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ABSTRACT 

 

 

Emergency medical service (EMS) systems respond to emergency or urgent calls 

so as to provide immediate care, such as pre-hospital care and/or transportation, to 

hospitals.  Care must be provided in a timely manner; in fact quality of service is usually 

directly associated with response time.  To reduce the response time, the number and 

location of vehicles within the service area are important variables.  However with 

limited capacity, increasing the number of vehicles is often an infeasible alternative.  

Therefore, a critical design goal is to decide at which facilities stations should be located 

in order to serve as much demand as possible in a reasonable time, and at the same time 

maintain equitable service between customers.  This study aims to focus on locating 

ambulances which respond to 911 calls in EMS systems.  The goals are to find the 

optimal base station location for vehicles so that the number of calls or customers served 

is maximized while disparity between those customers is minimized, to consider the 

survival rate of patients directly in the model, and develop appropriate meta-heuristics for 

solving problems which cannot be solved optimally. 
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CHAPTER 1 

 

PREFACE 

 

 

EMS systems are specially organized systems that provide emergency medical 

service within a service area.  The emergency medical services are varied depending on a 

call such as providing an emergency medical technician, a paramedic, or transportation.  

The EMS system is activated by an incident that generally causes serious illness or 

injury.  Therefore in this situation, a very important factor is not only emergency medical 

care but also response time.  Rapid response time by EMS can mean the difference 

between life and death.  In urban areas, the most widely used ambulance response-time 

standard is 8 minutes and 59 seconds (Fitch, 2005).  However in reality, not all incidents 

can receive service by this standard time depending on the area and the state.  Especially 

in rural or remote areas the response times tend to be longer than that.  One way to reduce 

the response time is by locating vehicles at the appropriate station locations so that they 

can serve the requested calls in time.  To address this problem, we would like to develop 

a mathematical model for locating EMS vehicles.  This problem is known as a covering 

problem where the service to customers depends on the distance between the customer 

and the facility to which the customer is assigned (Daskin, 1995).  In the covering 

problem, we assume that demand location and potential facility sites are restricted to the 

nodes in the network with arcs specifying path between them.  Moreover we also assume 

that demands are grouped at demand nodes and a demand node is covered when there 

exists at least one vehicle located within the coverage distance (Daskin, 1995).  The 

problem can be formulated as an integer programming model by using binary decision 
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variables which take a value of 1 if a demand node is covered or 0 otherwise.  Because of 

0-1 variables, covering location models are not easy to solve.  Moreover our goal is not 

only to maximize the number of customers, but also minimize the disparity between 

customers.  The resulting complex objective causes the model to be hard to solve to 

optimality.  In this situation, a heuristic is preferred for solving the problem, especially in 

practical application in which the size of problem is large. 

This dissertation is composed as a compilation of three journal papers that 

focused on reducing inequity in facility location problem for EMS systems.  Any 

redundancies between chapters have been removed to make it easier to read.  

Furthermore, the dissertation chapters contain more material that did not necessarily get 

included in the submissions.  An overview of each paper is presented as follows. 

1. A bi-objective covering location model for EMS systems: Addressing the issue 

of fairness in rural areas. 

This paper aims to balance the level of EMS service provided to patients in urban 

and rural areas by locating ambulances at appropriate locations.  Traditional covering 

location models; whose objective is to maximize demand that can be covered, favor 

locating ambulances in urban areas; since urban areas have higher population densities.  

To address the issue of fairness in rural areas, we propose three bi-objective covering 

location models that directly consider fairness via a secondary objective; results are 

discussed and compared to provide alternatives to decision makers.  (see publications 

related to this research in Chanta et al., 2009, 2011a). 
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2. The minimum p-envy location problem: A new model for equitable distribution 

of emergency resources 

This paper aims to find optimal locations for Emergency Medical Service (EMS) 

vehicles in order to balance disparity in service between zones and at the same time 

maintain service coverage.  Instead of carrying two conflicted objectives, we propose a 

minimum-envy covering location model which takes into account both issues by 

minimizing the sum of ―envy‖ among all zones weighted by proportion of demand in 

each zone.  Because of complexity in the objective function, a tabu search is developed 

for solving this problem.  A case study using real-world data collected from Hanover 

County, VA is presented.  The performance of the proposed model is compared to other 

location models.  (see publications related to this research in Chanta et al., 2010a, 2011b). 

 3. The minimum p-envy location problem: Focusing on survivability of patients 

 This paper considers an extension to the minimum p-envy location model by 

evaluating the objective of the model based on the survival function instead of the 

distance function since survival probability is directly related to patient outcomes.  The 

model was tested on a real world data set from the EMS system at Hanover County, VA, 

and also compared to the original minimum p-envy location problem including other 

location models.  The results indicate that more lives can be saved by using the survival 

function objective and that the enhanced p-envy model outperforms other commonly 

used location models in terms of number of lives saved.  (see publication related to this 

research in Chanta et al., 2010b). 
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CHAPTER 2 

A BI-OBJECTIVE COVERING LOCATION MODEL FOR EMS SYSTEMS: 

ADDRESSING THE ISSUE OF FAIRNESS IN RURAL AREAS 

 

2.1 Introduction 

EMS systems are especially organized systems that provide emergency medical 

service to patients within a service area.  This service area could be urban, rural, or some 

combination of the two depending on how the population is distributed in the 

geographical region.  Unfortunately, rural communities often suffer from inadequate 

medical services, including emergency care.  Such a problem is compounded with low 

expectations that emergency care in rural areas will be as fast and effective as in urban 

areas (NCSL, 2000).  EMS systems are typically evaluated according to how they 

respond to and treat out-of-hospital cardiac arrest patients.  In urban areas, EMS systems 

tend to have the highest known cardiac arrest patient survival rates.  In contrast, EMS 

systems in rural and semi-rural areas have notably lower cardiac arrest patient survival 

rates (English, 2008).  

People in rural areas have difficult time to face health disparities in health care.  

Because of less demands, the reimbursement in rural is low which this causes lack of 

service providers, hospitals, and technicians (Willams et al., 2001).  Moreover geographic 

barriers and limitation of resources lead the patients take long time to access the service.  

All these reasons lead rural states had lower access in all types of emergency departments 

(Brendan et al., 2009).  The quality of service is still concerned because of low call 

volumes, as a result in, less utilization, difficult to maintain medical operating skills, and 
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lack of training.  In addition, people in rural are aging, and many injuries are greater in 

severity than urban (OTA, 1989).  Air transportation is another way to go when patients 

need immediately care.  However, from previous report air transportation is faster than 

ground transportation if the patients are in the air zone, while ground transportation is 

also faster than air transportation if the patients are in the ground zone (Lerner, 1990).  

Therefore providing the air transportation is not enough; we still need the effective 

ground transportation.  Although balancing equity between rural and urban almost 

impossible, we try to reduce cause of death happen at the scene which is the major cause 

of death of people in rural (Trevillyan et al., 1998). 

A very important factor in determining EMS performance is not only the quality 

of emergency medical care provided but also the timeliness in which care is provided, or 

response time.  A rapid response time by EMS can mean the difference between life and 

death.  In urban areas, the most widely used ambulance response time standard is to 

respond to 90% of calls within 8 minutes and 59 seconds as compared to responding to 

90% of calls within 14 minutes and 59 seconds in rural areas (Fitch, 2005).  In 

practicality, it may not be possible to meet this standard depending on the geographical 

area, the EMS resources available, and the location of EMS resources at the time of the 

call.  Response times may be much longer than the standard, especially in rural or remote 

areas.  One way to reduce the response time is to locate ambulances at the appropriate 

station locations.  This problem is known as a covering problem where the service to 

customers depends on the distance between the customer and the facility to which the 

customer is assigned (Daskin, 1995).  A call is said to be covered if the response time is 



 

14 

 

within the standard; for example, a call responded to within 8 minutes and 59 seconds or 

less is considered covered, while if the response time is 9 minutes or more the call is 

considered uncovered.   

Most EMS systems locate and use their resources in a way that maximizes the 

number of persons (or calls) that can be served within a specified time or distance.  Often 

this is translated to number of demand zones that can be covered, where a demand zone is 

a geographic region with associated call volume.  However, when resources are limited, 

some demand zones may go uncovered.  With a single objective that maximizes the 

number of covered demand zones, these uncovered demand zones tend to be located at 

the edges of the region.  This results in an inequitable use of resources that impacts 

patient outcomes.  Thus, patient survival rates in rural areas are observed to be 

significantly lower than in urban areas (English, 2008).  As we will show in Section 2.6, 

applying a covering location model with the single objective of maximizing the number 

of covered demand zones to a semi-rural county results in optimal solutions that locate 

emergency ambulances at stations that leave the majority of rural demand zones 

uncovered.   

We propose three bi-objective models for locating EMS ambulances in order to 

reduce the disparities in service among rural and urban areas.  The first objective is the 

traditional covering problem objective of maximizing the number of covered calls while 

the second objective is aimed at improving service in rural areas.  Since there is no 

universally accepted way to measure fairness in EMS systems, we propose three 

alternatives for the second objective as a means to identify how to best evaluate fairness 
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in EMS systems.  The three proposed alternatives to be the second objective are: (1) 

minimize the maximum distance between each uncovered demand zone and its closest 

opened station, (2) minimize the number of uncovered rural demand zones, and (3) 

minimize the number of uncovered demand zones (notice that this last objective is not the 

same as maximizing the number of covered calls, as each zone has a different demand).  

These three models are formulated as integer programs.  Non-dominated solutions to 

each bi-objective model are generated using the ε-constraint approach.  

The key contribution of this paper is a model that can be used to reduce the 

disparities in service between different demographics; in particular we focus on urban 

versus rural areas. The solution to the model provides decision makers with a set of 

solutions that can be chosen based upon performance measures of interest.  Results 

indicate that the model that minimizes the maximum distance between each uncovered 

demand zone and its closest opened station as a secondary objective results in solutions 

that dominate those from the other models, when evaluating the average distance (or 

weighted average distance) between an uncovered zone to its closest station.  On the 

other hand, a model that uses a secondary objective of minimizing the number of 

uncovered rural demand zones yields a larger solution set, which may be desirable to the 

decision maker as it provides more options.  Moreover considering on the distribution of 

the distance from individuals to their closest stations, the solutions of the model that 

minimizes the maximum distance between uncovered demand zone and its closest open 

station as a secondary objective are equitably efficient as the solutions of the model that 
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minimizes the number of uncovered demand zones as a secondary objective, since both 

models provide equally service among all individual customers. 

 

2.2 Literature review and scope 

Models for locating EMS resources typically use variations of the covering 

problem, where facilities are located at existing stations on the network to cover all the 

demand zones while minimizing the number of facilities.  The basic covering model, the 

set covering location problem (SCLP), was developed by Toregas et al. (1971) with the 

objective of minimizing the number of ambulances needed to cover all demand nodes.  

Church and ReVelle (1974) extended the SCLP to address the situation in which the 

number of ambulances available is less than the number needed to cover all demand 

zones, this is called a maximal covering location problem (MCLP).  These first two 

covering models are deterministic which assuming that vehicles are always available to 

serve calls.  Daskin (1982) developed a stochastic model called maximum expected 

covering location problem (MEXCLP) model which is an extension of MCLP model by 

considering the probability of vehicle being busy, assumed that each server has the same 

probability.  Batta et al. (1989) embedded the hypercube model (Larson, 1974, 1975) in 

to the MEXCLP, and differentiated probabilities of vehicle being busy of different 

location.  Later, Hogan and ReVelle (1986) considered the issue of backup coverage, or 

secondary coverage of a demand zone.  Backup coverage is required in high-demand 

areas to maintain a uniform level of service when EMS ambulances can respond to only 

one call at a time. All of these models are single-objective models. 
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Several papers do consider multiple objectives for ambulance location problems.  

Daskin et al. (1988) integrated different covering models such as multiple, excess, 

backup and expected covering models.  For example, they reformulate the hierarchical 

objective set covering problem (Daskin and Stern, 1981) into a multi-objective set 

covering problem, which allows them to derive the trade-off between the number of 

facilities and the extra coverage.  Pirkul and Schilling (1988) modeled the objective of 

maximizing covered calls while simultaneously considering workload capacities and 

backup service.  Pirkul and Schilling (1991) extended this model with the addition of 

workload limits on the facilities and the quality of service delivered to the uncovered 

demand zones.  The workload limit refers to the specific amount of demand that can be 

served by one facility.  The workload limit condition is formulated as a constraint to 

make the model more realistic.  The quality of service is modeled as the total distance 

from uncovered demand zones to the nearest facility, and the resulting model is solved 

using a solution procedure based on Lagrangian relaxation.  Narasimhan et al. (1992) 

extended the model to consider multiple levels of backup.   

ReVelle et al. (1996) considered extensions of the maximal conditional covering 

problem.  In their models, the facility locations are supposed to be covered by other 

facilities and may not be used to cover their own zones.  Berman and Krass (2002) 

presented the generalized maximal cover location problem which allows for partial 

coverage.  The degree of coverage is defined as a non-increasing step function of the 

distance to the nearest facility.  A greedy heuristic and an LP-relaxation are applied to 

solve the problem and provide bounds on the relative errors of the approximate solutions.  
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Karasakal and Karasakal (2004) introduced intermediate coverage or partial coverage; the 

model allows the coverage to change within a distance; that is, the demand points can be 

fully covered within the minimum critical distance, partially covered to a maximum 

critical distance, and not covered outside of the maximum critical distance.  Araz et al. 

(2007) developed a multi-objective covering location model based on previously 

developed models (Hogan and ReVelle, 1986; Pirkul and Schilling, 1988).  Their model 

has three objectives: (1) maximizing the population covered by one vehicle, (2) 

maximizing the population with backup coverage, and (3) minimizing the total distance 

from locations at a distance bigger than a specified distance standard for all zones.  The 

problem is solved using a fuzzy goal programming approach.  There are several multi-

objective covering models can have been studied but most of them have the assumption 

that vehicles are always available to server calls.   

Although there are many extensions to covering location models, there is no 

model that explicitly addresses fairness of service to patients in rural areas.  Under a 

single covering objective (e.g., maximizing the expected covered demand), patients in 

urban areas are generally covered at the expense of rural patients, leading to adverse 

patient outcomes in rural areas.  Even as more EMS ambulances become available, 

covering models tend to continue to concentrate EMS resources in urban areas.   

In this paper, we propose three objective functions to locate EMS ambulances so 

as to reduce the disparities in service between rural and urban areas. Each of these 

objective functions is used in a bi-objective discrete optimization model that evaluates the 

tradeoffs between coverage and fairness.  The first objective function minimizes the 
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maximum distance between uncovered demand zones and opened stations.  This 

objective function assigns the uncovered demand zones to the closest opened stations, in 

order to minimize the distance from an uncovered zone to an opened station.  This is 

important because even if a zone cannot be responded to within the response time 

standard, patient survivability rates are directly related to response time (or equivalently, 

distance) (Larsen et al., 1993).  The second objective function minimizes the total number 

of rural demand zones that cannot be covered.  This objective function considers the 

trade-offs between the number of rural demand zones that can be covered and the amount 

of demands in these demand zones that can be covered.  The third objective function 

minimizes the total number of uncovered demand zones, either urban or rural.  The idea 

of the third objective function is similar to the second objective function, but it does not 

consider the type of uncovered zones (i.e., urban or rural).  The proposed objective 

functions provide guidelines for locating ambulances, while allowing decision makers to 

simultaneously improve the quality of service in both rural and urban areas. 

 

2.3 Covering location model formulation 

 This section introduces a bi-objective covering location model for locating EMS 

ambulances at preexisting rescue stations that balances the overall quality of service (i.e., 

coverage) with fairness.  In this covering location problem, the goal is to cover as much 

demand as possible while reducing the disparity in service between urban and rural areas.  

To directly consider the issue of fairness, three bi-objective models are proposed.  The 

first objective is to maximize the expected number of requested calls that can be covered, 
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namely, Z1 (Equation (2.1)). The second objective is to improve fairness.  We propose 

three alternative objective functions for improving fairness in rural areas which are to  

 minimize the maximum distance between uncovered demand zones and 

their closest opened stations (Z2a, Equation (2.2a)),   

 minimize the number of uncovered rural demand zones (Z2b, Equation 

(2.2b)), and  

 minimize the number of uncovered demand zones (Z2c, Equation (2.2c)).   

These three alternative objective functions are selected one at a time to be used as 

a second objective, resulting in three distinct models. We have three decision variables 

which are yik (a 0-1 variable that indicates if demand zone i is covered by at least k 

ambulances), and xj (the number of ambulances at station j).  There are three constraints, 

shown in Equations (2.3) to (2.5).  The first constraint (3) limits the total number of 

ambulances available to be located to T.  The second constraint (4) limits the maximum 

number of ambulances that can be located at a single station to S.  In the third constraint 

(2.5), a demand zone can receive service from a station as long as that station is open 

(i.e., there is at least one vehicle located there).  Equations (2.6) and (2.7) represent non-

negativity and integrality constraints.   

Maximize  1

1 1

iln

i k ik

i k

Z h w y
 

       (2.1) 

 Minimize      2 max{min( )}a ij
j Oi U

Z d


       (2.2a) 

Minimize 2 1

1

(1 )
n

b i i

i

Z y r


         (2.2b)  

Minimize 2 1

1

(1 )
n

c i

i

Z y


 
      

(2.2c) 
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  Subject to:  
1

m

j

j

x p


      (2.3) 

     
jx s ,   j=1, …, m  (2.4) 

1

i

i

l

ik j

k j J

y x
 

  ,  i=1,…,n  (2.5) 

{0,1,..., }jx s
 
 j=1, …, m   (2.6) 

{0,1}iky     i=1,…,n; k=1,…,li (2.7) 

 

Where the decision variables are: 

 

 
1   if demand zone  is covered by at least  ambulances

       = 
0 otherwise                                                                  

ik

i k
y





 
 

xj         =  the number of ambulances located at station j 

 The following list summarizes the parameters used: 

wk  =  the probability that the k
th

 vehicle is available (see below) 

hi      =  the call volume in demand zone i 

dij    =  the distance from station j to demand zone i 

1   if demand zone  is in rural area
         = 

0 otherwise                                 
i

i
r





 

p =  the total number of ambulances to be located  

s =  the maximum number of ambulances allowed to be located at    

                each station 

Ji =   | ijj d D : set of stations that can cover demand zone i  

  D =  the maximum distance that can be reached within 9 minutes  

        (4 miles) 

  U =   1| 0ii y  : set of uncovered demand zones 
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O =   | 1jj x  : set of opened stations 

li =  min{ , }is J p  (upper bound on the number of vehicles that can      

                cover a demand zone) 

n =  the number of demand zones 

m =  the number of stations 

Note that a demand zone i can be covered by 1 up to li vehicles such that

1 2 ...
ii i ily y y   .  For example, If demand zone i is covered by 1 vehicle, yi1 =1 and 

2 ... 0
ii ily y   .  If demand zone i is covered by 2 vehicles, yi1=yi2=1, and 

3 ... 0
ii ily y   .  However, it is not necessary to enforce this using a constraint of the 

form 
, , 1i k i ky y   because of the definition of wk given by Equation (2.11).   By definition, 

wk  is the probability that the k
th

 vehicle is available (while k-1 vehicles are busy) such 

that wk is greater than wk+1, and since the objective is to maximize Z1 which weighs each 

iky by kw , then for each demand zone i it will  be optimal to let
, , 1i k i ky y  . 

In our model, when calculating the expected number of calls that can be covered 

we account for the fact that, even if ambulances are stationed within the coverage 

distance, they may be busy and therefore unable to respond to a call.  The probability that 

a randomly selected vehicle will be busy, pb, depends on the number of ambulances that 

are deployed.  To estimate pb, we use actual data of the system, which is captured by 

Equation (2.8), where,  is the average number of calls per hour, 1/µ is the average 

service time per call (hours), and p is number of ambulances that are deployed.  This 

definition of pb assumes that all ambulances operate independently.  This assumption can 
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be relaxed using the correction factor given by Batta et al. (1989) in an embedded 

hypercube model.  The hypercube model Larson (1974, 1975) has several underlying 

assumptions: 1) calls for service arrive according to a Poisson process, 2) if a call arrives 

while all servers are busy, it enters at the end of a queue and will be served in a FIFO 

manner.  If there are k ambulances that may respond to a call, the probability that the k
th

 

vehicle will be dispatched or is available is calculated from the probability that k-1 

ambulances are busy and the k
th

 vehicle is available.  The probability that the k
th

 vehicle 

is available (wk) is shown in Equation (2.11) where Q (p, pb, k-1) is the correction factor 

and Q (p, pb, 0) =1.   

 bp
p




          (2.8) 

            

1
1

0

0!(1 ) !

p p j jp

b b

jb

p p p p
p

p p j






 
  

 


      

(2.9) 

 1
01 !( )

( , , )
( )! !(1 )

k k jp
b

b

k j b

p j p k p p p
Q p p j

k j p p





  


 
     , j=0, …, p-1   (2.10) 

            
1( , , 1)(1 )( )k

k b b bw Q p p k p p       , k=1, …, p  (2.11) 

 

2.4 The -constraint method 

Several approaches exist for solving multi-objective problems such as weighted-

sum, -constraint, and weighted-norm; see a review on this in Ehrgott and Wiecek 

(2005).  The weighted-sum method, while popular, is not suitable for our problem 

because our solution space is integer and it is known that when the solution space is not 
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convex, the weighted-sum method cannot find all solutions.  However, both -constraint 

and weighted-norm approaches can find all solutions of integer problems (Berube et al., 

2009; Ehrgott and Wiecek, 2005).  In this paper, we selected the -constraint method 

which was introduced by Haimes et al. (1971) and an extensive discussion can be found 

in Chankong and Haimes (1983).  The idea of this technique is to minimize or maximize 

one objective while the other objectives are bounded at acceptable fixed values.  If we 

have a bi-objective problem, the formulation of the -constraint method is given as 

follows, refer to Ehrgott (2005). 

        The Bi-Objective Problem: 

        Minimize     
1 2[ ( ), ( )]f x f x   

        Subject to     Xx .   

 

        The -Constraint Problem: 

        Minimize     )(xf j  

        Subject to    kk xf )( , 1,2;k k j 

                  Xx . 

We briefly discuss the concept of optimality as it relates to multi-objective 

problems.  A feasible solution x X , where X is the set of feasible solutions, is called 

―efficient‖ or ―Pareto optimal‖, if there is no other x X such that ( ) ( )f x f x .  If x  is 

efficient, the point ( )y f x is called non-dominated.  A feasible solution x X is called 

weakly efficient or weakly Pareto optimal, if there is no other x X such that

( ) ( )f x f x .  If x  is weakly efficient, the point ( )y f x  is called weakly non-

dominated (Ehrgott, 2005).  By varying the value of k , the non-dominated front can be 

generated.  Solving a multi-objective problem results in a set of solutions, and the 
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decision-maker should be interested in the Pareto set because it represents a solution that 

is better than any other with respect to at-least one of the criteria of interest. 

To apply the -constraint approach to solve this problem, we have to reformulate 

the problem in the -constraint form.  Since we have two kinds of objectives which are 

objective 1 and objective 2, we have two choices.  The first choice is maximizing the 

objective 1 while the objective 2 is bounded at the acceptable level, and the second 

choice is minimizing the objective 2 while the objective 1 is bounded at the acceptable 

level.  In this case, we chose the first option because of the following reasons.  If we 

consider the value or the range of the objectives (Z1 and Z2), the objective that has lower 

value or smaller range should be bounded at the acceptable epsilon value.  Since we have 

to run the optimization model by vary the epsilon value, the smaller range of epsilon 

would be a computational efficient choice.  For example, if the value of Z1 is between 0 

and 1000 and we selected Z1 to be bounded at the epsilon value, then we have to run the 

model 1000 times to get all solutions.  If we consider the integer programming in the 

previous section, we see that constraint (2.5), 
1

i

i

l

ik j

k j J

y x
 

  , works with the Maximizing 

objective, 1

1 1

iln

i k ik

i k

Z h w y
 

 .  For example, if all xj is 0, then all yik is 0 and if one of xj 

=1, which means station j is opened or one vehicle located at station j, the yik can be 

either 0 or 1.  In the case that we maximize term y, yik is set to 1.  So, if one vehicle is 

located, at least one demand zone should be covered by that vehicle.  But if Z1 is 

bounded, we cannot guarantee that located vehicles will cover all the demand in their 
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radius.  Moreover, to make sure that a demand zone i, which is covered by k vehicles, 

also covered by k-1 vehicles, we have to add the constraint 
, , 1i k i ky y  in the model.  

Because of these reasons, in this case, we select to maximize the first objective while the 

second objective is bounded at acceptable value, 2.  Since we have three choices to be 

the second objective as shown in Equations (2.2a), (2.2b), (2.2c), there are three models, 

denoted as (a), (b), (c), depending on the objective chosen to be bounded (Z2a, Z2b, Z2c, 

respectively), which incorporate fairness.  Model (a) is represented as Equation (2.1) 

subject to Equations (2.3)-(2.7) and (2.12), model (b) is represented as Equation (2.1) 

subject to Equations (2.3)-(2.7) and (2.13), and model (c) is represented as Equation (2.1) 

subject to Equations (2.3)-(2.7) and (2.14).  The entire -constraint problem is 

represented as below. 

Maximize  1

1 1

iln

i k ik

i k

Z h w y
 

       (2.1) 

Subject to:   (2.3) - (2.7)   

2max{min( )}ij a
j Oi U

d 


       (2.12) 

1 2

1

(1 )
n

i i b

i

y r 


         (2.13)  

1 2

1

(1 )
n

i c

i

y 


 
      

(2.14) 

Where: 2a= the acceptable bound of objective Z2a 

2b= the acceptable bound of objective Z2b 

2c= the acceptable bound of objective Z2c 
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2.5 Case study 

Our case study uses data from the Hanover Fire/EMS department, which is 

located in Hanover County, VA.  The Hanover EMS department responds to 911 calls 24 

hours a day and serves a county of 474 square miles, with a population nearing 100,000 

individuals.  Based on zoning, all locations within Hanover County are classified as 

either rural or urban.  The data are collected from the Fire/EMS department during 2007, 

which capture the life-threatening calls received during 2007.  Instead of assuming each 

demand point is located in the middle of an area, we divided the coverage area into 175 

distinct zones.  In this way, we ensure that coverage is more accurate and that originating 

demand is represented realistically.  Currently, there are m = 16 existing station facility 

locations for locating EMS ambulances.  All demand zones and station locations are 

shown in Figure 2.1, as we can see from the figure there are 6 stations in urban areas and 

10 in rural areas.  Moreover, each demand zone is classified as either rural or urban.  The 

number of requested calls is collected separately for each demand zone.  Based on the 

current data, requested calls did not originate from all 175 zones.  Therefore, we ignore 

the zones that have no demand and only considered the n = 122 zones in which demand 

existed in 2007.   

To set up the location of the station and demand zone, we drew grid lines over the 

area of interest, with one block representing 2 miles.  The coordinates (a, b) of the 

stations and demand zones are used to calculate the distance between each demand zone 

and each station.  Distance between two points can be measured in many ways (Drezner 

and Hamacher, 2004).  The most familiar two are rectilinear distance and Euclidean 
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distance.  In this case we use the Euclidean metric because approximately 70% of the 

Hanover County area is rural, and can thus be reached via highways or county roads.  

Given a demand zone i at (ai, bi) and a station location j at (aj, bj), the distance (dij) 

between demand zone i and station j is calculated by using the Euclidian metric.  In this 

case, there are 1711 calls spread over 122 demand zones; given the set of possible station 

locations, there are 4 zones that cannot be covered, since they are more than 4 miles from 

the closest possible station.  Therefore, the maximum percentage of coverage is 98.8%.   

 

Figure 2.1: Map of existing station locations and demand zones 

Based on the data during 2007, the average number of calls in Hanover is 1.2 

calls/hour during the peak hours of operation when the call volume is essentially 
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constant.  The average service time per call is 74 minutes or 1.2 hours (note that this is 

not response time but also includes time in service).  These data are used to compute the 

input parameters for our model. 

 

2.6. Computational results 

We use the data from the Hanover Fire/EMS department as described in Section 

2.5, which is comprised of 122 demand zones and 16 possible station locations.  We 

allow the total number of ambulances to be located in all stations to vary between 5 and 

20, while the maximum number of ambulances that are allowed to be located at each 

station is 2.  As a benchmark, we first consider the results using a single objective of 

maximizing the expected number of calls that are covered (Z1).  For clarity, the objective 

function value is rescaled by the total number of calls to reflect the proportion of calls 

that are covered, shown in Table 2.1.  As we increase the number of ambulances, the 

probability of a randomly selected vehicle being busy decreases, and the number of calls 

that are covered increases.  Using a single objective, at least two ambulances are always 

located at station 1 and 6, since it is located in an urban area and can serve a number of 

high call volume demand zones nearby.  Stations 3, 4, 11, 14 and 15 are the next likely to 

be selected because they located near urban areas.  Conversely, stations 2, 5 and 12, 

located in remote areas, are only selected when the number of available ambulances is 

high, or when coverage is already high. 
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Table2.1: Single-objective results that maximize covered demand Z1 

Number of 

ambulances 

 

 

Prob. of 

vehicle  

being  

busy 

 

Expected 

demands 

that 

covered 

(calls) 

Opened stations 

(stations in bold face are located 

in rural areas) 

 

 

Number of ambulances at 

each station 

Coverage 

percentage 

5 0.296 1260.3 {1 6 14} {2 2 1} 73.66 

6 0.247 1365.0 {1 6 14 15} {2 2 1 1} 79.78 

7 0.211 1448.4 {1 4 6 14 15} {2 1 2 1 1} 84.65 

8 0.185 1508.1 {1 4 6 7 13 14 15} {2 1 1 1 1 1 1 } 88.14 

9 0.164 1558.5 {1 4 6 7 11 13 14 15} {2 1 1 1 1 1 1 1} 91.09 

10 0.148 1589.3 {1 3 4 6 7 9 11 13 15} {2 1 1 1 1 1 1 1 1} 92.89 

11 0.135 1614.6 {1 3 4 5 6 7 9 11 15} {2 1 1 1 2 1 1 1 1} 94.37 

12 0.123 1636.5 {1 2 3 4 5 6 8 9 11 14} {2 1 1 1 1 2 1 1 1 1} 95.65 

13 0.114 1648.9 {1 2 3 4 5 6 7 8 9 11 13 14} {2 1 1 1 1 1 1 1 1 1 1 1} 96.37 

14 0.106 1659.4 {1 2 3 4 5 6 7 8 9 11 12 15} {2 1 1 1 1 2 1 1 1 1 1 1} 96.98 

15 0.099 1668.0 {1 2 3 4 5 6 7 8 9 11 12 15} {2 1 1 2 1 2 1 1 1 1 1 1} 97.49 

16 0.093 1675.3 {1 2 3 4 5 6 7 8 9 11 12 13 14 15} {2 1 1 2 1 1 1 1 1 1 1 1 1 1} 97.91 

17 0.087 1679.6 {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15} {2 1 1 2 1 1 1 1 1 1 1 1 1 1 1} 98.16 

18 0.082 1682.7 {1 2 3 4 5 6 7 8 9 10 11 12 13 14 15} {2 1 1 2 1 1 1 1 1 1 2 1 1 1 1} 98.35 

19 0.078 1684.9 {1 2 3 4 5 6 7 8 9 10 11 12 14 15} {2 1 1 2 2 2 1 1 1 1 2 1 1 1} 98.47 

20 0.074 1686.8 {1 2 3 4 5 6 7 8 9 10 11 12 14 15} {2 1 1 2 2 2 1 1 2 1 2 1 1 1} 98.59 

 

When there are five ambulances, this single objective covering location model 

locates four ambulances in urban areas and one vehicle in a rural area, thus the majority 

of the uncovered demand zones are rural.  To reduce the disparity between service in 

urban and rural areas, we would like to provide decision makers with more alternatives.  

Thus, we construct a bi-objective model which not only considers maximizing the 

expected number of calls that can be covered but simultaneously improves fairness to 

rural patients.  As discussed in Section 4, we solve this problem using the -constraint 

method by first formulating the problem in the -constraint form.  Then, we find bound of 

2a, 2b, and 2c.  If we solve the problem (Equations 2.3-2.7) with the objective Z1 

(Equations 2.1) to the optimality we get the upper bound of 2a, 2b, and 2c by calculating 

the values of Z2a, Z2b, and Z2c after reaching optimal.  Alternatively, we can solve the 
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problem (Equations 2.3-2.7) with objective Z2a, Z2b, and Z2c (Equations 2.2a, 2.2b, and 

2.2c) one at a time, which yields a lower bound for 2a, 2b, 2c, respectively. 

Detailed results are provided for the case with 5 ambulances though similar 

conclusions hold for the case of more ambulances; furthermore, a discussion is later 

provided regarding the effects of increasing the number of ambulances.  With 5 

ambulances to be located, we find the expected demand that can be covered is 1260.3 and 

the upper bounds of the maximum distance between uncovered demand zones and their 

closest opened stations (2a), the number of uncovered rural demand zones(2b) and the 

number of uncovered demand zones(2c) are 18, 63 and 69, respectively.  To get the 

solution points, we solve the problem by maximizing the first objective while varying the 

value of 2.  Since we have three alternatives of the second objective, we have three 

models to solve.  Figures 2.2-2.4 show all the solution points that are found by 

maximizing the first objective while decreasing the values of 2a, 2b, and 2c from their 

upper bounds down to the smallest values that still give the feasible solution incremented 

by 1.  Note that if we choose to minimize the second objective and bound the first 

objective at the acceptable value 1, we have to solve the problem about 1000 times 

because the value of the first objective is in the range [0, 1260.3] while if we choose to 

maximize the first objective and bound the second objective at the acceptable value 2, 

we only solve the problem less than 100 times because value of the three choices to be 

the second objective are in the range [8, 18], [26, 63], and [36, 69].  These problems were 

solved using the optimization software ILOG OPL 5.5 on a Dell Latitude D410 machine 

with Intel Pentium processor 1.73 GHz, 1 GB of RAM, the run time was between 1 and 2 
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seconds per sub-problem.  In Figures 2.2-2.4, an open circle represents a solution point of 

the -constraint method; a solid circle represents a non-dominated solution. 

When Z2a is selected, we build model (a) by selecting Z2a to be the second 

objective.  From Figure 2.2, we see that for Z2a values between 8 and 18 blocks (16 and 

36 miles) resulting the first objective values range between 1150.3 and 1260.3 calls.  

Similarly, we build Models (b) and (c) by selecting Z2b and Z2c as the second objective, 

respectively.  Figure 2.3 shows all solution points for Model (b) which minimizes the 

number of uncovered rural demand zones as a secondary objective.  From Figure 2.3, we 

see that for second objective values in the range of 26 and 63 zones the resulting second 

objective values are between 515.0 and 1260.3 calls.  Figure 2.4 shows all solution points 

for Model (c) which minimizes the number of uncovered demand zones; when the second 

objective values are between 36 and 69 zones the resulting first objective values are 

between 1091.1 and 1260.3 calls.   

 

Figure 2.2: Solution points of Model (a) -- second objective is to minimize the distance 

between uncovered demand and opened stations, with solid circles representing  

non-dominated solutions          
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Figure 2.3: Solution points of Model (b) -- second objective is to minimize the number of 

uncovered rural demand zones, with solid circles representing non-dominated solutions 

 

 

 

Figure 2.4: Solution points of Model (c) -- second objective is to minimize the number of 

uncovered demand zones, with solid circles representing non-dominated solutions 
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For all three models we see that the best first objective value Z1 is reached at the 

maximum 2, and if we decrease the second objective function value by decreasing 2, the 

Z1 objective function value deteriorates.  The solution points shown in solid circles are 

the non-dominated solutions.  All three models contain the single objective solution as 

part of the dominated set with Z1 = 1260.3. The other solutions ―improve‖ the issue of 

fairness by trading off for lower number of covered calls.  The values of the objective 

functions and the corresponding non-dominated solution sets of Models (a)-(c) are shown 

in Tables 2.2-2.4, respectively.  In general, if we decrease the number of calls that must 

be covered, more stations are opened in rural areas, decreasing disparity of service at the 

expense of losing patients in urban areas. Note that the use of Model (a) tends to locate 

ambulances at the most remote stations (i.e., those near the edges of the county) to reduce 

the maximum distance between uncovered demand zones and closest opened stations.  

Station 2 is the most isolated station, and the results of Model (a) indicate that station 2 is 

open when Z1  1150.3 (this is not obvious from Table 2.2 since it shows only non-

dominated solutions), however as Z1 is increased more urban stations need to be included 

and the remote stations drop out of the solution set, since these have low call volumes.  

Also, Model (a) yields a small solution (efficient solution set).  This implies that the 

distance between uncovered zones and stations can be minimized without sacrificing 

expected coverage when coverage is not required to be too high. 

Model (b) also opens stations in rural areas, in contrast to the stations chosen in 

Model (a),  stations are opened in order to cover as many as rural demand zones as 

possible, independent of how far away uncovered stations may be from opened stations.  
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Thus, Model (b) opens rural stations having relatively high demands.  Model (c) 

minimizes the total number of uncovered demand zones, in either rural or urban areas.  

Thus Model (c) opens more urban stations than Models (a) or (b).  In contrast to the 

single objective model, the decision maker may choose to sacrifice call volume to cover a 

larger geographical region.  For example, instead of the single objective solution which 

places one ambulance at one rural station (and leaves 63 rural zones uncovered) for an 

expected coverage of 1260.3, the decision maker may choose to reduce the expected 

coverage to 1210.8 calls but leave only 41 rural stations uncovered; in other words, 

coverage may be decreased by only 5% while zones covered are increased by 35%.  We 

also note that, Models (b) and (c) tend to ―split‖ ambulances, rather than pairing 

ambulances at the same station.  This is desirable when wanting to increase the number of 

covered zones, though it may be undesirable in the sense that it reduces backup coverage 

in high demand areas.  For many decision makers a large solution set might be desirable, 

as it represents more options to choose from.  In this case, Model (b) provides the largest 

set of efficient solutions. 

Clearly, using any of the bi-objective models proposed in this paper provides 

more alternatives to the decision makers.  However, comparing these solutions is 

difficult.  In practice, if we cannot introduce specific metrics directly within the objective 

function, providing performance metrics for post-analysis evaluation is useful for 

comparing different portfolios of ambulance locations.  Thus, for each model, we include 

the result of all three secondary objectives, as well as the average distance from 

uncovered zones to the closest open station (which captures the average distance between 
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demand zones and the closest open station), and the weighted average distance from 

uncovered zones to the closest open station (which captures the average distance an 

ambulance can expect to travel per call).  These latter two measures are reported in 

Tables 2.2, 2.3 and 2.4 for Models (a), (b) and (c), respectively.  Note that they could not 

be included as objective functions in our models because they can only be formulated as 

nonlinear functions. 

If we use the average distance or the weighted average distance from an 

uncovered zone to its closest station as supplementary criteria, the results from using 

Model (a) may be preferred to the results from using Models (b) and (c); we achieve the 

same objective function value Z1, but improve these supplementary criteria simply by 

opening a different set of stations.  That is, even though more rural zones are uncovered, 

these uncovered zones are located closer to open stations, improving the chance that they 

will receive service in a reasonable time. This is important since response time is directly 

linked to survivability (McLay and Mayorga, 2009).  

The results shown here are for the case of five available ambulances.  With a 

single objective the best, we can achieve is 73.6% coverage with 69 uncovered zones and 

an average distance of 10 blocks (20 miles) from uncovered demand zones to open 

stations.  Using a bi-objective model, we can reduce the average distance from uncovered 

zones to open stations by sacrificing coverage.  The only way to improve both metrics 

(decrease the average distance between uncovered demand zones and open stations and 

increase the number of calls that can be covered), is to increase the number of 

ambulances to be located.  Increasing the number of ambulances improves all metrics.  
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Furthermore the reduction in disparities that can be achieved between a single objective 

and a bi-objective model are reduced.  This is not necessarily because the model is less 

efficient but rather because there are enough ambulances to improve service for all 

regions.  Therefore, the proposed bi-objective model may be most useful when there are 

fewer available ambulances, when identifying fair ambulance location portfolios is most 

difficult. 

Table 2.2: The non-dominated solutions in the objective space of Model (a) 

Expected 

demands 

covered 

 

 

 

 

(Z1) 

Maximum 

distance 

from 

uncovered 

zone to 

closest 

station 

(Z2.a) 

Opened 

stations 

{rural; 

urban} 

 

 

 

 

Number 

of  

uncovered 

rural 

zones 

Number 

of 

uncovered 

zones 

Number 

of 

uncovered 

demands 

Average 

distance 

from 

uncovered 

zone to 

closest 

station 

Weighted 

average 

distance 

from 

uncovered 

zone to 

closest 

station 

SDEV

. 

1150.3 8 {2 8 14; 6 1} 36 42 196 6.5 6.3 1.00 

1222.3 10 {8 14; 6 13 1} 44 50 206 7.0 6.6 1.40 

1238.0 12 {14 15; 1 6} 46 52 219 7.2 6.9 1.77 

1260.3 18 {14; 1 6} 63 69 296 10.0 9.0 3.66 

 

 

Table 2.3: The non-dominated solutions in the objective space of Model (b) 

Expected 

demands 

covered 

 

 

 

 

(Z1) 

Number 

of  

uncovered 

rural zones  

 

 

 

(Z2.b) 

Opened 

stations 

{rural; urban} 

 

 

 

 

 

Maximum 

distance 

from 

uncovered 

zone to 

closest 

station 

Number  

of 

uncovered 

zones 

Number  

of 

uncovered 

demands 

Average 

distance 

from 

uncovered 

zone to 

closest 

station 

Weighted 

average 

distance 

from 

uncovered 

zone to 

closest 

station 

SDEV

. 

515.0 26 {2 3 8 9; 1} 10 45 982 6.6 6.7 1.14 

617.5 27 {2 3 8 11; 13} 12 40 838 6.9 6.4 1.65 

842.4 28 {3 9 15; 1 13} 10 37 529 6.4 6.0 1.02 

1082.4 30 {3 9 15; 1 6} 10 37 186 6.4 6.1 1.05 

1091.1 32 {3 11 15; 1 6} 10 36 180 6.6 6.3 1.32 

1160.5 35 {9 14 15; 1 6} 10 41 180 6.5 6.2 1.08 

1169.2 37 {11 14 15; 1 6 } 10 40 174 6.7 6.4 1.32 

1210.8 41 {3 15; 1 6} 12 48 225 7.3 6.8 1.81 

1226.6 45 {14 15; 1 6 13 } 12 50 200 7.3 7.0 1.80 

1238.0 46 {14 15; 1 6} 12 52 219 7.2 6.9 1.77 

1242.4 61 {14; 1 6 13} 18 67 277 10.1 9.2 3.67 

1260.3 63 {14; 1 6} 18 69 296 10.0 9.0 3.66 
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Table 2.4: The non-dominated solutions in the objective space of Model (c) 

Expected 

demands 

covered 

 

 

 

 

(Z1) 

Number 

of 

uncovered 

zones  

 

 

 

(Z2.c) 

Opened 

stations 

{rural; urban} 

 

 

 

 

 

Maximum 

distance 

from 

uncovered 

zone to 

closest 

station 

Number 

of  

uncovered 

rural 

zones 

Number 

of 

uncovered 

demands 

Average 

distance 

from 

uncovered 

zone to 

closest 

station 

Weighted 

average 

distance 

from 

uncovered 

zone to 

closest 

station 

SDEV 

1090.1 36 {3 11 15; 1 6} 10 32 180 6.6 6.3 1.32 

1169.2 40 {11 14 15; 1 6} 10 30 174 6.7 6.4 1.32 

1183.5 46 {4 14 15; 1 6} 12 42 152 7.1 7.2 1.84 

1202.7 47 {3 7 15; 1 6} 12 41 208 7.3 7.0 1.80 

1210.8 48 {3 15; 1 6} 12 41 225 7.3 6.8 1.80 

1226.6 51 {14 15; 1 6 13} 12 44 200 7.3 7.0 1.80 

1238.0 52 {14 15; 1 6} 12 46 219 7.2 6.9 1.77 

1242.4 67 {13 14; 1 6} 18 61 277 10.1 9.2 3.67 

1260.34 69 {14; 1 6} 18 63 296 10.0 9.0 3.66 

 

2.7 Equitably efficient solution  

In this section, we proposed a way to analyze the solutions for the multi-objective 

problem by using the concept of equitable efficient solution and criteria aggregation 

which have been discussed by Ogryczak (2000).  In a facility location problem in which 

we try to place facilities in order to serve customers, instead of looking at a problem as a 

whole system and trying to achieve the overall outcome of the system, we can view the 

problem individually in terms of need of each customer.  Then, the facility location 

problem can be considered as a multi-criteria or multi-objective problem where an 

individual objective is defined for each customer.  The effect of a location pattern on each 

customer can be defined as a traveled distance from each customer’s location to the 

closest facility.  The objective is to minimize the individual effect with respect to the 

distribution of facility location.  By minimizing all individual objectives results in 

minimizing the effect of the system.  This multiple criteria location model allows us to 

apply the concept of efficient solution, which is able to link to the equitably efficient 
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solution.  Ogryczak (2000) introduced the term of equitably efficient solution and 

presented some aggregations of criteria that can be applied to select equitably efficient 

solutions in multiple criteria analysis.  The focus of equitable solution is on the 

distribution of outcomes.  For example, consider a facility location problem that seeks to 

locate a vehicle among 3 zones so as to minimize the traveled distance from each zone to 

the facility.  A solution can be evaluated as a distance vector d=(d1, d2, d3), and we can 

formulate this problem as a multi-objective problem; Min [f1(x), f2(x), f3(x)] subject to 

xX where X is a set of candidate locations for locating a facility, and fi(x) = di = traveled 

distance from zone i to facility.  Note that this formulation is not practical since we have 

to carry many objectives, so in most facility problems an aggregation of the objectives is 

more likely to be used.  For example instead of minimizing each of three objectives we 

might minimize the summation of these three objectives.  As we described in Section 2.3, 

a feasible solution x X , where X is the set of feasible solutions, is called ―efficient‖ or 

―Pareto optimal‖, if there is no other x X such that ( ) ( )f x f x .  Suppose there are 

three solutions;  a:(0,5,3), b:(2,0,2), and c:(2,1,0).  So we have x
a
={1,0,0}, x

b
={0,1,0}, 

x
c
={0,0,1} and 1 2 3( , , )a

d
a a ad d d =(0,5,3), 1 2 3( , , )b b bd d db

d =(2,0,2), and 1 2 3( , , )c c cd d dc
d

=(2,1,0), respectively.  In this case, solution (a) is the most preferable for zone 1 while 

solutions (b) and (c) are the most preferable for zone 2 and 3, respectively.  Since we 

treat everyone equally, these three solutions are considered equally good.  In fact, these 

solutions are efficient according to the definition of ―efficient‖ in the multi-objective 

problem as we mentioned earlier.  However, suppose we have another solution d
e
:(2,2,2), 

it should be considered better than the previous three solutions in terms of providing 
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equal distribution of traveled distance from each zone to the facility, but it is not efficient.  

Ideally, we want an efficient solution that also provides equal distribution of the traveled 

distance to all zones, or in other words, an equitably efficient solution. 

From Ogryczak (2000), we briefly detail the concept of equitably efficient 

solution as follows.  A feasible solution xX is ―equitably efficient‖ for the multiple 

criteria problem: Min { fi(x), iN={1,2,…,n}: xX}, if and only if there does not exist 

any x’X such that f(x’) <e f(x).  Note that each equitably efficient solution is also a 

Pareto-optimal solution, but not vice versa.  The relation of equitable dominance <e can 

be expressed as a vector of inequalities on the cumulative ordered outcomes.  Let v=f(x), 

and  𝚯 𝑣 = (𝜃1 𝑣 , 𝜃2 𝑣 ,… , 𝜃𝑛 𝑣 ) where 𝜃1 𝑣 ≥ 𝜃2 𝑣  ≥ ⋯  ≥ 𝜃𝑛 𝑣 , and there 

exists a permutation 𝜏 of set n such that  𝜃𝑖 𝑣 = 𝑣𝜏(𝑖) for i=1, 2, …, n. The cumulative 

ordering map is defined as 𝚯  𝑣 = (𝜃 1 𝑣 , 𝜃 2 𝑣 ,… , 𝜃 𝑛 𝑣 ) where 𝜃 𝑖 𝑣 =  𝜃 𝑗  𝑣 
𝑖
𝑗=1  

for i=1, 2, …, n.  Achievement vector v’ equitably dominates v’’, if and only if 𝜃 𝑖 𝑣
′ ≤

𝜃 𝑖 𝑣′′  for all i N where at least one strict inequality holds.  In other word, a location 

pattern xX is an equitably efficient solution of problem Min {fi(x), iN: xX}, if and 

only if it is an efficient solution of problem Min {𝜃 𝑖(𝑓 𝑥 ), iN: xX}.  If we apply the 

concept of cumulative ordered outcome to our previous example, we get three ordered 

traveled distance vector of three solutions as 𝚯𝑎 𝑣 =(5,3,0), 𝚯𝑏 𝑣 =(2,2,0), 

𝚯𝑐 𝑣 =(2,1,0), and three cumulative ordered traveled distance vectors of three solutions 

as 𝚯 𝑎 𝑣 =(5,8,8), 𝚯 𝑏 𝑣 =(2,4,4), 𝚯 𝑐 𝑣 =(2,3,3).  In order to see which solution provides 

an equitably efficient solution, we plotted the cumulative ordered traveled distance values 
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in Figure 2.5.  We see that solution (a) is dominated by solutions (b) and (c) while 

solution (b) is dominated by solution (c).  So, solution (c) is equitably efficient.    

Aggregation criteria helps provide us with further analysis that can be applied to multi-

criteria problems to help decision makers decide between several alternatives.  Instead of 

looking at the actual criteria (vi), we can look at the aggregation criteria (𝜃 𝑖 𝑣 ) for 

finding the equitably efficient solutions.  The cumulative ordered outcome is one of 

several aggregations that have been mentioned in Kostreva et al. (2004). 

 

 

Figure 2.5: Cumulative ordered outcomes of a three-zone location problem 

 

Previously, we have proposed three bi-objective models.  In this section, we 

would like to apply the concept of cumulative ordered outcome to show which, if any, 

model yields an equitably efficient solution.  Let vi represents an individual outcome of 
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our problem which is defined as the distance from location of a customer at zone i to its 

closest station, where number of zones=122 and number of stations=16.  Therefore, we 

have a multi-objective problem as follow: Min {vi=fi(x), iN: xX}, where 

vi=fi(x)=min𝑗 ∈𝑂{ 𝑑𝑖𝑗 }=traveled distance from zone i to its closest opened station 

according to a location solution x=(x1, x2, …, x16)=number of ambulances located at each 

station, N is a set of zones; N={1, 2, …, 122}, and O is a set of opened stations; O={j: 

xj≥1}.  Note that a location solution x is obtained from each bi-objective model.  Since 

each bi-objective model produced multiple optimal solutions, we selected a solution that 

yielded the best value of Z2 objective (minimum disparity in service between rural and 

urban zones) of each model.  For each model, the solution can be seen in row 1 of Tables 

2.2-2.4, respectively.  Note that one could also use this methodology to compare all 

efficient solutions in one model, or to compare solutions between models.  Here, we 

choose to compare the solutions between models that yield the minimum disparity, as 

defined by that model, but the analysis described below can be applied directly to other 

comparisons.  Thus, by picking one solution from each model, we have x
a
, x

b
, x

c
, and 

next we calculate the outcome vector of each model, v
a
, v

b
, v

c
.  Then, we applied the 

cumulative ordered outcome by sorting the outcomes vi of vector v=(v1, v2, …, v122) in 

descending order to obtain vectors 𝚯𝑎 𝑣 , 𝚯𝑏 𝑣 , 𝚯𝑐 𝑣  and aggregating the sorted 

outcomes to obtain vectors 𝚯 𝑎 𝑣 , 𝚯 𝑏 𝑣 , 𝚯 𝑐 𝑣 .  Note that the first value in vector 

𝚯  𝑣  is the worst outcome, and then the second value is the sum of the worst and the 

second worst outcomes, and so on.  The results of the cumulative ordered outcomes, 

𝚯  𝑣 , generated by the three proposed bi-objective models are shown in Figure 2.6.  We 
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found that by considering the outcomes vi, the solutions chosen from all three bi-

objective models produce efficient solutions, but by considering the cumulative ordered 

outcomes 𝜃 𝑖(𝑣), the solution of Model (b) is dominated by the solution of Models (a) and 

(c), which means according to these three solutions chosen from each model, only the 

solution of Models (a) and (c) provide equitably efficient solutions.  Particularly, Model 

(a) produced the lowest cumulative ordered outcomes among these three models in the 

first 44 worst outcomes while Model (c) also produced lowest cumulative ordered 

outcomes for the remaining outcomes 44 to 1711.  Therefore, both Models (a) and (c) 

yielded efficient solutions of problem Min {𝜃 𝑖(𝑓 𝒙 ), iN: xX} which result in 

equitably efficient solutions to the original location problem Min {fi(x), iN: xX}. 
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Figure 2.6: Comparison of the cumulative ordered outcomes generated by three proposed  

bi-objective models 
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2.8 Sensitivity Analysis 

 In this section, we study how the demand volume and probability of vehicle being 

busy impact the system.  We varied the number of calls per hour () from 1.0 to 1.5 

(current =1.2), then recalculated the probability that a randomly selected vehicle will be 

busy, p, which also results in changes to the probability of the vehicle k
th

 being available 

(wk).  The values of probabilities pb, w1, and w2 for all 16 cases; number of vehicles 

varied from 5 to 20, are shown in Table 2.5.  Figure 2.7 shows probability of the first 

vehicle being available (w1) at each case when  is varied.   

Table 2.5: Changes in probabilities of busy/available when  is varied from 1.0 to 1.5 

 

p 

Demand decreases Current Demand Demand increases 

=1.0 =1.1 =1.2 =1.3 =1.4 =1.5 

pb w1 
w2 

pb w1 
w2 

pb w1 
w2 

pb w1 
w2 

pb w1 
w2 

pb w1 
w2 

5 0.2466 0.753 

0.171 

0.2713 0.729 

0.180 

0.296 0.704 

0.188 

0.3206 0.679 

0.194 

0.3453 0.655 

0.199 

0.3699 0.630 

0.203 

6 0.2055 0.794 
0.155 

0.2261 0.774 
0.165 

0.247 0.753 
0.174 

0.2672 0.733 
0.182 

0.2877 0.712 
0.189 

0.3083 0.692 
0.195 

7 0.1761 0.824 

0.140 

0.1938 0.806 

0.150 

0.211 0.789 

0.159 

0.2290 0.771 

0.168 

0.2466 0.753 

0.176 

0.2642 0.736 

0.183 

8 0.1541 0.846 
0.127 

0.1695 0.830 
0.137 

0.185 0.815 
0.146 

0.2004 0.800 
0.155 

0.2158 0.784 
0.163 

0.2312 0.769 
0.170 

9 0.1370 0.863 

0.116 

0.1507 0.849 

0.125 

0.164 0.836 

0.134 

0.1781 0.822 

0.142 

0.1918 0.808 

0.150 

0.2055 0.794 

0.158 

10 0.1233 0.877 
0.106 

0.1356 0.864 
0.115 

0.148 0.852 
0.124 

0.1603 0.840 
0.132 

0.1726 0.827 
0.140 

0.1849 0.815 
0.147 

11 0.1121 0.888 

0.098 

0.1233 0.877 

0.107 

0.135 0.866 

0.115 

0.1457 0.854 

0.122 

0.1569 0.843 

0.130 

0.1681 0.832 

0.137 

12 0.1027 0.897 
0.091 

0.1130 0.887 
0.099 

0.123 0.877 
0.107 

0.1336 0.866 
0.114 

0.1438 0.856 
0.121 

0.1541 0.846 
0.128 

13 0.0948 0.905 

0.085 

0.1043 0.896 

0.093 

0.114 0.886 

0.100 

0.1233 0.877 

0.107 

0.1328 0.867 

0.114 

0.1423 0.858 

0.120 

14 0.0880 0.912 
0.080 

0.0969 0.903 
0.087 

0.106 0.894 
0.094 

0.1145 0.885 
0.100 

0.1233 0.877 
0.107 

0.1321 0.868 
0.113 

15 0.0822 0.918 

0.075 

0.0904 0.910 

0.082 

0.099 0.901 

0.088 

0.1068 0.893 

0.095 

0.1151 0.885 

0.101 

0.1233 0.877 

0.107 

16 0.0770 0.923 
0.071 

0.0847 0.915 
0.077 

0.093 0.908 
0.083 

0.100 0.900 
0.089 

0.1079 0.892 
0.095 

0.1156 0.884 
0.101 

17 0.0725 0.927 

0.067 

0.0798 0.920 

0.073 

0.087 0.913 

0.079 

0.0943 0.906 

0.085 

0.1015 0.898 

0.091 

0.1088 0.891 

0.096 

18 0.0685 0.931 
0.064 

0.0753 0.925 
0.069 

0.082 0.918 
0.075 

0.0890 0.911 
0.081 

0.0959 0.904 
0.086 

0.1027 0.897 
0.092 

19 0.0649 0.935 

0.060 

0.0714 0.929 

0.066 

0.078 0.922 

0.072 

0.0843 0.916 

0.077 

0.0908 0.909 

0.082 

0.0973 0.903 

0.087 

20 0.0616 0.938 
0.058 

0.0678 0.932 
0.063 

0.074 0.926 
0.068 

0.0801 0.920 
0.073 

0.0863 0.914 
0.078 

0.0924 0.908 
0.083 
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Figure 2.7: Probability of the first vehicle being available when  is varied  

from 1.0 to 1.5 

 

 We see in Table 2.5 that changes in density of demand not only affect the value of 

pb, it also affects the value of w at stations.  As we see from Figure 2.7, the probability of 

the first vehicle being available increases when the arrival rate decreases, and this affect 

is decreased as number of vehicles increases.  Then, we rerun the model with the 

objective Z1 which is maximize the number of demand that can be covered to see how the 

changes affect the coverage and the locations of the current system.  The details of results 

are reported in Table 2.6.  Figure 2.8 and Figure 2.9 show the changes in coverage and 

the proportion of vehicles that need to be relocated in each case (p), respectively.  By 

changing the number of calls or the probability of a particular vehicle being busy, the 

location of the facilities changed from 3% to 4.5% while the coverage changed from        

-1.4% to 0.9%.  If the number of calls decrease (<1.2), the ambulances at primary 
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stations tend to have more chance of being available, with results in higher coverage.  On 

the other hand, if the number of calls increase (>1.2), the ambulance at primary stations 

tend to have less chance of being available, with also results in lower coverage.  

Moreover, over all cases the system is not much affected by decreases in demand. 

 

Table 2.6 Changes in coverage and facility locations when  is varied from 1.0 to 1.5  

 

p 

Changes in Changes in Current system Changes in Changes in Changes in 

=1.0 =1.1 =1.2 =1.3 =1.4 =1.5 

Coverage Locations Coverage Locations Coverage Locations Coverage Locations Coverage Locations Coverage Locations 

5 0.000 0.000 0.000 0.000 0 0 0.000 0.000 0.000 0.000 0.000 0.000 

6 0.030 0.167 0.015 0.167 0 0 -0.015 0.167 -0.031 0.167 -0.048 0.167 

7 0.023 0.000 0.012 0.000 0 0 -0.012 0.000 -0.025 0.143 -0.038 0.143 

8 0.018 0.000 0.009 0.125 0 0 -0.009 0.125 -0.018 0.125 -0.028 0.250 

9 0.013 0.000 0.007 0.000 0 0 -0.007 0.000 -0.014 0.000 -0.022 0.000 

10 0.011 0.000 0.005 0.000 0 0 -0.006 0.000 -0.012 0.000 -0.018 0.000 

11 0.009 0.091 0.004 0.000 0 0 -0.005 0.000 -0.010 0.000 -0.015 0.000 

12 0.008 0.000 0.004 0.083 0 0 -0.004 0.083 -0.008 0.083 -0.012 0.083 

13 0.006 0.154 0.003 0.000 0 0 -0.003 0.000 -0.007 0.000 -0.010 0.077 

14 0.005 0.143 0.003 0.000 0 0 -0.003 0.000 -0.005 0.000 -0.008 0.000 

15 0.004 0.000 0.002 0.000 0 0 -0.002 0.000 -0.005 0.000 -0.007 0.000 

16 0.003 0.000 0.002 0.000 0 0 -0.002 0.000 -0.004 0.000 -0.006 0.000 

17 0.003 0.000 0.002 0.000 0 0 -0.002 0.000 -0.003 0.000 -0.005 0.000 

18 0.002 0.000 0.001 0.000 0 0 -0.001 0.000 -0.003 0.000 -0.005 0.000 

19 0.002 0.000 0.001 0.105 0 0 -0.001 0.105 -0.003 0.053 -0.004 0.000 

20 0.002 0.000 0.001 0.000 0 0 -0.001 0.000 -0.002 0.000 -0.003 0.000 

Avg. 0.009 0.035 0.004 0.030 0 0 -0.005 0.030 -0.009 0.036 -0.014 0.045 

Change in coverage  = (Current coverage-New coverage)/Current coverage 

Change in locations = Number of vehicles need to be relocated/Number of total vehicles 
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Change in coverage  = (Current coverage-New coverage)/Current coverage 

Figure 2.8: Changes in coverage when  is varied from 1.0 to 1.5 
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Change in locations = Number of vehicles need to be relocated/Number of total vehicles 

Figure 2.9: Changes in locations when  is varied from 1.0 to 1.5 

 



 

49 

 

2.9 Conclusion and discussion 

Traditional covering location models can lead to solutions which result in 

disparity in service between different demographics.  Optimally locating ambulances to 

improve fairness is an important issue, this paper proposes a bi-objective model to 

address this problem.  In particular, we applied the -constraint method to solve a bi-

objective covering location problem.  The first objective is to maximize the number of 

requested calls that can be covered by the ambulances within a response time standard, 

the second objective is aimed at reducing disparity in service between rural and urban 

citizens.  The second objective is modeled in three ways: to (a) minimize the maximum 

distance between uncovered demand zones and opened stations or to (b) minimize the 

number of uncovered rural demand zones or to (c) minimize the number of uncovered 

demand zones 

The results are obtained using data from Hanover County, a rural/suburban county 

in Virginia. The results, therefore, should not be interpreted to provide a general policy 

for all types of EMS systems, since the results depend on travel distances and call 

locations that may not be characteristic of urban and other suburban areas. However, the 

proposed model can be used to reduce disparities in service for other types of EMS 

systems. 

With one objective, we can only get the solution which maximizes number of 

requested calls that can be covered or we can get the solution which minimizes one of the 

secondary objectives.  By using a bi-objective model, we can find all the solution points 

in between the best value of the first objective and the best value of the second objective.   
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The solution points we find provide a set of efficient (non-dominated) solutions, or 

alternatives, that are very useful for decision makers wishing to take into account issues 

of fairness when locating EMS ambulances. While each model yields a set of non-

dominated solutions that are not directly comparable, we propose two performance 

metrics to use as selection criteria: the average distance or the weighted average distance 

from an uncovered zone to its closest station.  Under these criteria, Model (a) which 

minimizes the maximum distance between uncovered zones and its closest open station 

always provides a better solution, without sacrificing the first objective, though Model (b) 

offers a larger Pareto set and therefore more options to the decision maker.  The equitable 

preference analysis suggested that Model (a) and Model (c) which minimizes the number 

of uncovered zones is more preferable than Model (b) in terms of providing equal effects 

to individuals.  The largest reduction in disparities is achieved when service is poor to 

average.  This is important because it has been observed that levels of care are typically 

not as good in rural areas as compared to urban areas.  Thus mediocre service in urban 

locations could translate to very poor service in rural areas; our model helps to provide 

solutions that mitigate these issues of fairness. 

Analyzing models which consider issues of fairness in the delivery of EMS 

service is important.  This paper proposes three bi-objective models to reduce disparities 

in service received by rural and urban citizens.  Extending this approach to take into 

account more than two criteria, or including criteria which may be easier to interpret (but 

may result in non-linear formulations) are important future areas of research. 
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CHAPTER 3 

THE MINIMUM p-ENVY LOCATION PROBLEM: A NEW MODEL FOR 

EQUITABLE DISTRIBUTION OF EMERGENCY RESOURCES 

 

3.1 Introduction 

Emergency medical service (EMS) systems are public service systems that 

provide emergency medical service to patients within a service area.  The services 

provided vary depending on the call such as providing emergency medical care via a 

technician or paramedic, or providing transportation.  An important factor in determining 

EMS performance is not only the quality of emergency medical care provided but also 

the timeliness or response time in which care is provided (McGinnis, 2004).  In urban 

areas, the most widely used ambulance response time standard is to respond to 90% of 

calls within 8 minutes and 59 seconds as compared to responding to 90% of calls within 

14 minutes and 59 seconds in rural areas (Fitch, 2005).  In practice, however, it may not 

be possible to meet this standard depending on the geographical area, the EMS resources 

available, and the location of EMS resources at the time of a call.  In addition, response 

times may be much longer than the standard, especially in rural or remote areas.  Even 

within a contained geographic area, guaranteeing the same (or similar) response times to 

all customers in the system may be infeasible. 

Unlike private services, such as supermarkets or banks, which are free to locate 

their facilities in densely populated areas in order to maximize profits, public services 

such as EMS systems provided by governmental or non-profit agencies need to locate 

their facilities in a way that serves all residents (customers) fairly as they provide 

essential life-saving services (Savas, 1978; Stone, 2002).  Locating ambulances in EMS 
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systems is an important resource allocation problem that has many implications for 

equity.   

We briefly provide a review of facility locations models that have been applied to 

public service problems and consider equity.  Two well-known facility location models 

often used to locate ambulances are the p-median and p-center problems.  We provide a 

short summary of the p-median and p-center problems here.  In the facility location 

problem with p facilities, the p-median objective minimizes the total distance from 

demand points (customers) to their closest facility.  Suppose a facility is to be located on 

a line between two demand points at the ends of the line, moving the facility from one 

end to another end does not change the total distance between the two demand points and 

the facility location.  Thus, the p-median problem is reflective of aggregate level outcome 

rather than individual level outcomes; meaning that in the example given, it does not 

matter where the facility is located along the line.  On the other hand, the p-center 

problem minimizes the maximum distance from demand points to their closest facilities.  

As with the previous example, if again the facility is moved along the line between two 

demand points, the distance to one demand point reduced while the distance to the other 

demand point is increased.  Thus, the optimal solution of the p-center problem locates the 

facility equidistant to both demand points, which reflects one concept of equity (Leclerc 

et al., 2010).  Although the p-center problem belongs to a family of equitable location 

design problems, its objective improves only the ―worst‖ customer instead of explicitly 

reflecting the outcomes of all individuals. For a review of the p-center and p-median 

problems, see Daskin (1995).   
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Public services such as EMS systems have an expectation of fairness for their 

customers (Stone, 2002).  The facility locations directly affect how customers access 

services.  In order for all customers to have an equal chance to obtain services, inequity 

among all customers must be reduced.  Several measures have been proposed to capture 

inequity of the system or the effect of distribution of the facilities to customers.  The most 

common inequity measure is the maximum distance between customers and the closest 

facility, assuming that all customers are only serviced by their closest facility.  Such a 

measure is reflected in the p-center problem.  Other inequity measures suggested in the 

literature include range (see e.g. Brill et al., 1976; Erkut and Neuman, 1992), variance 

(see e.g. Maimon, 1986; Kincaid and Maimon, 1989; Berman, 1990), and mean absolute 

deviation (see e.g. Berman and Kaplan, 1990; Mulligan, 1991) in the distances between 

customers and their closest facility.  Marsh and Schilling (1994) provide a comprehensive 

review of equity measures. 

 Range is a measure that considers the difference between the closest and the 

farthest customers, while variance and mean absolute deviation are two measures that 

consider minimizing the difference between individual outcomes and some system 

standard.  However, even though one customer receives better access to care than a given 

standard, he feels dissatisfied if he is ―worse off‖ than other customers.  Another equity 

measure that considers the difference in the outcomes between individual customers is 

the sum of absolute differences in distance between customers and their closest facility 

(Keeney, 1980; Lopez-de-los-Mozos and Mesa, 2001; Lopez-de-los-Mozos, 2003).  

Similarly, the Gini coefficient and Lorenz curve are popular indexes that have been 
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developed for evaluating inequity in economic and social welfare literature, and were 

applied for equalizing in facility location problem (Maimon, 1988; Erkut, 1993; Drezner, 

2009).  These measures are functions of the absolute value between individual 

differences, such that they penalize for any differences in individual outcomes (that is 

whether a customer is worse off or better off).  Since people feel no dissatisfaction when 

they are better off than others, only negative effects are considered in the minimum envy 

location problem (MELP) introduced by Espejo et al. (2009) .  They propose several 

ways to formulate the minimum envy problem; however, their formulations do not 

necessarily fit well with EMS models.  In particular, those formulations provided by 

Espejo et al. (2009) assume that there is strict preference ordering information about 

customer’s preferences or customer’s dissatisfaction.  This is not practical for application 

to EMS systems because, a customer is able to have two stations at the same preference 

ordering (equidistant).  Furthermore, ordinal preferences lack information about distance 

which is an important metric when assessing quality of service.  In our model we are able 

to relax the strict and ordinal preference order assumptions. 

Furthermore, most inequity measure, including all equity location models 

mentioned above, consider customers’ dissatisfaction based only on the closest facility.   

These inequity measures are appropriate for some public services, such as post or school 

locations where the customer travels to the facility, but not necessarily for EMS systems, 

where open facilities indicate the location where EMS ambulances are stationed.  In an 

EMS system, the ambulance stationed at the closest facility is not always available to 

serve customers, and in that case the ambulance stationed at the next closest facility 
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might instead be dispatched.  To resolve this, many researchers account for the 

probability that a particular ambulance is available or busy at the time a call for service 

arrives.  For probabilistic location models, see (Larson, 1974, 1975; Daskin, 1983; 

ReVelle and Hogan, 1989; Batta 1989; Galvao, 2005; Iannoni and Morabito, 2007).  

Other proposed location models explicitly consider backup or multiple coverage (Hogan 

and ReVelle, 1986; Daskin et al., 1988; Araz et al., 2005; Iannoni and Morabito, 2007) 

Since EMS systems are an important public service that affects wellness of the 

service population, we are interested in developing a practical equitable location model 

that represents the inequity of all customers in the system, and more realistically 

represents the operations and performance criteria of EMS systems.  To the best of our 

knowledge, this is the first equitable location model that integrates the concept of envy 

while taking into account the degree of importance of the different servers and 

incorporates the probability of servers being available to respond calls. 

In particular, we propose the Minimum p-Envy Location Problem (MpELP) for 

locating EMS ambulances at possible station locations in order to increase equity of 

receiving service among all demand zones.  Envy is selected as a way to measure equity, 

where envy is defined as a function of the distance from a demand zone to its closest 

EMS station and the distance from a demand zone to its backup EMS stations weighted 

by priority of the serving stations and weighted by proportion of demand.  The 

performance of our model is investigated by comparing it with two popular equity 

measures, p-center and Gini coefficient, and the well-known maximal covering location 

problem (MCLP).  Because of its complexity, this problem cannot be solved efficiently to 
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optimality, even for small test cases, using commercially available optimization software; 

thus a tabu search is developed which yields near-optimal solutions with little 

computational effort.   

The rest of the paper is organized as follows.  In Section 3.2, we describe the 

concept of envy, introduce notation, and formulate the model.  An illustrative example is 

presented in Section 3.3.  Section 3.4 details how to assign the station weights using the 

hypercube model.  Section 3.5 presents the procedure of the solution method that we 

developed for solving the problem using a tabu search (TS).  We conduct computational 

experiments for tuning the tabu search parameters in Section 3.6.  In Section 3.7 a case 

study is selected to test the proposed approach using real-world data and computational 

results are reported in Section 3.8.  Section 3.9 shows the performance of the minimum p-

envy location model in comparison to other location models.  Finally, conclusions and 

discussion are provided in Section 3.10. 

 

3.2 Minimum p-envy location model 

In this section, we modify the concept of envy to create an objective which is 

meaningful for the ambulance location problem.  From Longman’s English dictionary, 

envy is ―the feeling of wanting something that someone else has.‖  Therefore, customers 

in demand zone i feel envy when they receive worse service than others, but when they 

receive better service than others they have no feeling of envy.  These concepts reflect 

definitional notions of equity in the social science domain (Stone, 2002) in that they 

clarify the recipients (the potential patients), what is being distributed (delivery of 
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ambulances to patients according to the patients' relative dissatisfaction) and the process 

for equitably allocating resources (ambulance location).   In our model, we define ―envy‖ 

of demand zone i as a level of customers’ dissatisfaction in demand zone i as compared to 

other demand zones, where a demand zone is a demand point where customers are 

located.  The dissatisfaction of customers in demand zone i is an ordered vector of the 

distance from demand zone i to its serving stations (facility locations) in decreasing 

order.  That is, the distance to the station closest to demand zone i, which is the primary 

station, is the first element in the dissatisfaction vector, followed by the distance to the 

next closest station or the secondary station, and so on.  The serving stations, except for 

the primary stations, are called backup stations, of which we can have one or more for 

each demand zone.  Envy is defined as the difference in dissatisfaction between demand 

zones.  Since different demand zones have different total number of customers (demand 

or call density), we weigh the total envy in each demand zone by the proportion of 

demand in that zone.  An illustrative example of how envy is calculated is presented in 

the next section.  We use the following notation:   

 n =  the number of demand zones 

m =  the number of potential stations 

p =  the number of ambulances to be located (stations to be opened) 

q =  the number of serving stations which consists of one primary  

      station and q-1 backup stations where q≤p 

wl =  weight assigned to the l
th

-priority station, l=1, …, q  

Hi =  demand (call volume) in zone i 
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hi =  weight (proportion of demand) of zone i = 

1

i

n

i

i

H

H



 

  
ijd   =  the distance between zone i to station j 

The objective of our equitable location model is to minimize the sum of weighted 

envy among all demand zones, as shown in Equation (1).  Note that the proportion of 

demand at node i is the weight (hi) that we assign to differentiate between call volume at 

different demand zones.  As mentioned earlier, customers in each demand zone may have 

dissatisfaction with respect to all serving stations; first priority station, second priority 

station, and so on.  Thus, we can differentiate the envy with respect to different serving 

stations by adding the different weights (wl) to each level of priority; l=1, …, q, where q 

is the number of serving stations that are restricted to respond to a particular zone.  Note 

that q≤p where p is the number of stations that will be opened.  We introduce qp here 

because it may be that only certain number of back-up stations are allowed or that the 

decision maker only wants to consider envy with respect to some subset of stations; 

however, all stations need to be located and thus p cannot simply be replaced by q. A 

station is said to be opened when there is at least one ambulance stationed for serving 

customers.  We note from (1) that since there is no contribution to the objective of 

locating more than one ambulance at the same station, the number of open stations and 

the number of ambulances are the same
1
.  To avoid a trivial solution we assume that m≥p 

where m=the number of potential station locations, otherwise there are excess 

                                                 
1
 This assumption may be relaxed by incorporating constraints on the number of ambulances per station 

and modifying the envy calculation.  For example, if up to two ambulances are allowed at each station, the 

first backup station is considered the same as the primary station when there are two ambulances at the 

primary station.   
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ambulances to be located.  This assumption allows us to specify the effect that each 

station has on a demand zone through the vector w=(w1, …, wq), 0lw 
 

l .  Without 

loss of generality, we assume that 
1

1
q

l

l

w


  and w1≥ w2≥ …≥wq.  Station priority weights 

can be assigned in various ways, depending on how the system administrator values 

backup service.  For example, if a system only utilizes one backup station, we can set 

q=2, so w=(w1, w2) where w1≥w2, and w1+w2=1.  How the weights w may be assigned is 

further discussed in Section 3.4. 

 The minimum p-envy location problem is introduced as an integer programming 

model.  The objective function captures the total weighted envy among all demand zones 

as shown in Equation (3.1).  The decision variable 𝑒𝑖𝑘
𝑙  represents the envy of demand 

zone i compared with demand zone k based on their serving stations at the l
th

 priority 

level.  Note that the l
th

 priority station serving demand zone i is not necessarily the same 

as the l
th

 priority station serving demand zone k.  The index l of 𝑒𝑖𝑘
𝑙  goes from 1 to q; if 

we consider the envy based on all of facilities in a system q = p or if we consider the 

envy based on some facilities in a system q ≤ p.  Equations (3.2) - (3.3) work together to 

calculate the envy between all possible pairs of customers.  The variable 𝑒𝑖𝑘
𝑙  takes on 

value 0 when zone i is served by a closer facility than zone k compared with the same 

priority station, otherwise it is equal to the difference between the distance from zone i to 

its serving station and the distance from zone k to its serving station, that is 

1 1

=max 0, -
m m

l l l

ik ij ij kj kj

j j

e d y d y
 

   
  
   

  .  Equation (3.4) limits the number of ambulances that 
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are available to be located, or equivalently, number of stations to be opened.  Equation 

(3.5) ensures that a demand zone must be served by exactly one facility at each l
th

 priority 

station.  Equation (3.6) ensures that a station can either serve as a 1
st
 or 2

nd
 or l

th
 priority 

of zone i.  Equation (3.7) requires that a demand zone i can be served by facility j if 

station j is open.  Equation (3.8) assigns a station to serve zone i by considering the 

distance from an open station to the zone; the closer station receives the higher priority to 

serve zone i. 

The Minimum p-Envy Location Problem (MpELP): 

Minimize  
1 1 1

q n n
l

l i ik

l i k

Z w h e
  

       (3.1) 

 Subject to:  

   
1 1

m m
l l l

ik ij ij kj kj

j j

e d y d y
 

   for i,k=1,…, n: ki; l=1,…, q  (3.2) 

   0l

ike     for i,k=1,…, n; l=1,…, q  (3.3) 

   
1

m

j

j

x p


        (3.4) 

   
1

1
m

l

ij

j

y


  for i=1,…,n; l=1,…,p    (3.5) 

   
1

1
p

l

ij

l

y


   for i=1,…, n; j=1,…, m   (3.6) 

   
l

ij jy x   for i=1,…, n; j=1,…, m; l=1,…, p  (3.7) 

   

1l l

ij ij ij ijd y d y    for i=1,…, n; j=1,…, m; l=1,…, p-1  (3.8) 
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Where:  

   
1  if a facility is located at station 

=
0 otherwise                                   

jx
j


    

  

1  if a facility at station  assigned to serve zone  as the  priority station

0  otherwise                                                                                                 

th

l

ij

j i l
y


 
 . 

 

3.3 Illustrative example 

In this section, a small example is provided to illustrate the concept of p-envy and 

how the objective function is calculated.  Suppose there are three demand zones, three 

potential stations for locating EMS ambulances, and two ambulances.  In this case, n=3, 

m=3, and p=2.  Assume that one backup station is considered, q=2.  The number of rows 

in the distance matrix (dij) represents the number of demand zones (n) while the number 

of columns represents the number of potential stations (m), where dij represents the 

distance from demand zone i to station j.  Other inputs include the proportion of demand 

in each demand zone i (hi), and the weights assigned each priority open station (wl) .  The 

inputs to this small example are given below in matrix form. 

2 2 10

8 4 6

10 5 2

d

 
 


 
  

    

0.2

0.3

0.5

h

 
 


 
     

 0.6 0.4w   

The vector h denotes that 20%, 30% and 50% of customer calls originate in 

demand zones 1, 2, and 3, respectively.  The vector  indicates that a consumer’s envy 

will be comprised of 60% resulting from envy regarding their primary serving station and 

40% envy regarding their secondary serving station. Suppose ambulances are located at 
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station 1 and station 2, demand zone 1 is 2 units away far from its 1
st
 priority or primary 

station, and also 2 units away far from its 2
nd

 priority or secondary station.  Demand zone 

2 is located closer to station 2, so station 2 serve as a 1
st
 priority station of zone 2, and 

station 1 serves as a 2
nd

 priority station of zone 2.  The same with demand zone 3, it is 

served by station 2, and station 1 as 1
st
 and 2

nd
 priority stations respectively.  Then, the 

envy of demand zone i with respect to demand zone j, in regards to their 1
st
 priority 

station is calculated from the difference of the distance from demand zone i to its 1
st
 

priority station and the distance from demand zone j to its 1
st
 priority station whereas if 

demand zone i is closer to its 1
st
 priority station demand zone j, the envy of demand zone 

i with respect to j is equal to 0, because demand zone j does not have better access than 

demand zone i.  If demand zone i is farther from its 1
st
 priority station than demand zone j 

is to theirs, demand zone i envies demand zone j which we quantify as the difference in 

dissatisfaction between demand zone i and demand zone j.  The envy matrix 

corresponding to locating ambulances at station 1 and 2 (𝑒𝑖𝑘
𝑙 ) is calculated from the 

summation of max{0, 
1 1

m m
l l

ij ij kj kj

j j

d y d y
 

  } where l=1,2; i,k=1,2,3; k i.  For example, 𝑒12
1  

=max{0, 2-4}=0, 𝑒13
𝟏  =max{0, (2-5)}=0, and 𝑒23

1  =max{0, 4-5)}=0, 𝑒21
1  =max{0, 4-

2)}=2.  The total envy of all demand zones with respect to all serving stations is equal to 

the summation of all elements in the envy matrix multiply by the demand zone weight 

(hi) and the station weight (l).  If we locate ambulances at station 1 and 2, the total envy 

of all demand zones is equal to 4.28.  Our goal is to find the station locations that give the 

minimum total of envy.  With this small-size example, one can easily enumerate all 
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possible solutions, and the optimal solution is opening stations at locations {2, 3} with a 

total envy value of 1.56.  Using the integer programming formulation of the minimum   

p-envy model, developed in the previous section, a solver found an optimal solution at x= 

{0,1,1}, y={[(0,0),(1,0),(0,1)],[(0,0),(1,0),(0,1)],[(0,0),(0,1),(1,0)]}, e={[(0,0),(0,4),(0,5)],    

[(2,0),(0,0),(2,1)],[(0,0),(0,0),(0,0)]}. 

 

3.4 Determining appropriate station priority weights 

 The station weights should be assigned according to how a system administrator 

views the importance of the resources, or according to how they believe customers feel 

envy.  The minimum p-envy problem is specifically designed to consider backup stations; 

thus, the number of backup stations should affect the values of the weights that are 

assigned.  Suppose the system has no backup station, in other words only one station has 

100% responsibility to serve a particular zone, the station weight should be set to 1 and 

w=(w1, 0, 0, …, 0) where w1=1; in that case the minimum p-envy location problem 

becomes original minimum envy problem except that envy is measured nominally rather 

than with strict preference ordering.  The only restriction on the weights assigned is that 

1

1
q

l

l

w


  and  w1≥ w2≥ …≥wq.  For example, these values could be are assigned to be 

linearly decreasing; that is, 
1

l

q l
w

K

 
  where 1 2 ...K q    , l=station priority, l{1, 

…, q} .  For example, if q=5, w1=5/15, w2=4/15, …, w5=1/15, respectively.  Next we 

provide a recommendation for how these weights might be assigned to reflect the actual 

performance of EMS systems. 
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 In real EMS systems the closest vehicle may not be available to answer a call.  

Thus we suggest that the probability of vehicle being available be assigned as a station 

weight.   Daskin (1983) developed the earliest probabilistic location model, the maximum 

expected coverage location problem (MEXCLP), which assumed that servers operate 

independently and have the same busy probability which is independent of their 

locations.  Later, Batta et al. (1989) developed an adjusted MEXCLP (AMEXCLP) 

which relaxes some assumptions of the MEXCLP by embedding the hypercube queuing 

model into MEXCLP.  The hypercube model developed by Larson (1974, 1975) 

considers a correction factor that accounts for busy probabilities depending on server 

locations.  The model has several underlying assumptions: 1) calls for service arrive 

according to a Poisson process, 2) if a call arrives while all servers are busy; it enters at 

the end of a queue and will be served in a FIFO manner.   

 In this paper, the busy probability of vehicles is estimated by the hypercube 

queuing model.  Let pb denote the probability that a randomly selected vehicle will be 

busy which depends on the number of ambulances that are deployed (assuming q-1 

backup stations).  Using actual system data, one can we estimate probability pb by 

pb=/pμ where,  is the average number of calls per hour, 1/µ is the average service time 

per call (hours), and p is number of ambulances that are deployed.  Constructing an 

M/M/p queuing model operating at steady state, we get the probability that all servers are 

available, p0, as given in Equation (3.9).  The correction factors Q are calculated as in 

Equation (3.10).  If there are l ambulances that may respond to a call, the probability that 

the l
th

 vehicle will be dispatched or is available is calculated from the probability that l-1 
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ambulances are busy and the l
th

 vehicle is available.  The probability that the l
th

 vehicle is 

available (wl) is shown in Equation (3.11) where Q (p, pb, l-1) is the correction factor and 

Q (p, pb, 0) =1.   

              

1
1

0

0

( )

!(1 ) !

p j jp

b b

jb

pp p p
p

p p j






 
  

 


     

(3.9) 
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k k jp
b

b
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p j p k p p p
Q p p j

k j p p





  


 
  ,  j=0, …, p-1   (3.10) 

              
1( , , 1)(1 )( )l

l b b bw Q p p l p p    ,   l=1, …, p  (3.11) 

 

3.5 Tabu search 

Because of the complexity of the minimum p-envy location problem, finding the 

optimal solution via a commercial optimization sotfware is impractical due to the 

computational effort required to solve these problems, especially for real-world size 

problems.  Although the model has been linearized to reduce computational effort, it 

requires a large number of additional variables and constraints to remove the nonlinear 

(maximization) terms involved in calcualting envy.  The number of variables and 

constraints make the problem size grow exponentially as the number of demand zones 

and potential stations increase, which directly leads to increased computational costs.  To 

illustrate the complexity, we generated 17 test problem sets with different combinations 

of parameters; n  {5,10,20,30,50,100}, m  {5,10,15,20,30}, p  {2,3,5,10}, and 

assuming that q=p in all test cases.  The integer programing formulations of minimum p-

envy location problem were implemented in two commercial optimization solvers; ILOG 
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OPL 5.5. and AMPL 11.0, and both are running on a Dell Latitude D410 machine with 

Intel Pentium processor 1.73 GHz, 1 GB of RAM.  With traditional branch and cut 

methods, the solver was able to find the optimal solutions in some cases as shown in 

Table 1.  The running time limit was fixed to 1 hour.  The results showed that AMPL 

performed better than OPL in terms of time and solution gap.  However, based on this 

experiment, for problem sizes equal to or larger than 30 demand nodes, it is not practical 

to obtain the optimal solution via both optimization solvers.  We also observed that in the 

case of n=30, m=15, p=q=5, it took about 6 hours to get the optimal solution.  The 

notation >1H states that running time exceeded 1 hour and NA states that no feasible 

solutions have been found after running the solver for 1 hour. 

Table 3.1: Results of solving p-envy location problem via optimization solvers 

n m p OPL  AMPL  

   Time (sec.) Gap(%) Time (sec.) Gap(%) 

5 5 3 1.06 0 0.25 0 

  2 0.81 0 0.18 0 

10 10 5 25.53 0 26.92 0 

  3 5.57 0 4.45 0 

  2 3.09 0 2.35 0 

20 10 5 647.60 0 452.10 0 

  3 121.26 0 177.26 0 

  2 47.37 0 19.39 0 

30 15 10 >1H NA >1H NA 

  5 >1H NA >1H NA 

  3 426.56 0 165.12 0 

50 20 10 >1H NA >1H NA 

 15 5 >1H NA >1H NA 

  3 >1H 80.24 >1H 42.05 

100 30 10 >1H NA >1H NA 

 20 5 >1H NA >1H NA 

 10 5 >1H NA >1H NA 

 

To overcome this problem, one might try to reduce the number of variables by 

improving the formulation.  For a discussion of developing efficient minimum envy 
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formulations see Espejo et al. (2009).  However the integer programming formulations 

tend to have limitations depending on the problem structure, and they still suffer from 

dimensionality issues.  Espejo et al. (2009) developed several formulations for the 

minimum envy location problem with the underlying assumption that a demand zone 

must has predefined strict preference for all potential stations, and the computational 

running time for the problem size n=40 was reported  to be longer than 1 hour.  In this 

paper, we are interested in providing a practical approach that will enable us to solve the 

real-world size problem, which tend to have a large number of demand zones (n≥100).  

Therefore, we developed a tabu search that enables us to find near-optimal solutions 

efficiently. 

Tabu search (TS), a metaheuristic algorithm, was formalized in 1986 by Glover 

(1986).  The characteristics of TS are based on the mechanism of human memory.  

During the search process, TS keeps memory of a predetermined number of solutions that 

have already been evaluated and records them on a tabu list.  These solutions that have 

been evaluated are protected for a limited period of time using short-term memory in an 

attempt to escape local optima.  If the new solution yields a better objective, a move is 

performed regardless of the tabu list, otherwise moving to the new solution will  only 

occur when the new solution is not in the tabu list.  The TS algorithm is composed of the 

following procedures 1) initializing a feasible solution 2) improving upon the current 

solution 3) managing the tabu list 4) checking the stopping criteria.  The algorithm 

continues performing procedures 2 through 4 until the stopping criteria is satisfied. 
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3.5.1 Representation and Initialization 

We choose a permutation representation for our solution.  That is, suppose we 

have 2 ambulances to be located among 5 potential stations, and consider the solution of 

locating ambulance 1 at station 3 and ambulance 2 at station 5; the permutation 

representation string will be {3,5}.  The initial solution is randomly generated using the 

concept of random keys as introduced by Bean (1994).  We start with one feasible 

solution at the initial stage.  Suppose we want to create a solution for a problem which 

has 2 ambulances and 3 stations, we first create 3 random numbers; 0.7, 0.4, 0.5.  Next 

assign an order for each random number; 0.7(1), 0.4(2), 0.5(3).  Then sort the random 

numbers as ascending order; 0.4(2), 0.5(3), 0.7(1).  The initial solution is the first two 

ordered stations which are {2,3}. 

3.5.2 Improving process 

To improve a current solution, we consider all the solutions in the neighborhood 

of the current solution and replace it with its best neighbor.  The swap neighborhood used 

in Ghosh (2003) is applied in which each neighbor is found by replacing one located 

ambulance with one non-located ambulance.  In other words, an open station is replaced 

by a closed station.  Suppose we have 2 ambulances to be located among 5 potential 

stations and the current solution is {3,5}.  If we chose station 3 to be replaced, the 

possible neighbors are {1,5}, {2,5}, and {4,5}.  The total number of possible neighbors to 

each solution are (m-p)p.  Becasuse we only replace one station at each iteration, the 

number of neighbors at each iteration are (m-p), and the best neighbor is the solution that 

yields the lowest total weighted envy.   
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3.5.3 Tabu list  

To avoid selecting an old solution that has been recently evaluated, we create a 

tabu list to record the old moves or old solutions.  We propose two types of tabu lists and 

apply each one to the TS algorithm we developed.  These  are swap record and solution 

record. 

3.5.3.1 Swap record 

As described in section 3.5.2, new solution is obtained by swapping an open 

station with a closed station.  This tabu list consists of pairs of recent stations that have 

been replaced and the stations that replaced them.  For example, if we have a current 

solution, {3,5}, and we want to move ambulance 1 from station 3 to station 2, our new 

solution is {2,5}.  In this case, we record the move {3,2}.  Thus the swap record tabu list 

is an mxm matrix where m is the number of the potential stations.  We record the swap 

{3,2} by updating the value of element (3,2) and (2,3) in the swap record tabu list.  This 

tabu list structure has the advantage of being convenient to manage; however, the size of 

the list grows as the number of the candidate stations increases.  

3.5.3.2 Solution record 

Instead of recording the swap move, we can alternatively record the solutions that 

have been evaluated.  Note that the swap record tabu list cannot protect some solutions 

that have recently been evalutated in the case that the order of the stations is different.  

For example, if the current solution is {1,2,3}, and the next solution is {1,2,5}; the swap 

record  {3,5} would be added to the swap record list.  However, this does not rule out the 

possibility that in two moves we would see solution {3,2,5} then {3,2,1}; this last 
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solution is the same as the previous solution {1,2,3}.  This problem is solved when using 

the solution record tabu list.  However, this type of list structure requires more steps to 

create the list.  To capture the different station order in each solution that yields the same 

objective, we convert the solution into a power of two form.  In other words, each distinct 

set of ambulance locations yields the same value, despite the order in which the locations 

are listed in the solution.  For example, the solution {1,2,3} will be recorded as a value of 

2
1
+2

2
+2

3
 =  14.  This way solution {3,2,1} or {2,3,1}, which also yield  the value 14, are 

not selected as long as 14 is in the solution record tabu list.  In this case, the length of the 

list is fixed at the number of the candidate stations at each iteration (m). 

3.5.4 Short-term memory 

 Independent of which tabu list structure is used, the solutions in the tabu list will 

be protected for the next solution, which means we never have the same solution in the 

following iteration. This protection is set to be active for a limited time, called the tenure 

time.  The tenure time works as a short-term memory of the TS algorithm which is one of 

the parameters that might effect the performance of the TS algorithm.  There are three 

possible ways to manage the tenure time: fixed, dynamic, and random.  In this study, we 

used fixed tenure time, and considered list lengths of 7, 10, 15, 20 as suggested by Glover 

(1990).   

3.5.5 Aspiration Critera 

An aspiration criteria is applied when the better move is tabu.  In other words,  a 

tabu move (solution that is in the tabu list) is allowed when this solution yields a better 
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objective than the best found so far.  This allow us to improve the performance of the TS 

algorithm and allows us to escape local optima. 

3.5.6 Stoping Criteria 

Several potential stopping criteria have been proposed such as maximum CPU 

time, a maximum number of solutions, a maximum number of iterations, or a a maximum 

number of iterations with no improvement.  Based on preliminary experiments, we 

terminate the program after a fixed number of iterations which depends on the problem 

size and is dicussed further in later sections.  For each scenario the TS is run for 30 

replications.  The steps of tabu search at each iteration are shown below: 

Step 1:  Initialize solution 

Step 2:  Best := Initial Solution 

 Current := Initial Solution 

Step 3:  While (Stopping criterion not met) do  

  Select a station to swap  

  Evaluate all possible neighbors 

  Best_nb := Best neighbor 

  If Best_nb is better than Best 

           Then Go to Step 5 

  Else  Go to Step 4 

Step 4:   If Best_nb is not  in the tabu list 

          Then Go to Step 5 

   Else  Best_nb := Next best neighbor 

            If Best_nb is the last neighbor 

                    Then Go to Step 5 

            Else Go to Step 4  

Step5:  Current := Best_nb 

  Update tabu list 

  If Current is better than Best 

        Then Best := Current 

 End while 

 

While we realize that the proposed TS algorithm is quite simple, we will 

demonstrate below that it is both quite effective and efficient at finding solutions.  

Furthermore, the algorithm is robust in the sense that it works with any location model 
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objective.  Lastly, while we do perform parameter tuning for the TS, we do not test using 

alternate heuristic methods.  The focus of the paper is the development and analysis of 

the MpELP; the TS is developed here to allow us to analyze real-world size problems.   

 

3.6 Parameter tuning experiments 

 In this section, we conducted experiments to find the best combination of two 

parameters: the type of tabu list structure and the choice of tenure time length.  These 

parameters were identified as influential factors based on initial testing.  Two data sets 

have been used.  The first one is a real-world data set consisting of 122 demand zones 

and 16 potential stations (details regarding this data set are provided in Section 3.7).  The 

second one is a publicly available data set with 30 nodes (or demand zones) and 30 

stations, taken from Lorena’s instances which accessible through the OR-Library 

(http://www.lac.inpe.br/~lorena/correa/Q_MCLP_30.txt).  For each data set, we create 6 

instances by varying the number of stations that can be opened, i.e.  p varies from 5 to 10.  

Each case is tested under two types of tabu list structures and four tenure time lengths of 

7, 10, 15 and 20, respectively.  Our tabu search was coded in Visual Studio C.  The 

resulting 96 test cases were run on a Dell Latitude D410 machine with Intel Pentium 

processor 1.73 GHz, 1 GB of RAM.  We also obtain the optimal solution to each problem 

by enumerating all possible solutions
2
.  The results are represented as the median and 

range of the solution gap (%gap= the relative difference between the best tabu search 

                                                 
2
 Full enumeration takes anywhere from 1 hour to 2 days depending on the problem size and is only used to 

evaluate the performance of our algorithm, not recommended as an approach to solving the p-envy 

problem. 

http://www.lac.inpe.br/~lorena/correa/Q_MCLP_30.txt
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solution value and the optimal solution value) over the 30 replications, which are reported 

in Table 3.2.   

 

Table 3.2: Median solution gaps and solution gap range among the 30 replications for the 

parameter tuning experiments, expressed as Median (Min, Max). 

Data set List p %Gapa [Median (Min, Max)] 

(nxm)   Tenure time 

   7 10 15 20 

30QMCLP  Swap 5 0.000 (0.000, 0.700) 0.000 (0.000, 3.397) 0.000 (0.000, 2.007) 0.000 (0.000, 1.188) 

(30x30)  6 0.716 (0.201, 1.833) 0.873 (0.000, 1.629) 0.5445 (0.000, 1.983) 1.045 (0.201, 1.886) 

  7 2.170 (0.000, 3.022) 1.980 (0.720, 4.566) 2.101 (0.000, 3.199) 2.761 (0.747, 4.573) 
  8 1.462 (0.000, 3.453) 1.596 (0.269, 2.877) 2.021 (0.827, 4.236) 1.596 (0.000, 3.926) 

  9 1.712 (0.700, 4.764) 2.615 (0.778, 5.584) 2.159 (0.700, 3.940) 2.858 (0.489, 4.711) 

  10 1.553 (0.000, 3.360) 1.263 (0.000, 3.300) 0.991 (0.061, 3.189) 1.869 (0.000, 3.302) 
 Solution 5 0.000 (0.000, 1.003) 0.956 (0.000, 4.455) 0.694 (0.000, 1.310) 0.694 (0.000, 4.596) 

  6 0.870 (0.201, 2.253) 0.876 (0.000, 2.240) 0.873 (0.000, 1.629) 1.056 (0.544, 2.936) 

  7 2.514 (0.000, 5.238) 2.101 (0.000, 5.539) 2.723 (0.000, 4.116) 1.604 (0.720,3.877) 
  8 1.955 (1.041, 3.995) 1.633 (0.973, 4.204) 1.966 (0.827, 4.546) 1.495 (0.269, 4.236) 

  9 2.248 (0.700, 4.764) 2.194 (0.778, 5.584) 2.703 (0.700, 3.940) 2.896 (0.489, 4.711) 

  10 2.135 (0.000, 3.300) 1.265 (0.000, 3.300) 0.757 (0.061, 3.1895) 1.265 (0.000, 3.3021) 

Hanover  Swap 5 0.000 (0.000, 8.254) 0.000 (0.000, 10.088) 0.000 (0.000, 8.254) 0.000 (0.000, 5.507) 

County  6 0.000 (0.000, 3.801) 0.000 (0.000, 5.253) 0.000 (0.000, 3.752) 0.000 (0.000, 3.943) 

(122x16)  7 0.000 (0.000, 7.479) 0.000 (0.000, 3.556) 0.000 (0.000, 4.216) 0.569 (0.000, 2.772) 
  8 1.022 (0.000, 1.617) 1.022 (0.000, 3.493) 0.000 (0.000, 1.767) 0.000 (0.000, 2.914) 

  9 0.434 (0.000, 4.579) 0.433 (0.000, 5.039) 0.433 (0.000, 6.005) 0.433 (0.000, 4.878) 

  10 1.492 (0.002, 6.944) 0.894 (0.002, 5.841) 0.894 (0.002, 5.039) 0.894 (0.002, 5.648) 

 Solution 5 0.000 (0.000, 8.254) 0.000 (0.000, 5.004) 0.000 (0.000, 5.507) 0.000 (0.000, 8.254) 

  6 0.000 (0.000, 3.943) 0.000 (0.000, 8.900) 0.000 (0.000, 3.943) 0.000 (0.000, 3.943) 

  7 0.000 (0.000, 2.786) 0.284 (0.000, 3.673) 0.569 (0.000, 3.673) 0.000 (0.000, 6.491) 
  8 1.022 (0.000, 1.617) 1.022 (0.000, 3.493) 0.000 (0.000, 1.767) 0.000 (0.000, 2.914) 

  9 0.433 (0.000, 5.039) 0.433 (0.000, 3.374) 0.433 (0.000, 3.374) 0.000 (0.000, 3.374) 

  10 0.894 (0.002, 4.218) 0.894 (0.002, 4.218) 0.894 (0.002, 5.039) 0.894 (0.002, 6.561) 

Overall median Swap  0.869  (0.000, 2.170) 0.883 (0.000, 2.615) 0.489 (0.000, 2.159) 0.731 (0.000, 2.858) 

      0.800 (0.489, 0.883) 

 Solution  0.882 (0.000, 2.514) 0.925 (0.000, 2.194) 0.725 (0.000, 2.723) 0.794 (0.000, 2.896) 

      0.838 (0.725, 0.925) 

a %Gap = [ (Best known of TS - Optimal solution) *100 ] / Optimal solution   

  

 We report the median rather than mean because the solution gaps are not normally 

distributed, as will be later discussed.  In this experiment we terminated each run after 50 

iterations.  We performed statistical analysis to identify if the tabu list structure and 

tenure time length significantly affect the performance of the TS.  Because our results do 

not satisfy the assumptions required to use traditional ANOVA analysis (the solution 

gaps are not normally distributed and the variance in solution gaps is non-homogeneous), 
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the Friedman test, a non-parametric statistical test, is selected to assess if differences in 

performance exist due to choice of list structure and tenure time length.  At a significance 

level of 0.05, the Friedman test indicated that there is a statistically significant difference 

between using different types of tabu lists and among all levels of tenure time length.  

The swap record yielded the lowest overall median solution gap of 0.8%.  We also 

observed that a tenure time equal to 15 yielded the best solutions with the smallest 

median solution gaps among all test cases regardless of the type of tabu list used.  

Therefore, the swap record tabu list structure with tenure time length of 15 is suggested 

as the best parameters for our TS. 

 

3.7 Case study 

Our case study uses real-world data from the Hanover Fire and EMS department, 

which is located in Hanover County, VA.  The Hanover EMS department responds to 911 

calls 24 hours a day and serves a county of 474 square miles, with a population of 

approximately 97,000 individuals.  The data are collected from the Fire and EMS 

department during 2007, and captures the life-threatening calls received during 2007.  We 

divided the coverage area into 175 distinct demand zones made up of approximately 2 by 

2 mile areas.  In this way, we ensure that originating demand is represented realistically.  

Currently, there are m = 16 existing potential stations for locating EMS ambulances.  All 

station locations are shown in Figure 3.1.  Based on the data, requested calls did not 

originate from all 175 zones.  Therefore, we ignore the zones that have no demand and 

only considered the n = 122 zones in which demand existed in 2007.   
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Figure 3.1: Map of fire and rescue stations in Hanover County, Virginia 

 

The input data to the model are the number of the requested calls (or number of 

customers) in each demand zone, the geographical coordinates of the 122 demand zones 

and 16 potential stations, and the weights assigned to different priority stations.  To set up 

the locations of the stations and demand zones, we drew grid lines over the area of 

interest, with one block representing 2 square miles.  The coordinates (a, b) of the 

stations and center point of demand zone blocks are used to calculate the distance 

between each demand zone and each station.  Distance between two points can be 

measured in many ways (see Drezner and Hamacher, 2004).  The most familiar two are 
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rectilinear distance and Euclidean distance.  In this case we use the Euclidean metric 

because approximately 70% of the Hanover County area is rural, and can thus be reached 

via highways or county roads that do not conform to a grid.  Given a demand zone i at (ai, 

bi) and a station location j at (aj, bj), the distance (dij) between demand zone i and station j 

is calculated using the Euclidian metric.   

 

3.8. Computational results 

 In this section we test the performance of our tabu search heuristic using the same 

two data sets, after incorporating the parameter tuning results.  Based on the parameter 

tuning experiments in Section 3.5, the swap record tabu list with a tenure time of 15 is 

used with both data sets.  Since the numbers of neighborhoods in both cases are different 

we used different termination criteria for each data set.  We terminated the program after 

500 iterations for the 30QMCLP data set, and 100 iterations for the Hanover County data 

set.  The solution gaps over 30 replications of both cases are shown in Table 3.3.  We can 

see that the median and average solution gap is less than 1% for all cases and that, within 

a few seconds the TS obtained the optimal solution for all instances of the Hanover data 

set and for 2 out of 6 instances of the 30QMCLP data set (recall that a commercial solver 

was not able to obtain solutions to problems with n=30 in 1 hour). 
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Table 3.3: Experimental results of TS using tuned parameters 

Data set (nxm) p  %Gapa  CPU time (sec) 

  
 Median Avg SD Min Max  Median Avg SD Min Max 

30QMCLP (30x30) 5  0 0 0 0 0  2.656 2.661 0.035 2.625 2.781 

 
6  0.544 0.351 0.274 0 0.873  3.742 3.778 0.081 3.703 4.079 

 
7  0 0.293 0.365 0 0.747  3.734 3.734 0.038 3.703 3.922 

 
8  0.269 0.408 0.382 0 1.254  3.703 3.706 0.020 3.672 3.750 

 
9  0.572 0.545 0.534 0 1.844  3.984 4.025 0.097 3.953 4.375 

 
10  0.061 0.098 0.148 0 0.757  5.078 5.085 0.031 5.062 5.234 

Hanover County (122x16) 5  0 0 0 0 0  3.953 3.966 0.035 3.937 4.078 

 
6  0 0.080 0.304 0 1.201  3.531 3.569 0.132 3.406 3.922 

 
7  0 0.154 0.294 0 0.896  3.578 3.586 0.046 3.547 3.750 

 
8  0 0.102 0.312 0 1.022  4.172 4.188 0.039 4.156 4.344 

 
9  0 0.300 0.639 0 3.374  4.562 4.577 0.061 4.515 4.813 

 
10  0 0.446 0.681 0 2.087  3.453 3.477 0.085 3.406 3.828 

  
a
 %Gap = [ (Best known of TS - Optimal solution) *100 ] / Optimal solution 

  

3.9 Performance of the minimum p-envy location problem model 

While our model seeks to reduce inequity through the p-envy objective, we must 

be careful not to sacrifice efficiency of the current EMS system.  Hanover County EMS 

measures efficiency in terms of coverage, where the coverage level is the total proportion 

of demand that can be reached within a response time threshold (RTT).  Following 

current Hanover County standards, we use a response-time threshold of 9 minutes.  Thus, 

a demand zone is said to be covered when there exists an EMS ambulance that is able to 

respond to a call in that demand zone within 9 minutes.  In particular, we assume based 

on distance, average ambulance speed, and road conditions that for a call to be responded 

to within 9 minutes, at least one station should be open within 4 miles of the demand 

zone.  In this case, there are 1711 calls spread over 122 demand zones; given the set of 
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possible station locations, there are 4 zones that cannot be covered, since they are more 

than 4 miles from the closest possible station.  Therefore, the maximum percentage of 

coverage for Hanover County is 98.8%. 

We compare our model to a traditional covering location model, which maximizes 

efficiency, and to other equity models.  In particular, we evaluate the performance of the 

minimum p-envy location model in terms of equity and coverage compared with other 

facility location models.  Two standard measures of equity are selected for comparison, 

p-center and Gini coefficient.  The p-center is a classic equity model that intends to 

improve the worst customer (minimizes the distance of the customer located the furthest 

away from their closest station).  The Gini coefficient is an equity measure that considers 

the average dissatisfaction among all customers.  The traditional maximal covering 

location (MCLP) model is selected as a baseline to measure coverage.  The formulations 

of the models are provided below. 

 Minimum p-envy location problem (MpELP) 

Objective is to minimize sum of envy weighted by proportion of demand: 

1 1 1

min 
q n n

l

l i ik

l i k

Z w h e
  


 

Subject to  (3.2) - (3.8). 

 Maximal covering location problem (MCLP), see original version in 

Church and ReVelle (1974) 

Objective is to maximize proportion of demand that can be covered 

(reached within a given response time threshold): 
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1

max
n

i i

i

Z y H



 

 Subject to 
1

m

ij j i

j

a x y


  for all i=1, 2, …, n   (3.12) 

    and (3.4) 

  Where    
1 if demand zone  is covered by an open station

=
0 otherwise                                                         

iy
i


  

  

   
1 if  station  can cover demand at zone 

=
0 otherwise                                             

ija
j i




 

 p-center, see details in Daskin (1995) 

Objective is to minimize the maximum distance from customers to their 

closest station: 

minZ
 

 

Subject to 
1

m

ij ij

j

d y z



 

for all i=1,2, …, n   (3.13) 

   1

1
m

ij

j

y



 

for all i=1, 2, …, n   (3.14) 

    
ij jy x  for all i=1,2, …, n, j=1, 2, …, m (3.15) 

  and (3.4) 

Where  
1   if a demand zone  is served by facility at station 

=
0 otherwise                                                             

ij

i j
y



  

 Gini coefficient measure (Gini), see details in Drezner (2009) 
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Objective is to minimize Gini coefficient (a weighted measure of absolute 

differences): 

  
1 1 1 1

1 1

min  

2

n n m m

ij ij kj kj

i k j j

n m

ij ij

i j

d y d y

n d y

   

 

 

  

Which is equivalent to minimizing the numerator:

 

 1 1 1 1

min  
n n m m

ij ij kj kj

i k j j

d y d y
   

 
 

Subject to (3.4), (3.14) - (3.15) 

We use the Hanover County data, which contains 122 demand zones and 16 

potential stations.  We vary the total number of ambulances to be located from 5 to 10.  

Thus, in this case n=122, m=16, and p=q varies from 5 to 10.  hi is the proportion of 

demand at location i; i=1, …, 122 and all wl values are assigned according to probability 

of vehicles being busy as described in Section 3.4.  In this study we use a 9 minute 

response time threshold to evaluate coverage.  The goal here is to gauge how much 

improving equity compromises typical EMS performance measures, such as coverage.  

We solved all four facility location models to optimality (optimal solution to the p-envy 

model was confirmed via full enumeration) and then compared the resulting equity 

measures and coverage.  These results are shown in Tables 3.4 to 3.7.  In these tables we 

present several metrics for evaluating the quality of a solution.  We measure equity as the 

sum of weighted total envy, and we measure efficiency by the coverage of demand (this 

is the traditional measure of efficiency for EMS systems).  We also report the maximum 
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distance (Maxdist) between a demand zone and its closest open station (or the p-center 

objective) and the total covered demand.  In these tables, larger values of covered 

demand are desirable and smaller values of inequity measures (Maxdist, the Gini 

coefficient, and total weighted envy) are desirable.  The p-envy, Gini coefficient, and 

MCLP models produce unique optimal solutions while the p-center model often produces 

multiple solutions.  In the case that the p-center object produces multiple optimal 

solutions, we report the average values of the covered demand, and equity measures from 

all optimal solutions.   

Table 3.4: Results of p-envy 

p Opened stations Maxdist Gini coefficient Total weighted 

envy 

Covered 

demand 

5 {1 4 6 7 8} 12 0.3139 63.7672 1524 

6 {1 4 7 8 13 14} 10 0.3120 54.4391 1572 

7 {1 3 4 7 9 13 15} 7 0.2810 47.5000 1628 

8 {1 4 7 9 10 13 14 15} 8 0.2997 43.7513 1618 

9 {1 2 4 7 8 9 10 13 14} 8 0.2995 38.9498 1637 

10 {1 2 3 4 5 6 7 8 9 10} 6 0.2881 35.2600 1661 

 

Table 3.5: Results of MCLP 

p Opened stations Maxdist Gini coefficient Total weighted 

envy 

Covered 

demand 

5 {1 4 6 14 15} 12 0.3157 78.8367 1559 

6 {1 4 6 11 14 15} 10 0.2960 75.9275 1604 

7 {1 4 5 6 11 14 15} 10 0.3022 71.3908 1636 

8 {1 4 5 6 9 11 14 15} 8 0.2925 71.8066 1657 

9 {1 2 4 5 6 8 9 11 14} 8 0.2903 72.6818 1674 

10 {1 2 4 5 6 8 9 11 12 14} 6 0.2735 72.5320 1688 

 

Table 3.6: Results of p-center 

p Opened stations Maxdist Gini coefficient Total weighted 

envy 

Covered 

demand 

5 {1 2 3 6 8} 8 0.2772 130.4130 1173 

6 {1 3 4 9 13 15} 7 0.2623 125.9371 1153 

7 {2 3 4 8 9 11 13} 6 0.2658 170.9044 978 

8 {2 3 4 5 6 8 9 11} 6 0.2736 137.3588 1208 

9 {1 2 3 4 5 6 8 9 10} 6 0.2790 109.6269 1397 

10 {1 2 3 4 5 6 7 8 9 10} 6 0.2840 90.9555 1510 
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Table 3.7: Results of Gini 

p Opened stations Maxdist Gini coefficient Total weighted 

envy 

Covered 

demand 

5 {3 4 9 10 15} 8 0.2533 146.4598 776 

6 {3 4 9 11 13 15} 7 0.2588 154.1969 961 

7 {1 3 4 9 13 15 16} 7 0.2640 119.1073 1249 

8 {1 2 3 4 8 9 13 16} 7 0.2657 126.2046 1268 

9 {2 4 5 8 9 10 11 12 14} 6 0.2677 137.6112 1293 

10 {1 2 3 4 5 6 8 9 11 12} 6 0.2695 85.5668 1674 

 

 The four models are compared in Figures 3.2 to 3.4 in terms of the resulting 

equity and efficiency measures.  Figure 3.2 shows the total weighted envy for each model 

for p=5 to 10. As expected, the minimum p-envy model has the lowest sum of total 

weighted envy among these four models. Interestingly, the p-center and Gini coefficient 

models, that also try to reduce inequity, do not dominate the MCLP model.  A possible 

explanation for this is that neither the Gini or p-center models weight the demand zones 

by demand density, such that each zone is treated equally, which may be impractical in 

real systems, where demand density may vary widely by geographic location.  

Furthermore, the performance of the p-envy model is robust to the number of 

ambulances.  For all models the resulting Gini coefficient is stable, ranging only from 

0.2533 to 0.3157, while the maximum distance from a zone to its closest station 

(Maxdist) is quite variable, ranging from 6 to 12 miles.  Figure 3.3 compares the four 

models in terms of coverage.  In terms of coverage, we see that the Gini model performed 

much worse compared with the other models while the p-envy model performed very 

close to the MCLP model, whose objective is to maximize coverage.    The performance 

of the p-center model largely depends on the number of ambulances.  This is an undesired 

trait of the p-center model solutions because one would expect that coverage should 
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increase as the number of ambulances increase.  However, the p-center model does not 

weigh demand zones, and it sacrifices the coverage of densely populated areas in order to 

ensure better service to the demand zone that is ―worse off‖. 

 

 

Figure 3.2: Equity comparison—p-envy measure for each model 

 

 

 

Figure 3.3: Efficiency comparison—resulting coverage for each model 

0

20

40

60

80

100

120

140

160

180

4 6 8 10

To
ta

l w
e

ig
h

te
d

 e
n

vy

Number of vehicles

p-envy

Gini

p-center

MCLP

0

200

400

600

800

1000

1200

1400

1600

1800

4 6 8 10

C
o

ve
ra

ge

Number of vehicles

p-envy

Gini

p-center

MCLP



 

84 

 

To illustrate the tradeoff between equity and coverage, we plot the performance of 

all four models with respect to equity and coverage.  Figure 3.4 shows the results of all 

four models where the p-envy model uses the station available probabilities (see Section 

3.4) for station weights.  Interestingly, we see that the minimum p-envy location model 

not only yields the lowest total envy, but attains almost the same coverage as MCLP.  

Therefore, the p-envy model allows us to reduce inequity without sacrificing coverage, 

for this data set.  This is an unexpected outcome for the equity model presented, as equity 

and coverage tend to be conflicting objectives which necessitate a multi-objective 

approach, such as the one undertaken by Chanta et al. (2011a).  The results depend on the 

weights assigned to the priority of the stations (vector w).  For example, we note that 

Maxdist could be reduced in the p-envy model by giving more weight to the closest 

station (increasing w1).  Figure 3.5 shows the results when we have equal weight of 

station priorities ( wl= 1/q for all l).   

 

 

Figure 3.4: Coverage—equity trade off (with available probability station weights) 

800
900

1000
1100
1200
1300
1400
1500
1600
1700
1800

0 50 100 150 200

C
o

ve
ra

ge

Total weighted envy

p-envy

Gini

p-center

MCLP



 

85 

 

 

Figure 3.5: Coverage—equity trade off (with equal station weights) 

 

 We see that solutions of minimum p-envy model dominate solutions of other 

equity models, and this difference increases as the weights assigned to the backup 

stations become increasingly important. 
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that we consider the effect that all serving stations have on all customers, unlike most 
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respect to both computational time and quality of solutions.  We also compare the 

minimum p-envy location model with other equity models such as p-center and Gini 

coefficient to see how well the proposed model performs.  The results show that the 

proposed model not only yields the lowest total weighted envy compared with other 

equity models, but also yields highly efficient solutions in terms of coverage.  In fact the 

coverage of the minimum p-envy location model is very close to the coverage resulting 

from the standard maximal covering location model (MCLP).  These results are 

unexpected, as equity and coverage are usually conflicting objectives (Chanta et al., 

2011a).  The proposed model is helpful for facility location planners, especially in the 

realm of public service where reducing inequity is of high importance, though not at the 

expense of efficiency.  
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CHAPTER 4 

A PROBABILISTIC MINIMUM p-ENVY LOCATION PROBLEM: FOCUSING ON 

SURVIVABILITY OF PATIENTS 

 

4.1 Introduction 

Emergency medical service (EMS) is a public service that involves life-or-death 

situations which often require immediate medical assistance.  The EMS system is 

designed to be able to respond to a 911 emergency call to provide either urgent medical 

treatment or transport.  The system is activated by an emergency call, and then the EMS 

center dispatches the appropriate medical units to the call.  Most EMS systems' 

performance is measured by the percentage of calls responded to (covered) within some 

fixed time standard, known as the response time threshold (RTT).  Ideally, a system 

should be able to respond to a call with in the RTT.  However, it may not be possible to 

deliver care within the RTT for all customers; people who live in remote areas usually 

have to wait longer.  For example, Fitch (2005) notes that 90% of calls in urban areas are 

responded within a 9 minute RTT while 90% of calls in rural areas are responded within 

15 minutes. Moreover, when considering coverage, there is no difference between a call 

responded to within one minute and 8.59 minutes.  This is not reflective of patient 

outcomes; for example, patients who have cardiac arrest need help within 6 minutes 

otherwise; brain damage is likely to occur (Mayer, 1980). 

Since EMS systems provide important basic services, they are expected to serve 

the public fairly.  A patient's chance of receiving timely service is directly affected by the 

locations and availability of service facilities.  Many performance measures in facility 

location models have been introduced to equalize the chance of access to service between 
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customers.  Typically, the objective of these models is to minimize inequity of the system 

in terms of distance, or to minimize the variation of the distances between demand 

locations and facilities that serve them. The standard statistical dispersion measures such 

as range (see e.g. Brill et al., 1976; Erkut and Neuman, 1992), variance (see e.g.; 

Maimon, 1986; Kincaid and Maimon, 1989; Berman, 1990), mean absolute deviation 

(see e.g. Berman and Kaplan, 1990; Mulligan, 1991), and sum of absolute differences 

(see e.g. Keeney, 1980; Lopez-de-los-Mozos and Mesa, 2001; Mesa, 2003) are used as an 

inequity measure for equitably locating facilities.  Moreover, the Gini coefficient, which 

is commonly used to measure inequity of income, has been brought into the field of 

equitable facility location design (Maimon, 1988; Erkut, 1993; Drezer et al., 2009).  For a 

review of measures for equity in facility location, see Marsh and Schilling (1994). 

In this paper, we apply the concept of envy as one way to capture inequity of the 

system.  The minimum envy model was first introduced in location problems by Espejo 

et al. (2009).  Envy is a measure that considers the differences in service quality between 

all possible pairs of customers.  Since people feel no dissatisfaction when they are better 

off than others, only negative effects are considered in the minimum envy model.  Unlike 

other measures, the envy measure takes into account all individual effects compared with 

each other which results in overall satisfaction to the whole system. To say that one 

customer is better than another customer, we need to define a standard way to quantify 

the dissatisfaction of each individual which can be done in several ways.  Most location 

models included in Espejo et al.(2009) 's work  considers customers' dissatisfaction based 

on the distance from the customers' locations to their closest facilities, assuming that all 
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customers are only serviced by their closest facilities.  This representation is appropriate 

for some public services, such as post office locations or school locations where the 

customer travels to the facility, but not necessarily for EMS systems.  In an EMS system, 

the ambulance stationed at the closest facility is not always available to serve the 

customers, and in that case the ambulance stationed at the next closest facility might 

instead be dispatched. 

To take this into account Chanta et al. (2011b) developed the minimum p-envy 

model which defines dissatisfaction of customer in zone i as a function of distance from 

zone i to all p serving facility locations weighted by priority of the serving stations.  In 

this paper, we propose an enhancement to the p-envy model presented in Chanta et al. 

(2011b) which focus more directly on patient outcomes.  We redefine envy as differences 

of customers' satisfaction between zones (as opposed to dissatisfaction), and we consider 

satisfaction is measured by the survival probability of each demand zone (as opposed to 

distance from a station), which more accurately reflects patient outcomes.  The 

differences of calculating envy based on dissatisfaction or satisfaction is presented along 

with a study of assignment of priority weights to the p serving stations.  Moreover, the 

performance of the model is evaluated regarding of patients’ outcomes. 

The traditional way to measure performance an EMS system is by considering the 

coverage or the number of calls that can be responded to within a standard time.  That is, 

a call is considered as ―covered‖ if a vehicle located at a facility is able to reach the call 

location within the RTT, otherwise it is considered as ―uncovered.‖  This measure is 

called 0-1 coverage, which is commonly used in many facility location models.  The 0-1 
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coverage is simple and easy to interpret, but it cannot distinguish systems with response 

times faster than the RTT; that is, for a 9 minute RTT, reaching a call in 4 or 9 minutes 

yields the same coverage.  Moreover, the 0-1 coverage considers a call responded to 

within the RTT as a 100% covered call while it considers a call responded one second 

later as a 0% uncovered call which is not reflective of patient outcomes.  Several ways 

have been proposed to improve how to calculate the coverage such as using a step 

function or a gradual function (see e.g. Church and Roberts, 1983; Pirkul and Schiling, 

1991; Berman et al., 2003), for review see Eiselt and Marianov (2009).  Another way to 

relax the 0-1 coverage objective is to integrate survival function into the model.  Erkut 

etal. (2008) first introduced using survival function to evaluate the performance of the 

covering facility location models especially for the EMS systems. McLay and Mayorga 

(2010) also proposed a way to evaluate performance of the EMS system based on 

survival probability with respect to a piece-wise function of distance.  Since response 

time directly affect the patients' survival rate; it makes more sense to evaluate the 

performance of the system based on the overall survival probability instead of standard 

response time.  In our model, survival probability is incorporated into the objective as 

customers' satisfaction.  The performance of our model is evaluated against other well 

know location models in terms of the expected number of lives saved.   

The rest of the paper is organized as follows.  In Sections 4.2 - 4.3 we discuss two 

important model inputs.  In Section 4.2 we briefly describe how we estimate survival 

probability of a demand zone using existing models from the literature; followed by the 

details of calculating vehicle being busy using probabilities using the hypercube model in 
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Section 4.3. The notation and formulation of the minimum p-envy location model are 

presented in Section 4.4. Section 4.5 provides an illustrative example.  Section 4.6 shows 

the performance of the p-envy location model in comparison to other location models.  

Section 4.7 discusses the sensitivity of the p-envy location model when using different 

quality measures and different choices of priority assigned to serving facilities. Finally, 

Section 4.8 provides a conclusion. 

 

4.2 Estimating survival function 

 Typically, 911-emergency calls are classified by their degree of urgency into three 

types; priority 1, 2, 3.  Priority 1 calls involve with life-threatening emergencies such as 

cardiac arrest, priority 2 calls may involve life-threatening emergencies, and priority 3 

calls are believed to be non-life-threatening.  This study focuses on the priority 1 calls for 

which patient's survival is highly correlated with EMS response time.  In particular, the 

survival probability of a patient who has cardiac arrest depends on the response time.  

The survival probability at the time of collapse decays linearly to zero if there is no 

assistance.  However, survival probability may remain stable or decreasingly decay when 

EMS staff arrives and provides pre-hospital administration such as cardiopulmonary 

resuscitation (CPR), defibrillation, or medications.  Early EMS response time leads to 

early sequence of therapy which yields higher chance of survival.  Other factors that 

might affect survival probability of patient are type of trauma, age, sex, etc. Several 

studies focus on how to estimate the survival probability of patients who have cardiac 
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arrest based on influential variables including response time.  For a review see Erkut 

(2008). 

In this study, we selected the survival function estimated by Valenzuela et al. 

(1997).  The authors found that age, initial of CPR by bystanders, interval time from 

collapse to CPR, interval time from collapse to defibrillation, bystanders CPR/collapse to 

CPR interval interaction, and collapse to CPR/collapse to defibrillation interval 

interactions were significantly associated with survival, they also provided a simplified 

version of the predictive model in which only collapse to CPR and collapse to 

defibrillation intervals were used as variables; this model performed comparably to the 

initially more complex model.  The simplified model for estimating survival function is 

shown as follows. 

 
0.260 0.106 0.139 1( , ) (1 )CRP Defibt t

CPR Defibs t t e
         (4.1) 

Where s denotes the patient survival probability, tCPR is the interval time from 

collapse to CPR and tDefib is the interval time from collapse to defibrillation. 

For our purposes, let tRes denotes the response time or the travel time of EMS 

vehicle from station to incident.  Assume that it takes 1 minute after collapse to make a 

call for EMS dispatching, and CPR is performed immediately upon EMS arrival as well 

as defibrillation which is used by a paramedic or EMT resulting in tCPR = tDefib = 1+ tRes 

(these assumptions are similar to those made in Mclay and Mayorga (2010)).  Then, the 

model in Equation (4.1) can be rewritten as follows. 

 0.015 0.245 1( ) (1 )Rest

Ress t e
          (4.2) 
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Figure 4.1 shows the relationship between response time and probability of 

survival from Equation (4.2). 
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Figure 4.1: Scatter plot of probability of survival vs. response time based on  

Equation (4.2) 

 

4.3 Estimating probability of vehicle being busy using the hypercube model 

Even though an ambulance is stationed close to an incident, it is possible that the 

ambulance might be busy and unable to serve the call.  In order to estimate the 

probability of ambulance being busy, we used the hypercube model. Let pb denotes the 

probability that a randomly selected vehicle will be busy which depends on the number of 

vehicles that are deployed.  Using the actual data of a system, we can estimate the 

probability pb by pb =/µ where,  is the average number of calls per hour to the entire 

system, 1/µ is the average service time per call (hours), and p is number of ambulances 
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that are deployed.  This definition of pb assumes that all ambulances operate 

independently.  This assumption can be relaxed using the correction factor given by Batta 

et al. (1989) in an embedded hypercube model.  The hypercube model by Larson (1974, 

1975) has several underlying assumptions: 1) calls for service arrive according to a 

Poisson process, 2) if a call arrives while all servers are busy, it enters at the end of a 

queue and will be served in a FIFO manner. Constructing an M/M/p queuing system 

operating at steady state, we get the probability that all servers are available, p0, as given 

in Equation (4.3).  If there are l ambulances that may respond to a call, the probability 

that the l
th

 vehicle will be dispatched or it is available is calculated from the probability 

that l-1 ambulances are busy and the l
th

 vehicle is available.  The probability that the l
th

 

vehicle is available (wl) is shown in Equation (4.5) where Q (p, pb, l-1) is the correction 

factor which is given in Equation (4.4) and Q (p, pb, 0)=1. 
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1( , , 1)(1 )( )l

l b b bw Q p p l p p    ,   l=1, …, p  (4.5) 

4.4 The model 

 The p-envy model was first proposed by Chanta et al. (2011b), in which the 

concept of envy is modified to create an objective which is meaningful for the ambulance 

location problem.  A demand zone is a demand point where customers are located.  

Customers in demand zone i are said to feel envy when they receive inferior service as 
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compared to others, but when they receive superior service they have no feeling of envy.  

In other words, if customers in zone i have higher (lower) dissatisfaction (satisfaction) 

than customers in other zones, they feel envy.  In the original p-envy model, envy was 

measured in terms of distance, where longer distances were associated with 

dissatisfaction.  In our model, we define envy in terms of survival probabilities, such that 

higher survival probabilities are associated with satisfaction.  Thus envy of demand zone 

i is the level of customers' satisfaction in demand zone i as compared to other demand 

zones.  The satisfaction of customers in demand zone i is an ordered vector of the 

survival probability of demand zone i calculated based on its serving stations (facility 

locations) in decreasing order.  That is, the survival probability of demand zone i when 

serviced by its closest station, which is the primary station, is the first element in the 

satisfaction vector, followed by the survival probability of demand zone i when serviced 

by its next closest station or the secondary station, and so on.  The serving stations, 

except for the primary stations, are called backup stations, of which we can have one or 

more for each demand zone.  Since different demand zones have different total number of 

customers (demand or call density), we weigh the total envy in each demand zone by the 

proportion of demand in that zone.  An illustrative example of how envy is calculated is 

presented in the next section.  We use the following notation: 

  n  = the number of demand zones 

  m  = the number of potential stations 

  p  = the number of ambulances to be located (stations to be opened) 
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  q  = the number of serving stations which consists of one primary  

      station and q-1 backup stations where q≤p 

  wl  = weight of the k-priority station 

  Hi  = demand (call volume) in zone i 

  hi  = weight (proportion of demand) of zone i = 

1

i

n

i

i

H

H



 

  
ijs   = the survival rate of customers in zone i when serviced by  

      station j 

 The p-Envy Location Model is introduced as an integer programming model.  The 

objective of the equitable location model is to minimize the sum of weighted envy among 

all demand zones, as shown in Equation (4.6).  Equations (4.7) - (4.8) work together to 

calculate the envy between all possible pairs of customers.  The variable 𝑒𝑖𝑘
𝑙  takes on 

value 0 when zone i is served by a closer facility than zone j compared with the same 

priority station, otherwise it is equal to the difference between the distance from zone i to 

its serving station and the distance from zone j to its serving station, that is 

1 1

=max 0, -
m m

l l l

ik kj kj ij ij

j j

e s y s y
 

   
  
   

  .  Equation (4.9) limits the number of ambulances that 

are available to be located, or equivalently, number of stations to be opened.  Equation 

(4.10) ensures that a demand zone must be served by exactly one facility at each l
th

 

priority station.  Equation (4.11) ensures that a station can either serve as a 1
st
 or 2

nd
 or l

th
 

priority of zone i.  Equation (4.12) requires that a demand zone i can be served by facility 

j if station j is open.  Equation (4.13) assigns a station to serve zone i by considering the 
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survival chance of receiving service from an open station to the zone; the station that 

provides higher survival chance receives the higher priority to serve zone i. 

The Minimum p-Envy Location Model (MpELP): 

Minimize  
1 1 1

q n n
l

l i ik

l i k

Z w h e
  

       (4.6) 

 Subject to: 
1 1

m m
l l l

ik kj kj ij ij

j j

e s y s y
 

  
 

for i,k=1,…, n: ki; l=1,…, q  (4.7) 

   0l

ike     for i,k=1,…, n; l=1,…, q  (4.8) 

   
1

m

j

j

x p


        (4.9) 

   
1

1
m

l

ij

j

y


  for i=1,…,n; l=1,…,p    (4.10) 

   
1

1
p

l

ij

l

y


   for i=1,…, n; j=1,…, m   (4.11) 

   
l

ij jy x   for i=1,…, n; j=1,…, m; l=1,…, p  (4.12) 

   

1l l

ij ij ij ijs y s y    for i=1,…, n; j=1,…, m; l=1,…, p-1  (4.13) 

 Where:  

  
  

                                      

1 if a facility is located at station 
=

otherwise0
j

j
x



    

 

1   if a facility at station  assigned to serve zone  as the  priority station

0   otherwise                                                                                                   

th

l

ij

j i l
y 





 

Note that the l

ike  takes on positive value when customers in zone i have less 

satisfaction than customers in zone j, which means that customers in zone i envy 
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customers in zone j.  Otherwise the l

ike  takes on value zero, which means customers in 

zone i have higher survival rate compared to zone j so they have no feeling of envy.  The 

proportion of demand at node i is the weight (hi) that we assign to differentiate between 

call volume at different demand zones.  As mentioned earlier, customers in each demand 

zone may have satisfaction with respect to all serving stations; first priority station, 

second priority station, and so on.  Thus, we can differentiate the envy with respect to 

different serving stations by adding the different weights (wl) to each level of priority; 

l=1, ..., q, where q is the number of serving stations that are restricted to respond to a 

particular zone.  Note that q≤p where p is the number of stations that will be opened.  A 

station is said to be opened when there is at least one ambulance stationed for serving 

customers. We note from Equation (4.6) that since there is no contribution to the 

objective of locating more than one ambulance at the same station, the number of open 

stations and the number of ambulances are the same.  To avoid a trivial solution we 

assume that m ≥ p where m=the number of potential station locations, otherwise there are 

excess ambulances to be located.  This assumption allows us to specify the effect that 

each station has on a demand zone through the vector w=(w1, …, wq), wl ≥0,
l .  Without 

loss of generality, we scale and order the wl's such that
1

1
q

l

l

w


 and
1 2 ... qw w w   .  

Station priority weights can be assigned in various ways, depending on how the system 

administrator values backup service.  For example, if a system only utilizes one backup 

station, we can set w1 and w2 to be active, and the rest to be 0. 
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4.5 Illustrative example 

 The objective function described in (4.6) is difficult to calculate. Here we present 

an illustrative example.  Suppose there are three demand zones, three potential stations 

for locating EMS ambulances, and two ambulances. In this case, n=3, m=3, and p=q=2.  

To estimate the survival probability of each demand zone, we have to know the location 

of its serving facilities.  Once we know which facility is open, we can calculate the 

probability of survival using the relationship between the response time and the survival 

probability provided in Equation (4.2), assuming that response time is a function of the 

distance.  Matrix d is an input distance matrix in which each element dij represents the 

distance (in miles) from demand zone i to station j where the number of rows represents 

the number of demand zones (n) while the number of columns represents the number of 

potential stations (m).  Assuming that exactly 2 minutes are required to travel 1 mile, we 

get the response time to be used to estimate the probability of survival with respect to all 

stations (s).  In a previous paper, Chanta et al. (2011b) directly used the distance matrix 

as customer's dissatisfaction to calculate envy, but in this paper we attempt to more 

realistically reflect patient outcomes by using the survival probability matrix as 

customer's satisfaction to calculate envy.  Other inputs include the proportion of demand 

in each demand zone i (h), and the weights assigned each priority open station (w). The 

inputs to this small example are given below in matrix form below.   
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The vector h denotes that 20%, 30% and 50% of customer calls originate in 

demand zones 1, 2, and 3, respectively.  The vector w indicates that a patient's envy will 

be comprised of 60% resulting from envy regarding their primary serving station and 

40% envy regarding their secondary serving station.  Suppose ambulances are located at 

station 1 and station 2, the third column of the matrix s is neglected, and then customers 

in demand zone 1 have probability of survival of 0.277 if it is reached from its 1
st
 priority 

or primary station, and also 0.277 chances of survival if it is reached from its 2
nd

 priority 

or secondary station.  Demand zone 2 is located closer to station 2, so station 2 serve as a 

1
st
 priority station of zone 2, and station 1 serves as a 2

nd
 priority station of zone 2, with 

survival probability of 0.125, and 0.019, respectively.  The same with demand zone 3, it 

is served by station 2, and station 1 as 1
st
 and 2

nd
 priority stations respectively.  Next, the 

envy of demand zone i with respect to demand zone j, in regards to their 1
st
 priority 

stations is calculated from the difference of survival probability of demand zone i 

regarding to the service provided by its 1
st
 priority station and survival probability of 

demand zone j regarding to the service provided by its 1
st
 priority station whereas if 

demand zone i has higher probability of survival than demand zone j regarding to their 1
st
 

priority stations, the envy of demand zone i with respect to j is equal to 0, because 

demand zone j does not have higher chance of survival than demand zone i.  If demand 

zone i has survival probability regarding to the service from its 1
st
 priority station lower 

than demand zone j has to theirs, demand zone i envies demand zone j which we quantify 

as the difference in satisfaction between demand zone i and demand zone j.  The envy 

matrix (𝑒𝑖𝑘
𝑙 ) corresponding to locating ambulances at station 1 and 2 is calculated from 
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the summation of max{0, 
1 1

m m
l l

kj kj ij ij

j j

s y s y
 

  } where l=1,2; i,k=1,2,3; k i.  For example, 

𝑒12
1  =max{0, 0.125-0.277}=0, 𝑒13

1  =max{0, (0.080-0.277)}=0, and 𝑒23
1  =max{0, 0.080-

0.125)}=0, 𝑒21
1  =max{0, 0.277-0.125)}=0.152.  The total envy of all demand zones with 

respect to all serving stations is equal to the summation of all elements in the envy matrix 

multiply by the demand zone weight (hi) and the station weight (wl).  If we locate 

ambulances at station 1 and 2, the total envy of all demand zones is equal to 0.1872.  Our 

goal is to find the station locations that give the minimum total of envy.  With this small-

size example, one can easily enumerate all possible solutions, and the optimal solution is 

opening stations at locations {2, 3} with a total envy value of 0.0676.  So locating 

ambulances at stations 1 and 2, we balanced chances of survival among all customers in 

the system.  Using the integer programming formulation of the minimum p-envy model, 

developed in previous section, a solver found an optimal solution at x={0,1,1}, y={[(0,0), 

(1,0), (0,1)], [(0,0), (1,0), (0,1)], [(0,0), (0,1), (1,0)]}, e={[(0,0), (0,0.043), (0,0.073)], 

[(0.152,0), (0,0), (0.152,0.030)], [(0,0), (0,0), (0,0)]}. 

 

4.6 Performance of the minimum p-envy location model with survival function 

In this section, we would like to compare our p-envy model to other location 

models. Three well-known location models selected are maximal covering location 

problem (MCLP), p-center, and Gini coefficient.  Since the p-envy belongs to a class of 

equitable location models; thus, we want to compare it with other equity measures such 

as p-center, which improves the service quality of the customer who received the worst 
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service, and Gini coefficient, which minimizes the differences in service quality between 

customers.  Moreover, most equity location models tend to give low coverage, thus we 

also compare the p-envy with the MCLP model. 

For fair comparison, instead of evaluating the objective function based on the 

distance matrix as the original version of these three models do, we use the survival 

probability.  That is, in this paper the p-center model maximizes the customer who 

receives the lowest survival rate (we elaborate further on this later).  Because we focus on 

the EMS system, using the survival rate is more meaningful to represent real patient 

outcomes than distance.  Most location models use the distance traveled from the facility 

to the demand zone or the response time as an input metric.  However, distance is a linear 

function while survival probability is a nonlinear function. Thus, based on the distance 

matrix, if an ambulance is located closer to a demand zone the contribution to the 

objective is increasing linearly as distance is decreased; while the survival probability of 

patient is increasing non-linearly.  The survival function estimated by Valenzuela et al. 

(1997) gives us one way to convert the response time to survival probability.  This can 

lead to different solutions to the facility location problem.  While there are many other 

possible survival functions that could be used, we choose this one as a way to that 

illustrate the resulting solution can be very different when some direct metric for patient 

outcomes (such as survival probability) is used instead of distance in the objective of 

location models. 

Below we review each location model used to compare with the p-envy model 

enhancement proposed here.  As mentioned earlier, for fair comparison, each model has 
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the same input metric to the objective function; that is survival probability.  For some 

models, using distance and survival does not affect the solution.  For example, the MCLP 

maximizes the number of calls that can be responded to within some time standard, 

which can be reinterpreted in terms of survival as maximizing the number of calls that 

can responded to in order to achieve at least the survival probability associated with that 

time standard.  For example, if an ambulance is able to reach the call within 9 minutes, a 

patient has survival probability equal or greater than 0.125 according to Equation (4.2).  

In p-center, the goal is to improve the customer that receives the worst service in the 

system. Traditionally, the worst service refers to the customer farthest from a facility, in 

this case, it is the one with the lowest survival probability.  So, the objective of the p-

center model in this context is to maximize the minimum survival probability.  For both 

the MCLP and p-center models, using distance as opposed to survival as a metric does 

not change the solution.  This is not so for the Gini coefficient.  This model minimizes 

the differences between individuals.  Instead of distance, here each individual has 

different survival probabilities that depend on the station locations.  The formulations of 

each model are provided below.  Note that the Gini coefficient only considers differences 

in quality of service from the closest serving station, while the penvy envymodel 

considers all p serving stations. 

 Minimum p-envy location problem (MpELP) 

Objective is to minimize sum of envy weighted by proportion of demand: 

1 1 1

min 
q n n

l

l i ik

l i k

Z w h e
  


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Subject to  (4.7) - (4.13). 

 Maximal covering location problem (MCLP), see original version in 

Church and ReVelle (1974) 

Objective is to maximize proportion of demand that can be covered 

(reached within a given response time threshold): 

1

max
n

i i

i

Z y H



 

 Subject to 
1

m

ij j i

j

a x y


  for all i=1, 2, …, n   (4.14) 

    and (4.9) 

  Where    
1 if demand zone  is covered by an open station

=
0 otherwise                                                         

iy
i


  

  

   
1 if  station  can cover demand at zone 

=
0 otherwise                                             

ija
j i




 

 p-center, see details in Daskin (1995) 

Objective is to minimize the maximum distance from customers to their 

closest station: 

max Z
 

 

Subject to 
1

m

ij ij

j

s y z



 

for all i=1,2, …, n   (4.15) 

   1

1
m

ij

j

y



 

for all i=1, 2, …, n   (4.16) 

    
ij jy x  for all i=1,2, …, n, j=1, 2, …, m (4.17) 
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  and (4.9) 

Where  
1   if a demand zone  is served by facility at station 

=
0 otherwise                                                             

ij

i j
y



  

 Gini coefficient measure (Gini), see details in Drezner (2009) 

Objective is to minimize Gini coefficient (a weighted measure of absolute 

differences): 

  
1 1 1 1

1 1

min  

2

n n m m

ij ij kj kj

i k j j

n m

ij ij

i j

s y s y

n s y

   

 

 

  

Which is equivalent to minimizing the numerator:

 

 1 1 1 1

min  
n n m m

ij ij kj kj

i k j j

s y s y
   

 
 

Subject to (4.9), (4.15) - (4.16) 

We compare the performance of these models by considering the equity and 

efficiency.  The total envy represents the equity of the system while the number of lives 

expected to be saved represents efficiency of the system, which is calculated by using the 

survival function.  The number of lives saved in each zone is calculated based on the 

survival probability with respect to the distribution of their serving facility, and the 

summation of all zones represents the expected number of lives saved of the whole 

system.   

 We use real world data from the Hanover County, VA Fire and EMS department, 

which contains 122 demand zones and 16 potential stations, to serve a county of 474 
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square miles as shown in Figure 4.2.  The area is divided into 175 demand zones of 2 by 

2 mile squares, where each zone has requested calls aggregated at the center of the zone.  

The distance between existing facilities and each demand zone is estimated by using the 

Euclidian distance since about 70% of the county is rural.  We excluded the zones that 

have no demand, so the total number of the zones that demand exists is 122.  Based on 

data during the year 2007, the average number of requested calls in Hanover is 1.2 

calls/hour during the peak hours when the call volume is constant.  The call volume of 

interest is from the evening weekend data.  This time period was selected for two reasons.  

First, the data analysis suggests that these times operate in steady state, with the customer 

arrival rate approximately constant per unit time.  The call volume used in this example is 

1711 calls (note that the total call volume during the year is >6000).  The average service 

time per call is 74 minutes or 1.2 hours. This data is necessary for estimating the 

probability that vehicle will be busy.  The total number of ambulances to be located is 

varied from 5 to 10. Thus, in this case n=122, m=16, and p varies from 5 to 10.  We use a 

9 minute RTT as it is what was in place in Hanover County.  hi is the proportion of 

demand at location i ; i=1, ..., 122 and all wl values are estimated by using hypercube 

model M/M/p as describes in Section 4.3, where l=station priority; l  i, …, q, and 

q=number of serving stations.  Note that w1 ≥w2≥…≥wq, respectively.  The probability of 

the l
th

 priority vehicle being available (while if all other higher priority vehicles are busy) 

is shown in Table 4.1. 
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Table 4.1: Probability that vehicle l
th

 available (wl) 

p l 

1 2 3 4 5 6 7 8 9 10 

5 0.7040 0.1879 0.0585 0.0214 0.0091      

6 0.7533 0.1739 0.0464 0.0145 0.0053 0.0022     

7 0.7886 0.1593 0.0368 0.0098 0.0031 0.0011 0.0005    

8 0.8150 0.1459 0.0295 0.0068 0.0018 0.0006 0.0002 0.0001   

9 0.8356 0.1340 0.0240 0.0048 0.0011 0.0003 0.0001 0.0000 0.0000  

10 8.8520 0.1237 0.0198 0.0036 0.0007 0.0002 0.0000 0.0000 0.0000 0.0000 

 

 Figure 4.2: Map of fire and rescue stations in Hanover County, Virginia 

 

 We tested four facility location models with 5 cases each, for a total of 20 cases.  

These are solved on a Dell Latitude D410 machine with Intel Pentium processor 1.73 
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GHz, 1 GB of RAM.  The Tabu search, which developed according to Chanta (2011b), 

obtained the optimal solution in each case in 3 to 5 seconds.  We also verified the 

solution obtained by the Tabu search to the optimal solution obtained by enumerating all 

possible solutions to make sure that each solution is optimal.  The results are reported in 

terms of each objective value: the minimum survival probability (Minrate) between 

demand zones and their closest open stations which is the p-center objective, the Gini 

coefficient (Gini) which is the Gini objective, the total covered demand (coverage) which 

is the MCLP objective, and the total weighted envy (total envy) which is the p-envy 

objective.  We also do post-processing to report other relevant performance measures: the 

number of lives saved (livesaved), the average survival probability (avg), the weighted 

average survival probability (wavg).  The results are shown in Tables 4.2-4.5.   

Table 4.2: Min p-envy with survival rate 

p Opened stations Minrate Gini Total Coverage Post-processing 

    envy  livesaved avg wavg 

5 {1 4 7 8 13} 0.0028 0.4645 2.2179 1543 508.4248 0.1428 0.2972 

6 {1 4 6 7 8 10} 0.0028 0.4701 2.3563 1525 536.7084 0.1477 0.3137 

7 {1 4 5 6 7 8 10} 0.0028 0.4566 2.4740 1557 545.2211 0.1574 0.3187 

8 {1 3 4 6 7 8 9 10} 0.0075 0.3805 2.5527 1597 556.0802 0.1833 0.3250 

9 {1 3 4 5 6 7 8 10 11} 0.0075 0.3346 2.5723 1637 566.2083 0.2030 0.3309 

10 {1 2 3 4 5 6 7 8 10 11} 0.0197 0.2786 2.5591 1666 575.1165 0.2231 0.0197 

 

Table 4.3: Max MCLP with survival rate 

p Opened stations Minrate Gini Total Coverage Post-processing 

    envy  livesaved avg wavg 

5 {1 4 6 14 15} 0.0028 0.4242 3.3349 1559 398.1236 0.1525 0.2327 

6 {1 4 6 11 14 15} 0.0075 0.361 3.9310 1604 410.1897 0.1763 0.2397 

7 { 1 4 5 6 11 14 15} 0.0075 0.3464 4.2469 1636 418.7129 0.186 0.2447 

8 { 1 4 5 6 9 11 14 15} 0.0197 0.3194 4.6383 1657 424.4131 0.1987 0.248 

9 { 1 2 4 5 6 8 9 11 14} 0.0197 0.2863 4.9833 1674 436.1053 0.2149 0.2549 

10 { 1 2 4 5 6 8 9 11 12 14} 0.0509 0.2557 5.4090 1688 439.8288 0.2285 0.2571 
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Table 4.4: Max p-center with survival rate 

p Opened stations Minrate Gini Total Coverage Post-processing 

    envy  livesaved avg wavg 

5 {1 2 3 6 8} 0.0197 0.3815 3.8798 1509 364.9606 0.1621 0.2133 

6 {1 3 4 9 13 15} 0.0318 0.3458 5.2742 1249 333.4969 0.1746 0.1949 

7 {2 3 4 8 9 11 13} 0.0509 0.3156 7.7409 978 256.6419 0.1915 0.1500 

8 {2 3 4 5 6 8 9 11} 0.0509 0.3019 6.5561 1312 315.8165 0.201 0.1846 

9 {1 2 3 4 5 6 8 9 10} 0.0509 0.2922 4.4116 1644 434.5122 0.2103 0.254 

10 {1 2 3 4 5 6 7 8 9 10} 0.0509 0.2849 2.5884 1661 572.0506 0.2187 0.3343 

 

Table 5: Min Gini with survival rate 

p Opened stations Minrate Gini Total Coiverage Post-processing 

    envy  livesaved avg wavg 

5 {3 4 11 13 15} 0.0075 0.3628 6.2300 940 239.2495 0.1626 0.1398 

6 {2 3 4 8 11 13} 0.0197 0.3354 7.1103 958 251.1741 0.1798 0.1468 

7 {1 2 3 4 8 11 13} 0.0197 0.3107 6.1343 1273 348.8485 0.1965 0.2039 

8 {1 2 3 4 8 9 11 13} 0.0509 0.2879 6.5704 1293 354.3163 0.2083 0.2071 

9 {1 2 4 8 9 11 12 13 14} 0.0509 0.2703 5.6100 1593 398.3211 0.2196 0.2328 

10 {1 2 3 4 7 8 9 11 12 13} 0.0509 0.2530 2.9830 1678 546.8512 0.2305 0.3196 

 

 In these tables, larger values of covered demand and maxi-min survival rate are 

desirable while smaller values of Gini coefficient and total weighted envy are desirable.  

The four models are compared in Figures 4.3 to 4.5 in terms of the resulting equity and 

efficiency measures.   From Figure 4.3, we see that p-envy yields the lowest total envy as 

expected.  Interestingly, it also yields high coverage as shown in Figure 4.4.  These 

results are interesting, as equity location models tend to trade off coverage in order to 

achieve higher equity.  As expected, since the MCLP focuses only on efficiency; it yields 

the best coverage while the other three location models, which belong to the category of 

equitable location models, are expected to yield lower coverage when compared to the 

MCLP.  The results show that the p-envy model yields highest coverage among the three 
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equitable location models, and in fact, its coverage is almost as good as the optimal 

coverage provided by the MCLP. 

 

Figure 4.3: Equity comparison of location models 

 

 

Figure 4.4: Coverage comparison of location models 
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Figure 4.5: Efficiency comparison of location models 

 

 

 

Figure 4.6: Equity-Efficiency trade off among location models 
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 As mentioned earlier, coverage alone may not be a suitable criterion to measure 

the performance of an EMS system.  We are interested in the number of lives saved as 

shown in Figure 4.5. The p-envy model yields the highest number of lives saved which 

means that by reducing the envy of the system with respect to survival probability we are 

able to save more lives than by focusing on other measures.  The benefits (in terms of 

number of lives saved) of using the p-envy model increases as the number of vehicles 

decreases.  If a system has high resource capacity (in this case ambulances), locating 

ambulances by any one of the three equity measures tends to yield the same number of 

lives saved.  However, if the system has limited resources, in this example, less than 10 

ambulances, locating ambulances by different equity measures could drastically reduce 

the number of lives saved (out of 1711 calls). 

To illustrate the tradeoff between equity and efficiency, we plot the performance 

of all four models with respect to equity and number of lives saved.  Figure 4.6 shows the 

results of all four models where the p-envy model uses the station available probabilities 

(see Section 4.3) for station weights.  Interestingly, we see that the minimum p-envy 

location model with survival function not only yields the lowest total envy, but also yield 

the highest number of lives saved.  Therefore, the p-envy model allows us to reduce 

inequity and at the same time maintain efficiency in term of saving lives.  These results 

suggested that p-envy is more preferable to EMS systems than the other three.  The 

results depend on the weights assigned to the priority of the stations (vector w). 

 

 



 

113 

 

4.7 Sensitivity analysis of the p-envy model inputs 

 In this section, the results of the p-envy model when using different measures to 

calculate the total envy of the system are compared when different priority weights are 

given to stations.  In Section 3.6, we used the survival function to calculate the envy of 

each demand zone and the total envy of the system.  In this section, the distance matrix 

has been used to quantify the envy of each demand zone and then the summation of the 

envy at each demand zone is the total envy of the system.  The distance from a demand 

location to its serving facility represents customer's dissatisfaction.  This is opposite to 

the way we calculate envy using the survival probability; in this case, people feel envy 

when they are further away from a facility.  Let d be the distance matrix from a demand 

zone to all existing stations, where dij is the distance from demand zone i to facility at 

station j.  The objective function is changed when we are working with dissatisfaction 

data instead of satisfaction data.  Let l

ike  be the envy of zone i compared to zone k with 

respect to their l
th

 priority stations.  Then  max 0,l l l

ik ij ij kj kje d y d y  , where the positive 

value of the max function represents the feeling envy.  So the constraints (4.7) and (4.13) 

need to be changed as the following.   

  
1 1

m m
l l l

ik ij ij kj kj

j j

e d y d y
 

  
 

for i,k=1,…, n: ki; l=1,…, q  (4.18) 

 

1l l

ij ij ij ijd y d y     for i=1,…, n; j=1,…, m; l=1,…, p-1  (4.19) 

 Since we focus on EMS systems, the survival function is a reasonable measure to 

quantify envy.  However, distance is most often used in location models.  Here, we 
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investigate how different the solution based on the distance matrix is from the solution 

based on the survival function in the p-envy model. 

Another factor that would effect on the solution of the p-envy model is the station 

weight; thus, we tested 4 different ways to assign the weights (or priorities) to stations.  

The first way is assigning the probability that a vehicle at each station will be available as 

a station weight (w).  The probability of vehicles being available is estimated by the 

hypercube model as described in Section 4.3.  Note that the weights estimated by 

hypercube model are nonlinearly decreasing.  An important property of the vector w is wi 

≥wj if i≤j since an ambulance at a higher priority station should be more likely to be 

dispatched.  One might design a simple way to choose the weight vector by making it 

linearly decreasing by assigning 
1

l

q l
w

K

 
  , where K=1+2+ ... +q, l=station priority ; l 

 {i, …, q} and q=number of serving stations.  If all serving stations are equally likely to 

be dispatched, we can set all wk values to be the same; 
1

kw
q

  for all k  {i, …, q}.  If a 

system doesn't have a backup station or in other words, only the closest station is always 

dispatched, we can set the w=(1,0, ...,0).  Figure 4.7 shows the solutions of the p-envy 

model when using different input matrices and different station weights. 
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(a) Hypercube probability weight 

 
(b) linear decreasing 

 

 
(c) equal weight 

 
(d) weighted on only the closest station 

 

Figure 4.7: The p-envy model with different measures and different weight vectors 

 

From Figure 4.7 we make several observations.  First, note that using the 

probabilities of vehicles being available as priority weights yields the highest number of 

lives saved among all four cases regardless of the envy measure used.  That is, assigning 

station weights according to either (b) or (c) or (d) either attaches to much or too little 

importance to the backup stations.  The difference between the performance of distance 

versus survival as a measure of envy depends on the priority weights assigned to stations.  

Figure 4.7(a) shows that using distance as a measure of envy leads to degraded 
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performance of the system.  On the other hand, panels (a)-(d) in Figure 4.7 show that the 

results of using the distance matrix depend on the number of stations in use. Over all 

cases (p  [5, 6, …, 10]), the average benefit of using survival as a measure of envy 

instead of distance when priority weights are assigned based on busy probabilities is 8 

more lives saved.  The probability based weight assignment yields similar benefits, 

resulting in 12 (8) more lives saved over using other weight assignments when survival 

(distance) is used to measure envy.  The details of other cases are summarized in Table 

4.6. 

Table 4.6: Average number of lives saved gained by using survival objective 

weight (w) avg number of lives saved benefit gained 

 survival distance (out of1711 calls) 

a) hypercube probability 547.96 539.93 8.03 
b) linearly decreasing 534.10 532.99 1.10 
c) equal 530.49 524.75 5.75 
d) on only the closest 

station 
541.22 538.67 2.55 

average benefit of (a) 12.69 7.80  

 

4.8 Conclusion and discussion 

Minimum p-envy is one of many equity measures that have been used to 

minimize inequity of a system in facility location problems in which quality of service 

depends on the distribution of the facility locations.  Most facility location models 

represent the quality of service as the distance traveled from a demand location to its 

closest facility location.  In this paper, we discuss another way to represent quality of 

service by relating to patient outcomes.  In particular we consider envy with respect to 

survival probability, which is attained as a function of response time.  Furthermore, since 
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the analysis is focused on an EMS system, the expected number of lives saved is 

calculated ex-post to assess the performance of the system.  Four different location 

models, which are maximal covering location problem (MCLP), p-center, Gini 

coefficient, and p-envy, are selected to be studied and their performance is compared 

using the survival probability as a quality of service measure instead of distance traveled.  

The optimal solution for each problem is then further analyzed in order to gauge the 

performance of each model side by side.  Measures of interest included number of lives 

saved: the average survival probability and the weighted average survival probability of 

the system. 

The p-envy model yielded the lowest total weighted envy of the system while 

maintaining high coverage; the coverage is almost as high as the MCLP.  Moreover, the 

p-envy yielded the highest number of lives saved among these four location models.  

From sensitivity analysis, we found that the solution of the p-envy model depends on the 

quality of service measures and the station weights.  Using distance instead of survival 

probability may result in overestimation or underestimation of performance of the 

system.  The solution gap depends on how the station weights are assigned.  A station 

weight assigned to a given station should be associated with the proportion of time that a 

vehicle at the station is likely to be dispatched in the real situation.  Thus including 

survival probability as well as busy probabilities in the p-envy model can results in many 

additional lives saved at no additional costs.  The benefits of using the p-envy model over 

other facility location models, in terms of number of lives saved, are similar. These 

benefits increase as resources become more limited. 
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CHAPTER 5 

CONCLUSION 

 

5.1 Summary 

We have presented three different location models that deal with the equity issue 

in EMS systems.  All three location models are formulated as integer programs.  The 

objective is to minimize inequity of service among customers.   

In Chapter 2, we proposed three bi-objective location models that focused on 

balancing equity of service between rural and urban areas.  Each model is formulated as a 

bi-objective programming where the first objective is to maximize the number of covered 

calls, while the second objective is to reduce disparity between urban and rural areas.  We 

proposed three ways to reduce inequity of the system: a) minimize the maximum distance 

between the uncovered zone to its closest stations, b) minimize the number of uncovered 

rural zones, c) minimize the number of uncovered zones either it is a rural or urban, 

which result in three bi-objective location models.  We accounted for the probability of a 

vehicle being busy and considered partial coverage by using the hypercube queuing 

model.  We solved the problem with the -constraint approach via an optimization 

software, and the optimal solutions were found in several seconds.  The results showed 

that all three bi-objective location models have ability to balance disparities between rural 

and urban areas.  In particularly, Model (a) yielded the lowest average weighted distance 

from all call locations to their closest stations, Model (b) produced the largest number of 

non-dominated solution points, and Models (a) and (c) yielded equitably efficient 
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solutions in terms of providing equally individual effects of system (Chanta et al., 2009, 

2011a). 

In Chapter 3, we proposed a new equitable location model, namely, the minimum 

p-envy location problem, which focused on minimizing inequity of a system by reducing 

the differences of dissatisfactions among all customers in the system.  The concept of 

envy was applied and incorporated into the objective which allowed us to consider the 

inequity based on the effect of everyone in the system based on the distribution of facility 

locations.  The model considers the probability of a vehicle being busy using the 

hypercube model and specifies the priority of the serving stations; primary station and 

backup stations.  The problem was solved via the developed heuristic, tabu search, since 

optimization software cannot handle large size problems.  The tabu search obtained near-

optimal solutions in a few seconds.  The result of the p-envy model was compared to 

other location models, and it showed that p-envy yielded lowest total envy in the system 

while maintaining as high as coverage as the maximal covering location model (Chanta et 

al., 2010a, 2011b).   

In Chapter 4, we extended the performance of the minimum p-envy location 

problem by using an input metric for evaluating the objective which is more directly 

related patients’ outcome.  The probability of survival was incorporated into the 

objective, and the inequity of the system is still minimized by reducing the total envy of 

the system as original minimum p-envy location problem.  But instead of minimized the 

differences of dissatisfactions, we minimized the differences of satisfactions among all 

customers in the system.  The hypercube model is used to estimate the probability of a 



 

120 

 

vehicle being busy at each station, as well as the priority of serving stations that was 

taken into account.  The results of the p-envy model with survival probability compared 

to other location models showed that higher number of lives are saved when locating 

facilities based on the proposed model at the same capacity of resources (Chanta et al., 

2010b).  

 

5.2 Concluding Remarks 

 Minimizing inequity in a facility location problem can be done in several ways 

with different objective functions.  Designing the objective function is the first important 

step that we have to consider.  The objective function should be able to represent the 

overall inequity of a whole system.  An effective objective function leads to improve both 

equity of overall system and individual effect.  Minimizing the number of uncovered 

rural zones reduces overall inequity of the system but does not provides small individual 

effect compared to minimizing the maximum distance from an uncovered zone to its 

closest station, which reduces overall inequity of the system and also reduces the effects 

of individuals. 

 Most of facility location models evaluate their objective functions based on the 

traveled distance from customers to facilities.  This measure is not appropriate for EMS 

system which is related to life/death situation. Survival chance of patients is a key thing 

that should be considered and incorporated in to the model.  We have shown that using 

survival probability to evaluate the objective instead of traditional distance can greatly 

improve the performance of the minimum p-envy location model.  However, not all 
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facility location models can improve their performances by simply replacing the survival 

probability with the traveled distance. 

 A good facility location model should be able to capture realistic situations in the 

system, so we ensure that it represents the real system.  The proposed bi-objective models 

are able to account for the chance of vehicle being available according to system 

busyness or queuing, and partial coverage with facilities at the same or different stations.  

The minimum p-envy location model is able to translate real customers’ feelings in to an 

equitable location model.  It is able to account for the chance of vehicle being available 

according to system busyness, the priority weights of serving stations; primary and 

backup stations, including the chance of patients’ survival.  Fail to capture the realities of 

the system may lead to an underestimate or overestimate the performance of the system.  

 

5.3 Future Work 

 Incorporating how a system operates its facilities into the facility location model 

could be an interesting area for facility location model for EMS systems. EMS systems 

operate their facilities differently, depending on available resources, capacity of staffs, 

geographical area, etc.  Customizing the model to reflect the system operations leads to 

more accuracy of the model.  For example, combining a dispatching rule and a districting 

zone in to the model makes the model more realistic.  Different zones might have 

different dispatching rules. 

 In real life, emergency calls request for different kinds of helps; from a basic life 

rescue to a serious injury.  Moreover, one might require immediately help while another 
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one might be able to wait for a period of time.  Considering priority of calls, type of 

resources, including response regarding with patients’ need or patients’ priority should be 

beneficial in increasing performance of the system. 

 A pattern of demand in several zones tends to change during day and week, which 

affects the optimal facility locations.  In order to serve the calls more efficiently, a future 

facility location model should be able to adjust its solution according to the change of 

demand pattern.  Relocating facilities to match demand or recruiting temporally staffs or 

volunteers in some zones could be an alternative.    
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