele&ed one outlier that was
removed from the data because the participant Igledd not understand what was
expected in the sketching exercise (see Sectiaid.I)3 The assumptions after removal
of this outlier are checked and described below.

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure B-13, the resid appear to exhibit a random pattern,

so the linear model is appropriate.
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Figure B-13: Linear Model Fit for Interaction Conformance — Participant Average
Scoring Approach

To check for outliers, the standardized residuats sorted from smallest to
largest. The maximum and minimum standardizeddveds are 3.11 and -1.94,
respectively. The sketches and data associatédtéthigh score are reviewed and it is
determined that this participant created good $lestcso the data point is not removed

from the model.
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To check for constant variance, the standardizeduals are first plotted against
the fitted values. As shown in Figure B-14, thexeno trend in variance so the data
appear to satisfy the constant variance assumptidbhe second check for constant
variance is to compare the largest variance estimah the smallest variance estimate.
The ratio for this scoring approach is 2.8, whishsmall. Therefore, the constant

variance assumption is satisfied.
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Figure B-14: Plot of Standard Residual versus Fitted Values for Intexction
Conformance — Participant Average Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure B-15, the normal prdivalplot is approximately linear, but
the plot contains steps in the data. A ShapirdéWdrmality test shows that the data are

normally distributed (p = 0.28), so this assumptssatisfied.
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Figure B-15: Normal Probability Plot for Interaction Conformance Model —
Participant Average Scoring Approach

Interaction Conformance — Participant Best Scofipgroach

The initial check of assumptions for this modele&ed one outlier that was
removed from the data because the participant lgledd not understand what was
expected in the sketching exercise (see Sectiaid.T)3 The assumptions after removal
of this outlier are checked and described below.

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure B-16, the resid appear to exhibit a random pattern,

so the linear model is appropriate.
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Figure B-16: Linear Model Fit for Interaction Conformance — Participant Best
Scoring Approach

To check for outliers, the standardized residuas sorted from smallest to
largest. The maximum and minimum standardizeddoeds are 2.81 and -2.15,
respectively. These values are not consideredeaitlsince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeduals are first plotted against
the fitted values. As shown in Figure B-17, thexeno trend in variance so the data
appear to satisfy the constant variance assumptidbhe second check for constant
variance is to compare the largest variance estimah the smallest variance estimate.
The ratio for this scoring approach is 2.7, whishsmall. Therefore, the constant

variance assumption is satisfied.

232



™ [}
(%)
©
5 N — . .
S
g .

[ ]

Lo} [ ]
(O]
N o .
o
S
© L ] *
T
S .
S

I I I I I I I
0.50 0.52 0.54 0.56 0.58 0.60 0.62

Fitted Values

Figure B-17: Plot of Standard Residual versus Fitted Values for Intexction
Conformance — Participant Best Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure B-18, the normal prdibalplot is approximately linear, but
there are distinct steps in the data due to refesieres. A Shapiro-Wilk normality test
confirms that the data are not normally distribu¢pd= 0.002), so nonparametric tests

will be used.
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Figure B-18: Normal Probability Plot for Interaction Conformance Model —
Participant Best Scoring Approach
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APPENDIX C EXTENDED STUDY MODEL ASSUMPTIONS FOR QUALITY

DATA

The data from each quality metric and scoring apgnaare first fit with a linear
model and all assumptions checked. The assumptnsach model are shown and

discussed below.

Overall Quality — Participant Average Scoring Apmezh

To check the fit of the model, the standardizeddieds are plotted against the
factor levels. As shown in Figure C-1, the resldppear to exhibit a random pattern,

so the linear model is appropriate.
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Figure C-1: Linear Model Fit for Overall Quality — Participant Avera ge Scoring
Approach

To check for outliers, the standardized residuaks sorted from smallest to

largest. The maximum and minimum standardizeddveds are 1.92 and -1.82,
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respectively. These values are not consideredeasitsince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeduals are first plotted against
the fitted values. As shown in Figure C-2, theraa trend in variance so the data appear
to satisfy the constant variance assumption. €kersd check for constant variance is to
compare the largest variance estimate with thelsstalariance estimate. The ratio for

this scoring approach is 1.4, which is small. Ef@me, the constant variance assumption

is satisfied.
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Figure C-2: Plot of Standard Residual versus Fitted Values for Overall Qality —
Participant Average Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure C-3, the normal prdliglglot is not linear at the ends of
the plot, so the data are not normally distributddherefore, nonparametric tests will be

performed.
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Figure C-3: Normal Probability Plot for Overall Quality Model — Participant
Average Scoring Approach

Overall Quality — Participant Best Scoring Approach

To check the fit of the model, the standardizeddieds are plotted against the

factor levels . As shown in Figure C-4, the realduappear to exhibit a random pattern,

so the linear model is appropriate.
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Figure C-4 Linear Model Fit for Overall Quality — Participant Best Scoring
Approach

To check for outliers, the standardized residuats sorted from smallest to
largest. The maximum and minimum standardizeddveds are 2.15 and -2.35,
respectively. These values are not consideredeaitkince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeiduals are first plotted against
the fitted values. As shown in Figure C-5, therea trend in variance so the data appear
to satisfy the constant variance assumption. Eaersl check for constant variance is to
compare the largest variance estimate with thelestatariance estimate. The ratio for
this scoring approach is 1.1, which is small. Ef@e, the constant variance assumption

is satisfied.
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Figure C-5: Plot of Standard Residual versus Fitted Values for Overall Qality —
Participant Best Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure C-6, the normal prdltglmlot shows a linear trend, so the

normality assumption is satisfied.
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Figure C-6: Normal Probability Plot for Overall Quality Model — Participant Best

Scoring Approach

238



Functional Quality — Participant Average Scoringpfgach

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure C-7, the realdwappear to exhibit a random pattern,

so the linear model is appropriate.
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Figure C-7 Linear Model Fit for Functional Quality — Participant Average Saring
Approach

To check for outliers, the standardized residuats sorted from smallest to
largest. The maximum and minimum standardizeddveds are 2.10 and -2.06,
respectively. These values are not consideredeaitkince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeiduals are first plotted against
the fitted values. As shown in Figure C-8, therea trend in variance so the data appear
to satisfy the constant variance assumption. Eaersl check for constant variance is to

compare the largest variance estimate with thelestatariance estimate. The ratio for
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this scoring approach is 1.7, which is small. Ef@me, the constant variance assumption

is satisfied.
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Figure C-8: Plot of Standard Residual versus Fitted Values for Functimal Quality —
Participant Average Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure C-9, the normal prditglmlot shows a linear trend, so the

normality assumption is satisfied.
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Figure C-9: Normal Probability Plot for Functional Quality Model — Participant
Average Scoring Approach

Functional Quality — Participant Best Scoring Ao

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure C-10, the raaild appear to exhibit a random pattern,

so the linear model is appropriate.
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Figure C-10 Linear Model Fit for Functional Quality — Participant Best Scoring
Approach

To check for outliers, the standardized residuats sorted from smallest to
largest. The maximum and minimum standardizeddveds are 2.03 and -2.42,
respectively. These values are not consideredeatkince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeiduals are first plotted against
the fitted values. As shown in Figure C-11, thereno trend in variance so the data
appear to satisfy the constant variance assumptidhe second check for constant
variance is to compare the largest variance estinéh the smallest variance estimate.
The ratio for this scoring approach is 1.8, whishsmall. Therefore, the constant

variance assumption is satisfied.
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Figure C-11: Plot of Standard Residual versus Fitted Values for Funiinal Quality
— Participant Best Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure C-12, the normal proibpaplot contains steps and deviates
from linearity, so there may be problems with tleenmality assumption. A Shapiro-Wilk
normality test shows that the distribution is notmal (p = 0.03), so nonparametric tests

will be used.
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Figure C-12: Normal Probability Plot for Functional Quality Model — Partici pant
Best Scoring Approach

Activity Quality — Participant Average Scoring Amaich

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure C-13, the raaild appear to exhibit a random pattern,
but they are not equally distributed about the me@here are many points below the
overall mean, with a few potential outliers. Thilig model may not be a good fit for the

data.
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Figure C-13: Linear Model Fit for Activity Quality — Participant Average Scoring
Approach

To check for outliers, the standardized residuaés sorted from smallest to
largest. The maximum and minimum standardizeddveds are 3.13 and -1.39,
respectively. There were three data points witfh lstandardized residuals relative to the
rest of the data, 2.35, 2.65, and 3.13. The skstdid not reveal any problems and the
three points are each in different treatment grpspshe data are not considered outliers.

To check for constant variance, the standardizeiduals are first plotted against
the fitted values. As shown in Figure C-14, thereno trend in variance so the data
appear to satisfy the constant variance assumptidhe second check for constant
variance is to compare the largest variance estinéh the smallest variance estimate.
The ratio for this scoring approach is 1.6, whishsmall. Therefore, the constant

variance assumption is satisfied.
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Figure C-14: Plot of Standard Residual versus Fitted Values for Actity Quality —
Participant Average Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure C-15, the normal proibaplot is not linear, so the data are

not normally distributed. Therefore, nonparameits will be performed.

o .
Y
o Y
= N
[
S Jetee
o4 = ] F
[
o
E ©
©
ks *J/
F||_. .....
I I I I I
-2 -1 0 1 2

Theoretical Quantiles
Figure C-15: Normal Probability Plot for Activity Quality Model — Particip ant
Average Scoring Approach
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Activity Quality — Participant Best Scoring Apprdnac

To check the fit of the model, the standardizeddreds are plotted against the
factor levels . As shown in Figure C-16, the raald appear to exhibit a random pattern,

so the linear model is appropriate.
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Figure C-16: Linear Model Fit for Activity Quality — Participant Best Scoring
Approach

To check for outliers, the standardized residuas sorted from smallest to
largest. The maximum and minimum standardizeddveds are 2.23 and -1.53,
respectively. These values are not consideredeatkince they are within three
standard deviations of the mean.

To check for constant variance, the standardizeduals are first plotted against
the fitted values. As shown in Figure C-17, thereno trend in variance so the data
appear to satisfy the constant variance assumptidbhe second check for constant

variance is to compare the largest variance estiméh the smallest variance estimate.
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The ratio for this scoring approach is 1.3, whishsmall. Therefore, the constant

variance assumption is satisfied.
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Figure C-17: Plot of Standard Residual versus Fitted Values for Actity Quality —
Participant Best Scoring Approach

To check for normality, the standardized residaa¢splotted against their normal
scores. As shown in Figure C-18, the normal proibaplot is not linear, so the data are

not normally distributed. Therefore, nonparametits will be performed.
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Figure C-18: Normal Probability Plot for Activity Quality Model — Partic ipant
Average Scoring Approach
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APPENDIX D: SAMPLE SIZE CALCULATIONS

Sample size for the extended user study is cakuiftom the contrasts that will
be performed using Fisher's Least Significant Ddfece comparison procedure. The

contrast equation is:

A itdfeﬂ/zJMSE‘%i (D-1)

where A is the difference in means of the treatment groups
MSE is the estimated mean squared error, and

r is the number of replicates per treatment group.

The experiment is a completely randomized desigrdfe=n—-v=vr-v=v(r -1). In
order to identify a difference as significant th&fedence in meansh, must be greater

than the margin of error.

A tdfe’a/z‘/MSEi% ) (D-2)

Equation D-2 can be rearranged as follows

rA®
(tdfe,a/z )2 < MSE (D-3)

The experiment variables used to calculate sanmpefar overall quality are:
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A =10% of the response range = 10%(max - min) =(202»= 0.8
v=4 (FM, IM, PM, NM)

a=0.05

To estimate MSE, a 90% upper confidence limit onEM8om the initial study (n=26,

v=2) is calculated as follows:

o’ < ﬁ (D-4)

- 2
X nvl-a

o2 < (n-v)MSE

2
X nvl-a

2 (26— 2107

2
X “26-21-01

2 (26- 2107
~ 15.65¢

2 (26— 2107
~ 15.65¢

o% <164z
Therefore, 1.642 is used as MSE to calculate sasip&efor the extended study. The

values for this experiment are substituted intodfigm D-3, resulting in Equation D-5.

r(08)°
2(1.642)

(t4(r—l),0.025)2 <

(t4(r—1),0.025)2 <0195 (D-5)
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A table of values for and the two terms in Equation D-5 is created aaldes forr are

iterated until the inequality holds for the smallegeger value of.

Table D-1: Iterations for Calculating Sample Size
r 401) (tyowoms) 0195  Action

10 36 4,113 1.949 increase r
15 56 4.013 2.923 increase r
20 76 3.967 3.897 increase r
25 96 3.940 4.872 decreaser
23 88 3.949 4,482  decreaser
22 84 3.955 4.287 decreaser
21 80 3.960 4,092 r=21

As shown in Table E-1, the sample size requiredetect a difference of 0.8 in overall
quality using the participant average scoring appinas 21 participants per group, or 84
total participants. This procedure is repeatedeich metric and scoring approach, and

the results are shown in Table 7-21 and Table 7-22.
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APPENDIX E USER STUDY DATA

The quality and conformance ratings for all papécits’ sketches is shown in
Table E-1. The sketch ID is coded as <treatmeatmF<participant number within
treatment> - <sketch number within participant>ar Example, the ID P8-2 refers to the

second sketch created by Participant 8 in the jgromedel group.
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Table E-1: Participant Quality and Conformance Scores
R1 R2 R3 R4 R5 R6 R7 R8 R9|F1 F2 F3 F4 F5 F6 F7[A1 A2 A3 A4[11 12 13 14

01111 1@ 0 0 1{1 1 0 1

|
D
D
B
B
D
B
|
D
B
D
D
B

01111 1ja 0 0 111 1 0 1

01111 1@ 0 0 O0f1 1 0O
01111 1|ja 0 0 O0/1 1 0O

0 00 OO OfD O 1 01010

01 01 0 0O|]®@ 0 0 Ol1 1 0 O

0 00 01 0@ 0 0 0J]1 0 0O

0O 0 0OOOOj®@® O 0O 0J]O O 0 O

0 000 O 1D O 1 110010

0 01 0 0O0O|j®@® O O Ol]1 0 0 O

0101 0 0D O 1 01110

0O 00OOO O|D O1 0O O0 10

0 00 01 0]@ 0O 0 0O 0 0O

11111 1(p 0 1 111 1 1 1

B
B
D
B
D
D
D
B
B
D
D
D
B

11111 1D 0 1 111 1 1 1

11111 1@ 0 0 O0J]1 1 0O

0 00 01 O0fx 121 1 0f1 1 1 O

01111 1|ja 0 0 O/1 1 0O

0 00 010 21 0/1 010

0 1 01 0 0O|]®@® 0 0 0O 1 0 O

0 00 01 0@ 0 0 111 0 0 1

01111 0|0 O0O0O011 00O

01110 0@ 0 0 O0J]1 1 0O

0 0001 0O|]@® O O 0OJ]1 0 0 O

101 00 O0Ol® 0O 0 01 0 0 O

01 01 0 0O|]®@® 0 0 0O 1 0 O
01 010 0| 01 0J]0 1 1 O

0 01 0 0OOJ®® O O Of1 000

0 0 001 0| O O O1 00O

0 0001 0|0 O O Of1 0 0O

0 0 000 1|0 0 1 00 O0T1O0

01 011 0| 0 1 0f1 1 10

01 011 0| 01 0/j]1 110

0 0001 0|0 O O Of1 0 0O

01 111 0@ 2 0 01 1 0O

0 0001 0| 0 O Of1 0 0 O

3 9 9 9 3 9 9 3
19 9 9 9 3 9 3
39 9 9 9 3 9 9
3 9 9 9 3 3 3 3

1111 1 3 9 3
19 11 1 9 9 9
11 3 3 3 9 9 3
111 1 1 9 9 3
11111 9 9 3
31111 9 9 3
3 913 3 3 9 3

1111 1 3 9 1
113 1 1 9 9 3

9 9 3 9 9 3 9 9
9 9 3 9 9 3 9 3

9 9 3 9 9 3 9 1

11 91 1 9 9 3

3 33 3 9 3 91

11 3 1 1 9 91
1 9 11 1 9 9 9
11 91 3 9 9 3
19 9 3 9 3 9 3
9 91 3 3 3 9 3

11 9 3 3 9 9 3
91 1 1 1 9 9 3

1 3 11 1 3 9 3

g

g

g

g

A
J

g

g

A
J

A
J

A
J

ID
F1-1

F1-2

F2-1

F2-2

F3-1

F3-2

F3-3

F3-4

F3-5

F4-1

F4-2

F4-3

F5-1

F5-2 | n/anfan/an/an/an/anfanfland 0 0 0 0 0 0 QO O O O/ 0 O O O

F5-3 | n/anfan/an/anfan/anfanflanfdf 0 0 0 0 0 0 01 0 1 0[O0 O O O

F6-1

F6-2

F7-1

F7-2

F7-3

F7-4

F8-1

F8-2

F8-3

F9-1

F9-2

F9-3

F9-4

F10-1112 9 1 1 3 3 9 3

Fi0-2{3 1 1 1 1 3 9 9

F10-3f1 3 3 1 3 9 9 3

Fi0-4{1 1 9 3 3 9 9 3

F10-5117 17 1 1 1 3 9 3

F11-1{1 9 3 3 3 9 9 3

F11-2f1 9 3 3 3 9 9 9

F12-1{1 3 9 3 3 9 9 3

F12-2({3 9 3 9 9 3 3 3

F12-3f1 1 3 1 3 9 9 3

254



01 01 0 O0O|@®® OO0 O1 00O

0 0001 0| 0 0 Of1 0 0 O

01 01 0 O0|@®® OO0 OO0T1TTO0TO

0 0001 0| 0 0 OfO0 0 0 O

11110 O0(® 0 0 0J]1 1 0O

0 0001 0|© 0 O Of1 0 0O

0 0 001 0|@® O0OO0O11O0O0TO0

01 011 0| 0 1 0f1 1 10

111110 0 1 0/1 110

60101101 01 1{f1 1 1 1

1111100 O0O0O0O11 10

1 01 0 1 0OfW O O Oj]1 0 O O

1111110 O0O0O01100

0 0001 0|1 1 0 0f1 0 0 O

00111 1) 0 1 01110

11111 1(f®WO0O0TUO011 00

0 0 00O1 0O|@®@m 0 0O 01 00O

01 011 0| O0 O0 1{21 1 1 1

01 111 1|® 0 0 1]1 1 0 1

601111 1|® 0 0 1{f1 1 0 1

11111 1|® 0 0 O0/1 1 00

11011 0@ 0 0 0J]1 1 0O

01 111 1| 0 0 O0]1 1 0O

11111 0D O0 1T 01 1 10

0 0001 1|/@ 0 0 01000

01 01 0 0O|® 0 0 0fO1 0O

101 00O 0 O O0J]1 0 0 O

01 011 0| 00 O0f1 1 0O

11110 1® 0 0 O0/1 1 00

0 0001 0O|@@ 0 0 O0f1 0 0 O

01 01 0 0O|D 0 0O 0f1 100

01111 1| 00 O0f1 100

01 111 1| 0 0 1]1 1 0 1

0 0001 0@ 1 0 0f1 0 0 O

01 111 1| 0 0 O0]1 1 0O
0 01 0 0O0OfD O O O0O1 00000
01 010 O0® 1 0 01 1 10
0 000 O OfD O 1 0J]O0 0O 1 O
0 0001 0O|® 0 O Of1 0 0O

e OO O 5

R1 R2 R3 R4 R5 R6 R7 R8 R9[F1 F2 F3 F4 F5 F6 F7[{A1 A2 A3 A4|I1 12 13 14

A
J

A
J

g

A
J

A
J

A
J

A
J

A
J

A
J

A
J
A
J

A
J
A
J

g

r
4

11 3 3 3 9 9 3
1 3 3 3 9 9 9 1
3 9 3 9 9 3 9 3
3 9 3 9 9 3 3 3
9 9 3 9 9 3 9 3
9 9 3 9 9 3 9 3
3 9 9 9 9 3 9 3
9 9 3 9 9 3 3 3
11 9 3 3 9 9 3
1 9 11 1 9 9 3
91 1 1 1 9 9 3
1 9 3 3 3 9 9 1
9 9 3 9 9 3 9 9
11 9 3 3 9 9 1
1 9 1 1 3 3 91
3 9 9 9 9 3 9 9
3 9 3 9 9 3 9 3
11 3 3 3 9 9 3

]
4

r
4

]
4

r
4

]
4

r
4

]
4

r
4

9

r
4

]
4

r
4

]
4

9

]
4

r
4

]
4

1 9 11 1 3 9 3

ID
F13-111 9 1 1 1 9 9 1

F13-2f{1 1 9 1 3 9 9 9

F13-3]12 9 1. 1 1 3 9 3

F13-4{1 1 9 1. 1 9 9 9

F14-1f{9 9 1 3 3 3 9 3

Fi4-2f1 1 3 1 3 9 9 3

F14-3f1 1 3 3 3 9 9 3

Fi5-1{1 9 3 3 3 9 9 3

F15-2(9 9 3 9 3 3 9 3

F15-31 9 9 3 1 9 9 1

F16-1{9 9 3 3 9 3 9 3

Fi6-2{9 1 9 3 1 3 3 3

Fi7-1{9 9 3 9 9 3 3 3

Fi7-2f{1 1 9 3 3 9 9 3

F17-3(3 9 3 3 3 9 9 3

F19-1{9 9 3 9 9 3 3 1

10-1(3 1 1 1 1 9 9 3
10-3f1 1 1 1 1 9 9 3
1041 1 3 1 3 9 9 3

110-2
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N13-1f1 1 9 3 3 9 9 3

N13-2f1 9 3 3 3 9 9 3

N14-1|]1 1 9 3 3 9 9 1

N14-2f1 1 9 3 3 3 9 3

N15-113 9 9 3 9 3 9 3

N16-1{3 1 3 3 3 9 9 3

N16-219 1 3 3 3 9 3 3

N16-3(1 1 3 3 3 9 9 3

N17-1{3 9 3 3 9 1 1 3

N18-1f{9 3 3 3 9 9 9 3

P1-1

P2-1

pP2-2

P3-1

P3-2

P3-3

P3-4

P4-1

P4-2

P5-1

P6-1

P6-2

P7-1

p7-2

P8-1

pP8-2

P9O-1

P9-2

P10-1f3 9 9 9 9 3 9 3

P11-1{9 9 9 3 9 3 9 3

P11-3]1 9 1 1 1 9 3 3

P12-1{9 9 9 9 9 3 9 3

P13-1f9 9 9 9 9 3 3 3

P13-2[9 9 3 9 9 9 1 3

P14-1f3 3 3 9 9 3 9 3

P14-2f1 3 9 3 3 9 9 3

P14-3(1 9 3 3 9 3 9 3

P15-1{9 9 9 9 9 9 3 3

P16-1f3 9 3 3 9 9 9 1
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APPENDIX E EXTENDED USER STUDY ANALYSIS CODE

The following R code is used to complete the datdyesis.

# Load Required Libraries
library(multconp, pos=4)
l'ibrary(vcd)

# Load all ratings for all sketches

# File contains all sketches with colum headi ngs

R1-R9: nine requirement quality ratings

F1-F7: seven functional conformance ratings

Al- A4: four activity conformance ratings

11-14: four interaction conformance ratings

ORAvg: sketch overall requirement score (average of Rl:R9)
FRAvg: sketch functional requirenent score (average of Rl, R2, R3)
ARAvg: sketch activity requirement score (average of R5,R7, R8)
FCAvg: sketch functional confornmance score (average of F1:F7)
ACAvg: sketch activity conformance score (average of Al: A4)

| CAvg: sketch interaction confornance score (average of [1:14)

HHEHHFHFHHHFHH

Sketch_Scores_All <- read.csv("C: /Docunents and Settings/bwcal dw My
Docunent s/ Resear ch/ Si t uat edness/ User Study |deation 2/ Sketch
Rat i ngs/ Sketch_Scores_Al | . csv", header =TRUE)

Sket ch_Scores_Al | $St ud_Uni que <- as.factor (Sketch_Scores_Al | $St ud_Uni que)

# Create list of participants

Partici pants <- subset(Sketch_Scores_All, subset=Sketch==1,
sel ect =¢( St ud_Uni que, TRT))

Participants <- Participants[order(Participants$Stud_Uni que), ]

#o----- Scoring Approach: Participant Average Sketch -----
# Conpute the average quality score for each partici pant

Sketch_Scores_All _Quality <- subset(Sketch_Scores_All,
sel ect =c( TRT, St ud, St ud_Uni que, Sketch, I D, Bl i ndl D, R1l, R2, R3, R4, R5, R6, R7, R8, R
9, ORAvg, FRAvg, ARAvQ) )

Sket ch_Scores_Al |l _Qual i ty$Stud_Uni que <-
as. factor(Sketch_Scores_Al | _Quality$Stud_Uni que)

Sket ch_Scores_All _Quality_no_NA <-
Sketch_Scores_All _Quality[!is.na(Sketch_Scores_All _Quality$0ORAvQ), ]
Sket ch_Scores_Avg_Quality <-
aggregat e(Sketch_Scores_All _Quality_no NA,c("R1","R2","R3","R4","R5", "R6
", "R7T,"R8", "R9", "ORAvg", "FRAvg", "ARAvg"), drop=FALSE],
by=li st (Stud_Uni que=Sket ch_Scores_All _Quality_no_NA$St ud_Uni que), FUN=nean)
Sket ch_Scores_Avg_Quality <- chbind(Participants$TRT, Sketch_Scores_Avg_Quality)
names(Sket ch_Scores_Avg_Quality)[c(1)] <- c("TRT")

# --- Overall Quality, Participant Average Scoring Approach ---
# Model

AnovaModel . 1 <- aov(ORAvg ~ TRT, data=Sketch_Scores_Avg Quality)
sunmar y( Anovahodel . 1)
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# Descriptive Statistics

nunmSunmar y( Sket ch_Scores_Avg_Qual i t y$ORAvg ,
groups=Sket ch_Scores_Avg_Qual i t y$TRT, statistics=c("nean", "sd",
"quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. numeri c(Sketch_Scores_Avg_Qual i t y$TRT), rstandard(Anovahbdel .1), xlab =
"Factor Levels (FM =1, IM=2, NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0,0)

# Check Model Assunptions - Qutliers
nmax(r st andar d( AnovaModel . 1))

m n(rstandar d( AnovahMbdel . 1))

sort (rstandard( AnovahModel . 1))

# Check Model Assunptions - Constant Variance
pl ot (fitted(AnovaWbdel . 1), rstandard(Anovawbdel.1), xlab = "Fitted Val ues”,
ylab = "Standardi zed Resi dual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBunmary(Sketch_Scores_Avg_Quality$ORAvg ,
groups=Sket ch_Scores_Avg_Qual i t y$TRT, statistics=c("nmean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality
ggnor nm( r st andar d( ORAvg_LM, main = "Normal Probability Plot", pch = 19)
shapi ro. t est (r st andar d( AnovahModel . 1))

# Perform nonparanetric test

t appl y(Sket ch_Scores_Avg_Qual i t y$ORAvg, Sketch_Scores_Avg Qual i t y$TRT, nedi an,
na. r v=TRUE)

kruskal .t est (ORAvg ~ TRT, dat a=Sketch_Scores_Avg_Quality)

# --- Functional Quality, Participant Average Scoring Approach ---
# Model

AnovaModel . 2 <- aov(FRAvg ~ TRT, data=Sketch_Scores_Avg Quality)
sunmar y( AnovahModel . 2)

# Descriptive Statistics

nunmSurmmar y( Sket ch_Scores_Avg_Qual i t y$FRAvg ,
groups=Sket ch_Scores_Avg_Qual i t y$TRT, statistics=c("nmean", "sd",
"quantil es"))

# Check Model Assunptions - Mdel Fit

pl ot (as. numeri c(Sketch_Scores_Avg_Qual i t y$TRT), rstandard(Anovahbdel .2), xlab =
"Factor Levels (FM =1, IM=2 NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Model Assunptions - Qutliers
nmax(r st andar d( AnovahModel . 2))

m n(rstandar d( AnovahMbdel . 2))

sort (rstandard( AnovahModel . 2))

# Check Model Assunptions - Constant Variance
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pl ot (fitted(AnovaMobdel . 2), rstandard(Anovawbdel.2), xlab = "Fitted Val ues",
ylab = "Standardi zed Residual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)
tenp <- nunBunmary(Sketch_Scores_Avg_Quality$FRAvg ,
groups=Sket ch_Scores_Avg_Qual i t y$TRT, statistics=c("nmean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahMbdel . 2), main = "Normal Probability Plot", pch = 19)

# Conpute Al Pairw se Contrasts

.Pairs <- gl ht(AnovaModel .2, linfct = nmcp(TRT = "Tukey"))

summary(.Pairs) # pairw se tests

confint(.Pairs, calpha = qt(0.975, 65)) # C Fisher LSD, al pha=0.05, dfe=65
renove(. Pairs)

# --- Activity Quality, Participant Average Scoring Approach ---
# Model

AnovaModel . 3 <- aov(ARAvg ~ TRT, data=Sketch_Scores_Avg Quality)
sunmar y( Anovahodel . 3)

# Descriptive Statistics

nunmSunmar y( Sket ch_Scores_Avg_Qual i t y$ARAvg ,
groups=Sket ch_Scores_Avg_Qual i t y$TRT, statistics=c("nmean", "sd",
"quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. numeri c(Sketch_Scores_Avg_Qual i t y$TRT), rstandard(Anovahbdel .3), xlab =
"Factor Levels (FM =1, IM=2, NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0,0)

# Check Model Assunptions - Qutliers
max(r st andar d( AnovahMbdel . 3))

m n(rstandar d( AnovaModel . 3))

sort (rstandar d( AnovahModel . 3))

# Check Mddel Assunptions - Constant Variance
pl ot (fitted(AnovaMbdel . 3), rstandard(AnovaMwbdel.3), xlab = "Fitted Val ues",
ylab = "Standardi zed Resi dual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBunmmary(Sketch_Scores_Avg_Quality$ARAvg ,
groups=Sket ch_Scores_Avg_Qual i t y$TRT, statistics=c("nmean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahModel . 3), main = "Normal Probability Plot", pch = 19)
shapi ro. t est (r st andar d( AnovaModel . 3))

# Perform nonparanetric test
t appl y(Sket ch_Scores_Avg_Qual i t y$ARAvg, Sketch_Scores_Avg Qual i t y$TRT, nedi an,

na. r v=TRUE)
kruskal .t est (ARAvg ~ TRT, dat a=Sketch_Scores_Avg_Quality)

# Conpute the average conformance score for each partici pant
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Sketch_Scores_Al | _Conf <- subset (Sketch_Scores_All,
sel ect =c( TRT, St ud, St ud_Uni que, Sketch, I D, Bl i ndl D, F1, F2, F3, F4, F5, F6, F7, FCAv
g, Al, A2, A3, A4, ACAvg, 1 1,12,13,14,1CAvg))

Sket ch_Scores_Al | _Conf $St ud_Uni que <-
as. fact or (Sket ch_Scores_Al | _Conf $St ud_Uni que)

Sket ch_Scor es_Avg_Conf <-
aggr egat e( Sketch_Scores_All _Conf[, c("F1","F2","F3","F4", "F5","F6","F7","F
CAvg", "Al","A2","A3","Ad4" "ACAvg"," 11", "I2","13","14","I CAvg"),
dr op=FALSE] ,

by=li st (St ud_Uni que=Sket ch_Scores_Al | _Conf $St ud_Uni que), FUN=nean)

Sket ch_Scores_Avg_Conf <- cbhind(Partici pant s$TRT, Sketch_Scores_Avg_Conf)

names( Sket ch_Scores_Avg_Conf)[c(1)] <- c("TRT")

Sket ch_Scores_Avg_Conf $TRT <- as. factor(Sketch_Scores_Avg_Conf $TRT)

# --- Functional Conformance, Participant Average Scoring Approach ---
# Model

AnovaModel . 4 <- aov(FCAvg ~ TRT, data=Sketch_Scores_Avg_Conf)
sunmar y( AnovaModel . 4)

# Descriptive Statistics
nunBunmar y( Sket ch_Scor es_Avg_Conf $FCAvg , groups=Sket ch_Scores_Avg_Conf $TRT,
statistics=c("nean", "sd", "quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. nureri c( Sket ch_Scor es_Avg_Conf $TRT), rstandard(AnovaMdel .4), xlab =
"Factor Levels (FM =1, IM=2, NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0,0)

# Check Model Assunptions - Qutliers
max(r st andar d( AnovahMbdel . 4))

m n(rstandar d( AnovahModel . 4))

sort (rstandar d( AnovahModel . 4))

# Check Mbdel Assunptions - Constant Variance
pl ot (fitted(AnovaWbdel . 4), rstandard(Anovawbdel.4), xlab = "Fitted Val ues",
ylab = "Standardi zed Residual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBummary(Sket ch_Scores_Avg_Conf $FCAvg ,
groups=Sket ch_Scor es_Avg_Conf $TRT, statistics=c("nean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahMbdel . 4), main = "Normal Probability Plot", pch = 19)

# Conpute Al Pairw se Contrasts

.Pairs <- gl ht(AnovaModel .4, linfct = ncp(TRT = "Tukey"))

sunmary(.Pairs) # pairw se tests

confint(.Pairs, level=0.9) # confidence intervals (TUKEY)

confint(.Pairs, calpha = qt(0.975, 65)) # C Fisher LSD, al pha=0.05, dfe=65
renove(. Pairs)

# --- Activity Conformance, Participant Average Scoring Approach ---
# Model

AnovaModel . 5 <- aov(ACAvg ~ TRT, data=Sketch_Scores_Avg Conf)
sunmar y( Anovahodel . 5)

# Descriptive Statistics
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nunSumar y( Sket ch_Scor es_Avg_Conf $ACAvg , groups=Sket ch_Scores_Avg_Conf $TRT,
statistics=c("nmean", "sd", "quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. numeri c(Sket ch_Scor es_Avg_Conf $TRT), rstandard(AnovaMdel .5), xlab =
"Factor Levels (FM =1, IM=2 NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Model Assunptions - Qutliers
nmax(r st andar d( AnovaModel . 5))
m n(rstandar d( AnovahMbdel . 5))

# Check Model Assunptions - Constant Variance
pl ot (fitted(AnovaMbdel .5), rstandard(Anovawbdel .5), xlab = "Fitted Val ues"”,
ylab = "Standardi zed Resi dual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBunmmary(Sket ch_Scores_Avg_Conf $ACAvg ,
groups=Sket ch_Scor es_Avg_Conf $TRT, statistics=c("nean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahMbdel . 5), main = "Normal Probability Plot", pch = 19)
shapi ro. t est (r st andar d( AnovaModel . 5))

# Perform nonparanetric test

t appl y( Sket ch_Scor es_Avg_Conf $ACAvg, Sketch_Scores_Avg_Conf $TRT, nedi an,
na. r m=TRUE)

kruskal .t est (ACAvg ~ TRT, data=Sketch_Scores_Avg_Conf)

# --- Interaction Conformance, Participant Average Scoring Approach ---
# Model

AnovaModel . 6 <- aov(l CAvg ~ TRT, data=Sketch_Scores_Avg_Conf)
sunmar y( AnovaModel . 6)

# Descriptive Statistics
nunBunmar y( Sket ch_Scor es_Avg_Conf $I CAvg , groups=Sket ch_Scores_Avg_Conf $TRT,
statistics=c("nmean", "sd"))

# Check Model Assunptions - Mdel Fit

pl ot (as. numeri c( Sket ch_Scor es_Avg_Conf $TRT), rstandard(AnovaMdel .6), xlab =
"Factor Levels (FM =1, IM=2, NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Model Assunptions - Qutliers
nmax(r st andar d( AnovaModel . 6))

m n(rstandar d( AnovahMbdel . 6))

sort (rstandar d( AnovahModel . 6))

# Check Model Assunptions - Constant Variance
pl ot (fitted(AnovaMbdel . 6), rstandard(Anovawbdel .6), xlab = "Fitted Val ues",
ylab = "Standardi zed Resi dual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBummary(Sketch_Scores_Avg_Conf $I CAvg ,
groups=Sket ch_Scor es_Avg_Conf $TRT, statistics=c("nean", "sd"))
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max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahMbdel . 6), main = "Normal Probability Plot", pch = 19)
shapi ro. t est (r st andar d( AnovaModel . 6))

# Rermove CQutliers

Sket ch_Scores_Avg_Conf_no_outlier <- Sketch_Scores_Avg Conf[c(1:4,6:69),]
AnovaModel . 6b <- aov(| CAvg ~ TRT, data=Sketch_Scores_Avg Conf_no_outlier)
sunmar y( Anovahbdel . 6b)

# Descriptive Statistics

nunmSunmar y( Sket ch_Scor es_Avg_Conf _no_out | i er $I CAvg ,
groups=Sket ch_Scores_Avg_Conf_no_out!lier$TRT, statistics=c("nmean", "sd",
"quantil es"))

# Check Model Assunptions - Mdel Fit

pl ot (as. nuneri c(Sketch_Scores_Avg_Conf _no_outlier$TRT),
rst andar d( AnovahMbdel . 6b), xlab = "Factor Levels (FM =1, IM= 2, NM= 3,
PM = 4)", ylab = "Standardi zed Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Mdodel Assunptions - Qutliers
max(r st andar d( AnovaModel . 6b))

m n(r st andar d( AnovahMbdel . 6b))

sort (rstandar d( AnovahModel . 6b))

# Check Model Assunptions - Constant Variance
pl ot (fitted(AnovaModel . 6b), rstandard(AnovaMdel .6b), xlab = "Fitted Val ues",
ylab = "Standardi zed Resi dual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunSunmmary(Sketch_Scores_Avg_Conf _no_outlier$l CAvg ,
groups=Sket ch_Scores_Avg_Conf_no_outlier$TRT, statistics=c("nmean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] *2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( Anovahbdel . 6b), main = "Normal Probability Plot", pch = 19)
shapiro. t est (rstandard(Anovahbdel . 6b))

# Perform nonparanetric test
t appl y(Sket ch_Scores_Avg _Conf_no_outlier $l CAvg ,

Sket ch_Scor es_Avg_Conf_no_out |l i er $TRT, nedi an, na.rn=TRUE)
kruskal .test (1 CAvg ~ TRT, data=Sketch_Scores_Avg_Conf_no_outlier)

#o----- Scoring Approach: Participant Best Sketch -----
# Conpute the best quality score for each participant

Sket ch_Scores_Best _Quality <-
aggregat e( Sket ch_Scores_Al | _Quality_no_NA[, c("ORAvg", "FRAvg", "ARAvg"),
dr op=FALSE] ,

by=li st (St ud_Uni que=Sket ch_Scores_All _Qual ity_no_NA$St ud_Uni que), FUN=max)

Sket ch_Scores_Best _Quality <- chind(Participant s$TRT,
Sket ch_Scores_Best _Quality)

names(Sket ch_Scores_Best_Quality)[c(1)] <- c("TRT")

Sket ch_Scores_Best _Qual i t y$TRT <- as. factor (Sketch_Scores_Best_ Quality$TRT)
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# --- Overall Quality, Participant Best Scoring Approach ---

# Model

AnovaModel . 7 <- aov(ORAvg ~ TRT, data=Sketch_Scores_Best_Quality)
sunmar y( Anovahodel . 7)

# Descriptive Statistics

nunSumrar y( Sket ch_Scores_Best _Qual i t y$ORAvg ,
groups=Sket ch_Scores_Best _Qual i t y$TRT, statistics=c("nean", "sd",
"quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. numeri c(Sket ch_Scores_Best _Qual i t y$TRT), rstandard(AnovaMbdel .7), xlab
= "Factor Levels (FM=1, IM=2, NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Model Assunptions - Qutliers
max(r st andar d( AnovahMbdel . 7))

m n(rstandar d( AnovaModel . 7))

sort (rstandar d( AnovahModel . 7))

# Check Mdbdel Assunptions - Constant Variance
pl ot (fitted(Anovawbdel .7), rstandard(Anovawbdel.7), xlab = "Fitted Val ues",
ylab = "Standardi zed Residual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenmp <- nunSunmmary( Sket ch_Scores_Best_Qual i t y$ORAvg
groups=Sket ch_Scores_Best _Qual i ty$TRT, statistics=c("nmean", "sd"))
max(tenp$t abl e[, 2] 22)/ mi n(tenp$t abl e[, 2] ~2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovaModel . 7), main = "Normal Probability Plot", pch = 19)

# --- Functional Quality, Participant Best Scoring Approach ---

# Model

AnovaModel . 8 <- aov(FRAvg ~ TRT, data=Sketch_Scores_Best_Quality)
sunmar y( Anovahodel . 8)

# Descriptive Statistics

nunSumrar y( Sket ch_Scores_Best _Qual i t y$FRAvg ,
groups=Sket ch_Scores_Best _Qual i t y$TRT, statistics=c("nean", "sd",
"quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. nuneri c(Sketch_Scores_Best _Qual i ty$TRT), rstandard(Anovahbdel.8), x| ab
= "Factor Levels (FM=1, IM=2, N\M= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0,0)

# Check Model Assunptions - Qutliers
max(r st andar d( AnovahMbdel . 8))

m n(rstandar d( AnovaModel . 8))

sort (rstandar d( AnovahModel . 8))

# Check Mbdel Assunptions - Constant Variance

pl ot (fitted(Anovawbdel . 8), rstandard(Anovawbdel.8), xlab = "Fitted Val ues",
ylab = "Standardi zed Residual s",
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mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenmp <- nunSummary( Sket ch_Scor es_Best_Qual i t y$FRAvg
groups=Sket ch_Scores_Best _Qual i ty$TRT, statistics=c("nmean", "sd"))
max(tenp$t abl e[, 2] 22)/ mi n(tenp$t abl e[, 2] ~2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovaModel . 8), main = "Normal Probability Plot", pch = 19)
shapi ro. t est (r st andar d( AnovahModel . 8))

# Conpute Al Pairw se Contrasts

.Pairs <- gl ht(AnovaModel .8, linfct = nmcp(TRT = "Tukey"))

summary(.Pairs) # pairw se tests

confint(.Pairs, calpha = qt(0.975, 63)) # C Fisher LSD, al pha=0.05, dfe=65
renove(. Pairs)

# Perform nonparanetric test
t appl y(Sket ch_Scores_Best _Qual i t yBFRAvg, Sketch_Scores_Best_Qual i t y$TRT,
nedi an, na.r nmFTRUE)
kruskal . test (FRAvg ~ TRT, data=Sketch_Scores_Best_Quality)
pai rwi se. wi | cox. t est (Sket ch_Scores_Best _Qual i t y$FRAvg,
Sket ch_Scores_Best _Qual i t y$TRT, p. adjust.nmethod = "none", paired=FALSE)

# --- Activity Quality, Participant Best Scoring Approach ---

# Mbdel

AnovaModel . 9 <- aov(ARAvg ~ TRT, data=Sketch_Scores_Best_Quality)
sunmar y( Anovahodel . 9)

# Descriptive Statistics

nunSumrar y( Sket ch_Scores_Best _Qual i t y$ARAvg ,
groups=Sket ch_Scores_Best _Qual i t y$TRT, statistics=c("nean", "sd",
"quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. nuneri c(Sketch_Scores_Best _Qual i ty$TRT), rstandard(Anovahbdel.9), x| ab
= "Factor Levels (FM=1, IM=2, N\M= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Model Assunptions - Qutliers
nmax(r st andar d( AnovahModel . 9))

m n(rstandar d( AnovahMbdel . 9))

sort (rstandar d( AnovahModel . 9))

# Check Model Assunptions - Constant Variance
pl ot (fitted(AnovaMbdel .9), rstandard(Anovawbdel.9), xlab = "Fitted Val ues"”,
ylab = "Standardi zed Resi dual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBunmmary(Sketch_Scores_Best Quality$ARAvg ,
groups=Sket ch_Scores_Best _Qual i t y$TRT, statistics=c("nean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality

ggnor n( r st andar d( AnovahMbdel . 9), main = "Normal Probability Plot", pch = 19)
shapi ro. t est (r st andar d( AnovaModel . 9))
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# Perform nonparanetric test

t appl y(Sket ch_Scores_Best _Qual i t y$ARAvg, Sketch_Scores_Best_Qual i t y$TRT,
nedi an, na.rnmrTRUE)

kruskal .t est (ARAvg ~ TRT, data=Sketch_Scores_Best_Quality)

#---- Conformance Best ----
# Conpute the best conformance score for each participant

Sket ch_Scor es_Best _Conf <-
aggr egat e( Sket ch_Scores_Al | _Conf [, c("FCAvg", "ACAvg", "1 CAvg"),
dr op=FALSE] ,
by=li st (St ud_Uni que=Sket ch_Scores_Al | _Conf $St ud_Uni que), FUN=nBax)
Sket ch_Scores_Best _Conf <- cbhind(Partici pant s$TRT, Sketch_Scores_Best_Conf)
names( Sket ch_Scores_Best_Conf)[c(1)] <- c("TRT")
Sket ch_Scores_Best _Conf $TRT <- as. factor (Sketch_Scores_Best _Conf $TRT)

# --- Functional Conformance, Participant Best Scoring Approach ---
# Model

AnovaModel . 10 <- aov(FCAvg ~ TRT, data=Sketch_Scores_Best _Conf)
sunmar y( AnovaModel . 10)

# Descriptive Statistics
nunBunmar y( Sket ch_Scor es_Best _Conf $FCAvg , groups=Sket ch_Scor es_Best _Conf $TRT,
statistics=c("nean", "sd", "quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. nuneri c(Sket ch_Scor es_Best _Conf $TRT), rstandard(AnovaMdel . 10), xlab =
"Factor Levels (FM =1, IM=2, NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0,0)

# Check Model Assunptions - Qutliers
max(r st andar d( AnovahMbdel . 10))

m n(r st andar d( AnovaModel . 10))

sort (rstandard( AnovahMbdel . 10))

# Check Mddel Assunptions - Constant Variance
pl ot (fitted(AnovaModel . 11), rstandard(AnovaMdel.10), xlab = "Fitted Val ues",
ylab = "Standardi zed Resi dual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBunmmary(Sketch_Scores_Best _Conf $FCAvg |,
groups=Sket ch_Scor es_Best _Conf $TRT, statistics=c("nmean", "sd"))
max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality

ggnor n( r st andar d( Anovahbdel . 10), main = "Normal Probability Plot", pch = 19)
shapi ro. t est (rstandar d( AnovahMbdel . 10))

kruskal . test (FCAvg ~ TRT, data=Sketch_Scores_Best Conf)

# --- Activity Conformance, Participant Best Scoring Approach ---

# Model

AnovaModel . 11 <- aov(ACAvg ~ TRT, data=Sketch_Scores_Best _Conf)
sunmar y( Anovahodel . 11)

# Descriptive Statistics
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nunSurmar y( Sket ch_Scor es_Best _Conf $ACAvg , groups=Sket ch_Scores_Best _Conf $TRT,
statistics=c("nmean", "sd", "quantiles"))

# Check Model Assunptions - Mdel Fit

pl ot (as. numeri c( Sket ch_Scor es_Best _Conf $TRT), rstandard(AnovaMdel . 11), xlab =
"Factor Levels (FM =1, IM=2 NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Model Assunptions - Qutliers
nmax(r st andar d( AnovahModel . 11))

m n(rstandar d( AnovahMbdel . 11))

sort (rstandard( AnovahModel . 11))

# Check Mbdel Assunptions - Constant Variance
pl ot (fitted(AnovaModel . 11), rstandard(AnovaModel . 11), xlab = "Fitted Val ues",
ylab = "Standardi zed Residual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBSummary(Sket ch_Scor es_Best _Conf $ACAvg ,
groups=Sket ch_Scor es_Best _Conf $TRT, statistics=c("nean", "sd"))
max(tenp$t abl e[, 2] 22)/ mi n(tenp$t abl e[, 2] ~2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahMbdel . 11), main = "Normal Probability Plot", pch = 19)

# Perform nonparanetric test

t appl y( Sket ch_Scor es_Best _Conf $ACAvg, Sketch_Scores_Best_Conf $TRT, nedi an,
na. r m=TRUE)

kruskal . test (ACAvg ~ TRT, dat a=Sketch_Scores_Best _Conf)

pai rwi se. wi | cox. t est (Sket ch_Scor es_Best _Conf $ACAvg,
Sket ch_Scor es_Best _Conf $TRT, p. adj ust.nethod = "none")

# Conpute Al Pairw se Contrasts

.Pairs <- gl ht(AnovaMbodel .11, linfct = ncp(TRT = "Tukey"))

sunmary(.Pairs) # pairw se tests

confint(.Pairs, level=0.9) # confidence intervals (TUKEY)

confint(.Pairs, calpha = qt(0.975, 65)) # C Fisher LSD, al pha=0.05, dfe=65
renove(. Pairs)

# --- Interaction Conformance, Participant Best Scoring Approach ---
# Model

AnovaModel . 12 <- aov(| CAvg ~ TRT, data=Sketch_Scores_Best _Conf)
sunmar y( AnovahModel . 12)

# Descriptive Statistics
nunBunmar y( Sket ch_Scor es_Best _Conf $I CAvg , groups=Sket ch_Scor es_Best _Conf $TRT,
statistics=c("nean", "sd"))

# Check Model Assunptions - Mdel Fit

pl ot (as. nuneri c(Sket ch_Scor es_Best _Conf $TRT), rstandard(AnovaMdel .12), xlab =
"Factor Levels (FM =1, IM=2, NM= 3, PM= 4)", ylab = "Standardi zed
Resi dual s", pch = 20)

abl i ne(0,0)

# Check Model Assunptions - Qutliers
max(r st andar d( AnovahMbdel . 12))

m n(r st andar d( AnovaModel . 12))

sort (rstandard( Anovahbdel . 12))
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# Check Mddel Assunptions - Constant Variance
pl ot (fitted(AnovaModel . 12), rstandard(AnovaModel .12), xlab = "Fitted Val ues",
ylab = "Standardi zed Residual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenp <- nunBSummary(Sket ch_Scor es_Best _Conf $I CAvg ,
groups=Sket ch_Scor es_Best _Conf $TRT, statistics=c("nean", "sd"))
max(tenp$t abl e[, 2] 22)/ mi n(tenp$t abl e[, 2] ~2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahMbdel . 12), main = "Normal Probability Plot", pch = 19)

# Rermove Qutliers
Sket ch_Scores_Best _Conf_no_outlier <- Sketch_Scores_Best_ Conf[c(1:4,6:69),]

# Model
AnovaModel . 12b <- aov(l CAvg ~ TRT, dat a=Sketch_Scores_Best_Conf_no_outlier)
sunmar y( Anovahodel . 12b)

# Descriptive Statistics

nunSummar y( Sket ch_Scor es_Best _Conf _no_out |l i er $I CAvg ,
groups=Sket ch_Scores_Best _Conf_no_outlier$TRT, statistics=c("nmean", "sd",
"quantil es"))

# Check Model Assunptions - Mdel Fit

pl ot (as. nuneri c(Sketch_Scores_Best_Conf_no_outlier$TRT),
r st andar d( AnovaMbdel . 12b), xlab = "Factor Levels (FM =1, IM= 2, NM= 3,
PM = 4)", ylab = "Standardi zed Resi dual s", pch = 20)

abl i ne(0, 0)

# Check Model Assunptions - Qutliers
nmax(r st andar d( AnovaModel . 12b))

m n(rstandar d( Anovahbdel . 12b))

sort (rstandard( AnovahWbdel . 12b))

# Check Model Assunptions - Constant Variance
pl ot (fitted(AnovaMWbdel . 12b), rstandard(Anovahbdel . 12b), xlab = "Fitted Val ues"”,
ylab = "Standardi zed Residual s",
mai n = "Standardi zed Residuals vs. Fitted Values", pch = 20)
abline(0, 0)

tenmp <- nunSummary( Sket ch_Scor es_Best_Conf_no_outlier$l CAvg ,
groups=Sket ch_Scores_Best _Conf_no_outlier$TRT, statistics=c("nmean",
"sd"))

max(t enp$t abl e[, 2] ~2)/ mi n(t enp$t abl e[, 2] 2)

# Check Model Assunptions - Normality
ggnor n( r st andar d( AnovahMbdel . 12b), main = "Nornmal Probability Plot", pch = 19)
shapi ro. t est (r st andar d( AnovaModel . 12b))

# Perform nonparanetric test
t appl y(Sket ch_Scores_Best _Conf_no_outli er $l CAvg,

Sket ch_Scores_Best _Conf_no_outlier$TRT, nedi an, na.rmrTRUE)
kruskal .test (1 CAvg ~ TRT, dat a=Sketch_Scores_Best _Conf_no_outlier)

# ---- Sketch Quantity ----
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# Conpute the nunber of sketches created by each partici pant

Sketch_Scores_Quantity <- subset (Sketch_Scores_All,
sel ect =c( TRT, St ud, St ud_Uni que, Sket ch, | D, Bl i ndl D))
Sket ch_Scores_Quantity$Stud_Uni que <-
as. fact or (Sketch_Scores_Quantity$St ud_Uni que)
Sketch_Scores_Quantity <- aggregate(Sketch_Scores_Quantity[,c("Sketch"),
dr op=FALSE] ,
by=li st (Stud_Uni que=Sket ch_Scores_Quantity$Stud_Uni que), FUN=nmax)

# correct for participant who skipped sketch no. 2 in packet
Sket ch_Scores_Quantity[ 45, 2] =2

Sket ch_Scores_Quantity <- chind(Participant s$TRT, Sketch_Scores_Quantity)
names( Sket ch_Scores_Quantity)[c(1)] <- c("TRT")
Sket ch_Scores_Quantity$TRT <- as.factor(Sketch_Scores_Quantity$TRT)

# Check Distribution of Data
summar y(goodfit (Sketch_Scores_Quantity$Sketch-1,type= "poi sson", met hod=
"M nChisq"))
sunmar y( goodfit ( Sket ch_Scores_Quantity$Sket ch-1, type= "poi sson", nethod= "M."))

# Model

GM1 <- glnmSketch-1 ~ TRT, fam |y="poisson", data=Sketch_Scores_Quantity)
summary( GLM 1)

aov(G.M 1)

# Conpute Al Pairw se Contrasts

.Pairs <- glht(GM1, linfct = ncp(TRT = " Tukey"))

summary(.Pairs) # pairw se tests

confint(.Pairs, level = 0.9) # confidence intervals

confint(.Pairs, calpha = qt(0.975, 65)) # C Fisher LSD, al pha=0.05, dfe=65
renove(. Pairs)

#---- Quality Density (Best/Avg) ----
# Conpute Quality Density

Sket ch_Scores_Quality_Density <- cbind(Sketch_Scores_Best_Quality,
Sket ch_Scores_Quanti t y$Sket ch)
names( Sket ch_Scores_Quality_Density)[c(6)] <- c("Quantity")

#---- Quality Density Overall ----

# Descriptive Statistics

nunmSummar y( Sket ch_Scores_Qual i ty_Densi t y$ORAvg/ ( Sket ch_Scores_Qual i ty_Density$Q
uantity) , groups=Sketch_Scores_Quality_Density$TRT, statistics=c("nean",
"sd", "quantiles"))

# Perform nonparanetric test

tappl y(Sketch_Scores_Qual ity_Density$ORAvg/ (Sket ch_Scores_Qual i ty_Densit y$Quant
ity), Sketch_Scores_Quality_Density$TRT, nedian, na.rn=TRUE)

kruskal . test (ORAvg/ (Quantity) ~ TRT, data=Sketch_Scores_Quality_Density)

pai rwi se. wi | cox. t est (Sket ch_Scores_Qual i ty_Densit y$ORAvg/ (Sketch_Scores_Qual ity
_Density$Quantity), Sketch_Scores_Quality Density$TRT, p.adjust.nmethod =
"none")

#---- Quality Density Function ----
# Descriptive Statistics
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nunSurmar y( Sket ch_Scores_Qual i ty_Densi t y$FRAvg/ (Sket ch_Scores_Qual ity_Densi ty$Q
uantity) , groups=Sketch_Scores_Quality_Density$TRT, statistics=c("nmean",
"sd", "quantiles"))

# Perform nonparanetric test

t appl y(Sket ch_Scores_Qual i ty_Densit y$FRAvg/ ( Sket ch_Scores_Qual i ty_Densi t y$Quant
ity), Sketch_Scores_Quality_Density$TRT, nedian, na.rnmTRUE)

kruskal . test (FRAvg/ (Quantity) ~ TRT, data=Sketch_Scores_Quality_Density)

pairw se. wi |l cox. test (Sketch_Scores_Quality_Density$FRAvg/ (Sketch_Scores_Quality

_Density$Quantity), Sketch_Scores_Quality Density$TRT, p.adjust.nmethod =
"none")

#---- Quality Density Activity ----
# Descriptive Statistics
nunSummar y( Sket ch_Scores_Qual i ty_Densi t y$ARAvg/ ( Sket ch_Scores_Qual i ty_Density$Q

uantity) , groups=Sketch_Scores_Quality_Density$TRT, statistics=c("nean",
"sd", "quantiles"))

# Perform nonparanetric test

t appl y(Sket ch_Scores_Qual ity_Densit y$ARAvg/ ( Sket ch_Scores_Qual i ty_Densi t y$Quant
ity), Sketch_Scores_Quality_Density$TRT, nedi an, na.rnrTRUE)

kruskal . test (ARAvg/ (Quantity) ~ TRT, data=Sketch_Scores_Quality_Density)

pai rwi se. wi | cox. t est (Sket ch_Scores_Qual i ty_Densit y$ARAvg/ (Sketch_Scores_Qual ity

_Density$Quantity), Sketch_Scores_Quality Density$TRT, p.adjust.nethod =
"none")
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