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Abstract 

This study investigated the effects of sequence of instruction in a laboratory-based 

mathematics content course for elementary teachers on preservice teachers’ (PSTs’) 

pedagogical beliefs and Mathematical Knowledge for Teaching (MKT) through a quasi-

experimental design in which the order of laboratory tasks and explanations of content 

was altered between sections for a given unit and between units within a given section. 

This study also investigated the prior experiences a group of preservice elementary 

teachers shared as students of mathematics and examined how these experiences related 

to their beliefs regarding effective pedagogy through a phenomenology. Additionally, the 

perspective of an experienced instructor, who was new to facilitating a sequence of 

instruction in which PSTs explored mathematical before a formal explanation of content 

was delivered, was examined through a case study.  

Data were collected through mathematical autobiographies written by PSTs, pre- 

and post-assessments of MKT, classroom observations, exit surveys completed by PSTs, 

and interviews with the instructor and six PSTs. Results from these data revealed that 

most PSTs experienced a traditional school mathematics characterized by review, 

delivery of content, worked examples, and practice, and many PSTs also framed their 

interpretations of effective pedagogy within this traditional context. No significant 

differences were found in mean gains between those sections that explored content 

through laboratory tasks before an explanation was given and those that confirmed 

content through laboratories that followed an explanation of the content. Although the 

instructor did not initially identify differences between sequence groups, as the semester 
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progressed, she found the discourse richer and PSTs more independent in their problem 

solving in the exploratory section, and these benefits came with no drop off in MKT. 

.
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CHAPTER ONE 
 

Introduction 

 The goal of many mathematics teacher-preparation programs is not only to arm 

future teachers with knowledge of content and pedagogy but also to establish beliefs 

aligned with a large, growing body of literature supporting reform in mathematics 

education (Richardson, 1996). This study examines the effects of sequence of instruction 

in a laboratory-based mathematics content course for elementary teachers on preservice 

teachers’ (PSTs') Mathematical Knowledge for Teaching (MKT) and pedagogical beliefs. 

As this particular content course included collaborative tasks through a laboratory 

component of the course, the focus of this study was to explore how these laboratory 

tasks are used. Laboratory activities can either precede a formal explanation of content as 

an exploratory task or follow an explanation confirming the concepts previously 

presented. While theory and literature from a reform-oriented research community 

advocates for an explore-explain sequence, still other learning theories and preservice 

teachers’ own experiences as students of mathematics support an explain-confirm 

sequence. This chapter discusses the need for considering sequence of instruction in a 

content course for elementary teachers. The chapter continues with a presentation of the 

problem statement, research questions, and professional significance of these inquiries to 

teacher education. 

Motivating Questions 

 While it is an ambitious task to prepare secondary teachers with the content and 

pedagogical knowledge they will need to teach a discipline they have chosen to pursue, it 
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is an even greater challenge to prepare elementary teachers to master various domains 

with which they may not be completely comfortable. Mathematics teacher educators are 

given the challenge of convincing future teachers to depart from twelve-plus years of 

experience learning mathematics in an oftentimes single (Ball, 1989; NCTQ, 2008) 

methods course while also ensuring teachers have adequate knowledge of the domain. 

How then does one persuade future teachers that their students truly can make sense of 

mathematics despite years of lived memorization, repetition, and vacuously learned 

processes? 

 Lortie (1975) offers a theory of an apprenticeship of observation in which 

educators teach as they were taught, not as they are told. Implications of this theory 

suggest that a content course could have a great effect on preservice teachers’ practice. 

One can imagine that implementing reform practices as a new teacher without 

experiencing such instruction as a student of mathematics would be difficult at best. As 

Schifter (2005) explains,  

One important way to help teachers develop new conceptions of what can happen 

in their classrooms is to allow them to experience as students classrooms that 

enact the new approach to teaching, classes that provide learning experiences 

powerful enough to challenge 16 and more years of traditional education. . . . 

Through mathematics lessons that challenge teachers at their own levels of 

mathematics competence, they can both increase their mathematical knowledge 

and experience a depth of learning that is, for many of them, unprecedented. (p. 

88, italics in original) 
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While mathematics content courses are a venue for preservice teachers to develop deep 

conceptual understandings of the fundamental ideas they will teach, these courses could 

also be an avenue for future teachers to explore mathematics themselves. Perhaps then 

preservice teachers could become apprentices of reform-based instruction. 

 Both the Conference Board of the Mathematical Sciences (2002, 2007) and 

National Council on Teacher Quality (2008) stress the importance of mathematics 

content courses for teachers and suggest at least nine credit hours of mathematics specific 

to elementary content. Some researchers have explored the effects of content courses on 

preservice teachers’ mathematical beliefs (Ambrose, 2004; Philipp et al., 2007; 

Charalambous, Panaoura & Philippou, 2009; Hart, 2002; Wilcox et al., 1990, Lubinski & 

Ott, 2004, Spielman & Loyd, 2004) and content knowledge (Mathews & Seaman, 2007; 

Lueke, 2009). However, the current research base does not focus on specific well-defined 

aspects of these courses, such as sequence of instruction. Instead, this research focuses on 

combining content courses with field experiences (Ambrose, 2004; Philipp et al., 2007) 

or methods courses (Hart, 2002) or makes general claims of being standards-based 

(Lubinski & Ott, 2004), non-traditional (Wilcox et al., 1990), or curriculum-based 

(Spielman & Lloyd, 2004) in nature with few details concerning how one might 

implement similar practices. 

Problem Statement 

 Despite recommendations for integrating education faculty in the instruction of 

mathematics content (CBMS, 2002, 2007), most content courses are taught by 

mathematics faculty (NCTQ, 2008) who are not professionally equipped to target the 
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specialized content knowledge required of elementary teachers. As Ball and colleagues 

noted, “In our research we began to notice how rarely these mathematical demands could 

be addressed with mathematical knowledge learned in university mathematics courses” 

(Ball, Thames & Phelps, 2008, p. 398). These courses are “neither demanding in the 

content nor their expectations of students” (NCTQ, 2008, p.47), with a superficial 

delivery of content appropriate for elementary or middle school students (NCTQ, 2008). 

Although mathematics courses for elementary teachers have the potential to 

influence both the pedagogical beliefs and MKT of teachers positively, they rarely do so: 

Unfortunately, subject matter courses in teacher preparation tend to be academic 

in both the best and worst sense of the word, scholarly and irrelevant, either way 

remote from classroom teaching . . . Although there are exceptions, the 

overwhelming majority of subject matter courses for teachers, and teacher 

education courses in general, are viewed by teachers, policy makers, and society 

at large as having little bearing on the day-to-day realities of teaching and little 

effect on the improvement of teaching and learning (Ball, Thames & Phelps, 2008 

p. 404). 

Therefore, there is evidence that content courses for elementary teachers are not meeting 

the needs of future teachers. 

Research Questions 

To better understand the effects of a mathematics course for elementary teacher 

on preservice teachers’ pedagogical beliefs and MKT, this study addresses the following 

questions: 
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1. How do the lived experiences, as students of mathematics, of a group of 

preservice teachers influence their pedagogical beliefs? 

a. What common experiences do these preservice teachers share as students 

of mathematics related to the Principles and Standards for School 

Mathematics (NCTM, 2000)? That is, are these experiences congruent or 

in conflict with reform-based instruction? 

b. How do these PSTs describe the nature of mathematics, and how do their 

beliefs regarding mathematics relate to their pedagogical beliefs and 

school experiences? 

c. What evidence of Lortie’s (1975) apprenticeship of observation emerges 

in these preservice teachers’ mathematical autobiographies? That is, do 

these preservice teachers plan to teach in ways similar to their own 

experiences as students?  

2. How does experiencing exploratory and confirmatory sequences of instruction 

influence a group of preservice elementary teachers’ pedagogical beliefs? 

 a. What pre-existing beliefs regarding sequence of instruction emerge from  

  PSTs' descriptions of their future classrooms and example lessons? 

 b. What evidence of changes in these beliefs regarding sequence of 

 instruction can be found in PSTs' example lessons at the end of the 

 semester? 
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c. What advantages and disadvantages in exploratory and confirmatory 

sequences do these preservice teachers perceive as a result of their 

experience in this course? 

H02-1 PSTs' intended instruction sequence is independent of their preferred 

sequence as students. 

H02-2 There is no significant difference in the proportion of PSTs that preferred 

exploratory sequences of instruction between those that experienced a 

five-week exploratory unit and those that experienced a 10-week 

exploratory unit. 

3. Is there evidence of a relationship between sequence of instruction and gains in 

preservice teachers’ MKT as measured by Learning Mathematics for Teaching 

(LMT, 2004, 2008)? 

H03-1: There is no significant difference in preliminary MKT scores and scores at 

the end of the course. 

H03-2:  There is no evidence of an interaction between pre-MKT and section or 

sequence groups. That is, the group effects are the same for all ability 

levels. 

H03-3: There is no significant difference in gains in MKT scores across sections 

within a particular unit when controlled for by preliminary MKT. 

H03-4: There is no significant difference in gains in MKT scores across 

exploratory and confirmatory sequence groups within a particular unit 

when controlled for by preliminary MKT. 
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H03-5:  There is no difference in MKT gains among preservice teachers that value 

exploratory sequences, confirmatory sequences, or are neutral during both 

exploratory and confirmatory units when controlled for by preliminary 

MKT. That is, preservice teachers’ sequence preference is not related to 

sequence-specific gains. 

4. How do an experienced instructor's perceptions of students' learning change when 

implementing exploratory sequences of instruction? 

a. Is there evidence from classroom observations that the instructor 

successfully alters the sequence of instruction across sections? 

Methodologies 

 This study used a mixed-model (Creswell, 2009) methodology in which both 

qualitative and quantitative methods are used depending on the particular research 

question. This mixed-model approach contrasts with other mixed-methods approaches in 

that there is no mixing phase in which qualitative and quantitative data inform each other.  

 Research Question One explores the lived experiences with school mathematics 

for group of PSTs. Because this question focuses on the "essence of human experiences 

about a phenomenon as described by participants" (Creswell, 2009, p. 13), a 

phenomenology is used. The aim of this research is to understand school mathematics 

from the perspective of a group of future teachers. As Bondas and Eriksson (2001) noted, 

"Phenomenological research pursues not only the sense people make of things but what 

they are making sense of" (p. 826). Therein, this research examines both PSTs' 

recollections of school mathematics and how these PSTs understand this phenomenon. 
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 Research Question Two explores PSTs' beliefs regarding how instruction should 

be sequenced. Qualitative inquiries into this question are considered through PSTs' 

descriptions of their future classrooms and example lessons as none of the quantitative 

measures review in Chapter Two met the needs of the current study. 

 Research Question Three explores the relationship between two variables, 

sequence of instruction and gains in MKT, when controlled for by initial MKT. 

Therefore, quantitative methods are used. 

 Research Question Four explores the process of implementing an exploratory 

sequence of instruction for an experienced instructor. This question is considered through 

a case study with the goal of exploring and describing the process of implementing an 

exploratory sequence of instruction. The subject of the inquiry (case), the instructor, is 

referred to as Ms. B, and her experiences and perception are situated in the context of the 

process of implementing an exploratory sequence of instruction. This case is "bound by 

time and activity" (Creswell, 2009, p. 13); therefore, in-depth inquiries drawing from 

multiple data sources were sustained over the course of the semester in which this 

instructor implemented an exploratory sequence.  

Significance 

 With a body of research focusing on evaluating and changing preservice teachers’ 

pedagogical beliefs though teacher preparation, this study adds to the research base by 

inquiring into beliefs preservice teachers establish as students of mathematics. With a 

better understanding of their lived experiences and beliefs, teacher educators can better 

meet the needs of future teachers. 
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 This study also attempts to support a body of literature showing the valuable 

influence content courses can have on future teachers’ beliefs and content knowledge for 

teaching mathematics. By looking at the sequence of instruction, as opposed to claiming 

general reform-based practice, this study has specific, targetable implications for content 

instructors. This research also has immediate implications for participants themselves. 

Having experienced exploring and making sense of mathematics, perhaps for the first 

time, preservice teachers may enter methods courses with a belief that their students can 

make sense of mathematics as they did. 

 In response to claims that content courses are not currently addressing the content 

knowledge for teaching mathematics (Ball, Thames & Phelps, 2008; NCTQ, 2008), this 

study also attempts to evaluate whether an exploratory sequence of instruction can help 

solve this problem. By evaluating the effects of sequence of instruction on gains in 

content knowledge, this study has the potential to add to a body of research supporting 

exploratory learning and the theories of learning on which these practices are founded. 

 Nonetheless, the aforementioned implications are not truly significant if 

instructors find this sequence of instruction unmanageable. By exploring the perspective 

of an experienced instructor attempting to use an exploratory sequence of instruction, 

perhaps for the first time, perceived barriers and benefits will be identified. Practical 

benefits add to the evidence for exploratory learning, and barriers can be corrected and 

avoided.  
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Definition of Key Terms 

Laboratory-based instruction. For the purposes of this study, laboratory-based 

mathematics instruction involves students working together in small groups to complete a 

mathematical task that oftentimes includes the use of concrete models, manipulatives, or 

other technologies. Manipulatives are defined as any concrete materials students use to 

solve a problem or complete a mathematical task. Models are any objects, drawings, or 

mental images that represent a concept and through which properties of this concept can 

be expressed. Other technologies include virtual (electronic) manipulatives, dynamic 

geometry software such as Geometer's Sketchpad®, calculators, or other computational 

or graphical applications used to simulate mathematical actions or represent concepts. 

The use of these manipulatives, models, or other technologies are oftentimes referred to 

as hands-on activities. 

Although concrete instructional aids are often used in laboratories, not all 

laboratories employ them; for example, a teacher may simply pose a problem for groups 

to consider. It is important, however, that the task targets specific mathematical content. 

Not included in the understanding of laboratory-based instruction presented here are 

games, brainteasers, riddles, or other activities that only incidentally address 

mathematical content, despite the fact that they may require critical thinking, reasoning, 

and problem solving. Also excluded from this understanding of laboratories are exercises 

void of context.  

Exploratory sequence of instruction. With the abovementioned understanding 

of laboratory-based instruction in mind, two classifications of laboratory-based 
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instruction are offered: exploratory and confirmatory. Exploratory laboratories are those 

in which the task posed precedes a formal explanation of the content addressed. Although 

the teacher may review fundamental ideas required to tackle the task or offer meaning to 

the models students might use before the laboratory, students gain experiences related to 

the intentionally-targeted content during the laboratory. A student may obtain or 

construct the desired knowledge during the laboratory, or this content may not become 

apparent until discussions that follow. Mastery during the activity is not imperative; 

albeit, exploratory laboratories do require that group members attempt the task before 

solution strategies are presented. 

 Confirmatory sequence of instruction. The second sequence of laboratory-

based instruction used in this study is a confirmatory sequence in which the teacher first 

explains the content after which group members collaboratively verify or apply 

mathematical ideas. Confirmatory laboratories include modeling a concept after it has 

been presented or applying a previously explained concept to a novel context. In 

confirmatory laboratories, the activity is used to solidify the ideas that the teacher 

presented. It should be noted that this typology of instructional sequence does not 

consider instruction in which content is explained concurrently with laboratory activities 

because this would more closely align with whole-class instruction, which does not meet 

the small-group criteria for laboratory-based instruction. 

 Reform-based instruction. Reform-based instruction, also referred to as 

standards-based instruction in some literature, aligns with the framework set forth by the 

National Council of Teachers of Mathematics (NCTM) in three reform documents: The 
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Curriculum and Evaluation Standards for School Mathematics (1989), The Professional 

Standards for School Mathematics (1991), and The Principles and Standards for School 

Mathematics (2000). Reform-based instruction emphasizes conceptual understandings of 

mathematics that go beyond performing procedures. Reform-based instruction differs 

from traditional mathematics instruction in the roles of students and teachers. In reform-

based instruction, students actively make sense of the mathematics as they engage in 

worthwhile mathematical tasks (NCTM, 1991), and teachers facilitate students' meaning 

making as they mediate the classroom discourse. NCTM intentionally avoids offering 

prescribed methods for reform-based instruction (NCTM, 1991) as teaching is considered 

a complex endeavor that cannot be reduced to an instructional formula. For this study, 

reform-based instruction includes practices that embody the five process standards 

(NCTM, 2000): problem solving, reasoning and proof, communication, connections, and 

representations. 

 Problem solving is defined as "engaging in a task for which the solution method is 

not known in advance" (NCTM, 2000, p. 52). Students enact the reasoning and proof 

standard as they formulate and explore conjectures and justify their claims by expressing 

their analytical thinking. The communication standard stresses students expressing 

mathematics orally and in writing as they "organize and consolidate their mathematical 

thinking" (NCTM, 2000, p. 60). The connections standard includes both connections 

among mathematical concepts and applications to meaningful contexts. Representation 

includes both the process of embodying mathematics and the symbols, diagrams, 

pictures, graphs, and models used to stand for and idea. That is, representation includes 
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both "the act of capturing a mathematical concept or relationship in some form and . . . 

the form itself" (NCTM, 2000, p. 67). 

 Traditional mathematics instruction. In contrast to reform-based instruction, 

traditional instruction does not exemplify the process standards (NCTM, 2000) and 

focuses on duplicating procedures. A more detailed description of traditional 

mathematics instruction is reported in Chapter Four as four instructional phases—review, 

delivery of content, worked examples, and practice—emerged from PSTs' descriptions of 

a school mathematics void of process standards.  

Teacher beliefs. Although the review of literature that follows in Chapter Two 

more completely develops the construct of beliefs, it is important to note that 

epistemological beliefs refer to convictions regarding how students learn. Pedagogical 

beliefs relate to practices that a teacher thinks promote student learning. The current 

study also focuses on pedagogical beliefs specific to sequence of instruction, that is how 

PSTs suppose activities and explanations should be ordered to optimize student learning. 

Mathematical Knowledge for Teaching. Based on the work of the Learning 

Mathematics for Teaching research group (Ball, Thames & Phelps, 2008; Hill, Ball & 

Schilling, 2008), MKT is defined as "mathematical knowledge 'entailed by teaching'—in 

other words, mathematical knowledge needed to perform the recurrent task of teaching 

mathematics to students" (Ball, Thames & Phelps, 2008). This construct is developed 

more completely in the review of literature that follows in Chapter Two. 



 

14 

Researcher's Prespective of Sequence of Instruction 

 As with all research, the fact that the researcher chooses to explore a phenomenon 

introduces the influence of the researcher. Therein, the bias of the researcher influences 

aspects of all research. Understanding the influence of my own bias on the current study, 

I aim to be aboveboard in my own beliefs regarding how instruction should be 

sequenced. 

 I believe activities and explanations should follow an exploratory sequence of 

instruction whenever possible. This belief is grounded by the educational goal I envision 

for students. With the goal of preparing students to independently confront novel 

problems, I believe an exploratory sequence of instruction better prepares students to face 

such non-routine problems because of the benefits of learning through discovery noted by 

Bruner (1964, 1967) and the instructional implications of NCTM reviewed in detail in 

Chapter Two.  

 I find value in all of the theoretical perspectives presented in Chapter Two, 

including those that support confirmatory sequences of instruction, and do not ascribe to 

a single theory of learning. However, I believe the theories that are argued to support a 

confirmatory sequence of instruction in Chapter Two are based on less ambitious 

educational outcomes—namely, producing and predicting behaviors (or, in the context of 

mathematics, producing rote computational results). 

 With the ambitious goal of creating “as autonomous and self-propelled a thinker 

as we can” (Bruner, 1961, p 23) and an eclectic theoretical perspective, I believe an 

exploratory sequence of instruction better prepares students to call upon, use, or create 
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the mathematical knowledge needed to confront problems that they will face outside the 

classroom. 
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CHAPTER TWO 

Review of Literature 

 This chapter reviews literature relevant to the current study. The chapter is 

divided into three sections. First, theoretical bases for confirmatory and exploratory 

sequences of instruction are examined. Second, research of teachers' beliefs is reviewed. 

Third, literature pertaining to teachers' Mathematical Knowledge for Teaching is 

considered. 

Theoretical Bases for Sequence of Instruction 

 The purpose of this section is to show that sequence of instruction is a valuable 

instructional component supported by theories of learning and instruction that are drawn 

from the current research base. Therein, the current study's inquiries into instructional 

sequence are not haphazard but purposefully chosen and grounded in theories supported 

by the literature. This section examines a theoretical framework for both confirmatory 

and exploratory laboratory sequences. First, the theoretical bases for confirmatory 

laboratories are examined in Gagné’s conditions of learning, Bandura’s social-cognitive, 

and information processing theories. Then, an exploratory laboratory sequence is shown 

to be congruent with a constructivist epistemology. Within the context of constructivism, 

the theoretical contributions of Piaget, Vygotsky, and Bruner and instructional 

implications of the National Council of Teacher of Mathematics (NCTM) are used to 

support an exploratory laboratory sequence. 

 Confirmatory tasks. One means of implementing laboratory-based instruction is 

through confirmatory tasks in which the teacher first explains the content after which 
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students collaboratively apply the concepts learned, practice procedures, and verify 

mathematical ideas through laboratory activities. Confirmatory laboratories also include 

modeling a concept after it has been presented or applying a previously explained 

concept to a different or novel context. In confirmatory laboratories, the teacher uses 

mathematical tasks to solidify the ideas previously presented. The instructor first delivers 

the content and then reinforces it through the laboratory task. 

 Gagné’s conditions of learning. From his research training pilots during World 

War II (Gagné, 1962), Gagné developed a hierarchical theory of learning with an 

accompanying instructional theory (Gagné, 1968). Gagné (1962) critiqued John Dewey’s 

(1938, 1951) learning by doing and theories of conditioning, in which the performance of 

the behavior precedes the response of the teacher, because action leads or occurs in 

tandem with learning. Instead, Gagné used task analysis to identify intermediate, 

observable outcomes of learning, which he called capacities of learning. Gagné 

suggested that instructors evaluate the prerequisite knowledge or skills required to 

accomplish the desired outcome and decompose subordinate capabilities in a hierarchical 

fashion. Thus, Gagné viewed learning as a linear, connected, and cumulative process of 

systematically and sequentially acquiring knowledge and skills that build to an end goal.  

 For Gagné, instruction consisted of carefully sequencing and developing ancillary 

skills to achieve the desired educational outcome. In addition to his conditions of 

learning, Gagné offered a theory of instruction (1985) consisting of a sequence of nine 

instructional events. Of particular interest to this research are events four through six for 

which the instructor is to (4) present the content, (5) provide learning guidance, and (6) 
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elicit performance. With the presentation of content preceding performance (practice), 

Gagné’s theory of instruction is compatible with a confirmatory laboratory sequence. 

Further, Gredler (1992) described the process of learning guidance, in which subordinate 

skills are developed through cues and clues: “The learner discovers how to combine some 

previously learned rules to generate a solution to a problem that is new to the learner” (p. 

159, italics added). Gagné’s theory of learning is congruent with a confirmatory 

laboratory sequence because the teacher must carefully guide the acquisition of 

sequenced principles before the desired outcome is tested in real-world or laboratory 

contexts.  

 Social-cognitive theory. Social-cognitive theory views learning in a communal 

context. Social-cognitive theorists believe that learners can obtain information from 

observing others, an idea that departed from behaviorism’s focus on individual 

reinforcement. This theory grew from Bandura’s (Bandura, Ross & Ross, 1961) study 

which found that children observing aggressive acts towards an inflatable doll were more 

likely to display aggressive acts in similar situations. Modeling is a significant 

component of learning for followers of social-cognitive theory: “Individuals learn new 

behaviors through the observation of models and through the effects of their own actions” 

(Gredler, 1992, p. 309). In addition to the individual reinforcement of behaviorism, 

Bandura believed models can vicariously reinforce learners. Social-cognitive theorists 

believe children can learn from observing others interact with the environment. 

 With an emphasis on modeling, social-cognitive theory supports confirmatory 

laboratory sequencing. In this context, the teacher is to model the desired behaviors. The 
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students perceive the teacher’s success with the behavior as reinforcing. Seeing the 

teacher successfully complete the task gives students a sense of efficacy (Bandura, 1977) 

and the expectation of similar success. Gredler (1992) identified three components for 

social-cognitive-based instruction: providing appropriate models, creating a reinforcing 

expectation of success, and guiding students as they rehearse behaviors. The explanation 

provided by the teacher, which may include worked examples, serves as a model. The 

confirmatory laboratory activity then supplies a social context for rehearsal while also 

providing additional examples. 

 Information-processing theory. Information processing theory views the mind as 

analogous to a computer. Information is taken in through the sensory registers and passed 

along to short-term or working memory, which is comparable to a computer’s Random 

Access Memory (RAM). One’s short-term memory is limited by time and capacity, so 

information is often lost from working memory before it can be stored in long-term 

memory. Long-term memory, similar to a computer’s hard drive, holds networks or 

schemata of information. The executive control acts as the operating system of the mind 

and activates schemata, passing information from working to long-term memory. 

Learning can then be understood as a process of attending to, coding, storing, and 

retrieving information (Atkinson & Shiffrin, 1968; Driscoll, 2005; Grendler, 1992; Lutz 

& Huitt, 2003). 

As Gredler (1992) explained, from an information processing perspective, “a new 

strategy should be modeled by the teacher accompanied by explicit, detailed information 

about ways to implement the process and when and where to use the strategy” (p. 197). 
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To reduce demands on short-term memory, the teacher should first direct students’ 

attention to trim extraneous input. Then, she should activate relevant schema, deliver 

manageable portions of content, and allow students to practice. Driscoll (2005) noted 

instructional implications for information-processing theory in which she recommended 

“providing organized instruction” (p 104) followed by “arranging extensive and variable 

practice” (p. 105). The confirmatory laboratory activity then acts as a time to practice in 

order to facilitate the processes of encoding.  

 Cognitive load. Of particular importance to our typology of laboratory-based 

instruction is the limited nature of working memory. Kirschner, Sweller, and Clark 

(2006) explained that working memory can be overburdened during exploratory tasks in 

their piece "Why Minimum Guidance During Instruction Does not Work: An Analysis of 

the Failure of Constructivist, Discovery, Problem-based, Experimental, and Inquiry-based 

Teaching." These scholars argued that during minimally guided instruction learners must 

search the problem space, discriminate and attend to relevant information, and activate 

pertinent schemata from long-term memory, placing great demands on the limited 

working memory. Therefore, the overworked short-term memory has little capacity 

remaining to code and store the newly acquired information, and the mathematical 

content may not be successfully stored in long-term memory. From a cognitive load 

perspective, “learning and problem solving are different and incompatible processes” 

(Sweller, van Merrienboer, & Paas 1998, p 271). 

Therefore, an exploratory laboratory sequence would not be congruent with this 

theory of learning. Instead, Sweller and colleagues (1998) advocated for teacher-worked 
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examples: “Studying worked examples also eliminates the means-ends search, and so 

heavy use of worked examples as a substitute for problem solving may be also 

beneficial” (p 273). After students study the teacher-worked examples, these scholars 

recommended that students work completion problems with a well-defined problem 

space to “provide a bridge between the worked examples and conventional problems” 

(275-276). This sequence of teacher-worked examples followed by completion problems 

is clearly congruent with a confirmatory laboratory sequence. 

 Exploratory tasks. Exploratory laboratories are those in which the task posed 

precedes a formal explanation of the content addressed. Learning then occurs as students 

collaboratively grapple with the task. This is not to say that the instructor does not 

scaffold students’ exploration of the content, only that this content has not been formally 

presented through lecture. An assumption of this sequence, which is argued in more 

detail in the section that follows, is that more explanation, as compared to a confirmatory 

laboratory sequence, will come from students themselves, both during the collaborative 

laboratory task and the formal discussion of the content that follows the task. 

 Constructivism. The premise of constructivism is that students create their own 

understanding. It is the learner who actively creates knowledge as she interacts with the 

world and reflects on these experiences. For the constructivist, knowledge is not 

conveyed; it must be constructed. In the section that follows, the ontological assumptions 

of constructivism are discussed and applied to mathematics. The contributions of the 

theories of Piaget and Vygotsky to constructivism are examined and applied to an 

exploratory laboratory sequence. 
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 Ontological assumptions of constructivism. Paramount to radical constructivism 

are its assumptions regarding the origins of knowledge. Radical constructivists (von 

Glaserfeld, 1990, 1998, 2005) view the knowledge one constructs as dependent on one’s 

experiences; therefore, one cannot represent an independent reality because she has no 

access to it. Constructivists question the existence of a collective reality as each 

individual constructs reality based on her individual experiences. These ontological 

debates, however, are not new. As many researchers (e.g., Dossey, 1992; Cooney & 

Wiegel, 2003; von Glaserfeld, 1990) have noted, this debate dates back at least as far as 

Plato and Aristotle. Plato believed that knowledge was discovered from an external, 

universal reality, whereas Aristotle thought knowledge was created from one’s perceived 

representation of the world. As Piaget (1970) explained,  

For the empiricist point of view, a “discovery” is new for the person who makes 

it, but what is discovered was already in existence in external reality and there is 

therefore no construction of new realities. . . . By contrast, for the genetic 

epistemologist, knowledge results from continuous construction, since in each act 

of understanding, some degree of invention is involved; in development, the 

passage from one stage to the next is always characterized by the formation of 

new structures which did not exist before, either in the external world or in the 

subject's mind (pp 77). 

For the radical constructivist, the more important issue is not whether the knowledge one 

constructs comes from an independent, unambiguous reality, but whether it is viable (von 

Glaserfeld, 1990), that is whether it is useful in accomplishing a task. 
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 “Knowledge is not something people possess in their heads, but rather something 

people do together” (Gergen, 1982, in Wheatley 1991, p11). From the perspective of 

radical constructivism, a confirmatory laboratory sequence would not be appropriate 

because the instructor cannot explain a universal mathematical body of knowledge 

because she does not have direct access to the sovereign reality from which the body of 

knowledge is drawn. Additionally, constructivists do not consider mathematics to be a 

static body of knowledge but “the activity of constructing relationships and patterns” 

(Wheatley, 1991, p 11). Therein, “mathematics should be thought of as a human activity 

of ‘mathematizing’—not as a discipline of structures to be transmitted, discovered, or 

even constructed” (Fosnot, 2005, p 280). 

 This view of mathematics as an activity, not a complete set of concepts, is more 

congruent with an exploratory laboratory sequence. Students learn about mathematics by 

participating in mathematics: “Mathematics is effectively learned only by experimenting, 

questioning, reflecting, discovering, inventing, and discussing” (Ahmed, 1987 in 

Wheatley, 1991, p 13). These processes by which Ahmed argues mathematics is learned 

are also the processes by which one does mathematics, and these processes should be 

fostered in an exploratory laboratory sequence. With a view of mathematics as an 

activity, “to ‘do’ mathematics is to conjecture—to invent and extend ideas about 

mathematical objects—and to test, debate, and revise or replace those ideas” (Schifter, 

2005, p 81). 

 Contributions of Piaget. Much of Piaget’s genetic epistemology (1961, 1970, 

1972, 1977, 1980) is situated in an age-dependent theory of development in which 
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learners pass through four stages: sensory motor, preoperational, concrete operational, 

and formal operational stages. Of particular interest to constructivists, however, is 

Piaget’s description of how learners move from one stage to another when experiencing 

disequilibrating situations in which they reflect on actions. In the discussion that follows, 

this theory of learning is not bound to an age-dependent stage context; learners of any age 

or stage of development are assumed by constructivists to learn through these processes. 

 Through his work with pond snails, Piaget observed that the activity of an 

organism drives its evolution (Piaget, 1980). New structures cause an imbalance in the 

genome. This perturbation of the genome causes a series of possibilities to result in the 

form of mutations. The organism then returns to a stable state, referred to as equilibrium, 

through the process of autoregulation as these new structures are either accepted or other 

structures are reorganized to integrate these changes. 

 Similarly, Piaget saw learning as cognitive evolution in which learners are 

perturbed and either assimilate or accommodate knowledge as they return to a state of 

equilibrium: “In short, every new problem provokes a disequilibrium (recognizable 

through types of dominant errors), the solution of which consists in a re-equilibration, 

which brings about a new original synthesis of two systems" (Piaget, 1961, p 281). 

Learners assimilate new knowledge that is congruent with their current understanding of 

the world. Accommodation requires a reorganization of knowledge structures, referred to 

as schemata, to integrate meanings. Of particular importance for the constructivist are the 

situations that place the learner in a state of disequilibrium and encourage the learner to 

autoregulate. As Piaget (1977) explained, “It is clear that one of the sources of progress 
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in the development of knowledge is to be found in nonbalance, as such which alone can 

force a subject to go beyond his present state and to seek new equilibriums” (p 12). 

Piaget equated this non-balance or disequilibrium with motivation as it “produced 

the driving force of development” (Piaget, 1961, p 13). Disequilibrium can be considered 

the catalyst for learning. Learners experience disequilibrium and are perturbed to make 

sense of the situation (re-equilibrate) when they realize their current understanding is no 

longer sufficient:  

[One] source of nonbalance consists of gaps which leave requirements unfulfilled 

and are expressed by the insufficiency of a scheme. . . . a gap becomes a 

disturbance when it indicates the absence of an object, the lack of conditions 

necessary to accomplish an action, or want of knowledge that is indispensable in 

solving a problem. (Piaget, 1977, p 19) 

Sources of disequilibrium may then be positive, in the sense of a perceived contradiction 

when the learner’s current understanding is challenged, or negative, when the learner has 

gaps in her understanding (Piaget, 1980). 

 As Fosnot and Perry (2005) wrote, “Disequilibrium facilitates learning. ‘Errors’ 

need to be perceived as a result of learners’ conceptions, and therefore not minimized or 

avoided” (p 34). In regard to an exploratory laboratory sequence, maximizing learning 

becomes a matter of maximizing disequilibration and the resulting re-equilibration 

through disturbances to students’ current understandings in the form of laboratory tasks. 

The task perturbs students to a state of disequilibrium in which they collaboratively make 
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sense of the mathematics, returning to a state of equilibrium. The whole-class explanation 

that follows would also assist students as they return to equilibrium.  

This is not to say that, from a constructivist's perspective, one cannot learn 

through traditional lecture-practice sequences; certainly most learners have confronted 

gaps in their understanding and constructed knowledge through these traditional means. 

However, the claim here is that an exploratory laboratory sequence maximizes 

disequilibration and encourages students “not simply to return to the former state, but to 

go beyond it in the direction of the best possible equilibrium” (Piaget, 1980). 

 When examining a confirmatory laboratory sequence from a Piagetian 

perspective, the purpose of the laboratory is less clear because the presentation of 

information is assumed to both disturb and reconcile one’s understanding. Further, the 

purpose of the laboratory is not to disequilibrate and re-equilibrate but to produce 

answers in line with the explanation of the teacher: 

Students of mathematics often apply only one criterion to their evaluation of their 

own constructs, asking “is it in agreement with the experts?” (Or, in less 

constructivist terms, “Is it right?”). As a result, their knowledge of mathematics 

becomes isolated and formalized from the rest of their experiences, which is 

constructed from their action on the world in a more spontaneous and interactive 

fashion. Memorization and imitation of examples produce the “right answer,” the 

desired outcome, in a local, well-defined problem space and thereby outpace the 

more difficult endeavor of constructing the idea and of coordinating its 
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interactions with the other qualities of powerful construction (Confrey, 1990, p. 

112). 

Confrey did not argue that students could not construct knowledge through more passive, 

traditional means but that these constructions are less powerful than those that are 

actively constructed through authentic problem-solving tasks. Returning to the biological 

basis of Piaget’s epistemology, recall that “The organism acts constantly upon its 

environment instead of merely submitting to it” (Piaget, 1980, p112).  

 Contributions of Vygotsky. The premise of Vygotsky’s (1962) theory of learning 

is that children obtain knowledge by interacting with the world. Knowledge is thus the 

product of social interactions and experiences, and these experiences are situated within a 

culture and social situation. Therefore, knowledge is dependent on time and place. 

Vygotsky thought knowledge is constructed as the learner attempts to mediate her 

environment. Linked to Vygotsky’s emphasis on cultural and social interactions, 

language and the use of symbols are also integral in making meaning of one’s world. 

Vygotsky “draws our attention to the larger social structures in which educating is 

embedded” (Confrey, 1995a, p. 41), introducing a socio-cultural perspective to the 

learning of mathematics. Vygotsky also contributed the concept of the zone of proximal 

development, which is a range of tasks that a learner might be able to accomplish with 

assistance from a more capable person, perhaps a more experienced peer or an adult 

(Vygotsky, 1978). Scaffolding, in which the teacher controls portions of a task beyond a 

student’s current capability in order that the learner will succeed with the task, is also a 

contribution of this theory. 
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 While the zone of proximal development is a significant contribution, the 

influence of social interactions, culture, and language are most significant to social 

constructivists. Whereas the constructivist focuses on how the individual constructs her 

own knowledge, the social constructivist is concerned with how groups construct 

knowledge collaboratively. Sierpinska and Lerman (1996) described this distinction as a 

mere difference of perspective. Constructivists view knowledge from the point of view of 

the individual, whereas social constructivists take the view of an observer. Groups then 

construct knowledge as they interact with culture and environment. Sierpinska and 

Lerman (1996) also underscored differences in how these three theories view language. 

For the constructivist, language is an expression of knowledge. For the Vygotskian, 

language is a medium through which cultural knowledge is transmitted. For the social 

constructivist, however, language is knowledge. Language creates reality and cannot be 

seen as a separate object; knowledge is discourse. Therein, meaning is taken as shared 

(Yackel & Cobb, 1996). Ideas are taken to be true as they make sense to the community. 

As individuals are disequilibriated so is the culture. Through language group members’ 

ideas converge toward a culturally accepted reality. 

 Consequences of the social constructivists’ epistemology are seen through the co-

construction of sociomathematical norms (Yackel & Cobb, 1996; Yackel, Cobb, & Wood 

1991). These are normative aspects of mathematical discourse constructed through 

whole-class or group dialogue, not predetermined or imposed by the teacher. While the 

teacher guides the discourse as a representative of the mathematical community, norms 

are constructed together. Sociomathematical norms include what an acceptable 
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mathematical explanation sounds like. What does it mean to be mathematically different? 

Elegant? Efficient? 

 One assumption of this study is that the discourse in an exploratory laboratory 

sequence will differ from a confirmatory sequence both during the laboratory tasks and 

the explanation. First, consider group discussions during a confirmatory laboratory 

sequence. Because the teacher has already presented the content as infallible, 

conversations shift from convincing each other of the validity of one’s strategy to 

comparing the results to the content presented by the teacher. As Confrey (1990) noted 

above, students then focus on the correctness of the solution, insofar as it agrees with the 

teacher. Compare this to the exploratory laboratory sequence in which a solution strategy 

is less obvious. Conversations focus on the legitimacy of the mathematics constructed as 

students critique each other’s ideas until a commonly agreed upon strategy emerges.  

 In addition, discourse during the explanation phase is assumed to differ between 

sequences. During the whole-class discussion that precedes the laboratory task, the 

teacher presents the content as certain with minimal input from students in that this 

information is new to them. In contrast, consider a discussion that follows an exploratory 

laboratory sequence. Here individual groups have already constructed strategies and 

come to a taken-as-shared (Yackel & Cobb, 1996) understanding. Now these groups can 

converge on a whole-class understanding with the teacher mediating the discussion. 

Further, students have experienced the mathematics being discussed and are more likely 

to contribute to a teacher-led discussion than when the information is presented as new 

and external to the students. 
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 Bruner. While Bruner’s writings have a great number of educational implications, 

his research in modes of representation and discovery learning are particularly pertinent 

to the research presented here. Bruner’s theory of modes of representation is considered a 

theory of learning as it suggests that students come to know mathematics as they move 

from the concrete to the abstract. In contrast, Bruner’s contributions to discovery learning 

are considered to be a theory of instruction. Certainly Bruner’s ideas of representation 

can be integrated into discovery, but these ideas are not necessarily synonymous. In this 

section, Bruner’s research on representations is described. Then, his writings on 

discovery are considered. 

 Modes of representation. Bruner made the seemingly bold claim that “any subject 

can be taught effectively in some intellectually honest form to any child at any stage of 

development” (Bruner, 1960, p 33). Bruner supported his thesis by noting “Any idea or 

problem or body of knowledge can be presented in a form simple enough so that any 

particular learner can understand it in a recognizable form” (Bruner, 1967, p 44). 

Whereas Piaget might have asked the question of whether the learner is ready for the 

content, Bruner was more interested in how the content can be made accessible to the 

student (Driscoll, 2005). 

 Bruner believed that subject matter could be adapted to the learner by altering its 

economy, power, and mode of representation (Bruner, 1967). Economy is defined as “the 

amount of information that must be held in the mind and processed to achieve 

comprehension” (Bruner, 1967, p45). For example, a formula is a more concise 

(economical) way to summarize a phenomenon as compared to a list of quantities in a 
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table. Power is the degree to which the learner makes connections between ideas in order 

to use the knowledge at hand. For example, memorizing an alphabetical list of connected 

cities would be less powerful, when attempting to develop a travel route, than a network 

diagram illustrating these connections. An economical structure could certainly be 

powerless; consider, for example, a formula that might be useless to a learner. However, 

it is less common for a powerful structure to be uneconomical (Bruner, 1967). As 

highlighted below, both economy and power vary with mode of representation. 

 Bruner (1964, 1967) described knowledge through three domains: enactive, 

iconic, and symbolic representations. In an enactive mode, learners construct knowledge 

through motor responses. For example, a learner may be able to act on principles of 

center when positioning herself on a seesaw yet cannot articulate what she has done. 

Another learner, using an iconic representation, may use pictures, graphics, or mental 

images, to summarize a concept. This learner may relate to the concept of a lever through 

an image in a textbook in which the pivot and fulcrum are illustrated. In a symbolic 

mode, learners relate to content through a symbolic system, often language. A student 

may use this representation to express the phenomenon of a lever orally or using 

mathematical equations related to Newton’s laws of motion. 

 This theory of learning has direct instructional implications; just as children learn 

by progressing through these modes, instruction should progress in a similar manner. 

Bruner advocates for instruction to be sequenced from enactive through iconic to 

symbolic but notes that students with a well-developed symbolic system may forgo the 

first two stages (Bruner, 1964, 1967). This sequence of representation was illustrated in 
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research (Bruner, 1967) in which four eight-year-old children learned to factor quadratic 

equations through these three modes of representation by first physically arranging 

algebra tiles (enactive), then drawing the tiles (iconic), and finally representing these 

arrangements with algebraic expressions (symbolic). Similarly, Bruner taught ten nine-

year-olds about group theory through a sequence of actions, images, and symbols 

(Bruner, 1967). 

 As explanations are expressed through language, a symbolic representation, 

Bruner’s theory of representations is more congruent with an exploratory laboratory 

sequence. During exploratory tasks, group members first enact the mathematics, perhaps 

using concrete manipulatives and calling on various iconic representations, before the 

symbolic whole-class explanation. In contrast, a confirmatory laboratory sequence moves 

from a symbolic, or even iconic, mode of representation during the explanation to 

enacting the mathematics during the laboratory task. 

 Discovery. For Bruner, the goal of education is to create “as autonomous and self-

propelled a thinker as we can” (Bruner, 1961, p 23). It should be noted that the aim of 

education for Bruner is quite different from other theories examined here that measure 

learning by one’s ability to complete a procedure in a well-defined problem space. To 

achieve this ambitious objective, Bruner advocated for discovery learning, which he 

defined as “all forms of obtaining knowledge for oneself by the use of one’s own mind 

 . . . permitting the student to put things together for himself, to be his own discoverer” 

(Bruner, 1961, p.22). 
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Although Bruner did not go into details of the ontological nature of knowledge, 

the term discovery often implies the existence of an external, objective reality that can be 

discovered, which is not a common assumption of constructivists: “It is difficult to talk 

about discovering something, such as a pattern or a structure, if we are unwilling to 

regard it as ‘there,’ existing apart from the individual” (Goldin, 1990, p 45, italics added). 

Nevertheless, Piaget, a founding contributor to the constructivist epistemology, also used 

the language of discovery (1961, 1970, 1977). The constructivist may therefore interpret 

discovery as the invention or reinvention of knowledge. 

 For Bruner, discovery is not haphazard; scaffolds and models are needed (Bruner, 

1971). This form of well-scaffolded, purposeful exploration, described in his later work 

(Bruner, 1971), is similar to guided discovery, as opposed to pure discovery. In his theory 

of instruction, Bruner advocated for activation, maintenance, and direction in discovery 

(Bruner, 1967). During activation, teachers pique and maintain students’ interest by 

presenting a task with some “optimal level of uncertainty” (Bruner, 1967, p. 43) or 

ambiguity to invoke students’ curiosity. Direction is needed to ensure students have a 

“sense of the goal of the task” (Bruner, 1967, p. 44). The exploration is maintained 

through guidance provided by the teacher to ensure that the consequences of exploring 

incorrect alternatives do not exceed the benefits. 

 Bruner gave a number of benefits for learning through discovery. Although his 

terminology, identified in italics, changed over the course of his writings, these benefits 

are more-or-less consistent. First, learning through discovery increases the intellectual 

potency (Bruner, 1961) or information flow (Bruner, 1971). That is, “Practice in 
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discovering for oneself teaches one to acquire information in a way that makes that 

information more readily viable in problem solving” (Bruner, 1961, p 26). Bruner also 

referred to the connections made in the storage of knowledge through discovery as 

compatibility (Bruner, 1971). Bruner argued that learning through discovery allows the 

learner to “fit [new material] into his own system of associations, subdivisions, 

categories, and frame of reference, in order that he can make it his own and thus be able 

to use the information in a fashion compatible with what he already knows” (Bruner, 

1971, p 71). Because of these connections, learning through discovery aids in the 

conversation of memory (Bruner, 1961). Bruner explained that difficulties remembering 

are due to retrieval and that learning through discovery allows one to organize 

information such that it can be recovered more efficiently: “organization of information 

that reduces the aggregate complexity of material by imbedding it into a cognitive 

structure a person has constructed will make that material more accessible for retrieval” 

(Bruner, 1961, p. 32). 

Additionally, students who learn through discovery experience a shift from 

extrinsic to intrinsic rewards (Bruner, 1961). Through discovery motives move toward 

“the autonomy of self-reward or, more properly by reward that is discovery itself” 

(Bruner, 1961, p. 26). Gratification comes from coping with the task and satisfying one’s 

own curiosity. Therein, the learner is activated (Bruner, 1971) such that she “feels 

rewarded for the exercise of thinking” (p. 71). 

Further, learning through discovery teaches heuristics for problem solving: “It is 

only through the exercise of problem solving and the effort of discovery that one learns 
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the working heuristics of discovery, and the more likely is one to generalize what one has 

learned” (Bruner, 1961, p 31). It is through engaging in problem solving tasks that one 

learns strategies for confronting problems. Problem solving through hypothesizing 

(Bruner, 1971) gives students experiences framing conjectures and developing a plan to 

test these claims.  

 Learning through discovery also changes students’ attitudes (Bruner, 1971) 

toward their perceived capacity to solve problems. Although Bruner was not yet using the 

language of Bandura’s (1977) self-efficacy, these constructs are quite similar. Bruner 

believed that  

You have got to convince students (or exemplify for them, which is a much better 

way of putting it) of the fact that there are implicit models in their heads which 

are useful. . . to have the children recognize that they can use their own heads in 

their own education. (Bruner, 1977, pp72-73) 

Therein, Bruner saw discovery learning as a means to show students that they can, in fact, 

solve non-routine problems. 

 Lastly, students can discover concepts for which they do not yet have the 

language to describe, which Bruner (1971) referred to as self-loop. Consider the 

aforementioned example of a student that can position herself on a seesaw to balance her 

opposing totterer but does not yet have the language to explain what she has done. 

Integrating Bruner’s theories of representation and discovery, one might say that students 

in the enactive stage can learn through discovery when traditional means of instruction, 

which rely on symbolic representation, are not yet accessible. 
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 Certainly discovery learning is congruent with an exploratory laboratory sequence 

insomuch as students put things together for themselves. Therein, each of the 

abovementioned benefits of learning through discovery also applies to learning through 

exploratory laboratory tasks. 

 Standards of the NCTM. Situated within a constructivist theoretical framework, 

the instructional perspective of the National Council of Teachers of Mathematics 

(NCTM) is considered in support of an exploratory laboratory sequence. As mentioned 

previously, constructivism is a theory of learning, not a theory of instruction. However, 

one can draw a number of instructional implications from this epistemology. As Stiff 

(2001), President of NCTM 2000-2002, pointed out, “Like unicorns, ‘constructivist math’ 

does not exist. There are, however, several theories about learning that are categorized as 

‘constructivism,’ and they can be linked to Standards-based mathematics,” yet Stiff 

warned that “NCTM's Principles and Standards is not synonymous with constructivism” 

(Stiff, 2001). Nevertheless, constructivism is arguably a major theoretical contributor to 

NCTM’s work with the (1990) JRME monograph, Constructivist Views on the Teaching 

and Learning of Mathematics, devoted to this theory. Just as NCTM does not commit to a 

single theory of learning, neither does the council subscribe to one instructional strategy: 

“Teaching is a complex practice and hence not reducible to recipes or prescriptions” 

(NCTM, 1991, p. 22). 

 Despite NCTM’s eclectic theoretical stance, this section argues that the sense 

making that takes place during an exploratory laboratory sequence is attuned to the 

problem solving and reasoning and proof standards for school mathematics (NCTM, 
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2000) and the worthwhile mathematical tasks professional standard (NCTM, 1991). 

Using a task analysis guide published by NCTM (Stein et al., 2000), exploratory tasks are 

shown to have a higher cognitive demand than confirmatory laboratories. Further, it is 

argued that the teacher’s role in discourse and students’ role in discourse professional 

standards (NCTM, 1991) are embodied in an exploratory laboratory sequence. 

 Worthwhile mathematical tasks. In an exploratory laboratory sequence, students 

confront problems before the teacher has prescribed a solution strategy. Therein, the 

problem-solving standard is illustrated as “Problem solving means engaging in a task for 

which the solution method is not known in advance” (NCTM, 2000, p. 52). The problem 

solving that takes place during an exploratory laboratory sequence is “not only a goal of 

learning mathematics but also a major means of doing so” (NCTM, 2000, p. 52). Just as 

Bruner (1961) stated,  

It is only through the exercise of problem solving and the effort of discovery that 

one learns the working heuristic of discovery, and the more one has practice, the 

more likely is one to generalize what one has learned into a style of problem 

solving or inquiry that serves for any kind of task one may encounter (p. 31). 

That is, through the problem solving that takes place during exploratory laboratories, 

students, in turn, become better problem solvers. 

 One of the tenants of the reasoning and proof standards is that students “make and 

investigate mathematical conjectures” (NCTM, 2000, p 57). If the teacher has already 

presented the concept, as in a confirmatory laboratory sequence, there is little to speculate 

about during the laboratory task. An exploratory laboratory sequence, however, invites 
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students to express their conjectures and describe their thinking. NCTM’s focus on 

making and testing conjectures also parallels Bruner’s (1971) aforementioned discussion 

of hypothesizing in discovery. NCTM (2000) notes, “Doing mathematics involves 

discovery. Conjecture—that is, informed guessing—is a major pathway to discovery” (p. 

57). 

 One means of implementing these standards is by posing worthwhile mathematic 

tasks (NCTM, 1991), which “call for problem formulation, problem solving, and 

mathematical reasoning” (p 25). These are tasks that “capture students’ curiosity, and that 

invite them to speculate and pursue hunches” (p 25). Considering a confirmatory 

laboratory sequence, there is little left to speculate about other than whether one’s result 

agrees with the teacher, as Confrey (1990) noted above in her discussion of 

constructivism. Therein, the “explain-practice” sequence is “a poor source for tasks” 

(Wheatley, 1991, p 16). Instead, “Favorable conditions for learning exist when a person 

is faced with a task for which no known procedure exists” (Wheatley, 1991, p 15), as is 

the case with an exploratory laboratory sequence.  

Worthwhile tasks should also “represent mathematics as an ongoing human 

activity” (NCTM, 1991, p. 25). Looking back to the discussion of constructivism above, 

such tasks show mathematics not as a body of knowledge but as the activity of doing 

mathematics, or "mathematizing" (Fosnot, 2005). Further, mathematics is not static, as 

with the empiricist's perspective opposed by Piaget (1970), but ongoing. Once again, 

exploring mathematics through laboratory tasks preceding a formal explanation 

represents mathematics not as a static collection of concepts but as a human activity. 
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Stein and colleagues (2000) offered a task analysis guide with four levels of 

cognitive demand. From least demanding to most cognitively complex, these 

classifications are memorization tasks, procedures without connections tasks, procedures 

with connections tasks, and doing mathematics tasks. Confirmatory laboratory tasks are 

classified as procedures with connections because these tasks 

• suggest pathways to follow (explicitly or implicitly) that are broad general 

procedures that have close connections to underlying conceptual ideas as opposed 

to narrow algorithms that are opaque with respect to underlying concepts. . . .  

• require some degree of cognitive effort. Although general procedures may be 

followed, they cannot be followed mindlessly. Students need to engage with the 

conceptual ideas that underlie the procedure in order to successfully complete the 

task and develop understanding. (Stein et al., 2000, p. 16) 

Because the instructor has already presented content related to the task, or perhaps 

worked a similar problem, she narrows the problem space. Therefore at least one 

approach to the task has been recommended. Still, these tasks may be applied in a 

different context such that procedures must be used thoughtfully. 

 Exploratory tasks, however, are more cognitively complex and are classified as 

doing mathematics because such tasks 

• require complex and nonalgorithmic thinking (i.e., there is not a predictable, well-

rehearsed approach or pathway explicitly suggested by the task, task instructions, 

or a worked-out example). 
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• require students to explore and understand the nature of mathematical concepts, 

processes, or relationships.. . . 

• require considerable cognitive effort and may involve some level of anxiety for 

the students due to the unpredictable nature of the solution process required. 

(Stein et al., 2000, p. 16) 

As an approach for confronting the problem has not yet been presented, students must 

generate their own strategies and justify the appropriateness their strategies to group-

mates. Therefore, the cognitive demand of the task is raised because the teacher has not 

narrowed the problem space. Particularly pertinent to Chapter 4 of this document is the 

forewarning that students may be uncomfortable with such cognitively demanding tasks. 

 Discourse. As previously mentioned in the discussion of social constructivism, 

the discourse generated during these two sequences is assumed to differ. Discourse is so 

important to NCTM that three of their five professional standards (NCTM, 1991) relate to 

discourse. In examining the teacher’s and students’ roles in discourse, an exploratory 

laboratory sequence is shown to align more closely with these professional standards. 

 In regard to the teacher’s role in discourse standard, “Instead of doing virtually all 

talking, modeling, and explaining themselves, teachers must encourage and expect 

students to do so” (NCTM, 1991, p38). In an exploratory laboratory, students are more 

likely to explain the content to each other during the task, insofar as there is a level of 

uncertainty that requires justification, and students will have more experiences to 

contribute during the whole-class discussion that follows (Marshall, Smart, & Horton, 

2009). Teachers must also decide “when and how to attach mathematical notation and 
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language to students’ ideas” (NCTM, 1991, p.35). Notice the sequence implied here; first 

students generate ideas, then the teacher connects convention to these student-generated 

concepts. This is the goal of the explanation phase of an exploratory laboratory sequence: 

to formalize the concepts students have constructed. 

 In Students’ Role in Discourse (NCTM, 1991(, learners should: 

• make conjectures and present solutions; 

• explore examples and counterexamples to investigate a conjecture; 

• try to convince themselves and one another of the validity of particular 

representations, solutions, conjectures, and answers; [and] 

• rely on mathematical evidence and argument to determine validity (NCTM, 1991, 

p. 45). 

Once again, students are more likely to make, and therefore articulate, conjectures when 

an explanation has not yet been given. Discussions of the validity of approaches to 

problems are also more likely when the teacher has not yet offered an assumedly 

infallible solution path. 

 4Ex2 Instructional Model. While a number of instructional models illustrate the 

importance of allowing students time to explore content collaboratively before a formal 

explanation is offered, the 4Ex2 Instruction Model (Marshall, Smart, & Horton, 2009; 

Marshall & Horton, 2009) is addressed here because of its influence on the author in 

generating the research questions explored in this study. The 4Ex2 is a dynamic model 

for inquiry-based instruction with four phases—Engage, Explore, Explain, and Extend—
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representing the 4E’s of the 4Ex2. Teacher reflection and formative assessment are 

integrated into each phase, composing the by two of the 4Ex2. 

 During the Engage phase, students’ curiosities are piqued, similar to Bruner’s 

(1961) activation, while the instructor assesses students’ prior knowledge and provides 

direction (Bruner, 1967) for the task. In the Explore phase, students collaboratively make 

sense of the content, as they “predict, design, test, collect, and/or reason” (Marshall, 

Smart, & Horton, 2009, p 508) through a worthwhile mathematical task (NCTM, 1991). 

During the Explain phase, students share their strategies, invoking the communication 

standard (NCTM, 2000) as the teacher mediates the discourse. “The disequilibrium 

experience caused in students during the Engage and Explore now begins to gain 

resolution as understanding and knowledge [is] articulated during the Explain phase” 

(Marshall, Smart, & Horton, 2009, p. 511). The Extend phase stretches students as they 

“apply, elaborate, transfer, and generalize knowledge to novel situations” (Marshall, 

Smart, & Horton, 2009, p. 511).  

 While the model is dynamic in that the four phases do not necessarily occur only 

once in the above-mentioned sequence, “the Model is predicated on having the Explain 

phase follow the Explore phase” (Marshall, Smart, & Horton, 2009, p. 509). The authors 

of the model note, “If explanation precedes exploration, which is typical in non-inquiry 

instruction, students are thrust into passive learning situations that rarely challenge them” 

(Marshall, Smart, & Horton, 2009, p. 509-510). Therefore, it is paramount that the 

Explore phase precedes the Explain phase.  
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Beliefs 

 Having established sequence of instruction as a valuable instructional component 

based on theories of learning and instruction drawn from the literature, the review of 

literature that follows turns to teachers' beliefs. As Research Questions One and Two 

explore PSTs' pedagogical beliefs, the purpose of this section is to show that beliefs are a 

valid and valuable construct worth exploring. This section begins by defining the 

construct of mathematical beliefs as it relates to teaching. Then, empirical research on 

elementary teachers’ mathematical beliefs is examined. After reviewing belief measures 

used in the literature, research relating teachers’ beliefs to instructional practices, 

teachers’ content knowledge, and student achievement is reviewed. Research related to 

influencing preservice teachers’ mathematical beliefs through methods courses, field 

experiences, and mathematics content courses is also considered. 

 Defining beliefs. The term “teacher beliefs” is not consistently used in the 

research literature (Kagan, 1992; Pajares, 1992), even less those beliefs specific to 

mathematics. In this section beliefs are contrasted with other similar constructs such as 

attitudes, emotions, values, and knowledge.  

In a seminal chapter on affect—a construct encompassing beliefs, attitudes, and 

emotions—McLeod (1992) describes beliefs as more cognitive in nature, more stable, 

and held less intensely than attitudes or emotions. Whereas attitudes or emotions might 

change often with little thought, beliefs are established over time with more cognitive 

consideration. For example, the frustration felt from a challenging problem and 

affirmation felt when finally making sense of this problem are emotions. One’s like or 
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dislike of the subject is considered an attitude, but the conviction that mathematics is 

important is a belief. 

Philipp (2007) makes the following distinction between beliefs and values: “A 

belief that is a belief, but a belief in is about values” (p. 265, emphasis in original). For 

example, one may believe that reform-based instruction leads to a more conceptual 

understanding as opposed to a more traditional delivery of content. This pedagogical 

belief is “associated with a true/false dichotomy whereas values are associated with a 

desirable/undesirable dichotomy” (Philipp, 2007, p. 265). However, one may believe in 

student autonomy in the mathematics classroom. In the second example, one values 

student autonomy as a desirable component of mathematics learning. 

Further, Thompson (1992) points out that knowledge and beliefs differ in 

conviction and consensus. Whereas beliefs can be held with varying degrees of 

conviction, one rarely passionately or flippantly knows something. Additionally, 

knowledge is usually thought of as taken to be true by the majority, whereas one who 

believes something to be true is aware that others might disagree. This assumption, 

however, might be challenged if one’s ontological understandings do not lead her to 

accept a universal truth. For the radical constructivist who challenges the existence of an 

external, universal reality, the difference between knowledge and beliefs is less distinct. 

Taking a more inductive approach, consider now some mathematical beliefs to be 

examined in this study. One’s epistemological beliefs relate to how one comes to know 

mathematics. Pedagogical beliefs relate to instructional practices believed to be most 

effective. Beliefs about one’s efficacy have to do with how a teacher might interpret her 
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ability to change students’ learning outcomes. All of these beliefs are based on years of 

experiences, are more stable and felt less intensely than emotions or attitudes, and vary in 

degree of conviction and consensus. 

 Measuring beliefs. Having established beliefs as a valid construct drawn from the 

current research base, the review of literature that follows examines means for measuring 

these beliefs. The purpose of this section is twofold. In reviewing these measures, one 

can better understand the empirical research that follows. Additionally, in understanding 

the purposes and shortcomings of these measures, the current study's qualitative approach 

to understanding beliefs is supported as the measures currently available do not target 

beliefs regarding sequence of instruction. Though a great number of quantitative 

instruments have been used to assess teachers’ epistemological, pedagogical, and efficacy 

beliefs regarding mathematics, those instruments that were repeatedly used in the 

literature are examined here.  

Standards Beliefs Instrument. Zollman and Mason (1992) developed the 

Standards’ Beliefs Instrument to assess teachers’ pedagogical beliefs as they relate to the 

Curriculum and Evaluation Standards for School Mathematics (NCTM, 1989). The 16-

item, four-point-Likert scale asks teachers whether they strongly agree, agree, disagree, 

or strongly disagree with statements that are either direct quotes or slight modifications 

from the Standards (NCTM, 1989) regarding pedagogic practices. For example, Item 1 

states, “Problem solving should be a SEPARATE, DISTINCT part of the mathematics 

curriculum” (Zollman & Mason, 1992, p. 363 emphasis in original), which relates 

directly to the standard stating that “Problem solving is not a distinct topic but a process 
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that should permeate the entire program and provide the context in which concepts and 

skills can be learned” (NCTM, 1989, p. 23). 

 While items on this measure relate directly to the seminal reform document of the 

time, the items are transparent and respondents may select responses they believe are 

desired. Additionally, because these items are either direct quotes with positive valence 

or negated quotes with negative valence one could argue that the instrument is measuring 

awareness of the Standards (NCTM, 1989) as opposed to pedagogic beliefs. Although the 

items are measured using a Likert scale, they are phrased rather dichotomously. In the 

item above, for example, problem solving is either distinct or indistinct.  

Schoenfeld’s questionnaire. Schoenfeld’s questionnaire (1989) was originally 

designed to measure high school geometry students’ mathematical perceptions, beliefs, 

and behaviors; however, portions of this scale have been adapted to assess teachers’ 

beliefs about school mathematics (Hart, 2002, 2004; Wilkins & Brand, 2004; Benbow, 

1995). This 81-item questionnaire consists of 60 four-point-Likert items, 10 multiple-

choice items, and 11 open-ended questions. The instrument measures beliefs related to 

attributions of success, perceptions of mathematics, school practices, mathematics as 

compared to English and social studies, geometric proof, motivation, and scholastic 

performance. For example, Item 21 states, “Some people are good at math and some just 

aren’t” (Schoenfeld, 1989, p. 352), and Item 38 reads “The best way to do well in math is 

to memorize all the formulas” (Schoenfeld, 1989, p. 352). 

 No evidence of reliability or validity of this scale was reported. The sub-scales 

mentioned above were not statistically confirmed using factor analysis. The length of this 
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survey, its intended high school audience, and its focus on geometry also make it a poor 

fit for this study. 

Mathematics Beliefs Scales (MBS). In the research examined here, the 

Mathematics Beliefs Scales (MBS) (Fennema, Carpenter, & Loef, 1990) is the most 

commonly used measure of epistemological and pedagogical beliefs (Peterson et al., 

1989; Fennema et al. 1996; Staub & Stern, 2002; Swars et al. 2007; 2009; Vacc & Bright, 

1999; Capraro, 2001; 2005). Researchers have also noted use of the MBS under various 

names, including the Mathematics Beliefs Instrument (Swars et al., 2007; 2009) and the 

Cognitively Guided Instruction Beliefs Scale (Fennema et al., 1996; Vacc & Bright, 

1999). Various primary references (Fennema, Carpenter, & Loef 1990; Peterson et al., 

1989) have also been cited with some revisions between the two versions. The MBS is a 

48-item, five-point-Likert scale related to addition and subtraction, which consists of four 

subscales of 12 items: how children learn mathematics, how mathematics should be 

taught, relationship between concepts and procedures, and sequencing topics. Items from 

these fours scales respectively include: 

• It is important for a child to discover how to solve simple word problems for 

him/herself. . . . 

• Teachers should teach exact procedures for solving word problems. . . .  

• Children will not understand addition and subtraction until they have mastered 

some basic number facts. . . . 

• When considering the next topic to be taught, one must consider the logical 

organization of mathematics. (Peterson et al., 1989, p. 6-7) 
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 Capraro (2001, 2005) proposed a parsimonious version of the 1990 version of the 

MBS. This researcher reduced the instrument to an 18-item version with three scales: 

student learning, stages of learning, and teacher practices. While the 48-item version had 

an internal consistency Cronbach's alpha reliability of 0.68 with 123 classroom teachers, 

the 18-item version obtained a reliability of 0.86. 

 Although this prolifically published scale measures teachers’ pedagogical beliefs 

and is situated in an elementary mathematics context, the scale uses a context specific to 

number and operation. Further, there are discrepancies between the number of subscales 

between the 1989 and 1990 version with no published reliability or validity for the 

revised version. Capraro was contacted (personal communication, February 22, 2011) 

regarding the subscales of the shortened scale, but the computer holding these data is no 

longer operational. 

Mathematics Beliefs Instrument (MBI). Hart (2002) created an instrument by 

adapting Zollman and Mason’s (1992) scale and Schoenfeld’s (1989) questionnaire and 

adding a few original questions. The Mathematics Belief Instrument (MBI), not to be 

confused with references to the MBS with the same name (Swars et al., 2007, 2009), 

borrows items from Zollman and Mason’s (1992) scale but dichotomizes respondents’ 

answers to either agree or disagree for the items borrowed from the Standards Beliefs 

Instrument. Nine 4-point-Likert items were taken from Schoenfeld’s (1989) questionnaire 

with the addition of three items about success in math courses related to sex, ethnicity, 

and speed of computation and two items related to teacher efficacy.  
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 Weaknesses in the original scales from which items were borrowed influence this 

instrument as well. By dichotomizing the items taken from the Standards Beliefs 

Instrument, desired responses are made more obvious. No evidence of reliability or 

validity was reported.  

Integrating mathematics and pedagogy (IMAP) Web-based survey. Ambrose 

and colleagues (2003, 2004) pointed out that Likert scales give no information about how 

respondents interpret the item or the importance of the item to a respondent. Such scales 

also often lack context. As mentioned previously, these items are also often transparent 

and dichotomous. Therefore, these researchers offer a quantitative alternative to open-

ended surveys in which respondents answer questions based on samples of student work 

or videos on students’ mathematical thinking. Researchers can then use17 rubrics to 

quantify the responses as showing no evidence, weak evidence, evidence, or strong 

evidence of seven beliefs about mathematics, pedagogy, and epistemology. For example, 

after considering Figure 2.1, respondents are asked, “Do you think Carlos could make 

sense of and explain Sarah’s strategy? Why or Why not?” (Ambrose et al., 2004, p. 68). 
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Figure 2.1. Sample Question from IMAP Survey (Ambrose et al., 2004, p. 68) 

Carlos 

Written on Paper 

 

Sarah  

149 + 286 

Sarah says, "Well, 149 is only 1 away from 

150, so 150 and 200 is 350, and 80 more is 

430, and 6 more is 436. Then I have to 

subtract the 1, so it is 435." 

In addition to the coding rubrics offered in the training manual (IMAP, 2003), examples 

of typical responses for each coding are offered. 

 While this survey allows for both qualitative and quantitative data, the quantifying 

of these data can be quite time consuming. Because of the labor-intensive coding process, 

this measure is designed to show individual growth in small numbers of teachers, not to 

compare means of larger groups. These probes are much less transparent than many of 

the Likert scales reviewed, but, as with any rubric, transforming qualitative data to 

measurable quantities introduces the influence of the researcher’s interpretation. 

 Implications of beliefs research. As the current study explores PSTs' 

pedagogical beliefs, the purpose of this section is to underscore the importance of 

considering this construct as beliefs have been connected to teachers' pedagogy, teachers' 

content knowledge, and students' learning. Therein, this study's focus on evaluating and 

influencing PSTs' pedagogical beliefs may have implications to PSTs' future practice and 

student outcomes based on the literature that follows. In this section, implications of 
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research on teachers’ pedagogical beliefs are examined as they relate to teachers’ 

practice, content knowledge, and student achievement. 

Practice. It may not be surprising that teachers’ mathematical beliefs influence 

their instructional practice. In fact, some researchers define beliefs as mental constructs 

that guide behavior or filters through which decisions are made (Pajares, 1992). This has 

implications for practice inherent in one’s understanding of the construct. Lerman (1983) 

explains that “one’s perspective on mathematics teaching is a logical consequence of 

one’s epistemological commitment” (1983, p. 59). In his philosophical piece, Lerman ties 

two ontological perspectives to epistemological beliefs and gives instructional 

implications of each—mathematics as a body of knowledge and mathematics through 

problem solving. Ernest (1989) gives three views of mathematics: “unrelated but 

utilitarian rules and facts. . . static but unified body of certain knowledge. . . [and] 

dynamic, continually expanding field of human creation and invention, a cultural 

product” (p. 2). From these three views of mathematics, his model explains the role of the 

teacher as an instructor, explainer, or facilitator.  

However, Richardson (1996) argues that the relationship between beliefs and 

practice is more complex than a linear, causal relationship: “The perceived relationship 

between beliefs and actions is interactive. Beliefs are thought to drive actions; however, 

experience and reflection on action may lead to changes in and/or additions to beliefs” (p. 

104). Leatham (2006) offers a sensible system as a framework for understanding the 

relationship between teachers’ beliefs and practice. When explaining perceived 

contradictions between beliefs and practice, Leatham challenges the assumptions that 
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teachers can readily articulate their beliefs and that researchers’ interpretations of what 

teachers express correspond to the underlying beliefs held by the teacher. Therefore, 

inconsistencies in beliefs and practice are attributed to problems articulating and 

interpreting beliefs, not the lack of sensible connection between beliefs and practice. 

Beginning with qualitative research linking beliefs and practices, in the case study 

of two secondary mathematics teachers, Beswick (2007) found evidence supporting 

Ernest’s (1989) model connecting ontology to practice. Nine beliefs emerged from 

surveys, interviews, and classroom observations that connected the nature of mathematics 

to beliefs regarding students’ mathematics learning and, in turn, connected mathematics 

learning to the role of the teacher.  

Archer (1999) compared the beliefs and practices of 17 elementary and 10 

secondary teachers of mathematics through interviews. She found that elementary 

teachers tended to view mathematics as connected and applicable to students’ lives. 

Therefore, elementary teachers used activities that represented the real world with 

overarching themes connecting mathematics with other disciplines. However, secondary 

teachers viewed mathematics as a self-contained, linear body of knowledge. These views 

led to more traditional instruction of teacher-worked examples followed by guided 

practice and individual practice with little to no context. 

In a collective case study of five high school teachers, Cross (2009) found that 

teachers’ ontological beliefs regarding the nature of mathematics connected to their 

beliefs about how students learn and, in turn, the teachers’ pedagogy. For example, one 

teacher believed mathematics to be a collection of facts and rules and therefore believed 
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understanding mathematics to be “knowing how and when to use the formula correctly to 

get the right answer” (p. 337). This teacher believed her role was to expose students to 

formulas and show them how to use them. Therefore, this teacher stressed memorization 

and practice. For each of these cases, the researcher found ontological beliefs influencing 

pedagogical beliefs and the resulting practice. 

Through a collective case study of four third-grade teachers, Bray (2011) found 

that teachers’ beliefs influenced their error-handling practices. From a qualitative analysis 

of classroom observations, interviews, and IMAP Web-based surveys (Ambrose, Phillip, 

Chauvot, & Clement, 2003), Bray found that the extent to which flawed solutions were 

focused on during whole-class discussion was related to teachers’ beliefs. These teachers 

avoided discussions of flawed solutions because they believed their students had 

academic deficits and such analysis would confuse students and bruise their self-

confidence. Therefore, it was their beliefs regarding their students’ mathematical 

abilities, not the nature of mathematics, that influenced their error-handling practice. 

In a case study of two elementary teachers, Sztajn (2003) found that beliefs 

beyond mathematics influence teachers’ pedagogical decisions. Through classroom 

observations and semi-structured interviews, Sztajn found that teachers’ concepts of 

students’ needs, not mathematical beliefs, influenced their practice. A teacher of students 

with lower socioeconomic status believed her role was to mold students into good 

citizens, and her teaching followed the text in structured lessons. Another teacher of 

students with higher socioeconomic status saw her role as preparing students for higher-

order thinking and used problem-driven explorations in her instruction. In addition to the 
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support this research gives to Anyon's (1980) "hidden curriculum," through these 

contrasting cases, the researcher connected teachers’ beliefs about their students' needs to 

practice. 

Other researchers found teachers’ beliefs as barriers to implementing reform-

based practices. Grant, Hiebert, and Wearne (1998) worked with 12 in-service, primary 

teachers to create reform-based lessons. They found that teachers who viewed 

mathematics as a collection of skills were less likely to interpret and implement reform-

based instruction as intended. Similarly, Borko and others (1997) found that unchanged 

beliefs regarding pedagogy resulted in inappropriately assimilating ideas presented 

during staff development. However, when these beliefs were challenged, developers were 

successful in changing beliefs and consequent practice. Bolden and Newton (2008) found 

that teachers believed time, aspects of accountability, and standardized tests to be major 

barriers to investigative teaching in their case study of three primary teachers. In the 

qualitative analysis of his quasi-mixed methods study of 25 preservice teachers during an 

early field experience, Benbow (1995) concluded that future teachers’ pre-existing beliefs 

about mathematics influenced their planning and implementation of lessons.  

Turning now to mixed-methods research, Peterson et al. (1989) used sequential 

explanatory mixed-methods sampling in which scores from the MBS informed the 

selection of seven teachers with cognitively-based perspectives and seven teachers with 

less cognitively-based perspectives. Classroom observations and interviews showed that 

cognitively based teachers emphasized counting strategies and word problems, whereas 

less cognitively based teachers stressed learning addition and number facts with less 



 

55 

attention paid to word problems until these facts were mastered. Although the 

“cognitively based” classifications of teachers aligns with the study’s focus, the MBS 

instrument used to select these groups does not measure teachers’ orientation toward 

instruction based on students’ development as the labels might imply.  

Fennema and colleagues (1996) used data from transcribed interviews, 

observations, and field notes to situate 18 elementary teachers in one of four levels of 

instruction during a 4-year Cognitively Guided Instruction (CGI) professional 

development. Scores from the MBS and levels of instruction increased over the 4-year 

intervention. The authors note an “obvious” relationship between levels of instruction and 

beliefs, but do not attempt to statistically correlate these data. 

In quantitative studies, Staub and Stern (2002) found teachers’ MBS scores to be 

significantly, positively correlated with the frequency of performance-oriented tasks 

presented by the teacher in 33 German Grade 3 classrooms. 

Nevertheless, Hart (2004) found contrary results. She followed eight of the 14 

preservice teachers from an earlier study (Hart, 2002) into their first year of teaching. 

While results from the Mathematics Beliefs Instrument showed these teachers maintained 

the reform-based belief gains from the previous study (Hart, 2002) into their first years of 

teaching, Hart did not find evidence that teachers were able to implement pedagogy that 

was consistent with these beliefs during classroom observations. 

Content knowledge. Although Ernest’s (1989) model does not explain 

connections between teachers’ mathematical beliefs and their mathematical and 

pedagogical content knowledge, connections between mathematical beliefs and content 
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knowledge have been found. In the aforementioned student of 7 cognitively based (CB) 

and 7 less cognitively based (LCB) teachers, Peterson et al. (1989) found that CB 

teachers had greater pedagogical content knowledge than LCB teachers. Six of the seven 

CB teachers correctly identified distinctions in word problems, whereas only one of the 

seven LCB teachers could identify such differences. CB teachers could also identify more 

counting strategies than LCB teachers but were no more likely to predict which strategy a 

student would use.  

Swars and others (2007, 2009) found that scores on the MBS for 103 preservice 

teachers in 2007 and 24 in 2009 were positively correlated with scores on a measure that 

used selected items from the number and operations, patterns, function, and algebra, and 

geometry scales of the Learning Mathematics for Teaching (LMT, 2004) instrument. 

Although content subscales of the LMT were not examined individually, the learner and 

curriculum subscales of the MBS were significantly correlated with the summative LMT 

score. Therefore, preservice teachers with more mathematical knowledge for teaching 

were more likely to believe learners can construct their own mathematical understandings 

and take a problem-solving approach to curriculum. Again, these subscales are not among 

those originally published for the MBS (Peterson et al., 1989) but are assumed be to part 

of a later, unpublished version of the instrument (Fennema, Carpenter, & Loef 1990). 

 However, in a study of 481 in-service elementary teachers, Wilkins (2008) found 

that content knowledge—as measured by 45 items selected from the Third International 

Mathematics and Science Study, the Second International Mathematics Study, and some 

items constructed by the author—was negatively correlated (r=-0.15, p<0.001) with 
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teachers’ beliefs regarding the effectiveness of inquiry-based instruction, assessed with a 

four-point Likert scale published by Horizon Research (2000). Additionally, in an 

Analysis of Variance, K-2 teachers were found to score lower on measures of content 

knowledge than teachers of grades three-five, yet K-2 teachers believed inquiry-based 

instruction to be more effective than upper-elementary teachers. Still, this finding may be 

confounded by the sophistication of the content being taught. 

 Wilkins’ (2008) findings connecting pedagogical beliefs to the grade level being 

taught are consistent with Archer’s (1999) findings comparing elementary and secondary 

teachers. When comparing the findings of Wilkins (2008) with Peterson et al. (1989), it 

should be noted that Wilkins measured common content knowledge, whereas Peterson 

and colleagues measured pedagogical content knowledge. It should also be noted that the 

construct Mathematical Knowledge for Teaching in Swars et al. (2007, 2009) includes 

pedagogical content knowledge, specialized content knowledge, and common content 

knowledge; however, the measures cited only measure the latter two of the three. The 

differences in the types of content knowledge being measured could explain these 

seemingly contrary results. Inquiries into these classifications of content knowledge are 

examined further in the section on “Mathematical Knowledge for Teaching.” 

Student achievement. As previously mentioned, Peterson and colleagues (1989) 

used data from belief interviews and MBS score to select seven cognitively based 

teachers (CB) and seven less cognitively based (LCG) teachers for further study. In 

addition to the abovementioned difference in instructional practices and pedagogical 

content knowledge, these researchers also found that students with CB teachers scored 
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higher than the children with LCB teachers on a problem-solving assessment created by 

the researchers. However, there were no significant differences on a researcher-generated 

assessment of number facts. 

 Fennema and fellow researchers (1996) found that student achievement increased 

during the 4-year Cognitively Guided Instruction (CGI) professional development, as did 

teachers’ scores on the MBS, for 18 in-service teachers. Although direct correlation 

between MBS scores and students’ scores on a concepts and problem-solving test were 

not reported, the researchers did find a positive relationship between level of instruction, 

which was linked to beliefs, and scores on a concept and problem-solving assessment. 

Teacher beliefs, instructional practice, and student achievement all increased over the 

longitudinal study, but researchers did not attempt to connect beliefs and achievement 

statistically. Similar to the findings of Peterson et al. (1989), there were no significant 

differences in scores on an assessment of computational fluency.  

 Staub and Stern (2002) also reported links between teachers’ epistemological 

beliefs, as measured by the MBS, and student achievement by way of instruction. 

Teachers with higher MBS scores more frequently presented tasks focused on conceptual 

understanding. The frequency of such tasks was significantly correlated with students’ 

achievement gains on a multiplication-division word-problem assessment for students of 

22 teachers in the study. 

 Summary: Implications of beliefs research. Ernest (1989) linked teachers' beliefs 

to their practice through a model that connects ontological beliefs to epistemological 

beliefs and, in turn, to instructional practice. Empirical research supports this model by 
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connecting beliefs regarding the nature of mathematics to beliefs regarding the role of the 

teacher (Beswick, 2007; Cross 2009) and error-handling practices (Bray, 2011). Reform-

congruent pedagogical beliefs have been connected to the use of performance-oriented 

tasks (Staub & Stern, 2002), counting strategies, and word problems (Peterson et. al, 

1989). Reform-resistant pedagogical beliefs have also been identified as barriers to 

implementing reform-based professional development (Grant, Hiebert & Waine; Borko et 

al., 1997; Bolden & Newton, 2008). In addition to connections to practice, beliefs have 

been associated with teachers' pedagogical content knowledge (Peterson et al., 1989) and 

students' achievement (Peterson et al., 1989, Fennema et al. 1996; Staub & Stern 2002). 

Because of the relationship among beliefs, practice, and learning, the research presented 

here highlights the importance of exploring PSTs' beliefs further in the current study. 

 Changing beliefs. Given these potential links between teachers’ mathematical 

beliefs and instructional practice, teachers’ content knowledge, and student achievement, 

it is not surprising that researchers study the effects of teacher education programs on 

preservice teachers’ beliefs, as the current study also does. Specifically, the research 

presented here examines the effect of mathematics methods courses, early field 

experiences, and mathematics content courses on preservice teachers’ mathematical 

beliefs. 

Methods courses. Wilkins and Brand (2004) found significant gains on 89 

preservice teachers’ MBI scores after participating in a mathematics methods course that 

“centered around an investigative approach to teaching mathematics” (p. 226). Within the 

authors’ brief description of this methods course, it is difficult to determine what makes 
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this course investigative other than the title of the text used, Fostering Children’s 

Mathematical Power: An Investigative Approach to K-8 Mathematics Instruction 

(Baroody & Coslick, 1998). Still, preservice teachers had more reform-minded beliefs 

after participating in this methods course. 

Vacc and Bright (1999) also found significant positive changes in 34 preservice 

teachers’ scores on the MBS after teachers’ were introduced to Cognitively Guided 

Instruction during a mathematics methods course. While some detail is given to the 

course requirements and instructional strategies used, other than the use of a CGI 

framework that focuses on children’s thinking, it is not obvious what aspects of this 

course distinguish this methods course from others. 

Swars et al. (2007) report significant gains in 103 preservice teachers’ scores on 

the MBS after a two-course methods sequence. Additionally, these researchers also found 

that pedagogical beliefs and efficacy beliefs, as measured by the MBS and Mathematics 

Teaching Efficacy Beliefs Instrument (Enoch, Smith & Huinker, 2000) respectively, were 

unrelated before the methods course. However, beliefs about pedagogy and efficacy were 

positively correlated after the two-course methods sequence.  That is, after the methods 

course, PSTs with more reform-oriented pedagogical beliefs also believed they were 

more capable of increasing study learning. 

In a similar study of 24 pre-service teachers in a later cohort, Swars and fellow 

researchers (2009) found significant increases in MBS scores toward reform-congruent 

pedagogical beliefs during the first methods course, insignificant decreases in scores after 

the second methods course, and a significant drop in MBS scores after student teaching. 
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The authors ascribe this decline in MBS scores to “continued enculturation in existing 

classroom practices and the development of somewhat more realistic expectations for 

successful learning outcomes given the demands of teaching” (p. 62), conclusions that 

were based on data from follow-up interviews. Nonetheless, pre-post change in MBS 

scores over the entire program still showed a significant positive change. Once again, 

other than the use of a CGI text— Children’s Mathematics: Cognitively Guided 

Instruction (Carpenter et al. 1999)—no novel features of these methods course are 

described for either study. 

While these studies provide evidence that methods courses can be a venue for 

influencing teachers’ pedagogical beliefs, they do not provide teacher educators with 

specifics regarding what aspects of these courses influenced beliefs. If we are to assume 

these studies are assessing the effects of the texts or specific CGI materials, a quasi-

experimental design that tests these materials against others might be more appropriate. 

Field experiences. Benbow (1995) examined the effects of an early field 

experience on 25 preservice teachers’ beliefs as measured by the Indiana Mathematics 

Belief Scales, the Elementary School Mathematics Teaching Beliefs Inventory, and 

Schoenfeld’s (1989) Questionnaire. However, no significant changes in pre- and 

postscores beliefs scales were found. Using data from interviews, Benbow concluded that 

teachers’ pre-existing beliefs were confirmed during this early field experience. 

Lloyd (2005) studied the effects of a student-teaching experience on one 

secondary teacher’s beliefs related to the role of the teacher. From interviews and written 

assignments from a previous methods course, data revealed an initial belief that good 
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teachers do not lecture and that the teacher should remain “off stage” (p. 450) during 

student-centered investigations. After this student-teaching experience, the PST found 

that his previous belief oversimplified the teacher’s role and that teachers should take an 

active role directing discourse. Therein, it was this PST’s field experience that helped 

him develop more complex beliefs related to the teacher’s role. 

 Ambrose (2004) evaluated the effects of early field experiences combined with a 

mathematics content course on preservice teachers’ mathematics beliefs in the Integrating 

Mathematics and Pedagogy project. PSTs focused on the number and operations content 

standard both in the content course and sessions with elementary-aged students. Pairs of 

PSTs worked with a single child during these sessions. The 15 PSTs showed gradual 

gains over the course of the intervention as seen in data collected from a pilot version of 

the IMAP Web-based survey, interviews, and field notes.  

Ambrose continued her work in Philipp and others’ (2007) study of 159 pre-

service teachers. As part of the IMAP project, while taking mathematics content courses, 

50 teachers watched videos of children solving problems and then worked with children 

to solve problems; another 27 PSTs only watched the videos but had no live component; 

23 PSTs visited reform-based classrooms; 25 PSTs visited convenient classrooms in 

which teachers’ reform orientation was unknown, and 24 PSTs had no field or video 

experience. Teachers with combined video and live experiences showed significant 

changes toward reform-oriented pedagogical beliefs in four of the seven beliefs measured 

by the IMAP survey over those without field experiences. The video-live group also 

showed significant gains over the convenient-placement group on five beliefs and over 
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the reform-placement group on one belief. Although similar results were reported for the 

video-only group as compared to reform-placement, convenient-placement, and control 

groups, no comparisons were reported between the live-video and video-only groups. 

Although Philipp et al. examined the integration of field experiences with the 

learning of mathematics content, few details are given about the specifics of the content 

course as the content course was considered a constant across all field placements. This 

study provides evidence that combining the learning of content and field experiences can 

influence pedagogical beliefs; however, it is unclear what role the content course played. 

The purpose of this dissertation is to explore the effects of specific aspects a content 

course prior to field experiences. 

Mathematics content courses. Charalambous, Panaoura, and Philippou (2009) 

found that two mathematics content courses centering on the history of mathematics were 

successful in changing 94 preservice teachers’ epistemological and efficacy beliefs as 

indicated on an instrument the authors created. These mathematics courses consisted of 

two, one-hour lectures and one 90-minute “‘hands-on-activity’ session” (p.166) each 

week. The authors do not report whether these activity sessions confirmed ideas 

presented in lecture or if they were exploratory in nature. No reliability statistics were 

provided, but researchers supported the validity of their instrument through qualitative 

data from interviews and confirmed subscales through factor analysis. 

Hart (2002) found 14 preservice teachers showed significant gains on the 

Mathematics Beliefs Instrument after taking a combined content–methods course with an 

exploratory approach to content. The six credit hours of mathematics and six hours of 
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methods were combined into a single course taught over three semesters. This course was 

taught from a “constructivist philosophy” (p. 5) in which concepts were introduced and 

explored using “a problem situation that was designed to provoke a dilemma” (p. 6). 

Wilcox and colleagues (1990) analyzed data from interviews with four students 

that participated in three reform-based mathematics content courses for elementary 

teachers. Again, these nontraditional mathematics courses are vaguely defined. 

Researchers explain that participants were engaged in “analyzing, abstracting, 

generalizing, inventing, proving, and applying” and that they were required to 

“communicate their understanding in multiple ways” (p. 5). Although the content course 

emphasized learning communities, the term learning community is equally ill defined: 

“Our image of community was richer than simply having groups of students work 

together on a problem and then report their findings. Our vision of community was a 

classroom where students and teacher together engaged in mathematical inquiry” (p. 6). 

Nevertheless, the authors found the course effective in establishing norms of 

collaboration including shifts in epistemological authority and a change in beliefs about 

community.  

Lubinski and Otto (2004) studied the effect of a problem-centered mathematics 

content course on 16 preservice teachers’ mathematical beliefs. Although these authors 

report in detail about the course itself, giving examples of problem-driven lessons, they 

simply quote typical student responses to survey questions with no analysis of these data 

or implications for teacher educators. However, the researchers do claim that the goal of 
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changing teachers’ epistemological beliefs through content courses was slowly being 

accomplished. 

Spielman and Lloyd (2004) compared a traditional textbook section of 

mathematics courses for elementary teachers to a section that used two reform-oriented 

middle school curricula: Mathematics in Context and Connected Mathematics Project. 

The authors found significant changes on classroom authority and learning sources 

subscales on their own instrument measuring teacher beliefs, but not on the community 

subscale, for the 38 PSTs in the reform section. However, little change in beliefs was 

found for the 24 students in the textbook section. Although authors support the validity of 

their instrument by “involving multiple persons in the design of survey items, designing 

items in response to themes in the research literature, and basing item design on the 

results of pilot work” (p. 36), no reliability statistics or factor analysis of subscales are 

reported. By combining curricula in the experimental section, it becomes difficult to 

determine how each curriculum was used and which curriculum influenced PSTs’ beliefs. 

Although this study focuses on beliefs, not content, it is problematic that content 

instructors used middle school curricula at the post-secondary level. This supports 

findings of the National Council on Teacher Quality (NCTQ, 2008) that such courses do 

not cover the content PSTs need but focus on content at an elementary or middle-grades 

level. 

Summary: Changing beliefs. The research presented above shows that teacher 

educators have already begun to inquire into PSTs’ beliefs and attempt to influence these 

beliefs through methods courses (Wilkins & Brand, 2004; Vacc & Bright, 1999; Swars et 
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al., 2007, 2009), field experiences (Benbow, 1995; Lloyd, 2005; Ambrose, 2004; Philipp 

et al. 2007) and content courses (Charalambous, Panaoura & Philippou, 2009; Hart, 2002; 

Wilcox et al., 1990; Lubinski & Otto, 2004; Spielman & Lloyd, 2004). Like other studies 

that explored the influence of content courses, the current study examines beliefs from 

the perspective of PSTs as students of mathematics. Nevertheless, the current study adds 

to this literature as it focuses on a specific, targetable instructional component, namely 

sequence of instruction. 

Mathematical Knowledge for Teaching 

 Research Question Three explores the effects of sequence of instruction on PSTs’ 

Mathematical Knowledge for Teaching (MKT). To better understand the specific type of 

knowledge considered in the current study, this section begins by developing a model for 

MKT. Then, empirical research on teachers’ content knowledge is presented to further 

illustrate the importance of considering this specialized knowledge. Within this 

presentation of empirical research, work related to general mathematical content 

knowledge is reviewed. Then, research specific to this model of MKT is discussed. 

 Model for Mathematical Knowledge for Teaching. In the section that follows 

Shulman’s (1986) typology of content knowledge is introduced. The work of Ball and 

Bass is reviewed as they apply Shulman’s framework to elementary mathematics 

instruction. Then, the development of a more holistic model of teachers’ Mathematical 

Knowledge for Teaching (MKT) is chronicled.  

Pedagogical content knowledge. In the presidential address to the American 

Educational Research Association, Shulman (1986) introduced the “missing paradigm” 
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(p. 6) of subject-matter-specific knowledge. After reviewing teacher licensing exams of 

the late 19th century, which were concerned primarily with content, Shulman turned to the 

research-based assessments of the 1980s, which focused almost exclusively on general 

pedagogical knowledge. Having established such distinctions between content and 

pedagogy as a new phenomenon, the author challenged this assumed partition of content 

and pedagogy and expressed a need for a more coherent understanding of the knowledge 

required for teaching. 

  Shulman (1986) offered three categories of content knowledge: subject-matter 

content knowledge, pedagogical content knowledge, and curricular knowledge. This 

subject-matter content knowledge goes beyond recalling and demonstrating facts and 

procedures of the domain: “The teacher need not only understand that something is so; 

the teacher must further understand why it is so” (p. 9, italics in original). In addition to a 

deep, conceptual understanding of the subject, teaching requires an understanding of 

content that is specific to teaching. This pedagogical content knowledge includes which 

examples best illustrate a concept, which representation or analogy works best in a 

particular circumstance, and knowledge of what misconceptions students might have. 

Shulman’s third category of content knowledge, curricular knowledge, includes 

knowledge of programs and materials available within the content domain. This 

curricular knowledge is further divided into lateral and vertical curricular knowledge. 

Lateral curricular knowledge includes the relationship the content has to other domains 

within a given grade level. Vertical curricular knowledge is one’s understanding of past 
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and future years’ content within one’s own domain and how this relates to the current 

curriculum.  

Based on interviews, classroom observations, and examining materials of teachers 

as they move from teacher education programs to becoming novice teachers, Shulman 

(1987) later expanded his model of knowledge for teaching to include general 

pedagogical knowledge not limited to a particular domain. This includes knowledge of 

learners as well as educational contexts, ends, purposes, and values. This work also 

evaluated sources of teacher knowledge, which includes content-specific scholarship, 

general educational scholarship, educational materials, and wisdom of practice. While 

this work references a qualitative research base, no specific methods for data collection 

and analysis, subject or grade level taught by participating teachers, or the exact number 

of participants is given.  

Wilson, Shulman, and Richert (1987) published a more comprehensive 

description of their research methods with another variation of this model of teacher 

knowledge. This work followed 12 secondary social studies, mathematics, English, and 

biology teachers from a teacher education program into their first year of teaching. 

Through task-based, semi-structured interviews, researchers developed intellectual 

biographies of preservice teachers’ subject-matter knowledge. In other transcript-guided 

interviews, preservice teachers described their undergraduate experiences, highlighting 

courses that influenced their intellectual development. Data were also collected using free 

association, card sort tasks, and analyses of texts. Once participants began their first year 
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of teaching, researchers collected observational data as teachers planned, taught, and 

reflected on instruction. 

From these data researchers constructed two theoretical frameworks regarding 

teacher knowledge. The first was a professional knowledge base similar to Shulman’s 

(1986, 1987) work. Knowledge for teaching was divided into general pedagogical 

knowledge as defined by Shulman (1987), subject-matter knowledge as in Shulman’s 

(1986, 1987) work, and pedagogical content knowledge, which included the curricular 

knowledge Shulman (1986, 1987) previously treated as a distinct category. 

The second product of this research was a model for the construction of 

pedagogical content knowledge. Through cycles of preparation, instruction, and 

reflection, knowledge of subject matter, general pedagogy, curriculum, and learners is 

transformed to create pedagogical content knowledge. Teachers construct new 

pedagogical content knowledge as they move through the stages of comprehension, 

transformation, instruction, evaluation, reflection, and new comprehension. Of particular 

interest is the stage of transformation in which teachers critically interpret the subject 

matter, select appropriate representations, adapt the content for students in general, and 

tailor the transformed content to their particular students. One result of this model is that 

teachers develop pedagogical content knowledge through the practice of teaching. One 

troubling implication of this model is that if pedagogical content knowledge is gained 

only through the act of teaching, methods courses for which there is no clinical teaching 

experience attached and in-class professional development opportunities have no 

potential for developing such knowledge. 
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Content knowledge in elementary mathematics. Although not yet using the 

language of Shulman and colleagues, Ball (1988, 1990a, 1990b, and 1991) also 

investigated teachers’ subject matter knowledge; specifically, Ball examined preservice 

elementary and secondary teachers’ mathematical subject matter knowledge for teaching. 

In this line of research, Ball introduced substantive knowledge of mathematics defined by 

three criteria. Substantive knowledge of mathematics must be correct, connected, and 

include underlying meanings. To have substantive knowledge of dividing fractions, for 

example, a teacher should not only be able to correctly invert and multiply, but she must 

have an understanding of why this procedure works and how one might represent this 

concept, be able to apply a relevant context to a problem, and connect fractions to 

division as well as link representations and contexts for whole-number division to 

division of fractions. 

 Ball (1990a, 1991) also distinguished between knowledge of mathematics and 

knowledge about mathematics. Knowledge about mathematics includes ontological 

issues related to mathematics: 

 What counts as an “answer” in mathematics? What establishes the validity of an 

answer? What is involved in doing mathematics? In other words, What [sic] do 

mathematicians do? Mathematical knowledge is based on both convention and 

logic. Which ideas are arbitrary or conventional and which are logical? What is 

the origin of some of the mathematics we use today and how does mathematics 

change? (Ball, 1990a, p. 458) 
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Ball argued that this knowledge of the nature of the field is important for teachers and 

distinct from one’s traditional knowledge of mathematics. 

 In 1996, Ball continued to explore the mathematical knowledge required for 

teaching by teaming up with H. Bass, a research mathematician (Ball 1999; Ball & Bass 

2000a, 2000b, 2001, 2003a, 2003b). Ball and Bass reviewed videotapes from Ball’s 

1989-1990 third-grade class using a job-analysis approach to explore the mathematical 

knowledge required to teach elementary mathematics and the interaction between 

mathematics and pedagogy. It is in this line of research that Ball and Bass applied 

pedagogical content knowledge (Shulman 1986, 1987; Wilson, Shulman & Richert, 

1987) to the teaching of elementary mathematics. Ball and Bass used the widely 

published (Ball 1999; Ball & Bass 2000a, 2000b, 2001) example of students’ discussion 

of even and odd numbers to illustrate the mathematical and pedagogical content 

knowledge required of elementary teachers. Although this research does not necessarily 

advance the theory of pedagogical content knowledge, Ball and Bass situated this 

construct in the context of elementary mathematics and gave examples of the specialized 

mathematical and pedagogical content knowledge required of elementary teachers. 

Mathematical Knowledge for Teaching (MKT). The Learning Mathematics for 

Teaching research team began in 2001 to pilot multiple-choice items to measure the 

mathematical knowledge required to teach elementary mathematics (Ball, Bass & Hill 

2004; Hill Schilling & Ball, 2004; Ball, Hill & Bass, 2005). Researchers began writing 

items for two of Shulman’s (1986) three domains of content knowledge: subject-matter 

knowledge and pedagogical content knowledge. 
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Researchers further divided subject-matter knowledge into common content 

knowledge and specialized content knowledge. Common content knowledge refers to 

mathematical knowledge required for teaching elementary mathematics that would also 

be held by other educated adults, for example, determining the decimal halfway between 

1.1 and 1.11 (Ball, Bass & Hill, 2004; Hill Schilling & Ball, 2004). Specialized content 

knowledge, however, is mathematical knowledge required for teaching but not generally 

held by non-educators. Consider the problem below.  

Imagine that you are working with your class on multiplying large numbers. 

Among your students’ papers, you notice that some have displayed their work in 

the following ways: 

 

 

 

 

 

 

Which of these students would you judge to be using a method that could be used 

to multiply any two whole numbers? (Ball, Bass & Hill 2004; Hill Schilling & 

Ball, 2004; Ball, Hill & Bass, 2005; Hill et al., 2007; LMT, 2008). 

Here one must first decompose student work to understand students’ strategies and then 

determine whether these strategies will generalize. Such a task requires mathematical 

knowledge not generally held by individuals outside the field of education. 
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 The domain of knowledge of content and students, based on Shulman’s (1986) 

pedagogical content knowledge, requires both an understanding of mathematics and 

students’ thinking, which includes “typical errors, reasons for those errors, developmental 

sequences, [and] strategies for solving problems” (Hill, Schilling & Ball, 2004, p. 17). 

Take for example the problem below. 

Mr. Fitzgerald has been helping his students learn how to compare decimals. He 

is trying to devise an assignment that shows him whether students know how to 

correctly put a series of decimals in order. Which of the following sets of number 

will best suit that purpose? (Mark ONE answer.) 

a) .5  7  .01  11.4 

b) .60  2.53  3.14  .45 

c) .6  4.25  .565  2.5 

d) Any of these would work well for this purpose. They all require 

the student to read and interpret decimals.  

(Hill, Schilling & Ball, 2004, p. 28; Hill, Ball & Schilling 2008, p. 400) 

In addition to the mathematical content, one must realize that students sometimes ignore 

the decimal and order the numbers based on the magnitude of the digits to answer this 

question. Therefore, this question requires knowledge of both students and content. 

Current model of MKT. As the Learning Mathematics for Teaching research 

group continued to refine their instruments, they once again returned to Shulman’s 

typology of content knowledge. Ball and colleagues (Ball, Thames & Phelps, 2008; Hill, 

Ball & Schilling 2008) further separated pedagogical content knowledge into knowledge 
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of content and students and knowledge of content and teaching. Researchers came to 

view tasks such as selecting appropriate representations, choosing examples and 

counterexamples, and sequencing content as requiring knowledge of content and 

teaching, whereas such knowledge was previously included in knowledge of content and 

students. This new domain included the knowledge of mathematics and pedagogy 

required to make instructional decisions. 

 As seen in Figure 2.2, as of 2008, pedagogical content knowledge included 

portions of Shulman’s (1986, 1987) curricular knowledge similar to the model provided 

by Wilson Shulman, and Richert (1987). However, Ball, Thames, and Phelps (2008) 

admit that distinctions between curricular knowledge and other forms of pedagogical 

knowledge are unclear: “We are not yet sure whether [knowledge of content and 

curriculum] may be a part of our category of knowledge of content and teaching or 

whether it may run across several categories or be a category in its own right” (p. 403).  



 

75 

Figure 2.2 Domain map for mathematical knowledge for teaching (Ball, Thames & 

Phelps, 2008; Hill, Ball & Schilling, 2008).  

 

The construct Shulman (1986) referred to as vertical curricular knowledge, which 

includes knowledge of previous and future content and its relationship to the current 

curriculum, is categorized as a component of subject matter knowledge and referred to as 

horizon content knowledge (Ball, 1993), not to be confused with Shulman’s (1986) 

horizontal curricular knowledge. 

 In sum, subject-matter knowledge includes common content knowledge held by 

the general population, specialized content knowledge particular to educators, and 

horizon content knowledge that includes content from previous and future grade levels 

and how this relates to the current curriculum. Pedagogical content knowledge, which 
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addresses the interplay of content and pedagogy, includes knowledge of content and 

students, knowledge of content and teaching, and knowledge of curriculum. 

 One could argue that these classifications are not necessarily mutually exclusive. 

For example, common content knowledge could be thought of as a subset of specialized 

content knowledge. Consider the example above of the three students’ strategies for 

multiplying 25 and 35. While this certainly requires specialized knowledge not generally 

held by non-educators, it also requires common knowledge of the traditional algorithm. 

Similarly, in the example in which Mr. Fitzgerald must select an example for ordering 

decimals, knowledge of typical student errors is required, but the choice of example has 

instructional implications as well. It could be argued that all knowledge required to make 

instructional decisions also requires knowledge of students. 

 Empirical research on elementary teachers’ content knowledge. This section 

begins with a review of empirical research prior to the model of Mathematical 

Knowledge for Teaching (Ball, Thames & Phelps, 2008; Hill, Ball & Schilling, 2008) 

used in this study. Then, more recent research specific to this model of MKT and the 

Learning Mathematics for Teaching measures used in this study is reviewed. 

General content knowledge of teachers. While many of the studies that follow 

use mathematical contexts specific to teaching, these researchers do not make distinctions 

between common and specialized content knowledge. First, research focused on 

assessing the mathematical content knowledge of teachers through classroom 

observations and task-based interviews is reviewed. Then, studies in teacher education 
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that evaluate the effects of methods courses, content courses, and field experience are 

discussed.  

Assessing general content knowledge. Early inquiries into elementary teachers’ 

content knowledge used case studies of small numbers of elementary teachers. Leinhardt 

and Smith (1985) examined content knowledge related to fractions for eight fourth-grade 

mathematics teachers, four expert and four novice, using data from interviews, card-

sorting tasks consisting of problems from a fourth-grade textbook, and transcriptions of 

videotaped lessons. Researchers found considerable differences in subject-matter 

knowledge and the level of conceptual presentation of content even among those teachers 

deemed as experts because of their students' growth in test scores over a five-year period. 

Some expert teachers demonstrated a conceptual understanding of fractions, whereas 

others relied solely on algorithms. 

Ball (1990a, 1990b) used questionnaires to examine the content knowledge of 217 

elementary education majors and 35 mathematics majors with task-based interviews for 

ten elementary and nine secondary majors. The researcher found these preservice 

elementary and secondary teachers’ mathematical understandings of division of fractions 

inadequate for teaching mathematics conceptually. Tirosh and Graeber (1990) also used 

task-based interviews to illustrate misconceptions of 21 preservice elementary teachers 

who correctly calculated the quotient of a division problem with divisor less than one but 

agreed with a statement claiming quotients must always be smaller than the dividend. 

 Borko and fellow researchers (1992) used interviews and observations to evaluate 

content knowledge related to division of fractions for a student teacher with three years of 
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academic training as a mathematics major. Researchers found that this preservice middle 

school teacher had a weak understanding of the concepts underlying mathematical 

procedures. The researchers attributed this teacher’s deficits to taking advanced courses 

in mathematics as opposed to courses specifically designed for preservice teachers that 

stress the meaningful learning of mathematics.  

Simon (1993) assessed 33 preservice elementary teachers’ knowledge of division 

using an open-response questionnaire requiring more than a procedural understanding of 

division and eight perspective elementary teachers using task-based interviews. The 

researcher determined that these preservice teachers’ conceptual knowledge was weak 

and suggested refocusing mathematics courses for elementary teachers. 

Ma (1999) also used task-based interviews to compare 11 experienced U.S. 

teachers, 12 novice U.S. teachers, and 72 Chinese teachers. The researcher found that 

more U.S. teachers than Chinese teachers showed only a procedural understanding of 

subtraction with borrowing and multi-digit multiplication. Most Chinese teachers could 

construct a representation for the division of fractions, whereas no U.S. teachers showed 

an understanding for concepts underlying the procedure. Chinese teachers approached the 

novel claim of a student regarding the relationship between perimeter and area by 

investigating the problem independently and seeking out a counterexample for the claim, 

whereas U.S. teachers did not. The researcher found Chinese elementary teachers’ 

knowledge coherent and U.S. teachers’ content knowledge fragmented. 

This research highlights deficits in both preservice and in-service U.S. elementary 

teachers’ mathematical content knowledge. Specifically, research focused on the number 
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and operations content standard. Teachers in these studies relied heavily on procedural 

understandings of elementary mathematics and lacked the conceptual understandings 

needed to teach the content. 

Teacher education and general content knowledge. With this body of research 

underscoring elementary teachers’ fragmented content knowledge, research in teacher 

education focused on improving preservice teachers’ content knowledge through methods 

courses, content courses, and field experiences. 

 Quinn (1997) investigated the effects of two methods courses that incorporated 

manipulatives, technology, and cooperative learning on 28 preservice elementary 

teachers’ and 19 preservice secondary teachers’ content knowledge as measured by select 

items from the Essential Elements of Elementary School Mathematics Test. This 

multiple-choice assessment measured PSTs’ common content knowledge up to a sixth-

grade level. Pretests showed secondary teachers performed significantly higher than 

elementary teachers. Posttests revealed significant gains for elementary PSTs’ content 

knowledge after completing the methods courses; however, secondary PSTs did not show 

similar gains, possibly due to a ceiling effect from their high preliminary scores. 

Nevertheless, no confidence interval or variance is reported for the mean gain of 1.7 

questions on a 24-item assessment.  

 Davis and McGowen (2001) conducted a case study of one preservice elementary 

teacher enrolled in a content course for future teachers in which tasks were posed and 

then followed by video clips of children engaging in the same tasks. Through qualitative 

data reported for a single task, researchers found this PST “made a significant change in 
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her understanding of mathematics” (p. 8). Researchers report that this subject’s pre- to 

posttest scores “improved from not satisfactory to excellent;” however, this growth was 

on an unidentified content assessment and no supporting statistical evidence was 

provided.  

 Matthews and Seaman (2007) also investigated the effects of content courses on 

PSTs’ mathematical content knowledge. These researchers compared scores on their own 

assessment of content knowledge for 29 elementary PSTs that took a previous 

(experimental) Logic of Arithmetic course to 19 PSTs that took a (control) general 

mathematics course for elementary teachers. While the authors describe the content 

addressed in the experimental course, no novel aspects of this course are described other 

than extensions to other bases and weekly small-group discussion sessions. No 

information about the control course is given, and researchers do not report whether the 

instructor or the time between the content courses and data collection were held constant. 

All participants were enrolled in a methods course at the time of data collection, which 

might also influence participants’ content knowledge, given the findings of Quinn (1997). 

With these methodological shortcomings in mind, researchers did not find a significant 

difference in mean scores of the two groups. When group effect was added to a 

regression model that used students’ ACT score and GPA to predict content scores, a 

significant effect was found. However, one may assume ACT score and college GPA to 

be highly correlated; therefore, multicollinearity in this model is problematic. 

 The Integrating Mathematics and Pedagogy (Philipp et al., 2007) research team 

explored the effect of combining various field experiences with mathematics content 
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courses on PSTs’ content knowledge as measured by the IMAP Content Instrument 

(IMAP, 2004), an assessment for teachers that focuses on place value and rational 

number. While enrolled in a content course, 50 PSTs watched videos of children solving 

problems and then interacted with children during six problem-solving sessions; 27 PSTs 

watched the videos but had no live component; 23 PSTs participated in apprenticeships 

with reform-oriented teachers; 25 PSTs were apprentices to a convenient collection of 

supervising teachers whose reform orientation was unknown, and 34 PSTs in a control 

group had no video or field experience. No pair-wise comparison among these groups 

showed significantly different gains in content knowledge. However, when researchers 

pooled the two video groups and the apprenticeship groups with the control group, 

significant differences in gains were found between groups that focused on children’s 

mathematical thinking through videos and those that did not. Although it was noted that 

various mathematics graduate students taught four separate sections of the content course 

taken in tandem, no instructor variables were considered in this analysis of content 

knowledge. Additionally, motivational differences in groups might be argued as video 

and apprenticeship participants were paid up to $600 for their time, whereas the control 

participants were not compensated. Further, it is not obvious why the researchers 

combined the control group with the apprenticeship groups after pair-wise comparisons 

were not significant. 

 Peterson and Williams (2008) investigated the effects of student-teaching 

experiences on PSTs’ content knowledge in a case study contrasting one PST-

cooperating-teacher pair with little change in content knowledge, focusing instead on 
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classroom management, with another pair that focused on the mathematics from a 

student’s perspective. Through interviews, recorded conversations between PSTs and 

cooperating teachers, and a follow-up questionnaire, researchers found that for the pair 

that focused on classroom management, mathematical knowledge was something 

separate from teaching, and content learned in college courses, which focused on 

procedures, was considered sufficient for teaching. In the contrasting case, conversations 

focused on what students understood, and the researchers concluded that this PST came 

to value mathematical knowledge through preparing for and engaging in teaching. While 

the data provided support for a difference in beliefs about content knowledge between 

these cases, conclusions made about changes in content knowledge appear unsupported 

as no measure of content knowledge was described. 

 When gauging the effects of teacher preparation programs on content knowledge 

across these studies, it becomes difficult to synthesize findings due to methodological 

issues in these studies. Questions of changes in content knowledge attributed to a specific 

component of teacher education are more compatible with a quantitative analysis, not 

case study (Davis & McGowen; Peterson & Williams, 2008). In studies that do attempt to 

answer such questions quantitatively, interventions are poorly defined and the 

quantitative analysis is weak (Quinn, 1997; Mathews & Seaman, 2007). The one study 

with more sound methods (Philipp et al., 2007) does not control for variations in the 

content courses taken during data collection, and their rationale for combining control 

and apprenticeship groups after their initial findings were insignificant is weak. 
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Therefore, further research is needed to evaluate the effects of teacher-education efforts 

on PSTs’ content knowledge. 

Effects of general content knowledge. In a study of teacher trainees from two 

institutions in England and Wales, Goulding, Rowland, and Barber (2002) examined 

ordinal scores (low, medium, or high) on a 16-item measure of teachers’ content 

knowledge required by the Institute of Education as they relate to teacher trainees’ 

teaching performance. Teaching performance was categorized as weak, capable, or strong 

from observations of field placements. At one institution, differences in teachers’ ability 

to teach numeracy were found among content knowledge groups for 154 teacher trainees. 

High content-knowledge teachers were more likely assessed as strong numeracy teachers. 

At another institution, content classification was linked to assessments of planning and 

teaching effectiveness, with poor-content trainees associated with weakness in planning 

and teaching primary mathematics for 164 teacher trainees. Although these researchers 

allude to rejections of null hypotheses, no test statistics or p-values are reported. 

Additionally, the authors do not describe the assessments of planning and teaching used. 

These findings might not generalize to U.S. contexts. However, they do reinforce the idea 

of the importance of content knowledge for effective teaching.  

In a study of 72 third-grade teachers and 1,043 students in Belize, Mullens, 

Murane, and Willett (1996) found that teachers’ ordinal scores (A, B, C, D, or E) on an 

eighth-grade exit exam when they were students was a significant predictor of their 

currents students' gains on an instrument developed by the Ministry of Education (r=3.64, 

p<.001). Students answered, on average, 10.4 questions (SD 7.0) correctly on the pretest 
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and 20.5 questions (SD 11.3) on the posttest on this 69-item assessment. Therein, each 

letter grade higher a teacher scored during her own eighth-grade year is linked to her 

students gaining 3-4 items, on average. 

 These results should not, however, be generalized to the United States given that 

one in four teachers had only a primary education and only 52% completed a teacher-

training program. Further, assessments of teachers’ content knowledge were taken prior 

to their secondary or post-secondary training with a variable number of years between 

data collection of teachers and their students; one might assume that teachers’ content 

knowledge changed since their eighth-grade years. Additionally, the assessment of 

students is suspect as no reliability or validity information is provided. With mean scores 

of approximately 10 (SD 7) and 20 (SD 11) questions on a 69-item assessment falling far 

below the 50% standard, the distribution is likely skewed. That is, the left interval two 

standard deviations below the mean would fall below the lower bound of answering no 

questions correctly. Still, this study adds to a body of literature connecting teachers' 

content knowledge to their students' achievement. 

Harbison and Hanushek (1992) examined the relationship between 349 teachers’ 

scores on the same criterion-referenced assessment of fourth-grade numeracy as their 

students (n=1,789) in rural northeastern Brazil. Students’ mean score was 50.1% correct 

with a standard deviation of 23.5 percent. Surprisingly, teachers’ mean score was only 

87.3% with a standard deviation of 12.6 percent. In a regression model considering over 

30 state, program, student, peer, school, and teacher characteristic variables, teachers’ 

content scores were a significant predictor (p<.0001) of students’ scores with a regression 
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coefficient of 0.52. Therefore, one standard deviation difference in teachers’ knowledge 

of fourth-grade numeracy translated to roughly a quarter of a standard deviation increase 

in their students’ scores when all other characteristic variable were held constant.  

Again, these results might not generalize to the U.S. given the rural, international 

context. Additionally, these teachers had, on average, only seven to eight years of 

schooling with 20% of teachers having four or fewer years of schooling. In addition to 

the limited and variable educational backgrounds of teachers, comparing teachers’ scores 

on an assessment designed and referenced for fourth graders may lack validity. Still, this 

research supports the importance of teachers' content knowledge. 

 Based on an analysis of public-use data from the National Education Longitudinal 

Study (NELS) of 1988, Rowan, Chiang, and Miller (1997) linked tenth-grade 

mathematics teachers’ responses to a single item of high-school-level common content 

knowledge to their students’ standardized scores on the NELS mathematics achievement 

assessment. Students with teachers that answered the question correctly performed, on 

average, 0.02 standard deviations higher than students with teachers that incorrectly 

answered the question (p=.015). As the authors note, using a single item as an estimate of 

teachers’ content knowledge lacks reliability. Further, no information about the sample’s 

representativeness or randomness is offered, and data collected in 1988 might not 

generalize to current educational settings. Further, the effect size of 0.02 SD, although 

statistically significant, was quite small.  

 Given the international contexts of three of these four studies and weaknesses in 

instruments used to measure teachers’ content knowledge, further research in a U.S. 
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context using reliable and valid instruments is needed to connect teachers’ content 

knowledge to their performance and students’ achievement. In the section that follows, 

such research situated in the model of MKT described above, which uses Learning 

Mathematics for Teaching’s content assessments for teachers, attempts to fill in these 

gaps in the research base. 

Research specific to Mathematical Knowledge for Teaching. Before the 

introduction of measures specific to MKT, researchers used college coursework, degrees 

earned, and scores on licensure exams as estimates of content knowledge when 

attempting to link such teacher characteristics to students’ achievement (Wayne & 

Young, 2003). With the introduction of quantitative measures to assess teachers’ MKT 

(Hill, Schilling, & Ball, 2004), research shifted to connecting MKT to teacher 

characteristics, linking teachers’ MKT to quality of instruction and student achievement, 

and assessing the effects of teacher development efforts on teachers’ MKT. 

MKT and teacher characteristics. Hill (2007) investigated links between MKT 

and teachers’ credentials and experience for a national sample of 591 middle school 

teachers stratified by region and urbanicity. Participants were assessed on scales in 

number and operations and algebra (LMT, 2004), which assessed both common and 

specialized content knowledge. Hill found that teachers with high school credentials 

performed an average of a half a standard deviation higher than those without. Former 

elementary teachers and teachers without mathematics-specific credentials scored a third 

of a standard deviation below others in the study, on average. Regression of teachers’ 

MKT scores on teacher-characteristic variables showed each additional mathematics 
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course added 0.2 SD (p<0.001), on average, to teachers’ MKT scores; each methods 

course added 0.1 SD (p<0.05), and experience added 0.01 SD (p<0.05) per year. Hill also 

found MKT to be negatively correlated with percent of students receiving free or reduced 

lunch (r=-.19, p<0.0001), percent of African-American students (r=-0.17, p<.0001), and 

percent of Hispanic students (r=-0.12, p<.01). From these results, Hill suggested that 

middle school teachers be high school certified and proposed addressing the inequitable 

distribution of MKT through professional development, post-secondary coursework, and 

recruiting more qualified teachers. 

This research seems to counter the claim (Ball, Thames & Phelps, 2008; NCTQ, 

2008) that content courses are not meeting the needs of teachers. Interestingly, the 

residual effect of a single previous content course rivals the effect of 20 years of 

experience. This research highlights the importance of content courses for elementary 

teachers. 

 In a similar study of 438 California, K-6 teachers, Hill and Lubienski (2007) also 

found an inequitable distribution of MKT in number and operations (LMT, 2004). Again, 

teachers in schools with larger proportions of Hispanic students and students receiving 

free and reduced lunch scored significantly lower. However, years of experience was not 

a statistically significant predictor of MKT in this study, but highest grade level taught 

was a significant predictor (r=0.12, p<.001). The effects of mathematics and methods 

courses were not considered in this study. 

 With another national representative, stratified sample of 625 elementary 

teachers, Hill (2010) found correlations between indicators of teachers’ educational 
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background and MKT in number and operations to be relatively weak. The number of 

mathematics and methods courses was significantly correlated with MKT, but with 

coefficients of only 0.09 and 0.06 respectively. These effects were much smaller than in 

earlier work (Hill, 2007). No significant relationship was found between MKT and math-

specific professional development. However, grade level taught was positively correlated 

with MKT scores (r=0.30, p<.001), with K-one teachers scoring half a standard deviation 

below the sample mean. In this study, experience was a significant predictor with a 

modest effect, but the categorical analysis of years of experience makes it difficult to 

compare to previous studies (Hill, 2007; Hill & Lubienski, 2007). Still, these experience 

effects ranged from 0.04 to 0.1 SD for experience classifications. Again, students’ free-

and-reduced-lunch status was negatively correlated with teachers’ MKT scores (r=-.09, 

p<0.05). 

 In all three of these studies, the inequitable distribution of MKT among 

socioeconomic status and race is problematic. Findings connecting years of experience 

are inconsistent and difficult to compare between studies. Although the long-term effects 

of college coursework vary considerably between studies, there is evidence to counter 

other research (Ball, Thames & Phelps, 2008; NCTQ, 2008) that concludes mathematics 

content courses for teachers do not address the MKT needed to teaching elementary 

mathematics.  

It should also be noted that these researchers use the term Mathematical 

Knowledge for Teaching, which is composed of three components of subject-matter 

knowledge and three divisions of pedagogical content knowledge. However, the 
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measures used in these studies assess only common and specialized content knowledge, 

two of the three aspects of subject-matter knowledge, with no distinctions made between 

the two. Perhaps semantic clarity is needed when measures of common and specialized 

content knowledge are reported as measuring MKT, a construct that also includes horizon 

content knowledge, knowledge of content and students, knowledge of content and 

teaching, and knowledge of content and curriculum not measured by these instruments. 

Effects of MKT on teaching and learning. Hill et al. (2008) explored connections 

between teachers’ MKT and the mathematical quality of their instruction in a mixed-

methods study of ten teachers in which the Mathematics Quality of Instruction (MQI) 

rubric (LMT, 2006) was validated through case studies of five elementary teachers. Three 

MQI scores were collected before a professional development institute (Hill & Ball, 

2004), and six lessons were scored after the institute for each of the ten teachers. Because 

MQI scores did not significantly change over the intervention, mean MQI scores were 

calculated for each teacher. Teachers’ MKT was assessed using subscales in number and 

operations, geometry, and algebra (LMT, 2004) among a larger group of 636 elementary 

teachers. MKT scores were significantly positively correlated with the responding 

appropriately to students subscale of the MQI and negatively correlated with the total 

errors and errors in language subscales.  

 To validate these findings and answer questions of how MKT influences the 

quality of instruction, five cases were selected, stratified by MKT and MQI scores. 

Through these cases, researchers concluded “a powerful relationship between what a 

teacher knows, how she knows it, and what she can do in the context of instruction” (Hill 
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et al., 2008, p. 496). Hill and colleagues also found this relationship to be mediated by 

teachers’ beliefs regarding how mathematics should be taught: 

Anna thought her students in need of liking mathematics, and adjusted her 

instruction to leave little mathematics for students to dislike. Rebecca has very 

circumscribed views of mathematics itself, and thus enacted that very 

circumscribed mathematics in her classroom. By contrast, the views of Lauren 

and Noelle were more expansive, specific, and mathematical in nature. (p. 500) 

Therein, this ancillary finding may add to a body of research that connects teachers' 

beliefs regarding the nature of mathematics and their practice. 

 The quality of higher-MKT teachers’ instruction was attributed to avoiding errors 

and providing a “denser, more rigorous mathematics instruction” (Hill et al., 2008, p. 

487). Lower-MKT teachers were found to be more variable with more reliance on 

textbooks.  

 Similar to critiques of other studies using these assessments to measure MKT, the 

instruments used in this study assess only common and specialized content knowledge 

with no distinction made between the two. One might argue that the responding 

appropriately to students and avoiding mathematical errors could be correlated with 

common content knowledge just as easily as specialized content knowledge. 

 In a 3-year study of 699 elementary teachers and 2,963 students in a non-random 

yet nationally representative sample, Hill, Rowan, and Ball (2005) explored the effects of 

teachers’ MKT on student achievement. Researchers measured MKT using an instrument 

that assessed common and specialized content knowledge in number concepts and 
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operations along with patterns, functions, and algebra. While items were piloted in 

Knowledge of Content and Students, these items did not meet the researchers’ criteria for 

inclusion due to low reliability and multidimensionality in factor analysis. Students' 

achievement data were collected on the Terra Nova Complete Battery.  

Teachers’ content knowledge for teaching mathematics was a significant predictor 

of students’ mathematics gains on the Terra Nova. Each standard deviation difference in 

teachers’ mathematical content knowledge translated to one-half to two-thirds of a month 

of additional growth over an academic year. MKT scores predicted achievement better 

than teacher background variables or average time spent on mathematics and had an 

effect size comparable to students’ socioeconomic status, ethnicity, and gender. Scores on 

a reading content assessment were not found to significantly predict students’ math gains; 

this suggests that the effect was from content-specific knowledge, not general aptitude. 

Similar to findings in other studies (Hill, 2007, 2010; Hill & Lubienski, 2007), teachers’ 

MKT scores were negatively correlated with students’ minority status (r=-0.16, 

p<0.0001). 

In a study of new mathematics teachers in New York City, Rockoff, Jacob, Kane, 

and Staiger (2008) found scores on an unspecified scale of the Learning Mathematics for 

Teaching assessment (LMT, 2004) to be significantly positively correlated (r=0.028, 

p=0.024) with students’ mathematics achievement, as measure by an unidentified 

standardized test, for 337 fourth- through eighth-grade teachers. Interestingly, the links 

between MKT and achievement were stronger than those attributed to general cognitive 

ability (r=0.016, p=0.17) as measured by Raven’s Matrices Standard Version. This 
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supports the findings of Hill, Rowan, and Ball (2005) that greater effects are contributed 

by content-specific knowledge, not general aptitude. MKT scores were also more 

significantly correlated with students’ achievement than scores on the Haberman Pre-

Screener, a commercial teacher-screening instrument (r=0.023,p=0.11). 

These researchers noted limitations in generalizing their findings as this study 

considered only newly hired teachers, not all applicants for these teaching positions. 

Therefore, the current hiring process might have introduced bias. The regression 

coefficient for MKT should be interpreted with care as these researchers used the percent 

correct on the assessment (normalized to have a standard deviation of one) as opposed to 

Item Response Theory scores, which use a standard normal scale referenced on a large, 

nationally representative sample of teachers varying in years of experience, as in other 

studies using these measures. Therefore, MKT scores are relative only to the other 337 

new mathematics teachers hired in New York. Additionally, Rockoff, Jacob, Kane, and 

Staiger (2008) did not report which content scales they administered or whether they 

constructed their own scale by pulling items from various content domains. Therein, the 

reliability of their assessment is unknown. Still, although small, these correlations were 

significant. 

Looking across these three studies, there is evidence that teachers’ content 

knowledge for teaching mathematics affects the quality of their instruction and, in turn, 

their students’ achievement. These findings are consistent with other abovementioned 

studies that address only common content knowledge. Although there is evidence that 
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subject-specific knowledge, not general intelligence, can influence student outcomes, 

more research is needed that focuses on the “specialized” aspect of content knowledge. 

 MKT and teacher education. With a body of research connecting MKT to student 

learning, it is not surprising that teacher educators study the effects of professional 

development on teachers’ MKT. Hill & Ball (2004) evaluated the effects of California’s 

Mathematics Professional Institutes: Elementary Number and Operations on 398 

elementary teachers’ common and specialized content knowledge in number concepts 

and operations. Across all 15 institutes, participants gained an average of 0.48 standard 

deviation units (p<0.0001). Researchers also found the length of the institute, whether 

one, two, or three weeks, a significant predictor of MKT gains (r=0.33, p<0.05). These 

professional development institutes were not described in detail, and differences among 

institutes were not addressed. Nevertheless, this does suggest that professional 

development opportunities can have a positive effect on MKT. 

Lueke (2008) examined the effects of content courses at two universities on 101 

PSTs’ MKT as measured by an instrument constructed from the pool of Learning 

Mathematics for Teaching items (LMT, 2004). Through qualitative analysis, the author 

contrasted the two cases across universities. However, no significant differences in MKT 

were found at the beginning or end of the semester. The author reported a mean gain of 

about a standard deviation, but did not report standard errors or confidence intervals for 

these gains. In a step-wise multiple regression of institution, attitude, score rating PSTs' 

perceived relevance of the course, and pretest score onto PSTs’ posttest score, pretest was 

the only significant predictor. This researcher did attempt to distinguish between common 
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and specialized content knowledge. While pretest scores did not differ between schools 

for either construct, there was some evidence that posttest scores differed between 

institutions on specialized (p=0.065) and common (p=0.076) content knowledge. 

However, neither means nor the magnitudes of these differences were reported. When 

attempting to explain these differences in specialized and common content knowledge 

gains between institutions, Lueke reported that interview data were inconclusive. 

Summary: Review of Literature.  

 As Research Questions Two and Three explore the effects of sequence of 

instruction on PSTs’ beliefs and MKT, the literature presented in this chapter shows that 

the two sequences of instruction examined in the current study are supported by theories 

of learning and instruction. Further, as Research Questions One and Two inquire into 

PSTs’ beliefs, research is also presented here that shows teachers’ beliefs to be an 

important construct worth exploring. Additionally, Research Question Three focuses on 

PSTs’ MKT, and the literature in this chapter also illustrates the importance of 

considering this specialized type of knowledge. In Chapter Three, the methods used to 

investigate these research questions are described. 
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CHAPTER THREE 
 

Methods 

 This chapter describes the research methods used in the current study. The setting, 

participants, and mathematics content courses are described. In addition, the instruments 

for measuring Mathematical Knowledge for Teaching (MKT) and protocols for 

qualitative data collection are reviewed. This chapter concludes with methods for 

analyzing these data. 

Setting 

 This study took place at a public, coeducational, land-grant, research university in 

the southeastern United States in the fall of 2010. The Carnegie Foundation (2011) 

classified this university as full time in that at least 80% of undergraduate students are 

enrolled full time. The university was also classified as more selective in that its 

admission's test scores for entering freshmen place these students in the top fifth of 

applicants. This university was also classified as a high transfer-in institution in that at 

least 20% of first-year undergraduates transfer from another institution. Additionally, this 

institution was classified as a large four-year, primarily residential university with at 

least 10,000 degree-seeking undergraduate of which 25-49% live on campus. 

Participants 

 The convenience sample of preservice teachers for this study was drawn from 

three sections of Mathematics for Elementary School Teachers II (MEST II) taught by a 

single instructor in the fall of 2010. The sections consisted of 29, 33, and 35 preservice 

elementary and early-childhood teachers. Participants were recruited the first day of the 
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semester. The researcher explained the study to each section and distributed informed 

consent letters. Those students that agreed to participate in the study returned the signed 

consent form to the instructor. Of the 97 PSTs in these three sections, 96 agreed to 

participate in the study. Of these 96 participants, 94 were female and two were male. 

Demographic data were not collected. 

 The female instructor of these sections, referred to as Ms. B in this study, had 

previously taught these courses for roughly 12 years and had previously taught secondary 

mathematics in both public and private settings. She holds a bachelor of arts in secondary 

mathematics education and a master of education in secondary mathematics. 

Content Course 

 Mathematics for Elementary School Teachers II is a content course for 

elementary and early-childhood preservice teachers that addresses the following content 

identified in the university catalog: 

Simple probability and descriptive statistics are reviewed. Two- and three- 

dimensional geometry including polygons, polyhedra and their properties; 

congruence, similarity, and construction; coordinate system; standard 

measurement, area, surface area, volume; and motion geometry are explored. 

Content, according to State standards, is taught with appropriate methodology for 

teaching K-6. (University, 2010) 

MEST II is a four-credit-hour course that meets 4 days each week. This course includes a 

laboratory component in which PSTs engaged in 13 collaborative tasks, roughly one per 

week excluding exam weeks, over the course of the semester. Although PSTs registered 
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for a separate laboratory course, Ms. B had the flexibility to work on laboratory activities 

during any of the four class meetings. 

This course is intended for first-semester sophomores and requires Mathematics 

for Elementary School Teachers I (MEST I), or an equivalent course, as a prerequisite. 

MEST I covers the algebra and number and operations standards and has a prerequisite of 

Essential Mathematics for the Informed Society, or an equivalent course, in which 

probability and statistics (one of the content standards also studied in MEST II) is also 

addressed. This course precedes methods courses for both majors. 

 Both MEST I and MEST II used the text A Problem Solving Approach to 

Mathematics for Elementary School Teachers, 10th Edition (Billstein, Libeskind & Lott, 

2010). In the National Council on Teacher Quality’s (2010) report on the preparation of 

elementary teachers, this book was the most commonly used of the 127 content courses 

surveyed. This text was ranked positively across all content standards, with the highest 

score in algebra for all texts reviewed. NCTQ recognized this text as “far better than 

average” (NCTQ, 2008, p. 80). 

Sequence of instruction. MEST II addressed the data analysis and probability 

standard and the geometry content standard. For the purposes of this study, the course 

was divided into two units. First, PSTs participated in a roughly 5-week unit that focused 

on the data analysis and probability content standard. A second approximately10-week 

unit addressed the geometry content standard. 

Section One (N=34) and Section Two (N=33) were combined to form one 

sequence group (N=67) because a few students' schedules required them to alternate 
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between these two sections. The second sequence group consisted of Section Three 

(N=29). During the first 5-week, data analysis and probability unit, Ms. B used an 

exploratory sequence of instruction with Sections One and Two, in which three of the 

five laboratory tasks were posed before a formal explanation of the content was given. 

Taking into account the two laboratories that did not use an exploratory sequence, the 

first laboratory of the semester used a confirmatory sequence in all sections and is 

discussed further in Chapter Four as Ms. B initially had a different understanding of what 

it meant to explore mathematics. Another laboratory in this unit focused on displaying 

data and required knowledge of mathematical conventions related to box plots. Ms. B did 

not find it productive to learn about these conventions through an exploratory sequence.  

Section Three experienced a confirmatory laboratory sequence during the first 

unit in which content was first explained through lecture and worked examples before 

each of the five laboratory tasks. For the second unit, Sections One and Two experienced 

a confirmatory laboratory sequence in which Ms. B first explained the content before 

each of the eight collaborative tasks was posed. PSTs enrolled in Section Three 

experienced an exploratory laboratory sequence for seven of the eight laboratory tasks 

posed in the geometry unit. Table 3.1 illustrates the sequences of instruction used in these 

two units. 
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Table 3.1 

Sequences of Instruction for Content Units 

 Data Analysis 
 & Prob. 
(5 weeks) 

Geometry 
(10 weeks) 

Sections 1 & 2 
     (N=67) 

Explore  
     3 of 5 labs 

Confirm 
     8 of 8 labs 

Section 3 
     (N=29) 

Confirm 
     5 of 5 labs 

Explore 
     7 of 8 labs 

 

Laboratory tasks. Twenty laboratory tasks were piloted (Sloop & Che, 2011) the 

previous semester, seven for data analysis and probability and 13 for geometry. Of these 

seven data analysis and probability laboratories, six were written for an exploratory 

sequence. The one laboratory written with a confirmatory sequence related to displaying 

data and required prerequisite knowledge of mathematical conventions related to box 

plots. Of the 13 laboratories created for the geometry unit, all 13 were written for an 

exploratory sequence with nine using Geometer's Sketchpad® dynamic geometry 

software. All of these materials were made available to Ms. B at the end of Spring 

semester of 2010. Ms. B used many of the laboratories as written, shortened a few longer 

laboratories, and incorporated some laboratory tasks of her own. 

Data Collection 

 As data were collected, PSTs’ names were removed from their responses and 

replaced with identification codes. These codes included a section identifier and a 

randomly assigned participant number, which allowed responses to remain anonymous 

while identifying section groups. For example, PST 3-17 corresponds to Student 17 in 
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Section Three. These identification codes also appear in Chapter Four where PSTs’ 

responses are reported. 

 Pre- and post-quantitative data were collected on PSTs' Mathematical Knowledge 

for Teaching (MKT) in probability, data, and statistics (LMT, 2008a) and geometry 

(LMT, 2004) in each of the three MEST II sections. These assessments were taken in 

class. Preliminary assessments were taken in both content areas the second week of the 

semester. Post-MKT data were collected after the completion of the first 5-week unit for 

probability, data, and statistics. Post-MKT data were collected the last week of the 

semester for geometry.  

 Preliminary qualitative data were collected within the first two weeks through 

mathematics autobiographies. Throughout the semester qualitative data were collected 

through classroom observations and interviews with Ms. B. During the last week of the 

semester, qualitative data were also collected through exit surveys for all participants and 

through interviews for two PSTs from each section stratified by preliminary MKT scores. 

 Mathematical Knowledge for Teaching (MKT). Learning Mathematics for 

Teaching (LMT), a research group focused on assessing the specialized knowledge 

required to teach elementary mathematics, created multiple-choice measures of MKT for 

elementary teachers with scales specific to geometry; number concepts and operations; 

patterns, function and algebra; and place value. Scales were also available for MKT for 

middle school teachers in geometry; number concepts and operations; and patterns, 

function and algebra. Additionally, there were scale for grades four through eight in 

geometry; probability, data, and statistics; proportional reasoning; and rational number. 
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The elementary geometry (LMT, 2004) and grades-four-through-eight probability, data, 

and statistics (LMT, 2008) scales were used in the current study. The researcher 

participated in an LMT training session in the spring of 2009. 

Although some of LMT’s more recent scales offer data related to the specific 

domain of MKT (see Figure 2.2 for the domain map of MKT) measured by each item, all 

items on the geometry scale loaded under a single factor (LMT, 2004), subject-matter 

knowledge. This scale was assumed to measure both common and specialized content 

knowledge; however, item-specific distinctions were not made. Although the geometry 

scale does not claim to measure pedagogical content knowledge, to be consistent with the 

literature, the construct measured is referred to as Mathematical Knowledge for 

Teaching. The more recent probability, data, and statistics scale (LMT, 2008) does 

identify the specific domain each item assesses and covers common and specialized 

content knowledge as well as knowledge of content and students and knowledge of 

content and teaching. 

Reliability. The grades-four-through-eight geometry scale was considered but not 

used. While this scale had higher item reliabilities, between 0.87 and 0.94, it 

discriminates best among above-average teachers, with item difficulties of 11 of the 73 

items one standard deviation above the mean (LMT, 2008b). This scale was also 

significantly longer than the 2004 elementary version. The 2004 elementary version 

discriminates best slightly below the mean with item reliabilities in the "mid .8s or 

higher" for alternative forms (LMT, 2004, p. 2). There was only one form of the 
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probability, data, and statistics scale available. The test-retest reliability of this single 

form was 0.91. 

 Validity. For both scales, construct validity was established by using a “job 

analysis” approach in creating the model of MKT, as described in the previously 

mentioned literature. Further, construct validity was ensured through use of research 

literature, personal experience, and field notes (LMT, 2004, 2008a). Criterion validity 

was established by associating MKT scores with the quality of instruction for in-service 

teachers measured through cognitive interviews and videotapes of mathematics 

instruction (Hill et al., 2008). Further evidence of criterion validity was established by 

linking LMT scores, consisting of items from all content domains, with student 

achievement on three of McGraw-Hill’s Terra Nova assessments for kindergarten, first-

grade, and third- and fourth-grade students (Hill, Rowan & Ball, 2005). 

Mathematical autobiographies. As a requirement of the MEST II course, all 

students submitted mathematical autobiographies within the first two weeks of the 

semester. Ms. B granted the researcher access to the autobiographies of students that 

chose to participate in the study. In a brief essay introducing her- or himself to the 

instructor, PSTs described what mathematics is to them. PSTs also described a typical 

day in mathematics class in elementary, middle, high school, and college as they 

remembered it. They wrote about strategies they found particularly helpful and those that 

did not benefit them. Preservice teachers were also asked to write about what a typical 

day in their future mathematics class might look like. Then, they described how they 
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might teach their class about the area of a rectangle or elementary probability. The 

prompt and grading rubric given to PSTs are in Appendices A and B. 

Classroom observations. All sections of MEST II were observed at least twice 

for a total of ten observations over the semester. The purposes of these observations were 

to ensure the fidelity of the sequence of instruction and to gain insight into differences 

between the two sequences. Field notes were taken and audiotapes of classroom 

discourse were recorded. Although all dialogue from classroom observations was not 

transcribed, these recordings were used to capture specific dialogue identified in field 

notes.  

Instructor interviews. Ms. B was interviewed four times over the semester. 

Interviews were audio taped and transcribed. These interviews were based on classroom 

observations and field notes. Appendices C - F contain the protocols for these interviews. 

During each interview Ms. B was also asked about any differences she noticed between 

sequences. Results of the MKT assessments were also shared and discussed during these 

interviews. These interviews lasted between 10 and 20 minutes. 

Student interview protocol. A stratified sample of MEST II participants was 

selected for interviews based on initial MKT scores. For each section, PSTs' preliminary 

scores for both content measures were ranked and divided into thirds to form low-, 

middle-, and high-scoring groups. Two participants were selected from each section such 

that one low-scoring, middle-scoring, and high-scoring PST was chosen for probability, 

data, and statistics and geometry. Table 3.2 shows the stratification scheme for selection 
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of participant for interviews. Interviews lasted between 5 and 15 minutes and were audio 

recorded and transcribed. A protocol for these interviews can be found in Appendix G. 

Table 3.2 

Stratification of Interview Selection based in Preliminary MKT Scores 

Low MKT Mid MKT High MKT  Geo Prob Geo Prob Geo Prob 
Section 1 1   1   
Section 2   1   1 
Section 3  1   1  
Notes. 1=one PST selected based on preliminary 
MKT score. 

 

Exit surveys. At the end of the semester preservice teachers were given open-

ended surveys in which they were asked (1) which sequence they preferred and why as 

well as (2) how they planned to sequence activities and explanations in their own class 

and why. PSTs were again asked (3) how they might teach a lesson on the area of a 

rectangle or elementary probability. These surveys were completed in class and are found 

in Appendix H. 

Data Analyses 

Research Question One. PSTs' mathematical autobiographies were used to 

answer Research Question One: How do the lived experiences, as students of 

mathematics, of a group of preservice teachers influence their pedagogical beliefs? These 

data were analyzed using a phenomenological reduction (Moustakas, 1994) of data in 

which significant statements were extracted from which meaning units were constructed. 

Meaning units were collapsed into meaning clusters to form themes related to prospective 

teachers’ experiences and pedagogical beliefs. 
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 Research Question Two. Data from PSTs' mathematical autobiographies, 

interviews, and exit surveys were used to answer Research Question Two: How does 

experiencing exploratory and confirmatory sequences of instruction influence a group of 

preservice elementary teachers’ pedagogical beliefs? To uncover PSTs' pre-existing 

beliefs about how instruction should be sequenced, each phase of PSTs' descriptions of 

their future instruction and example lessons was labeled using open codes. Next, example 

lessons from PSTs' mathematical autobiographies and exit surveys were coded again 

related to the order in which phases occurred. To identify possible changes in beliefs, a 

similar analysis was performed on example lessons from exit surveys administered at the 

end of the semester. 

 To test null hypotheses H02-1 and H02-2 , which related to PSTs' preferred 

sequence, contingency table were constructed for student preferences versus intended 

sequence as teachers and for student preferences versus sequence group. A Pearson's chi-

squared statistic and Fischer's exact test statistic were calculated using JMP, a statistical 

software produced by SAS Inc. However, before these tests could be performed, the 

following assumptions of a chi-squared analysis were considered (Hinkle, Wiersma & 

Jurs, 2003): 

 1. The sample was randomly selected from the population. 

 2. The sample size is large enough that the expected value of each cell is at  

  least five in 75% of the cells. 

Fischer's exact test was used for the two-by-two comparison of sequence group and 

sequence preference due to the sample size. However, for the three-by-three comparison 
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of student preference and intended instructional sequence, a chi-squared analysis was 

used despite violations of assumption two above, as Fischer's exact test can only be 

applied to two-by-two comparisons.  

 Research Question Three. An Analysis of Covariance (ANCOVA) was used to 

test Research Question Three: Is there evidence of a relationship between sequence of 

instruction and gains in preservice teachers’ MKT? To test the related null hypotheses, 

differences in means scores were examined for sections, sequence groups, and sequence 

preference groups in an ANCOVA with preliminary MKT scores used as a covariate. 

However, before these analyses could were performed the following assumptions were 

considered (Hinkle, Wiersma & Jurs, 2003): 

 1. The samples are independent and random. 

 2. Scores on the dependent measure are normally distributed. 

 3. The variances for each group are equal. 

 4. The relationship between the covariate and dependent measure is linear. 

 5. The regression lines for each group are parallel. That is, the covariate  

  affects all groups similarly, or there is no interaction between the covariate 

  and treatment.  

Therein, null hypothesis H03-2—group effects are the same for all ability levels—is also 

assumption 5 for the ANCOVA used to test the other null hypotheses. 

 Research Question Four. Data from observations, field notes, interviews, and 

laboratory worksheets were used in the case study analysis (Stake, 1995) of Ms. B, in 

which multiple data sources informed the development of emerging themes to answer 
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Research Question Four: What benefits and barriers does an experienced instructor 

perceive when implementing exploratory sequences of instruction? Results of these 

analyses are reported in Chapter Four. 
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CHAPTER FOUR 

Results 

 This chapter begins with themes generated from a phenomenological reduction of 

preservice teachers’ mathematical autobiographies. Within this phenomenology, lived 

experiences with school mathematics for these preservice teachers (PSTs) are reported as 

they relate to specific process standards (NCTM, 2000). Next, PSTs’ beliefs regarding 

the nature of mathematics are explored through a reduction of PSTs’ definitions of 

mathematics. Connections between PSTs’ experiences and pedagogical beliefs are 

examined through data in which PSTs describe pedagogy they found helpful as students 

of mathematics and practices from which they believe they did not benefit.  

After examining PSTs’ previous experience with school mathematics, the nature 

of mathematics, and interpretations of pedagogy as students, PSTs’ beliefs regarding 

sequence of instruction are explored through descriptions of their future classrooms, 

sample lessons, exit surveys and interviews. Possible changes in future teachers’ beliefs 

regarding sequence of instruction are examined. Then, PSTs' beliefs regarding 

exploratory and confirmatory sequences of instruction are considered from their 

perspective as students of mathematics and as future teachers. 

Next, quantitative data for PSTs’ Mathematical Knowledge for Teaching (MKT) 

are reported and relationships to sequence of instruction for content units and preferences 

regarding sequence of instruction are considered. Then, the case of an instructor 

attempting to implement an exploratory sequence of instruction is described through 

analysis of data from observations, field notes, interviews, and planning sessions. The 
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chapter ends by summarizing these results as they answer the four research questions 

presented in Chapter One. 

Experiences with School Mathematics 

The National Council of Teacher of Mathematics (NCTM, 2000) envisions 

classrooms similar to the following: 

Students confidently engage in complex mathematical tasks chosen carefully by 

teachers. They draw on knowledge from a wide variety of mathematical topics, 

sometimes approaching the same problem from different mathematical 

perspectives or representing the mathematics in different ways until they find 

methods that enable them to make progress. Teachers help students make, refine, 

and explore conjectures on the basis of evidence and use a variety of reasoning 

and proof techniques to confirm or disprove those conjectures. Students are 

flexible and resourceful problem solvers. . . . Orally and in writing, students 

communicate their ideas and results effectively. They value mathematics and 

engage actively in learning it. (p. 3) 

That is, mathematics should be connected; students should use mathematical reasoning 

when engaging in problem solving and communicate their findings using a variety of 

representations. Compare this vision for school mathematics to the class in which 

students “sit down, be quiet, take notes, (wonder when we would ever need this in real 

life) and then take tests” (PST 3-01), in which there is little evidence of the problem 

solving, reasoning and proof, communication, connections, or representations process 

standards (NCTM, 2000).  
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 In the section that follows, common themes related to the process standards 

among these preservice teachers’ mathematics experiences are illustrated with evidence 

from their mathematical autobiographies. Then, less common experiences related to 

specific process standards are highlighted. 

Traditional school mathematics. Twenty-four of the 89 (27%) mathematical 

autobiographies described traditional educational experiences at all grade levels, 

characterized by review of previous content, lecture, and guided practice. In these 

preservice teachers’ (PSTs') autobiographies, no evidence of any of the five process 

standards is found. For example, one PST wrote, “A typical day consisted of going over 

homework from the night before, learning the new lesson, [and] then doing practice 

problems afterwards” (PST 1-12). This sequence of review, lecture, and practice was 

common as seen in this PST’s response: “Once the concept of the day has been presented, 

the students work on their class work individually or begin on their homework” (PST 2-

33). Still another PST wrote, “The teacher went over homework from the night before. 

Then the teacher would give notes on the current day's lesson and usually end with a set 

of examples” (PST 3-24). Yet another PST wrote, “We would take notes, which usually 

involved a list of rules we had to memorize then class ended with working on problems 

from the book” (PST 1-26). In this PST’s response, as with many others’, teacher-worked 

examples dominated PSTs’ experiences with school mathematics: “I only remember 

sitting in the desks watching the teacher at the projector as they droned on and on doing 

problem after problem” (PST 3-08). In these traditional classrooms, there were clear roles 
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for both the teacher and the student: “Teachers taught the lesson, [and] students took 

notes” (PST 3-15). 

Although no evidence of the process standards was apparent in these traditional 

experiences, this is not to say preservice teachers’ experiences with traditional 

mathematics were necessarily negative. For example, this PST wrote,  

A typical day in any of my math classes was going over the homework from the 

night before and then continuing on to the next lesson. . . . It was always very 

helpful when the teacher taught math with the blackboard. I have to see things 

written down in order to understand them. The chalkboard was always very 

helpful for me. (PST 2-14) 

Additionally, another future elementary teacher explained, 

A typical day in this class [consisted] of checking homework and moving onto the 

lesson. My teacher taught at a very fast pace, and we had to learn at this pace as 

well. Taking this class was probably the most stressful and challenging thing I 

have ever done, but it was also the most rewarding. 

These teachers found traditional practice in which the teacher reviewed homework and 

delivered content beneficial and rewarding. Although the PSTs described above 

experienced only traditional school mathematics, other PSTs explained that they used 

concrete representations in elementary school but experienced a transition to traditional 

mathematics in secondary grades. 
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Transition from concrete representations to traditional school mathematics. 

Through the middle grades, children's mathematical representations usually are 

about objects and actions from their direct experience. Primary school students 

might use objects to represent the number of wheels on four bicycles or the 

number of fireflies in a story. They may represent larger numbers of objects using 

place-value mats or base-ten blocks. . . . Representations make mathematical 

ideas more concrete and available for reflection. Students can represent ideas with 

objects that can be moved and rearranged. Such concrete representations lay the 

foundation for the later use of symbols. (NCTM, 2000, p. 68, 137) 

 Thirty-five of the 89 (39%) autobiographies showed evidence of the 

representation standard in the elementary grades followed by a transition to traditional 

explain-practice instruction similar to those described above in secondary grades. For 

example, one PST wrote of an elementary teacher who “used diagrams on the board for 

visual learners; she had physical blocks for us to use to help those with more of motor 

senses and she also spent time on it verbally.” However, “Math in middle school was 

more of a lecture style classroom. Depending on the teacher, we would either take notes 

on what she was saying or we would be following an overhead projector which had notes 

for us” (PST 1-17). Teachers continued to deliver content through lecture in high school 

as this PST explained: “We would enter the class, sit down and the teacher would begin 

lecturing and writing notes on the board” (PST 1-17). This PST experienced concrete 

representations in elementary school and a transition to traditional education in middle 

and high school. 
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 The preservice teachers who experienced a transition to traditional education 

often described their elementary experience as hands-on, illustrating the representation 

standard, with a shift to lecture in later years. These shifts toward lecture were often 

accompanied by changes in PSTs' perceptions of the subject. For example, one PST 

wrote,  

We also did a lot of hands on activities in the earlier grades. In middle school, I 

remember math being hard. This is when everything started being confusing and 

frustrating. There was not as much hands on activities. The math class was mainly 

taught through lecture. In high school, Math began to [steer] towards taking notes. 

(PST 2-03) 

 For this PST mathematics became difficult with the absence of concrete representations. 

Similarly, another PST described a shift in middle school from concrete representations 

to worked examples with a focus on textbooks. For example,  

In elementary school, math was fun. We used a lot of blocks and counting toys to 

learn. However, once I got to middle school we mainly did book work, which was 

where I started to not understand math. Once I got to high school and math was 

purely lecture notes and homework out of a textbook, I became a very poor math 

student. (PST 2-24) 

Not only did the instructional practices change, but there was also a change in PSTs’ 

perceptions of mathematics and their own mathematical prowess as illustrated in the 

responses above. 
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Less common evidence of process standards. Although evidence was found for 

the representation standard only in early years for the 35 preservice teachers described 

above, one future teacher described a rich elementary experience. This PST recalled an 

elementary classroom that was “related to your life,” in which “the teacher usually relates 

the lesson/problem to [the] real world and relatable issues to make it easier for the 

students.” In this classroom, “the teacher doesn’t talk that much.” Instead, students 

“usually work collectively as a class to solve problems” (PST 1-03). For this PST, 

elementary mathematics was connected to everyday life, and students, as opposed to the 

teacher, communicated problem-solving strategies. However, this PST also experienced a 

transition to lecture-driven mathematics instruction. In middle school, “the teacher 

lectures more,” and in high school, “the teacher lectures almost the entire lesson, without 

stopping much for questions. . . . Once the teacher is done explaining, the students 

usually practice problems on their own.” (PST 1-03). This PST described a less common 

elementary experience that included multiple process standards, not just the 

representation standard; however, this PST also experienced a transition to traditional 

mathematics in middle school. 

  Although much less prevalent, there were a few instances of concrete 

representations in students’ secondary experiences. One future teacher wrote about high 

school geometry and algebra classes that “had more hands on things mixed in” (PST 1-

05). Similarly, another PST identified an uncommon experience with concrete 

representations in high school: “In high school, the teachers mainly sat at the projector 

doing problems too, except in my geometry class we did a lot of hands-on things such as 
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making shapes out of paper.” Evidence of similar secondary experiences was much less 

common, with only three PSTs alluding to instances of the representation standard in 

high school, and these experiences were isolated to a single class or teacher. 

 Even less common were experiences engaging in problem solving. In addition to 

the one preservice teacher’s elementary experience collectively solving problems 

described above, a second PST told of a single high school course that required non-

routine mathematical thinking:  

I may have had an interesting teacher occasionally, but for the most part it was 

easy and almost boring. The teacher taught a lesson, and I pretty much understood 

it right away. Until calculus, that is. AP Calculus provided me with new concepts 

and ideas that were more complex than simple algebra and graphs. It challenged 

me and made me think outside the box, and I liked that. (PST 3-01) 

This PST's experience thinking "outside the box" was, however, isolated to a single 

course. 

 Evidence of preservice teachers communicating their mathematical thinking was 

also in short supply. In fact, one PST wrote of a high school experience void of student-

to-student communication: “We came into the classroom, sat in our seats, and listened to 

the teacher talk and then followed along with examples. We were . . . not permitted to 

talk to the people around us” (PST 1-33). Only one other preservice teacher, in addition 

to the aforementioned rich elementary experience, described an elementary experience in 

which students communicated their mathematical thinking. This PST recalled that the 

teacher “split us into small groups so that we could collaborate and work to understand 
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whichever math lesson was being taught. . . . Each group would be able to explain one of 

the problems to the class” (PST 2-04). In this uncommon example, students 

communicated mathematics in small groups; then, groups consolidated their thinking to 

develop an explanation for the entire class.  

 No preservice teacher wrote of connections among mathematical ideas or topics. 

However, four PSTs wrote of connections to real-world applications of mathematics, 

whereas two PSTs wrote of an isolated school mathematics void of connections to out-of-

class experiences. Still, these connected experiences were only present in a single course 

or grade level. For example, one PST described an elementary experience in which there 

“were always fun ways to relate the math to my life whether it was using candy to count 

or having 3-D blocks to count in hundreds” (PST 2-21). This PST considered enacting 

(Bruner, 1964) mathematics with physical representations as connected to life. Another 

future teacher described a middle school experience with connections to the real world: 

I also enjoyed learning how to take the score of a baseball game, and applying this 

skill to real life when we visited the local baseball stadium to watch a game and 

practice keeping score. . . . I learned that I had a passion for math and loved 

applying it to life situations such as finding the volume of the Sydney Opera 

House. (PST 3-12). 

This PST enjoyed applying connections to experiences outside the classroom. 

However, other PSTs did not have similar experiences; one future teacher became 

frustrated with school mathematics “because I knew I would never use this in my future.” 

(PST 2-08). Similarly, another PST wrote, “A typical day in my math classes throughout 
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my student career always involved me learning something very confusing that I thought, 

‘I will never use this in real life’ ”  (PST 3-27). These two PSTs did not see the 

mathematics they were learning as viable (von Glaserfeld, 1990).  

No PST provided evidence of the reasoning and proof standard in their 

descriptions of school mathematics. 

Summary: School experiences. These preservice teachers' interpretations of their 

school experiences were analyzed in search of evidence of the five process standards 

(NCTM, 2000). Thirty-five of the 89 PSTs described school experiences that 

incorporated hands-on activities, providing evidence of the representation standard, in 

elementary grades and a transition to traditional review, lecture, and guided practice in 

secondary grades. Twenty-four PSTs described strictly traditional experiences with no 

evidence of any process standard at any grade level. Evidence of the process standards 

was uncommon and confined to a specific instance, grade level, or teacher. Only five 

PSTs provided evidence of the representation standard in secondary grades. Three PSTs 

wrote of isolated incidences of connections to the experiences outside of school, whereas 

two PSTs wrote of a lack of connections. One PST provided evidence of the 

communication standard, and one PST wrote of an experience void of student 

communication. Additionally, only one student wrote of non-routine problem solving. No 

evidence of the reasoning and proof standard was found. Only one PST provided 

evidence of more than one process standard, and this rich mathematics experience was 

isolated to elementary grades.  



 

118 

Nature of Mathematics 

 Teachers’ beliefs regarding the nature of mathematics have been linked to 

pedagogical beliefs and instructional practice (Archer, 1999; Beswick, 2007; Cross, 

2009; Ernest, 1989; Lerman, 1983). This research explores such beliefs further and 

attempts to connect beliefs regarding the nature of mathematics to PSTs’ experiences 

with school mathematics as well as pedagogical beliefs. Two major themes emerged in 

the analysis of PSTs’ definitions of mathematics: mathematics as a body of knowledge 

and mathematics as an activity. Table 4.1 illustrates the meaning clusters, associated 

meaning units, and number of significant statements supporting each theme. 
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Table 4.1 

Phenomenological Reduction of PSTs' Definitions of Mathematics 

 Meaning Cluster  
(no. sig. state.) Meaning Unit No. Sig. 

Statements 
Mathematics as a Body of Knowledge (55) 

Study of numbers and other domains 12 
Study of numbers 7 
Study of relationships 5 
Study of properties 3 
Study of change 3 
Science of numbers 2 
Study of patterns 2 
Study of structures 1 
Study of algorithms 1 
Study of calculations 1 
Study of equations 1 
Science of reasoning 1 
Study of formulas 1 

 Study of (41) 

Subject dealing with numbers 1 
System 3 
Symbols 3 

 Symbolic system (8) 

Language 2 
List of school courses 2 
List of operations 2 

 List of content (6) 

List of content 2 
Mathematics as an activity (24) 

Using numbers to calculate or compute 5 
Manipulating numbers and symbols 4 
Finding numeric answers 2 

 

Configuring numbers 1 
 Using numbers to determine an unknown 1 
 

Performing procedures (14) 

Process of performing operations 1 
Using numbers for problem solving 3 
Using numbers to understand 3 
Process of thinking 1 
Process of assigning meaning 1 
Process of coming to conclusions 1 
Thinking 1 

 Solving Problems (10) 

Exploring problem solving 1 
Unassociated meaning units (3) 

Mathematics as strategies 2   
Mathematics as a relationship 1 

Note: no. sig. state. = the number of significant statements 
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Mathematics as a body of knowledge. Fifty-five of the 83 (66%) significant 

statements supported mathematics as a body of knowledge. This theme consists of three 

meaning clusters: mathematics as the study of various topics, mathematics as a list of 

content, and mathematics as a symbolic system. 

Mathematics as the "study of." Forty-one PSTs (49%) described mathematics as 

the study of various topics. For example, one PST wrote “Mathematics is the study of 

quantity and patterns” (PST 1-06). Other typical definitions included “the study of 

numbers, shapes, and logic” (PST 1-09), “the study of all things related to numbers” 

(PST 1-13), “the study of structure, space, and change” (PST 2-03), and “the study of 

numbers and formulas” (PST 3-29). For PSTs who believed mathematics to be the study 

of various topics, there was no evidence that students were doing the studying. That is, 

PSTs were not actively investigating or analyzing these domains. Instead, references to 

the study of mathematics were more closely aligned with the titles of an academic 

subject.  

 Mathematics as a list of content. Six PSTs (7%) listed content included in their 

understanding of mathematics without defining this content as a study. The PST’s 

definition that follows illustrates one such response: “Mathematics is math, arithmetic, 

algebra, geometry, calculus, and statistics” (PST 1-07). Still another PST described 

mathematics as “a subject taught in school's [sic] focusing on different concepts 

involving numbers, shapes, and logic” (PST 1-19). As illustrated by these responses, such 

understandings of mathematics are confined to a school context. 
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 Mathematics as a symbolic system. Eight PSTs (10%) described mathematics as a 

symbolic system. For example, one PST wrote, “Mathematics is the system of numbers 

and formulas used to solve problems and equations” (PST 1-12). Similarly, another PST 

explained, “Mathematics is [a] system used to calculate” (PST 3-26). These symbols 

were described as "their own language" (PST 1-15) and for some as "a foreign language 

that I may or may not understand on any given day" (PST 3-10). Although this symbolic 

system can be used for solving and calculating, mathematics was described as a set of 

external principles, not the activity of using this system. To use one PST’s analogy of 

mathematics as a language, mathematics is comparable to the rules of grammatical 

convention, not the act of communicating.  

Mathematics as an activity. Twenty-four preservice teachers’ (29%) described 

mathematics as an activity. Although these definitions portrayed mathematics as an 

action, the processes that PSTs identified were not all congruent with the understanding 

of mathematics as “the activity of constructing relationships and patterns” (Wheatley, 

1991, p 11) held by constructivists. Two types of actions were identified in these 24 

PSTs' descriptions of mathematics: Fourteen PSTs (17%) described mathematics as the 

act of performing procedures, and 10 PSTs (12).described it as the act of solving 

problems. 

 Performing procedures. Some PSTs described mathematics as the process of 

"configuring" (PST 1-04) or “manipulating numbers to solve equations” (PST 1-16). The 

actions these PSTs used to describe mathematics related to procedures. Further, another 

PST wrote that "Mathematics is the manipulation of numbers and variables” (PST 1-29). 
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For these PSTs mathematics was the process of arranging and moving mathematical 

symbols. 

 Similarly, mathematics was also understood as the action of following an 

algorithm to determine the one correct answer. The following PST's definition illustrates 

an understanding of mathematics as performing rigid procedures: 

Mathematics is finding an answer to a problem through a list of constant steps. In 

mathematics there is always one correct answer and an infinite amount of 

incorrect answers, you simply need to know the steps to find the one correct 

answer. (PST 2-33). 

Although these 14 teachers viewed mathematics as an activity, the actions by which one 

does mathematics were prescribed. 

Solving problems. A number of preservice teachers described mathematics as the 

process of solving problems. For example, one such PST described mathematics as 

“using numbers to solve a problem" (PST 1-27). These PSTs believed "Mathematics is a 

way of using theories, equations, numbers and/or figures to solve or explain problems” 

(PST 1-03). Although these PSTs reference problem solving, it was unclear whether these 

problems were non-routine in the NCTM sense of problem solving (NCTM, 2000). 

Similarly, other PSTs believed mathematics to be the “process of coming to some 

numerical conclusion” (PST 1-30) or the process of "finding answers" (PST 3-09). 

Although these definitions of mathematics do not explicitly reference rote activities, it 

was not clear whether these conclusions and answers were a product of prescribed 

algorithms or non-routine thinking. 
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 Only three PSTs (4%) provided explicit evidence of a standards-based perspective 

of problem solving. One such response follows: 

Mathematics is more than just adding or subtracting and there being an exact, 

definite answer. Sure, in your actual class, obtaining the correct answer is 

definitely important but I believe that the thought process is more important than 

the actual answer. As a teacher, I would regard the mathematical process of 

obtaining an answer as much more important. (PST 2-22) 

This PST believed mathematics is the process of thinking, which goes beyond traditional 

algorithms. Similarly, another PST described mathematics as “logical thinking that helps 

shape the world” (PST 3-28). For this PST mathematics was logical; that is, mathematics 

required reasoning. Another PST wrote, “Mathematics, to me, is exploring different ways 

to solve equations and problems” (PST 2-19). By exploring multiple avenues, 

mathematics was conveyed as non-routine. Nevertheless, such responses were rare. 

Summary: Nature of mathematics. Three meaning clusters—math as a study, 

list of content, and symbolic system—were associated with mathematics as an external 

body of knowledge. Further, many of the typical responses showed mathematics to be 

confined to a school context or specific courses. Such codified, static understandings of 

mathematics are not congruent with a constructivist epistemology that views mathematics 

as an activity (Wheatley, 1991; Fosnot, 2005; Schifter, 2005). 

Although some PSTs viewed mathematics as a human activity, the processes by 

which these PSTs viewed mathematics were not congruent with a problem-solving or 

“mathematizing” (Fosnot, 2005) perspective described in constructivist literature 
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(Wheatley, 1991; Fosnot, 2005; Schifter, 2005). When attempting to connect preservice 

teachers’ lived experiences with school mathematics to their understanding of the subject, 

analysis becomes difficult because there is such little variation in school experiences. 

Overwhelmingly, these PSTs either experienced traditional school mathematics or 

transitioned to review-explain-practice pedagogy by middle grades. Additionally, 

understandings of mathematics as the activity of problem solving were rare. In a 

secondary comparison of those PSTs' school experiences with views of mathematics as 

the activity of problem solving, no clear differences were identified. 

Interpretations of Pedagogy as Students 

 One means of connecting PSTs’ experiences as students of mathematics to their 

pedagogical beliefs was to examine pedagogical practices they interpreted as particularly 

helpful and those they did not find beneficial as students of mathematics. In the analysis 

of these data, 127 significant statements were extracted from PSTs’ mathematics 

autobiographies related to beneficial practices and 49 related to practices they did not 

find helpful. These 176 significant statements were associated with 52 meaning units.  

 From these 52 meaning units, eight meaning clusters emerged: review, delivery of 

content, worked examples, practice, learning styles, group work, process standards, and 

assessment. Four of these eight meaning clusters were associated with a theme of 

traditional educational experiences characterized by review, delivery of content, worked 

examples, and practice. The remaining meaning clusters—learning styles, group work, 

process standards, and assessment—were not associated with any particular theme. The 
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13 meaning units not associated with any particular cluster and the number of significant 

statements associated with each are identified in Appendix I. 

 This section first examines the theme of traditional education through its four 

components of review, delivery of content, worked examples, and practice. Then, the 

unassociated meaning clusters (learning styles, group work, and process standards) are 

considered.  

Traditional pedagogy. Given that these preservice teachers’ experiences with 

school mathematics were overwhelmingly traditional, it is not surprising that their 

interpretations of effective pedagogy would also be situated within a traditional 

framework. Eighty-four of the 176 significant statements (approximately 48%) were 

associated with tradition education characterized by review, delivery of content, worked 

examples, and practice. Table 4.2 shows the meaning clusters, associated meaning units, 

and number of significant statements supporting the theme of traditional mathematics 

experiences.  
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Table 4.2 

Phenomenological Reduction of PSTs' Interpretations of Pedagogy: Traditional 
Mathematics Experiences 

   No. of Sig. State. 

 Meaning Cluster  
(no. sig. state.) Meaning Unit Beneficial Unhelpful 

Traditional mathematics experiences 
Review of homework 3   Review (5) 
Review 2  
Lecture alonea  12 
Notes 6 4 
Lecture 2 2 
Lecture followed by practiceb 3  
Boring lectures  1 
Notes from text  1 

 Delivery of content (32) 

Explicit algorithm given 1  
Examples 8  
Step-by-step examples 7  
Teacher-worked examples 6  
Example with explanation 2  
Teacher-worked examples 
followed by guided practiceb 2  

Single example  1 

 Examples (27) 

Algorithm without example  1 
 Practice 12  

Repetition 7  
Group work: practiceb 3  
Lecture followed by practiceb 3  
Teacher-worked examples 
followed by guided practiceb 2  

 

Practice (28) 

Too much practice  1 
Note. No. of Sig. State. = the number of significant statements. aThe meaning unit 
"Lecture alone" was assigned to significant statements that reference lecture the entire 
period or specific references to lecture without support from examples or guided practice. 
bThis meaning unit was associated with more than one meaning cluster. 

It should be noted that each PST's response did not produce the same number of 

significant statements. Therefore, there is not a one-to-one correspondence between 

significant statements supporting a meaning unit and the number of PSTs in the analyses 
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that follow. Although Tables 4.2 and 4.3 may provide information regarding how 

common certain responses were, in this section attempts are not made to quantify the 

exact number of PSTs that held a particular belief. 

Review. Just as many PSTs described a typical day that began with a review of 

homework, significant statements extracted from these PSTs’ interpretations of effective 

pedagogy also supported beliefs that review is advantageous. One such significant 

statement follows: “I find it beneficial when a teacher goes over the homework assigned 

so I am sure I am on the right track and I can correct my mistakes when the work is still 

fresh in my mind” (PST 1-15). Similarly, other significant statements described review as 

a time to identify misconceptions after students have practiced the skill at hand similar to 

this PST's response: 

Overall, homework, given at all age levels, is very helpful. It gives students a 

chance to do the work independently and test their knowledge. Then, the 

opportunity will be given to review the homework and ask any questions 

pertaining to the ones that they may have missed. (PST 1-30) 

Although these PSTs were not using the language of schema theory, there was evidence 

that they viewed such reviews as activating prior knowledge. For example, one PST 

wrote, “Teachers would reveiw [sic] old material to refresh your memory before starting 

new material” (PST 2-18). Among this group of PSTs, review of previous content was 

consistently seen as a component of effective pedagogy.  

Delivery of content. Significant statements supported the delivery of content 

through lecture and the presentation of notes to be a valuable pedagogical practice as 
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illustrated by this response: “I found the lecture classes to be the most beneficial to me, 

because I learn best by being thoroughly explained the material step by step and by 

writing it down to have to study later” (PST 1-18). Similarly, another significant 

statement follows: “I think that the teachers who lectured while working either at the 

board or at an overhead and did many examples works well for me” (PST 1-34).  

Many significant statements supported lecture as something separate from 

illustrating teacher-worked examples as evident in their critiques of a lecture void of such 

examples. For instance, one such response follows: “Lecturing in math did not benefit me 

at all. I would rather see something be done then [sic] to be told how to do it” (PST 2-03). 

This significant statement shows that lecture to be a time during which procedures were 

explained separately from when these procedures were demonstrated. Still other 

significant statements supported lectures to be effective only when delivered with 

enthusiasm: 

Lecturing does not seem to benefit me as much because I find myself “day 

dreaming” throughout class. If my teacher that is giving the lecture is enthusiastic 

about what they are teaching then it makes me feel the same way and I find that I 

am more interested in the information and I want to learn it. (PST 3-23) 

From these responses, a belief in the value of lecture is illustrated; however, a belief that 

lecture should occur in tandem with worked examples and be delivered with zeal was 

identified. 
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  Another aspect of the delivery of content was the distribution of notes. PSTs 

found giving notes to be a valuable part of the process of teaching as illustrated by this 

response:  

Strategies that I find particularly helpful are very detailed notes that simplify 

math. I need things to be explained very thoroughly instead of just being shown 

how to do a problem. When teachers just show you how to do a problem without 

explaining the ins and outs, it’s hard for me to keep up. (PST 2-01) 

While PSTs found merit in the note-taking process, significant statements support that 

note taking can be uninteresting: “I do believe writing down notes is helpful. It is easy to 

refer to when it comes to preparing for the test. However, I do not like always taking 

notes. I become unmotivated and bored” (PST 2-29). Interestingly, this significant 

statement, as did others, showed the end goal of effective pedagogy to be a test, and notes 

were helpful because they aided in the preparation for tests. 

Similar to PSTs’ critiques of lecture without examples, PSTs found note taking 

without guided practice to be problematic. For example, one PST wrote, “I found classes 

where I only took notes on the idea not beneficial because I think it is important to 

practice the concept when the teacher is there so you can get help if needed” (PST 1-28). 

Thus, significant statements support the delivery of content through lecture and giving 

notes to be beneficial strategies for instruction but warn that such practices should also be 

accompanied by other components of traditional instruction. 

Worked examples. As mentioned above, these PSTs interpreted worked examples 

as something separate from lecture, which was a time when teachers explained an 
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algorithm and gave notes, as evident in this response: “When a problem was simply 

explained in written steps & not demonstrated to the class, I found it a lot harder” (PST 2-

30). However, when lectures were supported with examples, PSTs found teacher-worked 

examples beneficial. One such significant statement follows: “When a certain problem 

was worked through several times by the teacher in front of the class, the idea usually 

stuck better” (PST 2-30). Further, another response is below:  

I like a lot of examples so I can look at how to solve certain problems. I do not 

like just being told how to solve a problem and given one example. I really need 

to work several examples to fully understand how to solve the problem. (PST 1-

29) 

This response shows that multiple examples were needed and did not find a single 

instance sufficient. 

 These preservice teachers viewed worked examples as an instance of a precise set 

of steps that learners should imitate. To cite an example, “The most helpful strategies for 

me have been giving good examples that clearly show me step by step how to work 

through the problem” (PST 2-17). Further, another significant statement follows: 

“Something that is helpful to me is the teacher going through the problem step by step 

and then going through a few examples so I am able to see how to do different types of 

problems” (PST 3-11). Worked examples were interpreted as an illustration of a 

particular algorithm that learners can reference when this procedure is needed, as this 

significant statements illustrates, “It was always helpful for me to be able to go back and 

look at how I did a problem in class step by step” (PST 1-17). 
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 Significant statements support a belief that multiple examples of a procedure, 

accompanied by a step-by-step explanation of the algorithm, were an important 

component of instruction. Within their explanations of the importance of worked 

examples, a traditional understanding of mathematics is illustrated in which a precise set 

of steps can be reproduced. PSTs' view of mathematics as confined to a well-defined 

problem space is illustrated in their belief that teacher-worked exampled can be 

reproduced when needed.  

Practice. Once a procedure had been explained and illustrated, many PSTs found 

it beneficial to practice this procedure in class with teacher guidance. For example, the 

following significant statement supports this belief: “The practice helped me to get a 

good feel of how the problem was to be done before I had to solve similar problems for 

homework later on” (PST 2-10). Significant statement revealed a belief that guided 

practice should be followed by individual practice as well. This is illustrated in the 

following response:  

In mathematics, I think that just practicing a lot helped me more. After going over 

a new concept, stopping to do a problem or two on my own benefitted me because 

sometimes you may think you understand it, but when you actually try and work 

it out on your own, you realize that there’s more to it than you think. (PST 2-22) 

These significant statements supported practice as valuable and stressed the volume of 

practice needed, as illustrated in this typical response: “The best way for me to 

understand how to do something is for me to practice it so the more practice I received 

the better” (PST 2-31). 
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Further, some PSTs believed that practice should be repetitive. For example, the 

significant statement that follows supports this belief: “I learn better by hand writing 

math problems and practicing them over and over again” (PST 2-11). Additionally, 

another PST wrote, “I personally find that working problems over and over until they are 

mastered pretty well is the most helpful way to learn math problems” (PST 1-32). 

Once again, teachers’ descriptions of sound pedagogy parallel their experiences 

with a traditional sequence of review, delivery of content, examples, and practice. A 

number of PSTs stressed the volume of practice and believed repetition to be an 

important part of learning mathematics. Similar to PSTs’ beliefs regarding the importance 

of examples, repeating procedures also illustrated an understanding of mathematics 

confined to a rigid problem space in which routines can be replicated. 

Unassociated meaning clusters. Although a majority of preservice teachers’ 

interpretations of pedagogy were situated within a context similar to their experiences 

with traditional school mathematics, four meaning clusters emerged that were not defined 

by traditional instruction. Table 4.3 shows the meaning clusters, associated meaning 

units, and number of significant statements supporting meaning clusters that did not 

support a common theme. In the following section, three of these four unassociated 

meaning clusters are reported. Once again, the number of significant statements is not 

necessarily synonymous with the number of PSTs. 
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Table 4.3 

Phenomenological Reduction of PSTs' Interpretations of Pedagogy: Unassociated 
Meaning Clusters 
   No. of Sig. State. 

 Meaning Cluster  
(no. sig. state.) Meaning Unit Beneficial Unhelpful 

Unassociated meaning clusters 
Visual learner 7  
Hands-on as visualb 7  
Only auditory style  4 

 Learning styles (21) 

Hands-on as kinestheticb 3  
Group work: no rationale 4 4 
Group work: comfort 2 1 
Group work: communicationb 3  
Group work: practice 3  
Group work: perspective 2  
Group work: left out  1 

 Group work (21) 

Group work: teacher's role  1 
Connection to experience 6  
Connection to other subjects 1  

 

Group work: communicationb 3  
 Hands-on activities 11  
 Hands-on as visualb 7  
 

Process standards (31) 

Hands-on as kinestheticb 3  
Graded homework  2 
Quizzes  1 
Timed tests  1 

 Assessments (7) 
 

Projects  1 
Note. No. of Sig. State. = the number of significant statements. bThis meaning unit was 
associated with more than one meaning cluster. 

Learning styles. In 18 of the 89 (20%) preservice teachers’ examples of beneficial 

pedagogy, evidence of three preferences for sensory input was found: visual, auditory, 

and tactile (kinesthetic). For example, one PST explained,  

“My 4th grade math teacher left a mark on me in her class through her tactics. If 

we were ever adding, multiplying, or subtracting, she would always have us use 

objects to show us a physical example of the numbers being represented. I really 



 

134 

liked this strategy because it gave you a visual, hands on, and verbal explanation 

of how it was done.” (PST 3-27) 

Preservice teachers believed they learn best when instruction aligns with their learning 

style and that instruction should vary to accommodate all learners’ preferences: “In my 

mathematics class, I want to incorporate all types of learning: visual, auditory and kinetic 

[sic]” (PST 3-19).  

Visual learners. Seven PSTs described themselves as visual learners and preferred 

visual means of instruction. For example, one PST wrote, “I’m a visual learner so 

anything that I could see I would understand” (PST 1-20). Similarly, another PST 

explained, “The strategies that I find helpful are using models and the white 

board/overhead to learn lessons. I’m more of a hands-on and visual person” (PST 2-07).  

PSTs that described themselves as visual learners often explained that they do not 

benefit from instruction delivered strictly through auditory means, as this PST illustrated: 

Personally I am more of a visual learner so it helps me a lot to have actual 

concepts written on the board or using some hands-on activities such as using a 

spinner to learn probability. It helps me to visualize the problem so using pictures 

or graphs helps me to grasp the question and find a solution. Alternatively, just 

listening to a teacher describe concepts or doing worksheets doesn't help me as 

much as it doesn’t stick in my brain as much. (PST 1-24) 

Similarly, another PST wrote, “I’m a visual learner so anything that I could see I would 

understand. I’m not an audio learner so listening with nothing for me to see or touch then 

I would not benefit from the lesson” (PST 1-20). Among these responses, no PST 
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identified her- or himself as a strictly auditory learner; auditory means of sensory input 

were referenced only in contrast to their visual preferences. 

 Seven preservice teachers referenced the use of hands-on activities as beneficial 

to them due to their visual preferences. For example, this PST explained, “The hands-on 

activities helped me because I am a visual learner and it helps me to literally see what is 

happening” (PST 3-01). Similarly, another PST wrote, “I also like hands on activities that 

help me visualize the work I am trying to learn.” (PST 1-15). This connection between 

hands-on activities and visual learning was further illustrated by this PST’s response: “I 

found the use of hands on activities helpful in learning math, especially when the activity 

was edible. I’m a visual person, so being able to see difficult concepts laid out before me 

was beneficial.” (PST 3-05). Interestingly, these PSTs attributed value to hands-on 

activities not because they allow students to enact the mathematics as they move from 

concrete to abstract representation (Bruner, 1964, 1967) but because they make the 

mathematics visible. 

Kinesthetic learners. While many PSTs valued hand-on activities because of their 

visual sensory input preference, three PSTs attributed value to such activities due to their 

tactile learning preference. For instance, one PST explained, “Hands on strategies 

particularly helped me in math because I am a tactic [sic] learner” (PST 2-03). Similarly, 

another PST wrote, “Anything hands-on I found particularly helpful because I am very 

kinesthetic and like to be able to touch and feel and be able to move around what I am 

learning” (PST 3-08). Although not using the language of learning styles, another PST 

wrote: "I really liked more hands on teaching because that’s how I learn. It was easier for 
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me to be able to connect math with something I could touch" (PST 1-09). PSTs who 

preferred learning through kinesthetic inputs were less consistent in labeling their 

preference. Some attributed their preference to touching objects (tactile), whereas others 

associated their preference with moving objects (kinesthetic).  

 Moreover, 21 of the 176 (12%) significant statements regarding effective 

pedagogy, representing 18 of the 89 (20%) of PSTs, referred to matching mode of 

instruction with learners' learning styles, a theory not supported by research on teaching 

and learning (Pashler, McDaniel, Rohrer, & Bjork, 2009).  In analyzing PSTs' responses, 

no evidence was found that explained how this theory penetrated PSTs' pedagogical 

beliefs. 

Group work. Preservice teachers' beliefs regarding group work were the most 

varied among the beliefs examined in this research. Fourteen PSTs (16%) wrote of the 

benefits of group work, whereas seven PSTs specifically mentioned group work as a 

unfavorable instructional practice.  

Some PSTs referenced group work as a valuable time to collaboratively practice 

the mathematics delivered by the teacher. One such typical response follows: "Working 

in groups on problems in class was always helpful to me. Sometimes it is hard to 

remember exactly how to solve problems even right after a lesson, and it is very helpful 

to have peers to work together to solve the problem" (PST 3-04). Again, a routine 

understanding of mathematics was portrayed as group work aided in remembering how to 

solve a problem.  
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Other PSTs valued group work because it provided a comfortable setting to ask 

questions, which was less intimidating than asking the teacher in front of the entire class. 

For example, one PST wrote, 

Group work is actually fairly helpful to me in most situations. When I don’t 

understand the material as well, it is easier for me to then work in a group and get 

help and understanding rather than speak up and ask the professor in front of the 

whole class, which I am very uncomfortable doing most of the time. (PST 1-13) 

Similarly, another PST found peers more approachable than the teacher:  

I think that it is helpful when teachers encourage students to use the biggest 

resource in the classroom: the students. It is so helpful to ask people around you 

for help without struggling in the seat alone or feeling like the teacher is not 

approachable. (PST 1-33). 

For these future teachers, discussing mathematics with one's peers is less intimidating 

than addressing the teacher. However, not all PSTs found group settings to be more 

comfortable. For example, this PST found group settings uncomfortable:  

Some of my teachers used to split us up randomly to work together in math and I 

feel as though that never benefited me because I was less comfortable with my 

partner I was working with since I didn’t know them, or their level of math 

intelligence. (PST 3-14) 

While inquiries into PSTs' beliefs regarding group work showed that future teachers 

value comfortable learning environments, group work was not consistently identified as 

such. 
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 Examining PSTs' beliefs regarding group work also revealed strong beliefs 

regarding the role of the teacher. For instance, one PST wrote, "The method I despise the 

most is peer teaching. I truly believe this is a teacher’s attempt to get out of work. You 

have the college degree not your student. You need to teach!" (PST 3-28). This PST 

strongly believed that teachers should deliver the content and viewed group work as an 

escape from one's pedagogical duties. Another PST found group work unbeneficial 

because those students that understood the content took an active role, whereas students 

struggling with the content were passive: "Something not so helpful is group work only 

because if you don’t really know the concept the person in the group who does know it 

spends all the time doing the work and your [sic] watching but not really learning much." 

(PST 1-25) 

 Still a few PSTs found group work to be a useful time to communicate their 

mathematical thinking. One such response follows: "Working in groups and being able to 

discuss problems and explain things to classmates helps me to fully grasp the idea or 

concept" (PST 2-17). Similarly, another PST wrote, "I also find group work on an 

activity to be more beneficial to me, opposed to individual work, because group members 

can bounce ideas off each other and help each other understand the material" (PST 3-17). 

 Not only did group work allow the student communicating the mathematics an 

opportunity to organize her or his thinking, but it also gave those listening to the 

explanation a perspective different from the teacher's. Some PSTs, therefore, valued 

group work because it offered mathematics from a student's perspective: "Sometimes 

peers understand where the mistakes are made because we all make the same ones, so 
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they can easily instruct us to the right path and answer. I love working with groups to get 

others' opinions on how to approach problems as well" (PST 3-12). Similarly, another 

PST found group work advantageous "because sometimes it takes someone other than a 

teacher to be able to explain things to make them simpler to understand" (PST 3-21). 

 Preservice teachers' experiences with collaborative learning in mathematics 

courses have shaped varied beliefs regarding group work. Responses varied in both the 

value of group work and reasons they found group work particularly beneficial or 

obstructive. However, through examining PSTs' beliefs about group work, beliefs 

regarding the value of comfortable learning environments, the role of the teacher, 

students' perspectives, and communication were highlighted. 

Process standards. In addition to the abovementioned evidence of the 

communication standard (NCTM, 2000) in group work, six significant statements 

provided evidence that at least some PSTs believed mathematics instruction should be 

connected. PSTs wrote of the benefits of real-world examples as such applications made 

the mathematics relevant:  

When the mathematics lessons were applied to a real life situation, I feel like I 

appreciated math more and I wasn’t just another high school kid forced to be in 

class wondering, “Why are we learning this?” It kept the math relevant to today, 

even though some techniques were conceived hundreds of years ago. (PST 3-01). 

Similarly, another PST wrote, "I really like when teachers make lessons relevant to us. It 

makes me want to pay attention because I feel like I will actually use what we are 

learning in a real-life situation and can find it helpful to my life in some way" (PST 1-
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03). Additionally, one PST found the laboratories in the content course examined in this 

study to be beneficial because these laboratories "are able to draw a connection from the 

concepts I have been taught to the real world, and learning how the lesson applies to my 

life always helps me understand the material better" (PST 3-10). Similar to PSTs' 

experiences with school mathematics, there were a few instances of mathematics as 

connected to or applied to the real world, but no references to connections among 

mathematical ideas were found.  

 In examining the influence of PSTs' experiences with school mathematics on 

these beliefs, two of the six PSTs that valued a connected mathematics were also among 

the six PSTs that wrote of connected school experiences. Although no causal claims are 

made, instances of connected school experiences were rare as was evidence of 

pedagogical beliefs related to connections. Still, there was some overlap among these 

uncommon experiences and beliefs. 

 As previously mentioned, ten significant statements supported two meaning units 

relating hands-on activities to PSTs' learning styles. The use of concrete objects was 

interpreted as visual, tactile, and kinesthetic representations of mathematics. Eleven 

additional significant statements were identified that support the use of hands-on 

activities. However, these references did not reveal how concrete representations might 

benefit learners. For example, one PST wrote, "I always really enjoyed hands on 

activities. They are much easier to wrap your head around" (PST 2-25). Combined, these 

statements showed that some PSTs believed such representations are important, but did 

not offer insight into how such models aid in student learning. In the next section, further 
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inquiries into PSTs' beliefs regarding hands-on activities are explored through 

prospective teachers' descriptions of their anticipated future instructional practices. 

Summary: Interpretation of pedagogy as students. Similar to their experiences 

with school mathematics, PSTs' beliefs regarding effective pedagogy were situated in a 

traditional framework of review, delivery of content, worked examples, and practice. 

Additionally, a belief that instruction should match students' preferred learning styles 

emerged. Beliefs regarding group work varied both in the value attributed to 

collaborative tasks and the reasons that such tasks are beneficial. Similar to their 

experiences with school mathematics, a few less frequent instances of the 

communication, connection, and representations standards were identified. However, no 

evidence of the reasoning and proof or problem-solving standards was identified in PSTs' 

interpretations of effective pedagogy. 

Beliefs Regarding Sequence of Instruction 

 Data pertaining to PSTs' beliefs regarding sequence of instruction was collected at 

the beginning of the semester for 89 PSTs through their mathematical autobiographies. In 

these autobiographies, PSTs were asked to describe a typical day in their future 

classroom and to explain how they might teach a lesson on either the area of a rectangle 

or elementary probability. At the end of the semester, data were collected using hand-

written exit surveys for 83 PSTs in which they were again asked how they planned to 

teach a lesson on either the area of a rectangle or elementary probability. The content 

domains chosen for these pre- and post-example lessons can be found in Appendix L. 

Table 4.4 summarizes these data. Although it appears that more PSTs chose geometry for 



 

142 

their post-example lessons in Sections One and Three, no clear pattern emerged between 

sequence groups or in changes between content domains for the pre- and post-example 

lessons. 

Table 4.4 

Number of PSTs who Addressed Geometry or Probability in Example Lessons 

 Sequence Group 1   Sequ. Group 2  
 Section 1   Section 2   Section 3  
 Pre   Post   Pre   Post   Pre   Post  
Geo Prob Geo Prob Geo Prob Geo Prob Geo Prob Geo Prob 

15 16 22 8 15 15 14 12 15 13 20 7 
Note. Sequ.= sequence; Geo = Geometry; Prob = Probability. 

It should be noted that not every response offered insight into their intentions 

regarding sequence of instruction. Of the 261 responses analyzed, only 97 (36%) offered 

explicit evidence of an intended sequence of instruction. From these data four sequences 

of instruction were identified: traditional sequences, confirmatory sequences, exploratory 

sequences, and no formal explanation. Table 4.5 illustrates variations of these four 

sequences and the number of instances of each sequence identified in PSTs' descriptions 

of a typical day in their class, example lesson at the beginning of the semester, and 

example lesson at the end of the semester.  
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Table 4.5 

Number of Instances of PSTs' Intended Sequences of Instruction 

  No. of instances of Sequ. in 

 Sequence 
Typical 
Day 

Pre-
Example 
Lesson 

Post-
Example 
Lesson 

Traditional Sequence without Activity (44)    
 Review; Explain; Example 1   
 Review; Explain; Practice 3 1 1 
 Review; Explain   1 
 Review; Example 1   
 Explain; Example; Practice  2 3 1 
 Explain; Example 2 1 4 
 Explain; Practice 2 6 4 
 Explain only   7 
 Example; Practice 2   
 Example only 1   
 Practice only 1   
Confirmatory Sequence (28) 
 Review; Explain; Activity; Practice 3   
 Review; Explain; Examples; Activity 1   
 Explain; Activity; Practice  2 1 
 Explain; Example; Activity; Practice 1 1 1 
 Explain; Example; Activity 1   
 Explain; Activity; Practice 2   
 Explain; Example; Practice; Activity 1   
 Explain; Activity  8 3 
 Example; Practice; Activity 1   
 Example; Activity; Practice 1   
 Example; Activity  1  
Exploratory Sequence (7) 
 Activity; Explain; Practice 1 1  
 Activity; Explain   5  
No Formal Explanation (18) 
 Review; Activity; Practice 1   
 Activity only  12 3 
No. of instance of Sequ. in = the number of instances of a particular sequence in; è = 
followed by. 

 Traditional sequence. Traditional sequences of instruction were characterized by 

review, delivery of content, worked examples, and practice. In these 44 instances of 
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traditional sequences (45%), no collaborative tasks were posed, and concrete models 

were not used by the students. Although each phase of a traditional sequence was not 

always present, those phases present always occurred in the same order. Take, for 

example, one PST's preliminary description of a typical day in her or his future 

classroom: 

First we get introduced to the topic and the teacher usually gives definitions of 

certain words. Then we learn the basic steps. After the basic steps we work 

examples. After the examples we are usually assigned some kind of homework 

for practice. (PST 2-12) 

This PST planned to explain content, give examples, and assign practice. Here, the 

teacher delivers the mathematics while the students passively observe and practice these 

procedures. 

 Evidence of traditional sequences was also found in PSTs' example lessons. A 

typical preliminary response associated with a traditional sequence follows:  

If I were teaching my math class the area of the rectangle, then I would begin by 

drawing a rectangle on the board to show the exact shape we are discussing, write 

the formulas for the perimeter and the area to show the difference, and explain the 

difference between the two formulas. After the small lesson, I would write certain 

numbers for both the length and width, re-write the formula for the area, and 

explain which number represents the length and the width of the rectangle. Then, 

I would explain how to find the answer and show a few other examples. After 
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showing examples, I would give the students a few problems for them to try, and 

then check their answers when they are finished. (PST 2-02) 

This PST planned to begin by explaining an abstract formula and showing students how 

to use this formula with examples and practice exercises. This example follows a 

sequence of explanation, examples, and practice without group activities or concrete 

models. 

 In some example lessons identified as traditional, PSTs did incorporate concrete 

representations. However, students did not engage with these objects; the teacher 

demonstrated the mathematics as students observed. Take, for example, this preliminary 

example lesson: 

I would begin teaching my class a lesson on probability by reviewing fractions, at 

first, and explaining the idea of a part over a whole. Once I had reviewed the 

concept, I would take out a bag that could not be seen through and place 3 red, 4 

blue, and 1 yellow marbles in the bag. And explain that since there were 8 

marbles in the bag, we had a 3 out of 8 chance pulling out a red marble, etc. I 

would then go around to different students in the class and ask what color marble 

we had the most of in the bag (blue) and then explain that because we had more 

blue marbles, we had a bigger chance of pulling out one of those rather than 

pulling out the one yellow marble in the bag. I would use this again to talk about 

fractions and how ½ of the bag of marbles contained blue ones, so we were most 

likely to pull out one of those. I would then ask different students in the class 
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what the probability would be for pulling out a red marble, and ask the same 

question for the yellow one. (PST 1-02) 

Although this PST planned to incorporate concrete objects into the lesson, students would 

not use the objects to explore or confirm the mathematics; the teacher demonstrates the 

mathematics instead. 

Confirmatory sequence. Twenty-eight of the 97 (29%) examples of instructional 

sequence were classified as confirmatory. Confirmatory sequences included group 

activities and often incorporated students engaging with concrete representations. 

However, these collaborative tasks were posed after an explanation of content or worked 

examples. One such typical preliminary response follows: 

Hopefully a typical day in my math class will include a few opening review 

questions, teaching a short lesson, hands on activities to go with the lesson or 

group work to understand the concept, then homework/ individual work to make 

sure each student understands the concept. (PST 1-16) 

A typical day in the PST's classroom would follow a review-explain-activity-practice 

sequence in which the group task follows the explanation of content. 

Evidence of confirmatory sequences of instruction was also found in PSTs' 

preliminary example lessons. For example, one PST wrote, 

If I were to teach a lesson on probability, I would have a PowerPoint prepared 

with a definition of what probability is and the basic concepts of it. I would then 

show examples related to probability and how to solve them. Next, would be the 

hands-on activity. Since I want to teach small children, my activity would 



 

147 

probably consist of the students having some type of multi-colored candy (such 

as, Skittles) in a plastic bag and they have to find the probabilities of pulling out 

certain colored candies. . . . After the activity was over, the students would 

complete a worksheet. (PST 2-19) 

This PST's example lesson illustrates an explain-example-activity-practice sequence in 

which the content delivered in the PowerPoint was reinforced during the group activity. 

Exploratory sequence. Only seven of the 97 (7%) examples of instructional 

sequence provided evidence of an exploratory sequence in which mathematics tasks are 

posed to students before a formal explanation of content or worked examples. All seven 

instances were collected at the beginning of the course. For example, one PST wrote, "A 

typical day in my math class will be starting the lesson with a fun activity to get the 

attention of my class, teaching the material, doing practice problems together, trying a 

few on their own, and then giving a few for homework" (PST 2-15). For this PST, the 

activity precedes an explanation. However, it is not clear whether the purpose of the task 

is solely to engage students in the mathematics or whether students will explore the 

content through this task. 

Evidence of an exploratory sequence was also found in PSTs' example lessons. 

One such lesson is report below:  

On a lesson of probability, I would probably give my kids a bag with M&M's and 

have them count the number of M&M's in the bag. Then I would have them pull 

out a bunch of M&M's (one at a time, and returning them to the bag before 

another one is drawn) and write down their results. Then I would ask them 



 

148 

questions like do you think it is likely for me to pull out a yellow one, and so on. 

After this experiment I would explain that this is probability, explain the 

definition of probability, and go into my lecture. (PST 1-31) 

This PST planned to have students first run simulations to get a sense of which outcome 

is more probable before content was formally explained or examples were worked. 

 No formal explanation. In sixteen of the 97 (16%) examples of instructional 

sequence, PSTs presented example lessons in which activities were described without 

explicit evidence of an explanation from either the students or the teacher. For example, 

one PST initially wrote, 

Whenever I am teaching a math class in the future, I plan to start the day with a 

little review question from the information we learned the day before just so that 

it can be fresh in my students’ minds. Then I plan to get into small groups and 

start working on the specific hands-on activity that addresses the necessary 

information that needs to be covered in a fun and simple way. I like to use 

colorful things, arts and crafts, building blocks, everyday materials, etc. to help 

get the point across. Then, at the end of class, I plan to assign work to do at home 

sometimes with parents or siblings such as games so that the topics covered in 

class can be reiterated. (PST 3-02) 

This PST does not clearly describe a time when content is explained. One might infer that 

students learn the content from the hands-on activity posed. All other instances of 

activities with no formal explanation came through PSTs’ description of example lessons. 
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In these example lessons, PSTs only described the task they planned to pose. For 

example, one PST initially explained,  

To teach a lesson on probability, I would use M&Ms and a bowl. Have the class 

work in pairs. Give each pair an even number of red, blue, green, yellow, and 

brown M&Ms. The students will first find the theoretical probability of drawing 

each color out of the bowl. Then they will actually draw a piece of candy out of 

the bowl and record. After repeating 20 times, the students will record the number 

of times they drew each color and find the experimental probabilities. After the 

experiment, the students can eat the candy! (PST 2-21) 

In this example lesson, similar to others in which no explanation phases is described, it is 

not clear how students would know what theoretical probability is or how one would find 

it. The task posed does not make the content self-evident and requires prior knowledge. 

Similarly, the other example lessons identified as lacking formal explanations do not 

provide clear evidence that students are learning the mathematics from the task. Further 

inquiries are needed to determine whether PSTs envisioned students learning 

mathematics from the activity alone or whether information is missing from their 

instructional plan. 

Changes in intended instructional sequences. Over the course of the semester, 

all PSTs experienced both exploratory and confirmatory sequences of instruction as 

students of a content course for elementary teachers. To assess the effects of this course 

on PSTs' beliefs regarding sequence of instruction, changes between PSTs' initial 

intended sequences and post-sequence preferences were examined. Because of the 
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aforementioned uncertainties in the instructional plan of the activity-only sequence, these 

examples were not included in this analysis. Twenty-nine preliminary examples and 23 

post-example lessons remained in this analysis with pre- and post-data for 11 PSTs.  

Seven of these 11 PSTs showed no change in their intended sequence, indicating a 

traditional sequence both at the beginning and end of the semester. For example, one of 

these unchanged PSTs planned to "first explain that probability is like the chance of 

something happening." Then this PST "would give them examples." This PST continued 

to elaborate on a particular example and did not include any collaborative tasks. At the 

end of the semester this PST explained that the lesson on the area of a rectangle would 

"start with defining a rectangle and other quadrilaterals." Then, this PST would "talk 

about perimeter and what that means" and "introduce area with examples." The lesson 

would end with "the formula for area of a rectangle (lw)" (PST 3-14). This PST's 

instructional sequence, similar to the other six PSTs that showed no change, included an 

explanation and examples without posing any tasks. 

 Three PSTs that initially showed intentions of using exploratory sequences 

preferred traditional sequences after participating in this content course. For example, this 

PST initially planned to teach probability as follows: 

I would just take Skittles, or another candy they enjoy, and put them in a bag and 

ask them to randomly pull one without looking. Then we would write everything 

on the board and I would explain to them that they were finding the “what if” of 

Skittles. (PST 2-25). 
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After experiencing both exploratory and confirmatory sequences the same PST 

explained, "I would show them the formula, explain what each part of it means and where 

it came from, and simplify it, if it needs to be, by examples such as the tile on the floor" 

(PST 2-25). 

 One PST's example lesson illustrated an exploratory sequence at the beginning of 

the semester: "I would first do an exercise using colored candy (such as M&M's) and 

have students draw 20 times and determine the probability. Then I would give the 

students notes and practice problems" (PST 1-12). At the end of the semester this same 

PST's example lesson illustrated a confirmatory sequence: "I will first teach the lesson & 

explain how you find area. Then I will have them do an activity that elaborates on this, 

such as using geoboards" (PST 1-12). This PST showed intentions of an exploratory 

sequence at the beginning of the semester yet preferred a confirmatory sequence at the 

end of the semester. 

 From examining these 11 PSTs' initial and final example lessons, it appears that 

these PSTs' beliefs either remained traditional or shifted towards a more traditional 

sequence. Additionally, Table 4.6 illustrates the number of PSTs' example lessons with 

evidence of particular sequences of instruction at the beginning and end of the semester 

for all PSTs, not only those 11 PSTs with both pre- and post-evidence of sequential 

preference. 
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Table 4.6 

Instance of Sequences of Instruction in Example Lesson: Pre and Post 

No. of Ex. Lessons Sequence of  
Instruction Pre Post 
Traditional 11 18 
Confirmatory 12 5 
Exploratory 6 0 
Total 29 23 
 

These data may also provide evidence of a shift toward a more traditional 

sequence of instruction as no PST described an example lesson that incorporates an 

exploratory sequence at the end of the semester. Hypothesis tests for the difference 

between the pre- and post- proportions for each sequence were not performed because the 

samples were not random or independent and each sample does not contain at least 10 

successes and 10 failures. 

Additionally, interview data do not support a change in these PSTs' beliefs 

regarding sequence of instruction resulting from experiencing both sequences. When 

asked how this course has influenced how they plan to teach, none of the teachers 

interviewed mentioned sequence of instruction. Instead, most PSTs mentioned growing 

their repertoire of models and strategies as well as deepening their understandings of 

mathematics, not instructional sequence. For example one PST wrote, 

It really opened my eyes because when I was in elementary school I had certain 

ways that I did things, but then I got to this class and found my way and I found 

more ways. So, it actually helped me understand what I did when I was younger 

and I feel like learning all the different ways is helpful because learning the way I 
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did it works for me, but it might not work for other people. So, learning all the 

different ways that we learn is helpful. I know one of the things we learned was 

Lattice Multiplication or division or something. I had never done that, but now 

it’s really helpful, so I know learning all the different ways is going to be good for 

me when I am teaching because if a student doesn’t get one thing I can try a 

different approach. (PST 3-11) 

This PST, similar to others interviewed, found the course helpful in expanding her or his 

collection of mathematical strategies, but not because of the various sequences of 

instruction used. 

 Exploratory versus confirmatory sequences. After experiencing both 

exploratory and confirmatory sequences of instruction, 83 PSTs reported their preferred 

sequence as students of mathematics as either confirmatory, exploratory, or both. 

Similarly, PSTs were asked which of these sequences they planned to use in their own 

classroom. PSTs' responses are reported in Table 4.7 below. 
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Table 4.7 

Preferred Sequence of Instruction as Students and Intended Sequence as Teachers 

  Intended Seq. as Teachers 

  Both Explore Confirm Total 
Both 

1 0 0 1 

Explore 
5 1 1 7 

Confirm 
25 0 50 75 

Pr
ef

er
re

d 
Se

q.
 a

s S
tu

de
nt

s 

Total 
31 1 51 83 

Note. seq.=sequence 

Learning preferences. From their perspectives as students, 75 of the 83 PSTs 

preferred a confirmatory sequence in this course, whereas only seven preferred an 

exploratory sequence and one preferred both equally.  

Exploratory sequence. Considering the seven PSTs (8%) that preferred an 

exploratory sequence as students of mathematics, one PST wrote, "I liked being able to 

try and figure out on our own versus being told how to do everything" (PST 1-03). 

Another PST also found it "interesting to figure stuff out on my own" (PST 3-01). Still 

another PST reported that "the meaning was clearer when the instructor explained the 

purpose of the lab after because I could link it to previous knowledge" (PST 3-04). 

Similarly, another PST wrote, "I remember things better when I have to work them out 

for myself—instead of just being told how to do it" (PST 3-13). 
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Confirmatory sequence. Of the 75 PSTs (90%) that preferred a confirmatory 

sequence, ten preservice teachers viewed the laboratory tasks as a time to practice what 

they had learned. For example, one PST wrote, "this way the material we just learned 

could be enforced and practiced to help understand and apply the concepts" (PST 1-17). 

Additionally, four more PSTs preferred to apply the concepts from the lecture in the 

laboratory tasks. One instance of this follows: "If I had no clue how to complete the lab 

activity, I didn’t learn anything anyways, so it was a waste. I was able to understand and 

apply much more easily when the explanation was first" (PST 1-02). Still four additional 

PSTs thought the purpose of laboratories was to reinforce the skills taught during lecture. 

For example, one PST wrote, "I felt like the information was being reinforced and I was 

not blindly going into it." Among these 18 PSTs, laboratories were seen as a time to 

confirm the mathematics from the lecture. 

Five PSTs found the exploratory laboratories confusing and therefore frustrating. 

One such typical response follows: "I often confused myself when I didn't learn the 

correct material, and also became frustrated." Similarly, another PST preferred a 

confirmatory sequence because "I didn’t feel as overwhelmed and confused when trying 

to complete it" (PST 1-15). Still other PSTs found exploratory laboratories "very 

discouraging" (PST 2-26). Similarly, another PST preferred a confirmatory laboratory 

sequence because "I felt much more confident when I did the lab. When the lab was first, 

it was easy to become frustrated when the material was unknown" (PST 2-04). This 

group of eight PSTs felt uncomfortable with the uncertainty of exploratory tasks and 

became confused and frustrated. 
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Other PSTs felt that exploratory tasks lacked direction. For instance, one PST 

preferred a confirmatory sequence because "you can understand the lab questions and 

have a specific goal of what you will be learning" (PST 3-15). Similarly, another PST 

explained, "The lab is pointless when you have absolutely no idea what you are looking 

for" (3-10). Additionally, interview data also illustrated that PSTs felt exploratory 

laboratories lacked direction:  

Going through the lab was good, but I didn’t really know [pause]. We went 

through it pretty quickly, and I couldn’t really separate the things in my mind. 

Like, this is this kind of triangle and this type of circle, and this is where these 

intersect. I think we did the notes afterwards, and as she was going through the 

notes I was like separating them out and tried to connect it to the lab. But, that got 

really jumbled in my head. (PST 3-05) 

Similarly, another PST explained, "If we knew why we were doing this or why it’s 

important, we could understand it more" (PST 1-15). 

Another PST explained a lack of direction when attempting computer-based 

laboratory prior to an explanation: 

I felt like with the labs on the computer we were just doing it to like use the 

program, so it was weird because it was like we were learning the program, not 

what we were supposed to learn through the program. So, it was more like 

learning about Sketchpad instead of learning about geometry. . . . [In another 

laboratory that followed an explanation,] stuff made sense because we had talked 

about it and we knew what we were doing. We knew where the lines are going to 
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be and all about it. It was a lot easier and a lot better to understand it more 

because we knew why we were doing it. (PST 1-05) 

Without a lecture directing the PST toward the purpose of the task, this PST focused 

more on completing the laboratory and using the software than on the underlying 

mathematics.  

Although a few PSTs preferred to attempt to make sense of the mathematics 

before a formal explanation was given, the majority of PSTs preferred a confirmatory 

sequence because it reinforced that mathematics they learned, exploratory sequence were 

confusing and therefore frustrating, and an exploratory sequence lacked direction. 

Student Preferences and sequence group. Table 4.8 illustrates the number of PSTs 

that preferred exploratory, confirmatory, or both sequences for both sequence groups. For 

the group that experienced a 10-week exploratory unit, six of the 25 PSTs (24%) 

preferred an exploratory sequence of instruction, whereas only one of the 58 PSTs (2%) 

that experienced a five-week exploratory unit preferred an exploratory sequence of 

instruction. Although more than 20% of the cells in Table 4.7 have an expected value less 

than five, a Pearson’s chi-squared test was performed; however, the results should be 

taken cautiously. This test resulted in a chi-square test statistic of χ2=11.53 (p=0.003). 

With the limitations of the sample size in mind, there may be evidence that a greater 

proportion of PSTs in the longer exploratory unit preferred an exploratory sequence of 

instruction. 
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Table 4.8 

Preferred Sequence of Instruction by Sequence Group 

  Preferred Seq. as Students 

  Both Explore Confirm Total 
1 

(5-wk.  
explore) 

1 1 56 58 

2 
(10-wk. 
explore) 

0 6 19 25 

Se
qu

en
ce

 G
ro

up
 

Total 1 7 75 83 

Note. seq.=sequence 

Intended teaching sequence. When asked which sequence they plan to use in 

their own instruction, 50 PSTs planned to use a confirmatory sequence; 31 PSTs planned 

to use both sequences, and only 2 PSTs planned to use an exploratory sequence. To test 

the null hypothesis that PSTs' intended instructional sequence as teachers is independent 

of the preferred sequence as students, a chi-squared likelihood ratio was calculated 

resulting in χ2=12.95 (p<0.01). Therein, the evidence supports the conjecture that 

preferred learning sequence is related to intended teaching sequence. However, it should 

be noted that these results are suspect as the expected value of each cell in Table 4.8 is 

not greater than five. 

Confirmatory Sequence. Of the 51 that intended to use confirmatory sequences, 

50 also preferred confirmatory sequences as students with only one preferring an 

exploratory sequence. Qualitative analysis of PSTs’ explanations of their intended 

instructional sequence support quantitative connections between student preferences and 
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teaching intention in that the same justifications for a confirmatory sequence also 

emerged from PSTs' rationale for their intended instructional sequence. In fact, three 

PSTs explicitly stated they planned to use a certain sequence, as one stated "because that 

was what worked best for me" (PST 2-22). 

When examining PSTs' reasons for using a confirmatory sequence, again a view 

of laboratory tasks as a time to practice, apply, and reinforce emerged. Seven PSTs 

referenced laboratories as a time to practice similar to the following: "Practicing what 

you've learned is a good way to further understand the concepts" (PST 1-18). Three PSTs 

wrote of how confirmatory laboratories allow students to apply what they have learned: 

"The children can then apply what they've learned in the lab so I can be sure they 

understand" (PST 3-05). Additionally, four PSTs explained that confirmatory laboratories 

reinforce lecture similar to the following: "I feel giving the lab afterwards reinforces what 

has been taught" (PST 1-11). Therein, these 14 PSTs viewed laboratory activities to be a 

time for their future students to confirm the mathematics previously presented. 

Still other PSTs found an exploratory sequence caused confusion, whereas a 

confirmatory laboratory "eliminates confusion and helps them understand what they are 

doing" (PST 3-12). By avoiding confusion, students would be less likely to "become 

frustrated and give up" (PST 1-31). One PST explained, 

 It will probably frustrate the children if I give them a worksheet and tell them to 

add if they have never done it before. The lab first then content was frustrating to 

me, and I was taught some of these math techniques in elementary school and 

middle school. I was just rusty." (PST 1-07) 



 

160 

Additionally, by eliminating confusion and resulting frustrations, "students feel confident 

about their work and are able to fully understand what they are doing" (PST 1-28). These 

seven PSTs planned to use confirmatory tasks because they believe their future students 

will be more comfortable with this sequence of instruction. 

Both Sequences. Of the 31 PSTs that intended to use both confirmatory and 

exploratory sequences, 25 preferred a confirmatory sequence as students, five preferred 

an exploratory sequence, and only one preferred both sequences equally. There was much 

more variation in student preferences for PSTs that intend to use both sequences as 

compared to those PSTs that intend to use confirmatory sequences. Similarly, there was 

also a variety of rationales for using both sequences.  

The most common reason for incorporating both sequences in their future classes 

was that students learn differently; therefore, teachers should differentiate their 

instruction. Nine PSTs intend to use both sequences for reasons similar to the following: 

"I plan to use both strategies because different students in my classroom may learn 

different ways, so I want to try to let them learn in the best way possible" (PST 2-19). 

These PSTs believed that all students do not necessarily learn as they do. For example, 

one PST planned to vary the sequence of instruction "because each student learns 

differently. Each student doesn’t learn the same way I do." (PST 2-03) 

Still other PSTs planned to vary their sequence of instruction depending on the 

content. For example one PST wrote, "I think that if a subject is building on something 

that has just been taught, then exploration through a lab is appropriate. If the content is 

brand new, content explanation should come first" (PST 1-30). Whereas some PSTs 
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planned to use different sequences depending on the cumulative nature of the content, 

other PSTs planned to alter the sequence depending on the difficulty of content. For 

example, one PST explained that a "more complicated lesson might need to be explained 

to the class first" (PST 3-01). These six PSTs planned to match their sequence of 

instruction to the specific content. 

Another group of five PSTs planned to alter their instructional sequence to 

incorporate problem solving into their mathematics instruction. For example, one such 

PST explained, "I will use both in my classroom—it is important for students to develop 

problem solving skills" (PST 1-33). Similarly, another PST planned to alter the sequence 

of instruction to promote autonomy in problem solving: "I would plan to use explanation 

followed by labs most of the time, but it is also good to do labs first so kids can have a 

sense of independence and practice doing tasks without previous instruction" (PST 2-16). 

Intended teaching sequence and sequence group. Table 4.9 illustrates the number 

of PSTs that planned to use an exploratory sequence, confirmatory sequence, or both 

sequences in their future classrooms for both sequence groups. Compared to distributions 

of preferences as students in Table 4.7, differences between sequence groups are less 

obvious for the intended instructional sequence distributions. Although more than 20% of 

the cells in Table 4.8 have an expected value less than five, Pearson’s chi-squared test 

was performed; however, these results may be suspect due to the small sample size. This 

test resulted in a chi-squared test statistics of χ2=3.26 (p=0.20). Therefore, there is 

insufficient evidence to conclude that the distributions of intended sequence as teachers 
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differ between those PSTs that experienced a five-week exploratory unit and those that 

experienced a 10-week exploratory unit. 

Table 4.9 

Intended Instructional Sequence as Teachers by Sequence Group 

  Intended Seq. as Teachers 

  Both Explore Confirm Total 
1 

(5-wk.  
explore) 

20 0 38 58 

2 
(10-wk. 
explore) 

11 1 13 25 

Se
qu

en
ce

 G
ro

up
 

Total 31 1 51 83 

Note. seq.=sequence 

Summary: Beliefs regarding sequence of instruction. In analyzing PSTs' 

intended instructional sequence from their descriptions of their future instruction, a 

traditional sequence of review, delivery of content, worked examples, and practice 

dominated. This sequence parallels PSTs' own experiences with traditional school 

mathematics and the framework for effective pedagogy described above. If PSTs did 

intend to include laboratory tasks, these tasks usually followed an explanation of content. 

Evidence of exploratory sequences was rare at the beginning of the semester and absent 

at the end of the semester. Beliefs either remained traditional or shifted towards a 

traditional sequence. Implications of these results are discussed further in Chapter Five. 

When comparing confirmatory and exploratory sequences at the end of the 

semester, most PSTs preferred confirmatory sequences as students and intended to use 



 

163 

confirmatory sequences in their future instruction. Although there was limited variation 

in sequential preferences there was evidence that sequential preferences as students was 

associated with intended sequence as teachers. Additionally, there is evidence that a 

greater proportion of PSTs from the 10-week exploratory unit, as opposed to the 5-week 

exploratory unit, preferred an exploratory sequence of instruction as students. When 

examining PSTs' rationales for a confirmatory sequence both as students of mathematics 

and as future teachers, PSTs believed collaborative tasks should give students a time to 

practice, apply, and reinforce mathematics and should avoid confusion or frustration by 

first explaining the content. PSTs who planned to alter their sequence planned to do so in 

an attempt to differentiate their instruction because they believed that all students may 

not learn as they did. 

Mathematical Knowledge of Teaching 

Preservice teachers' Mathematical Knowledge for Teaching (MKT) was evaluated 

using Learning Mathematics for Teaching's measures in probability, data, and statistics 

for grades 4-8 teachers (LMT, 2008) and geometry for grades K-6 teachers (LMT, 2004) 

at the beginning of the semester. After completing a roughly five-week unit on data 

analysis and probability, PSTs were evaluated again on the same form of the probability, 

data, and statistics MKT assessment. At the end of the semester, after completing a 

roughly ten-week geometry unit, PSTs took a parallel form of the geometry content 

measure. Pre- and post-LMT means and standard deviations are reported by section for 

both content measures in Table 4.10 below. 
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Table 4.10 

MKT Means by Section: Pre-, Post-, and Gains for Prob., data, and Stat. and Geometry 

 Prob., data, and stat. means (SD) Geometry means (SD) 
 Pre- Post- Gains Pre- Post- Gains 
Section 1 -0.10 

(0.65) 
N=34 

0.39 
(0.58) 
N=32 

0.45 
(0.46) 
N=32 

-0.49 
(0.52) 
N=34 

0.46 
(0.60) 
N=29 

0.90 
(0.54) 
N=29 

Section 2 -0.18 
(0.57) 
N=32 

0.04 
(0.52) 
N=32 

0.25 
(0.51) 
N=31 

-0.35 
(0.49) 
N=32 

0.16 
(0.43) 
N=29 

0.56 
(0.46) 
N=29 

Section 3 -0.13 
(0.53) 
N=29 

0.28 
(0.52) 
N=27 

0.39 
(0.49) 
N=27 

-0.23 
(0.70) 
N=29 

0.50 
(0.69) 
N=26 

0.76 
(0.60) 
N=26 

Overall -0.13 
(0.58) 
N=95 

0.24 
(0.56) 
N=91 

0.36 
(0.49) 
N=90 

-0.36 
(0.57) 
N=95 

0.23 
(0.55) 
N=91 

0.73 
(0.54) 
N=84 

Notes. Item Response Theory mean scores (norm referenced on in-service elementary 
teachers) are reported with a mean of zero and standard deviation of one. 

Further, confidence intervals for the means reported in Table 4.10 are reported in Table 

4.11. 

Table 4.11 

95% Confidence Intervals by Section: Pre-, Post-, and Gains 

 Prob., data, and stat. 95% CI Geometry means 95% CI 
 Pre- Post- Gains Pre- Post- Gains 
 lower upper lower upper lower upper lower upper lower upper lower upper 
Sec. 1 -.32 0.12 0.18 0.60 0.28 062 -.68 -.31 0.22 0.68 0.69 1.11 
Sec. 2 -.39 0.03 -.14 0.23 0.07 0.43 -.53 -.18 0.00 0.33 0.38 0.73 
Sec. 3 -.32 0.07 0.08 0.49 0.19 0.59 -.49 0.04 0.22 0.78 0.51 1.00 
All -.25 -.01 0.12 0.35 0.26 0.47 -.48 -.25 0.12 0.35 0.62 0.86 
Notes. Sec.=section 

Considering the 90 PSTs that took both the pre- and post-assessments in 

probability, data, and statistics, PSTs gained on average 0.36 SD units with a 95% 

confidence interval from 0.26 to 0.47. Because this 95% confidence interval does not 
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contain zero the null hypothesis that this course had no effect on PSTs' MKT in 

probability, data, and statistics was rejected. Therein, there is evidence that this course 

had a significant effect on PSTs' MKT in probability, data, and statistics. The publishers 

of this assessment (LMT, 2008) note effects of 0.25 to be noteworthy, 0.3 to be 

significant, 0.5 to be moderate, and 0.75 to be substantial. Therefore, these gains fall in 

the noteworthy to significant range. 

 Similarly, for the 84 PSTs that took both the pre- and post-assessments in 

geometry, PSTs gained an average of 0.73 standard deviations with a 95% confidence 

interval from 0.62 to 0.86 standard deviations. Again, this interval does not contain zero, 

so the null hypothesis of no course effect on MKT in geometry was rejected. The effect 

of this course PSTs' MKT in geometry was substantial.  

 Difference in the effect sizes of these two content areas should be noted and could 

be attributed to the amount of instructional time allocated to each content standard. The 

mean gains were roughly twice as large in the 10-week geometry unit as compared to the 

5-week data analysis and probability unit. 

Analysis of Covariance: Section. To test whether these MKT gains differed 

significantly between sections, an Analysis of Covariance (ANCOVA) was performed on 

MKT gains by section with initial MKT scores as a covariate. In addition to the 

assumption of an Analysis of Variance (ANOVA)—(1) independent, random samples, 

(2) normally distributed dependent variable, and (3) homogeneity of variance—an 

ANCOVA also assumes (4) a linear relationship between the covariate and dependent 

variable and (5) regression lines for each group are parallel (Hinke, Wiersma, & Jurs, 
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2003). Although assumption (1) was violated given the convenience samples used, 

assumption (2) was met given that Item Response Theory (IRT) scores are normal with a 

mean of zero and a standard deviation of 1. Levene's test for unequal variances produced 

a p-value of 0.67, so there was no evidence that assumption (3) was violated. Assumption 

(4) was tested by regressing preliminary MKT scores on MKT gains producing a t-ratio 

of -4.83 (p<0.0001). To test assumption (5) a section by pre-MKT interaction term was 

included in the preliminary ANCOVA model. These interaction terms produced p-vales 

of p=0.57 and p=0.80. Therefore, there was no evidence that the slopes differed by 

section. 

After considering these assumptions, an ANCOVA was performed without the 

interaction terms using indicator variables for Section 1 and Section 2, which compared 

these sections to Section 3. With a p-value of 0.07, the mean gain in Section 1 was 

marginally different from Section 3 with an effect of 0.12 SD when controlled for by 

initial MKT score. With a p-value of 0.02, mean gains in Section 2 were significantly 

different from Section 3 with an effect of -0.15 SD when controlled for by initial MKT 

score. Therefore, there is evidence that gains in MKT in probability, data, and statistics 

differed by section. 

Similarly, assumptions for the ANCOVA were considered for MKT in geometry. 

Levene's test for unequal variance produced a p-value of 0.67, so there was insufficient 

evidence to conclude that the assumption of equal variance was violated. Regressing 

preliminary geometry score on gains produced a t-ratio of -4.19 (p<0.0001), so the 

assumption of linearity between the covariate and dependent variable was not violated. 
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Section by preliminary MKT score interaction terms produced p-values of 0.63 and 0.38, 

so there was no evidence of differences in the slopes among sections. 

After these assumptions were examined, an ANCOVA was performed without 

these interaction terms. Again, dummy variables were introduced to compare differences 

in mean gains for Section 1 and Section 2 to that of Section 3. With a p-value of 0.09 and 

an effect of 0.13 SD, there was marginal evidence that mean gains for Section 1 differed 

from Section 3 when controlled for by initial MKT in geometry. With a p-value of 0.01 

and an effect size of -0.19 SD, there was significant evidence that mean gains in Section 

2 differ from Section 3 when controlled for initial MKT in geometry. Again, there is 

evidence that gains in MKT differ by section. 

Analysis of Covariance: Sequence. To determine if these differences among 

sections could be attributed to differences in sequence of instruction, Sections 1 and 2 

were combined as these sections experienced an exploratory sequence during the data 

analysis and probability unit and a confirmatory sequence during the geometry unit, 

whereas Section 3 experienced a confirmatory sequence in the first unit and an 

exploratory sequence in the second. Means, standards deviations, and confidence 

intervals for MKT scores are reported in Table 4.12 for sequence groups. 
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Table 4.12 

Mean MKT Gains by Sequence: Prob., data, and Stat. and Geometry 

 Prob., data, and stat. means (SD) Geometry means (SD) 
 Mean 

(SD) 
Lower 
95% 

Upper 
95% 

Mean 
(SD) 

Lower 
95% 

Upper 
95% 

Explore Confirm Sequence 1 
0.35 
(0.49) 
N=63 

0.22 0.47 0.73 
(0.53) 
N=58 

0.59 0.87 

Confirm Explore Sequence 2 
0.39 
(0.49) 
N=27 

0.19 0.59 0.76 
(0.60) 
N=26 

0.51 1.00 

Notes. 

With overlapping confidence intervals for the two sequence groups for both 

content units, there is no significant difference in gains by sequence group. When looking 

within a sequence group across units, one should note that both groups gained almost 

twice as much MKT in the geometry unit. One possible reason, although others are 

considered in Chapter Five, for the difference in these gains is that the geometry unit was 

roughly twice as long (10 weeks) as the probability unit (5 weeks). Because of the 

differences in instructional time allocated to these units, differences within a given 

sequence group across content units was not statistically tested. 

To determine if there were differences in mean gains within a given content unit 

across sequence groups when controlled for by initial MKT score, an ANCOVA was 

performed. As with the section analysis, assumptions were first examined for MKT in 

probability, data, and statistics. Levene's test for unequal variances (p=0.62) did not show 

evidence that the assumption of equal variance was violated. As previously examined in 

the ANCOVA for section, preliminary MKT scores and MKT gains are assumed to be 
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linear. With a p-value of 0.63, there is insufficient evidence to conclude that sequence-

group slopes are not parallel.  

With these assumptions in mind, an ANCOVA was performed on MKT gains in 

probability, data, and statistics with preliminary MKT score as a covariate for the 

exploratory and confirmatory sequence groups. With a p-value of 0.62, there is 

insufficient evidence to conclude that mean gains in MKT scores differ between sequence 

groups when controlled for by initial MKT score.  

Similarly, an ANCOVA was performed on differences in gains in MKT in 

geometry across sequence groups when controlled for by initial MKT score after the 

assumptions for an ANCOVA were considered. As before, Levene's test showed no 

evidence that the assumption of equal variances was violated (p=0.56). As in the analysis 

of ANCOVA for section, the relationship between initial MKT and gains in MKT for 

geometry are assumed to be linear. The t-ratio for sequence group by initial MKT 

interaction term (p=0.61) did not provide evidence that the assumption of equal sloped 

for sequence groups was violated. 

After considering these assumptions, an ANCOVA was performed without this 

interaction term. Effects of sequence group on mean gains in MKT for geometry did not 

prove to be significant (p=0.42) when controlled for by initial MKT score. 

Sequence preference and MKT. Next, differences in mean gains were explored 

for sequence preference groups by sequence. Because only one PST preferred both 

sequences equally, this PST was not considered in analysis. The distribution of PSTs' 

sequence preferences over the two sequence groups is reported in Table 4.8 above. 
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Differences in mean MKT gains were examined between preference groups for 

both content units using an ANCOVA with initial MKT score as a covariate. For the data 

analysis and probability unit in which the Sequence One group explored content and the 

Sequence Two group confirmed through laboratory activities, the assumptions of equal 

variance and parallel slopes were considered in addition to the assumptions previously 

examined in the ANCOVA for section. It should be noted that preference groups were 

constructed post hoc based on PSTs' interpretations of their experiences with both 

sequences. Therefore, these groups are neither random nor independent. Levene's test for 

unequal variances did not show evidence that the assumption of equal variances was 

violated (p=0.89). Additionally, the preference by preliminary MKT in probability, data, 

and statistics interaction was not significant (p=0.26), so there was insufficient evidence 

to conclude the assumption of parallel sloped was violated.  

After examining these assumptions, ANCOVAs were performed without this 

interaction term for each sequence group. There was insufficient evidence to conclude 

that the mean gain for the six PSTs that preferred an exploratory sequence differed from 

the 18 PSTs that preferred a confirmatory sequence (p=0.54), when controlled for by 

initial MKT, during a confirmatory unit in data analysis and probability. Statistical tests 

were not performed on the Sequence One group because only one PST preferred an 

exploratory sequence. With a group size of one, there was no within-group variation, so 

the resulting ANCOVA is suspect. 

Similarly, an ANCOVA was performed for mean gains in MKT in geometry with 

initial MKT score as a covariate for the two preference groups in both sequence groups. 
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Again, preference groups are not independent or random. In addition to the previously 

examined assumptions, there was insufficient evidence to conclude that the assumption of 

equal variance was violated (p=0.80). There was also inadequate evidence to conclude 

that the slopes differed between preference groups (p=0.68).  

After considering these assumptions, an ANCOVA was performed without this 

interaction term. There was insufficient evidence (p=0.88) to conclude that the mean 

gains in MKT for the six PSTs that preferred an exploratory sequence differed 

significantly from the 20 PSTs that preferred a confirmatory sequence during a geometry 

unit that used an exploratory sequence of instruction. Again, statistical tests were not 

performed for Sequence One group due to limited sample size. 

Summary: MKT. Mean gains in MKT were noteworthy to significant in 

probability, data, and statistics over the five-week data analysis and probability unit. 

Mean gains in MKT were substantial in geometry over the 10-week geometry unit. These 

mean gains differed among sections for both content units; however, section differences 

were not statistically attributed to differences in sequence of instruction. There was 

evidence that a greater proportion of students preferred an exploratory sequence of 

instruction that participated in the 10-week exploratory unit as compared to the 5-week 

exploratory unit. Nevertheless, PSTs' sequence preferences were not associated with 

differences in MKT gains during units that used various sequences of instruction. 

Instructor's Perspective of Sequence of Instruction 

In Chapter Two, theoretical bases for confirmatory and exploratory sequences of 

instruction are presented. The purpose of exploring the case of Ms. B, however, is to gain 
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insight into the practical advantages and disadvantages of these sequences of instruction 

from the perspective of an experienced instructor. Therein, this practical perspective may 

add viability to these theories or perhaps show instructional implications of these theories 

of learning to be realistically infeasible. 

Rather than using a rigid protocol to examine specific beliefs related to sequence 

of instruction, data from classroom observations, field notes, interviews, and laboratory 

worksheets were used to explore the case of this experienced teacher implementing two 

sequences of instruction. Themes developed as data were collected and could then be 

examined further as data collection and analysis occurred simultaneously.  

First, Ms. B's developing understanding of exploratory sequence of instruction is 

described. Then, assumptions related to differences in discourse are considered. The 

chapter ends with Ms. B's evolving perspective of sequence of instruction. 

What does it mean to explore mathematics? I met with Ms. B several times 

before the study began to explain the purpose of the study and request Ms. B's 

participation. Although these preliminary meetings were not recorded, I explained 

exploratory and confirmatory sequences of instruction in a manner similar to the 

description given in Chapters One and Two. That is, in an exploratory sequence students 

explore the mathematical content through laboratory tasks before a formal explanation is 

given; in a confirmatory sequence, content is first delivered and then verified through 

laboratory tasks. 

During the first laboratory of the semester, observational data revealed that 

students in the exploratory section were referring to their notes to answer various 
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questions, which was not congruent with my conception of an exploratory sequence. 

During an interview that followed, inquiries were made into Ms. B's understanding of an 

exploratory sequence of instruction. 

Ms. B explained that in all three sections she reviewed terminology related to 

probability and "talked about mutually exclusive and independent events, and then we 

started looking at two-step experiments in rolling two dice or flipping two coins." Ms. B 

went on to explain that she worked an example of a three-stage probability and illustrated 

this with a tree diagram. Because this is the content students were to "explore" in the lab, 

it became clear that Ms. B's understanding of exploring mathematics was different from 

mine.  

When describing the laboratory activity for the exploratory group, Ms. B said, "I 

didn't tell them anything up front. I didn’t remind them how we did the two dice. . . . I 

just let them get started." However, for the confirmatory sequence, she reviewed the 

content previously discussed, explained the laboratory, and worked a few examples from 

the laboratory showing students how to organize their data in a table. 

For Ms. B, to explore mathematics was to apply previously learned concepts in a 

novel context. Because she had already worked examples related to two-stage 

probability, students were not generating strategies to complete the task; they were using 

what they had been shown in the previous lesson in a different context. Additionally, Ms. 

B understood the explanation to be specific to laboratory context. For example, she 

believed that she "didn't tell them anything up front" because she did not explain the 

specifics of this new context. 
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Because the fidelity of other aspects of this study depended on mutual 

understanding of an exploratory sequence, an exploratory sequence was explained again 

in the context of the current lesson. That is, students would generate their own strategies 

for solving these problems related to two-stage probabilities before the instructor ever 

discussed the content or worked an example. Because this concept of exploring 

mathematics was so foreign to Ms. B, she requested assistance in planning her next 

laboratory task. 

 In a separate planning meeting, I discussed how one might implement an 

exploratory sequence in the context of a laboratory in which students develop the idea of 

permutations while building trains from Cuisenaire rods. I demonstrated possible 

strategies for solving the problem without extensive prior knowledge of permutations and 

illustrated how the explanation that follows might connect to the task, therein drawing 

from students' experiences. After this planning meeting, Ms. B implemented an 

exploratory sequence of instruction aligned with the goals of the study. 

When reflecting on this change in her understanding of exploring mathematics, 

Ms. B explained, "I think that it is just getting the feel for things. . . . There is a learning 

curve for me too." Before she could successfully implement an exploratory sequence of 

instruction, Ms. B had to first reconceptualize what it means to explore mathematics. 

Discourse. One assumption made in Chapter Two is that the discourse generated 

in an exploratory laboratory sequence would be significantly different from that of a 

confirmatory sequence. It was assumed that during the exploratory tasks, focus would 

shift from reproducing the mathematics presented by the teacher to constructing 
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strategies to confront the task via rich mathematical discourse. Additionally, during 

whole-class discussions with an exploratory sequence, more of the explanation would 

come from the students as they now would have experiences to connect to the 

mathematics. 

However, initial observational data do not support this assumption. Students of 

both sequences remained mostly passive during explanations of content, only asking 

questions of clarification during lectures. The discourse during exploratory laboratories 

was not significantly different either. During exploratory and confirmatory laboratories, 

numerous instances of PSTs raising their hands and waiting idly for the teacher to tell 

them how to confront a problem were identified in field notes. Even during exploratory 

laboratories, conversations centered on finding the "right" answer. When Ms. B was 

asked about differences in the discourse between sequences, she replied,  

I haven’t noticed a difference because usually they are pretty interactive anyway. 

I don’t know, but I’d have to think about that—if I could tell that much of a 

difference between [sequences]. But, nothing jumps out at me. Like I said, I think 

the ones that are going to be more verbal and all that would do it both ways. I’ll 

have to think about that one. 

Here, Ms. B's perspective supported observational data that indicated similar discourse 

patterns between sequence groups in the first few weeks of the course. 

 Gradual change. During each of the four interviews, Ms. B was asked about any 

differences she noticed between the two sequence groups. During the first interview 
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during the second week of the semester, she did not see clear differences in students' 

learning across sequences. When asked if she noticed any differences, Ms. B replied,  

Not a whole lot. . . . I think a couple of people in the second [exploratory] class 

were a little more frustrated. They weren’t sure what to do. They did seem all 

very confused about that table and how to fill it out. They are pretty good about 

helping each other too. You know watching the other group. Not a huge 

difference. 

To probe further into these differences, I brought up an instance I observed during a 

confirmatory laboratory during which a group wrote out the entire sample space, as 

modeled by the teacher, for a problem that seemed, to me, to be intuitive. Still, Ms. B did 

not see differences between sections and attributed these students' solution strategy to a 

lack of confidence:  

Some of them did the table, but they knew [the answer] would be two-thirds of 

the time. They just needed to see that. They aren’t confident. I think it was 

probably about half and half with the third [confirmatory] section too. Some knew 

it right off the bat. I didn’t see a huge difference." 

Ms. B viewed students' reliance on teacher-modeled procedures as an issue of confidence 

that was not confined to a particular sequence. 

During our second interview approximately six weeks into the semester, Ms. B 

maintained her view that there was little difference in student learning between 

sequences. Ms. B gave the following example of how students in neither exploratory nor 

confirmatory sequence groups made connections between measures of center in a 
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distribution-center problem (found in Appendix J) for which students attempted to find an 

optimal location of a distribution center that would minimize the total distance between a 

number of stores: 

They could come up with 16 being the best place to put the distribution center. 

Then, when it came time to consider the mean, median, and mode, they did not all 

make the connection: Oh, that's the median. . . . It was probably half and half that 

came up with that. And, I didn’t see too much difference in the third 

[confirmatory] class despite the fact that we had talked about mean, median, and 

mode. I would still say about the same number of them made the connection. That 

surprised me that they were about the same as the first two sections. 

Ms. B did not see a clear difference between students that were applying what they had 

learned about measures of center to a new context and those that were exploring 

properties of the median through this task. 

 By our third meeting 13 weeks into the semester and well into the geometry unit, 

Ms. B began to notice differences between students' learning across sequence groups, 

which she attributed to differences in learners' personalities: 

A lot of this—it is personalities. There are certain kids that are more, um, prone to 

ask questions. You know. I think they would do it whether they were in the 

explore- or the explain-first group. I think certain personalities lean one way or 

the other. Um, it makes a difference because I have known these kids before. I 

had most of them last semester. . . . That one girl that fussed, she would be that 

way if she had been in the explain-first group. She is just that way period. She is 
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just very, you know, particular. Everything has to be spelled out: Here is how you 

do it. 

At this point, Ms. B remained sequence neutral and attributed students' sequence 

preferences to their personalities.  

However, she did begin to see differences in students' level of comfort with 

exploratory tasks. As she explained, "I probably see a little more—not in a bad way—but 

just a little more frustration with the explore first. They are a little—you know—but they 

don’t get upset." Additionally, Ms. B noted differences in students’ performance, as 

compared to previous semesters, but did not attribute these differences to sequence of 

instruction: "I think for the first time ever everybody is passing, which I don’t know if I 

have ever had that. . . . I’ve always had one or two in [MEST II] that just can’t handle it. I 

think maybe it was doing more labs or maybe it was the Sketchpad." Ms. B went on to 

explain how Geometer's Sketchpad®, not sequence of instruction, has helped improve 

student learning: 

I loved it. . . . I do think it made an improvement as far as their understanding. . . . 

When you look at how they answer questions, it seemed to be a little bit better 

than I had gotten on labs in the past, as far as how they answer the why’s. . . . I 

think they had a little better concept of some of the stuff, especially the 

constructions. I thought the constructions went a little bit better than doing it all 

with compass and straight edge, although we did both. 
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Although Ms. B noted differences in students' performance, she did not attribute these 

differences to changes in sequence of instruction. Instead, she noted how incorporating 

dynamic geometry software for the first time helped improve student learning. 

By our final meeting at the end of the semester, Ms. B began to identify 

differences in the two sequences. However, she maintained her belief that some 

personalities were better suited for a particular sequence of instruction: 

I think they have gotten a little more independent than I have seen in the past, 

some of them. A lot of it has to do with personalities. Some of them have gotten a 

lot better about thinking through it a little bit, where they have not done that so 

much in the past. But they got to that point by the end, especially with the 

geometry because they had it a longer period of time to be doing it on their own. 

Interestingly, Ms. B noted the time required for students to adjust to this new sequence. 

Aforementioned quantitative findings related to differences in the proportion of students 

that preferred an exploratory sequence in the 10-week unit support Ms. B's observation. 

Implications of these results are discussed further in Chapter Five. 

 Ms. B also noted that the instructional time devoted to explaining content was 

reduced in an exploratory sequence:  

 I think it has definitely cut down the explanation time if they do the lab first. Of 

course, I tend to be kind of long winded, but I have not done it as much. I don’t 

feel like I have had to go into as much of an explanation. A lot of that is 

Sketchpad. You know, the labs themselves were in depth. 
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Here, Ms. B noted a practical advantage of an exploratory sequence. With an in-depth 

exploration of content, formal explanations could be shortened, saving valuable 

instructional time. This idea is also discussed further in Chapter Five. 

 When asked about her interpretation of students' perspectives of an exploratory 

laboratory sequence, Ms. B noted resistance from some students but went on to explain,  

I think they get more out of that than they realize. They think that they got 

frustrated and say "I didn’t know what I was doing” or “I didn’t understand where 

I was going.” But I think they get more out of it than they would like to admit. I 

think it forces them to think about what is happening instead of me telling them. 

Ms. B gave the following example of an exploratory laboratory (found in Appendix K) in 

which students used Geometer's Sketchpad® to create tessellations from various 

transformations: 

I think it forces them to try to process why that happened or why this is 60 

degrees. Even in just doing that one [laboratory], they had to stop and think how 

many degrees does it make sense to rotate that. Then, when they had to rotate the 

whole figure, they had to really stop and think about it because I didn’t tell them 

anything about how they would have to do that. . . . I think it was good they didn’t 

have me saying you are going to do this and this and this. And, the lab didn’t tell 

them. I think it forces them to be a little more thoughtful about it.  

Here, Ms. B recognized that an exploratory laboratory sequence forced students to be 

more thoughtful as opposed to following procedures they had been given. 
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In addition to noting that students in the exploratory sequence had become more 

thoughtful, Ms. B also began to notice differences in the discourse between sequences. 

As mentioned above, Ms. B did not initially notice differences between the discourse 

generated though various sequences of instruction. Observational data also supported Ms. 

B's conclusion. By the end of the semester, however, Ms. B began to notice differences in 

student-to-student interactions and less of a reliance on the teacher for guidance. Ms. B 

explained, 

The other thing I have seen more is more interaction between the groups. They 

have been two [students] here and three here but end up being all five of them, 

which is fine with me because they end up interacting with each other more 

instead of calling me over there, which is good. That is more in the explore 

section because they are kind of desperate, so they will start relying on each other 

and start listening and seeing what the group behind them is doing. That’s part of 

it. It's kind of like “Well, if she is not going to tell us, then we will go to each 

other." I think they have done great. I’ve been really pleased with it. It has been 

interesting.  

Although not evident at the beginning of the semester, Ms. B began to recognize 

differences in student discourse by the end of the semester. Perhaps, this could be 

attributed to changes in sociomathematical norms (Yackel & Cobb, 1996), which took 

time to construct. Implications for professional development are discussed further in 

Chapter Five. 
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Summary: Case of Ms. B. Initially, Ms. B had a different interpretation of what 

it meant to explore mathematics. At the beginning of the semester, she believed that 

students explored mathematics by applying previously learned concepts to a novel 

context. After I made my understanding of an exploratory sequence clear through 

planning sessions with Ms. B, she was able to implement an exploratory sequence of 

instruction consistently throughout the semester. 

Ms. B's perspective on instructional sequence slowly changed over the course of 

the semester. At the beginning of the semester, she noted few differences between 

sequences. As the semester progressed, she identified differences in students' comfort 

levels and frustration with an exploratory sequence, but attributed these differences to 

students' personalities. She noted improvements in student learning, but did not attribute 

these changes to sequence of instruction. By the end of the semester, however, Ms. B 

recognized students in an exploratory sequence became more independent and thoughtful 

in their problem solving and student-to-student discourse began to change.  

Revisiting Research Questions 

 Recall Research Question One: How do the lived experiences, as students of 

mathematics, of a group of preservice teachers influence their pedagogical beliefs? 

Almost all PSTs experienced either completely traditional mathematics or hands-on 

elementary years with a transition to traditional education in middle grades. Evidence of 

process standards in PSTs' recollections of school mathematics was scarce. Most PSTs 

also understood mathematics to be a body of knowledge or the act of performing rote 

procedures. Problem-solving perspectives of mathematics were rare. Additionally, most 
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PSTs interpreted effective pedagogy within the same traditional framework of review, 

delivery of content, worked examples, and practice. Beliefs regarding learning styles, 

group work, and process standards were also identified. Evidence is presented that these 

teachers intend to teach traditionally, as they were taught. 

 Research Question Two follows: How does experiencing exploratory and 

confirmatory sequences of instruction influence a group of preservice elementary 

teachers’ pedagogical beliefs? In examining pre-existing beliefs regarding sequence of 

instruction, most PSTs did not plan to use collaborative tasks. Of those that did intend to 

incorporate tasks, a confirmatory sequence dominated. It appears that PSTs' beliefs 

regarding sequence of instruction either remained traditional or shifted towards a 

traditional sequence after experiencing both exploratory and confirmatory sequences. 

PSTs' intended instructional sequence as teachers was found to depend on their preferred 

sequence as students. Moreover, a greater proportion of PSTs that experienced a longer 

exploratory unit with seven exploratory laboratories also preferred exploratory sequences, 

as compared to the shorter exploratory unit with only three exploratory labs. 

 Recall Research Question Three: Is there evidence of a relationship between 

sequence of instruction and gains in preservice teachers’ Mathematical Knowledge for 

Teaching as measured by Learning Mathematics for Teaching (LMT, 2004, 2008)? 

Although all PSTs made significant gains in MKT, these mean gains did not differ 

between sequence groups. However, differences were found between sections both within 

a single sequence group and across sequence groups. No section- or sequence-by-MKT 
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interaction effects were found. No sequence-dependent differences were found in MKT 

gains between PSTs that preferred an exploratory sequence and those that did not. 

 Research Question Four follows: What benefits and barriers does an experienced 

instructor perceive when implementing exploratory sequences of instruction? Initially, 

Ms. B had a different understanding of what it meant to explore mathematics than that of 

the researcher. At first, Ms. B saw few differences between sequence groups. As the 

semester continued, she began to notice differences in PSTs' frustration levels but 

attributed these to differences in personalities. By the end of the semester, Ms. B noted 

that explanation time could be shortened, student-to-student interactions improved, and 

PSTs were more thoughtful and independent in the exploratory sequence group. No 

barriers for implementing exploratory sequences were noted. These results, and others, 

are discussed further in Chapter Five. 
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CHAPTER FIVE 

Conclusions 

 This study examined the influence of prior experiences and sequence of 

instruction on preservice teachers' (PSTs') pedagogical beliefs and Mathematical 

Knowledge for Teaching (MKT). In this chapter, results from the study are discussed as 

they relate to the four research questions presented in Chapter One. Then, limitations of 

this study and avenues for future research are considered. The chapter concludes with a 

discussion of how the current study contributes to the research base. 

Research Question One 

 The discussion that follows is guided by the following research question: How do 

the lived experiences, as students of mathematics, of a group of preservice teachers 

influence their pedagogical beliefs?  

 Experiences with school mathematics. Two themes emerged when PSTs' 

recollections of their school experiences with mathematics were analyzed: traditional 

mathematics and a shift from concrete representations in elementary grades to traditional 

instruction in secondary grades. 

 Traditional school experiences, in which no evidence of the process standards was 

identified, were characterized by review, delivery of content, worked examples, and 

practice. This is not to say that these PSTs never encountered the process standards, but if 

PSTs did use these process standards, this reform-based instruction did not influence 

PSTs' interpretations of school mathematics as strongly as did traditional instruction. 

Therein, these findings are not a definitive evaluation of the state of the reform 
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movement, but these findings do illuminate aspects of PSTs’ school experiences that 

influenced PSTs' perceptions of school mathematics. 

 In Chapter One, content courses for elementary teachers are established as a 

valuable place for future teachers to experience reform-based instruction as students of 

mathematics. One assumption made is that PSTs' experiences with school mathematics 

were mostly traditional. Further, Lortie’s (1975) theory of an apprenticeship of 

observation maintains that teachers teach as they were taught, not as instructed. 

Therefore, a content course for elementary teachers can be a space where PSTs are 

apprentices of reform-based instruction. The finding that PSTs experienced mostly 

traditional instruction confirms this assumption and underscores the importance of these 

content courses as venues for introducing reform-congruent experiences learning 

mathematics.  

 Additionally, this finding marks a formidable challenge for teacher educators 

when preparing PSTs to depart from these traditional experiences in their own practice. 

With long-standing calls for reform for over three decades (NCTM, 1980, 1989, 1991, 

2000), some teacher educators may assume that PSTs are familiar with reform-based 

instruction. However, this research presents evidence that such practices are far removed 

from PSTs' own experiences. Therefore, teacher educators should approach methods 

courses for elementary teachers with an understanding that exploring mathematics might 

be foreign to these future teachers. 

 The second theme that surfaced when examining these PSTs' experiences with 

school mathematics was a shift from concrete representations in elementary grades to 
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lecture in middle grades. This shift was accompanied by changes in PSTs' perceptions of 

the subject and their own mathematical abilities. This shift to abstract instruction is 

aligned with Piaget's age-dependent theory of development (1961, 1970, 1972, 1977, 

1980) in which adolescents move from concrete to formal operational stages. In contrast, 

Bruner (1964, 1967) believed that learners of any age gain knowledge as they move from 

enactive to iconic and finally to symbolic representations.  

 From a Brunerian perspective, many PSTs experienced frustrations with 

secondary mathematics because the content was not made accessible through concrete 

representations. If one takes these PSTs’ voiced frustrations as indicative of the state of 

secondary mathematics, then one can infer that concrete models should be used 

throughout PSTs' secondary experiences as well as their elementary years. The Principles 

and Standards (NCTM, 2000) support the Brunerian perspective as concrete 

representations are supported in grades nine through 12 as well as three through eight. 

From a Piagetian perspective, these learners had not yet reached a formal operational 

stage and changes to the middle-grades and high school curricula should be considered. 

Regardless of one's theoretical perspective, the fact that these shifts in representations 

were accompanied by shifts in PSTs' perspectives of the subject and their own 

mathematical prowess is problematic. This finding highlights the importance of 

integrating the representation standard at all grade levels with implications for secondary 

mathematics educators and teacher educators as well. 

 Nature of mathematics. A majority of PSTs viewed mathematics as a codified 

body of knowledge confined to a school context. This isolated, external view of 
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mathematics is not congruent with a constructivist epistemology (Wheatley, 1991; 

Fosnott, 2005; Shiftner, 2005) that views mathematics as an activity. Even among those 

few PSTs that saw mathematics as an activity, most viewed mathematics as the act of 

performing rote procedures, not the process of making, testing, and refining conjectures 

through non-routine problem solving. Research (Ernest, 1989; Beswick, 2007; Cross, 

2009) has connected a similar static understanding of mathematics to a traditional role of 

the teacher as an explainer.  

 Findings of the current study support connections in the literature between the 

nature of mathematics and the role of the teacher. Overwhelmingly, PSTs viewed 

mathematics as an external collection of procedures, and most PSTs' interpretations of 

effective pedagogy were situated in a traditional explain-demonstrate-practice 

framework. Additionally, most PSTs’ intended sequences of instruction were classified as 

traditional or confirmatory in which the teacher explains the mathematics.  

 When considering possible connections between experiences with school 

mathematics and PSTs' views of the nature of mathematics, recall that only three of 89 

PSTs' descriptions of mathematics provided explicit evidence of a reform-congruent 

problem-solving perspective of mathematics. Similarly, evidence of process standards in 

PSTs' descriptions of school mathematics was rare. With such little variation in PSTs' 

experiences and understandings of the nature of mathematics, one can say that most PSTs 

recalled traditional experiences with school mathematics, and most also viewed 

mathematics as a body of knowledge consisting of procedures bound to a school context. 
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Perhaps the lack of connections to the world outside the classroom could be attributed to 

an understanding of mathematics confined to a school context. 

 Understanding preservice teachers' views of the nature of mathematics is 

important to teacher educators. Teacher educators should be aware of how rare problem-

solving perspectives of mathematics are among future teachers. With a better 

understanding of the perspectives of their PSTs, teacher educators can prepare to 

challenge such static, procedural views of mathematics. Further, content courses for PSTs 

can allow PSTs to experience mathematics as the process of constructing, investigating, 

and refining conjectures through problem solving. Perhaps then a more comprehensive 

understanding of mathematics can be constructed. 

 Interpretations of effective pedagogy. One means of connecting PSTs' 

experiences to their pedagogical beliefs was to examine instructional practices they found 

particularly helpful and those practices they believed they did not benefit from. Just as 

their school experiences were defined by review, delivery of content, worked examples, 

and practice, their interpretations of effective pedagogy were situated in a similar 

traditional framework. It may not be surprising that a group of PSTs that experienced 

traditional school mathematics also interpreted effective pedagogy within this traditional 

framework. However, it is significant that these PSTs did not find traditional practices to 

be problematic.  

 For example, their critiques of teacher-worked examples were not that these 

instances of a procedure lacked context and did not generalize when confronting non-

routine problems. Instead, they believed that worked examples should be accompanied by 
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a step-by-step explanation and followed by guided practice. The point to be made here is 

that even PSTs who struggled through school mathematics did not find this traditional 

pedagogy to be problematic. Of course, one would not expect a PST that had never 

experienced inquiry-based instruction, for example, to identify this as effective pedagogy. 

However, one might predict that PSTs who found school mathematics painfully difficult 

would be critical of these traditional experiences through which they struggled. 

 Consequently, it is significant that this group of PSTs has not yet begun to 

question traditional practices. It appears that traditional pedagogy has been normalized to 

the point that PSTs do not question its effectiveness. The challenge then for teacher 

educators is to show PSTs an alternative to traditional mathematics and encourage them 

to consider the effectiveness, or lack thereof, of traditional review, lecture, worked 

examples, and practice. 

 As mentioned above, despite numerous calls for reform in mathematics education 

(NCTM, 1980, 1989, 1991, 2000), these data do not show strong evidence that reform 

ideals have influenced PSTs' pedagogical beliefs. Interestingly, however, it does appear 

that theories regarding learning styles have managed to penetrate at least some PSTs' 

pedagogical beliefs. Specifically, some PSTs in this study believed that learning is 

optimized when instructional modes match students' sensory preferences; however, this 

hypothesis is not supported by empirical research (Pashlerm McDaniel, Rohrer & Bjork, 

2009). How then has this unsupported instructional theory permeated PSTs' pedagogical 

beliefs, whereas evidence of the widely supported process standards is rare? 
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 In addition to beliefs regarding learning styles, strong yet varied beliefs were 

identified related to group work. Some PSTs believed they benefitted from collaborative 

tasks, whereas others strongly opposed group work. Beliefs regarding the role of the 

teacher were associated with both PSTs' support for and resistance to group work. That 

is, those who believed that group work hindered their learning believed that it is the 

teacher's job to explain, not that of peers; thus, group work is an excuse to escape from 

one's instructional duties. These beliefs are in direct opposition to those held by social 

constructivists (Cobb & Yackel, 1996) who believe learners co-construct meaning. 

Further, the communication standard (NCTM, 2000) and professional standards related to 

students' role in discourse (NCTM, 1991) support student-to-student interactions. 

Therefore, teacher educators should be aware that PSTs may hold reform-resistant beliefs 

and be prepared to challenge such beliefs in content and methods courses. 

Research Question Two  

The discussion below is guided by the following research question: How does 

experiencing exploratory and confirmatory sequences of instruction influence a group of 

preservice elementary teachers’ pedagogical beliefs? 

Traditional sequence. Another purpose of this research was to examine the 

influence of incorporating two sequences of group activities and explanations on a group 

of preservice teachers. It was hypothesized that experiences making sense of mathematics 

through exploratory tasks in this course might influence how these PSTs plan to sequence 

their own instruction. This focus on how tasks would be used assumed, perhaps naively, 

that PSTs would incorporate collaborative tasks similar to those they experienced in this 
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course. One unexpected finding was that almost half of PSTs' descriptions of their future 

instruction did not include collaborative tasks. Therein, this research's focus on how tasks 

might be sequenced is stifled if future teachers do not plan to incorporate such tasks. 

This finding also highlights intentions of traditional practice consistent with PSTs' 

experiences with school mathematics and their interpretation of effective pedagogy. This 

may add to a body of research that supports an apprenticeship of observation (Lortie, 

1975). As this study preceded methods courses for these PSTs, one cannot claim that 

PSTs ignored the guidance of teacher educators and imitated the instruction they 

observed as Lortie claimed. However, it is important for teacher educators to be aware 

that their PSTs may enter methods courses with intentions to replicate the traditional 

instructional practices they observed as students. 

This finding also adds to evidence of the abovementioned resistance to group 

work identified in PSTs' interpretations of effective pedagogy. Therefore, the challenge 

for teacher educators is daunting. Before PSTs are convinced that their students can 

collaboratively make sense of mathematics through rich mathematical discourse, they 

must first be persuaded that their students should collaborate.  

Confirmatory sequence. Of those preservice teachers that did plan to incorporate 

group tasks, most planned to pose the task after she or he delivered an explanation of 

content. Many of the example lessons that illustrated a confirmatory sequence began with 

symbolic representations such as formulas and ended with enacting mathematics through 

hands-on activities, a sequence inconsistent with Bruner's (1964, 1967) theory, which 

encouraged moving from the concrete to the abstract. PSTs preferred confirmatory 
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sequences, both as students and as future teachers, because they believed (1) an 

exploratory sequence lacked direction; (2) an exploratory sequence was uncomfortable; 

and (3) the purpose of group tasks was to practice, apply, and reinforce the mathematics. 

Regarding the first, both Bruner (1967) and the 4E×2 Instructional Model 

(Marshall, Smart, & Horton, 2009; Marshall & Horton, 2009) encourage a sense of 

direction during student explorations. Bruner claimed that learners need a “sense of the 

goal of the task” (p. 44). Additionally, the 4E×2 Instructional Model includes an Engage 

phase during which direction is established. PSTs' critiques of exploratory sequences of 

instruction support this research and may provide evidence that more structure was 

needed during an exploratory sequence. That is, without the specific goal in mind these 

explorations may have been less structured and tended toward free discovery as opposed 

to guided discovery or inquiry-based instruction. 

Second, PSTs also advocated for confirmatory sequences because they found 

exploratory sequences confusing and therefore frustrating. In these PSTs' critiques of an 

exploratory sequence, a belief emerged that mathematics instruction should be 

comfortable and confusion should be avoided. This belief may be in conflict with a 

constructivist epistemology that argues “Disequilibrium facilitates learning. ‘Errors’ need 

to be perceived as a result of learners’ conceptions, and therefore not minimized or 

avoided” (Fosnot & Perry, 2005, p 34). Many of these PSTs preferred confirmatory 

sequences because they found states of disequilibrium uncomfortable.  

Moreover, PSTs' frustrations with exploratory sequences stress the importance of 

Bruner's (1971) concept of maintenance during discovery. Bruner suggested that teachers 
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provide guidance during discovery such that an “optimal level of uncertainty” (1971, p. 

43) is maintained such that the consequences of exploring seemingly incorrect 

alternatives do not surpass the benefits of learning through discovery. It is unclear, 

however, whose "optimal level" of ambiguity to maintain, the student's or the teacher's. 

That is, were PSTs actually stretched beyond their capacity, or was sense making so new 

to them that their perceived threshold for uncertainty was minuscule? 

Third, PSTs that advocated for confirmatory sequences believed that the purpose 

of collaborative tasks is to practice, apply, and reinforce concepts presented during 

lecture. One possible explanation for this is that PSTs were attempting to force laboratory 

tasks into their traditional framework of review, delivery of content, worked example, 

and practice. Therefore, individual practice was replaced by collaborative tasks where 

students practice, apply, and reinforce skills with their peers. Once again, a need for 

teacher educators to encourage PSTs to critically consider this traditional framework is 

highlighted. 

Sequence preferences. After experiencing confirmatory and exploratory 

sequences of instruction, data were collected related to PSTs' sequence preference. A 

significantly larger proportion of PSTs preferred an exploratory sequence within a group 

that experienced a 10-week exploratory unit consisting of seven exploratory tasks as 

compared to a group that experienced a five-week exploratory unit consisting of three 

exploratory tasks. It should also be noted that sequence preferences in the current study 

differed significantly from the pilot (Sloop & Che, 2011) in which a single section, 

guided by a different instructor, experienced an exploratory sequence throughout both 



 

195 

units. In the pilot, 13 of the 31 PSTs (42%) preferred exploratory sequences, whereas 

only 1 of the 57 (2%) in the 5-week exploratory unit and six of the 26 (23%) in the 10-

week unit preferred exploratory sequences.  

One possible explanation for the differences in these proportions is that PSTs in 

the longer unit had more experiences exploring mathematics, and beliefs related to the 

value of exploring mathematics took time to develop. Perhaps PSTs in the shorter unit 

did not have enough time to establish the sociomathematical norms (Yackel & Cobb, 

1996) required for rich explorations to take place. Results from the pilot study also 

support this hypothesis as these PSTs experienced an exploratory sequence the entire 

semester. 

Moreover, this shorter unit occurred at the beginning of the semester when an 

exploratory sequence was new to Ms. B as well. Results from the case of Ms. B also 

support a "learning curve" for facilitating an exploratory sequence. Therein, the quality of 

these explorations may have increased over the semester as Ms. B also became more 

familiar with facilitating student explorations. 

Additionally, both quantitative and qualitative analyses of data showed 

connections between sequence preferences as students and intended instructional 

sequence as teachers. These results again support a theory of an apprenticeship of 

observation and call attention to the value of content courses as a space for PSTs to be 

apprentices of reform-based instruction. Almost all PSTs that planned to use 

confirmatory (or exploratory) sequences in their own classrooms also preferred this 
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sequence as students. However, there was more variation in the student preferences of a 

group of PSTs that planned to incorporate both sequences. 

Among PSTs that intended to use both sequences, a belief was identified that 

students' needs vary and instruction should be differentiated accordingly. Despite many 

of these future teachers' own confirmatory preferences, this subset of PSTs did not 

discount the value of an exploratory sequence and held a belief that all students might not 

learn as they believed they did. Although a minority belief, this is important because 

these PSTs illustrated pedagogical beliefs not bound by their interpretation of their own 

learning. This finding is significant for teacher educators who introduce reform-based 

pedagogy to PSTs in methods courses that is quite different from PSTs' experiences with 

school mathematics and interpretations of their own learning. 

In addition to connections between sequence preferences and instructional 

intentions, possible changes in intended instructional sequence were considered. From 

pre- and post-example lessons, it appeared that PSTs' instructional intentions either 

remained traditional or shifted towards a traditional sequence of instruction. After 

experiencing both sequences, intentions of exploratory sequences were not found in any 

post-example lessons. This result might seem to contradict the finding discussed in the 

paragraph above; however, recall that preliminary data explicitly comparing the two 

sequences were not collected, as these teachers had not yet experienced such instruction. 

Insights into PSTs' initial beliefs regarding sequence of instruction were extracted from 

example lessons, and all example lessons did not uncover beliefs related to instructional 

sequence. This finding is consistent with suspicions that experiencing frustrations with 
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exploratory sequences might confirm reform-resistant beliefs, which surfaced during the 

pilot study (Sloop & Che, 2011). 

Perhaps this shift was due to PSTs' abovementioned belief that mathematics 

instruction should be comfortable and a hypothesized low threshold of uncertainty for 

PSTs who were new to exploratory sequences. Therein, PSTs became frustrated with 

exploratory sequences during the content course and avoided such sequences in their 

post-example lessons. Or, perhaps some PSTs truly valued both sequences, as other 

forms of data show, but these PSTs lacked the pedagogical knowledge to design an 

example lesson that followed an exploratory sequence. Moreover, differences in modes 

of data collection for these pre- and post-example lessons should also be considered. 

Preliminary data were collected through mathematical autobiographies written outside of 

class with a week to consider the lesson. Post-example lessons were described in class 

through hand-written surveys. Perhaps, PSTs had more time to construct their 

preliminary example lessons; therefore, these preliminary descriptions may have been 

more thoroughly thought out.  

Research Question Three 

The discussion below is guided by the following research question: Is there 

evidence of a relationship between sequence of instruction and gains in preservice 

teachers’ Mathematical Knowledge for Teaching as measured by Learning Mathematics 

for Teaching (LMT, 2004, 2008)? 

In Chapter One, research is presented that claims that content courses for 

elementary teachers are not meeting the needs of future teachers (NCTQ, 2008) and that 
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MKT is rarely developed in such courses (Ball, Thames & Phelps, 2008). This study 

provides strong evidence to counter these claims. Even during a five-week unit, 

significant gains in MKT in probability, data, and statistics (LMT, 2008) were made. In 

the ten-week unit, a substantial effect size on MKT in geometry (LMT, 2004) was found. 

Recall that the mean gains in the ten-week geometry unit were roughly twice as 

large as the gains in the five-week probability and statistics unit. One possible 

explanation for the differences in these gains is that more instructional time was devoted 

to the geometry unit, as compared to the probability and statistics unit. Nevertheless, 

there might also be a ceiling effect as initial mean geometry scores were almost a quarter 

of a standard deviation lower than mean pre-test scores in probability and statistics. One 

might further speculate that the higher initial probability and statistics scores might be 

attributed to content covered in a prerequisite course, Essential Mathematics for the 

Informed Society, which also addresses probability. Still, these differences in content 

gains could also be due to the specific content addressed or the means through which 

PSTs engaged in laboratory tasks. Perhaps, these large gains in geometry could be 

attributed to the use of dynamic geometry software in the laboratories. 

When considering the effects of sequence of instruction on MKT gains, although 

differences in section means were significant, these differences could not be attributed to 

sequence of instruction. That is, means differed significantly between sections even 

within the same sequence group despite the fact that the means between sequence groups 

were not significantly different. Although the current study did not find that a particular 

sequence fostered greater gains in MKT, the fact that section means were different 
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provides evidence that further inquiries are needed. Because differences in the means 

were found within two sections of a single sequence group, these differences would most 

likely be attributed to the convenience sample used, as the instructor attempted to keep 

the instruction constant. If these convenience samples were, in fact, different, perhaps 

these sample differences masked the effect of sequence of instruction. Therefore, these 

section differences may provide evidence that further inquiries, with random assignments 

to sequence groups, are needed. 

Previous research (Sloop & Che, 2011) found differences in mean gains in MKT 

during a similar course that used an exploratory sequence of instruction between those 

who preferred exploratory sequences and those that did not. Students who preferred an 

exploratory sequence had greater gains in MKT, on average, during an exploratory 

course. However, because these PSTs experienced only an exploratory sequence of 

instruction, comparisons could not be made regarding whether PSTs who were not 

satisfied with the exploratory sequence used in the course would have actually faired 

better when sequence of instruction aligned with their sequence preference. The current 

study, however, attempted to look further into this question by alternating sequence of 

instruction between units within a given sequence group. Still, in the current study, mean 

gains were not significantly different between those who preferred exploratory sequences 

and those who preferred confirmatory sequences in either unit. It should be noted, 

however, that the exploratory preference group was much smaller in the current study as 

compared to the pilot. 
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Research Question Four 

This discussion of the case of Ms. B is guided by the following research question: 

What benefits and barriers does an experienced instructor perceive when implementing 

exploratory sequences of instruction? 

Exploring mathematics. Initially, Ms. B's understanding of exploring 

mathematics was to apply previously learned content to a novel context. It is important to 

note this initial understanding of exploring mathematics because other teacher educators 

may also mistakenly assume a common understanding of language associated with 

mathematics education. For example, teachers might associate inquiry-based instruction 

with the use of group activities, or teachers might think that their students are engaging in 

problem solving as they work traditional practice "problems" in which students repeat 

previously modeled procedures in a well-defined problem space. As mathematics teacher 

educators, researchers, or members of any community with domain-specific language, it 

is import to clarify such concepts that may seem commonplace, even among other 

members of the same community. I falsely assumed that another mathematics educator 

would have the same understanding of exploring mathematics as I had. 

Discourse. As stated in Chapters Two and Four, I also assumed that the discourse 

generated during an exploratory sequence would be richer than the discourse during a 

confirmatory sequence. However, differences in discourse between sequences were not a 

given. Therefore, even experienced teachers may benefit from professional development 

that focuses on the teacher’s role in generating discourse. Further, professional 
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development specific to this new approach might be needed to help teachers generate 

meaningful discourse through exploratory laboratories. 

Changes in discourse. By the end of the semester, Ms. B began to notice 

differences in the discourse between sequences. However, it took time to establish these 

sociomathematical norms (Yackel & Cobb, 1996) in the exploratory group. Further, Ms. 

B also noted a "learning curve" for implementing this new sequence. Because these 

norms related to exploring mathematics took time to construct, it might have been a bit 

ambitious to expect to find a sequence effect during a five-week exploratory unit. Other 

researchers should also consider the time needed to effectively implement a new 

instructional practice when designing a study. Additionally, educators and policy makers 

might also learn from Ms. B's experience as they evaluate the effectiveness of changes to 

instruction. 

Explanation time. Although time was needed to establish exploratory norms, Ms. 

B noted that she saved valuable instructional time during her explanations if PSTs first 

explored the mathematics. As students were armed with in-depth experiences with the 

mathematics, Ms. B could shorten her explanations. This is significant as Bolden and 

Newton (2008) found that teachers believed limited time to be a barrier in implementing 

investigative teaching. Perhaps Ms. B's experience could help ease others' concerns as 

they might avoid student explorations because of time constraints. 

 Confidence in sense making. Another interesting finding was that Ms. B 

attributed PSTs' replications of teacher-modeled procedures to a lack of confidence. Ms. 

B believed that PSTs had an intuitive understanding of the mathematics and were able to 
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generate their own strategies but chose to reproduce the instructor's solution strategy 

because they lacked confidence. If Ms. B's conclusion is correct, it is important for these 

future teachers to become confident in their mathematical intuition because teaching 

mathematics conceptually is, in essence, making seemingly obtuse concepts appear 

intuitive (Fischbein, 1987).  

Particular personalities. When Ms. B began to notice differences in PSTs' 

learning between sequences, she initially attributed these differences to PSTs' 

personalities. Ms. B described some PSTs as inquisitive and some as "very, you know, 

particular." Despite observations that students were performing better than in previous 

years and were more independent, she held a belief in a sort of sense-making orientation: 

Inquisitive personalities learn well through an exploratory sequence, whereas particular 

personalities need step-by-step instruction. However, by the end of the study, Ms. B 

believed that these particular personalities also benefitted from exploratory sequences 

(despite their opposition) because it forced them to think. 

It is important to note the slow, gradual nature of Ms. B's change in beliefs 

regarding sequence of instruction. First, she saw no differences between sequences. Then, 

she found differences dependent on one's sense-making orientation. Finally, she began to 

believe that even particular personalities benefited from exploring mathematics. It is 

worth considering whether Ms. B would have continued to use an exploratory sequence 

of instruction, despite resistance from particular personalities, long enough to see its 

benefits had she not committed to do so for this study. This emphasizes a need for 
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professional-development support to be sustained while reform-congruent beliefs are 

being developed. 

It is also problematic that these particular personalities never saw the benefits of 

learning through exploratory sequences that Ms. B came to realize. Perhaps, it takes more 

than a single unit of exploring mathematics to compete with the 12-plus years of 

traditional mathematics. Therein, consistency is needed between the pedagogy PSTs 

experience in content courses and the instructional methods encouraged by mathematics 

teacher educators. Perhaps then, over several courses, change can begin to take root. 

Limitations 

 One limitation of the current study was its quasi-experimental design. Without 

random assignment to sequence groups, differences in dependent variables, or the lack 

thereof, may be attributed to the convenience sample, not sequence group. 

 Another limitation was the study's two possibly contradictory focuses on both Ms. 

B's change and an intervention that required consistent implementation. Although both 

questions are important, perhaps the "learning curve" Ms. B experienced should have 

been avoided for the fidelity of the quasi-experimental portion of the study. As noted 

previously, it is possible (and probable) that the quality of the explorations improved as 

the semester progressed.  

 An additional limitation of this study was the difference in instructional time and 

number of exploratory laboratories for each unit. Originally, I planned to consider 

differences in mean gains in MKT across exploratory and confirmatory units within a 

given sequence group. However, it was noted that gains in the longer unit were roughly 
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twice as large for all sections. As mentioned earlier, it might have been a bit ambitious to 

attempt to find sequence effects in a brief five-week unit. 

Further, considering the differences in the quantity, and perhaps the quality, of the 

exploratory tasks PSTs experienced between the two sequence groups, the means by 

which qualitative data were analyzed may also be limiting. PSTs’ beliefs regarding 

sequence of instruction were analyzed collectively, as all PSTs experienced both 

exploratory and confirmatory sequences of instruction. However, because some 

participants experienced a shorter exploratory unit when Ms. B was new to this sequence, 

considering sequence group in the analysis might be beneficial. Perhaps the beliefs of 

those PSTs with more opportunities to explore mathematics differed from those with 

fewer experiences with an exploratory sequence. 

 Additionally, some post-hoc speculations that were made related to the 

differences in instructional time between these two units may also be limiting. For 

example, differences in the proportion of PSTs' sequence preferences between units was 

attributed to the time spent on each unit. However, these differences could have been due 

to differences in initial MKT, the particular content explored, or the dynamic geometry 

software used in the longer unit. 

As noted in Chapter Three, both of Learning Mathematics for Teaching's 

assessments (LMT, 2004, 2008) claim to measure MKT despite the fact that the geometry 

scale does not draw from domains within pedagogical content knowledge, whereas the 

probability, data, and statistic scale does. Further, the geometry scale used does not make 

item-specific distinctions within the subject-matter domain. Therefore, these scales are 
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limited as to whether the two content assessments were actually measuring the same 

construct. Further, radical constructivists' ontological assumptions related to the existence 

of an external body of knowledge known as mathematics might be in conflict with an 

assessment that claims to measure one's knowledge of this domain. That is, if 

mathematics is an activity, not a singular, unified body of knowledge, how can a 

multiple-choice assessment claim to measure this, and whose mathematics does it 

measure? 

 Additionally, one of the major advantages of learning by discovery is that by 

engaging in non-routine problems one becomes a better problem solver. That is, one 

becomes more prepared to confront other novel, non-routine problems. However, it is 

doubtful that this multiple-choice assessment can measure, nor does it claim to measure, 

one's problem-solving abilities. Therefore, there may be an inconsistency in the 

hypothesized advantages of learning through an exploratory sequence and the measures 

on which these advantages were gauged. Still, with no loss in MKT in an exploratory 

sequence, the advantages identified by Ms. B may be worth the effort. 

 As with any qualitative research (and debatably quantitative research as well), the 

perceptions of the researcher influence the interpretation of data. Further, the fact that 

phenomena are being observed affects outcomes as well. Whether or not this is a 

limitation of the study or a given for any research (whether quantitative or qualitative) is 

left to the reader. 

 In the discussion of these data, comparisons were made to results of a pilot study 

(Sloop & Che, 2011). One limitation of conclusions drawn from comparing these two 
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studies was that different instructors facilitated the explorations in each study. For 

example, one speculation made was that a larger proportion of PSTs preferred 

exploratory sequences in the pilot because of the additional time spent exploring. 

However, these differences may have been due to differences in instructors. In fact, the 

instructor for the pilot had considerable experience with an exploratory sequence and 

inquiry-based professional development. This contrasts markedly with the "learning 

curve" that Ms. B experienced. 

 In considering PSTs' mathematical autobiographies (or perhaps any self-reported 

data), these were PSTs' interpretations of their recollections of experiences, not an 

objective account (if one believes in such a thing) of reality. This was both a limitation of 

these data and an advantage as these subjective interpretations of experiences can shed 

light on PSTs' perceptions of their lived experiences. 

 When attempting to identify connections between PSTs' lived experiences, beliefs 

regarding the nature of mathematics, and pedagogical beliefs, the lack of variation in 

these data was a limitation. A vast majority of PSTs described traditional experiences, 

understandings of mathematics, and pedagogical beliefs. Therein, the lack of variation in 

these data limited the analysis. 

 In considering the theory of an apprenticeship of observation (Lortie, 1970), this 

study was also limited in that one can only speculate on PSTs' instructional practices 

based on their pedagogical intentions. Further, this study took place before methods 

courses, so one cannot conclude that PSTs will ignore the guidance of teacher educators 

in methods courses to follow their experiences as students, as Lortie proposed. This study 
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can only conclude that there was evidence that PSTs intended to teach as they were 

taught before they entered methods courses. 

 Data used to consider changes in PSTs' beliefs regarding sequence of instruction 

were also limited. Intended instructional sequence was extracted from example lessons. 

However, all example lessons did not offer evidence of an intended sequence. Further, 

aforementioned differences in the modes of data collection, whether in-class or out-of-

class, may have also influenced these data. Consequently, pre- and post-data were 

available for only 11 PSTs, with fatigue factors most likely affecting the quality of post-

example lessons. Therefore, conclusions made regarding possible changes in PSTs' 

beliefs were also limited by these data.  

Future Research 

 Speculations of instructional practice were made in the current study based on 

intended instructional sequence. Further inquiries are needed to determine whether 

intended instructional sequence is actually enacted in PSTs' future classrooms. Therefore, 

future research should examine the relationship between sequence preference, intended 

instruction sequence, and practice for in-service teachers. 

 The current study found differences in MKT gains between sections within an 

instructional sequence. It was hypothesized that these section differences provided 

evidence that further research is needed to determine if these differences were due to the 

convenience sample used. Therefore, future research is needed to examine the effects of 

sequence of instruction of MKT with random assignment to sequence group. 
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The effects on MKT attributed to this laboratory-based content course add to the 

literature that attempts to improve teachers' MKT through teacher preparation programs 

(Lueke, 2008). These findings might also have significant implications for professional 

development for in-service teachers, as Schifter (2005) has called for teachers to 

experience making sense of mathematics as students. Perhaps in-service teachers can also 

gain MKT through task-based professional development. Further research is needed to 

examine the effects of similar task-based professional development opportunities on in-

service teachers. 

This study found considerable gains in MKT for PSTs during this content course. 

The long-term effects of content courses on in-service teachers' MKT vary considerably 

in the literature (Hill, 2007, 2010). Further longitudinal research is needed to determine 

the long-term effects of gains in MKT made in content courses for elementary teachers. 

 An unexpected and interesting finding of this study was that unsupported theories 

of learning styles have permeated at least some PSTs' pedagogical beliefs, whereas 

reform-congruent beliefs supported by research have only marginally influenced beliefs. 

Further inquiries are needed to evaluate the origins of these learning-style beliefs. 

This study did not consider how participants’ gender might influence their beliefs 

regarding sequence of instruction or MKT. Future research is needed to examine gender-

specific differences in preservice elementary teachers’ prior experiences with 

mathematics, pedagogical beliefs, and MKT.  

 In Chapter Two, shortcomings for quantitative measures of pedagogical beliefs 

are noted. This study attempted to assess beliefs regarding sequence of instruction 
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through example lessons. However, limitations of this method are noted above. If 

inquiries into beliefs regarding sequence of instruction are to continue, more consistent 

methods for evaluating these beliefs are needed. Therefore, future methodological 

research should explore other means for assessing beliefs regarding sequence of 

instruction. 

Relationship to Previous Research 

 Much of the previous research regarding teachers’ beliefs either focused on in-

service teachers or PSTs involved in field experiences or methods courses under the 

guidance of mathematics teacher educators. Therein, these studies examined teachers’ 

pedagogical beliefs as current or apprentice teachers. The current study, however, 

examined PSTs’ beliefs from their perspectives as students of mathematics. By looking 

back at PSTs’ experiences with school mathematics and their resulting interpretations of 

pedagogy, this study adds to the research base as it explored the beliefs PSTs hold prior 

to the influence of mathematics teacher education. 

 As noted in Chapter Two, prior research on mathematics content courses for PSTs 

did not focus on targetable instructional components. The current study, however, 

examined two well-defined sequences of instruction that are both grounded by theories of 

learning and instruction. This study has more explicit instructional implications than 

previous research and, therein, adds a practical perspective to this research base. 

 MKT has been established as a valuable construct in the literature as it has been 

connected to teachers’ practice and students’ achievement. However, research that 

explores how and where this knowledge is constructed was lacking. Although there was 
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evidence that previous coursework might be linked to MKT, the effect sizes varied 

greatly between studies. The current study, however, examined the effect of a content 

course for PSTs directly for specific content domains. Additionally, this study provided 

evidence to refute claims in the literature that content courses for elementary teachers are 

not providing the specialized mathematical knowledge teachers need. 

 This study also adds to the literature by offering the practical perspective of an 

experienced instructor who is new to facilitating student explorations. Although previous 

research identified beliefs that stifled the effects of teacher education efforts, this study 

found evidence for optimism for reform as Ms. B’s practice changed, and she began to 

see the benefits of alloying her students to explore mathematics. 

Final Thoughts 

 This study supports NCTM's (2000) claim that teaching truly is a complex 

endeavor. Although sequence of instruction is a targetable instructional component, 

simply altering one's instructional sequence does not automatically guarantee dramatic 

changes in student learning. Time is needed as the instructor and students construct new 

norms for this new sequence. This study shows that optimism in the power of reform is 

warranted. Among PSTs in an exploratory sequence group, Ms. B identified 

improvements in student-to-student discourse and noted these PSTs were more thoughtful 

and independent. These benefits came with no drop off in MKT gains. These gradual 

changes in Ms. B's perception are also promising. Therein, this study has proven 

beneficial to the participants themselves, and its findings are also valuable to 

mathematics teacher educators. This study shows that mathematics content courses can 
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be a valuable space for PSTs to gain MKT while also experiencing as student what it 

means to explore mathematics. 
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Appendix A 

Mathematical Autobiography Prompt Given to all PSTs 

MATHEMATICS AUTOBIOGRAPHY  
 
Please answer the following questions thoughtfully and send your autobiographies to me 
electronically ([email address removed]) by Friday, August 20. 
 

• What is mathematics? 
 

• Describe a typical day in math class in elementary, middle, high school and 
college as you remember it. 
 
 

• What strategies did you find particularly helpful and which did not benefit you? 
 

• Describe one positive and one negative experience with mathematics and 
comment on your mathematical prowess. 
 

• What will a typical day in your mathematics class look like? 
 

• Describe how you might teach your class about the area of a rectangle or a lesson 
on probability. 
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Appendix B 

Grading Rubric for Mathematical Autobiographies given to all PSTs 

 

0 1 2 3 Score 

D
ef

in
iti

on
 

A definition of math 
was not addressed 
or was taken from 
another source with 
no reference 
provided. 

Mathematics was 
ill-defined or 
defined recursively 
(i.e. what we learn 
in math class) 

Mathematics was 
defined, but the 
definition lacked 
enough detail to 
help the reader 
discriminate the 
content area from 
others. 

Mathematics was 
defined completely 
using precise 
language such that a 
reader could 
differentiate math 
from other sciences. 

 

Ty
pi

ca
l D

ay
 

Typical 
mathematics 
experiences were 
not addressed. 

Autobiography 
addressed only 1 of 
the 3 school 
experiences. 

Autobiography only 
addressed 2 of the 3 
school experiences. 

A typical day in 
elementary, middle, 
and high school was 
described, or it was 
noted that the author 
could not recall 
these events. 

 

St
ra

te
gi

es
 

Neither helpful nor 
unbeneficial 
strategies were 
addressed. 

Autobiography 
addressed only 1 
aspect of learning 
strategies. 

Autobiography 
addressed both 
helpful and 
unbeneficial 
strategies, but said 
strategies were ill-
defined or vaguely 
explained. 

Autobiography 
addressed both 
helpful and 
unbeneficial 
strategies for 
learning 
mathematics with 
sufficient detail to 
reproduce such 
strategies. 

 

Ex
pe

rie
nc

es
 

Neither positive nor 
negative 
experiences were 
addressed. 

Autobiography only 
addressed a positive 
or negative 
experience, not 
both. 

Autobiography 
described a positive 
and negative 
experience, but it 
was unclear why 
these experiences 
were interpreted as 
such. 

Autobiography 
explained both a 
positive and 
negative experience 
with sufficient 
detail. 

 

Fu
tu

re
 C

la
ss

 

A typical day was 
not addressed. 

A typical day in 
math class was only 
superficially 
addressed with no 
detail given to what 
students and/or 
teacher are doing. 

A typical day was 
described, but vague 
language or lack of 
detail makes it 
difficult to 
distinguish the class 
described. 

A typical day in 
one’s future class 
was described with 
enough detail that 
the reader could 
identify the class 
being described. 
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Ex
am

pl
e 

Le
ss

on
 

An example lesson 
was not mentioned 
in the 
autobiography. 

The example lesson 
described had no 
identifiable 
characteristics. 

An example lesson 
was described, but 
vague language or 
lack of detail makes 
it difficult to 
identify this lesson 
among others on the 
same topic. 

An example lesson 
was described with 
enough detail to 
distinguish this 
lesson from others 
on the same topic. 

 

O
n 

tim
e 

Autobiography was 
late. 

  Autobiography was 
submitted by 
August 20.  
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Appendix C 

Instructor Interview Protocol: Interview One 

August 23, 2010 

1. Can you tell me about what you did the two days before today? 

2. Was that for all three sections? 

3. Have all the students seen intersection before? 

4. Can you tell me a little bit about the explore-first section? 

5. Did you notice a difference in how students were performing or interacting? 

6. For the first problem that is kind of intuitive because one die is all threes, one 

could look at Die A and see that four of the six times it would win. I noticed, with 

the group in front of me, that students were drawing out the entire sample space. 

Did you see that in the first two sections in which you did not explain the content 

first? 

7. I recall you telling them to think about shortcuts. One group realized that the last 

problem would take three charts, and they wanted to know that shortcut. Can you 

tell me how you envision the explanation coming in those first two sections?  

8. When I taught this lesson with an exploratory sequence of instruction, I noticed 

that I would get a lot of different strategies, whereas if I had explained it first, 

they might just do it the way I did. Did you see a difference? 
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Appendix D 

Instructor Interview Protocol: Interview Two 

September 28, 2010 

1. Can you tell me about the labs you have done in the first unit? Which ones you 

were able to make exploratory for the first two sections? 

2. Have you noticed any differences between sequence groups? 

3. When I asked my class why, some got there and others didn’t, especially with the 

even number of distribution centers. How did your students do with this? 

4. How about time? Do you find that it takes more time? 

5. Do you think you get that time back with being able to shorten your explanation? 

6. Have you noticed any differences in the classroom discourse among sections? 
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Appendix E 

Instructor Interview Protocol: Interview Three 

November 17, 2010 

1. Can you tell me about the labs you have done thus far in this unit and which labs 

you were able to alter the sequence? 

2. For the sketchpad labs, what do think about it? Is Sketchpad something you would 

continue to use? 

3. What do you think students think about it? 

4. Have you noticed any differences between sequence groups? 

5. Can you give me an example of this? 
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Appendix F 

Instructor Interview Protocol: Interview Four 

December 1, 2010 

1. Do you have a rough guess how many labs you did in the geometry unit and how 

many you were able to alter the sequence? 

2. Have you seen any difference in the two sequences? 

3. Have you seen a difference in the discourse, the interaction between you and the 

students, from when they have had the labs first or the labs second? 

4. Right now, which sequence would you lean toward? 

5. Can you expand a little bit on how you think they are getting more out of it?  

6. What is it about doing the lab first? 
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Appendix G 

PST Interview Protocol 

 1. Tell me about your experience as a student of math. 

 2. If you had to explain to one of your students what math is, what would 

 you tell her? 

 3. Do you think this course has influenced how you plan to teach 

 mathematics? If so, how? 

 4. Do you remember doing activities similar to these labs as a student? If so, 

 did these labs usually come before or after the teacher explained the 

 content? 

 5. In this course, did you notice any differences in how your teacher 

 sequenced lab activities and explanations between the probability and 

 geometry units? 

 6. Which sequence did you prefer, and why? Can you give me an example of 

 a lab that illustrates this? 

 7. How do you think you will use lab activities in your own classroom? 
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Appendix H 

Exit Survey Given to All PSTs 

 Your instructor sometimes explained the content first; then, the lab on this content 
came after the explanation. Other times, you worked on the lab first, and the 
explanation came afterward. Which sequence of lab activity and explanation did 
you prefer? Explain. 

 
 
 
 
 
 
 
 
 
 
 
 
 In your own classroom, which sequence of activity and explanation do you plan to 

use. Explain. 
 
 
 
 
 
 
 
 
 
 
 
 
 Briefly describe how you might teach your class a lesson on either the area of a 

rectangle or probability. 
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Appendix I 

Phenomenological Reduction of PSTs' Interpretations of Effective Pedagogy 

   No. of Sig. State. 

 Meaning Cluster  
(no. sig. state.) Meaning Unit Beneficial Unhelpful 

Traditional mathematics experiences 
Review 2   Review (5) 
Review of homework 3  
Lecture 2 2 
Lecture alonea  12 
Lecture followed by practiceb 3  
Boring lectures  1 
Notes 6 4 
Notes from text  1 

 Delivery of content (32) 

Explicit algorithm given 1  
Teacher-worked examples 6  
Examples 8  
Step-by-step examples 7  
Example with explanation 2  
Single example  1 
Algorithm without example  1 

 Examples (27) 

Teacher-worked examples 
followed by guided practiceb 2  

 Teacher-worked examples 
followed by guided practiceb 2  

Practice 12  
Group work: practiceb 3  
Too much practice  1 
Repetition 7  

 

Practice (28) 

Lecture followed by practiceb 3  
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Unassociated meaning clusters 

Visual learner 7  
Hands-on as visualb 7  
Hands-on as kinestheticb 3  

 Learning styles (20) 

Only auditory style  4 
Group work: no rationale 4 4 
Group work: comfort 2 1 
Group work: teacher's role  1 
Group work: communicationb 3  
Group work: practiceb 3  
Group work: left out  1 

 Group work (21) 

Group work: perspective 2  
Connection to experience 6  
Connection to other subjects 1  

 

Group work: communicationb 3  
 Hands-on as visualb 7  
 Hands-on as kinestheticb 3  
 

Process standards (31) 

Hands-on activities 11  
Graded homework  2 
Quizzes  1 
Timed tests  1 

 Assessments (7) 
 

Projects  1 
Unassociated meaning units 

Formal proofs  1 
Same structure  1 
Edibles 1  
Individual instruction 1  
Memorization  1 
Games 2  
Multiple strategies 4 1 
Tricks or shortcuts 3  
Active participation 2  
Activities 2 1 
Formulas  1 
Reading textbook  4 

  

Graphic organizers 2  
Note. No. of Sig. State. = the number of significant statements. aThe meaning unit 
"Lecture alone" was assigned to significant statements that reference lecture the entire 
period or specific references to lecture without support from examples or guided practice. 
bThis meaning unit was associated with more than one meaning cluster. 
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Appendix J 

Distribution Center Lab 

Engage 

A fast food chain sets up five restaurants along a highway at mile markers 2, 4, 16, 28, 

and 50. The owner of the chain needs a distribution center to service the restaurants. She 

will have five trucks, one for each of the restaurants. Of course, she wants to save money, 

so she wants the total number of miles the trucks will travel to be as small as possible.  

Before beginning any computations, estimate a reasonable location for the 5th store, and 

devise a plan to systematically determine the best location of the distribution center. 

 

Should you consider that round-trip distance traveled by the trucks, or only the distance 

of each restaurant from the distribution center? Why? 

 

Explore 

Where should she locate the distribution center? Show your calculations below. 

Organize your data and represent it below using either a table or graph. 

 

Explain 

How does your answer relate to measures of center: mean, median, and modes? 

 

Choose 5 new restaurant locations, and determine if the measure of center identified 

above also minimizes the total distance between the locations. 
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Explain why the measure of center above minimizes the total distance between the stores. 

 

Extend 

Suppose a 6th store was added at mile marker 80. Where should the distribution center be 

located now? 

 

Explain why this is the case. 

 

Suppose, instead, the 6th restaurant was located at mile marker 525. Where should the 

distribution center be located? What conclusion can you draw from this result regarding 

this measure of center and extreme values in the data set? 
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Appendix K 

Rotation and Reflection Lab 

Adapted from Sketchpad’s Learning Center 

1. Open a new sketch, and save this as Lab-18.gsp. Choose File | Document 

Options and name this page Hop. 

2. Choose Help | Picture Gallery. Click the Transformation link and find the 

picture of a footprint. Drag and drop (or copy and paste) the footprint picture into 

your sketch. 

3.  Construct a vertical segment to the left of the footprint. (Hold the Shift key as 

you construct your segment to make it vertical.) 

4. Label the endpoint A and B with Point A being below Point B. 

5. Select A and B in order and choose Transform | Mark Vector. A brief animation 

should appear. 

6. Select the picture and choose Transform | Translate. In the dialogue box, click 

Translate. 

7. Leave the footprint selected and translate it again. Repeat this a few times to make 

a series of footprints. 

8. Drag each endpoint of Line AB and observe how the footprints behave.  

What two things are needed to define a translation? 

 Suppose you were at the beach. How could you create this pattern in the sand? 

9. Choose the Line tool by pressing and holding the Segment tool until the 

straightedge menu appears, move the cursor to the 

line icon, and release. 

10. Click points A and B to construct Segment AB. 

Leave the line selected and choose Display | Line 

Style | Dashed. 

11. Double-click the line to mark it as a mirror. 

12. Select the pictures (click each one or use a selection 

rectangle) and choose Transform | Reflection. 



 

241 

13. Drag the mirror line and observe the behavior of the reflected footprints. 

What is needed to define a reflection? 

 Suppose you were at the beach. How might you use create this pattern in the 

sand? 

14. Choose File | Document Options. Then, choose Add Page | Duplicate | Hop. 

Name this page Walk and click OK. 

15. On the Walk page, select all pictures except the 

original picture and choose Edit | Clear Pictures. 

16. Construct a point to the left of Segment AB near 

the footprint. Label it C.  

17. Select point C, and translate it as in Step 5 and 6. 

Label this point C'. 

18.  Reflect point C' across Segment AB as in Steps 

11 and 12. Label this point C ‘’. 

19. Deselect all objects. Select only points C and C′′ and choose Transform | Define 

Custom Transform. Name your new transformation Glide Reflect and click OK. 

20. Select points C, C′, and C′′ and choose Display | Hide 

Points.  

21. Select the picture and choose Transform | Glide Reflect. 

22. Leave the new picture selected and glide-reflect it again. 

Repeat many times (or use the keyboard shortcut shown next 

to Glide Reflect in the Transform menu) to make a series of 

footprints. 

23. Drag points A and B and AB and observe how the footprints 

 behave 

 What is needed to define a glide reflection? 

 Suppose you were at the beach. How could you create this pattern? 

24. Choose File | Document Options. Add a blank page and name it Tessellation. 
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25. Construct an equilateral triangle and label it ABC. (If you can’t remember how 

we construct an equilateral triangle, see Lab 10  and review the linked video on 

the page Equilateral Triangle.) 

26. Construct two or three connected segments from A 

to B. 

27. Mark point A as a center by double-clicking it (an 

animation should appear). Then, select all the 

segments and points you just constructed, and rotate 

them 60° by choosing Transform | Rotate. 

28. Construct the midpoint of Line CB and label is D. 

29. Construct two connected segments from B to D.  

30. Mark D as the center of rotation, and rotate the 

points and segments you constructed in Step 29 

180°. 

31. Drag the points to see how they behave. Make sure 

none of the irregular edges intersect. 

32. Construct the polygon’s interior with the vertices along the irregular edges. 

33. To begin tessellating, mark point A as a center and rotate the polygon’s interior 5 

times by the appropriate number of degrees to surround point A with 6 non-

overlapping tiles. Change the color of alternating tiles. 

34. Mark D as the center of rotation, and rotate all 6 tiles 180°. 

35. Change the color of the new tiles to keep a  

clear pattern. 
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 Look at the tiles surrounding point A. What kind of rotation would the completed 

tessellation have about this point? 

 Look at the tiles surrounding point D. What kind of rotation would the completed 

tessellation have about this point? 

 Look at the tiles surrounding point B and C. What kind of rotation would the 

completed tessellation have about these points? 

36. Use an appropriate rotation to fill in the tiles around B and C. Then, adjust the 

colors of these tiles accordingly. 

37. Drag the vertices of the original tile and observe the changes in you tessellation. 
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Appendix L 

Content of PSTs Pre- and Post-Example Lessons 

Sequence Group 1   Sequence Group Two 
Section 1 Section 2 Section 3 

 Content of Lesson  Content of Lesson  Content of Lesson 
PST ID Pre Post PST ID Pre Post PST-ID Pre Post 

1-01 -- Geo 2-01 Prob Prob 3-01 Geo Geo 
1-02 Prob Geo 2-02 Geo Geo 3-02 Prob -- 
1-03 Prob Prob 2-03 Geo -- 3-03 Geo Geo 
1-04 Geo Prob 2-04 Prob Prob 3-04 Geo Geo 
1-05 Geo Geo 2-05 Prob Prob 3-05 Prob Geo 
1-06 Prob -- 2-06 Prob Prob 3-06 -- Geo 
1-07 Geo Geo 2-07 -- -- 3-07 Geo Geo 
1-08 -- Geo 2-08 Geo Geo 3-08 Geo -- 
1-09 Geo Prob 2-09 -- Prob 3-09 Geo Geo 
1-10 Geo Prob 2-10 Prob Prob 3-10 Prob Prob 
1-11 Geo Geo 2-11 Prob Prob 3-11 Prob Geo 
1-12 Prob Geo 2-12 Geo Geo 3-12 Geo Geo 
1-13 Prob Geo 2-13 Prob Geo 3-13 Prob Geo 
1-14 -- Geo 2-14 Geo Prob 3-14 Prob Geo 
1-15 Prob Geo 2-15 Geo Geo 3-15 Geo Geo 
1-16 Prob Geo 2-16 Geo Prob 3-16 Geo Prob 
1-17 Prob -- 2-17 Geo -- 3-17 Prob Prob 
1-18 Geo Geo 2-18 Prob -- 3-18 Geo Geo 
1-19 Geo Geo 2-19 Prob Prob 3-19 Geo Geo 
1-20 Geo -- 2-20 Prob Geo 3-20 Prob Geo 
1-21 Prob Geo 2-21 Prob -- 3-21 Prob Geo 
1-22 -- -- 2-22 Prob Geo 3-22 Geo Geo 
1-23 -- Prob 2-23 Geo Geo 3-23 Prob Prob 
1-24 Prob Prob 2-24 Geo Geo 3-24 Prob Geo 
1-25 Prob Prob 2-25 Prob Geo 3-25 -- Prob 
1-26 Geo Geo 2-26 Geo Geo 3-26 Geo Geo 
1-27 Geo Geo 2-27 Geo Geo 3-27 Prob Prob 
1-28 Geo Geo 2-28 -- Prob 3-28 Prob  Geo 
1-29 Prob Geo 2-29 Prob -- 3-29 Geo Prob 
1-30 Geo Geo 2-30 Prob Geo    
1-31 Prob Geo 2-31 Geo --    
1-32 Prob -- 2-32 -- Prob    
1-33 Prob Geo 2-33 Geo Geo    
1-34 Geo Geo       
1-35 Prob --       

Notes. ID=identification number; Geo=Geometry; Prob=Probability 
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