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Abstract

In the initial portion of this dissertation studies of Ar scattering from Ru(0001)

at thermal and hyperthermal energies are compared to calculations with classical scat-

tering theory. These data exhibited a number of characteristics that are unusual in

comparison to other systems for which atomic beam experiments have been carried

out under similar conditions. The measured energy losses were unusually small. Some

of the angular distributions exhibited an anomalous shoulder feature in addition to a

broad peak near the specular direction and quantum mechanical diffraction was ob-

served under conditions for which it was not expected. Many of the unusual features

observed in the measurements are explained, but only upon using an effective surface

mass of 2.3 Ru atomic masses, which implies collective effects in the Ru crystal. The

large effective mass, because it leads to substantially larger Debye-Waller factors,

explains and confirms the observations of diffraction features. It also leads to the

interesting conclusion that Ru is a metal for which atomic beam scattering measure-

ments in the purely quantum mechanical regime, where diffraction and single-phonon

creation are dominant, should be possible not only with He atoms, but with many

other atomic species with larger masses.

A useful theoretical expression for interpreting and analyzing observed scat-

tering intensity spectra for atomic and molecular collisions with surfaces is the differ-

ential reflection coefficient for a smooth, vibrating surface. This differential reflection
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coefficient depends on a parameter, usually expressed in dimensions of velocity, that

arises due to correlated motions of neighboring regions of the surface and can be

evaluated if the polarization vectors of the phonons near the surface are known. As

a part of this dissertation experimental conditions are suggested under which this

velocity paramenter may be more precisely measured than it has been in the past.

Experimental data for scattering of argon, neon and xenon atoms from molten

gallium, indium and bismuth surfaces are compared to calculations with classical scat-

tering theory. The results of the theory are in reasonable agreement with observed

energy resolved spectra taken at fixed angles, with in-plane angular distribution dis-

tributions, and with the first available out-of-plane angular distribution spectra for

these systems. For all three of the rare gases, only scattering from liquid Ga required

the use of an effective surface mass equal to 1.65 times the mass of a single Ga atom.

The need for a larger effective mass has been noted previously for Ar/Ga scatter-

ing and is indicative of collective effects in the liquid Ga. Comparisons with data

taken at low incident energies enables estimates of the physisorption well depth in

the interaction potentials for many of the gas-metal combinations.

Surface corrugation is considered in a theory for which the surface corrugation

amplitude is estimated from the temperature dependence of the most probable inten-

sity for energy resolved scattering distributions. The theory is applied to an approx-

imation for a sinusoidal surface corrugation. Final energy resolved spectra, in-plane

and out-of-plane angular spectra are examined that exhibit reasonable agreement

with data for scattering of rare argon from liquid metals. This establishes benchmark

results for the behavior of this theory. Rainbow scattering is also considered.
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Chapter 1

Introduction

The study of surfaces has been valued by civilization since the ancients prac-

ticed lecanomancy to foretell events [1]. Many important processes occur at the

interface of solid, or liquid and gas phases. From the epitaxial growth of metal layers

on substrates, to catalytic processes, to atmospheric drag on surfaces, the details of

the atom-surface or molecule-surface interactions are important in modelling these

processes that affect daily life.

This can be seen in the long line of researchers who have contributed to our

understanding of the complicated processes at surfaces. Early on, in 1833, Faraday

developed a theory of the reaction of hydrogen and oxygen in the presence of a

platinum surface, or a catalytic reaction [2]. Braun advanced speculations on the

rectification due to a thin surface layer at the interface of Cu and FeS in 1874 [3, 4].

Shortly thereafter, J. W. Gibbs completely deciphered the thermodynamics of surface

phases [5] in 1877. Maxwell was the first to realize the significance of surface structure

in the scattering process [6].

The first atom-surface scattering experiments were carried out by Stern [7,

8, 9, 10] and by Johnson [11, 12] after the discovery of quantum mechanics in the
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early 1900’s, using helium atoms. Aside from verifying important theoretical aspects

of the wave nature of atoms, it was seen that important information about surfaces

could be obtained. Around this time an early experimental attempt to understand

atom-surface collisions was carried out by Roberts [13]. Quickly, the theory of the

interaction of atoms and crystals was developed [14, 15]. Of historical significance,

Langmuir was to receive the Nobel prize in 1932 for work in surface chemistry [16,

17, 18].

Lennard-Jones and coworkers submitted physisorption and chemisorption to

scrutiny as well as critical and cooperative phenomena [19]. Bardeen elaborated the

theory of the free metal surface in 1936 [20]. The international aspect of the study

of the semiconductor surface is manifest in the study of the metal-semiconductor

interface [21, 22, 23], as well as the interdisciplinary approach involving physics and

chemistry.

While condensed matter physics and physical chemistry provided the tools,

modern surface science sprang from the cooperation of technology and science and is

thus a truly interdisciplinary science. During the 1960s, when surface science became

a distinct research area, studying the surface was a difficult task. Prior to this time

the ability to perform the necessary experimental measurements was hampered by the

vacuum systems available [24]. According to Duke [25], ``The intrinsic interest in an

empty box is limited, however difficult the task of emptying it may be. It is the new

vistas in science and technology opened by the ability routinely to produce ultra-high

vacua as a controlled environment that excite our interest.´´ Surface science was still

a part of the physics and chemistry of materials.

Characterization of surfaces was enabled by the appearance of ultra-high vac-

uum technology coupled with the use of electron spectroscopy and time-of-flight ma-

chines. Reliable semiconductor devices gave rise to surface probes. The mystery of

2



low energy electron diffraction, or LEED, of backscattered electrons was sorted out.

It was found that electrons elastically scattered by a solid must have scattered from

the top few atomic layers of the sample [26, 27]. Now, a tool to probe the geometry

of the surface was in hand. Also, the discovery of Laue [28] of x-ray diffraction by

single crystals and the work of Bragg [29] eventually led to the study of structure

functions of materials [30]. Inelastic x-ray scattering has been used in recent years to

study the dynamic structure factor of liquid metals [31]. Many of the details of the

further development of surface science were chronicled in [32]. The ultra-high vacuum

technology also made possible the study of atomic beam-surface interactions.

In the study of atomic beam-surface interactions the energy exchange between

an incident particle and a surface is of central interest in a great variety of experi-

mental phenomena. Often, a significant portion of the incident translational energy

may be lost on collision with the surface. The early experiments of Roberts [13] were

measurements of the energy transfer between rare gas atoms and a tungsten surface,

as well as effects of surface roughness. Jackson and Mott carried out calculations in

what later became known as the single-phonon distorted wave Born approximation

and were the first to describe energy transfer to the surface by that method [33, 34].

Lennard-Jones and co-workers also investigated the significance of the energy trans-

fer to phonons, although the multi-phonon contributions they studied are now known

not to be the dominant contribution to the energy exchange. Final energy and an-

gular spectra give details of the exchange of translational energy and momentum.

These phenomena range in incident energy from low energy, small mass atom, purely

quantum mechanical interactions [35] to the classical realm of keV heavy ion scat-

tering [36]. Also, the interaction of heavy neutral atoms with surfaces has been the

subject of extensive experimental study [37, 38]. Of critical importance in inter-

pretation of experimental results are theoretical descriptions of the many possible
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beam-surface interactions.

Several approaches have been used in the theoretical description of projectile-

surface interaction in the classical realm, which often involves the exchange of large

numbers of quanta of energy. Originally, the methods used in neutron scattering

were applied to particle-surface systems [39]. The molecular dynamics approach uses

a computer simulation of the trajectories of the incident projectile as it interacts with

the surface, the many-body aspects of the surface being treated in the simulation as

well [40, 41, 42, 43]. The molecular dynamics approach often requires large amounts

of computer time for even a modicum of success. It is also possible to use analytical

methods [44, 45, 46, 47].

Analytical expressions may be derived for the energy resolved scattering in-

tensities. Two different limiting solutions have been found, depending upon whether

the surface is considered to be a collection of uncorrelated, discrete scattering centers,

or a highly correlated smooth, vibrating surface. This surface can be considered to

be the locus of classical turning points for the incident particle.

In this work is presented a theory and calculations of the interaction of an

atomic beam with a corrugated surface. The theory is compared to several aspects

of scattering from metal and liquid metal surfaces: energy resolved spectra, in-plane

and out-of-plane scattering, temperature dependence, incident energy and angle de-

pendence and the effect of mass ratio. The depth of the interaction potential well

is estimated for the various gas-liquid metal systems that have been experimentally

measured. The corrugation of the locus of classical turning points is estimated with

this theory for the first time. This is accomplished by examination of the temperature

dependance of the most probable intensity for the energy-resolved scattering spectra

of the gas-liquid metal systems for which the necessary data were available. This is

a relatively simple measurement that yields a valuable understanding of the nature
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of the scattering surface. Out-of-plane scattering data is examined for this theory for

the first time.
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Chapter 2

Theory

2.1 Discrete and Continuum Models

The scattering of atomic and molecular particles has proven to be a useful

method for obtaining a wide variety of information on the structure and dynamics of

surfaces. In many cases such experiments are carried out under classical conditions

involving a combination of large incident energies, heavy atomic masses and high

surface temperatures, conditions for which large numbers of phonons are transferred

in the collision process. In the classical scattering limit, two closed-form expressions

for the differential reflection coefficient have been shown to be useful in explaining

observed distributions of scattered particles, which typically consist of both total an-

gular distributions and energy-resolved intensity spectra taken at fixed incident and

final angles. The first of these expressions, called the discrete model, assumes that

the incoming projectile collides with a surface of discrete atoms having an initial

equilibrium distribution of thermal energies and whose vibrational motions are un-

correlated. Its differential reflection coefficient dR(pf ,pi)/dΩfdEf , which expresses

the fractional probability per unit final energy dEf and per unit final solid angle dΩf
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of a beam of particles initially prepared with well defined momentum pi making a

transition to momentum state pf after a single collision, is [39, 44, 48]

dR(pf ,pi)

dΩfdEf

=
m2 |pf |
8π3~4piz

|τfi|2
(

π

kBTS∆E0

)1/2

exp

{
−(Ef − Ei + ∆E0)

2

4kBTS∆E0

}
, (2.1)

where piz is the surface normal component of pi, TS is the surface temperature, kB

is Boltzmann’s constant, the recoil energy is ∆E0 = (pf − pi)
2/2MC with MC the

surface atomic mass, m the mass of the incident atom, Ei,f = p2
i,f/2m, and |τfi|2 is

a form factor that depends on the interaction potential. If |τfi|2 is chosen to be a

constant, the value appropriate for hard sphere scattering, then Eq. (2.1) contains no

undefined parameters.

The second of these two expressions, called the smooth surface model, de-

scribes scattering from a potential which is on average flat but has vibration induced

corrugations due to the thermal motions of the underlying atoms. Its differential

reflection coefficient is given by [45, 46, 47, 48]

dR(pf ,pi)

dΩfdEf

=
m2v2

R |pf |
8π3~2pizSu.c.

|τfi|2
(

π

kBTS∆E0

)3/2

exp

{
−(Ef − Ei + ∆E0)

2 + 2v2
RP2

4kBTS∆E0

}
,

(2.2)

where Suc is the area of a surface unit cell and P is the projection of the scattering

momentum pf−pi parallel to the surface. The differences with respect to Eq. (2.1) are

the appearance of an additional Gaussian-like factor in parallel momentum transfer

P and the envelope prefactor varies as the power 3/2 instead of 1/2. This behavior

is due to the effects of correlations in vibrations of closely neighboring parts of the

surface and as a result of the fact that the law of conservation of momentum applies
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only to components parallel to the surface.

Both Eq. (2.1) and (2.2) have been shown to explain certain types of experi-

ments. The discrete model of Equation (2.1), with the form factor |τfi|2 taken as a

constant has been shown to explain the shape as well as the temperature and energy

dependence of the single scattering peak observed in the collisions of low energy ions

with metal surfaces [49, 50]. It has also been useful for describing energy-resolved

spectra for heavy rare gas scattering from molten metal surfaces [51, 52]. The smooth

surface model of Eq. (2.2) explains the temperature and incident energy dependence

of He atom scattering from a metal surface at high temperatures and energies [53, 54]

and describes the angular distributions and energy-resolved spectra observed in rare

gas scattering from liquid metals and metal alloys [51, 52, 55].

The smooth surface model depends on a parameter vR usually expressed in

dimensions of velocity which is a weighted average of all phonon speeds at the surface.

It can be expressed in terms of the surface phonon polarization vectors at the classical

turning point, and for highly symmetric crystals has the form [45, 46]

1

v2
R

=
1

2kBTSk2

∑
Q

∑
ν

~Q2

Nων(Q)
|k · e(Q, ν)|2 [2n(ων(Q)) + 1] , (2.3)

where the scattering wave vector is k = (pf − pi)/m, ων(Q) is the frequency of

a phonon mode with parallel wave vector Q and perpendicular index ν, N is the

number of modes, n(ω) is the Bose-Einstein occupation number, and e(Q, ν) is the

polarization vector of the (Q, ν) phonon mode. Although vR is completely defined

through Eq. (2.3) if the phonon spectral density is known, it is usually treated as an

adjustable parameter for fitting calculations of the differential reflection coefficient of

Eq. (2.2) to experimental data [45, 46, 47] .
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The typical experiments for which Eqs. (2.1) and (2.2) have been useful are

scattering of beams of the heavy rare gas atoms. The measured energy-resolved in-

tensity spectra for fixed incident and scattering angles usually consist of a single

broad peak whose width increases and whose maximum intensity decreases with in-

creasing surface temperature. The measurements are usually made at angles that

maximize the intensity observed in the peak. Under such conditions, calculations us-

ing Eqs. (2.1) and (2.2) will produce peaks with maxima located at close to the same

energy positions (i.e., located at nearly the same most probable final energies) but

Eq. (2.1) gives peaks that are typically broader in energy width than those observed

experimentally. Eq. (2.2), because it contains an additional Gaussian-like term in

the parallel momentum transfer P will produce a peak with an increasingly narrow

energy width as vR is increased and the value of vR is usually chosen by matching the

width of the scattered distribution to that of the experimental data.

In the case of the smooth, vibrating surface, the statistical mechanical param-

eter, vR, that arises is a kind of correlation speed. This parameter may be determined

from the surface phonon spectral density, but it is difficult to obtain. There are ex-

perimental conditions under which information concerning the value of vR may be

more easily obtained, and such conditions as discussed in the following subsection.

2.2 Suggested Experiment to Determine vR

The quantity vR is expected to be on the order of magnitude of the surface

phonon velocity in the case of smooth solid surfaces [45]. It has been found to be

smaller than the Rayleigh phonon velocity for many solids [56]. Due to decreased

vibrational correlation, vR is expected to be smaller for smooth surfaces than for

rough surfaces. For the same reason, there is expected to be an even larger differ-
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ence between the value of vR and the bulk velocity of sound. There are experimen-

tal conditions, that may be easily obtained, under which the parameter vR can be

more accurately extracted from the energy-resolved spectra. It should be possible to

compare calculations with data taken at angles that differ from maximum intensity

conditions, because at such angles there will be a difference between predictions of

Eqs. (2.1) and (2.2) for the most probable energy position of the peak and that energy

shift will be strongly dependent on vR [57].

An example is shown in Fig. 2.1 which gives calculations for Ar with an in-

cident energy of Ei = 40 kJ/mol (415 meV) scattered from a liquid In surface at a

temperature of 436 K, slightly higher than its melting point [57]. The incident angle

is θi = 46◦ and the final angle is θf = 44◦ corresponding to a fixed source-to-detector

angle θSD = 90◦ which is a commonly found experimental geometry. The dashed

curve is the calculation of the discrete model of Eq. (2.1) and the solid curve is the

calculation of the smooth surface model of Eq. (2.2) and there is a clear shift in en-

ergy denoted by δEmp between their most probable energy positions. This shift is a

function of vR which in this case is chosen to be 2000 m/s. The origin of the δEmp

shift between the two calculations is the Gaussian-like term in P appearing in the

smooth surface model. For the discrete model of Eq. (2.1) the most probable energy

position is very nearly given by the condition that the argument of the exponential

vanishes, i.e., Ef − Ei + ∆E0 = 0. This condition is equivalent to the well-known

Baule relation Ef = f(µ, θ)Ei for the final energy as a function of total scattering

angle θ for an elastic collision between an incoming particle of mass m and energy Ei

and a stationary particle with mass MC . The function f(µ, θ) of Eq. (3.2) is deter-

mined by the conditions of conservation of energy and momentum and depends on

mass ratio µ = m/MC and total scattering angle θ, the angle between pf and pi.

For given incident and final angles the most probable intensity of the smooth
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Figure 2.1: Energy resolved intensity spectra of Ar scattered from liquid In for Ei =
40 kJ/mol and TS = 436 K. The solid curve is the smooth-surface calculation of Eq.
(2.2) for θi = 46◦, vR = 2000 m/s and θf = 44◦, conditions corresponding to 50 per
cent of the maximum of most probable intensity as shown in Fig. 2.2. The dashed
curve is the discrete model calculation of Eq. (2.1), and the dash-dotted curve is the
ratio of Eq. (2.2) to Eq. (2.1).
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surface model of Eq. (2.2) occurs near the energy that minimizes the argument of the

exponential. However, only at certain angles will this minimum argument actually

vanish, because this requires the simultaneous conditions of Ef − Ei + ∆E0 = 0 and

P = 0. Close to these critical angles of most probable energy the most probable

intensity will tend to achieve local maximum values. For example, under the initial

conditions of Fig. 2.1 this occurs at the angle θi ≈ 37◦ (and consequently θf ≈

53◦) [57]. Another way of describing the smooth surface model is to view it as

the product of the discrete model differential reflection coefficient multiplied by the

following Gaussian-like function in parallel momentum transfer

S(pf ,pi) =
π

kBTS∆E0

exp

{
− 2v2

RP2

4kBTS∆E0

}
. (2.4)

The function S(pf ,pi) is not a true Gaussian function because ∆E0 depends upon

the initial and final momentum vectors. This dependence can result in skewed dis-

tributions. The function S(pf ,pi) is also plotted in Fig. 2.1 with the matrix element

given by

τ ′fi = 4pfzpiz/m , (2.5)

the Jackson-Mott matrix element taken in the limit for a strongly repulsive barrier, an

approximate form that has been very useful in the analysis of atomic and molecular

scattering data [52, 55].

It is now clear from Fig. 2.1 that the energy-resolved spectrum of the smooth

surface model can be viewed as the product of Eq. (2.1) for the discrete model and the

Gaussian-like function of Eq. (2.4) in parallel momentum P. The resulting product is

also roughly Gaussian in shape and of similar width, but its intensity is substantially

reduced with respect to that of the discrete model and its most probable energy is
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shifted. The suggestion is that comparing this energy shift δEmp with experimental

measurements taken at wide range scattering angles will be a much more sensitive

way of choosing the parameter vR than simply fitting the shape of the curve for

the energy-resolved intensity spectrum in the region of angles where that spectrum

is maximized [57]. This suggestion will also be applicable to to determining the

scaling parameter of other theories of surface scattering that contain product Gaussian

functions of parallel momentum transfer [58].

As implied above, most experimental studies of energy-resolved spectra have

been carried out with incident and detection angles adjusted near to the critical con-

ditions of maximum intensity, which closely corresponds to the positions where the

argument of the exponential of Eq. (2.2) vanishes. The calculations presented in

Fig. 2.1 show that when the observation conditions deviate from those optimal criti-

cal angles the intensity strongly decreases [57]. This effect, in fact, has been indirectly

noted in measurements of angular distributions [59, 60] , both those measured with

fixed incident angle and those measured by varying the incident angle in a detector

with a fixed source-detector angle θSD [61, 62] . For both types of angular distribu-

tions, calculations using the discrete model predict scattered distributions that have

full widths at half maximum that are much too broad. In contrast, the smooth surface

model with appropriate choice of the parameter vR gives a good fit to the observed

scattered angular distributions [52, 63, 64].

Because the observable intensity decreases rapidly as incident and detector

angles deviate from the optimum angles, this gives rise to the question of whether

there will be sufficient intensity to measure when the energy shift δEmp becomes

appreciable. This question is addressed in Fig. 2.2 which is carried out for the same

incident conditions as Fig. 2.1 with a fixed θSD = 90◦ and vR = 2000 m/s [57].

The solid curve shows the predictions of the smooth surface model at the

13



Figure 2.2: Energy resolved spectra of Ar scattered from liquid In for TS = 436 K
and Ei = 40 kJ/mol with a fixed θSD = 90◦ and vR = 2000 m/s. Critical angular
conditions for a maximum of the most probable scattered intensity occur at θi = 37◦

as indicated by a solid curve. Pairs of other curves are drawn for angular conditions at
which the most probable intensity is 50%, 30% and 10% of this maximum, as marked.
In each pair, the smaller angle corresponds to the peak shifted to lower energy than
that for θi = 37◦.
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critical maximum intensity angle θi = 37◦. The two long-dashed curves, one on each

side of the solid curve, show calculations for incident angles at which the predicted

intensity is 50% of the maximum. One of these two peaks, for θi = 46◦, is the same

calculation shown in Fig. 2.1 where it is clear that the energy shift is δEmp ≈ 14

kJ/mol or about a third of the incident energy. Two further pairs of curves are given

in Fig. 2.2 that show calculations for incident angles at which the predicted most

probable intensity is 30% and 10% of the maximum. For these latter curves the

energy shift δEmp is even larger, as large as one third of the incident energy for the

10% case. Thus, the calculations in Fig. 2.2 imply that substantial energy shifts can

be obtained while still retaining sufficient intensity for measurement.

The question of expected energy shift dependency on incident angle and on

the parameter vR is addressed in Fig. 2.3 [57]. This shows, for the same incident

conditions as in Fig. 2.2 and with θSD = 90◦, calculations of δEmp as a function of

cos θi for several selected values of vR. For small values of vR the energy shifts are

not large, but for vR as large as 2000 m/s the energy shift can become comparable

to the incident energy. Note that at the critical point of maximum intensity, at

cos θi = 0.8 for this case, there is a small energy shift between the two calculations

due to the different prefactors in Eqs. (2.1) and (2.2). Also shown in Fig. 2.3 are a

pair of solid curves, one on either side of the critical angle, marked 50% and another

similar pair marked 10%. These two pairs of curves mark the locus of points where

the most probable intensity predicted by the smooth surface model is 50% and 10%,

respectively, of the maximum value at the critical angle. Thus, if at least 50% of the

maximum observable intensity is required for measurements, this calculation implies

that measurements can be made for all angles between the two solid curves labelled

50%. These calculations indicate that energy shifts as large as 20 kJ/mol, or up to half

the incident energy in this case, can in principle be measured. Such sizeable shifts,
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Figure 2.3: The energy shift δEmp versus cos θi for the same conditions as in Fig. 2.2,
calculated for several different values of vR as indicated. The solid curves are the loci of
points for which the most probable scattering intensity is 50% and 10%, respectively,
of the maximum most probable intensity.
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together with the prediction that the corresponding intensities are readily observable,

would indicate that rather precise values of vR could be obtained by fitting data to

the smooth surface theory.

The smooth surface theory of Eq. (2.2) has proven to be quite useful in the

interpretation and analysis of data for atom and molecule scattering from surfaces,

but it does depend on the velocity parameter vR. However, precise knowledge of vR

can be important because it provides physical information on the system dynamics,

in particular it can be related to the polarization vectors of the phonons at the

classical turning point through its defining equation (2.3). In the past, the method of

determining the parameter vR has been to measure energy-resolved intensity spectra

at angles close to conditions that maximize the observed intensities, and then fit

Eq. (2.2) to the width of the observed experimental peak using vR as a variable

parameter. This suggests that a much more precise way of determining vR is to

make measurements over a range of incident and final angles that deviate from the

critical conditions of maximum intensity, and then determine vR by fitting the energy

shifts δEmp with respect to the parameter-free discrete model predictions of Eq. (2.1).

Calculations for a wide range of systems and initial conditions, of which specific

examples are shown here, indicate that such measurements should be feasible [57].

2.3 Introduction of Multiple Collisions and Poten-

tial Wells

2.3.1 Multiple Collisions

The case of multiple scattering due to successive collisions of the incoming pro-

jectile with different surface atoms can be treated as convolutions of successive single
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collisions using the discrete model. The differential reflection coefficient including

both single and double scattering terms is

dR(2)(pf ,pi)

dΩfdEf

=
dR(1)(pf ,pi)

dΩfdEf

+

〈
N∑

n=1

∫ ∞

0

dEq

∫
∆Ωn

dΩq
dR(1)(pf ,pq)

dΩfdEf

dR(1) (pq,pi)

dΩfdEf

〉
.

(2.6)

The summation is over a set of surface atoms with which the second collisions occur.

For a liquid the angular brackets signify the average over the positions of the number

N of neighboring surface atoms, and ∆Ωn is the solid angle subtended by the second

atom as viewed from the initial collision,

∆Ωn

4π
=

π(a1 + a2)
2

4πd2
, (2.7)

where a1 and a2 are the radii of the projectile and substrate atoms and d is the average

interatomic distance in the liquid metal. The differential reflection coefficient does

not vary strongly over the area subtended by each of the second substrate atoms so

the angular integration is replaced by a multiplicative factor of ∆Ωn. This approxi-

mation has been checked by carrying out exact integrations over intermediate angles,

and differences in the final results were small. For the calculations presented here, N

includes the six nearest neighbor atoms in the surface plane. Higher-order multiple

scattering terms may be treated by adding multiple convolutions of the single scat-

tering differential reflection coefficient to Eq. (2.6) and have been done so with great

success [65, 66, 67, 68].

The solid angles subtended by the surface atoms involved in the second col-

lisions are usually small. The angular dependence of the intermediate differential

reflection coefficient in the double collision may be ignored. The angular integration

in Eq. (2.6) may be replaced by a multiplicative factor, ∆Ωn. The multiple scattering
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Figure 2.4: A square-well potential in front of a surface. The width of the well is b,
the depth D.

of Eq. (2.6) depends on only a single parameter, the classical cross-section of of the

target atom, ∆Ω/4π. This is the fractional solid angle subtended by the cross-section

at the distance of the nearest neighbor surface atom.

2.3.2 Interaction Potential Wells

An important aspect of the description of the interaction of incident gas atoms

and a surface is the nature of the potential well of the interaction potential. The

simplest model of the potential well has been used, the square well of depth D, in

front of the repulsive surface, Fig. 2.4. The primary effect of an attractive well is to

increase the translational energy and to refract the incident particle. This causes the
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incident particle to collide with the surface at a higher translational momentum and a

scattering angle closer to normal. If the well width is greater than the region bounded

by the maximum and minimum of the corrugation of the hard repulsive surface then

the width of the well is unimportant. The effect in the collision with the surface is to

enhance the perpendicular component of the momentum.

In Fig. 2.5 the momenta and angles inside and outside the well are shown.

With the presence of a potential well the translational energy is replaced by

E
′

i = Ei + |D|

E
′

f = Ef + |D|.
(2.8)

The increase in energy caused by the well changes the normal momentum,

p
′

iz
2 = p2

iz + 2m|D|

p
′

fz
2 = p2

fz + 2m|D|,
(2.9)

while the parallel components are unchanged,

p
′

ix = pix

p
′

fx = pfx.

(2.10)

The remaining relation between cos(θ
′

f ) and cos(θf ) is found to be

cos(θ
′

f ) =

√
ET

f cos(θf ) + |D|
ET

f + |D|
. (2.11)

The differential reflection coefficient in the asymptotic region, at the detector
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Figure 2.5: A square-well potential in front of a surface showing the effect of refrac-
tion. The width of the well is b, the depth D.
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position, is

dR(pf ,pi)

dΩfdET
f

= J
dR

′

dΩ
′
fdE

′
f

, (2.12)

with the Jacobian

J =
ET

f cos(θf )√(
ET

f cos2(θf ) + |D|
) (

ET
f + |D|

) . (2.13)

2.4 Derivation of the Discrete and Smooth Surface

Models

Both the smooth and discrete models may be derived from a single approach [69]

that also yields a model that accounts for surface corrugation. A generalization of the

Fermi Golden Rule for the transition rate wfi [70], originally derived by Dirac [71],

wfi =
2π

~
〈
∑
nf

|Tfi|2δ(Ef − Ei)〉, (2.14)

where Tfi is the transition matrix for the initial and final states of the projectile plus

target system. The Ef and Ei are the final and initial energies of the entire system.

The 〈. . . 〉 indicate the average over all initial target states and the summation
∑

nf

is over all final target states.

The van Hove-Glauber transformation, in which the Dirac delta is written in

its time-integral Fourier transform, and the interaction picture is used [72, 73]:

δ (Ef − Ei) =
1

2π~

∫ +∞

−∞
dt exp

ı (Ef − Ei) t

~
. (2.15)
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Then the Hamiltonian of the target governs the time dependence, and we have

w
(
kf , ki

)
=

1

~2

∫ +∞

−∞
dt exp

(
ı(Ef − Ei)t

~

)
〈Tif (t) Tfi (0)〉, (2.16)

with Ei and Ef the initial and final translational energies of the incident atom.

The approximation will be made that the transition operator separates into

two parts,

T̂ = T̂zT̂R, (2.17)

and is a product of an operator in the normal direction, T̂z, and an operator in the

direction parallel to the surface, T̂R. The transition operator then becomes

Tfi = [Φf (z) |T̂z|Φi (z)][Ψf (x, y) |T̂xy|Ψi (x, y)]. (2.18)

The probability of a transition from kiz to kfz is proportional to |[Φf (z) |T̂z|Φi (z)]|2.

The T̂xy will be evaluated by means of the eikonal approximation [74]. For

completely elastic scattering from a hard, repulsive wall potential the wave function

is

Ψi (r) = exp ı (ki · r)−
∑
K

A (K) exp ı[(Ki + K) ·R + ıkfzz]. (2.19)

The component of the incident wave vector, ki, parallel to the surface is Ki with

K = Kf −Ki. From conservation of energy, for elastic scattering in which there is

no energy transfer to the surface,

k2
fz = k2

iz − k2 − 2K ·Ki. (2.20)
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The A (4K) is proportional to the transition matrix

[Ψf (x, y) |T̂xy|Ψi (x, y)] = ı

(
~2kfz

mL

)
exp (ıδf ) A (K) , (2.21)

with m the incident atom mass, L a quantization length and δf a phase .

In order to apply the eikonal approximation, the Rayleigh anzatz [75], which

assumes that the wave function in the asymptotic region of Eq. (2.19) is valid near

the surface, is used along with the hard wall boundary conditions

Ψ (R, z = ξ (R)) = 0, (2.22)

with ξ (R) the corrugation function of the hard wall. Assuming weak dependence of

kfz upon K, the eikonal approximation, allows the A (K) to be written as

A (4K) =
1

L2

∫
dR exp (−ıK ·R− ı4kzξ (R)) , (2.23)

with 4kz = kfz + kiz.

Equation (2.23) is the result of the eikonal approximation for a purely elastic

scattering problem. A potential with thermal vibrations is treated by use of the

surface displacement function u (R, t) in Eq. (2.23) by the transformations

R → R− u‖ (R, t) (2.24)

ξ (R) → ξ (R)− uz (R, t) . (2.25)

24



This results in a transition rate of

w
(
kf , ki

)
=

1

~2

(
~2kfz

mL

)2 ∣∣∣[Φf (z)|T̂z|Φi(z)
]∣∣∣2 ∫ +∞

−∞
dt exp(

ı(Ef − Ei)t

~
)

1

L4

∫
dR1

∫
R2 exp(−ıK · (R1 −R2)) exp(−ı4kz[ξ(R1)− ξ(R2)])

〈exp(ı4k · u(R1, t)) exp(−ı4k · u(R2, 0))〉

(2.26)

with k = kf − ki.

Using the harmonic approximation and calculating the average 〈. . . 〉 yields

w
(
kf , ki

)
=

1

~2

(
~2kfz

mL

)2 ∣∣∣[Φf (z)|T̂z|Φi(z)
]∣∣∣2 ∫ +∞

−∞
dt exp(

ı(Ef − Ei)t

~
)

1

L4

∫
dR1

∫
dR2 exp(−ıK · (R1 −R2)) exp(−ı4kz[ξ(R1)− ξ(R2)])

exp (−2W (4k)) exp (2W (4k; R1R2, t)) ,

(2.27)

after taking account of the commutation relations between displacement operators

at different positions and times [48, 76]. The exp (−2W (4k)) is the Debye-Waller

factor and its argument may be evaluated to

2W (4k) = 〈(4k · u)2〉

= 4k2〈u2
z〉

=
3~24k2TS

MCkBΘ2
D

.

(2.28)

The second equality of Eq. (2.28) is dependent upon there being high crystal symme-

try, such as in FCC, BCC, or HCP crystal structure. The third equality of Eq. (2.28)

is due to use of the Debye approximation [77], where ΘD is the Debye temperature.
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Under these standard approximations all cross terms average to zero and the mean-

square displacements in all directions are all assumed to be equal. The introduction

of a surface destroys the symmetry. However, these are standard assumptions that

have been found to work well even in the presence of a surface.

The position and time dependent correlation function in the exponential for

a periodic surface will also exhibit the periodicity, so may be expanded in normal

modes of vibration [48, 76], and may be written

2W (4k; R1, R2, t) = 〈4k · u (R1, t)4k · u (R2, 0)〉

=
3∑

α,α′=1

4kα4k2α′

∑
Q,ν

~
2NCMCων

(
Q
)

eα

(
Q, ν

)
eα′
(
Q, ν

)
exp ı

(
Q · (R1 −R2)

) {[
nν

(
Q
)

+ 1
]

exp
(
−ıων

(
Q
)
t
)

+ nν exp
(
ıων

(
Q
)
t
)}

,

(2.29)

where eα

(
Q, ν

)
is the α component of the polarization vector of a mode with Q the

parallel wave-vector for that mode, ν is the discrete quantum number for surface

modes and is continuous for bulk modes. The number of modes is NC , the crystal

mass MC , and ων

(
Q
)

is the frequency of that mode. The Bose-Einstein function

n
(
ων

(
Q
))

=

[
exp

(
~ων

(
Q
)
/kBTS

)
− 1

]−1

. (2.30)

It is important to note that the Debye-Waller exponent of Eq. (2.28) is W (4k) =

W (4k; R1 = R2, t = 0), and is important in the classical multiphonon limit of the

transition rate. Its value is a measure of the number of phonons transferred in a

scattering event. It will be large when either 4k is large, or the surface temperature,
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TS is large. Large TS implies effectively large mean-square displacements. When

2W is large the Debye-Waller factor is negligible indicating that a large number of

phonons has been transferred in the scattering event. This is completely incoherent,

classical scattering and the coherence of the beam is destroyed.

When 2W becomes large the correlation function Eq. (2.29) is also important.

The position correlation function is not always large since it is an oscillatory function.

The leading terms in the correlation function come from contributions involving small

t and small separations, R1 − R2. Equation (2.29) can be expanded, showing only

the leading terms,

2W (4k; R1, R2, t) ≈ 2W (4k) +
3∑

α,α′=1

4kα4kα′

{
−ıt

∑
Q,ν

~
2NCMC

eα

(
Q, ν

)
eα′
(
Q, ν

)
− t2

∑
Q,ν

~ων

(
Q
)

2NCMC

eα

(
Q, ν

)
eα′
(
Q, ν

) [
2nν

(
Q
)

+ 1
]

−
∑
Q,ν

~[Q · (R−R′)]2

4NCMCων

(
Q
) eα

(
Q, ν

)
eα′
(
Q, ν

) [
2nν

(
Q
)

+ 1
]}

+ . . . ,

(2.31)

with 2W (4k) the Debye-Waller factor of Eq. (2.29).

Under the assumption of a Debye model and symmetry similar to the bulk

material the correlation function is, again showing only the leading terms,

2W (4k; R1, R2, t) ≈ 2W (4k)− ı4E0t

−4E0kBTSt2 − 4E0kBTS (R1 −R2)
2

2~2v2
R

+ . . . .
(2.32)

The classical recoil energy is

4E0 =
~24k2

2MC

. (2.33)
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The vR is the weighted average of the phonon speeds of phonons parallel to the surface.

This has been evaluated for simple models of the surface phonon density resulting

in values on the order of the bulk acoustic phonon velocities, or the Rayleigh wave

velocity [45, 78].

From purely quantum mechanical scattering to completely incoherent classical

scattering, Eq. (2.27) is the point of departure and development. It is from Eq. (2.27)

that the various surface models used in this work may be derived with the use of

Eq. (2.32).

The discrete model Eq. (2.1) may be obtained from Eq. (2.27) by taking vR �

than the numerator in the argument of the exponential. This gives, with Eq. (2.32)

w
(
kf , ki

)
=

2π

~2

(
~2kfz

mL

)2

|[Φf (z)|T̂z|Φi(z)]|2|A (K)|2

1√
4kBTS4E0

exp

(
−(Ef − Ei +4E0)

2

4kBTS4E0

)
.

(2.34)

As it is, this describes a single classical collision. If

(
~2kfz

mL

)2

|[Φf (z)|T̂z|Φi(z)]|2|A (K)|2 = constant, (2.35)

hard sphere scattering, or the discrete model of Eqs. (2.1) is obtained after application

of Eq. (2.46), an expression encountered in neutron scattering [39].

The smooth surface, or Brako-Newns, model of Eq. (2.2) may be obtained

from Eq. (2.27) by again setting the same prefactors equal to a constant and using a

corrugation function, ξ(R) for a flat surface. This usually involves setting a parameter
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for corrugation height equal to zero, with the result

w
(
kf , ki

)
∝ 1√

4kBTS4E0

1

4kBTS4E0

exp

(
−(Ef − Ei +4E0)

2 + 2~2v2
RK2

4kBTS4E0

)
.

(2.36)

Again applying Eq. (2.46) results in the differential reflection coefficient of Eq. (2.2).

2.5 Derivation of Models With Corrugation

The purpose of developing Eq. (2.27) is to enable the extraction of information

about the corrugation function ξ(R) and thus the corrugation experienced by the

incident atom. It has been suggested that the surface temperature dependence of

the most probable intensity of energy resolved spectra for gas-surface systems my

be used to extract such information [79]. As may be seen in Eqs. (2.1), the surface

temperature dependence of the envelope function of the discrete model is proportional

to T
−1/2
S , while that of Eqs. (2.2) is approximately proportional to T

−3/2
S . The surface

temperature dependence of the most probable intensity of energy resolved spectra for

experimental data is expected to lie between these two limiting cases.

In order to account for corrugation of a surface it is necessary to evaluate

w
(
kf , ki

)
= w

(
kf , ki

)
discrete

S (4K) , (2.37)

with

S (4K) =
1

L4

∫
dR1

∫
R2 exp(−ı4K · (R1 −R2)) exp(−ı4kz[ξ(R1)− ξ(R2)])

exp

(
−4E0kBTS (R1 −R2)

2

2~2v2
R

)
,

(2.38)
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where w
(
kf , ki

)
discrete

is the transition rate of the discrete model. The necessary

expression for the corrugation is ξ(R), for the surface to be studied. This will be

applied to a one-dimensional surface,

ξ (R) = ha cos

(
2π

a
x

)
, (2.39)

and in-plane scattering, 4K = 4Kx. The periodicity condition is ξ (x + na) = ξ (x),

with a the corrugation period, and the interaction potential for a corrugated surface

is defined by

V (x, z) =

 ∞, z < ξ(x)

0, z ≥ ξ(x).

Classical scattering requires integration over only one period of the corruga-

tion, since there is no coherent scattering. Equation Eq. (2.38) may be evaluated in

Cartesian coordinates:

S (4K) =
1

L4

∫ a
2

−a
2

dxdx′
∫ +∞

−∞
dydy′ exp (−ı4Kx (x− x′))

exp(−ı4kz[ξ(x)− ξ(x′)])

exp
(
−α2[(x− x′)

2
+ (y − y′)

2
]
)

,

(2.40)

with

α2 =
4E0kBTS

2~2v2
R

. (2.41)

The integrals over y and y′ are

∫ +∞

−∞
dydy′ = L

√
π

α
. (2.42)
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Figure 2.6: Approximation to the sinusoidal corrugation function. The corrugation
amplitude is h. The interparticle spacing is a, which is also the period. The points
of inflection are at x = ±a/4

This gives a transition rate of

w
(
kf , ki

)
= w

(
kf , ki

)
discrete

L

L4

√
π

α∫ a
2

−a
2

dxdx′ exp(−ı4Kx(x− x′)) exp(−ı4kz[ξ(x)− ξ(x′)])

exp
(
−α2 (x− x′)

2
)

.

(2.43)

An analytic approximation for Eq. (2.43) may be obtained for the sinusoidal

corrugation as shown in Fig. 2.6. The flat part, tangent to the sinusoid at its maximum
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and minimum, results in a contribution identical to that of the smooth model. The

contributions from the sloped segments passing through the points of inflection may

integrated exactly, being linear in x− x′.

The slopes at the inflection points must first be determined:

ξ(x) = ha cos

(
2π

a
x

)
≈ ha cos

(
2π

a
x

) ∣∣∣
a
4

−ha sin

(
2π

a
x

) ∣∣∣
a
4

δx + . . . .

(2.44)

So

ξ(x) =

 ≈ −2πh
(
x− a

4

)
at x = a

4

≈ 2πh
(
x− a

4

)
at x = −a

4

This gives

ξ(x)− ξ(x′) =

 −2πh (x− x′) for x ≈ a
4

2πh (x− x′) for x ≈ −a
4

Using this in Eq. (2.43), to a very good approximation when α is large results

in

w∓ (kf , ki

)
=

 wdiscrete
aπ2

L3α2 exp
(
− (4Kx−2πh4kz)2

4α2

)
negative slope

wdiscrete
aπ2

L3α2 exp
(
− (4Kx+2πh4kz)2

4α2

)
positive slope

(2.45)

The differential reflection coefficients may be obtained from

dR(pf ,pi)

dΩfdEf

=
L4m2

∣∣kf

∣∣
(2π~)3 kiz

w
(
kf , ki

)
. (2.46)

An approximation to the sinusoidal corrugation function may be obtained by

means of a linear combination of the differential reflection coefficients for the positive
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and negative slope transition rates of Eq. (2.45) and that of a flat, smooth surface

Eq. (2.36). This gives a transition rate for the combination model,

w
(
kf , ki

)
=

2wsmooth

(
kf , ki

)
+ Aw+

(
kf , ki

)
+ Aw− (kf , ki

)
2 + 2A

, (2.47)

where w+ and w− are the transition rates for the positive and negative slope parts of

Eq. (2.45), respectively, and wsmooth is the smooth surface result of Eq. (2.36).

The A is the relative lengths of the smooth and sloped parts used to ap-

proximate the cosine corrugation. In order to determine the value of A the cosine

corrugation is be expanded about x = 0 and x = a/4,

cos

(
2πh

a

)
≈ −ha[1− 2π2

a2
δx2], (2.48)

for x = 0, and

cos

(
2πh

a

)
≈ −2πhδx[1− 2π2

3a2
δx2] (2.49)

for x = a/4. This gives a ratio of δxx=a/4 =
√

3δxx=0, since these expansions are valid

over a neighborhood
√

3 larger than near x ≈ 0. Thus, A =
√

3.
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Chapter 3

Argon on Ruthenium

3.1 Introduction

Transition metals have received much attention because of their unusual struc-

tural and electronic properties. These originate in the effects of d-electrons upon

electronic structure. These metals also have phonon anomalies due to the complex

geometry of their Fermi surfaces. Surface phonon dispersion and associated anoma-

lies reveal changes in the bonding properties of atoms near the surface. The high

catalytic activity of ruthenium, an hcp metal, makes it one of the most active metals

and important in heterogeneous catalysis. The synthesis of NH3, for example, may

be Ru-based. This has been a stimulus for many investigations into the interaction

of the ruthenium surface with gasses. Clean crystal surfaces and especially the inter-

action of hydrogen with ruthenium have been investigated. Most attention has been

given to the (0001) surface. Surface phonon dispersion curves have been measured for

clean Ru(0001) surface and hydrogen covered ruthenium surfaces, Ru(0001)+H(1×1)

along the high symmetry directions, [112̄0] and [11̄00], by means of high resolution

helium atom scattering [80]. These experiments also determined the Rayleigh phonon
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velocities for the clean ruthenium surface along the [112̄0] and [11̄00] directions, 3608

m/s and 3494 m/s, respectively.

Experiments on the Ar/Ru system have been carried out resulting in time-

of-flight and in-plane angular spectra [81, 82, 83]. An unusual aspect of these ex-

periments was that the width of the incident beam was nearly that of the resulting

energy-resolved spectra. Usually, these beams are considerably more narrow. Also,

unusual features in the angular spectra appeared that indicated the presence of diffrac-

tion in cases where none was to be expected. While energy-resolved spectra calculated

from theory compared well with the data, such agreement required the use of an ef-

fective target mass of 2.3 Ru atomic mass. The calculated angular distributions were

consistently broader then the data even with the larger effective mass.

3.2 Experiment

In these experiments argon scattering from Ru(0001) was examined for a range

of incident beam energies. The experiments were carried out in an ultra-high vacuum

chamber consisting of a main chamber with the sample mounted on a three-axis

goniometer, a sample manipulator with six degrees of freedom, which allows the

study of azimuthal dependence during experiments [84]. A supersonic beam source

having an 80 mm alumina nozzle was attached to the main chamber. The beam

source had three stages with a rotating chopper in the second stage. Translational

energy of the argon beam was varied from 0.065 to 2.5 eV. These beam energies were

determined by measuring the time-of-flight of a 10 ms pulse of gas from the chopper

to a differentially pumped, rotatable quadrupole mass spectrometer in the scattering

chamber. The final energy of the scattered atoms was obtained by deconvolution of

their time-of-flight signals with the direct beam profiles. The QMS could be rotated
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in a horizontal plane around the sample, placed in the middle of the vacuum chamber.

The ruthenium sample was aligned and polished to within 0.1◦ of the (0001) crystal

face. Electron bombardment (600 V, 80 mA) was the heat source, with a rate of up

to 25 K/s, and cooled to ≈ 100 K with liquid nitrogen. Cleaning was performed in

situ by repeated cycles of flashing in a background pressure of oxygen at 2 ·10−8 mbar

to 1500 K. An oxygen free surface could be obtained by a single flash to 1600 K in

ultra-high vacuum (UHV).

3.3 Results

3.3.1 Energy Resolved Spectra

A series of five measured energy-resolved intensity spectra as functions of final

energy for argon scattering from Ru(0001) are shown in Fig. 3.1, converted from time-

of-flight data, for an incident energy Ei = 0.08 eV, and incident polar angle θi = 40◦

and with the detector positioned at the final angle θf = 20◦. The surface temperatures

range from 140 K to 850 K as marked. These spectra are characterized as smooth,

broad, single-peaked structures which get broader with a longer high-energy tail at

increasing temperature. The position of the peak, or most probable energy, remains

essentially at the same position for all temperatures.

These energy resolved spectra exhibit no evidence of quantum mechanical

features such as sharp diffuse elastic or single surface phonon peaks. The expected

classical nature under these conditions can be verified by calculating the Debye-Waller

factor exp{−2W} where the simplest approximation gives

2W =
6∆E0TS

kBΘ2
D

≈
24m(

√
Ei cos θi +

√
Ef cos θf )

2TS

MCkBΘ2
D

, (3.1)
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Figure 3.1: Energy resolved spectra of Ar scattered from Ru(0001) at surface tem-
peratures TS ranging from 140 to 850 K as marked. The incident energy is Ei = 0.08
eV, the incident angle is θi = 40◦ and the final angle is θf = 20◦. The theoretical
calculations, normalized to the data at each temperature, are shown as smooth solid
curves and the calculated intensities relative to that at 140 K are shown as dashed
curves.
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where the approximate evaluation is obtained by neglecting the parallel momentum

transfer. The exponent 2W is a measure of the approximate number of phonons

created or destroyed in a collision and when it is large the scattering is purely classical.

Using for the surface mass MC the mass of a single Ru atom and a value of 216

K for the Debye temperature ΘD [82], the value of 2W in the region of the most

probable final energy is about 16 even at the lowest temperature. Such a large value

would reduce all quantum features to negligible intensity, and indicate clear classical

conditions.

Calculations from Eq. (2.2) are shown as solid lines and for each temperature

the calculations were normalized to the data at one point near the most probable

intensity [85, 86, 87, 88]. The experimental data were reported in arbitrary units, and

information about relative intensities at different temperatures was not determined.

The theory of Eq. (2.2) predicts a decrease in the most probable intensity with surface

temperature, and these relative theoretical calculations are shown as the dashed lines,

normalized to the data at the lowest temperature of 140 K. The calculations match

the general features of the data reasonably well, the increase in the high-energy tail

is well predicted, but the calculations predict a larger increase of broadening with

temperature than that observed.

However, as mentioned above, all calculations presented in this paper were

carried out with an effective surface mass of 2.3 Ru atomic masses [85, 86, 87, 88].

The reason for this is that a smaller effective mass produces too much energy loss and

gives curves that are too broad and do not match the most probable final energies

observed in the data of Fig. 3.1. Without this larger effective mass, the calculated

most probable final energy is less than half that observed. The need for an effective

mass is indicative of a collective effect in which several Ru atoms are involved in

the collision process, and this is discussed further below in Sec. 4.4. The value of
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the effective mass will also affect the Debye-Waller factor, implying that the value

of 2W should be divided by 2.3. This would change the typical value calculated

above to 2W ≈ 6 at the lower temperature and ranging up to over 30 at the higher

temperatures, but these values are still large and within the range indicating classical

scattering conditions.

It is of interest to examine the temperature dependence of the widths of the

energy resolved peaks of Fig. 3.1 because the theory of Eq. (2.2) predicts that the

width should increase approximately as the square root of the temperature. These

are shown in Fig. 3.2 which plots the squared full width at half maximum (FWHM)

as a function of TS [85, 86, 87, 88]. The data points taken from Fig. 3.1 are shown as

open circles and the calculations are filled squares. The least-squares best fit to the

data is shown as a solid line.

The square root dependence of the FWHM is obtained from Eq. (2.2) by

making a Gaussian expansion of the argument about its minimum point. This gives

the resulting approximations

(FWHM)2 ≈ 16 ln (2) g (θ) EikBTS , (3.2)

where

g (θ) =
gTA (θ)[

1 + µ− µ cos θ/
√

f (θ)
]2 , (3.3)

with gTA (θ) given by

gTA (θ) = µ
[
1 + f (θ)− 2

√
f (θ) cos (θ)

]
. (3.4)
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Figure 3.2: The squared FWHM plotted as a function of surface temperature for
the same data as shown in Fig. 3.1. Experimental points are shown as circles and
calculations are shown as squares. The solid line is the least-squares fit to the data.
The dashed line is the Gaussian approximation to the present theory, and the dash-
dotted line is the trajectory approximation.
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and θ is the total scattering angle (the angle between pf and pi). The function

f (θ) =

(√
1− µ2 sin2 θ + µ cos θ

1 + µ

)2

, (3.5)

is obtained by setting Ef − Ei + ∆E0 = 0 which produces the well-known Baule

expression for the energy transfer in a hard-sphere collision,

Ef = f (θ) Ei (3.6)

The linear approximation of Eq. (3.2) is shown in Fig. 3.2 as a dashed line.

Also shown is the trajectory approximation, the dash-dot line, which is obtained by

replacing g (θ) in Eq. (3.2) by gTA (θ).

It is seen that the theoretical points deviate from the Gaussian approxima-

tion of Eq. (3.2), exhibiting an increase with surface temperature that is less than

expected. This behavior is due to the convolution with the rather broad energy width

of the experimental incident beam. Calculations assuming a monoenergetic and an-

gularly well-defined incident beam have FWHMs that agree quite well with Eq. (3.2).

The experimental data have widths that increase at a substantially slower rate with

surface temperature than Eq. (3.2). The theoretical calculations in Fig. 3.2 indicate

that part of this deviation may be due to the rather poor energy definition of the

incident beam. However, this temperature dependence of the data is unusual. In all

other experimental investigations that have been compared with similar theoretical

approaches as here, when the initial conditions indicated small Debye-Waller factors

based on Eq. (3.1) and hence classical scattering conditions, the expected square-root

dependence of the FWHM was quite well obeyed.
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3.3.2 Angular Distributions

Examples of angular distributions measured at three incident energies 0.08

eV, 0.56 eV and 1.4 eV are shown in Fig. 3.3. The incident angle is θi = 60◦ and

the surface temperature is 140 K. The lowest energy angular distribution measured

shows a relatively sharp peak at the specular position θf = 60◦ sitting on top of

a broad background. This sharp peak is attributed to specular diffraction [82], its

width being approximately the same as the experimental angular uncertainty of 2◦.

This assignment to a quantum mechanical diffraction feature appears to be correct

in the light of the present calculations. A simple evaluation of the Debye-Waller

exponent gives 2W = 7 at the specular position for Ei = 0.08 eV, which would imply

a Debye-Waller factor far to small for a quantum feature to be visible, but with an

effective mass of 2.3 Ru atoms 2W becomes only 2.8, a value for which quantum

effects should be easily measurable. The calculation, shown as a solid curve, should

be compared only to the background since it contains no diffraction, and it is seen

that it qualitatively agrees with the observed background width [85, 86, 87, 88].

The intermediate energy angular distribution at Ei = 0.56 eV in Fig. 3.3 con-

sists of a broad peak, but narrower in angular width, and shows another type of

interesting behavior in the vicinity of the specular angle. This double-peaked struc-

ture is attributed to a classical rainbow feature [82]. There are no hints of quantum

features at this energy, which must clearly be the case since the specular value of 2W is

about 47. The calculated curve qualitatively agrees with the approximate width of the

observed peak, but is not capable of exhibiting the rainbow structure [85, 86, 87, 88].

At the highest energy of 1.4 eV the experimental angular distribution becomes

even narrower and no longer exhibits rainbow structure. Interestingly, the calculation

predicts an angular distribution that is broader than that of the observations [85, 86,
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Figure 3.3: Angular distributions for Ar/Ru(0001) with θi = 60◦, surface temperature
140 K and three different incident energies Ei = 0.08, 0.56 and 1.4 eV as marked.
The symbols are experimental data and the solid curves are calculations.
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87, 88]. The calculated angular distributions become independent of the incident

energy for large values of Ei. This is because the differential reflection coefficient

of Eq. (2.2) becomes a very narrow, delta-function-like peak at the positions of the

minima in the argument of the exponential.

Fig. 3.4 shows further examples of angular distributions taken for incident

energies of 0.44, 1.05 and 1.56 eV with an incident angle of 50◦ and a relatively high

surface temperature of 550 K. In this case the 2W values are quite large, the scattering

is completely classical and there are no rainbow features. The FWHM at the lowest

energy is observed to be about 20◦ and narrows with increasing energy to about 10◦

at the highest energy. The calculations have a distinctly larger width at every energy

and do not show the narrowing exhibited in the data [85, 86, 87, 88].

In addition to the results reported in Ref. [82] a number of scattering exper-

iments were performed on a Ru(0001) surface with a (1×1) monolayer coverage of

hydrogen atoms [83]. On this surface the azimuthal orientation could be determined

with LEED measurements and in Fig. 3.5 are shown angular distributions taken with

a low incident energy of 0.065 eV, a surface temperature of 140 K and four inci-

dent angles from 40◦ to 70◦ separated by 10◦ intervals. At the most normal angle of

θi = 40◦ the experimental points consist of a broad peak with a rather pronounced

shoulder at about θf = 60◦ and for the more grazing incident angles a diffraction fea-

ture gradually appears at the specular position. For θi = 40◦ the value of 2W ≈ 12

at the specular position would seem to preclude the possibility of seeing a quantum

peak, because even taking into account the effective mass would reduce this to about

5 which is still a rather large value for observing quantum effects. However, at the

larger, more grazing angles the 2W value becomes smaller and for θi = 70◦ where

2W ≈ 3 (evaluated with the effective mass of a single Ru atom) a distinct specular

diffraction peak is observed.
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Figure 3.4: Angular distributions for Ar/Ru(0001) with θi = 50◦, surface temperature
550 K and three different incident energies Ei = 0.44, 1.05 and 1.56 eV as marked.
The symbols are experimental data and the solid curves are calculations.
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Figure 3.5: Angular distributions for Ar/Ru(0001)-(1×1)H in the 〈1120〉 direction
with Ei = 0.065 eV, surface temperature 140 K and four different incident angles
ranging from 40◦ to 70◦ as marked. The symbols are experimental data and the
dashed curves are calculations. The solid curves are calculations that have been
renormalized to match the experimental data in the vicinity of the maximum in the
background.
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The calculations shown as solid curves in Fig. 3.5 were carried out assuming

a clean Ru(0001) surface, i.e., ignoring the adsorbed H atoms. At the most normal

incident angle of 40◦, where the Debye-Waller evaluation clearly indicates classical

scattering conditions, the calculations agree very well with the data [85, 86, 87, 88].

At the more grazing angles, since the exponent 2W near the specular position varies

approximately as cos2 θi, the Debye-Waller factor quickly increases allowing the spec-

ular quantum diffraction to appear. In fact, if the effective mass is used 2W becomes

approximately 1 at the largest angle of 70◦, making this case clearly in the quantum

regime. For these larger angles where quantum effects are important, the present

classical mechanical calculations are not expected to be valid, and they explain only

qualitatively the broad background under the specular peak.

3.4 Conclusions

In this chapter a classical theory of atomic collisions with surfaces has

been used to analyze newly available experimental data for the scattered intensities

produced by a beam of Ar atoms directed towards a Ru(0001) surface [85, 86, 87, 88].

The measurements consisted of final angular distributions of scattered particles, and

energy resolved spectra taken at fixed final detector angles. Both of these types of

measurements consisted of single-peaked features with very broad widths, typical of

what might be expected for a heavy projectile scattering under classical conditions

in which many phonons are transferred at each collision. However, at lower incident

energies, there was clear experimental evidence for diffraction peaks, even under con-

ditions for which a simple evaluation of the Debye-Waller factor would exclude any

manifestation of quantum effects.

The present theoretical analysis, using a calculational model that has proved
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to be useful in explaining scattering under classical conditions for a number of other

systems, appears to resolve the question of why diffraction peaks are so readily vis-

ible in the Ar/Ru(0001) system. The observed energy resolved spectra and angular

distributions can be explained only if the Ar atoms are assumed to be scattering from

a collection of more than one Ru atom which has an effective mass of approximately

2.3 Ru atomic masses [85, 86, 87, 88].

This collective effect is most readily seen in the energy resolved spectra shown

in Fig. 3.1. These exhibit a very large energy loss if one assumes that the surface

mass is that of a single Ru atom. However, with a mass MC = 2.3 Ru atoms the

agreement with the theory, both in peak position and in FWHM, is in reasonable

agreement with the measurements.

This, together with the fact that agreement between theory and data for the

large number of angular distributions could be obtained only with the same larger

mass, answers the question of why quantum diffraction effects could be observed.

The same effective mass is what appears in the denominator of the Debye-Waller

exponent 2W of Eq. (3.1), which implies that 2W is actually 1/2.3 time smaller, and

consequently the Debye-Waller factor much larger, allowing quantum effects to be

readily seen.

This is not the first time that a collective effect requiring a larger effective mass

has been noticed in atomic and molecular scattering from metal surfaces. One is a re-

cent experimental investigation of N2 scattering from the same Ru(0001) surface [89].

When this was analyzed with a mixed quantum-classical theory, agreement with the

observed scattering spectra as functions of final translational and rotational energy

required an effective surface mass of 2.3 Ru atomic masses, the same as here [90].

Thus, the present experiment is confirmation that the collective effect is due to the

Ru surface and not unique to the Ar projectile. The N2/Ru(0001) scattering experi-
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ment was also able to independently measure average energies of the final distributions

corresponding to motion parallel and perpendicular to the surface. Analysis of this

indicated that the collective effect was with Ru atoms in layers beneath the surface

and not with neighboring atoms in the surface layer.

The other experimental measurements whose analysis required a larger mass

were for the three rare gases, Ne, Ar and Xe scattering from a molten Ga surface [60].

An analysis using a similar theory as in the present paper required an effective Ga

mass for all three different projectiles of 1.65 Ga atoms [51, 57]. However, the same

projectiles scattering from two other liquid metals, In and Bi, did not require an

effective mass larger than their atomic masses. For Ga, the presence of a collective

effect is supported by independent measurements that show that liquid Ga exhibits

an anomalously large degree of ordered layering even at temperatures large compared

to its melting point, in contrast to other low melting point temperature metals [91].

This observation of collective effects leads to an interesting prediction. The un-

usual nature of the Ru surface, with its large effective mass for atomic and molecular

scattering, means that Ar atoms at subthermal energies, energies that are known to

be readily achievable in He scattering experiments [92], can be used for scattering in-

vestigations in the quantum mechanical regime. This would, by extension, also imply

that neon should also scatter very quantum mechanically since it has an intermedi-

ate mass. Thus, ruthenium presents a unique system in which surface structure and

dynamics could be studied by quantum mechanical scattering of three quite different

rare gas atoms, He, Ne and Ar.

The temperature dependence of the energy resolved spectra was also anoma-

lous in comparison to virtually all other atomic and molecular surface systems that

have been measured under classical scattering conditions. Theories such as that of

Eq. (2.2) show that the FWHM should increase with the square root of the surface
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temperature, as in Eq. (3.2), and this is a consequence of equipartition of energy. The

present experiments exhibit a FWHM that increases with temperature, but substan-

tially less strongly than expected as shown in Fig. 3.2. The present analysis shows

that at least some of this anomalous behavior is due to the very large energy spread of

the incident beam at low energies, because when the differential reflection coefficient

of Eq. (2.2) is convoluted with the experimental energy distribution the calculated

FWHMs also have a less strong increase with surface temperature.

A series of angular distributions were presented in Figs. 3.3 and 3.4. These also

exhibit the rather unusual feature that the measured angular distributions plotted

as functions of θf are actually narrower in width than the theoretical predictions.

However, a reasonable qualitative description of their behavior as functions of the

incident energy Ei, the incident angle θi and surface temperature surface temperature

is provided, and this calculated behavior confirms the need for an effective surface

mass.

To conclude, it is of interest to re-iterate the interesting and anomalous fea-

tures observed in the Ar/Ru(0001) scattering experiments, to review the information

that the present theoretical analysis is able to provide, and to make some suggestions

for interesting new experiments. The measurements exhibit the following characteris-

tics that are unusual in comparison to other systems that have been measured under

similar conditions: (1) the energy losses exhibited in the energy resolved measure-

ments are surprisingly small, (2) the temperature-dependent increase in FWHM of

the energy-resolved spectra is weaker than predicted, (3) many of the angular distribu-

tions exhibit narrower peaks than expected, and (4) quantum mechanical diffraction

was observed under conditions for which it was not expected.

These points are explained, at least qualitatively to some degree, by the present

theoretical analysis. All of these features point towards a collective effect in the
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Ru crystal that results in an effective mass for the collision of approximately 2.3

atomic masses of Ru. Such a collective effect has also been observed in scattering of

N2 by Ru(0001) [89, 90] and that experiment provided some limited evidence that

the collective effect was with Ru atoms in crystal layers below the surface, and not

with the other atoms in the outermost surface layer. The present experiment does

not provide enough data to test this proposition, but additional experiments could

do so if they are carried out for conditions that distinguish the transfer of parallel

and perpendicular momentum. What is needed to answer this question is energy

resolved measurements under conditions where the transfer of momentum is nearly

perpendicular, which implies near normal incident and final angles, contrasted with

measurements taken under conditions that favor parallel momentum transfer, which

implies that at least one of the incident or final angles should be at a near surface-

grazing position. Also helpful would be experiments from which average energies

associated with motion parallel and perpendicular to the surface could be measured.

Perhaps the most important observation to come out of this work is the fact

that the present calculations support and confirm the observation of quantum me-

chanical diffraction features in the experiments. On the basis of assuming a surface

mass of a single Ru atom, quantum effects would be predicted to be unobservable un-

der most of the experimental conditions in which they definitely were observed. It is

now obvious, however, because the present calculations show clearly that the effective

mass is that of about 2.3 Ru atoms, that diffraction and other quantum effects are

not only observable but are to be expected for Ar/Ru scattering under a broad range

of incident conditions at low energies. This leads to the interesting conclusion that

Ru is a metal for which scattering experiments in the purely quantum regime could

be readily carried out with three different rare gas atoms, Ar, Ne and He. Because of

their widely differing masses, quantum diffraction and single phonon measurements
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with these three projectiles would provide interesting comparative structural and dy-

namical information on the surface electron density at different classical turning point

distances from the outermost surface layer. For example, a comparative examination

of both He and Ne atom diffraction from hydrogen-covered nickel and rhodium sur-

faces was able to demonstrate clear anticorrugating effects due to the hybridization

of the orbitals of the incoming atoms with the unoccupied metal states [93]. The

availability of three different but very quantum mechanical projectiles with widely

different masses for probing Ru surfaces could lead to similar important comparative

studies on this system.
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Chapter 4

Scattering of Noble Gases From

Liquid Metals

4.1 Introduction

There are many physical and chemical processes that are of funda-

mental importance that occur at gas-liquid interfaces. These processes are often

important in applications such as catalysis, lubrication, gas chromatography, and re-

moving impurities from liquid, or molten metals. Monatomic liquid metals have are

described as the ptotypical simple liquids [94]. Most of the physical properties of

real fluids are encountered, but few of the complications are present. Some liquid

metals have viscosities and densities similar to that of water and are useful as nuclear

reactant coolant.

Maxwell, in the late 1800’s, studied fluids from a phenomenological point of

view [95, 96]. It was not until the development of statistical mechanics that a micro-

scopic description of the dynamics of liquids became possible. The study of simple

liquids is valuable because they have the basic behavior of liquids but do not have the
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complications that arise with degrees of freedom from vibration and orientation [97].

Various studies have resulted in new insights in the structure of liquid metal

surfaces [31, 98, 99, 100], especially layering of atoms at the liquid surface. By use

of energy -resolved, in-plane and out-of-plane atom-surface scattering the details of

the interaction of the incident atoms and those of the liquid metal surface may be

examined. Many scattering experiments have been carried out for argon, neon and

xenon scattering from molten indium, gallium and bismuth [59, 60, 101, 102, 103].

Atomic liquid metals, such as those listed above, have a high mass density

and very smooth surfaces, thus their surfaces absorb less energy from the incident

atoms than the surface of a liquid of a molecular material. Incident gas atoms are

scattered into a more narrow range of angular directions. The important process in

the scattering event is the transfer of energy between the surface and the incident gas

atoms. The use of argon, neon and xenon to examine gallium, indium and bismuth

allows the examination of scattering from the metals without complications due to

structure in molecular liquids.

All three metals used in these experiments are electrically conducting in the

liquid state. They have high mass densities and high heats of vaporization, as well as

surface tensions. Studies of the bulk show that indium behaves as would a hard sphere

liquid. Gallium seems to exhibit some layering, as may liquid bismuth. Experiment

suggests that liquid gallium and indium have layering perpendicular to the surface.

This extends to several atomic diameters. The atoms in the outermost layers are

arranged similarly to that of hard spheres against a hard wall [100]. Experiments

have also been interpreted as indicating that liquids with lower surface tensions scatter

incident gas atoms more widely and that surface tension is a measure of the roughness

of the liquid surface [60].
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4.2 Experiment

In the experiments supersonic beams of neon, argon and xenon were

produced by expanding the gas through an aperture of 0.075 mm at a temperature

of 298 K. The full widths at half maxima were typically 6 : 1, whereas a Boltzmann

distribution would be 1 : 2. The incident beam, at an incident angle of 55◦, was

chopped by a spinning slotted wheel. When the pulsed beam encounters the liquid

metal surface it forms an ellipse with in-plane dimension 4.3 mm and out-of-plane

dimension 2.5 mm.

The samples were 0.5 mL volume held in a stainless steel crucible. The indium

and bismuth samples were washed in a 10% HCl solution and gallium was dripped

through a glass pipette. The surface was then scraped by a steel wire in vacuum.

Lastly, Ar+ was sputtered at 2.0 keV. The sputtering produced a liquid surface that

is flat to within 1.5◦ of the horizontal. Any carbon or oxygen impurities were found

to remain below 1% by Auger electron spectroscopy.

Scattered atoms were detected at final angles of 45◦, 55◦, and 65◦ in the scat-

tering plane by a double differentially pumped mass spectrometer. Total flux angular

distributions were obtained by rotating a flexible, 35 cm long 1.9 cm diameter steel

tube about the crucible containing the sample. When the out-of-plane angle was zero,

one end of the tube, capped with a 0.32 cm aperture, was 5.4 cm from the region of

interaction. The opposite end was connected to the mass spectrometer. When the

out-of-plane angle was zero the in-plane angle could be varied from −30◦ to +80◦.

The angular resolution of the detector was 3◦. Atoms that entered the tube under-

went multiple collisions with the walls of the tube. This resulted in a thermal velocity

distribution independent of the initial velocities of the atoms.

The out-of-plane angular distributions were measured by translating the de-
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tector perpendicular to the scattering plane from −0.09 to +2.3 cm. With this con-

figuration the final polar angle, θf , changes as the detector is translated. The actual

final scattering angle is θop = cos−1 (cos α · cos θf ), with α the out-of-plane angle in

the plane perpendicular to the scattering plane which is tilted by θf , and is equal to

tan−1 (x/d). The solid angle for the detector also changes as the device is translated.

Since the detector is translated instead of rotated the necessary correction is a mul-

tiplication of the intensities by
(
1 + x2

d2

) 3
2
, or sin3 α. This correction has a maximum

value of 1.28 when x = 2.3 cm, the out-of-plane translation distance.

For final energy resolved distributions the raw data was in the form of time-

of-flight data at θf = 45◦, 55◦ and 65◦. The total flux angular distributions were at

θf = −30◦to + 80◦ in the scattering plane. The out-of-plane distributions were at

α = −10◦ to +25◦ perpendicular to the scattering plane. The incident angle was

always θf = 55◦. The flight path length was 37.6 cm when θf = 45◦ and 65◦, and

28.8 cm when θf = 55◦.

4.3 Results

4.3.1 Argon on Gallium

A series of measured energy-resolved intensity spectra as functions of

final energy for argon scattering from a liquid gallium surface at different tempera-

tures were exhibited in Ref. [60] and an example is shown in Fig. 4.1. The detector

is in the plane of scattering with equal incident and final polar angles θf = θi = 55◦,

the incident energy is Ei = 95 kJ/mol, or 0.98 eV, and the surface temperatures

range from 313 to 673 K. The spectra are characterized by a single broad, asymmet-

ric peak with a very distinct shoulder at low energies and whose full width at half
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Figure 4.1: Energy resolved spectrum of Ar scattered from a liquid Ga surface with
a temperature of 673 K, with θi = θf = 55◦ and Ei = 95 kJ/mol. Experimental
data are circles, total scattering calculation is the solid curve, single scattering is the
dashed curve and double scattering is the dotted curve.

maximum (FWHM) increases with temperature. The peak position, or most proba-

ble final energy, is at about two-thirds of the incident energy indicating a substantial

average energy loss to the surface. Calculations using Eq. (2.6) are shown as the solid

curve [104]. This is the sum of the single collision contribution of Eq. (2.2) shown as

a dashed curve and the double collision contribution which is smaller is shown as a

dotted curve.

The low-energy shoulder evident in the data of Fig. 4.1 is not produced by
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the smooth-model multiple collision calculation used here because the form factor of

Eq. (2.5) becomes too small at very low energies and supresses this feature. This

shoulder is due to double back-scattering trajectories in which the incident particle

is first scattered backwards nearly parallel to the surface and then scattered forward

into the detector by the second collision as has been demonstrated by calculations

based on hard-sphere scattering [55] .

The calculations show essentially no shift in position of the most probable final

energy with increasing temperature, in agreement with the experiment for which the

position varies by no more than 2 kJ/mol over the whole range of temperatures mea-

sured. There is a marked increase in width of the peak with increasing temperature

and this is discussed further below in connection with Fig. 4.2. The value of ∆Ω/4π,

where ∆Ω is the solid angle subtended by the second atom as viewed from the ini-

tial collision, used in the calculations was 0.162 which was calculated from Eq. (2.7)

using the covalent radii of argon aAr = 0.126 nm and gallium aGa = 0.098 nm and

an average interatomic spacing of d = 0.278 nm for the liquid. The value of vR was

chosen to be 600 m/s for all calculations of the Ar/Ga system, compared to 2740 m/s

for gallium at its melting point.

For calculations of all three rare gas probes on gallium it was necessary to

choose MC to be an effective mass equal to 1.65 times the mass of a single Ga

atom [104]. The reason for this lies in the sensitivity of the most probable energy to

MC , and if a smaller effective mass is used the calculated most probable final energy

becomes significantly smaller than that observed. This need for a larger effective mass

with Ga contrasts with the In and Bi results treated below, where MC was always

chosen equal to the atomic mass of the liquid metal.

The temperature dependence of the FWHM for the energy-resolved spectra of

Fig. 4.1 for Ar/Ga scattering are shown in Fig. 4.2. The data, shown as open circles,
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Figure 4.2: Temperature dependence of the squared FWHM for Ar scattered from a
liquid Ga surface with θi = θf = 55◦ and Ei = 95 kJ/mol. The solid line is the Gaus-
sian approximation of Eq. (3.2) and the dashed line is the trajectory approximation.
Data are circles, calculated single scattering is open squares and total scattering is
solid squares. The dotted line is a linear fit to the total scattering with a constant
added for comparison with the slope of the data.
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show the expected very nearly linear dependence of the squared FWHM with surface

temperature. Both single and single plus double scattering calculations, shown as

open and filled squares, respectively, show a similar linear dependence with nearly the

same slope, but smaller by a constant value over the whole temperature range [104].

The constant difference of about 300 kJ2/mol2 between experiment and calculations

implies that this must be due to a mechanism that does not involve thermal processes,

i.e., it is not due to phonons or low energy electron-hole pair excitation.

In Fig. 4.2 is shown the temperature dependence of the full-width-at-half-

maximum for the system [104]. It can be seen that the temperature dependence of

the data and calculations agree well for temperatures up to approximately 400 K. For

completeness, the approximation of Eq. (3.2) and the trajectory approximation are

also shown in Fig. 4.2.

Angular distributions for Ar/Ga are shown in Fig. 4.3. These are compared

with calculations, shown as solid curves, which are the integral of Eq. (2.2) over all fi-

nal energies [104]. Fig. 4.3 shows both in-plane and out-of-plane angular distributions

for an incident energy Ei = 92 kJ/mol, or 0.954 eV and θi = 55◦ for three different

surface temperatures ranging from 308 to 586 K. In this case, the good agreement

between measurement and theory indicates that there is little or no diffuse, equilib-

rium component in the scattering distributions because this would be expected to

appear as a cos θf contribution. Fig. 4.4 shows as open circles an in-plane angular

distribution for Ar/Ga measured at a temperature of 586 K with an incident energy

corresponding to a room temperature jet beam with Ei = 6 kJ/mol, or 0.062 eV and

θi = 55◦. In this case the scattered intensity is spread over a much larger angular

range, indicating that there is significant adsorption with subsequent desorption. It

is usually assumed that the desorbed particles leave in equilibrium with the surface,

and the filled circles are the same data with a fraction of a Knudsen equilibrium flux
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Figure 4.3: In-plane (left panels) and out-of-plane (right panels) angular distributions
for Ar/Ga with θi = 55◦ and Ei = 92 kJ/mol for three different values of surface
temperature: (a and d) 308 K, (b and e) 436 K, (c and f) 586 K. Data are circles and
calculations are the solid curves.
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Figure 4.4: In-plane angular distribution for Ar/Ga with θi = 55◦ and Ei = 6 kJ/mol
for a surface temperature of 586 K. Data are open circles, data with a fraction of the
equilibrium cosine distribution subtracted are filled circles. Theoretical calculations
are the solid curve.

distribution subtracted, this fraction being equal to 43% at 308 K, 40% at 436 K, and

35% at 586 K. The solid curve is the calculation, which in this case includes an attrac-

tive physisorption well of depth D = 60 meV (5.8 kJ/mol). Although the agreement

is not as good as for the higher energy case of Fig. 4.3, the position and widths of

the peaks at all measured temperatures are reasonably well explained [104]. Fig. 4.5

shows an energy-resolved distribution at the same low energy of Ei = 6 kJ/mol, or

0.062 eV with θi = θf = 55◦ and a surface temperature of 586 K. The calculations for
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D = 60 meV are shown as a dashed curve and the solid curve is calculated for D = 0.

The calculations do not fit the low energy part of the data which may be due to a

trapping-desorption component which is not calculated [104]. A trapping-desorption

component might be expected since the estimated well depth is comparable to the

incident energy.

4.3.2 Neon and Xenon on Gallium

Figures 4.6 and 4.7 show examples of angular distributions for neon

and xenon scattering from liquid gallium at a surface temperatures of 586 K with

Ei = 6 kJ/mol and θi = 55◦. For Ne/Ga of Fig. 4.6 no fraction of a Knudsen

distribution was subtracted from the data, a well depth D = 10 meV was included

in the interaction potential and vR = 900 m/s. This well depth is somewhat smaller

than the typical value obtained for Ne adsorption on a range of other metal surfaces

where it is measured or estimated to be of order 30 meV [105, 106] . The agreement of

calculations with the data for Ne/Ga in Fig. 4.6 is not as good as most of the angular

distributions [104]. Subtracting a small Knudsen distribution from the data does

not result in better agreement. This implies that if trapping-desorption processes

are the reason for this disagreement, and such processes are likely because of the

low incident energy, they result in non-equilibrium (non-cosine) component to the

scattering. However, the qualitative agreement for Ne/Ga implies that predominantly

direct scattering processes are involved in the collision, as has been noted previously

for Ne scattering from many metal surfaces [60] .

For Xe scattering the diffuse component was dominant and the subtracted

equilibrium fraction measured temperatures was was 96% at 308 K, 92% at 436 K,

and 90% at 586 K [104]. The well depth was chosen as 100 meV and vR = 300
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Figure 4.5: Energy resolved spectra for Ar/Ga for Ei = 6 kJ/mol, surface temperature
586 K and θi = θf = 55◦. Calculations for D = 60 meV are the dashed curve,
calculations for D = 0 are the solid curve and data are open circles.
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Figure 4.6: In-plane angular distribution spectrum for Ne/Ga at a surface tempera-
ture surface temperature 586 K with θi = 55◦ and Ei = 6 kJ/mol. Data are circles
and the calculation is the solid curve.
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Figure 4.7: In-plane angular distribution spectrum for Xe/Ga for surface tempera-
ture surface temperature 586 K with θi = 55◦ and Ei = 6 kJ/mol, vR = 300 m/s
and an interaction well depth of 100 meV. Data, after subtraction of an equilibrium
component, are shown as filled circles and the calculation is the solid curve.
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m/s. This value for the interaction potential well depth is in basic agreement with

results for Xe adsorption on many metal surfaces as determined from measurements

of sticking coefficients and heats of adsorption [105, 106, 107] in which D ranges

approximately from 100 to 300 meV.

For both Ne and Xe, just as for Ar, an effective mass of 1.65 Ga atoms was

used. As in the case of Ar scattering, the widths and positions of the large, broad

peaks are in reasonable agreement with measurements [104]. For the case of Xe the

data exhibit a small shift in the most probable final angle towards the surface normal

with increasing temperature that is well explained by the calculations. For the case

of Ne a similar shift is predicted by the theory but a somewhat smaller shift appears

in the measurements.

4.3.3 Argon on Bismuth

High energy angular distributions and an energy-resolved spectrum

for argon scattering from liquid bismuth are presented in Fig. 4.8. The in-plane and

out-of-plane angular distributions are for an incident energy of 92 kJ/mol and an

incident angle of 55◦, while the energy-resolved data are for the slightly higher energy

of 95 kJ/mol with both incident and final angles fixed at 55◦. The calculations are

shown as solid curves, with the single and double scattering contributions denoted

as in Fig. 4.1. The value of vR = 350 m/s. In this case the surface effective mass

is taken to be the same as a single Bi atom, and the agreement between theory

and measurement is equally good as obtained for the Ar/Ga case [104]. Fig. 4.9

gives an in-plane angular distribution and an energy-resolved spectrum for a low

energy 6 kJ/mol beam of Ar scattering from liquid Bi. The calculations for the in-

plane angular distributions are similar to those for Fig. 4.8 above except that in this
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Figure 4.8: In-plane, out-of-plane and energy-resolved spectra for Ar/Bi: (a) In-plane
spectra angular distribution with θi = 55◦, Ei = 92 kJ/mol, surface temperature
586 K, (b) out-of-plane angular distribution for θi = 55◦, Ei = 92 kJ/mol, surface
temperature 586 K, (c) Energy resolved spectrum for θi = θf = 55◦, Ei = 95 kJ/mol,
surface temperature 573 K, with the theory curves as in Fig. 4.1. Data are open
circles. 68



case calculations for three different well depths are presented, D = 0, 10, and 100

meV [104]. The relatively small well depth of 10 meV gives reasonable agreement

with the energy-resolved spectrum. In the angular distribution, calculations with the

smaller well depth do not explain the rather large intensity in the neighborhood of

θf near the surface normal, but this discrepancy may be due to the presence of an

equilibrium cos θf component [60] which was not subtracted from the data in Fig. 4.9.

4.3.4 Argon on Indium

Examples of all three types of scattering distributions for argon scat-

tering from liquid indium at the higher incident energy are shown in Fig. 4.10. As

in previous work on this system [51, 52] the theory, with vR = 450 m/s (2215 m/s

at melting), explains the in-plane data reasonably well, and it is seen that this holds

true also for the out-of-plane angular distribution [104].

Fig. 4.11 shows additional data and calculations for angular distributions taken

at surface temperature 436 K and three different energies. The calculations for the

lowest energy of 6 kJ/mol (0.062 eV) include a potential well with D = 100 meV [104].

4.3.5 Neon on Indium

Figure 4.12 shows all three types of scattering distributions for the

case of neon on indium at low energy. The temperature is surface temperature 436

K, Ei = 6 kJ/mol, θi = 55◦ and the out-of-plane distribution was taken at a final in-

plane polar angle also of 55◦. The calculations, shown as solid curves, used vR = 800

m/s and a well depth D = 20 meV [104]. Also shown in the energy resolved spectrum
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Figure 4.9: In-plane and energy resolved spectra for Ar/Bi for Ei = 6 kJ/mol and
surface temperature 586 K: (a) in-plane angular distribution for θi = 55◦, (b) energy
resolved spectrum for θi = θf = 55◦. Data are circles and theory with well depth zero
are the dashed curves, theory with well depth 10 meV are the solid curves, theory
with well depth 100 meV are the dotted curves. A Knudsen distribution is shown in
each panel as the the dash-dot curve.
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Figure 4.10: Ar/In: (a) in-plane angular distribution, and (b) out-of-plane angular
distribution, both for θi = 55◦, Ei = 92 kJ/mol and surface temperature 586 K. (c)
energy resolved spectrum for θi = θf = 55◦, Ei = 95 kJ/mol and surface temperature
436 K.
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Figure 4.11: Angular distributions for Ar/In for θi = 55◦, surface temperature 436 K
and three different incident energies, (a) 6 kJ/mol , (b) 42 kJ/mol , (c) 92 kJ/mol.
On the left are in-plane angular distributions and on the right are out-of-plane dis-
tributions measured starting from the in-plane polar angle θf = 55◦. Data are open
circles and calculations are solid curves.
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of Fig. 4.12(c) is a calculation for D = 0 and the calculation with D = 20 meV

which is in significantly better agreement with experiment. The in-plane angular

distribution of Fig. 4.12(a) is in qualitative agreement with the data in a manner

similar to the low-energy case of Ne/Ga of Fig. 4.6, and again the same explanation

for the lack of quantitative agreement may apply.

4.4 Conclusions

In this chapter a classical theory of atomic scattering from surfaces has been

used to analyze newly available data [60, 108] for the rare gases Ne, Ar and Xe

scattering from liquid metal surfaces [104]. Previously, it has been shown that such

theories can do a reasonable job of describing the observed features of rare gas scat-

tering from surfaces [51, 52], but the newly available data provides the opportunity

to test the theory over a much wider range of scattering systems and initial condi-

tions. Additionally, the new data includes measurements of angular distributions out

of the plane of scattering, providing data from a region of phase space that has not

been investigated before. One major difference with the theoretical approach taken

here is that all scattering is described with a single consistent model. In the previous

work total intensity angular distributions were calculated with the smooth surface

model [52] of Eq. (2.2) while energy-resolved intensity spectra were calculated with

the different classical expression, Eq. (2.1) which is more appropriate for a surface of

discrete scattering centers [51].

The energy range over which measurements were made was quite large, from

6 to 100 kJ/mol, while the incident and final angles for energy resolved and out-of-

plane measurements were always in the neighborhood of the the specular position

with θi = 55◦. In general, the comparisons of theory with the measurements were
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Figure 4.12: Ne/In distributions for Ei = 6 kJ/mol, θi = 55◦ and surface temperature
436 K. (a) in-plane angular distribution, (b) out-of-plane angular distribution, and
(c) energy resolved spectrum for θf = 55◦, showing calculation for D = 0 meV with
a dashed curve, all other calculations are for D = 20 meV shown as solid curves.
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good, especially for the higher incident energies. Good agreement was obtained with

the new, out-of-plane measurements [104].

The theoretical expression of Eq. (2.2) predicts that the FWHM of the en-

ergy resolved spectra should increase very nearly with the square root of the surface

temperature, and this is clearly seen in Fig. 4.2.

For the gases Ar and Xe at the low incident energy of 6 kJ/mol there was a dif-

fusive component in the scattered intensity that could be associated with trapping and

subsequent desorption from the attractive physisorption well. This component was

particularly strong for Xe scattering. Upon assuming that the trapping-desorption

fraction escapes with an equilibrium Knudsen flux distribution at the surface tem-

perature, the present theoretical comparisons are in good agreement with measure-

ments [104].

At low energies, the physisorption well of the potential not only gives rise to

trapping and desorption, but it can also have a significant effect on both the angular

and energy-resolved scattering distributions largely because of the refraction of the

projectile towards a more normal incidence angle and its increased energy as it collides

with the surface inside the well. In the present theory, the physisorption was modeled

by a square well which is adequate for describing the refraction and enhanced energy in

classical scattering [104]. Comparisons with the data at low incident energies provides

predictions of well depths for many of the gas-metal combinations, and these results

are presented in Table 4.1. Although no direct experimental measurements exist for

the physisorption well depths for these combinations of rare gases and liquid metals,

the values obtained here are quite reasonable with the possible exception of Ar/Bi and

are of the same order of magnitude as well depths for the same rare gases measured

or predicted for other metal surfaces [105, 106, 107] . For the case of Ar on Bi, the

well depth value of 10 meV was obtained from the calculations for the energy-resolved
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Table 4.1: Table of adsorption well depths for rare gasses interacting with molten
metal surfaces that could be estimated by comparisons with the scattering data, in
dimensions of meV.

Ga In Bi
Ne 10 20 –
Ar 60 100 10
Xe 100 – –

data of Fig. 4.9(b). This value seems small in comparison with expected values of well

depths for Ar interacting with metal surfaces. In fact, the comparison of calculations

with the angular distribution of Fig. 4.9(a) would indicate a larger well depth that

could be as large as 100 meV.

The authors of Ref. [60] made the interesting suggestion that differences in

surface tension may be the cause of some of the features observed in the scattering

spectra. In particular, for the case of Ar angular distributions they observed that

the peak in-plane scattered intensity decreased with the order Ga>In>Bi, and the

corresponding peak widths increased with the same ordering. Since this is also the

order of decreasing strengths of the surface tensions of the three liquids, they argued

that a larger surface tension resulted in a flatter surface, hence a sharper and narrower

scattered angular distribution. The present calculations fail to produce the observed

ordering in the Ar angular distributions [104]. In fact the calculated order of the peak

intensities is exactly the reverse, i.e., they decrease in the order Bi>In>Ga and this

behavior can be ascribed to the differences in the liquid atom masses. It is possible

to calculate the correct ordering, but only with vR parameter choices that are quite

different from those used here [60] , but these different parameter values do not give

rise to the relatively good agreement with all of the scattered spectra shown here.

It is possible to assign a correlation length to the collision through the Gaussian
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like term in parallel momentum transfer of Eq. (2.2), which can be regarded as having

a decay length RC whose value is given by RC = ~vR/
√

2kBTS∆E0 [87]. The length

RC is proportional to vR and it might be considered of interest to try to relate surface

tensions to such a correlation length, especially since for the present calculations

the vR parameters for Ar (and hence the correlation lengths) decrease in the order

Ga>In>Bi the same as the ordering of the surface tensions. However, for all cases

considered here the correlation lengths are very short, less than the average spacing

between liquid atoms. Thus, it is unlikely that the present calculations can lend

support to arguments based on differences in surface tension. The theory used here

is based on a description of the scattering process that involves collisions with only

one liquid atom at a time and is highly localized in time and space, as indicated by

the very short correlation lengths. However, this suggests that experiments carried

out in the quantum mechanical regime such as low energy He atom scattering, which

would have much larger correlation lengths, might be sensitive to differences in surface

tension.

One interesting result observed here in connection with the liquid Ga surfaces

is that the energy resolved spectra for all three rare gases could not be made to agree

with measurements unless an effective mass for the surface of 1.65 Ga atoms was

used [104]. For In and Bi the surface mass of a single metal atom was satisfactory.

This larger effective mass is suggestive of a collective effect, in which the incoming

rare gas pushes on a mass involving more than one metal atom. The presence of such

a collective effect seems to be supported by independent measurements [91] that show

that Ga, in contrast to In and Bi, exhibits an unusually large amount of quasi-ordered

layering in the liquid state and this layering persists to relatively large temperatures.

There remains the question of whether this collective effect involves atoms in

layers of the liquid beneath the surface, or whether it is with other atoms in the surface
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layer. Interestingly, one other metallic surface examined with atomic and molecular

scattering has also required a larger effective mass. This is Ru(0001), discussed in

Ch. 3 above, where considerable data is available for scattering of Ar [82] and N2 [89]

under incident energy and angular conditions similar to those used here. For both

of these systems, in order to obtain agreement between the data and calculations

similar to those considered here, it was necessary to choose an effective mass for the

Ru surface that was larger than two Ru atomic masses [87, 109].

Interestingly, the experiments on N2/Ru(0001) were able to make independent

measurements of the energy associated with normal and parallel motion of the scat-

tered molecules. Comparisons of calculations with these measurements indicated that

the collective effect in that system was with Ru atoms in layers beneath the surface,

and not with multiple atoms in the surface layer. Unfortunately, the present rare gas

scattering experiments were not taken over a large enough range of initial and final

angles to permit investigation of this dependence in the liquid metals. In order to ex-

amine the spatial dependence of the effective mass effect the ideal experiments would

be to contrast measurements made with near-normal incident and final angles with

measurements made at grazing incident and final angles. It would also be possible

to explore this more fully using angular combinations in which one of the two angles

θi and θf was alternately located near normal with the other angle close to surface

grazing conditions.

One could raise the question of whether detailed calculations, such as molecu-

lar dynamics simulations carried out with more realistic and reliable potentials of the

molten metal surfaces, could reveal more information about the mass dependence.

Two such studies of Ar scattering from molten metal surfaces have already been re-

ported, one using Lennard-Jones potentials [103] and the other using embedded atom

potentials [110], but the calculated angular distributions and energy resolved spectra
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were no better than those obtained with the methods used here. It is doubtful that

atom scattering experiments in the classical, multiphonon regime such as those con-

sidered here will be able to adequately sort out the microscopic origins of the effective

mass. This would be better addressed through experiments capable of measuring sin-

gle quantum excitations of vibrational modes such as inelastic He atom scattering or

electron energy loss spectroscopy (EELS). Comparisons of theoretical calculations to

inelastic scattering spectra using reliable potentials should reveal details of the mass

dependence and should also reveal the importance of surface tension, especially if

evidence for surface capillary waves could be found.

There is also a second reason for suggesting experiments over a large range of

incident and final angles and this has to do with the determination of the velocity

parameter vR. This parameter is completely defined in terms of a weighted average

over all phonon modes parallel to the surface. Thus measurements of vR could, in

principle, provide useful information about the surface phonon spectral density and

hence about the dynamics of the atoms at the liquid surface. It has been pointed

out [57], as discussed above in Ch. 2, that a much better way of determining accu-

rate values of vR would be through comparisons of calculations with experimental

data taken, first at nearly specular conditions such as is the case in the experiments

considered here, and then compared with measurements taken at angles that differ

significantly from specular conditions.
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Chapter 5

Corrugation

5.1 Introduction

Over the years several models of the gas-surface interaction have been

used to study experimental data. The simple hard-cubes model [111, 112], an im-

provement on the calculations of Goodman [113], has been used often. It assumes an

impulsive atom-surface interaction. The generalization to the soft-cube [112], which

includes an interaction potential well and a harmonic binding force on the cube,

achieves reasonably good results. Other improvements include the replacement of

the spherical incident gas particle by an ellipsoid [114, 115] and a rigid rotator [116].

These modifications were to account for rotational excitation of scattered molecules.

In-plane forces have been included by means of hard-sphere [113], capped-sphere and

frictional cubes [117]. For some time the corrugation of surfaces has been studied by

means of the washboard model developed by Tully [118, 119] as an extension of the

simple hard-cubes model by inclusion of a surface corrugation, and an effective sur-

face object modelled as an ellipsoid. One may question the need for another model of

surface attempting to account for surface corrugation in the gas-surface interaction.
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All of the above models have been used with moderate, though often only qualitative

success, and the washboard model is still used. More quantitative success is desirable.

Relatively recently the washboard model has been used to analyze data from

argon scattering from ruthenium with modest success [82, 83]. In order to improve

upon this situation, the classical Wigner formalism has been used to examine the

angular scattering from corrugated surfaces and its temperature dependence with

good qualitative results [120, 121]. This approach results in a theory with three free

parameters. The scattering of argon from hydrogen saturated tungsten has been

examined with an extension of this theory based on the Wigner formalism [122],

resulting in a theory with six free parameters. A theory with a minimum number of

uncontrolled parameters is desirable.

Roughness of the surfaces of liquids and liquid metals and its effect on gas-

surface interactions has been examined in experiments [59, 102, 123]. While most

of this work involved molecular liquids, such as perfluorinated polyether and squa-

lene [102, 123, 124], atomic liquids of molten indium, gallium and bismuth have been

examined by means of atomic scattering of neon, argon and xenon [59, 60, 101, 103].

The most complete set of data is for the argon-gallium system. In this chapter the

model of Eq. (2.47) is used to examine the argon-gallium data [60]. While this data is

from scattering from a liquid metal and is not expected to be appropriate for analysis

with the one-dimensional theory used here, it is used to provide a benchmark for the

behavior of the theory. It is seen that the temperature dependence of the most proba-

ble intensity of energy-resolved data may be used to estimate the surface corrugation.

The present theory is an improvement over the earlier empirical 1/TS temperature

dependence [51]. The peak-to-trough distance of the corrugated surface is seen to be

reasonably close to the expected 10% of the interparticle spacing, often used as an

estimate of the rms value of the vibrational displacement necessary in order to achieve
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melting [125, 126, 127]. The corrugation experienced by the incident atom is seen to

increase with increasing incident energy. This is to be expected because the locus of

classical turning points is farther from the surface for lower incident energies. Double

scattering reproduces the low energy feature seen in the energy-resolved scattering

data. In-plane and out-or-plane scattering agree well with the data for reasonable

values of surface corrugation amplitude.

5.2 Results

The temperature dependence of the most probable intensity of energy-

resolved scattering of argon from liquid gallium at incident energy of 95 kJ/mol and

θi = θf = 55◦ is shown in Fig. 5.1. Calculations are the solid curve for corrugation

amplitude h = 0.08. Data are open circles. For comparison the temperature depen-

dence of the smooth surface and discrete, uncorrelated scatterers are shown. The

calculations are normalized to agree at TS = 313 K. The theory is seen to agree well

with the temperature dependence of the data for h = 0.08. Using an interparticle

spacing for gallium of 2.78 Å, this value of the corrugation amplitude gives a peak-

to-trough distance of 0.44 Å, and the rms value of the height above the surface plane

is 0.16 Å. In either case, the value agrees well with the expected value for melting,

0.28 Å. As the corrugation amplitude approaches zero the temperature dependence

become that of the smooth surface model.

The temperature dependence of the most probable intensity of energy-resolved

scattering of argon from liquid gallium at incident energy of 42 kJ/mol, θi = θf = 55◦

is shown in Fig. 5.2. The calculations are normalized to agree at TS = 309 K.

Calculations are seen to agree well with data. The corrugation amplitude of 0.07 gives

a peak-to-trough distance of 0.38 Å, and the rms value of the height above the surface
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Figure 5.1: The temperature dependence of most probable intensity of energy-resolved
spectra for Ar/Ga with θi = θf = 55◦, Ei = 95 kJ/mol, TS = 313, 483, 673 K.
Calculations are the solid curve for corrugation amplitude h = 0.08. Data are open
circles. For comparison, the temperature dependence of the smooth surface (dash
dot) and discrete, uncorrelated scatterers (dash) are also shown.
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Figure 5.2: The temperature dependence of the most probable intensity of energy-
resolved spectra for Ar/Ga with θi = θf = 55◦, Ei = 42 kJ/mol, TS =
309, 343, 373, 403, 453, 463 K. Calculations are the solid curve for corrugation ampli-
tude h = 0.07. Data are open circles. For comparison, the temperature dependence
of the smooth surface (dash dot) and discrete, uncorrelated scatterers (dash) are also
shown.
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plane is 0.13 Å. This smaller value of h is in agreement with the expectation that

the incident atom encounters a weaker interaction with the surface due to a smaller

incident energy. This results in a relatively smoother locus of classical turning points.

The case showing the importance of double collisions is shown in Fig. 5.3 for

argon scattering from gallium at incident energy Ei = 95 kJ/mol, θi = θf = 55◦

and TS = 673 K. Calculations are the solid curve for corrugation amplitude h =

0.08. Data are open circles. The single collision results are a dashed curve, the

double collision a dotted curve and the results of single plus double a solid curve.

Equation (2.6) was used with the single collision term, dR(1)(pf ,pi)/dΩfdEf , from

the differential reflection coefficient of the combination model and in the differential

reflection coefficient in the double collision term the differential reflection coefficient

for the discrete model was used. Noticeable is the fact these new calculations produce

a reasonable agreement for the low energy features of the data, as opposed to that of

Fig. 4.1 which used the smooth surface model for both single and double collisions.

It can be seen that the double collision component in Eq. (2.6) is responsible for the

low energy agreement with the data. The calculated results for the sum of the single

and double components in Fig. 5.3 is more narrow than in the case of Fig. 4.1, but

with equally good agreement for the position of the most probable intensity.

An example of an in-plane angular scattering distribution for Ar/Ga with

θi = 55◦ and Ei = 92 kJ/mol for a surface temperature of 586 K. are shown in

Fig. 5.4. The value of vR = 600 m/s. Data are open circles. Theoretical calculations

are the solid curve. The calculations are broader than the the data and the most

probable intensity for the calculations occurs at a final angle that is approximately

10◦ smaller than for the data. An example of out-of-plane calculations is shown in

Fig. 5.5

for Ar/Ga with θi = 55◦ and Ei = 92 kJ/mol for a surface temperatures of
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Figure 5.3: Energy-resolved spectra for Ar/Ga with double collisions for θi = θf =
55◦, Ei = 95 kJ/mol and TS = 673 K. Calculations are the solid curve for corrugation
amplitude h = 0.08. Data are open circles. The single collision results are a dashed
curve, the double collision a dotted curve and the results of single plus double the
solid curve.
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Figure 5.4: In-plane angular distribution for Ar/Ga with θi = 55◦ and Ei = 92 kJ/mol
and h = 0.08 for a surface temperature of 586 K. Data are open circles. Theoretical
calculations are the solid curve.
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Figure 5.5: Out-of-plane angular distribution for Ar/Ga with Ei = 92 kJ/mol for
surface temperatures of 308, 436 and 586 K. The value of vR = 600 m/s and θi =
θf = 55◦ and h = 0.08. Data are for 308 K (circles), 436 K (squares) and 586 K
(triangles). Theoretical calculations are the solid curves.
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308, 436 and 586 K. The value of vR = 600 m/s and θi = θf = 55◦. Data are open

circles for surface temperature 308 K, squares for 436 K and triangles for 586 K. The

theoretical calculations are solid curves. The calculations are normalized to the 436 K

data. It can be seen that calculation agrees very well with the data. The calculation

increases in FWHM with temperature increase, and decreases in maximum intensity

as does the data.

5.3 Conclusions

In this chapter the model of Eq. (2.47) was used to examine the argon-

gallium data [60]. While this data was from scattering from a liquid metal and not

expected to be appropriate for analysis with the one-dimensional theory used here, it

was seen to yield results in reasonable agreement even in the case of scattering from

a liquid metal. It was seen that the temperature dependence of the most probable

intensity of energy-resolved data may be used to estimate the surface corrugation.

The peak-to-trough distance of the corrugated surface was seen to be close to the

expected 10% of the interparticle spacing which is the estimate often used for the rms

vibrational displacement necessary to achieve melting. The corrugation experienced

by the incident atom was seen to increase with increasing incident energy, as was to

be expected because the locus of classical turning points is farther from the surface

for lower incident energies. Double scattering reproduced the low energy feature seen

in the energy-resolved scattering data. In-plane and out-or-plane scattering agreed

well with the data for reasonable values of surface corrugation amplitude.
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Appendix A Classical Rainbow Scattering in the

Ar/2H-W(100) System

In the case of scattering at very low incident energies the classical turning

point will be far from the surface. The corrugation experienced by the incident atom

is essentially flat. Scattering will then be almost entirely specular. If the incident

energy is high the atom approaches close enough to the surface to experience a signif-

icant corrugation in the locus of classical turning points. Classical elastic scattering is

specular relative to the local normal. This results in classical rainbow scattering; a re-

sult of the classical mechanical interaction of incident atoms and the two-dimensional

periodicity of the interaction potential. The maximum possible scattering occurs at

the inflection points of the corrugated surface of the locus of classical turning points,

thus making a local extremum in the scattering angle at the inflection points. Steep

corrugations tend to give large maximum angles. What distinguishes classical rainbow

scattering from other classical scattering phenomena is that the orientation of crystal-

lographic directions relative to the scattering plane have a strong effect on the rainbow

scattering patterns. This is similar to the case of diffraction. It goes without saying

that classical rainbow scattering could be used to explore the directional-dependent

properties of the surface and the interaction potential.

In studying the scattering of argon from 2H−W(100) at low beam energies

and low surface temperatures, it was found that rainbow distributions appeared [128].

Recently, that same data has been analyzed using a six-parameter theory [120, 121,

122, 129]. In this appendix the two-parameter theory of Eq. (2.47) is applied to

the data from the 2H−W(100) system of [128]. Good agreement is obtained for the

rainbow distributions.

The geometry for the classical rainbow angle is shown in Fig. 6.
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Figure 6: Geometry of the rainbow angle for a sinusoidal corrugation function. The
dotted line is the local normal. The δ is the angle between the tangent line at the
inflection point and the x-axis, or the angle between the surface normal and the local
normal.
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From this the rainbow angle is found to be:

tan δ =

∣∣∣∣∣dξ (x)

dx

∣∣∣∣∣
= 2πh

θf = θi ± 2δ.

(1)

The rainbow angle from Eq. (1) is for purely elastic scattering. Energy transfer

to or from the surface strongly affects rainbow scattering by shifting the rainbow angle

and broadening the peaks in final angle resolved scattering distributions. The theory

resulting in Eq. (2.47) includes the effects of energy transfer.

The dependence of the rainbow scattering upon incident energy for the 2H−W(100)

system is seen in the following figures, for which the energy range is 0.065 to 220 meV.

All results have been normalized to match the data peak intensity for the supraspec-

ular rainbow. For comparison, from Eq. (1) the rainbow angles for purely elastic

rainbow scattering are 10◦ and 49◦ for the subspecular rainbow and supraspecular

rainbow, respectively.

In Fig. 7 it is seen that the theory, shown as a smooth curve, gives reasonable

agreement with data, circles, for Ei = 65 meV and θi = 30◦. The corrugation

amplitude is h = 0.027 and vR = 850 m/s. Agreement for the subspecular rainbow

is somewhat better than for that of the supraspecular rainbow at approximately 35◦

with the theoretical results being broader then the data. There appears to be a

further feature at approximately 50◦. In Fig. 8 it is seen that, for Ei = 130 meV

and θi = 30◦, with corrugation amplitude h = 0.027 and vR = 850 m/s reasonable

agreement is again obtained. It is seen that the subspecular rainbow peak is more

pronounced than in Fig. (7) meV and is at approximately the same θf = 20◦ as in

Fig. 7. The supraspecular peak is shifted to approximately 37◦. The feature at 50◦ is
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Figure 7: Rainbow scattering for the 2H−W(100) system at Ei = 65 meV and θi =
30◦. The corrugation amplitude is h = 0.027 and vR = 850 m/s.

94



Figure 8: Rainbow scattering for the 2H−W(100) system at Ei = 130 meV and
θi = 30◦. The corrugation amplitude is h = 0.027 and vR = 850 m/s.

somewhat more pronounced. In Fig. 9 it is seen that, for Ei = 220 meV and θi = 30◦,

with corrugation amplitude h = 0.027 and vR = 850 m/s reasonable agreement is

again obtained. It is seen that the subspecular rainbow peak is more pronounced than

in Fig. 7 meV and is at approximately the same θf = 19◦ as compared to θf = 20◦ as

in Fig. 7. The supraspecular peak is shifted to approximately 39◦. The feature at 50◦

is yet more pronounced as compared with the lower energies. At this highest incident

energy the data is much more symmetrical. It is seen that the rainbow peaks in

the theory become more defined as incident energy increases. The data become more

symmetrical as the incident energy increases. Theory also becomes more symmetrical

with increasing energy. The calculations show a feature at approximately 50◦ which

becomes progressively more defined as the incident energy increases. This feature is
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Figure 9: Rainbow scattering for the 2H−W(100) system at Ei = 220 meV and
θi = 30◦. The corrugation amplitude is h = 0.027 and vR = 850 m/s.
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not manifest in the data.

It is of interest to examine the dependence of the theoretical calculations upon

the corrugation amplitude. This is shown in Fig. 10. As the corrugation parameter,

h increases the angular distribution begins as the smooth surface result and quickly

begins to exhibit the rainbow features. The supraspecular rainbow peak is subtly

present at h = 0.02 and becomes significantly more prominent as h increases and

shifts toward higher final angles. The peak intensity also decreases with increasing

corrugation amplitude for the supraspecular peak. The subspecular peak only begins

to be seen at corrugation amplitude of 0.03 and shifts gradually toward lower final

angles with increases values of h.

Also of interest, in Fig. 11 is shown an example of contributions from the

several parts of the combination model. It is seen that the supraspecular rainbow peak

is due to scattering from the negative slope component of Eq. (2.47) and has a lower

peak intensity, while the subspecular, peak is due to the positive slope component of

Eq. (2.47), which has a higher peak intensity. The smooth surface component has

the highest peak intensity and has this peak intensity very near the same value of θi

as that of the data, approximately 37◦.
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Figure 10: Rainbow scattering for the 2H−W(100) system at Ei = 65 meV and
θi = 30◦, and vR = 850 m/s for corrugation amplitude 0.0 ≤ h ≤ 0.05.
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Figure 11: Rainbow scattering for the 2H−W(100) system at Ei = 65 meV and
θi = 30◦, and vR = 850 m/s for corrugation amplitude h = 0.027. The contributions
of the three components of Eq. (2.47) are shown.
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Appendix B Reduction of the Integral of Eq. (2.38)

It is possible, with the use of elementary identities and polar coordinates to

reduce the integral of Eq. (2.38) to a form integrable in one of the azimuthal variables.

Starting with Eq. (2.38),

S (4K) =
1

L4

∫
dR1

∫
R2 exp(−ı4K · (R1 −R2)) exp(−ı4kz[ξR1 )−ξ( R2)] )

exp
(
−α2 (R1 −R2)

2) .

(2)

Transforming to polar coordinates gives

S (4K) =
1

L4

∫ a
2

0

dR1

∫ a
2

0

dR2R1R2

∫ 2π

0

dφ1

∫ 2π

0

dφ2 exp [ı (−4KR1 cos (φ1)) +4KR2 cos (φ2)]

exp(−ı4kz[ξ (R1)− ξ (R2)] )

exp
(
−α2

(
R2

1 + R2
2 − 2R1R2 cos (φ1 − φ2)

))
.

(3)

Using the identity

cos(φ1 − φ2) = cos(φ1) cos(φ2) + sin(φ1) sin(φ2) (4)

results in

S (4K) =
1

L4

∫ a
2

0

dR1

∫ a
2

0

dR2R1R2

∫ 2π

0

dφ2 exp
(
−α2

(
R2

1 + R2
2

))
exp (ı4KR2 cos (φ2))∫ 2π

0

dφ1 exp
(
2α2R1R2 (cos (φ1) cos (φ2) + sin (φ1) sin (φ2))

)
exp (−ı 4KR1 cos (φ1)) .

(5)
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Using the identity

exp (−ı4KR1 cos (φ1)) = cos (4KR1 cos (φ1)− ı sin (4KR1 cos(φ1)) , (6)

leads to

S (4K) =
1

L4

∫ a
2

0

dR1

∫ a
2

0

dR2R1R2

∫ 2π

0

dφ2 exp
(
−α2

(
R2

1 + R2
2

))
exp (ı 4KR2 cos (φ2))∫ 2π

0

dφ1 exp
(
2α2R1R2 (cos (φ1) cos (φ2) + sin (φ1) sin (φ2))

)
(cos (4KR1 cos φ1)− ı sin (4KR1 cos φ1)) .

(7)

The azimuthal angular integral over dφ1 may be calculated by use of known

results [130] to obtain an integral over modified Bessel functions of complex argument:

S (4K) =

∫ a
2

0

dR1

∫ a
2

0

dR2R1R2

∫ 2π

0

dφ2 exp
(
−α2

(
R2

1 −R2
2

))
exp (ı4kz2πh (R1 −R2)) exp (ı (4KR2 cos (φ2))){
I0

(√
4α2R2

1R
2
2 −4K2R2

1 + ı44Kα2R2
1R2 cos φ2

)
− I0

(√
4α2R2

1R
2
2 −4K2R2

1 − ı44Kα2R2
1R2 cos φ2

)
+ I0

(√
4α2R2

1R
2
2 −4K2R2

1 + ı44Kα2R1R2
2 cos φ2

)
− I0

(√
4α2R2

1R
2
2 −4K2R2

1 − ı44Kα2R1R2
2 cos φ2

)}
.

(8)
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