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ABSTRACT 

There is an abundance of research correlating diets rich in fruits and vegetables to 

the reduction or prevention of chronic diseases such as cancer and cardiovascular disease.  

Plants extracts have also been claimed to possess antiviral, antibacterial, and 

immunological properties.  This study focused on the in vitro and in vivo effects of a 

water extract from lyophilized Meeker red raspberries on tumor cell viability and immune 

parameters.  A large number of studies have demonstrated the cytotoxic effect of 

different fruit juices and extracts against tumor cell lines in vitro.  However, studies also 

show that the blood plasma levels of berry phytochemicals are several orders of 

magnitude lower than the levels which have activity in vitro.  This study was undertaken 

as an attempt to reconcile these apparently contradictory observations and test the value 

of a novel system for detecting the effect of berry consumption in humans.  Subjects who 

consumed berries donate blood which is tested in vitro.  An extract of Meeker red 

raspberries was tested for its activity against 5 tumor cell lines.  Berries from the same lot 

were consumed by test subjects and their plasma and white blood cells were tested for 

changes in several immune parameters. 

The extract exhibited a potent cytotoxic effect on a variety of cancer cells in vitro; 

including cells from gastric, prostate, colon, and breast cancers.  By comparison to an 

ascorbic acid control, it could be determined that the cytotoxicity of the raspberry extract 

was not solely attributable to pH or antioxidant effects. 

The goal of the present study was to evaluate the effects of lyophilized red 

raspberry consumption on in vivo and in vitro immune parameters, including immune cell 
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proliferation, plasma MMP-9 concentrations, and cytotoxicity toward human tumor cell 

lines. 

Sixteen healthy volunteers participated in the 3.5 day study.  Venous blood 

samples were collected at baseline and after the last serving of berries.  Although much 

variability was observed among participants, our results suggest that raspberry 

phytochemicals might augment immune function and affect both the innate and adaptive 

immune responses in some individuals, but have minimal effects in others. 

In several of the participants, the levels of one or more subsets of leukocytes 

changed after berry intake.  In five donors mitogen-induced T lymphocyte proliferation 

increased and in five it decreased.  An inverse relationship was observed between T 

lymphocyte mitogen stimulation and the change in leukocyte levels. There was an 

increase in resting peripheral blood mononuclear cell metabolism, suggesting an in vivo 

priming or proliferative effect from the berry phytochemicals.  Changes in plasma levels 

of MMP-9 correlated with changes in leukocyte levels. 

In vitro plasma tumoricidal activity increased for all participants. An increase in 

peripheral blood mononuclear cell cytotoxicity was also observed in some donors.  The 

results demonstrate that consumption of raspberry phytochemicals can affect immune 

parameters measured in vitro and may affect responses of the host to pathogenic 

challenge. 
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1. LITERATURE REVIEW 

Today there is a plethora of information correlating diets rich in fruits and 

vegetables to the reduction or prevention of chronic diseases such as cardiovascular and 

neurodegenerative diseases, diabetes, obesity, and certain cancers.  Worldwide, chronic 

diseases are increasing rapidly.  According to the World Health Organization (WHO), in 

2001 chronic diseases contributed approximately 60% of the 56.5 million total reported 

deaths in the world and approximately 46% of the global burden of disease.  By 2020 

chronic diseases are expected to account for 57% of the global burden (1).  They further 

report that low fruit and vegetable intake is among the top 10 risk factors for global 

mortality; however, sufficient intake of fruits and vegetables could reduce the risk for 

chronic disease and save up to 2.7 million lives annually (2). 

The disease-prevention properties of fruits and vegetables are attributed to the 

biological activities of the dietary fiber, vitamins, minerals and phytochemicals in the 

plants, however many studies suggest the protective effects of fruits and vegetables 

against chronic diseases are due in large part to the phytochemical content of the plants 

(3).  Phytochemicals are the bioactive, non-nutritive components of fruits and vegetables 

and can vary widely among plants and between plants of the same species.  

Phytochemicals are split into groups such as carotenoids, alkaloids and polyphenols.  

Carotenoids are found in fruits and vegetables ranging in color from pale yellow through 

orange to deep red and are efficient free radical scavengers.  Alkaloids are plant 

compounds which mostly contain nitrogen atoms and invoke a bitter taste when ingested.  

Many alkaloids have pharmacological effects and are used in medications such as 
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morphine and quinine.  Polyphenols are complex plant components characterized by the 

presence of multiple phenol rings which are the source of their biological activity.  They 

are subdivided into three categories: lignin, hydrolysable tannins and flavonoids, with the 

flavonoids being the most diverse category of polyphenols (4).  To date, over 8,000 

structural variants of polyphenols (5) and 7,000 varieties of naturally occurring 

flavonoids (4) have been identified.  Flavonoids are further divided into flavones, 

flavonols, anthocyanidins, isoflavones and procyanidins (condensed tannins) (4).  

Experimentally, these phenolic compounds have been shown to exert a wide range of 

biological activities in both in vitro and in vivo systems, including antioxidant, anti-

inflammatory and anticarcinogenic properties.  In addition, polyphenols have been 

reported to have immunological, antiviral, antibacterial and estrogenic properties as well 

as antiproliferative and cytotoxic effects in human and animal tumor cell lines (3, 6). 

Of particular interest to this laboratory are the polyphenolic compounds found in 

red raspberries (Rubus idaeus) and their in vitro and in vivo effects upon biological 

systems.  Raspberries contain a wide range of bioactive phytochemicals and are rich in 

vitamin C and total phenolics (7), including flavonoids, anthocyanins and ellagitannins.  

It is the flavonoids and anthocyanin pigments that give raspberries their characteristic 

color.  Many of the health benefits derived from raspberry consumption are due to their 

content of polyphenols, which are responsible for many of the biological activities of 

these berries, including antioxidant, anti-inflammatory and anticancer properties (8). 

A number of studies have been performed to assess and compare the total 

antioxidant capacity of fruits and vegetables that might contribute to health benefits in 
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humans.  Different methods are used to assess the antioxidant activity of fruits and 

vegetables.  Commonly performed assays include ORAC (oxygen radical absorption 

capacity), TRAP (total radical-trapping antioxidant parameter), FRAP (ferric reducing 

ability of plasma) and ABTS (2,2’-azinobis cation radical).  Of these assays, raspberries 

place very high on the ranking of antioxidant fruits and vegetables and are considered 

among the richest sources of dietary antioxidants available (9).  The antioxidant property 

of raspberries has been attributed to their content of vitamin C, anthocyanins and 

ellagitannins.  Vitamin C contributes about 20% of the total antioxidant capacity, 

anthocyanins about 25% and the largest contributor to antioxidant capacity is made by 

the ellagitannins at more than 50% (9).  Ellagitannins are an uncommon phytochemical 

found in only a limited number of berry species, including cloudberry and raspberry and 

to a limited extent in strawberries. 

Berry bioactives, including raspberry, have many roles in cancer prevention 

according to Stoner et al (10).  Laboratory studies show berry bioactives protect against 

oxidative DNA damage by direct scavenging of reactive oxygen species (ROS), often 

considered a first line of defense against the multistage process of carcinogenesis.  Berry 

bioactives are also effective in inhibiting the formation of carcinogen-induced DNA 

adducts, enhancement of DNA repair and inhibition of carcinogen-induced tumorigenesis 

in animal models.  In addition, berry bioactives modulate signaling pathways involved 

with cellular proliferation, apoptosis, inflammation, angiogenesis and cell cycle arrest 

(10). 
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Antioxidant Effects of Polyphenols 

A large number of chronic diseases, including many types of cancers, are caused 

in part from reactive oxygen species (ROS) that are generated during normal cellular 

metabolism.  ROS are also produced from exogenous sources such as environmental 

toxins, carcinogens and ionizing radiation (10).  Oxygen free radicals such as superoxide 

(O2
.-
), singlet oxygen (O2), peroxide (ROO

-
), hydrogen peroxide (H2O2), hydroxyl radical 

(OH
-
) and nitric oxide (NO

-
) are highly reactive and can damage cellular components, 

including DNA, RNA, proteins, and carbohydrates.  Unrepaired oxidative damage to 

DNA can result in mutations that can potentially lead to cell transformation and 

carcinogenesis.  Damage to cell membrane lipids can also occur and lead to swelling and 

cell death.  Free radicals released from damaged cells attract inflammatory mediators that 

contribute to a general inflammatory response, leading to further cell and tissue damage 

(11). 

 A number of effective defense mechanisms are present in humans to protect them 

from the damaging effects caused by reactive oxygen species.  Enzymes such as 

superoxide dismutase, catalase and glutathione peroxidase function as antioxidants in 

vivo.  Nonenzymatic molecules such as ascorbic acid (vitamin C), glutathione and α-

tocopherol (vitamin E) also possess antioxidant properties to inactivate free radicals.  

However, when cellular or tissue injury occurs there is an increased production of ROS 

that results in consumption and depletion of the endogenous antioxidants (11).  This can 

result in oxidative damage to numerous cellular components and may serve as an 

initiating event in many human diseases. 
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Most of the protective effects of various phytochemicals are attributed to their 

ability to scavenge ROS.  Dietary supplementation of antioxidants may produce an 

additive effect with endogenous scavenging compounds (11), helping to minimize or 

eliminate cellular damage from ROS.  Plant phytochemicals, especially the flavonoids, 

have been shown to prevent cellular injury by several mechanisms.  Flavonoids can 

directly scavenge free radicals.  This is achieved when flavonoids are oxidized by the 

ROS, resulting in more stable, less reactive molecules.  Some flavonoids are able to 

chelate bivalent metals such as iron and copper to make them unavailable for redox 

cycling reactions (12).  Another mechanism is through inhibition of pro-oxidant enzymes 

such as inducible nitric oxide synthase (iNOS).  Nitric oxide, produced by endothelial 

cells and macrophages, is important in maintaining the dilation of blood vessels.  

Homeostatic levels of nitric oxide are maintained by constitutive nitric oxide synthase, 

however, during inflammation much higher concentrations are produced by iNOS in 

macrophages.  This is able to cause oxidative injury by increasing production of nitric 

oxide and superoxide anions by the activated macrophages.  The increased levels of nitric 

oxide react with free radicals and produce the highly damaging peroxynitrite, resulting in 

irreversible damage to cell membranes.  Flavonoids can intercept and scavenge free 

radicals before they react with nitric oxide (11), or nitric oxide can be directly scavenged 

by certain flavonoids (13), resulting in less damage to the cells and surrounding tissues.  

Various flavonoids have the ability to inhibit other pro-oxidant enzymes such as 

lipoxygenase, cyclooxygenase (COX-2) and xanthine oxidase, inflammatory mediators 

implicated in the pathogenesis of chronic inflammatory diseases (14). 
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Antiproliferative Effects of Antioxidants on Normal and Tumor Cells in vitro 

Although berry phenolics are best known for their antioxidant activity, it has been 

firmly established from in vitro studies that berry phytochemicals have an 

antiproliferative effect on multiple cancer cell types.  Individual polyphenols such as 

anthocyanins, ellagitannins and ellagic acid have been shown to inhibit cancer cell 

proliferation in vitro and in vivo.  One study examined four varieties of fresh raspberries 

to measure their antioxidant and antiproliferative activities as well as determine the total 

amount of phenolics and flavonoids for each variety.  Interestingly, they found the color 

of the raspberry juice correlated well to the total phenolic, flavonoid and anthocyanin 

content of each berry - the darker the color, the higher the content of total phenolics in the 

berry juice.  Results of the antioxidant activity of the raspberries also correlated with 

berry color - the darker the berry the greater the antioxidant activity.  Although the 

antioxidant activity of the raspberry was directly related to the total amount of phenolics 

and flavonoids, no relationship was established between the antiproliferative activity and 

the total amount of phenolic compounds in the berries.  HepG2 human liver cancer cells 

were treated with various concentrations (1 – 50 mg/mL) of raspberry extracts to 

determine the antiproliferative activity of each extract.  While HepG2 cell proliferation 

was inhibited in a dose-dependent manner in all varieties of raspberry extracts, there was 

no relationship between the antiproliferative activity and total amount of 

phenolics/flavonoids found in each berry (15).  Olsson et al. performed a similar study to 

determine if a correlation exists between the antiproliferative activity of fruit extracts and 

antioxidant levels.  They treated HT29 colon cancer cells and MCF-7 breast cancer cells 
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with ten different extracts of fruits and berries, including raspberries, and all extracts 

decreased proliferation to varying degrees in both cell types in a concentration-dependent 

manner.  They also reported great differences in the content and composition of the 

antioxidants in the extracts.  Vitamin C varied almost 100-fold and total carotenoid 

content varied almost 150-fold among the species.  There was also a large difference in 

the composition of polyphenols among the fruits.  The results of their experiments 

showed a correlation between inhibition of cancer cell proliferation and the content of 

vitamin C and levels of certain carotenoids in the fruits.  The same inhibition effect on 

proliferation in HT29 and MCF-7 cells was not observed in cells treated with ascorbic 

acid alone.  These investigators concluded a correlation exists between the inhibition of 

cancer cell proliferation and the vitamin C content and certain carotenoids that act 

synergistically with the polyphenols to inhibit cancer cell growth (16).  On the other 

hand, individual polyphenols such as anthocyanins, ellagitannins and ellagic acid have 

been shown to inhibit cancer cell proliferation in vitro.  A study conducted by McDougall 

et al. ranked the antiproliferative effectiveness of a range of fruit extracts rich in 

polyphenols but devoid of vitamin C, carotenoids, sugars and organic acids.  Human 

cervical cancer (HeLa) cells and human colon cancer (CaCo-2) cells were treated with 

fruit extracts at 25, 50 and 75 µg/mL and assayed for cell viability after 72 hours.  The 

berry extracts from the Rubus family (raspberry, arctic bramble and cloudberry) as well 

as strawberry and lingonberry were effective in preventing the proliferation of these two 

cell types, reducing viability to ≤50% of the control at 50 µg/mL.  In this study as well as 

others on polyphenolic compositions for the most effective berry types, they suggest that 
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the effectiveness of the Rubus family (raspberry, arctic bramble and cloudberry) as well 

as strawberry could be due to their high content of ellagitannins, which have been shown 

to be effective antiproliferative agents (17).  Similar antiproliferative activities were 

observed in this laboratory by God from red raspberry extract treatment on AGS (gastric), 

LoVo (colon) and MCF-7 (breast) cancer cell lines.  Following a 48 hour treatment in 

5%, 7.5% or 10% extract, all three cell lines showed significant growth inhibition, with 

AGS and LoVo exhibiting the greatest sensitivity.  God also examined the effects of pH 

and antioxidant activity on cell killing to determine their contribution to the potent 

cytotoxicity observed in the berry-treated samples.  Cell lines were treated with solutions 

of hydrochloric acid (HCl) and ascorbic acid (antioxidant) that were adjusted to the same 

pH as the raspberry extract.  The HCl treatment had no effect on the survival of any of 

the cell lines, suggesting pH was not a factor in cell killing.  Although ascorbic acid 

treatment inhibited the growth of all three cell lines, MCF-7 was the most sensitive and 

showed no significant difference in cytotoxicity by raspberry extract and ascorbic acid.  

However, there was a significantly higher level of inhibition in AGS and LoVo treated 

with raspberry extract compared to ascorbic acid treatment.  God concluded that the 

potent cytotoxic effect observed from red raspberry extract treatment was not attributed 

solely to its antioxidant capacity or to changes in pH (18).  Other investigations have 

compared the antiproliferative effects of anthocyanins on normal versus cancer cells and 

found that they selectively inhibit growth of the cancer cells with little or no effect on the 

growth of normal cells.  Stoner et al. studied the effect of black raspberries on a highly 

tumorigenic rat esophageal epithelial cell line (RE-149-DHD) with its low tumorigenic 
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precursor line (RE-149).  He found that the uptake of the three anthocyanins in the black 

raspberries into the highly tumorigenic line (RE-149-DHD) exceeded the uptake in the 

precursor line (RE-149) by 100-fold.  Additionally, one of the anthocyanins (cyanidin-3-

rutinoside) remained at steady-state levels in RE-149-DHD cells for up to 12 hours while 

it became undetectable in RE-149 cells after 2 hours.  Stoner also reported black 

raspberry treatment stimulated apoptosis in RE-149-DHD but not in the precursor line 

RE-149 (10). 

Apoptosis 

In addition to the antiproliferative activity of berry bioactives, their effect on 

apoptosis in human cancer cell lines has also been reported.  Among berry phenolics, 

anthocyanins have been shown to play a major role in the induction of apoptosis (8).  

Because apoptosis is often dysregulated in cancer cells, berry extracts capable of 

inducing apoptosis or cell cycle arrest in pre-malignant and malignant cells could 

potentially be used as chemopreventive or chemotherapeutic agents.  Seeram’s laboratory 

investigated the ability of six berry extracts (blackberry, black raspberry, blueberry, 

cranberry, red raspberry and strawberry) to stimulate apoptosis of the COX-2 expressing 

colon cancer cell line HT-29.  HT-29 expresses the COX-2 (cyclooxygenase-2) enzyme, 

an inflammatory protein associated with chronic inflammation and cancer.  Of the six 

extracts tested, two showed significant pro-apoptotic activity at the highest dose tested 

(200 µg/mL).  Black raspberry extract induced apoptosis 3-fold over control cells and 

strawberry extract induced apoptosis 2.8-fold over controls.  Red raspberry exhibited a 

1.7-fold increase whereas cranberry had no pro-apoptotic activity against HT-29 cells.  
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(The investigator noted that the test concentrations of the berry extracts far exceeded the 

levels of phenolics and/or their metabolites that are physiologically achievable based on 

current knowledge of polyphenol bioavailability) (19).  Another study demonstrated 

apoptosis in a human lung cancer cell line NCI-H209 following treatment with quercetin, 

a flavonol found in several varieties of berries, including raspberries.  In contrast to 

Seeram’s treatment conditions, quercetin was effective in vitro at doses that are 

pharmacologically attainable in vivo (10).  Following treatment with quercetin (0 – 10 

µM) NCI-H209 cell viability decreased in a dose- and time-dependent manner.  Cell 

cycle analysis showed a significant increase in the percentage of cells in G2/M phase and 

subG0/G1 phase, indicating cell cycle arrest and apoptosis.  They found that quercetin 

increased the expression of proteins responsible for cell cycle arrest (cyclin B, WEE1, 

Cdc25C-ser-216-p and p21) and induced apoptosis through activation of the caspase-3 

cascade, key components of the apoptotic pathway (20).  God also examined caspase 

activity to determine if cytotoxicity was due to raspberry extract-induced apoptosis.  The 

results of his study indicated there were no significant differences between the caspase 

activities observed for the treated and untreated cells, suggesting the cytotoxic effects 

from red raspberry extract were not attributed to caspase-dependent apoptosis 

(unpublished data, 18).  Feng et al. demonstrated that cyanidin-3-rutinoside (C-3-R), an 

anthocyanin derived from black raspberries, selectively induced apoptosis in HL-60 

leukemic cells by promoting oxidative stress, but showed no pro-oxidant activity in 

normal human peripheral blood mononuclear cells (PBMC).  Treatment of cells with C-

3-R induced a significant amount of apoptosis in HL-60 cells in a time- and dose-
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dependent manner (caspase-3 and caspase-9 activity) but had little toxicity against the 

normal PBMCs.  They found that there were increased levels of H2O2 that accumulated in 

the HL-60 cells but were reduced in the PBMCs, suggesting that C-3-R could have a 

radical scavenging effect in the normal cells.  They concluded from their observations 

that C-3-R selectively causes ROS accumulation in leukemic cells and that the increased 

oxidative stress is sufficient to activate the downstream apoptotic events observed in this 

study (21). 

Anti-inflammatory Effect of Polyphenols 

In addition to its carcinogenic effects, oxidative stress is also integral to the 

inflammatory response.  Excessive inflammation has been linked to a number of chronic 

diseases in humans, including cardiovascular disease and cancer.  Elevated levels of key 

inflammatory proteins such as nuclear factor-kappa B (NF-κ B), cyclooxygenase-2 

(COX-2), and inducible nitric oxide synthase (iNOS) are often present in these 

conditions.  It has been shown that plant phytochemicals, including flavonoids and 

anthocyanins, are able to inhibit these enzymes as well as other mediators (i.e. cytokines) 

of the inflammatory process, mainly by acting through NF-κ B and mitogen-activated 

protein kinase signaling (22).  For example, Huang et al. treated mouse epidermal JB6 Cl 

41 cells with 50 mg/mL black raspberry extract and benzo(a)pyrene-diol-epoxide 

(BPDE), a carcinogen and inducer of NF-κB gene transcription.  Treatment with the 

anthocyanin-rich raspberry extract resulted in a down-regulation of BPDE-induced 

expression of NF-κ B (23).  Likewise, Rodrigo et al. demonstrated a suppression of iNOS 

activity in five cell lines isolated from human oral squamous cell carcinoma tumors 



 12 

treated with freeze-dried blackberries (10, 50 and 100 µg/mL) (24).  Different studies 

have shown that flavonoids can modulate the NF-κB signaling pathway during 

inflammation.  In addition, based upon in vitro studies in multiple cell types, the anti-

inflammatory activity of flavonoids and anthocyanins has been attributed to their ability 

to inhibit the transcription and/or translation expression levels of the various 

inflammatory mediators involved in chronic inflammatory disorders (6). 

Anti-angiogenic Effect of Polyphenols 

 Angiogenesis is a normal process involving the growth of new blood vessels from 

pre-existing vessels; however, it also plays a crucial role in tumor growth and cancer 

metastasis.  Vascular endothelial growth factor (VEGF) has been shown to be a major 

contributor to angiogenesis, and VEGF expression is often elevated in developing tumors 

(26).  The anti-angiogenic effects of multiple berry extracts on inducible VEGF have 

been evaluated in various studies.  Bagchi and colleagues tested individual berry extracts 

(wild blueberry, bilberry, cranberry, elderberry, raspberry seed and strawberry) on human 

HaCaT keratinocytes and found that 50 µg/mL berry extract produced significant 

inhibition of H2O2- and TNF-α-induced VEGF expression by these cells.  Wild blueberry 

extracts exhibited the greatest inhibitory effect in both the H2O2- and TNF-α-induced 

VEGF samples.  Antioxidants such as GSPE (grape seed proanthocyanidin extract), with 

comparable ORAC, or α-tocopherol (vitamin E) tested under the same conditions did not 

inhibit inducible VEGF expression, suggesting that the observed effect of the berry 

extracts was not dependent on their antioxidant property alone.  These investigators 

concluded that the flavonoid constituents of the berry extracts may have been responsible 
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for the effect on inducible VEGF expression and release (26).  Rodrigo et al. also 

demonstrated an anti-angiogenic effect of black raspberry extract treatment on human 

oral squamous cell carcinoma cells (SCC) that produce high levels of VEGF protein.  

This study examined the effect of raspberry extract on VEGF gene transcription and 

translation and found the extract was inhibitory at both levels of protein synthesis.  VEGF 

RNA transcript levels were measured following a 6-hour exposure to TNF-α or black 

raspberry extract and this resulted in reduced VEGF mRNA expression in three of the 

four extract-treated cell lines compared with the TNF-α- and untreated control samples.  

Raspberry extract-treated cells also showed a significant suppression of VEGF protein 

levels, although there were cell line-associated differences in protein levels (24). 

Inhibition of Carcinogen-induced DNA Adducts and Tumors in Animal Models 

Berry bioactives have also been examined by various laboratories to determine 

their effectiveness in inhibiting or reducing the formation of DNA adducts from chemical 

carcinogens.  Kresty et al. fed male rats diets containing either 5 or 10% lyophilized 

black raspberries (LBR) or 0.04% ellagic acid for 14 days followed by an injection of N-

nitrosomethylbenzylamine (NMBA), an esophageal carcinogen.  The esophageal DNA 

was isolated and O-methylguanine measured.  O-methylguanine is an indicator of DNA 

damage.  Rats fed the LBR had reduced levels of O-methylguanine adducts in the DNA 

of their esophagi.  The 5 and 10% LBR treatment showed 73 and 80% inhibition 

respectively of DNA adduct formation and the ellagic acid produced 38% inhibition 

compared to the NMBA controls (27).  Inhibition of oral cancer by dietary administration 

of LBRs was reported by Casto et al.  They observed similar reductions in DNA adducts 
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in the cheek pouches of Syrian golden hamsters treated with 7,12-

dimethylbenz(a)anthracene (DMBA).  Hamsters were fed a diet of 5% LBR for 2 weeks 

before a topical application of DMBA was applied to the surface of the cheek pouch.  

DNA adducts in the berry-fed hamsters were reduced by 29 and 55% at 24 and 48 hours 

respectively (28).  In contrast to these reports, Carlton et al found that diets containing 

10% lyophilized strawberries were ineffective at reducing lung tumors in mice that were 

induced by 4-(methylnitrosamino)-1-(3-pyridyl)-1 butanone (B(a)P).  The mice were fed 

the strawberry diet before and during treatment with B(a)P and at 24 weeks there was no 

difference in lung tumor incidence or multiplicity compared to control mice (29). 

Other laboratories focused on the role of anthocyanins in cancer prevention.  

These plant constituents are the most abundant flavonoids in fruits and vegetables, and 

epidemiologic studies suggest that diets rich in anthocyanins lower the risk of 

cardiovascular disease, diabetes, arthritis and cancer, due in part to their antioxidant and 

anti-inflammatory properties (30).   Using in vivo animal model tumor systems, 

researchers have shown a reduction in esophageal, colon, skin and lung cancer in animals 

administered berry diets.  In the azoxymethane (AOM)-induced model of colon cancer in 

F344 rats on 2.5, 5 and 10% LBR diets, Harris et al. found that these animals showed a 

significant decrease in total tumors (adenomas and adenocarcinomas) by 42, 45 and 71% 

respectively.  They further reported significant reductions in urinary 8-hydroxy-2′-

deoxyguanosine (8-OHdG, an indicator of oxidative stress-induced DNA damage) levels 

by 73, 81 and 83% respectively, indicating that berries reduce ROS-induced DNA 

damage in animals (31).  The chemopreventive properties of delphinidin, a major 
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anthocyanin, in skin tumor development in mice have also been described.  Afaq et al. 

treated female SKH-1 hairless mice topically with delphinidin (1 mg/0.1 mL DMSO) pre- 

and post-UVB irradiation (180 mJ/cm
2
) and monitored key UVB-induced biomarkers of 

skin cancer development.  They found in both the pre- and post-UVB treatments that 

delphinidin inhibited apoptosis and markers of DNA damage such as cyclobutane 

pyrimidine dimers and 8-OHdG compared to the untreated control mice.  According to 

Afaq, their results suggest that delphinidin inhibited UVB-mediated oxidative stress and 

reduced DNA damage, thereby protecting the cells from UVB-induced apoptosis (32).  

Although berry bioactives have shown anti-tumor activity in esophageal, oral and skin 

cancers in animal models, they have not been successful in other types of cancers (i.e. 

lung).  Stoner suggests this may be due to berry components coming into direct contact 

with tissues where they can be absorbed in sufficient concentration to provide protection.  

In cancers other than those of the gastrointestinal tract (GI) and skin, the berry bioactives 

may fail to reach the tumor sites in sufficient amounts to be efficacious.  This is 

supported from studies that show the absorption of anthocyanins and ellagitannins into 

the bloodstream of rodents and humans is minimal, and their plasma levels decline 

rapidly (10), making it unclear whether the in vivo concentrations are sufficient to 

provide anti-carcinogenic protection (25). 

Human studies examining the anti-cancer effect of berry bioactives are limited 

and have yielded mixed results.  A study conducted in the United Kingdom investigated 

the effects of cranberry juice consumption on plasma antioxidant activity and biomarkers 

of oxidative stress.  Healthy female subjects ingested 750 mL/day of either cranberry 
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juice (anthocyanin-rich) or a placebo drink for 2 weeks.  Fasted blood and urine were 

collected over 4 weeks and various parameters measured.  The investigators reported 

similar results for both groups.  Cranberry juice did not alter blood or cellular antioxidant 

status or biomarkers of lipid status pertinent to heart disease (cholesterol, high density 

lipoprotein, low density lipoprotein and triglycerides).  Cranberry juice also showed no 

effect on 8-OHdG levels in urine or H2O2-induced oxidative DNA damage in 

lymphocytes (33).  A German study, however, reported different results from their study.  

Healthy male subjects consumed either 700 mL of a red mixed berry juice 

(anthocyanin/polyphenolic-rich) or a polyphenol-depleted juice for 4 weeks.  During 

intervention with the fruit juice, a decrease in oxidative DNA damage was observed that 

returned to pre-juice levels after conclusion of the study.  Intervention with the control 

juice did not result in reduction of oxidative DNA damage (34).  Stoner et al. conducted a 

study with patients diagnosed with colon cancer who had received no therapy.  Patients 

consumed 60 g/day of oral administration of LBR powder for 2 – 4 weeks prior to 

surgery.  Biopsies of normal-appearing and tumor tissues were taken before and after 

berry treatment and assayed for proliferation, apoptosis and angiogenesis.  The results 

showed a significant reduction in proliferation rates and angiogenesis biomarkers in 

colon tumors but not in the normal-appearing cells whereas apoptosis increased in the 

colon tumors but not in the normal-appearing cells (25).  Stoner’s laboratory also 

conducted a 6 month chemopreventive pilot study administering 32 or 45 g (female, male 

respectively) of lyophilized black raspberry powder (LBR) to patients with Barrett’s 

esophagus (BE).  BE is a premalignant esophageal condition that confers a 30- to 40-fold 
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increased risk for the development of esophageal adenocarcinoma.  Biopsies of Barrett’s 

lesions were taken before and after treatment for biomarker analysis.  Although berry 

treatment did not result in a reduction in segment length of Barrett’s lesions at the end of 

the study in ten of the patients tested, a reduction in oxidative DNA damage was 

observed.  Urine was collected at study baseline, week 12 and week 26 and evaluated for 

the oxidative damage biomarkers 8-OHdG and 8-epi-prostaglandin F2α (8-Iso-PGF2).  

There was a significant reduction in the levels of urinary 8-Iso-PGF2 but no significant 

change in mean levels of 8-OHdG (10). 

DNA Repair 

To investigate the anticancer effects of berry bioactives in reducing and repairing 

oxidative DNA damage, Maurya et al. performed studies in mice treated with gamma 

radiation and ferulic acid, a phenolic acid found in berries.  In one instance, mice were 

administered ferulic acid (50 – 100 mg/kg body weight) intraperitoneally (IP) one hour 

prior to whole-body gamma radiation (4 Gy) to examine DNA repair activity.  Peripheral 

blood leukocytes and bone marrow cells were examined and a dose-dependent decrease 

in DNA strand breaks was observed.  In a second experiment, mice were given 50 mg/kg 

body weight of ferulic acid after whole-body irradiation and DNA strand breaks 

disappeared at a faster rate compared to the irradiated control mice, suggesting enhanced 

DNA repair in ferulic acid treated animals.  Maurya reported similar results in troxerutin-

treated mice, a flavonoid derivative of rutin, as well as in gamma-irradiated (2 Gy) 

human peripheral blood leukocytes.  Maurya concluded the berry compounds ferulic acid 

and troxerutin are effective in enhancing DNA repair as demonstrated by a more rapid 
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rejoining of irradiation-induced DNA strand breaks in berry-treated cells (35, 36).  Niture 

et al. tested the effectiveness of resveratrol and ellagic acid on the repair of O
6
-

alkylguanine adducts in the DNA of human lymphocytes and in glioblastoma and colon 

cancer cells.  They found that resveratrol had only a modest effect and ellagic acid had no 

effect on the stimulation of the DNA repair protein O
6
-methylguanine-DNA-

methyltransferase, suggesting these berry compounds may have little or no effect on 

repair of O
6
-alkylguanine adducts in DNA (37).  In contrast to Niture’s findings, Aiyer’s 

laboratory showed that mice fed diets of raspberry, strawberry, blueberry and ellagic acid 

had reduced levels of estrogen-induced DNA adducts and upregulation of DNA repair 

genes.  CD-1 mice were fed either a control diet or diet supplemented with ellagic acid 

(400 ppm) and dehydrated berries (5% w/w) with varying ellagic acid contents - 

blueberry (low), strawberry (medium) and red raspberry (high) for three weeks.  Mice 

were treated with 17β-estradiol (E2), a DNA mutagen causing oxidative damage and 

DNA adduct formation.  In addition to the benchmark oxidative lesion 8-oxo-2′-

deoxyguonosine (8-oxodG), four subgroups of novel, unidentified polar DNA adducts 

were detected following treatment.  The results showed that mice on blueberry and 

strawberry diets had a 25% reduction in endogenous DNA adducts while red raspberry 

and ellagic acid diets showed significant reductions of 59 and 48% respectively.  Both the 

red raspberry and ellagic acid diets resulted in a 3-8 fold over-expression of DNA repair 

genes such as XPA (xeroderma pigmentosum group A complementing protein), ERCC5 

(DNA excision repair protein) and DNL3 (DNA ligase III).  In addition, the red raspberry 

diet down-regulated genes such as MAPK14 (Mitogen activated protein kinase 14) and 
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MAPKK (MAP kinase kinase) that are involved in cell-signaling pathways by 5 – 15 

fold.  This study supports the role of berry polyphenols in maintaining genomic stability.  

Although the blueberry and strawberry diets were less effective in reducing oxidative 

DNA damage, red raspberries and pure ellagic acid were highly effective in reducing 

endogenous oxidative DNA damage, possibly by mechanisms that may involve an 

increase in DNA repair (38). 

Anti-invasive Effect of Polyphenols 

Matrix metalloproteinases (MMPs) are a family of zinc-dependent endopeptidases 

that digest proteins of the extracellular matrix (ECM).  They play important roles in 

regulating normal tissue development, tissue remodeling, wound healing, inflammation, 

and angiogenesis.  However, unregulated MMP activity can contribute to various disease 

states such as arthritis, cardiovascular disease and cancer expansion.  For instance, 

clinical studies in patients with coronary artery disease (CAD) have shown elevated 

levels of plasma MMP-9 (39).  Experimental and cross-sectional studies have associated 

elevated MMP-9 levels to CAD risk factors (e.g. smoking, alcohol, and hypertension) 

before onset of disease, making MMP-9 a potential biomarker for future cardiovascular 

risk (39).  Many studies have also shown that the MMPs, particularly MMP-2 and MMP-

9, play prominent roles in tumor invasion and metastasis.  It has been demonstrated that 

increased levels of these proteolytic enzymes correlate with the invasive potential of 

tumor cells (40), therefore much research has been conducted to find inhibitors of the 

MMPs to prevent cancer spread through metastasis.  MMP inhibition by plant 

phytochemicals has been investigated by a number of laboratories with encouraging 
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results.  Shin’s laboratory tested the anti-invasive properties of an anthocyanin-rich 

extract isolated from Vitis coignetiae Pulliat (meoru in Korea), a fruit belonging to the 

grape family, on human hepatoma Hep3B cells.  The Matrigel™ invasion assay was 

performed on the Hep3B cells in the presence or absence of anthocyanin extract (100 – 

400 µg/mL) and resulted in inhibition of cell invasion in a dose-dependent manner.  

Anthocyanin treatment at 400 µg/mL inhibited cell invasion by 75% compared with 

controls.  To further explore anthocyanin activity, Shin’s lab also measured MMP-2 and 

MMP-9 protein levels and tumor necrosis-α (TNF-α )-induced-NF-κB activation.  NF-κB 

is a transcription factor that plays a significant role in regulating MMP-2 and MMP-9 

gene expression.  Shin et al. found that the anthocyanin extract markedly suppressed the 

expression of MMP-2 and MMP-9 genes in Hep3B cells in a dose-dependent manner.  In 

addition, the NF-κB activity induced by TNF-α was inhibited as well as its translocation 

into the nucleus of the cell.  Their results indicate that the anti-invasive properties of the 

anthocyanin extract from meoru were due in part to their inhibition of NF-κB activation 

(41).  Chen et al. also investigated the anti-metastasis potential of anthocyanins derived 

from black rice (Oryza sativa L. indica) on SKHep-1 cells (human hepatocellular 

carcinoma).  Although black rice anthocyanins showed no significant toxic effects on 

cells treated with 0-200 µg/mL extract, it did inhibit cell invasion in a concentration-

dependent manner as determined by the Matrigel™ invasion assay.  The black rice 

anthocyanins were also examined for their effect on the secretion of MMPs and urokinase 

plasminogen activator (u-PA), a protease that degrades the ECM as part of the invasive 

process.  They found that SKHep-1 cells pretreated with the anthocyanin extract showed 
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a significant reduction in MMP-9 and u-PA secretion.  In contrast to Shin’s findings, 

Chen determined the inhibitory activity of the black rice anthocyanins was effective 

against the endogenous MMP-9 inhibitor, TIMP-2 (tissue inhibitors of metalloproteinase-

2).  Treated cells showed a significant increase in TIMP-2 expression, which counteracts 

the action of MMP-9.  Black rice anthocyanins were not effective against the u-PA 

inhibitor, PAI-1 (plasminogen activator inhibitor-1).  In order to determine whether the 

inhibitory effects of the black rice anthocyanins on MMP-9 and u-PA were linked to the 

transcription factors NF-κB and AP-1 (activator protein-1) activity, nuclear extracts from 

SKHep-1 cells pretreated with the anthocyanin extract were analyzed for NF-κB and AP-

1 binding activity.  Although pre-treatment suppressed AP-1 binding activity, there was 

no effect upon NF-κB activity.  According to Chen et al., suppression of AP-1 activity by 

black rice anthocyanins may play a role in the inhibition of synthesis of MMP-9 or u-PA 

and present a potential in blocking tumor initiation, promotion and metastasis (42).  

Finally, MMP-2 and MMP-9 activity assays were performed by this laboratory by Tate et 

al. to examine the effect of raspberry, blackberry and muscadine grape extracts (1-2%) on 

MMP inhibition.  All of the extracts exhibited significant inhibition of both MMP-2 and 

MMP-9 as determined by metalloproteinase activity assays.  Suppression of MMP-2 

gelatinase activity by the raspberry extract was approximately the same as measured by 

the MMP activity assay whereas the muscadine extract suppressed MMP-2 activity by 

75%, less than observed in the MMP activity assay.  Tate concluded the high 

concentration of polyphenols found in raspberries, blackberries and muscadine grapes 
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contribute to their anti-MMP activity and this inhibition could play a role in the 

suppression of carcinogenesis by diets high in fruit content (43). 

Bioavailability of Polyphenols 

Although there have been innumerable reports of the successes of polyphenolic 

compounds as chemopreventive agents, much of the work has been demonstrated in vitro 

on human and animal tumor cell lines and in vivo in animal model systems.  Investigators 

suggest using caution in interpreting the results of the chemopreventive effects of 

antioxidants on normal and tumor cells in in vitro studies and applying these observations 

to in vivo activity.  Seeram et al. stated “…there are several factors that must be 

considered when using cell culture studies to rank the chemopreventive activities of berry 

extracts.  These include the cell line being used, the artificially high concentrations of 

extract, stability of extract components in different media, length of treatment time, 

differential uptake of phenolics and generation of artifacts such as H2O2 that is known to 

induce apoptosis” (19). 

An additional concern according to Stoner et al. is extrapolating in vitro data to 

the in vivo situation in regard to dose extrapolation.  Most, if not all, berry bioactives 

have demonstrated chemopreventive effects in cell cultures when used at micromolar 

concentrations (~10 to 150 µM).  However, pharmacokinetic studies in animals and 

humans indicate that berry bioactives, such as the anthocyanins and ellagitannins, reach 

only nanomolar concentrations (~1 – 20 nM) in blood and tissues when administered in 

the diet.  These levels are far below the levels required to exhibit anticarcinogenic effects 

in vitro (10).  For instance, rats were administered 400 mg/kg body weight (BW) bilberry 
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anthocyanins and the plasma concentrations reached peak levels of 2 – 3 µg/mL after 15 

minutes and then rapidly declined within 2 hours (44).  A second study reported peak 

plasma levels of anthocyanins at 3.8 µM/L (1.8 µg/mL) after rats were fed 320 mg/kg 

BW red fruit anthocyanin via stomach intubation (44).  Similar results have been reported 

in human studies as well.  Human subjects ingesting a single dose of blackcurrant 

concentrate (3.57 mg/kg BW) resulted in plasma levels of anthocyanins of 0.120 nM.  

Frank and colleagues, however, measured anthocyanin concentrations in the plasma of 

subjects ingesting 400 mL red grape juice or red wine at much higher levels.  Plasma 

levels peaked at 100 ng/mL for grape juice and 43 ng/mL for red wine, demonstrating 

variability in the bioavailability and absorption of anthocyanins among fruits (45). 

Although phytochemicals differ greatly in their bioavailability, it is widely 

accepted that berry phenolics are “poorly bioavailable” due to their low levels in human 

circulation.  For example, Stoner et al. investigated the absorption and metabolism of 

black raspberry anthocyanins in humans consuming 2.69 +/- 0.085 g/day and found that 

plasma levels peaked within 2 hours of berry consumption.  The anthocyanins were 

excreted in the urine both as intact anthocyanins and as methylated derivatives within 4 – 

8 hours of ingestion.  When administered at this dose, Stoner reported that less than 1% 

of the berry anthocyanins was absorbed and excreted in the urine (25).  A similar study 

was performed on healthy subjects who ingested 300 g of raspberries, however no 

detectable quantities were present in the plasma of either the native raspberry 

polyphenolics or their metabolites.  Raspberry anthocyanins were excreted in the urine 0 

– 7 hours after ingestion in quantities corresponding to <0.1% of berry intake (46).  
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Ellagitannin (ET) bioavailability was examined to investigate the metabolism of different 

dietary ellagitannins and ellagic acid (EA) derivatives in humans.  Forty healthy 

volunteers consumed an ellagitannin-containing foodstuff (250 g strawberries, 225 g red 

raspberries, 35 g walnuts or 300 mL oak-aged red wine) and five urine samples were 

collected following intake.  Neither ETs nor EA were detected in any of the urine 

samples; however, the microbial metabolite urolithin B glucoronide (an ellagic acid 

derivative) was found at significant levels in the urine of all the subjects, regardless of the 

foodstuff consumed.  The mean percentage of metabolite excretion ranged from 2.8% 

(strawberries) to 16.6% (walnuts) of the ingested ETs, emphasizing the role of the 

colonic microflora in ET metabolism and bioavailability (47).  Seeram proposes an 

explanation for the poor bioavailability of berry phenolics in human circulation.  

According to his studies, berry phenolics are extensively metabolized in vivo and further 

converted by colonic microflora into related compounds.  These compounds may persist 

and accumulate in target tissues and contribute significantly to the biological effects that 

have been observed for berry fruits.  He further points out that due to the current 

limitations in laboratory extraction procedures, the levels of berry phenolics in vivo may 

be underestimated because these compounds may bind to proteins, etc., causing their 

extraction for chemical analysis to be difficult (8). 

Antimicrobial Effects of Polyphenols 

Berry phytochemicals have also shown potent antimicrobial properties against a 

number of human pathogens.  As early as 1985, Kaul et al. performed in vitro studies to 

determine the antiviral effect of several dietary flavonoids on the infectivity and 
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replication of herpes simplex virus type 1 (HSV-1), polio virus type 1, parainfluenza 

virus type 3 (Pf-3) and respiratory syncytial virus (RSV).  Cell culture monolayers were 

infected with each virus and subsequently cultured in medium containing various 

concentrations of the flavonoid to be tested.  Following incubation, plates were examined 

for viral plaque reduction.  The flavonoid quercetin caused a reduction in both the 

infectivity of each virus as well as the intracellular replication of each virus in a 

concentration-dependent fashion.  Hesperetin had no effect on infectivity but did reduce 

intracellular replication while naringin had no effect on either infectivity or replication of 

any of the viruses studied.  According to Kaul, these results suggest that naturally 

occurring flavonoids possess a variable range of antiviral activity against certain RNA 

and DNA viruses to inhibit infectivity and replication (48).  Wu et al. investigated the 

role of select flavonoids against HIV-1 (human immunodeficiency virus-1) replication in 

acutely infected H9 lymphocytes in vitro.  Flavonoids were isolated from four species of 

plants of the genus Desmos and used to treat HIV-1–infected H9 T lymphocytes.  While 

the majority of flavonoids tested showed only weak or no anti-HIV activity, one 

(Lawinal) showed potent anti-HIV activity while a second flavonoid (a chalcone), 

showed significant HIV inhibition (49). 

 In addition to antiviral properties, many berry fruits show antimicrobial activity 

against a wide range of bacteria.  Because each berry fruit has its own unique 

complement of phytochemicals that influence its microbicidal activity, a wide range of 

inhibition between berry types is not uncommon.  Berry bioactives have been shown to 

inhibit bacterial growth by a number of mechanisms, including destabilization or 
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permeabilization of the plasma membrane, inhibition of extracellular enzyme activity, 

direct actions on microbial metabolism and deprivation of bacterial substrates required 

for growth.  In addition, berry compounds are able to prevent adhesion of bacteria to 

epithelial cells, a prerequisite for colonization and infection of many pathogens (50).  A 

study by Cavanagh et al. tested commercial raspberry, blackcurrant, cranberry and 

blackberry cordials (100% berry juice) and fresh berries on 12 species of pathogenic 

bacteria (Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, 

Escherichia coli, Pseudomonas aeruginosa, Salmonella california, Salmonella 

enteritidis, Salmonella typhimurium, Shigella sonnei, Alcaligenes faecalis, Clostridium 

perfringens, Enterococcus faecalis and Mycobacterium phlei).  Dilutions (1:5, 1:10 and 

1:100) of the cordial and fresh berry filtrate were prepared and mixed with nutrient agar; 

control plates contained nutrient agar alone.  Plates were inoculated with bacteria from 

fresh 24 hour broth cultures and incubated 48 hours.  Six different unidentified raspberry 

varieties were evaluated showing variable antibacterial activity, possibly due to 

differences in levels of ellagic acid and other phenolics in the raspberries.  One variety 

showed complete inhibition of all bacteria tested while a second variety inhibited 10 of 

the 12 at both 1:5 and 1:10 dilutions.  The remaining raspberry varieties were also 

effective to varying degrees but only at the 1:5 concentrations.  Although the fresh 

raspberry extract inhibited the growth of six of the bacteria tested (Staphylococcus 

aureus, Escherichia coli, Pseudomonas aeruginosa, Salmonella typhimurium and 

Clostridium perfringens by 75% and Shigella sonnei by 100% at the 1:10 dilution), it was 

not 100% inhibitory to all the species.  Of the other three berries tested, only the 
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blackcurrant at the 1:5 dilution completely inhibited all the bacteria while cranberry and 

blackberry showed variable results.  None of the berries had antibacterial activity at 

dilutions of 1:100 (51). 

Similar experiments were conducted by Nohynek et al. to test the effectiveness of 

berry phenolics against severe human pathogens of the gastrointestinal tract (GI).  

Phenolic berry extracts were prepared from a variety of fresh berries, including 

raspberries, cranberries, strawberries, black currant and cloudberries.  The lyophilized 

berry extracts were suspended in 10 mL of growth media to a final concentration of 1 mg 

mL
-1

.  The bacterial strains used for the antimicrobial assays were grown in liquid 

cultures to late logarithmic or stationary phase and 1% of liquid microbial inoculums 

were added to the berry-treated medium.  Cultures with no berry material served as 

controls.  Liquid cultures were incubated 1 – 6 days depending on the growth rate of the 

studied microbe.  Microbial growth was monitored by plate count of samples taken 4 – 6 

times during the growth period of each organism.  Test organisms included 

Staphylococcus aureus, Staphylococcus epidermidis, Bacillus cereus, Campylobacter 

jejuni, Escherichia coli, Helicobacter pylori, Salmonella typhimurium, Clostridium 

perfringens, and Lactobacillus rhamnosus.  Results of the study showed variability in the 

antimicrobial effects between berries as well as bacterial strains showing different 

sensitivities to the extracts.  Cloudberry had the strongest antimicrobial activity followed 

by raspberry and strawberry.  Helicobacter pylori, a causative agent of gastritis, peptic 

ulcers and gastric cancer, was the most sensitive to the extracts and was completely 

inhibited by these three berries.  Campylobacter jejuni, a food-borne pathogen causing 
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gastroenteritis, was strongly inhibited by cloudberry and raspberry extract but unaffected 

by the other berry types.  Of all the bacterial pathogens tested, cloudberry, raspberry and 

strawberry were clear inhibitors of microbial growth of all cultures while the other berry 

extracts showed no inhibition or weak bacteriostatic activity.  Of the berries used in this 

study, cloudberry, raspberry and strawberry were the richest in ellagitannins, the main 

compound presumed to be responsible for their strong antimicrobial activity (52). 

Immune Effects of Polyphenols 

Although there is a large body of evidence supporting the role of phytochemicals 

as antioxidant and anticarcinogenic agents, much of the work has been demonstrated in 

vitro in human and animal tumor cell lines or in vivo in experimental animal systems.  

Human studies are limited and often focus on the chemopreventive and chemotherapeutic 

effects of phytochemicals in health and disease.  For example, studies have been 

performed to determine the absorption, metabolism and excretion rates of phytochemicals 

or their metabolites in blood and urine as a measure of in vivo antioxidant activity.  Other 

studies have evaluated phytochemicals as anti-inflammatory and anti-proliferative 

chemotherapeutic agents for the treatment of chronic illnesses such as cardiovascular 

disease and cancer.  Very few in vitro or in vivo studies exist, however, that have 

examined the effect of phytonutrients on immune function.  One area of focus has been 

upon the role certain dietary bioactive components have on the γδ T lymphocyte, a T cell 

type that has characteristics of both the innate and adaptive immune systems.  While the 

majority of T cells express the αβ T cell receptor (TCR), a smaller population (1 - 10%) 

expresses the γδ TCR (53).  In contrast to the αβ TCR that is characterized by its high 
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degree of antigen specificity, the γδ TCR appears to recognize classes of antigens that are 

present on groups of microbial pathogens, referred to as pathogen-associated molecular 

patterns (PAMPs) (54).  Because the majority of γδ T cells reside in the epithelial linings 

of the gut, the lungs, the reproductive tract and skin, they are often considered the first 

line of defense against a vast number of foreign invaders that these cells are exposed to 

daily.  The mucosal γδ T cells maintain the epithelial barrier by modulating inflammatory 

immune responses and promoting tissue repair in damaged epithelium (4).  A second 

difference between the αβ- and γδ- T cells is that γδ T cells do not require the major 

histocompatibility complex (MHC) for antigen processing and presentation.  The 

combination of rapid reactivity to frequently encountered pathogens without antigen 

processing or MHC presentation supports speculation that γδ T cells may function as an 

arm of the innate immune response (55).  Gamma delta T cells also display the 

characteristics of adaptive immunity of expansion and memory.  In addition to their 

residence in mucosal epithelial tissue, a second subset of γδ T cells is found in human 

blood where they continually expand and take on a memory phenotype during childhood 

from repeated exposure to foreign agents.  These memory cells will recognize non-

peptide PAMPs found in a variety of pathogens, undergo clonal expansion and release 

chemokines and cytokines that may play a regulatory role in recruiting αβ T cells, natural 

killer (NK) and NKT cells to the site of invasion (53).  In addition to these immune 

activities, it has also been reported that subsets of γδ T cells recognize and lyse dying or 

metabolically-stressed or transformed host cells, possess anti-tumor activities and induce 

apoptosis in infected and malignant cells.  They can also function as antigen presenting 
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cells and suppressor cells, where they kill activated macrophage at the end of an immune 

response (56).  Because of the dual role γδ T cells have in innate and adaptive immunity, 

various phytochemicals capable of enhancing their activities has been explored.  One in 

vivo study examined the effect of grape juice consumption on several immune 

parameters, including γδ T cell activity.  Gamma delta T cells appear to have a unique 

response to certain phytochemicals, including the proanthocyanidins and anthocyanins 

found in grape juice.  Apple polyphenols, tannins, and compounds found in green tea 

have also been shown to modify γδ T cell function (54).  Recent research is beginning to 

show that some bioactive compounds such as those listed here may act like mild PAMP, 

priming cells to react quicker and stronger when confronted with a foreign invader (4).  

To examine this further, 78 healthy older volunteers consumed 355 mL of Concord grape 

juice daily for 10 weeks while a control group consumed a placebo.  No other red, blue, 

or purple fruits or vegetables were consumed during the study.  The results showed that 

the placebo group had a reduction in antioxidant activity in their serum (ORAC analysis), 

a reduction in γδ T cell proliferation in vitro and an increase in damage to lymphocyte 

DNA by oxidative stress, demonstrating the importance of red, blue, and purple fruits and 

vegetables in the diet.  The participants ingesting the grape juice maintained these 3 

functions and had an increased number of circulating γδ T cells in their blood compared 

to the control group.  The investigator suggests that the phytochemicals found in grapes 

and grape products are recognized by γδ T cells because the chemical structures of the 

polyphenols resemble PAMP.  This interaction serves to prime and support γδ T cell 

function and thus improves immune function (54).  Nantz and colleagues performed a 
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double-blind, randomized, placebo-controlled study of 59 healthy law students who 

consumed either an encapsulated fruit and vegetable juice powder concentrate (FVJC) or 

placebo capsules for 77 days.  Blood was collected on day 1, 35 and 77 to examine 

cytokine production, lymphocyte DNA damage, antioxidant status, carotenoid and 

vitamin C levels and the number of circulating αβ- and γδ-T cells.  A log of illnesses and 

symptoms was also kept.  In addition, Epstein-Barr virus (EBV) antibody titers were 

measured as an indicator of stress.  According to Glaser, “Stress is known to have 

detrimental effects on immunity and may increase susceptibility to infectious agents, 

influence the severity of infections, reduce the response to vaccines, activate latent 

Epstein-Barr viruses and reduce the rate of wound healing” (56).  In addition, the stress 

response is similar to the pro-oxidative state and can result in free radical damage to a 

variety of cells and tissues.  At the conclusion of the study, the number of reported 

illnesses between the FVJP group and the placebo group did not differ, however the 

FVJP group reported fewer symptoms than the placebo group.  EBV antibody titers did 

not change in either group over the course of the study although the participants reported 

they felt stressed.  Cytokine levels, which can be altered under stress conditions, also did 

not change in either group.  However, the level of INF-γ (interferon γ) produced by PMA 

(phorbol 12-myristate 13-acetate)-stimulated peripheral blood mononuclear cells was 

significantly lower (70%) in the FVJC group while the INF-γ levels in the placebo group 

did not change significantly over the course of the study.  INF-γ plays a crucial role in the 

regulation of immune responses, and the reduction in INF-γ levels in the FVJC group 

suggests amelioration or reorganization of immunity to a non-inflamed state, according to 
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Nantz.  The concentrations of the plasma carotenoids lutein, lycopene and β-carotene 

were significantly greater in the treatment group as well as plasma vitamin C levels.  

Plasma antioxidant ORAC values also increased 50% in the FVJC group over time and in 

the placebo group by the end of the study, but not to the degree observed in the treatment 

group.  At baseline, lymphocyte DNA damage in the placebo group was significantly less 

than in the FVJC group, however, by day 35 DNA damage was reduced by 40% in the 

FVJC group to the same level as the placebo group with no changes occurring thereafter.  

Lastly, the FVJC group had a 30% increase in the number of circulating γδ 
 
T cells 

compared with their baseline or with the placebo group.  The number of αβ T cells in the 

peripheral blood did not differ in either group.  The investigators concluded the 

combination of fruit and vegetable juice phytochemicals consumed by study participants 

resulted in increased plasma nutrients and antioxidant capacity, a reduction in DNA 

strand breaks, and an increase in circulating γδ 
 
T cells (57).  Holderness et al. focused on 

the response of γδ 
 
T cells to a plant-derived tannin from non-ripe apple peel (APP).  The 

primary compounds in APP that are known to activate and prime γδ 
 
T cells are the 

procyanidins (also called condensed tannins), which are able to bind specific proteins 

with high affinity and induce immune responses (58).  Experiments were designed to 

measure the in vitro proliferative response of human PBMC immune cell subsets to APP 

with IL-15 (interleukin-15) (1-20 µg/mL and 1 ng/mL respectively).  Following a 48 hour 

treatment period, the majority of γδ 
 
T cells showed relatively little proliferation but did 

show an increase in the surface expression of IL-2Rα (interleukin-2 receptor α), an 

activation-related surface marker that indicates cells in a semi- activated, primed state.  A 
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primed state allows for a more rapid and robust response to secondary stimuli, including 

antigen, cytokines or other types of agonists (58).  The primed γδ 
 
T cells were then 

treated with IL-2 or IL-15 (secondary stimuli) and there was a 2 – 4 fold increase in 

proliferation versus the non-procyanidin-treated cultures.  The small percentage of 

proliferating γδ 
 
T cells from the original culture increased 28% (mucosal γδ 

 
T cells) and 

18% (peripheral γδ 
 
T cells) while the αβ T cells increased 18% following APP/IL-15 

treatment.  Although the B cell subset did not proliferate, there was an increase in 

expression of the activation marker CD69.  Natural killer (NK) cells were the most 

responsive to procyanidin treatment with 55% of the total NK cell population 

proliferating.  The monocyte/macrophage subset was depleted from the cultures and was 

not examined.  According to Holderness, procyanidins such as those found in non-ripe 

apple peel with activating and proliferating effects upon γδ 
 
T cells may enhance host 

innate resistance to infection and modulate downstream adaptive immune responses.  

While Holderness reported a significant APP-induced proliferation of NK cells, a recent 

study in this laboratory by God focused on the effect of red raspberry consumption on 

NK cell cytotoxicity.  Natural killer cells are part of the innate immune system and 

comprise 5 – 10% of lymphocytes in the peripheral blood.  These cells display cytotoxic 

activity against a wide range of tumor cells and virally-infected host cells (55).  To 

evaluate red raspberry polyphenols on NK cell cytotoxic activity, blood samples were 

acquired from 15 healthy volunteers before and after raspberry consumption.  The 

monocytes/macrophages were depleted from the blood samples, leaving only the 

peripheral blood lymphocytes (PBLs) for the NK cytotoxicity assays.  Chronic 



 34 

myelogenous leukemia K-562 cells, the standard cell line for evaluating NK cytotoxicity, 

were treated with three concentrations of PBLs and allowed to incubate 4 hours.  Cell 

viability measurements yielded variable results among volunteers.  Five of the fifteen 

volunteers showed a significant increase in NK cytotoxicity levels following 

consumption of red raspberries while the remaining donors showed no effect or a 

negative effect.  Preliminary assays were also done to test for the cytotoxic effect of 

plasma on MCF-7 breast cancer cells before and after raspberry consumption.  MCF-7 

cells were cultured in growth medium containing five concentrations of plasma (3, 5, 8, 

10 or 12%) for 48 hours and cell viability measured.  Each of the three participants 

showed a significant increase in cytotoxicity in the post-berry treated cells compared to 

the pre-berry samples.  These results suggest that consumption of red raspberries can 

enhance NK cell cytotoxic activity in some individuals and lead to production of blood 

plasma components which are toxic to cancer cells in vitro (unpublished data, 18). 

The current study was undertaken to test the feasibility of examining the effects of 

berry consumption on the immune response in humans in a new way which, if successful, 

should yield more rapid and trustworthy results than the traditional methods.  The 

proposed approach would not require the long-term, large scale data collection used in 

epidemiological studies.  It is expected that the results obtained with this approach will 

give a better approximation of the effects of berry consumption or other treatments than 

other currently used methods using either in vitro or animal models. 

While in vitro studies of the effects of berry extracts on cell lines can give insight 

into whether a particular extract might contain biologically active compounds, there are 
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several problems with trying to extrapolate from these studies what the effects of these 

extracts will be in vivo.  These include: 1) the cells are cultured in an artificial medium 

supplemented with fetal bovine serum (FBS) or some similar substitute.  This is a very 

poor simulation of the actual environment of cells in the human organism. 2) The cells 

used are from lines which have been maintained in culture – usually for several passages 

– and their responses probably do not represent the responses of actual healthy or tumor 

cells in the organism. 3) The extracts tested contain only the compounds present in the 

berry extract. The effects of any changes in these compounds or any new compounds 

produced by in vivo metabolism cannot be evaluated by this approach. 

Tests of the extracts in animal models also have defects.  The changes induced in 

the test extracts by the metabolic system of the animal model are not likely to be the same 

as those induced in humans.  Also, the immune responses in the animal model system are 

not exactly the same as in humans and perturbations induced by interaction with the test 

extracts and their metabolic products could be very different from those which take place 

in humans.  There are numerous examples of this in the failures of drugs tested and 

giving promising results in animals, but failing to be effective or causing unacceptable 

side effects in humans. 

In the proposed approach, human subjects are asked to consume the berries or 

berry extracts for several days and then donate blood samples for testing.  The blood 

plasma is used to supplement culture medium for immune cells from the same donor. 

This avoids changes induced in the cells’ responses by exposure to the alien components 

present in serum from fetal calves or other animals.  The complement of hormones, 
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growth factors and other biological response modifiers present in the animal sera is 

completely different from that of human subjects and the responses of this subject’s cells 

in this medium are probably completely different from what would take place in vivo. 

Clear evidence for this has been obtained from experiments in which DNA repair in 

human cells was found to be very different when cells collected from the same subject at 

the same time were cultured both in medium supplemented with FBS and in medium 

supplemented with their autologous plasma (59, 60).  There are also even great 

differences in the levels of these growth regulatory components from one batch of animal 

serum to another.  This is evidence of the fact that examination of different preparations 

of FBS differ by as much as 1000-fold in thyroid stimulating hormone (Hyclone 

Corporation newsletter).  These variations could explain the differences in berry 

effectiveness observed by different investigators. 

In addition to the fact that in this assay the cells are cultured in their own plasma, 

this plasma now contains not only components of the berry or extract, but also the 

compounds resulting from conversions carried out by the subject’s own metabolic 

system. Thus, the experimental system in the proposed approach involves assaying the 

effects of the test compounds on a subject’s cells in their autologous plasma containing 

metabolic products produced by processing of his own metabolic system. 

Finally, an additional advantage to this over epidemiologic studies is that subjects 

can be studied individually.  Each individual has his own genetic makeup resulting in his 

own peculiar metabolic system.  This could result in different effects of berry 

consumption among different individuals.  This is evident in the different ways people 
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can respond to the same drug.  Since in our approach a subject’s cells are tested in their 

own plasma before and after berry consumption, the results obtained are specific for that 

individual and the effects of berry consumption on that subject can be assessed as 

opposed to assuming that his responses will be those obtained by averaging over a large 

number of individuals who might have completely different genetic backgrounds.  Using 

this novel experimental approach, a pilot study will be performed with healthy subjects to 

examine the effects of raspberry consumption on in vivo and in vitro immune parameters, 

including immune cell proliferation, plasma MMP-9 concentrations, and cytotoxicity 

toward human tumor cell lines. 
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2. MATERIALS AND METHODS 

Effect of Red Raspberry Extract on Cancer Cells in vitro 

Red raspberry extract was prepared from lyophilized red raspberries (Meeker 

variety, VanDrunen Farms, Momence, IL) to examine the cytotoxic or cytocidal effects 

of the extract upon five human cell lines.  All cell lines were acquired from ATCC and 

cultured according to their recommended guidelines.  Continuous cultures of cell lines 

were maintained in the appropriate medias supplemented with 10% fetal bovine serum 

(FBS) and 1% Penicillin/Streptomycin (complete growth medium, CM).  ATCC’s 

standard protocol for subculturing by trypsinization was followed in all experiments.  

Cell lines tested were AGS (gastric adenocarcinoma), LoVo (colorectal adenocarcinoma), 

LNCaP (prostate carcinoma), HCC 1500 (ductal carcinoma from breast tissue), and CRL-

2120 (normal skin fibroblast).  Further information on each cell line is listed in Table 1. 

Table 1.  Cell Line Descriptions 
ATCC® Number Designation Characteristics Source 

CRL-1739™ AGS 

infected with Parainfluenza type 5; doubling time 

20 hrs. stomach 

    

CCL-229™ LoVo Dukes’ type C, grade IV colon 

    

CRL-1740™ LNCaP 

estrogen receptor, androgen receptor, doubling 

time 34 hrs. prostate 

    

CRL-2329™ HCC 1500 

estrogen receptor, progesterone receptor, her2/neu-

, p53+ , TNM stage IIB, grade 2, doubling time 80 

hrs. 

mammary 

gland; 

breast 
    

CRL-2120™ CCD-1094Sk 

normal skin fibroblast isolated from breast with 

metastatic mammary carcinoma 

normal 

skin  

    

CCL-243™ K-562 

lymphoblast, suspension culture, target for 

assessing natural killer cell activity 

bone 

marrow 
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Red raspberry extract was prepared by blending 5 g of lyophilized berries with 35 

mL distilled water and centrifuging for 10 minutes at 3000 rpm.  The extract supernatant 

was removed and placed into a 50 mL conical tube and centrifuged for 10 minutes at 

3000 rpm.  The extract was removed and the process repeated again.  The pH of the 

clarified extract was 2.94.  The extract was sterilized through a 0.2 µm syringe filter 

(Nalgene) and mixed with complete growth medium appropriate for each cell line to give 

final concentrations of 10%, 15% and 20% raspberry extract. 

Cell lines were trypsinized and counted with a hemocytometer using the trypan 

blue dye exclusion assay to determine viability.  Cells were suspended in 250 µL 

complete growth medium at a density of 1.25 x 10
5
 cells/sample.  AGS and LoVo were 

suspended in F12-K CM, LNCaP and HCC 1500 in RPMI 1640 CM and CRL-2120 in 

EMEM CM.  Two hundred fifty (250) µL of 10%, 15% and 20% raspberry extract were 

added to the samples to give final extract concentrations of 5%, 7.5% and 10%.  A blank 

was prepared for each cell line containing complete medium only.  Samples were 

vortexed immediately before they were aliquoted in quintuplicate into a 96 well plate, 

yielding a final cell density of 2.5 x 10
4
 cells per 100 µL per well.  The plate was 

incubated for 48 hours at 37°C in 5% CO2. 

Following incubation, the plate was centrifuged at 125 x g for 3 minutes and the 

supernatant decanted.  Residual medium was removed by aspiration.  To measure cell 

viability, the CellTiter 96®Aqueous Non-Radioactive Cell Proliferation Assay (Promega, 

Madison, WI) was performed according to the manufacturer’s protocol.  Briefly, this is a 

colorimetric assay in which MTS, a tetrazolium compound, is converted into formazan, a 
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product soluble in tissue culture medium, by dehydrogenase enzymes that are found in 

metabolically active cells.  The absorbance of the formazan at 490 nm is directly 

proportional to the number of living cells in the sample. 

A working solution was prepared by mixing MTS solution and culture medium at 

a ratio of 1 part MTS:5 parts culture medium.  The MTS/culture medium solution was 

pipetted into each well; blank wells were prepared containing MTS/ culture medium 

solution only.  The plate was incubated for 4 hours at 37°C in 5% CO2 and the 

absorbance measured at 490 nm using the Tecan Infinite 200 microplate reader. 

Effect of Ascorbic Acid on Cancer Cells in vitro 

 Due to the acidity of the raspberry extract (pH 2.9), the role of pH in cell killing 

was evaluated.  Cell lines were treated with solutions of ascorbic acid adjusted to the 

same pH as the berry extract.  In addition, the antioxidant property of ascorbic acid in cell 

killing was assessed. 

A 19 mM solution of ascorbic acid was prepared (pH 2.91) in distilled water and 

sterilized through a 0.2 µm syringe filter.  The sterile solution was mixed with complete 

growth medium appropriate for each cell line to give final concentrations of 10%, 15% 

and 20% ascorbic acid solutions.  Cell lines were trypsinized and counted as above and 

suspended in 250 µL complete growth medium at a density of 1.25 x 10
5
 cells/sample.  

Two hundred fifty (250) µL of 10%, 15% and 20% ascorbic acid stock solution was 

added to the samples to give final concentrations of 5% (0.95 mM), 7.5% (1.4 mM), and 

10% (1.9 mM) ascorbic acid.  A blank was prepared containing complete medium only 

for each cell line.  Samples were vortexed immediately before they were aliquoted in 
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quintuplicate into a 96 well plate at a density of 2.5 x 10
4
 cells per 100 µL per well.  The 

plate was incubated for 48 hours at 37°C in 5% CO2. 

Following incubation, the plate was centrifuged at 125 x g for 3 minutes and the 

supernatant decanted.  Residual medium was removed by aspiration.  To measure cell 

viability, the MTS assay was performed as described above.  The plate was incubated for 

4 hours at 37°C in 5% CO2 and the absorbance measured at 490 nm using the Tecan 

Infinite 200 microplate reader. 

In Vivo Red Raspberry Study 

Volunteers were asked to complete a questionnaire (Appendix A) to determine 

their eligibility to participate in the study.  Sixteen healthy volunteers were selected as 

research subjects and asked to refrain from eating berries, fruits, or fruit-related foods or 

juices for two days.  Volunteers were supplied with the Meeker variety of lyophilized red 

raspberries from the same lot as used in the in vitro assays described above.  Volunteers 

consumed two servings of red raspberries daily for three days and one serving on day 4, 

for a total of seven servings (one serving = 22 grams).  The freeze-dried raspberries were 

supplied to each volunteer in individual, pre-packaged servings.  Participants were asked 

to refrain from eating any other berries, fruits, or fruit-related foods or juices during this 

time, but no other restrictions were placed on their diets.  Each volunteer read and signed 

an informed consent form and completed the questionnaire in the appendix.  The 

demographic data for the participants is listed in Table 2.  Two blood samples were 

collected from each donor by venipuncture at Redfern Health Center by certified medical 

technologists according to standard clinical guidelines.  The first blood sample was  
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Table 2.  Demographic Profiles of Study Participants 

              

Donor Sex Age 

Exercise 

(per week) 

Alcohol 

(per week) 

Fruits/Juices 

(per week) Medications 

1 M 55 2 1-2 9  

       

2 M 62 4 2 21  

       

3 F 68 1 0 21 Synthroid, Fish Oil, 

Centrum, vitamin C, 

Caltrate, Osteobiflex 

       

4 M 24 1 2-5 2  

       

5 
F 51 5 1 14 

Pravastin, Microgestin, 

Zomig Zmt, Alendronate,  

       

6 F 55 0 0 7 Calcium,Magnesium 

       

7 F 65 2 0 9  

       

8 
F 31 2 0-1 14 

Levothyroxine, 

Multivitamin 

       

9 M 30 2 1 8 Multivitamin 

       

10 
M 52 7 4 7-12 

Fish Oil, Niacin, Aspirin, 

Multivitamin 

       

11 F 59 0 0 4 Calcium, Fem HRT 

       

12 F 25 3 10 10 Birth control 

       

13 
F 20 2 0-1 10 

Doryx, Birth control, 

Tri-Sprintec 

       

14 
F 21 2 0 5 

Endial, Pantecta, Advair, 

Nasonex, Multivitamin 

       

15 F 21 2 1-2 10  

       

16 F 21 3 0-1 12  
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collected immediately before donors ate the first serving of berries, (and after having 

fasted from fruits and berries for two days), and the second 1-2 hours after eating the 

berries on day 4.  Each time, 40 mL of donor blood was collected in 10 mL Vacutainer® 

tubes containing the anticoagulant sodium heparin.  An additional 5 mL of blood was 

collected in a 5 mL Vacutainer® tube containing EDTA to determine the complete blood 

count (CBC) of the donor.  The CBC was performed by Redfern Health Center medical 

technologists on a Beckman Coulter A
C
•T

TM
 5 diff Cap Pierce Hematology Analyzer. 

Mononuclear Cell Isolation 

To isolate the peripheral blood mononuclear cells (PBMCs), 5 mL of heparinized 

blood was layered onto 5 mL room temperature polysucrose sodium diatriazoate 

(Histopaque 1077; Sigma-Aldrich, St. Louis, MO) in 15 mL conical tubes.  The tubes 

were centrifuged at 400 x g in a swinging bucket rotor for 30 minutes.  The plasma was 

removed and reserved for medium supplementation and MMP-9 analysis.  Plasma 

assayed for MMP-9 content was centrifuged an additional 10 minutes at 10,000 rpm to 

remove any remaining platelets.  The MMP-9 plasma was immediately stored at -20° C 

until assayed.  The buffy coat containing the mononuclear cells was removed and placed 

into two 15 mL conical tubes, each containing 10 mL phosphate buffered saline (PBS).  

Cells were vortexed and then centrifuged for 10 minutes at 250 x g.  The PBS was 

decanted and the wash step repeated.  Pelleted PBMCs were suspended in 3 mL RPMI 

1640 complete medium (RPMI CM) containing 1% Penicillin/Streptomycin and 15% 

autologous plasma or 3 mL F-12K complete medium (F-12K CM) containing 1%  
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Penicillin/Streptomycin and 15% autologous plasma.  The cells were counted in a 

hemocytometer using the Trypan Blue Dye Exclusion assay to determine viability. 

PHA Assay 

Three concentrations of phytohemagglutinin (PHA), a lymphocyte mitogen, 

(Sigma-Aldrich, St. Louis, MO), were prepared in RPMI CM at 2.5 µg/mL, 5 µg/mL and 

7.5 µg/mL PHA.  Three x 10^6 PBMCs in RPMI CM were aliquoted into each of three 

microcentrifuge tubes and centrifuged 3 minutes at 2000 rpm.  The supernatant was 

removed and the cells resuspended in 300 µL PHA solution at each concentration.  A 

control tube was prepared containing 3 x 10
6
 PBMCs in RPMI CM only.  Each sample 

was vortexed immediately before plating in a 96 well plate.  All samples were prepared in 

triplicate, with 100 µL PHA solution containing 1 x 10
6
 cells placed in each well.  Cells 

were placed in a 37°C humidified incubator with 5% CO2 for 72 hours.  Following 

incubation, the plate was centrifuged at 125 x g for 3 minutes and the supernatant 

decanted; residual medium was removed by aspiration.  To measure the extent of 

proliferation, the MTS Assay was performed as described above. 

MMP-9 Immunoassay 

To determine the effect of raspberry consumption on circulating levels of MMP-9, 

a matrix metalloproteinase enzyme, the Quantikine® MMP-9 Immunoassay (R&D 

Systems, Minneapolis, MN) was performed.  This is a chromogenic sandwich ELISA 

assay that uses a monoclonal antibody specific for MMP-9 to measure the amount of total 

MMP-9 (pro and/or active) in a sample.  A microplate reader set to 450 nm is used to 
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measure the optical density (OD) of the sample and the concentration is determined by 

comparing the absorbance to that of known MMP-9 standards supplied with the kit. 

Plasma collected during mononuclear cell isolation was centrifuged one 

additional time at 10,000 rpm for 10 minutes to remove any remaining platelets in the 

plasma.  MMP-9 is released upon platelet activation; therefore it is necessary to use 

platelet-free plasma in the assay.  Samples were stored immediately at -20°C until 

assayed.  To perform the assay, plasma samples were thawed and the assay completed 

according to the manufacturer’s protocol.  The OD values of the plasma samples and 

standards were measured at 450 nm on the Tecan microplate reader.  A standard curve 

was constructed from the OD values of the known standards and is shown in Figure 1.  

These data were found to fit a polynomial with the following equation and R
2
 value: 

y = -0.0033x
2
 + 0.1732x + 0.0074 

R
2
 = 0.9995 

The amount of MMP-9 per donor sample was determined mathematically from the 

equation of the standard curve. 
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Figure 1. MMP-9 Standard Curve 
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Plasma Assay 

Donor plasma collected before and after eating lyophilized red raspberries was 

assayed for its effects on the growth of five tumor cell lines.  In addition to AGS 

(gastric), LoVo (colorectal), LNCaP (prostate) and HCC 1500 (breast), the chronic 

myelogenous leukemia cell line K-562, acquired from ATCC, was also tested (Table 1).  

The latter was added after samples from several donors had already been processed. 

Adherent cell lines were trypsinized according to ATCC’s subculturing protocol 

and suspended in media only: AGS and LoVo in F-12K and LNCaP and HCC 1500 in 

RPMI 1640.  K-562 cells were centrifuged and resuspended in Iscove’s Modified 

Dulbecco’s Medium.  For each cell line, the cells were counted with a hemocytometer 

and viability was assessed with the trypan blue dye exclusion assay. 

Tumor cell lines were tested under four conditions to determine the effect of 

donor plasma on cell proliferation.  Each cell line was assayed in quintuplicate at 1.25 x 

10
4
 cells/well and suspended in medium only, medium supplemented with 15% FBS, 

medium supplemented with 15% autologous plasma, or 100% autologous plasma only.  

Not all conditions or all cell lines were used for every donor.  Cell suspensions were 

vortexed immediately before they were dispensed into wells.  Cells were placed in a 37°C 

humidified incubator with 5% CO2 for 72 hours.  Following incubation, the plate was 

centrifuged at 125 x g for 3 minutes and the supernatant decanted; residual medium was 

removed by aspiration.  The MTS Assay was performed to measure cell viability as 

described above. 
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PBMC Cytotoxicity Assay 

The cytotoxicity assay was performed on blood samples collected before and after 

berry consumption to measure the effect of raspberries on PBMC activity against AGS, 

LoVo, LNCaP, HCC 1500 and K-562 tumor cell lines.  The PBMCs served as effector 

cells (E) and the tumor cell lines were the target cells (T) in this assay. 

Target cells were aliquoted into microcentrifuge tubes using 7.5 x 10
4
 

cells/sample.  The PBMC effector cells were added to the target cells in the following 

ratios (effector:target): 5:1, 10:1 and 20:1.  The mixed cell population was suspended in a 

total volume of 300 µL of the appropriate medium containing 15% autologous plasma.  

The cell suspensions were vortexed and dispensed in triplicate in a 96 well plate, 

resulting in 2.5 x 10
4
 target cells/well.  For some donor samples, the culture medium was 

omitted and replaced by 100% autologous plasma.  The following wells were prepared in 

each assay: target only (T), effector only (E), and effector + target (ET).  The plate was 

incubated 72 hours at 37°C in 5% CO2.  Four-hour incubations were also performed on 

some donor samples.  Following incubation, the plate was centrifuged at 125 x g for 3 

minutes and the supernatant decanted; residual medium was removed by aspiration.  Cell 

viability was measured using the MTS assay as previously described.  The calculation for 

cytotoxicity was performed as follows: 

[( (T) – (ET – E) ) / T] x 100 = % cell death 

The calculation for determining the surviving fraction of cells after treatments was 

performed as follows: 

[(ET – E) / T] x 100 = % surviving fraction 
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Statistical Analysis 

All absorbance values reported were based on the means of three or five replicate 

samples for each assay performed.  The statistical analysis was done using the Student’s t 

two-tailed matched pairs test to analyze the significance of the differences between 

baseline and post-raspberry ingestion samples.  Analysis of variance was applied to test 

for significant differences between donor group means by ANOVA.  Differences between 

assays and between donor groups were considered significant at p ≤ 0.05.  Pearson 

correlations, denoted by r, were used to assess the relationships between assays and 

between donor groups.  Correlation coefficients between -1.0 to -0.5 and 0.5 to 1.0 were 

considered high. 
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3. RESULTS 

Effects of Red Raspberry Extract and Ascorbic Acid on Cancer Cell Proliferation 

in vitro 

Preliminary in vitro assays were performed to detect the effect of red raspberry 

extract on the proliferation of five human cell lines.  The cell lines tested were: AGS 

(gastric), LoVo (colon), LNCaP (prostate), HCC 1500 (breast), and CRL-2120 (normal 

skin fibroblast).  The cells were cultured for 48 hours in the presence and absence of 

extract and their viabilities measured.  Due to the acidity of the berry extract (pH 2.94) it 

was necessary to consider the role of pH in cell killing.  Each cell line was treated with a 

solution of ascorbic acid adjusted to have the same pH as the berry extract.  In addition to 

its pH effect, ascorbic acid also served as a control for the antioxidant effect in cell 

killing. 

The raspberry extract had a significant effect upon the proliferation of three of the 

five cell lines in a concentration-dependent manner, and the degrees of inhibition varied 

between the cell lines (Figure 2 and Table 3).  AGS, LoVo, and LNCaP showed the 

greatest inhibition, with AGS being the most sensitive to the raspberry extract treatment.  

The AGS cells were inhibited to a higher degree than the other cell lines, with 90% 

cytotoxicity observed in the AGS samples treated with 10% raspberry extract while 

LNCaP and LoVo showed 52% and 71% cytotoxicity at this same dosage.  Raspberry 

extract produced a slight stimulatory effect on HCC 1500 cells at the lowest treatment 

dosage but the two higher dosages were inhibitory at 24% and 56%.  CRL 2120 normal 

skin fibroblasts followed a similar trend with 5% raspberry extract having no effect while 

concentrations of 7.5% and 10% extract were cytotoxic at 47% and 75% respectively. 
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Each cell line was also treated with solutions of ascorbic acid that served as 

controls for both the pH and antioxidant effects in cell killing.  The cells were cultured 

for 48 hours in 5% (0.95 mM; 17 µg), 7.5% (1.43 mM; 25.5 µg), or 10% (1.90 mM; 34 

µg) ascorbic acid and their viabilities measured.  In contrast to the raspberry extract 

treatment, the same inhibition of cell proliferation was not observed in cells treated with 

ascorbic acid.  The ascorbic acid produced a stimulatory effect in all five cell lines in a 

concentration-dependent manner, with LoVo, LNCaP, HCC 1500, and CRL 2120 cells 

increasing in proliferation between 18% – 80%.  AGS cells were the least sensitive and 

increased only 13% at the highest ascorbic acid concentration. 

Effects of Red Raspberries on Immune Parameters in vivo 

The primary aim of the present study was to determine the effects of red raspberry 

consumption on: 1) in vivo and in vitro immune cell proliferation, 2) plasma matrix 

metalloproteinase 9 (MMP-9) levels, 3) blood plasma tumor cell cytotoxicity, and 4) 

PBMC tumor cell cytotoxicity. 

Complete Blood Counts 

Pre-berry and post-berry complete blood counts (CBCs) are listed for the study 

participants in Appendix B.  For 12 of the 15 donors, increases were noted in their total 

white blood cell (WBC) counts, leukocyte subsets, and/or the WBC differential counts 

after eating raspberries for 3.5 days. 

WBC counts are expressed as the absolute number of each cell type x 10^3/µL of 

blood.  The pre-berry cell counts and their percent changes are listed in Table 4 for the 

subpopulations of WBCs where an increase was observed. 
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Figure 2. Dose effectiveness of red raspberry extract and ascorbic acid on cell line viability. A) AGS, B) 

LoVo, C) LNCaP, D) HCC 1500, and E) CRL-2120 cells were treated with three concentrations of 

raspberry extract or ascorbic acid for 48 hours and cell viabilities measured using the MTS assay. Results 

are presented as means of three replicate experiments ± standard error. 
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Table 3.  Effect of Raspberry Extract and Ascorbic Acid on Cell Proliferation in vitro 

                

 Cell Viability (% of control) 

 Raspberry Extract  Ascorbic Acid 

Cell Line 5% 7.5% 10%   5% 7.5% 10% 

AGS 81±4.5 61±11.4 10±2.5  100±9.0 107±9.0 113±10.0 

p-value 0.03 0.04 0.00  0.49 0.25 0.16 

        

LoVo 83±2.5 54±11.3 29±7.2  136±10.8 159±16.8 180±19.5 

p-value 0.01 0.03 0.00  0.04 0.04 0.03 

        

LNCaP 65±14.5 53±9.5 48±8.1  132±11.9 137±11.6 145±17.3 

p-value 0.07 0.02 0.01  0.06 0.04 0.06 

        

HCC 1500 104±6.1 76±2.4 44±3.7  133±9.4 142±13.9 152±20.3 

p-value 0.28 0.01 0.00  0.04 0.05 0.06 

        

CRL 2120 100±6.4 53±8.2 25±17.3  155±58.0 118±12.0 164±46.5 

p-value 0.49 0.01 0.02  0.22 0.14 0.15 

        

Effects of three concentrations of red raspberry extract and ascorbic acid on the proliferation of five human 

cell lines.  Results are presented as means ± standard error based on three replicate experiments.  

Significantly different from control: p ≤ 0.05. 

 

The percent increase was determined as follows: 

% difference = Post-berry absolute count - Pre-berry absolute count 

Pre-berry absolute count    x100 

At the completion of the 3.5 day study, 40% (6/15) of the donors showed an increase in 

the total number of circulating WBCs.  Of these, 100% showed an increase in 

lymphocytes; 83% (5/6) increased in monocytes, and 67% (4/6) increased in neutrophils, 

eosinophils and basophils.  Although the absolute numbers of these cell types increased 

following berry intake, they remained within the normal range of values for each cell 

type. 
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Additional changes were also noted in the relative WBC differential counts of 

three donors (Table 5).  The WBC differential count is the proportion of each cell type 

expressed as a percent of the total WBC count.  The normal relative differential ranges 

are 20.0 / 40.0% for lymphocytes, 45.0 / 70.0% for neutrophils, and 1.0 / 5.0 % for 

eosinophils.  Before raspberry consumption, the relative WBC differential counts of 

donors 13 and 14 were outside the normal range of values for the lymphocytes and 

neutrophils, indicating lymphocytosis (elevated lymphocyte count) and neutropenia 

(decreased neutrophil count).  In addition, donor 13 also had eosinophilia (elevated 

eosinophil count).  Although donor 13’s post-berry CBC still indicated these conditions, 

there was improvement toward the normal range in all three cell types.  For donor 13, the 

lymphocytes and eosinophils decreased (2.1% and 1.9% respectively) and the neutrophils 

increased (4.5%) after berry consumption.  For donor 14, the lymphocytes dropped 1.3% 

while the neutrophils increased 1.1% after berry consumption.  The post-berry results for 

donor 15 showed a change in the relative WBC differential count as well.  The pre-berry 

CBC showed a high relative neutrophil level that decreased 20.9% following raspberry 

ingestion. 

Effect of Raspberry Intake on Mitogen Responsiveness 

 A mitogen stimulation assay was performed on freshly isolated peripheral 

blood mononuclear cells (PBMCs) collected before and after red raspberry consumption 

to assess the effect of raspberry phytochemicals on lymphocyte proliferation, which is 

related to immunocompetence.  The stimulation index (SI) was determined for the pre- 

and post-berry samples from the absorbance values of the PHA-treated samples 



 54 

Table 4.  Proliferative Effect of Red Raspberries on Subpopulations of White Blood Cells in vivo 

Donor  

WBC 

(4.0/11.0) 

10^3/µL 

NE 

(2.0/7.5) 

10^3/µL 

LY 

(1.5/4.0) 

10^3/µL 

MO 

(0.2/0.8) 

10^3/µL 

EO 

(0.04/0.40) 

10^3/µL 

BA 

(0.02/0.10) 

10^3/µL 

1 
Pre-berry 

Post-berry ↑    

0.4 

32.5%   

        

3 
Pre-berry 

Post-berry ↑     

0.1 

10%  

        

4 
Pre-berry 

Post-berry ↑ 

5.2 

32.7% 

3.14 

42.4% 

1.66 

14.5% 

0.26 

26.9% 

0.16 

12.5% 

0.03 

66.7% 

        

6 
Pre-berry 

Post-berry ↑   

1.2 

15%  

0.09 

33.3% 

0.02 

50% 

        

7 
Pre-berry 

Post-berry ↑    

0.44 

11.4% 

0.12 

25%  

        

8 
Pre-berry 
Post-berry ↑  

2.48 
1.6%     

        

9 
Pre-berry 

Post-berry ↑ 

6.9 

5.8%  

2.74 

8% 

0.43 

14% 

0.33 

18.2% 

0.03 

33.3% 

        

11 
Pre-berry 

Post-berry ↑ 

6.6 

10.6% 

4.09 

6.6% 

1.81 

21.6% 

0.41 

2.4% 

0.21 

42.9%  

        

13 
Pre-berry 

Post-berry ↑  

2.09 

5.74%     

        

14 
Pre-berry 

Post-berry ↑ 

4.8 

6.3% 

1.91 

7.9% 

2.51 

2% 

0.28 

17.9%   

        

15 
Pre-berry 
Post-berry ↑ 

8 
3.8%  

1.76 
87.5% 

0.27 
77.9% 

0.14 
50% 

0.04 
25% 

        

16 
Pre-berry 

Post-berry ↑ 

5.7 

14% 

2.76 

13.4% 

2.26 

20.8%   

0.03 

66.7% 

        

Pre-berry total cell counts in WBC subpopulations and the percent increase after berry consumption. 

Key: WBC, white blood cell; NE, neutrophil; LY, lymphocyte; MO, monocyte; EO, eosinophil; BA, 

basophil.  The reference range for each leukocyte count x 10^3/µL blood is listed in parenthesis. 
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Table 5.  Effect of Red Raspberries on the Relative WBC Differential Counts in vivo 

Donor  

NE 

% 

45.0 / 70.0 

LY 

% 

20.0 / 40.0 

EO 

% 

1.0 / 5.0 

Summary 

13 
Pre-berry 

Post-berry  

30.8 

35.3 

50.1 

48.0 

13.5 

11.6 

Neutropenia, lymphocytosis, 

eosinophilia 

      

14 
Pre-berry 

Post-berry  

39.6 

40.7 

51.9 

50.6 

 

 

Neutropenia, lymphocytosis 

      

15 
Pre-berry 

Post-berry  

72.5 

51.6  

 

 

Neutrophilia 

Pre-berry and post-berry relative WBC differential counts expressed as percents. 

Key: WBC, white blood cell; NE, neutrophil; LY, lymphocyte; EO, eosinophil.  The reference range for 

each leukocyte is expressed as a percent of the total WBC count and is listed in parenthesis. 

 

normalized to the untreated, control PBMCs.  A comparison was then made between the 

post-berry and pre-berry stimulation indices to determine whether berry consumption 

might affect cell-mediated immunity.  The ratio of the post berry SI to the pre-berry SI 

was calculated.  Ratios >1 indicate greater post-berry lymphocyte stimulation whereas 

ratios <1 signify greater pre-berry lymphocyte stimulation.  In addition, resting MTS 

absorbance ratios were determined between untreated post-berry and pre-berry control 

PBMCs to examine the in vivo effect of berry phytochemicals upon the control PBMCs.  

Donors were divided into three groups based on the amount of change in their SIs.  

Results are shown in Figures 3 - 5 and Table 6.  The SIs given in Table 6 represent the 

maximum of the three SIs measured for a given condition. 

A significant difference was observed between the donor groups in lymphocyte 

responses to mitogen stimulation after berry consumption (p < 0.0001).  Group 1 donors 

exhibited greater PHA-induced lymphocyte proliferation following raspberry 

consumption than prior to consumption (p = 0.04).  For donors in Group 2 there was little 

change and for those in Group 3 there was a significant decrease in PHA response 
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following berry consumption (p = 0.002).  Furthermore, the control PBMC SIs also 

showed a significant difference between groups (p = 0.007).  Group 1 control PBMCs 

decreased in absorbances (p = 0.009) following berry intake while Group 3 control 

PBMCs increased (p = 0.09) in absorbance measurements.  No significant changes were 

noted in the PBMC absorbances of Group 2 donors. 

An inverse correlation was observed between the degree of mitogen-induced 

lymphocyte proliferation and the post-berry : pre-berry control PBMC ratios for the 16 

donors (r = -0.6; p = 0.02).  In Group 1, mitogen stimulation was greater after berry 

consumption, but the post : pre-berry control PBMC ratios were <1, ranging from 0.45 – 

0.90 (r = -0.9).  In contrast, for Group 3 donors mitogen responsiveness was less after 

berry consumption but the post : pre-berry control PBMC ratios were >1, ranging from 

1.89 – 3.72 (r = 0.6), with the exception of donor 10 who was on a daily low-dose aspirin 

regimen.  There was minimal or no differences in pre- and post-berry SIs for the Group 2 

donors, and the post : pre-PBMC ratios were close to 1 except for donor 13, who was 

menstruating at the time. 

Effect of Raspberry Intake on Plasma Levels of MMP-9 

 The effect of raspberry consumption on MMP-9 plasma levels was measured in 

pre- and post-berry plasma samples for fifteen of the study participants.  The enzyme 

concentration was determined in each sample and a ratio of the post-berry to pre-berry 

MMP-9 concentration was calculated for each donor.  Ratios <1 indicate greater pre-

berry MMP-9 concentrations whereas ratios >1 reflect greater post-berry MMP-9 

concentrations.  Ratios differing from 1.0 by 10% or less are not considered meaningful  
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Figure 3.  Group 1 mitogen-induced stimulation of T lymphocytes pre- and post-raspberry consumption.  

Peripheral blood mononuclear cells were treated with three concentrations of PHA in RPMI medium 

supplemented with 15% autologous plasma.  PBMCs were incubated for 72 hours and cell viabilities 

measured using the MTS assay.  Results are presented as the means of PBMCs prepared in triplicate. 
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Figure 4.  Group 2 mitogen-induced stimulation of T lymphocytes pre- and post- raspberry consumption.  

Peripheral blood mononuclear cells were treated with three concentrations of PHA in RPMI medium 

supplemented with 15% autologous plasma.  PBMCs were incubated for 72 hours and cell viabilities 
measured using the MTS assay.  Results are presented as the means of PBMCs prepared in triplicate. 
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Figure 5.  Group 3 mitogen-induced stimulation of T lymphocytes pre- and post-raspberry consumption.  

Peripheral blood mononuclear cells were treated with three concentrations of PHA in RPMI medium 

supplemented with 15% autologous plasma.  PBMCs were incubated for 72 hours and cell viabilities 

measured using the MTS assay.  Results are presented as the means of PBMCs prepared in triplicate. 
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Table 6.  Effect of Red Raspberries on Mitogen Responsiveness 

Donors  Cell Proliferation (% of control)  Post:Pre Post:Pre 

Group 1  

2.5% 

PHA 

5% 

PHA 

7.5% 

PHA  

Berry 

SI  

PBMC 

Control SI 

1 
Pre-berry 

Post-berry 

104.4 

113.7 

96.8 

143.8 

65.4 

  1.4 0.9 

        

2 
Pre-berry 

Post-berry 

333.0 

620.7 

309.3 

256.4 

198.0 

197.3  1.9 0.5 

        

5 
Pre-berry 
Post-berry 

102.0 
157.9 

91.9 
129.7 

56.7 
107.3  1.6 0.9 

        

6 
Pre-berry 

Post-berry 

110.7 

173.0 

117.3 

169.0 

79.4 

83.9  1.7 0.9 

        

15 
Pre-berry 

Post-berry 

66.6 

109.0 

71.5 

154.7 

52.7 

128.2  2.2 0.5 

Group 2         

3 
Pre-berry 

Post-berry 

262.3 

225.9 

225.4 

212.0 

101.0 

157.5  0.9 0.9 

        

4 
Pre-berry 

Post-berry 

114.1 

103.7 

90.2 

95.9 

81.3 

68.5  0.9 1.0 
        

7 
Pre-berry 

Post-berry 

533.5 

484.2 

360.1 

317.9 

125.8 

185.2  0.9 0.9 

        

12 
Pre-berry 

Post-berry 

538.7 

468.5 

563.1 

534.1 

323.7 

274.9  1.0 0.9 

        

13 
Pre-berry 

Post-berry 

316.0 

289.6 

252.8 

184.4 

89.6 

57.1  0.9 0.6 

        

14 
Pre-berry 

Post-berry 

330.4 

248.4 

254.6 

167.8 

226.0 

107.6  0.8 1.1 

Group 3         

8 
Pre-berry 

Post-berry 

726.0 

277.3 

468.8 

159.0 

438.3 

66.5  0.4 3.6 

        

9 
Pre-berry 
Post-berry 

319.3 
140.5 

290.3 
148.9 

152.7 
94.4  0.5 1.9 

10 
Pre-berry 

Post-berry 

341.7 

67.1 

181.6 

66.1 

59.5 

73.2  0.2 0.5 

        

11 
Pre-berry 

Post-berry 

411.5 

144.7 

346.0 

157.4 

197.9 

171.1  0.4 3.7 

        

16 
Pre-berry 

Post-berry 

619.9 

268.3 

529.1 

235.6 

592.0 

209.5  0.4 2.2 
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relative to a change in MMP-9 concentration.  The results for the three donor groups are 

presented in Table 7. 

 Although variability was observed among donor groups in plasma MMP-9 levels 

after berry consumption, the differences were not significant (p = 0.16).  Overall, 3 of the 

15 participant’s post-berry plasma decreased in MMP-9 between 18% – 39% while 6 of 

the 15 participants increased between 23% – 68%, as shown in Figure 6.  Results of one 

of the two MMP-9 concentrations from donors 7 and 11 measured outside the dynamic 

range of the MMP-9 assay and cannot be accurately quantified; therefore they are 

excluded from the evaluation.  However, an increase or decrease in MMP-9 concentration 

for these donors can be noted.  The results for donor 7 show a post-berry decrease in 

MMP-9 while donor 11’s MMP-9 concentration increased. 

The three donors whose post-berry plasma decreased in MMP-9 were in Group 2.  

While two of the donors increased in neutrophils or monocytes, none had an increase in 

lymphocytes.  All 3 donors decreased in their resting post : pre-berry PBMC control 

ratios (0.6 – 0.9)., and a strong correlation (r = 0.7) was noted between decreases in 

MMP-9 levels and the control PBMC SIs. 

Of the six donors with increased post-berry plasma MMP-9 concentrations, four 

were in Group 3.  All six of the donors (100%) had an increase in one or more WBC 

types as determined by their CBCs.  Among the donors, five increased in absolute 

lymphocyte numbers ranging from 2 – 22%, four increased in neutrophils and five 

increased in monocytes, eosinophils, and/or basophils.  In addition, among these six 

donors, five also increased in post : pre-berry control PBMC SIs after 72 hours in culture.  
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This is demonstrated in Figure 7 and Table 8.  For Group 3 donors, a strong positive 

correlation was noted between increases in MMP-9 levels and neutrophil and lymphocyte 

counts (r = 0.6 and 0.8 respectively) as well as PBMC control SIs (r = 0.7). 

Effect of Raspberry Phytochemicals on Plasma Cytotoxicity in vitro 

A plasma assay was performed to examine the effect of raspberry intake on the 

cytotoxic activity of donor plasma against AGS, LNCaP, HCC 1500, LoVo, and K-562 

tumor cell lines.  The cell lines were cultured for 72 hours in complete growth medium 

containing either fetal bovine serum (FBS) or pre- or post-berry plasma and assayed for 

cell survival.  The results from the plasma-treated samples were normalized to the control 

samples cultured in FBS.  It is possible that changes in the characteristics of the cultured 

cells might vary between the pre- and post-assays, so to compensate for this, an FBS 

standard was used.  For both the pre- and post-assays, the absorbance of the cells in donor 

plasma was divided by the absorbance of the same number of cells in FBS.  The 

normalized donor survival indices were then compared.  Ratios were determined between 

the post-berry and pre-berry plasma results.  Ratios <1 indicate greater post-berry plasma 

cytotoxicity whereas ratios >1 reflect greater pre-berry plasma cytotoxicity.  The results 

for the three donor groups are presented in Figures 8 - 9 and Tables 9 – 10.  In addition, a 

summary of the total percentages of cytotoxicity for the donors as well as the average 

change in post-berry plasma cytotoxicity for each group and cell line are given in Tables 

11 - 12. 
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Table 7.  Effect of Red Raspberries on Total MMP-9 Plasma Levels 
     

Donor Pre-Plasma 

MMP-9 

Post-Plasma 

MMP-9 

% Change Post/Pre 

MMP-9 SI 

Group 1 (range 13.2 – 105 ng/mL)   

1 60.6 52.1 -14.0 0.9 

     
2 35.3 38.3 8.6 1.1 

     

5 24.1 26.0 7.7 1.1 

     

6 43.3 55.2 27.7 1.3 

     

15 61.6 58.2 -5.6 0.9 

     

Group 2     

4 39.7 43.2 8.6 1.1 

     

7 146.9* 72.7 -50.5 0.5 
     

12 20.6 16.9 -18.0 0.8 

     

13 44.3 26.9 -39.2 0.6 

     

14 22.3 37.5 68.2 1.7 

     

Group 3     

8 30.0 36.8 22.6 1.2 

     

9 37.7 48.2 27.7 1.3 
     

10 35.9 33.5 -6.7 0.9 

     

11 76.2 178.4* 134.2 2.3 

     

16 27.2 41.4 52.4 1.5 

     

Total MMP-9 in donor plasma pre- and post-raspberry consumption as measured by ELISA.  Post/pre-berry 

ratios <1 indicate greater pre-berry MMP-9 concentrations while ratios >1 reflect greater post-berry MMP-

9 concentrations.  Ratios differing from 1.0 by 10% or less are not considered meaningful relative to a 

change in MMP-9 concentration. 

*Value falls outside the dynamic range of the assay. 
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Figure 6.  Total MMP-9 levels in donor plasmas pre- and post-raspberry consumption. 

*Denotes value that falls outside the dynamic range of the MMP-9 ELISA assay. 
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Figure 7.  Donors with increased MMP-9 levels, absolute lymphocyte counts, and resting PBMC activities 

post-raspberry consumption. Donor 8 did not increase in lymphocyte levels after berry consumption. 

*Denotes value that falls outside the dynamic range of the MMP-9 ELISA assay. 

* 
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Table 8. Donors with Increased MMP-9 SIs, PBMC Control SIs, and PBMC Counts 

Post-berry Consumption 

Donor 

Post:Pre 

MMP-9 SI 

Post:Pre PBMC 

Control SI % Increase in PBMCs 

   NE LY MO 

6 1.3 0.9  15  

8 1.2 3.6 1.6   

9 1.3 1.9  8 14 

11 2.3 3.7 6.6 21.6 2.4 

14 1.7 1.1 7.9 2 17.9 

16 1.5 2.2 13.4 20.8  

Key: NE, neutrophil; LY, lymphocyte; MO, monocyte 

 

Variability was observed in plasma cytotoxicity among donors and cell lines 

following raspberry consumption.  However, when comparing responses of all donors 

and cell lines, 57% - 69% of the participants’ plasmas showed increased cytotoxicity after 

consuming raspberries compared to their pre-berry plasma samples.  A significant 

increase in plasma cytotoxicity was noted in the HCC 1500 breast cell line (p = 0.05), 

with an average change of 28.3±6.7% cytotoxicity among donors after berry 

consumption. 

Although variability in plasma cytotoxicity was observed among donors and cell 

lines, no major differences were noted between donor groups.  Group 3 donors showed a 

significant increase in post-berry plasma cytotoxicity in the AGS cell line (p = 0.005).  A 

strong positive correlation was noted between the AGS and HCC 1500 cell lines in post-
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berry plasma cytotoxicity in both Group 2 and Group 3 donors (r = 0.6 and 0.9 

respectively) while an inverse relationship was observed in Group 1 (r = -0.8). 

Effect of Raspberry Intake on PBMC Cytotoxicity in vitro 

Results of the PBMC cytotoxicity assay varied widely among donors and cell 

lines.  However, trends were noted among donors within cell lines.  As expected, there 

was an inverse relationship between the E:T ratio (5:1, 10:1, 20:1) and cell survival in the 

AGS gastric cell line  Following 72-hours incubation, the percentage of surviving AGS 

cells decreased as the number of PBMCs per sample increased.  Although both the pre-

berry and post-berry PBMCs exhibited tumoricidal activity, 57% (4/7) of the donors (6, 

4, 7, and 9) showed increased post-berry killing in at least two of the effector 

concentrations.  The difference in post-berry killing ranged from 8 – 44% above the pre-

berry killing between the three effector concentrations. 

The tumoricidal activity of donor PBMCs against AGS cells was also examined 

following a 4-hour treatment period and a similar inverse relationship was observed.  

However, only donor 15 showed increased post-berry killing.  At the 20:1 E:T 

concentrations the absorbance measurements increased, suggesting PBMC activation or 

cellular replication (p = 0.08).  When AGS cells were incubated with donor PBMCs and 

100%  plasma concentrations, post-berry killing improved in 80% (4/5) of the donors 

(donors 15, 13, 14, and 16).  Cell killing increased between 8.26 – 123.92% at the 20:1 

effector concentration compared to the original samples in 15% plasma. 
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Figure 8.  Cytotoxic effect of pre- and post-raspberry plasma on AGS, LNCaP, and HCC 1500 tumor cell 

growth at 72-hours.  Tumor cells (2.5 x 104 cell/well) were plated in appropriate medium containing 15% 

autologous plasma or FBS for 72 hours.  The MTS assay was performed to determine the number of viable 

cells after treatment. 
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Figure 9.  Cytotoxic effect of pre- and post-raspberry plasma on LoVo and K-562 tumor cell growth at 72-

hours.  Tumor cells (2.5 x 104 cell/well) were plated in appropriate medium containing 15% autologous 

plasma or FBS for 72 hours.  The MTS assay was performed to determine the number of viable cells after 

treatment. 
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Table 9.  Cytotoxic Effect of Pre- and Post-Raspberry Plasma on AGS and LNCaP 

Tumor Cell Growth at 72 Hours 
Donor AGS  LNCaP 

Group 1 

Pre- 

Berry 

Post- 

Berry 

Post/Pre 

Ratio 

Post/Pre 

% Killing 

 Pre- 

Berry 

Post- 

Berry 

Post/Pre 

Ratio 

Post/Pre 

% Killing 

1 0.8 0.6 0.7 26.2  0.8 0.6 0.8 22.6 

          

2 0.9 0.9 1.0 2.6      

          

5 0.8 0.8 1.1 -6.9  0.7 0.9 1.2 -17.7 

          
6 0.7 0.6 0.9 14.2      

          

15 0.7 0.8 1.1 -11.4  0.7 0.5 0.7 35.3 

          

Group 2          

3      0.66 0.64 0.97 3.01 

          

4 0.8 0.7 0.9 15.0      

          

7 0.5 0.7 1.3 -32.3  0.5 0.6 1.4 -37.9 

          
12 0.5 0.5 1.1 -9.6  0.7 0.5 0.7 25.7 

          

13 0.5 0.4 0.8 21.9  0.6 0.3 0.6 44.7 

          

14 0.7 0.8 1.2 -16.4  0.9 0.8 1.0 5.0 

          

Group 3          

8 1.0 0.9 0.9 10.8  0.8 0.5 0.7 35.5 

          

9 1.0 0.8 0.9 14.8  0.5 0.8 1.5 -50.6 

          

10 0.5 0.5 1.0 1.6  0.6 0.7 1.1 -6.7 
          

11 0.5 0.5 0.9 11.2  0.9 0.7 0.8 20.1 

          

16 0.6 0.5 0.8 15.9  0.6 0.5 0.9 13.9 

          

Cytotoxic effect of pre-berry and post-berry plasma on AGS and LNCaP tumor cell growth following 72 

hour treatment in medium supplemented with 15% autologous plasma.  Post:pre-raspberry ratios <1 

indicate greater post-berry plasma cytotoxicity whereas ratios >1 indicate greater pre-berry cytotoxicity.  

The percent plasma killings with negative values represent donor samples showing greater pre-berry 

plasma killing. 
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Table 10.  Cytotoxic Effect of Pre- and Post-Raspberry Plasma on HCC 1500, LoVo, and 

K-562 Tumor Cell Growth at 72 Hours 
Donor HCC 1500  LoVo 

Group 1 

Pre- 

Berry 

Post- 

Berry 

Post/Pre 

Ratio 

Post/Pre 

% Killing 

 Pre- 

Berry 

Post- 

Berry 

Post/Pre 

Ratio 

Post/Pre 

% Killing 

1 0.8 1.0 1.3 -27.3      

          

2 0.7 0.5 0.7 35.4      

          

5 0.9 0.8 1.0 3.8  0.5 0.6 1.2 -21.1 

          
6 0.3 0.4 1.3 -34.0  0.7 0.8 1.2 -21.5 

          

15 0.8 0.4 0.4 58.4      

          

Group 2          

4 0.7 0.2 0.3 65.9  1.3 0.8 0.7 34.4 

          

7 0.8 0.8 0.9 9.4  0.6 0.9 1.6 -62.8 

          

12 0.9 0.7 0.7 26.0      

          
13 0.7 0.5 0.8 22.2      

          

14 0.8 1.1 1.3 -33.5      

          

Group 3          

8 0.8 0.9 1.0 -0.8  1.0 1.0 1.0 3.47 

          

9 1.1 0.7 0.6 36.4  1.2 1.0 0.8 21.2 

          

10 0.5 0.6 1.2 -23.5  0.4 0.3 0.7 30.3 

          

11 0.6 0.6 1.0 4.0      
          

16 0.9 0.7 0.8 21.1      

          

 K-562      

Group 1          

15 0.7 0.9 1.4 -43.5      

          

Group 2          

13 0.8 0.7 0.9 11.1      

          

Group 3          

16 0.8 0.5 0.6 38.7      

          

Cytotoxic effect of pre-berry and post-berry plasma on HCC 1500, LoVo, and K-562 tumor cell growth 
following 72 hour treatment in medium supplemented with 15% autologous plasma.  Post:pre-raspberry 

ratios <1 indicate greater post-berry plasma cytotoxicity whereas ratios >1 indicate greater pre-berry 

cytotoxicity.  The percent plasma killings with negative values represent donor samples showing greater 

pre-berry plasma killing. 
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Table 11.  Donors with Increased Post-Raspberry Plasma Cytotoxicity 
 Group 1 Group 2 Group 3 Males Females 

Cell Line % Donors % Donors % Donors % Donors % Donors 

AGS 60 40 100 100 50 

      

LNCaP 67 80 60 33 80 

      

HCC 1500 60 80 60 60 70 

      

LoVo 0 50 100 100 25 

      

K-562 0 100* 100* ** 67 

      

* indicates Group containing 1 donor only.  

**No male plasma was tested on K-562 cells. 

 

Table 12.  Average Change in Post-Raspberry Plasma Cytotoxicity in 

Donor Groups 

Cell Line 

Total 
Average 

% Cytotoxicity 

Group 1 
Average 

% Cytotoxicity 

Group 2 
Average 

% Cytotoxicity 

Group 3 
Average 

% Cytotoxicity 

AGS 13.4±2.5 14.3±6.8 18.4±3.5 10.9±2.5 

     

LNCaP 22.9±4.7 29.0±6.4 19.6±9.8 23.2±6.4 

     

HCC 1500 28.3±6.7 32.6±15.8 30.8±12.2 20.5±9.4 

     

LoVo 22.3±6.9 0 * 18.3±7.9 

     

K562 24.9±13.8 0 * * 

     

Average post-berry plasma cytotoxicity ± SEM in donor groups. 

* indicates Group containing 1 donor only. 

 

A linear trend was observed in the LoVo colon cells between the E:T 

concentration and cell survival following a 72-hour treatment period.  Both the pre- and 

post-berry samples from six donors (5, 6, 4, 7, 8, and 9) showed an increase in cell 

survival as the PBMC concentration increased in at least two of the concentrations.  

Sixty-seven percent (4/6) of the donors (6, 7, 8, and 9), however, demonstrated increased 
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post-berry killing in at least one of the effector concentrations ranging from 7.6 – 45.4% 

compared to the pre-berry samples. 

Of the four donor samples used to treat LNCaP prostate cells, proliferation 

occurred in two donor samples while cytotoxicity resulted in the two remaining donor 

samples.  Post-berry cytotoxicity was enhanced 2.6% in only one of these donors.  When 

incubation time was reduced to 4 hours, LNCaP cells continued to show proliferation 

when treated with pre- and post-berry PBMCs from six donors (p = 0.08).  However, by 

increasing the plasma concentration, 22.7% - 66.4% cytotoxicity was observed.  The cell 

killing occurred in both the pre- and post-berry samples from four of the five donors. 

PBMC-killing of the HCC 1500 breast cells also followed a trend.  This cell line 

showed greater sensitivity to cell killing at the 5:1 and 10:1 E:T concentrations after a 72-

hour treatment period.  Of the pre- and post-berry samples from five donors (5, 4, 7, 8, 

and 9), all of the samples, with the exception of one pre-berry sample from donor 7, 

demonstrated the greatest tumoricidal activity at the two lower effector concentrations.  

Cell-killing occurred between 25.1% – 95.3% in these samples compared to the 20:1 E:T 

samples that ranged between 9% – 75.8% killing.  At the 20:1 E:T concentrations the 

absorbance measurements increased significantly, suggesting PBMC activation or 

cellular replication (p = 0.05).  When the treatment time was reduced to 4 hours, the HCC 

1500 cells proliferated in both the pre- and post-berry samples in at least two effector 

concentrations in 80% (4/5) of the donors (15, 10, 12, and 13).  When plasma 

concentrations were increased, the HCC 1500 cells continued to proliferate in samples 

from donors 15, 12, and 14. 
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K-562 lymphocytic leukemia cells also exhibited proliferation when treated 4 

hours with pre- and post-berry PBMCs and 15% plasma.  Only one of four donor samples 

demonstrated cytotoxicity after berry consumption.  At the 20:1 E:T concentrations the 

absorbance measurements increased significantly, suggesting PBMC activation or 

cellular replication (p = 0.04). 

The enhanced post-berry proliferative effect observed in the 72 hour and 4 hour 

treatments of the HCC 1500, AGS, LNCaP, and K-562 tumor cell lines could be 

explained as an activation of the donor PBMCs from the berry phytochemicals.  While 

the tumor cells and/or PBMCs could proliferate during a 72 hour incubation, it is unlikely 

they would proliferate above the control samples during the brief 4 hour incubation 

period.  Post-berry proliferation or activation at 4 hours was significant for the HCC 1500 

and K-562 cell lines (p = 0.05 and 0.04 respectively) and moderately significant for the 

AGS and LNCaP cell lines (0.08). 
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Figure 10. PBMC treatment of AGS, LoVo, LNCaP, and HCC 1500 tumor cells at 72 hours. Tumor cells 

(2.5 x 104 cells/well) were incubated with three concentrations of PBMCs in medium containing 15% 

autologous plasma pre- and post-raspberry ingestion and cell viabilities measured. 
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D.  LNCaP in 100% Plasma

-500

500

1500

2500

3500

Pre Post Pre Post Pre Post Pre Post Pre Post 

15 12 13 14 16

Group 1                                               Group 2                                             Group 3

 
 

Donor 
Figure 11.  PBMC treatment of AGS and LNCaP tumor cells at 4 hours. Tumor cells (2.5 x 104 cells/well) 

were incubated with three concentrations of PBMCs in medium containing 15% or 100% autologous 

plasma pre- and post-raspberry ingestion and cell viabilities measured. 
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Figure 12.  PBMC treatment of HCC 1500 and K-562 tumor cells at 4 hours. Tumor cells (2.5 x 104 

cells/well) were incubated with three concentrations of PBMCs in medium containing 15% or 100% 

autologous plasma pre- and post-raspberry ingestion and cell viabilities measured. 
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Table 13.  PBMC Treatment of AGS, LoVo, LNCaP, and HCC 1500 Tumor Cells at  

72 Hours 
Donor  AGS  LoVo 

Group 1  5:1 10:1 20:1  5:1 10:1 20:1 

5 Pre 72.9 27.7 3.0  28.2 23.8 27.6 

 Post 82.5 52.0 21.9  151.8 149.2 179.6 

         

6 Pre 79.7 26.3 15.7  62.8 41.7 74.9 

 Post 87.3 18.2 0.00  60.0 92.3 29.5 

Group 2         

4 Pre 94.4 64.1 10.2  48.1 23.0 22.4 

 Post 74.1 30.2 19.6  64.9 60.8 80.1 

         

7 Pre 115.6 97.1 50.4  65.6 86.1 162.4 

 Post 87.3 53.1 14.9  56.6 80.9 110.0 

Group 3         

8 Pre 127.7 124.4 69.9  103.0 133.1 135.1 

 Post 109.4 105.6 117.5  70.2 84.0 113.4 

         

9 Pre 105.8 75.3 30.0  106.5 107.8 139.7 

 Post 104.5 61.5 6.6  98.9 99.4 191.2 

         

10 Pre 94.8 45.2 0.00     

 Post 105.7 37.3 20.7     

         

Group 1  LNCaP  HCC 1500 

5 Pre 50.5 29.7 19.1  4.7 35.1 24.2 

 Post 68.9 70.4 72.2  36.0 43.6 51.9 

Group 2         

4 Pre     3.3 22.2 52.6 

 Post     33.1 18.8 91.0 

         

7 Pre 118.4 118.8 83.6  64.7 57.5 33.1 

 Post 80.9 92.5 222.1  45.1 49.0 57.3 

Group 3         

8 Pre 98.8 219.4 189.8  48.5 74.9 56.0 

 Post 239.6 272.2 288.7  33.4 29.3 40.2 

         

9 Pre 270.9 245.2 282.2  42.7 20.6 38.2 
 Post 147.7 124.9 181.7  23.8 20.9 63.8 

         

Percent surviving fraction of AGS, LoVo, LNCaP, and HCC 1500 tumor cells following 72 hours 
incubation in complete medium containing 15% autologous plasma and PBMCs at a 5:1, 10:1, or 20:1 

effector:target concentration. 
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Table 14.  PBMC Treatment of AGS and LNCaP Tumor Cells at 4 Hours 
Donor  AGS in 15% Plasma  AGS in 100% Plasma 

Group 1  5:1 10:1 20:1  5:1 10:1 20:1 

15 Pre 99.6 58.9 59.9  95.8 82.1 54.6 

 Post 101.5 40.3 43.1  113.7 98.2 21.9 

Group 2         

12 Pre 114.1 55.7 65.0  97.9 49.2  

 Post 127.3 71.6 123.4  158.6 159.1 229.9 

         

13 Pre 169.6 199.6 143.9  90.6 126.3 74.7 

 Post 149.2 164.0 186.6  131.7 91.1 62.7 

         

14 Pre 113.5 128.8 114.8  110.3 92.3 70.0 

 Post 108.9 99.2 93.1  105.2 86.5 81.8 

Group 3         

10 Pre 85.0 66.4 21.7     

 Post 214.1 68.7 101.0     

         

16 Pre 107.2 49.5 36.5  132.4 92.1 72.3 

 Post 92.0 82.4 61.2  92.5 78.5 53.0 

         

Group 1  LNCaP in 15% Plasma  LNCaP in 100% Plasma 

15 Pre 113.6 -142.9 -162.6  170.9 100.5 50.6 

 Post 598.8 -819.9 -676.7  4.4 80.7 58.2 

Group 2         

12 Pre 294.6 293.4 121.4  62.5 45.2 -159.7 

 Post 264.3 71.5 1408.3  395.0 673.2 1855.8 

         

13 Pre 104.8 317.0 507.4  -59.8 287.6 -63.6 

 Post 728.7 833.9 1105.4  142.1 47.8 33.6 

         

14 Pre 355.1 247.7 433.6  180.1 45. 688.0 

 Post 1999.4 1917.5 3049.8  77.3 177.0 400.2 

Group 3         

10 Pre 405.7 343.5 231.8     

 Post 246.5 286.7 582.1     

         

16 Pre 203.4 -39.4 21.5  270.1 256.0 216.4 

 Post 166.1 129.2 63.9  55.5 400.3 330.6 

         

Percent surviving fraction of AGS and LNCaP tumor cells following a 4-hour incubation in complete 

medium containing 15% or 100% autologous plasma and PBMCs at a 5:1, 10:1, or 20:1 effector:target 

concentration. 
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Table 15.  PBMC Treatment of HCC 1500 and K-562 Tumor Cells at 4 Hours 
Donor  HCC 1500 in 15% Plasma  HCC 1500 in 100% Plasma 

Group 1  5:1 10:1 20:1  5:1 10:1 20:1 

15 Pre 125.7 85.5 113.0  162.3 114.9 -77.8 

 Post 148.4 10.9 107.4  386.1 241.4 40.9 

Group 2         

12 Pre 165.4 128.6 98.9  93.2 78.9 25.0 

 Post 134.9 99.2 188.2  202.6 178.9 203.0 

         

13 Pre 119.7 125.0 196.5  90.3 72.3 90.5 

 Post 123.5 103.1 48.8  107.2 97.0 37.8 

         

14 Pre 94.7 89.1 35.7  237.4 227.9 155.5 

 Post 173.2 200.8 145.5  116.5 153.0 142.8 

Group 3         

10 Pre 150.2 138.0 43.3     

 Post 114.2 128.8 167.6     

         

Group 1  K-562 in 15% Plasma  K-562 in 100% Plasma 

15 Pre 50.1 -43.5 -46.9  116.5 -42.0 -313.1 

 Post 128.1 57.7 83.5  567.6 904.1 781.7 

Group 2         

12 Pre 411.0 431.6 143.2  409.4 354.8 58.3 

 Post 257.8 202.7 308.5  283.0 371.6 345.0 

         

13 Pre     37.8 57.4 45.0 

 Post     206.3 208.7 19.7 

         

14 Pre 265.9 193.9 220.6  225.3 216.5 47.8 

 Post 551.1 643.3 727.9  272.1 453.5 568.3 

Group 3         

16 Pre 563.5 216.2 0.1  413.4 333.6 367.2 

 Post 375.2 266.0 175.4  202.1 203.5 106.3 

         
Percent surviving fraction of HCC 1500 and K-562 tumor cells following a 4-hour incubation in complete 

medium containing 15% or 100% autologous plasma and PBMCs at a 5:1, 10:1, or 20:1 effector:target 

concentration. 
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4.  DISCUSSION 

Many health benefits have been attributed to the consumption of fruits and 

berries, including raspberries.  There is a large body of scientific data that supports the 

health benefits of eating raspberries.  According to an executive summary published in 

2007 by the Washington Red Raspberry Commission, raspberries have been shown to: 

protect against free radical-induced cell damage and reduce oxidative stress, prevent the 

growth of cancer cells in vitro and in animal models, reduce the risk of cardiovascular 

disease, protect against infectious bacterial and viral diseases, provide protection against 

food-induced allergic reactions, help regulate blood glucose and reduce the risk of 

diabetes, and lower the risk of developing age-related neurodegenerative diseases (61).  

Almost all of these effects have been demonstrated in cell culture or animal models.  

However, in humans any benefits of berry consumption relative to tumorigenesis or any 

anticancer properties in patients need to be demonstrated.  The benefits derived from 

raspberry consumption have been attributed to their content of polyphenols, flavonoids, 

anthocyanins, ellagitannins, and vitamin C.  It is the phytochemicals that are responsible 

for many of the biological activities of raspberries, including antioxidant, anti-

inflammatory and anticancer properties (8).  Raspberries are strong antioxidants and have 

a high free radical scavenging capacity, due primarily to their ellagitannins.  Among 

fruits and berries, raspberries contain some of the highest levels of ellagitannins, which 

are abundant in the pulp and seeds.  The Meeker red raspberry, as used in this study, 

contains the most ellagitannins of the raspberry cultivars, and when in lyophilized, or 

freeze-dried form, the concentration of the ellagitannins is increased 9-10 fold (62). 
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Numerous studies have demonstrated the anticancer properties of raspberries on 

tumor cell proliferation in vitro (15, 16, 17), and studies from this laboratory support 

these findings (18, 43).  Preliminary in vitro assays were performed to detect the effect of 

three concentrations of lyophilized red raspberry extract on the proliferation of four 

tumor cell lines.  The cell lines used in this study represent some of the most commonly 

reported cancers and have a high rate of incidence globally.  They include prostate, 

breast, colon, and stomach cancers (63).  Our results show that the extracts had a potent 

cytotoxic effect on all the cell lines tested.  The inhibition of the proliferation was 

concentration dependent, and the degrees of inhibition varied for the different cell types.  

Of the tumor cell lines, AGS cells were the most sensitive to the cytotoxic effects of 

raspberry extract treatment, with significant killing measured at all extract dosages ( p = 

0.04 – 0.00).  Efficient killing also occurred in the LoVo, LNCaP, and HCC 1500 cells.  

Both the LNCaP prostate cells and HCC 1500 breast cells are estrogen receptor positive, 

and plant flavonoids and anthocyanins have been shown to bind to estrogen receptors and 

exert an anti-estrogenic, or anti-proliferative effect upon the cells (12, 3).  This could be 

one mechanism contributing to the >50% reduction in proliferation in these two cell lines. 

A normal cell line was also included in the study to compare the anti-proliferative 

effect of raspberry extract on normal vs. cancer cells.  CRL-2120 normal skin fibroblasts 

were treated with the same concentrations of raspberry extract as used on the tumor cell 

lines.  Although fibroblast proliferation was unaffected at the lowest extract dosage of 

5%, the higher concentrations were cytotoxic to a similar degree as measured in the 

tumor cells.  Han et al reported a similar finding when human oral cavity cells were 
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treated with black raspberry extract.  They determined it was the ellagic acid in the 

berries that exerted the cytotoxic effect on the cells (64).  It is possible the concentrations 

of ellagic acid in the 7.5% and 10% lyophilized raspberry extracts used in this assay were 

sufficiently high to explain the cytotoxic effect on the CRL 2120 normal skin fibroblasts.  

Because the concentrations of ellagic acid are unknown in these treatments, it is uncertain 

if these concentrations can be attained in vivo.  Therefore, caution must be used when 

extrapolating the in vitro results obtained in this study to in vivo situations.  The 

cytotoxicity observed in the CRL 2120 normal skin fibroblasts might not accurately 

represent the effects that would be seen on healthy cells in vivo.  However, results from 

this assay indicate that the concentrations of phytochemicals in the raspberry extracts 

used in this study were sufficient to kill tumor cells of four commonly occurring cancers 

in vitro. 

Each of the cell lines was also treated with three concentrations of ascorbic acid 

that served as controls for both the pH and antioxidant effects in cell killing.  Numerous 

studies of fruits and berries containing ascorbic acid (vitamin C) show inhibition of 

cancer cell proliferation in vitro.  In contrast to the raspberry extract treatment, the 

ascorbic acid produced a stimulatory effect in the same five cell lines in a concentration-

dependent manner.  While proliferation was not significant in the AGS and CRL 2120 

cell lines, LoVo, LNCaP, and HCC 1500 cells increased up to 80% (p = 0.03).  A study 

by Olsson et al also noted a slight stimulatory effect upon tumor cells treated with 

ascorbic acid.  They compared the antiproliferative effect of 10 fruits and berries 

containing vitamin C to treatment with ascorbic acid alone on HT29 and MCF-7 cells.  
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While inhibition of proliferation was observed in the tumor cells treated with the fruit and 

berry extracts, the same inhibition of proliferation was not seen when the cancer cells 

were treated with ascorbic acid only.  These investigators proposed that the inhibition of 

cancer cell proliferation by the fruit and berry extracts containing vitamin C could be due 

to a synergism between vitamin C and other phytochemicals in the fruit, whereas vitamin 

C, or ascorbic acid alone was not effective (16).  In the current study, the concentrations 

of ascorbic acid were not sufficient to exert a cytotoxic effect on the cell lines tested.  The 

antioxidant activity of the ascorbic acid may have enhanced proliferation of the 

metabolically active tumor cells by scavenging reactive oxygen species that cause cell 

damage and trigger apoptosis. 

Although numerous studies have been published supporting the beneficial 

antitumor effects of fruit and berry phytochemicals in vitro and in animal models (5, 7, 8, 

10), human studies are limited.  This pilot study was undertaken to test the feasibility of 

examining the effects of berry consumption on the immune response in humans in a 

novel way that will give a better approximation of the effects of berry consumption.  

Cells shown to be killed by berry extracts in vitro were tested for their sensitivity to 

killing by blood plasma and immune cells taken from donors consuming berries from the 

same source.   Volunteers were asked to abstain from eating fruits or berries other than 

the lyophilized raspberries during the study; otherwise no changes were made in the 

participants’ diets or lifestyles.  Blood samples were obtained before and after berry 

consumption and in vitro assays were performed on the plasmas and PBMCs of the 

donors. 
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This experimental study design offers a number of benefits compared to in vitro 

assays examining berry extract treatments of tumor cells.  While in vitro studies of the 

effects of berry extracts on cell lines can give insight into whether a particular extract 

might contain biologically active compounds, the extracts tested contain only the 

compounds present in the extract.  The effects of any changes in these compounds or any 

new compounds produced by in vivo metabolism cannot be evaluated by the traditional in 

vitro method.  In the current approach, raspberries are digested in vivo where they 

undergo extensive modification by gut microflora as well as the individual’s own 

metabolic system.  The subject’s plasma will contain berry components as well as the 

metabolic by-products formed after digestion.  In addition, the rate of absorption and 

excretion and the bioavailability of berry metabolites vary among individuals.  Using our 

approach, these factors are built into the model and a more accurate assessment of the 

influence of berry bioactives on immune cell function can be assessed individually.  

Furthermore, the full complement of biological mediators (hormones, cytokines, growth 

factors, blood proteins, etc.), many of which play an essential role in immune cell 

activity, are present in the plasma of the individual.  This plasma is used to supplement 

the culture medium for immune cells from the same donor compared to the standard 

method of culturing cells in fetal bovine serum (FBS).  Since the PBMCs of the 

individual are tested in his autologous plasma in vitro, this approach more closely mimics 

the host’s in vivo conditions and avoids changes induced in the immune cells’ responses 

by exposure to the alien components present in serum from fetal calves or other animals.  

It is expected that the results obtained with this experimental approach will yield more 
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rapid and trustworthy results and give a better approximation of the effects of berry 

consumption than other currently used methods. 

The pilot study was performed on 16 participants ranging from 20 – 68 years of 

age.  After 3.5 days of raspberry consumption the results show that there were 

measurable differences in immune parameters, and the degrees of response seemed 

dependent on the characteristics of the individual.  Of the female participants, five were 

post-menopausal and three were menstruating at the time of the study.  For the females 

on birth control medication, hormone replacement therapy, or menstruating at the time of 

the study, hormonal effects cannot be excluded when interpreting the study results.  In 

addition, five participants were on a daily multivitamin and/or vitamin C regimen and any 

contributions to the antioxidant effect from these supplements must be considered in the 

analysis.  Although variability was noted in immune responses to berry phytochemicals, 

trends emerged among participants in lymphocyte mitogen stimulation, circulating MMP-

9 concentrations, and plasma and PBMC cytotoxicity on tumor cells. 

Complete blood counts were collected from 15 donors before and after berry 

consumption to determine an in vivo effect of raspberry phytochemicals on PBMC 

proliferation.  The CBC provides valuable information about the hematopoietic system 

and an individual’s health status.  White blood cell counts vary daily simply due to intra-

individual biological variation.  Mean WBC counts are also affected by age and race and 

can increase as a result of exercise, stress or smoking.  According to Brigden and 

Heathcoate, a change in the WBC count of >36% would be considered a critical or true 

difference in 95% of. cases (65).  In this study 80% of the participants had an increase in 
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the absolute numbers of one or more white blood cell types ranging from 2 – 88% after 

eating raspberries.  Fifty eight percent of the donors increased in lymphocytes, 

monocytes, and eosinophils, and 50% increased in neutrophils, and a strong positive 

correlation was noted between increases in lymphocyte and monocyte numbers after 

berry consumption (r = 0.7).  Although the differential changes in WBC counts remained 

within the normal range of values, the increased numbers of phagocytes and lymphocytes 

could augment the response of both the innate and adaptive arms of the immune system 

and provide improved protection against foreign invaders and aberrant cells arising in the 

host.  A study by Nantz et al. also reported an increase in PBMCs in healthy study 

participants following ingestion of a fruit and vegetable juice powder (FVJP) concentrate.  

They determined the percentage of γδ-CD3
+
 T cells had increased 30% in the FVJP 

group relative to their baselines or the placebo group.  The percentage of αβ-CD3
+
 T cells 

in the peripheral blood of this group was not affected (57).  Percival reported a similar 

increase in γδ-CD3
+
 T cells after healthy study participants consumed Concord grape 

juice daily for 10 weeks (54).  Studies show that the chemical structures of polyphenols 

in fruits and berries resemble pathogen-associated molecular patterns (PAMPs) that are 

recognized by γδ T cells, and this interaction could serve to prime the cells or stimulate 

them to proliferate (57).  Although lymphocyte identification was not performed in this 

study, this could be one mechanism contributing to the increase in lymphocyte numbers 

observed in a large number of donors after berry consumption. 

Results from this study suggest raspberry phytonutrients may also play a 

regulatory role, directly or indirectly, in maintaining WBC homeostasis.  Increases and 
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decreases in WBCs are associated with infections and conditions such as leukemias, or in 

other instances the adverse effects of medications.  The relative WBC differential counts 

of three female participants before berry intake indicated neutropenia, lymphocytosis, 

eosinophilia, and neutrophilia.  Two of the donors were menstruating at the time, and for 

one, the neutropenia and eosinophilia could be attributed to a daily medication used to 

treat acne.  However, in all three donors the relative WBC differential counts improved 

toward the normal range after raspberry consumption. 

The effect of berry phytochemicals on adaptive immunity was also examined.  

The T lymphocyte mitogen proliferation assay, an in vitro assay used to assess host 

immunocompetence, was performed on donor PBMCs before and after raspberry 

consumption.  Donors were divided into three groups based on their lymphocyte 

responses to mitogen stimulation after berry consumption.  Variability was observed 

among donors, with Group 1 donors exhibiting the greatest mitogen-induced T 

lymphocyte proliferation following berry intake.  For donors in Group 2 there was little 

change and for those in Group 3 there was a significant decrease in mitogen response 

following berry ingestion. 

Group 1 donors, or 31% of the study participants, had a significant increase in 

mitogen-activated T lymphocyte proliferation up to two fold above baseline after berry 

intake (p = 0.04).  Research from several laboratories supports these findings.  Their 

results show that numerous polyphenolic compounds can induce a priming, or semi-

activation of lymphocyte populations, including γδ T cells and NK cells.  These cells 

become primed for expansion and, when exposed to secondary stimuli (e.g. mitogen 
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stimulation), the primed cells undergo clonal expansion (4, 58, 66).  Increases in these 

lymphocyte populations could result in greater immune protection against pathogens and 

aberrant cells in vivo.  A large correlation was observed in Group 1 donors between 

mitogen stimulation and lymphocyte numbers in vivo (r = 0.96).  Two of the Group 1 

donors (donors 6 and 15) had an increase in lymphocytes in vivo as reported in the CBC 

results.  Their absolute lymphocyte numbers measured at the low end of the lymphocyte 

range before berry consumption but increased 15% and 88% respectively after eating 

berries.  This suggests in some individuals that berry phytochemicals may serve to prime 

and initiate lymphocyte proliferation, possibly leading to a more rapid immune response 

to an antigen. 

The lymphocytes of donors in Group 2 were unresponsive to mitogen stimulation 

following berry intake.  This is denoted by the stimulation indices (SIs) of the donors.  

Stimulation indices >1 indicate greater post-berry lymphocyte stimulation whereas SIs <1 

signify greater pre-berry lymphocyte stimulation.  The SIs of donors in Group 2 ranged 

from 0.8 – 1, indicating little or no change between the pre- and post-berry responses to 

mitogen stimulation.  This suggests the berry phytochemicals had little or no priming 

effect on the lymphocytes of these donors, or that the concentration of berry 

phytochemicals in their plasmas was insufficient to stimulate the lymphocytes in vivo. 

In comparison to Group 1 and 2 donors, the SIs were substantially lower in Group 

3 and ranged from 0.2 – 0.5 (p = 0.002), which suggests a possible immunosuppressive 

effect of berry phytochemicals on lymphocyte proliferation.  However, some of the 

participants increased in their absolute lymphocyte numbers in vivo after berry 



 89 

consumption (donors 9, 11, 16).  One possible explanation is that the lymphocytes of 

these donors had undergone proliferation in vivo following berry consumption, and 

additional mitogen stimulation in vitro failed to induce further proliferation.  The remaining 

Group 3 donors whose lymphocytes failed to mitogen-stimulate (donors 8, 10) also 

decreased in lymphocytes in vivo. 

The untreated control PBMCs were also monitored for changes in their resting 

metabolic activity (MTS absorbance without PHA stimulation) in the mitogen stimulation 

assay before and after berry intake.  A significant difference was noted between donor 

groups in the control PBMC SIs (p = 0.007).  Although minimal changes were noted in 

the PBMC SIs of Group 2 donors, .Group 1 control PBMCs SIs decreased (p = 0.009) 

while Group 3 control PBMC SIs increased (p = 0.09).  An inverse relationship was 

observed between the degree of mitogen-induced lymphocyte proliferation and the 

control PBMC SIs (r = -0.6; p = 0.02).  Although mitogen stimulation was greater for 

Group 1 donors after berry consumption, their control PBMC SIs were <1 and ranged 

from 0.5 – 0.9.  In contrast, Group 3 donors decreased in lymphocyte mitogen-

responsiveness after berry consumption but their control PBMC SIs were >1, and ranged 

from 1.9 – 3.7, with the exception of donor 10 who was on a daily low-dose aspirin 

regimen.  The increased activity of the control PBMCs from Group 3 donors could be a 

measurement of post-berry monocyte proliferation, which could result in an enhanced 

innate immune response in vivo.  Alternatively, a second explanation for the observed 

effect could be that the control PBMCs were in a primed, or activated state following 

berry consumption, but not toward proliferation.  While the mitogen stimulation assay is 
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a measure of T lymphocyte proliferation, the basis of the MTS assay relies on the activity 

of dehydrogenase enzymes that are found in metabolically active cells.  Dehydrogenase 

enzymes function to reduce MTS into formazan, and it is generally accepted that the 

concentration of formazan is proportional to the number of cells in a sample.  However, 

in metabolically active cells there are numerous types of dehydrogenase enzymes, many 

of which function in glycolysis and the TCA cycle (tricarboxylic acid cycle) for energy 

production.  Increased energy availability is essential to maintain the cellular activity of 

activated lymphocytes and monocytes, which could lead to enhanced immunity in the 

host. Therefore, for donors who did not mitogen stimulate but increased in control PBMC 

activity, we cannot exclude the possibility that we are measuring a form of PBMC 

activation following berry intake.  Lastly, for Group 2 donors there was little or no 

difference between the mitogen response and control PBMC stimulation indices.  With 

the exception of donor 13, both SIs were close to 1, suggesting that in some individuals 

berry phytochemicals appear to have little or no effect on lymphocyte proliferation or 

immune cell activation as measured by this assay.  Donor 13 was menstruating at the time 

of the study and we cannot exclude possible hormonal effects on her PBMC responses to 

berry phytochemicals. 

This study also examined the effect of raspberry ingestion on plasma matrix 

metalloproteinase-9 (MMP-9).  MMPs play a critical role in tumor invasion and 

metastasis; therefore the inhibition or reduction of MMP-9 by berry phytochemicals 

could help to decrease or prevent the spread of cancer.  However, results from this study 

show that plasma levels of MMP-9 did not change significantly following berry intake.  
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Forty percent of the donors’ post-berry plasma increased in MMP-9 (23% – 68%) while 

20% decreased (18% – 39%), and the remaining donors’ post-berry MMP-9 levels were 

relatively unchanged (≤ 10%). 

Of the six donors with increased post-berry plasma MMP-9 concentrations, four 

were in Group 3.  All six of the donors had an increase in one or more WBC types as 

determined by their CBCs.  Among the donors, five increased in absolute lymphocyte 

numbers, four increased in neutrophils and five increased in monocytes, eosinophils, 

and/or basophils.  The increase in neutrophils and monocytes could be one factor 

contributing to the increase in MMP-9.  Pro-MMP-9, a precursor of MMP-9, is secreted 

by monocytes, macrophages, and neutrophils.  Five of the donors increased in one or both 

of these cell types.  The same five donors also increased in their untreated control PBMC 

SIs (1.1 – 3.7), suggesting an upregulation, or activation of the PBMCs following berry 

intake.  For Group 3 donors, a strong positive correlation was noted between increases in 

MMP-9 levels and neutrophil and lymphocyte counts (r = 0.6 and 0.8 respectively) as 

well as PBMC control SIs (r = 0.7).  One explanation for this could be due to the priming 

effect of polyphenols on γδ T cells.  A number of cytokines, including GM-CSF 

(granulocyte-macrophage colony stimulating factor) and IL-8 (interleukin 8) are released 

from the primed lymphocytes and serve as activators of neutrophils and monocytes (58).  

This activation results in the production of pro-inflammatory cytokines (IL-1, TNF-α) 

and reactive oxygen species (ROS) that have been shown to upregulate the production of 

MMP-9 (39, 67, 68).  While the increase in WBCs and MMP-9 levels in these donors 
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could aid in enhanced innate immunity, tissue repair, and wound healing, it could also 

affect the potential for cancer metastasis. 

The three female donors whose post-berry plasma decreased in MMP-9 were in 

Group 2.  Two of them were menstruating at the time of the study, and the reduction in 

MMP-9 could have been influenced by hormonal changes.  While two of the donors 

increased in neutrophils or monocytes, none increased in lymphocytes.  All 3 donor’s 

lymphocytes failed to mitogen-stimulate, and they also decreased in their resting post : 

pre-berry PBMC control ratios (0.6 – 0.9).  A strong correlation (r = 0.7) was noted 

between decreases in MMP-9 levels and the control PBMC SIs. 

Similarly, of the six donors whose MMP-9 levels remained relatively constant, 

five had lower levels of control PBMC SIs (0.4 – 0.9), and the last donor’s SI w as 

unchanged.  For the donors whose MMP-9 levels decreased or remained relatively 

constant, their results suggest little or no in vivo γδ T cell priming occurred after berry 

intake and therefore no activation of the neutrophils and monocytes.  An alternate 

explanation is that the antioxidant activity of the berry phytochemicals in vivo could have 

decreased the levels of ROS in the plasma, which could have resulted in lower 

concentrations or steady-state levels of MMP-9 in these donors. 

Additional studies were performed on donor plasma to assess changes in plasma 

tumor cell cytotoxicity following raspberry intake.  The results observed need not have 

been caused by the direct effects of berry phytochemicals, but could also have resulted 

from changes induced in donor metabolism or physiology.  Any changes induced by 

berry phytochemicals are dependent on sufficient bioavailability.  Studies from numerous 
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laboratories have reported that the serum bioavailability of many berry polyphenols is 

low, making it unclear whether the in vivo concentrations are sufficient to provide anti-

carcinogenic protection (10, 25, 46).  Although most berry bioactives have demonstrated 

chemopreventive effects in vitro when used at micromolar concentrations, 

pharmacokinetic studies in humans indicate that berry bioactives, such as the 

anthocyanins and ellagitannins, reach only nanomolar concentrations in blood and tissues 

when administered in the diet.  These levels are far below the levels required to exhibit 

anticarcinogenic effects in vitro (10).  However, results from this study clearly 

demonstrate that the levels of berry bioactives present in the plasmas of the study 

participants following berry intake were sufficient to induce or produce cytotoxic effects 

on tumor cells in vitro.  Consumption of the lyophilized, or freeze-dried form of the 

raspberries may have contributed to the plasma levels attained in this study.  Freeze-

drying increases the concentration of polyphenols 9-10 fold and likely increases the 

bioavailability of the phytonutrients in the serum.  Although our results show variability 

among individuals as well as donor groups, 100% of the donors’ post-berry plasma 

increased in tumor cell cytotoxicity against one and up to four of the cell lines tested.  

While changes were modest in the AGS and LNCaP tumor cell lines (p = 0.1), the 

greatest increase in plasma cytotoxicity among donors was noted in the HCC 1500 breast 

cell line, with an average change of 28.3±6.7% cytotoxicity after berry consumption (p = 

0.05).  As mentioned previously, both the LNCaP prostate cells and HCC 1500 breast 

cells are estrogen receptor positive, and the anti-estrogenic properties of the berry 
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constituents present in the donor plasmas could be one mechanism contributing to the 

increased cytotoxicity measured in these cells. 

Group 1 and 2 donors exhibited increased post-berry plasma cytotoxicity in the 

AGS, LNCaP, and HCC 1500 cell lines, and to a similar degree.  Their results indicate in 

vivo changes were induced in the plasmas of these donors to increase tumor cell 

cytotoxicity in vitro.  While the two groups differed in their responses to lymphocyte 

mitogen-stimulation after berry intake, there were similarities in their control PBMC SIs 

and MMP-9 levels.  For both groups, control PBMC SIs and MMP-9 levels either 

decreased or remained constant (r = 0.7).  In addition, of the ten donors with CBC data, 

50% or more had decreased levels of lymphocytes, neutrophils, and monocytes after 

berry consumption (Appendix C).  Although there was a measurable difference in the 

plasma cytotoxicity of these individuals, it cannot be ascertained from this assay if the 

berry phytochemicals exerted an immunosuppressive effect on donor PBMCs in vivo.  

Overall there was a decrease in WBC expansion in vivo, which could have resulted in the 

decrease in control PBMC activation that was observed in vitro in these donors.  This 

lack of apparent activation could have influenced the decrease or maintenance of the 

MMP-9 levels.  Regardless, the bioavailability of the berry phytochemicals in the 

plasmas of these donors could have directly or indirectly exerted a cytotoxic effect on the 

cell lines tested.  

The largest fraction of donors with increased post-berry plasma cytotoxicity 

against all five cell lines tested occurred in Group 3.  These donors showed a significant 

increase in post-berry plasma cytotoxicity in the AGS cell line (p = 0.005) and a modest 
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increase in the HCC 1500 cell line (p = 0.1).  Although this groups’ T lymphocytes did 

not mitogen-stimulate in vitro, they all had increased activity in their control PBMC SIs.  

In addition, the majority of the donors had increased levels of lymphocytes (r = 0.5) and 

MMP-9 (r = 0.7) in vivo.  These findings suggest the bioavailability and plasma levels of 

the berry phytochemicals is greatest in these individuals and exert an activating effect on 

their immune cells in vivo. 

The HCC 1500 breast and LNCaP prostate cell lines were susceptible to cell 

killing in both the male and female donor plasmas, possibly due to the anti-estrogenic 

effect from the berry metabolites present in the donor plasmas. 

The donors’ plasma cytotoxicity after berry intake did not correlate with an 

increase in PBMC cytotoxicity in all donors.  Results of the cytotoxicity assay varied 

widely among donors and cell lines.  While berry phytochemicals enhanced tumor cell 

killing in some individuals, it decreased PBMC cytotoxicity in others as measured by this 

assay.  The greatest increase in post-berry PBMC tumoricidal activity was measured in 

the AGS gastric, LoVo colon, and HCC 1500 breast cell lines after a 72 hour treatment 

period.  Although donor plasma contributed to cell death, PBMC tumoricidal activity 

increased in 50% or more of the donors tested following berry intake. 

Possible proliferation of tumor cells or immune cells was observed with the AGS, 

HCC 1500, LNCaP, and K-562 cell lines.  While tumor cell killing also occurred in the 

LNCaP and K-562 cell lines at different PBMC concentrations after berry intake, 

activation or proliferation was more prevalent.  To examine this further, the incubation 

time was reduced to four hours to minimize cell proliferation.  However, at the 20:1 E:T 
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concentrations the absorbance measurements increased in the AGS, LNCaP and K-562 

cell lines, suggesting PBMC activation or cellular replication.  These findings differ from 

a similar study from this laboratory by God who examined the effect of raspberry 

consumption on NK cell cytotoxicity toward K-562 cells.  He reported a significant 

increase in NK cell cytotoxicity toward these cells in 33% of his study participants 

following berry intake (18).  However, in God’s study the monocytes were depleted from 

donor PBMCs before treatment with K-562 cells while the current study sought to 

investigate the effect of berry phytochemicals on the monocytes as well.  The inclusion of 

monocytes in this study could explain the difference between the enhanced NK cell 

cytotoxicity in God’s results and those reported here.  Natural killer cells are cytotoxic 

against a wide range of tumor cells, and once they are activated, NK cells produce 

interferon gamma (IFN γ), a potent immunoregulatory cytokine and powerful mediator of 

macrophage activation.  As monocytes undergo differentiation and activation, numerous 

physical and metabolic changes occur.  The cells enlarge 5-10 fold and increase in 

phagocytic ability.  They also increase in the number and complexity of intracellular 

organelles and produce higher levels of hydrolytic enzymes, including reactive oxygen 

and nitrogen species (ROS, RNS) and inducible nitric oxide synthase (iNOS).  In 

addition, they secrete a variety of soluble factors and inflammatory cytokines, such as 

IL1, IL6, and TNF-α (55).  Activated macrophages are therefore more effective in 

eliminating pathogens, killing tumor cells, and activating the adaptive arm of the immune 

system.  However, results from the LNCaP and K-562 samples do not reflect enhanced 

cytocidal activity.  Minimal or no cytocidal activity was noted for the PBMCs from 10 
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donors before and after berry consumption.  Tumor cell killing could have occurred by 

the lymphocytic cells (NK cells, γδ T cells, and cytotoxic T cells) but the upregulated 

metabolic activity of the macrophages could have obscured detection of tumor cell death.  

The apparent absence or decrease in cytotoxicity could be due in part to the strong 

antioxidant and anti-inflammatory effects of the raspberry polyphenols.  The plasma 

assay performed in this study show that there were sufficient changes in donor plasma to 

increase plasma tumor cell cytotoxicity following berry intake.  Elevated levels of 

raspberry antioxidants could therefore quench the ROS, RNS, and lytic enzymes 

produced by the activated macrophages and minimize or eliminate tumor cell killing.  

Schauss et al showed that extremely low doses of antioxidants in freeze-dried acai were 

able to cross the cell membrane of freshly isolated human neutrophils and quench the free 

radicals produced within the neutrophils (69).  It is possible the levels of raspberry 

antioxidants or induced antioxidants reached in the donor plasmas were sufficient to 

negate the tumoricidal activity of the activated macrophages.  Alternatively, based upon 

the assay results we cannot discount PBMC and/or tumor cell proliferation in some donor 

samples.  Holderness et al demonstrated γδT cells and NK cells primed by apple-derived 

tannins responded rapidly to secondary stimuli and proliferated up to four-fold.  Donor 

PBMCs that were primed in vivo following berry intake and subsequently exposed to 

tumor cells in vitro could then rapidly expand and account for the results reported here. 

The enhanced post-berry proliferative effect observed in the 72 hour and 4 hour 

treatments of the HCC 1500, AGS, LNCaP, and K-562 tumor cell lines suggests an 

activation of the donor PBMCs from the berry phytochemicals.  While the tumor cells 
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and/or PBMCs could proliferate during a 72 hour treatment period, it is unlikely they 

would proliferate above the control samples during the brief 4 hour incubation period.  

Post-berry proliferation was significant for the HCC 1500 and K-562 cell lines (p = 0.05 

and 0.04 respectively) and moderately significant for the AGS and LNCaP cell lines 

(0.08).  However, based upon the limitations of this assay, it cannot be determined 

conclusively if PBMC activation or proliferation was occurring in these samples. 

In conclusion, preliminary in vitro results show that lyophilized red raspberry 

extract exhibited a potent cytotoxic effect on four commonly occurring cancers, including 

gastric, prostate, colon, and breast.  By comparison to ascorbic acid that served as a 

control, it could be determined that the cytotoxicity of the raspberry extract was not 

solely attributable to pH or antioxidant effects in cell killing. 

The results of the in vivo study show that consumption of red raspberries may 

have the capacity to enhance immune activity in some individuals.  Although we did not 

have adequate control over factors known to influence immune function, such as diet, 

sleep habits, medications, or stress, there were measurable differences in immune 

parameters in some donors following raspberry consumption.  More than half of the 

donors had increased levels of one or more subsets of leukocytes after eating berries.  

This increase in both innate and adaptive immune cell populations could lead to better 

protection against microbial pathogens as well as cancer cells arising in the host.  In 

addition, the beneficial effect of berry phytochemicals on the adaptive immune response 

was noted in some donors by their increased T lymphocyte responses to mitogen 

stimulation.  Other donors showed an increase in the resting levels of PBMCs, and it is 
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unclear if this was due to an increase in metabolic activity or proliferation.  These 

findings suggest that berry phytochemicals could possibly enhance immunocompetence 

and augment immune cell activity in some individuals, leading to greater protection in the 

host.  While MMP-9 levels varied among donors, those who increased in MMP-9 also 

increased in one or more subsets of leukocytes, with the majority increasing in 

lymphocytes.  In contrast, the majority of donors whose MMP-9 levels decreased or 

remained relatively constant had decreased levels of lymphocytes.  Although a 

correlation between PBMC numbers and MMP-9 plasma levels is reported here, the 

significance of this is not known and warrants further investigation.  Despite numerous 

studies reporting the low bioavailability of polyphenols in vivo, our results clearly show 

that consumption of lyophilized red raspberries provided sufficient phytochemical-

induced changes in the plasmas of all the study participants to kill tumor cells in vitro.  

These results demonstrate the antiproliferative and antitumor properties of plasma 

phytonutrients alone without the need for direct immune cell participation.  However, an 

increase in PBMC cytotoxicity was also observed in a large number of donors following 

raspberry intake.  While donor plasma contributed to the cell death observed in several 

cases, PBMC tumoricidal activity increased as well.  Because of the fact that the 

surviving fraction of cells is negative in some cases, the quantity (E+T) is larger than 

(ET), where E represents the absorbance of the effector PBMCs, T represents the 

absorbance of the target tumor cells, and ET represents the absorbance of the mixture.  

This implies that the effectors are probably being activated or proliferating.  This effect is 

observed in the AGS, HCC 1500, LNCaP, and K-562 cell lines.  We don’t know the 
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significance of the activation or if it relates to better immune responses or immune 

protection.  Taken together, these results demonstrate that in some individuals raspberry 

phytochemicals appear to have an immunostimulatory effect on both the innate and 

adaptive arms of the immune system.   

Findings from the current study warrant further investigation to determine 

whether raspberry consumption has an activating effect on PBMCs in vivo, and if this 

activation results in enhanced immune function in the host.  Based on the experimental 

approach used in this study, in vivo studies could also be conducted to clarify the overall 

effect of berry consumption on patients with premalignant conditions such as colonic 

polyps or Barrett’s esophagus. 
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A.  In Vivo Red Raspberry Study Questionnaire 

1. Do you have an adverse reaction to having blood drawn?  (i.e. fainting, dizziness, 

excessive bleeding, etc.) 

YES    NO 

2. Do you have an adverse reaction to consuming berries or using berry-related 

products? 

YES    NO 

3. Do you have an infectious or autoimmune disease (such as multiple sclerosis or 

arthritis)? 

YES    NO 

4. Do you have or have you ever had cancer? 

YES    NO 

5. Have you had a cold, the flu, other infections or allergy problems during the past 

week? 

YES    NO 

6. Are you taking any medications? 

YES    NO 

7. If you answered yes to question 6, what type(s) of medication do you take? 

8. How often do you exercise? 

9. When was the last time you exercised? 

10. Are fruits and berries a normal part of your diet? 

YES    NO 

11. If you answered yes to question 10, how many times a week do you eat fruits 

and/or berries? 

12. What types of fruits or berries do you eat? 

13. Have you eaten fruit or berries in the last two days? 

YES    NO 

14. If you answered yes to question 13, what type of fruit did you eat and how much 

was consumed? 
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15. Do you drink fruit juice or consume other fruit-related products (e.g. Fruit roll-

ups)? 

YES    NO 

16. If you answered yes to question 15, how many times a week do you consume 

fruit-related products? 

17. Have you had any fruit juice or fruit-related product in the past two days? 

YES    NO 

18. If you answered yes to question 17, what were those products and how much did 

you consume? 

19. Are you a diabetic? 

YES    NO 

20. Do you consume alcoholic beverages? 

YES    NO 

21. If the answer to question 20 is yes, approximately how many drinks per week do 

you have? 

22. What is your age: 

23. Are you: 

MALE    FEMALE 

24. If you have been exposed to tanning radiation, X-rays, or a CT scan in the past 

week, please describe (for tanning, how long were you exposed?). 

25. For women, since the levels of various hormones can affect the immune system, 

we would like to know the following: 

a. Are you on any form of hormone replacement therapy or birth control? 

YES    NO 

b. What is the date of you last menstruation? 

If you choose not to answer question 25, please feel free to omit. 



 104 

B:  Complete Blood Counts of Study Participants 

Donor 1 
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C. Percent Decrease in Donor PBMCs Post-Raspberry Consumption 
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