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Abstract

Most public key cryptosystems used in practice are based on integer factorization

or discrete logarithms (in finite fields or elliptic curves). However, these systems suffer from

two potential drawbacks. First, they must use large keys to maintain security, resulting

in decreased efficiency. Second, if large enough quantum computers can be built, Shor’s

algorithm will render them completely insecure.

Multivariate public key cryptosystems (MPKC) are one possible alternative. MPKC

makes use of the fact that solving multivariate polynomial systems over a finite field is an

NP-complete problem, for which it is not known whether there is a polynomial algorithm

on quantum computers.

The main goal of this work is to show how to use new mathematical structures,

specifically polynomial identities from algebraic geometry, to construct new multivariate

public key cryptosystems. We begin with a basic overview of MPKC and present several

significant cryptosystems that have been proposed. We also examine in detail some of

the most powerful attacks against MPKCs. We propose a new framework for constructing

multivariate public key cryptosystems and consider several strategies for constructing poly-

nomial identities that can be utilized by the framework. In particular, we have discovered

several new families of polynomial identities. Finally, we propose our new cryptosystem

and give parameters for which it is secure against known attacks on MPKCs.
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Chapter 1

Multivariate Public Key

Cryptography

Since digital communication has become ubiquitous in our daily lives, the need for

security is greater than ever. Cryptography, the science of secure communication in the

presence of adversaries [Riv90], has provided the necessary security to enable safe electronic

financial transactions, military communication, corporate privacy, data storage, and a host

of other applications.

Classically, encryption and decryption were performed using the same secret key.

However, these symmetric key cryptosystems have the inherent weakness that users must

somehow securely exchange keys before sending and receiving messages. Diffie and Hellman

[DH76] revolutionized the field by proposing the idea of public key cryptosystems, which

eliminate the necessity of sharing secret keys. Shortly afterward, Rivest, Shamir, and

Adleman proposed the now popular RSA system [RSA78].

Most public key cryptosystems used in practice are based on integer factorization or

discrete logarithms (in finite fields or elliptic curves). However, these systems suffer from two

potential drawbacks. First, advances in the field of number theory have caused a decrease in

computational efficiency, since parameter sizes must be increased to meet security demands.

Second, if large enough quantum computers can be built, Shor’s algorithm [Sho97] will
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render the current systems completely insecure. Therefore, it is important to search for

alternative systems that facilitate both efficient and secure communication.

Multivariate public key cryptosystems (MPKC) are one possible alternative to the

current public key schemes. In recent years, MPKC has become an active area of scien-

tific research and has seen many significant advances. In 2003, the Sflash signature system

was a final selection of the NESSIE (New European Schemes for Signatures, Integrity, and

Encryption) project [NES03]. The first book about MPKC, written by Ding, Gower, and

Schmidt, was published in 2006 [DGS06a]. While many papers on MPKC are accepted each

year at annual international conferences such as the Public Key Cryptography conference

and the Cryptographers’ Track at the RSA conference, there is also a biyearly interna-

tional workshop, PQCrypto, that is devoted solely to post-quantum cryptography and has

a particularly strong focus on MPKC.

1.1 Foundation: Structure, Security, and Efficiency

Let k be a finite field of characteristic p with q elements. The public key of an

MPKC is a polynomial map, F̄ : kn → km, given by

F̄ (x1, . . . , xn) =


f̄1(x1, . . . , xn)

...

f̄m(x1, . . . , xn)


T

where f̄i ∈ k[x1, . . . , xn] are quadratic. The security of MPKC is based on the assumption

that solving a system of quadratic multivariate polynomials over a finite field is, in general,

an NP-complete problem.

Encryption is quite simple: given plaintext (x1, . . . , xn) ∈ kn, the ciphertext is

(y1, . . . , ym) = F̄ (x1, . . . , xn).

2



Then to decrypt, given ciphertext (y1, . . . , ym) ∈ km, find (x1, . . . , xn) ∈ kn such that

F̄ (x1, . . . , xn) = (y1, . . . , ym).

Usually F̄ is injective in cryptographic applications, so we simply say that decryption is

computing F̄−1(y1, . . . , ym).

Digital signature is also possible with MPKC: given document (y1, . . . , ym) ∈ km,

the signature is

(x1, . . . , xn) = F̄−1(y1, . . . , ym).

Then to verify the signature is valid, check that

F̄ (x1, . . . , xn) = (y1, . . . , ym).

(Note that in both cases, we have assumed F̄ is invertible, although this is not necessarily

required, especially with digital signature. We must, however, have the ability to compute

preimages.)

Security. As with all public key cryptosystems, the necessity that F̄ be a trapdoor one-

way function is now apparent; if F̄−1 can be computed not only by the intended recipient

(or document signer), but also by an adversary, the system is worthless. Therefore, while F̄

must have the appearance (to an adversary) of a random system of multivariate polynomials,

it must in fact have a trapdoor that allows legitimate users to decrypt (or sign) messages.

To implement a trapdoor, we construct F̄ by composing three maps:

F̄ = L1 ◦ F ◦ L2, (1.1)

where L1 : km → km and L2 : kn → kn are two random invertible affine transformations,

and the central map F : kn → km is a nonlinear multivariate polynomial map which has

the property that we can easily find preimages. Thus the security of an MPKC rests on the
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known difficulty of

• solving quadratic multivariate systems over finite fields (the left side of (1.1)), and

• factoring multivariate maps (the right side of (1.1)).

In the first case, it is known that solving a random multivariate quadratic system over

a finite field is NP-complete [GJ79, PG97]. For the second, also called the Isomorphism

of Polynomials (IP) problem, Patarin et al. showed that this was at least as difficult as

the Graph Isomorphism problem (an NP problem) [Pat96, PGC98]. Also, as the authors

of [DS06] have pointed out, factoring multivariate maps is a hard problem because of its

connection with the Jacobian conjecture from algebraic geometry.

The private key of an MPKC consists of L1 and L2, and sometimes F . Creating an

F for which it is easy to find preimages requires adding structure, and though many ideas

have been suggested, in most cases, the added structure has led to the discovery of some

weakness.

Efficiency. Any practical cryptosystem must of course be efficient. As mentioned above,

encryption is accomplished by evaluating the public key polynomials over a finite field; this

is a very fast and efficient process. Regarding decryption, we insist F be designed such that

finding preimages is efficient. Another important concern is size of the public key; even

though the central map may have relatively few terms, the affine transformations L1 and

L2 make the public key polynomials dense. Since the number of terms of a polynomial of

total degree d in n variables is at most
(
n+d
d

)
and hence grows large as d is increased, in

practice, we only consider quadratic MPKCs.

This chapter gives a brief overview of central maps that have been proposed (follow-

ing the descriptions presented in [DGS06a]), touching on the strengths and weaknesses (if

known) of each. The second part of the chapter focuses on a new framework for constructing

central maps.
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1.2 Overview of Existing Schemes

It is difficult to succinctly classify the different types of central maps that have been

proposed for use in multivariate cryptosystems. Wolf and Preneel [WP05a] were perhaps the

first to attempt to classify MPKCs. They divided systems into single field systems (using

multivariate polynomials over a ground field k) and mixed field systems (using univariate

polynomials over an extension of k). Within the single field category are several Triangular

systems and the Oil-Vinegar system [Pat97], along with its variants; within the mixed field

category are the Matsumoto-Imai [IM85, MI88] and Hidden Field Equations (HFE) [Pat96]

cryptosystems, along with their variants.

Unfortunately, this classification does not work so well for systems that have been

proposed since 2005. There have been at least four significant new central maps proposed

since then which don’t fit into the existing categories (often using ideas from both): Rainbow

[DS05], MFE [WYHL06], `-Invertible Cycles (`-IC) [DWY07], and the system we propose

in Chapter 4 of this work.

1.2.1 Univariate-Multivariate Correspondence

As mentioned above, mixed field systems employ univariate polynomials over exten-

sions of k. However, it may not be entirely obvious that this is an acceptable strategy, since

a central map must be a quadratic system of multivariate polynomials. The key observation

is that there is a correspondence between univariate polynomials over an extension field and

a system of multivariate polynomials over the ground field.

From univariate to multivariate. Let K be a degree n extension of k, and fix a basis

{α1, . . . , αn} of K over k. We identify K with kn via the natural isomorphism π : K → kn

given by

π(a1α1 + · · ·+ anαn) = (a1, . . . , an),
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where ai ∈ k, 1 ≤ i ≤ n. We can then view a polynomial f ∈ K[X] component-wise

over k by substituting X = x1α1 + · · · + xnαn, and then f = f1α1 + · · · + fnαn with

fi ∈ k[x1, . . . , xn]. So π is extended to the polynomial rings via

f ∈ K[X] 7→ (f1, . . . , fn) ∈ k[x1, . . . , xn]n.

Thus, the process of converting from univariate polynomials in K[X] to multivariate systems

in k[x1, . . . , xn]n is fairly straightforward.

Quotient rings. Before continuing, we must emphasize a critical point regarding the

rings we are working with. Since plaintext components are actually field values, we can

view (x1, . . . , xn) ∈ kn (similarly X ∈ K), and hence require that they satisfy the equations

xqi − xi = 0, 1 ≤ i ≤ n, (similarly, Xqn −X = 0).

Therefore, we do not work in the polynomial ring k[x1, . . . , xn], but rather the ring of

functions from kn to k, i.e.

k[x1, . . . , xn]/(xq1 − x1, . . . , x
q
n − xn),

or similarly the ring of functions from K to K, i.e.

K[X]/(Xqn −X).

Notice that when we write k[x1, . . . , xn] or K[X], we will always be talking about the ring

of functions, unless otherwise noted.

Degree considerations. Since we are interested in multivariate polynomials of degree

two, it is necessary to determine the degree of π(f) for f ∈ K[X]. Consider a monomial Xe

6



and write the base-q expansion of e, i.e. e = a0 + a1q + · · ·+ an−1q
n−1, 0 ≤ ai < q. Then

Xe = (π−1(x1, . . . , xn))e

= (x1α1 + · · ·+ xnαn)
Pn−1
i=0 aiq

i

=
n−1∏
i=0

(x1α1 + · · ·+ xnαn)aiq
i

=
n−1∏
i=0

(x1α
qi

1 + · · ·+ xnα
qi

n )ai .

We see that each component of π(Xe) will have total degree
∑n−1

i=0 ai as a polynomial in

k[x1, . . . , xn], and we define this to be q-Hamming weight of Xe. We can then define the

q-Hamming weight of f ∈ K[X] as the largest of the q-Hamming weights among the terms

of f . Therefore, we can conlcude that polynomials in K[X] with a q-Hamming weight of

two correspond to quadratic systems in k[x1, . . . , xn]n.

From multivarite to univariate. For the sake of completeness, we now examine the

conversion from multivariate systems in k[x1, . . . , xn]n to univariate polynomials in K[X],

following [KS99] but giving a more explicit construction using a Vandermonde matrix in-

stead of interpolation as suggested by the authors. We begin by considering functions

Fi : kn → kn, 1 ≤ i ≤ n, given by

(x1, . . . , xn) 7→ (xi, 0, . . . , 0).

Choose a basis {α1, . . . , αn} of K over k such that α1 = 1 and let X =
∑n

i=1 xiαi. Then

for each i, the corresponding function over K, F̃i : K → K, is given by

X 7→ xi,

where we have used the fact that α1 = 1. Notice each Fi is a linear transformation and

has matrix Ai that has a 1 in the i-th position of the first row and 0’s everywhere else. Let

7



M ∈ Kn×n be the Vandermonde matrix for the αi’s, i.e.

M =



α1 α2 . . . αn

αq1 αq2 . . . αqn
...

...
...

αq
n−1

1 αq
n−1

2 . . . αq
n−1

n


,

so that M(x1, . . . , xn)T = (X,Xq, . . . , Xqn−1
)T . Then we can write

F̃i(X) = (α1, . . . , αn)Ai(x1, . . . , xn)T

= (α1, . . . , αn)AiM−1M(x1, . . . , xn)T

= (α1, . . . , αn)



RowiM
−1

0 . . . 0
...

...

0 . . . 0





X

Xq

...

Xqn−1


= RowiM

−1(X,Xq, . . . , Xqn−1
)T .

Next consider F : kn → kn given by

(x1, . . . , xn) 7→

(
n∏
i=1

xeii , 0, . . . , 0

)
.

The corresponding map over K is F̃ : K → K given by

X 7→
n∏
i=1

xeii ,

8



where again we have used the fact that α1 = 1. Then

F̃ (X) =
n∏
i=1

(F̃i(X))ei

=
n∏
i=1

(RowiM
−1(X,Xq, . . . , Xqn−1

)T )ei

=
n∏
i=1

 n∑
j=1

mijX
qj−1

ei

,

where mij = [M−1]ij . Generalizing from monomials to polynomials, if F is given by a

polynomial in the first component:

(x1, . . . , xn) 7→

(
t∑

k=1

(
n∏
i=1

xeiki

)
, 0, . . . , 0

)
,

then

F̃ (X) =
t∑

k=1

n∏
i=1

 n∑
j=1

mijX
qj−1

eik

.

Finally, if in F , a polynomial appears in the `-th component, then in F̃ , we simply

multiply by α`, i.e.

(x1, . . . , xn) 7→

(
0, . . . , 0,

t∑
k=1

(
n∏
i=1

xeiki

)
, 0, . . . , 0

)
,

corresponds to

F̃ (X) = α`

t∑
k=1

n∏
i=1

 n∑
j=1

mijX
qj−1

eik

. (1.2)

Therefore, given any polynomial map F : kn → kn, we sum the univariate maps correspond-

ing to each component (multiplying by the appropriate basis element) to get the univariate

polynomial that represents the system. In particular, for a system of quadratic polynomials,

9



the corresponding F̃ (X) can be written as

F̃ (X) =
∑

0≤i≤j≤n−1

aijX
qi+qj +

∑
0≤i≤n−1

biX
qi + c, aij , bi, c ∈ K,

where the total number of terms is O(n2). Since each coefficient in K can be expressed as

an element of kn, we see that the total space (number of elements in k) required to store

the univariate polynomial is O(n3), which is the same as the corresponding multivariate

system.

We also observe that the above technique may be extended to multivariate systems

in k[x1, . . . , xn]m, where n 6= m. In this case, we simply let M = max{n,m} and define K

as a degree M extension of k.

Complexity of polynomial factorization. Notice that F̃ (X) will be a sparse polyno-

mial since by expanding the product in (1.2), we see that the only exponents appearing will

be sums of q-th powers. Thus we make an important distinction regarding the complexity

of finding the roots of univariate polynomials over finite fields. For the dense representation

of a polynomial (a list of all coefficients including zeros), roots may be found in polynomial

time (in the size of the input). See [VG03] for a discussion of several factorization methods.

For the sparse representation of a polynomial (a list of only the nonzero coefficients

and the degrees), the problem becomes much harder. To illustrate this difference, consider

the polynomial

f(X) = 1 +X +X2v .

Since there are only 3 nonzero coefficients, the input size is O(v), but if we wanted to

actually factor f , we would have to represent f as

f(X) = 1 +X +
2v−1∑
i=2

aiX
i +X2v , ai ∈ K,

where the input size is now O(2v). We can then factor f with complexity that is polynomial

10



in 2v, which is exponential in v.

In general, we have shown above that there is a one-to-one correspondence between

a system of m quadratic polynomials in n variables and a univariate polynomial of sparse

size O(M3), where M = max{m,n}. This correspondence also establishes a correspondence

between solutions. Therefore, since solving a quadratic system is NP-complete, solving a

sparse univariate polynomial is also NP-complete.

1.2.2 Matsumoto-Imai Cryptosystem (MI)

Having discussed the necessary theory behind the mixed field systems, we are now

ready to introduce the first such system: the Matsumoto-Imai cryptosystem (MI). Although

it first appeared in a Japanese journal in the mid-80’s, Matsumoto and Imai formally intro-

duced (to the English reading world) what they called the C∗ cryptosystem in 1988 [MI88].

They were the first to recognize the cryptographic significance of the correspondence dis-

cussed in the previous section and effectively use it to build a multivariate cryptosystem.

We will use the same set-up as in Section 1.2.1, with the added restriction that k has

characteristic two. Choose an integer θ between 0 and n such that gcd(qθ + 1, qn − 1) = 1,

and let F̃ : K → K be given by

X 7→ Xqθ+1

(k must have characteristic two since otherwise, no θ can satisfy the gcd requirement).

Using the extended Euclidean algorithm, we can compute t such that

(qθ + 1)t ≡ 1 mod (qn − 1).

Notice

(Xqθ+1)t = XX(qθ+1)t−1 = X,

thus F̃−1(X) = Xt and F̃ is an easily invertible univariate map over K. Finally, we define
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the public key of the MI cryptosystem as the polynomial map F̄ given by

F̄ = L1 ◦ π ◦ F̃ ◦ π−1 ◦ L2, (1.3)

where L1 : kn → kn and L2 : kn → kn are invertible affine transformations that function as

the private key. Since the number of possibilities for θ is small, keeping it secret increases

the complexity of an attack by at most of factor of n, and it is therefore not considered part

of the private key.

Encryption. Given plaintext (x1, . . . , xn) ∈ kn, the ciphertext is

(y1, . . . , yn) = F̄ (x1, . . . , xn).

Decryption. Given ciphertext (y1, . . . , yn) ∈ kn, the plaintext is recovered by computing

(x1, . . . , xn) = L−1
2 ◦ π ◦ F̃

−1 ◦ π−1 ◦ L−1
1 (y1, . . . , yn).

Notice that the MI cryptosystem may be thought of as a multivariate analog to RSA

since both rely on properties of exponentiation in quotient rings.

Example 1.2.1. To give a flavor of what multivariate cryptosystems look like, we now present

a very small example of the MI cryptosystem. Let k = F4 be the finite field of four elements

with primitive element a, and let K be a degree 5 extension of k. Let θ = 3, and define the

central map F = π ◦ F̃ ◦ π−1 where

F̃ (X) = Xq3+1 ∈ K[X].

Then F̃−1(X) = X362. Pick invertible affine transformations L1 : k5 → k5 and L2 : k5 → k5
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as

L1 =



0 1 1 a 0

0 a a2 1 a2

a2 a2 1 a 0

0 a2 a 0 a

0 a 1 a2 a2


+



a2

a

a2

1

a2


, L2 =



a 0 1 a2 a2

0 a a a2 a

1 a2 1 1 0

a a 1 a 0

1 1 a 0 1


+



1

1

0

0

a


.

Finally, the public key is the 5-tuple of polynomials

(f̄1, . . . , f̄5) = F̄ (x1, . . . , x5) = L1 ◦ π ◦ F̃ ◦ π−1 ◦ L2(x1, . . . , x5). (1.4)

In particular,

(f̄1, . . . , f̄5) = (ax1x2 + a2x1x3 + a2x1x5 + x1 + x2
2 + a2x2x4 + a2x2x5 + a2x2 +

a2x2
3 + ax3x4 + a2x3 + x2

4 + ax4x5 + ax2
5 + ax5 + a,

a2x1x2 + x1x4 + ax1x5 + ax1 + x2
2 + x2x3 + x2x4 + ax2 + ax3x4 +

x3x5 + x3 + a2x4 + x2
5 + x5 + a2,

x2
1 + a2x1x2 + a2x1x3 + a2x1x5 + a2x1 + ax2

2 + x2x3 + x2x4 + a2x2x5 +

x2 + x2
3 + a2x3x4 + ax3x5 + ax3 + a2x2

4 + a2x4x5 + a2x2
5 + a,

x2
1 + ax1x2 + x1x3 + ax1x4 + x1x5 + ax1 + a2x2

2 + x2x3 + x2x4 +

x2x5 + x2 + x2
3 + x3x5 + x3 + ax2

4 + ax4x5 + a2x4 + x2
5,

x2
1 + ax1x2 + x1x3 + x1x4 + a2x1x5 + a2x1 + a2x2x3 + ax2x4 +

ax2
3 + x3x4 + a2x3x5 + x3 + a2x2

4 + x4x5 + ax4 + a2x2
5 + x5 + a2).

The private key consists of the pair of transformations L1 and L2. Consider the plaintext

(1, a, a2, a2, a) ∈ k5. Encryption gives the ciphertext

(a, a, a2, a2, a) = F̄ (1, a, a2, a2, a).

13



To decrypt, a user inverts the compositions of (1.4) by using the private key to compute

L−1
2 ◦ π ◦ F̃

−1 ◦ π−1 ◦ L−1
1 (a, a, a2, a2, a)

and recover the plaintext (1, a, a2, a2, a).

Clearly the above example is quite small, and should not be considered secure. The

authors originally suggested in [MI88] that 1 ≤ m ≤ 32, 32 ≤ n ≤ 64, and 64 ≤ mn, where

q = 2m is the size of k and [K : k] = n. In particular, they proposed an implementation

that used m = 8 and n = 32. This system was thought to be secure for seven years until

1995 when Jacques Patarin revealed his linearization equations attack [Pat95], which we

will discuss in Section 2.1.

1.2.3 The Minus Variant and Sflash Signature Scheme

Even though the original MI system was broken, variants have been proposed to

avoid the system’s weakness. Most significant is the Minus variant (MI−) proposed by

Shamir [Sha93], on which the Sflash signature scheme [PCG01, ACDG03] is based. In

general, Minus can be applied to any MPKC, and simply creates a signature scheme by

removing several polynomials from the public key F̄ . Given an MI system with public key

F̄ = (f̄1, . . . , f̄n), the public key of the corresponding MI− system is the (n − r)-tuple of

polynomials

F̄− = (f̄1, . . . , f̄n−r),

where we have deleted the last r components from F̄ . The private key is L1 and L2, as

before.

Document signing. Given a document (y1, . . . , yn−r) ∈ kn−r, randomly choose (and

keep secret) r elements of k and append them to the document, yielding the n-tuple

(y1, . . . , yn) ∈ kn. Then use the private key to compute the signature (equivalent to the
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decryption operation):

(x1, . . . , xn) = L−1
2 ◦ π ◦ F̃

−1 ◦ π−1 ◦ L−1
1 (y1, . . . , yn). (1.5)

Signature verification. Given the document (y1, . . . , yn−r) ∈ kn−r and its signature

(x1, . . . , xn) ∈ kn, simply use the public key to check that

F̄−(x1, . . . , xn) = (y1, . . . , yn−r).

The Sflash signature scheme implements this idea by using the SHA-1 hash function

to compute the hash value of the document, and then manipulates the hash value to create a

digital signature via (1.5). As mentioned previously, the Sflash signature system was a final

selection of the NESSIE (New European Schemes for Signatures, Integrity, and Encryption)

project [NES03]. Recently, Dubois et al. [DFS07, DFSS07] broke the scheme; however, Ding

et al. [DYCCD07] subsequently showed how to modify the system to circumvent the attack.

1.2.4 Hidden Field Equations (HFE)

After breaking the MI cryptosystem in 1995 [Pat95], Patarin developed the second

mixed field system, the Hidden Field Equations (HFE) cryptosystem, in 1996 [Pat96]. HFE

generalizes MI by using a polynomial over the extension field K instead of a monomial. Even

though we will no longer be able to invert the central map map by performing a simple

exponentiation, inversion can still be done efficiently as long as we restrict the degree of the

polynomial. Too see this, we start by considering the extension field part of the MI central

map:

F̃ (X) = Xqθ+1.

Given ciphertext (y1, . . . , yn) ∈ kn, if we let Y = π−1 ◦ L−1
1 (y1, . . . , yn) ∈ K, we see from

(1.3) that every preimage of Y must be a root of F̃ (X) − Y . Hence we must factor the

polynomial Xqθ+1−Y , which can be done efficiently as long as qθ+1 is not too large. From
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the set of preimages, say {X1, . . . , Xm}, we can then finish the decryption by computing

(xi1, . . . , xin) = L−1
2 ◦ π(Xi), 1 ≤ i ≤ m.

If there are m preimages, we will obtain m possible plaintexts, and so we must be able to

distinguish the correct one. One possible idea is to use a secure hash function to compute

the hash value of a plaintext and transmit it along with the ciphertext. Then, among the

set of possible plaintexts, the correct one is the one that has the matching hash value.

This “inversion” technique is easily generalized to polynomials. We use the same

set-up as Section 1.2.1, and do not require k to have characteristic two. Let

F̃ (X) =
r2−1∑
i=0

i∑
j=0

aijX
qi+qj +

r1−1∑
i=0

Xqi + c,

with aij , bi, c ∈ K random. The role of r1 and r2 is to force the degree of F̃ (X) to be less

than a degree bound, d, which determines the complexity of the factorization step. Notice

that each term of F̃ has q-Hamming weight at most two, so π ◦ F̃ is in fact a quadratic

system in k[x1, . . . , xn]n. The public key of an HFE cryptosystem is the polynomial map F̄

given by

F̄ = L1 ◦ π ◦ F̃ ◦ π−1 ◦ L2,

where L1 : kn → kn and L2 : kn → kn are invertible affine transformations that, along with

the coefficients of the map F̃ , function as the private key.

Encryption. Given plaintext (x1, . . . , xn) ∈ kn, the ciphertext is

(y1, . . . , yn) = F̄ (x1, . . . , xn).

Decryption. Given ciphertext (y1, . . . , yn) ∈ kn, the plaintext is recovered by

1. Computing Y = π−1 ◦ L−1
1 (y1, . . . , yn) ∈ K.
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2. Factoring (see [VG03]) the univariate polynomial F̃ (X) − Y to find the set of roots

{X1, . . . , Xm} ⊂ K. The complexity of this step depends on d, the degree of F̃ .

3. Computing (xi1, . . . , xin) = L−1
2 ◦ π(Xi), 1 ≤ i ≤ m, and deciding which one is the

actual plaintext (this distinguishing step may vary in different implementations).

The original recommended parameters for HFE were q = 2, n = 128, and r2 = 13.

However, the system was broken by the minrank attack of Kipnis and Shamir [KS99], with

later improvements by Courtois [Cou01]. In 2003, Faugére and Joux [FJ03] broke HFE

using only Gröbner basis techniques. Since HFE is just a generalization of MI using a

polynomial instead of a monomial, an interesting open question is whether the attack of

Dubois et al. [DFSS07] on MI can be generalized to an attack on HFE.

Similar to the situation with MI, several variants have been proposed [Pat96] includ-

ing HFE− (a signature scheme similar to MI−) and HFEv (a signature scheme that com-

bines HFE with the Oil-Vinegar concept of Section 1.2.6 by introducing vinegar variables).

Quartz, which combines these two ideas, has not yet been broken. Baena et al. [BCD08]

have recently proposed the Square-Vinegar signature scheme, which improves upon HFEv−

by changing the field characteristic and reducing the degree of the central map. Subse-

quently, Chen et al. [CCDWY08] proposed an efficient encryption scheme that modifies the

HFE system over fields of odd characteristic.

1.2.5 Triangular Encryption Schemes

Having discussed the mixed field systems, we now turn our focus to single field

systems. The new framework we propose in Section 1.3 in fact combines ideas from two

single field systems: Triangular and Oil-Vinegar systems.

Triangular maps make up one family of easily inverted multivariate maps. A trian-
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gular map F : kn → kn has the form:

F (x1, . . . , xn) =



x1

x2 + g2(x1)
...

xn−1 + gn−1(x1, x2, . . . , xn−2)

xn + gn(x1, x2, . . . , xn−2, xn−1)



T

,

where each gi ∈ k[x1, . . . , xn] is quadratic. Given (y1, . . . , yn) ∈ kn, it is easy to find

(x1, . . . , xn) ∈ kn such that F (x1, . . . , xn) = (y1, . . . , yn) by iteratively solving for each

component, i.e.

x1 = y1,

x2 = y2 − g2(x1),
...

xn−1 = yn−1 − gn−1(x1, x2, . . . , xn−1),

xn = yn − gn(x1, x2, . . . , xn−2, xn−1).

Triangular maps have the following important connection to algebraic geometry:

taking the closure of the set of triangular maps under composition yields a group known as

the group of tame transformations. In general an invertible polynomial map may not be

tame. This is the subject of the Nagata problem [Nag72]. The famous Jacobian conjecture

addresses the question of when a polynomial map is invertible: a polynomial map F : Cn →

Cn is invertible if and only if the determinant of the Jacobian of F is nonzero. This problem

has been studied by many people and is still wide open.

Early attempts to create triangular systems were unsuccessful, with Fell and Diffie

declaring that by using their design, “there seems, however, to be no way to build such a

system that is both secure and has a public key of practical size” [FD85]. Later systems of

Tsujii et al. [TIFKM88] and Shamir [Sha93] were also broken. Particularly notable among

the attacks are the linear algebra attacks of Coppersmith et al. [CSV93, CSV97].

T.T. Moh, who has much experience working with the Jacobian conjecture, proposed
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a triangular encryption scheme in 1999 [Moh99]. Notice that because the transformations

L1 and L2 are linear, they cannot hide the linearity of the first equation in F , so a system

cannot be secure if it simply has a triangular map as its central map. Composing trian-

gular maps can solve this problem; however, composition in general makes the degree of

the map grow very quickly, which is problematic since central maps should be quadratic.

Moh cleverly created a quadratic map by composing two triangular maps, one having de-

gree eight, through the use of injections (basically adding new variables which are set to

zero.) Unfortunately, Moh’s original system is susceptible to a minrank attack [GC00], and

later modified systems [MCY04, Moh07] are vulnerable to linearization equation attacks

[NJHD07]. In Section 2.2.3, we will present Moh’s original system in the context of the

minrank attack and give a detailed description of the attack.

Another idea that attempted to avoid the problem of the linearity of the first poly-

nomial (and the simplicity of the next few polynomials) was the TTS system [YC04], which

simply discarded the initial polynomials and used the remaining system to create a signa-

ture scheme. Ding et al. showed the system was insecure [DSY06], but Yang and Chen

have proposed another TTS system that is yet to be broken [YC05].

Wang et al. [WC04] proposed a generalization of triangular maps that they called

tractable rational maps. They define a tractable rational map F : kn → kn as having the

form:

F (x1, . . . , xn) =



r1(x1)

r2(x2) · p2(x1)
q2(x1) + f2(x1)

g2(x1)

...

rn−1(xn−1) · pn−1(x1,x2,...,xn−2)
qn−1(x1,x2,...,xn−2) + fn−1(x1,x2,...,xn−2)

gn−1(x1,x2,...,xn−2)

rn(xn) · pn(x1,x2,...,xn−2,xn−1)
qn(x1,x2,...,xn−2,xn−1) + fn(x1,x2,...,xn−2,xn−1)

gn(x1,x2,...,xn−2,xn−1)



T

,

where pi, qi, fi, and gi are polynomials, and ri is a permutation polynomial over k. As in the

triangular case, we can find preimages by iteratively solving for each component. However,
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notice that the rational functions limit the invertibility of F to the set

{(x1, . . . , xn) ∈ kn : (piqigi)(x1, . . . , xn) 6= 0 for i = 2, . . . , n}.

Rather than composing two maps as Moh did, they introduce the idea of using basic in-

jections and projections to effectively discard the weak top part of the triangle while still

being able to compute unique preimages by exploiting other structure. Although the initial

system was broken [JJMR05], the authors showed how to avoid the problem [WC06], and

later, using a similar structure, Wang et al. [WYHL06] proposed the MFE cryptosystem,

which we will discuss in Section 1.3.2.

1.2.6 Oil-Vinegar Systems

The second type of single field MPKC that is interesting for our purposes is called

an Oil-Vinegar signature scheme. Patarin’s oil-vinegar polynomial scheme [Pat97] finds its

roots in his linearization equation attack [Pat95] on the Matsumoto-Imai cryptosystem. An

oil-vinegar polynomial f ∈ k[x̌1, . . . , x̌v, x1, . . . , xo] has the form:

f =
o∑
i=1

v∑
j=1

aijxix̌j +
v∑
i=1

v∑
j=1

bij x̌ix̌j +
o∑
i=1

cixi +
v∑
j=1

dj x̌j + e,

where aij , bij , ci, dj , e ∈ k. The variables x1, . . . , xo are called oil variables and the variables

x̌1, . . . , x̌v are called vinegar variables. The important property of these polynomials is that

they have no xixj terms (i.e. there are no terms quadratic in the oil variables). So, if we

substitute v field values for the vinegar variables, f becomes linear in the oil variables. Basic

oil-vinegar systems may be used for signatures as follows: let the private key be given by

F = (f1, . . . , fo), where each fi is a random oil-vinegar polynomial, along with an invertible

affine transformation L : ko+v → ko+v. The public key is the polynomial map F̄ given by

F̄ = F ◦ L. (1.6)
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Document signing. Given a document (y1, . . . , yo) ∈ ko, choose (x̌′1, . . . , x̌
′
v) ∈ kv at

random and attempt to compute (x1, . . . , xo) that satisfies the linear system

F (x̌′1, . . . , x̌
′
v, x1, . . . , xo) = (y1, . . . , yo).

A solution will exist as long as the system is nonsingular, which will be the case with

probability approximately 1− 1
q . (Recall that a random o× o matrix over a finite field with

q elements will be invertible with probability
(

1− 1
q

)
. . .
(

1− 1
qo

)
, and this expression is

dominated by the first term when q is large.) If the resulting matrix for the linear system

is singular, simply choose a different (x̌′1, . . . , x̌
′
v) ∈ kv and try again. With high probability,

one should be able to compute a solution (x′1, . . . , x
′
o) ∈ ko in very few attempts. Finally,

the signature is

(z1, . . . , zo+v) = L−1(x̌′1, . . . , x̌
′
v, x
′
1, . . . , x

′
o).

Signature verification. Given document (y1, . . . , yo) ∈ ko and signature (z1, . . . , zo+v) ∈

ko+v, simply use the public key to check that

F̄ (z1, . . . , zo+v) = (y1, . . . , yo).

Kipnis and Shamir [KS98] first broke the system in the case where o = v using the

observation that the matrices corresponding to the quadratic forms of the private key have

a special form (i.e. a large block of zeros). This allows attackers to separate the oil and

vinegar variables and generate an equivalent system that can be used to create forgeries.

Subsequently, Kipnis et al. [KPG99] proposed an unbalanced (o < v) scheme, extended the

original attack to this case, and gave parameters they believed would be good for a secure

system. Later, Ding and Schmidt proposed a more efficient “multi-layer” unbalanced oil-

vinegar scheme, called Rainbow [DS05].

However, these are signature schemes, and our goal is to build a secure cryptosystem.
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1.3 New Framework: Combining Triangular and Oil-Vinegar

Schemes

Recall that the difficulty in creating a secure triangular system is that it is hard

to hide the triangular structure, especially the top equations. Though attempts have been

made to use high degree “lock polynomials” through composition with another triangular

map ([Moh99], [MCY04], [Moh07]), these have been shown to be insecure ([GC00], [DS03],

[NJHD07]). However, this method is not the only way to achieve the necessary hiding of the

triangular structure. We propose a new way of introducing lock polynomials to completely

hide the triangular system by combining the triangular system with a series of oil-vinegar

systems.

Figure 1.1: Combining Triangular and Oil-Vinegar Systems

first oil-vinegar system
vinegar variables: x1, . . . , xn

oil variables: y11, . . . , y1n

`-th oil-vinegar system
vinegar variables: x1, . . . , xn, . . . ,

y`−1,1, . . . , y`−1,n

oil variables: y`1, . . . , y`n

...

x1

x2 + g2(x1)
...
xn−1 + gn−1(x1, x2, . . . , xn−2)
xn + gn(x1, x2, . . . , xn−2, xn−1)x1, . . . , xn

y11, . . . , y1n

y`−1,1, . . . , y`−1,n

lock polynomials from
oil-vinegar systems
hide triangular
structure
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Figure 1.1 presents an informal description of the framework. By combining trian-

gular and oil-vinegar systems, we can eliminate the individual deficiencies of each type of

system. We avoid the security weaknesses of the triangular system by using the oil-vinegar

systems to construct lock polynomials that will completely hide the triangular structure.

Furthermore, by using the triangular system’s variables as an initial set of vinegar variables,

we build an encryption scheme that uses oil-vinegar systems, and are no longer limited to

using them only for digital signature schemes.

1.3.1 A general framework

We now develop the technical details of the framework. Let k be a finite field with

q elements, and let F be a degree d extension of k. Notice that although we are working

in an extension field, our polynomials will be multivariate, as opposed to the univariate

polynomials used to build mixed field systems such as Matsumoto-Imai and HFE. Our

approach might be called an “intermediate” (or as Wang et al. [WYHL06] say, “medium”)

field construction.

Intermediate field construction. In particular, fix a basis {α1, . . . , αd} of F over k.

We identify F with kd, via the natural map π : F→ kd given by

π(a1α1 + · · ·+ adαd) = (a1, . . . , ad).

Similarly we can view a polynomial f ∈ F[X1, . . . , Xn] component-wise over k by writing

Xi = xi1α1 + · · ·+ xidαd, and then f = f1α1 + · · ·+ fdαd with fi ∈ k[x11, . . . , xnd]. Finally,

we can extend π to the polynomial rings via

f ∈ F[X1, . . . , Xn] 7→ (f1, . . . , fd) ∈ k[x11, . . . , xnd]d.

Although this set-up looks similar to that of Section 1.2.1, notice that we are working

with a multivariate polynomial ring over a degree d intermediate extension as opposed to a
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univariate polynomial ring over a degree n extension.

As mentioned above, the public key will be given by F̄ = L1 ◦ F ◦ L2, where L1

and L2 are invertible affine transformations. Suppose (Y1, . . . , Yn) = φ(X1, . . . , Xn) is a

triangular system when viewed component-wise over the base field k:

Y1 = X1 + φ1(X1)

Y2 = X2 + φ2(X1, X2)
...

Yn = Xn + φn(X1, . . . , Xn).

(1.7)

More specifically, viewing each polynomial as having d components:

Yi =



Yi1

Yi2
...

Yid



T

=



xi1 + φi1(x11, . . . , xi−1,d)

xi2 + φi2(x11, . . . , xi−1,d, xi1)
...

xid + φid(x11, . . . , xi−1,d, xi1, . . . , xi,d−1)



T

. (1.8)

where each φij is quadratic. To invert, we solve iteratively for x11, . . . , x1d, . . . , xn1, . . . , xnd.

Oil-Vinegar layers. Similar to Rainbow [DS05], we will define several, say `, layers of

oil-vinegar systems. However, in our framework, we make the following relaxation: rather

than requiring an oil-vinegar system with o oil variables and v vinegar variables to have o

oil-vinegar polynomials, we allow more general systems, with t (≥ o) polynomials, as long

as at least o of them are true oil-vinegar polynomials.

We now build the central map F : Fn+`o → Fn+`t. Let {X1, . . . , Xn} be the initial

set of vinegar variables, and define the first oil-vinegar system:

Yn+i = fn+i(X1, . . . , Xn, Xn+1, . . . , Xn+o), 1 ≤ i ≤ t,
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where Xn+1, . . . , Xn+o are the oil variables. In the next layer,

Yn+i = fn+i(X1, . . . , Xn+o, Xn+o+1, . . . , Xn+2o), t+ 1 ≤ i ≤ 2t,

{X1, . . . , Xn+o} is the set of vinegar variables, and {Xn+o+1, . . . , Xn+2o} is the set of oil

variables. Similarly, we create the other layers, ending with the `-th layer,

Yn+i = fn+i(X1, . . . , Xn+(`−1)o, Xn+(`−1)o+1, . . . , Xn+`o), (`− 1)t+ 1 ≤ i ≤ `t,

where {X1, . . . , Xn+(`−1)o} is the set of vinegar variables, and {Xn+(`−1)o+1, . . . , Xn+`o} is

the set of oil variables. (Here, we are assuming that each oil-vinegar system has t polyno-

mials. We could be more general by letting the i-th system have ti polynomials.)

We will use these oil-vinegar systems to completely mask the triangular system (1.7).

Decryption will be done in two stages:

1. Unmask the triangular system and solve it for the initial set of vinegar variables.

2. Sequentially solve the oil-vinegar systems for the oil-variables.

Lock polynomials. The question is then, how can we use the oil-vinegar polynomials

to mask the triangular system? The oil-vinegar polynomials will of course be quadratic,

and we won’t achieve much by simply adding linear combinations of them to the triangular

polynomials (this is in fact what L1 does), so we need to examine nonlinear combinations.

However, any nonlinear polynomial in F[Yn+1, . . . , Yn+lt] will, in general, have degree at

least four as a polynomial in F[X1, . . . , Xn+lo].

Suppose we can define the fi in each oil-vinegar system in such a way that there

exists nonlinear polynomials

gi ∈ F[Yn+(i−1)t+1, . . . , Yn+it], 1 ≤ i ≤ `, (1.9)

such that each gi(fn+(i−1)t+1, . . . , fn+it), 1 ≤ i ≤ `, factors as a product of quadratic factors
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in F[X1, . . . , Xn+`o]. If we have n such quadratic factors, say ψ1, . . . , ψn, then we can use

them as lock polynomials by adding one factor to each Yi in the triangular system (1.7).

That is, let

Yi = fi(X1, . . . , Xn+`o) = Xi + φi(X1, . . . , Xi) + ψi(X1, . . . , Xn+`o) 1 ≤ i ≤ n. (1.10)

(Even more generally, we could add ni quadratic factors to each Yi:

Yi = fi(X1, . . . , Xn+lo) = Xi + φi(X1, . . . , Xi) +
ni∑
j=1

ψij , 1 ≤ i ≤ n,

so we would need a total of
∑n

i=1 ni factors.)

Appending the oil-vinegar systems to the updated triangular system gives our central

map:

F (X1, . . . , Xn+`o) = (f1, . . . , fn+`t).

Notice that as long as at least one of the variables Xi+1, . . . , Xn+`o are present in each ψi,

the triangular structure of the first n equations is destroyed. Also, we make the observation

that we can shrink the size of the triangular system, and hence the number of necessary

quadratic factors, to n − 1, if one of the ψi can be viewed as an oil-vinegar polynomial in

X1, . . . , Xn with a single oil variable Xn.

Now, in order to unmask and decrypt the triangular part, we must be able to

compute the values of the ψi. Say there exist functions hi in the rational function field over

F in ` variables such that

hi(g1, . . . , g`) = ψi, 1 ≤ i ≤ n.

Then during decryption, we simply use L−1
1 to compute Yn+1, . . . , Yn+`t from the ciphertext,

substitute the values into g1, . . . , g`, then evaluate each hi, and substitute for each ψi in

(1.10), restoring the original triangular structure. There is actually much freedom in the hi
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since we can view them as functions of the transformed ciphertext values Yn+1, . . . , Yn+`t ∈

F, so we are not limited to polynomials, but may also compute inverses and roots (depending

on the characteristic of the field). However, we must note that computing inverses will

require that the involved Yi’s are nonzero.

Framework summary. So, our proposed framework, which is simply a masked triangular

system combined with a series of oil-vinegar systems, requires the existence of two crucial

sets of functions:

• Polynomials fn+(i−1)t+j ∈ F[X1, . . . , Xn+io] and gi ∈ F[Yn+(i−1)t+1, . . . , Yn+it] such

that each gi(fn+(i−1)t+1, . . . , fn+it) factors into quadratic polynomials (the ψi’s) in

F[X1, . . . , Xn+io].

• Rational functions hi which, upon evaluation at the transformed ciphertext values

(Yn+1, . . . , Yn+`t) ∈ F`t, yield the value of ψi. We require that there must not exist

linear relationships involving the ψi and Yj .

Notice that masking the triangular system and adding oil-vinegar polynomials has

introduced two possibilities for decryption failure:

• We may not be able to compute inverses needed when evaluating the hi.

• For any of the oil-vinegar systems, after we have computed the values of the vinegar

variables, the remaining linear system in the oil variables may not be solvable.

Obviously, any practical cryptosystem must keep decryption failures to a minimum, so for

any implementation, the probability of either of the above two problems occurring must be

small. One possible solution is to make use of the embedding (↗) modifier for MPKCs,

first introduced in [DWY07].

1.3.2 Example: MFE cryptosystem

The MFE cryptosystem [WYHL06], although built using tractable rational maps,

can be viewed (with slight modification) as an instance of our new framework. In fact, it
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was this system that provided the inspiration to try to develop a more general system that

avoids the known flaws of MFE.

We now present the central map of the MFE system in the context of our proposed

framework, working only with polynomials over the extension field for ease of exposition.

Let F have characteristic two. MFE’s central map will be F : F12 → F15, where there are

three oil-vinegar systems, given by (Y4, . . . , Y7), (Y8, . . . , Y11), and (Y12, . . . , Y15).

To motivate the definition of the functions gi and ψi, define the following matrices:

M1 =

 X1 X2

X3 X4

 , M2 =

 X5 X6

X7 X8

 , M3 =

 X9 X10

X11 X12

 ,

and

Z3 = M1M2 =

 Y4 Y5

Y6 Y7

 , Z2 = M1M3 =

 Y8 Y9

Y10 Y11

 ,

Z1 = MT
2 M3 =

 Y12 Y13

Y14 Y15

 .

The gi and ψi come from relationships between determinants. First notice that

det(Z3) = det(M1) det(M2), so letting g1 = det(Z3), ψ3 = det(M1), and ψ1 = det(M2), we

have

g1 = Y4Y7 + Y5Y6 = (X1X4 +X2X3)(X5X8 +X6X7) = ψ3ψ1. (1.11)

Similarly det(Z2) = det(M1) det(M3) and det(Z1) = det(M2) det(M3) give

g2 = Y8Y11 + Y9Y10 = (X1X4 +X2X3)(X9X12 +X10X11) = ψ3ψ2,

g3 = Y12Y15 + Y13Y14 = (X5X8 +X6X7)(X9X12 +X10X11) = ψ1ψ2.

Also,

h1 = (g1g3g−1
2 )1/2 = ((ψ3ψ1)(ψ1ψ2)(ψ3ψ2)−1)1/2 = ψ1,

h2 = g3h
−1
1 = ψ2,

h3 = g1h
−1
1 = ψ3.

(1.12)
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Finally, the central map F : F12 → F15 is given by

Y1 = X1 + φ1(X1) + ψ1

Y2 = X2 + φ2(X1, X2) + ψ2

Y3 = X3 + φ3(X1, X2, X3) + ψ3

Y4 = X1X5 +X2X7 Y5 = X1X6 +X2X8

Y6 = X3X5 +X4X7 Y7 = X3X6 +X4X8

Y8 = X1X9 +X2X11 Y9 = X1X10 +X2X12

Y10 = X3X9 +X4X11 Y11 = X3X10 +X4X12

Y12 = X5X9 +X7X11 Y13 = X5X10 +X7X12

Y14 = X6X9 +X8X11 Y15 = X6X10 +X8X12

The public key is the polynomial map F̄ : F12 → F15 given by

F̄ = L1 ◦ F ◦ L2,

where L1 : F15 → F15 and L2 : F12 → F12 are random invertible affine transformations that

function as the private key.

Notice that the framework definition suggests that MFE’s central map should be

F : F16 → F16 (since n = 4, o = t = 4, and ` = 3), however, it is given as F : F12 →

F15. This is because the third oil-vinegar system does not utilize any new input variables,

therefore shrinking the number of input variables by four. Also, ψ3 is actually an oil-vinegar

polynomial in X1, . . . , X4 with single oil variable X4, so the triangular system only needs

three polynomials.

Encryption. Given plaintext (X ′1, . . . , X
′
12) ∈ F12, the ciphertext is

(Y ′1 , . . . , Y
′
15) = F̄ (X ′1, . . . , X

′
12).
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Decryption. Given ciphertext (Y ′1 , . . . , Y
′
15) ∈ F12, the plaintext is recovered as follows.

First, calculate (Y1, . . . , Y15) = L−1
1 (Y ′1 , . . . , Y

′
15), then use h1, h2, and h3 to calculate ψ1, ψ2,

and ψ3. Adding these to Y1, Y2, and Y3 respectively, restores the triangular structure of the

first three polynomials and enables us to recover X1, X2, and X3. Figure 1.2 describes the

process of computing ψ1 and restoring the triangular structure to the equation for Y1. We

then use ψ3 = X1X4 + X2X3 to compute X4. Using the values of the initial oil variables

X1, . . . , X4, we solve in sequence the first two oil-vinegar systems to recover the values of

the remaining variables, X5, . . . , X12. Finally, we compute the plaintext

(X ′1, . . . , X
′
12) = L−1

2 (X1, . . . , X12).

(Note that the last system is not used in decryption, but is necessary for the gi and ψi

polynomials.)

Figure 1.2: MFE Decryption

s.t. Y12Y15 + Y13Y14 = ψ1ψ2

Y12

Y13

Y14

Y15

s.t. Y8Y11 + Y9Y10 = ψ3ψ2

Y8

Y9

Y10

Y11

s.t. Y4Y7 + Y5Y6 = ψ3ψ1

Y4

Y5

Y6

Y7

Y1 = X1 + φ1(X1) + ψ1

Y2 = X2 + φ2(X1, X2) + ψ2

Y3 = X3 + φ3(X1, X2, X3) + ψ3

ψ1 =
(

(Y4Y7 + Y5Y6)(Y12Y15 + Y13Y14)
Y8Y11 + Y9Y10

)1/2
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Weakness of MFE. The creators of the MFE specifically defined Z1 = MT
2 M3 instead

of Z1 = M2M3. Otherwise linearization equations (equations linear in both X and Y ) exist.

For instance, the relationship

Z3M3 = M1Z1 (= M1M2M3)

yields four linearization equations.

However, Ding et al. [DHNW07] showed that other types of linearization equations

still exist, called high order linearization equations, where the degree in Y is higher than

one. Their second order linearization equations are derived by examining M3M
∗
3M

∗
1M1M2,

where M∗i is the adjoint of Mi. In particular,

M3M
∗
3M

∗
1M1M2 = M3(M1M3)∗(M1M2) = M3Z

∗
2Z3

and

M3M
∗
3M

∗
1M1M2 = det(M3) det(M1)M2 = det(Z2)M2,

therefore,

M3Z
∗
2Z3 = det(Z2)M2.

This equation gives four equations that are linear in X and quadratic in Y . They show that

enough of these second order linearization equations exist to break MFE.

We observe that in both cases, the linearization equation attacks result from the fact

that the Z matrices are defined as a product of 2× 2 matrices. So, while the determinant

relationships are crucial in giving the nice expressions for the gi and ψi, the underlying

matrix relationships are the critical weakness of the system.

1.3.3 Polynomial Identities

Although the original form of MFE has been broken, our general framework may

be used to create other systems. For instance, notice that each of three gi in MFE can be
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viewed as the right hand side of the Diophantine equation (over a polynomial ring):

AB = CD + EF, (1.13)

where C,D,E, F are oil-vinegar polynomials in 8 variables. In particular, for ψ3ψ1 = g1 in

MFE, we have

(X1X4 +X2X3)(X5X8 +X6X7) = Y4Y7 + Y5Y6,

where Yi ∈ F[X1, . . . , X8]. So, solutions to equations like (1.13) will possibly yield families

of cryptosystems in our proposed framework. This is in fact the case, and in Chapter 4 we

will construct a cryptosystem based on a Diophantine equation of the form

AB = CD + EF +GH + IJ +KL, (1.14)

where C,D, . . . , J are oil-vinegar polynomials in 8 oil and 8 vinegar variables, and there are

no restrictions on K or L. In the context of our framework, we rewrite (1.14) as

ψ1ψ2 = f1f2 + · · ·+ f9f10, (1.15)

where each polynomial has degree two, and

1. ψ1 ∈ F[X1, . . . , Xn], ψ2 ∈ F[Y1, . . . , Yn],

2. fi ∈ F[X1, . . . , Xn, Y1, . . . , Yn], 1 ≤ i ≤ 8, are oil-vinegar polynomials, and

3. fi ∈ F[X1, . . . , Xn, Y1, . . . , Yn], i = 9, 10.

Solving general identities of this form is the subject of Chapter 3.

1.3.4 Cremona Transformations

Solutions of identities like (1.15) supply the first necessary set of functions required

by the framework (i.e. polynomials that factor into the quadratic ψi’s). Recall that the
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framework also requires the existence of rational functions hi, which, upon evaluation at

the transformed ciphertext values yield the value of ψi.

Cremona transformations [Kli72, GH78] from algebraic geometry are one possible

candidate for the necessary rational functions, and in fact have been used previously in

MPKC (by MFE and also in the construction of the `-IC family of cryptosystems). Consider

the following important example.

Example 1.3.1. Let (x0, x1, x2) be homogeneous coordinates of the projective plane P2.

Define the quadratic map τ by

(x0, x1, x2) τ7−→ (x′0, x
′
1, x
′
2) = (x1x2, x0x2, x0x1).

Notice that τ is invertible on {(x0, x1, x2) : x0x1x2 6= 0} and the inverse map is given by

(x′0, x
′
1, x
′
2) τ−1

7−→ (x′1x
′
2, x
′
0x
′
2, x
′
0x
′
1)

since

τ−1 ◦ τ(x0, x1, x2) = τ−1(x1x2, x0x2, x0x1)

= (x0x2x0x1, x1x2x0x1, x1x2x0x2)

= x0x1x2(x0, x1, x2)

= (x0, x1, x2).

Affine transformation. If we move to three-dimensional affine space, the inverse map

becomes slightly more complicated. Let (x0, x1, x2) ∈ k3, and define τ in the same way, i.e.

(x0, x1, x2) τ7−→ (x′0, x
′
1, x
′
2) = (x1x2, x0x2, x0x1).

In this case, we no longer benefit from the equivalence of projective points, but τ is still

invertible on {(x0, x1, x2) : x0x1x2 6= 0} as long as square roots are possible in k. We define
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τ−1 by

(x′0, x
′
1, x
′
2) τ−1

7−→

((
x′1x

′
2

x′0

)1/2

,

(
x′0x

′
2

x′1

)1/2

,

(
x′0x

′
1

x′2

)1/2
)

= (x0, x1, x2).

This map is precisely the map used to recover the values of the ψi in MFE:

(g2, g1, g3) = (ψ2ψ3, ψ1ψ3, ψ1ψ2) τ−1

7−→ (ψ1, ψ2, ψ3), (1.16)

where the i-th component of τ−1 is in fact hi as defined in (1.12).

Chains of oil-vinegar systems. We will use the basic structure of (1.16) in the con-

struction of the cryptosystem of Chapter 4, extending it slightly by adding more oil-

vinegar systems. To illustrate this idea, suppose we append a fourth oil-vinegar system

(Y16, Y17, Y18, Y19) to MFE that introduces new oil variables X13, X14, X15, X16, and satis-

fies

g4 = Y16Y19 + Y17Y18 = ψ1ψ4,

where the vinegar variables of this system are the variables of ψ1, i.e. X5, X6, X7, X8. Then

given the values of Y16, . . . , Y19, we can compute the value of ψ4 by using τ−1 to compute

ψ1, and setting

h4 =
g4
ψ1

(= ψ4).

We can also easily solve for the values of the oil variables. This process can be extended in

any number of ways. For one example, consider Figure 1.3, where we have appended three

additional oil-vinegar systems:

system oil variables vinegar variables

4 X13, X14, X15, X16 X5, X6, X7, X8

5 X17, X18, X19, X20 X9, X10, X11, X12

6 X21, X22, X23, X24 X1, X2, X3, X4

(1.17)
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that satisfy

g4 = ψ1ψ4, g5 = ψ2ψ5, g6 = ψ3ψ6. (1.18)

(The heads of the arrows indicate the oil variables for each system.) During decryption,

after we have computed the values of ψ1, ψ2, ψ3, we can use (1.18) to easily compute the

values of ψ4, ψ5, ψ6. Similarly, after we have solved for the values of the vinegar variables

X1, . . . , X12, we can solve the three new oil-vinegar systems (1.17) for the oil variables

X13, . . . , X24.

Figure 1.3: Chain of Oil-Vinegar Systems

ψ1, {X5, X6, X7, X8}

ψ2, {X9, X10, X11, X12}

ψ3, {X1, X2, X3, X4}

ψ4 =
g4
ψ1
, {X13, X14, X15, X16}

ψ5 =
g5
ψ2
, {X17, X18, X19, X20}

ψ6 =
g6
ψ3
, {X21, X22, X23, X24}

3

1

2

4

5

6
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Chapter 2

Linear Algebra Attacks

Before designing a new cryptosystem, it is crucial to understand the existing attacks

on MPKCs so that the weaknesses these attacks exploit may be avoided. Attacks on MPKCs

can be grouped into two categories: attacks based on linear algebra, and attacks based on

algebraic system solving. While this chapter addresses the linear algebra attacks in detail,

we begin with some brief comments about algebraic system solving attacks.

Recall that the public key of an MPKC is a polynomial map F̄ : kn → km. Given

a ciphertext (y1, . . . , ym) ∈ km, algebraic system solving attacks predominantly employ

Gröbner basis techniques in an attempt to solve the multivariate polynomial system

F̄ (x1, . . . , xn)− (y1, . . . , ym) = 0 (2.1)

for a preimage (x1, . . . , xn) ∈ kn. Important advances have been made since Buchberger

introduced his original algorithm in 1965 [Buc65], most notably Faugére’s F4 [Fau99] and

F5 [Fau02] algorithms. In fact, the most significant example of the effectiveness of an

algebraic system solving attack against an MPKC is Faugére’s success at breaking HFE for

certain parameters [FJ03]. The XL algorithm [CKPS00], designed to solve overdetermined

multivariate systems, has also been the focus of recent research. However, Gröbner basis

methods are not the only tool available for solving multivariate systems such as (2.1); Ding

36



et al. have proposed the Zhuang-Zi algorithm [DGS06b], which relies on the univariate-

multivariate correspondence of Section 1.2.1.

Though Gröbner basis attacks are quite powerful, attacks based on linear algebra

have been far more destructive to the security of MPKCs; indeed, almost every MPKC that

has been broken has fallen prey to the power of linear algebra attacks. In this chapter, we

will discuss the three types of linear algebra attacks: linearization equation attacks, rank

attacks, and the separation of oil and vinegar variables attack.

2.1 Linearization Equation Attacks

As mentioned in Section 1.2.2, linearization equations were first used by Patarin

[Pat95] in his attack on the MI cryptosystem. We follow the presentation of Ding et al.

[DGS06a].

First, consider the following argument. Let Y ∈ K be the output of the central map

of the MI cryptosystem, i.e. Y = Xqθ+1. Raising both sides to the qθ − 1 power, we have

Y qθ−1 = (Xqθ+1)q
θ−1 = Xq2θ−1.

Multiplying by XY ,

XY qθ = Xq2θY,

and we write

XY qθ −Xq2θY = 0. (2.2)

Observe that since q-th power maps are k-linear, when we move to the corresponding

multivariate system over the ground field k, (2.2) becomes linear in both the input variables

(x1, . . . , xn) = π(X) and the output variables (y1, . . . , yn) = π(Y ). So, in addition to

satisfying the original quadratic MI equation, the pair (X,Y ) ∈ K × K also satisfies the

k-linear equation (2.2). With this in mind, we introduce the following general definition.

Definition 2.1.1 ([DGS06a], Definition 2.3.1). Let G = {g1, . . . , gm} be any set of m
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polynomials in k[x1, . . . , xn]. A linearization equation for G is any polynomial in

k[x1, . . . , xn, y1, . . . , ym] of the form

n∑
i=1

m∑
j=1

aijxiyj +
n∑
i=1

bixi +
m∑
j=1

cjyj + d, (2.3)

such that we obtain the zero polynomial in k[x1, . . . , xn]/(xq1−x1, . . . , x
q
n−xn) (i.e. the zero

function on kn) upon substituting in gj for yj, for j = 1, . . . ,m.

The set of all such polynomials forms a vector space, called the linearization equation

space of G. Given sufficiently many linearization equations for the set G = {f̄1, . . . , f̄m},

where f̄i is the i-th component of the public key F̄ , substituting the ciphertext (y1, . . . , ym) =

F̄ (x1, . . . , xn) into each linearization equation yields a linear system in the xi. If we get n

linearly independent equations, we can uniquely solve for the plaintext (x1, . . . , xn) ∈ kn.

On the other hand, if we get fewer than n, say `, linearly independent equations, we can

substitute these expressions for ` of the variables, hence reducing the number of unknowns

and possibly being able to solve a reduced instance of (2.1).

To find the space of linearization equations, notice that substituting the quadratic

public polynomials f̄1, . . . , f̄m ∈ k[x1, . . . , xn] for the yj in (2.3), expanding, and reducing

powers greater than q if needed, we get a polynomial of the form

∑
1≤i≤j≤`≤n

αij`xixjx` +
∑

1≤i≤j≤n
βi,jxixj +

∑
1≤i≤n

γixi + δ, (2.4)

where the αij`, βij , γi, δ are all linear equations in the unknowns aij , bi, cj , d. Since this must

be the zero function on kn (i.e. the zero polynomial in the quotient ring), the αij`, βij , γi,

and δ must all be identically zero, giving (n+1)(n+2)(n+3)
6 linear equations in the (n+1)(m+1)

unknowns aij , bi, cj , d. Solving this linear system gives the space of linearization equations.

For the MI cryptosystem, it can be shown that the dimension of the linearization

equation space is at least n − gcd(θ, n) ≥ 2n
3 , so each ciphertext will produce at least 2n

3

independent linearization equations, allowing us to eliminate two-thirds of the variables,
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making the system (2.1) quite easy to solve.

As discussed in Example 1.3.2, Ding et al. [DHNW07] generalized linearization

equations to allow for higher degrees in the yi variables. Their degree two high order

linearization equation (HOLE) attack successfully breaks the MFE cryptosystem.

2.2 Rank Attacks

Some of the most devastating attacks on multivariate public key cryptosystems have

exploited a property of quadratic polynomials called the rank. In this section, we introduce

the concept of rank, then proceed to discuss the minrank and dual rank attacks on MPKCs.

2.2.1 Rank defined

We first define rank in the case where k has odd characteristic. A quadratic form

f =
n∑
i=1

n∑
j=i

αijxixj , αij ∈ k

can be written as f = xTAx, where x = (x1, . . . , xn)T and A ∈ kn×n is symmetric. We

define the rank of f to be the rank of A. If f is a general quadratic polynomial, then we

define the rank of f to be the rank of the homogeneous quadratic part of f .

Also, we make the important observation that given a matrix A for a quadratic

form, if we perform a change of variables x 7→ Lx, then the matrix of the new quadratic

form is LTAL.

In the case where k has characteristic two, we must be more careful. First notice

that a squared term is actually linear, and will not contribute to the rank. A quadratic

form

f =
n−1∑
i=1

n∑
j=i+1

αijxixj , αij ∈ k

can be written as f = xTAx, where this time A is an uppertriangular matrix with Aij = αij .

Then, we define the rank of f to be the rank of A+AT .
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We make a few observations:

• If a variable xi does not appear in the polynomial f , then the row and column of A

which correspond to xi are zero, and f does not have full rank.

• If f = αijxixj (with 0 6= αij ∈ k), then it is easy to see that f has rank 2. In fact,

if f =
∑
αijxixj where all the variables are distinct, then the rank of f is twice the

number of terms of f

• Let f =

(
n∑
i=1

αixi

) n∑
j=1

βjxj

 be squarefree. Then rank(f) = 2.

• More generally, if f =
∑
`i`j , where each `r is a linear polynomial, then rank(f) ≤ 2t

where t is the number of products in the sum.

The last two facts follow from the results of the next section.

2.2.2 Equivalence classes of bilinear forms

This section presents some important results from [MS83]. Let k have characteristic

two. Suppose we have a quadratic form A(x) = xTAx where A ∈ kn×n is uppertriangular

with zero diagonal. There is a one-to-one correspondence between these quadratic forms and

symplectic forms (i.e. bilinear forms B(x,y) satisfying B(x,x) = 0 and B(x,y) = B(y,x)).

In matrix form, we write B(x,y) as xTBy where B ∈ kn×n is symmetric with zero diagonal.

In particular, this correspondence is given by

A←→ B = A+AT .

Theorem 2.2.1 (Dickson’s Theorem). For every symplectic form B(x,y), there exists a

linear transformation, L, such that under the transformation u = L−1x,v = L−1y, the

matrix B becomes LTBL having the form
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LTBL =



0 1
1 0

0 1
1 0

. . .
0 1
1 0

0 0
0 0

. . .


,

where the diagonals above and below the main diagonal each have rank(B)/2 ones with zeros

everywhere else.

Examining the quadratic form xTAx under this transformation, we have

xTAx ↔ xT (A+AT )y

= uTLT (A+AT )Lv

= uT (LTAL+ LTATL)v

= uT (Ã+ ÃT )v

↔ uT Ãu,

and we say that A is equivalent to Ã. Notice that Ã may no longer be uppertriangular, but

Ã+ ÃT must have the form specified by Dickson’s Theorem so

• Ãi,i+1 + Ãi+1,i = 1, i = 1, 3, . . . , rank(A+AT )− 1,

• Ãi,i = 0 for all i, and

• Ãi,j + Ãj,i = 0 for all other i, j.

Thus we have the following important corollary:

Corollary 2.2.1. Every quadratic form given by A ∈ kn×n can be transformed via a linear
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transformation into the form
r∑
i=1

x2i−1x2i,

where r = rank(A+AT ).

2.2.3 Minrank Attack

The minrank attack has been successfully applied to several MPKCs. Here we

present the attack of Goubin and Courtois [GC00] on the single field TTM system of Moh.

Kipnis and Shamir [KS99] first used the minrank attack against the mixed field HFE system,

but since the system we will propose in Chapter 4 more closely resembles a single field

system, we examine the Goubin-Courtois attack. We first define the MinRank problem as

follows:

Definition 2.2.1 (MinRank Problem). Given A1, . . . , Am ∈ kn×n, and r < n, find a non-

trivial linear combination of

A = α1A1 + · · ·+ αmAm, ai ∈ k,

such that rank(A) ≤ r.

There are several techniques to solve this problem, but we will not discuss them

here, only stating the complexity as O(qd
m
n
erm3), where q = |k| [GC00].

Instead of simply presenting the technical details of the attacks, we begin each

explanation with a brief overview to help motivate the main ideas and strategies behind the

attack, and then follow with a more complete description of each attack.

Defining TPM. Since presenting Moh’s original TTM cryptosystem [Moh99] would re-

quire a great deal of space, we present a generalization called TPM, of which TTM is a

particular instance, that Goubin and Courtois ultimately used to break TTM. The central
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map of TPM is given by F = (f1, . . . , fn−r+u) : kn → kn−r+u where

f1 = x1 + g1( xn−r+1, . . . , xn)

f2 = x2 + g2(x1; xn−r+1, . . . , xn)

f3 = x3 + g3(x1, x2; xn−r+1, . . . , xn)
...

fn−r = xn−r + gn−r(x1, . . . , xn−r−1; xn−r+1, . . . , xn)

fn−r+1 = gn−r+1(x1, . . . , xn)
...

fn−r+u = gn−r+u(x1, . . . , xn),

(2.5)

with gi quadratic, 1 ≤ i ≤ n − r + u. For simplicity, we introduce m = n + u − r. Then

the public key is the m polynomials of the map F̄ = L1 ◦ F ◦ L2, where L1 : km → km

and L2 : kn → kn are random invertible affine transformations. Thus we can view F̄ =

(f̄1, . . . , f̄m) as combinations of the central map polynomials f1, . . . , fm, under the change

of variables specified by L2. Moh’s TTM cryptosystem can be viewed as an instance of

TPM with n = 64, u = 38, and r = 2.

We now make two crucial observations: the quadratic part of f1 only has r variables,

and the variable xn−r appears only in the last u polynomials. We will use the minrank and

dual rank attacks, respectively, to exploit these weaknesses and break the system. We can

think of the two attacks as duals of each other: the minrank attack exploits the fact that one

central map polynomial contains a small subset of the variables, while the dual rank attack

exploits the fact that one variable appears in a small subset of the central map polynomials.

Attack overview. We may assume L1 and L2 are invertible linear transformations, since

the affine parts may be absorbed into the central map (see [Wol05, Section 4.4.6]). As

mentioned above, the minrank attack exploits the fact that the quadratic part of f1 involves

only the r variables xn−r+1, . . . , xn. Let [L2x]i be the i-th component of L2(x1, . . . , xn)T .
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Composing f1 with L2 gives

f1 ◦ L2(x1, . . . , xn) = [L2x]1 + g1([L2x]n−r+1, . . . , [L2x]n).

If we can find a basis for the space spanned by the last r components of L2x (a space of

linear polynomials having dimension r), then setting each of these components to a field

value will cause g1([L2x]n−r+1, . . . , [L2x]n) to be constant, thus giving a linear equation for

f1 ◦ L2 (there are qr possible choices). Since the public polynomials f̄1, . . . , f̄m are linear

combinations (via L1) of fi ◦ L2, 1 ≤ i ≤ m, we will be able to find a linear combination of

the public polynomials that is actually a linear polynomial, i.e. we can find αi, 1 ≤ i ≤ m

such that
m∑
i=1

αif̄i =
n∑
i=1

βixi + γ. (2.6)

Then plugging in the ciphertext (y1, . . . , ym) ∈ km for (f̄1, . . . , f̄n), (2.6) gives a linear ex-

pression involving the xi, therefore giving us the value of [L2x]1. Substituting this expression

into the public polynomials is equivalent to setting g2([L2x]1; [L2x]n−r+1, . . . , [L2x]n) con-

stant, and the equation for f2 ◦ L2 becomes linear. Hence we can do another search for a

linear equation among the public polynomials. We will continue this process until we have

solved for all the variables.

Attack details. The question that remains is how to find the space spanned by the last r

components of L2x: this is where the MinRank problem fits in. We follow the basic outline

of [DGS06a], but provide greater detail to give more clarity. Notice that if we consider the

matrix A1 of the quadratic form corresponding to f1 (disregarding the linear and constant

terms) as in Section 2.2.1, we expect it to satisfy rank(A1) ≤ r. In particular we can write

A1 in the form

A1 =

 0 0

0 A′1

 , (2.7)
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where A′1 ∈ kr×r is symmetric with zero diagonal. After applying the linear change, L2, of

variables, A1 becomes LT2A1L2 hence rank(LT2A1L2) ≤ r. Since the public polynomials are

constructed by multiplying the vector of central map polynomials by the matrix L1, there

must be some combination of the matrices Bi of the quadratic forms corresponding to the

public polynomials, f̄i, 1 ≤ i ≤ m, such that

LT2A1L2 =
m∑
i=1

λiBi, λi ∈ k. (2.8)

This is clearly an instance of the MinRank problem. If r is small enough and odd (see the

comments section below for how to handle the even case), we should be able to solve the

MinRank problem and find cLT2A1L2, i.e. the left side of (2.8) up to a constant multiple.

The kernel of this matrix will have dimension n− r, and we can compute a basis of column

vectors v1, . . . , vn−r. Completing this basis to a basis for the whole space, v1, . . . , vn, we

have the nonsingular matrix

L = (v1, . . . , vn).

Lemma 2.2.1. The space spanned by the last r components of L2x is the same as the space

spanned by the last r components of L−1x.

Proof. Notice that

LT (cLT2A1L2)L = E,

where E ∈ kn×n has the same form as A1 in (2.7). Since L1 and L2 are invertible, we can

rewrite this as

A1L2x = c−1(LT2 )−1(LT )−1EL−1x.

Notice that the structure of A1 (and E) makes the first n − r components of the above

vectors 0 (actually, we are interested only in the last n− r components). Define (L2x)r and

(L−1x)r to be the last r components of the vectors L2x and L−1x, respectively. Also, let

A′1 and E′ be the r × r submatrices of rank r of A1 and E, respectively. Finally, let L̃ be
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the r × r matrix given by the last r rows and columns of (LT2 )−1(LT )−1. Then we have

A′1(L2x)r = c−1L̃E′(L−1x)r.

But since A1 has rank r, A′1 is invertible, hence

(L2x)r = c−1(A′1)−1L̃E′(L−1x)r,

and we have shown that the last r components of L2x are in the span of the last r components

of L−1x. The reverse inclusion is done similarly.

Using this Lemma, it is now clear that we can compute the required basis for the

space spanned by the last r components of L2x. Suppose it is given by {bn−r+1, . . . , bn},

where

bi = xi +
n−r∑
j=1

αijxj , n− r + 1 ≤ i ≤ n, αij ∈ k. (2.9)

We now explain more explicitly the process stated in the overview. Consider the first

component of the central map under the change of variables, i.e. the first component of

F ◦ L2:

f1 ◦ L2x = [L2x]1 + g1([L2x]n−r+1, . . . , [L2x]n).

Now, each [L2x]i, n− r + 1 ≤ i ≤ n, can be written as a sum of the bi:

[L2x]i =
n∑

j=n−r+1

βijbj , βij ∈ k,

so setting the bi to field values (we have qr choices) will make g1 constant, and therefore f1

becomes linear. Equivalently, setting the bi to field values in (2.9) gives linear expressions

for xi, n − r + 1 ≤ i ≤ n, in terms of xj , 1 ≤ j ≤ n − r, so substituting these in for

xi, g1 becomes constant, and thus f1 becomes linear. Observe that from the perspective

of algebraic geometry, we are restricting functions to a subspace of dimension r, which is
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equivalent to setting the variables to be constant. Of course the public polynomials are

just combinations of the central map polynomials (via L1) after the base change (L2), so

to find the combination that yields a linear polynomial, we make the substitution of the xi,

n− r + 1 ≤ i ≤ n in F̄ by the linear expressions of (2.9), and then do Gaussian reduction

on the new public polynomials to find a linear polynomial. This gives us another linear

equation, which we substitute (equivalent to setting another of the variables constant), and

Gaussian reduction will give us another linear polynomial, and so on, until we have a total

of n linear equations which we can then solve, and check to see if we have the right plaintext.

Notice that we have qr choices for field values to plug in, however the complexity for

this attack is clearly dominated by the step that finds a solution to the MinRank problem:

O(qd
m
n
erm3).

Comments. The above method works if r is odd, however, we must make a slight mod-

ification in the case where r is even. Notice that g2 involves only one additional vari-

able, x1. By Dickson’s Theorem, we know that rank must be an even number and hence

rank(g2) = rank(g1) = r. Thus solving the MinRank problem will actually give

c1L
T
2A1L2 + c2L

T
2A2L2 =

m∑
i=1

λiBi, λi ∈ k.

The subsequent process remains the same up until the point of searching for a combination

of the public polynomials that yields a linear polynomial. As before, after substituting for

the xn−r+1, . . . , xn, g1 becomes constant, but g2 will be a quadratic function of [L2x]1, so

we search for combinations that are linear and also have squared terms. Once we find such

equations, we can make them linear since we know the simple structure of f1 and f2.

2.2.4 Dual Rank Attack

Attack overview. As mentioned before, the dual rank attack is based on the fact that

xn−r appears in the quadratic parts of only the last u central map polynomials of TPM (2.5).

This means it shouldn’t be too hard to find some combination of the public polynomials that
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doesn’t involve the variable [L2x]n−r (actually, we will just guess random combinations until

we find one). Suppose one such combination is given by
∑m

i=1 αif̄i, and let P =
∑m

i=1 αiBi

be the sum of the matrix representations of the corresponding quadratic forms. Utilizing the

kernel of P , we can quickly construct a new combination that doesn’t involve the variables

[L2x]n−r or [L2x]n−r−1, and can continue the process until we have a combination that

involves only [L2x]n−r+1, . . . , [L2x]n. Notice that we have in fact constructed a solution to

the MinRank problem, since this final combination represents f1 ◦L2 up to a constant. We

finish the attack using the techniques of the previous section.

Attack details. Let An−r be the matrix of the quadratic form corresponding to fn−r in

(2.5). Notice kerAn−r ⊇ {x ∈ kn : x1 = · · · = xn−r−1 = xn−r+1 = · · · = xn = 0} has

dimension ≥ 1, and the matrix LT2An−rL2 corresponding to fn−r ◦ L2 has a kernel of the

same dimension. Therefore, we should be able to find some combination of the Bi (matrices

of the quadratic forms corresponding to the public polynomials) with kernel of dimension

≥ 1. Choose (α1, . . . , αm) ∈ km at random, and let P =
∑m

i=1 αiBi. We will consider

V = kerP . Notice

P =
m∑
i=1

αi

m∑
j=1

`ijL
T
2AjL2 where `ij = [L1]ij

= LT2

 m∑
i=1

αi

m∑
j=1

`ijAj

L2

= LT2

 m∑
j=1

Aj

m∑
i=1

αi`ij

L2

= LT2

 m∑
j=1

γjAj

L2 where γj =
m∑
i=1

αi`ij .
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Thus rank(P ) = rank
(∑m

j=1 γjAj

)
. Now, if our choice of (α1, . . . , αn) ∈ kn results in

γj = 0 for n− r + 1 ≤ j ≤ m (i.e. for the last u indices), then

dimV = dim ker
m∑
j=1

γjAj = dim ker
n−r∑
j=1

γjAj ≥ 1

since in the definition of TPM (2.5), xn−r does not appear in the polynomials f1, . . . , fn−r.

This means V contains the kernel corresponding to kerAn−r under the change of variables

(i.e. kerLT2An−rL2). We need to make sure we have the smallest possible kernel, in other

words, the kernel that corresponds to exactly kerAn−r, so whenever we find dimV ≥ 1, we

compute the solution space Λ for the λi in

PV =

(
m∑
i=1

λiBi

)
V = 0. (2.10)

The V we want has the property that dim(Λ) = n− r. To see this, notice that

ker

n−r∑
j=1

γjAj

 ⊇ kerAn−r,

and again, this is since dimension is unchanged under the change of variables. Recall that

m = n + u − r, so the probability of guessing the right kernel is qm−u

qm = q−u, so it takes

about qu tries to find the right kernel. Similar to the minrank attack, we will see that this

initial step is the most costly step of the attack.

The goal now is to build a chain of n− r kernels which corresponds to

kerAn−r ⊆ kerAn−r−1 ⊆ · · · ⊆ kerA2 ⊆ kerA1, (2.11)

where the last kernel is the same as the kernel of the matrix in (2.8). The last step in the

attack will be the same as the minrank attack, performing a search of size qr. We find the

next kernel in the chain as follows. Compute a basis for Λ (the solution space of the λi in
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(2.10)). Write the i-th basis vector as (λi1, . . . , λim) ∈ Λ, and let

f̃i =
m∑
j=1

λij f̄i, 1 ≤ i ≤ n− r.

Let B̃i be the matrices of the quadratic parts of these polynomials, so B̃1, . . . , B̃n−r each

correspond to some combination of A1, . . . , An−r under the change of variables. It is easy

to see from the definition of TPM (2.5) that we are left with n − r quadratic polynomials

with the variable xn−r−1 appearing in only one. This puts us back in a similar position to

where we started, only now we only have n−r matrices B̃1, . . . , B̃n−r and u = 1. As before,

we choose random (α1, . . . , αn−r) ∈ kn−r, and compute P =
∑n−r

i=1 αiB̃i and V = kerP .

When dimV ≥ 1, we compute the solution space Λ to

(
n−r∑
i=1

λiB̃i

)
V = 0.

This time we want dim Λ = n − r − 1, and the probability of guessing the right kernel is

qn−r−1

qn−r = q−1, so we will have the kernel after about q guesses. Continuing, by using the

basis elements of the new Λ, we compute the n − r − 1 new matrices B̃1, . . . , B̃n−r−1, and

repeat the process n− r−2 more times. The end result is that we have found the necessary

chain of kernels (2.11), and we finish the attack by doing a search of size qr (notice r ≤ u)

and applying the techniques of the previous section. The complexity of this attack can be

shown to be approximately: O(nm3qu) [YC04].

Comments. We can make an improvement to our attack strategy. Recall that if a variable

xt does not appear in a central map polynomial, then its matrix has rank < n. So, if xt

appears only in one equation in the central map, then when we form linear combinations

of pairs of polynomials from the public key, these pairs (for the most part) will have rank

< n. To see this, suppose xt appears only in the central map polynomial ft. We can write
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public polynomials f̄i and f̄j as

f̄i = αift +
∑
k 6=t

βikfk and f̄j = αjft +
∑
k 6=t

βjkfk,

where we assume αi and αj are nonzero (this is why we used the phrase ”for the most

part”). Then

f̄i +
αi
αj
f̄j

has no term with [L2x]t and hence its matrix has rank < n. We can generalize this so that

if a variable xt only appears in u central map polynomials, then we can find combinations

of u+ 1 public polynomials that have less than full rank, i.e.

f̄1 + α2f̄2 + · · ·+ αu+1f̄u+1

has no [L2x]t term, as long as the αi’s are chosen correctly. So we really only need to

consider combinations of (u+ 1) of the public matrices, as opposed to all m of them. This

reduces the attack complexity to O(n3qu) [YC04].

The main idea of this attack (finding a chain of kernels) was first proposed by

Coppersmith et al. [CSV93, CSV97] to break Shamir’s Birational Permutation signature

scheme [Sha93]. Goubin and Courtois later showed how to apply this idea to attack TPM

[GC00], but they take a slightly different approach after finding each kernel of (2.11),

resulting in a complexity of O(n6qu).

2.2.5 Similarities between the two attacks

The rank attacks exploit the fact that the TPM system uses polynomials that have

ranks near both ends of the spectrum. While the minrank attack begins by finding a

polynomial with small rank, the dual rank attack begins by finding a polynomial with

almost full rank. Notice that in both attacks, the final step involves a search of size qr.

This suggests that at the heart of the attacks we are able to use rank distinguish the
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triangular part (the first n−r equations) from the u random quadratics that are appended,

and find expressions of the first n− r variables in terms of the last r.

2.3 Separation of Oil and Vinegar Variables Attack

Recall from Section 1.2.6 that Kipnis and Shamir [KS98] first used their separation

of oil and vinegar variables attack to break Patarin’s original balanced oil-vinegar signature

scheme (i.e. o = v). Subsequently, Kipnis et al. [KPG99] proposed an unbalanced (o < v)

scheme, showed how to extend the attack, and gave parameters to construct a secure system.

Although originally developed to attack oil-vinegar signature systems, the separation of oil

and vinegar variables attack has been used to break other schemes, notably a version of

the triangular signature scheme TTS [DSY06]. Since the system we propose in Chapter 4

combines ideas from triangular and oil-vinegar systems, it is important to understand this

attack.

2.3.1 Kipnis-Shamir attack on balanced oil-vinegar

We first consider the Kipnis-Shamir attack on an oil-vinegar scheme with o = v, say

both equal to n, giving a total of 2n variables. The central map F = (f1, . . . , fn) is an n-tuple

of oil-vinegar polynomials with each fi(x1, . . . , xn, x̌1, . . . , x̌n) ∈ k[x1, . . . , xn, x̌1, . . . , x̌n]

quadratic, and the public key is given by F̄ = F ◦ L where L : k2n → k2n is an in-

vertible affine transformation. Notice that in the presentation of oil-vinegar systems in

Section 1.2.6, we listed the vinegar variables x̌1, . . . , x̌n before the oil variables x1, . . . , xn

in the fi so that the definition of the new framework of Section 1.3 would be more natural.

Kipnis and Shamir use the original notation of the oil variables preceding vinegar variables,

which we follow here.

Let x = (x1, . . . , xn, x̌1, . . . , x̌n)T , and write the homogeneous quadratic part of each

fi as fi = xTAix as in Section 2.2.1. Observe that since fi is an oil-vinegar polynomial and
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has no terms that are quadratic in the oil variables, Ai must have the form:

Ai =

 0 Ai1

Ai2 Ai3

 ,

where Ai1, Ai2, Ai3 ∈ kn×n, 1 ≤ i ≤ n. Assume for now that L is an invertible linear

transformation; we will explain later how to modify the attack when L is affine. The

matrices, Bi, corresponding to the public polynomials are be given by Bi = LTAiL. Define

the oil subspace, O to be the set of all vectors in k2n with zeros in the last n positions,

and define the vinegar space, V, to be the set of all vectors in k2n with zeros in the first n

positions.

We now make an important observation: knowledge of the transformed oil subspace,

L−1O, will allow us to create forgeries. Notice L−1O is simply the set of vectors

{ō ∈ k2n : Lō ∈ O}.

Suppose we have in fact found L−1O, and let {v1, . . . , vn} be a basis of column vectors.

Complete this to a basis V = {v1, . . . , v2n} for the whole space k2n. Notice that we can

think of V in matrix form as

V = L−1

 ∗ ∗
0 ∗

 ,
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where the ∗’s denote some n× n submatrices. Then we have

V TBiV =

L−1

 ∗ ∗
0 ∗



T

BiL
−1

 ∗ ∗
0 ∗


=

 ∗ 0

∗ ∗

 (LT )−1BiL
−1

 ∗ ∗
0 ∗


=

 ∗ 0

∗ ∗

Ai

 ∗ ∗
0 ∗


=

 0 ∗

∗ ∗

 .

So, V TBiV is the matrix corresponding to some oil-vinegar polynomial, and thus F ′ = F̄ ◦V

is an oil-vinegar system. But notice that

F ′ ◦ V −1 = F̄ , (2.12)

has the same form as (1.6), so we can use the new oil-vinegar map F ′ along with the

invertible transformation V −1 to create valid signatures in the exact same way a legitimate

user does.

Now, proving that we can in fact find L−1O requires the following lemma:

Lemma 2.3.1 ([KS98], Lemma 4). Viewing Ai as a linear mapping, if Ai is invertible,

then Ai maps O onto V, and A−1
i maps V onto O. Furthermore, for any other invertible

Aj, A−1
i Aj has O as an invariant subspace.

Proof. Let o ∈ O,

Aio =

 0 ∗

∗ ∗


 ∗

0

 =

 0

∗

 ∈ V,
so Ai maps O into V. But since Ai is invertible, it must map O to a subspace of dimension
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n, so we have AiO = V. Inverting, we must have A−1
i V = O, and since this holds for any

i, we conclude that A−1
i AjO = O for any i, j.

Notice that under the change of variables L, as fi transforms to fi ◦ L, the corre-

sponding matrix Ai transforms to LTAiL. However, viewing Ai as a linear transformation,

it becomes L−1AiL. We reconcile this difference by considering the product A−1
i Aj , where

Ai is invertible. Applying L to both quadratic forms, the matrix of the product is

(LTAiL)−1LTAjL = L−1A−1
i AjL.

On the other hand, as linear maps, the matrix of the product is

(L−1AiL)−1L−1AjL = L−1A−1
i AjL.

Both right-hand side expressions are the same, giving the following corollaries:

Corollary 2.3.1. If Bi and Bj are invertible, then B−1
i Bj has L−1O as an invariant

subspace.

Proof. From above, B−1
i Bj = (LTAiL)−1(LTAjL) = L−1A−1

i AjL. Thus

B−1
i BjL

−1O = L−1A−1
i AjLL

−1O = L−1A−1
i AjO = L−1O,

Corollary 2.3.2 ([KS98], Theorem 7). Consider only the Bi that are invertible. Define

T = k[B−1
i Bj for all i, j], the polynomial ring in all the B−1

i Bj for all i, j. Then the

transformed oil space, L−1O is an invariant subspace of every element of T .

2.3.2 Implementation

We have reduced the problem of forging a signature to finding a common invariant

subspace of a set of matrices. As with the MinRank problem, we don’t explicitly discuss
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how to solve this problem, but do make a few comments. Kipnis and Shamir present two

methods for using the B−1
i Bj to compute L−1O. Their first approach is probabilistic. They

state that heuristically, a basis of T should have t = O(n2) matrices. Define a vector r of

2n formal variables that represents an element of L−1O, and let M be the 2n × t matrix

with columns given by the product of each basis matrix with r. Since the oil subspace has

dimension n, M has rank n and therefore any n + 1 rows must be linearly dependent, in

particular the first n+1 rows. The resulting linear equation has n+1 unknown coefficients,

and fixing one of them to be 1 gives n more unknowns in addition to the 2n components of

r. Each of the t components of the resulting row vector must be zero, and they describe how

to solve this overdetermined quadratic system of t equations in 3n variables by linearization

and choosing random vectors.

The second approach is to use characteristic polynomials of the B−1
i Bj . Ding et al.

[DGS06a] give a more complete treatment of this method, including notes on implementation

in characteristic two.

We have presented the attack for the case where L is a linear transformation. In

general, L is affine, but notice that in the composition F̄ = F ◦ L, the quadratic parts of

the polynomials are not affected by the affine part of L, i.e. the column vector making up

the affine part of L only affects the linear and constant terms. Thus we simply perform the

attack as stated above, except the new oil-vinegar map F ′ is constructed by composing the

homogeneous quadratic part of F̄ with V , leaving the linear and constant parts unchanged.

We can then forge signatures in a similar way.

Before moving to the unbalanced case, we note that the balanced attack also applies

to oil-vinegar systems with v < o.

2.3.3 Generalization to the unbalanced case v > o with v ≈ o

Define the O to be the set of all vectors in ko+v with zeros in the last v positions,

and define V to be the set of all vectors in ko+v with zeros in the first o positions. In this
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case, the matrix Ai of fi has the form

Ai =

 0 Ai1

Ai2 Ai3

 ,

where Ai1, Ai2 ∈ ko×v, Ai3 ∈ kv×v, 1 ≤ i ≤ o.

Notice that since v > o, Lemma 2.3.1 no longer holds, since Ai only maps O into V

(in particular, into an o-dimensional subspace). Kipnis et al. [KPG99] give a probabilistic

generalization of the balanced attack to this case with complexity o4qv−o−1.

2.3.4 Attacks when o 6≈ v

Based on the above complexity, v should clearly be larger than o, but it is not totally

clear how large v should be. Braeken et al. [BWP05] examined the case when v ≥ 2o, in

particular v = 2o and v = 3o for small q and recommended values for o to construct secure

systems. Continuing to increase v to v ≥ o2 is not a viable solution, as Kipnis et al. [KPG99]

showed that in almost all cases, the resulting system was not secure.

2.3.5 Attacking general multivariate systems

Both the balanced and unbalanced attacks find L−1O and use it to create an equiv-

alent oil-vinegar system (2.12) which can be used to forge signatures. In general, forging

a signature is a simpler problem than finding the plaintext that corresponds to a given

ciphertext. Given a document P and the public key F (x1, . . . , xn) of a signature scheme,

as the authors of [DSY06] eloquently comment in their work that breaks a version of TTS,

“we need to know how to find a (not THE) solution for the equation F (x1, . . . , xn) = P .”

For instance, in an oil-vinegar scheme, we know that the vast majority of choices for the

vinegar vector (x̌1, . . . , x̌v) ∈ kv will yield a valid signature (x̌1, . . . , x̌v, x1, . . . , xo) ∈ ko+v,

and to forge a signature, we only need to find one solution.

For this reason, applying the separation of oil and vinegar variables attack to a

multivariate encryption scheme F̄ = L1 ◦F ◦L2 becomes a more difficult problem. Naively,
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we would at least need to search through the space L−1
2 O, thus increasing the complexity

of the attack (similar to searching through the space of the last r components of L2x

in the minrank attack). However, while performing the security analysis on the MFE

cryptosystem, Wang et al. [WYHL06] still use the complexity given in Section 2.3.3, and

we follow their example in the cryptanalysis of our new system in Section 4.3.

Applying the separation of oil and vinegar variables attack to a general system

involves partitioning variables of the central map into oil variables x1, . . . , xo and vinegar

variables x̌1, . . . , x̌v, where no xixj term appears in any central map polynomial. From

Section 2.3.3, the complexity of this attack depends on the size of the minimal vinegar set.

Wang et al. mention using a maximal clique-finding algorithm to find this set, but give no

explanation. To actually accomplish this, construct the graph with vertices given by the

central map variables and edges occuring whenever the product of two variables does not

appear in any polynomial. Recall that a clique is a set of vertices that has the property that

any pair of vertices in the set has an edge between them [DW01]. Therefore, computing

the clique number (size of a maximal clique) of this graph is equivalent to computing the

maximal oil set, and taking its complement in the set of all variables gives the minimal

vinegar set. (Wang et al. state that the size of the minimal vinegar set for MFE is 9, but

computations with Magma [MAGMA] show that it is actually 8, since a maximal oil set is

given by {X1, X3, X7, X8}.)

58



Chapter 3

Polynomial Identities

Let F be a finite field of characteristic p. As discussed in Section 1.3.3, our goal is

to construct quartic identities of the form

AB = f1f2 + f3f4 + . . . fn−1fn + fn+1fn+2 + · · ·+ fn+t−1fn+t (3.1)

where each polynomial has degree two, and

1. A ∈ F[X1, . . . , Xn], B ∈ F[Y1, . . . , Yn].

2. fi ∈ F[X1, . . . , Xn, Y1, . . . , Yn], 1 ≤ i ≤ n, are oil-vinegar polynomials.

3. fi ∈ F[X1, . . . , Xn, Y1, . . . , Yn], n+ 1 ≤ i ≤ n+ t.

Furthermore, since ultimately we will build cryptosytems out of these identities, we intro-

duce a restriction on the ranks of the polynomials:

4. A,B, f1, . . . , fn+t each have rank ≥ 4.

In this chapter, we explore several ideas to attack this problem. We begin by

considering an approach based on classical number theory: parameterization; and continue

by examining a more computational approach utilizing Gröbner bases. The last three

sections focus on more algebraic/geometric ideas: Plücker coordinates, determinants, and

Grassmann coordinates.

59



3.1 Parameterization

An initial approach to solving this problem is to parameterize the solutions, much

like one can parameterize, for instance, the rational points on a circle. Suppose we are given

the equation of a circle x2 + y2 = 1. Using (−1, 0) as an initial solution, we parameterize

all solutions as

(x, y) = (−1, 0) + λ(a, b).

So, we have (−1 + λa)2 + (λb)2 = 1, and solving for λ gives λ = 2a
a2+b2

. Since (a, b) is a

direction vector, we can fix a = 1 and let b ∈ Q vary, giving

(x, y) = (−1, 0) +
2

1 + b2
(1, b). (3.2)

Notice (3.2) misses the point (−1, 0) since we fixed a = 1. To avoid this problem, we could

allow a = 0, or we could use another initial point and take the union of the points from the

new parameterization with those from the original parameterization (3.2).

Geometrically, as depicted in Figure 3.1, we draw the ray with tail (−1, 0) in the

direction (1, b). The point (x, y) specified by (3.2) is given by the other point where this

ray intersects the circle.

Figure 3.1: Parameterization of Points on the Unit Circle

(−1, 0)

(0, b)

(x, y)
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We can quickly generalize this idea to rational functions. Suppose we want to find

solutions of x2 + y2 = 1 where x, y ∈ F(t1, . . . , tn). The parameterization (3.2) still holds,

where we let b ∈ F(t1, . . . , tn) vary.

We now develop a parameterization for the polynomial equation

T∑
i=1

FiGi = 0,

where Fi, Gi ∈ F[X1, . . . , Xn, Y1, . . . , Yn]. Notice that initial solutions may often be easy

to find; for instance, if F = F2, an initial solution to F1G1 + F2G2 = 0 is given by

(F1, F2, G1, G2) = (1, 1, 1, 1). Now, suppose in general we have initial solution Fi = αi

and Gi = βi, 1 ≤ i ≤ T . A new solution will be of the form Fi = αi + λfi, Gi = βi + λgi,

with fi, gi ∈ F[X1, . . . , Xn, Y1, . . . , Yn], 1 ≤ i ≤ T . Since a new solution must satisfy the

original equation, we have

0 =
T∑
i=1

(αi + λfi)(βi + λgi) (3.3)

=
T∑
i=1

λ(αigi + βifi) + λ2figi.

Hence,

λ =
∑T

i=1 αigi + βifi∑T
i=1 figi

=
λ1

λ2
.

Clearing denominators in (3.3), we have the parameterization

Fi = αiλ2 + λ1fi, Gi = βiλ2 + λ1gi, 1 ≤ i ≤ T, (3.4)

where fi, gi ∈ F[X1, . . . , Xn, Y1, . . . , Yn] are arbitrary and

λ1 =
T∑
i=1

αigi + βifi, λ2 =
T∑
i=1

figi. (3.5)

To satisfy the requirement of (3.1) that each polynomial must be quadratic, we observe
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that

αi, βi ∈ k and fi, gi linear polynomials, 1 ≤ i ≤ T ,

are sufficient conditions. We do not claim, however, that these are necessary conditions,

since that would require proving that αi, βi, fi, gi of higher degrees can never yield quadratic

Fi and Gi in (3.4).

Recall that we are specifically interested in the rank of the solution polynomials;

the following proposition addresses this issue:

Proposition 3.1.1. Suppose F has characteristic two. Let αi, βi, fi, and gi be as above.

Then rank(αiλ2+λ1fi) ≤ 2(T−1), and similarly, rank(βiλ2+λ1gi) ≤ 2(T−1), for 1 ≤ i ≤ T .

Proof. Expanding using (3.5), notice

αiλ2 + λ1fi = αi

T∑
j=1

fjgj + fi

T∑
j=1

(αjgj + βjfj)

Note that adding a squared term won’t change the rank (since it has rank zero), so

rank(αiλ2 + λ1fi) = rank

αi T∑
j=1

fjgj + βif
2
i + fi

T∑
j=1

(αjgj + βjfj)


= rank

αi T∑
j=1
j 6=i

fjgj + fi

T∑
j=1
j 6=i

(αjgj + βjfj)


= rank

 T∑
j=1
j 6=i

(αifj + αjfi)(gj +
βj
αi
fi)


≤ 2(T − 1),

where we have assumed αi 6= 0 and have used the properties of rank discussed in Section

2.2. On the other hand, if αi = 0, rank(αiλ2 + λ1fi) = rank(λ1fi) ≤ 2.

An important consequence of this proposition is that in order to achieve ranks

greater than 4 with this method, we must have T ≥ 4. Furthermore, a major drawback of
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this method is that there seems to be no straightforward way to enforce the other restrictions

of (3.1) on the parameterized solution (3.4).

3.2 Gröbner Basis Approach

We next explore a computational approach for solving (3.1), focusing on a simpler

instance, namely the identity used by the MFE cryptosystem:

AB = CD + EF, (3.6)

where A,B,C,D,E, F satisfy the requirements of (3.1). Writing x1, . . . , x4 for X1, . . . , X4

and y1, . . . , y4 for X5, . . . , X8 in (1.11), we can rewrite the specific solution used by MFE

(when F has characteristic two) as:

(x1x4 +x2x3)(y1y4 +y2y3) = (x1y1 +x2y3)(x3y2 +x4y4)+(x1y2 +x2y4)(x3y1 +x4y3). (3.7)

Why study such an apparently simple identity? A brief discussion of the size of the systems

needed to naively find solutions to such an equation should suffice. Recall two important

formulas:

1. The number of terms of degree k in a polynomial in n variables is at most
(
n+k−1

k

)
.

2. The total number of terms in a polynomial of degree d in n variables is at most
(
n+d
d

)
.

So, if we assign an unknown to the coefficient of each term of (3.6), this gives a total of

6
(
n+2

2

)
unknowns. Notice that the total degree of (3.6) is 4, giving a total of

(
n+4

4

)
terms.

Equating the coefficients of corresponding terms on both sides of the equation gives
(
n+4

4

)
quadratic equations in the unknown coefficients. So, if n = 8, solving (3.6) requires solving

a quadratic system of 495 equations in 270 unknowns – a difficult task even over F2. As n

increases the problem becomes even more daunting.
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3.2.1 Over F2[x1, . . . , x4, y1, . . . , y4]

We are interested in completely characterizing the solutions to (3.6) over the ring

F2[x1, . . . , x4, y1, . . . , y4], in particular, to see whether there are other solutions, in addition

to the MFE solution, which might be suitable for building a cryptosystem. Before we

consider the computational aspects of this problem, we address the notion of equivalent

solutions.

First consider invertible linear transformations of variables. If we compose the

central map F̃ of an MPKC with a change of variables T , the public key becomes F̄ =

L1 ◦ (F̃ ◦ T ) ◦ L2. However, we can simply redefine L2 := T ◦ L2, absorbing T into L2, and

we can think of the two maps F̃ and F̃ ◦ T as being equivalent. On the other hand, if we

compose the central map F̃ of an MPKC with an invertible linear transformation S on the

left, the public key becomes F̄ = L1 ◦ (S ◦ F̃ ) ◦ L2. Redefining L1 := L1 ◦ S, S is absorbed

into L1, and we can think of the two maps F̃ and S ◦ F̃ as being equivalent. (See [WP05b]

for a more general discussion of the idea of equivalent keys for MPKCs.) With this in mind,

we introduce the following definition of equivalence:

Definition 3.2.1. Two solutions (A,B,C,D,E, F ) and (A′, B′, C ′, D′, E′, F ′) of (3.6) are

equivalent if there exist invertible linear transformations S and T such that

(A′, B′, C ′, D′, E′, F ′) = S(A ◦ T,B ◦ T,C ◦ T,D ◦ T,E ◦ T, F ◦ T ).

We can use this definition of equivalence to significantly reduce the complexity of

our problem. Notice that the first restriction of (3.1) requires A to be a quadratic in

F2[x1, . . . , x4] and B to be a quadratic in F2[y1, . . . , y4], so we can write A = A(x) and

B = B(y). Since rank 2 solutions are not suitable, A and B must both have rank 4, and

hence by Corollary 2.2.1, we can find two invertible changes of variables T1, T2 ∈ F4×4
2 such

that

A(T1x) = x1x2 + x3x4 and B(T2y) = y1y2 + y3y4.
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Therefore, given any solution (A,B,C,D,E, F ) ∈ F2[x1, . . . , x4, y1, . . . , y4]6 of (3.6) satis-

fying the requirements of (3.1), if we define the linear transformation T by the matrix

T =

 T1 0

0 T2

 ∈ F8×8
2

and compose each component of the solution with T , we get an equivalent solution of the

form

(x1x2 + x3x4, y1y2 + y3y4, C ◦ T,D ◦ T,E ◦ T, F ◦ T ). (3.8)

From now on, we will only study solutions of this form, effectively eliminating A and B and

reducing our problem to finding solutions (C,D,E, F ) of the equation

(x1x2 + x3x4)(y1y2 + y3y4) = CD + EF. (3.9)

We now consider transformations of the solution vector (C,D,E, F ). Consider in

particular an invertible linear transformation S given by

(C,D,E, F )T S7−→ (C ′, D′, E′, F ′)T ,

such that the new vector also satisfies (3.9). Since CD + EF = C ′D′ + E′F ′, we call L an

invariant transformation. For example, one can swap C and D, swap E and F , or swap

(C,D) and (E,F ), yet leave the quantity CD+EF unchanged. These three transformations

are not the only invariant transformations, although the others are less trivial, for instance,

(C,D,E, F )T 7→ (C + E,D,E,D + F )T .

Observe that the set of invariant transformations in fact forms a group G under function

composition. In the next section, we determine the group of invariant transformations and

work toward the goal of designing equations for use in Gröbner basis computation that
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eliminate redundant solutions due to the invariant transformations.

Before we state our main theorem, we address one more issue regarding equivalence:

the transformation T of (3.8) is not unique. Consider for instance the transformation T ′ that

maps x1 7→ x1 + x2 and x3 7→ x3 + x4, while fixing the other variables. Then composing

the components of (A,B,C,D,E, F ) with the map T ′ ◦ T yields a solution having the

same general form as (3.9). Thus during computation, we must also take into account

invertible linear transformations of variables that are invariant for both x1x2 + x3x4 and

y1y2 + y3y4. This type of invariant transformation as well as the invariant transformations

of the solution vector (C,D,E, F ) can be viewed as invariants of the quadratic form z1z2 +

z3z4 ∈ F2[z1, z2, z3, z4].

The following theorem, which we prove in Section 3.2.3, completely characterizes

solutions of (3.6) over F2[x1, . . . , x4, y1, . . . , y4]:

Theorem 3.2.1. Any solution (A,B,C,D,E, F ) ∈ F2[x1, . . . , x4, y1, . . . , y4]6 satisfying the

requirements of (3.1) is equivalent to the MFE solution (3.7).

3.2.2 Invariants of the equation z1z2 + z3z4

Let z = (z1, z2, z3, z4)T . Suppose we have quadratic form Q(z) = z1z2 + z3z4. Our

goal is to describe the invariant group of Q. In matrix form, Q(z) = zTQz where Q ∈ F4×4
2

is uppertriangular with Q12 = Q34 = 1 and Qij = 0 for all other i, j. We seek linear

transformations, L ∈ F4×4
2 , such that Q(Lz) = Q(z), i.e. zTLTQLz = z1z2 + z3z4. This

yields the following equations:

• [LTQL]ii = 0, 1 ≤ i ≤ 4,

• [LTQL]12 + [LTQL]21 = 1,

• [LTQL]34 + [LTQL]43 = 1, and

• [LTQL]ij + [LTQL]ji = 0 for all other i, j.
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Solving this quadratic system for the 16 entries of L yields the invariant group, G, having 72

matrices (out of the 20160 invertible matrices in F4×4
2 ). This group has an abelian subgroup

of order 8 generated by the matrices corresponding to the following three transformations

of order 2:

(z1, z2, z3, z4) τ17−→ (z2, z1, z3, z4),

(z1, z2, z3, z4) τ27−→ (z1, z2, z4, z3),

(z1, z2, z3, z4) τ37−→ (z3, z4, z1, z2).

Let H = 〈τ1, τ2, τ3〉. Letting τ4 be any element in G\H, for instance,

(z1, z2, z3, z4) τ17−→ (z1 + z3, z2, z3, z2 + z4),

it is straightforward to show (by examining cosets Ha, a ∈ G) that

G = 〈τ1, τ2, τ3, τ4〉.

Recall that we want to introduce equations that attempt to eliminate (during

Gröbner basis computation) redundant solutions caused by the invariant transformations

S ∈ G. Notice redundant solutions due to τ1 (interchanging the first and second positions)

can be excluded by imposing an order requiring C ≥ D (in lex order in the coefficients of

C and D). The question then becomes, how can we design equations that accomplish this

ordering? Consider the first several coefficients of C and D:

C : c1 c2 c3 . . . ci . . .

D : d1 d2 d3 . . . di . . . .
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To enforce C ≥ D, notice that If d1 = 1, then c1 must also be 1; but if d1 = 0, then c1 can

be either 0 or 1. So, the first coefficient of C and D must satisfy

d1(c1 − 1) = 0.

If c1 = d1, then to break the tie, move to the next coefficient, where we get an equation

similar to the above, but with c2 and d2. However, if c1 6= d1, the above equation handles

the situation, and the equation with c2 and d2 should vanish. Thus, the coefficients of C

and D must satisfy

(c1 − d1 + 1)(d2(c2 − 1)) = 0.

We can continue in this fashion, supposing cj = dj , 1 ≤ j < i. Then if di = 1, we must

have ci = 1, so the coefficients of C and D must satisfy

∏
j<i

(cj − dj + 1)

 ci(di − 1) = 0.

In this process, the i-th equation has degree i+ 1; hence we will not be able to completely

ensure C ≥ D unless we allow equations with very large degree, significantly hampering

computation. Therefore, for practical purposes, we introduce these equations only up to a

small i, say 5.

We can introduce similar equations to enforce the restriction E ≥ F in an attempt to

remove redundant solutions due to τ2. Finally, we can introduce equations to enforce C ≥ E

in an attempt to remove redundant solutions due to τ3. Even though we have not succeeded

at eliminating all redundant solutions due to invariant transformations, introducing these

equations eliminates much of the redundancy and significantly decreases the time required

for computation.
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3.2.3 Gröbner basis computation

From the discussion at the beginning of Section 3.2, we saw that unless we could

reduce the system of 495 equations in 270 variables, a solution via Gröbner basis techniques

would be elusive. By forcing A and B to have the form A = x1x2+x3x4 and B = y1y2+y3y4,

we have eliminated the 2
(
8+2
2

)
= 90 unknowns from the left-hand side of (3.6). Further,

AB is a now homogeneous quartic, so we only need to consider homogeneous quadratic

polynomials C,D,E, F ; hence reducing the number of variables to 4
(
8+2−1

2

)
= 144 and

the number of equations to the number of possible terms of degree 4, i.e.
(
8+4−1

4

)
= 330.

Since over F2, squared terms are actually linear, the coefficients of x2
i and y2

i must be zero.

Finally, the second restriction of (3.1) requires C,D,E, F to be oil-vinegar polynomials, so

considering the xi’s as vinegar variables and yi’s as oil variables, there can be no terms of the

form yiyj . Therefore, the total number of variables is reduced to 4
((

8+2−1
2

)
− 8−

(
4
2

))
= 88

and the total number of equations is reduced to 164. Now, since each coefficient is an

element of F2, it must statisfy the equation z2 + z = 0. By letting z run through all 88

coefficient variables, we introduce 88 additional equations that will ensure the total degree

of the polynomials used during computation is kept low.

I employed the following strategy for computing the solutions to the system of 252

equations in 88 variables using Magma:

1. Compute the Gröbner basis under a grevlex ordering. Although a lex ordering is

required to subsequently enumerate the solutions, the idea was to determine if there

were coefficients that are forced to be zero, and could thus be eliminated. Since the

system was large, I had to specialize 4 of the variables and thus compute 16 separate

Gröbner bases. In each case, I found that the 4
(
4
2

)
= 24 variables corresponding to

the xixj terms must be zero.

2. Compute the Gröbner basis of the new system (64 variables) under a lex ordering. The

system was still too large, although now I only had to specialize 2 variables, hence

computing 4 Gröbner bases. Also, in this stage, I employed the strategies of Section
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3.2.2 to enforce an order on the solution components.

3. Enumerate and examine all solutions. Enumerating the solutions described by the 4

Gröbner bases in the previous step gave a total of 264 solutions. However, equiva-

lent solutions can be eliminated (i.e. equivalent by an invariant transformation of the

solution vector that was not excluded in the previous step, or by an invariant trans-

formation of the variables). In fact, of the 264 solutions, only 24 are distinct up to an

invariant transformation on the solution vector, and all 24 of these are equivalent via

a transformation of variables to the MFE solution, thus proving Theorem 3.2.1.

3.2.4 Over more general polynomial rings

The above then tells us there is no new solution to the equation (3.6) over the ring

F2[x1, . . . , x4, y1, . . . , y4]. What happens if we enlarge the ring to F2[x1, . . . , xn, y1, . . . , yn]

with n > 4? We have not been successful so far, and the main difficulty is in the Gröbner

basis computation. Another direction is to relax the equation (3.6) to

AB = F1G1 + · · ·+ FTGT ,

where T ≥ 3 and Fi, Gi ∈ F[x1, . . . , xn, y1, . . . , yn].

Much work is yet to be done to solve such problems. The resulting polynomial

systems are extremely large, and require much reduction before progress can be made.

As a result, I turned to other ideas in my search for polynomial identities. Old results

from algebraic geometry were especially enlightening, especially the subjects of Plücker and

Grassmann Coordinates.

3.3 Plücker Coordinates

Algebraic geometry provides perhaps the most interesting perspective from which

to view the equation AB = CD + EF over the polynomial ring F[x1, . . . , x4, y1, . . . , y4].
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Let P = (x1, x2, x3, x4) and Q = (y1, y2, y3, y4) be two distinct points in three-dimensional

projective space P3. We define Plücker coordinates as

pij =

∣∣∣∣∣∣∣
xi xj

yi yj

∣∣∣∣∣∣∣ = xiyj − xjyi. (3.10)

Notice that there are six distinct coordinates as pij = −pji, so we only consider indices

i < j. We can also think of them as the 2× 2 minors of the matrix

 x1 x2 x3 x4

y1 y2 y3 y4

 .

We will see that they in fact give an isomorphism between the space of lines in P3 and the

quadric in P5 defined by

p12p34 − p13p24 + p14p23 = 0. (3.11)

Notice that this identity is exactly the identity (3.7) used in MFE. Showing that Plücker

coordinates satisfy (3.11) can be done in several ways. Two of them are instructive for our

purposes; we discuss them here, and generalize the second using a more general structure

in Section 3.5.

First, consider a Gröbner basis approach (see [CLO96]) over the polynomial ring in

14 variables:

F[x1, . . . , x4, y1, . . . , y4, p12, . . . , p34].

Consider the ideal

I = 〈pij − (xiyj − xjyi) : 1 ≤ i < j ≤ 4〉.

Computing with Magma and using a lex ordering with

x1 > · · · > x4 > y1 > · · · > y4 > p12 > · · · > p34,
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we see that the last polynomial in the Gröbner basis of I is in fact the Plücker quadric

(3.11).

A second approach (see [HP47]) to proving the identity (3.11) involves Laplace

expansions of matrix determinants:

p12p34 − p13p24 + p14p23 =

∣∣∣∣∣∣∣
x1 x2

y1 y2

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x3 x4

y3 y4

∣∣∣∣∣∣∣−
∣∣∣∣∣∣∣
x1 x3

y1 y3

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 x4

y2 y4

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
x1 x4

y1 y4

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣
x2 x3

y2 y3

∣∣∣∣∣∣∣
= x1

y2

∣∣∣∣∣∣∣
x3 x4

y3 y4

∣∣∣∣∣∣∣− y3

∣∣∣∣∣∣∣
x2 x4

y2 y4

∣∣∣∣∣∣∣+ y4

∣∣∣∣∣∣∣
x2 x3

y2 y3

∣∣∣∣∣∣∣
−

y1

x2

∣∣∣∣∣∣∣
x3 x4

y3 y4

∣∣∣∣∣∣∣− x3

∣∣∣∣∣∣∣
x2 x4

y2 y4

∣∣∣∣∣∣∣+ x4

∣∣∣∣∣∣∣
x2 x3

y2 y3

∣∣∣∣∣∣∣


= x1

∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

y2 y3 y4

y2 y3 y4

∣∣∣∣∣∣∣∣∣∣
− y1

∣∣∣∣∣∣∣∣∣∣
x2 x3 x4

x2 x3 x4

y2 y3 y4

∣∣∣∣∣∣∣∣∣∣
= 0,

where the last equality follows from the fact that both matrices have duplicate rows and

hence have zero determinants.

We now focus on the aforementioned isomorphism. Let P and Q be two distinct

points on the line L ⊂ P3. Define the map ω as

ω(L) = (p12, p13, p14, p23, p24, p34) ∈ P5,

where pij are the Plücker coordinates defined in (3.10). It can be easily shown that ω is

well-defined, as it does not depend on the choice of P and Q, and at least one coordinate

is nonzero.
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Theorem 3.3.1 (Theorem 8.6.11, [CLO96]). The map

{lines in P3} ω−−→ {(z12, z13, z14, z23, z24, z34) ∈ P5 : z12z34 − z13z24 + z14z23 = 0},

which sends a line L ⊂ P3 to its Plücker coordinates ω(L), is a bijection.

Proof. Let A = (x1, x2, x3, x4) and B = (y1, y2, y3, y4) be two points on L. First, we show ω

is injective. Suppose ω(L) = λω(L′) for some λ 6= 0, i.e. pij = λp′ij , 1 ≤ i < j ≤ 4. Without

loss of generality, assume p12 6= 0. Then the point

P = (0,−p′12,−p′13,−p′14) =
1
λ

(0,−p12,−p13,−p14) = (0,−p12,−p13,−p14)

lies on both L and L′ since y1A − x1B = (0,−p12,−p13,−p14) is a point of L (a similar

equation holds for L′). Also, the point

Q = (p′12, 0,−p′23,−p′24) =
1
λ

(p12, 0,−p23,−p24) = (p12, 0,−p23,−p24)

lies on both L and L′ since y2A−x2B = (p12, 0,−p23,−p24) is a point of L. Since two points

determine a unique line, L = L′. Next, we show ω is surjective. Let (p12, p13, p14, p23, p24, p34)

be on the quadric. Again, without loss of generality, assume p12 6= 0, and let L be the line

determined by the points

(0,−p12,−p13,−p14) and (p12, 0,−p23,−p24).

Then simple calculations show

ω(L) = p12(p12, p13, p14, p23, p24,
1
p12

(p13p24 − p14p23))

= (p12, p13, p14, p23, p24, p34).
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So, we have established a bijection from the space of lines in P3 to a projective

variety in P5 defined by a quadric with nice properties (in particular, with the properties

specified at the outset in (3.1)). The natural question is then: can we generalize these

ideas to higher dimensions in order to create more general polynomial identities? The first

direction, addressed in Section 3.4, involves increasing the the number of variables and

working directly with matrix determinants to try to find identities like the Plücker quadric

(3.11). The second direction utilizes the generalization of Plücker coordinates known as

Grassmann coordinates and is addressed in Section 3.5.

3.4 Determinants in Higher Dimensions

Recall that the key observation of the determinant proof of (3.11) was that matrices

with duplicate rows (or columns) have zero determinant. The Plücker quadric exploited

3 × 3 matrices over F[x1, . . . , x4, y1, . . . , y4], so one idea is to add four new variables and

consider 4× 4 matrices over R = F[x1, . . . , x4, y1, . . . , y4, z1, . . . , z4].

Since we are introducing more variables, it will be helpful to redefine Plücker coor-

dinates to take into account the variables involved. Let

pijxy =

∣∣∣∣∣∣∣
xi xj

yi yj

∣∣∣∣∣∣∣ = xiyj − xjyi, 1 ≤ i < j ≤ 4.

Even though a 4×4 matrix in general has a quartic determinant, by expanding it along the

first two columns, we can group it into an equation of the form

AB + f1f2 + f3f4 + f5f6 + f7f8 + f9f10,
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i.e., ∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

a4 b4 c4 d4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= p12

abp
34
cd − p13

abp
24
cd + p14

abp
23
cd + p23

abp
14
cd − p24

abp
13
cd + p34

abp
12
cd .

Adding together two matrices (both having first, third, and fourth columns x, y, and z

respectively, and each having second column y, and z respectively), we have

0 =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 y1 z1

x2 y2 y2 z2

x3 y3 y3 z3

x4 y4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 z1 y1 z1

x2 z2 y2 z2

x3 z3 y3 z3

x4 z4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
= (p12

xy + p12
xz)p

34
yz − (p13

xy + p13
xz)p

24
yz + (p14

xy + p14
xz)p

23
yz + (3.12)

(p23
xy + p23

xz)p
14
yz − (p24

xy + p24
xz)p

13
yz + (p34

xy + p34
xz)p

12
yz.

To put (3.12) in the required oil-vinegar form, define ρ : R→ F[X1, . . . , X6, Y1, . . . , Y6] as a

ring isomorphism induced by

(x1, . . . , z4) 7→ (X1, X3, Y5, Y6, X6, X5, Y1, Y3, X4 −X6, X2 −X5, Y4, Y2)

and set

A = X1X2 −X3X4

B = Y1Y2 − Y3Y4

f1 = X1(Y1 + Y4)−X4Y5

f2 = X5Y2 − (X2 −X5)Y3

f3 = X1(Y2 + Y3)−X4Y6
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f4 = X5Y4 − (X2 −X5)Y1

f5 = X3(Y1 + Y4)−X2Y5

f6 = X6Y2 − (X4 −X6)Y3

f7 = X3(Y2 + Y3)−X2Y6

f8 = X6Y4 − (X4 −X6)Y1

f9 = Y5(Y2 + Y3)− Y6(Y1 + Y4)

f10 = X2X6 −X4X5.

which gives us the structure we want. We now make some comments on this system of

equations:

• The rank of each polynomial is 4.

• There are 8 oil-vinegar polynomials (f1, . . . , f8). Viewing the Xi’s as vinegar vari-

ables, we would need to solve for only 6 oil-variables Y1, . . . , Y6. Along with f9 and

f10, this leaves us with 4 extra equations, thus harming the information rate of any

cryptosystem that uses this identity.

• When Xi, 1 ≤ i ≤ 6, and fi, 1 ≤ i ≤ 8, take on values in F, we hope to be able to solve

uniquely the resulting linear system for the oil variables Y1, . . . , Y6. In this case, the

system is not solvable with probability approximately 2
|F| . On the other hand, if we

let Yi, 1 ≤ i ≤ 6 take on values in F, the resulting linear system is again not solvable

with probability approximately 2
|F| .

Since our ultimate purpose for such a polynomial identity is to use it create a good cryp-

tosystem, and the above comments reveal that such a system would be of low rank, have

poor information rate, and be subject to a significant rate of decryption failure, we there-

fore conclude that we need to find a “better” identity. However, as we shall see, the idea of

adding more variables and considering larger matrices is not without merit.

Consider the polynomial ring R = F[x1, . . . , x4, y1, . . . , y4, z1, . . . , z4, w1, . . . , w4].
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Observe that the matrix

Mx =



1 1 1 1 1

x1 x1 y1 z1 w1

x2 x2 y2 z2 w2

x3 x3 y3 z3 w3

x4 x4 y4 z4 w4


has zero determinant since the first two columns are dependent. By Laplace expansion on

the first row, the determinant is the sum of the determinants of the five 4× 4 minors. We

introduce the following notation:

|xyzw| =

∣∣∣∣∣∣∣∣∣∣∣∣∣

x1 y1 z1 w1

x2 y2 z2 w2

x3 y3 z3 w3

x4 y4 z4 w4

∣∣∣∣∣∣∣∣∣∣∣∣∣
.

We can write the other four minors in a similar way, so

|Mx| = |xyzw| − |xyzw|+ |xxzw| − |xxyw|+ |xxyz|

= |xxzw| − |xxyw|+ |xxyz|

Now define the matrices My,Mz, and Mw by replacing each of the xi’s in the first column of

Mx by yi, zi, and wi, respectively. (In the following equations, note that since each matrix

has a duplicate column, the sign of the determinant is irrelevant, and we choose it to be
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positive.) Then

0 = |Mx|+ |My|+ |Mz|+ |Mw|

= |xxzw|+ |xxyw|+ |xxyz|+

|yyzw|+ |yxyw|+ |yxyz|+

|zyzw|+ |zxzw|+ |zxyz|+

|wyzw|+ |wxzw|+ |wxyw|

= |xxyw|+ |xxyz|+ |yxyw|+ |yxyz|+ |zxyz|+ |wxyw|+ (grouping xy’s)

|xxzw|+ |yyzw|+ |zyzw|+ |zxzw|+ |wyzw|+ |wxzw| (grouping zw’s)

= |xyxw|+ |xyxz|+ |xyyw|+ |xyyz|+ |xyzz|+ |xyww|+

|zwxx|+ |zwyy|+ |zwyz|+ |zwxz|+ |zwyw|+ |zwxw|

= |xyxw|+ |xyxz|+ |xyyw|+ |xyyz|+ (since |xyzz| = |xyww| = 0) (3.13)

|zwxw|+ |zwxz|+ |zwyw|+ |zwyz| (since |zwxx| = |zwyy| = 0) (3.14)

As before, we write determinants using Plücker coordinates and group terms to give

an equation of the form (3.1) with n = 8 and t = 2. In particular, the first term of (3.13)

becomes

|xyxw| = p12
xyp

34
xw + p13

xyp
24
xw + p14

xyp
23
xw + p23

xyp
14
xw + p24

xyp
13
xw + p34

xyp
12
xw. (3.15)

So, defining

pij = pijxw + pijxz + pijyw + pijyz, 1 ≤ i ≤ 4, (3.16)

the four determinants of (3.13) can be grouped as

p12
xyp34 + p13

xyp24 + p14
xyp23 + p23

xyp14 + p24
xyp13 + p34

xyp12.
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After performing a similar grouping for (3.14), we get the the identity

0 = (p12
xy + p12

zw)p34 + (p13
xy + p13

zw)p24 + (p14
xy + p14

zw)p23 +

(p23
xy + p23

zw)p14 + (p24
xy + p24

zw)p13 + (p34
xy + p34

zw)p12. (3.17)

We now make two comments regarding this identity, and the system that arises from it:

• While the polynomials pijxy + pijzw have rank 8, the polynomials pij only have rank 4,

so the minimum rank of the system is 4.

• A cryptosystem based directly on (3.17) is susceptible to a linearization equations

attack. In fact, for a random ciphertext, the average dimension of the linearization

equation space is 15, with a maximum of at least 28.

However, we can construct an identity very similar to (3.17) that avoids these problems,

and Chapter 4 presents the complete details of the new cryptosystem.

3.5 Grassmann Coordinates

While the previous section explained a seemingly ad hoc method of obtaining poly-

nomial identities by expanding determinants and grouping terms nicely, the goal of this

section is to develop a more concrete, algebraic approach to the subject using Grassmann

coordinates. We will follow Hodge and Pedoe’s [HP47] treatment of the material, culmi-

nating with a basis theorem that provides an excellent method for constructing polynomial

identities. This basis theorem will give us a good foundation from which to build identities

such as (3.15) and (3.17).
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3.5.1 Preliminaries

Points in projective space. Consider n-dimensional project space, Pn, over a base field

F. A point, A, in Pn is be represented as

A = [α0, . . . , αn],

where the αi’s are not all zero. Recall that in projective space, two points A = [α0, . . . , αn]

and B = [β0, . . . , βn] are equivalent if there exists a λ ∈ F such that A = λB.

Linear subspaces. Let A0, . . . , Ak be k + 1 linearly independent points of Pn. Then

the set of all linear combinations of these points is a linear subspace, Sk, of dimension k.

Further, the arbitrary points

A0 = (α0
0, . . . , α

0
n), . . . , Ak = (αk0 , . . . , α

k
n) ∈ Pn,

determine a k-dimensional subspace Sk if and only if the matrix

A =


α0

0 . . . α0
n

...
...

αk0 . . . αkn


has rank k + 1, and we say A0, . . . , Ak form a basis for Sk. Notice that if L ∈ Fk+1×k+1

is an invertible transformation, then the matrix B = LA defines the same subspace. For

the remainder of the discussion, we will assume k 6= 0 and k 6= n− 1, i.e., we consider only

proper subspaces.

Grassmann coordinates Let Sk have basis A0, . . . , Ak. Choose k + 1 distinct indices

from {0, . . . , n}: i0, . . . , ik, and compute the determinant of the k+ 1×k+ 1 matrix formed
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by selecting the i0-th, . . . , ik-th columns from A:

pi0...ik =

∣∣∣∣∣∣∣∣∣∣
α0
i0

. . . α0
ik

...
...

αki0 . . . αkik

∣∣∣∣∣∣∣∣∣∣
. (3.18)

Notice that the pi0...ik are skew-symmetric in their indices, since swapping two indices is

equivalent to swapping two columns in the matrix, resulting in a change of sign of the

determinant. In fact, any permutation of the indices results in multiplying by a power of

−1, so we only consider
(
n+1
k+1

)
possible choices for the set of indices. We call an

(
n+1
k+1

)
-tuple

(. . . , pi0...ik , . . . ) the Grassmann coordinates of Sk. Notice that the components cannot be

all simultaneously zero, since this would imply rank(A) < k + 1; thus we can consider the

Grassmann coordinates of Sk as a point in P(n+1
k+1)−1. Also, if we have an equivalent basis

matrix B = LA, then upon taking determinants of submatrices, we find that the individual

coordinates are equivalent up to a nonzero constant (i.e. |L|), and are thus equal as elements

of P(n+1
k+1)−1.

It can be shown that distinct subspaces of Pn have distinct Grassmann coordinates.

In particular, this gives the injection

{Sk : Sk a subspace of P of dimension k} ↪→ P(n+1
k+1)−1. (3.19)

As with Plücker coordinates (simply Grassmann coordinates with n = 3, k = 1), we will

see that there is actually an isomorphism via Grassmann coordinates from the set of k-

dimensional subpaces of Pn to a projective variety in P(n+1
k+1)−1 defined by quadratic poly-

nomials.

Quadratic relations. Consider F[. . . , Pi0...ik , . . . ], the polynomial ring in
(
n+1
k+1

)
indeter-

minates that are skew-symmetric in their indices. We note first that it can be shown that
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there is no linear relation

∑
i0,...,ik

ui0...ikPi0...ik , ui0...ik ∈ F,

that is identically zero when evaluated at the Grassmann coordinates of every Sk; however,

there are quadratic relations (this is to be expected, considering (3.11)). Let i1, . . . , ik be

distinct indices from {0, . . . , n}, and j0, . . . , jk+1 be distinct indices also from {0, . . . , n}.

Define

Fi1...ik,j0...jk+1
(P ) =

k+1∑
λ=0

(−1)λPi1...ikjλPj0...jλ−1jλ+1...jk+1
. (3.20)

Then replacing, for any Sk, the indeterminate Pi0...ik with the corresponding Grassmann

coordinate pi0...ik , we have

Fi1...ik,j0...jk+1
(p) = 0. (3.21)

The proof of (3.21) is a straightforward generalization of the determinant proof of (3.11).

Define the generic k-dimensional subspace as the subspace determined by the k+ 1

points A0, . . . , Ak, where the components αi0, . . . , α
i
n of Ai, 1 ≤ i ≤ k, are indeterminates.

Then, replacing the indeterminate Pi0...ik in (3.20) with the corresponding Grassmann coor-

dinate pi0...ik of the generic k-dimensional subspace, we see that Fi1...ik,j0...jk+1
(p) is in fact

equal to zero as a polynomial in the ring

F[α0
0, . . . , α

0
n, . . . , α

k
0 , . . . , α

k
n].

Example 3.5.1. Let the points A0 = (x0, x1, x2, x3) and A1 = (y0, y1, y2, y3) be a basis for

a one-dimensional subspace, S1 ⊂ P3, so the Grassmann coordinates of S1 are given by the

2× 2 minors of the matrix  x0 x1 x2 x3

y0 y1 y2 y3

 .
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Let i1 = 0, j0 = 1, j1 = 2, j2 = 3. Then (3.20) gives

p01p23 − p02p13 + p03p12 = 0,

which is the same as (3.11), except our indices now start at 0 instead of 1.

We can now state two important theorems regarding Grassmann coordinates.

Theorem 3.5.1 (Theorem VII.6.II, [HP47]). If (. . . , pi0...ik , . . . ) are
(
n+1
k+1

)
elements of F

which are not all zero, which are skew-symmetric in the suffixes, and which satisfy (3.21),

then there is a k-dimensional subspace of Pn which has coordinates (. . . , pi0...ik , . . . ).

This theorem, along with the previous result (3.19), establishes in general the iso-

morphism

{k-dimensional subspaces of Pn} ∼= V ⊂ P(n+1
k+1)−1,

where V is the projective variety defined by the quadratics of (3.20). Notice Theorem 3.3.1

about Plücker coordinates is a special case of this isomorphism.

Theorem 3.5.2 (Basis Theorem, Theorem VII.7.I, [HP47]). If F (P ) is any homogeneous

polynomial in Pi0...ik such that F (p) = 0 for all Sk, then

F (P ) =
∑
i,j

Ai1...ik,j0...jk+1
(P )Fi1...ik,j0...jk+1

(P ),

where Fi1...ik,j0...jk+1
(P ) is the quadratic form defined in (3.20), and Ai1...ik,j0...jk+1

(P ) is a

homogeneous polynomial in Pi0...ik .

3.5.2 Constructing more identities

We are interested in applying the above theorems to generic k-dimensional sub-

spaces. If (. . . , pi0...ik , . . . ) gives the Grassmann coordinates of a generic k-dimensional

subspace, then we can rephrase Theorem 3.5.2 in the language of ideals to say that if
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f ∈ F[. . . , Pi0...ik , . . . ] vanishes on (. . . , pi0...ik , . . . ), then

f ∈
〈 k+1∑
λ=0

(−1)λPi1...ikjλPj0...jλ−1jλ+1...jk+1

〉
⊂ F[. . . , Pi0...ik , . . . ].

This gives us the power to build all sorts of polynomial identities. However, for the time

being, we are interested in identities with quadratic polynomials, therefore limiting us to

one-dimensional subspaces of Pn.

Example 3.5.2. Let n = 7, and consider the generic subspace S1 ⊂ P7 given by the matrix

 x0 x1 x2 x3 x4 x5 x6 x7

y0 y1 y2 y3 y4 y5 y6 y7

 .

There are
(
7+1
1+1

)
= 28 Grassmann coordinates, and we wish to determine the number of

quadratic relations (3.21). Fix i1 ∈ {0, . . . , n}, and let j0, j1, j2 ∈ {0, . . . , n} be distinct. If

one of the j’s, without loss of generality j0, is equal to i1, then (3.20) becomes

Fi1,j0j1j2(p) =
2∑

λ=0

(−1)λpi1jλpj0...jλ−1jλ+1...jk+1

= pi1j0pj1j2 − pi1j1pj0j2 + pi1j2pj0j1

= pi1i1pi1j2 − pi1j1pi1j2 + pi1j2pi1j1 ,

which is trivially zero since pi1i1 = 0. Thus we get nontrivial relations only when the j’s

are distinct from i1. This amounts to choosing 4 distinct indices from {0, . . . , n}, so there

are
(
7+1
4

)
= 70 quadratic relations.

One way to make things more interesting, and in fact achieve the identity (3.15), is

to restrict ourselves to a smaller space inside the generic space S1 ⊂ Pn.

Example 3.5.3. Let n = 7, and consider the subspace S′1 ⊂ S1 given by the matrix

 x0 x1 x2 x3 x0 x1 x2 x3

y0 y1 y2 y3 w0 w1 w2 w3

 ,
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where the second four components of the first point have been repeated. In this case, in

addition to quadratic relations, the Grassmann coordinates also satisfy some linear relations.

This fits our intuition, since if this smaller subspace S′1 ⊂ P7 is to be isomorphic to a

projective variety in P27, the projective variety should be smaller than the one corresponding

to S1; this is accomplished by introducing more defining equations. Notice that for 0 ≤ i <

j ≤ 4, we have

pij + pj,i+4 + pi+4,j+4 − pi,j+4

= (xiyj − xjyi) + (xjwi − xiyj) + (xiwj − xjwi)− (xiwj − xjyi)

= 0.

Denoting these 6 polynomials as Gij , we can now write the identity (3.15) in terms of the

“basis” polynomials of (3.20) and these additional linear relations:

p12
xyp

34
xw + p13

xyp
24
xw + p14

xyp
23
xw + p23

xyp
14
xw + p24

xyp
13
xw + p34

xyp
12
xw

= p01p67 + p02p57 + p03p56 + p12p47 + p13p46 + p23p45

= F0,567 + F1,467 + F2,457 + F3,456 +

p67G01 + p57G02 + p56G03 + p47G12 + p46G13 + p45G23,

where the first equality is simply a transition from notation used in Section 3.4 to the

notation used in the current section.

We can similarly express (3.17) in terms of quadratic and linear relations on Grass-

mann coordinates of a linear subspace S1 ⊂ P23. This is also the case with the identity used

to build the new cryptosystem presented in Chapter 4.

3.5.3 Open questions

Using these tools, we see that we can construct various polynomial identities. How-

ever, the question remains: will such identities be useful for building multivariate public
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key cryptosystem. As we will see in Chapter 4, the answer is definitely yes. However, I

believe that there is much left to be explored regarding these types of polynomial identities,

as evidenced by the following open questions:

• As in Example 3.5.2, one obvious way of creating more identities is to increase n,

and so far only a few cases have been examined. What other values of n yield nice

identities?

• As in Example 3.5.3, if we work with subspaces of Sk, other relations arise which

become useful in constructing identities. How can we determine what other subspaces

will yield profitable results?

• As mentioned before, pi0...ik is a degree k + 1 polynomial in the components of the

points A0, . . . , Ak. We have only considered the case k = 1. Can identities produced

by using larger values of k be used in multivariate public key cryptography?

Clearly the above list is not exhaustive, and future exploration in these directions should

prove to be interesting. As a final note, there is yet another perspective from which to view

identities involving Plücker coordinates. Howard et al. [HMSV09] present the quadric rela-

tions and give an interesting way to view the identities through the process of “uncrossing”

edges in a graph.
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Chapter 4

Construction and Analysis of the

New Cryptosystem

4.1 Polynomial Identity

In Section 3.4, we developed some new identities ((3.12) and (3.17)) that satisfied the

requirements laid out at the beginning of Chapter 3. However, recall that these identities

had some undesirable qualities in view of the fact that our goal is to construct a new

cryptosystem. In particular, the second identity (3.17), had two problems: some of the

polynomials had rank 4, and more importantly, linearization equations existed. A closer

inspection of the identity reveals that these problems are caused by the fact that the right-

hand side of (3.16), i.e.

pijxw + pijxz + pijyw + pijyz, (4.1)

can be grouped as

(xi + yi)(wj + zj)− (xj + yj)(wi + zi). (4.2)

Thus, although (4.1) is a sum of four rank 4 polynomials, the sum itself only has rank 4.

Also, the fact that xi and yi can be grouped into a single term causes linearization equations

to exist (similarly, the other terms of (4.2) cause more linearization equations to exist). We
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can avoid this problem by simply removing one of the terms from (4.1). Notice that this

deletion is valid since, for instance, removing the pijxw term is equivalent to removing the

|xyxw| and |zwxw| determinants from (3.13) and (3.14), respectively, and the identity

(3.17) still holds.

We now more explicitly develop the identity that we will use to construct our new

cryptosystem. Let F be a degree d extension of k having characteristic two. Define the

polynomial ring

R = F[x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, w1, w2, w3, w4].

As discussed above, define

pij(x, y, z, w) = pijxz + pijyz + pijyw, 1 ≤ i < j ≤ 4,

where we have removed the pijxw term from (4.1). Then the identity (3.17) becomes

0 = (p12
xy + p12

zw)p34(x, y, z, w) + (p13
xy + p13

zw)p24(x, y, z, w) +

(p14
xy + p14

zw)p23(x, y, z, w) + (p23
xy + p23

zw)p14(x, y, z, w) +

(p24
xy + p24

zw)p13(x, y, z, w) + (p34
xy + p34

zw)p12(x, y, z, w). (4.3)

To put (4.3) in the required oil-vinegar form, define ρ : R → F[X1, . . . , X8, Y1, . . . , Y8] as a

ring isomorphism induced by

(x1, x2, x3, x4, y1, y2, y3, y4, z1, z2, z3, z4, w1, w2, w3, w4) 7→

(X1, X3, Y1 + Y5, Y3 + Y7, X4, X2, Y5, Y7, X5, X7, Y4 + Y8, Y2 + Y6, X8, X6, Y8, Y6),
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where, ρ(x1) = X1, ρ(x2) = X3, ρ(x3) = Y1 + Y5, and so on. Then set

ψ1 = ρ(p12
xy + p12

zw) = X1X2 +X3X4 +X5X6 +X7X8

ψ2 = ρ(p34(x, y, z, w)) = Y1Y2 + Y3Y4 + Y5Y6 + Y7Y8

f1 = ρ(p13
xy + p13

zw) = X4Y1 +X8Y4 + (X1 +X4)Y5 +X5Y8

f2 = ρ(p24(x, y, z, w)) = (X2 +X3)Y2 +X7Y3 +X2Y6 +X6Y7

f3 = ρ(p14
xy + p14

zw) = X8Y2 +X4Y3 +X5Y6 + (X1 +X4)Y7

f4 = ρ(p23(x, y, z, w)) = X7Y1 + (X2 +X3)Y4 +X6Y5 +X2Y8

f5 = ρ(p23
xy + p23

zw) = X2Y1 +X6Y4 + (X2 +X3)Y5 +X7Y8

f6 = ρ(p14(x, y, z, w)) = (X1 +X4)Y2 +X5Y3 +X4Y6 +X8Y7

f7 = ρ(p24
xy + p24

zw) = X6Y2 +X2Y3 +X7Y6 + (X2 +X3)Y7

f8 = ρ(p13(x, y, z, w)) = X5Y1 + (X1 +X4)Y4 +X8Y5 +X4Y8

f9 = ρ(p34
xy + p34

zw) = Y1Y7 + Y2Y8 + Y3Y5 + Y4Y6

f10 = ρ(p12(x, y, z, w)) = X1X7 +X2(X5 +X8) +X3X5 +X4(X6 +X7)

(4.4)

thus satisfying (3.1), i.e. ψ1ψ2 = f1f2 + f3f4 + f5f6 + f7f8 + f9f10.

We now examine the oil-vinegar part of (4.4): f1, . . . , f8. First consider the case

where X1, . . . , X8 are the vinegar variables. This yields the following linear system:



X4 0 0 X8 X1 +X4 0 0 X5

0 X2 +X3 X7 0 0 X2 X6 0

0 X8 X4 0 0 X5 X1 +X4 0

X7 0 0 X2 +X3 X6 0 0 X2

X2 0 0 X6 X2 +X3 0 0 X7

0 X1 +X4 X5 0 0 X4 X8 0

0 X6 X2 0 0 X7 X2 +X3 0

X5 0 0 X1 +X4 X8 0 0 X4





Y1

Y2

Y3

Y4

Y5

Y6

Y7

Y8



=



f1

f2

f3

f4

f5

f6

f7

f8



.

When Xi and fi, 1 ≤ i ≤ 8, take on values in F, we hope to be able to solve uniquely the
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above system for the oil variables Y1, . . . , Y8. This will be possible whenever the coefficient

matrix has nonzero determinant. The determinant is given by

(
(X1 +X5 +X8)(X2 +X7) + (X3 +X6 +X7)(X4 +X5)

)4
.

On the other hand, if we view Y1, . . . , Y8 as the oil variables, the determinant of the resulting

linear system in X1, . . . , X8 becomes

(
(Y1 + Y8)(Y2 + Y7) + (Y3 + Y6)(Y4 + Y5)

)4
.

In both cases, the probability that the determinant is zero is 1
|F| + 1

|F|2 −
1
|F|3 .

4.2 Building a Cryptosystem

Although we now have an identity where each polynomial has rank 8 and no lin-

earization equations exist, unfortunately, a cryptosystem based directly on (4.4) will be

susceptible to a separation of oil and vinegar variables attack. Recall from Section 2.3.5

that a separation of oil and vinegar variables attack succeeds if the size of a maximal oil set

is too large, but also that the size of a maximal oil set is inversely related to the number

of distinct products appearing in the system of equations. A cryptosystem constructed by

chaining together systems of the form (4.4) will have a large oil set since the absence of

pijxw terms from (4.3) results in a significant decrease in the number of distinct products in

the system. To avoid this attack, we remove different products from each of the chained

oil-vinegar systems by introducing three additional, slightly different subsystems.

Note that each permutation of x, y, z and w in (4.3) yields a new identity. In

particular, when exchanging x with y, or z with w, the first factor of each term of (4.3)

remains unchanged. We shall take advantage of this. Renaming each ψj and fj in (4.4) as
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ψ1,j and f1,j respectively, we define

ψi,1 = ψ1,1 and fi,j = f1,j , i = 2, . . . , 4, j = 1, 3, . . . , 9.

Then, interchanging z with w in (4.3), we define

ψ2,2 = ρ(p34(x, y, w, z))

f2,2 = ρ(p24(x, y, w, z))

f2,4 = ρ(p23(x, y, w, z))

f2,6 = ρ(p14(x, y, w, z))

f2,8 = ρ(p13(x, y, w, z))

f2,10 = ρ(p12(x, y, w, z)).

Similarly, by interchanging x with y in (4.3), we define ψ3,2 and f3,j , j = 2, 4, . . . , 10. Finally,

by interchanging x with y, and z with w in (4.3), we define ψ4,2 and f4,j , j = 2, 4, . . . , 10.

Then we have four identities:

ψi,1ψi,2 = fi,1fi,2 + · · ·+ fi,9fi,10, 1 ≤ i ≤ 4. (4.5)

Before introducing the central map of the new cryptosystem, we briefly comment on

its intermediate field construction as outlined in Section 1.3. Since F is a degree d extension

of k, we view each Xi, 1 ≤ i ≤ 24, and Yi, 1 ≤ j ≤ 32, as a d-tuple. Thus the triangular

portion of the central map will have the form described in (1.7) and (1.8).

Finally, using the four systems (4.5), we define the central map of the new cryp-

tosystem,

(Z1, . . . , Z74) = F (X1, . . . , X24, Y1, . . . , Y32),
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by

Z1 = X1 + φ1(X1) + ψ1,1(X1, . . . , X8)

Z2 = X2 + φ2(X1, X2) + ψ1,2(Y1, . . . , Y8)

Z3 = X3 + φ3(X1, . . . , X3) + ψ2,2(Y9, . . . , Y16)

Z4 = X4 + φ4(X1, . . . , X4) + ψ3,2(Y17, . . . , Y24)

Z5 = X5 + φ5(X1, . . . , X5) + ψ2,1(X9, . . . , X16)

Z6 = X6 + φ6(X1, . . . , X6) + ψ3,1(X17, . . . , X24)

Z7 = X7 + φ7(X1, . . . , X7) + ψ4,2(Y25, . . . , Y32)

Z7+i = f1,i(X1, . . . , X8, Y1, . . . , Y8) 1 ≤ i ≤ 10

Z17+i = f2,i(X1, . . . , X8, Y9, . . . , Y16) 1 ≤ i ≤ 10

Z27+i = f2,i(Y1, . . . , Y8, Y9, . . . , Y16) 1 ≤ i ≤ 8

Z36 = f2,10(Y1, . . . , Y8, Y9, . . . , Y16)

Z36+i = f3,i(X1, . . . , X8, Y17, . . . , Y24) 1 ≤ i ≤ 10

Z46+i = f2,i(X9, . . . , X16, Y9, . . . , Y16) 1 ≤ i ≤ 8

Z55 = f2,10(X9, . . . , X16, Y9, . . . , Y16)

Z55+i = f3,i(X17, . . . , X24, Y17, . . . , Y24) 1 ≤ i ≤ 8

Z64 = f3,10(X17, . . . , X24, Y17, . . . , Y24)

Z64+i = f4,i(X9, . . . , X16, Y25, . . . , Y32) 1 ≤ i ≤ 10

Notice f2,9(Y1, . . . , Y8, Y9, . . . , Y16) has been omitted from the central map to avoid redun-

dancy as

f2,9(Y1, . . . , Y8, Y9, . . . , Y16) = f2,9(X1, . . . , X8, Y9, . . . , Y16) = Z26. (4.6)

Similarly, f2,9(X9, . . . , X16, Y9, . . . , Y16) = Z26 and f3,9(X17, . . . , X24, Y17, . . . , Y24) = Z45

are also omitted. Since the central map is from F56 to F74, the information rate of this

cryptosystem is 56
74 ≈ .76 (slightly smaller than the MFE information rate of .80).
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4.2.1 Inverting the central map

Recall that decryption proceeds by unmasking the triangular system (Z1, . . . , Z7),

and then solving the oil-vinegar systems. We start by focusing on the first three equations

of the triangular system, as the first three ψi can be recovered by inverting a Cremona

transformation as discussed in Section 1.3.4. Using the notation we introduced in Chapter

1 for the general framework, let

g1 = Z8Z9 + Z10Z11 + Z12Z13 + Z14Z15 + Z16Z17

= ψ1,1(X1, . . . , X8)ψ1,2(Y1, . . . , Y8),

g2 = Z18Z19 + Z20Z21 + Z22Z23 + Z24Z25 + Z26Z27

= ψ2,1(X1, . . . , X8)ψ2,2(Y9, . . . , Y16),

g3 = Z28Z29 + Z30Z31 + Z32Z33 + Z34Z35 + Z26Z36

= ψ2,1(Y1, . . . , Y8)ψ2,2(Y9, . . . , Y16).

Note that Z26 appears in both g2 and g3 because of (4.6). Then, since

ψ2,1(X1, . . . , X8) = ψ1,1(X1, . . . , X8) and ψ2,1(Y1, . . . , Y8) = ψ1,2(Y1, . . . , Y8),

we have
h1 = (g1g2g−1

3 )1/2 = ψ1,1(X1, . . . , X8)

h2 = g1h
−1
1 = ψ1,2(Y1, . . . , Y8)

h3 = g2h
−1
1 = ψ2,2(Y9, . . . , Y16).

We can then substitute the transformed ciphertext values into h1, h2, h3 and subsequently

restore the triangular structure of Z1, Z2, Z3, respectively. The next step is to unmask the
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final four equations in the triangular portion. To do this, we define

g4 = Z37Z38 + Z39Z40 + Z41Z42 + Z43Z44 + Z45Z46

= ψ3,1(X1, . . . , X8)ψ3,2(Y17, . . . , Y24),

g5 = Z47Z48 + Z49Z50 + Z51Z52 + Z53Z54 + Z26Z55

= ψ2,1(X9, . . . , X16)ψ2,2(Y9, . . . , Y16),

g6 = Z56Z57 + Z58Z59 + Z60Z61 + Z62Z63 + Z45Z64

= ψ3,1(X17, . . . , X24)ψ3,2(Y17, . . . , Y24),

g7 = Z65Z66 + Z67Z68 + Z69Z70 + Z71Z72 + Z73Z74

= ψ4,1(X9, . . . , X16)ψ4,2(Y25, . . . , Y32).

Then, since ψ3,1(X1, . . . , X8) = ψ1,1(X1, . . . , X8) and ψ4,1(X9, . . . , X16) = ψ2,1(X9, . . . , X16),

we have
h4 = g4h

−1
1 = ψ3,2(Y17, . . . , Y24)

h5 = g5h
−1
3 = ψ2,1(X9, . . . , X16)

h6 = g6h
−1
4 = ψ3,1(X17, . . . , X24)

h7 = g7h
−1
5 = ψ4,2(Y25, . . . , Y32).

Using h4, . . . , h7, we can restore the triangular structure of Y4, . . . , Y7, and easily recover

X1, . . . , X7. To recover X8, we use the value of h1 = ψ1,1(X1, . . . , X8), as long as X7 is

nonzero.

We finish the inversion process by solving for the remaining variables X9, . . . , X24
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and Y1, . . . , Y32, using 6 of the 7 oil-vinegar systems:

subsystem oil-vinegar polynomials oil variables vinegar variables

1 Z8, . . . , Z15 Y1, . . . , Y8 X1, . . . , X8

2 Z18, . . . , Z25 Y9, . . . , Y16 X1, . . . , X8

4 Z37, . . . , Z44 Y17, . . . , Y24 X1, . . . , X8

5 Z47, . . . , Z54 X9, . . . , X16 Y9, . . . , Y16

6 Z56, . . . , Z63 X17, . . . , X24 Y17, . . . , Y24

7 Z65, . . . , Z72 Y25, . . . , Y32 X9, . . . , X16

(4.7)

Similar to Figure 1.3 in Chapter 1, Figure 4.1 illustrates the relationships between these

oil-vinegar systems (the heads of the arrows indicate the oil variables for each system).

Figure 4.1: Chain of Oil-Vinegar Systems in the New Cryptosystem

X1, . . . , X8

Y1, . . . , Y8

Y9, . . . , Y16

Y17, . . . , Y24

X17, . . . , X24

X9, . . . , X16

Y25, . . . , Y32

1 3

2

4
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5

7

4.2.2 Decryption failures

In this section, we let N = |F|. From Section 1.3, we know that decryption may

fail 1) if we are unable to perform a necessary inversion in F while computing the hi’s, or

2) if we are unable to solve an oil-vinegar subsystem. To compute h1, h2, h3, notice that
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we must have ψ1,1(X1, . . . , X8), ψ1,2(Y1, . . . , Y8), and ψ2,2(Y9, . . . , Y16) all nonzero. First

consider when

ψ1,1(X1, . . . , X8) = X1X2 +X3X4 +X5X6 +X7X8 = 0.

If we let M1 =

 X1 X3

X4 X2

 , M2 =

 X5 X7

X8 X6

 ∈ F2×2, then

P (ψ1,1(X1, . . . , X8) = 0) = P (detM1 = detM2)

=
∑
α∈F

P (detM1 = α | detM2 = α)P (detM2 = α)

=
∑
α∈F

(P (detM1 = α))2

= (P (detM1 = 0))2 +
∑

06=α∈F
(P (detM1 = α))2

=
(
N3 +N2 −N

N4

)2

+ (N − 1)
(
N3 −N
N4

)2

=
N7 +N4 −N3

N8
.

When N is large, this probability is approximately 1
N , and is the same for ψ1,2(Y1, . . . , Y8)

and ψ2,2(Y9, . . . , Y16).

Computing h4, . . . , h7 requires only two additional conditions: ψ3,2(Y17, . . . , Y24) 6= 0

and ψ2,1(X9, . . . , X16) 6= 0. Again, each of these are zero with probabilty approximately

1
N , so the total probability that we will not be able to unmask the triangular system is

approximately 5
N .

Recall that we can use h1 to recover X8 as long as X7 is nonzero. However, if X7 = 0,

we can instead use Z17 as long as X2 6= 0. Hence we fail to recover X8 with probability 1
N2 .

We have already addressed in Section 4.1 the solvability of the oil-vinegar sub-

systems. Notice that in (4.7), we have 6 oil-vinegar systems, but only 4 distinct sets of

vinegar variables. Hence the total probability of failing to invert the oil-vinegar systems is

approximately 4
N .
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Therefore, we conclude that decryption failure occurs with total probability approx-

imately 9
N . Practical implementations may avoid this problem by choosing N large enough

to ensure that decryption failure is negligible, or by using the embedding (↗) modifier (see

[DWY07, DYCCD07]).

4.3 Security and Efficiency

In the following, we show that our system is safe from known attacks on MPKCs.

Throughout this section, q is the size of the base field, k, and d is the degree of F over k.

4.3.1 Attacks based on linear algebra.

We now consider the specific linear algebra-based attacks, examining the minrank

and dual rank, separation of oil and vinegar variables, and finally, linearization equations

attacks. These attacks have been perhaps the most devastating to attempts at building

MPKCs.

Minrank attack. Recall from Section 2.2 that if a variable Xi does not appear in

the quadratic part of a polynomial, then the associated matrix will not have full rank, since

the i-th row and column are zero. So, loosely speaking, if an equation has too few variables,

the associated matrix will have small rank. This is the foundation for the minrank attack.

Since the public polynomials are just combinations of the central map polynomials (via L1)

after a change of variables (via L2), if the matrix for a central map polynomial has low

rank, r, then some combination of the public key polynomials also must have rank r. After

such a combination is found, the system may be broken.

From [GC00], the complexity of the attack is qd
m
n
er, where m is the number of central

map polynomials, n is the number of variables, and r is the smallest rank. Considering the

ranks of the central map polynomials, viewed component-wise over k, the smallest rank is

8d, hence the complexity of attack is qd
74
56
e8d = q16d.

Dual rank attack. While minrank succeeds when an equation has too few vari-
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ables, the dual rank attack is effective when a variable appears in too few equations. In this

case, the matrix corresponding to the quadratic part of a polynomial in which the variable

does not appear will have less than full rank. In particular, if a variable only appears in the

quadratic part of u central map equations, then some combination of (u+ 1) of the public

polynomials must have less than full rank. Finding such a combination will again enable us

to break the system. The complexity of this attack is at least n3qu [YC04].

In our case, viewing the central map polynomials component-wise over k, each of the

56d variables appears in at least 6d equations, so the complexity of the attack is (56d)3q6d.

Separation of oil and vinegar variables attack. As mentioned in Section

2.3, the goal of this attack is to find the transformed oil space. Kipnis et al. [KPG99]

give a complexity of o4qv−o−1 where o and v are the number of oil and vinegar variables,

respectively. Determining the transformed oil space may possibly lead to breaking the

system, so we show that the complexity for our system is sufficiently high.

Recall that in an oil-vinegar system, no terms in the system may be quadratic in

the oil variables. This means that given a system of polynomials, adding terms may result

in a decrease of the size of the oil set, but never an increase, hence the vinegar set cannot

possibly shrink by adding terms. So, disregarding the φi of the triangular system and

viewing our central map F as a system of oil-vinegar polynomials with coefficients in F, we

can determine the size of the minimal vinegar set by computing the maximum size of an oil

set. This can be done by finding the clique number of the graph with vertices given by the

56 variables and edges occuring whenever the product of two variables does not appear in

any polynomials of F . Computation using Magma reveals that the clique number is 20, so

the smallest vinegar set has 36 variables. This gives a complexity of 204q15d.

Linearization equations attack. Computations using Magma verify that there

are no first order linearization equations. Regarding second order linearization equations,

we point out an important contrast between our new system and MFE. In MFE, each ψi

has rank 4, and can therefore be expressed as the determinant of a 2× 2 matrix. The fi are

defined as elements of the product of two of these matrices, and the identity (1.13) holds
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by the multiplicative property of the determinant. Since the ψi in our system have rank

8, no simple matrix decomposition exists, as each ψi has an expression as the sum of two

2× 2 determinants. Further, the fi are not defined as elements of a matrix product, so the

multiplicative property of the determinant is of no use.

However, the above argument obviously cannot completely rule out the possibility

of second order linearization equations. A search for second order equations would involve

solving a linear system in approximately
(
56d+1

1

)(
74d+2

2

)
coefficients. So, for d = 1, naive

Gaussian elimination would require > 251 field operations, and for d = 2, it would require

> 260 field operations. The time and memory requirements for solving such a system (about

32 GB with Magma) have prevented us from performing the computation.

4.3.2 Algebraic attacks.

At the heart of these attacks are the F4 and F5 algorithms of Faugére [Fau99] and

[Fau02], as well as the XL algorithm of Courtois et al. [CKPS00]. There have been some

recent contributions to complexity estimates for these algorithms, assuming general systems.

Barget et al. [BFSY05] give the total number of operations in k for F5 (and hence

XL) as

O

((
n+ dreg

n

)ω)
,

where ω is the exponent in Gaussian reduction and dreg is the degree of regularity of the

ideal formed by the polynomials in the system, given by the degree of the first term with

negative coefficient in the expansion of

∏m
i=1(1− zdi)
(1− z)n

, (4.8)

where di is the total degree of the i-th polynomial. But since each of our polynomials have

total degree two, (4.8) simplifies to (1 − z)m−n(1 + z)m. For us, if we take the degree of

F over k to be 1 (so m = 74 and n = 56), we have dreg = 15. Hence the attack requires

2ω log (71
56) > 249ω operations in k. If we instead take the degree of F over k to be 2, dreg
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becomes 26, and the attack requires > 292ω operations.

One other attack of note in this category is the attack of Joux et al. [JJMR05]

against an earlier tractable rational map cryptosystem of Wang and Chen [WC04]. The

authors exploit the fact that within the central map, there is a smaller subsystem of 11

equations in 7 variables. However, because of the design of our system, there appears to be

no such overdetermined subsystem.

4.3.3 Parameters

Based on the preceding discussion, Table 4.1 presents security levels for different

choices of q = |k| and d = [F : k], where the column F5 gives the complexity of the algebraic

system solving attack, and the column Rank/UOV gives the complexity of the linear algebra

attacks. To compute the complexity of Faugére’s F5 algorithm, we have used ω = 2.3.

Table 4.1: Security
Claimed Input Output Parameters Complexity Key Size [kBytes]
Security [bits] [bits] q d F5 Rank/UOV Public Private

2113 896 1184 216 1 2114 2113 245 18
2212 1792 2368 216 2 2213 2212 1907 70
2114 1792 2368 232 1 2114 2209 490 36

Note that the complexity for F5 is the same for the first and third systems even

though input size is different. This is because the complexity estimate for F5 depends

only on the number of equations and the number of variables. However, while the second

system has the same input size as the third, security is much higher because of the use of

an intermediate field (i.e. d > 1).

4.3.4 Efficiency

Consider our proposed system with q = 216 and d = 1. We compare it to MFE-

1, which was shown to have a significant advantage over RSA-1024 in decryption speed

[WYHL06]. Since MFE-1 uses a degree 4 extension of F216 , multiplications in the extension
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field require 42 operations over the base field. A rough count of multiplications over F216

yields about 2400 for MFE-1 and 3200 for our system. We implemented both systems

in a straightforward way using Magma on a 1600MHz UltraSPARC IIIi. The results are

recorded in Table 4.2.

Table 4.2: Implementation Results

System
Input Output

Encryption Time
Decryption Time

[bits] [bits] Central Map Total
MFE-1 768 960 52ms 2ms 2.7ms

Our System 896 1184 94ms 1.4ms 2.3ms

As expected, encryption in our system is slower since it uses 74 equations in 56

variables over F216 , whereas MFE-1 uses 60 equations in 48 variables. However, even though

the multiplication count for our system is larger, decryption is actually faster. This is

because the division and square root operations are slower in the large extension field of

MFE-1; furthermore, decrypting MFE-1 requires converting back and forth between the

base field and the extension field.

4.4 Future Directions

We have introduced a new framework for constructing multivariate public key cryp-

tosystems that combines the ideas of triangular and oil-vinegar systems. Also, we have

proposed a new cryptosystem that implements the framework, and we have shown the sys-

tem to be secure against known MPKC attacks. The framework has much freedom and

should provide a fertile ground for new research in the area of multivariate public key

cryptography. In particular, we pose the following open questions:

• How can we find all quadratic solutions to the general Diophantine equations (1.13)

and (1.14)?

For the first equation, AB = CD+EF , we have completely characterized all solutions

subject to the requirements laid out at the beginning of Chapter 3. However, it is
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an open question to characterize all solutions in general. For the second equation,

AB = CD + EF + GH + IJ + KL, we have found several solutions, and we can

use the Basis Theorem (Theorem 3.5.2) to construct many more solutions. However,

there is much work to be done to study this form.

• One solution to (1.14) gives several possible cryptosystems, depending on how we

choose to arrange the oil-vinegar systems. How can we effectively choose the best

one?

The system proposed in Chapter 4 uses the configuration illustrated by Figure 4.1,

but this is not the only possible arrangement. Starting from the triangle formed by

the first three oil-vinegar systems, the remaining four systems may be arranged in

many ways.

• What strategies can be formulated to help minimize the decryption failure rate?

We mentioned the obvious solution of choosing F large enough so as to make decryp-

tion failure negligible. However, in applications where decryption failure is strictly

prohibited, the embedding modifier of [DWY07] should be implemented. An explicit

implementation is left for future work. Also, Section 4.2.2 showed decryption failure

is in part tied to the arrangement of the oil-vinegar systems, so progress regarding

the previous question may in be useful in minimizing decryption failure.

• What other polynomial identities may be used to construct cryptosystems in the

proposed framework?

Identities of the form (1.13) and (1.14) have been used to construct the MFE cryp-

tosytem, and our new cryptosystem, respectively. However, more general identities of

the form (3.1):

AB = f1f2 + f3f4 + . . . fn−1fn + fn+1fn+2 + · · ·+ fn+t−1fn+t

should be explored.
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• Rather than having gi in (1.9) factor into two distinct quadratics, can we find gi =∑
αjkYjYk = ψi, or gi = ψ2

i ? This would make hi much simpler: hi = gi and hi = g
1/2
i ,

respectively, and the first type of decryption failure would become irrelevant.

• A further generalization of the framework would be to omit the gi’s and simply

require the existence of rational functions hi ∈ F(Yn+1, . . . , Yn+`t) such that each

hi(fn+1, . . . , fn+`t) is quadratic in X1, . . . , Xn+`o, and could be used as a lock polyno-

mial. Can other systems be successfully created using this generalization?
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