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ABSTRACT 
 
 

The steering system is a critical component of all ground vehicles regardless 

of their propulsion source.  Chassis directional control is provided by the steering 

system, which in turn relays valuable feedback about the road and vehicle behavior.  

As the primary feedback channel to the driver, the steering system also delivers the 

initial perception of a vehicle’s handling and responsiveness to the consumer.  

Consequently, the steering system is an important aspect of the vehicle’s evaluation 

and purchasing process, even if drivers are unaware of its direct influence in their 

decision making.  With automobile purchases potentially hinging on the steering 

system, a need exists for a better understanding of steering preference through a 

focused research project.  In this investigation, driver steering preferences have been 

studied using an advanced hardware-in-the-loop automobile steering simulator.  

Additionally, vehicle run-off-road situations have been studied, which occur when 

some of the vehicle wheels drift off the road surface and the driver recovers through 

steering commands. 

The Clemson University steering simulator underwent three significant 

generations of refinements to realize a state-of-the-art automotive engineering tool 

suitable for human subject testing.  The first and third generation refinements focused 

on creating an immersive environment, while the second generation introduced the 

accurate reproduction of steering feel found in hydraulic systems and real-time 

adjustable steering feel.  This laboratory simulator was the first known validated 



 iii 

driving simulator developed for the sole purpose of supporting driver steering 

preference studies.  The steering simulator successfully passed all validation tests 

(two pilot studies) leading to an extensive demographics-based driver preference 

study with 43 subjects.  This study reflected the following preliminary trends:  

Drivers who used their vehicles for utility purposes preferred quicker steering ratios 

and heavier efforts in residential, country, and highway environments.  In contrast, 

car enthusiasts preferred quick steering ratios in residential and country environments 

and light steering effort on the highway.  Finally, rural drivers preferred quicker 

steering ratios on country roads.  These relationships may be used to set steering 

targets for future vehicle developments to accurately match vehicles to their intended 

market segments. 

The second research aspect was the development of an objective steering 

metric to evaluate a driver’s steering preference.  In past simulator studies, driver 

feedback has been gathered extensively using written questionnaires.  However, this 

delays the testing procedure and introduces an outside influence that may skew 

results.  Through the data collected in this project, a robust objective steering 

preference metric has been proposed to gather steering preferences without directly 

communicating with the driver.  The weighted steering preference metric 

demonstrated an excellent correlation with survey responses of r = -0.39 regardless of 

steering setting.  This global steering preference metric used a combination of yaw 

rate, ψ , longitudinal acceleration, xa , and lateral acceleration, ya .  The objective 

data was further dissected and it was discovered that changes made to the steering 
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ratio resulted in a correlation of r = -0.55 between the objective data and subjective 

response from the test subjects.  This substantial correlation relied on the longitudinal 

acceleration, xa , left front tire angle, lfδ , and throttle position, TPS. 

Beyond steering preferences, vehicle safety remains a major concern for 

automotive manufacturers.  One important type of crash results from the vehicle 

leaving the road surface and then returning abruptly due to large steering wheel 

inputs: road runoff and return.  A subset of run-off-road crashes that involves a steep 

hard shoulder has been labeled “shoulder induced accidents”.  An active steering 

controller was developed to mitigate these “shoulder induced accidents”.  A cornering 

stiffness estimation technique, using a Kalman filter, was coupled with a full state 

feedback controller and “driver intention” module to create a safe solution without 

excessive intervention.  The concept was designed to not only work for shoulder 

induced accidents, but also for similar road surface fluctuations like patched ice.  The 

vehicle crossed the centerline after 1.0s in the baseline case; the controller was able to 

improve this to 1.3s for a 30% improvement regardless of driver expertise level.  For 

the case of an attentive driver, the final heading angle of the vehicle was reduced by 

47% from 0.48 rad to 0.255 rad.   

These laboratory investigations have clearly demonstrated that advancements 

in driver preference and vehicle safety may be realized using simulator technology.  

The opportunity to apply these tools should result in better vehicles and greater safety 

of driver and occupants.  With the development of the objective steering preference 

metric, future research opportunities exist.  For prior steering preference research, the 
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feedback loop has typically required interaction with the subject to rate a setting 

before continuing.  However, the objective steering preference metric allows this step 

to be automated, opening the door for the development of an automatic tuning 

steering system.   
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CHAPTER ONE 
 

INTRODUCTION 
 
 

The steering system is an important aspect of the automobile from operational 

safety and driver enjoyment perspectives.  It is one of the primary control and 

feedback mechanisms in the driver-vehicle-road interface, both introducing and 

curing some of the most extreme instabilities a vehicle may face.  Although drivers 

often receive initial vehicle training through driver education programs, intuitive use 

of the steering system typically comes through personal experience.  For instance, 

wide ranging driving environments, vehicles, and behind-the-wheel driving 

experiences help shape a driver’s steering preferences throughout the years.  The 

diversity of these preferences and how they relate to a driver’s demographics and 

driving behavior will be examined in this dissertation.  The research has been divided 

into four distinct phases: simulator development, subjective steering preferences, 

objective steering preferences, and vehicle intervention.   

 

1.1 Clemson University Steering Simulator 

The first stage of studying the driver/vehicle steering interface was the 

development of a steering simulator.  Many types of driving simulators exist, 

although most exist to study non-steering driving behavior.  Steering simulator 

research typically focused on vehicle behavior rather than the driver’s preferences.  

Zhang et al. (2000) designed a hardware-in-the-loop (HIL) steering simulator to 
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consider the effect of physical components, steering system dynamics and other 

factors like soil stiffness on off-road vehicles.  Heydinger et al. (2002) developed a 

vehicle dynamics simulation model for use in the National Highway Traffic Safety 

Administration’s (NHTSA’s) National Advanced Driving Simulator. Andonian et al. 

(2003) used a fixed-based 14 DOF driving simulator to compare the lane tracking 

performance of test subjects using a joystick steering controller against a 

conventional hand wheel. Setlur et al. (2003) evaluated a hybrid vehicle steer-by-wire 

system using a hardware-in-the-loop and virtual reality test environment.  The 

common theme is that simulators designed for human subject testing lack steering 

feedback realism, and those designed with accurate steering feedback were not 

designed for human subject testing. 

The Clemson University steering simulator (refer to Figure 1.1) was 

developed for the sole purpose of accurately replicating an automobile's steering feel 

to investigate driver steering preferences.  Beyond realistic steering feel, the steering 

had to be highly adjustable and provide environments that simulate typical driving 

situations.  The simulator was developed in three generations, and the details of these 

generations are covered in Chapter 2. 
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Figure 1.1: Clemson University steering simulator with immersive driving 

environment 

 

1.2 Subjective Steering Preferences 

The concept of steering preference encompasses both safety and enjoyment.  

Vehicle safety regarding steering addresses the ability of the driver to command a 

safe and predictable trajectory for the chassis through rotation of the steering wheel.  

Enjoyment may be any aspect of the steering that makes the driver happy, such as an 

enhanced sense of speed and cornering performance or simply exceptional control 

over the vehicle.  One may consider safety to overlap enjoyment since exceptional 

vehicle control may result in both driver enjoyment and safety.  While a marketing 

perspective may encourage the development of a “fun” (i.e., enjoyable to the driver) 

steering setting, the global focus should always be on increasing safety.  The problem 
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facing automotive engineers is summarized in Figure 1.2 which exhibits the 

complexity of designing a steering system that encompasses the specified design 

objectives on all environments for multiple demographic groups.  Figure 1.2 hints at 

the possibility of a global steering design compromise, however no single setting 

could satisfy all design criteria simultaneously. 

fatigue  comfort
control

fun  sporty
intuitive

Safety Enjoyment

city rural highway

Effort: hub geometry, 
assist, damping, friction

Ratio

Objective

Environment

Parameter

Demographic fun utility enthusiast

 
Figure 1.2: Steering design problem which illustrates how safety and enjoyment 

interact with the environment and demographic groups using limited system 
parameters 

 

In preparation for studying driver steering preferences, the steering simulator 

was extensively validated to give credibility to future studies.  For full validation, the 

simulator and testing procedure had to be capable of showing preferential differences 
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in both steering settings and driving environments.  Furthermore, the simulator had to 

be validated in its sensitivity to individual driver preferences and demonstrate an 

ability to link drivers with similar preferences in the same demographics group.  The 

details of this validation procedure have been covered in Chapter 3. 

 

1.3 Objective Steering Preferences 

Direct human subject feedback is an accurate and reliable method to measure 

a driver’s steering preference; however, this method requires direct interaction with 

the subject and active thought to formulate a response, both of which slow down the 

data collection speed and distract the driver.  When accuracy is more important than 

efficiency and safety (i.e., during an engineer’s evaluation), the direct feedback 

method is preferred.  However, circumstances may exist when driver preferences are 

sought in a timely, real-time manner without requiring a driver’s direct attention.  An 

objective steering preference metric may be used in such a situation to reveal a 

driver’s steering preference simply by observing driving patterns. 

Engineers have access to many relevant vehicle dynamics data channels such 

as yaw rate, lateral and longitudinal acceleration, steering angle, and vehicle speed.  

In a simulator environment, even more channels exist including tire slip angles and 

road position data.  All of these channels can be used to describe the behavior of the 

vehicle.  If a driver operates a vehicle differently depending on their fondness for a 

steering characteristic, the result of this change should be measurable in the vehicle 
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dynamics channels.  Discovering the measurable change in vehicle response resulting 

from a driver’s steering preference is the focus of Chapter 4. 

1.4 Steering Intervention for Vehicle Road Runoff 

No matter how much control a driver is given, there will always be dangerous 

situations that may be unavoidable.  Random elements such as road obstructions 

(loose debris, pedestrians, animals) or changing road conditions (ice, hydroplaning) 

will always threaten a driver’s safety and compromise an otherwise stellar level of 

control.  To combat this, a vehicle needs to be able to intervene during these volatile 

situations. 

Driving is a complex task that cannot yet be completely handed over to an 

autonomous controller.  However, a driver’s reaction time may not be fast enough to 

adjust to quickly changing road conditions.  It’s during these rare situations that 

vehicle intervention may prevent a crash.  Active steering was explored as a solution 

to the specific problem of “shoulder induced accidents.”  These are crashes that occur 

as a result of the vehicle leaving the road shoulder, then returning abruptly, typically 

resulting in striking oncoming traffic or losing control of the vehicle and striking 

stationary obstacles on either side of the road.  The key to intervention in a situation 

like this is the concept of “driver intention.”  If a driver intends to swerve abruptly to 

avoid an obstacle, it is imperative that an intervention system does not override this 

command.  However, the swerve as a result of returning to the road should be 

overridden until the driver has time to react. 
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A number of recent research studies have emphasized preventing vehicle road 

departure through a vehicle dynamics approach.  Pape et al. (1999) discussed the 

effectiveness of in-vehicle crash avoidance active safety systems as a countermeasure 

for run-off-road (ROR) crashes through on-road, test track, and simulator experiments 

designed to improve driver lane-keeping models. The authors reported that numerical 

studies demonstrated improved driver models for passenger vehicles and tractor 

trailers; however, heavy trucks present a greater challenge for improved lane-keeping 

technology due to instability in recovery maneuvers. Second, Deram (2004) studied 

lane departure crashes, specifically focusing on two research questions. First, can 

vehicle based parameters detect driver inattention? Second, how can such detection 

be integrated into a lane departure warning system (LDWS)? The findings suggested 

that an adaptive lane departure warning system was a viable tool for detection. The 

accompanying simulation studies were able to suppress up to 70% of redundant 

warnings.  Finally, Pohl et al. (2007) studied a lane-keeping support system which 

was designed to provide assistance to a distracted driver. The authors utilized a video-

based monitoring system to estimate the level of a visual distraction for distracted 

drivers. On-road tests indicated initial success in terms of a lane-keeping device 

which only intervened when a lane departure event was detected. 

Recently, various research studies have shown an interest in a human factors 

approach to ROR crashes. First, Campbell et al. (2003) provided an extensive 

analysis of primary contributing human factors for crashes. In analyzing single 

vehicle ROR crashes, the authors found that the “2 leading crash contributing factors 
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involved speeding in 43% of crashes and resulting in a control loss in 41% of 

crashes”. Furthermore, the study demonstrated other primary contributing human 

factors for single vehicle ROR crashes including inattention (35%), driving under the 

influence (21%), drowsy/sleepy drivers (8%), vision obstruction for driver (3%), and 

driver sickness or blacking out (2%). Second, Janssen et al. (2006) found that that 

there were not many studies conducted to investigate driver behavior in ROR crashes. 

Furthermore, the authors found that the available studies are largely field observation 

studies and do not delineate best practices for reducing risk-taking behaviors. Third, 

LeBlanc et al. investigated a road departure crash warning (RDCW) system focusing 

on drivers that either drift off the road or take a turn too quickly. Researchers 

developed, validated, and field-tested the driver warning system in real time utilizing 

video and audio data. Findings suggested that the RDCW system improved driver 

lane keeping and therefore reducing the number of ROR incidents. Additionally, data 

on driver perception was collected through post-drive questionnaires, debriefing 

sessions, and focus groups.  Interestingly, the authors found that “drivers who rated 

themselves as not prone to inattention or slips in memory found the RDCW system 

easier to use than drivers with higher lapse scores” (Leblanc, 2006). Finally, Sayer et 

al. (2007) conducted a field operational test to determine driver acceptance and 

perceived utility of a ROR crash warning system. The study found that drivers were 

generally positive regarding the use of the in-vehicle warning systems, and they 

determined lane departure warning (LDW) to be more helpful than curve speed 

warning (CSW). Furthermore, the subjects tended to rate the warning systems higher 
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for utility rather than satisfaction. Findings suggested that drivers perceived the 

overall warning system to increase safety regarding ROR crashes. 

 

1.5 Organization of Dissertation 

The dissertation has been organized as follows.  The development of the 

Clemson University steering simulator will be presented in Chapter 2.  Chapter 3 will 

capture the subjective steering preference research performed using the steering 

simulator.  An objective steering preference metric has been developed in Chapter 4 

using the data collected during the subjective testing of Chapter 3.  Chapter 5 follows 

with the development of an active steering controller to mitigate shoulder induced 

accidents following run-off-road events.  A summary of the presented work will be 

given in Chapter 6.  The Appendices contain supplementary data and documentation. 
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CHAPTER TWO 

STEERING SIMULATOR DEVELOPMENT 

 
The Clemson University Steering Simulator was designed to replicate the 

steering response of a passenger automobile while offering a virtual reality driving 

experience for the operator.  The primary focus of the simulator was to discover 

optimal steering characteristics to aid in the vehicle development process.  The 2002 

Honda Initiation Grant (HIG) established the foundation for the Clemson Steering 

Simulator. That research project investigated autonomous directional vehicle control 

and human-machine interface design and control issues. The simulator hardware and 

software, as well as the laboratory have been through three generations of refinement.  

This chapter reviews the hardware and software evolution of the steering simulator 

over these three generations which occurred between a 2001 and 2009 time period. 

 

2.1 First Generation Steering Simulator 

The first generation of the Clemson University Steering Simulator featured all 

steering and driving components packaged together into a vehicle cockpit to offer a 

first step of realism for the driver.  Prior to the first generation, independent systems 

were developed as a result of the HIG with stand alone steering wheel and a rack and 

pinion hydraulic assembly mounted on a test stand with projected image (refer to 

Figure 2.1).  Although functional, the components did not create a realistic 

environment nor did they support any type of human subject testing.  A need existed 
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to migrate to a cab-type driving simulator with standard driver inputs and visual 

display. 

Drive motor

Rack

Spring
Feedback motor

dSpace
1103 board

Motor controller

Qmotor PC

Projector

 
Figure 2.1: Honda Initiation Grant (HIG) stand alone steering simulator bench with 

hydraulic rack and pinion assembly 

 

The front half of a 2002 Honda CRV vehicle body (measuring 2,000mm 

length × 1,782mm width × 1,682mm height) formed the primary structure of the 

simulator (refer to Figure 2.2). The steering shaft was removed and replaced with a 

motor-torque sensor system at the steering wheel connection.  This cab was one of the 

few pieces that survived through all three generations.  The vehicle was delivered by 

Honda R&D America, Inc. (Raymond, Ohio) as a full working automobile and 

carefully stripped down to satisfy the simulator requirements.  The engine and 

Cab/Driver Interface 
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transmission were removed and the back half of the vehicle was cut off to save space 

and allow positioning in the laboratory.  In the first generation, the pedals were non-

functional and the simulator ran at a fixed longitudinal velocity, xv .  The only input 

from the driver was through the steering wheel.  The vehicle cab was placed in front 

of a single projector screen with a projector mounted directly above for environment 

visualization.  The entire package was surrounded by black curtains to avoid 

peripheral distractions.   

 

 
Figure 2.2:  First generation driving simulator cab with fixed base and privacy curtain 

to isolate human subject 

 

The two primary hardware components of the first generation simulator were 

the servo-motor attached to the steering wheel (refer to Figure 2.3) and the 

Hardware 
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accompanying computer controller board.  The motor was a direct drive NSK 

Megatorque Motor System with a built in resolver.  It had a maximum torque output 

of 9.8 Nm and continuous torque output of 6.8 Nm.  The motor drive was used in 

torque control mode.  The controller board was a dSPACE 1103 rapid control 

prototyping board.  The board allows the vehicle model to run in real-time while 

interfacing with the motor and resolver.  The dSPACE 1103 board has the following 

specifications: (i) PowerPC 750 GX 1GHz processor; (ii) 32MB local RAM and 

96MB Global RAM; (iii) 20 analog inputs; (iv) 8 analog outputs; (v) 32 digital I/Os; 

and (vi) 6 digital incremental encoder inputs. 

 

 
Figure 2.3: First generation steering servo-motor with steering stub shaft mounted 

below dashboard gauges 
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Initially, a Matlab/Simulink based eight degree-of-freedom vehicle model was 

used to simulate the vehicle dynamics (Xia, 1990).  The vehicle model was strictly for 

handling (lateral dynamics) without a powertrain (engine, transmission) or brakes.  

The model was coded in Matlab and uploaded to the dSPACE controller board for 

interfacing with the automotive hardware.  From there, the simulation was controlled 

from within ControlDesk, the dSPACE interfacing software. 

Vehicle Model 

The initial steering model featured three virtual components (spring, damper, 

and lateral force scaling) that could be independently turned on or off.  The spring 

and damper were directly dependent on the angular position, swθ , and velocity, swθ , 

of the steering wheel.  In contrast, the lateral force was proportional to the lateral 

force of the left and right front tires calculated by the vehicle model, ylF  and yrF  

respectively.  The combination of the three components created a simple estimation 

of the torque observed at the steering wheel, swτ , given by 

  1 2 3 ( )sw sw sw yl yrC C C F Fτ θ θ= + + +  (2.1) 

where 1C , 2C , and 3C  were the spring, damping, and lateral force coefficients that 

were used to tune the steering feedback. 
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The driving environment was animated using MotionDesk.  MotionDesk is 

the scene animation software that works directly with ControlDesk and the dSPACE 

controller board.  The road profile was built piece-by-piece in a fashion similar to a 

train set with individual track pieces.  Due to software limitations, the road had no 

elevation changes.  Without speed control, complicated terrain was unnecessary.  The 

driving environment from the first generation has been displayed in Figure 2.4. 

Virtual Environments 

 
Figure 2.4:  First generation driving environment with authentic vehicle cabin and 

single projected view 

 

2.2 Second Generation Steering Simulator 

The key upgrade of the second generation steering simulator (refer to Figure 

2.5) was the enhanced vehicle and steering dynamics.  The previous mathematical 
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chassis and steering models were simple and lacked the accuracy necessary for a 

realistic driving experience.  Consequently, steps were taken to improve and validate 

new automotive models while allowing for real-time modification of the driver 

steering feedback parameters. 

 

 
Figure 2.5: Second generation steering simulator with single projected view; 

operating station relocated behind the vehicle cabin 

 

The handling dynamics of the simulator were initially controlled by an eight 

degree-of-freedom vehicle model.  This model created a generic driving experience; 

CarSim Software Package 
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however, the vehicle response lacked the realism needed to reproduce the desired 

changes in steering feel.  To improve the accuracy of the simulator and subsequent 

experimental results, this eight degree-of-freedom model was replaced by the 

commercial software package CarSim.  CarSim is a vehicle dynamics simulation 

package available from Mechanical Simulation Corporation (Ann Arbor, MI). It 

provides accurate vehicle response simulations faster than real-time. Vehicle 

parameters are defined within CarSim on a system level. This means that nonlinear 

kinematics and compliance data can be entered for easy, accurate vehicle 

descriptions. CarSim meshes seamlessly with Matlab/Simulink to allow for user-

defined models and control strategies to supplement or replace the CarSim 

mathematical models. The CarSim vehicle database used in the steering simulator 

was validated and supplied by Honda R&D Americas, Inc (Raymond, OH). 

 

The cockpit from the first generation simulator was retained for the second 

generation simulator.  However, many upgrades were added to improve the 

immersive qualities of the simulator.  Possibly the most important upgrade was the 

addition of driver accelerator and brake pedal potentiometers.  With the improved 

CarSim vehicle model, the driver could now supply brake and throttle inputs similar 

to actual vehicle operation.  This was a tremendous improvement to the overall 

driving experience for human subjects (both novice and test engineers) and compared 

favorably with commercial simulations.  It was important to give as many sensory 

Cab Upgrades 
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cues as possible to the driver.  With this in mind, the door panel speakers were wired 

to provide vehicle sounds.  Furthermore, the dashboard gauges were connected to the 

dSPACE board and programmed to display engine and vehicle speed to the driver in 

real-time (refer to Figure 2.6).  These two upgrades assisted the driver in finding and 

maintaining a desired speed on the various driving environments. 

 

 
Figure 2.6: Working dashboard gauges and lights improve the realism of the 

environment for test subjects within the vehicle cabin 

 

The final major cab upgrade was the replacement of the steering wheel 

feedback motor.  The first generation resolver had relatively low resolution, which 

resulted in a grainy steering feeling.  It also created limitations when trying to 

reproduce a friction feel in the steering wheel.  The new motor, shown in Figure 2.7, 

created an instant improvement in steering feel with crisp, realistic friction and 

damping characteristics.  A Danaher Motion AKM53K – ANCNR 00 was selected 
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which was powered by 240 VAC and provided 11.6 Nm of continuous stall torque.  It 

was controlled by a Servostar S300 in torque control mode. 

 
Figure 2.7:  Full assembly of new steering motor mounted in dashboard with support 

points attached to banana brackets 

 

With the introduction of the CarSim software package, the simulator now 

featured a quality scene rendering tool.  Through CarSim and its accompanying 

animation program, “Surfanim”, custom driving environments could be generated.  

This was a big step in creating a realistic driving experience.  CarSim allows the user 

to enter the (x,y,z) coordinates of the center line of the proposed road as well as add 

terrain, trees, pylons, and houses using a graphical user interface (GUI).  Simply put, 

Surfanim interfaces with CarSim to render the scene in real-time based on the 

vehicle's coordinates. 

Virtual Environment 
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Four driving environments were created and/or applied in the simulator for 

steering evaluations.  These were generically classified as: city, country, highway, 

and proving ground.  The city environment was a simple flat grid populated with 

houses and stop signs.  It was designed to evaluate the key factors in an intersection 

mode (e.g., primarily high steering angles and low speed).  The country environment 

was a hilly winding road designed to capture the fun-to-drive aspects of the steering 

along with directional control.  The highway environment had smooth turns and 

occasional pylons to force drivers to change lanes, which helped evaluate the ease of 

control at high speeds.  The proving ground had a high speed oval, a large flat paved 

area, and a connected race track. 

 

The steering wheel torque dynamics were based on a reduced order four 

degree-of-freedom mass, spring, damper, and friction model.  This model represented 

an improvement over the simple feedback model of Section 2.1.  The distributed 

physical mass (inertia) within the model included the steering wheel, steering shaft, 

steering rack, and wheel/tire assembly.  Tire vertical forces, 

Steering Feel Validation 

zF , lateral forces, yF , 

and aligning moments, zM , were calculated in real-time by CarSim and supplied to 

the steering model.  These force and moment magnitudes were mapped into steering 

moments using the kingpin inclination angle, λ , caster angle, ν , and lateral offset 
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of the steering axis, sd , using Gillespie’s (1992) steering equations.  The expression 

for the steering moment as a result of the vertical forces on the tires is given by 

 ( ) sin sin ( ) sin coss szr zrV zl zlM F F d F F dλ δ ν δ= − + + −  (2.2) 

where δ  denotes the steering angle at the front tires, and zlF  and zrF  are the vertical 

forces acting on the left and right front tires, respectively.   

The expression for the steering moment as a result of the lateral forces on the 

tires is 

 ( ) tanwyrL ylM F F r ν= +  (2.3) 

where ylF  and yrF  are the lateral forces acting on the left and right front tires, 

respectively.  The variable wr  denotes the radius of the front tires.  The third 

component of the steering moment is a direct result of the left and right aligning 

moments on the front tires, zlM  and zrM , which may be formulated as 

 2 2( )coszrAT zlM M M λ ν= + +  (2.4) 

The three moments were combined into one steering torque as 

 V L ATfb M M Mτ = + +  (2.5) 

The steering moment, fbτ , was then fed into the four degree-of-freedom model given 

by Mandhata et al. (2004) in equation (2.10) to generate the steering wheel torque, 

sw sw swM I θ=  .  Steering torque assistance was modeled as a tunable power function 
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with respect to the torsion bar twist angle, tbarθ  (refer to equation (2.9)).  This allowed 

the assist boost curve to be set to replicate most power steering systems. 

The steering system model structure was comprised of four differential 

equations. The input to the steering system was the driver input torque command, swτ , 

resulting in the angular displacement of the steering wheel swθ , given by 

 ( ) ( ) ,
1

sw sw sc sw sp sc sw sp fr sc
sw

B K
I

θ τ θ θ θ θ τ 
  

= − − − − −    (2.6) 

where 1, ,sw sw swθ θ θ ∈ℜ   denote the angular position, velocity, and acceleration, 

respectively, of the steering wheel, and ,sp spθ θ  represent the spool valve angular 

displacement and velocity. The parameters ,, , , and sw sc sc fr scI B K τ  denote the lumped 

steering wheel and column inertia, damping, stiffness, and the dry friction, 

respectively. The steering column and torsion bar stiffness act as two linear springs in 

series because the spool valve was modeled as an element with negligible inertia.  

The angular displacement of the spool valve, spθ , was a result of the torsion 

bar windup and may be formulated as 

 ( ) ( )1
sp sw sc sw sp T tbar

sc
K K

B
θ θ θ θ θ 

 = + − −   (2.7) 

where TK  denotes the torsion bar’s stiffness and tbarθ  its angular displacement. The 

torsion bar twist also resulted in the transmission of driver input torque to the pinion 

gear of the rack and pinion system. This pinion torque was transformed into the rack 
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force that is resisted by the feedback forces from the tire-road interface consisting of 

the aligning torque and tire-spin inertia.  

The governing equation for the rack displacement may be written as 

 ( ) ,
21 rackT L

rwrack tbar rack rack fr rack boost
p L Lrack

yK Ky B y F F
M R N N

θ θ
  
      

= − − − − +   (2.8) 

where racky is the rack displacement, rwθ  is the angular displacement of the front road 

wheels, and boostF  is the power assist force modeled to be dependent on the torsion 

bar displacement. The parameters LK  and LN  are constants which represent the 

steering linkage stiffness and ratio of the steering wheel angle to road wheel angle, 

respectively. The terms rackM , rackB  and ,fr rackF  denote the rack’s mass, damping and 

inherent friction. 

The torsion bar twist, which measured the relative displacement between the 

spool valve and the pinion gear, was given as 

 rack
tbar sp

p

y
R

θ θ= −  (2.9) 

where pR  denotes the radius of the pinion gear. Finally, the governing equation of 

motion for the wheel and linkage assembly was expressed as 

 ,

1 rack
rw L rw w rw fr kp fb

w L

y
K B

I N
θ θ θ τ τ= − − − −

  
  
  

   (2.10) 



 24 

where ,fr kpτ  and fbτ  denote the kingpin friction and aligning torques at the tire-road 

interface per equation (2.5), respectively.  The parameters wI  and wB  represent the 

lumped inertia and damping of the wheel and linkage assembly. 

The primary focus of the simulator was not simply to accurately replicate 

steering feel, but to be able to adjust this feel in real-time to determine driver 

preference.  This adjustability was aided greatly by the dSPACE ControlDesk 

software package that allows all variables within the model to be monitored and 

adjusted during the simulation.  

The steering model was validated by tuning the steering feel to match a 2006 

Honda CR-V with experimental proving ground (Transportation Research Center, 

Liberty, Ohio) data provided by Honda R&D Americas, Inc. The goal was to match 

test results over the operating range to provide the most realistic feel. The system 

parameters were not strictly held to their real world value as steering feel realism 

outweighed individual parameter accuracy. To this end, the steering simulator was 

validated against static holding effort and fixed frequency sinusoidal input.  The final 

tuned parameters are given in Table 2.1.  

The holding effort test was performed on a 50m radius circle.  This test 

consisted of steering the vehicle so that it tracked a painted circle while gradually 

increasing the speed.  The steering torque was measured at different speeds while the 

driver kept the vehicle on the circle. Figure 2.8 shows the simulation and 

experimental results for steering torque versus lateral acceleration. Note that the 
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analytical and test points corresponded to within 7% which is acceptable for the 

steering design studies.  As expected, the steering torque increased until the tires 

reached their saturation point due to the design of the steering system. 

 

Symbol Value Units Symbol Value Units 

rackB  0.136 
kg m

s
⋅  TK  67.8 N m⋅  

scB  1.423 
2kg m

s
⋅  rackM  29.4 kg  

wB  900 
2kg m

s
⋅  LN  0.118 m  

sd  0.063 m  wr  0.341 m  

,fr rackF  44.5 N  pR  7.37E-3 m  

swI  6.78E-5 2kg m⋅  λ  0.232 rad  

wI  1.356 2kg m⋅  ν  0.037 rad  

LK  48.8E-3 N m⋅  ,fr scτ  0.6 N m⋅  

scK  33.9 N m⋅  ,fr kpτ  80 N m⋅  
Table 2.1: Tuned parameters in steering model to create accurate replication of 

steering torque for a 2006 Honda CR-V 
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Figure 2.8: Comparison of the simulation and experimental results  

from the holding effort test 
 

The slalom test employed a fixed frequency sinusoidal input at a constant 

speed, sinsw A tδ ω=  with 2 fω π= .  Figures 2.9 and 2.10 display the simulation and 

experimental results from the fixed frequency sinusoidal input test, where the y-axis 

measures the steering wheel torque.  Steering wheel excitations of f = 0.25Hz, 

0.50Hz, and 1.00Hz were used with amplitudes of 20A = °  or 25°  depending on test.  

The tests were performed at xv = 60kph and 120kph.  This test highlights the gain and 

hysteresis of the steering torque in the typical operating range. The simulation model 

showed excellent correlation to the experimental results over the conventional 

operating range.  The small nuances of the angle-effort dynamics (i.e., steering wheel 

rotational angle versus measured torque at the steering wheel) were successfully 

captured.  The hysteresis bulged through center at the 60kph while tightening to a 
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more “S-like” shape at 120kph.  At the highest speed and steering frequency, the 

model lost accuracy, most likely due to the tire model within CarSim.  However, this 

combination of speed and frequency is only encountered during evasive maneuvers, 

so the discrepancy was deemed acceptable. 
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Figure 2.9: Comparison of the simulation and experimental data from fixed frequency 
sinusoidal input (0.25, 0.50, 1.0 Hz) test at 60 kph.  The solid line is the test data 

while the dotted line is the result of the simulation 
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Figure 2.10: Comparison of the simulation and experimental data from fixed 
frequency sinusoidal input (0.25, 0.50, 1.0 Hz) test at 120 kph.  The solid line is the 

test data while the dotted line is the result of the simulation. 

 

2.3 Third Generation (Current) Steering Simulator 

The third generation of the Clemson University Steering Simulator offered 

greater realism in driver immersion for a better driving experience.  A series of non-

steering upgrades were introduced.  The upgrades were focused on improving the 

driving experience as a whole to eliminate distractions that might contaminate the 

steering evaluation.  Regardless of how accurate the steering feedback, human 

subjects must believe that they are truly driving an automobile to give an accurate 
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judgment about their steering preference.  Cues that remind subjects that they are 

driving a simulator have the potential to ruin the perception of the steering feedback. 

 

Prior to the third generation, the Clemson University Steering Simulator had a 

fixed (no motion) base.  This means that the driver did not experience any motion 

(longitudinal, lateral, vertical, yaw, roll, pitch) of the vehicle cab while driving.  A 

primary concern with the simulator was braking realism.  Stopping distances were 

difficult to judge with only visual feedback; full stopping force was often used when 

it was not necessary.  Braking realism does not seem important in a steering simulator 

at first, but this one area would remind drivers that they were in a simulator and taint 

the steering evaluation. With the addition of pitch feedback, drivers could better judge 

their decelerations and their perceived realism improved.   

Motion Base 

The IDEAS (Interactive Driver Evaluation & Assessment Systems) Company 

(Oceanside, CA) creates custom driving simulators for training and classroom use.  

They fabricated and installed a custom motion base for the Honda CR-V half-cab 

(refer to Figure 2.11).  The motion base contained a curved track that the simulator 

rode on while an electric motor moves the cab forward or backwards.  The curved 

track turned the longitudinal motion into a pitching sensation similar to the pitch a 

driver experiences while accelerating and decelerating in an automobile.  With the 

motion base activated, drivers could sense the acceleration of the vehicle through the 
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pitching motion, allowing for more accurate braking when approaching an 

intersection. 

The motion base was designed to give 6°  of travel along the curved track.  It 

accomplished this using a DC motor and a set of powerful springs that balanced the 

vehicle in the center of the track.  By balancing the vehicle, the power required by the 

motor was greatly reduced since it did not need to overcome the weight of the vehicle 

cabin.  However, the cabin weight was still a limitation.  Despite the suspension and 

subframe being removed from the vehicle, the cabin weighed enough to add a 

noticeable delay (300-500ms) in the motion base response.  This delay necessitated 

that the motion base be tuned to only provide small motions that would be triggered 

during the largest accelerations.  By doing this, the motion base added a realistic 

feedback channel to the driver without becoming a distraction.  Figure 2.12 displays 

two images of the motion base control box outer panel and enclosed electronic 

components.  The outside of the box contains an emergency stop button since the 

motion base was the most dangerous component to both the participants and itself.  

The amplifier located at the interior top of the box controlled the power to the motor 

using position feedback from a potentiometer.   
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Figure 2.11:  Longitudinal motion base installed beneath simulator cab with 

tensioning springs to keep cab balanced 

 

     
Figure 2.12: Motion control box with (a) emergency stop and (b) amplifier to control 

the position of the motion base 

 

A single projected view was used through the first two generations of the 

steering simulator which provided a horizontal field of view of approximately 40 

degrees.  While adequate for a simple driving experience, the lack of peripheral views 

gave a lower sense of speed and made it difficult to navigate tight turns common at 

intersections.  The visual display was upgraded to three projected screens (refer to 

Three Screen Projection System 
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Figure 2.13), increasing the field of view to 120 degrees.  This required a custom 

animator upgrade to ensure all the screens were synchronized on a dedicated graphics 

computer with a dual output video card.   

 

 
Figure 2.13:  Three screen projection with 120 degree field of view for the driver in 

vehicle cabin 

 

Three ultra short throw projectors (NEC WT610E) allowed a ground 

mounting solution and avoided the complex ceiling location with mounting 

difficulties.  These projectors improved the portability of the simulator.  However, the 

primary drawback of ultra short throw projectors is that screen irregularities are 

magnified due to the sharp projection angle.  The sense of vehicle speed and 

navigational ability were immediately improved upon installation of the three screens.  

Beyond these intended effects, the sensation of the vehicle dynamics also improved 

greatly.  A wider field of view allowed the driver to have a greater feel for the 
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direction of the velocity vector with respect to the vehicle’s orientation.  This was 

especially evident in a lateral vehicle slide when the driver could look into the 

direction of travel even though the view was not oriented to match.  This unintended 

effect improves the value of the simulator as a “limit” (i.e., high lateral acceleration) 

evaluation tool. 

 

The final upgrade in the third generation of the simulator was the 

improvement of brake pedal feel.  Prior to this generation, a hybrid spring and 

partially bled brake system created resistance while pressing the brake pedal.  The 

system provided a usable pedal feel, but it lacked consistency and did not offer the 

smooth damped feeling of a power assist brake system.  An improvement was sought 

with small dampers, but a suitable feeling could not be created.  Instead, a solution 

was devised to use the Honda factory brake booster system in conjunction with the 

fully operational base brake system. 

Brake Feel 

The brake lines were connected to the two front calipers with rotors still 

present.  The rear brake lines were plugged, and the brake system was bled to make 

the front brakes fully operational.  An external 110 VAC vacuum pump was 

connected to the brake booster to supply the vacuum typically created by the engine.  

This solution offered the driver the proper force buildup when depressing the brake 

pedal.  However, the only drawback was the vacuum pump sound level which could 
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be potentially distracting to the driver.  A quieter pump is recommended to ensure 

that the brake system does not interfere with the overall driving experience. 

 

The integration of the system hardware, software, and external peripherals has 

been shown in Figure 2.14.  The primary interaction was between the command 

center PC and the dSPACE 1103 processor board.  While operating, the dSPACE 

board handled all vehicle dynamics calculations, which freed the command center PC 

to handle one of the animation screens.  The other two animation screens were 

handled by the image generating PC with data sent from the command center PC 

using TCP/IP.  The steering model was implemented in Matlab/Simulink in such a 

way to allow all steering parameters to be changed in real time through the dSPACE 

software, ControlDesk.  ControlDesk was used to interface between the command 

center PC and the dSPACE board, and this software handled run control, data 

monitoring, and variable changes.  Finally, the dSPACE board controlled all 

hardware inputs and outputs with physical wiring to the interface panel, allowing the 

driver to interact with the vehicle and steering models. 

System Integration 
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Figure 2.14: Schematic of the steering simulator showing the interaction of inputs and 
outputs with the dSPACE 1103 processor board and support computers
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CHAPTER THREE 
 

DRIVER PREFERENCE STUDIES 

 
The Clemson steering simulator was designed and fabricated to replicate the 

“feel” of automotive steering subsystems.  Alone, the automotive hardware-in-the-

loop tool was a good engineering exercise and a fun endeavor, but it needed to add 

value to the overall vehicle development process.  A series of human subject based 

psychology tests were performed to validate and initially apply the simulator as an 

engineering tool for investigating driver steering preferences.  There were three 

questions to be answered during the study: (1) Can drivers sense different steering 

settings and show a preference?  (2) Do preferences change depending on the driving 

scenario?  (3) Does the driver demographic influence steering preference?  The three 

questions were evaluated through three rounds of human subject tests conducted at 

Clemson University which have been denoted as Pilot Study 1, Pilot Study 2, and 

Demographics Study.  In this chapter, the methodology and results from the three 

studies will be presented and discussed to answer the posed questions.  In addition, a 

forecast on ground vehicle steering system technology evolution will be stated based 

on these findings. 

 

3.1 Pilot Studies 1 and 2 

Two pilot studies were performed with the steering simulator as it entered its 

second generation of integrated hardware and software (refer to Section 2.2).  As 
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stated previously, there were three questions to be answered during the validation 

studies.  The pilot studies approached the first two questions: (1) Can drivers sense 

different steering settings and show a preference, and (2) Do preferences change 

depending on the driving scenario?  Two separate human subject studies were 

performed to answer these questions; a comprehensive plan was submitted and 

approved by the Clemson University Institutional Review Board (IRB).  The only 

change made between studies was the virtual driving environment; the first study 

used combined country and residential roads, while the second study utilized a 

highway.  This approach allowed the second question to be answered by comparing 

the results from the two pilot studies. 

 

The first pilot study was a low (

Pilot Study 1 Procedure 

0 40xv kph< < ) to medium ( 40 70xv kph≤ < ) 

speed steering preference study.  Eleven (n=11) participants each drove six steering 

configurations, C1-C6, that varied both the steering ratio and torque scaling.  After 

each run, the driver filled out a questionnaire to determine his/her preference for the 

given steering configuration (refer to Appendix A).  The driving environment was a 

hybrid roadway with access to a winding country road and residential area as shown 

in Figure 3.1.  The country road, R2, contained modest elevation changes and blind 

corners to force the drivers to react instinctively.  This road exposed both the on-

center, 20swθ < ° , and off-center, 20swθ > ° , characteristics of the steering system at 
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medium speeds ( 40 70xv kph≤ < ).  The residential zone, R1, was a simple grid layout 

with 4-way stops at all intersections and houses scattered throughout.  The low speed 

( 0 40xv kph< < ) off-center steering characteristics and returnability should be 

revealed during this section of the road.   

 
Figure 3.1: Winding country road and residential driving environment (R2 and R1) 

used for the first pilot study 

 

The six steering configurations, C1-C6, used in the first pilot study have been 

listed in Table 3.1.  The baseline configuration, C1, was the replicated real world 

steering feel of the 2006 Honda CR-V production vehicle validated in Section 2.2.  

The baseline configuration was scaled up and down by approximately 20% in both 

the steering ratio and torque output to create four more configurations, C2-C5.  The 

steering ratio corresponds to the relationship between steering wheel rotation, swδ , 

and road wheel angle, δ .  The steering torque is the direct scaling of the target torque 

of the steering wheel servomotor.  The final configuration, C6, was a variable gain 
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steering (VGS) ratio configuration in which a VGS algorithm adjusted the steering 

ratio in real-time to keep the yaw gain constant at all vehicle speeds.  The yaw gain is 

the ratio of the yaw rate to the steering wheel input, : swψ δ .  If the steering ratio is 

adjusted to keep the yaw gain constant, then the response of the vehicle could 

potentially become more predictable to the driver. 

 

Configuration Description 
C1 Honda CRV Baseline (18:1 Steering Ratio) 
C2 15:1 Steering Ratio 
C3 22.5:1 Steering Ratio 
C4 20% Heavier Steering Torque 
C5 20% Lighter Steering Torque 
C6 Variable Gain Steering (VGS) Ratio 

Table 3.1: Pilot study vehicle steering configurations with variations in steering ratio 
and steering torque 

 

The study participants were asked to drive both sections (winding country 

road, residential) of the road course until they were comfortable answering the 

questionnaire.  This ensured that the drivers had sufficient time to familiarize 

themselves with both the simulator and the virtual environment.  Although this helped 

the reliability of the results, the participants were prone to drive for extended periods 

of time if not given a fixed run interval.  Due to the small sample size of the dual pilot 

studies and the minimal number of steering configurations, extended drive times did 

not pose a problem. 
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The collected survey data (refer to Appendix B) was analyzed by considering 

the mean response of all drivers (n=11 test subjects) for a given steering configuration 

setting.  The questions were divided into categories (Global 

Pilot Study 1 Test Results 

{1,2,...,16} , Fun 

{8}XX = , Control {1,3,5,7,11,16}YY = , Ease {2,6,10,14,15}ZZ = , Safety 

{4,9,12,13}VV = ) and analyzed together.  In Figures 3.2 through 3.6, the graphs 

depict the mean values of the evaluated categories against the respective 

configurations.  The survey questions were answered on a scale of 1 to 7, with 7 

being the best (strongly agree) and 1 assigned as the worst (strongly disagree).  In 

other words, the plots show the mean response for each steering configuration.   

 
Figure 3.2: Pilot study 1 “global” steering configuration preference calculated as 

mean response from questionnaire 
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The global means, globalµ , were calculated using all (m=16) questions from the 

survey given by 

 
16 11

1 1

1 ( )
k

m n

global j
j i

q i
nm

µ
= =

= =

= ∑ ∑  for ( 1, 2,...,6kC = ) (3.1) 

where n is the number of participants, m is the number of questions represented in the 

respective question category, q is the question answer using the 1-7 scale, and jC  is 

the steering configuration.  Configuration C1 and C5 appear to be the overall favored 

scenarios as shown in Figure 3.2.  This was acceptable because C1 was the baseline 

factory steering setting, and C5 required less steering torque (only 80% driver effort 

required compared to baseline) allowing the tighter turns of the country and 

residential roads to be easily navigated.  However, a global view of the data may be 

insufficient to properly evaluate the steering configurations and make any firm 

conclusions.  To ensure a thorough analysis, the data was analyzed with respect to 

each question sub-category (Fun, Control, Ease, and Safety).   

While configuration C5 was slightly favored in the global view, it is clear 

from Figure 3.3 that configuration C1 was considered to be the most fun to drive.  

The fun sub-category, funµ , was formulated as 

 
1 11

1 1

1 ( )
k j

m n

fun XX
j i

q i
nm

µ
= =

= =

= ∑∑  for ( 1, 2,...,6kC = ) (3.2) 

where XX is the subset of questions related to the fun aspects of the steering 

configuration defined previously.  This is more telling about the lighter steering effort 
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of configuration C5 in that it is less fun to drive, even if drivers may favor it overall.  

The factory configuration was most favored which offers a compromise in the 

steering ratio and torque.  This begs the question: what aspects of configuration C5 

did drivers prefer from a global perspective? 

 
Figure 3.3: Pilot study 1 “fun” steering configuration preference calculated as mean 

response from questionnaire 
 

As shown in Figure 3.4, configuration C5 ranked the highest in control, 

controlµ , amongst the tested configurations by a significant margin.  The control sub-

category was calculated as 
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where YY is the subset of questions related to the control aspects of the steering 

configuration defined previously.  This offers some insight into the basis for 

configuration C5 (lighter steering effort) demonstrating perceived strength in the 

3.5 

4 

4.5 

5 

5.5 

6 

C1 C2 C3 C4 C5 C6 
Steering Configuration 

Fu
n 

R
es

po
ns

e 
M

ea
n 

 



 43 

global result.  The result was acceptable because the lighter steering effort may allow 

for crisp steering inputs while navigating the tight turns of the country and residential 

environments. 

 
Figure 3.4: Pilot study 1 “control” steering configuration preference calculated as 

mean response from questionnaire 
  

The ease of operation, easeµ , was another criterion for the driving simulator 

analysis given by  
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where ZZ is the subset of questions related to the ease aspects of the steering 

configuration defined previously.  The analysis shown in Figure 3.5 splits the six 

configurations in half with configurations C1, C2, and C5 placing higher than 

configurations C3, C4, and C6.  While configurations C1 and C5 may be expected at 

this point, the strength of C2 (quicker steering ratio) is worthy of discussion.  A 
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quicker steering ratio (15:1, meaning less steering wheel angle required for a given 

road wheel angle) allows for a smaller steering wheel angular input while achieving 

the same vehicle response.  It is understandable why this configuration may be easier 

to drive in a residential area.  This setting was consistently rated ahead of the 

remaining three configurations, but always behind the baseline.  This suggests that the 

steering ratio should be biased in this direction (i.e., quicker ratio) since the potential 

loss in driver preference is reduced. 

 
Figure 3.5: Pilot study 1 “ease” steering configuration preference calculated as mean 

response from questionnaire 
 

Finally, the safety, safetyµ , was also used as a set of evaluation questions and 

may be calculated by 
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where VV is the subset of questions related to the safety aspects of the steering 

configuration defined previously.  Interestingly enough, no significant results could 

be determined.  All of the configurations differed only slightly as shown in Figure 

3.6.  This implies that the sensation of safety may not be directly connected to the 

steering system for the country and residential roads.  

 
Figure 3.6: Pilot study 1 “safety” steering configuration preference calculated as 

mean response from questionnaire 
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was 4.97 4.68 6.4%
4.68
−

= .  A large positive percentage implies that the configuration 

was favored for the given question grouping.  This allows individual steering settings 

to be analyzed across all question sub-categories at once.  Notice how configurations 

C3, C4, and C6 are below 1% for all question groups.  This shows just how disliked 

these settings were by the human test subjects.    The VGS steering setting, C6, was 

the least liked setting for the “control” question group.  The VGS setting was 

designed specifically to improve the controllability of the vehicle, and this result led 

to the abandonment of the algorithm. Alternatively, configurations C1 and C5 

(shaded) both showed significant positive percentages across most question 

categories. 

  Global Fun Control Ease Safety 
C1 6.4% 11.9% 5.4% 8.5% 3.8% 
C2 2.1% 3.7% 1.5% 4.4% -0.8% 
C3 -5.4% -10.5% -4.7% -7.4% -2.3% 
C4 -5.6% -6.4% -6.0% -9.0% 0.8% 
C5 8.1% 1.7% 13.8% 8.5% -1.8% 
C6 -5.7% -0.3% -10.0% -5.0% 0.3% 

Table 3.2:  Pilot study 1 percent deviations of the mean for all scenarios within each 
question grouping; shading denotes the two most popular steering configurations, C1 

and C5 
 

The driving environment was changed to a highway layout, R3, for the second 

pilot study.  The highway environment was a long, looped six lane roadway with a 

concrete median as shown in Figure 3.7.  Traffic was not available, but pylons were 

introduced to force drivers to change lanes.  The drivers were allowed to drive as long 

Pilot Study 2 Procedure 
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as they wished at highway speeds until they were satisfied with their appraisal of the 

steering system.  Nine (n=9) participants each drove six steering configurations, 

filling out a questionnaire after each run. 

 
Figure 3.7: Highway driving environment (R3) used for pilot study 2 with pylons to 

force drivers to change lanes 

 

The results of the second pilot study were analyzed in the same way as the 

first pilot study (refer to Appendix C).  The survey questions were again divided into 

five groups (Global, Fun, Control, Ease, Safety) and the results of each steering 

configuration were averaged for all drivers per equations (3.1) through (3.5) with 

Pilot Study 2 Test Results 

9n = .  Figure 3.8 shows the global results for the second pilot study.  A result that 

stands out from the global design analysis was configuration C4, a heavier steering 

feel due to larger steering torque requirements.  This configuration was one of the 
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three least favored during the first pilot study per Figure 3.2.  Although surprising, 

this result is understandable since a heavier steering feel may provide stability to aid 

in lane keeping on a highway.  However, the four other question groupings should be 

analyzed before this result can be confirmed. 

Figure 3.8: Pilot study 2 “global” steering configuration preference calculated as 
mean response from questionnaire 

 

The Fun question results, shown in Figure 3.9 reveal three features that merit 

some consideration.  A slower steering ratio, C3, and heavier effort, C4, were both 

preferred with mean values of 4.55 and 4.90, respectively.  These were the two least 

favorites in the first pilot study as shown in Figure 3.3.  This continues the trend that 

drivers may prefer different steering settings on the highway.  None-the-less, a 

common trend may be observed with the VGS results, C6.  Across both pilot studies, 

it was never rated highly with response mean values of 4.48 and 3.45.  This may 
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support the idea that drivers prefer a fixed steering setting that they are familiar with 

rather than a continually adjusting setting based on the vehicle speed. 

 

Figure 3.9: Pilot study 2 “fun” steering configuration preference calculated as mean 
response from questionnaire 

 

Figure 3.10 shows the results for the control questions which pertain to the 

perceived response of the vehicle to driver commanded steering maneuvers.  A 

heavier steering feeling, C4, offers drivers a better sense of control, while the 

baseline, C1, once again comes through as a favorite.  This confirms the suspicion 

that a heavier steering torque provides increased stability for lane keeping on 

highways.  This is contrary to pilot study 1 where lighter steering torque, C5, was 

overwhelmingly preferred in Figure 3.4.  Surprisingly, drivers did not distinguish 

between steering ratio changes based on the similarity in results between 
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configurations C2 and C3.  Again, the variable gain steering, C6, was not highly rated 

by the test subjects. 

 

Figure 3.10: Pilot study 2 “control” steering configuration preference calculated as 
mean response from questionnaire 

 

The ease question results shown in Figure 3.11 were not as decisive as the 

four other metrics.  A stiffer steering feel was preferred, C4, but the second favorite 

was a lighter steering feel, C5.  This likely shows that the drivers were not making 

clear and consistent judgments about the “ease” of the steering on the highway 

environment.  Specifically, the highway environment was a relatively easy course to 

begin with, so a combination of traffic and driver distractions should be introduced 

for an improved “ease” test result.  

 

3

3.5

4

4.5

5

5.5

6

C1 C2 C3 C4 C5 C6

Co
nt

ro
l R

es
po

ns
e 

M
ea

n 
   

   

Steering Configuration



 51 

3

3.5

4

4.5

5

5.5

6

C1 C2 C3 C4 C5 C6

Ea
se

 R
es

po
ns

e 
M

ea
n 

   
  

Steering Configuration

 
Figure 3.11: Pilot study 2 “ease” steering configuration preference calculated as mean 

response from questionnaire 

 

Figure 3.12 shows the safety question results for the highway road.  Once 

again, the stiffer (heavier) steering feel, C4, was favored among the test participants 

and C2 (quicker steering ratio) the least.  The safety results were more pronounced 

than those in pilot study 1 per Figure 3.6, which may support the idea that the higher 

vehicle operating speeds tap into the fear and survival instincts of the given 

participant. 
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Figure 3.12: Pilot study 2 “safety” steering configuration preference calculated as 

mean response from questionnaire 

 

Overall, the second pilot study reveals that the configuration C4, heavier 

steering torque, was the favorite on the highway environment based on Figures 3.8-

3.12.  The results for the second pilot study have been summarized in Table 3.3, 

which shows the dramatic bias towards configuration C4 by the test subjects.  For 

instance, this configuration was positively rated for all evaluation categories with 

overwhelming preference in global, fun, and safety.  However, this configuration was 

one of the least favorites for the country and residential road environment per the first 

pilot study (refer to Figures 3.2-3.6).  This observation confirms that steering 

preferences change depending on the driving scenario.   
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 Global Fun Control Ease Safety 
C1 -0.4% 10.0% 6.8% 3.0% 2.3% 
C2 -11.2% -10.9% -5.3% -7.2% -11.4% 
C3 -0.4% 7.4% -4.3% -1.2% 3.2% 
C4 18.4% 15.3% 8.6% 8.4% 16.9% 
C5 2.2% -3.1% -3.2% 2.4% -4.1% 
C6 -8.5% -18.8% -2.6% -5.4% -6.8% 

Table 3.3:  Pilot study 2 percent deviations of the mean for all scenarios within each 
question grouping; shading denotes the most popular steering configuration, C4 

 

The two questions poised for the pilot studies have been fully answered in this 

chapter.  First, drivers showed a consistent, logical preference for specific steering 

configurations, and these preferences were collected using a questionnaire.  Second, 

the steering preferences were shown to be different depending on the driving 

environment.  For slower country and residential driving (pilot study 1), drivers 

preferred the baseline, C1, or a lighter steering effort, C5.  For highway driving (pilot 

study 2), a heavier steering effort, C4, was preferred.  The findings match the 

expected a priori preferences considering the driving environments and the demands 

on the driver.  For instance, a winding road requires quick steering changes while 

highway driving requires precision.  These two pilot studies proved that the simulator 

can extract generic steering preference data from drivers.  However, the selected 

steering settings were discrete so only general design directions can be concluded 

from the presented results.  In other words, the method used in the pilot studies 

cannot find an exact optimal steering setting.   

Pilot Study Conclusions 
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3.2 Demographics Study 

Upon completion of the two pilot studies, the simulator was applied in a 

demographics study which used a larger pool of human test subjects at Clemson 

University.  The study goal was to determine the simulator’s effectiveness as a tool 

for investigating automotive steering preferences between demographic groups.  In 

evaluating this issue, the required tools and methodologies should be developed to 

streamline future large scale simulator-based studies.  The study ultimately 

contributed to future simulator applications through the development of steering 

system design targets and overall consumer preference trends for envisioned 

production vehicles.  Previous collaborative Honda R&D Americas, Inc. (HRA) - 

Clemson University research activities focused on determining driver preferences in 

different roadway environments.  Those investigations demonstrated an ability to 

collect driver preference information through the use of paper questionnaires.  The 

next evolutionary step in the engineering/human factors process was to categorize 

these drivers and then link their steering preferences into a classification metric for a 

better understanding of the steering system design paradigms.  Simply put, the 

success of this demographic study should allow future investigations to accurately 

target specific population groups and reliably determine the favored steering 

characteristics. 
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During the two pilot studies, the test subjects were allowed to drive the virtual 

reality roadway scenarios for as long as they desired.  Although this helped the 

drivers to provide accurate feedback, it made the laboratory driving experience 

potentially time consuming.  The pilot studies only required the drivers to experience 

six different steering system configurations (C1-C6) in a single driving environment.  

With an increase to 15 different scenarios (e.g., steering, roadway) in the 

demographics study, strict time limits were placed on the runs to ensure the timely 

completion and to avoid test subject burnout (fatigue).  For example, the residential 

environment was restricted to 90 seconds of driving time.  Similarly, the country and 

highway environments ended at a specific location on the roads which resulted in 

approximately 60 seconds of driving time. 

Modification Based on Pilot Studies 

 

 

The human test subjects were largely recruited from Clemson University’s 

undergraduate Department of Psychology classes.  These subjects were given extra 

course credit for participating in the study, thereby eliminating the need to provide 

monetary compensation.  This was a reliable resource for fresh test subjects that can 

be utilized in future studies.  For the demographics study, data was gathered with 

n=43 human subjects over the course of two academic semesters (Summer 1 2007 

and Summer 2 2007). 

Test Procedure 
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Each human subject completed a matrix of five steering configurations (C1-

C5) on three driving environments (R1-R3) for a total of 15 scenarios as listed in 

Tables 3.4 through 3.6. 

Steering Configuration Description 
C1 Baseline Honda CR-V (18:1 Ratio) 
C2 15:1 Steering Ratio 
C3 22.5:1 Steering Ratio 
C4 20% Heavier Steering Torque 
C5 20% Lighter Steering Torque 

Table 3.4: Summary of the five steering configurations used in demographics study; 
configuration C6 was delisted due to poor results in the pilot studies 

 

The steering configurations in Table 3.4 provided a good generic spread for 

the demographics study.  It was important to capture changes in both the steering 

angle and the steering effort domains; the 20% modifiers allowed settings that were 

noticeable but not overwhelming.  The three roadway environments available in the 

study have been summarized in Table 3.5 and correspond to the pilot study 

environments. 

Road Description 
R1 - Residential Low Speed, Stop Signs 
R2 - Country Medium Speed, Fun Winding Road 
R3 - Highway High Speed, Gradual Curves, Lane Changes 

Table 3.5: Three designed roadway environments utilized in the demographics study 
 

The fifteen scenarios (refer to Table 3.6) were placed into a randomized Latin 

Square format that was designed to eliminate run order effects.  Table 3.7 lists the run 

order for the configurations that were applied to the first fifteen test subjects and then 

repeated for each subsequent block of fifteen subjects until testing was completed.  
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Scenario Steering Configuration Road Category 
1 C1 

R1 
2 C2 
3 C3 
4 C4 
5 C5 
6 C1 

R2 
7 C2 
8 C3 
9 C4 
10 C5 
11 C1 

R3 
12 C2 
13 C3 
14 C4 
15 C5 

Table 3.6: The fifteen scenarios with corresponding steering configuration and 
roadways for the demographics study 

 

A standardized approach was utilized in the 257 Fluor Daniel Engineering 

Innovation Building Driving Simulator Laboratory while hosting the tests.  On 

arrival, the human subjects were asked to read a brief statement concerning risks, 

anonymity, and voluntary participation.  They then filled out a three page 

questionnaire (refer to Appendix D) which was designed to classify their driving and 

purchasing styles.  After a brief overview of the simulator controls and testing 

procedure, the subjects began driving with Run #1, corresponding to column two in 

the Latin Square chart displayed in Table 3.7.  All of the driving environments were 

designed with either a time limit or endpoint to ensure the timely completion of each 

scenario.  After the successful conclusion of a given scenario, the driver was asked to 

fill out a nine question survey (refer to Appendix F) about their satisfaction with the 
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particular steering configuration.  Both the demographics questionnaires and the 

scenario surveys were subsequently used to analyze the driver preferences. 

 

  Run 
Subject 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

1 1 12 9 14 6 3 5 8 10 13 2 15 11 7 4 
2 12 9 14 6 3 5 8 10 13 2 15 11 7 4 1 
3 9 14 6 3 5 8 10 13 2 15 11 7 4 1 12 
4 14 6 3 5 8 10 13 2 15 11 7 4 1 12 9 
5 6 3 5 8 10 13 2 15 11 7 4 1 12 9 14 
6 3 5 8 10 13 2 15 11 7 4 1 12 9 14 6 
7 5 8 10 13 2 15 11 7 4 1 12 9 14 6 3 
8 8 10 13 2 15 11 7 4 1 12 9 14 6 3 5 
9 10 13 2 15 11 7 4 1 12 9 14 6 3 5 8 

10 13 2 15 11 7 4 1 12 9 14 6 3 5 8 10 
11 2 15 11 7 4 1 12 9 14 6 3 5 8 10 13 
12 15 11 7 4 1 12 9 14 6 3 5 8 10 13 2 
13 11 7 4 1 12 9 14 6 3 5 8 10 13 2 15 
14 7 4 1 12 9 14 6 3 5 8 10 13 2 15 11 
15 4 1 12 9 14 6 3 5 8 10 13 2 15 11 7 

Table 3.7: Latin square run order showing driving scenario (steering configuration 
and roadway) versus driving order for groups of fifteen drivers 

 

The success of the demographics study depended heavily on the development 

of two questionnaires:  demographics and scenario.  The demographics questionnaire 

needed to accurately categorize each driver within a specific demographic group 

selected for the study.  The demographics were not limited to traditional (i.e., age, 

gender) classifiers, but also tried to categorize participants as a type of driver (i.e., 

Questionnaire Development 
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enthusiast, utility) and automotive selection criteria (i.e., vehicle type). Conversely, 

the scenario questionnaire needed to quickly tap into the driver’s opinion of a given 

steering system setting.   

The one time thirty-eight (38) question demographics survey did not have a 

time constraint.  However, it was important to obtain the broadest range of 

information possible about a participant in an efficient manner.  The participants were 

asked about traditional demographics (i.e., age, gender), their most recent car 

purchase (i.e., model, cost, and reason for buying), and generic relevant questions 

(e.g., video game experience, how important steering is, etc.).  The aim was to 

primarily categorize drivers by the three demographics: fun, utility, and car 

enthusiast.  A fun driver (D1) was looking for a “fun driving experience” and focused 

on the performance characteristics of the vehicle.  A utility driver (D2) used their 

vehicle as a tool and preferred efficiency, or convenience, over performance.  Finally, 

an enthusiast driver (D3) saw their vehicle as a source of pride and may focus on the 

visual appeal or brand rather than performance or utility. 

The subjects were not categorized as a specific demographic type, but rather 

graded on how much each category represented them.  In other words, drivers were 

not forced to have sole membership in one category but could belong to each to 

varying amounts.  Subsequently, each demographic category turned into a continuous 

variable that identified each subject on “how much” or “how little” the given category 

pertained to them (all drivers were represented within each demographic to some 

degree).  An arbitrary cutoff could be set to declare a subset of the group as the listed 
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demographic, but it would be biased.  The final demographics questionnaire may be 

found in Appendix D.  The questions corresponding to the demographic categories 

were:  Fun 1 {17,19,21,23,30}D = , Utility 2 {12,13,14,31,32}D = , and Car Enthusiast 

3 {15,16,18,22,28,29,34,35,36,37,38}D = .  Furthermore, question 8-11 which 

pertained to the typical driving location of the subject were considered independently 

for analysis.  The remaining questions were either traditional demographics (i.e., age, 

gender) or uncategorized open response questions (i.e., make and model of current 

vehicle).  The demographic breakdown from the study is shown in Figure 3.13.  The 

response scale was between 1 and 7, with 1 not being represented by the respective 

demographic group and 7 heavily belonging to the respective group.  Notice how 

subject #1 ranked in the top 5 for the fun and enthusiast demographics while being 

the lowest ranked in the utility demographic.  This subject drove a BMW M Roadster, 

which would match his demographic profile.  As proof that the demographic groups 

are independent, subject #20 was in the bottom 5 for the enthusiast demographic, yet 

top 10 in the fun demographic.  She was also in the top 5 for utility, and such a profile 

matched well with the Honda Accord she drove. 
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Figure 3.13:  Breakdown of demographic categorization for all 43 human subjects 

participating in the simulator study with (a) Fun, (b) Utility, and (c) Enthusiast 
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The scenario questionnaire began as the bank of sixteen questions from the 

pilot studies (refer to Appendix A).  The questionnaire’s completion speed was a 

strong concern since fifteen unique scenario questionnaires would need to be 

completed by each participant during the testing session.  Consequently, the 

questionnaire was refined through an on-line participation survey performed with 

Clemson University undergraduate psychology students.  Three underlying factors 

(fun, control, and ease) were determined, and the questionnaire was meticulously 

trimmed from sixteen to nine questions while aiming to keep these three factors 

intact.  Note that the safety category from the two pilot studies was dropped from 

consideration because it was deemed that the simulator environment was unable to 

effectively tap into a subject’s perception of personal and/or vehicle safety.  The final 

version of the trimmed questionnaire has been presented in Appendix F. 

 

 

To evaluate the demographic results, a set of special preference metrics were 

created to simplify the human subject data collection process.  The original data has 

been listed in Appendix G.  First, the nine question questionnaire data gathered after 

each of the fifteen scenarios completed by each subject was normalized into a 

Demographics Results 

ijknormq  

value.  For a given driver and question, an average response was calculated from all 
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the questionnaires.  The response values were scaled based on the average magnitude, 

ijq , per question given as 
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=
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q
q

q
=  for ( 1, 2,..., 43)i = , ( 1, 2,...,9)j = , ( 1, 2,...,15)k =  (3.6b) 

where ijkq  is a given question response.  The subscripts i, j, and k denote the human 

subject number, question number on questionnaire, and scenario number, 

respectively.  The average response values used to normalize the data are given in 

Table 3.8.  For instance, subject 1 had an average response of 1.7 for question 9.  This 

individual never believed the steering was too sensitive.  By normalizing the 

responses, the subject’s global simulator/question bias was removed so that these 

responses would not skew the results unnecessarily.  Please remember that the 

questionnaire scale ranged from 1 (disagree) to 7 (agree) in integer increments.  The 

data were normalized where an average response would be represented by 1. 

After normalizing the questionnaire data, each driver was assigned two values, 

ratioS  and effortS , per roadway (R1-R3) for the steering ratio (C2-C3) and steering 

effort responses (C4-C5) to collapse the subject’s responses into preference metrics.  

The differences between the two opposing configurations, ratioS  and effortS , becomes 

 ( )( 2,7 ,12) ( 3,8,13)

9

1
ip ij k ij kratio norm norm

j
S q q

= =
=

= −∑  for ( 1, 2,..., 43)i = , ( 1, 2,3)p =  (3.7) 
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with p corresponding to the three roadways (R1-R3) per Table 3.6.  These parameters 

effectively eliminated simulator bias, leaving behind a value for how sensitive the 

subject was to steering ratio and/or steering effort changes.  No preference was 

represented by a zero.  A larger positive ratioS  or effortS  value represented a preference 

for a quicker steering ratio, C2, or heavier steering effort, C4, respectively.  Inversely, 

a larger negative ratioS  or effortS  value represented a preference for a slower steering 

ratio, C3, or lighter steering effort, C5, respectively.  A value of zero implied that the 

subject was not sensitive to changes in the respective setting.  Overall, these 

preference metrics provided continuous variables to correlate with the demographic 

metrics.   

The baseline steering configuration, C1, was not used in this analysis because 

the human subjects’ direction and preference for steering system extremes was more 

important for this study (i.e., what is the influence of steering ratio and effort).  
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1 2 3 4 5 6 7 8 9
1 3.4 4.1 4.7 5.3 3.9 3.5 3.5 3.3 1.7
2 5.5 5.3 3.5 5.3 5.1 4.5 5.1 3.8 4.5
3 4.7 4.8 2.1 5.1 4.9 4.9 4.7 3.1 2.5
4 2.9 2.8 1.2 2.6 2.4 2.5 3.0 6.7 2.1
5 4.5 4.6 3.5 4.6 4.7 4.6 4.7 4.4 3.9
6 4.5 4.3 2.9 4.3 4.2 4.1 4.3 4.1 3.3
7 3.3 3.1 4.5 2.7 2.8 3.1 3.5 5.0 3.1
8 3.5 4.5 3.6 4.5 4.4 4.1 4.2 3.7 2.5
9 5.2 3.9 4.5 3.1 3.3 3.3 3.9 5.1 3.4
10 3.5 3.9 3.3 4.1 4.1 4.2 4.3 3.9 2.6
11 5.8 4.3 4.4 3.7 3.8 4.3 4.4 5.5 3.7
12 4.3 3.8 4.2 3.5 3.6 3.8 3.7 5.0 4.3
13 3.9 4.3 4.2 4.5 4.5 3.7 4.1 4.9 4.7
14 3.9 5.1 3.5 5.3 5.3 4.6 5.3 5.3 5.1
15 3.9 3.9 4.5 3.9 4.2 3.7 4.2 6.5 3.4
16 4.7 4.9 3.5 4.9 4.9 5.0 4.8 3.6 3.3
17 4.1 4.5 3.9 4.4 3.9 3.9 4.5 4.5 2.6
18 4.1 4.8 4.1 4.9 4.3 4.2 5.3 4.2 2.6
19 2.1 1.9 6.5 1.8 2.1 2.1 1.5 7.0 1.7
20 2.5 3.9 3.5 3.9 2.9 2.7 3.6 4.4 3.2
21 4.6 4.6 3.1 4.7 4.4 4.4 4.2 3.2 3.2
22 5.1 5.1 3.7 5.2 4.9 4.5 4.7 5.2 4.7
23 4.7 5.1 3.6 4.9 4.9 4.9 5.9 5.1 3.0
24 5.2 5.2 5.1 4.9 4.9 4.8 5.2 5.5 4.7
25 5.9 5.5 4.2 5.9 5.7 5.5 4.7 5.0 3.3
26 3.4 4.4 5.1 4.0 4.0 4.1 5.0 6.3 5.6
27 4.5 4.5 3.7 4.7 4.5 4.5 4.5 5.6 3.3
28 4.3 4.0 2.7 4.3 4.3 4.1 3.9 3.3 2.3
29 4.3 4.6 3.7 4.6 4.5 4.5 4.5 3.7 3.1
30 4.6 4.3 3.9 4.3 4.3 4.1 4.0 3.9 3.5
31 5.9 5.6 2.5 6.3 6.3 5.6 5.8 2.9 2.5
32 2.2 4.1 3.5 3.7 3.6 3.7 4.3 6.5 6.9
33 3.4 3.1 5.5 3.3 2.6 2.5 3.5 6.3 3.8
34 3.3 4.4 3.3 4.1 3.5 3.5 4.9 5.2 3.7
35 4.1 3.7 3.7 3.9 3.9 4.2 4.1 4.5 4.1
36 2.1 2.5 2.2 2.5 2.8 2.5 3.1 3.9 2.9
37 3.8 3.5 2.3 3.5 3.6 4.1 4.9 5.3 2.8
38 5.5 5.2 3.5 4.9 5.4 5.1 4.9 4.4 4.4
39 3.8 3.1 4.3 3.3 3.6 3.4 4.2 5.4 4.1
40 4.5 4.5 2.9 4.4 4.3 4.1 4.8 3.4 3.3
41 3.3 4.1 4.1 4.1 3.9 4.1 3.9 4.7 3.4
42 3.6 3.5 4.0 3.9 3.9 3.6 3.9 4.1 4.4
43 5.0 5.3 3.9 5.2 5.2 5.0 5.7 4.1 3.5

Question
Subject

 
Table 3.8: Average response, ijq , of each subject (i=1,2,…,43) for each question 
(j=1,2,…,9) used to normalize the response data for the fifteen configurations to 

eliminate question bias 
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To quantify the steering preferences for the demographic groups, two 

measures were utilized: the correlation between the preferences of the demographic 

groups (fun, utility, and car enthusiasts) and the steering characteristics (Sratio and 

Seffort) denoted by r and the p-value.  In layman’s terms, the latter parameter 

represents the probability that the given correlation measure is a false positive. 

Correlation coefficients have associated statistical significance levels.  Table 3.9 

displays the qualitative scale used in this study to interpret the quantitative measures, 

r and the p-value.  To calculate the correlation coefficients, the means of the 

demographic and steering configuration preference groups for all subjects were 

constructed as 
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where D is the demographic metric (D1-D3) from Figure 3.13, and Sratio and Seffort are 

the steering configuration preferences defined by equations (3.7) and (3.8).  The 

variables i, L, and p represent the subject number, demographic group (D1-D3), and 

roadway (R1-R3), respectively.  The correlation, r, was formulated as 
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Quantitative Scale Qualitative Interpretation 
0.0 0.2r≤ <  Poor correlation 
0.2 0.4r≤ <  Moderate correlation 
0.4 0.6r≤ <  Excellent correlation 
0.6 1.0r≤ <  Unrealistic 

0.05p ≤  Statistically significant correlation 
Table 3.9: Qualitative interpretation the of correlation, r, and p-value used to evaluate 

the strength of results for the demographic study 
 

The most significant test results, which have been determined from the 

numerous subjective responses, are presented in Table 3.10.  A fourth demographic 

group, D4, corresponds to 4 {10}D =  on the questionnaire.  The first column lists the 

demographic group followed by the steering characteristic to which the group was 

most sensitive.  The second and third columns list the steering characteristic and 

roadway scenario.  The fourth and fifth columns list the correlations and p-values for 

each entry.  To summarize the table of correlations, drivers who used their vehicles 

for utility/transportation (D2) preferred quicker steering ratios (C2) and heavier efforts 
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(C4) in all situations with correlations of r = 0.341 and r = 0.426, respectively.  Next, 

car enthusiasts (D3) preferred quick steering ratios (C2) in the residential/country 

environments ( r = 0.319, r = 0.294) and light steering effort (C5) on the highway       

( r = -0.360).  The negative sign denotes that the lighter effort was preferred rather 

than the heavier effort.  The p-values ranged from 0.018 to 0.56 for these entries, 

which corresponds to statistically significant correlations.  Finally, rural drivers (D4) 

preferred quicker steering ratios (C2) on country roads ( r = 0.437).  This correlation 

was the strongest result even though it was not one of the primary demographic 

categories; the p-value of 0.003 denotes a good statistical correlation. 

Demographic 
Group 

Steering 
Characteristic 

Roadway 
Scenarios Correlation, r p-value 

Utility (D2) 
Ratio, C2 R1-R3 0.341 0.036 
Effort, C4 0.426 0.008 

Car Enthusiast 
(D3) 

Ratio, C2 Residential (R1) 0.319 0.037 
Country (R2) 0.294 0.056 

Effort, C5 Highway (R3) -0.360 0.018 
Rural Drivers 

(D4) 
Ratio, C2 Country (R2) 0.437 0.003 

Table 3.10: Correlations, r, between the demographic groups and steering systems 
preferences with related p-measures based on questionnaire data 

 
 

The important measure to examine is the correlation between the target 

demographic variable and the preference ratings.  The results shown in Table 3.10, 

and interpretation standard illustrated in Table 3.9, provide additional evidence that 

the combination of steering characteristics and the steering questionnaire were 

tapping into the participants’ actual steering preferences.  No significant correlations 
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were found for the fun (D1) demographic, but notice how one of the solo questions 

resulted in the strongest correlation (D4 demographic group).  

 

The primary goal of this study was to validate the simulator as a tool for 

identifying steering preferences associated with demographic groups.  The response 

data was tested to verify that drivers significantly distinguished between steering 

configurations and environments.  Through extensive human subject testing, the 

steering preferences were correlated with demographic metrics.  Both moderate and 

excellent correlations were found that showed a relationship between the 

demographic metrics and the steering preferences (refer to Table 3.10).  A p-measure 

was used to determine the significance of the correlations, and proved that these 

correlations were statistically significant and did not occur by chance.  The evidence 

of strong correlations combined with low p-values was sufficient to validate the 

steering simulator as a tool for investigating steering preferences with respect to 

demographic metrics.  

Conclusion 

One of the outcomes of this study was the recognition that one set of steering 

system design parameters would not be ideal for all drivers and/or roadway 

conditions.  Clearly, a set of steering parameters should be tuned for the given driver 

and then applied through an electric power steering system.  In this manner, the 

vehicle steering can be customized for the driver similar to seat and mirror positions.  

Further, an opportunity may exist to use GPS or vehicle sensors to identify the type of 
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driving environment and adjust the steering system accordingly.  These concepts 

represent the likely evolution of steering systems in the next decade.   
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CHAPTER FOUR 
 

CREATION OF A STEERING PREFERENCE OBJECTIVE METRIC FOR 
INNOVATIVE STEERING FEATURES 

 
 

A re-occurring problem in ground vehicle steering system development is the 

identification of a steering setting that is favored by a majority of potential customers.  

The initial dealership drive is critical to the vehicle purchase process.  However, there 

are two inherent difficulties with steering system parameter selection.  First, steering 

tuning is typically performed by seasoned automotive engineers who may select a 

setting based on either personal preference or estimation of what the target customer 

may prefer.  Although this may be partially remedied by customer feedback, the 

difficulty remains in selecting the design parameters given the subjective nature of the 

task.  Second, all drivers are different and each likely has a unique preference for 

their steering setting.  This means that no matter how diligently an engineer tries to 

obtain an optimal setting, their selection will always be a compromise and a non-

optimal selection.  However, the emergence of electric power steering systems and 

customer personalization may lead to unique steering settings for future vehicles. 

Previous research (refer to Chapter 3) has been focused on finding an optimal 

steering setting using a driving simulator and questionnaires aimed at tapping into a 

driver's steering preference.  While successful, it still required the interaction of 

researchers with drivers to ask about their preferences.  Sugita et al. (2009) attempted 

to establish design criteria for an optimal steering configuration for electric power 

steering.  They focused on determining a target level of passivity that felt most 
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comfortable to the driver.  Català et al. (2004) attempted to correlate objective 

steering torque data with kinematics and compliance test results.  Jaksch (1979) found 

that yaw velocity response time was a dominant factor in the subjective rating of a 

vehicle’s handling characteristics during a lane change maneuver.  Hearthershaw 

(2000) developed a variable steering ratio strategy that maximized driver performance 

in multiple repeatable tests.  Yamaguchi and Murakami (2009) used an adaptive 

control steer-by-wire system to create virtual steering characteristics.  In the future, 

such a system could be used to create personalized steering preferences for drivers.  

The next logical step in steering preference research should be the development of an 

objective metric to identify steering preferences without significant driver interactions 

so that the process may be automated and more scientific. 

Through the analysis of the demographics study, the link between objective 

vehicle response and driver steering preference was investigated.  In essence, a hybrid 

metric of fused vehicle dynamics signals may be used to predict how much drivers 

enjoyed their steering experience.  It should be recognized that many implications 

associated with this topic exist that may merit further study.  First, if questionnaires 

could be removed from the simulator (or in-vehicle) testing procedure, then the 

required participation time would decrease.  More importantly, the accuracy should 

improve.  One of the biggest challenges the research team faced during laboratory 

based simulator testing was requesting participants to synthesize their steering 

experience as a separate entity from the rest of the simulator environment.  Simply 

asking participants about their steering experience likely tainted their response to the 
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questions.  Thus, an objective metric would eliminate this questionnaire bias.  

Second, the development of an objective steering metric would establish the 

foundation for an automatically adjusting steering system.  It has been assumed that 

each driver has a unique steering preference.  Instead of forcing a driver to adapt to a 

non-optimal steering setting compromise, the steering setting could instead adapt to 

the driver.  This innovative feature is the basic concept behind developing a steering 

feedback auto-tuning controller.  A steering feedback auto-tuning controller would 

systematically adjust steering system settings while tracking and optimizing an 

objective preference metric.  After a learning period, the steering system would 

become optimized for the given driver, eliminating the need to create a compromised 

steering target.  The implementation of an auto-tuning steering algorithm would be a 

powerful upgrade to the simulator's capabilities.  As stated previously, exact steering 

settings could be matched to a driver instead of using an estimate which was 

identified based on arbitrary settings.  With proper development and maturation, an 

on-board auto-tuning steering controller could one day become a standard feature on 

production vehicles. 

The first phase of the auto-tuning steering research was the development of an 

objective steering preference metric.  During the demographic driver preference study 

of Chapter 3, extensive simulated vehicle performance data was collected for each 

steering configuration.  Figure 4.1 displays the steering data for two different 

configurations.  The solid line corresponds to a preferred steering setting while the 

dotted line denotes a low rated steering setting and subsequent driver behavior.  Both 
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traces were from a single driver (test subject 20) and the only difference between the 

runs was the steering setting (C7 and C8).  The driving environment was a winding 

road course (R2) with an average vehicle speed of 35 mph (56 kph).  While driving 

the less preferred setting, this driver had a tendency to overshoot their steering input 

by as much as 86%, often with a subsequent overcorrection as noted in the figure.  

This steering wheel “sawing” could be pulled out of the data stream through the 

application of simple statistics (e.g., mean, standard deviation). 
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Figure 4.1:  Steering angle for test subject 20 driving steering configurations C8 and 

C7 on road surface R2; the solid line (C8) was identified through questionnaire 
feedback as the preferred setting while the dotted line (C7) was not preferred 
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Based on the initial inspection of the available simulator logged data channels, 

it was obvious that drivers behaved differently depending on the steering 

configuration.  A hypothesis was formed that states “A metric exists that can predict a 

driver’s satisfaction with the vehicle’s steering behavior using a normalized numeric 

value captured from the vehicle operating data”.  A combination of metric elements 

may be considered to create a robust metric.  In this manner, the metric may be 

protected from changing road conditions that may skew a single element.  Ideally, the 

metric would not use impractical vehicle information such as lateral road position or 

tire slip angles so that the final entity would be valid in both simulator and vehicle 

applications. 

Hypothesis 

 

During simulator human subject testing, thirteen data channels were collected 

using the output from CarSim.  The data channels have been listed in Table 4.1.  All 

driver inputs and the basic vehicle outputs were selected along with the two variables 

unique to a simulator environment: lateral offset from centerline, and tire slip angles.  

Even though the goal was to use practical vehicle channels, it was important to be 

thorough in case an exceptional correlation emerged in this research project.   

Analysis Method 
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Number Description Symbol Units 
1 lateral offset from centerline d  m 

2-5 tire slip angles for each tire α  rad 
6 yaw rate ψ  rad/sec 
7 longitudinal acceleration xa  m/s2 
8 lateral acceleration ya  m/s2 
9 brake position BP % 

10-11 steering angles of front tires δ  rad 
12 throttle position TPS % 
13 vehicle velocity xv  m/s 

Table 4.1: Data channels, cH , investigated to determine correlation between 
objective data and subjective human responses 

 

A country road driving scenario (R2 from Table 3.5) was considered for the 

development of the steering preference metric.  This decision was based on the 

consistent driving profile with a fixed route exhibited by the country road.  City and 

highway environments allow too much creativity from the driver in path selection and 

traffic demands, leading to unreliable data.  

 A total of 39i =  human subjects evaluated 5k =  steering configurations for a 

total of 195 data sets.  Each combination of driver and steering configuration had a 

matching questionnaire ( 9j = ) result, ikq , with the test subject’s opinion on the “fun-

to-drive”, “controllability”, and “ease” of driving for each setting.  These 

questionnaires were completed during the demographics study in Chapter 3.  The 
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results were averaged, iq , and normalized into a single global steering preference, 

ikQ , for each steering configuration and test subject as 
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In the expressions, the symbol q denotes the question response on a given 

questionnaire, and Q is the normalized response for a given driver and steering 

configuration.  The variables i, j, and k represent the human subject number, survey 

question number, and steering configuration, respectively.   

The thirteen data channels from Table 4.1, cH  ( 1, 2,...,13)c = , were processed 

with future applications in mind.  Potential control schemes may require the metric to 

be positive and reliable after a fixed amount of time.  The data channels, cH , were 

converted into a metric, ickJ , with a single value for each combination of test subject, 

data channel, and steering configuration for the country road (R2) using the 

expression 

 
40

2

0

s

ick ickJ H dt= ∫  for ( 1, 2,...,39)i = , ( 1, 2,...,13)c = , ( 1, 2,...,5)k =  (4.3) 

where c is the number corresponding to the respective data channel.  Note that a 

40t s=  period was selected using a sampling time of 0.025t s∆ =  
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The metric, ickJ , was then normalized for each driver to permit comparison 

with the subject pool by computing the average of the given metric channel for all 

steering configurations, icJ , and then applying this to the individual metrics, ickJ , 

such that a normalized value, normJ , becomes 
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The normalized metrics were then correlated with the normalized 

questionnaire data for a given human subject and steering configuration.  The 

correlations, cr , were calculated as 
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Once the strongest (i.e., largest absolute value of cr ) correlations were 

discovered, a computer-based optimization code was applied to identify the strongest 
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combination and weighting of metrics elements to create a robust metric, 
ikwJ .  The 

weighted metric was formulated as 

  
13
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ik ickw c norm

c
J w J
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where 1 2 13{ , ,..., }cw w w w=  is the vector of weighting factors.  The weighted metric 

was correlated with the normalized questionnaire responses, ikQ , to create the 

weighted correlation, wr , as 
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The weighting factors, cw , were allowed any integer value between 0 and 10 

with the goal of maximizing the absolute value of the correlation coefficient.  The 

optimization problem was formulated as 

 
{0:10}

max | |
c

ww
r

∈
 (4.12) 

and solved with a brute force approach that calculated every combination of the 

thirteen weighting factors ( 1310  cases).   

The analysis method has been summarized in Figure 4.2 as a flowchart.  In 

summary, both objective and subjective data was collected from the human test 
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subjects who drove five steering configurations on a winding road course.  The 

objective data was formulated into positive metrics, and then both the metrics and 

subjective data were normalized for consistency.  Correlations between the metric 

elements and subjective data were calculated for preliminary consideration.  The 

metric elements were then combined into a single robust metric that was weighted to 

maximize the correlation with the subjective data.  The full results of this analysis 

will be presented in the next section. 

 

Human Subjects 
Drive

Collect Objective 
Data

Process Data 
Channels (4.3-4.5)

Comparison (4.8, 4.11)

Weighting (4.9)

Final Metric

Collect Survey 
Data

Process Survey 
Data (4.2)

 
Figure 4.2: Analysis methodology flowchart for creating a weighted objective metric 

that may predict driver steering preference 
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 All correlations were judged using the standard correlation, r, scale listed in 

Table 4.2.  This table sets the standard for significant correlations to judge the 

metrics.  An ideal metric would lie in the excellent correlation category with 

Presentation and Discussion of Test Results 

0.4 0.6r< < .  All metrics were correlated with the global normalized questionnaire 

data shown in Table 4.3.  These values were calculated using equations (4.1) and 

(4.2).  The result of the normalization is evident as each row, and subsequently the 

entire table, averages to a value of 1.  At this time, the important connection was 

between the physical survey and the collected data channels while the steering setting 

was ignored.  

Quantitative Scale Qualitative Interpretation 
0.0 < |r| < 0.2 Poor correlation 
 0.2 < |r| < 0.4 Moderate correlation 
0.4 < |r| < 0.6 Excellent correlation 
0.6 < |r| < 1.0 Unrealistic 

Table 4.2: Qualitative interpretation of correlation, r, with four categories: poor, 
moderate, excellent, and unrealistic correlations 

 

The objective metrics were calculated for each data channel, human subject, 

and steering configuration using equation (4.3) for a total of 2,535 data points.  These 

metrics were normalized with equations (4.4) and (4.5), and the results of this 

normalization have been included in Appendix J.  The normalized metrics were 

correlated with the global normalized questionnaire data using equations (4.6), (4.7), 

and (4.8).  A single correlation coefficient, cr , was calculated for each data channel 

for a total of thirteen correlation coefficients, which have been displayed in Table 4.4.  
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Note that all correlations were negative, which implied that a smaller metric value 

corresponded to a more favorable steering setting.  The best correlation, 0.32r = − , 

occurred with the yaw rate, ψ .  This correlation, along with ten of the remaining 

twelve correlations, fit in the moderate correlation category of Table 4.2.  The 

normalized yaw rate metric has been plotted against the normalized questionnaire 

data in Figure 4.3 to visualize the strength of the correlation.  For the horizontal axis, 

0 1Q< ≤  and 1 2Q< <  corresponds to “do not like” and “favorable” responses by 

the subjects, respectively.  The vertical axis can be split into 
6

0 1normJ< ≤  and 

6
1 2normJ< <  as smooth and aggressive yaw rate responses.  Using a standard four 

quadrant perspective, quadrants II and IV support the negative correlation which 

reflects that drivers have been recorded to drive more smoothly when they prefer a 

steering setting and more aggressively when they dislike a setting.  In contrast, 

quadrants I and III are less populated, but support a positive correlation implying that 

drivers drive more aggressively when they prefer a steering setting and more 

smoothly when they do not like it. 
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Subject 
Steering Configuration 

1 2 3 4 5 
1 0.84 0.88 0.86 1.15 1.28 
2 1.00 1.17 0.97 0.78 1.07 
3 0.93 0.95 0.97 0.95 1.21 
4 0.98 1.21 0.77 1.08 0.95 
5 1.10 1.17 0.80 1.31 0.63 
6 1.37 1.20 0.76 0.82 0.85 
7 0.85 1.61 1.01 0.89 0.65 
8 1.26 0.95 0.90 0.65 1.24 
9 0.85 1.05 1.14 1.13 0.83 

10 0.98 0.43 0.81 1.53 1.26 
11 1.01 1.04 1.07 0.78 1.11 
12 0.70 0.56 1.50 1.50 0.74 
13 1.03 0.90 0.98 1.13 0.96 
14 1.13 0.43 1.17 1.05 1.22 
15 1.24 0.77 0.85 0.86 1.29 
16 0.88 0.82 1.09 0.80 1.40 
17 0.84 0.86 1.57 0.48 1.25 
18 1.25 1.06 0.83 0.91 0.96 
19 0.84 0.44 1.56 0.77 1.39 
20 1.24 1.10 0.93 0.66 1.07 
21 0.88 0.83 1.00 1.16 1.13 
22 1.30 0.90 1.02 0.60 1.18 
23 1.28 1.14 0.89 1.11 0.58 
24 1.49 1.12 0.94 0.44 1.01 
25 1.03 0.83 1.25 1.18 0.71 
26 1.19 0.85 1.33 0.74 0.88 
27 0.99 0.91 1.12 0.84 1.14 
28 0.65 1.30 1.36 0.48 1.20 
29 0.45 1.60 0.84 0.95 1.15 
30 0.48 1.69 1.29 0.88 0.65 
31 1.18 0.67 1.30 0.58 1.27 
32 1.21 0.90 0.71 1.05 1.13 
33 1.21 1.00 0.94 1.05 0.79 
34 1.06 1.24 0.49 1.20 1.00 
35 1.14 0.89 1.20 0.99 0.79 
36 0.80 0.97 1.08 1.12 1.03 
37 1.11 0.91 1.13 0.76 1.08 
38 1.02 0.49 0.94 0.99 1.56 
39 1.05 0.55 1.32 0.88 1.19 

Table 4.3: Global normalized questionnaire data, ikQ , used for all correlations with 
objective metrics 
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Number Data Channel  Symbol Correlation, r 
1 Lateral offset from centerline d  -0.22 

2 Left front tire slip angle lfα  -0.28 

3 Left rear tire slip angle lrα  -0.24 

4 Right front tire slip angle rfα  -0.27 

5 Right rear tire slip angle rrα  -0.25 

6 Yaw rate ψ  -0.32 

7 Longitudinal acceleration xa  -0.30 

8 Lateral acceleration ya  -0.31 

9 Brake position BP -0.15 

10 Left front tire angle lfδ  -0.28 

11 Right front tire angle rfδ  -0.27 

12 Throttle position TPS -0.31 

13 Longitudinal velocity xv  -0.18 

Table 4.4: Correlation coefficients between objective metrics and questionnaire 
results with best correlation of  0.32r = −  for yaw rate, ψ , metric 
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Figure 4.3: Plot of normalized yaw rate metric, 

6normJ , vs. normalized questionnaire 
data, Q , to visualize the moderate correlation of 0.32r = −  
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Although eleven data channels produced moderate correlations with the 

questionnaire data (excluding 9c =  and 13c = ), some channels may have contained 

similar vehicle response data.  For instance, the left and right front tire angles, lfδ  and 

rfδ , should have only differed slightly based on steering linkage compliance and 

suspension geometry effects.  The weighting optimization aimed to eliminate data 

channels with duplicate information while retaining those channels with unique 

information that correlated with the questionnaire results.  The weighted metric, wJ , 

was formulated using equation (4.9) and then optimized while maximizing the 

absolute value of the correlation, wr .   

The optimization resulted in a maximum correlation of 0.39r = −  for all five 

steering configurations (global weight) with weighting factors listed in Table 4.5 - 

column 4 (yaw rate, longitudinal acceleration, lateral acceleration).  Although still a 

moderate correlation, it nearly fell in the excellent correlation range and was 

significantly stronger than any single metric.  Figure 4.4 shows the plot of the 

correlated data to visually demonstrate the strength of the correlation.  In this figure, 

the vertical axis values of 0 19wJ< ≤  and 19 35wJ< <  correspond to smooth and 

aggressive command of the entire vehicle, respectively.  The value 19wJ =  was 

selected as the cutoff point representing the mean of the data points.  The horizontal 

axis was partitioned the same as Figure 4.3 with 0 1Q< ≤  and 1 2Q< <  

corresponding to “do not like” and “favorable” responses, respectively.  Notice that in 
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general, smoother driving habits corresponded with preferred steering settings 

(evident in quadrant IV). 
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Figure 4.4: Plot of weighted metric, wJ , vs. normalized questionnaire data, Q , to 

visualize the correlation of 0.39r = −  
 

To further investigate the weighted metric, the same weighting optimization 

process was performed while isolating the cases where either the steering ratio 

( 2,3k = ) or steering effort ( 4,5k = ) was changed.  The steering ratio corresponded 

to configurations 7 and 8, while the steering effort corresponded to configurations 9 

and 10 in Table 3.6.  The results exposed a surprising conclusion.  The maximum 

correlation for steering ratio changes was 0.55r = − ; however, the maximum 

correlation for steering effort changes was 0.15r = − .  This result demonstrated that 

the objective metric may be reliable for discovering an optimal steering ratio, but 
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insignificant for tuning steering effort settings.  The best weighting factors for these 

two approaches have been summarized in Table 4.5.   

# Data Channel Symbol 
Global Weight, 

cw  
Ratio Weight, 

cw  
Effort Weight, 

cw  

1 Lateral offset d  0 0 0 

2 Left front tire slip angle lfα  0 0 0 

3 Left rear tire slip angle lrα  0 0 0 

4 Right front tire slip angle rfα  0 0 0 

5 Right rear tire slip angle rrα  0 0 0 

6 Yaw rate ψ  5 0 0 

7 Longitudinal acceleration xa  6 3 10 

8 Lateral acceleration ya  8 0 0 

9 Brake position BP 0 0 0 

10 Left front tire angle lfδ  0 1 5 

11 Right front tire angle rfδ  0 0 0 

12 Throttle position TPS 0 5 0 

13 Longitudinal velocity xv  0 0 9 

Table 4.5: Weighting factors, cw , for weighted metric, wJ , giving maximum 
correlations of 0.39r = − , 0.55r = − , and 0.15r = −  for Global ( 1 5k = − ), Ratio 

( 2,3k = ), and Effort ( 4,5k = ) respectively where k denotes the steering 
configuration 

 

The ratio weighting factors were largely longitudinal dynamics, which may 

indicate that the drivers misjudge safe cornering speeds when they are unhappy with 

the steering ratio (safety issue).  The plots of the correlated data for the steering ratio 

and steering effort, independent of each other, have been presented in Figures 4.5 and 

4.6 versus the normalized questionnaire data.  The significance of a 0.55r = −  

correlation can be clearly seen in Figure 4.5 with a strong linear grouping.  In 
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contrast, Figure 4.6 shows how ambiguous a correlation of 0.15r = −  appears.  Both 

steering ratio and steering effort data sets have been plotted together in Figure 4.7 to 

demonstrate the strength of the ratio correlation. 
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Figure 4.5: Plot of weighted steering ratio metric, wJ , vs. normalized questionnaire 

data, Q , for changes in steering ratio ( 2,3k = ) to visualize the correlation of 
0.55r = −  
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Figure 4.6: Plot of weighted steering effort metric, wJ , vs. normalized questionnaire 

data, Q , for changes in steering effort ( 4,5k = ) to visualize the correlation of 
0.15r = −  

 

Automotive steering system setting targets (i.e., selection of design parameters 

such as ratio, damping, and assist curve) are an ongoing challenge for automotive 

engineers.  As society moves into an age of personalization, the automotive 

companies must adapt to win the next generation of car buyers.  One area of 

adaptation may be in the development of an automatic tuning steering control system.  

Accordingly, the first step in creating an automatic tuning steering system would be 

the identification of a performance index which captures the driver’s steering 

preferences.   

Summary 
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This chapter has investigated an objective steering preference metric through 

the use of the Clemson University Steering Simulator.  Objective data taken from 

vehicle sensor channels was correlated with questionnaire data completed by human 

test subjects.  A global weighted objective metric was formulated which combined 

the yaw rate, ψ , lateral acceleration, ya , and longitudinal acceleration, xa , channels 

according to equations (4.3) and (4.9) while using the weighting factors from Table 

4.4.  The resulting weighted objective metric produced a correlation with 

questionnaire data of 0.39r = − .  When steering ratio setting changes were isolated, 

an even stronger correlation of 0.55r = −  was discovered using the longitudinal 

acceleration, xa , left front tire steer angle, lfδ , and throttle position, TPS.  This 

correlation was in the “excellent” category, 0.4 0.6r< < .  The findings of this 

investigation suggest that an objective steering preference metric may be able to 

predict a driver’s steering ratio preference, while steering effort preferences may be 

transparent to an objective metric. 
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CHAPTER FIVE 

ACTIVE STEERING FOR VEHICLE ROAD RUNOFF 

 
A run-off-road (ROR) accident occurs when one or more tires of a ground 

vehicle leave the road surface, resulting in the driver losing control and/or colliding 

with an object. The reasons for road departure can be excessive speed, obstacle 

avoidance, lack of attention (fatigue, cabin distraction), or other outside influences 

(alcohol, drugs) (Hadden, 1997).  A specific subset of ROR accidents are the result of 

the driver losing vehicle control while attempting to return to the roadway from a soft 

shoulder (grass, dirt, gravel). This specific type of event will be identified as a 

shoulder induced accident (SIA). SIAs may be primarily attributed to the difference 

in elevation between the paved roadway and the soft road shoulder. An excessive 

steering angle may be required to negotiate the sharp change in elevation, and this 

steering input can cause the driver to lose control if the vehicle speed is too high. 

These accidents are largely attributed to driver error which can be minimized through 

proper training and/or active steering intervention. 

Previous research on ROR has largely focused on road design and 

construction. Some of the current passive measures to provide driver warnings 

include roadway rumble strips for lane deviation (Hickey, 1997, Räsänen, 2005). 

Extended hard shoulders have also been incorporated into road designs, where space 

allows, giving drivers more time to react before encountering an ROR situation 

(Zegeer, 1988). To compliment these activities, the circle of safety may be closed 
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with education and engineering efforts to prevent SIAs after an ROR condition has 

been reached. This can be accomplished with a mixture of driver training and active 

steering to eliminate preventable SIAs.  The first step towards solving this problem 

was presented by Black et al. (2008) where the concept of driver intention was 

initially discussed.  The availability of an advanced steering system, with 

accompanying computer intervention, can mitigate the dangerous effects of run-off-

road events. 

The traditional hydraulic power steering system provides passive torque 

assistance to the driver while directly channeling the steering input from the steering 

wheel via the driver to the road wheels. Electric power steering systems, refer to 

Figure 5.1a, provide similar passive assistance with greater efficiency. However, this 

steering system can also be programmed with smart algorithms for active torque 

feedback. The inclusion of a planetary gear set allows an electric power steering 

system to have limited angular control to improve the driver’s steering input as 

necessary (i.e., active assistance). A steer-by-wire system, refer to Figure 5.1b, offers 

full torque and road wheel angle intervention. Hence, various levels of active steering 

can be implemented in either the electric power steering or steer-by-wire 

configurations depending on the required level of control. 

In this Chapter, the SIA scenario will be introduced, mathematically 

described, and simulated in Sections 5.1 and 5.2 to frame the problem.  Potential 

solutions will be discussed in Section 5.3 including driver training and active braking 

control.  An active steering controller designed to mitigate the dangers of SIAs will 
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be presented and evaluated in Section 5.4 with representative numerical results for 

common operating scenarios. 

 
Figure 5.1: Configuration diagrams for an (a) electric power steering, and (b) steer-

by-wire system in a ground vehicle 

 

5.1 Description of Vehicle Behavior During a Shoulder Induced Accident 

A typical SIA begins with one or more tires leaving the road surface for a 

number of possible reasons (refer to Figure 5.2). To correct the situation, the driver 

commands the vehicle back towards the paved road surface. The tire sidewalls catch 

the lip of the shoulder as they make contact, and the vehicle’s lateral motion is 

suddenly halted due to the elevation difference as shown in Figure 5.3.  As the driver 

increases the steering angle, the sidewalls continue to snag on the shoulder until a 

sufficient steering angle is provided to overcome the elevation difference and return 

to the road surface. The front wheels are now steered at a high angle, and if the 

(a) 

(b) 
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vehicle speed is high enough, then the vehicle will dart across the road with a 

minimal window for the driver to react (refer to Figure 5.4). 

 

 
Figure 5.2: Passenger vehicle with two tires off the road surface 

 

 

 
Figure 5.3: Front tire caught against the road shoulder prior to the vehicle’s return to 

the road surface 
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Figure 5.4: Vehicle immediately after re-entry onto the road surface with a large 

commanded front wheel steer angle 

 

What happens beyond this point depends on the driver’s reaction time, 

operating skills, experience, and road conditions. If the driver’s reaction is too slow or 

insufficient, the vehicle will likely strike an oncoming vehicle or an object on the far 

side of the road (refer to Figure 5.5). More likely, the driver will overreact, sending 

the vehicle into a skid and/or leaving the road surface once again. Since the vehicle 

will be in an unstable mode, the driver has a much greater chance of colliding with an 

object once the vehicle leaves the road surface. Furthermore, the vehicle runs a high 

risk of overturning either from the skid (high CG vehicles) or from tripping once the 

vehicle leaves the road surface (all vehicles). 
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Figure 5.5: Vehicle less than one second after re-entry with large yaw angle and 

approaching roadway double solid line 

 

The primary factors that turn this seemingly mild event into a dangerous 

possible loss of vehicle control situation are the high steering angle, often excessive 

vehicle speed during the maneuver, and slow/improper driver reaction just after the 

vehicle returns to the road surface. The high steering angle is unavoidable in this 

scenario; however, it can be reduced with some countermeasures. For example, two 

possible methods include slower vehicle speeds and “getting a run” at the shoulder lip 

rather than approaching it gradually.  Both require a smaller steering wheel angle to 

return all tires to the road surface. The proper procedure for returning to the road in 

this scenario is to slow down to a near stop before attempting to traverse the elevation 

difference. Although this sounds logical, due to shock, impatience, ignorance, and/or 

necessity (e.g., imminent obstacles), drivers attempt to return to the road surface at 

excessive speeds. While requiring a larger steering angle, higher speeds also reduce 

the driver’s reaction time while increasing the risk of losing vehicle control. 
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Once the vehicle returns to the road surface at speed, the driver is typically 

surprised by the sudden yaw rate (due to the high steering angle) and may have a 

delayed reaction due to human response characteristics.  The vehicle is now in a state 

that is typically outside the driver’s realm of vehicular experience.  This is a 

dangerous vehicle operating condition since the driver can become a destabilizing 

disturbance within the human-machine system. The key to mitigating these accidents 

is to prevent the vehicle’s response from departing the typical safety region. This can 

be accomplished through active steering/speed intervention during the incident and/or 

increasing the driver’s experience through focused classroom, simulator, and test 

track training. 

 

5.2 Shoulder Induced Accident Vehicle Dynamics 

To establish a basis to understand run-off-road events and active steering 

intervention, the governing equations of motion for a reduced-order chassis platform 

will be presented.  It shall be assumed that the vehicle’s behavior immediately 

following the return to the roadway can be modeled as a J-turn steering event (i.e., 

fixed steering wheel input applied quickly and held until vehicle reaches steady state).  

To demonstrate the severity of this steering maneuver, a two degree-of-freedom 

chassis model (refer to Figure 5.6) has been selected similar to the formulation by Yih 

et al. (2005) except with the cornering stiffnesses defined on a per tire basis rather 

than per axle.  The front and rear slip angle, fα  and rα , can be expressed as 
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f

x

v a
v
ψ

α δ
+

= −


, y
r

x

b v
v

ψ
α

−
=



 (5.1)  

where xv  and yv  denote the longitudinal and lateral velocities.  The variable ψ  

represents the vehicle yaw rate.  The parameters a  and b  correspond to the distances 

from the front and rear axles to the center of gravity (CG) at point O, and δ  is the 

steered front road wheel angle.   

Using a linear approximation to express the tire cornering stiffnesses, fCα  and 

rCα , the front and rear lateral tire forces, yfF  and yrF , become 

 2yf f fF Cα α= , 2yr r rF Cα α=  (5.2)  

The lateral force and moment equations for the platform may be written using 

Newton’s Law about the center of gravity at point O in Figure 5.6 as 

 ( )y x yf yrm v v F Fψ+ = +  (5.3a)  

 yf yrI aF bFψ = −  (5.3b) 

where m and I represent the vehicle’s mass and moment of inertia, respectively.   

The expressions in equations (5.1), (5.2), and (5.3) may be combined and then 

substitute the angular side-slip angle, 1tan y y

x x

v v
v v

β −    
= ≅   

   
, to eliminate yv .  The 

substitution for yv  may be continued with y x x xv v v vβ β β≅ + ≅ 

   since 0xv =  as the 
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longitudinal velocity was assumed to be constant.  The differential equations for the 

vehicle’s yaw and side slip angles may now be rewritten as 

 ( )2

22 2( ) f
f r f r

x x x

C
m C C m aC bC

v v v
α

α α α α
ββ ψ δ

 
+ + + + − = 

 


  (5.4a) 

 ( ) ( )2 22 2 2f r f r f
x

I a C b C aC bC aC
v α α α α α
ψψ β δ+ + + − =


  (5.4b) 

The equations (5.4) can be rewritten in state space form as 

 
2

2 2

2 2 2( ) 1 ( )

2 2 2( ) ( )

f
f ar f r

x x x

f
f r f r

x

CC C aC bC
mv mv mv

aCaC bC a C b C
I Iv I

α
α α α

α
α α α α

ββ
δ

ψψ

   + + −         = +         − +   
  






 (5.5) 

As a two degree of freedom handling model, the velocity, xv , was assumed to 

be constant ( 0xv = ) in equation (5.5) which suggests no change in vehicle speed 

during the short duration event.  To transform the state variables β  and ψ  into the 

global X and Y coordinate system, the following equations were used 

 cos( )xX v β ψ= + , ( ) ( )
o

t

ot
X t Xd t X t= +∫   (5.6a) 

 sin( )xY v β ψ= + , ( ) ( )
o

t

ot
Y t Yd t Y t= +∫   (5.6b) 
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Figure 5.6: Low order vehicle model with front and rear tire slip angles, yaw angle, 

and sideslip angle with commanded speed and steer angle 

 

To investigate a sudden return to the road surface in a shoulder induced 

accident, these dynamics were used to simulate a standard J-turn step steering input 

maneuver. The model parameters corresponded to a generic 4-door sedan traveling at 

xv =72 kph with a step steering input of swδ = 90° (1.57 rad) at t = 0 seconds.  Using a 

steering gearbox ratio of 18:1 ( K = 0.055), the front road wheel angle was δ = 5° 

(0.087 rad).  The vehicle’s longitudinal-lateral trajectory, shown in Figure 5.7, 

demonstrates the severity of the incident without driver correction.  The vehicle 

quickly darts for the centerline, reaching it after only 1t∆ =  second and 20X m=  of 

longitudinal distance traveled.  To emphasize the small window that the driver has to 

react in a potential SIA, the lateral position of the vehicle is plotted against time in 

Figure 5.8. The correction window is less than a second in duration.  The vehicle 

attains a large yaw angle of 21ψ = °  (0.37 rad) at 1t =  second as shown in Figure 5.9 

with a yaw rate of 23ψ =  deg/sec (0.44 rad/sec). 
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Figure 5.7: Vehicle trajectory during an emulated shoulder induced accident 

(simulated J-turn); roadway double solid line at 3 meters crossed by vehicle traveling 
at 72 kph 
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Figure 5.8: Lateral vehicle position versus time for shoulder induced accident; 

roadway double solid line crossed within one second for vehicle traveling at 72 kph 
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Figure 5.9: Yaw versus time for shoulder induced accident; roadway centerline 

crossed at t = 1 second for vehicle traveling at 72 kph 

 

Now that the cause and severity of a SIA is known, potential steps to mitigate 

the danger of these accidents can be investigated.  The following section will examine 

the three potential phases of intervention and several paths that can be taken to 

address them. 

5.3 Training and Active Control for SIA Mitigation 

A number of opportunities exist to intervene in a likely shoulder induced 

accident (SIA).  In descending order of attractiveness they are: (i) before the vehicle 

first leaves the road surface, (ii) while the vehicle’s tires are off the road surface, and 

(iii) the short window immediately after the vehicle returns to the road surface. 

Although important, the first opportunity is not the focus of this research because it is 
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in the realm of human factors and standard electronic stability control systems.  In the 

second intervention window (one or more tires off the road surface), there are 

opportunities to slow the vehicle down either through an active braking system and/or 

driver education training. Active steering intrusion is not recommended in the 

window since the driver’s intention cannot be fully identified at this point.   

The third intervention window has the greatest potential for active steering to 

mitigate SIAs. This window requires an immediate reaction from the driver to 

straighten the steering wheel and avoid losing control of the vehicle after returning to 

the roadway.  With proper training and experience, a driver can do this maneuver 

unassisted.  However, the current driver education infrastructure does not typically 

support this level of training through driving simulator and/or real world driving time 

on a closed track. Instead of requiring an experienced response from the driver, an 

active braking or steering system could intervene and make the necessary corrections 

before the driver realizes that life threatening danger is imminent.  The education and 

braking approaches will now be examined briefly, followed by active steering in the 

next section. 

 

Driver training can be effectively implemented with “hands on” hardware-in-

the-loop simulator and/or closed course vehicle exercises. Classroom driver education 

already exists in many high schools to provide a medium for increasing awareness of 

Run-Off-Road Driver Training 
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driving dangers including ROR incidents. Although this may be covered lightly in the 

current system, the severity is often not fully realized by licensed drivers. The two 

major problems in ROR crashes from the standpoint of human factors are 

overconfidence combined with inexperience.  Effective classroom education cannot 

typically provide drivers with extensive experience, but it could make drivers more 

cautious in a ROR event. Classroom instruction should offer drivers a greater respect 

for the potential dangers along with a mental procedure for responding in the safest 

manner possible. Although driver education is not specifically an engineering 

problem, it must be taken into account and properly researched.  

The most effective training approach requires automotive simulators and/or 

in-vehicle experience in a safe, controlled, closed track environment. Special 

equipment (private roadways, outriggers, instructors) could help to duplicate the 

primary factors involved in returning to the road safely. Drivers would experience the 

excessive steering angles required to return to the road followed by the sudden yaw of 

the vehicle as it clears the obstruction.  This would offer drivers more respect for 

potential dangers and provide them with valuable experience. Further, ROR training 

could be combined with other car control training programs to increase the overall 

skill and experience of drivers. 
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During the second intervention phase (wheels off the road surface), there is a 

potential for braking control to be utilized to reduce the vehicle’s speed to make the 

return maneuver safer.  This control system would apply a uniform deceleration 

through the antilock brake system and illuminate a dashboard warning light to notify 

the driver of danger. Yi and Chung (2001) developed a braking control law for 

collision avoidance that could be adapted for this situation.  Their control law used a 

vehicle braking model to optimize safety and comfort in an automatic braking 

situation.  A future research contribution would be the identification of situations in 

which the vehicle has unintentionally left the road surface.  Tire vertical travel 

sensors could be employed so that that the road surface may be evaluated, and the 

control algorithm triggered when a differential road surface has been detected. 

Active Braking Control 

 

5.4 Active Steering Control 

An active steering control strategy may be developed to mitigate the danger of 

a shoulder induced accident after it has been initiated.  A schematic of the proposed 

strategy has been displayed in Figure 5.10.  The determination of driver intent 

requires an understanding of the perceived road conditions. All drivers will have an 

inherent delay in sensing changing road conditions.  Although an active steering 

controller could quickly adjust to changing road conditions, the supplied input may 

not reflect the output desired by the driver. Consequently, two sets of parameters 
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must be calculated for the tire/road interface’s lateral handling charactersitics: (a) the 

estimated vehicle parameters, ˆ
fCα  and ˆ

rCα , and (b) the driver’s perceived vehicle 

parameters, fCα
  and rCα

 . The variables fCα  and rCα  are the front and rear tire 

cornering stiffnesses.  The symbol ^ denotes the estimate of the cornering stiffness, 

while the symbol ~ represents the driver’s perceived cornering stiffness.  One method 

to predict the driver’s perceived parameters is through a time delay, τ , of the vehicle 

parameters, ˆ ( )f fC C tα α τ= −  and ˆ ( )r rC C tα α τ= − .  The current steering wheel input, 

swδ , may be combined with the perceived vehicle parameters, fCα
  and rCα

 , to 

determine the driver’s intention.  This becomes the steering controller’s target to track 

through the commanded front wheel angle, δ , to realize a stable vehicle. 

Vehicle

Driver Intention
(Reaction Time,     ) 

Tire Estimator

Driver Intention
(Mental Model,     ) 

Steering Controller

ˆ ˆ,f rC Cα α

,f rC Cα α
 

swδ

δ

, , , ...x yv vβ ψ

, , , , ,y y xv v vψ ψ δ  

eτ

dτ

 
Figure 5.10: Schematic diagram of active steering controller with driver steering input 

angle swδ  being supplemented by the steering controller to create the front wheel 
angle δ  
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The success of an active steering controller required the accurate estimation of 

the lateral tire/road force, 

Cornering Stiffness Estimation 

yF .  The longitudinal capability of the tires, xF , was not 

estimated since the recovery event was assumed to occur at a constant velocity 

( 0xv = ), and lateral motion was deemed critical.  To be compatible with the two 

degree-of-freedom chassis model in Section 5.2, the cornering stiffnesses, fCα  and 

rCα , were chosen as the vehicle parameters to estimate since they predominantly 

dictate the vehicle’s lateral response.  The selected estimation technique was based on 

Sierra et al. (2006) who compared multiple cornering stiffness estimation techniques 

to demonstrate their strengths and weaknesses, including the accuracy, operating 

range, and required sensors.   

The expressions for the front and rear cornering stiffnesses may be written by 

substituting equation (5.2) into equation (5.3) so that 

  ( ) 2 2y x f f r rm v v C Cα αψ α α+ = +  (5.7a) 

 2 2f f r rI aC bCα αψ α α= −  (5.7b) 

Next, equation (5.1) may be substituted into equation (5.7) to obtain 

 ( ) 2 2y y
y x f r

x x

v a b v
m v v C C

v vα α

ψ ψ
ψ δ

+ −   
+ = − +   

   

 

  (5.8a) 

 2 2y y
f r

x x

v a b v
I aC bC

v vα α

ψ ψ
ψ δ

+ −   
= − −   

   

 

  (5.8b) 
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The cornering stiffnesses, fCα  and rCα , may be isolated by solving for these two 

unknowns in equations (5.8a) and (5.8b) such that 

 
( )1

2 ( )( )
y x x

f
y x

bv m b mv I v
C

v a v a bα

ψ ψ
ψ δ
+ +

=
− − + +

 



 (5.9a) 

 
( )1

2 ( )( )
x y x

r
y

a mv av m I v
C

b v a bα

ψ ψ
ψ

+ −
=

− +

 



 (5.9b) 

Note that these two expressions require knowledge of the simulated vehicle model 

states ( ,ψ ψ  ) and ( ,y yv v ). 

Sierra et al. (2006) noted that this technique was unreliable when the front and 

rear slip angles approached zero, 0f rα α= ≅ .  Therefore, estimation was not 

performed when the steering was on-center, 0swδ ≅ , which corresponds to “no 

commanded” lateral motion.  For a shoulder induced accident scenario, the driver 

typically commands a large steering wheel angle, 0swδ ≠ , and maintains this posture 

even once the vehicle returns to the road surface.  Therefore, this constraint does not 

present a limitation to the target application. 

The front and rear tire cornering stiffnesses, fCα  and rCα , were predicted 

using a Kalman filter approach to obtain the estimated variables ˆ
fCα  and ˆ

rCα .  To 

ensure accurate and stable estimation, two specific thresholds were implemented.  

The estimation was only activated with front road wheel angles and angular velocities 

of 0.833δ ≥ °  (0.015 rad), 15swδ ≥ °  (0.26 rad), and 2.222deg/ sδ ≤  (0.078 rad/s), 
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40deg/sw sδ ≤  (1.40 rad/s), respectively.  Specifically, the front road wheel angle 

threshold was set to ensure that the vehicle was not traveling in a straight line during 

estimation.  Further, the road wheel angular velocity threshold was set to temporarily 

ignore transient steering maneuvers with large magnitudes.  In general, the bicycle 

model approach loses accuracy during rapid steering inputs.   

The basis to estimate the tire corning stiffnesses will now be presented.  The 

continuous and discrete Kalman filter problems were reviewed by Brown and Hwang 

(1997).  First, the discrete Kalman filter, originally formulated by Kalman (1960), 

will be presented.  Consider the discrete dynamic system description 

 1 1k k kx Ax w− −= +  (5.10a) 

 k k kz Hx v= +  (5.10b) 

where the system state and measurement vectors are n
kx ∈ℜ  and m

kz ∈ℜ .  The n n×  

state matrix A relates 1kx −  to kx , and the m n×  output matrix H relates the state kx  to 

the measurement vector kz .  The parameters kw  and kv  represent the white process 

noise on the state and the white measurement noise, respectively.  The covariance 

matrices for kw  and kv  become 

 ,[ ]
0,

kT
k i

Q i k
E w w

i k
=

=  ≠
 (5.11a) 

 ,[ ]
0,

kT
k i

R i k
E v v

i k
=

=  ≠
 (5.11b) 
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 [ ] 0,T
k iE w v =  for all k and i (5.11c) 

where Q ( n n× ) is the process noise covariance and R ( m m× ) is the measurement 

noise covariance.  The a priori and a posteriori estimation errors, ke−  and ke , may be 

defined as 

 ˆk k ke x x− −= −  (5.12a) 

 ˆk k ke x x= −  (5.12b) 

where ˆ n
kx− ∈ℜ  is the a priori state estimate and ˆ n

kx ∈ℜ  is the a posteriori state 

estimate.  These lead to the a priori and a posteriori error covariances 

  ˆ ˆ[ ] [( )( ) ]T T
k k k k k k kP E e e E x x x x− − − − −= = − −  (5.13b) 

 ˆ ˆ[ ] [( )( ) ]T T
k k k k k k kP E e e E x x x x= = − −  (5.13b) 

The state estimate, ˆkx , is then combined with the noisy measurement and 

previous estimate so that 

 ˆ ˆ ˆ( )k k k k k kx x K z H x− −= + −  (5.14) 

where ˆ( )k k kz H x−−  is the measurement error weighted by kK .  The error covariance 

matrix, kP , may be obtained by substituting equation (5.10b) into equation (5.14), and 

then this result into equation (5.13b) so that 

 
ˆ ˆ{[( ) ( )]

ˆ ˆ[( ) ( )] }
k k k k k k k k k

T
k k k k k k k k

P E x x K H x v H x
x x K H x v H x

− −

− −

= − − + −

− − + −
 (5.15) 
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With equations (5.12) and (5.13) in mind, the expected value of equation (5.15) may 

be determined as 

 ( ) ( )T T
k k k k k k k k KP I K H P I K H K R K−= − − +  (5.16) 

This expression can be expanded using standard mathematical operations into 

 ( )T T T T
k k k k k k k k k k k k k kP P K H P P H K K H P H R K− − − −= − − + +  (5.17) 

The trace of kP  may be differentiated with respect to kK  to obtain 

 ( ( )) 2( ) 2 ( )T T
k k k k k k k

k

d Tr P H P K H P H R
dK

− −= − + +  (5.18) 

The optimal gain may be computed by setting ( ( )) 0
k

d Tr P
dK

=  so that 

 1( )T T
k k k k k k kK P H H P H R− − −= +  (5.19) 

The covariance matrix in equation (5.16) may be rewritten for the optimal gain as 

 ( )k k k kP I K H P−= −  (5.20) 

The discrete Kalman filter will now be converted to continuous space.  To 

transition to continuous space, consider the process and measurement models given in 

Brown and Hwang (1997) as 

 x Fx Gu= +  (5.21a) 

 z Hx v= +  (5.21b) 
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where the state matrix F is n n× , input vector G is n n× , and output matrix H is 

m n× .  The system state, x , and measurement vectors, z , are nx∈ℜ  and mz∈ℜ .  

The parameters u  and v  represent the white state noise and the white measurement 

noise, respectively with zero cross-correlation.  The covariances of u  and v  are 

defined similar to equation (5.11), using Q ( n n× ) and R ( m m× )  as 

 [ ( ) ( )] ( )TE u t u Q tτ δ τ= −  (5.22a) 

 [ ( ) ( )] ( )TE v t v R tτ δ τ= −  (5.22b) 

 [ ( ) ( )] 0TE v t v τ =  (5.22c) 

To convert kQ  and kR  from discrete to continuous, first consider that kQ  can 

be written as  

 ( ) [ ( ) ( )] ( ) ( ) ( ) ( )T T T
kQ G E u u G d d G Q t G d dξ ξ η η ξ η ξ δ τ η ξ η≈ ≈ −∫∫ ∫∫  (5.23) 

Integrating over a small t∆  leads to 

 T
kQ GQG t= ∆  (5.24) 

For kR , the conversion to R  begins with formulating kv  starting with the 

measurement kz  as 

 
1 1

1 1( ) [ ( ) ( )]k k

k k

t t

k t t
z z t dt Hx t v t dt

t t− −

= = +
∆ ∆∫ ∫  (5.25) 

and x can be considered to be constant over t∆ , so that 
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1

1( ) ( )k

k

t

k t
z Hx t v t d t

t −

≈ +
∆ ∫  (5.26) 

Comparing equation (5.26) with equation (5.10b) leads to the relationship which 

maps continuous into discrete for the measurement noise as 

 1 ( )kv v t dt
t

=
∆ ∫  (5.27) 

Using equation (5.11b) and equation (5.27), the discrete kR  becomes 

 2

1[ ] [ ( ) ( )]T T
k k kR E v v E v u v dud

t
υ υ= =

∆ ∫∫  (5.28) 

The relationship in equation (5.22b) may be substituted into equation (5.28) and 

integrated to obtain 

 k
RR
t

=
∆

 (5.29) 

Finally, the discrete gain kK  may be converted to continuous time by starting 

with equation (5.19) and substituting equation (5.29) so that 

 1 1( / )T T
k k k k k k k kK P H H P H R t P H R t− − − − −= + ∆ ≈ ∆  (5.30) 

since / T
k k kR t H P H−∆ >> .  The notation for continuous time can be revised by 

dropping the subscripts and “-“ superscripts on the right hand side 

 1( )T
kK PH R t−= ∆  (5.31) 

and let 1TK PH R−≡ . 
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The discrete error covariance, 1kP−
+ , will now be examined with 

 
1

( )

T
k k k k k

T
k k k k k k

T T
k k k k k k k k k

P A P A Q
A I K H P A Q
A P A A K H P A Q

−
+

−

− −

= +

= − +

= − +

 (5.32) 

Approximating kA  as I F t+ ∆  and expanding equation (5.32) while ignoring the 2t∆  

terms, the expression becomes 

 1
T

k k k k k k k kP P FP t P F t K H P Q− − − − −
+ = + ∆ + ∆ − +  (5.33) 

Substituting equations (5.31) for kK  and (5.24) for kQ  into equation (5.33) leads to 

 11 T T Tk k
k k k k k

P P FP P F P H R H P GQG
t

− −
− − − − −+ −

= + − + ∆ 
 (5.34) 

Finally, taking the limit as 0t∆ →  while dropping the discrete notation and 

superscripts to obtain the differential equation for P as 

 
1

(0)

T T T

o

P FP PF PH R HP GQG
P P

−= + − +
=



 (5.35) 

To form the differential equation for the state estimator, start with equation 

(5.14) and apply 1 1ˆ ˆk k kx A x−
− −=  so that  

 ˆ ˆ ˆ( )k k k k k kx x K z H x− −= + −  (5.14) 

 1 1 1 1ˆ ˆ ˆ( )k k k k k k k kx A x K z H A x− − − −= + −  (5.36) 

Note that A I F t≅ + ∆  and neglect higher order terms so that 
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 1 1 1ˆ ˆ ˆ ˆ( )k k k k k kx x Fx t K t z H x− − −− = ∆ + ∆ −  (5.37) 

Divide by t∆  and take the limit as 0t∆ →  leads to the differential equation for the 

estimate x̂  given as 

 ˆ ˆ ˆ( )x Fx K z Hx= + −  (5.38) 

The equations (5.31), (5.35), and (5.38) form the continuous Kalman filter.   

For this investigation, the cornering stiffnesses, fCα  and rCα , will be 

estimated using the continuous Kalman filter to accommodate the inherent noise and 

uncertainty in the calculation technique.  The state space description in this problem 

formulation may be stated as 

 x Fx Gu= +  (5.21a) 

 z Hx v= +  (5.21b) 

where 
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, and 01
0
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0
0

P
P

P
 

=  
 

.  The assumption of white state and measurement 

noise has again been imposed.  Expanding into longhand matrix format, the equations 

(5.38), (5.31), and (5.35) become 

 
ˆ ˆ ˆ01 0

ˆ ˆ00 1ˆ
f f f ff

rr r rr
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α α α α

α α αα
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 (5.39a) 
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 (5.39c) 

Equation (5.39a) leads to the set of equations 

 ˆ ˆ ˆ( )f f f f fC C K C Cα α α α= + −  (5.40a) 

 ˆ ˆ ˆ( )r r r r rC C K C Cα α α α= + −  (5.40b) 

where fCα  and rCα  are constructed from equation (5.9) using measured vehicle 

operating variables including , , , , ,y y xv v vψ ψ δ   .  The K values may be simplified from 

equation (5.39b) to 

 1
f

f

PK
R

=  (5.41a) 
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 2
r

r

PK
R

=  (5.41b) 

The equation for P  in (5.39c) becomes 

 
2

1
1 12 f

f

PP P Q
R

= − +  (5.41a) 

 
2

2
2 22 r

r

PP P Q
R

= − +  (5.41b) 

The solutions to the Riccati equations in (5.41a) and (5.41b) were calculated 

numerically in Matlab/Simulink (refer to Appendix I) during the vehicle simulation. 

The cornering stiffness estimator was evaluated using the CarSim version 6 

software package which generated the simulated unknown vehicle dynamic behavior 

( , , ,y xv vψ β ).  A generic small sedan was selected for the vehicle database.  During 

real-time applications, the estimated cornering stiffnesses, ˆ
fCα  and ˆ

rCα , based on the 

measured variables, stiffness expressions and Kalman filter, were fed into the 

simplified bicycle model described by equation (5.5).  The output of this bicycle 

model, ψ  and β , was compared to the CarSim output to verify the accuracy of the 

estimation in terms of tire cornering stiffnesses and  yaw rate.   

The vehicle was driven with a 0.25f Hz=  sinusoidal steering input with an 

amplitude of 90swδ = °  as shown in Figure 5.11.  The velocity was kept constant at 

60xv kph=  while the vehicle drove across a road surface with the friction coefficient 
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abruptly changing from 0.85µ =  to 0.3µ =  to 0.85µ =  at 300X m=  and 

600X m= , respectively.  The estimator was manually tuned to 01 02 100P P= = , 

100f rR R= = , and 0.01f rQ Q= =  to ensure a reliable estimation during static road 

conditions without compromising the quick response to new conditions.  The initial 

guess for the cornering stiffness was set to 
0

[0 0]TCα =  as a worst case scenario, but 

in a practical application this would be set based on testing results.   
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Figure 5.11:  The input steering wheel angle to validate the estimation strategy for tire 

cornering stiffness with frequency and amplitude of 0.25f Hz=  and 90swδ = °  

 

The estimated front and rear cornering stiffnesses have been shown in Figures 

5.12 and 5.13; the subsequent yaw rate estimation and error are displayed in Figures 

5.14 and 5.15.  The vehicle transitioned to the 0.3µ =  surface at 19t ≈  seconds and 
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returned to the 0.85µ =  surface at 38t ≈  seconds.  The transition was promptly 

detected by the cornering stiffness estimator within 150ms, as displayed in Figures 

5.12 and 5.13.  The lower cornering stiffness values may be attributed to the reduced 

yaw rate, yaw acceleration, lateral speed, and lateral acceleration as a result of less 

road friction.  The effect of the road surface coefficient of friction transition on the 

vehicle dynamics can be observed in Figure 5.14 where the peak yaw rate, ψ , was 

reduced by 0.15 rad/s from 0.39ψ =  rad/sec to 0.23ψ = rad/sec.  A reduced yaw rate 

was experienced due to the decreased lateral forces per lower road friction.  The 

general agreement between the simplified and CarSim models is evident by the 6.9% 

maximum error on the 0.85µ =  surface.  Although the error in the yaw rate between 

the two models (refer to Figure 5.15) jumps to a significant 0.1 rad/s, this can be 

attributed to a time lag in the response rather than a failure in estimation.  During the 

sample maneuver, the lateral accelerations reached as high as 0.6g as shown in Figure 

5.16.  This was well outside the linear range of the tires (0.3g) and was effectively a 

worst case scenario for the estimator.  
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Figure 5.12:  Estimated front cornering stiffness, ˆ
fCα , on a road surface changing 

from 0.85µ =  to 0.3µ =  and back with 60xv kph=  
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Figure 5.13:  Estimated rear cornering stiffness, ˆ
rCα , on a road surface changing from 

0.85µ =  to 0.3µ =  and back with 60xv kph=  
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Figure 5.14:  Yaw rate for the CarSim vs. estimated chassis model on a road surface 

changing from 0.85µ =  to 0.3µ =  and back with 60xv kph=  
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Figure 5.15:  Error in yaw rate between CarSim and bicycle model on a road surface 

changing from 0.85µ =  to 0.3µ =  and back with 60xv kph=  
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Figure 5.16:  Lateral acceleration for the CarSim vehicle model on a road surface 
changing from 0.85µ =  to 0.3µ =  and back with 60xv kph=  

 

The key to accident prevention is the concept of “driver intention”.  What 

does the driver wish to accomplish?  Once an onboard control system knows this, it 

can then determine the “best” vehicle command(s) to achieve the desired output. This 

tends to be a critical and difficult task given that driving remains a dynamic process 

with overlapping maneuvers and human judgment.  For example, consider a vehicle 

swerving to miss a dog in the road versus swerving accidentally due to sudden 

changes in the road conditions.  Without context, the vehicle responses may appear 

similar, but one swerve is desired by the driver and the other is not.  To be safe and 

Driver Intention 
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successful, an active steering system must be able to determine the driver’s intention 

before intervening. 

In this project, the implemented approach for driver intention addresses the 

latter case of changing road conditions.  The primary assumption (A.1) is that the 

road surface may change suddenly due to a run-off-road incident; however, the driver 

does not immediately recognize the change and continues to operate in a nominal 

manner.  In this case, the driver's inputs will not result in the intended vehicle 

response.  Until the driver recognizes this change in conditions, they will be driving 

as if the road surface has not changed.  It is further assumed (A.2) that the driver 

supplies vehicle commands based on a mental model that lags behind the 

instantaneous conditions by a time, eτ  (Green, 2000).  The driver intention module 

attempts to emulate this approach by storing the estimated ˆ ( )C tα  from a prior time, 

et τ= .   

A model for the driver’s expected lateral tire stiffness value, Cα
 , may be 

constructed as 

 ˆ( ) ( )f f eC t C tα α τ= −  (5.42a) 

 ˆ( ) ( )r r eC t C tα α τ= −  (5.42b) 

These values are constantly updated and represent a guess at what the driver 

perceives to be the road conditions.  A start point does not exist; however, the 

controller has been formulated such that intervention only occurs when ˆ( ) ( )C t C tα α≠  
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(i.e., immediately following a road surface transition) as shown in Figure 5.17.  

During the times b ct t t< <  and d et t t< < , the delayed cornering stiffness, Cα
 , differs 

from the real time estimated cornering stiffness, Ĉα , so intervention occurs.  The 

intervention continues for et τ∆ = , during which time the controller aims to replicate 

the driving conditions from the prior time period.  After the et τ∆ =  time period, it 

may be assumed that the driver has recognized the changing road conditions and 

intervention ceases. 

0µ =
ˆ 0 N/radCα ≈

0 N/radCα ≈

0.85µ =
ˆ 55,000 N/radCα ≈

0 N/radCα ≈

0.85µ =
ˆ 55,000 N/radCα ≈

55,000 N/radCα ≈

0µ =
ˆ 0 N/radCα ≈

55,000 N/radCα ≈

et τ∆ = et τ∆ =

0.85µ =
ˆ 55,000 N/radCα ≈

55,000 N/radCα ≈

Intervention InterventionNo Intervention No Intervention No Intervention

a b c d e f
0 radswδ ≈ 1.6 radswδ ≈?  radswδ ≈ 1.6 radswδ ≈ 0 radswδ ≈

 
Figure 5.17:  Visual representation of driver intention module showing intended 

intervention intervals of steering controller; controller designed to assist during the 
et τ∆ =  time period following a tire/road equivalent friction transition 

 

The full state feedback control strategy, based on the bicycle model, follows 

the concepts proposed by Yih and Gerdes (2005).  The authors created a controller 

which forced the vehicle to behave as if it had higher, or lower, tire cornering 

Steering Control 
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stiffnesses.  Specifically, the controller allowed the vehicle to be driven in low grip 

conditions as if it were operated on dry asphalt.  For this research investigation, a 

similar type of functionality was desired except only during brief moments (e.g., road 

surface transitions such as points b and d in Figure 5.17).  The Yih and Gerdes 

approach has been adapted to use the percent difference in driver’s expected 

cornering stiffness, Cα
 , compared to the real-time current cornering stiffness, Ĉα , to 

scale the steering control gains.  

Consider the bicycle model from equation (5.5).  Now substitute in the 

delayed estimated cornering stiffness, fCα
  and rCα

 , for the front and rear cornering 

stiffnesses, fCα  and rCα , to realize the perceived sideslip and yaw rate derivatives as  

 
2
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


   

 (5.43) 

The parameters used for both estimation and control are given in Table 5.1 and 

correspond to the small sedan previously simulated in CarSim 6. 

Symbol Value Units Symbol Value Units 
a 0.948 m m 940 kg 
b 1.422 m dτ  {1,2} s 
I 1152 kg m2 

eτ  {1,2} s 

K  0.55 - xv  60 kph 
Table 5.1: Table of parameter values for a small sedan simulated in CarSim 6 
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Yih and Gerdes (2005) defined the variable η  as the desired fixed percent 

change in the front tire cornering stiffness, fCα .  Their stated objective was to adjust 

the real vehicle’s front cornering stiffness, fCα , to the selected value fCα



 through 

adjustment of η  as   

 (1 )f fC Cα α η= +


 (5.44) 

For this project, the variable η  was adapted to represent the percent change in road 

conditions as evident by the front and rear tire cornering stiffnesses, fCα  and rCα , 

from a prior time eτ  when compared to the current time, t, so that   

 1ˆ ˆ
f r

f r

C C
C C
α α

α α

η
+

= −
+

 

 (5.45) 

The steering control gains, , ,  and swK K Kβ ψ  reflect contributions from the 

vehicle slip angle, yaw rate, and commanded steering angle.  The full state feedback 

control may be defined (Yih and Gerdes, 2005) as  

 ˆˆ ( )sw swK K K Kψ βδ ψ β δ= + +


  (5.46) 

where the individual gains become 

 Kβ η= −  (5.47) 

 
x

aK
vψ η= −



 (5.48) 
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 (1 )swK η= +  (5.49) 

The parameters a  and xv represent the distance from the front axle to the CG and the 

longitudinal speed.  The term δ is the augmented steering angle, and swδ  is the driver 

commanded steering angle.  The main advantage of full state feedback resides in the 

control of the slip angle, β , which increases stability over a pure yaw rate, ψ , 

controller.   

 

 The control algorithm of equations (5.43), (5.45), (5.46), (5.47), (5.48), and 

(5.49) produced the variables 

Results and Discussion 

ˆ ˆ, , , , , ,  and swK K Kβ ψβ ψ η δ


  which were implemented in 

Matlab/Simulink.  Concurrently, the CarSim 6 software package was applied to 

simulate the vehicle dynamics and generate the required system information 

( , , , ,y y xv v vψ ψ   ).  The CarSim software utility is a commercial vehicle dynamics 

modeling package developed by the Mechanical Simulation Corporation (Ann Arbor, 

MI).  CarSim generates the complete vehicle dynamics (similar to in-vehicle 

applications with accompanying sensors) while the on-board controller design utilizes 

the reduced-order chassis (bicycle) model.  To ensure compatibility, the parameters 

for the chassis model have been listed in Table 5.1. 

 The shoulder induced accident (SIA) event (refer to Section 5.1) was modeled 

as a ramp steering input, 0.524sw tδ =  rad/sec, with a road friction coefficient of 
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µ = 0 to describe the tire sidewalls attempting to climb and catching on the road 

shoulder (i.e., wheels off road surface).  When the driver commanded steering angle 

reached 1.57swδ =  rad, the road return event occurred (i.e., the road friction 

coefficient was instantaneously set to µ = 0.85 and all four wheels assumed to be on 

the road surface).  The friction profile can be viewed in Figure 5.18.  Points b and d 

represent the run off and return events, respectively, labeled in Figure 5.17.  The 

variable dτ  was used to describe the reaction time of the driver independent from the 

controller assistance time, eτ , used in the controller.  These variables are summarized 

in Table 5.2.  This approach was based on the perception and reaction delay presented 

by Green (2000).  After the road return event transpired, the steering angle was held 

constant for a time dτ , and then returned to swδ = 0 within 0.5s afterwards.  In other 

words, once the theoretical driver recognized the road surface change, they responded 

by returning the steering wheel to the center position without taking any further 

evasive maneuvers.  However, the range of potential evasive maneuvers may be 

viewed as unlimited; consequently, this basic and repeatable response was selected 

for initial study.   

Symbol Description and Units Values Cases 

dτ  Driver reaction time (s) – Time period it takes for 
driver to recognize and respond to driving event 

2 #1-#3 
1 #4-#6 

eτ  
Controller assistance time (s) – Time period 
during which controller intervenes after road 

transition is detected 

2 #2, #5 

1 #3, #6 

Table 5.2: Summary of driver and controller time variables showing symbol, unit, and 
case values 
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Figure 5.18: Friction coefficient during simulated shoulder induced maneuver 

stepping from 0.85µ =  to 0µ =  (wheels off road surface) at 25t s=  and back to 
0.85µ =  (wheels on road surface) at 28t s=  

 

The numerical results were divided into six cases and grouped into two 

subsets.  The first set of results (Cases #1-#3) represented an “inattentive driver” with 

a slow reaction time of 2d sτ = .  The results for Cases #1-#3 have been shown in 

Figures 5.19-5.24.  The first case, Case #1, was the baseline result without controller 

intervention; the following two cases were the results available with the controller 

tuned to 2e sτ =  (Case #2) and 1e sτ =  (Case #3).  Figure 5.19 shows the road wheel 

angle with and without controller intervention.  The points b, d, and e represent the 

run off, return, and driver correction points corresponding to the same points in 

Figure 5.17.  The solid line is the untouched steering input from the driver, which 

b d 
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stayed constant between points d and e for a time dt τ∆ =  representing the delay 

before the driver recognized a change in road conditions.  The duration of intended 

controller interventions, eτ , have been labeled for the time period between points d 

and e.  For the 1e sτ =  case, the road wheel angle intervened for approximately 

1t s∆ =  and then began to return to the commanded angle just after 29t s= .  The 

2e sτ =  case intervened for the full 2t s∆ =  between points d and e.  The controller 

also intervened between points b and d following the initial transition to the low 

friction road surface.  The controller compensated in the opposite direction during 

this transition, which would be expected upon inspection of equations (5.45) and 

(5.46).  However, the low friction road surface coefficient minimized the vehicle’s 

lateral response. 
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Figure 5.19: Road wheel angle, δ , during SIA event with driver reaction time of 
dτ = 2s and controller settings of eτ = 0s (Case #1 - uncontrolled baseline), eτ = 2s 

(Case #2), and eτ = 1s (Case #3) 
 
 

In Figure 5.20, the baseline (Case #1) offered a peak yaw rate of 0.42ψ =  

rad/sec, while Cases #2 and #3 reduced the peak yaw rate to 0.21ψ =  rad/sec and 

0.28ψ =  rad/sec, respectively.  The controller in Case #2 was tuned to match the 

worst case inattentive driver scenario, so it was expected to have the best response.  

The intervention lasted for the full duration of the event (from point d to point e or 

2t s= ).  The vehicle’s final heading angle was reduced from 0.86ψ =  rad for Case 

#1 to 0.47ψ =  rad for Case #2; a 45% reduction.  Case #3 was tuned for a more 

attentive driver, which resulted in a one second shorter duration intervention interval.  

This approach offered a higher peak yaw rate, ψ , than Case #2.  However, the 

e d b 

τd 

τe 

τe 



 132 

mitigating effects of Case #3 cannot be overlooked since the severity of the maneuver 

was reduced similarly to Case #2 with half the intervention time.  The final yaw angle 

of Case #3 was 0.52ψ =  rad, a reduction of 40% from the baseline.  Figures 5.21 and 

5.22 show the vehicle slip angle, β , and the vehicle lateral velocity, yv , during the 

maneuvers to demonstrate that the directional stability of the vehicle was not 

compromised to improve a single variable response.  The consistent directional 

stability was largely attributed to the use of full state feedback instead of pure yaw 

rate feedback.  Figures 5.23 and 5.24 display the lateral position of the vehicle with 

respect to time and longitudinal position, respectively.  The two controlled cases 

resulted in nearly identical lane crossing times of 1.30ct s∆ =  and 1.31ct s∆ =  for 

Case #2 and Case #3.  These results were improvements of approximately 0.3s (30%) 

over the baseline (Case #1) of 1.01ct s∆ = . 
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Figure 5.20: Yaw rate, ψ , during SIA event with driver reaction time of dτ = 2s and 
controller settings of eτ = 0s (Case #1 - uncontrolled baseline), eτ = 2s (Case #2), and 

eτ = 1s (Case #3) 
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Figure 5.21: Vehicle slip angle, β , during SIA event with driver reaction time of 

dτ = 2s and controller settings of eτ = 0s (Case #1 - uncontrolled baseline), eτ = 2s 
(Case #2), and eτ = 1s (Case #3) 



 134 

24 25 26 27 28 29 30 31 32
-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

Time (s)

La
te

ra
l V

el
oc

ity
 (k

ph
)

 

 
Uncontrolled
τe = 2s

τe = 1s

 
Figure 5.22: Lateral velocity, yv , during SIA event with driver reaction time of 

dτ = 2s and controller settings of eτ = 0s (Case #1 - uncontrolled baseline), eτ = 2s 
(Case #2), and eτ = 1s (Case #3) 
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Figure 5.23: Lateral position, Y, during SIA event with driver reaction time of dτ = 2s 
and controller settings of eτ = 0s (Case #1 - uncontrolled baseline), eτ = 2s (Case #2), 

and eτ = 1s (Case #3) 
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Figure 5.24: Vehicle trajectory during SIA event with driver reaction time of dτ = 2s 
and controller settings of eτ = 0s (Case #1 - uncontrolled baseline), eτ = 2s (Case #2), 

and eτ = 1s (Case #3) 

 

Consider the situation in which the driver was paying attention and had a 

reaction time of dτ = 1s.  This was the scenario used for Cases #4-#6 shown in 

Figures 5.25-5.30.  Figure 5.25 displays road wheel angular results for the shorter 

driver reaction time, dτ , which has been labeled between points d and e.  Case #4 was 

the baseline situation without intervention from the controller, and resulted in a peak 

yaw rate (refer to Figure 5.26) of 0.42ψ =  rad/sec; the final heading angle was 

0.48ψ =  rad.  Before examining the controlled cases (Cases #5 and #6), it is 

important to note that the final heading angle for Case #4 was similar to the 

controlled cases for the inattentive driver (Cases #2 and #3).  Essentially, the 

controller transformed the inattentive driver (Cases #1-#3) into an uncontrolled 
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attentive driver (Case #4).  Cases #5 and #6 assigned the controller values of 2e sτ =  

and 1e sτ = , respectively.  As shown in Figure 5.25, these two cases produced similar 

steering responses between 28 30t s< < .  The only difference was for 1e sτ =  (Case 

#6) full control was returned to the driver soon after correction took place at 29t s= ; 

however, 2e sτ =  (Case #5) continued to intervene even after the driver returned the 

steering angle to 0swδ =  rad.  Simply put, a driver reaction time of 1d sτ >  would 

have been required to see a significant difference in controller response.   

The vehicle response will be investigated for these three scenarios.  Case #5 

had a peak yaw rate of 0.21ψ =  rad/sec and a final heading angle of 0.28ψ =  rad; 

Case #6 offered a peak yaw rate and final heading angle of 0.21ψ =  rad/sec and 

0.26ψ =  rad.  These values represent reductions in the final heading angle of 42% 

and 46% for Case #5 and Case #6 when compared to Case #4.  The similarity 

between Case #5 and Case #6 was expected since the driver did not attempt any 

further evasive action.  However, the controller would continue to intervene during an 

evasive maneuver in Case #5.  Figures 5.27 and 5.28 display the slip angle, β , and 

lateral velocity, yv , of the vehicle during the maneuvers to demonstrate that vehicle 

stability was not compromised to produce favorable results.   Figures 5.29 and 5.30 

indicate the improvements in lateral position, Y, for the controlled cases when 

compared to the uncontrolled case.  The centerline crossing times for Case #5 and 

Case #6 were 1.30ct s∆ =  and 1.31ct s∆ =  respectively.  They were a similar 
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improvement over the baseline of 1.00ct s∆ =  (Case #4) by approximately 0.3s 

(30%). 
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Figure 5.25: Steering angle, δ , during SIA event with driver reaction time of dτ = 1s 
and controller settings of eτ = 0s (Case #4 - uncontrolled baseline), eτ = 2s (Case #5), 

and eτ = 1s (Case #6) 
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Figure 5.26: Yaw rate, ψ , during SIA event with driver reaction time of dτ = 1s and 
controller settings of eτ = 0s (Case #4 - uncontrolled baseline), eτ = 2s (Case #5), and 

eτ = 1s (Case #6) 
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Figure 5.27: Vehicle slip angle, β , during SIA event with driver reaction time of 

dτ = 1s and controller settings of eτ = 0s (Case #4 - uncontrolled baseline), eτ = 2s 
(Case #5), and eτ = 1s (Case #6) 
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Figure 5.28: Lateral velocity, yv , during SIA event with driver reaction time of 

dτ = 1s and controller settings of eτ = 0s (Case #4 - uncontrolled baseline), eτ = 2s 
(Case #5), and eτ = 1s (Case #6) 
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Figure 5.29: Lateral position, Y, during SIA event with driver reaction time of dτ = 1s 
and controller settings of eτ = 0s (Case #4 - uncontrolled baseline), eτ = 2s (Case #5), 

and eτ = 1s (Case #6) 
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Figure 5.30: Vehicle trajectory during SIA event with driver reaction time of dτ = 1s 
and controller settings of eτ = 0s (Case #4 - uncontrolled baseline), eτ = 2s (Case #5), 

and eτ = 1s (Case #6) 
 
 

A summary of the numerical results has been presented in Table 5.3.  The 

performance of the driver/controller combination was characterized as a final vehicle 

heading angle with respect to the road direction, fψ , the time to the centerline 

crossing, ct∆ , maximum yaw rate, maxψ , peak lateral velocity, 
maxyv , and maximum 

vehicle sideslip angle, maxβ .  In addition, the driver behavior and intervention type 

has been recorded.  The final heading angle was highly dependent on the driver 

response time, dτ .  However, with controller intervention the final heading angle for 

dτ = 2s was reduced from fψ = 0.857 rad (Case #1) to fψ = 0.472 rad (Case #2), 

which was equivalent to the uncontrolled dτ = 1s final heading angle of 
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fψ =0.480 rad (Case #4).  In all other categories, Case #2 was an improvement over 

Case #4, so it was given a rank of 3.  Case #3 was an improvement over Case #4 in all 

categories except final heading angle; therefore, Cases #3 and #4 were given a tie for 

rank 4.  Cases #5 and #6 tied for rank 1 with best performance in all categories, 

including final heading angles of fψ = 0.276 rad and fψ = 0.255 rad, respectively.  

The centerline crossing values show surprising similarity across all controlled cases.  

Regardless of controller assistance time, eτ , or driver reaction time, dτ , the controller 

gave the driver an extra t∆ = 0.3s before crossing the centerline.  This accomplished 

the design goal of the controller in that a potential shoulder induced accident could be 

mitigated with the assistance of the controller without otherwise interfering in the 

daily operation of the vehicle.  Assuming the driver was paying attention ( 1d sτ = ), a 

situation may exist where a centerline crossing of 1.30ct s∆ =  may be enough to 

avoid a crash.  

Considering that a controller assistance time of eτ = 1s produced similar 

results to eτ = 2s while simultaneously being the more conservative and unobtrusive 

setting, it was recommended as the starting point for the controller.  Further tuning in 

a driving simulator or real vehicle would be necessary to discover an optimal setting 

for the full range of potential drivers. 
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Case dτ  (sec) eτ  (sec) fψ  (rad) ct∆  (s) maxψ  (rad/s) 
1 2 0 0.857 1.01 0.42 
2 2 2 0.472 1.30 0.21 
3 2 1 0.522 1.31 0.28 
4 1 0 0.480 1.00 0.42 
5 1 2 0.276 1.30 0.21 
6 1 1 0.255 1.31 0.21 
      

Case maxyv  (kph) maxβ  (rad) Driver Behavior Intervene Rank 
1 -1.39 -0.023 Inattentive No 6 
2 -0.47 -0.008 Inattentive Long 3 
3 -0.76 -0.013 Inattentive Short 4 (tie) 
4 -1.39 -0.023 Attentive No 4 (tie) 
5 -0.47 -0.008 Attentive Long 1 (tie) 
6 -0.48 -0.008 Attentive Short 1 (tie) 

Table 5.3: Summary of test cases for shoulder induced accident control system with 
driver reaction times, dτ , controller reaction times, eτ , final vehicle heading angle, 

fψ , time to lane crossing, ct∆ , peak yaw rate, maxψ , peak lateral velocity, 
maxyv , peak 

slip angle, maxβ , driver behavior, intervention time period, and performance rank in 
terms of vehicle safety 

 

Run-off-road incidents are a significant problem in the realm of vehicle 

crashes. A variety of measures may be being taken to decrease the opportunity of a 

vehicle leaving the road surface. However, the circle of safety must be closed to 

mitigate accidents that occur once the vehicle leaves the road. This can be 

accomplished through improvements in driver training and active steering 

technology. 

Summary 
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In this chapter, an innovative approach to active steering was presented.  The 

concept of driver intention was introduced to ensure that the controller only 

intervened when the vehicle was behaving different from what the driver would 

expect.  For this controller, it was assumed that the driver expected the road 

conditions to be the same as they were a time eτ  prior.  This way the controller only 

intervened during quickly changing road conditions.  The controller did not make any 

attempts to improve vehicle performance during static road conditions.   

During the scenario of returning to the road after a runoff, the controller 

performed exceptionally well in mitigating the associated dangers.  Figures 5.18-29 

show the improvement of the controller over a baseline condition.  The controller 

only intervened during these brief changes in road conditions.  In standard driving 

situations on a static road surface, the vehicle behaved the same with and without the 

controller enabled.  This type of steering intervention can already be realized with the 

variable steering ratio technology available on high end commercial vehicles.  More 

importantly, the results show how small the correction window is during a road 

return.  Even with controller intervention, a driver must be prepared for the event to 

completely avoid a dangerous lane crossing situation.  
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CHAPTER SIX 
 

CONCLUSION AND FUTURE RESEARCH 
 
 

6.1 Summary 

The availability of ground transportation offers mobility to millions of people 

throughout the world.  The work presented in this dissertation establishes a 

foundation for steering preference research centered on the development and usage of 

the Clemson University steering simulator.  The custom hardware-in-the-loop 

steering simulator was developed and refined over three generations.  Through the 

course of the upgrades, the steering feel was brought to realistic levels while being 

fully adjustable in real-time.  With this real-time adjustability, the simulator is not 

only a powerful tool for human subject research, but also as a pure engineering tool 

that allows steering engineers to evaluate steering settings back-to-back to help make 

design decisions.  A laboratory procedure was developed to use the simulator to 

determine the steering preferences of human test subjects placed into demographic 

groups.  Utility drivers preferred quicker steering ratios and heavier steering efforts 

on residential, country, and highway roadways with correlations between the utility 

demographic and steering preference of r = 0.341 (ratio) and r = 0.426 (effort).  In 

contrast, car enthusiasts favored quick steering ratios in residential/country 

environments ( r = 0.319, r = 0.294) and light steering effort on the highway ( r = -

0.360).  Finally, rural drivers desired quicker steering ratios on country roads 
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( r = 0.437).  The impact of this study is the demonstration that the correlations should 

allow steering system engineers to faithfully cater to target demographic groups. 

The data collected during the demographics steering preference study was also 

investigated to discover any connections between driver steering preferences and 

vehicle sensor data.  A robust steering preference metric was developed based on the 

collected vehicle data channels (variables).  For example, changes to the vehicle’s 

steering ratio resulted in an excellent correlation, r = -0.55, between the subjective 

steering preference and the objective vehicle data.  However, changes to the vehicle’s 

steering effort did not produce a reliable correlation.  The connection between 

steering ratio and vehicle response likely supports the conclusion that drivers steer 

vehicles using angular inputs rather than torque inputs. 

To compliment the steering preference research, steering safety was addressed 

through the development of an active steering controller to mitigate shoulder induced 

accidents.  Run-off-road crashes are dangerous because they typically involve striking 

oncoming traffic, stationary objects, or result in a vehicle rollover.  While active 

steering controllers have been developed, none consider the idea of “driver intention” 

to insure the intervention is appropriate and noninvasive to normal daily driving.  An 

active steering controller was developed with the concept of “driver intention” in 

mind.  A cornering stiffness estimation technique, using a Kalman filter, was coupled 

with a full state feedback controller through a “driver intention” module to create a 

limited window of intervention after a measurable road surface change.  For the 

shoulder induced accident scenario, the centerline crossing time was increased from 
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1.0s to 1.3s for a 30% improvement.  The final vehicle heading angle was reduced by 

approximately 45% across multiple scenarios resulting in a smaller required 

corrective steering input from the driver.  While not designed to remove the danger 

completely, the steering controller can provide precious assistance to the driver so 

that evasive maneuvers may be performed to avoid a crash. 

 

6.2 Future Research Challenges 

Current steering research hinges on two factors: safety and driver preference.  

From a safety perspective, control algorithms can be developed to intervene or warn 

the driver in hazardous situations.  However, from a more fundamental standpoint, 

safety can be improved by ensuring that the driver's intended commands are obeyed 

by the vehicle.  A worst case steering intervention algorithm was presented in Chapter 

5 to compensate for a driver's reaction time in quickly changing road conditions.  

Although useful and relevant to steering safety, it was designed for an occasional 

dangerous event - road runoff.  The other side of safety is controllability in everyday 

driving situations; ensuring that the vehicle behaves and provides feedback in a 

predictable manner.  On a broad scale, this may be achieved with careful tuning of the 

understeer coefficient and the power steering system.  However, each driver's desire 

for feedback and responsiveness varies considerably.  At this point, safety merges 

with driver preference.  For instance, driver preference may be traditionally 

considered to apply to a driver's happiness, but in this case, it can be expanded to 

include a driver's ability to control the vehicle.  This illustrates the core problem: 
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How can a vehicle's steering be tuned to give each driver optimal control and 

happiness?  All drivers are different, so no single setting will ever be able to 

accomplish this.  A smart steering system would be required to adapt to the driver's 

preferences. 

With this problem identified, the next stage focuses on examining the major 

problem of developing a steering system that adapts to the driver.  The major hurdle 

here is the knowledge that humans are remarkable control systems.  Drivers will 

likely adapt to any reasonable steering setting whether they prefer it or not.  

Furthermore, even if a setting is moved in a favorable direction for the driver, the 

driver may react poorly to the initial change due to the prior adaptation to the 

previous setting.  The problems faced in developing this controller will be vastly 

different from typical control theory.  Setting changes will need to be performed in 

discrete increments, and a subsequent unweighted learning time (i.e., grace period 

during which a driver may adapt to the new setting) will always be required.   

The completion of the objective steering metric research in Chapter 4 offers 

an opportunity for an auto-tuning steering controller.   The auto-tuning steering 

research would focus on the development of a controller that can learn a driver's 

steering preference and adapt the steering setting to match it.  With a potentially long 

time delay in receiving a reliable feedback signal, the controller would need to be 

designed with built in “patience”.  The largest obstacle with this controller would be 

determining the exact point when the feedback signal can be trusted to make a tuning 

decision.  Even with an ideal objective metric, the driver will always be fighting the 
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control authority to some degree as his/her natural adaptive system tries to take over.  

If successful, this auto-tuning steering controller would become a valuable module in 

the steering simulator.  No longer would discrete steering tests with tedious 

questionnaires be required.  A subject would simply be able to drive the simulator for 

a set amount of time, and upon completion the subject's optimal steering setting 

would be known.   

An active steering controller to mitigate shoulder induced accidents was 

presented in Chapter 5.  The goal of the controller was to intervene when the driver 

was unaware of road surface changes.  Although validated for a generic steering 

input, the controller should be tuned and validated in a simulator environment with 

human test subjects.  This approach would help demonstrate the nonintrusive nature 

of the controller during standard driving conditions and also provide insight into the 

response time of drivers during these deadly scenarios.  The true value of the active 

steering controller could then be evaluated to set the target for future research. 
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Appendix A 

 

Pilot Study 1 and 2 Scenario Questionnaire 

The first questionnaire developed featured sixteen questions that asked the 

drivers to evaluate the steering system in terms of fun, control, ease, and safety.  

These questionnaires were administered after each steering configuration experienced 

by the drivers during the two pilot studies.   

 

Q1 I had good control over the vehicle. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q2 It was easy to drive this vehicle. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q3 The vehicle went where I wanted it to go. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q4 I felt that I could drive this vehicle safely at low speeds. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q5 I was able to steer the vehicle accurately. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q6 Driving this vehicle for a long distance would make me tired. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q7 I felt in control of the vehicle at all times. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
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Q8 The steering on my vehicle makes it fun to drive. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
  
Q9 I felt that I could drive this vehicle safely at high speeds. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q10 I was comfortable driving this vehicle. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q11 I had to apply lots of steering corrections to get the vehicle to go where I wanted. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q12 I felt that I could drive this vehicle safely if I had to swerve around an object on the road. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q13 I felt that I could drive this vehicle safely if I had to make a sudden stop in an emergency. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q14 I had pay close attention to keep the vehicle where I wanted it on the road. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q15 I had to apply a lot of physical effort to get the vehicle to go where I wanted. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
  
Q16 The steering seemed too sensitive on this vehicle. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Agree    Disagree 
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Appendix B 

 

Pilot Study 1 Raw Data 

The raw data for Pilot Study 1 has been presented for the eleven test subjects, 

six configurations, and sixteen questions. 

    Survey Question # 
Subject Configurations 1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 C1 4 4 5 5 7 6 2 6 6 2 6 4 2 7 5 4 
1 C2 5 5 6 6 7 7 2 6 6 5 6 2 5 7 4 5 
1 C3 6 6 6 6 7 6 2 5 6 5 6 3 6 7 3 6 
1 C4 6 6 7 6 7 7 2 6 6 6 6 2 6 7 4 6 
1 C5 5 5 6 5 6 5 2 5 6 4 6 6 4 6 5 3 
1 C6 5 5 5 4 6 4 2 4 6 2 6 5 2 6 4 2 
2 C1 5 5 5 5 5 5 5 5 5 5 5 4 3 2 4 4 
2 C2 5 5 5 5 5 5 5 5 5 5 5 2 4 4 5 5 
2 C3 6 6 6 6 6 6 6 6 6 6 5 2 5 6 4 4 
2 C4 5 6 6 6 6 6 5 5 5 5 5 3 5 5 4 5 
2 C5 5 6 5 5 6 5 6 5 5 4 5 4 4 4 5 5 
2 C6 5 4 5 4 7 5 6 5 5 4 5 5 5 5 6 5 
3 C1 6 5 6 5 7 5 4 5 5 6 5 1 4 5 6 5 
3 C2 7 7 7 6 5 7 1 7 7 7 5 5 5 6 4 4 
3 C3 4 4 4 3 5 3 5 3 2 2 3 5 3 4 7 2 
3 C4 5 5 3 2 6 3 6 4 1 4 3 3 1 2 6 1 
3 C5 6 6 6 5 5 5 4 5 5 5 4 4 4 5 5 4 
3 C6 6 6 6 6 7 7 2 6 6 7 5 1 5 6 5 7 
4 C1 6 6 6 6 7 7 1 6 7 6 6 3 5 6 4 6 
4 C2 4 4 5 4 6 5 4 2 3 2 4 3 2 6 5 4 
4 C3 5 6 4 5 7 3 3 5 3 3 5 5 5 5 4 6 
4 C4 5 5 5 5 7 6 2 5 5 4 5 3 5 4 3 4 
4 C5 5 4 5 3 6 3 2 2 2 2 5 6 2 2 6 4 
4 C6 5 6 5 4 7 5 2 4 7 6 5 4 6 5 5 6 
5 C1 7 7 7 6 7 6 3 6 6 5 6 2 3 3 2 6 
5 C2 7 7 6 6 7 6 4 6 6 6 7 1 5 4 2 6 
5 C3 7 6 6 6 7 6 5 6 6 5 6 3 4 5 4 5 
5 C4 7 7 6 5 7 6 6 6 6 4 5 3 4 5 4 5 
5 C5 7 7 6 7 7 6 2 6 6 5 6 2 4 3 1 7 
5 C6 7 7 6 7 7 6 5 6 6 6 6 2 6 5 3 6 

Table B.1: Raw questionnaire data for Pilot Study 1 for subjects 1-5 
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    Survey Question # 

Subject Configurations 1  2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
6 C1 4 4 3 4 5 5 6 5 3 4 3 5 3 5 5 3 
6 C2 6 6 6 6 7 6 5 6 5 6 5 5 6 5 5 6 
6 C3 1 1 1 2 2 2 6 1 1 1 1 7 1 2 6 3 
6 C4 6 5 4 5 5 5 5 6 4 6 6 5 5 5 4 6 
6 C5 6 5 5 6 6 5 6 5 3 3 4 3 4 5 5 3 
6 C6 4 3 3 4 5 4 6 4 3 3 4 4 4 5 4 4 
7 C1 7 6 6 6 7 6 6 5 5 6 6 6 5 5 6 6 
7 C2 6 6 6 5 7 6 6 4 5 6 6 6 5 5 6 7 
7 C3 7 7 7 6 7 6 7 6 6 6 6 6 5 5 6 5 
7 C4 5 5 6 5 7 5 6 4 5 5 6 6 5 5 6 5 
7 C5 3 4 4 3 6 1 6 4 3 4 4 6 5 4 7 4 
7 C6 4 4 5 3 7 5 6 3 4 3 4 7 5 5 7 4 
8 C1 7 7 6 6 6 6 1 7 7 7 7 1 7 7 1 7 
8 C2 4 3 3 2 5 2 7 3 3 2 2 6 2 2 6 4 
8 C3 6 6 5 6 7 7 2 6 6 6 6 1 6 6 2 6 
8 C4 4 5 4 5 6 5 7 4 3 4 4 3 4 4 6 3 
8 C5 7 7 7 7 7 6 1 5 7 7 6 2 7 6 2 6 
8 C6 2 4 3 3 5 2 6 2 2 2 2 7 3 3 7 3 
9 C1 4 5 4 5 6 5 4 5 4 4 5 2 3 4 3 4 
9 C2 6 6 6 5 7 6 5 6 5 6 5 1 5 7 2 5 
9 C3 5 5 4 5 7 5 3 4 3 4 4 3 3 2 4 4 
9 C4 4 2 3 3 4 3 5 4 4 3 4 6 2 4 3 4 
9 C5 7 6 7 6 7 6 4 5 5 6 6 1 6 7 1 7 
9 C6 3 4 3 4 5 4 5 3 2 2 3 4 2 2 5 4 
10 C1 5 4 4 5 6 5 2 4 2 3 5 3 3 3 5 6 
10 C2 4 5 4 4 6 5 3 5 2 3 5 3 3 3 5 6 
10 C3 5 5 5 5 5 4 2 4 2 3 4 3 2 3 5 6 
10 C4 6 5 5 5 7 5 4 4 3 4 5 2 4 2 4 6 
10 C5 6 5 6 5 7 5 3 5 3 5 5 2 4 4 3 5 
10 C6 5 5 5 6 5 5 1 3 3 3 5 3 2 1 4 7 
11 C1 4 4 4 4 6 6 3 4 5 5 4 3 3 6 3 5 
11 C2 3 4 4 4 6 4 4 3 4 3 3 5 3 6 3 4 
11 C3 2 3 2 2 5 2 6 2 3 2 2 6 1 6 5 6 
11 C4 1 1 2 2 7 3 4 2 4 1 3 6 3 6 6 4 
11 C5 4 5 4 5 7 4 4 4 5 4 5 2 6 6 3 5 
11 C6 4 4 3 6 6 6 3 3 5 6 4 2 5 2 3 2 

Table B.2: Raw questionnaire data for Pilot Study 1 for subjects 6-11
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Appendix C 

 

Pilot Study 2 Raw Data 

The raw data for Pilot Study 2 has been presented for the nine test subjects, 

six configurations, and sixteen questions. 

    Survey Question # 
Subject Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 

1 C1 5 5 5 6 6 3 5 6 6 5 3 6 7 3 3 6 
1 C2 3 4 3 2 2 4 1 1 1 4 7 1 7 5 5 1 
1 C3 2 2 5 1 2 1 3 5 5 5 6 4 4 3 2 5 
1 C4 4 4 4 5 4 2 5 5 6 6 5 6 5 1 7 5 
1 C5 5 5 4 4 4 1 5 4 6 5 6 2 5 3 3 4 
1 C6 5 5 4 5 4 3 5 4 5 5 5 3 4 3 5 5 
2 C1 5 5 4 4 4 5 4 3 5 4 2 3 4 5 2 3 
2 C2 5 5 4 4 4 5 4 3 5 4 2 2 3 5 2 3 
2 C3 5 5 4 5 5 4 5 3 5 4 2 3 4 4 2 3 
2 C4 4 4 4 5 5 5 5 3 4 4 3 3 3 5 2 3 
2 C5 4 4 4 4 4 3 3 3 4 4 2 2 3 4 2 4 
2 C6 2 2 2 3 2 3 2 2 2 2 4 2 4 3 4 2 
3 C1 4 4 4 5 5 2 4 4 3 4 4 3 5 2 3 4 
3 C2 5 5 5 6 6 4 5 4 6 5 3 4 3 2 3 5 
3 C3 4 5 5 4 4 3 5 4 4 4 5 4 4 2 4 4 
3 C4 5 4 5 5 4 3 4 4 5 4 3 5 3 3 2 5 
3 C5 6 6 6 7 6 2 6 4 6 5 2 5 3 3 3 6 
3 C6 6 6 6 6 5 2 6 4 5 6 2 5 3 3 2 6 
4 C1 5 4 6 7 6 2 7 7 6 7 2 6 2 2 3 5 
4 C2 6 5 7 7 7 2 6 7 6 6 2 5 3 3 2 6 
4 C3 6 6 6 6 6 2 6 7 7 7 5 6 3 5 2 7 
4 C4 6 6 6 6 6 2 6 7 7 7 5 6 2 4 1 7 
4 C5 4 4 4 4 4 4 4 5 4 4 5 4 5 5 5 5 
4 C6 6 6 6 6 6 2 5 6 6 6 3 5 3 3 2 6 
5 C1 5 5 5 5 5 1 5 5 5 5 2 4 3 4 4 4 
5 C2 6 6 6 6 6 7 6 6 6 6 4 5 3 2 4 6 
5 C3 5 5 5 6 4 7 5 5 6 5 6 5 3 2 4 4 
5 C4 5 5 5 5 5 2 6 5 6 5 2 6 4 2 4 5 
5 C5 6 6 5 5 6 1 6 6 6 5 3 4 3 2 4 5 
5 C6 5 6 6 6 5 1 5 5 5 5 3 3 3 3 4 5 

Table C.1: Raw questionnaire data for Pilot Study 2 for subjects 1-5 
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    Survey Question # 

Subject Configuration 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 
6 C1 6 6 6 6 4 5 6 4 6 6 5 5 3 5 3 4 
6 C2 6 6 6 6 4 4 6 4 6 6 5 5 3 4 3 4 
6 C3 6 6 6 6 4 4 6 4 6 6 5 5 3 4 3 4 
6 C4 6 6 6 6 5 5 6 5 6 6 5 5 3 5 3 5 
6 C5 4 4 6 6 3 2 4 5 5 6 6 4 4 2 3 6 
6 C6 5 6 5 4 2 5 5 1 6 5 6 2 4 5 1 2 
7 C1 6 6 7 6 6 2 7 7 5 7 1 4 5 1 2 7 
7 C2 4 3 4 3 3 3 2 2 2 3 6 2 7 3 6 3 
7 C3 6 6 7 6 6 3 5 6 5 6 5 4 5 2 2 6 
7 C4 5 6 6 5 6 2 4 6 4 6 3 4 5 2 4 5 
7 C5 5 5 5 4 5 2 5 5 4 6 3 4 5 1 2 5 
7 C6 5 5 4 6 4 6 4 4 5 4 5 3 5 5 1 4 
8 C1 3 4 3 3 3 6 1 2 2 2 5 2 4 5 4 1 
8 C2 3 3 2 3 2 6 2 4 2 5 6 2 6 6 2 2 
8 C3 2 2 2 3 3 7 2 4 2 5 6 2 6 6 4 1 
8 C4 6 6 5 6 6 2 6 6 6 6 1 4 3 4 2 6 
8 C5 3 4 3 3 3 6 1 2 2 2 5 2 4 5 4 1 
8 C6 3 4 3 3 3 6 1 2 2 2 5 2 4 5 4 1 
9 C1 4 4 4 4 4 5 4 4 4 4 4 3 5 3 3 3 
9 C2 4 4 4 4 4 5 3 3 2 3 4 2 4 3 3 3 
9 C3 4 4 3 5 5 5 3 3 3 3 5 3 6 4 3 3 
9 C4 4 4 3 4 3 3 4 3 4 4 4 2 5 4 3 3 
9 C5 4 4 4 4 4 5 3 3 3 3 5 3 5 4 3 2 
9 C6 4 4 4 3 3 4 4 3 2 3 3 3 6 3 3 3 

Table C.2: Raw questionnaire data for Pilot Study 2 for subjects 6-9 
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Appendix D 

 

Final Demographics Questionnaire 

Prior to driving the simulator, test subjects were required to read the following 

letter as well as fill out the subsequent questionnaire.  The survey was used to classify 

each driver in various demographic categories.   

Informational Letter - Evaluating reactions to various automobile steering systems 
 
The purpose of this study is to evaluate the characteristics of various types of 
automobile steering systems.  Approximately 20 licensed drivers over the age of 18 
will be invited to participate. As part of the research procedures, you will be asked to 
drive a route on our driving simulator, then fill out a short questionnaire. This 
procedure will be repeated several times.  Information from this survey will allow us 
to know more about what drivers think about various types of steering.  There are no 
risks involved. 
 

  This study should take less than 1 hour to complete.  This study is 
anonymous so no one will know how you drove in the simulator or responded to any 
of the questionnaire items.   
 
 Participation is voluntary.  You can refuse to answer any questions at any time 
and can withdraw without any penalty. Return of the questionnaire is deemed consent 
to participate in the research study.  
 

 The Principal Investigator on this research study is Dr. John Wagner and the 
co-investigator is Dr. Fred Switzer.  Dr. Switzer may be contacted at 
switzef@clemson.edu.  If you have any questions regarding your rights as a research 
participant, you may contact the Office of Research Compliance at 864-656-6460. 

 
Thank you for your assistance in this study. 
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Q1,Q2 Your age ________  Your gender (M or F) _______  
     {sec. A} 
  
Q3 How long have you been driving (how long since you got your driver’s 

license)?   
 (Feel free to use portions of years, for example: 3.5 years)   
  ________ years 
  
Q4 Have you ever purchased your own car? (Y or N) _____ 
  
Q5 What is your profession (or your major if you’re in college)? 

___________________ 
  
Q6 If you have any children, what are their ages? ________ 
  
Q7 About how many miles do you put on your primary vehicle each year? 

______ 
  

For the next question please tell us what percentage of your time driving you 
spend in each type of driving (note that the percentages should add up to 
100%): 

Q8 City/urban driving    _____ 
Q9 Small town/suburban driving   _____ 
Q10 Rural/country road driving   _____ 
Q11 Intercity highway driving   _____ 
        100% 
 
Q12 Do you use your vehicle for towing (utility trailer, boat, etc.)?  
 
Q13 How much of your driving time (what percentage) do you spend towing?   

_____ % 
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Q14 I see my car primarily as means of getting from one place to another. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q15 My car is source of pride for me. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q16 I consider myself someone who is interested in cars, a “car person”. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q17 I play lots of driving video games. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q18 I pay attention to what kinds of cars my friends have. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q19 It’s important to me that my vehicle is fun to drive. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q20 I play lots of video games. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
    
Q21 I have fun driving. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q22 I spend a lot of my time taking care of my car. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  
 Disagree   Agree 
   
Q23 How a vehicle steers plays a big role in whether or not I want to buy it. 
      1   –   2   –   3   –   4   –   5   –   6   -   7 
 Strongly    Strongly  

Disagree   Agree
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If you’ve ever purchased your own car or

the purchase of a car, please answer the following questions (if not, then 
please skip this section): 

 had a substantial amount of input or 
control over   {sec. B} 

 
Q24 What make (Chrysler, Honda, Ford etc.) was it? ____________ 
 
Q25 What model (PT Cruiser, Accord, Explorer etc.) was it? ___________ 
 
Q26 What model year (year it was made) was it? __________ 
 
Q27 What was the approximate cost of that car?   $ __________ 
 

Rate the following factors on how important they were

 

 in the purchase of the 
car: 

Q28 a) The looks/appearance of the car. 
   

        1   –   2   –   3   –   4   –   5   –   6   -   7 
 Not at all     Extremely  
 important     important 
  
  
Q29 b) The cost of the car. 
   

       1   –   2   –   3   –   4   –   5   –   6   -   7 
 Not at all     Extremely  
 important     important 
   
   
Q30 c) How much fun the car was to drive. 
   

       1   –   2   –   3   –   4   –   5   –   6   -   7 
 Not at all     Extremely  
 important     important 
   
   
Q31 d) The practicality/utility of the car. 
   

       1   –   2   –   3   –   4   –   5   –   6   -   7 
 Not at all     Extremely  
 important     important 
   
   
Q32 e) The gas mileage. 
   

     1   –   2   –   3   –   4   –   5   –   6   -   7 
 Not at all     Extremely  
 important     important 
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Q33 How long did it take for you to become comfortable driving your new 

car? ______ 

Q34 Do you have (or did you have) a repair manual for this car?  
(Y or N)  ____ 

Q35 Do you know approximately how much horsepower this car has/had? 
(Y or N) ____ 

Q36 If yes, about how much? ____ hp 

Q37 Do you know approximately how much torque this car has/had?  
(Y or N) ____ 

Q38 If yes, about how much? _____ lb/ft 
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Appendix E 

 

Demographics Questionnaire Data 

The following tables contain the demographic data collected for all 43 human.  

The data corresponds with the 38 question survey in Appendix D. 
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Subject Age Gender Driving Time Purchased Profession 

1 23 m 8 y Mech Eng 
2 42 m 24 y Mech Eng 
3 25 m 9 y Mech Eng 
4 25 f 11 y student services 
5 24 m 8 y Mech Eng 
6 19 m 3.5 n Psych 
7 22 f 6 n Sociology 
8 22 f 7 y Psych 
9 24 f 8.5 y Sociology 

10 22 f 4 y Electrical Eng 
11 23 f 7 y Psych 
12 22 f 5.5 y Psych 
13 20 f 4.75 n Education 
14 21 f 5 n Psych 
15 18 f 3 n Biology 
16 19 f 4 n Health Science 
17 20 m 5 y Electrical Eng 
18 21 m 6 n Psych 
19 20 f 3.5 n Psych 
20 45 f 28 y THRD 
21 21 f 0 n Wildlife Biology 
22 20 f 4.5 n Psych 
23 19 f 4 y Economics 
24 21 m 4 n Comp Eng 
25 23 m 6 n Sociology 
26 18 f 2.5 n communications 
27 18 m 2 n English 
28 18 m 4 y Business 
29 18 m 2 n Graphic Communications 
30 18 f 2.5 y Biology 
31 18 m 3.5 n Business 
32 18 f 2.5 n Business 
33 18 f 2 n communications 
34 18 f 3.5 n Packaging Science 
35 18 f 3 n Travel & Tourism 
36 20 f 5 y Psych 
37 18 f 3.5 n Packaging Science 
38 18 m 2 y Biology 
39 18 f 3 y Graphic Communications 
40 18 m 2.5 n Forest Resource Management 
41 18 f 3 n Nursing 
42 20 f 3 n Psych 
43 20 f 4 y Psych 

Table E.1:  Raw data from demographics questionnaire for questions 1-5 
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Subject Children Age Miles city small town rural highway 
1 0 20000 5 30 15 50 
2 3, 5 12000 0 60 20 20 
3 0 5000 20 30 30 20 
4 0 25000 15 45 40 0 
5 0 10000 10 60 20 10 
6 0 15000 50 20 20 10 
7 0 15000 20 40 20 20 
8 0 50000 15 50 20 15 
9 0 8000 10 60 20 10 

10 0 20000 20 40 10 30 
11 0 6000 25 25 25 25 
12 0 10000 25 50 10 15 
13 0 5000 5 25 10 60 
14 0 5000 50 20 5 25 
15 0 15000 50 20 5 25 
16 0 15000 15 25 10 50 
17 0 7000 10 40 30 20 
18 0 10000 2.5 80 2.5 15 
19 0 5000 2 3 20 75 
20 0 12000 0 94 6 0 
21 0 15000 10 20 10 60 
22 0 15000 10 50 20 20 
23 0 11000 15 50 10 25 
24 0 4000 5 15 15 65 
25 0 3000 20 60 10 10 
26 0 15000 15 60 10 15 
27 0 2000 5 45 15 30 
28 0 50000 25 25 25 25 
29 0 15000 50 45 0 5 
30 0 25000 5 5 20 70 
31 0 15000 80 5 5 10 
32 0 25000 5 80 5 10 
33 0 20000 25 25 25 25 
34 0 15000 0 70 20 10 
35 0 15000 50 20 15 15 
36 0 20000 50 10 5 35 
37 0 3500 5 90 3 2 
38 0 15000 25 15 25 35 
39 0 15000 10 80 5 5 
40 0 1000 10 60 20 10 
41 0 15000 10 50 15 25 
42 0 15000 10 70 10 10 
43 0 12000 0 25 25 50 

Table E.2:  Raw data from demographics questionnaire for questions 6-11 
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Subject % Tow 1 2 3 4 5 6 7 8 9 10 
1 1 2 6 6 4 6 7 3 7 5 6 
2 0 6 5 3 1 2 7 1 6 5 5 
3 5 5 5 6 2 4 5 2 6 6 3 
4 5 7 2 3 1 4 2 1 4 1 5 
5 0 7 4 7 3 6 7 7 7 1 7 
6 1 7 7 7 5 7 7 7 7 7 7 
7 0 6 4 2 1 5 4 1 5 3 5 
8 0 7 3 2 2 4 4 2 6 3 4 
9 0 6 3 1 2 4 6 1 6 4 4 

10 0 4 4 6 3 5 5 2 6 3 5 
11 5 6 1 3 1 1 4 1 4 6 7 
12 0 6 2 2 1 3 2 1 3 2 4 
13 0 6 4 1 1 2 5 1 6 3 6 
14 0 7 4 3 1 3 5 1 6 3 4 
15 0 7 4 2 1 5 3 1 3 1 4 
16 0 7 5 3 2 3 6 2 7 5 5 
17 0 5 4 3 4 5 5 5 5 3 5 
18 0 5 5 3 2 5 6 2 4 3 5 
19 0 7 2 2 1 2 2 1 5 4 4 
20 0 7 2 2 1 4 6 1 6 2 7 
21 0 5 4 3 1 5 5 1 4 4 5 
22 0 7 7 6 2 7 6 1 5 5 6 
23 0 7 5 2 3 6 5 2 5 3 4 
24 0 6 6 3 5 6 6 7 7 5 6 
25 0 7 5 2 2 2 5 4 4 3 6 
26 0 5 1 1 1 2 6 1 5 3 7 
27 0 6 5 3 5 6 4 6 4 2 6 
28 10 3 6 5 5 6 6 6 5 6 6 
29 0 7 7 5 3 4 5 5 4 5 4 
30 0 4 6 6 1 6 7 1 7 7 7 
31 5 5 4 5 5 3 7 7 7 5 7 
32 0 7 7 5 3 3 4 2 7 4 5 
33 10 6 6 7 4 6 6 2 6 6 7 
34 0 5 4 3 1 6 5 4 6 2 6 
35 0 6 5 4 1 6 6 1 6 5 5 
36 0 7 5 2 1 4 6 3 6 5 7 
37 0 5 4 5 2 4 5 1 5 6 6 
38 5 6 5 4 3 6 5 4 7 5 4 
39 0 6 4 3 2 4 3 1 7 3 5 
40 0 6 5 4 4 6 6 5 5 4 6 
41 0 7 3 5 1 6 4 1 5 4 6 
42 0 6 4 3 2 5 3 1 4 3 5 
43 0 7 5 4 1 4 6 2 5 6 5 

Table E.3:  Raw data from demographics questionnaire for questions 12-23 
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Subject Make Model Year Cost 
1 BMW M Roadster 2001 25500 
2 Honda Civic 1989 1500 
3 Ford Mustang 1992 4000 
4 Honda Accord 1997 2500 
5 Toyota Corolla 1994 3000 
6 Hyundai Tiburon 2006 26000 
7         
8 Nissan Maxima 1995 4500 
9 Mercedes C Class 2007 27000 

10 Honda Accord 1999 8000 
11 Toyota Camry 2002   
12 Chevrolet Cavalier 2000 5000 
13 Chevrolet Blazer 2000   
14         
15 Honda Civic 2001 11000 
16 Honda Accord 1997 6500 
17 Acura RSX-Type S 2004 23000 
18         
19 Ford Focus 2001   
20 Honda Accord 2001 16000 
21         
22 Ford Mustang 2002 18000 
23 Honda Civic 2005 20000 
24 Volvo S40 2000 12000 
25 Dodge Durango 2003   
26         
27 Volvo S70 1998 5000 
28 Jeep Cherokee 1999 6500 
29 Jeep Cherokee 2005 26500 
30 Lexus IS 300 2003 40000 
31 Jeep Grand Cherokee 1998 6000 
32 Land Rover Discovery 2004 35000 
33 Chevrolet Tahoe 2006 40000 
34 Honda CR-V 2000   
35         
36 Hyundai Sonata 2006 18700 
37 Toyota 4 Runner 2007 28500 
38 Toyota 4 Runner 1998 8500 
39 Toyota Camry 1995 3000 
40 Jeep Wrangler 2005 18000 
41 Mitsubishi Eclipse 2000 10500 
42 Ford Focus 2001 15000 
43 Toyota 4 Runner 2000 15000 

Table E.4:  Raw data from demographics questionnaire for questions 24-27 
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Subject a  b c d e Comfort Repair HP Torque 
1 6 5 7 2 3 12 hr n 315 0 
2 6 6 5 7 7 1 week y 60 0 
3 3 6 6 2 2 1 week y 230 300 
4 2 7 4 6 6 2 weeks y 0 0 
5 7 1 7 7 7 1 week y 76 80 
6 7 5 5 5 7 3 weeks y 196 0 
7           1 month n 0 0 
8 6 6 2 4 6 immediately y 0 0 
9 7 6 7 7 6 2 days n 0 0 

10 7 7 5 7 6 1 week y 0 0 
11 6 5 4 4 7 1 week y 0 0 
12 3 6 3 4 5 immediately y 0 0 
13 5 6 5 7 6 1 week y 0 0 
14                   
15 6 5 5 1 7 1 day y 0 0 
16 7 7 5 7 6 2 weeks n 0 0 
17 5 5 4 3 5 6 months n 200 0 
18 6 7 5 6 7   y 0 0 
19 3 6 3 7 7 1 week y 0 0 
20 6 3 6 6 7 3 weeks y 0 0 
21                   
22 7 7 7 3 5 1 week y 185 0 
23 6 3 5 7 7 1 month y 0 0 
24 5 5 6 7 6 2 weeks n 0 0 
25 5 3 6 6 5 2 weeks y 0 0 
26                   
27 6 7 3 7 6 3 days y 0 0 
28 5 5 5 6 3 2 days y 210 0 
29 6 5 4 5 5 1 week n 0 0 
30 7 2 7 7 7 2 weeks y 0 0 
31 6 5 7 6 7 1 week n 0 0 
32 5 4 4 7 4 1 week y 0 0 
33 7 6 5 7 4 2 weeks y 0 0 
34 6 5 6 5 6 1 month y 0 0 
35                   
36 7 6 6 6 7 3 weeks y 0 0 
37 6 3 5 6 4 1 week y 0 0 
38 6 6 6 6 3 1 week y 250 0 
39 2 7 5 7 7 1 week n 0 0 
40 7 6 6 5 6 1 month n 0 0 
41 7 5 5 6 4 2 weeks y 0 0 
42 3 6 4 7 7 1 day y 0 0 
43 5 7 5 7 5 1 week y 0 0 

Table E.5:  Raw data from demographics questionnaire for questions 28-38 
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Appendix F 

 

Final Scenario Questionnaire 

The Pilot Study questionnaire was streamlined based on the results of the two 

studies to a nine question survey.  Questions pertaining to vehicle safety were 

removed.  The following questionnaire was completed by test subjects after each of 

fifteen driving scenarios experienced during the demographics study.  

Think about the scenario in which you just drove. 
Circle

 

 the number below each question that best represents how you felt while you 
were driving that vehicle. 

Q1  The steering on this vehicle makes it fun to drive. 
     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 

  
Q2  I had good control over this vehicle. 

     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 

 
Q3  I had to apply a lot of physical effort to get this vehicle to go where I wanted. 

     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 

  
Q4  I felt confident in my ability to drive the vehicle safely. 

     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 

  
Q5  I was comfortable driving this vehicle. 

     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly 
Disagree   Agree 

  
Q6  It was easy to drive this vehicle. 

     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 
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Q7  The vehicle went where I wanted it to go. 
     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 

  
Q8  I had to pay close attention to keep the vehicle where I wanted it on the road. 

     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 

  
  
Q9  The steering seemed too sensitive on this vehicle. 

     1   –   2   –   3   –   4   –   5   –   6   -   7 
Strongly    Strongly  
Disagree   Agree 
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Appendix G 

 

Demographics Study Raw Data 

The data from the nine item questionnaires have been presented here.  Each of 

the 43 subjects completed the questionnaire fifteen times, once after each scenario. 

Subject Scenario 
Question 

1 2 3 4 5 6 7 8 9 
1 C1 5 5 4 6 5 5 5 3 2 
1 C2 5 5 5 6 4 3 5 3 2 
1 C3 1 2 7 5 2 2 1 3 1 
1 C4 2 3 6 5 3 2 2 3 1 
1 C5 4 4 5 6 3 3 3 3 2 
1 C6 3 3 5 5 4 3 2 3 1 
1 C7 3 4 5 5 4 3 3 3 2 
1 C8 3 4 5 5 4 3 3 4 2 
1 C9 4 5 3 5 5 5 4 3 2 
1 C10 5 5 3 6 5 5 5 3 3 
1 C11 2 3 5 5 3 3 2 5 1 
1 C12 3 4 6 4 3 4 5 3 2 
1 C13 4 5 3 6 5 4 5 3 2 
1 C14 3 4 5 5 4 3 3 5 1 
1 C15 4 5 3 6 5 5 5 3 2 
2 C1 6 6 3 6 6 6 5 3 5 
2 C2 6 6 3 6 6 5 6 4 5 
2 C3 5 3 5 4 3 3 4 5 3 
2 C4 4 5 4 6 4 4 5 4 4 
2 C5 5 5 3 5 5 5 6 3 4 
2 C6 6 5 5 5 4 3 5 5 4 
2 C7 6 6 2 5 5 5 4 3 5 
2 C8 5 5 4 5 5 3 4 4 5 
2 C9 4 3 6 3 3 4 5 6 4 
2 C10 5 5 4 5 6 4 5 4 5 
2 C11 7 7 2 7 7 6 6 2 4 
2 C12 5 5 3 5 6 4 6 4 5 
2 C13 6 6 3 6 5 5 6 3 5 
2 C14 7 6 3 6 6 6 4 3 4 
2 C15 6 6 3 6 6 4 6 4 5 

Table G.1: Raw demographics study data for subjects 1 and 2
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
3 C1 5 5 2 5 5 5 5 3 3 
3 C2 5 5 2 5 5 5 5 3 2 
3 C3 4 5 2 5 5 5 5 4 3 
3 C4 4 5 3 5 4 5 5 3 2 
3 C5 5 6 1 6 6 5 5 2 2 
3 C6 4 3 1 4 4 5 4 4 3 
3 C7 4 4 3 5 4 4 4 3 3 
3 C8 4 4 3 4 5 4 5 4 3 
3 C9 4 4 2 4 4 5 4 4 3 
3 C10 5 6 2 6 6 5 5 3 2 
3 C11 6 6 2 6 6 5 5 2 2 
3 C12 5 5 2 6 5 5 5 3 2 
3 C13 5 5 2 5 5 5 5 3 2 
3 C14 4 3 3 4 4 4 4 3 3 
3 C15 6 6 2 6 6 6 5 2 2 
4 C1 3 4 1 3 4 3 4 6 2 
4 C2 3 3 1 3 3 3 3 7 2 
4 C3 3 3 1 2 2 2 3 7 3 
4 C4 3 3 1 3 3 3 3 6 2 
4 C5 4 3 1 3 2 2 3 6 2 
4 C6 3 2 1 2 2 2 2 7 2 
4 C7 3 3 1 2 3 3 3 7 2 
4 C8 2 2 2 2 1 2 2 7 2 
4 C9 3 3 1 3 2 2 3 7 2 
4 C10 2 3 2 3 2 2 3 7 2 
4 C11 3 3 1 2 3 2 3 7 2 
4 C12 4 4 1 4 4 4 4 6 2 
4 C13 3 3 1 3 2 2 3 7 2 
4 C14 2 1 2 2 1 2 3 7 2 
4 C15 3 2 1 2 2 3 3 7 2 

Table G.2: Raw demographics study data for subjects 3 and 4 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
5 C1 4 4 2 5 3 4 4 4 5 
5 C2 4 5 4 5 5 5 5 3 3 
5 C3 6 5 4 5 6 5 5 4 3 
5 C4 5 4 3 5 5 5 6 5 2 
5 C5 5 4 4 5 5 5 4 5 3 
5 C6 5 5 5 5 5 5 5 5 5 
5 C7 5 6 3 5 5 6 6 5 3 
5 C8 4 3 5 3 4 3 4 6 7 
5 C9 5 6 2 6 6 6 7 2 1 
5 C10 3 2 6 3 4 2 2 6 7 
5 C11 5 5 3 5 5 5 5 3 3 
5 C12 4 6 2 5 4 5 5 5 3 
5 C13 4 4 4 3 4 4 4 6 6 
5 C14 4 5 3 5 5 5 5 3 4 
5 C15 4 5 3 4 5 4 4 4 4 
6 C1 4 3 2 1 3 1 2 1 2 
6 C2 7 7 1 7 7 7 7 1 1 
6 C3 4 2 5 4 4 2 2 7 1 
6 C4 4 4 3 5 3 5 5 3 3 
6 C5 6 6 2 6 6 6 6 2 2 
6 C6 7 6 1 7 7 7 7 3 4 
6 C7 6 6 2 6 7 6 6 5 6 
6 C8 4 4 2 3 3 4 4 4 3 
6 C9 5 5 5 5 5 1 6 7 7 
6 C10 5 5 2 1 3 5 2 2 7 
6 C11 5 5 3 5 5 5 4 2 4 
6 C12 2 3 6 3 3 3 4 7 1 
6 C13 2 1 1 1 1 1 1 7 1 
6 C14 1 3 5 5 3 3 5 6 3 
6 C15 5 5 3 6 3 5 4 4 4 

Table G.3: Raw demographics study data for subjects 5 and 6 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
7 C1 2 2 5 2 3 3 2 5 5 
7 C2 5 5 3 4 4 4 5 3 3 
7 C3 1 1 7 1 1 1 2 6 7 
7 C4 5 5 3 4 4 5 5 2 2 
7 C5 2 2 2 1 2 3 2 4 2 
7 C6 2 1 6 2 2 2 2 6 2 
7 C7 4 4 2 3 3 4 4 5 2 
7 C8 3 2 5 1 1 3 3 6 3 
7 C9 2 2 6 2 2 2 2 6 5 
7 C10 2 2 7 1 1 1 2 7 2 
7 C11 5 5 3 4 4 4 5 6 3 
7 C12 4 3 5 3 3 3 5 5 4 
7 C13 4 3 6 2 2 3 4 7 2 
7 C14 6 6 3 6 6 5 5 2 1 
7 C15 3 4 5 4 4 4 4 5 4 
8 C1 3 4 4 5 4 4 4 4 3 
8 C2 3 5 4 5 4 3 3 3 2 
8 C3 5 5 3 5 6 6 5 4 3 
8 C4 4 6 3 6 6 5 4 3 3 
8 C5 5 4 2 4 5 5 5 4 3 
8 C6 5 5 3 5 5 6 5 4 3 
8 C7 3 5 4 4 5 4 4 4 2 
8 C8 3 3 3 4 4 5 4 5 5 
8 C9 2 4 5 3 3 2 3 4 2 
8 C10 5 5 3 5 6 5 4 4 3 
8 C11 3 4 5 4 2 2 4 4 2 
8 C12 2 2 5 3 3 3 3 4 2 
8 C13 5 6 2 6 6 6 6 2 2 
8 C14 2 4 4 4 3 3 4 3 2 
8 C15 2 5 4 4 4 2 5 3 1 

Table G.4: Raw demographics study data for subjects 7 and 8 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
9 C1 5 6 5 4 4 4 5 4 3 
9 C2 6 4 4 3 4 4 4 5 4 
9 C3 4 5 3 4 4 5 5 4 3 
9 C4 5 4 4 3 3 3 3 5 4 
9 C5 5 5 3 4 4 4 5 5 4 
9 C6 5 2 6 1 2 2 1 6 2 
9 C7 6 3 6 2 2 2 3 6 5 
9 C8 5 3 6 3 3 3 3 6 1 
9 C9 6 2 6 2 3 2 3 5 6 
9 C10 6 2 7 1 1 1 2 6 3 
9 C11 4 5 5 4 4 4 7 5 2 
9 C12 4 6 3 4 4 5 5 4 3 
9 C13 6 3 3 3 2 2 3 6 4 
9 C14 5 5 2 5 5 5 6 4 3 
9 C15 6 4 4 3 4 4 4 5 4 
10 C1 2 2 5 3 3 3 2 5 3 
10 C2 3 5 2 5 4 5 6 3 3 
10 C3 3 4 4 5 5 4 5 3 3 
10 C4 3 5 3 4 5 5 5 3 3 
10 C5 4 5 2 5 5 5 5 2 2 
10 C6 3 3 5 2 3 3 3 4 5 
10 C7 1 1 6 1 1 2 2 6 2 
10 C8 2 2 5 3 3 3 3 6 2 
10 C9 5 5 3 4 4 5 5 4 3 
10 C10 3 4 3 5 5 4 5 5 3 
10 C11 5 5 3 4 3 4 3 5 2 
10 C12 5 5 2 6 6 6 6 2 2 
10 C13 2 2 3 2 3 2 3 6 2 
10 C14 5 5 2 6 6 6 6 2 2 
10 C15 6 6 2 6 6 6 6 2 2 

Table G.5: Raw demographics study data for subjects 9 and 10 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
11 C1 6 4 6 3 4 5 5 5 2 
11 C2 5 2 4 2 3 2 3 7 7 
11 C3 5 6 3 5 5 5 5 6 3 
11 C4 6 3 6 2 4 3 5 7 4 
11 C5 7 7 2 7 6 6 6 3 2 
11 C6 6 6 3 3 3 4 5 5 3 
11 C7 6 4 4 4 4 6 5 7 4 
11 C8 6 4 3 4 4 5 3 4 4 
11 C9 4 4 5 4 2 4 4 6 6 
11 C10 6 6 4 4 4 5 5 5 2 
11 C11 7 6 4 3 4 4 3 5 3 
11 C12 5 1 6 1 2 3 4 6 4 
11 C13 7 4 6 6 6 5 4 4 2 
11 C14 6 6 4 5 4 6 6 6 3 
11 C15 5 2 6 2 2 2 3 7 6 
12 C1 4 3 5 3 2 3 3 5 5 
12 C2 2 2 4 2 2 3 5 5 5 
12 C3 3 5 4 4 3 5 4 5 6 
12 C4 5 6 4 5 6 5 5 4 3 
12 C5 6 6 2 5 6 5 5 3 4 
12 C6 3 2 5 1 2 3 2 5 5 
12 C7 4 1 6 1 1 1 1 6 3 
12 C8 6 5 3 6 5 5 6 5 2 
12 C9 6 5 4 4 6 5 5 4 3 
12 C10 4 2 5 1 3 2 1 6 5 
12 C11 5 4 4 4 4 4 4 5 3 
12 C12 6 6 3 6 6 6 6 2 2 
12 C13 2 2 7 2 1 3 2 7 7 
12 C14 4 4 5 5 4 4 3 6 6 
12 C15 5 4 2 3 3 3 3 7 5 

Table G.6: Raw demographics study data for subjects 11 and 12 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
13 C1 4 4 4 5 5 4 5 5 5 
13 C2 5 6 2 6 6 4 6 3 4 
13 C3 4 5 3 5 5 4 5 3 4 
13 C4 3 3 5 4 4 4 3 5 5 
13 C5 5 5 3 5 5 4 5 3 4 
13 C6 3 3 5 4 4 3 3 6 5 
13 C7 3 3 7 3 3 3 2 7 7 
13 C8 3 4 5 3 3 3 3 6 5 
13 C9 4 3 6 3 3 4 3 6 6 
13 C10 3 3 5 3 3 3 3 6 4 
13 C11 4 4 4 4 4 3 3 6 6 
13 C12 5 6 4 6 6 5 5 4 4 
13 C13 5 6 3 6 6 4 6 4 4 
13 C14 4 5 4 5 5 5 5 5 4 
13 C15 4 5 3 5 5 3 5 4 4 
14 C1 4 5 3 5 5 4 5 5 5 
14 C2 5 6 4 7 6 6 6 5 4 
14 C3 4 5 3 5 6 4 6 6 5 
14 C4 2 4 2 5 5 4 3 5 5 
14 C5 4 6 4 6 6 5 6 5 5 
14 C6 4 5 4 5 6 5 6 6 6 
14 C7 2 2 3 2 1 1 2 6 6 
14 C8 4 5 4 6 6 5 5 5 6 
14 C9 4 4 2 5 5 4 5 5 5 
14 C10 4 5 5 6 6 6 6 5 5 
14 C11 4 5 4 6 6 6 6 4 4 
14 C12 4 6 4 5 5 4 6 6 5 
14 C13 5 6 4 6 6 6 6 6 5 
14 C14 4 6 4 5 5 4 5 6 5 
14 C15 5 7 3 6 6 5 6 4 5 

Table G.7: Raw demographics study data for subjects 13 and 14 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
15 C1 5 3 3 4 5 5 4 7 5 
15 C2 2 2 7 3 3 1 3 7 5 
15 C3 7 7 3 7 7 6 6 6 4 
15 C4 1 1 6 1 3 2 3 7 4 
15 C5 7 7 1 7 7 7 7 4 1 
15 C6 2 2 2 1 2 2 5 7 1 
15 C7 2 2 7 3 3 2 3 7 5 
15 C8 5 5 4 5 5 5 5 6 3 
15 C9 1 1 7 1 1 1 2 7 2 
15 C10 6 6 2 6 6 6 4 7 2 
15 C11 5 5 6 5 5 4 6 6 4 
15 C12 3 5 5 3 4 4 2 7 5 
15 C13 6 5 4 5 5 5 6 7 3 
15 C14 4 5 5 5 5 4 5 5 2 
15 C15 3 3 6 3 2 2 2 7 5 
16 C1 4 3 4 4 4 4 3 5 5 
16 C2 6 6 2 7 7 7 7 2 2 
16 C3 6 6 3 6 6 7 6 3 2 
16 C4 5 6 2 6 6 6 6 2 2 
16 C5 5 6 3 6 6 7 7 2 3 
16 C6 4 4 5 4 4 4 3 6 4 
16 C7 3 2 6 2 2 2 2 6 6 
16 C8 3 3 6 2 3 2 2 6 7 
16 C9 3 3 5 2 2 2 1 3 2 
16 C10 4 4 3 4 4 4 4 5 5 
16 C11 6 7 2 7 7 7 7 2 2 
16 C12 4 5 5 5 5 4 5 5 4 
16 C13 6 6 2 6 6 7 7 2 2 
16 C14 6 6 3 6 6 6 6 3 2 
16 C15 6 6 2 6 6 6 6 2 2 

Table G.8: Raw demographics study data for subjects 15 and 16 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
17 C1 4 4 3 3 3 3 4 5 2 
17 C2 3 6 4 6 4 4 6 5 4 
17 C3 2 5 4 5 3 4 5 5 3 
17 C4 1 5 6 5 3 2 5 3 1 
17 C5 6 5 3 6 6 6 6 4 2 
17 C6 4 3 5 4 3 3 4 5 2 
17 C7 3 4 5 4 3 3 4 5 2 
17 C8 5 4 5 4 4 4 5 5 2 
17 C9 4 3 4 2 3 3 2 5 2 
17 C10 6 6 3 6 5 6 6 5 2 
17 C11 5 4 3 3 4 4 5 4 4 
17 C12 2 2 5 3 2 2 2 5 4 
17 C13 6 7 3 6 6 6 5 4 3 
17 C14 6 6 2 6 6 6 6 4 2 
17 C15 5 3 4 3 3 3 2 4 4 
18 C1 4 7 6 6 5 4 7 4 1 
18 C2 6 6 1 6 6 6 7 2 2 
18 C3 3 4 2 5 4 3 5 4 3 
18 C4 4 6 6 6 5 4 6 4 1 
18 C5 5 5 3 5 4 6 6 4 5 
18 C6 3 4 4 3 3 4 4 6 3 
18 C7 4 4 6 4 3 2 4 6 1 
18 C8 6 6 2 7 6 6 6 3 3 
18 C9 2 1 5 2 2 1 5 7 2 
18 C10 4 5 3 5 5 6 6 4 6 
18 C11 3 4 6 4 4 3 5 4 1 
18 C12 3 3 6 3 3 3 2 5 2 
18 C13 5 6 2 6 5 6 6 2 4 
18 C14 5 6 4 6 6 6 6 3 3 
18 C15 4 5 5 5 4 3 5 5 2 

Table G.9: Raw demographics study data for subjects 17 and 18 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
19 C1 2 2 6 2 2 2 2 7 2 
19 C2 2 3 5 2 2 3 2 7 2 
19 C3 2 2 7 2 2 2 1 7 1 
19 C4 2 3 6 3 3 3 2 7 2 
19 C5 3 2 6 1 2 2 1 7 1 
19 C6 3 3 7 1 3 2 1 7 1 
19 C7 2 2 7 2 2 2 2 7 2 
19 C8 2 1 7 1 2 1 1 7 2 
19 C9 2 1 7 1 2 2 1 7 2 
19 C10 2 1 7 2 2 2 1 7 2 
19 C11 2 2 6 2 2 2 2 7 2 
19 C12 2 3 6 3 2 2 2 7 2 
19 C13 2 1 7 2 1 2 1 7 2 
19 C14 1 1 7 1 3 2 1 7 1 
19 C15 2 2 7 2 1 2 2 7 2 
20 C1 2 5 2 5 3 4 5 3 2 
20 C2 3 5 3 5 3 3 5 4 4 
20 C3 2 3 3 4 3 2 3 3 4 
20 C4 2 5 2 5 4 2 3 3 2 
20 C5 2 4 3 5 4 4 4 4 4 
20 C6 2 2 4 2 2 2 2 7 4 
20 C7 1 1 7 1 1 1 1 7 2 
20 C8 4 4 3 4 3 3 3 4 3 
20 C9 2 2 6 1 1 2 2 6 3 
20 C10 3 4 3 3 3 3 4 4 4 
20 C11 3 5 4 5 3 3 4 5 4 
20 C12 2 4 2 4 2 2 4 4 2 
20 C13 3 5 3 5 5 3 5 4 4 
20 C14 3 5 3 5 4 4 4 4 2 
20 C15 3 5 4 5 3 3 5 4 4 

Table G.10: Raw demographics study data for subjects 19 and 20 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
21 C1 4 3 5 4 4 3 3 3 4 
21 C2 5 5 3 5 5 5 5 3 3 
21 C3 3 2 5 3 3 2 2 5 5 
21 C4 6 5 3 6 5 5 5 3 2 
21 C5 3 4 3 4 4 3 3 4 4 
21 C6 6 6 2 5 5 5 5 2 2 
21 C7 5 4 4 5 5 5 4 3 3 
21 C8 4 4 3 4 4 4 5 4 3 
21 C9 3 4 3 3 2 3 3 5 5 
21 C10 5 5 3 5 4 5 4 3 4 
21 C11 5 5 3 5 5 5 5 2 3 
21 C12 5 5 2 5 5 5 5 3 3 
21 C13 5 5 3 5 5 5 4 3 3 
21 C14 5 6 2 6 5 5 5 2 2 
21 C15 5 6 2 6 5 6 5 3 2 
22 C1 6 6 2 6 6 6 5 5 5 
22 C2 5 6 3 6 6 5 5 4 4 
22 C3 5 5 6 6 5 4 5 6 6 
22 C4 5 6 2 6 6 6 5 5 5 
22 C5 2 2 6 2 2 2 1 7 2 
22 C6 5 3 6 4 4 3 3 6 6 
22 C7 4 4 5 5 3 3 4 6 6 
22 C8 5 4 3 4 5 4 4 6 4 
22 C9 6 6 5 5 5 4 6 6 6 
22 C10 5 5 3 5 5 5 5 5 4 
22 C11 5 6 2 5 5 5 5 5 5 
22 C12 6 5 5 6 4 5 5 6 6 
22 C13 5 6 2 6 5 5 6 3 3 
22 C14 6 6 3 6 6 5 5 6 6 
22 C15 6 6 2 6 6 6 6 2 2 

Table G.11: Raw demographics study data for subjects 21 and 22 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
23 C1 4 2 4 2 2 2 4 6 6 
23 C2 4 6 6 5 4 4 7 6 2 
23 C3 6 7 2 7 7 7 7 2 1 
23 C4 5 5 3 5 5 6 6 6 2 
23 C5 6 7 3 6 6 6 6 2 1 
23 C6 6 6 3 6 6 6 6 6 2 
23 C7 3 5 6 5 5 4 5 6 3 
23 C8 5 3 2 2 4 6 6 6 3 
23 C9 3 2 3 2 3 2 3 6 1 
23 C10 5 5 1 6 6 5 7 6 5 
23 C11 4 6 6 5 5 4 5 5 5 
23 C12 5 6 4 6 5 5 6 3 2 
23 C13 4 5 2 5 4 5 7 5 6 
23 C14 7 7 2 6 7 7 7 4 1 
23 C15 4 4 7 5 4 5 6 7 5 
24 C1 5 6 5 5 6 5 6 6 3 
24 C2 5 6 6 6 5 4 6 5 6 
24 C3 6 6 4 6 6 6 7 5 4 
24 C4 3 2 5 3 3 2 2 5 3 
24 C5 5 5 4 4 4 4 5 5 6 
24 C6 6 6 4 6 6 7 6 6 4 
24 C7 6 6 5 6 5 5 5 6 5 
24 C8 4 3 5 4 4 5 5 6 6 
24 C9 6 6 5 4 5 5 5 6 5 
24 C10 3 2 6 3 2 3 2 6 2 
24 C11 6 6 6 5 5 4 5 6 6 
24 C12 7 6 4 6 6 6 6 4 5 
24 C13 5 5 5 4 5 4 5 5 5 
24 C14 5 6 7 5 5 6 6 6 6 
24 C15 6 7 5 6 6 6 7 5 5 

Table G.12: Raw demographics study data for subjects 23 and 24 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
25 C1 6 6 4 6 6 6 4 5 3 
25 C2 6 5 4 6 5 5 5 4 3 
25 C3 6 5 4 6 6 6 5 3 3 
25 C4 6 6 4 6 6 6 5 5 4 
25 C5 6 6 3 6 6 6 5 3 3 
25 C6 6 5 5 6 6 6 5 6 4 
25 C7 5 4 5 5 4 4 4 6 4 
25 C8 6 6 4 6 6 6 5 7 3 
25 C9 6 5 6 6 6 6 4 6 4 
25 C10 6 6 4 6 6 5 4 7 3 
25 C11 6 6 6 6 6 6 5 4 3 
25 C12 6 6 4 6 6 6 4 5 3 
25 C13 5 4 3 5 4 3 3 4 4 
25 C14 6 6 4 6 6 6 6 5 3 
25 C15 6 6 3 6 6 6 6 5 3 
26 C1 4 7 2 6 5 5 6 6 6 
26 C2 4 4 3 5 5 5 7 6 4 
26 C3 4 5 6 6 4 4 5 7 5 
26 C4 4 6 2 5 5 5 6 4 6 
26 C5 5 7 6 6 5 5 6 6 4 
26 C6 4 5 7 2 3 4 6 7 6 
26 C7 3 1 7 2 4 3 2 7 6 
26 C8 3 1 7 1 1 3 4 7 7 
26 C9 1 1 7 1 1 1 1 7 6 
26 C10 2 3 7 1 3 3 5 7 6 
26 C11 4 5 3 4 5 5 5 7 6 
26 C12 3 7 1 6 5 4 5 3 6 
26 C13 3 5 7 5 5 5 5 7 5 
26 C14 3 6 6 7 4 4 6 6 5 
26 C15 4 3 6 3 5 6 6 7 6 

Table G.13: Raw demographics study data for subjects 25 and 26 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
27 C1 5 5 4 6 5 5 5 6 5 
27 C2 5 6 2 6 6 6 6 4 2 
27 C3 3 3 5 3 3 4 2 7 5 
27 C4 5 6 3 6 6 5 6 4 2 
27 C5 6 6 3 6 6 5 6 4 2 
27 C6 5 5 4 5 6 5 5 6 4 
27 C7 5 3 3 4 4 4 4 7 3 
27 C8 6 6 3 6 6 6 6 4 3 
27 C9 6 6 3 6 6 6 6 6 2 
27 C10 4 3 4 4 3 4 3 7 4 
27 C11 2 2 6 1 1 2 2 6 2 
27 C12 4 5 3 6 6 5 5 6 4 
27 C13 5 5 3 5 5 4 5 5 3 
27 C14 3 4 4 4 3 4 3 6 5 
27 C15 4 3 5 2 2 2 4 6 4 
28 C1 3 4 3 3 2 3 2 3 3 
28 C2 7 6 1 6 5 5 5 4 1 
28 C3 2 2 3 2 3 3 2 2 3 
28 C4 3 4 2 3 3 2 2 2 4 
28 C5 5 5 1 6 6 5 5 2 3 
28 C6 3 2 2 2 2 1 3 3 2 
28 C7 2 2 4 3 3 3 2 3 2 
28 C8 5 5 2 6 6 6 5 4 2 
28 C9 5 4 3 5 5 4 4 3 3 
28 C10 6 5 6 5 5 5 5 4 2 
28 C11 3 3 4 5 3 5 3 6 1 
28 C12 2 3 4 2 3 2 3 5 2 
28 C13 7 6 1 6 6 6 7 3 1 
28 C14 4 3 3 3 5 5 4 3 3 
28 C15 7 6 1 7 7 7 7 2 2 

Table G.14: Raw demographics study data for subjects 27 and 28 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
29 C1 4 3 4 4 4 5 5 4 3 
29 C2 5 5 3 5 5 5 5 2 3 
29 C3 4 5 2 5 5 5 5 3 3 
29 C4 3 4 5 5 4 4 3 5 3 
29 C5 5 5 3 5 5 5 5 2 2 
29 C6 3 5 5 5 5 5 5 3 3 
29 C7 3 4 5 3 3 3 3 5 3 
29 C8 5 5 4 5 5 5 5 5 2 
29 C9 2 3 5 3 3 3 3 5 3 
29 C10 4 3 5 3 3 2 3 5 6 
29 C11 4 4 5 3 3 3 3 6 3 
29 C12 6 6 2 6 6 6 6 2 2 
29 C13 6 6 2 6 6 6 6 2 2 
29 C14 5 5 3 5 5 5 5 3 3 
29 C15 6 6 3 6 6 6 6 4 5 
30 C1 3 2 6 3 5 3 2 6 2 
30 C2 5 5 3 5 5 5 5 3 3 
30 C3 5 6 4 5 5 5 5 3 5 
30 C4 3 3 5 3 3 3 3 5 3 
30 C5 3 3 4 3 3 3 3 5 3 
30 C6 1 1 7 1 1 1 1 7 7 
30 C7 5 5 4 5 4 4 4 2 2 
30 C8 5 4 5 4 3 3 3 5 4 
30 C9 5 2 5 2 2 2 2 5 5 
30 C10 5 5 4 5 4 4 4 4 3 
30 C11 6 6 2 6 6 6 6 2 2 
30 C12 5 4 4 5 5 4 4 5 5 
30 C13 6 6 2 6 6 6 6 3 3 
30 C14 6 6 2 6 6 6 6 2 4 
30 C15 6 6 2 6 6 6 6 2 2 

Table G.15: Raw demographics study data for subjects 29 and 30 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
31 C1 4 5 2 7 6 6 7 2 3 
31 C2 6 7 3 7 7 7 7 1 1 
31 C3 6 6 2 6 6 6 6 2 2 
31 C4 7 7 1 7 7 7 7 1 1 
31 C5 7 7 1 7 7 7 6 2 2 
31 C6 5 5 3 5 5 4 5 6 4 
31 C7 5 2 3 7 6 3 2 6 3 
31 C8 6 4 5 5 6 5 5 6 4 
31 C9 4 4 3 5 5 3 4 6 4 
31 C10 6 5 4 6 6 4 4 4 3 
31 C11 7 7 1 7 7 7 7 1 1 
31 C12 6 5 5 6 6 5 6 3 4 
31 C13 7 7 2 7 7 7 7 1 1 
31 C14 6 6 1 7 7 6 7 2 3 
31 C15 7 7 1 6 7 7 7 1 1 
32 C1 4 6 3 6 6 6 5 5 7 
32 C2 2 3 5 3 3 4 4 5 7 
32 C3 1 1 3 2 1 2 4 7 7 
32 C4 3 5 3 5 5 5 4 7 7 
32 C5 1 4 4 3 2 3 7 7 7 
32 C6 1 3 4 3 2 3 3 7 7 
32 C7 3 4 4 5 5 5 4 7 7 
32 C8 3 6 4 4 5 3 5 5 6 
32 C9 1 4 4 1 1 1 3 7 7 
32 C10 3 4 3 4 4 4 5 7 7 
32 C11 2 5 3 5 5 5 4 7 7 
32 C12 2 1 4 1 1 1 2 7 7 
32 C13 2 5 3 5 5 5 4 7 7 
32 C14 3 5 4 3 4 4 6 7 7 
32 C15 2 5 2 5 5 5 4 5 7 

Table G.16: Raw demographics study data for subjects 31 and 32 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
33 C1 3 4 5 4 3 3 5 6 3 
33 C2 3 2 5 4 4 4 5 6 4 
33 C3 4 4 6 2 2 2 2 7 1 
33 C4 3 3 5 3 3 2 4 4 4 
33 C5 4 4 7 2 2 2 2 7 4 
33 C6 1 1 7 1 1 1 1 7 5 
33 C7 5 3 6 5 3 3 5 7 3 
33 C8 3 1 7 2 2 1 2 7 4 
33 C9 4 2 5 2 1 1 3 7 6 
33 C10 2 3 4 4 3 2 2 5 4 
33 C11 4 4 5 3 2 3 4 7 3 
33 C12 4 3 6 3 3 3 4 5 4 
33 C13 4 5 7 4 3 3 6 7 3 
33 C14 4 5 3 4 3 3 3 7 5 
33 C15 3 3 4 6 4 4 5 6 4 
34 C1 3 3 4 4 3 3 5 5 5 
34 C2 4 6 2 6 6 5 7 3 2 
34 C3 3 6 4 5 4 5 6 5 3 
34 C4 3 3 5 2 2 2 4 6 3 
34 C5 4 5 3 5 3 6 6 5 4 
34 C6 1 2 5 1 1 2 4 6 4 
34 C7 4 7 1 6 6 6 6 2 3 
34 C8 4 6 2 6 5 3 6 7 5 
34 C9 3 3 5 3 2 3 4 6 5 
34 C10 2 2 4 3 2 3 1 7 6 
34 C11 4 5 5 3 3 3 5 5 4 
34 C12 4 5 2 6 4 3 5 5 4 
34 C13 4 6 3 4 4 3 6 6 2 
34 C14 1 1 4 1 1 1 3 6 4 
34 C15 5 6 1 6 6 5 6 4 2 

Table G.17: Raw demographics study data for subjects 33 and 34 

 



 186 

 

Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
35 C1 5 5 3 5 5 6 6 3 3 
35 C2 5 5 4 5 5 5 5 5 4 
35 C3 4 3 3 3 3 4 4 5 4 
35 C4 5 5 2 6 6 5 6 4 3 
35 C5 5 5 3 5 5 5 5 4 3 
35 C6 4 3 4 3 3 3 4 5 5 
35 C7 2 1 2 2 2 2 1 5 5 
35 C8 4 3 5 3 4 4 4 5 4 
35 C9 1 1 6 2 2 2 2 5 6 
35 C10 4 4 4 3 3 4 4 5 5 
35 C11 4 3 4 3 3 3 3 5 5 
35 C12 4 4 4 4 4 5 4 3 4 
35 C13 5 5 3 5 5 5 5 5 4 
35 C14 5 5 4 5 5 5 5 4 3 
35 C15 5 4 4 4 4 5 4 5 4 
36 C1 2 3 1 4 4 3 4 3 1 
36 C2 2 2 2 3 3 3 3 3 2 
36 C3 3 2 5 1 1 2 3 7 5 
36 C4 2 3 1 3 4 2 3 3 2 
36 C5 3 2 5 2 1 2 2 5 5 
36 C6 2 2 3 2 3 2 3 3 4 
36 C7 2 1 1 1 2 2 1 6 2 
36 C8 1 1 2 1 1 2 3 5 7 
36 C9 2 2 1 2 2 2 3 6 7 
36 C10 2 2 2 2 2 2 3 3 2 
36 C11 2 2 3 1 2 3 2 1 1 
36 C12 3 6 1 6 5 5 6 5 1 
36 C13 2 3 3 2 3 2 3 3 1 
36 C14 2 4 2 5 5 3 4 3 1 
36 C15 2 3 1 3 4 3 3 2 2 

Table G.18: Raw demographics study data for subjects 35 and 36 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
37 C1 4 4 2 5 4 4 5 5 2 
37 C2 4 4 2 5 5 5 5 4 3 
37 C3 3 4 2 4 5 5 5 5 2 
37 C4 3 3 2 3 5 5 5 5 3 
37 C5 4 2 3 2 2 2 5 6 3 
37 C6 4 5 2 5 5 5 5 5 2 
37 C7 4 4 2 3 3 4 5 5 2 
37 C8 4 4 3 2 2 5 5 6 3 
37 C9 4 3 3 4 4 4 5 5 4 
37 C10 4 2 2 2 2 3 4 6 4 
37 C11 4 3 2 3 2 3 5 5 2 
37 C12 4 5 3 5 5 5 5 5 2 
37 C13 4 2 2 2 2 4 5 6 3 
37 C14 4 5 2 5 4 4 5 6 4 
37 C15 3 2 3 3 4 3 4 5 3 
38 C1 5 6 2 6 6 6 6 6 4 
38 C2 5 5 5 4 5 3 4 4 4 
38 C3 6 6 3 6 6 6 6 3 6 
38 C4 6 6 2 6 6 6 6 3 3 
38 C5 6 6 3 6 6 6 5 2 6 
38 C6 5 5 5 2 5 5 4 6 6 
38 C7 6 6 6 2 6 5 5 5 5 
38 C8 2 2 6 2 2 2 2 6 5 
38 C9 6 6 4 6 5 4 4 6 4 
38 C10 5 2 4 4 5 4 4 6 3 
38 C11 5 3 4 3 4 4 3 6 4 
38 C12 6 6 2 7 6 6 6 2 4 
38 C13 6 6 2 6 6 6 6 5 3 
38 C14 7 7 2 7 7 7 7 3 3 
38 C15 6 6 2 6 6 6 6 3 6 

Table G.19: Raw demographics study data for subjects 37 and 38 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
39 C1 5 3 3 4 4 5 5 6 4 
39 C2 4 3 4 3 3 4 5 4 5 
39 C3 3 3 5 3 3 3 3 5 5 
39 C4 3 4 3 5 4 4 5 5 3 
39 C5 5 4 4 4 5 5 5 6 4 
39 C6 4 3 5 3 4 3 4 6 4 
39 C7 3 2 5 2 2 3 3 5 3 
39 C8 4 3 5 3 5 3 4 6 5 
39 C9 3 3 5 3 3 3 4 6 3 
39 C10 3 1 4 1 3 2 3 6 6 
39 C11 3 3 4 4 3 3 4 5 3 
39 C12 5 4 3 5 5 4 5 6 4 
39 C13 4 3 5 2 3 2 4 5 5 
39 C14 4 4 4 3 3 4 5 5 4 
39 C15 4 4 5 4 4 3 4 5 4 
40 C1 6 6 2 6 6 5 6 1 1 
40 C2 4 5 2 5 4 5 6 3 2 
40 C3 6 6 3 6 7 4 5 4 2 
40 C4 6 6 3 5 5 6 6 3 3 
40 C5 6 5 1 6 6 7 7 2 2 
40 C6 4 3 4 3 3 3 4 4 6 
40 C7 4 4 2 5 3 5 5 3 2 
40 C8 5 6 2 3 5 4 5 3 2 
40 C9 5 5 3 6 5 4 5 3 4 
40 C10 4 5 3 5 5 4 5 3 2 
40 C11 4 5 3 4 4 3 4 4 4 
40 C12 6 6 2 6 5 6 7 2 2 
40 C13 2 1 6 1 2 1 2 6 6 
40 C14 3 2 3 2 3 2 2 5 6 
40 C15 3 3 5 3 2 2 3 5 6 

Table G.20: Raw demographics study data for subjects 39 and 40 
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Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
41 C1 3 5 2 5 5 5 5 5 3 
41 C2 4 6 2 6 3 5 5 4 3 
41 C3 4 6 2 6 6 6 6 2 4 
41 C4 3 4 4 3 3 4 4 4 4 
41 C5 4 6 2 6 6 6 6 2 2 
41 C6 2 4 6 3 4 4 3 6 3 
41 C7 2 3 6 2 3 3 2 6 5 
41 C8 4 2 5 2 2 3 3 6 5 
41 C9 2 2 6 2 2 2 2 6 2 
41 C10 4 2 6 2 2 2 2 5 4 
41 C11 3 3 5 3 3 3 3 6 4 
41 C12 4 6 3 6 5 5 5 4 3 
41 C13 4 5 4 6 6 5 5 5 2 
41 C14 4 4 4 5 5 5 4 4 3 
41 C15 3 4 5 4 3 3 3 6 4 
42 C1 4 5 3 5 5 5 5 3 3 
42 C2 4 5 3 6 6 5 5 2 3 
42 C3 4 5 3 6 5 5 6 3 4 
42 C4 3 4 3 4 4 4 4 4 5 
42 C5 4 4 3 4 4 4 5 3 4 
42 C6 3 3 5 3 3 3 3 5 5 
42 C7 2 1 6 1 1 1 1 6 6 
42 C8 5 1 5 2 2 1 2 6 5 
42 C9 3 2 5 2 3 3 4 5 5 
42 C10 4 5 4 5 5 5 5 4 4 
42 C11 3 3 4 3 4 3 3 5 5 
42 C12 4 5 4 5 5 4 5 3 4 
42 C13 4 4 3 5 5 4 4 3 4 
42 C14 4 3 5 4 4 4 4 4 4 
42 C15 3 3 4 3 3 3 3 6 5 

Table G.21: Raw demographics study data for subjects 41 and 42 

 



 190 

 

Subject Configuration 
Question 

1 2 3 4 5 6 7 8 9 
43 C1 6 7 2 7 7 7 7 3 3 
43 C2 6 7 3 7 7 7 7 1 3 
43 C3 6 7 2 7 7 7 7 2 2 
43 C4 5 6 3 6 7 5 6 5 3 
43 C5 6 7 1 7 7 7 7 1 2 
43 C6 4 5 6 4 4 3 4 5 5 
43 C7 4 1 7 1 1 1 1 7 4 
43 C8 5 5 4 5 5 4 7 5 4 
43 C9 3 3 5 3 3 3 4 4 4 
43 C10 5 4 4 4 4 4 5 5 4 
43 C11 4 3 6 3 2 3 4 7 4 
43 C12 5 6 3 5 5 5 6 4 4 
43 C13 6 7 5 7 7 7 7 5 2 
43 C14 4 5 5 5 5 5 6 4 4 
43 C15 6 7 2 7 7 7 7 4 4 

Table G.22: Raw demographics study data for subject 43 
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Appendix H 

 

Simulator Operation 

The Clemson University steering simulator was developed in modules.  As 

such, the operation of the simulator was not a simple turn-key operation.  The follow 

are sets of direction with accompanying photos for starting, changing, resetting, and 

shutting down the simulator. 

 

Hardware Startup 
1. Turn on power strips/3 phase  

 
2. Power on both computers (password: tronics) 
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3. Power on Projectors 

 
 
 
 

4. Power on dSPACE board  
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5. Power on audio amplifier  

 
 
 
 

6. Power on dashboard amplifier 
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7. Power on motor controller (left first) 

 
 
 
 
 

8. Power on motion control box (leave E-stop engaged) 
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9. Power on Vacuum Pump 

 
 
 

10. Ensure Steering Wheel is centered 
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Software Startup from Scratch 
1. Start CarSim 7 
2. Select scenario from menu: Datasets > Honda Simulator 
3. Start dSPACE ControlDesk 
4. In ControlDesk: Platform > Initialization > Refresh Platform Connection 

(Ctrl-Shift-R) 
5. In CarSim: More > Download Program to Target 
6. In CarSim: More > Download Parsfiles to Target 
7. On Image Generation (IG) computer: Run “3 screen” from desktop 
8. In CarSim: Start Live Video 
9. On IG: Click mouse on bottom right corner of right monitor 
10. In CarSim: Load/Run 
11. Disengage Motion E-stop 
12. Adjust steering variables in ControlDesk as desired 
13. Use Red Stop Button in ControlDesk to stop simulation 

Start after Stop 
1. Ensure ControlDesk is in “Animation Mode” 
2. In CarSim: Run 

Scene Change 
1. Stop current run with Red Stop Button in ControlDesk 
2. Change ControlDesk to Edit Mode 
3. In ControlDesk: Platform > Initialization > Refresh Platform Connection 

(Ctrl-Shift-R) 
4. Close all 3 Animation windows 
5. In CarSim: Select new scenario from menu: Datasets > Honda Simulator 
6. In CarSim: More > Download Program to Target 
7. In CarSim: More > Download Parsfiles to Target 
8. On Image Generation (IG) computer: Run “3 screen” from desktop 
9. In CarSim: Start Live Video 
10. On IG: Click mouse on bottom right corner of right monitor 
11. In CarSim: Load/Run 
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Software Reset 
1. Stop current run with Red Stop Button in ControlDesk 
2. Change ControlDesk to Edit Mode 
3. In ControlDesk: Platform > Initialization > Refresh Platform Connection 

(Ctrl-Shift-R) 
4. In CarSim: Load/Run 

 
 
Full Shutdown 

1. Stop current run with Red Stop Button in ControlDesk 
2. Engage Motion E-Stop 
3. Close Animation Windows 
4. Change ControlDesk to Edit Mode 
5. In ControlDesk: Platform > Initialization > Refresh Platform Connection 

(Ctrl-Shift-R) 
6. Close ControlDesk 
7. Close CarSim 
8. Power Off vacuum pump 
9. Power Off motion control box 
10. Power Off motor controller (right first) 
11. Power Off dashboard amplifier 
12. Power Off audio amplifier 
13. Power Off projectors 
14. Power Off dSPACE box 
15. Shutdown computers 
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Appendix I 

 

Active Steering Controller Simulink Block Diagram 

The modeling, estimation, and control during the run-off-road vehicle event 

were performed within Matlab/Simulink.  The Simulink block diagram has been 

shown. 

 

Figure H.1: Simulink block diagram for active steering controller with subsystems for 
modeling the driver, steering gearbox, road event, CarSim vehicle dynamics, 

cornering stiffness estimator, and steering controller 
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Appendix J 

 

Normalized Objective Metrics 

The data channels collected during the demographics study were converted 

into individual objective metrics and normalized according to equations (5.4) and 

(5.5).  A separate metric was created for each combination of driver (39), steering 

configuration (5), and data channel (13) for a total of 2,535 metrics. 

Subject Config 

Data Channel 

1 2 3 4 5 6 7 8 9 10 11 12 13 

1 1 1.11 0.73 0.75 0.71 0.74 0.93 1.01 0.92 1.03 0.84 0.83 1.03 1.00 

1 2 0.78 1.04 1.05 1.08 1.06 1.05 1.05 1.07 1.06 1.03 1.05 1.18 1.03 

1 3 1.15 0.56 0.73 0.55 0.72 0.90 0.88 0.91 0.78 0.64 0.65 0.76 0.97 

1 4 0.87 0.84 0.83 0.88 0.85 0.96 1.18 0.90 1.32 0.93 0.99 1.05 0.94 

1 5 1.08 1.84 1.64 1.78 1.63 1.16 0.87 1.21 0.82 1.56 1.49 0.98 1.06 

2 1 0.84 0.55 0.56 0.46 0.58 0.94 1.26 0.68 2.16 1.20 1.15 0.84 0.75 

2 2 1.25 2.00 1.88 2.27 1.94 1.08 1.19 1.34 0.91 0.97 1.07 1.05 1.07 

2 3 0.88 0.86 0.93 0.83 0.89 1.01 0.61 1.13 0.00 0.85 0.84 1.29 1.20 

2 4 1.15 0.73 0.72 0.59 0.71 1.04 1.27 0.81 1.91 1.20 1.14 0.80 0.83 

2 5 0.88 0.85 0.90 0.85 0.87 0.93 0.67 1.04 0.01 0.79 0.80 1.02 1.15 

3 1 1.68 0.08 0.15 0.09 0.14 0.55 0.61 0.35 0.45 0.43 0.42 0.61 0.63 

3 2 0.58 2.32 2.00 2.25 1.99 1.36 1.31 1.54 0.01 1.78 1.77 1.43 1.23 

3 3 0.78 0.65 0.83 0.70 0.83 0.99 1.19 1.02 4.45 0.76 0.79 1.05 1.07 

3 4 1.07 0.79 0.91 0.81 0.92 1.10 1.00 1.07 0.03 0.95 0.95 0.95 1.01 

3 5 0.89 1.16 1.11 1.15 1.13 1.00 0.89 1.03 0.05 1.07 1.07 0.96 1.06 

4 1 1.32 1.12 1.11 1.11 1.12 1.14 0.94 1.06 1.51 1.20 1.20 1.00 0.95 

4 2 1.14 0.86 0.92 0.85 0.92 0.97 0.99 0.99 1.02 0.93 0.91 1.03 1.02 

4 3 0.72 0.89 0.99 0.89 0.97 1.02 1.20 1.08 0.07 0.94 0.94 0.99 1.10 

4 4 0.60 0.78 0.87 0.81 0.87 0.90 1.14 0.96 1.22 0.82 0.83 1.14 1.07 

4 5 1.22 1.35 1.10 1.33 1.12 0.96 0.74 0.91 1.19 1.11 1.13 0.85 0.86 
Table J.1: Normalized objective metric data, 

icknormJ , for the c = 13 data channels, 

cH , and subjects i =1-4 
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Subject Config 

Data Channel 

1 2 3 4 5 6 7 8 9 10 11 12 13 

5 1 0.39 0.50 0.70 0.48 0.61 0.96 0.92 0.75 0.62 0.83 0.82 1.00 0.79 

5 2 0.77 0.65 0.70 0.73 0.62 0.87 0.55 0.84 0.30 0.75 0.81 0.75 0.90 

5 3 1.01 0.96 1.24 0.94 1.12 1.12 0.92 1.12 0.72 0.96 0.94 1.09 1.10 

5 4 1.01 0.50 0.65 0.55 0.58 0.86 0.56 0.89 0.26 0.63 0.68 0.73 1.02 

5 5 1.83 2.39 1.70 2.30 2.06 1.18 2.05 1.39 3.10 1.82 1.75 1.44 1.19 

6 1 1.41 0.51 0.65 0.43 0.63 0.88 1.53 0.83 1.81 0.78 0.72 0.93 1.02 

6 2 0.83 0.55 0.70 0.52 0.70 0.94 1.23 0.85 1.43 0.83 0.83 0.94 0.92 

6 3 1.45 0.26 0.36 0.29 0.35 0.81 0.33 0.58 0.12 0.78 0.76 0.52 0.69 

6 4 0.80 3.00 2.38 3.09 2.41 1.35 0.43 1.73 0.00 1.72 1.79 1.29 1.29 

6 5 0.51 0.69 0.91 0.67 0.91 1.01 1.48 1.01 1.64 0.90 0.90 1.33 1.08 

7 1 0.90 1.03 1.05 1.15 1.04 0.96 0.66 1.14 0.04 0.78 0.82 0.89 1.17 

7 2 1.24 1.47 1.48 1.56 1.54 1.05 0.99 1.19 1.09 0.93 0.96 1.27 1.15 

7 3 0.88 0.43 0.44 0.39 0.46 0.85 1.76 0.56 2.91 1.25 1.21 0.99 0.58 

7 4 1.24 1.00 1.00 0.87 0.94 0.96 0.95 0.99 0.46 0.88 0.86 1.15 1.16 

7 5 0.74 1.07 1.03 1.02 1.02 1.18 0.64 1.13 0.50 1.16 1.15 0.70 0.94 

8 1 0.58 0.13 0.32 0.16 0.32 0.55 0.52 0.48 0.05 0.31 0.34 0.56 0.85 

8 2 0.80 1.00 1.31 1.03 1.28 1.16 1.06 1.34 1.00 0.92 0.95 1.32 1.18 

8 3 2.63 2.13 1.24 2.01 1.23 1.38 1.52 1.31 0.18 2.04 1.94 1.20 1.04 

8 4 0.26 0.41 0.71 0.47 0.73 0.80 0.72 0.70 2.14 0.57 0.61 0.67 0.85 

8 5 0.72 1.33 1.42 1.33 1.44 1.12 1.17 1.18 1.63 1.15 1.15 1.25 1.08 

9 1 1.01 2.57 2.09 2.54 2.10 1.23 0.69 1.64 0.20 1.25 1.27 1.41 1.29 

9 2 0.37 0.49 0.59 0.49 0.60 0.91 0.61 0.73 0.32 0.94 0.96 0.55 0.81 

9 3 0.67 1.12 1.22 1.15 1.22 1.11 0.64 1.20 0.22 1.02 1.03 1.09 1.12 

9 4 0.61 0.34 0.45 0.34 0.43 0.77 0.53 0.63 0.39 0.74 0.74 0.90 0.92 

9 5 2.34 0.49 0.65 0.48 0.65 0.98 2.53 0.80 3.87 1.05 1.00 1.05 0.86 

10 1 0.85 1.15 1.19 1.15 1.18 1.14 1.01 1.23 0.20 1.07 1.08 1.10 1.12 

10 2 0.63 1.72 1.51 1.71 1.56 1.24 0.96 1.17 0.83 1.41 1.42 1.10 0.93 

10 3 1.25 0.42 0.48 0.41 0.47 0.75 1.03 0.64 0.59 0.76 0.74 0.68 0.83 

10 4 1.48 1.20 1.24 1.20 1.23 1.07 1.04 1.17 3.08 1.01 1.02 1.22 1.12 

10 5 0.80 0.51 0.58 0.52 0.56 0.80 0.97 0.78 0.30 0.74 0.73 0.90 0.99 
Table J.2: Normalized objective metric data, 

icknormJ , for the c = 13 data channels, 

cH , and subjects i =6-10 
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Subject Config 

Data Channel 

1 2 3 4 5 6 7 8 9 10 11 12 13 

11 1 0.86 0.85 0.68 0.86 0.70 1.01 1.00 0.88 0.96 1.17 1.19 0.86 0.94 

11 2 1.11 0.17 0.38 0.20 0.40 0.79 0.67 0.71 0.31 0.38 0.40 0.86 0.85 

11 3 1.10 0.64 1.36 0.55 1.27 0.85 1.67 0.72 1.63 0.68 0.66 1.01 0.91 

11 4 0.89 2.72 1.60 2.75 1.62 1.35 1.08 1.57 1.77 2.19 2.16 1.47 1.23 

11 5 1.04 0.63 0.99 0.65 1.01 1.00 0.58 1.12 0.33 0.58 0.59 0.81 1.08 

12 1 0.54 0.88 0.94 0.92 1.00 0.96 0.56 1.12 0.01 0.81 0.85 1.05 1.13 

12 2 1.48 3.10 2.67 3.05 2.58 1.66 2.80 1.67 4.99 2.36 2.32 1.54 1.15 

12 3 1.10 0.20 0.30 0.21 0.31 0.70 0.57 0.63 0.00 0.51 0.52 0.70 0.89 

12 4 0.88 0.38 0.53 0.36 0.53 0.82 0.59 0.79 0.00 0.61 0.59 0.91 0.90 

12 5 1.00 0.44 0.56 0.46 0.59 0.87 0.48 0.80 0.00 0.71 0.72 0.80 0.92 

13 1 0.46 1.00 1.01 1.02 1.03 0.99 1.16 1.00 1.04 0.98 1.00 1.01 1.02 

13 2 1.67 0.93 0.95 0.87 0.93 1.05 1.02 1.01 3.62 1.04 1.01 1.20 1.01 

13 3 1.05 0.64 0.66 0.62 0.65 0.87 0.96 0.76 0.32 0.92 0.91 0.68 0.88 

13 4 1.18 1.06 1.09 1.06 1.09 1.04 0.96 1.07 0.03 1.01 1.01 1.04 1.01 

13 5 0.63 1.36 1.29 1.43 1.30 1.06 0.89 1.15 0.00 1.05 1.07 1.08 1.07 

14 1 1.00 1.46 1.44 1.46 1.44 1.19 1.08 1.32 0.01 1.14 1.15 1.15 1.14 

14 2 0.73 1.43 1.39 1.42 1.41 1.17 1.49 1.24 4.75 1.16 1.17 1.33 1.05 

14 3 1.33 0.45 0.49 0.46 0.48 0.78 0.74 0.62 0.02 0.85 0.84 0.65 0.79 

14 4 0.89 0.76 0.78 0.74 0.76 0.96 0.81 0.91 0.22 0.96 0.94 0.98 1.00 

14 5 1.05 0.90 0.90 0.93 0.90 0.90 0.87 0.91 0.00 0.89 0.91 0.90 1.02 

15 1 0.93 1.50 1.45 1.52 1.48 1.19 1.00 1.26 3.20 1.25 1.26 1.00 1.02 

15 2 0.95 0.30 0.44 0.33 0.43 0.84 0.88 0.74 0.32 0.71 0.72 0.96 0.94 

15 3 1.30 2.14 1.72 2.06 1.73 1.09 1.24 1.26 0.02 1.36 1.34 1.14 1.10 

15 4 0.99 0.26 0.38 0.28 0.36 0.84 0.60 0.64 1.15 0.81 0.79 0.63 0.79 

15 5 0.84 0.79 1.01 0.81 1.00 1.04 1.28 1.11 0.31 0.87 0.88 1.27 1.16 

16 1 0.88 0.41 0.43 0.42 0.44 0.81 0.90 0.66 1.69 0.74 0.74 0.66 0.79 

16 2 0.97 2.14 1.74 2.12 1.76 1.17 0.99 1.33 0.01 1.65 1.64 1.26 1.21 

16 3 0.74 0.94 1.22 0.94 1.18 1.15 1.90 1.27 3.26 0.92 0.92 1.42 1.18 

16 4 1.24 0.23 0.31 0.24 0.30 0.82 0.40 0.58 0.02 0.68 0.67 0.52 0.75 

16 5 1.17 1.28 1.31 1.29 1.31 1.05 0.81 1.17 0.02 1.01 1.03 1.14 1.07 
Table J.3: Normalized objective metric data, 

icknormJ , for the c = 13 data channels, 

cH , and subjects i =11-16
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Subject Config 

Data Channel 

1 2 3 4 5 6 7 8 9 10 11 12 13 

17 1 0.73 0.48 0.56 0.48 0.54 0.95 0.80 0.97 0.64 0.75 0.76 0.90 1.01 

17 2 1.04 0.67 0.82 0.69 0.80 1.01 1.43 1.07 1.13 0.83 0.87 1.28 1.15 

17 3 0.62 0.25 0.31 0.27 0.31 0.75 0.43 0.65 0.30 0.61 0.63 0.75 0.86 

17 4 1.92 2.87 2.53 2.73 2.56 1.29 1.95 1.23 2.92 1.98 1.85 1.21 0.98 

17 5 0.69 0.73 0.77 0.83 0.79 0.99 0.39 1.08 0.00 0.83 0.89 0.85 1.00 

18 1 1.14 2.48 1.92 2.39 1.97 1.27 3.35 1.35 4.86 1.70 1.69 1.56 1.03 

18 2 1.05 0.45 0.59 0.49 0.57 0.89 0.38 0.81 0.05 0.79 0.79 0.79 0.96 

18 3 0.99 1.06 1.19 1.09 1.20 1.07 0.50 1.08 0.09 1.00 1.01 0.88 0.97 

18 4 0.83 0.33 0.46 0.36 0.45 0.80 0.37 0.70 0.01 0.71 0.71 0.73 0.93 

18 5 1.00 0.68 0.84 0.68 0.81 0.98 0.41 1.06 0.00 0.81 0.79 1.04 1.11 

19 1 1.19 1.24 1.22 1.26 1.21 1.15 0.77 1.20 0.06 1.11 1.11 1.03 1.09 

19 2 0.83 1.14 1.16 1.17 1.18 1.08 1.21 1.14 0.75 1.00 1.01 1.19 1.06 

19 3 1.30 0.58 0.60 0.56 0.60 0.83 0.74 0.64 0.47 0.99 0.99 0.62 0.78 

19 4 0.86 1.37 1.35 1.36 1.32 1.10 1.48 1.30 1.86 0.96 0.97 1.46 1.21 

19 5 0.82 0.67 0.67 0.65 0.69 0.83 0.80 0.72 1.87 0.93 0.93 0.70 0.86 

20 1 0.69 0.47 0.55 0.51 0.55 0.75 0.55 0.71 0.00 0.64 0.66 0.67 0.97 

20 2 1.25 1.91 1.52 1.88 1.52 1.24 0.60 1.40 0.00 1.44 1.46 1.32 1.21 

20 3 0.89 0.29 0.33 0.27 0.35 0.88 1.62 0.59 2.21 0.88 0.82 0.73 0.71 

20 4 1.60 1.39 1.51 1.42 1.43 1.21 0.71 1.50 0.06 1.12 1.14 1.26 1.31 

20 5 0.57 0.93 1.09 0.93 1.15 0.92 1.51 0.80 2.72 0.92 0.92 1.02 0.80 

21 1 1.29 1.47 1.62 1.52 1.60 1.19 0.70 1.50 0.00 0.96 0.99 1.30 1.30 

21 2 1.00 0.19 0.29 0.20 0.27 0.71 0.32 0.52 0.02 0.62 0.61 0.67 0.81 

21 3 1.01 0.23 0.29 0.17 0.29 0.75 2.81 0.51 4.98 1.12 1.06 0.82 0.73 

21 4 0.93 0.50 0.65 0.57 0.65 0.96 0.38 0.88 0.00 0.77 0.81 0.90 1.02 

21 5 0.78 2.61 2.16 2.55 2.19 1.38 0.79 1.58 0.01 1.52 1.53 1.31 1.14 

22 1 0.16 0.03 0.01 0.03 0.01 0.63 0.56 0.93 0.61 0.22 0.24 0.97 1.10 

22 2 0.22 0.04 0.01 0.04 0.01 0.67 0.50 0.94 0.38 0.34 0.35 1.00 1.02 

22 3 0.44 0.00 0.00 0.00 0.00 0.24 0.88 0.14 1.73 0.15 0.14 0.34 0.33 

22 4 2.88 1.48 1.11 1.24 1.02 1.45 1.67 2.06 0.71 0.98 0.95 2.08 2.03 

22 5 1.30 3.45 3.87 3.69 3.96 2.01 1.39 0.93 1.56 3.32 3.32 0.61 0.52 
Table J.4: Normalized objective metric data, 

icknormJ , for the c = 13 data channels, 

cH , and subjects i =17-22
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Subject Config 

Data Channel 

1 2 3 4 5 6 7 8 9 10 11 12 13 

23 1 0.70 0.31 0.41 0.32 0.39 0.77 0.44 0.62 0.64 0.75 0.74 0.82 0.90 

23 2 0.35 0.75 0.91 0.80 0.92 1.11 0.63 1.06 0.49 1.00 1.04 1.03 1.03 

23 3 0.58 3.05 2.61 2.98 2.50 1.39 0.62 1.83 0.60 1.41 1.43 1.55 1.37 

23 4 0.53 0.37 0.50 0.42 0.48 0.85 0.49 0.71 0.58 0.78 0.80 0.87 0.91 

23 5 2.84 0.52 0.57 0.48 0.71 0.88 2.83 0.78 2.68 1.06 1.00 0.72 0.80 

24 1 0.51 0.18 0.41 0.21 0.40 0.63 0.46 0.61 3.12 0.25 0.28 0.82 0.90 

24 2 0.92 2.84 2.01 2.72 2.02 1.34 1.40 1.13 0.01 2.58 2.48 1.07 1.01 

24 3 0.81 0.26 0.63 0.29 0.63 0.84 0.52 0.84 0.20 0.33 0.36 0.84 1.02 

24 4 2.08 1.23 1.07 1.26 1.07 1.25 1.78 1.50 0.20 1.29 1.30 1.27 1.04 

24 5 0.67 0.50 0.88 0.52 0.89 0.94 0.84 0.93 1.47 0.56 0.58 1.00 1.01 

25 1 1.16 0.68 0.70 0.68 0.70 0.90 0.91 0.79 0.00 0.90 0.88 0.83 0.88 

25 2 0.60 1.56 1.41 1.53 1.44 1.13 1.66 1.20 3.90 1.28 1.29 1.17 1.09 

25 3 0.94 0.42 0.54 0.46 0.54 0.89 0.60 0.77 0.13 0.75 0.76 0.74 0.87 

25 4 1.50 0.32 0.45 0.34 0.44 0.91 0.61 0.75 0.83 0.73 0.73 0.71 0.86 

25 5 0.80 2.02 1.91 1.98 1.89 1.18 1.21 1.49 0.15 1.35 1.35 1.54 1.30 

26 1 0.58 0.04 0.08 0.03 0.08 0.46 0.79 0.20 0.78 0.52 0.49 0.37 0.45 

26 2 0.76 0.62 0.80 0.65 0.82 0.91 0.92 0.92 0.72 0.72 0.74 1.16 1.02 

26 3 0.67 0.32 0.56 0.34 0.55 0.89 0.37 0.91 0.06 0.55 0.56 0.70 1.06 

26 4 1.52 2.61 1.85 2.63 1.91 1.52 1.10 1.52 0.61 2.16 2.17 1.32 1.12 

26 5 1.48 1.42 1.72 1.35 1.64 1.23 1.82 1.45 2.83 1.04 1.04 1.46 1.35 

27 1 1.31 0.30 0.38 0.32 0.38 0.82 0.65 0.64 0.03 0.75 0.73 0.62 0.81 

27 2 0.71 0.80 0.90 0.88 0.92 0.92 0.74 1.03 0.04 0.79 0.83 1.08 1.12 

27 3 0.86 1.01 1.09 0.95 1.06 1.09 1.12 1.15 0.14 1.03 1.00 1.22 1.07 

27 4 1.41 0.43 0.50 0.47 0.52 0.93 0.68 0.70 0.25 0.92 0.93 0.48 0.73 

27 5 0.72 2.46 2.14 2.38 2.12 1.24 1.81 1.49 4.55 1.51 1.51 1.60 1.27 

28 1 0.99 2.14 3.11 1.84 2.90 1.40 2.31 1.24 4.22 1.60 1.58 1.29 1.04 

28 2 1.12 1.52 0.92 1.89 1.07 1.12 0.72 1.45 0.00 0.98 1.06 1.31 1.29 

28 3 1.35 0.18 0.15 0.20 0.16 0.65 0.26 0.45 0.00 0.74 0.74 0.47 0.66 

28 4 0.58 0.80 0.53 0.65 0.55 0.98 1.10 1.03 0.77 0.93 0.86 1.09 1.04 

28 5 0.96 0.36 0.29 0.41 0.32 0.86 0.60 0.83 0.00 0.75 0.76 0.85 0.98 
Table J.5: Normalized objective metric data, 

icknormJ , for the c = 13 data channels, 

cH , and subjects i =23-28
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Subject Config 

Data Channel 

1 2 3 4 5 6 7 8 9 10 11 12 13 

29 1 0.84 1.41 0.92 1.65 1.04 1.26 0.50 1.54 0.01 0.95 1.01 1.19 1.21 

29 2 0.94 0.59 0.40 0.64 0.43 0.94 0.54 1.02 0.05 0.71 0.72 1.03 1.10 

29 3 1.21 0.36 0.26 0.42 0.29 0.87 0.42 0.80 0.09 0.69 0.71 0.89 0.96 

29 4 0.83 2.03 2.99 1.65 2.78 1.03 2.99 0.67 4.61 1.95 1.87 1.13 0.73 

29 5 1.18 0.61 0.42 0.64 0.46 0.90 0.55 0.97 0.25 0.70 0.70 0.77 1.00 

30 1 1.15 2.02 1.56 1.91 1.56 1.26 0.90 1.37 0.00 1.44 1.42 1.11 1.11 

30 2 0.96 1.03 1.15 1.13 1.17 1.04 0.73 1.09 0.02 0.97 1.03 1.06 1.05 

30 3 1.10 0.19 0.28 0.16 0.25 0.65 1.45 0.45 3.85 0.69 0.65 0.69 0.76 

30 4 0.81 1.29 1.38 1.31 1.40 1.12 1.04 1.21 1.13 1.09 1.11 1.14 1.10 

30 5 0.99 0.47 0.63 0.48 0.62 0.93 0.88 0.87 0.00 0.80 0.80 1.00 0.98 

31 1 1.01 0.04 0.09 0.03 0.09 0.51 1.97 0.20 4.88 0.71 0.65 0.43 0.48 

31 2 1.33 2.84 1.59 2.73 1.62 1.11 1.13 1.27 0.07 1.81 1.78 1.42 1.17 

31 3 0.72 0.25 0.52 0.29 0.51 1.00 0.55 0.82 0.03 0.71 0.73 0.70 0.91 

31 4 0.51 1.09 1.66 1.15 1.65 1.17 0.74 1.46 0.00 0.84 0.88 1.39 1.38 

31 5 1.44 0.77 1.14 0.80 1.13 1.22 0.61 1.25 0.02 0.94 0.95 1.07 1.05 

32 1 0.66 0.62 0.94 0.69 0.92 0.96 0.76 1.09 3.74 0.67 0.73 1.00 1.13 

32 2 0.88 1.22 0.73 1.18 0.78 0.94 1.11 0.78 0.53 1.27 1.25 0.81 0.92 

32 3 1.54 1.30 1.48 1.39 1.46 1.33 1.30 1.43 0.00 1.29 1.28 1.09 1.09 

32 4 1.44 0.27 0.59 0.26 0.57 0.72 0.83 0.64 0.73 0.50 0.48 0.82 0.88 

32 5 0.47 1.59 1.27 1.49 1.27 1.05 1.00 1.06 0.00 1.27 1.25 1.27 0.98 

33 1 1.05 0.27 0.32 0.25 0.32 0.71 0.85 0.52 4.23 0.78 0.75 0.69 0.81 

33 2 1.14 2.25 2.07 2.27 2.12 1.31 1.31 1.57 0.00 1.28 1.32 1.31 1.21 

33 3 1.28 0.31 0.36 0.25 0.35 0.78 0.93 0.53 0.63 0.94 0.88 0.72 0.80 

33 4 0.88 1.16 1.17 1.10 1.14 1.12 1.01 1.22 0.02 1.02 1.03 1.17 1.10 

33 5 0.65 1.01 1.07 1.12 1.07 1.08 0.89 1.16 0.12 0.97 1.03 1.12 1.08 

34 1 1.08 2.12 1.47 2.03 1.47 1.23 0.54 1.26 0.00 1.70 1.64 0.98 1.08 

34 2 0.97 0.75 0.95 0.77 0.93 0.98 0.74 0.97 0.00 0.84 0.85 0.88 0.97 

34 3 0.97 0.16 0.22 0.19 0.23 0.63 1.94 0.45 2.90 0.60 0.62 0.83 0.73 

34 4 0.94 0.65 0.80 0.68 0.80 0.94 0.60 0.97 0.01 0.77 0.77 0.90 1.06 

34 5 1.04 1.32 1.56 1.33 1.57 1.22 1.18 1.35 2.08 1.10 1.11 1.41 1.17 
Table J.6: Normalized objective metric data, 

icknormJ , for the c = 13 data channels, 

cH , and subjects i =29-34
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Subject Config 

Data Channel 

1 2 3 4 5 6 7 8 9 10 11 12 13 

35 1 0.40 1.01 1.18 1.05 1.18 1.09 0.95 1.25 0.22 0.91 0.94 1.23 1.24 

35 2 0.64 1.36 1.03 1.35 1.06 1.09 0.80 1.04 1.48 1.33 1.33 1.13 1.00 

35 3 0.91 1.56 1.29 1.52 1.33 1.10 1.40 1.13 3.30 1.32 1.29 1.02 1.02 

35 4 2.06 0.92 1.24 0.93 1.19 1.09 1.07 1.10 0.00 0.96 0.95 0.98 0.98 

35 5 1.00 0.14 0.26 0.16 0.25 0.64 0.77 0.48 0.00 0.48 0.49 0.64 0.77 

36 1 0.75 0.85 1.00 0.93 1.01 1.08 1.41 1.17 2.06 0.94 0.98 1.18 1.15 

36 2 0.80 0.40 0.52 0.40 0.52 0.91 1.40 0.83 2.00 0.76 0.75 0.90 0.90 

36 3 0.97 0.67 0.84 0.72 0.86 0.93 0.76 0.95 0.49 0.81 0.83 0.93 1.00 

36 4 1.27 0.30 0.43 0.34 0.43 0.88 0.67 0.76 0.45 0.69 0.71 0.79 0.85 

36 5 1.20 2.78 2.21 2.62 2.18 1.19 0.76 1.29 0.00 1.81 1.74 1.21 1.11 

37 1 0.54 0.58 0.85 0.63 0.86 0.93 0.79 0.93 0.33 0.68 0.71 1.00 1.01 

37 2 1.36 1.38 0.80 1.32 0.80 1.05 0.77 0.98 1.67 1.47 1.42 1.00 0.93 

37 3 0.97 0.55 0.82 0.59 0.83 0.99 0.92 0.94 0.71 0.73 0.76 0.92 0.99 

37 4 1.37 1.33 1.42 1.31 1.39 0.98 1.45 1.12 2.27 1.03 1.02 1.07 1.09 

37 5 0.76 1.16 1.11 1.15 1.12 1.05 1.06 1.04 0.01 1.10 1.10 1.02 0.98 

38 1 1.18 2.22 1.43 2.08 1.38 1.15 0.76 1.28 0.00 1.61 1.59 1.02 1.11 

38 2 1.61 1.30 1.58 1.37 1.65 1.25 2.65 1.33 4.96 1.27 1.22 1.71 1.08 

38 3 0.77 0.50 0.73 0.55 0.73 0.84 0.47 0.83 0.03 0.65 0.70 0.72 0.93 

38 4 0.70 0.53 0.66 0.54 0.65 0.94 0.48 0.83 0.00 0.79 0.81 0.85 0.96 

38 5 0.73 0.45 0.60 0.45 0.60 0.82 0.64 0.73 0.00 0.67 0.69 0.71 0.92 

39 1 0.85 0.24 0.55 0.28 0.51 0.81 0.71 0.78 0.00 0.61 0.62 0.79 0.96 

39 2 1.64 3.82 2.37 3.59 2.47 1.66 1.88 1.65 4.85 2.54 2.43 1.58 1.07 

39 3 0.75 0.28 0.63 0.34 0.60 0.80 0.84 0.83 0.04 0.57 0.60 0.86 1.03 

39 4 0.87 0.29 0.65 0.35 0.61 0.89 0.66 0.82 0.08 0.70 0.73 0.81 0.87 

39 5 0.89 0.37 0.80 0.45 0.80 0.83 0.91 0.93 0.03 0.59 0.62 0.95 1.07 
Table J.7: Normalized objective metric data, 

icknormJ , for the c = 13 data channels, 

cH , and subjects i =35-39 
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