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ABSTRACT 

 

 

 Quarter Billion dollars could be saved annually by double stacking pallets. A 

forklift storing 100 double stacked pallets saves 2.5 working hours versus single pallets. 

More than one billion pallets and cases handled between Wal-Mart distribution centers 

according to BEA White Paper (2006) [1], assume only 500 million were stackable 

pallets. This translates to 12.5 million working hours. If a forklift driver earns $20 per 

hour, then $250 million can be saved. 

 Moreover, handling double stacked pallets takes up to 46 % of total time to pick 

and store. This is a significant element that was ignored in literature. All previous 

research focused only on travel time that is just part of the total time. 

In this dissertation we model dual command operations to find optimal path with 

minimum travel time. Combination of both picking and storage activities is also known 

as dual command. Our environment is a manual warehouse where full pallets can be 

double stacked. Accordingly, three time-based models were developed as 123 steps to 

reach dual command model; order picking model, storage model and combined storage 

and order picking model. The mathematical models find the optimal sequence of storing 

and picking pallets that leads to the minimum travel time. Using those models allow 

double stacking pallets, therefore around half of material handling time, labor cost, and 

equipment cost will be saved compared to single stacked pallet operations. Two 

heuristics were also developed that gave sub optimal but quicker solutions that can also 

be used by the warehouse management and reduce the travel time significantly as well.  
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CHAPTER ONE 

INTRODUCTION 

 

 

This research is focused on providing a contribution on a specific gap; the state of 

the art associated with picking and storage in manual warehouses. The order picking 

problem is a well known problem in the warehouse literature. Order picking is the 

process of retrieving items on a pick list from their storage locations. Items can range 

from small cases (less than pallet size) that have to be picked manually or an automated 

storage retrieval system AS/RS up to fully loaded pallets that are picked by material 

handling equipment such as a forklift. In this research focus will be on fully loaded 

pallets. Rick LeBlanc states that: “High lift trucks made possible vertical stacking of unit 

loads and a resulting dramatic improvement of warehouse and plant storage efficiencies” 

[2]. Vertical stacking of unit loads is addressed in this research by considering double 

stacking of fully loaded pallets. The warehouse considered in this research has activities 

such as receiving, storage (also known as put away process), order picking, packing and 

shipping.  Literature on order picking focused on using graph theory in solving this 

problem that does not consider the time element. Few mathematical models were 

developed in the literature for the order picking problem but they did not consider the 

double stacking of pallets and all the time elements associated with pallet handling. This 

motivated me to pursue this research that focuses on order picking and storage in manual 

warehouses. Moreover, the research addresses fully loaded pallets that can be double 

stacked while being transported by a material handling device like a forklift. 
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The research contributions are developing a methodology to include stackability 

in determining the optimal pick and storage sequence, and developing a mathematical 

programming approach to this problem that is time-based rather that distance-based so 

the critical tasks associated with stacking can be correctly included in the model. 

Furthermore, developing a detailed time-based math programming model for the dual 

command problem (allows picking and storing in the same route), and developing two 

heuristics for the dual command problem. In addition, showing that pallet handling time 

ranges from 22% to 46% of the total time to pick and store pallets. This time element was 

not addressed in literature, and rather travel time was the main focus.   

 This dissertation report is arranged as follows: 

-Chapter 2 is a literature review of the relevant research done in this area. 

-Chapter 3 establishes the methodology for modeling stackability and presents two time-

based mathematical models, one for order picking and one for storage. 

-Chapter 4 is a paper that will be submitted to a journal. This paper combines both 

picking and storage activities, also known as dual command into a single time-based 

mathematical model. Also, this paper presents two heuristics that provide quick sub 

optimal solutions to the same dual command problem. 

-Chapter 5 presents conclusions from this interesting research.  
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CHAPTER TWO 

LITERATURE REVIEW 

 

2.1 Introduction 

 

 This chapter provides an overview of the literature related to all research reports 

in this document; that is, the literature associated with Chapter 3 and Chapter 4. Since, 

the literature on order picking involves hundreds if not more than a thousand papers in its 

entirety; we focused in this chapter only on the relevant papers.  For example, the 

bibliography developed by Goetschalckx and Wei [3] contains 413 papers; however, 

many of these papers address problems that are not relevant to this research. To illustrate, 

research on order picking with automated storage retrieval systems (AS/RS) has a 

different technical focus so it is not included.  The same is true for some of the work that 

adapts classic operations research problems like the vehicle routing problem. The chapter 

is divided into three main sections: order picking, pallet storage, and combined storage 

and picking.  

 

2.2 Order picking 

 When orders are received from customers, a “pick list” is generated that is simply 

the aggregated individual items required to fill these orders.  Order picking is the process 

of retrieving items on a pick list from their storage locations.  Items can range from small 

cases (less than pallet size) up to fully loaded pallets. Small cases are either picked by 

humans or reside in an AS/RS, while fully loaded pallets are picked by material handling 

equipment such as a forklift. Bartholdi and Hackman [4] estimated that order picking 
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accounts for 55% of the total operational warehouse costs, while Coyle at al. [5] 

estimated that order picking accounts for 65% of the total operational warehouse costs. 

This means order picking is the biggest cost element in the warehouse operational costs.  

Literature on order picking seeks to minimize the cost, measured in a variety of ways, 

associated with retrieving the items on a pick list. 

 Literature reviews have been performed exclusively on this topic.  For instance, 

Gu and et al. [6] published a comprehensive literature review of research on warehouse 

operations that included picking along with other functions.  Besides, De Koster, et al. [7] 

looked at this general topic whereas van den Berg and Zijm [8] focused on order picking 

models and problem classifications.   

In this research, the focus is exclusively on pallets that are handled by forklifts so 

the remainder of this chapter will be confined to this subset of warehouse operations and 

not more general topics. To demonstrate, there is one paper that addressed 

stackability, however for a different problem.  Steudel [9] developed an algorithm that 

solved the common problem of loading rectangular items on a rectangular pallet using the 

option of stacking items on their end and/or side surface to maximize the number of items 

per layer on the pallet deck board. In Steudel’s research, case picking was considered 

where cases (boxes) are stacked on top of each other on a single pallet.  In our research 

we assume two full single pallets are stackable on each other.  

 The literature relevant to full pallet picking naturally divides into two categories 

based on the measure that the researcher chooses to make the pick route efficient. Some 
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researchers minimize the total distance traveled while others minimize the total time to 

pick.  

 

2.2.1 Distance-based models for order picking 

 

 This section sheds light on the different modeling and solution approaches that 

researchers used to solve the order picking problem. Earlier, graph theory was used 

where nodes represent locations of items to be picked in a warehouse and arcs represent 

the possible routes the forklift could travel during picking. In 1983, Ratliff and Rosenthal 

[10] were the first to use this approach for the order picking problem.  The objective 

function is minimizing the distance traveled by the forklift while picking ordered items 

stored in a warehouse and transporting them back to the shipping area. Their research 

was restricted to order picking in a rectangular warehouse that contains crossovers (i.e. 

pass ways between main aisles) only at the ends of aisles. In 1988, Goetschalckx and 

Ratliff [11] used graph theory to develop a minimum distance algorithm for routing order 

pickers in a warehouse with one cross aisle.  However, they considered picking items less 

than a pallet size.  

 Later, traveling salesman problem (TSP) was used to model the order picking 

problem. In 1998, Daniels et al. [15] modeled warehouse order picking as a traveling 

salesman problem. The model developed by Daniels et al. [15] determined the sequence 

of visiting the unique locations where each part in the order is stored. In addition, the 

model developed by Daniels et al. [15] minimized the total cost associated with both the 

assignment of inventory to an order and the associated sequence of visiting the selected 

locations. However, Daniels et al. [15] addressed cost as arbitrary cost of moving from 
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one location to another having only one mathematical term in the objective function. 

Indeed, this cost element is too general as Daniels et al. [15] focused in their paper on 

assignment of inventory to an order. Yet, in my research the objective function is broken 

down into different unique sub cost elements, each associated with either a travel time 

element or pallet handling time element. Moreover, cost is the driving factor in my 

research where in every move that a forklift can make is modeled as a unique separate 

cost element in the objective function. 

Another TSP paper, in 2010, Theys et al. [16] developed a traveling salesman 

problem heuristic for routing order pickers in warehouses using distance as their 

evaluation criteria. However, in our research we preferred not to use the TSP approach as 

we look at the time not the distance traveled by order picker to be able to include the 

different time elements associated with handling and stacking pallets. 

 Simultaneously, in the literature, the order picking problem was addressed by 

linking it to storage and routing strategies to be implemented in a warehouse. As an 

illustration, in 1993 Hall [17] evaluated and compared strategies for routing a manual 

picker through a simple warehouse. Hall [17] derived rules of thumb for selection of 

order picking strategies and optimization of warehouse shape. Our research assumes 

warehouse shape or layout is given and focuses on generating a new strategy for each 

picking problem according to which pallets are stackable on each other.  

Later in 1998, Caron et al. [18] calculated expected travel distance for different 

routing strategies namely traversal and return policies in low-level picker to part systems. 

Caron et al. [18] considered distance, meanwhile, in our research we considered time 
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which is more comprehensive than distance in addressing not only the travel moves of the 

forklift but also the pallet handling moves. 

 Recently, some papers address the order picking problem in relation to the order 

batching problem.  For example, in 2008 Tsai et al. [19] developed an algorithm that 

searches for the most effective travel path for a batch by minimizing the travel distance. 

However Tsai et al. [19] used a distance approach, while in this research the more 

comprehensive time approach was used. 

 Probabilistic picking model is another solution approach in literature. In 2005, Le 

Duc and De Koster [20] developed a probabilistic model that estimates the average travel 

distance of a picking tour; however their model focused on finding the optimal zoning 

scheme with respect to minimizing the average travel distance. In 2006, Hwang and Cho 

[21] developed a performance evaluation model for the order picking warehouse system 

in supply center (SC) by reducing the travel distance of transporters. Hwang and Cho 

[21] used probabilistic picking while we use deterministic picking in our research. We 

used deterministic picking as our concern is to reduce the time spent by the forklift driver 

while picking all items in an order that is requested by a customer with no probability 

involved with picking each item.  

 Some researchers integrated the warehouse layout problem with the picking 

problem. For instance, in 1992, Gray et al. [22] modeled in general terms the composite 

design and operating problems for a typical order-consolidation warehouse. Gray et al. 

[22] addressed warehouse layout, equipment and technology selection, item location, 

zoning, picker routing, pick list generation and order batching. In 2006, Roodbergen and 
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Vis [23] evaluated the relationship between the layout of the order picking area and the 

average length of a picking route for areas consisting of one block. In our research we 

focus on the order picking problem in a given warehouse layout that has cross aisles. 

These cross aisles allow forklift driver to reach pallets located in different aisles in 

shorter time.   

 Finally, researchers used travel distance based algorithm for solving the order 

picking problem. To illustrate, in 1990, Rana [24] developed a travel distance based 

algorithm for order picking in narrow-aisle warehouses, where one forklift can travel in 

one direction in the aisle. Another example, in 2007, Manzini et al [25] introduced an 

analytical model and a multi-parametric dynamic model to quickly estimate the travelled 

distance during a picking cycle. Nevertheless, in our research we look at the time traveled 

by order picker not only the distance. 

 

2.2.2 Time-based models for order picking 

 

 The literature we discussed in the previous section on distance models in order 

picking was more coherent, organized and developed as researcher’s efforts were made 

building on each other and extending the work of each other. However the literature in 

this section on time models and the next sections is more fragmented as efforts were 

made in different areas that sometimes cannot be linked together.  

 Before we proceed, let’s define two keywords in literature. First, single command; 

it stands for performing either storage or picking in one trip by the forklift driver in the 

warehouse. Second, dual command; it stands for combining storage and picking in one 

trip by the forklift driver. In dual command, workers travel loaded from the pickup and 
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deposit (P&D) point first to a location to store a pallet, then to a second location to pick a 

pallet and then return to the P&D point. We name the P&D point in our research depot.  

 There are several time-based approaches to the picking problem. For instance, in 

1993, Hwang and Song [26] developed the expected travel time models based on the 

probabilistic analysis for single and dual commands assuming randomized storage 

assignment policy. In our research, we don’t use probability when dealing with single and 

dual commands as we let the model choose the strategy (single or dual) that would lead to 

shorter picking time. Another paper, in 1998, De Koster and Van der Poort [12] used 

graph theory as time based solution approach and extended the work in [10] and [11].  De 

Koster and Van der Poort [12] addressed warehouses with a central depot and 

decentralized depositing.  Decentralized depositing allows order picking trucks (forklifts) 

to pick up and deposit pallets at the head of every aisle without returning to the depot. 

Furthermore, in 2001, Roodbergen and De Koster [14] used graph theory as time based 

solution approach and extended the work by De Koster and Van der Poort [12]. 

Roodbergen and De Koster [14] included parallel aisle warehouses where order pickers 

can change aisles at the end of every aisle and also at a cross aisle halfway along the 

aisles. Moreover, in another paper, Roodbergen and De Koster [13] used graph theory as 

solution approach and constructed a dynamic programming algorithm for calculating 

order picking tours of minimal length in warehouses with up to three cross aisles. These 

five papers [10], [11], [12], [13], [14] utilized a graph theory approach because the 

objective is strictly minimizing either distance or time. In our research we look at the 

time traveled by order picker not only the distance to include the different time elements 
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associated with handling and stacking pallets, that is the gap that is addressed in this 

research.  

Some researchers used queuing theory to solve order picking problems. To 

illustrate, in 1999, Chew and Tang [27] modeled order picking systems as queuing 

systems and validated the results with simulation. Later, in 2007, Le-Duc and De Koster 

[28] extended the work by Chew and Tang [27] addressing the order batching problem in 

a two-block warehouse when less than full pallets are picked.  Moreover, in 2009, Yu and 

De Koster [29] constructed an approximation model to analyze the impact of order 

batching and picking area zoning on the mean throughput time in an a pick-and-pass 

order picking system using queuing theory. Finally, in 2010, Parikh and Meller [30] 

developed analytical expressions for expected travel time that was used in a math 

program to optimize warehouse design parameters. Parikh and Meller [30] determined 

the optimal storage system configuration such as the height of the storage aisles. All of 

the research efforts above that developed time models did not look into handling 

stackable pallets by forklift during picking. This research is unique as it addresses the 

conventional order picking problem, however it introduces the new feature of the forklift 

carrying two stackable pallets at the same time with all the time elements associated with 

it. Stackable pallets add the complexity of time elements related to handling those two 

pallets. For instance, if a forklift driver is carrying one pallet and desires to pick a second 

pallet, time elements involved are unloading one pallet on the ground, picking the second 

pallet from the rack, and double stacking them together. Moreover, using stackable 

pallets cuts the total picking time by half as it cuts the number of trips to pick a certain 
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number of pallets by half. This is achieved if you can double stack two pallets together 

and save the second trip of picking the second pallet singly. Double stacking pallets while 

picking saves half the material handling time, which is the gap in literature that my work 

fills. 

 

2.3. Pallet Storage 

 

 Storage is the process of assigning items to their storage locations in a warehouse. 

Most of the storage models address automated warehousing that is not the topic of our 

research as we focus here on manual warehousing. On the other hand, in manual 

warehousing, for instance Queirolo et al. [31] developed a simulation model that 

determines where to assign storage areas in a warehouse. Queirolo et al. [31] developed a 

model that reduces the global storage cost through minimizing the total travel time. 

However, Queirolo et al. [31] addressed a different problem that is the warehouse layout 

optimization problem while in our research we address the optimization of the storage 

sequence in a warehouse using stackable pallets.  

 

2.4 Combined Storage and Picking 

Most of the models developed for combining storage and picking addressed 

automated warehousing such as automated storage and retrieval systems (AS/RS). AS/RS 

is not the topic of our research as we focus here on manual warehousing. However there 

is some terminology that we can learn from AS/RS that we use in this research. To 

illustrate, in 1977, Graves, et al. [32] used storage-retrieval interleaving in automatic 
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warehousing systems. Interleaving is the sequencing of storage and retrieval requests. We 

apply interleaving in our research when we combine storage and picking in one trip in the 

dual command problem. Another example, in 1993, Eynan and Rosenblatt [33] stated that 

“in order to improve their service level many automated storage/retrieval systems 

(AS/RS) have adopted a dual command policy. In a dual command policy both storage 

and retrieval of pallets are done within one roundtrip of the crane.” This supports the dual 

command approach that we used in this research however we used it for manual 

warehouses. Moreover, in 1997, Lee and Schaefer [34] sequenced storage and retrieval 

requests using unit-load AS/RS applications. In our research we also consider unit load 

that is fully loaded pallets however for we use it in manual warehouses. Besides, Lee and 

Schaefer [34] stated that “We find that the sequencing methods can significantly reduce 

travel time by a storage and retrieval machine, thereby, increasing throughput.” This 

statement supports the sequencing approach we use in this research when we combined 

storage and picking.  

Finally, in 2009 Pohl et al. [35] developed an expression for expected travel 

distance for dual command operations. Pohl et al. [35] used the expression for expected 

travel distance to analyze three common warehouse designs. Pohl et al. [35] concluded 

that warehouse design layout C in their paper is the best layout. Layout C had racks 

parallel to the shipping dock with aisles perpendicular to the shipping dock. Pohl et al. 

[35] conclusion confirmed our choice of this warehouse layout C for our problem, 

besides it was the same layout that I have seen at the Welcome road external warehouse 

at Robert Bosch Anderson plant in South Carolina. 
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2.5 Other papers 

 Our research can be also viewed as routing problem where we route the forklift in 

the warehouse while picking and storing to minimize total time of both handling pallets 

and traveling. Therefore, straddle carrier routing problem in a container terminal is 

similar to our problem however it minimizes the total travel time of the straddle carrier 

without looking at the handling time of the containers. A sample paper from this area is 

the one by K.Y. Kim and K.H. Kim [36] in 1999.  K.Y. Kim and K.H. Kim [36] 

developed a routing algorithm for a single straddle carrier to load export containers onto a 

containership.  

 Here are some papers that are not referenced in the dissertation, but are helpful: 

[37], [38], [39], [40], [41], [42], [43], [44], [45], [46], [47], [48], [49], [50], [51], [52], 

[53], [54], [55], and [56]. 

 

2.6 Conclusion 

In conclusion, previous research has established the need for applying rigorous 

approaches to the picking and storage problems. Distance based models have been the 

focus of researchers attention for over 27 years with graph theory as a commonly used 

foundation. Time based approaches are much more recent and have focused on total time 

traveled in the warehouse during picking. Our literature review concluded that our 

research is different from all of the aforementioned because it considers time elements 

involved with double stacking full pallets in a manual warehouse, that is the gap in 

literature that my work fills. 
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CHAPTER THREE 

ORDER PICKING AND STORAGE WITH STACKABLE PALLETS 

 

Abstract 

 

 Order picking and storage are the main activities in a warehouse.  In recent years, 

pallets have been designed that are stackable on each other which create an interesting 

research problem that is explored here.  While the objective remains to sequence picking 

or storage in the most efficient way, the approach required for including this ability to 

stack pallets is different.  A stackability matrix is proposed that identifies the pallets that 

can be stacked and allows this feature to be included in the model.  Also, a potentially 

significant amount of time is consumed when pallets are stacked so a time-based 

mathematical programming approach is needed.  Three models are presented here that 

add these features and numerical examples are included to illustrate how the model can 

be used in more practical situations. 

 

Keywords 

Order picking, order storage, path optimization, pallet picking, travel time, pallet 

stackability 

 

3.1 Introduction 

 This research centers on the new feature of stacking pallets that is becoming more 

common in traditional warehouses that store and retrieve raw materials, semi-finished 

products and/or finished products on demand.  Activities in such a warehouse are well 
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known and can be divided into 5 categories: receiving, order storage (also known as the 

put away process), storage, order picking, and packing and shipping.  The focus of this 

work is on order picking and order storage in manual warehouses that only handle full 

pallets with the unique feature that some of the pallets can be stacked on each other while 

being transported by the material handling device.  The goal is to determine the sequence 

in which the pallets should be picked or stored and the route for the most efficient 

operations given that pallets can be stacked. 

 Determining pick paths is certainly not a new problem; however, we submit that 

an important consequence of including stacking is that the objective function must 

change from minimizing distance to minimizing time.  When pallets are not stacked, it 

seems reasonable that these two objectives would produce identical routes; however, 

when stacking is allowed this is not necessarily true.  For simplicity, this research will 

refer to the material handling device used in the warehouse as a forklift.   To store two 

pallets in the same trip, a forklift must first double stack the two pallets, move them to the 

first pallet storage location, put them down on the floor, pick up the pallet to be placed in 

the rack, store it, pick up the second pallet and then proceed to store it in the correct 

location.  As such, it is proposed that the correct objective function for the picking and 

storage problem with stackable pallets is minimum time and the approach to achieve this 

is to use mathematical programming. The warehouse layout used in this paper is the 

warehouse with cross aisles. 
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3.2 Literature Review  

 The literature in this general research area is quite extensive so only a few key 

papers that are most directly related to this research are referenced here. We acknowledge 

previous work in three important areas: Order picking, distance based approaches and 

time based approaches. 

 

3.2.1 Order picking 

 Steudel [9] developed an algorithm which solved the common problem of storage 

rectangular items on a rectangular pallet using the option of stacking items on their end 

and/or side surface to maximize the number of items per layer on the pallet deck board. 

Steudel considered case picking where cases are stacked on top of each other, while in 

our research pallet picking is considered allowing full pallets to be stacked on top of each 

other, while in Steudel research focus was on the loading pattern of smaller items (cases) 

on a single pallet. 

 

3.2.2 Distance-based approaches 

 Ratliff and Rosenthal [10] is one of the early papers that address the order picking 

problem in a rectangular warehouse that contains crossovers only at the ends of aisles. De 

Koster and Van der Poort [10] extend the Ratliff and Rosenthal algorithm to include 

warehouses with a central depot and also allowed order picking trucks to pick up and 

deposit pallets at the head of every aisle without returning to the depot.  Roodbergen and 

De Koster [13] extend this order picking situation to include parallel aisle warehouses 
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with two or more cross aisles. De Koster and Van der Poort [10] address the problem of 

finding the shortest order picking routes in a warehouse with either a central depot or 

with decentralized depositing (i.e., order picking trucks can pick up and deposit pallets at 

the head of every aisle without returning to the depot).  An interesting aspect of this paper 

is that the authors exploit an observation that modern warehouses are becoming paperless 

by using mobile devices to convey pick lists that contain picking locations to order 

pickers instead of collecting them from a central printer.  These three papers utilize a 

graph theoretic approach because the objective is strictly minimizing distance.  Pohl et al. 

[35] developed an expression for expected travel distance for dual command operations. 

In our research we modeled the actual travel distance for dual command operations not 

just the expected distance. Moreover in our research, the distance model is just a first step 

towards developing the time model which is the real contribution of this paper. 

 

3.2.3 Time-based approaches 

 There are several time-based approaches to the picking problem.  Le-Duc and De 

Koster [28] modeled order picking systems as queuing systems and validated the results 

with simulation for an order batching process in a two-block warehouse when less than 

full pallets are picked.  Chew and Tang [27] also modeled order picking systems as 

queuing systems and validated the results with simulation to analyze order batching and 

storage allocation strategies in an order picking system. Yu and De Koster [29] construct 

an approximation model to analyze the impact of order batching and picking area zoning 

on the mean throughput time in a pick-and-pass order picking system using queuing 
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theory.  Parikh and Meller [30] developed analytical expressions for expected travel time, 

and then they use these expressions in a math program to optimize warehouse design 

parameters. Their research determines the optimal storage system configuration such as 

the height of the storage aisles.  

 In conclusion, previous research has established the need for applying rigorous 

approaches to the picking and storage problems.  Distance based models have been the 

focus of researchers attention for over 25 years with graph theory as a commonly used 

foundation.  Time based approaches are much more recent and have focused on total time 

traveled in the warehouse during picking. Our literature review only identified one paper 

that addressed stackability within a single pallet for cases which are less than a pallet 

size.  These concluded that this research is different from all of the aforementioned 

because it considers stackability for full pallets and also considers time elements involved 

with stackability. 

 

3.3 The Models  

 The basic research problem is to determine the minimum time pick paths for a 

manual warehouse when pallets are allowed to be stacked on each other.  Figure 3.1 

illustrates an example of this order picking process. A forklift starts from point 1 at the 

depot, picks the pallet at point 3 (passing by point 2), and then point 4 to double stack the 

pallet that was at 3 on the one at 4.  The forklift then returns to the depot at point 5 with 

the two double stacked pallets. A warehouse layout with cross aisles allows the forklift 

driver to reach pallets in a shorter distance compared to a warehouse with no cross aisles. 
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Figure 3.1: Warehouse layout 

 

 Modeling this situation requires a time-based mathematical programming 

approach and the ability to include stackability in the model.  The latter is achieved by 

creation of a stackability matrix that identifies the pallets that can be stacked on each 

other.  If there are n pallets to be picked, the stackability matrix is simply an n+2 x n+2 

matrix where element (i, j) equals 1 if pallet i is stackable on pallet j and 0 otherwise. The 

two extra locations are for dummy and depot which have 0 elements with all other 

pallets.   Note that this matrix is not necessarily symmetric across the diagonal since a 

pallet of glasses could be stacked on a pallet containing sheets of carbon steel but not vice 

versa. A new measure we will call stackabilty density is introduced, which is the % of 

possible stacking options available. For example, in an 8 pallet example, the stackability 

matrix can allow all pallets to be stackable on each other if we had 56 ones in the matrix 

which is equivalent to stackability density of 100%. This means for example, if we had 

only 8 ones in the matrix, the stackability density is equal to 14.29 % which is 8 divided 
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by 56; the maximum number of one’s allowing all pallets to be stackable on each other 

except on itself.   

 

3.3.1 Including stackabilty 

 Hassan and Ferrell [57] included stackabilty by developing a Boolean 

programming model to minimize total travel distance that allowed multiple picks in any 

or all routes. The model utilizes the following assumptions: 

 One forklift is performing the order picking function and each route begins and ends 

at the depot.  

 There is a one-to-one mapping between locations and pallets. 

 The time spent during picking and stacking is zero, as an initial step where time will 

be considered in the time based picking model in the next section. 

 Whether pallet i is stackable on pallet j or vice versa, the stacking can be 

accomplished at either location. 

 A maximum of two pallets may be stacked. 

To construct this model, let: 

 Sij = 1 if pallet i is stackable on j; 0 otherwise (input parameter) 

 cij = the distance between pallet i and pallet j (input parameter) 

 Xij = 1 if the path includes moving from node i to node j; 0 otherwise (decision 

variable) 
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 i,j = indices that identify the pallet/location; depot is 1, pallets/locations to be picked 

are 2 through n+1; dummy node is n+2 and required for model completeness (Note: 

ci,n+2=0 ∀ i) 

A dummy node is required because the general model must allow for n single picks; 

however, when stacking is found in the optimal solution the number of routes is less than 

n so the model must contain a zero time option to accommodate these “extra” routes. 

The model from [57] that includes stackability is:  

Minimize *ij ij

ij
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ijX {0, 1}, i = 2, 3… n+2, j = 2, 3… n+2     (10) 
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The constraints in this model perform the following functions: 

1) Required the first segment of a route to be from the depot (location 1) to a pallet 

(locations 2 through n+1) 

2) Ensures that only pallets in which Sij equals 1 can be stacked. If Sij is equal to 0, Xij is 

forced to be zero to prevent stacking pallets i and j 

3) Requires the second segment of  a route is either to a second pallet so that stacking 

can occur or back to depot 

4) Forces return to depot after visiting the dummy node (n+2)  

5) Requires that each route returns to the depot after completing a double stack or a 

single pick 

6) Ensures that each pallet is picked once 

7) Preserves feasibility by forcing each route to leave a node only once 

8) Prevents stacking pallets on themselves 

9) Eliminates cycles by requiring that the trip between any two pallets is made only once 

 

3.3.1.1 Numerical Examples 

 All of the numerical examples in this chapter were solved to optimality using 

ILOG OPL Development Studio version 5.5 and a Dell personal computer with an Intel 

Core 2 Duo processor and 2.00 GB of RAM. 

The model was generated by placing the middle pallets near the depot and the other 

pallets incrementally further by 10 distance units each. For example, in 50 pallets 

example, pallets 25 and 26 are 50 distance units away from depot, while pallets 24 and 27 
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are 60 distance units further from depot and similarly pallets 10 and 41 are 200 distance 

units away from depot. See Appendix for distance and stackability appendices.  

 

50 pallets: The model was used to solve a problem with 50 pallets; hence, the 

stackability matrix is 52x52 although stacking can only occur for 50 locations associated 

with real pallets.  It is assumed that 50 stacking options (chosen randomly) are available 

so the matrix contains 50 ones and remains entries are zero. The equivalent stackability 

density for this matrix is 2.04% which is 50 divided by 2450; the maximum number of 

one’s allowing all pallets to be stackable on each other except on itself.  Distance matrix 

was generated based on having 2 middle pallets 25 and 26 closest to depot then all pallets 

less than 25 and more than 26 are located at increments of 10 from each other. Please see 

appendix for distance matrix. 

 The optimal solution for this example is presented below.  D represents the depot 

and Pj represents pallet/location j. 

D-P2-P1-D-P3-P4-D-P5-P6-D-P7-P8-D-P9-P10-D-P11-P12-D-P13-P14-D-P15-P16-D-

P17-P18-D-P19-P20-D-P21-P22-D-P23-P24-D-P25-P26-D-P27-P28-D-P29-P30-D-P31-

P32-D-P33-P34-D-P35-P36-D-P37-P38-D-P39-P40-D- P41-P42-D-P43-P44-D-P45-P46-

D-P47-P48-D-P50-P49-D-Dummy-D.   

 The total distance traveled using this solution is 9750 ft.  If only single picks were 

used, the total distance is computed to be 17000 ft which represent a significant reduction 

of 7250 ft as expected. 
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 The number of possible pallets allowed to be stacked was set equal to number of 

pallets.  That is, 100 pallet problem has a stackablity matrix that is 102x102 or 10,000 

possible opportunities for stacking.  In the numerical example, 100 of these 10,000 were 

selected.  Equivalent stackability density for this matrix is 1.01% which is 100 divided by 

9,900. The model was generated by placing middle pallets near the depot and other 

pallets incrementally further by 10 distance units each. For example, in 100 pallets 

example, pallets 51 and 52 are 50 distance units away from depot, while pallets 50 and 53 

are 60 distance units further from depot and similarly pallets 6 and 97 are 500 distance 

units away from depot. For the 250 pallets example, pallets 126 and 127 are 50 distance 

units away from depot, while pallets 125 and 128 are 60 distance units further from depot 

and similarly pallets 31 and 222 are 1000 distance units away from depot. Also, for 250 

pallets example, equivalent stackability density for this matrix is 0.4% which is 250 

divided by 62,250. 

 

50 more examples: The model has been used to solve problems containing 25, 50, 75, 

100, 125, 150, 175, 200, 225 and 250 pallets, each was solved using five different 

variations of stackability options; total of 50 examples. Results are shown below in 

Figure 3.2. Each data point below is average of 5 replications, each is run with a different 

stackability matrix, where ones are in the matrix are scattered differently but sum of ones 

in all 5 different stackability matrices are equal to number of pallets (problem size), 

where ones are assigned randomly. Distance matrices were similarly generated based on 
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having 2 middle pallets closest to depot then all other pallets were located at increments 

of 10 from each other. 

 The computational effort required to find optimal solution increases with problem 

size as shown in Figure 3.2.  This is expected due to the combinatorial nature of 

underlying problem.  

 

 

Figure 3.2: Time vs. size in picking distance 

 

3.3.2 Time-based picking model 

 The previous model was extended to a time-based format that allows inclusion of 

other tasks associated with stacking pallets that consume time.  As before, each pallet is 

assumed to have a unique location with the depot represented by location 1, the pallets to 
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be picked in locations 2 through n+1, and the dummy location as n+ 2.  In addition to Sij 

and cij, this model required the following input parameters: 

 tp = time to pick a pallet from rack in minutes 

 ts = time to stack one pallet on another in minutes 

 s = average speed of the forklift traveling in a warehouse in feet per minute  

 dij = distance from pallet i to pallet j in feet 

The decision variables are: 

 Xij = 1 if the path includes moving from node i to node j; 0 otherwise 

 Yi = 1 if pallet i is chosen to be picked first; 0 otherwise 

 Zij = 1 if pallet i is chosen to be stacked on top of another pallet j; 0 otherwise  

 RDi = 1 if you return from pallet i to Depot; 0 otherwise 

 

 The model that minimizes the total time consumed by the order picker in route 

and manipulating the pallets is presented below. 
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 Constraints (1) through (9) perform the identical functions as the first 9 constraints in 

the previous model. 

 Constraint (10) ensures variable Y is equal to variable X when the path is from depot 

to pallet i. Y is needed to identify the time element of picking the first pallet in the 

objective function. 

 Constraint (11) ensures variable Z is equal to variable X when the path goes from one 

pallet to pick a second pallet. Z is needed to identify all the time elements in the 

objective function related to picking the second pallet to be stacked on the first pallet. 

 Constraint (12) ensures variable RD is equal to variable X when the path returns from 

pallet i to depot. RD is needed to identify the time element in the objective function 

related to the return trip from picked pallet to the depot. 
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3.3.2.1 Numerical examples 

 The numerical examples here parallel those previously discussed as illustrations 

of how this model can be used and the type of information it yields.  The values given the 

input parameters were found in [58] and are consistent with our experience: 1) The 

forklift travel rate (speed) in a warehouse is 150 feet per minute (s =150), and 2) The time 

required to pick a pallet from the rack is 0.3 minute (tp =0.3).  We further assume the time 

required to stack one pallet on another is 0.3 minute (ts=0.3).   

 The model was generated by placing the middle pallets near the depot and the 

other pallets incrementally further by 10 distance units each. For example, in 70 pallets 

example, pallets 36 and 37 are 50 distance units away from depot, while pallets 35 and 38 

are 60 distance units further from depot and similarly pallets 11 and 62 are 300 distance 

units away from depot. See Appendix for distance and stackability appendices.  

70 pallets: The model will be used to solve a seventy pallet problem. This problem has as 

stackabilty matrix that is 72x72 and it is assumed there are 70 possible stacking options 

assigned randomly. The equivalent stackability density for this matrix is 1.45% which is 

70 divided by 4830; the maximum number of one’s allowing all pallets to be stackable on 

each other except on itself.  

Distance matrix was similarly generated based on having 2 middle pallets 35 and 36 

closest to depot then all other pallets were located at increments of 10 from each other. 

The optimal solution is: 

D-P1-P2-D-P3-P4-D-P5-P6-D-P7-P8-D-P9-P10-D-P11-P12-D-P13-P14-D-P15-P16-D-

P17-P18-D-P19-P20-D-P21-P22-D-P23-P24-D-P25-P26-D-P27-P28-D-P29-P30-D-P31-
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P32-D-P33-P34-D-P35-P36-D-P37-P38-D-P39-P40-D-P41-P42-D-P43-P44-D-P45-P46-

D-P47-P48-D-P49-P50-D-P51-P52-D-P53-P54-D-P55-P56-D-P57-P58-D-P59-P60-D-

P61-P62-D-P63-P64-D-P65-P66-D-P67-P68-D-P69-P70-D-Dummy-D. 

 This solution requires a total travel and processing time of 145.83 minutes. For 

comparison, the single pick alternative requires total travel time of 226.33 minutes; 

hence, stacking reduces the required time by 80.5 minutes which would likely be 

considered significant in practice. 

50 more examples: The model has been used to solve problems containing 25, 50, 75, 

100, 125, 150, 175, 200, 225 and 250 pallets, each was solved 5 times using five different 

variations of stackability options; total of 50 examples. Results are shown below in 

Figure 3.3. Each data point below is average of 5 replications, each is run with a different 

stackability matrix, where ones are in the matrix are scattered differently in a random 

manner but sum of ones in all 5 different stackability matrices are equal to number of 

pallets (problem size). Distance matrices were similarly generated based on having 2 

middle pallets closest to depot then all other pallets were located at increments of 10 from 

each other. The computational effort required to find optimal solution increases with 

problem size as shown in Figure 3.3.  This is expected due to the combinatorial nature of 

underlying problem. Graph grows exponentially. 
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Figure 3.3: Time vs. size in picking time 

 

3.3.3 Time-based storage model 

 A closely related problem to the previous one is when there are n pallets at the 

depot that need to be placed in the warehouse.  From a modeling viewpoint, the storage 

and picking models are the same except for a few modifications.  In particular, all that is 

required is to replace tp and ts by: 

 tl s  = time to store one pallet from a double stacked pallets setup on a rack in minutes  

 tl  = time to store a single pallet on a rack in minutes  

The decision variables have slightly different interpretations: 

 Xij = 1 if the path includes moving from node i to node j; 0 otherwise 

 Yi = 1 if pallet i is chosen to be stored; 0 otherwise 
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 Zij = 1 if pallet i is chosen to be stacked on top of another pallet; 0 otherwise 

 RDi = 1 if you return from pallet i to Depot; 0 otherwise 

With these modifications, the time-based storage model objective function is: 

Minimize  

1 1 1 1 1 1 1 1 1

1 l l s l 1

2 2 2 2 2 2 2 2 2

* / t * t * * / t  * * /
n n n n n n n n n

k k k kl kl kl kl k k

k k k l k l k l k

c Y s Y Z c Z s Z c RD s  

The constraint set is identical to the time-based model. This model was also presented in 

a conference proceeding [59]. 

 

3.3.3.1 Numerical Example for time-based storage model 

 These numerical examples use the following input parameters:  

s =150, tl =0.3 and tl s =0.5. 

100 pallets: The model will be used to solve a problem with 100 pallets which has a 

102x102 stackability matrix that contains 100 ones assigned randomly. The equivalent 

stackability density for this matrix is 1.01% which is 100 divided by 9900; the maximum 

number of one’s allowing all pallets to be stackable on each other except on itself. 

Distance matrices were similarly generated based on having 2 middle pallets 50 and 51 

closest to depot then all other pallets were located at increments of 10 from each other. 

The optimal storage path is: 

D-P1-P2-D-P3-P4-D-P5-P6-D-P7-P8-D-P9-P10-D-P11-P12-D-P13-P14-D-P15-P16-D-

P17-P18-D-P19-P20-D-P21-P22-D-P23-P24-D-P25-P26-D-P27-P28-D-P29-P30-D-P31-

P32-D-P33-P34-D-P35-P36-D-P37-P38-D-P39-P40-D-P41-P42-D-P43-P44-D-P45-P46-

D-P47-P48-D-P49-D-P50-D-P51-D-P52-D-P53-P54-P55-P56-D-P57-P58-D-P59-P60-
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D-P61-P62-D-P63-P64-D-P65-P66-D-P67-P68-D-P69-P70-D-P71-P72-D-P73-P74-D-

P75-P76-D-P77-P78-D-P79-P80-D-P81-P82-D-P83-P84-D-P85-P86-D-P87-P88-D-P89-

P90-D-P91-P92-D-P93-P94-D-P95-P96-D-P97-P98-D-P99-P100-D-Dummy-D. 

 The section of the route that is in bold is of interest because these four pallets (49, 

50, 51 and 52) were stored singly even though some could be stacked.  The reason is that 

they were located sufficiently close to the Depot that the overall time is shorter to store 

them singly than stacking and incurring the additional time with the related tasks.  The 

total time associated with this solution is 268.13 minutes that is considerably less than the 

423.33 minutes that would be required to store each singly.  

 

50 more examples: The model has been used to solve problems containing 25, 50, 75, 

100, 125, 150, 175, 200, 225 and 250 pallets, each was solved 5 times using five different 

variations of stackability options; total of 50 examples. Results are shown below in 

Figure 3.4. Each data point below is average of 5 replications, each is run with a different 

stackability matrix, where ones are in the matrix are scattered differently in a random 

manner but sum of ones in all 5 different stackability matrices are equal to number of 

pallets (problem size). Distance matrices were similarly generated based on having 2 

middle pallets closest to depot then all other pallets were located at increments of 10 from 

each other. 

 The computational effort required to find optimal solution increases with problem 

size as shown in Figure 3.4. This is expected due to the combinatorial nature of 

underlying problem. Graph grows exponentially. 
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Figure 3.4: Time vs. size in storage time 

 

3.4 Computational effort 

 The nonpolynomial increase in the required computing time to find an optimal 

solution as the number of pallets increases has been illustrated for each model.  The 

underlying combinatorial nature of these problems certainly explains this result.  Another 

aspect of computing time that is explored is the impact on time to find the optimal 

solution as the number of double stacking opportunities in the stackability matrix 

increases; that is, how many ones were included relative to the number of zeros.  This 

idea is common in many areas including the flow dominance concept, which was 

originally introduced by Vollmann and Buffa [60]. 
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 A two hundred and fifty pallets example is used to investigate the impact of 

increasing stackability density on computation time shown in Figure 3.5. Thirty Five runs 

were made; five replications were run per each of the seven stackability densities 0.1, 

0.5,1,5,10,15, and 20. Distance matrix was similarly generated based on having 2 middle 

pallets 125 and 126 closest to depot then all other pallets were located at increments of 10 

from each other. 

 

 

Figure 3.5: Time vs. stack -picking time 
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Figure 3.6: Time vs. stack -storage time 

 

Each of the five replications had the same stackability density but ones were scattered 

differently in the matrix. Figures 3.5, 3.6 and 3.7 show a trend; as the stackability density 

increases the solution time increases.  

 

 

Figure 3.7: Time vs. stack -picking distance 
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This matches intuition as increasing stackability density, increases number of possible 

paths which increases the number of branches that have to be addressed in the OPL 

algorithm which increases the computational time. 

 

Figure 3.8: Stackability vs. total time 

 

Figure 3.8 shows as the stackability density increases the total pick time decreases. 

 

Figure 3.9: Stackability vs. handling percent 
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Figure 3.9 shows as the stackability density increases the Percentage of total time spent 

handling increases, which is logical as more pallets are double stacked i.e. more handling. 

 

 

Figure 3.10: Stackability vs. travel percent 

 

Figure 3.10 shows as the stackability density increases the percentage of total time spent 

traveling decreases, which is logical as more pallets are double stacked leading to less 

traveling as two single pick trips are combined into one trip. 

 

3.5 Conclusions and Future Research 

 In this research three mathematical models were developed. One model analyzed 

the order picking operation in terms of travel distance. A second model analyzed the 

order picking operation in terms of time, adding the time elements of picking and 

stacking a pallet and a third model analyzed the order storage operation in terms of time. 

The concept of pallet stackabilty was applied in all three models. We conclude that these 

three mathematical models are working validated models, as they were coded in OPL 

software and solved for 25, 50, 75, 100, 125, 150, 175, 200, 225 and 250 pallet size 
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problems successfully, each was solved 5 times using five different variations of 

stackability options; total of 150 examples for three models.  Problems with a small 

number of pallets had the solution confirmed by complete enumeration.  

 In the future research combined order picking and storage model will be 

developed where forklift driver performs order picking and order storage of pallets 

simultaneously in the same trip in the model, called dual command in literature.  
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CHAPTER FOUR 

COMBINED ORDER PICKING AND STORAGE WITH STACKABLE PALLETS 

 

Abstract 

 In this chapter we are reducing the time spent in performing the order picking and 

storage activities in a warehouse. In real life in a warehouse, a forklift driver would pick 

and store full pallets alternatively in the same trip. In this paper we model the dual 

command process which is the combination of both picking and storage activities in the 

same trip. This process occurs in a manual warehouse where full pallets can be double 

stacked. The mathematical model allows the forklift driver to either start with a store or a 

pick move followed by more store or pick moves according to the shortest time route that 

the model will recommend. The model finds the optimal path that leads to the minimum 

travel time. Using this model with pallet stackability, daily material handling costs can be 

cut down almost in half compared to single pallet operations. These cost savings would 

improve the economy of the company that owns the warehouse.  

Keywords 

Dual command, order-picking, storage, path optimization, full pallet, time model 
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4.1 Introduction 

 In the model, a typical trip by a forklift driver would be leaving depot with one or 

two or no storage pallets, then first move would be either storing one pallet or picking a 

pallet then second move would be either storing a second pallet or picking another pallet, 

then remaining moves would alternate between storing and picking until at the maximum 

two pallets are stored and another two pallets are picked then finally last move is to return 

to the depot. The forklift can carry a maximum of two pallets at anytime, which can be 

two storage pallets, or one storage pallet and one picking pallet, or two picking pallets. 

The minimum travel time outcome of the model will help the warehouse management 

team reduce their expenses and improve their economic situation. 

  

4.2 Literature Review 

 In literature, dual command is the keyword used to stand for combining storage 

and picking in one trip by the forklift driver. In dual command, workers travel loaded 

from the pickup and deposit (P&D) point first to a location to store a pallet, then to a 

second location from which they pick a pallet and return to the P&D point. We name the 

P&D point in our research depot. On the other hand, single command stands for 

performing either storage or picking in one trip by the forklift driver in the warehouse. 

 In 1983, Ratliff and Rosenthal [10] used graph theory as a solution approach to 

address the order picking problem, which is the problem of minimizing distance or time 

traveled by the material handling vehicle while picking ordered items stored in a 

warehouse then transporting them to the shipping area. Many papers came after that on 
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order picking. For example, J.P. van den Berg and W.H.M. Zijm [8] introduced some of 

the order picking models and problem classifications. Also, in 1993, Hwang and Song 

[26] developed the expected travel time models based on the probabilistic analysis for 

single and dual commands assuming randomized storage assignment policy. In our 

research, we don’t use probability when dealing with single and dual commands as we let 

the model choose whichever would lead to shorter picking time. Sometimes a forklift 

would take shorter time to single pick stackable pallets one at a time that are too close to 

the depot instead of double stacking them. While in another situation a forklift would 

take shorter time to pick double stacked pallets together if the pallets are far from the 

depot.    

 On the other hand, storage is the process of assigning items to their storage 

locations in a warehouse. Most of the models developed for storage are for automated 

warehousing which is not the topic of our research as we focus here on manual 

warehousing. However, there was a paper by Queirolo et al. [31] who developed a 

simulation model to solve the warehouse layout optimization problem, which determines 

where to assign storage areas in a warehouse to different classes of items to reduce travel 

time. The model they developed reduces the global storage cost through minimizing the 

total travel time. Queirolo et al. [31] addressed a different problem which is the 

warehouse layout optimization problem while our research addresses the storage 

optimization in a warehouse using stackable pallets.  

In 2009, Pohl et al. [35] developed an expression for expected travel distance for 

dual command operations. Pohl et al. [35] used the expression for expected travel 
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distance to analyze three common warehouse designs. Pohl et al. [35] concluded that 

warehouse design layout C in their paper is the best layout. Layout C had racks parallel to 

the shipping dock with aisles perpendicular to the shipping dock. Their conclusion 

confirmed our choice of this warehouse layout C for our problem, besides it was the same 

layout that I have seen at the Welcome road external warehouse at Robert Bosch 

Anderson plant in South Carolina. 

On the other hand, Malmborg and Al-Tassan [61] developed an integrated model 

to study the impact of item, equipment, storage configuration and operating parameters in 

less than unit load order picking systems. They combined the travel time and storage 

space models to estimate order picking cycle times from which the impact of alternative 

interleaving disciplines can be evaluated. In our research we are combining the order 

picking and storage for a full pallet size order picking problem not for small boxes or 

partially filled pallets; less than a unit load problem. Besides they are looking into order 

picking and storage space not order storage like in our research. Also, Bozer and White 

[62] developed travel time models for automated storage/retrieval (AS/R) machines; 

however in our research we focus on manual warehouse systems not automated ones.  

Two mathematical time models were developed for both the order-picking and 

storage activities separately in chapter three by Hassan Aly and Ferrell and the storage 

model was also presented by Hassan Aly in [59]. In this chapter we will combine these 

two models adding new constraints to allow the performance of both order-picking and 

order-storage activities alternatively in the same trip made by the forklift driver in the 

warehouse, dual command. 
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4.3 The Research Problem  

 This research focuses on determining the optimal picking and storage route for an 

order picker on a forklift in a manual warehouse that handles pallet loads.  An important 

assumption is that at most two pallets can be stacked on top of each other and the storage 

locations can accommodate exactly one pallet.  It is also assumed that pallets are 

available that must be stored and picked so performing both tasks in a single route is 

acceptable.  Since the time required to manipulate the pallets can have a significant 

impact on the overall route time, a time based approach rather than a distance approach is 

required to determine the minimum total time to store and pick a set of pallets.  As 

discussed earlier, a mixed integer programming model is developed that allows pallet 

storage and picking on the same route.  “Stackability” is a concept we add to the model 

that allows double stacking two pallets together. For example, if a forklift driver is 

picking two stackable pallets, he can pick one pallet from a rack, carry it to the location 

of the other pallet, put the first pallet on the ground, pick the other pallet from its rack, 

stack the two pallets together, and then pick both pallets stacked on top of each other and 

move them to the depot area.  An analogous scenario exists for storing two pallets. The 

research problem is to determine the pallets to stack and the ones to deliver unstacked as 

well as the route that achieves the shortest total time to pick and store a set of known 

orders. 
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4.4 Optimization Model 

4.4.1 Introduction 

 In this section, a combined order picking and storage time model is presented. 

This model minimizes the total time consumed by the forklift driver performing both 

storage and order picking in a warehouse. When at most two pallets can be stacked on 

each other, there are a limited number of feasible paths that can be performed and the 

model includes all feasible paths which came out to be 12 paths. These paths are reflected 

in Figure 4.1. In this figure, it is assumed that all routes start and end at the depot while a 

store pallet is S and a pick pallet is P.  The number simply identifies which pallet is 

present, for example, S1 is first pallet to be stored.   
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Leave depot with TWO pallets to be stored: 

 S1 – S2 

 S1 – S2 – P1 

 S1 – P1 – S2 

 S1 – S2 – P1 – P2 

 S1 – P1 – S2 – P2 

Leave depot with ONE pallet to be stored: 

 S1 

 S1 – P1 

 P1 – S1 

 S1 – P1 – P2 

 P1 – S1 – P2 

Leave depot with ZERO pallets to be stored: 

 P1 

 P1 – P2 

Figure 4.1 Twelve feasible paths in the model 

 

Figure 4.2 diagrams a few of the options so the reader can imagine the maneuvers 

required at each stop.    
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Figure 4.2 Diagram of few feasible paths 

 

4.4.2 Assumptions 

The model utilizes the following assumptions: 

 One forklift is performing the order picking and storage functions and each route 

begins and ends at the depot. 

 There is a one-to-one mapping between locations and pallets and each pallet has a 

unique location 

 Pallets to be stored have their locations free and pallets to be picked are in 

different locations from pallets to be stored. 

 All pallets to be stored are available at depot. 
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 Whether pallet i is stackable on pallet j or vice versa, the stacking can be 

accomplished at either location. 

 When pallets are stacked to be stored, the pallet to be stored first is on the top 

 A maximum of two pallets may be stacked. 

 

4.4.3 Mathematical model 

 In this model, indexes identify locations in the warehouse as follows: 1) the depot 

is location 1, 2) the ns pallets are to be stored in locations 2 through ns+1 and 3) the np 

pallets to be picked are in locations ns+2 through ns+np+1.  To accommodate the fact 

that we don’t know exactly how many routes are required a priori, a dummy location is at 

ns+np+2.  Now, these locations don’t represent physical locations in the warehouse, only 

a location (anywhere in the warehouse but known) that a pallet needs to be stored or 

picked.  This model required the following input parameters: 

 Co = travel and material handling times associated with pick/storage options.  

 dij = the distance between location i and location j in feets. 

 Sij = 1 if pallet i is stackable on j; 0 otherwise 

 tss  = time to store one pallet from a double stack setup on a rack in minutes 

 ts  = time to store a single pallet on a rack in minutes 

 s = average speed of the forklift traveling in a warehouse in feet per minute 

 tp = time to pick a pallet in minutes  

 tps = time to pick a pallet and stack it on another pallet in minutes  

 n = total number of pallets need to be stored and picked in a warehouse.  
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 ns = number of pallets to be stored  

 np = number of pallets to be picked  

The decision variables are all {0, 1} and define various parts of the route: 

 X 
1 

ij = route is store i then store j.  

 X 
2 

ijk = route is store i then store j then pick k.  

 X 
3 

ijk = route is store i then pick j then pick k.  

 X 
4 

ijkl = route is store i then store j then pick k then pick l.  

 X 
5 

ijkl = route is store i then pick j then store k then pick l.  

 X 
6 

i = route is store i 

 X 
7 

ij = route is store i then pick j.  

 X 
8 

ij = route is pick i then store j.  

 X 
9 

ijk = route is store i then pick j then pick k.  

 X 
10 

ijk = route is pick i then store j then pick k.  

 X 
11 

i = route is pick i 

 X 
12 

ij = route is pick i then pick j.  

 All routes start and end at depot 

C parameters used in model are: 

C1= (d1i + dij + dj1)/s + tss + ts  

C2= (d1i + dij + djk+ dk1)/s + tss + ts+ tp 

C3= (d1i + dij + djk+ dk1)/s + 2tss + tps 

C4= (d1i + dij + djk+ dkL+ dL1)/s + tss + ts + tp + tps 

C5= (d1i + dij + djk+ dkL+ dL1)/s + 2tss + 2tps 
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C6= d1i /s + ts  

C7= (d1i + dij + dj1)/s + ts + tp  

C8= (d1i + dij + dj1)/s + tss + tps  

C9= (d1i + dij + djk+ dk1)/s + ts + tp + tps 

C10= (d1i + dij + dj1)/s + 2tps  

C11= (d1i + di1)/s + tp  

C12= (d1i + dij + dj1)/s + tp + tps  

 

 With these parameters defined, think of the objective function as containing 

sections of feasible routes and the constraints as ensuring the sections do not conflict.  

The model pieces together the segments in an optimal arrangement. The math model is as 

follows: 

 

Minimize 

1 1 11 1 1 1
1 2 3 4

1 ij 2 ijkl 3 ijk 4 ijkl

, 2 , 2 2 , 2 2 , 2 , 2

*X  + *X + *X + *X
ns np ns np ns npns ns ns ns

i j i j k ns i k j ns i j k l ns

Z C C C C   

1 1 11 1 1 1
5 6 7 8

5 ijkl 6 i 7 ij 8 ij

, 2 , 2 2 2 2 2 2

*X *X *X *X
ns np ns np ns npns ns ns ns

i j k l ns i i j ns i ns j

C C C C  

1 1 1 11 1
9 10 11 12

9 ijk 10 ijk 11 i 12 ij

2 , 2 , 2 2 2 , 2

*X *X *X *X
ns np ns np ns np ns npns ns

i j k ns i k ns j i ns i j ns

C C C C  

Subject to 

ij ji ij jiX X S S , i =2, 3…ns+np+1, j=2, 3…ns+np+1   (1) 
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1

1

1
ns np

ij

i

X , j=2, 3…ns+np+1      (2) 

1

1

1
ns np

ij

j

X , i=2, 3…ns+np+1      (3) 

0iiX , i=1, 2…ns+np+2       (4) 

1ij jiX X , i =j=1, 2…ns+np+1      (5) 

1 1i iX X , i =ns+np+2 (dummy)      (6) 

0,1ijX , i=j = 2, 3… ns+np+2      (7) 

The constraints in this model perform the following functions: 

1. Requires elimination of stacking that cannot occur if S is equal to 0  between any 

2 pallets 

2. Requires visiting each pallet once 

3. Requires leaving each pallet once 

4. Requires no pallet returns to itself or is stacked on itself (avoid cycling) 

5. Avoids cycling between any 2 nodes except between dummy and depot to 

accommodate extra routes 

6. Requires return to depot if dummy is used 

 

4.4.4 Numerical Study  

 To illustrate some features of this model and provide some verification, we now 

provide several numerical examples.  In all of these, ILOG OPL Development Studio 

version 5.5 was used on a Dell personal computer with an Intel Core 2 Duo processor and 
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2.00 GB of RAM.  Numerical values for the inputs are the same as in [58] because they 

were also consistent with our experience: 1) The forklift travel rate (speed) in a 

warehouse is 150 feet per minute (s =150), and 2) The time required to pick a pallet from 

the rack is 0.3 minute (tp =0.3).  We further assume the time required to store a pallet on 

the rack is 0.3 minute (ts =0.3), the time to pick a pallet and stack it on another pallet is 

0.5 minute (tps = 0.5) and the time to store a pallet on rack from a double stack is 0.5 

minute (tss = 0.5). 

 

5 pallets Example: The model was used to solve a five pallets problem, where pallets are 

located close to each other in proximity. This problem has 5 possible stacking options 

(assigned randomly) allowing all pallets to be stackable on each other, meaning a 

stackability density of 25%.  The storage pallets are pallets number 1, 2 while the pick 

pallets are pallets number 3, 4, and 5. Distance matrix was generated based on layout. 

Each box in layout represents an increment of 5 feet distance. Please see appendix for 

layout and distance and stackability matrices. The solution presented below is an OPL 

solution generated after running for few seconds, it is a good solution as it beats both 

heuristics but no guarantee it’s optimal. D represents the depot and i represents pallet i. 

Path is: D-1-2-5-D-4-3-D. This path can be translated as shown below. S means storage 

and P means picking. Path is: D-S-S-P-D-P-P-D which means: 

1. Leave depot with pallets 1 and 2 - Store pallet 1 – Store pallet 2 - Pick pallet 5 – 

return to depot 

2. Leave depot - Pick pallet 4 – Pick pallet 3 – return to depot 
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 This solution requires a total travel and handling time of 4.1 minutes. For 

comparison, the travel time was 2.2 minutes; while the handling time was 1.9 minutes. 

This model considered the handling time which was not considered in previous models. 

The handling time is around 46 % of the total time, which would likely be considered 

significant in practice when you add up all the different orders handled by a forklift 

driver which are at least hundreds of pallets daily. 

 

Close pallets warehouse 

7 pallets Example: The model was used to solve a seven pallets problem, where pallets 

are located close to each other in proximity. This problem has 7 possible stacking options 

(assigned randomly) allowing all pallets to be stackable on each other, meaning a 

stackability density of 16.67%.  The storage pallets are pallets number 1, 2, 3, while the 

pick pallets are pallets number 4, 5, 6, and 7. Distance matrix was generated based on 

layout. Each box in layout represents an increment of 5 feet distance. Please see appendix 

for layout and distance and stackability matrices. The solution presented below is an OPL 

solution generated after running for 10.5 seconds, it is a good solution as it beats one 

heuristic and equals the other heuristic but no guarantee it’s optimal. D represents the 

depot and i represents pallet i. Path is: D-2-5-D-3-1-7-D-4-6-D. This path can be 

translated as shown below. S means storage and P means picking. Path is: D-S-P-D-S-S-

P-D-P-P-D which means: 

1. Leave depot with pallet 2 - Store pallet 2 – Pick pallet 5 – return to depot 
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2. Leave depot with pallets 3 and 1 - Store pallet 3 – Store pallet 1 - Pick pallet 7 

– return to depot 

3. Leave depot - Pick pallet 4 – Pick pallet 6 – return to depot 

  

 This solution requires a total travel and handling time of 5.433 minutes. For 

comparison, the travel time was 2.93 minutes; while the handling time was 2.5 minutes. 

This model considered the handling time which was not considered in previous models. 

The handling time is around 46 % of the total time, which would likely be considered 

significant in practice when you add up all the different orders handled by a forklift 

driver which are at least hundreds of pallets daily. 

 

9 pallets Example: The model was used to solve a nine pallets problem, also close in 

location proximity. This problem has 9 possible stacking options (assigned randomly) 

allowing all pallets to be stackable on each other, meaning a stackability density of 

12.5%.  The storage pallets are pallets number 1, 2, 3, and 4 while the pick pallets are 

pallets number 5, 6, 7, 8 and 9. Distance matrix was generated based on layout. Each box 

in layout represents an increment of 5 feet distance. Please see appendix for layout and 

distance and stackability matrices. The solution presented below is an OPL solution 

generated after running only 386 seconds, it is a good solution as it beats both heuristics 

but no guarantee it’s optimal. D represents the depot and i represents pallet i. Path is: D-

1-7-9-D-2-5-D-3-8-D-4-6-D. This path can be translated as shown below. S means 

storage and P means picking. Path is: D-S-P-P-D-S-P-D-S-P-D-S-P-D which means: 
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1. Leave depot with pallet 1 - Store pallet 1 – Pick pallet 7 – Pick pallet 9 -  return to 

depot 

2. Leave depot with pallet 2 - Store pallet 2 - Pick pallet 5 – return to depot 

3. Leave depot with pallet 3 - Store pallet 3 - Pick pallet 8 – return to depot 

4. Leave depot with pallet 4 - Store pallet 4 – Pick pallet 6 – return to depot 

  

 This solution requires a total time of both traveling and handling of 6.7 minutes. 

For comparison, the travel time was 3.8 minutes; while the handling time was 2.9 

minutes. This model considered the handling time which was not considered in previous 

models. The handling time is around 43 % of the total time, which would likely be 

considered significant in practice when you add up all the different orders handled by a 

forklift driver which are at least hundreds of pallets daily. 

 

Scattered pallets warehouse 

8 pallets Example: The model was used to solve an eight pallets problem, where pallets 

are distant in location from each other. This problem has 56 possible stacking options 

(assigned randomly) allowing all pallets to be stackable on each other, meaning a 

stackability density of 100%.  The storage pallets are pallets number 1, 2, 3, and 4, while 

the pick pallets are pallets number 5, 6, 7, and 8.  

Distance matrix was generated based on layout. Each box in layout represents an 

increment of 5 feet distance. Please see appendix for layout and distance and stackability 

matrices. The solution presented below is an OPL solution generated after a very long run 
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(over 88 hours), it is a good solution as it beats 2 heuristics but no guarantee it’s optimal. 

D represents the depot and i represents pallet i. Path is: D-2-6-D-3-8-D-4-7-D-5-1-D. 

This path can be translated as shown below. S means storage and P means picking. Path 

is: D-S-P-D-S-P-D-S-P-D-P-S-D which means: 

3. Leave depot with pallet 2 - Store pallet 2 – Pick pallet 6 – return to depot 

4. Leave depot with pallet 3 - Store pallet 3 – Pick pallet 8 – return to depot 

5. Leave depot with pallet 4 - Store pallet 4 – Pick pallet 7 – return to depot 

6. Leave depot with pallet 1 - Pick pallet 5 – Store pallet 1 –  return to depot 

 As you can see there are two pick/store options in this solution, option 5 (D-S-P-

D) and option 6 (D-P-S-D). This solution requires a total travel and handling time of 12.6 

minutes. For comparison, the travel time was 9.8 minutes; while the handling time was 

2.8 minutes. This model considered the handling time which was not considered in 

previous models. The handling time is around 22% of the total time, which would likely 

be considered significant in practice when you add up all the different orders handled by 

a forklift driver which are at least hundreds of pallets daily. 

 

4.4.5 Increasing number of double stacking opportunities 

 The impact if any that increasing the stackability density has on the time required 

to find the optimal solution is now explored. This idea is common in many areas 

including the flow dominance concept, which was originally introduced by Vollmann and 

Buffa [60]. 
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 An example with 8 pallets close in distance is used to investigate the impact of 

increasing the number of double stacking opportunities on computation time and Figure 

4.3 below reports the results. Each instance is based on average of three replications, and 

each replication has a stackability matrix with same stackability density but ones 

scattered differently in the three replications. The graph below shows that the increase of 

the stackability density increases the computational time. This is probably because as the 

number of ones in the stackability matrix increases this increases the possibilities for 

stacking and hence more search to be done by OPL to get optimal solution. 

 

Figure 4.3: 8 close by pallets problem 

 

4.5 Heuristics 

 Since most real world problems will involve at least 40 pallets (i.e., the number of 

double stacked pallets that are contained in a truck-load shipment) and likely many more, 

solving direct use of the optimization model is impossible.  In this section, we describe 
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two heuristics that have been developed in an effort to find good solutions with much less 

computation burden.  The first heuristic simply executes the store and pick operations 

separately whereas the second heuristic allows the forklift driver to execute storage 

operations and picking operations in the same route although they cannot be alternated 

(i.e., store-pick-store is not allowed). 

 

4.5.1 Heuristic 1 – Separate store and pick 

 Heuristic 1 is simply the time-optimal route for storing stackable pallets combined 

with the time-optimal route for picking.  The mathematical programming models used to 

determine these routes are fully explained in chapter three.  Intuitively, if a warehouse 

had a layout such that all the storage from a set of dock doors were on one side and the 

picks on the other – say raw materials on one side and finished goods on the other – then 

this heuristic and heuristic 2 as well will likely work really well if this type of segregation 

is seen but it is not an assumption of the model. When pallets to be stored and picked are 

mixed throughout the warehouse, it is hard to predict how effective this heuristic would 

be.  Regardless, it is used for comparison both because it does have the potential to 

produce good results and because it solves to optimality with OPL within seconds for 8 

pallets. 

 

4.5.1.1 Heuristic 1 model 

 Although this heuristic is not a new model and it concatenates two models 

developed previously that find the time-optimal route for pure storage and pure picking, 
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we use it to get quick answer to compare against combined model. Same was done for 

heuristic 2. Details of the individual models are provided in chapter three.  As in the 

integrated model, pallets are numbered coincident with their locations with the first 

location being the depot, the next ns locations the pallets to be stored, the next np 

locations the pallets to be picked and the final location being the dummy used for 

modeling purposes.  This model required the following input parameters: 

 dij = the distance between location i and location j 

 Sij = 1 if pallet i is stackable on j; 0 otherwise 

 tss  = time to store one pallet from a double stack setup on a rack in minutes 

 ts  = time to store a single pallet on a rack in minutes 

 s = average speed of the forklift traveling in a warehouse in feet per minute 

 tp = time to pick a pallet in minutes  

 tps = time to pick a pallet and stack it on another pallet in minutes  

 ns = number of pallets to be stored  

 np = number of pallets to be picked  

The decision variables are: 

 Xij = 1 if the route includes pallet i to pallet j; 0 otherwise. 

 Yi = 1 if the route includes depot to pallet i; 0 otherwise. 

 Zij = 1 the route includes pallet i to pallet j; 0 otherwise. 

 RDi = 1 if the route includes pallet i to depot; 0 otherwise. 

Using these definitions, the following mathematical model will determine the optimal 

routes. 
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Minimize 

1 1 1 1 1

1 1

2 2 , 2 , 2 2

* / * * / * * /
ns ns ns ns ns

i i s i ij i j ss i j j j

i i i j i j j

Z d Y s t Y d Z s t Z d RD s   

1

1

2

* /
ns np

i i

i ns

d Y s
1

2

*
ns np

p i

i ns

t Y +
1

, 2

* /
ns np

ij ij

i j ns

d Z s +
1

, 2

*
ns np

ps ij

i j ns

t Z +
1

1

2

* /
ns np

j j

j ns

d RD s  

Subject to 

2

1

2

1
ns np

i

i

X          (1) 

ij ji ij jiX X S S , i, j =2, 3…ns+np+2     (2) 

2

1

1

ns np

ji j

i

X X , i =1, 2…ns+np+2, j =2, 3…ns+np+2   (3) 

( 2)1 1( 2)ns np ns npX X        (4) 

2

1

2

ns np

j ij

i

X X , j = 2, 3…ns+np+2      (5) 

2

1

1
ns np

ij

i

X , j =2, 3… ns+np+2      (6) 

2

1

1
ns np

ij

j

X , i =2, 3… ns+np+2      (7) 

0iiX , i =1, 2…ns+np+2       (8) 

1i iY X , i = 2, 3…ns+np+1       (9) 

ij ijZ X , i, j =2, 3…ns+np+1      (10) 
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1i iRD X , i = 2, 3…ns+np+1      (11) 

0ij jiX X , i = 2, 3 …ns+1, j = ns+2, ns+3…ns+np+1   (12) 

0,1ijX , i, j = 1, 2, 3… ns+np+2, j = 2, 3… ns+np+2   (13) 

A short explanation regarding the purpose of the 13 constraints in this model are: 

1. Starts enough routes so that each pallet can be singly picked or stored 

2. Prevents stacking of pallets that are forbidden by the stackability matrix 

3. Requires that the second move is either to a pallet or back to depot 

4. Completes a no-cost route to the dummy if all pallets have been moved 

5. Requires return to depot after only one stacking arrangement or no stacking is 

made for each pallet 

6. Requires picking each pallet once 

7. Requires leaving each pallet once 

8. Requires no pallet is stacked on itself 

9. Requires variable Y is equal to variable X when a the forklift moves from depot 

to pick a pallet i 

10. Requires variable Z is equal to variable X when a the forklift moves from first 

stored or picked pallet to store or pick a second pallet i 

11. Requires variable RD is equal to variable X when a the forklift returns from pallet 

i to depot 

12. Prevents any move between locations of storage and pick pallets 
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4.5.2 Heuristic 2 – Limited dual commands 

 The second heuristic allows a single route to include both storage and picking 

activities; however, they cannot alternate.  That is, a forklift driver can leave the depot 

with 2 stacked pallets to be stored, store them, pick two pallets (stacking them at the 

second location) and returning to the depot.  This can be modeled by again concatenating 

the pure pick and pure store models but this time adding a mid-zone location that the 

route must include where the mode is changed from store to pick. 

 

4.5.2.1 Heuristic 2 model 

 The locations for the pallets and the parameters for this model are identical to 

Heuristic 1 – see section 4.5.1.1 for details.  The decision variables are slightly different: 

 Xij = 1 if you go from pallet i to pallet j; 0 otherwise. 

 ZLij = 1 if you go from storage pallet i to storage pallet j; 0 otherwise. 

 ZPij = 1 if you go from pick pallet i to pick pallet j; 0 otherwise. 

 

The model for this heuristic is as follows:  

Minimize 

( 2)

1 1 1 1 1
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0iiX , i = 2, 3 …ns+np+2       (12) 

ij ijZL X , i, j = 2, 3 …ns+1       (13) 

ij ijZP X , i, j = ns+3, ns+4…ns+np+2     (14) 

1 ( 2) 3i ij j nsX X X , i, j = 2, 3 …ns+1     (15) 

( 2) 1 3ns k km mX X X , k, m= ns+3, ns+4…ns+np+2   (16) 

2

1

3

1
ns np

i

i ns

X          (17) 

1ij jiX X , i, j = 2, 3 … ns+np+2      (18) 

2

1

3

ns np

m km

k ns

X X , m = ns+3, ns+4…ns+np+2    (19) 

0,1ijX , i, j = 1, 2, 3… ns+np+2, j = 2, 3… ns+np+2   (20) 

The constraints in this model perform the following functions: 

1. Requires a first move to store a pallet 

2. Constraints (2) and (3) require elimination of stacking that cannot occur if S is 

equal to 0 

4. Requires a second move after storing one pallet   

5. Requires a second move to pick a second pallet 

6. Requires going to dummy after storing pallets 

7. Requires going from dummy to pick pallets 

8. Constraints (8) and (9) require visiting each pallet once 

10. Constraints (10) and (11) require leaving each pallet once 
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12. Requires no pallet returns to itself or is stacked on itself (Avoids cycling) 

13. Requires variable ZL is equal to variable X when forklift moves from first stored 

pallet to store a second pallet 

14. Requires variable ZP is equal to variable X when forklift moves from first picked 

pallet to pick a second pallet 

15. Requires return to depot after storing 2 pallets  

16. Requires return to depot after picking 2 pallets 

17. Requires a return move from pick pallet to depot 

18. Prevents cycling between any 2 nodes (pallet or dummy) 

19. Requires going from picking pallets to depot 

 

4.6. Numerical Examples:  

Heuristic 1: 5 pallets: The model of heuristic 1 will be used to solve a problem with 5 

pallets which has a stackability matrix that contains 5 ones, meaning a stackability 

density of 25%. The storage pallets are pallets number 1 and 2 while the pick pallets are 

pallets number 3, 4, and 5. The optimal path is presented below. D represents the depot 

and i represents pallet i. 

D-1-2-D-4-3-D-5-D 

This path can be translated as shown below. S means storage and P means picking. 

D-S-S-D-P-P-D-P-D 

 This solution requires a total travel plus handling time of 4.9 minutes. For 

comparison, the travel time was 3 minutes; while the handling time was 1.9 minutes. This 



 65 

model considered the handling time which was not considered in previous models. The 

handling time is around 38.7 % of the total time, which would likely be considered 

significant in practice. This is good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

 

Heuristic 2: 5 pallets: The model of heuristic 2 will be used to solve the same problem 

with 5 pallets. The optimal path is presented below. D represents the depot, Du represents 

dummy (middle zone) and i represents pallet i. 

D-1-Du-3-D-2-Du-4-5-D 

This path can be translated as shown below. S means storage and P means picking. 

D-S-Du-P-D-S-Du-P-P-D 

 This solution requires a total travel and handling time of 4.2 minutes. For 

comparison, the travel time was 2.5 minutes; while the handling time was 1.7 minutes. 

The handling time is almost 40 % of the total time, which would likely be considered 

significant in practice. This is again good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

Summary 

 Table below show results of 5 pallets problem  

5 pallets problem Total time in minutes 

Combined Model 4.1 

Heuristic 1 4.9 

Heuristic 2 4.2 

  

Table 4.1: Results in 5 pallets problem 
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Heuristic 1: 7 pallets: The model of heuristic 1 will be used to solve a problem with 7 

pallets which has a stackability matrix that contains 7 ones, meaning a stackability 

density of 16.67%. The storage pallets are pallets number 1, 2, and 3 while the pick 

pallets are pallets number 4, 5, 6, and 7. The optimal path is presented below. D 

represents the depot and i represents pallet i. 

D-1-3-D-2-D-4-6-D-5-D-7-D 

This path can be translated as shown below. S means storage and P means picking. 

D-S-S-D-S-D-P-P-D-P-D-P-D 

 This solution requires a total travel plus handling time of 6.833 minutes. For 

comparison, the travel time was 4.33 minutes; while the handling time was 2.5 minutes. 

This model considered the handling time which was not considered in previous models. 

The handling time is around 36 % of the total time, which would likely be considered 

significant in practice. This is good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

 

Heuristic 2: 7 pallets: The model of heuristic 2 will be used to solve the same problem 

with 7 pallets. The optimal path is presented below. D represents the depot, Du represents 

dummy (middle zone) and i represents pallet i. 

D-1-Du-4-6-D-2-Du-5-D-3-Du-7-D 

This path can be translated as shown below. S means storage and P means picking. 

D-S-Du-P-P-D-S-Du-P-D-S-Du-P-D 
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 This solution requires a total travel and handling time of 5.43 minutes. For 

comparison, the travel time was 3.13 minutes; while the handling time was 2.3 minutes. 

The handling time is almost 42 % of the total time, which would likely be considered 

significant in practice. This is again good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

Summary 

 Table below show results of 7 pallets problem for combined model with 2 

heuristics 

7 pallets problem Total time in minutes 

Combined Model 5.4333 

Heuristic 1 6.8333 

Heuristic 2 5.4333 

 

Table 4.2: Results in 7 pallets problem 

 

Heuristic 1: 8 scattered pallets: The model of heuristic 1 will be used to solve a 

problem with 8 pallets which has a 10x10 stackability matrix that contains 56 ones, 

meaning a stackability density of 14.29%. The storage pallets are pallets number 1, 2, 3, 

and 4 while the pick pallets are pallets number 5, 6, 7, and 8. The optimal path is 

presented below. D represents the depot and i represents pallet i. 

D-1-3-D-2-4-D-7-6-D-8-5-D 

This path can be translated as shown below. S means storage and P means picking. 

D-S-S-D-S-S-D-P-P-D-P-P-D 
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 This solution requires a total travel and handling time of 14.6 minutes. For 

comparison, the travel time was 11.4 minutes; while the handling time was 3.2 minutes. 

This model considered the handling time which was not considered in previous models. 

The handling time is around 22 % of the total time, which would likely be considered 

significant in practice. This is good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

 

Heuristic 2: 8 scattered pallets: The model of heuristic 2 will be used to solve the same 

problem with 8 pallets. The optimal path is presented below. D represents the depot, Du 

represents dummy (middle zone) and i represents pallet i. 

D-1-3-Du-6-7-D-2-4-Du-8-5-D 

This path can be translated as shown below. S means storage and P means picking. 

D-S-S-Du-P-P-D-S-S-Du-P-P-D 

 This solution requires a total travel and handling time of 13.4 minutes. For 

comparison, the travel time was 10.2 minutes; while the handling time was 3.2 minutes. 

The handling time is almost 24 % of the total time, which would likely be considered 

significant in practice. This is again good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

 

Summary 

 Table below show results of 8 scattered pallets problem for combined model with 

2 heuristics 
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8 pallets problem Total time in minutes 

Combined Model 12.6 

Heuristic 1 14.6 

Heuristic 2 13.4 

 

Table 4.3: Results in 8 pallets problem 

The results show that combined model beats heuristics 1 and 2. Also you can see figure 

4.4 below showing combined model solution progress during running time for 8 scattered 

pallets. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: Solution during running time 

 

Heuristic 1: 9 pallets: The model of heuristic 1 will be used to solve a problem with 9 

pallets which has a stackability matrix that contains 9 ones, meaning a stackability 
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density of 12.5%. The storage pallets are pallets number 1, 2, 3, and 4 while the pick 

pallets are pallets number 5, 6, 7, 8 and 9. The optimal path is presented below. D 

represents depot and i represents pallet i. 

D-1-3-D-2-D-4-D-5-D-6-D-7-9-D-8-D.  

This path can be translated as shown below. S means storage and P means picking. 

D-S-S-D-S-D-S-D-P-D-P-D-P-P-D-P-D 

 This solution requires a total travel and handling time of 8.967 minutes. For 

comparison, the travel time was 5.87 minutes; while the handling time was 3.1 minutes. 

This model considered the handling time which was not considered in previous models. 

The handling time is around 34 % of the total time, which would likely be considered 

significant in practice. This is good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

 

Heuristic 2: 9 pallets: The model of heuristic 2 will be used to solve the same problem 

with 9 pallets. The optimal path is presented below. D represents the depot, Du represents 

dummy (middle zone) and i represents pallet i. 

D-1-Du-5-D-2-Du-6-D-3-Du-7-9-D-4-Du-8-D 

This path can be translated as shown below. S means storage and P means picking. 

D-S-Du-P-D-S-Du-P-D-S-Du-P-P-D-S-Du-P-D 

 This solution requires a total time both traveling and handling of 6.9 minutes. For 

comparison, the travel time was 4 minutes; while the handling time was 2.9 minutes. The 

handling time is almost 42 % of the total time, which would likely be considered 
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significant in practice. This is again good as it emphasizes the importance of this research 

modeling the handling time which was not done before in literature. 

Summary 

 Table below show results of 9 pallets problem for combined model with 2 

heuristics 

9 pallets problem Total time in minutes 

Combined Model 6.7 

Heuristic 1 8.9667 

Heuristic 2 6.9 

 

Table 4.4: Results in 9 pallets problem 

 

4.7 Conclusions and Future Research 

 In this research a mathematical model was developed to solve the combined order 

picking and storage (dual command) problem of optimizing the forklift route with 

multiple pick and storage orders in a warehouse which has stackable pallets. We conclude 

that this mathematical model is a working model, as it was coded in OPL software and 

solved for five, seven, eight, and nine pallets size problems successfully with validated 

solutions. Also, two heuristics were developed which give quick solutions which are 

close but sub optimal to solutions out of combined model. In the future research, a 

Metaheuristic like genetic algorithms or simulated annealing can be used to build a model 

to solve bigger problems such as a hundred pallet problem.   
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CHAPTER FIVE 

CONCLUSIONS  

  

 In the first part of the research we addressed the order picking and storage 

problems with stackable pallets. In this research three mathematical models were 

developed. One model analyzed the order picking operation in terms of travel distance. A 

second model analyzed the order picking operation in terms of time, adding the time 

elements of picking and stacking a pallet and a third model analyzed the order storage 

operation in terms of time. The concept of pallet stackabilty was applied in all three 

models. We concluded that these three mathematical models are working validated 

models, as they were coded in OPL software and solved for 25, 50, 75, 100, 125, 150, 

175, 200, 225 and 250 pallets size problems successfully. Each was solved using five 

different variations of stackability options; total of 150 examples for the three models. 

Problems with a small number of pallets had the solution confirmed by complete 

enumeration. So, contributions of chapter 3 are: introduced stackability in the order 

picking problem, constructed a detailed time-based math programming model to find 

optimal pick or store sequence, and explicitly included the time associated with stacking 

pallets in a math programming model. 

  

 In the second part of the research we addressed the combined order picking and 

storage problem, also known as dual command with stackable pallets. In this research a 

mathematical model was developed to solve the combined order picking and storage 



 73 

(dual command) problem of optimizing the forklift route with multiple pick and storage 

orders in a warehouse which has stackable pallets. We concluded that this mathematical 

model is a working model, as it was coded in OPL software and solved for five, seven, 

eight, and nine pallets size problems successfully with validated solutions. Also, two 

heuristics were developed which give quick solutions which are close but sub optimal to 

solutions out of combined model. Comparing the results of the two heuristics versus the 

combined model, the combined model beats heuristics 1 and 2 in three out of four 

examples. So contributions of chapter 4 are: developed a detailed time-based math 

programming model for the dual command problem (allows picking and storing in the 

same route), developed two heuristics for the dual command problem, and proved that 

handling time is a significant time element 22 to 46 % of total time spent to pick and 

store pallets. 

  

 In the future research, a Metaheuristic like genetic algorithms or simulated 

annealing can be used to build a model to solve bigger problems such as a hundred pallet 

problem.   
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Appendix A: 50 pallets distance matrix 

D= D P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 

D 0 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 50 

P1 290 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 

P2 280 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 

P3 270 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 

P4 260 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 

P5 250 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 

P6 240 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 

P7 230 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 

P8 220 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 

P9 210 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 

P10 200 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 

P11 190 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 

P12 180 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 

P13 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 

P14 160 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 

P15 150 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 

P16 140 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 

P17 130 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 

P18 120 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 

P19 110 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 

P20 100 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 

P21 90 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 
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D= D P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 

P22 80 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 

P23 70 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 

P24 60 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 

P25 50 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 

P26 50 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 

P27 60 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 

P28 70 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 

P29 80 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 

P30 90 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 

P31 100 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 

P32 110 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 

P33 120 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 

P34 130 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 

P35 140 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 

P36 150 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 140 

P37 160 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 150 

P38 170 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 160 

P39 180 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 170 

P40 190 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 180 

P41 200 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 190 

P42 210 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 200 
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D= D P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 

P43 220 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 210 

P44 230 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 220 

P45 240 480 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 230 

P46 250 490 480 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 240 

P47 260 500 490 480 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 250 

P48 270 510 500 490 480 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 260 

P49 280 520 510 500 490 480 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 270 

P50 290 530 520 510 500 490 480 470 460 450 440 430 420 410 400 390 380 370 360 350 340 330 320 310 300 290 280 

Dummy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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D= P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 Dummy 

D 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 0 

P1 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 530 0 

P2 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 520 0 

P3 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 510 0 

P4 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 500 0 

P5 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 490 0 

P6 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 480 0 

P7 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 470 0 

P8 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 460 0 

P9 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 450 0 

P10 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 440 0 

P11 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 430 0 

P12 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 420 0 

P13 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 410 0 

P14 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 400 0 

P15 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 390 0 

P16 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 380 0 

P17 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 370 0 

P18 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 360 0 

P19 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 350 0 

P20 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 340 0 

P21 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 330 0 
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D= P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 Dummy 

P22 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 320 0 

P23 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 310 0 

P24 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 300 0 

P25 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 290 0 

P26 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 280 0 

P27 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 270 0 

P28 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 260 0 

P29 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250 0 

P30 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 0 

P31 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 0 

P32 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 0 

P33 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 0 

P34 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 0 

P35 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 0 

P36 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 180 0 

P37 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 170 0 

P38 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 160 0 

P39 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 150 0 

P40 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 140 0 

P41 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 130 0 

P42 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 110 120 0 
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D= P27 P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 Dummy 

P43 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 5 0 50 60 70 80 90 100 110 0 

P44 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 100 0 

P45 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 90 0 

P46 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 80 0 

P47 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 70 0 

P48 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 60 0 

P49 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 50 0 

P50 270 260 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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50 pallets stackabilty matrix 

S= D P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P2 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P3 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P4 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P5 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P7 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P9 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P10 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P11 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P12 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

P14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

P15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

P16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

P17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 

P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

P21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

P22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 
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S= D P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 

P23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

P24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

P25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

P26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 

P27 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P28 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P29 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P31 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P32 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P33 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P34 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P35 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P36 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P37 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P38 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P39 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P40 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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S= D P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15 P16 P17 P18 P19 P20 P21 P22 P23 P24 P25 P26 P27 

P46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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S= P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 Dummy 

D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P11 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P13 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P18 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P20 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P21 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P22 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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S= P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 Dummy 

P23 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P24 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P25 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P26 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P27 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P28 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P29 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P30 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P31 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P32 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P33 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P34 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P35 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P36 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

P37 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 

P38 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 

P39 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 

P40 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 

P41 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 

P42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 
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S= P28 P29 P30 P31 P32 P33 P34 P35 P36 P37 P38 P39 P40 P41 P42 P43 P44 P45 P46 P47 P48 P49 P50 Dummy 

P43 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 

P44 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 

P45 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 

P46 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 

P47 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 

P48 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 

P49 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 

P50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
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Appendix B: 5 pallets stackability and distance matrices 

Distance Matrix 

  
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 Dummy 

         Depot 
 

0 70 60 50 60 70 0 

pallet 1 
 

70 0 45 35 10 55 0 

pallet 2 
 

60 45 0 10 35 10 0 

pallet 3 
 

50 35 10 0 25 20 0 

pallet 4 
 

60 10 35 25 0 45 0 

pallet 5 
 

70 55 10 20 45 0 0 

Dummy 
 

0 0 0 0 0 0 0 

 

Stackability Matrix 

  
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 Dummy 

         Depot 
 

0 0 0 0 0 0 0 

pallet 1 
 

0 0 1 0 0 0 0 

pallet 2 
 

0 0 0 1 0 1 0 

pallet 3 
 

0 0 0 0 1 0 0 

pallet 4 
 

0 0 0 0 0 1 0 

pallet 5 
 

0 0 0 0 0 0 0 

Dummy 
 

0 0 0 0 0 0 0 
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Layout
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Distance Matrix with dummy for Heuristic 2 

  
Depot pallet 1 pallet 2 Dummy pallet 3 pallet 4 pallet 5 

         Depot 
 

0 70 60 35 50 60 70 

pallet 1 
 

70 0 45 30 35 10 55 

pallet 2 
 

60 45 0 20 10 35 10 

Dummy 
 

35 30 20 0 10 20 30 

pallet 3 
 

50 35 10 10 0 25 20 

pallet 4 
 

60 10 35 20 25 0 45 

pallet 5 
 

70 55 10 30 20 45 0 

 



 96 

Layout with dummy for Heuristic 2 
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Appendix C: 7 pallets stackability and distance matrices 

Distance Matrix 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 Dummy 

Depot 0 70 65 60 60 65 70 55 0 

pallet 1 70 0 35 10 30 5 40 15 0 

pallet 2 65 35 0 25 5 30 5 20 0 

pallet 3 60 10 25 0 20 5 30 5 0 

pallet 4 60 30 5 20 0 25 10 15 0 

pallet 5 65 5 30 5 25 0 35 10 0 

pallet 6 70 40 5 30 10 35 0 25 0 

pallet 7 55 15 20 5 15 10 25 0 0 

Dummy 0 0 0 0 0 0 0 0 0 
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Stackability Matrix 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 Dummy 

Depot 0 0 0 0 0 0 0 0 0 

pallet 1 0 0 0 1 0 0 0 1 0 

pallet 2 0 0 0 0 0 1 0 0 0 

pallet 3 0 1 0 0 0 0 0 0 0 

pallet 4 0 0 0 0 0 0 1 0 0 

pallet 5 0 0 1 0 0 0 0 0 0 

pallet 6 0 0 0 0 1 0 0 0 0 

pallet 7 0 0 0 0 0 0 0 0 0 

Dummy 0 0 0 0 0 0 0 0 0 
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Layout 
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Distance Matrix with dummy for Heuristic 2 

 
Depot pallet 1 pallet 2 pallet 3 Dummy pallet 4 pallet 5 pallet 6 pallet 7 

Depot 0 70 65 60 45 60 65 70 55 

pallet 1 70 0 35 10 20 30 5 40 15 

pallet 2 65 35 0 25 15 5 30 5 20 

pallet 3 60 10 25 0 10 20 5 30 5 

Dummy 45 20 15 10 0 10 15 20 5 

pallet 4 60 30 5 20 10 0 25 10 15 

pallet 5 65 5 30 5 15 25 0 35 10 

pallet 6 70 40 5 30 20 10 35 0 25 

pallet 7 55 15 20 5 5 15 10 25 0 
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Layout with Dummy 

 



 102 

Appendix D: 8 scattered pallets stackability and distance matrices 

Distance Matrix 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 pallet 8 Dummy 

Depot 0 295 60 290 55 290 75 70 295 0 

pallet 1 295 0 255 135 250 5 270 265 140 0 

pallet 2 60 255 0 250 5 250 15 10 255 0 

pallet 3 290 135 250 0 245 130 265 260 5 0 

pallet 4 55 250 5 245 0 245 20 15 250 0 

pallet 5 290 5 250 130 245 0 265 260 135 0 

pallet 6 75 270 15 265 20 265 0 5 270 0 

pallet 7 70 265 10 260 15 260 5 0 265 0 

pallet 8 295 140 255 5 250 135 270 265 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 
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Stackability Matrix 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 pallet 8 Dummy 

Depot 0 0 0 0 0 0 0 0 0 0 

pallet 1 0 0 1 1 1 1 1 1 1 0 

pallet 2 0 1 0 1 1 1 1 1 1 0 

pallet 3 0 1 1 0 1 1 1 1 1 0 

pallet 4 0 1 1 1 0 1 1 1 1 0 

pallet 5 0 1 1 1 1 0 1 1 1 0 

pallet 6 0 1 1 1 1 1 0 1 1 0 

pallet 7 0 1 1 1 1 1 1 0 1 0 

pallet 8 0 1 1 1 1 1 1 1 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 
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Layout 

 

 

 

 



 105 

Distance Matrix with Dummy for Heuristic 2 

 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 dummy pallet 5 pallet 6 pallet 7 pallet 8 

Depot 0 295 60 290 55 145 290 75 70 295 

pallet 1 295 0 255 135 250 155 5 270 265 140 

pallet 2 60 255 0 250 5 110 250 15 10 255 

pallet 3 290 135 250 0 245 150 130 265 260 5 

pallet 4 55 250 5 245 0 105 245 20 15 250 

dummy 145 155 110 150 105 0 150 125 120 155 

pallet 5 290 5 250 130 245 150 0 265 260 135 

pallet 6 75 270 15 265 20 125 265 0 5 270 

pallet 7 70 265 10 260 15 120 260 5 0 265 

pallet 8 295 140 255 5 250 155 135 270 265 0 
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Appendix E: 9 pallets stackability and distance matrices 

Distance Matrix 

 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 pallet 8 pallet 9 Dummy 

Depot 0 70 65 60 60 65 70 55 55 45 0 

pallet 1 70 0 35 10 30 5 40 15 25 25 0 

pallet 2 65 35 0 25 5 30 5 20 10 10 0 

pallet 3 60 10 25 0 20 5 30 5 15 15 0 

pallet 4 60 30 5 20 0 25 10 15 5 5 0 

pallet 5 65 5 30 5 25 0 35 10 20 20 0 

pallet 6 70 40 5 30 10 35 0 25 15 15 0 

pallet 7 55 15 20 5 15 10 25 0 10 10 0 

pallet 8 55 25 10 15 5 20 15 10 0 5 0 

pallet 9 45 25 10 15 5 20 15 10 5 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 0 
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Stackability Matrix 

 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 pallet 8 pallet 9 Dummy 

Depot 0 0 0 0 0 0 0 0 0 0 0 

pallet 1 0 0 0 1 0 0 0 1 0 0 0 

pallet 2 0 0 0 0 0 1 0 0 0 0 0 

pallet 3 0 1 0 0 0 0 0 0 1 0 0 

pallet 4 0 0 0 0 0 0 1 0 0 0 0 

pallet 5 0 0 1 0 0 0 0 0 0 0 0 

pallet 6 0 0 0 0 1 0 0 0 0 0 0 

pallet 7 0 0 0 0 0 0 0 0 0 1 0 

pallet 8 0 0 0 0 0 0 0 0 0 0 0 

pallet 9 0 0 0 0 0 0 0 0 0 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 0 
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Layout 
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Distance Matrix with dummy for Heuristic 2 

 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 Dummy pallet 5 pallet 6 pallet 7 pallet 8 pallet 9 

Depot 0 70 65 60 60 45 65 70 55 55 45 

pallet 1 70 0 35 10 30 20 5 40 15 25 25 

pallet 2 65 35 0 25 5 15 30 5 20 10 10 

pallet 3 60 10 25 0 20 10 5 30 5 15 15 

pallet 4 60 30 5 20 0 10 25 10 15 5 5 

Dummy 45 20 15 10 10 0 15 20 5 5 5 

pallet 5 65 5 30 5 25 15 0 35 10 20 20 

pallet 6 70 40 5 30 10 20 35 0 25 15 15 

pallet 7 55 15 20 5 15 5 10 25 0 10 10 

pallet 8 55 25 10 15 5 5 20 15 10 0 5 

pallet 9 45 25 10 15 5 5 20 15 10 5 0 
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Layout with Dummy for Heuristic 2 
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Appendix F: 8 close by pallets stackability and distance matrices (Used in Figure 4.3) 

Distance Matrix 

 

 
Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 pallet 8 Dummy 

Depot 0 70 65 60 55 65 70 60 55 0 

pallet 1 70 0 35 10 25 5 40 30 15 0 

pallet 2 65 35 0 25 10 30 5 5 20 0 

pallet 3 60 10 25 0 15 5 30 20 5 0 

pallet 4 55 25 10 15 0 20 15 5 10 0 

pallet 5 65 5 30 5 20 0 35 25 10 0 

pallet 6 70 40 5 30 15 35 0 10 25 0 

pallet 7 60 30 5 20 5 25 10 0 15 0 

pallet 8 55 15 20 5 10 10 25 15 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 
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Stackability Matrix 

 

S= Depot pallet 1 pallet 2 pallet 3 pallet 4 pallet 5 pallet 6 pallet 7 pallet 8 Dummy 

Depot 0 0 0 0 0 0 0 0 0 0 

pallet 1 0 0 1 0 0 0 0 0 0 0 

pallet 2 0 1 0 1 0 0 0 0 0 0 

pallet 3 0 0 1 0 1 0 1 0 0 0 

pallet 4 0 0 0 1 0 1 0 1 0 0 

pallet 5 0 0 0 0 1 0 1 0 1 0 

pallet 6 0 0 0 1 0 1 0 1 0 0 

pallet 7 0 0 0 0 1 0 1 0 1 0 

pallet 8 0 0 0 0 0 1 0 1 0 0 

Dummy 0 0 0 0 0 0 0 0 0 0 

 

 



 113 

Layout 
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