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ABSTRACT

Type Ia supernovae (SNe Ia), the thermonuclear explosion of a white dwarf, shape

our understanding of the expansion of the universe with the use of their uniformity in

distance determinations. Powered by radioactivity synthesized in the explosion, they fade

slowly over hundreds of days. Sometime after 200 days, the continually expanding ejecta

allows γ-rays from 56Ni and 56Co decays to escape, and soon any radioactive power con-

tributing to lighting up the SN comes from positrons formed in 19% of 56Co decays.

While at first it seemed that positrons escaped through the thinning ejecta, it has

become apparent that conclusions can only be drawn from accounting for all the power from

the near-infrared (NIR) as well as the optical. Only a handfull of SNe have been observed

during epochs at a year after explosion in both the optical and NIR. These seem to make an

argument for the complete trapping of positrons while also suggesting there is more power

unobserved in other bands.

This dissertation discusses observations of three nearby SNe; 2006E, 2006ce, and

2006mq, which were all discovered after maximum light, but bright enough to be observed

to late times (the latest at ∼525 days after peak). The late multi-wavelength observations

are converted to fluxes and luminosity and we assess the behvaior of different wavelengths

regimes. A simple positron deposition model is employed to estimate the feasibility of

positron escape. We find that we cannot rule out positron escape, but that it seems likely

that there is a color evolution that shifts power away from observed bands. This shifting of

power seems to vary from SN to SN and is not uniform across all normal SNe Ia.
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CHAPTER 1

INTRODUCTION

Type Ia Supernovae (SNe Ia) are thought to be the thermonuclear explosions of de-

generate white dwarfs in a binary system. While it is currently unclear whether the majority

of SNe Ia derive from a white dwarf (WD) with a stellar companion at a different point in its

evolution, or from the double degenerate scenario where both stars are WDs, the observed

behavior of these events are phenomenologically similar (Hillebrandt and Niemeyer, 2000).

The similarity of each event’s absolute peak brightness led to their use as distance indica-

tors. Even after variations in their intrinsic magnitudes were discovered, their usefulness

was salvaged and intensified by the realization that SN Ia peak brightness correlates with

decline rate (Phillips, 1993),(Perlmutter et al., 1997),(Riess et al., 1996). The shape of a

light curve can provide a reliable way of determining SN Ia absolute magnitude, and thus

the distance to their host galaxies.

Combined with observations of host galaxy redshift, distant SN Ia distance measure-

ments have resulted in unexpected and dramatic cosmological conclusions. Using Cepheid

variables, Hubble (1929) discovered a linear correlation between galaxy distance and veloc-

ity in the direction away from us (barring galaxies within the Local Group). Because of SNe

Ia, observations have expanded out to distances of hundreds of Mpc and refined the slope of

this relationship. At close distances, the relationship is linear, but Riess et al. (1998) found

that galaxies moving at the greatest speeds are found to be 0.28 magnitudes dimmer – or

14% farther – than predicted by the linear curve, indicating our universe is accelerating in

its expansion (Perlmutter et al., 1997),(Riess et al., 1996).

SNe Ia have been suggested as a possible source of positrons to power the mysteri-

ous 511 keV galactic bulge emission. Knödlseder et al. (2005) map out the emission corre-

sponding to electron-positron annihilation and find a strong concentration in the bulge of

the Galaxy. The source for the positrons is unknown.
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1.1 SN Ia Explosion

The light curve that is instrumental in determining SN Ia distance information also

tells us a great deal about the physics of this event. The explosion results from a runaway

thermonuclear reaction triggered when some part of the degenerate material reaches a high

temperature or density. A WD left to its own devices would simply cool down forever,

but in a close enough binary system, a WD can accrete mass from its companion star. As

its own mass increases, the degenerate material contracts and the gravitational pressure

increases. The degeneracy pressure supporting the star against collapse can withstand only

so much. For a WD composed of carbon and oxygen (or with equal parts protons and

electrons), the mass limit is 1.44 M�, known as the Chandrasekhar mass limit. Thus, an

explosion would have to occur when or before the WD accretes to this mass. Once ignition

occurs somewhere in the WD, the nuclear burning increases the temperature which induces

more nuclear burning which quickly spreads throughout the star. The electron degenerate

material is not able to expand and cool quickly enough to abate the burning front, and soon

the runaway nuclear burning engulfs the star resulting in an explosion.

The burning front moves sub-sonically (a deflagration) through the star, creating

iron peak elements in the central regions where the density is the highest. In the outer

layers, the density is lower, and nuclear burning produces only intermediate mass elements

(IME) such as 40Ca, 32S, 28Si, & 20Ne and may even leave unburned 12C & 16O, & 24Mg

(Hillebrandt and Niemeyer, 2000).

Almost the entirety of the released nuclear energy is used up in the expansion of the

SN ejecta. If it weren’t for the radioactive elements created in the nuclear burning, there

wouldn’t be much to observe after the initial explosion.

While 1-D single-degenerate Chandrasekhar-mass deflagration models seem to agree

very well with many observed light curves and spectra, More complicated models have

been invoked to explain the ever increasing nuances of SNe Ia, including double degenerate

models, delayed detonation models, and a slew of more recent 3-D models with mixing and

asymmetries.

Nuances for SNe Ia include sub-luminous SNe which do not follow the peak-width

relationship, SNe with carbon signatures, or with Fe-peak elements in outer layers; and

2



SNe with fast or slow expansion velocities. However, the majority of SNe Ia fall into the

”normal” category. This kind of SN will be examined in the remainder of the thesis.

1.2 SN Ia Light Curve

The largest source of power for the light curve comes from radioactive 56Ni – first

proposed by Colgate and McKee (1969). A normal SN Ia produces ∼ 0.6 M� of 56Ni

(Hoeflich and Khokhlov, 1996), though, depending on the SN, the range can be 0.07 M�

(Mazzali et al., 1997) to 1.4 M� (Filippenko et al., 1992).

The decay schemes of 56Ni → 56Co → 56Fe (Nadyozhin, 1994) are shown in Figure

1.1. 56Ni electron capture decays with a lifetime of τNi = 8.80 days to an excited state of

56Co, which decays — cascading through subsequent excited states — to the ground state,

releasing photons of average energy 1.72 MeV.

56Ni + e− → 56Co∗ + νe (1.1)

56Co∗ → 56Co + γ’s (1.2)

56Co then decays with a lifetime of τCo = 111.3 days into an excited state of 56Fe through

electron capture 81% of the time, and through beta decay 19% of the time.

56Co + e− → 56Fe∗ + νe (81%) (1.3)

56Co→ 56Fe∗ + e+ + νe (19%) (1.4)

The excited state (56Fe∗) decays through multiple photon emissions to the stable ground

state of 56Fe.

56Fe∗ → 56Fe + γ’s (1.5)

The decay produces gamma rays of average energy ∼ 1 MeV, while the positron may have

kinetic energy ranging from 0-1.459 MeV (with a typical energy of 0.632 MeV) (Nadyozhin,

1994).

At early times the SN Ia ejecta are optically thick, and all gamma rays produced by

radioactive decay deposit all of their energy, predominantly through Compton scattering.

This creates energetic electrons which then thermalize mainly through exciting and ionizing

3



Figure 1.1 The simplified decay schemes of 56Ni → 56Co (left) and of 56Co → 56Fe
(right) from Nadyozhin (1994). The number in parentheses at each transition is the

percentage of photons per decay that undergo that transition, while the number in bold (if
present) indicates the energy (in MeV) of the photon emitted.
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bound electrons. Visible photons created from de-excitation and recombination diffuse

through and eventually escape from the outer photosphere-like layers of the ejecta. At this

“photospheric” phase, the radiative output can be approximated as a blackbody. But the

ejecta, traveling at 11-13,000 km/s, continue to expand, and after 200 days past maximum

light, the SN transitions to a nebular phase. The optical depth decreases, the diffusion

timescale is shortened, trapping is less-efficient, and light escapes from deeper and deeper

in the ejecta. Once in the nebular phase, the material is optically thin and completely

transparent to the gamma rays. Now, only the deposition of kinetic energy of the positrons

from the 56Co → 56Fe decay power the light curve. The fraction of positrons that do not

escape is dependent on the configuration of the magnetic field (Milne et al., 2001).

Thus, the light curve shapes are built from the evolution of escaping thermal pho-

tons. In the beginning, the ejecta is optically thick, so the random walk of these photons

requires a long time before they reach the surface. Consequently, the light curve is initially

dim, but progressively increases in luminosity as more and more of these photons are able

to escape. The number of escaping photons peaks roughly 18 days after explosion. The

decrease that follows is due, in part, to the decreasing density. More gamma rays escape,

thus fewer are energizing the ejecta.

The opacity in the UV and blue wavelengths is very large, so any photons radi-

ated in the ejecta at this regime are absorbed and their energy is redistributed through

repeated fluorescences (Pinto and Eastman, 2000). An energetic photon excites a high-

energy atomic transition, which de-excites in a cascade of lower energy transitions. The

amount of light seen in an energy band depends on the number of transitions resulting

in, and the monochromatic opacity for, each line in that energy band. Thus, each band

exhibits a differently shaped light curve, which evolves differently with time. Figure 1.2,

taken from Kasen (2006), shows the evolution of the early light curve in several bands –

from the visible to near-infrared (NIR).

1.2.1 Visible Spectra

While light curves reveal much about the energy release, spectra afford a compli-

mentary peek into the chemical make-up.

5



Figure 1.2 Taken from Kasen (2006), the light curves of the normally luminous SN Ia
SN2001el (circles) plotted with models for U,B,V,R,I,J,H,K bands. Note the different

timing of maximum light and dissimilar shapes for each band — particularly, the
secondary maximum in the NIR.
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Early spectra reveal deep Si II absorption lines and those of other IME, indicating

that burning does not reach nuclear statistical equilibrium (NSE) in outer layers (Branch,

1982). Figure 1.3 shows the early spectrum of three typical SNe Ia. All exhibit the tell-tale

deep Si absorption lines (at 6150 Å) which is what designates them as Ia. They also show

other IME lines (e.g., Ca II at ∼ 8300 Å). Note how remarkably similar these spectra are.

Figure 1.3 From Filippenko (1997), the visible spectra of SNe Ia (from top to bottom:
SN1990N, SN1987N, SN1987D) arbitrarily offset vertically for better viewing. The deep Si

II trough at 6150 Å is from blue-shifted Si II 6347 Å and 6371 Å lines — collectively
called λ6355 Å. The early Si signature indicates incomplete nuclear burning in the outer

layers of SNe Ia. The homogeneity of SNe Ia is evident in the notches present in each
spectra (e.g., near 4550 Å, 4650 Å, and 5150 Å)

As time progresses, and the photosphere recedes further into the ejecta, we see fewer

IME and more iron-group elements. Figure 1.4 shows the progression of spectra for a typical

SN Ia.

Note at early times, the Si II absorption at λ6355 Å is strong, but starts to weaken

after 2 weeks (t ≥ 14 days). Also at 2 weeks, Fe II emission (λ ∼ 6500 Å) and absorption

7



Figure 1.4 The progression of the visible spectra of normal SN Ia SN1994D from
Filippenko (1997). Time is labeled on the left with t = 0 occurring at maximum light. See

text for qualitative explanation. The last two spectra are of the similar SN1987L.
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emerges, which is a hint that we’re beginning to see the iron-rich core. There are still Ca II

lines visible (λ ∼ 3800 Å), but Co lines dominate and dozens of forbidden Fe emission lines

can be seen. The decrease of Co lines is at a rate consistent with radioactive decay of 56Co.

1.3 Unanswered Questions

Despite their use as cosmological distance indicators, much is still not understood

about SNe Ia. The progenitor of a SN Ia explosion has long been thought to be a WD

with a companion star (perhaps a Red Giant). However, observations such as Brown et al.

(2012) are beginning to suggest that the double degenerate scenario is more likely.

The location of the point of ignition starting the thermonuclear explosion is still

unknown as well. Ignition may occur at the center, where the density is the highest, or at the

surface where accretion is taking place. Recent 3-D models utilize multiple ignition points

scattered through the star. How the burning front propagates is another open question.

The delayed detonation model proposed that the burning front begin as a deflagration and

then transition at some critical density to a detonation (Khokhlov, 1991). Different burning

propagation has been invoked to explain different observations.

A related question involves the location of the synthesized 56Ni. Depending on the

location of the 56Ni within the SN ejecta, one could expect to see different light curve

behavior – either fast rise and fall times from quickly-escaping gamma rays or a slower rise

and fall from the deeply buried radioactive material.

At late epochs, the SN ejecta becomes more transparent, and light originates from

deeper and deeper. Late-time observations offer a new window on the location of radioac-

tivity, the densities of the ejecta, and thus early explosion physics.

1.4 Late Epochs

At early times, all gamma rays from radioactive decays are deposited in the ejecta

and their energies go towards powering the light curve. However, as the ejecta expands,

more gamma rays escape. Though they may deposit a minimal amount of energy on their

way out, via Compton scattering, most of their energy is lost. At later epochs, all gamma

rays escape the ejecta, and it is only the deposition of the kinetic energy of positrons (from
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19% of 56Co decays) that powers the light curve. It is the nature of the magnetic field

that determines how far positrons may travel before thermalizing or, at late times, what

fraction of positrons escape the ejecta. Figure 1.5, reproduced from Milne et al. (2001),

models the bolometric light curve of SNe Ia, showing the luminosity evolution for different

assumptions of gamma ray and positron depositions. Note that beginning at t ∼ 500 days,

the light curve is steeper without positron deposition, because the energy that would be

added to power the light curve instead escapes. Thus by measuring the amount of energy

Figure 1.5 From Milne et al. (2001), predicted bolometric light curves assuming
instantaneous deposition of all decay energy (dashed line D), gamma-ray deposition
accounting for escape due to late-time diffuse ejecta (dotted line G), and gamma-ray

deposition with varying degrees of positron deposition (middle lines R through T). The
dark band (R) shows the range of curves for a radial field configuration, the light band (T)

is the range for a trapping field, while the line in-between (labeled In)is the curve for
instantaneous in-situ deposition of positron energy. Ranges correspond to different

ionization fractions of the ejecta.

output during the SN’s positron dominated time, one can determine the amount of positron

trapping, and thus constrain the magnetic field configuration. Milne et al. (2001) compared

the V -band light curves of 22 SNe Ia with models of different magnetic field configurations,
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and concluded that they were better fit by the radially escaping positron model. These

conclusions rested on the assumption that the V -band scales with the total luminosity, and

there is little to no color evolution. After day 50, the V -band did account for a consistent

25% of the visible light, so this assumption seemed reasonable.

1.4.1 The Importance of the Infrared

However, Axelrod (1980) suggested that at late epochs there may be a significant

shift in emission to the IR. Because the rate of collisions in the ejecta is fast relative to

radiative transitions, thermal emissions dominate. At early times, the thermal ejecta is hot

and emissions are mainly in the visible bands, however at later times, the ejecta has cooled,

and the emission in the IR becomes more important. At low temperatures, visible atomic

levels aren’t excited, and the fine structure transitions of iron dominate emission. Axelrod

(1980) suggests that all emission will shift quickly to the far-IR, which cannot currently be

observed. This instability is termed the infrared catastrophe.

Lair et al. (2006) observed seven normally luminous and super-luminous SNe Ia,

and found that while the B, V, and R bands declined at 1.4 mag per 100 days at epochs of

200-500 days, the I decline rate was shallower at 0.94 mag per 100 days. Sollerman et al.

(2004) observed SN2000cx in UVOIR out to 480 days past maximum, and determined that

the visible light curves continually declined by about 1.4 mag per 100 days, the I -band

light curve only declined by ∼0.8 mag per 100 days, and the J,H -band light curves actually

increased in magnitude!

Sollerman et al. (2004) combined their observations from each band into a UVOIR

light curve that included the UV, visible, and NIR bands, UBVRIJHK as shown in Figure

1.6. They then compared this UVOIR curve to models of gamma ray and positron energy

deposition and concluded that the late decline rate was ∼1.0 mag/100 days which is the

same as the decay rate of 56Co. If one interprets this as resulting directly from all of the

kinetic energy of positrons produced in the 56Co decay, this would suggest that all (or

at least a constant fraction of) positrons were trapped in the SN ejecta. Because of the

inclusion of the NIR, Sollerman et al. (2004) arrived at the opposite conclusion of Milne

et al. (2001). It would seem that the color evolution (rising importance of the NIR) is
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Figure 1.6 From Sollerman et al. (2004), the (UVOIR) light curve of SN2000cx
(diamonds) plotted against a model of 56Co decay (solid line). The dot-dashed line shows

the contribution from gamma rays, and the dashed line is the contribution from the
positrons assuming all energy is deposited in the ejecta. The fit of SN2000cx seems to

indicate positron trapping is occurring.

such that it mimics the effect of positron escape in the BVRI. It may be worth noting that

Sollerman et al. (2004) used the assumption that the late light curve power derived from the

complete positron energy deposition to calculate the amount of 56Ni that was synthesized

in the explosion. This derived 56Ni mass is smaller than that derived around peak light,

which indicates that there is still missing power in the UBVOIR light curve. They estimate

that at 500 days there is 40% of emission that is not caught in the bands they observed,

and suggest it may be red-ward of K.

SN2001el, a normal SN Ia, was also observed to have a significant contribution from

the near-IR (Stritzinger and Sollerman, 2007). From 310 to 445 days, the percentage of

flux from the JHK bands increased from 6% to 25%. The decline rate of Stritzinger and

Sollerman (2007)’s UVOIR light curve also seemed to indicate the majority of positrons

were deposited in the ejecta, favoring a trapping magnetic field configuration. SN2004S
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exhibits practically identical characteristics to SN2001el (Krisciunas et al., 2007), though

only extends out to around a year in the NIR.

SN2003hv was one of the brightest SNe Ia discovered in 2003 and was observed in

the visible and NIR in imaging and spectroscopy out to 786 days past peak date (Leloudas

et al., 2009). A UBVOIR light curve was also built for it, which was measured to have

a decline rate of 0.99 mag/100 days - the same as the 56Co decay. Again, there was a

discrepancy between the amount of synthesized 56Ni derived from peak and the amount

derived from the late light curve. Leloudas et al. (2009) observed spectra in the visible,

NIR, and mid-infrared (MIR) at 320, 394, and 358 days past peak respectively. The flux

of the visible and NIR spectra were scaled down to match the MIR spectrum epoch, and

then the entire spectral flux was integrated. Leloudas et al. (2009) found that at these

late epochs there was an additional 34 (± 17)% extra energy in the MIR compared to the

observed UBVOIR light curve. This indicates that the missing flux has at least in part

moved on to longer wavelengths.

Though a significant decrease in the late visible light curves indicating the beginning

of the infrared catastrophe has not yet been observed, there is no doubt that important en-

ergy information is contained in the NIR at late times. The observations in this dissertation

widen the pool of well-observed SNe Ia in the late visible and NIR. The handful of SNe with

these observations are similar in their late UBVOIR decline rates, and their missing power.

We look for further uniformity at late times, and more information about the positron trap-

ping and total late power. Are positrons trapped in all SNe Ia? Can positrons escape the

ejecta while depositing enough of their kinetic energy into the ejecta to create the observed

late power?
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CHAPTER 2

OBSERVATIONS

We took observations of the supernovae 2006E, 2006ce, and 2006mq using telescopes

in a range of sizes, capturing light that ranged from the near edge of ultra-violet to the near

infra-red.

2.1 Telescopes and Instruments

The following telescopes were used for our SN Ia observations.

Steward Observatory Telescopes

Steward Observatory facilities were used chiefly by Peter Milne from University of Arizona.

2.1.1 Super-LOTIS

Super-LOTIS (Livermore Visible Transient Imaging System) is a robotic telescope

situated at Kitt Peak National Observatory (KPNO) which is 56 miles southwest of Tucson,

AZ in the Tohono O’odham Nation. Super-LOTIS nightly observes SNe, novae, and GRBs.

It is currently supported by a collaboration that includes Steward Observatory, Lawrence

Livermore National Laboratory, NASA GSFC, Clemson University, and UC Berkeley Space

Sciences Laboratory. It has a 0.6m aperture, a 17’ x 17’ field of view, and can take about

250 60-second exposures each night. Observations obtained with Super-LOTIS were in

B, V,R, I. However, since 2007, the telescope has only V,R, I and Hα filters.

2.1.2 Kuiper 1.5m Telescope

The Kuiper Telescope with its 1.5m diameter mirror is located on Mount Bigelow in

the Catalina Mountains north of Tucson, AZ. It is operated by Steward Observatory. Visi-

ble observations (B, V,R, I) were taken with the Mont4k instrument which uses a charge-

coupled device (CCD) of 4096 x 4097 pixels with a plate scale of 0.14 arcsec/pixel and a
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field of view of 580 x 580 arcsec2 NIR observations (J,H,K) were taken with the 256x256

Near-Infrared Camera which has a plate scale of 0.36 or 0.9 arcsec/pixel.

2.1.3 Bok 2.3m Telescope

The 2.3m Bok Telescope is also located at KPNO. Visible observations were taken

using 90Prime, a prime focus imaging system with a mosaic of four 4k x 4k CCDs. It

affords a field of view of 1 square degree, and has a plate scale of 0.45 arcsec/pixel. NIR

observations on the Bok also used the 256x256 Near-Infrared Camera. On this telescope

the pixel scale is 0.24 or 0.6 arcsec/pixel.

National Visible Astronomical Observatory Telescopes

2.1.4 Mayall 4m Telescope

KPNO is also home to the Mayall telescope, which has an aperture of 4m and

can support a number of instruments. The two used in this study were MOSAIC and

FLAMINGOS. The MOSAIC instrument, designed for wide-field visible imaging, is made

of an array of 8 CCD chips with a field of view of 36 arcminutes. FLAMINGOS is a wide-

field NIR imager and multi-slit spectrometer. For imaging, it affords a field of view of 10

arcminutes by 10 arcminutes in filters: J,H,K,Ks. While the portion needed to observe

SNe is small relative to both fields of view, the large view allows a SN field to be shifted

without worry that it will be accidentally positioned off the CCD.

2.1.5 The WIYN 3.5m Telescope

Also located at KPNO, the WIYN 3.5m Telescope gets comparable seeing to the

Mayall 4m due to many technological advances. The NIR observation taken with WIYN

used the WHIRC camera which has a field of view of 3.3 arcminutes by 3.3 arcminutes and

a pixel scale of 0.1 arcseconds/pixel.

2.2 The Supernovae

2.2.1 SN2006E

SN2006E was discovered in the host galaxy NGC 5338 independently by two survey

teams – by Tim Puckett and Vishnu Reddy using the Puckett Observatory 0.6m automated
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supernova patrol telescope on January 12.45 UT at an unfiltered magnitude of 14.3, and

by Miloudi Baek and Weidong Li using the 0.76m Katzman Automatic Imaging Telescope

(KAIT) for the Lick Observatory Supernova Search (LOSS) on January 13.58 UT at the

same magnitude (Puckett et al., 2006). A pre-discovery image of the SN taken by Yamaoka

and Itagaki (2006) with a 0.3m reflector telescope on January 2.835 UT gave an unfiltered

red magnitude of about 13.6. Aldering et al. (2006) took a spectrum of SN2006E with the

Supernova Integral Field Spectrograph (SNIFS) on the University of Hawaii 2.2m telescope

on January 14.6 UT. They determined it was a Type Ia supernova that appeared to be a

few weeks past maximum light. The Swift-satellite team (Immler et al., 2006) observed the

field on January 13.83 UT with the Ultraviolet/Visible Telescope (UVOT) and the X-Ray

Telescope (XRT). They found a magnitude of 17.27 mag in the UVW1 filter (spanning

181-321 nm), a magnitude of 18.41 in the UVW2 filter (spanning 112-264 nm) and a non-

detection in the X-ray. Comparing the color to that of SN2005am (Brown et al., 2005),

they found it resembled the 25 day mark with an uncertainty of +/- 5 days. The spectrum

of Aldering et al. (2006) implies SN2006E’s maximum light occurred on January 1, 2006,

whereas the color comparison drawn by Immler et al. (2006) implies a maximum light date

between December 15 and December 25, 2005.

Our observations were taken with the telescopes and instruments described in Sec-

tion 2.1 and are detailed in Table 2.1.
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Table 2.1 SN2006E Observations Log

Date Telescope Instrument Filters

2006-04-19 Kuiper 1.5m Mont4K BVRI
2006-04-24 Kuiper 1.5m Mont4K BVRI
2006-05-12 Kuiper 1.5m Mont4K BVRI
2006-05-13 Kuiper 1.5m Mont4K BVRI
2006-04-14 Bok 2.3m 256x256 H
2006-07-14 Bok 2.3m 256x256 J
2006-12-20 Bok 2.3m 90Prime VRI
2007-01-09 Mayall 4m FLAMINGOS JHK
2007-01-10 Mayall 4m MOSAIC BV
2007-01-25 Bok 2.3m 90Prime V
2007-02-04 Bok 2.3m 256x256 JH
2007-02-15 Kuiper 1.5m Mont4K I
2007-02-25 Kuiper 1.5m 256x256 J
2007-03-09 Bok 2.3m 90Prime UBVRI
2007-03-28 Mayall 4m FLAMINGOS J
2007-03-29 Mayall 4m FLAMINGOS JH
2007-04-05 Kuiper 1.5m 256x256 H
2007-04-17 Kuiper 1.5m Mont4K BVR
2007-04-18 Kuiper 1.5m Mont4K BV
2007-05-06 Kuiper 1.5m 256x256 JH
2007-05-09 Kuiper 1.5m Mont4K BVRI
2007-05-23 Mayall 4m MOSAIC BVRI
2007-05-24 Mayall 4m FLAMINGOS JH
2007-06-06 Bok 2.3m 90Prime V
2007-06-06 Bok 2.3m 90Prime BVR
2008-04-07 Kuiper 1.5m Mont4K BVRI
2010-01-31 Mayall 4m FLAMINGOS JH
2011-03-18 WIYN 3.5m WHIRC K
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2.2.2 SN2006ce

SN2006ce was discovered May 10.14 UT by Ponticello et al. (2006) using the 0.76m

KAIT for LOSS at a magnitude of 12.4. Nothing was seen at its location prior to April 1,

2006. Blackman et al. (2006) took a spectrum of SN2006ce on June 6.83 UT that indicated

it was a SN Ia. Comparing it with a library of spectra, they concluded it was 35 ± 5 days

after maximum light.

Our observations began August 28, 2006 and are listed in Table 2.2.

Table 2.2 SN2006ce Observations Log

Date Telescope Instrument Filters

2006-08-28 Mayall 4m FLAMINGOS JH
2006-08-29 Kuiper 1.5m Mont4K BVRI
2006-09-11 Kuiper 1.5m 256x256 JH
2006-09-27 Kuiper 1.5m Mont4K BVRI
2006-10-07 Bok 2.3m 256x256 JH
2006-10-22 Bok 2.3m 90Prime BVRI
2006-11-24 Kuiper 1.5m Mont4K BVRI
2006-12-07 Bok 2.3m 256x256 J
2006-12-20 Bok 2.3m 90Prime BVRI
2007-01-09 Mayall 4m FLAMINGOS JH
2007-01-25 Bok 2.3m 90Prime BVRI
2007-02-02 Kuiper 1.5m Mont4K BVRI
2007-02-04 Bok 2.3m 256x256 J
2007-02-15 Kuiper 1.5m Mont4K BI
2007-09-12 Bok 2.3m 90Prime UBVRI
2007-11-03 Bok 2.3m 90Prime BVR
2007-12-17 Mayall 4m MOSAIC BV
2007-12-19 Bok 2.3m 256x256 J
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2.2.3 SN2006mq

SN2006mq was discovered by Lee and Li (2006) using KAIT for LOSS on November

5.50 206 UT at a magnitude of 13.2. They also found it in an earlier observation of its host

galaxy, ESO 494-G26, on October 22.56 2006 (mag 12.7). An visible spectrum taken by

Watson et al. (2006) with the Hiltner 2.4m telescope at the MDM Observatory on November

6.5 UT resembled that of a SN Ia around two weeks after maximum. However, Prieto (2006)

reported an improved analysis of this, with the conclusion that SN2006mq spectrum was

more like a SN Ia 40 days after maximum.

Our observations began on November 7, 2006 and are listed in Table 2.3.

Table 2.3 SN2006mq Observations Log

Date Telescope Instrument Filters

2006-11-07 Kuiper 1.5m 256x256 JHK
2006-12-07 Bok 2.3m 256x256 JHK
2006-12-20 Bok 2.3m 90Prime BVRI
2007-01-09 Mayall 4m FLAMINGOS JHK
2007-01-24 Bok 2.3m 90Prime BVRI
2007-02-02 Kuiper 1.5m Mont4K BVRI
2007-02-04 Bok 2.3m 256x256 JH
2007-04-17 Kuiper 1.5m Mont4K BVRI
2007-11-03 Bok 2.3m 90Prime BVRI
2007-11-20 Kuiper 1.5m 256x256 JH
2007-12-02 Kuiper 1.5m Mont4K VR
2007-12-18 Bok 2.3m 256x256 JH
2008-01-15 Bok 2.3m 90Prime BVRI
2008-01-19 Kuiper 1.5m 256x256 J
2008-01-23 Mayall 4m FLAMINGOS JH
2008-02-13 Kuiper 1.5m Mont4K VRI
2008-03-14 Bok 2.3m 90Prime BVRI
2008-04-06 Kuiper 1.5m Mont4K RI

19



2.3 Image Analysis

2.3.1 Reductions

Visible and NIR images were reduced using the Image Reduction and Analysis

Facility (IRAF) software package.1 Each image was trimmed, overscan strip corrected,

bias subtracted, dark subtracted, flattened and had bad pixels fixed. Visible images were

then combined for greater signal to noise, while NIR images underwent more complicated

steps in order to perform sky background determination and subtraction. Then NIR images

are aligned and combined as well. Appendix A contains more explicit steps for standard

visible images (A.1), multi-extension fits files (Section A.2), and NIR images (Section A.3).

2.3.2 Image Subtraction

Because of the proximity of SN2006E to the center of its host galaxy, there was a

worry that its signal would be confused with galaxy light, as is shown in Figure 2.1.

Figure 2.1 SN2006E’s position in the host galaxy means that at late times the SN light
gets overwhelmed by galaxy light. Both images are a B band image of SN2006E taken

with the Kuiper telescope. The one on the left was taken on April 19, 2006, while the right
image was taken on May 9, 2007. The SN position is circled in both. Notice how difficult

it is to separate the SN from the background galaxy light - especially at late epochs.

1 IRAF is distributed by the National Optical Astronomy Observatories, which are oper-
ated by the Association of Universities for Research in Astronomy, Inc., under cooperative
agreement with the National Science Foundation, http://iraf.noao.edu
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Thus additional visible and NIR images of the field were taken well after the SN

disappeared. These images were then used as subtraction images – images that were sub-

tracted from science images of the SN with the hope of removing unwanted galaxy light.

This proved to be a challenging task as the subtraction images were taken with different

instruments than some of the science images. Considerable work went into matching the

respective size, orientation, point spread function, and flux of a subtraction image to those

of each science image.

First, a world coordinate system (WCS) was assigned to every science and subtrac-

tion image using the IRAF task CCMAP and CCSETWCS. If an image already had a WCS

assigned to it (an automated process from the instrument it was taken with), it was cor-

rected using MSCCMATCH. Then, for each science image, a separate subtraction image was

made - copied from the appropriate filter original subtraction image. The subtraction im-

age was aligned to the science image according to both image’s WCS using WREGISTER.

This included stretching, translation, and rotation of the subtraction image. Afterward,

the full-width half-maximum (FWHM) of several stars were measured in each image. The

subtraction image was then convolved with the appropriate Gaussian (using GAUSS) in an

attempt to match the seeing conditions in which the science image was taken. In the rare

cases where the subtraction image was more blurry (had a greater FWHM), the science

image was convolved with a Gaussian to match the subtraction image seeing conditions.

Using IMARITH, an offset value was then added or subtracted to images to make the back-

ground counts roughly zero, and then the subtraction image was scaled appropriately so

that the maximum values of stars or galaxies matched those in the science image. Finally,

the subtraction image was subtracted from the science image (again using IMARITH) and

an arbitrary offset of 30 counts was added to minimize the number of negatively valued

pixels. An example of the results is shown in Figure 2.2
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Figure 2.2 Images of SN2006E taken on December 20, 2006 with the Bok telescope. The
image on the left is the original reduced science image, while the image in the right is the

same image after having the subtraction image subtracted from it. This removes the
background galaxy light in the area of the SN. The SN position SN is circled in both

images.

2.3.3 Photometry

The instrumental magnitudes of local field stars, the supernova, and standard stars

were measured with aperture photometry using IRAF. In the visible bands, local stars and

the SN were calibrated with observations of standard star fields using Landolt transfor-

mation equations. In the NIR band observations, additional field stars and the SN were

calibrated using stars in the field with known magnitudes from the Two Micron All Sky

Survey (2MASS) catalog. A guide on performing photometry on reduced images is included

in Appendix Section A.4.

2.4 SN2006E Light Curves

Calculated magnitudes of SN2006E from aperture photometry are recorded in Tables

2.4 (Visible) and 2.5 (NIR).
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Table 2.4 SN2006E Calculated Visible Magnitudes

Date B B error V V error R R error I I error

2006-04-19 16.866 0.003 16.584 0.003 17.169 0.005 17.126 0.008
2006-04-24 16.958 0.003 16.671 0.003 16.925 0.004 17.330 0.010
2006-05-12 17.336 0.005 17.045 0.004 17.523 0.008 17.496 0.020
2006-05-13 17.299 0.004 17.003 0.004 17.439 0.005 17.769 0.016
2006-12-20 .......... ........ 20.051 0.020 21.511 0.081 22.572 0.222
2007-01-10 20.652 0.037 20.747 0.045 .......... ........ .......... ........
2007-01-25 .......... ........ 20.872 0.031 .......... ........ .......... ........
2007-02-15 .......... ........ .......... ........ .......... ........ 21.266 0.216
2007-03-09 .......... ........ 21.470 0.044 22.578 0.162 .......... ........
2007-04-17 22.626 0.127 22.016 0.064 23.065 0.193 .......... ........
2007-04-18 22.611 0.049 22.248 0.104 24.146 0.262 20.645 0.132
2007-05-09 22.847 0.096 23.116 0.209 22.745 0.211 .......... ........
2007-05-23 22.960 0.047 22.831 0.030 23.560 0.090 24.892 0.061
2007-06-06 .......... ........ 22.975 0.162 .......... ........ .......... ........
2007-06-07 23.035 0.269 22.952 0.142 .......... ........ .......... ........

The following figures show the B (2.3), V (2.4), R (2.5), I (2.6), J (2.7), H (2.8)

magnitudes of SN2006E. Both the photometry of the unsubtracted and subtracted images

are included for a comparison. Subtraction tends to result in lower magnitudes as there is

less galaxy light contained in the SN measurement. Also plotted with visible magnitudes

are typical SN Ia 100-200 day decline rates anchored at 100 days by the first data point

in each band, followed by 200-500 day Ia decline rates from Lair et al. (2006). The NIR

plots include some late J or H points (connected in a line) of SN2003hv from Leloudas et al.

(2009) for comparison. The determination for the epochs is discussed in the upcoming

Section 3.1.
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Table 2.5 SN2006E Calculated Near Infrared Magnitudes

Date J J error H H error

2006-04-14 .......... ........ 17.488 0.468
2006-07-14 17.931 0.524 ........ ........
2007-01-09 18.556 0.191 18.006 0.162
2007-02-04 18.574 0.103 18.125 0.208
2007-02-25 19.508 0.906 .......... ........
2007-03-29 19.877 0.074 18.874 0.103
2007-04-05 20.566 0.283 18.597 0.525
2007-05-24 19.508 0.418 19.744 0.257

2.5 SN2006ce Light Curves

Tables 2.6 and 2.7 contain the magnitude measurements of SN2006ce in visible and

NIR respectively. Figure 2.9 shows the visible light curve while Figure 2.10 exhibits the

NIR curve. The different bands have been arbitrarily offset in magnitude as designated in

the plot for easy viewing of their relative shapes. Much like in section 2.4, also plotted are

typical decline rates (in visible) or late SN2003hv data (in NIR).

Table 2.6 SN2006ce Calculated Visible Magnitudes

Date B B error V V error R R error I I error

2006-08-29 17.005 0.004 16.457 0.003 16.776 0.004 16.612 0.012
2006-09-27 17.116 0.007 16.885 0.004 17.289 0.007 17.344 0.016
2006-10-22 17.704 0.006 17.283 0.006 18.064 0.017 17.615 0.029
2006-11-24 .......... ........ 17.978 0.006 19.031 0.014 18.171 0.031
2006-12-20 18.662 0.005 18.265 0.007 19.299 0.023 17.864 0.023
2007-01-25 19.191 0.031 18.804 0.041 20.029 0.136 18.397 0.121
2007-02-02 19.224 0.043 19.206 0.020 19.911 0.056 19.424 0.087
2007-02-15 19.715 0.017 .......... ........ .......... ........ 19.626 0.153
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Figure 2.3 The measured magnitudes of SN2006E from both the B band unsubtracted
(triangles) and subtracted (diamonds) images are plotted according to their Julian date.

Apart from the I band, the visible curves seem to follow the decline rate of normal

SNe Ia quite well. While the H band seems to decline steadily, the J band flattens for about

100 days.
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Table 2.7 SN2006ce Calculated Near Infrared Magnitudes

Date J J error H H error

2006-08-28 18.374 0.045 16.143 0.046
2006-09-11 19.059 0.420 17.246 0.187
2006-11-07 19.580 0.322 .......... ........
2006-12-07 19.501 0.121 .......... ........
2007-01-09 19.440 0.107 18.661 0.155
2007-02-04 19.616 0.233 .......... ........
2007-12-19 17.151 0.039 .......... ........

2.6 SN2006mq Light Curves

The results from visible and NIR photometry are in Tables 2.8 and 2.9 respectively.

The visible and NIR light curves follow in Figures 2.11 and 2.12 and are plotted similarly

to those in Section 2.5.

Table 2.8 SN2006mq Calculated Visible Magnitudes

Date B B error V V error R R error I I error

2006-12-20 15.318 0.002 16.164 0.003 15.030 0.002 15.450 0.002
2007-01-24 16.192 0.007 16.689 0.005 16.144 0.011 16.665 0.039
2007-02-02 16.385 0.010 16.858 0.013 16.362 0.008 16.976 0.018
2007-03-09 16.970 0.007 17.371 0.006 17.230 0.013 17.619 0.017
2007-04-17 17.618 0.025 17.954 0.032 17.578 0.029 18.457 0.086
2007-11-03 20.353 0.030 20.630 0.032 21.094 0.091 20.047 0.079
2007-12-02 .......... ........ 20.612 0.686 20.508 0.295 16.612 0.012
2008-01-15 21.277 0.118 21.676 0.112 21.632 0.239 16.612 0.012
2008-03-15 21.933 0.302 21.782 0.260 22.367 0.535 16.612 0.012
2008-04-07 .......... ........ .......... ........ .......... ........ 20.489 0.261

The visible bands of all three SNe follow the decline rates from Lair et al. (2006)

very well, except the I band where measured magnitudes float both above and below the
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Table 2.9 SN2006mq Calculated Near Infrared Magnitudes

Date J J error H H error K K error

2006-11-07 13.395 0.005 12.454 0.005 12.510 0.011
2006-12-07 15.695 0.016 .......... ........ 13.683 0.015
2007-01-09 17.313 0.023 15.422 0.010 14.979 0.019
2007-02-04 18.586 0.157 16.734 0.059 .......... ........
2007-02-05 19.334 0.281 17.078 0.120 .......... ........
2007-02-25 16.950 0.596 16.056 0.117 17.164 0.232
2007-11-20 18.803 0.070 18.461 0.111 .......... ........
2007-12-18 19.024 0.059 .......... ........ .......... ........
2008-01-19 19.045 0.074 18.931 0.229 .......... ........
2008-01-23 18.906 0.078 18.726 0.201 .......... ........

plotted decline. The I band has a great deal of fringing (interference patterns caused by

the way light travels through the detector) that is difficult to remove from images and

often makes it difficult to determine the level of the sky compared to the star. This is

especially true at late times when the SN is faint enough that it is comparable to the

level of fringing. The error bars plotted for each observation are calculated with IRAF

and include uncertainties including SN, local star, and standard star signal to noise in

observations and uncertainties in the known standard star magnitudes. These uncertainties

are folded into transformation equations which assesses how differently the instrument sees

stars of different colors at different airmasses. With these observations, we did not have

enough observations at different airmasses to accurately measure an airmass dependence.

The fringing adds an error on top of this. Early on, this additional error is miniscule,

however at late times it is not unreasonable to think it adds half a magnitude to the error

bars.
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Figure 2.4 The measured magnitudes of SN2006E from both the V band unsubtracted
(triangles) and subtracted (squares) images are plotted according to their Julian date.

Figure 2.5 The measured magnitudes of SN2006E from both the R band unsubtracted
(triangles) and subtracted (diamonds) images are plotted according to their Julian date.
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Figure 2.6 The measured magnitudes of SN2006E from both the I band unsubtracted
(triangles) and subtracted (diamonds) images are plotted according to their Julian date.

Figure 2.7 The measured magnitudes of SN2006E from both the J band unsubtracted
(asterisks) and subtracted (diamonds) images are plotted according to their Julian date.
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Figure 2.8 The measured magnitudes of SN2006E from both the H band unsubtracted
(asterisks) and subtracted (squares) images are plotted according to their Julian date.

Figure 2.9 The visible light curve of SN2006ce from our observations in BVRI. The
individual bands are arbitrarily offset as stated to allow better comparison. The lines are

typical decline rates for SNe Ia from 100-200 days and from 200-500 days.
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Figure 2.10 The light curve of SN2006ce from our observations in J,H. The H band
points are arbitrarily offset by 3 magnitudes in order to facilitate better comparison.

Figure 2.11 The light curve of SN2006mq from our observations in B,V,R,I. The
individual bands are arbitrarily offset as stated to allow better comparison. The lines are

typical decline rates for SNe Ia from 100-200 days and from 200-500 days.
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Figure 2.12 The light curve of SN2006mq from our observations in JHK. The H band
points are arbitrarily offset by 6 magnitudes, as are the K band by 11magnitudes. The

lines beginning at roughly 350 days are the J and H light curves of SN2003hv from
Leloudas et al. (2009)
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CHAPTER 3

ANALYSIS

3.1 Epoch Determination

All three SNe were discovered post peak which means some information like peak

brightness, peak date, and peak decline rate are not known. Both SNe 2006ce and 2006mq

had fairly definitive peak dates determined from early spectral observations. SN2006E,

however had competing groups assign it different peak dates (see Section 2.2.1). Due to

the uniformity of SNe Ia, we can hope to gather this information by comparing with other

well-studied Ia light curves. We use the earliest light curve information which is visible data

from Super-LOTIS observations. We can fit the early 2006E B,V,R,I light curves to those

of the normal SN1992. In the fit, the peak date and amount of extinction is allowed to vary.

Extinction is due to dust, either in the SN host galaxy or our own Milky Way.

This dust scatters different wavelengths of light to various degrees. Bluer light is scattered

more easily, while longer wavelengths are less affected. We assume a Milky Way galaxy

distribution of sizes of dust particles for the dust in the SN host galaxy, (though see Elias-

Rosa et al. (2006) for an example of a SN host galaxy with perhaps a different distribution)

which tells us the relationship between extinction for each band.

Figure 3.1 shows the best fit of the SN2006E light curves to the SN1992A template

taken from Hamuy et al. (1996). This resulted in a peak date of December 19, 2005 which

falls in the estimation from Immler et al. (2006).

Now we can look at the light curve data in terms of the epoch since peak light.

Figure 3.2 shows the multi-band light curve of SN2006E at the newly-defined epochs.

Figure 3.3 shows the multi-band light curve of SN2006ce at the epochs defined by

Blackman et al. (2006) and Figure 3.4 shows the multi-band light curve of SN2006mq at

epochs determined by the Prieto (2006) estimated peak date.
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Figure 3.1 SN2006E Super-LOTIS B,V,R,I data (diamonds) fit to the normal SN Ia
1992A (solid line)

Figure 3.2 The B,V,R,I,J,H light curve of SN2006E. The bands are arbitrarily offset as
marked to avoid confusion.
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Figure 3.3 The B,V,R,I,J,H light curve of SN2006ce. The bands are arbitrarily offset as
marked to avoid confusion.
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Figure 3.4 The B,V,R,I,J,H light curve of SN2006mq. The bands are arbitrarily offset
as marked to avoid confusion.
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3.2 Color Evolution

We can compare a representative of the visible bands to a representative band for

the NIR to get a sense of the color evolution. Figure 3.5 shows the V -J magnitudes as a

function of epoch for our three SNe. In each one, the NIR appears to transition to a greater

Figure 3.5 The color evolution as characterized by the V-J magnitudes for SNe 2006E
(red diamonds), 2006mq (blue triangles), and 2006ce (green squares). In each SN except
2006mq, the color transitions from negative (greater shorter wavelength importance) to

positive (greater NIR significance.

importance (more positive), however, SN2006mq does it more slowly than the others. This

means that the V -band fades less quickly compared to the other SNe or that 2006mq’s NIR

band has a greater decline rate, or some combination of the two.
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3.3 Bolometric Flux

By itself, one band’s observations can tell us only about a small part of the bolomet-

ric power. In pairs we can tell something about the color evolution, but by incorporating all

bands, we get a more complete picture. Figure 3.6 is a spectrum reproduced from Leloudas

et al. (2009) and is a combination of their 320 day visible spectrum, and Motohara et al.

(2006)’s 394 day NIR spectrum flux-scaled to 350 days. Overlaid on this are the passbands

for the B,V,R,I,J,H filters. In order to account for a greater portion of the power - vis-

Figure 3.6 SN2003hv combined 394 day NIR and 320 day visible spectrum overlaid with
B,V,R,I pass bands indicating what fraction of light at a particular wavelength is

transmitted.

ible and NIR, we will first convert our observed magnitudes to flux. We use the formula
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comparing to Vega (or an average of A0 stars),

mSN −mvega = −2.5log

(
FSN
Fvega

)
. (3.1)

The magnitude of Vega (or the A0 stars) is by definition zero, thus we can solve for the

SN flux if we know the flux of Vega in each band. Cox (2000) provides the measurements

which are reproduced in Table 3.1 The flux calculated in this way accounts for only the

Table 3.1 Vega and A0 Star Fluxes by Band from Cox (2000)

Band FA0 (erg/s/cm2/Å) FWHMλ (Å)

B 6.40x10−9 1000
V 3.75x10−9 900
R 1.75x10−9 2200
I 8.40x10−10 2400
J 3.31x10−10 2600
H 1.15x10−10 2900

light measured by the respective filter. As seen in Figure 3.6, this does not account for all

the flux in the SN Ia spectrum. One would get a more accurate measure of the total SN

flux by integrating an observed SN spectrum over all wavelengths. Unfortunately there are

no spectra of these three SNe available. Spectra of other SNe Ia do exist - even out to late

times and in the NIR. We will use some of these at multiple epochs to approximate the

distribution of flux. Because there are only a few epochs of observed spectra, and because

uniformity of late behavior has not yet been established for SNe Ia, we will use the flux

calculated from measured magnitudes to scale the SN spectrum at each observed epochs.

First, we choose a SN Ia spectrum observed at an epoch as similar as possible to that of

our observation, e.g., Figure 3.6 shows a visible spectrum taken at 320 days and a NIR

spectrum taken at 394 days after the maximum light of SN2003hv. For a given filter, we

integrate the flux of the chosen SN Ia spectrum over the wavelengths of that filter. For the
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V band, this would be:

FspecV =

∫ λV end

λV begin

Fλdλ (3.2)

The ratio of the flux calculated from a magnitude measurement in a given filter, e.g., FSNV ,

to that of the integrated spectrum over the wavelengths of that filter, e.g., FspecV provides

a scale factor for the SN spectrum at the epoch of that measurement. For a single epoch,

we can calculate the scale factor from each filter observed, and take the average to be that

epoch’s scale factor. We treat the visible separately from the NIR. The calculation for the

visible scale factor of a certain epoch would be,

Avisible = (AB +AV +AR +AI) /4 =

(
FSNB
FspecB

+
FSNV
FspecV

+
FSNR
FspecR

+
FSNI
FspecI

)
/4. (3.3)

The spectra used in this way are a 110 day visible spectrum of SN2003hv fromLeloudas

et al. (2009), a 221 day visible spectrum of SN2003du from Gerardy (2005), and a 320 day

visible spectrum from Leloudas et al. (2009). The NIR spectrum included a 214 day spec-

trum of SN2005w, a 297 day spectrum of SN2003du – both from Motohara et al. (2006), and

a 394 day spectrum of SN2003hv from Leloudas et al. (2009). For each of our three SNe, only

epochs were chosen that had NIR and visible observations at similar times. Once scalings

were determined for the appropriate spectrum, that spectrum was integrated separately for

the visible and NIR,

Fvisible = Avisible ∗
∫ λf

λi
Fλdλ (3.4)

FNIR = ANIR ∗
∫ λf

λi
Fλdλ (3.5)

F = Fvisible + FNIR. (3.6)

The total flux is just the addition of the NIR and visible flux at that epoch. While this

still does not account for all the energies at which light is emitted from the SN ejecta, it at

least accounts for the continuous visible B to NIR H band wavelengths. Plotted in Figures

3.7 – 3.9 are the resulting light curves for SNe 2006E, 2006ce, and 2006mq.
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Figure 3.7 SN2006E visible (dotted line) and NIR Power (dashed line) as derived from
observed magnitudes. The total flux (solid line) was built using only epochs where NIR

and visible observations were taken at similar times.

Figure 3.8 SN2006ce visible (dotted line) and NIR Power (dashed line) as derived from
observed magnitudes. The total flux (solid line) was built using only epochs where NIR

and visible observations were taken at similar times.
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Figure 3.9 SN2006mq visible (dotted line) and NIR Power (dashed line) as derived from
observed magnitudes. The total flux (solid line) was built using only epochs where NIR

and visible observations were taken at similar times.

At first glance, the gap between the visible and NIR luminosities of SN2006ce ap-

pears larger than between those of 2006mq and 2006E. However, this is because 2006ce was

observed only out to just shy of 300 days and the scale of the plot is different than the oth-

ers. All three SNe show that the visible continues a steady decline while the NIR flattens in

its decline rate. This bring the NIR and visible to a comparable level just before 400 days.

After 400days, SN2006E shows both the NIR ans visible declining, while in SN2006mq, the

NIR seems to continue its plateau even as the visible maintains its decline rate.

We convert the flux into luminosity, using the host galaxy distance recorded in the

NASA/IPAC Extragalactic Database (NED1 ), and the simple relationship to flux,

F =
L

4πd2
, (3.7)

where d is the distance to the host galaxy. The distances used were 12.8 Mpc and 17.8 Mpc

for the host galaxies of SN2006E and SN2006ce respectively. The single measurement for

1 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Lab-
oratory, California Institute of Technology, under contract with the National Aeronautics
and Space Administration.

42



the distance of the SN2006mq host galaxy 6.46 Mpc had a large error associated with it

and the luminosity measurement was low compared to the other SNe. We used the value,

8.55 Mpc, which was the upper limit allowed by the distance measurement error.

The SN luminosities are plotted in Figure 3.10 where you can see they have a similar

but not identical behavior in the visible and NIR decline.

Figure 3.10 The combined B,V,R,I,J,H luminosities for SNe 2006E (purple squares),
2006ce (green diamonds), and 2006mq (blue triangles). For each, the visible (dotted line)

and NIR (dashed line) contributions are also included.

However, there does appear to be a range of decline rates in the late NIR luminosities

from 06E’s shallow decline to 06mq’s steeper loss of power. Much like previously observed

SNe in late NIR epochs, our SNe enter a NIR plateau phase, and in SN2006E we seem to

have caught the end of it after 413 days
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We can compare the NIR portion of these late light curves to other SNe. In order

to put these SNe on a scale independent of distance, we plot the NIR magnitudes of each

SN relative to its respective peak V -band magnitude. We correct for extinction wherever

possible. Figure 3.11 shows a uniformity in plateau shape, though the magnitude difference

from V peak can differ by 4 magnitudes from SN to SN.

Figure 3.11 The NIR magnitudes of eight SNe Ia starting after 200 days normalized to
their respective peak magnitude in V band. Our three SNe are designated by their filled
symbols – circles for SN2006E, triangles for SN2006mq, and squares for SN2006ce. The

different bands are offset arbitrarily for better viewing.
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3.4 Deposited Positron Energy

Because at late times all products of the 56Ni radioactive decay chain easily escape

except for positrons, we will look chiefly at their contribution to the energy of the ejecta.

The numbers of atoms of 56Ni, 56Co, and 56Fe over time are given by

NNi(t) = NNi0e
− t
τNi (3.8)

NCo(t) = NNi0
τCo

τCo − τNi

(
e
− t
τCo − e−

t
τNi

)
(3.9)

NFe(t) = NNi0

(
1 +

τNi

τCo − τNi
e
− t
τNi − τCo

τCo − τNi
e
− t
τCo

)
, (3.10)

and the rate of decays by

dNNi

dt
(t) =

NNi0

τNi
e
− t
τNi (3.11)

dNCo

dt
(t) =

NNi0

τCo

τCo

τCo − τNi

(
e
− t
τCo − e−

t
τNi

)
, (3.12)

where, NNi0 is the initial number of 56Ni atoms, τNi = 5.5 days is the lifetime of 56Ni, and

τCo = 111.3 days is the lifetime of 56Co (Nadyozhin, 1994).

As discussed in section 1.2, positrons result from 19% of 56Co decays and with a

typical kinetic energy of 0.632 MeV. The amount of power potentially available to the SN

from radioactive decay via positrons at any given time can be calculated as the number of

56Co decays that result in positrons times the kinetic energy of the positron,

EPos =
NNi0

τCo

τCo

τCo − τNi

(
e
− t
τCo − e−

t
τNi

)
∗ 0.19 ∗KEpos, (3.13)

where KEpos = 0.632 MeV.

We do adopt the calculated gamma-ray contribution from Milne et al. (2001). Both

this gamma-ray energy deposition and potential positron kinetic energy deposition are

shown in Figure 3.12 for a SN that synthesizes 0.6 M� of 56Ni.

The positron energy shown in Figure 3.12 will vary depending on how many positrons

escape with what fraction of their kinetic energy. We fit the column depth encountered by

our positrons as a distance from their creation location to the surface. The greater the

column depth, the less likely the positrons are to escape with any of their kinetic energy.

At the same time, we fit a scale factor to the calculated γ-ray deposition.
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Figure 3.12 The power provided by positrons (blue dashed line) and γ-rays (green
dot-dashed line) in a SN Ia. The total combined power is shown as a solid black line. This
assumes an initial 56Ni mass of 0.6M� and that all positrons are produced with a kinetic

energy of 0.632 MeV.

The slowing of positrons as they traverse the ejecta is done chiefly by ionization and

excitation processes. Figure 3.13 shows the continuous-slowing-down approximation for the

range (in column density) of electrons in Fe. Electrons that start out with a particular

kinetic energy (x-axis) will encounter a particular amount of column density (y-axis) before

losing all of their energy. This same effect also applies to positrons.

To get an idea of what kind of energy is donated to the SN ejecta by the positrons

at late time, we can employ a very simple model of a one-zone SN Ia. This SN, previously

made of only C and O, just reaches the Chandrasekhar mass of 1.39 M� before igniting

and synthesizing 0.6 M� of 56Ni. It expands outward from a WD the size of the Earth,

to an ejecta moving at v=1x109 cm/s. In our one-zone model, this gives us a density of

ρ = m
4/3π(vt)3

and a column density of ξ = m
4/3π(vt)3

∗ vt = m
4/3π(vt)2

= 1.576x1014 g/cm2/t2

from the center of the ejecta to the surface (plotted in Figure 3.14).
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Figure 3.13 The continuous slowing down approximation range for electrons in a sea of
Iron. Reproduced from data provided by NIST. The dashed line shows the average kinetic

energy of positrons produced in 56Co decay.

Figure 3.14 The column density in a one zone model of a SN Ia ejecta containing 1.39
M� and expanding with a velocity of v=1x109 cm/s
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Assuming the all our positrons are produced with the typical value of 0.632 MeV

(Nadyozhin, 1994), then the positrons lose all their energy to the ejecta as long as the

column density along their path is greater than 0.3232 g/cm2 (according to Figure 3.13).

If, however, the column density is less than this, the positron will escape the ejecta but will

deposit an amount of energy proportional to the column density it passed through. We can

calculate this by again referring to Figure 3.13.

Positrons created closer to the surface pass through less material than those that

are deeper. To account for this, I vary the distance the positrons travel to the surface. If

all the positrons started from halfway to the surface, and took shortest distance paths to

escape, the positron deposition energy would look like Figure 3.15 and no positron would

escape until after 350 days. Thus the amount of energy deposited by positrons is equal to

that of the curve shown in 3.12 until that point.

Figure 3.15 The positron energy deposition over time if positrons, located at half the
distance to the surface took shortest path trajectories out. This differs from Figure 3.12 at

late times when the ejecta is thin enough for the positrons to escape, and take some of
their kinetic energy with them.
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We do not consider any magnetic field configuration as this would only make trap-

ping more successful. Thus we ignore magnetic fields and understand that any conclu-

sions drawn from our model comparison would be a lower limit to the energy deposited by

positrons.

We can compare this to the luminosity of our three SNe and vary the distance of

the positrons to the surface in our one-zone model. Figures 3.17 through 3.18

Using the distances mentioned in Section 3.3 to determine luminosity made it im-

possible to compare to our model. Thus we allow the distance to vary as a free parameter

to fit the observed luminosity around the 100 day epoch to the model luminosity. This

resulted in deriving much larger distances than reported by NED, 35 Mpc for SN2006E, 34

Mpc for SN2006ce, and 26 Mpc for SN2006mq. These can each vary by ±3 Mpc without a

great change in fit.

Figure 3.16 SN2006ce total observed flux (blue diamonds) compared to the power
deposited by positrons (purple dash-triple-dotted line), γ-rays (green dot-dashed line) and

total power (solid red line) in our simple 1-D model.
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Figure 3.17 SN2006E total observed flux (blue diamonds) compared to the power
deposited by positrons (purple dash-triple-dotted line), γ-rays (green dot-dashed line) and

total power (solid red line) in our simple 1-D model.

Figure 3.18 SN2006mq total observed flux (blue diamonds) compared to the power
deposited by positrons (purple dash-triple-dotted line), γ-rays (green dot-dashed line) and

total power (solid red line) in our simple 1-D model.
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No useful data about positron escape came from SN2006ce as it was not observed late

enough for positron escape to occur. Both SNe 2006E and 2006mq have abundant energy

at late times to account for positron trapping. However, the decline rate of SN2006E was

more shallow than that of positron trapping and was better fit by a decline rate shaped by

positrons beginning to escape around 400 days (or placing them half a radius away from the

surface). The fit was not particularly good for SN2006mq, with its steeper early decline,

and more shallow late decline.

We built our own BVRIJH luminosity curve from Leloudas et al. (2009) observations

of SN2003hv just as we as we did with the three 2006 SNe. Plotted in Figure 3.19 is a

comparison of those four SNe NIR, visible, and total luminosities.

Figure 3.19 Comparing the BVRIJH visible, NIR, and composite luminosities of SNe
2006E (squares), 2006mq (triangles), and 2006ce (diamonds) to those of SN2003hv (X’s)

built from observations by Leloudas et al. (2009).

While Leloudas et al. (2009) built a UVOIR light curve for SN2003hv, building our

own allowed us to confirm our procedures produced similar results and allowed us to see the

behavior of the NIR and visible portions of the luminosity separately. The total luminosity

51



of our two late 2006 SNe match an overall general decline rate after 350 days. However, the

visible decline rates seem steeper than that of 2003hv.

Leloudas et al. (2009) noticed the ”slowdown of visible decay” – especially in the

V -band. In fact, Sollerman et al. (2004) noticed this too – that around 550 - 693 days,

SN2000cx’s V band decline slope was much more shallow. It is possible that this resulted

from a light echo (peak SN light reaching us later after scattering off of nearby dust), however

there does not seem to be much evidence for dust near the SNe. Our visible observations

do not go out as late as these two SNe, however the luminosity in BVRI for the SN2006

SNe is already at a lower value than 2000cx and 2003hv at 500 days.

The UVOIR light curves of both SN2003hv and SN2000cx have late decline rates

that mirror the decay rate of 56Co. The change in magnitudes is related to the flux as,

∆m = −2.5log

(
Fi
Ff

)
. (3.14)

The flux is proportional to e−t/τ , thus

∆m = −2.5log
(
e−∆t/τ

)
= 1.085

∆t

τ
, (3.15)

The lifetime of 56Co is about 111 days, so

∆m

∆t
=

1.085

111days
∼ 1mag

100days
(3.16)

Fitting the decline rate in “bolometric” magnitudes for our SNe and comparing to

SN2003hv, we get a very shallow 0.58 mag/100days for SN2006mq, a steep 1.50 mag/100days,

and 1.29 mag/100days for SN2003hv. The fits can be seen in Figure 3.20. The 1.29 mea-

sured decline rate for 2003hv is steeper than the 0.98 mag/100 days measured by Leloudas

et al. (2009) when including the U and K band which are missing from our “bolometric”

magnitudes.
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Figure 3.20 Comparing the late “bolometric” (BVRIJH ) magnitudes of SNe 2006E
(purple squares), 2006mq (blue triangles), and SN2003hv (maroon X’s).
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CHAPTER 4

CONCLUSIONS

We observed 3 normal SNe Ia from just before 100 days out past 500 days in visible

BVRI and NIR JH wavelengths. We combined these observations and studied the behavior

of the late time power – comparing them to a simple model and to another well observed

SN Ia.

Unfortunately, each of the SNe were discovered post peak, so early measurements

of peak date, decline rate, and synthesized 56Ni estimates are not available. SN2006E was

assigned two different ages. We were able to use early Super-LOTIS observations to fit to the

normal SN1992A light curve and recover its peak date. Images for host galaxy subtraction

were used to rid SN2006E of any contaminating host galaxy light in apparent magnitude

measurements.

We used the apparent magnitudes to compare to the decline rates of other SNe (Lair

et al., 2006), and found that the visible bands conformed to the typical decline rates very

well. The V -J color (Figure 3.5) varied some in each of our three SNe, but the overall trend

was to a much redder SN ejecta. Eight SNe (including the three from this thesis) have been

observed in the NIR after 200 days. We compared each J and H magnitude to the SN’s

respective V magnitude at peak, and saw that each SN seems to plateau - has a very small

or nonexistent decline rate - sometime over the epochs of 200 - 500 days.

We converted the observed magnitudes to flux using SNe spectra observed at various

epochs. We examined the behavior of the visible and NIR. While the flux is initially greater

in the visible bands than in the NIR, the visible declines steadily as the NIR plateaus

from around 200 days to 400 days. At around 400 days, the contributions from the visible

and NIR are roughly equal. After this, the NIR does seem to steepen its decline, though

SN2006mq may still be roughly in plateau. The fact that the visible flux doesn’t fall off, but

instead maintains a steady decline rate indicates an infrared catastrophe is not occurring,

or, at the most, is only a local phenomenon.
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After using the rough host galaxy distance measurements to convert to luminosity,

we were able to compare the SNe luminosities to each other. The total BVRIJH luminosities

are comparable once distance errors are taken into account. It is apparent that the late

evolution is slightly different among the three SNe. SN2006ce exhibits the approach to the

NIR plateau phase, as does the beginning of the 2006mq NIR. SN2006E exhibits first, a

flatter plateau at 200-400 days than 2006mq, but then, after 400 days, steps quickly down

to a steeper decline rate, while 2006mq seems to be experiencing its NIR plateau phase.

Comparisons with previously observed SN2003hv shows an intermediate late total

decline rate. However, the 2003hv visible light curve is always brighter than those of the

2006 SNe. The NIR plateaus of SNe 2006E, 2006mq, and 2006ce line up in luminosity

around 300 days.

We built a 1-zone model that included γ-ray deposition from Milne et al. (2001)

and positron escape to compare with the luminosities of our observations. We first fit the

distance by matching the total (γ-ray + positron energy deposition) model luminosity to

the observed luminosity at the roughly 100 day epoch. Then we varied the depth of the

positron creation location in the SN ejecta in order to fit the late luminosities. A positron

starting deeper would have farther to travel in column depth, meaning it would deposit

more of its kinetic energy before leaving (or even be trapped completely) than a positron

starting closer to the surface. For SNe 2006E and 2006mq, the luminosity was high enough

to require all positrons to be trapped. However, the shape of the late light curve of SN2006E

fit the decline rate of a model where positrons were created half an ejecta radius away from

the surface and began to escape the ejects at 400 days. Thus, if the distance were found to

actually be closer than derived positron escape would not be ruled out.

Our single zone model is, of course, an imperfect one. All our positrons were created

with a uniform kinetic energy, and moved in straight line trajectories toward the surface.

In an actual SN ejecta, a magnetic field may be present. It would, however, only increase

the length of the path of travel for the positron, keeping it in the ejecta for a longer

time and increasing the amount of material the positron runs into. Thus the positron

formation location at 50% of the radius is merely a lower limit. Were we to incorporate

any modification due to magnetic fields, this would necessarily require the positron starting

55



position to be closer to the outer edges to match our observations. Similarly, adding more

zones would only delay positron escape and give the positron a chance to scatter more

before it reached the surface, making it again necessary to start the positrons even closer

to the surface.

If the distances, and thus luminosities, are incorrect, we would not be able to rule out

positron escape as an explanation for the steeper slope of SN2006E. However, there may be

other explanations. It could be that the color evolution is such that light is emerging in other

wavelengths have not observed. Leloudas et al. (2009) used a visible/NIR/MIR spectrum

to determine that there was an additional 34 (± 17)% extra energy in the MIR compared

to the observed UBVOIR light curve. There may also be additional power elsewhere, as

many Fe fine structure lines are red-ward of the MIR.

If it is the shift of energy that accounts for the difference in luminosity, it is inter-

esting that the shift may not be uniform across all SNe Ia. The NIR plateau seems to occur

at different times, and with different luminosities. In SNe 2000cx and 2003hv the visible

light curve slows in its decline after 400 days, though it doesn’t in SNe 2006E and 2006mq.

4.1 Future Work

Additional SNe Ia have been observed in the 200+ day epochs in the visible, NIR,

and even mid-IR. Incorporating longer wavelength information lead to an improved ac-

counting for the power, where we can better hope to constrain positron creation location,

and answer more accurately if they are trapped or escape the ejecta. A greater number of

SNe Ia observed in these wavelengths at late epochs will also allow us to see how varied

SN Ia late color evolution can be, and define “normal” late behavior. Are there 2 tracks

- one with slower declining late visible luminosity and one with steadily declining visible

luminosity? Is there a correlation with early behavior?

We would also like to extend these observations beyond normal SNe to more lu-

minous and sub-luminous SNe. The late light curve could help us understand the causes

behind the differences in SNe Ia, and perhaps help to refine the Ia standardization process

and improve SN distance measurements.
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Appendix A

DATA REDUCTION How-To’s

Below are the step by step tutorials on how to reduce images, including standard

images (Section A.1), multi-extension fits files (Section A.2), and NIR images (Section A.3).

Also included is how to do photometry on reduced images (Section A.4).

A.1 Standard Image Reduction
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Using IRAF to Reduce Images
by Ginger Bryngelson

This tutorial steps you through the process of preliminary reductions of CCD 
data, including overscan subtraction, bias or zero level subtraction, dark 
subtraction, and flat fielding.   This exercise assumes that you have worked 
through Exercise 1 and feel comfortable with the basics of IRAF.  A summary 
of all steps is included at the end of this tutorial.  At each step, be sure to 
take a look at the images you’re working with using ds9.  As in all these 
exercises, the commands after the prompt (either “$” or “cl>”) are meant to 
be typed by the user; the #-sign indicates a comment. Go to the directory 
with your raw ccd images in it.  
$ cd path/imagefolder

Log into IRAF in an xgterm window, and set up a ds9 window to display 
images.  

1) First we need to do some preliminary set-up
Let’s load some iraf packages:
cl> images
cl> imutil
cl> tv

a) Take a look at the images you have
cl> imhead *.fits 

or
cl> hselect *.fits $I,object,filter,exptime

If you don’t see the image name, object observed, filter, and exposure time, 
then look at the image header to make sure we have the right keyword 
(exptime might actually be exp_time).  
In fact, let’s write a file that contains all this information, and call it “obslog.”
cl> hselect *.fits $I,object,filter,exptime > obslog

You should be able to view the contents of this file by typing 
cl> !more obslog
and hitting return or spacebar to scroll down and the scrollbar to scroll up. 
You can also open the file in another window/terminal.  The “!” tells iraf that 
this is just a terminal command, and to pass the command on to the 
terminal and then return to iraf when finished.  Some terminal commands, 
like “ls” and “cd” have been incorporated into iraf, so you don’t have to use 
the escape character “!” when issuing it.  
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You should have some images of each:
Object (science field)
Bias or Zero (5-10)
Dark (5-10 at each of the same exposure times as your science and flat 
images)
Flat (5-10 for each filter you have for your science images

Let’s make a list of each type of the images using the “grep” and “awk” 
commands.  
cl> !grep dark obslog

#you should see a list of images that are darks.  If you see nothing, 
then “grep” is finding no line of text that has “dark” in it.  Try looking 
again with variations of capital letters, e.g. Dark or DARK.

Now, instead of printing to the screen, we can print to a file.  Let’s pipe the 
results of grep to the “awk” command to print just the first column 
(expressed as “$1”) to a file listdark.  
cl> !grep dark obslog | awk ‘{print $1}’
cl> !grep dark obslog | awk ‘{print $1}’ > listdark

Do this for the flats and zeros/bias and objects.  For the objects, you may 
want to do something like:
cl> !grep SN2010gh obslog | awk ‘{print $1}’ > listobj

b) Let’s make sure we have the appropriate labels for each image type in 
the IMAGETYP keyword.  We can edit the header keywords (e.g. IMAGETYP) 
and values (e.g. dark) with the iraf task “hedit.”  The “add+” adds the 
keyword to the header if it doesn’t exist, and “verify-“ or a shortened “ver-“ 
makes it so that you don’t have to confirm your choice for every single 
individual image.  Adding the “@” at the beginning of the word, tells iraf it is 
the name of a file that contains a list of the images you want  
cl> hedit @listdark IMAGETYP “dark” add+ verify-
cl> hedit @listflat IMAGETYP “flat” add+ ver-
cl> hedit @listzero IMAGETYP “zero” add+ ver-
cl> hedit @listobj IMAGETYP “object” add+ ver-

Make sure you take a look at each of these kinds of images with ds9.  Look 
at the values of the pixels, the shape of the varying background, and any 
odd pixel behavior.  

2) Now we can actually start reducing images with iraf.  
a) The first step in processing images, involves using the task ccdproc to 
trim images and fix bad pixels and subtract the overscan if there is one. 
Let’s load the packages needed for ccdproc
cl> help ccdproc
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#look at the packages required for ccdproc (written at the very top 
middle) then quit by hitting “q”

cl> noao
cl> imred
cl> ccdred
ccdproc is capable of doing lots of steps at once, but for now we will do 
things one step at a time.  Let’s epar ccdproc and change things so that we 
are only fixing pixels, trimming, and overscan correcting.  
cl> epar ccdproc
Put “no” for everything except “fixpix,” “oversca,” and “trim.”  Put the name 
of your bad pixel file for “fixfile,” and just write “image” for both “biassec” 
and “trimsec” – this tells iraf to look at the image header information to find 
the appropriate pixel range.  If you do not have a bad pixel file, then either 
ask for one or leave the “fixfile” blank and choose “no” for fixpix .  Here’s 
what the changes should look like:

Use “:q” to quit.  
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Now let’s call this command with some specific parameters.  
cl> ccdproc @listzero ccdtype=zero
cl> ccdproc @listdark ccdtype=dark
cl> ccdproc @listflat ccdtype=flat
cl> ccdproc @listobj ccdtype=object

b)  Now, we need to combine all the zeros into a master Zero.fits using 
zerocombine.  Look at an lpar to see the kind of options you have.
cl> lpar zerocombine
cl> zerocombine @listzero
Let’s look at an individual zero/bias image as well as the master Zero image 
with ds9.  

c) Now we can run ccdproc, and include zero subtraction.  
cl> epar ccdproc

#Edit the parameter file to look like below.  Use “:q” to quit when 
done.
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Now run ccdproc for flats, darks, and object images. 
cl> ccdproc @listdark ccdtype=dark
cl> ccdproc @listflat ccdtype=flat
cl> ccdproc @listobj ccdtype=object

d) Next, we combine the darks into a master Dark for each exposure 
time.  To do this, we need to make different lists of images for each 
exposure time.  First, look at all the darks to see what exposure times you 
need.
cl> !grep dark obslog
Now, type this command for each exposure time (where 60 is the example 
exposure time):
cl> !grep dark obslog | grep 60 | awk ‘{print $1}’ > listdark60
Now combine the darks by exposure time:
cl> darkcombine @listdark60 output=Dark60.fits

#do this for each exposure time.

e) In order to process the correct exposed images with ccdproc, we will 
have to make lists of flats and objects that have the same exposure times as 
the master darks.  Here, 60 is just a stand-in for the exposure times.  
cl> !grep obslog flat | grep 60 | awk ‘{print $1}’ > listflat60
cl> !grep listobj object | grep 60 | awk ‘{print $1}’ > listobj60
etc…

Now, edit the ccdproc to say yes for “darkcor” as below, then exit with “:q”
cl> epar ccdproc
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Run ccdproc for each exposure time:
cl> ccdproc @listobj60 dark=Dark60.fits
cl> ccdproc @listflat60 dark=Dark60.fits
etc…

f) Now we will do something similar for the flats, where we separate by 
filter.  
First, look at all the filters observed in for the flats, and your object (it will 
probably be different than SN2010gh):
cl> !grep obslog flat
cl> !grep obslog SN2010gh
Most likely it is something like “B”, “V”, “R”, “I”, but sometimes the filters 
are actually longer strings.
cl> !grep obslog flat | grep B | awk ‘{print $1}’ > listflatB
cl> !grep obslog SN2010gh | grep B | awk ‘{print $1}’ > listobjB
Do each of these for each filter.
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Now combine all flats by their filter.
cl> flatcombine @listflatB output=FlatB.fits
etc…

g) Now divide the object images by the appropriate master Flat using 
ccdproc with the appropriate parameters.
cl> epar ccdproc

Run ccdproc on object images for each filter:
cl> ccdproc @listobjB flat=FlatB.fits
Etc…
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3) At this point, all your object images have been reduced.  Now, you can 
combine them all into one master science image by filter.    We will use the 
task imcombine, in the immatch package.  Let’s use a median value of each 
pixel instead of averaging.  
cl> immatch
cl> imcombine @listobjB output=ObjB.fits combine=median
Do this for each filter observed.

Now you should have a single image per filter that represents all the 
observations you’ve taken of this particular object.  Please look at them 
using ds9, and compare it to the individual images.  

Quick Summary of Image Reduction Steps 
1. Preliminary Set-up

a. Make lists of each image type.
b. Establish IMAGETYP keyword for each image.

2. Prepare images.
a. Trim images, fix bad pixels, and subtract overscan.  
b. Combine all zeros to master Zero.
c. Subtract Zero from darks, flats, object images.
d. Combine all darks into master Darks by exposure time.
e. Subtract Darks from flats and object images.
f. Combine all flats into master Flats by filters.
g. Divide out Flats from object images.

3. Combine reduced object images into master science images by filter.
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A.2 Multi-Extenion Fits Image Reduction

67



 IRAF Tutorial
Reducing MEF images
(Multi-Extension-Fits)

 
0)  Install the external package “mscred”

I)  This is how my structure was setup when I installed linux under a new user called "iraf",
/iraf/iraf/local
 
The version of iraf I installed used the archetype "redhat", even though I chose a linux version.  This 
may or may not have any effect on your installation.  You can check what type of archetype your current 
version of iraf uses by typing the below into an open session of iraf:
cl> show arch
        .ssun
 

II)  I ended up downloading 3 things in total, though I'm not sure if you need all three or not.  I 
downloaded the following:
ftp://iraf.noao.edu/iraf/extern/mscdb/mscdb.tar.Z
ftp://iraf.noao.edu/iraf/extern/mscred/mscred.tar.Z
ftp://iraf.noao.edu/iraf/extern/mscred/mscred-bin.redhat.tgz
 

III)  within the first /iraf mentioned above, create these directories:
mkdir -p /iraf/extern/mscred
mkdir /iraf/extern/mscdb
 

IV)  place both the mscred.tar.Z & mscred-bin.redhat.tgz in the newly created mscred folder and:
tar -zxvf mscred.tar.Z
tar -zxvf mscred-bin.redhat.tgz
 

V)  place the mscdb.tar.Z into the newly created mscdb folder and:
tar -zxvf mscdb.tar.Z
 

VI)  Now go to hlib in local and edit extern.pkg:
cd $hlib
vi extern.pkg
 
extern.pkg should include the following:
 
reset   mscred          = /iraf/extern/mscred/
reset   mscdb           = /iraf/extern/mscdb/
task    mscred.pkg      = mscred$mscred.cl
 
Near  the  end of the hlib$extern.pkg file, update the definition of helpdb so it includes the mscred help 
database, copying  the  syntax already  used  in  the string.   Add  this  line  before  the  line containing a 
closing quote:
        ,mscred$lib/helpdb.mip\
 
I think everything should work by now - assumming I've remembered all the steps I've done.  Feel free to 
delete the .tgz and .tar.Z files after you've untarred them.
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VI)  Now go to the directory which contains the multi-extension fits files you will be working with, 
and do a mkiraf
mkiraf
 
Then start up iraf and try to load the package we just installed to test if everything worked:
cl
cl> mscred
It worked if you received no error messages.  
 
Now, the steps of image reduction are much the same as Exercise 2.  Following along 
in Exercise 2, this tutorial will point out the different commands or extra actions needed 
for each step.
 
1)  only load the mscred package
cl> mscred
Notice all of the tasks it loads.  Many should look familiar - e.g. ccdproc, darkcombine, 
flatcombine, zerocombine.  These tasks all do the same as we would expect from our previous 
use of them, they have just been modified a bit to deal with MEF fits files.  
 
a) For these commands, we have to specify which extension of the fits file we want the 
information about.  Usually it doesn’t really matter which, though sometimes the 0th extension 
has more general header information about the whole image.  In this case, the commands 
would look like:
cl> imhead *fits[0]
cl> hselect *fits[0] $I,object,filter,exptime yes
 
Notice when you examine the obslog made this way, the names of the images all will have 
the “[0]” after them.  This will offer some complications later.  To avoid this, one can make lists 
of images without the “[0]” using the sed command when creating lists:
cl> !grep Bias obslog | awk '{print $1}' | sed 's/s\[0\]/s/g' > listBias
cl> !grep 06E obslog | awk '{print $1}' | sed 's/s\[0\]/s/g' > list2006E
etc...
Here, the sed command takes the string ‘s[0]’ and replaces it with ‘s’.  
 
We’ll also make some lists for creating bad pixel masks, e.g.:
cl> !more listBias | sed s/.fits/_bpm/ > listBiasMasks
cl> !more listObject | sed s/.fits/_bpm/ > listObjectMasks
cl> !more listFlat | sed s/.fits/_bpm/ > listFlatMasks
 
b)  Since we’ve made separate lists of the different image types, we won’t bother to edit the 
IMAGETYP in our image headers.  When we call our tasks, we’ll leave the “ccdtype” spot blank, 
or in our command line, we can say ccdtype- to tell the task not to look for a certain type of 
image by keyword.  The task will just trust that we’ve put the appropriate images in the list we 
give it.  Just be sure your lists are trustworthy - check them to make sure the images you think 
are in there actually are.  
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When visually examining your images, you’ll need a special command to display these MEF 
images correctly.  To see just a single extension image from IRAF, you can use the “display” 
command as long as you specify the extension # in square brackets at the end of the image 
name:
cl> display obj104.fits[2]
To see all extensions fitted together in one image, use the MEF specific command:
cl> mscdisplay obj104.fits
You can also manually open your MEF image through ds9 by going into file -> open other -> 
open Mosaic IRAF and then choosing the desired image.  Sometime this is the best way to do it, 
since IRAF sometimes limits the display settings.  
If you want to perform tasks like measure a radial profile or find the centroid of an object, you 
would normally use the iraf task “imexam” however with MEF images, you can perform these 
same things with “mscexam”.  All the commands are the same.     
 
2)  Now we’ll use the mscred version of the ccdproc task which doesn’t want a list of images 
with extensions at the end, so we’ll use the list we created without the “[0]”.  
a)  You can go in and edit the options with 
cl> epar ccdproc
PACKAGE = mscred
   TASK = ccdproc

images  =            @listBias)  List of Mosaic CCD images to process
(output =                          ) List of output processed images
(bpmasks=     @listBiasMasks) List of output bad pixel masks
(ccdtype=                           ) CCD image type to process
(noproc =                no) List processing steps only?
(xtalkco=                  yes) Apply crosstalk correction?
(fixpix =                  yes) Apply bad pixel mask correction?
(oversca=                  yes) Apply overscan strip correction?
(trim   =                  yes) Trim the image?
(zerocor=                   no) Apply zero level correction?
(darkcor=                   no) Apply dark count correction?
(flatcor=                   no) Apply flat field correction?
(sflatco=                   no) Apply sky flat field correction?
(split  =                   no) Use split images during processing?
(merge  =                   no) Merge amplifiers from same CCD?

(xtalkfi=              xtalk0303) Crosstalk file
(fixfile=                               BPM) List of bad pixel masks
(saturat=            !SATURATE) Saturated pixel threshold
(sgrow  =                    1) Saturated pixel grow radius
(bleed  =               20000.) Bleed pixel threshold
(btrail =                   15) Bleed trail minimum length
(bgrow  =                    1) Bleed pixel grow radius
(biassec=                image) Overscan strip image section
(trimsec=                image) Trim data section
(zero   =                     ) List of zero level calibration images
(dark   =                     ) List of dark count calibration images
(flat   =                     ) List of flat field images
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(sflat  =                     ) List of secondary flat field images
(minrepl=                   1.) Minimum flat field value
(interac=                   no) Fit overscan interactively?
(functio=               minmax) Fitting function
(order  =                    1) Number of polynomial terms or spline piece
(sample =                    *) Sample points to fit
(naverag=                    1) Number of sample points to combine
(niterat=                    1) Number of rejection iterations
(low_rej=                   3.) Low sigma rejection factor
(high_re=                   3.) High sigma rejection factor
(grow   =                   0.) Rejection growing radius
(fd     =                     )
(fd2    =                     )
(mode   =                   ql)
or you can put all the important parts in a one-line command:
cl> ccdproc @listBias ccdtype- xtalkco+ fixpix+ oversca+ trim+ merge- zerocor- darkcor- flatcor- 
bpmasks=listBiasMasks fixfile=badpix_mosaic2 biassec=image trimsec=image xtalkfi=xtalk0303 
saturat=!SATURATE sgrow=1 bleed=20000. btrail=15 bgrow=1
etc...
 
Here, I’ve specified files and header keywords that are used for MOSAIC-1 images.  Your files/
keyword names may be different.  You may need to supply the crosstalk file and badpixel file. 
For MOSAIC images they can be found here: http://www.noao.edu/noao/mosaic/calibs.html
 
A note on Bad Pixel Masks:
Bad Pixels can be “bad” in multiple ways:
i)  For a certain ccd, pixels can be non-responsive or unpredictably responsive to the photons 
that hit them.  A list of them are usually provided at the telescope - e.g. for the newest version of 
MOSAIC it can be found here: http://www.noao.edu/noao/mosaic/calibs.html .  
ii)  For a given image, pixels can be saturated (this is where a single pixel has been hit by 
so many photons that the value for that pixel will not increase - no matter how many more 
photons hit it) or they can contain bleed trails (this is where extra charge from those saturated 
pixels bleeds over into neighboring pixels creating spikes in the positive and negative x and y 
directions).  

*) For saturated pixels, we specify either a numeric value or a header keyword 
(e.g. “saturat=!SATURATE” for MOSAIC) that tells “ccdproc” that pixel with a value equal to or 
larger than that number is saturated and not to be trusted.  Here I’ve set sgrow=1 which means 
that pixels which are 1 within 1 pixel of the saturated pixel will also be flagged as “bad” pixels.  

**) For bleed trail pixels, we will similarly use a minimum threshold.  Any pixel of value 
greater than the number specified by the “bleed” parameter is eligible to be tagged as a bleed 
trail pixel (another kind of bad pixel).  It must also be physically in line with at least “btrail” other 
pixels who also have a value greater than “bleed”.  “btrail” is a parameter specifying that number 
of pixels that must be present in a column in order for them to be flagged as bleed trail pixels.  
The parameter “bgrow” is analogous to “sgrow”.  
 
If you specify a list of output names (as we have by pointing to our list, e.g.: “bpmasks = 
listBiasMasks“), subdirectories will be created with these names, each containing generated 
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multiple bad pixel masks (one for each CCD), named bpm_im*.pl, where *=1-8.  These masks 
would have whatever bad pixel mask is provided by the keyword BPM plus all the pixels 
determined to be saturated or bleed trails.  Thus during the process, all these pixels will have 
their values replaced with an average for those around them 
 
b)  Zerocombine will be the same as before:
cl> zerocombine @listBias output=Zero combine=median rejectcrreject ccdtype- process- 
delete- rdnoise=RDNOISE gain=GAIN
 
c)  Then we do ccdproc again, but this time only zero-subtracting - e.g.:
cl> ccdproc @listFlat ccdtype- xtalkco- fixpix- oversca- trim- merge- zerocor+ darkcor- flatcor- 
zero=Zero.fits saturat=SATURATE
etc....
 
d)&e)  Then, similarly for the master Darks, and dark correction with ccdproc, keeping in mind 
one needs to match up exposure times.  
f)  And then again for the flats, but by filter.  
cl> flatcombine @listFlat output=Flat combine=average reject=avsigclip ccdtype- process- 
delete- rdnoise=RDNOISE gain=GAIN
If you set “subsets = yes” then it will automatically combine by filter so you don’t have to make 
lists individually for each band.  
 
Once you’ve made the flats, there is sometimes an extra step that is necessary depending on 
the instrument you’re using and your scientific goals.  If you’re using MOSAIC images, then 
the U, B, and I filter images will have a pupil ghost - this is light that reflects off of the filters, 
off the back surface of the corrector, and returns through the filters to your science detectors. 
It appears ais additional light that looks like an image of the telescope pupil.  To remove this 
and fringing, you can follow the steps detailed here: http://www.noao.edu/noao/noaodeep/
ReductionOpt/frames.html 
For MOSAIC, as long as we have done a good job of placing our SN and field stars well away 
from the center of the ccds, we do not need to do this. 
 
g) Run ccdproc for flat fielding images by filter.
3)  a)  Before stacking your images into one image, it might be prudent to trim off some the 
unnecessary parts of the image.  If we feel that we have enough field stars and the supernova 
centered up on one ccd, we can split apart the image and leave the others behind.  
cl> mscsplit @listObject
Now remove the unwanted images 
cl> !rm obj100_0.fits obj100_1.fits obj100_3.fits etc...
You can even do something like the following to keep only the extension you need (number 7 
in the following example).  You may also want to keep the 0th extension which contains all the 
header information too.  
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cl> !ls 11011*_*fits | grep -v 7 | grep -v 0 | awk '{print "rm",$I}' > do_rm
cl> !chmod a+x do_rm
cl> !./do_rm
 
b)  Before we combine our images, we need to assign a world coordinate system (WCS) to 
each image.  Most likely a WCS was assigned at the telescope, but chances are good that it 
is not accurate enough to be able to find stars and align our images.  Luckily it is not difficult to 
improve. 
We will use the mscred task "msccmatch".  It needs a list of accurate object coordinates (this 
would be the actual RA & Dec of stars).  This would be tedious for us to write, but luckily there is 
another task called "mscgetcatalog" that will pull up a catalog and grab the coordinates of stars.  
Here is an epar of mscgetcatalog that will use an optical catalog: usnob1@noao.

 
You can use the task “msccmatch” to call “mscgetcatalog” and it will use that list of object 
coordinates to try to match up with the objects it finds in your image.  It will then calculate the 
necessary offsets and rotation of the coordinate system to correctly assign a WCS to your 
image, and then it will do so.  Here’s an epar of msccmatch
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The line that reads "!mscgetcat $I $C" is calling the task mscgetcatalog - fancy, eh?  
 
“msccmatch” will show you the best fit for the the WCS to your image, plotting the objects it has 
found as plus signs.  
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You can look at the residuals to the fit by typing "x" and "y".  Delete the points that are far away 
from the fit by hovering over a plus sign and typing "d".  Always follow this up with "r", and "f" 
for re-plot, and recalulate-the-fit respectively.  I would start with deleting the farthest point away 
vertically from the center of the group (especially if it is obviously off by itself) and keep going 
until all points are at least between 1 and -1, paying attention to how each deletion affects the 
new fit.  You can un-delete a point by typing "u" with your cursor over that point (don't forget to 
re-fit/re-plot).  
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When you are satisfied, type "q", and then, in the terminal, type yes to accept the solution.  
It may give you a warning like "Warning: Cannot open file (!mscgetcat$I$C)" and claim 
that "ERROR: MSCCMATCH failed for 2009ig_110110_B.fits"  But it seems to work just fine.  
Your image should have a WCS on it.  You can test it by opening your image, then use the 
Analysis -> Catalogs -> to pull up an optical catalog.  Did it accurately circle objects in your 
field?
 
c)  Now we have to take our MEF fits and merge it into one image using the task “mscimage”  
It is fairly straightforward - just give it the name of the MEF image and the name you want for 
the output single-extension-fits image, e.g.:
cl> mscimage 2009ig_110110_B.fits comb09ig_110110B.fits
Tada!  In fact, you can also give it a list of input images and a list of output image names.
 
 
d) We also need to calculate the scaling for each image going into the final image.  We do that 
using the task “mscimatch”.  First, run mscgetcatalog to get a list of sources:
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A.3 NIR Image Reduction
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NIR Reduction
By: Ginger Bryngelson

 
0. Install the IRAF external package “xdimsum”
1. Do initial corrections just like in the general image reduction tutorial, including: fix bad 

pixels, overscan correct, trim, bias subtract, dark subtract, and flat correct.  If you do not 
have bias images or dark images, don’t worry too much, as this will be corrected in the 
next step.  

2. Fringe correct your image.  Likely your image will have fringing - light interference 
patterns from the optics of your telescope instrument set-up.  Fringing can be regular 
such as Newton’s Rings or irregular as seen in the following images:

We’d like to remove this extra signal which is usually sitting on top of our science field.  To 
do this, we will take advantage of the fact that NIR observations are usually taken as dithers.  
This is where the telescope is moved in between each exposure.  Thus a particular star is on 
a different part of the CCD from image to image.  Likewise, in a string of images, a pixel may 
alternately reflect stellar signal and background noise.  However, from image to image, there 
will still be the same amount of fringe signal on each pixel.  Thus, if we combine a collection of 
images of the same object in the same filter choosing the keep only the median pixel value, the 
result should be only the fringe.  So, let’s do that using the IRAF task imcombine, e.g.
cl>  imcombine @list09nrH fringe09nrH combine=median reject=minmax
Check out the image fringe09nrH.  It should look like the above.  
 
Now, if you see any bright areas that look suspiciously like stars or a galaxy, that may mean 
the dithering did not use a large enough offset, and there were multiple images in a row where 
a pixel experienced stellar or galactic signal.  Those areas of pixels will have a much larger 
value of counts than just fringing.  When we fringe correct, we want to use an image of only 
the fringing - we don’t want to cut out any star or galaxy counts.  We can cut out the non-fringe 
areas by excluding the very high (and very low) count pixels from our fringe template.  We will 
create a pixel mask using “ccdmask” as such:
cl>   ccdmask fringe09nrH.fits fringemask09nrH ncsig=40 lsigma=5 hsigma=5
Check out your mask in a ds9 section, by typing in your iraf section:
cl>   display fringemask09nrH 1
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You should see some darker areas and light areas.  See if you can tell which are the pixels we 
are masking (dark or light?).  
 
Next, we’ll correct those pixels in our fringe template.  fixpix will take the mask of “bad pixels” 
and replace those specified pixels with the value of pixels that are nearby.  
cl>   fixpix fringe09nrH.fits fringemask09nrH
Hopefully now when you look at  fringe09nrH.fits again, you’ll see a more smooth fringe image.  
 
Now, we want to fix the fringing, and we’ll use the mscred task rmfringe.  
cl>   rmfringe @list09nrH fringe=fringe09nrH.fits fringem=fringemask09nrH.pl
 
Go through and look at your images.  Does it look like they have any fringe left?
 
3. Make a dummy bad pixel image.  The last steps of NIR reduction require a bad pixel file 
in a certain format in order to work.  Namely, it should be the same size as each of your images, 
and each pixel should have a value of either 1 or 0 - 1 meaning a good pixel, and 0 meaning a 
bad pixel.  You may have a bad pixel file already in this format, but even if you do, you’ve 
already done bad pixel correction in the first step, so it won’t hurt to go ahead and use a dummy 
file.  Using the task imarith, I copy any image from the night I’m working on, and manipulate it to 
get an image entirely of pixels of value 1 (signifying that every pixel is a “good” pixel).  
cl>   imarith SN2009nr.0034.fits * 0 blah.pl
cl>   imarith blah.pl + 1 fakebadpixel.fits
Check it out, does fakebadpixel.fits have all 1’s?
 
4. Subtract the sky from each image and combine.
The next step actually rolls a large number of steps into one IRAF task: xmosaic.  This task will 
first take all your dithered images of a certain object in a given filter, and combine them into one 
image to get a measure of the sky background level.  This is similar to how we did got the fringe 
except it creates a sky image for every individual image.  For each image, it looks at a number 
of images (like 8) nearby in the list, and combines only those.  It will then try to find any outlier 
pixels (bad pixels and cosmic rays) in the background templates, and create masks for them.  
Then it will subtract the respective sky image from each individual science image.  Then it will 
try to align all the stars and features in the images, though you will be involved heavily in this 
part.  Once it thinks it knows the offsets for each image of the dither, it will combine the images 
according to those offsets, and show you the result.  You then have to help it determine where 
all the objects are (stars and galaxies, etc) in this combined image by choosing a pixel value.  
Any pixel with a value above this is considered an object, and a mask will be made of these.  
Then xmosaic will calculate backward, based on the known offsets, where the objects are in the 
individual images.  It will then recombine these images again - except for the pixels where the 
known objects are.  This way it has an even better measure of the background level.  
 
Look at an epar of xmosaic, and you’ll notice a list of things you can choose to do or not.  
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Here, we’ll say yes to practically everything, and we’ll point it to our fake bad pixel image.  
Notice I tell it not to force bad pixel fitting (there’s no point since we’re giving it a fake bad pixel 
file).  The reference image is just the first image in the list of images you gave it.  
 
In the second half of the parameters, we’ll say yes to some interactive steps, and give it the 
name of a shifts file where it can print out the shifts once it calculates them.  If everything runs 
smoothly the first time you run xmosaic you won’t ever need them.  But often something can go 
wrong, and it is nice to not have to calculate them again if that has already successfully been 
done.  
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Before you execute this, make sure a ds9 image is open.  It won’t need you for a while.  You’ll 
see updates to the screen about each step on each image.  The first interactive thing that will 
require your attention will be determining shifts.  An image will appear in your ds9 window 
(the first image in the list you gave it), and instructions will appear in the iraf terminal.  You will 
basically be clicking on the same star in each of the images.  The first thing xmosaic wants 
you to do is pick out a star that has a good signal and go through each image to make sure 
it stays within the field of view and is never saturated.  Use the commands detailed in the iraf 
terminal.  In the ds9 window, type “n” and “p” to go to the next or previous image.  When you 
have decided on your star, type “q” to go to the next part.  Now xmosaic wants you to give it 
the coords of that star in each image.  Do this by going to ds9 and hovering over the center of 
the star and typing “a”.  Then hit “n” to go to the next image.  Repeat until you get back to the 
first image - you’ll have to keep an eye out for it because iraf doesn’t automatically quit.  Once 
you’ve done this for each image, type “q” and it will let you do the next part.  Now xmosaic 
wants you to click on that same star and a number of other non-saturated, reasonably bright 
stars in only the first image.  Type “q” when done.  
 
xmosaic will dump you out into a vi session where you can see the coordinates you reported for 
each image.  If you know you made a mistake somewhere, you can edit it out.  When done, quit 
with a “:wq”.  If all went well, xmosaic will have calculated the appropriate offset for each image, 
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and will show you another vi session of all of these.  Quit with another “:wq”, and xmosaic will 
continue on to the next task.  
 
You will be needed again when it comes time to determine the object mask.  xmosaic will show 
you the combined image in ds9, and let you play around with an imexam session.  You can use 
all manner of things commands to determine a good pixel value for objects.  Any pixels with a 
value equal or higher to this will be classified as having star or galaxy signal.  Once you think 
you have a good idea for the value, quit out of imexam with a “q”, and xmosaic will show you a 
suggested object level.  Your number will probably be close to this.  I’ve found the suggestion is 
usually pretty good, though I usually choose a number slightly less than the suggestion.  Type 
in your chosen level, and hit enter.  After thinking a bit, xmosaic will show you the calculated 
mask.  Compare this to the combined image, and you should see everything that you thought 
was an object blocked out in the mask.  If not, pick a different value.  Tell xmosaic if you want to 
try again or not.  
 
When you’ve told xmosaic that you’re satisfied, it will continue on to do the rest of its tasks.  
It will deregister the object mask based on the offsets previously calculated to match each 
individual image.  Next it will make new sky background images again by combining pixels 
of adjacent images - ignoring the values where the object mask tells it to.  Afterwards it look 
for more badpixels and cosmic ray hits to throw out.  Then it subtracts the new sky images 
from the respective original science images, and combines each of those into one final image.  
When all is finished, you will have a number of badpixel masks (“.pl” files), a sky image, and 
sky-subtracted image for each image.  You also have a “.fp.fits” image which is the first pass 
combined image - the one you saw when determining the object level - and a “mp.fits” which 
is the mask pass (and final) combined image.  Additionally there will be “.exp.fits” image that 
shows you how many images (or exposures) contributed to each part of your final image.  Likely 
the middle part of your image is where your images overlapped the most.  
 
Hopefully it all went smoothly, but it’s more likely that something went wrong.  If anything does 
go wrong and xmosaic quits somewhere in the middle of its work.  If you know what you already 
accomplished, you can epar xmosaic and tell it not to do the stuff it already did.  
Depending on when it stopped, this may or may not work.  If it doesn’t, you can try deleting 
any “tmp*” files and “_*” files and trying it again.  If it still doesn’t work, then I suggest you 
rerun it from the beginning again, with perhaps one change - if you have already successfully 
done the calculating of offsets, and it successfully saved to the filename you specified in the 
parameter file, then set “fp_mksh” to “no”, and you shouldn’t have to do that part again.  
 
Compare your individual images to the original images and to your final image - it’s amazing 
how much signal is uncovered after getting rid of the sky background!

83



A.4 Photometry
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Photometry
 

1. For each field, there will be a number of stars whose instrumental magnitude 
you need to measure.  In a field of standard stars, you will measure the 
instrumental magnitude of those stars with known apparent magnitude.  
Also, you’ll measure the interesting star/SN of unknown magnitude.  
Additionally, one might want to calibrate multiple other stars (local 
standard stars) in the science image.  As you are choosing which stars to 
use as local standards, make sure that for each night you pick a number of 
stars that can be seen in each band, and not saturated in any bands.  You 
can check for saturation using ds9 to open an image of the field, and using 
the IRAF task, “imexamine” in the images.tv packages.  Simply hover your 
mouse (the cursor should be a blinking donut) over the star of interest 
and type “s” or “r”.
  
It will be helpful to have a region file you can pull up on your images 
when you do photometry.  This will be an overlay that helps you keep 
track of which star is which:
a. Open an image of the field in ds9.  As accurately as possible (you 

may want to zoom in), click on each star whose coordinates you 
want.  A green circle should appear around them as you click.  If 
you accidentally click somewhere you didn’t want, just delete the 
green circle by selecting it and hitting “delete.”  If you double click 
on the green circle, you can add a label.  Use this to number or name 
your standard stars.  Be sure to also include your object of unknown 
magnitude (the SN).  If you are calibrating local stars, it’s good to have 
something like 30 - the more (non-saturated) stars the better of a 
range of magnitudes.   

b. Now, in the “Region” pull down menu at the top, choose “Save Region”.  
In the bottom line of the window that opens, choose what to call this 
list of coordinates.  The default suffix is “.reg”, which, if kept, will 
enable you to load your regions onto any image.  (Note: If your images 
have an accurate WCS, you might want to choose to format your 
regions file as “WCS” instead of “image” or “physical”.  This will make 
it work on any of your images that have accurate WCS)

c. I suggest you try loading these regions onto your other images of 
the same field to make sure they still match up well with the stars.  
Otherwise you may want to make region files for each image/night, 
or align and crop your images so that the coordinates work for each 
image of that field.  Often you may have a different region file for each 
night.  

d. Repeat these steps for each field (SN field and standard fields if 
calibrating your field - only science field if doing relative photometry). 

2. Make a file called “imsets” which is a list of the images you want to do 
photometry with or on.  This includes both the object fields and the 
standard fields.  Usually you have a different imsets file for each night.  Be 
careful, this file needs to be in a specific format.  Below is an example of a 
file called imsets:
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Notice that there are only single spaces in between each name, and before 
and after the “:”.   The “sn06D”, “stdA”, and “stdB” indicate what field each 
of the images is of.  (i.e. the first four images are of the sn field, while the 
next four are images of our first field of standard stars, and the last four 
are images of the second field of standard stars).  If you are doing relative 
photometry, you will only need the one science field (in this case sn06D)
 

3. Now, in iraf (via packages: noao.digiphot.photcal) one needs to 
do “mkcatalog”.  I call the output file “stds.” This is a list of the standard 
stars located in each field and their known apparent magnitudes in each 
band you’ve observed.  It’s ok to put in extra information (i.e. magnitudes 
in bands you haven’t observed), because later you’ll specify exactly which 
information you need.   If you have several standard star fields, go ahead 
and include the stars from each one in this file.  It is tedious to make the 
catalog file this way, but I have tried to outsmart it before, and have never 
succeeded.  It’s best to do it this way so that it is in the exact format iraf 
likes.

The mkcatalog script will first prompt you for what you want to 
call each column and how wide you want each column.  Many times it will 
suggest the title with the phrase, “<CR>=ID” and if you like that name, just 
hit “return” to accept.  Generally 10 or 15 characters is plenty of space for 
each column.  When you’re done entering the titles, and specifying 
widths, hit “ctrl+d” which is what iraf means by “<EOF>=quit entry”. 
Here’s an example of this first part:

 Now, finally, you must specify the values you want to put in.  The “ID” 
values will be the similar to the field id’s you used in the “imsets” files, 
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except they will also include a label for each star. 
If you happen to make a mistake while entering data, don’t worry.  

After you tell it you’re finished (“ctrl+d”) it will spit you out into a vi 
session of your file, “stds”, so that you can fix anything you might need 
to.  When you need to quit, use “:q”. The finished product should look 
something like this (though with probably more rows of stars):

“mkcatalog” will also create  a file called “fstds.dat”:

which records what columns  the appropriate information is on.  
Note: If you know apparent magnitudes in terms of V,B-V, V-R, etc., or some 
variation thereof, you may enter this information into mkcatalog  instead, but 
your column names will be different, and certain steps will be different when we 
do “mkconfig” (step 6).  

4. Next, we will do “phot” (which is located in “noao.digiphot.apphot”) on 
each set of images including standard star field images.   This calculates 
instrumental magnitudes.  Before we use “phot,” there are several 
parameters we need to specify to make sure photometry is done 
correctly.  These parameters can either be specified explicitly, or you can 
point to the appropriate image header keyword.  We will do the latter.  
Do an “epar datapars” to edit the file so that the parameters with “image 
header keyword” in the description reflect the appropriate header values.  
You may have to examine the header of the image to confirm the names of 
the values.  In some cases you may have to use the “hedit” task to add the  
appropriate header keywords.   
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We will 
also edit the “centerpars” parameter file.  Here, the most important parameter 
is “maxshif” which tells the phot task how much leeway it has to find the center 
of the star when you give it coordinates.  A good value is 3 pixels.  The default 
values are probably fine for the rest.  

The next 
3 parameters we will edit determine the size of the aperture and annulus that 
measure the star and background brightness.  
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You may want to look carefully at the stars in your image (using ds9 
and “imexam”) to determine how large the aperture and annulus should be.  
Edit the parameter file “photpars” with an epar.  The parameter “aperture” 
refers to the radius (in pixels) of the aperture.  

Now 
edit “fitskypars” with an epar.  The “annulus” parameter specifies how many 
pixels (radially) away from the centroid of the star the annulus should start.  
The “dannulus” is how wide the annulus should be. 
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Now we will edit the actual task, “phot”.  Also, you may specify a file with a list of x,y 
coordinates for each star in a given field, but probably this won’t work.  Our “.reg” 
file is not in the right format, so just leave the “coords” parameter blank unless you 
have made you own coordlist and have reason to think you can get iraf to accept 
it.  Every time I’ve tried, IRAF has shut me down.  Here’s an “lpar” of phot for an 
example:

Unlike above, you will want to put “interac” to “yes”, open a ds9 with the image 
you are doing the photometry on, and then start phot.  You will be able to specify 
each star directly on the image.  Just hover your cursor over the stars and hit 
spacebar.  MAKE sure you click on them in order!  An algorithm will be used 
to find the exact centroid (within the 3 pixels we specified when editing the 
centerpars parameter file).  Then go to the next star and do the same thing.  Just 
remember, order is important.  When you are finished, type “q”.  If you run phot 
on multiple images, it will prompt you to hit n for the next image.  Make sure you 
also change images in ds9 before you start clicking again.  
 
Running phot will produce a text file for each image in the list “sn06Dlist” called 
*.mag.1 (1 = if it’s your first time running phot) which contains a plethora 
of information including the instrumental magnitude for each star whose 
coordinates are specified in the file, “sn06.reg”.   Here’s an excerpt from an 
example file.  Make sure all the header keywords we set in “datapars” were 
picked up correctly.  If you see any INDEF among the data, or zero values for 
exposure times, etc., something went wrong.  
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5. The “mknobsfile” task in “noao.digiphot.photcal” pulls out the pertinent 
information from the *.mag.1 files and the imsets file we made earlier.   It 
includes calculated coordinates of the star, airmass, time, instrumental 
magnitude, and error.  Here’s the epar of my “mknobsfile”:
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The “idfilters” are a list of the different filters you’ve observed your fields in – they 
should match the values of “filter” in the fits headers.  Setting the tolerance to zero 
makes iraf match the stars in each image by the order in which they are measured 
rather than by their calculated coordinates.  Here’s what the resultant “sobs” looks 
like:

6. You will need to edit “sobs” to make the labels match the ones in “stds”.   
 “mknobsfile” also results in a file called “fsobs.dat” which just keeps track 
of what column what information is in.  Here’s what it looks like:
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7. Now we use the task “mkconfig” to create pointers to variables and formulas 
with which to calculate the actual apparent magnitudes.   Here, we will 
use the landolt transformation equations.  

Running “mkconfig” makes a file called “config” and spits you out into a vi session 
on this file.  You will need to edit it to include only the information you need.  For 
instance, this file output:
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 has an equation for U observations, but none were taken for my images, so those 
3 lines can be deleted.  Make sure the variables used in the equations match those 
specified in the “observations” column.  The landolt equations transform the 
instrumental magnitude of the field stars to the real apparent magnitude.  Included 
in these equations is an offset (b1,r1,i1,etc.) the dependence of the instrumental 
magnitude on intrinsic color (these are the UB=U-B, BV=B-V, VR=V-R, and VI=V-I), 
airmass (XB, XV, etc.), and a combination of the two (the last term in the equations).  
Once you quit and save the file “config”, IRAF will compile the script and report 
how many if any errors are present.  Errors can occur if any of the variables in the 
equations do not match the variables listed under observations, or if they do not 
match the id’s specified in the “stds” file.  
 
If you entered information into standards that contained B-V, V-I, etc., then you 
needn’t change the landolt equations too much.  However, if you entered the 
apparent magnitude individually in each of the filters, you will need to make the 
landolt equations look like below:
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8. The task “fitparams” tries to fit each of the constants for the stars where the 
instrumental magnitude and actual apparent magnitude is known.  Note 
above, certain constants are listed in the row “fit” and given some initial 
value to start with (usually the defaults work well).  The 4th constant is 
usually left at zero, because the addition of the airmass*color term is 
most often negligible.   If you had any errors in the config file, “fitparams” 
will not run.  

Running this will open an interactive session where you can asses how well the task 
has fit the constants.  Useful keystrokes (used on the irafterm window) are

d = delete point
u = undo delete
f = redo fit (after you’ve deleted points)
r = redraw
q = finished with this fit/quit
n = go to next fit

After you quit, if you’ve asked it to save the fit results, then it will output a file 
called “params” which saves the value of each constant, and information like what 
equation it was fitting.  Below is the Bfit part of the “params” file:
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9. “Invertfit” then applies the fitting constants in the same equation to take the 
unknown (SN) from an instrumental magnitude to an actual apparent 
magnitude.  Here’s an lpar:
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This outputs a “results” file with the calculated actual apparent magnitudes of all the 
objects given in “sobs.”  

10. Check through the “results” file to see if the calculated magnitudes for 
the standard stars match the known magnitudes we supplied at the 
beginning.  Did the fit do a good job?  
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