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ABSTRACT 

Both petroleum pitches and pitches derived from pure polycyclic aromatic 

hydrocarbons (PAHs) are oligomeric materials that can serve as precursors for a wide 

variety of advanced carbon materials.  The goal of this study was the structural 

characterization and quantitative analysis of the dominant constituent oligomers and 

species present in these pitches.   

A key requirement for such work is the ability to fractionate these complex 

mixtures into samples of narrow molecular weight distribution (mol wt; MWD) that can 

be used as standards.  To this end, semicontinuous (or semibatch) dense-gas/supercritical 

extraction (DGE/SCE) was used to produce monomer, dimer, and trimer fractions of 

selected pitches (i.e., M-50 and pyrene pitch) during the course of this work.  Matrix-

assisted, laser desorption/ionization mass spectrometry (MALDI-MS) was then used to 

develop a reliable quantitative analysis method for these polydisperse mixtures of 

petroleum macromolecules.  The interrelationships among MALDI sample preparation 

methods, analyte MWD, and MALDI response for well-defined, oligomeric pitch 

systems were investigated in order to identify a reliable sample preparation method.  

Based on the findings, solvent-free (vs. solvent-based) sample preparation was selected 

for the quantitative analysis study.  DGE-derived, oligomeric cuts were used as standards, 

and the method of standard addition was successfully applied for the first time to the 

quantitative MALDI analysis of a polydisperse system using a solvent-free sample 

preparation method.  



iii 

 

Advanced separation and analytical characterization techniques were used to 

determine the molecular structures of the constituent species present in the monomer and 

dimer fractions of a thermally polymerized petroleum pitch, and of a catalytically 

polymerized pyrene pitch.  Even though the starting material for the pyrene 

polymerization was pure pyrene, alkylated species were found to be present, albeit at low 

concentrations.  Alkylpyrene isomers and the pyrene dimer isomer were isolated by DGE 

followed by HPLC and then unambiguously identified via MALDI and UV-vis.  Dimer 

species were found to consist exclusively of monomer units connected by 6-membered 

rings.  This is in dramatic contrast to our experience with both anthracene and petroleum 

pitches formed via thermal polymerization, where 5-membered connecting rings are the 

predominant method of polymerization.  
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CHAPTER ONE 

INTRODUCTION AND BACKGROUND 

Advanced Carbon Products: Markets and Applications 

The future for advanced carbon materials is bright because of the exceptional 

properties they offer, including high specific strength, high tensile modulus, high thermal 

conductivity, low thermal coefficient of expansion, and good corrosion resistance [1]. 

Because of their high specific strength (10 times stronger than steel) and low density 

(one-fourth the specific gravity of steel) [2], they are becoming a highly desired material 

for several industrial sectors, such as automobiles (e.g., Volkswagen’s XL1 [3] and 

Lamborghini’s Sesto Elemento [4] concept cars); aircraft (e.g., Boeing Dreamliner 787 

[5] and Airbus A350 XWB [6]); alternative energy (wind turbines [7]); and sporting 

goods (e.g., golf shafts [8], bicycles). Heat dissipation, thermal stress, and warping are 

critical issues in the electronics packaging of microprocessors and power semiconductors. 

The high thermal conductivity and low coefficient of thermal expansion of certain types 

of carbon materials make them suitable candidates for thermal management applications 

[9-11] such as microelectronics, optoelectronics, and other applications involving high-

power energy transfer and storage. A recent market survey has predicted $ 2.3 billion 

carbon fiber market by 2015 [12]. 
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Advanced Carbon Products: Making the Transition from  

Exotic to Commodity Materials 

With the emergence of a large number of applications that require carbon-based 

materials, advanced carbon materials are being transformed from exotic materials into 

widely used industrial materials [13]. Satisfying this large demand will require systematic 

development (i.e., high throughput and cost efficiency) of carbon materials and their 

manufacturing [13]. As the production costs involved with advanced carbon fibers are 

about equally split between raw materials and processing [13], research is being carried 

out in both areas. 

Precursors for Advanced Carbon Products 

Two major precursors for the production of carbon fibers are polyacrylonitrile 

(PAN) and pitch. Currently, PAN-based carbon fibers comprise a large majority of the 

carbon fiber market [14]. More than 90% of the commercially available carbon fibers 

used for the applications described above are made from polyacrylonitrile (PAN) [13]. 

PAN-based carbon fibers and pitch-based carbon fibers each possess significant 

differences in their properties that make them suitable for different applications. PAN-

based materials are preferred in reinforcement applications due to their high tensile 

strength [15-16]. Pitch-based carbon fiber, on the other hand, possesses a higher modulus 

and higher thermal and electrical conductivities [9, 15]. This higher thermal conductivity, 

which occurs because of the graphitic nature of petroleum pitches, gives them unique 

advantages in the thermal management market. Low-cost, alternative raw materials such 



3 
 

as lignin are also being investigated for the production of high-performance carbon 

materials [14]. Apart from these materials, synthetic mesophase pitches, prepared by 

thermal or catalytic polymerization of variety of polycyclic aromatic hydrocarbons 

(PAHs), have also been being investigated as precursors for advanced carbon materials 

by the carbon scientists [17,18].  

There are two types of pitch materials, coal-tar-based pitches and petroleum 

pitches. Due to their lower toxicity [19], petroleum pitches have been more widely 

investigated and used than the coal-tar-based pitches. Even though petroleum pitches are 

only about one-fourth the cost of polyacrylonitrile (the raw material for PAN-based 

fibers), pitch-based carbon fibers are still more expensive than their PAN-based 

counterparts. It is the opinion of this author  that a better understanding of petroleum 

pitches at the molecular structure level and the development of better processing 

technology would enable petroleum pitches to realize their potential as precursors for 

low-cost, advanced carbon products.  As discussed earlier, pitch-based carbon fibers 

possess exceptionally high thermal conductivities [9] because of their highly graphitic 

structure, giving them a unique position in the carbon-fiber market for thermal 

management applications. 

Petroleum Pitches 

Petroleum pitches are produced by the thermal polymerization of aromatic decant 

oils, byproducts from the petroleum refinery. They consist of an oligomeric mixture of 

alkylated polycyclic aromatic hydrocarbons (PAHs) and possess a broad molecular 
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weight distribution, ranging from approximately 200 up to above 1000 Da (see Fig. 1.1a)  

[20-23]. Recent structural characterization work from our group [22-23] has definitely 

established the distribution in Fig 1.1a as consisting of monomer, dimer, trimer, etc. 

species and has also elucidated the predominant structures present in petroleum pitches 

(see Fig. 1.1b). This work is the first time that specific, “non-average” structures have 

been presented for petroleum pitches. When the heavier (i.e., trimer and higher) 

oligomers present in petroleum pitches are concentrated, they can form a liquid 

crystalline phase, called mesophase. Thus, identification of these heavier species 

represents, for the first time, the determination of actual structures that form mesophase. 
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Figure 1.1 (a) MALDI mass spectrum of M-50 petroleum pitch. (b) Examples of 

representative molecular structures for the alkylated PAH oligomers that comprise 

pitch are also shown [39].  

Source: Reprinted from Kulkarni, S.U.; Räder, H.J.; Thies, M.C. Rapid. Commun. 

Mass Spec. 2011, 25, 2799. Copyright 2011 John Wiley and Sons. 
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Controlling the Molecular Weight Distribution (MWD) of Petroleum Pitches 

As shown in Fig 1.1a, petroleum pitches possess a distribution of oligomers. 

Fractionation of these pitches in order to control their oligomeric distribution is desirable, 

as it can introduce large changes in the bulk properties of the resultant pitch fractions, a 

fact that can be used to manipulate end-product properties in controlled manner. For 

example, a fraction consisting of essentially pure dimer has a softening point of ~ 200 °C 

[24] and is isotropic in nature (which means that it possesses the same properties in all 

directions/orientations). This dimer fraction serves as an excellent starting material for 

producing activated carbon fibers (ACF) that can be used for environmental applications 

[25-26]. On the other hand, a pitch fraction, comprised of trimer and heavier oligomers 

with a softening point of ~ 320 °C [27] can form liquid crystalline mesophase, which is 

the desired pitch precursor for high thermal conductivity fibers [28-30]. 

Petroleum Pitch-based Precursors for Advanced Carbon Materials: Current Limitations 

and the Necessity of Mol Wt and Structural Characterization 

Even though researchers recognize the role that molecular weight (mol wt) and 

molecular structure play in the bulk properties of petroleum pitches, this knowledge has 

been primarily qualitative. In the author’s opinion, this is one of the reasons that we have 

not yet been able to utilize these low-cost raw materials (i.e., petroleum pitches) to their 

full potential. Industrial processes that are currently being used to produce mesophase 

materials are based primarily on a body of empirical knowledge established by many 

years of operating experience. Typically, these processes produce mesophase from an 
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isotropic feed material, using a combination of thermal polymerization and volatilization 

of low mol wt species. These processes are traditionally performed with only minimal 

knowledge the molecular composition and are monitored via desired bulk properties of 

the end product, such as softening point, viscosity, and/or percent mesophase. As a result, 

the molecular composition of these end products is not necessarily close to that of an 

“ideal” precursor (i.e., a precursor that is easy to process and has the desired end-product 

properties). This leads to the use of additional property optimization processes that 

essentially result into increase in the operating costs. For example, for the production 

high thermal conductivity (HTC) fibers, additional steps, such as graphitization, have to 

be performed to produce ideal precursors. Operating the graphitization furnaces to very 

high temperatures (3000+ °C) to achieve the desired graphitic structure from an inferior 

starting mesophase pitch increases the operating costs and makes the HTC fibers very 

expensive.  High graphitization temperatures also make the fibers brittle and hard to 

handle, which limit their use for many applications. These problems clearly emphasize 

the need for developing the ability to control and monitor the molecular composition. 

In their work of catalytically polymerized synthetic mesophase pitches, Mochida 

and co-workers reported that the pitches produced from different pure, un-substituted 

PAHs (e.g., nathalene, anthracene, phenanthrene) exhibit different physical properties 

(e.g., softening point and flow texture) and MWDs [18]. In another study, same research 

group compared the spinning characteristics of the mesophase pitches derived from 

naphthalene and methylnaphthalene [31] and reported larger and better ordered stacking 

of the aromatic planes in the methylnaphthalene-derived mesophase pitch. This work 
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emphasizes the necessity to understand mesophase-forming structures at molecular level 

to develop the understanding of structure-property relationships. Beside, molecular 

simulations incorporating these structures can be used for the prediction of 

thermodynamic properties relevant to mesophase pitch quality [32].   

Supercritical Fractionation of Petroleum Pitches at Clemson University 

A key aspect to developing a fundamental understanding of the effect of 

constituent structure and MWD on final product properties is the ability to fractionate 

these complex mixtures into samples with narrow, controlled MWD that can be used as 

standards for structural characterization and quantitative analysis. To this end, our 

research group has developed a dense-gas / supercritical extraction (DGE) technique to 

fractionate petroleum pitches into samples with controlled MWDs. Various modes of 

operations, namely continuous, semi-batch, and two-column continuous, have been 

developed and reported in the literature [24,33-36].  

Multi-stage DGE work directed towards the fractionation of pitches was initiated 

at Clemson by Edwards [33]. The Focus of his work was the design, construction, and 

testing of the DGE apparatus for two modes of operation (continuous and semi-batch); a 

qualitative understanding of the effect of operating conditions on product composition 

was also obtained. Cervo [34] then worked to understand the effect of operating 

conditions on the purities and the yields of the fractions. Work done by Cervo [24,35] 

also focused on the production of pure oligomers. This work also discusses development 

of two-column DGE process, and its successful application to produce high-purity dimer 
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fractions. As the objective of this previous (done by Edwards) and contemporary (done 

by Cervo) work was focused on the production of petroleum pitch fractions in quantities 

such that advanced carbon materials such as carbon fibers could be produced, more 

emphasis was given to the continuous and two-column continuous DGE processes [24, 

33-36]. Therefore, a separate effort to produce high-purity oligomers via semi-batch 

DGE was undertaken by the author, as a part of this PhD work, as the smaller amounts 

and higher purities capable of being produced by this method (~ 100 mg) were 

appropriate for our structural characterization and quantitative analysis effort. 

Another contribution of Edwards’s [21] was the development of Matrix Assisted 

Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (abbreviated as MALDI-

TOF-MS, or just MALDI [37,38]) as an analytical method for the mol wt characterization 

of these petroleum pitch fractions.  In fact, Edwards’ work in this area provided the basis 

for the advances in MALDI analysis described in this dissertation. In particular, a 

significant part of this PhD effort was directed towards developing an understanding of 

the interrelationships between MALDI sample preparation, analyte mol wt distribution, 

and MALDI response for petroleum pitch systems [39]. This work subsequently led to the 

author’s development of quantitative relationships between MALDI response and 

oligomeric composition [39,40]. 

Structural Characterization of Petroleum Pitches at Clemson University 

Once the continuous DGE work of Cervo and the semi-batch DGE work 

performed by this author had been established, the stage was set for the work of Burgess 
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[22,23], who used the two-stage sequential fractionation technique of DGE followed by 

high temperature gel permeation chromatography to produce molecular pitch standards 

for subsequent analysis via a range of analytical techniques, including MALDI, MALDI 

post source decay (MALDI/PSD), high-performance liquid chromatography / photo diode 

array detector (HPLC/PDA), and Fourier transform infrared spectroscopy (FTIR). As a 

result of this work, Burgess was able to determine many of the actual, predominant 

structures present in both the monomer [23] and the oligomeric [22] portions of 

petroleum pitch. The key contribution of this author to Burgess’s work was the 

production of semi-batch DGE-derived narrow monomer-rich and dimer-rich fractions 

which were further fractionated and/or characterized using various analytical 

characterization techniques. Author also contributed in the determination of dimeric 

structures present in petroleum pitches by identifying that most of the predominant 

dimeric species form by the condensation reaction of predominant monomer species, with 

the accompanying loss of 4-6 hydrogen atoms [41]. This information is currently being 

used in a molecular modeling effort [32] whose long term goal is the prediction of the 

bulk liquid crystalline properties of petroleum pitches as a function of oligomeric 

composition. 

Structural Characterization of Synthetic Pitches at Clemson University 

Burgess, in his structural characterization work, had also studied synthetic 

carbonaceous pitches [22]. A thermally polymerized anthracene pitch was fractionated 

using high-temperature, gel permeation chromatography and the fractions were 
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characterized using UV/Vis spectrometry to identify the constituent structures [22]. 

Analytical characterization method, develop by Burgess for the identification of 

constituent structures of petroleum and anthracene pitches, was then extended to the 

characterization of catalytically polymerized synthetic pitches by the author. In 

particular, catalytically polymerized pyrene pitches were fractionated and characterized 

by the author in this PhD work. An HPLC/PDA system needed for the successful 

structural characterization of these complex carbonaceous pitches was also built by the 

author during the course of this study.  

In summary, as discussed in the previous paragraphs of this sub-section, the three 

main objectives of this PhD work were to (1) investigate the semi-batch DGE technique 

for isolating pure oligomers, (2) develop a reliable quantitative analysis method to 

monitor the oligomeric composition of the pitch fractions obtained via DGE processes, 

and (3) identify the actual, “non-average” structures present in the petroleum pitches and 

catalytically polymerized pyrene pitches.  

Literature Review 

Before proceeding to a discussion of the work carried out in the course of this 

dissertation, it will be necessary to acquaint the reader with some background 

information regarding relevant research topics. This information is divided into four 

parts: (1) supercritical fractionation of petroleum products; (2) analytical characterization 

of heavy petroleum macromolecules; (3) MALDI mass spectrometry of macromolecules 

(bio-molecules, polymers, petroleum samples) and the role of sample preparation 
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techniques; and (4) quantitative analysis of macromolecules using MALDI mass 

spectrometry. As excellent reviews of the literature are already presented by Cervo [42] 

on liquid and supercritical extraction techniques for polymeric materials and petroleum 

macromolecules and by Burgess [43] on the analytical characterization of petroleum and 

coal-based macromolecules, the first two parts of this literature review are discussed in 

less detail.  

1. Supercritical Fractionation of Petroleum Products 

Supercritical fractionation of heavy fossil fuels has been one of the active areas of 

research for the petroleum community, as it provides the opportunity to cut deep into 

heavy petroleum products such as bitumen, vacuum residua, and heavy oils [44-47]. As 

the petroleum pitches used in this research work are mixtures of heavy petroleum 

macromolecules comprised of polycyclic aromatic hydrocarbons (PAHs), the 

fractionation and characterization work that has been done with a variety of heavy 

petroleum feedstocks is relevant to our work. 

Supercritical Extraction for Heavy Oil Upgrading 

One of the earlier applications of the supercritical fractionation of petroleum 

products was the Residuum Oil Supercritical Extraction (ROSE) process [48]. ROSE 

process, developed by Kerr-McGee, is used to deasphalt heavy oils. Even though this 

process was not entirely supercritical extraction process, as its primary step was carried 

out at compressed liquid conditions, it did take advantage of the variable solvent power 

of a near-critical liquid. In this process, a residuum is first mixed with compressed liquid 
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solvent (either butane or pentane) and the undesired asphaltene fraction is precipitated.  

The overhead fraction consisting of solvent, resins, and light oil is then heated to near the 

critical temperature of solvent. At this temperature, the solvent power decreases and 

resins precipitate out of the solution. Solvent-light oil solution left in the resin separator is 

then heated slightly above the critical temperature of the solvent at which the light oil 

precipitates out of the solution. This process is still used by the petroleum industry to 

upgrade heavy oils from refineries.  

Supercritical Extraction of Heavy Oils and Petroleum Residua 

At the University of Petroleum (Beijing, China), the application of supercritical 

extraction to fractionate petroleum vacuum residua has been investigated [40-43]. In a 

manner similar to what was proposed by Zosel [49], a packed column was used for the 

fractionation process. Three solvents, propane, butane, and n-pentane, were investigated, 

and n-pentane gave the highest extraction yields [45]. Researchers fractionated sample of 

residua into 15-17 fractions. A temperature gradient was used to introduce reflux, and 

pressure was used to manipulate solvent densities. Even though the authors claimed to 

have produced “narrow” fractions of the heavy residua, they did not document the 

presence of such “narrow” fractions, as no data on MWD, or polydispersity were 

provided.  

Supercritical Extraction of Oil Sands 

Subramanian and Hanson [50] conducted the supercritical extraction of oil sands 

in order to compare the properties of oil sand deposits obtained from four different 
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sources. Apart from the effect of temperature and pressure, the effect of solute polarity on 

the fractionation process was also investigated. The authors concluded that solute polarity 

plays a significant role in extraction yields, and the sample with the least polarity was 

found to give the highest extraction yields. No MWD information was presented by the 

authors.  

Supercritical Extraction of Crude Oil Asphaltenes 

Doumenq and co-workers [51] performed the supercritical fractionation of crude 

oil asphaltenes, using carbon dioxide as the supercritical solvent. The effect of several 

parameters, such as pressure, temperature, and the presence of a co-solvent, were 

investigated. Pressure and co-solvent (such as toluene and dichloromethane) were found 

to be the most relevant parameters in this work, with an improvement in the fractionation 

yield being observed with the presence of co-solvents. As the samples fractionated were 

analyzed with GC/MS (the mol wt range of the species analyzed was 160-400 Da) and as 

the reported extraction yields were low (5 to 12%), it can be concluded that the fractions 

obtained represented only the lowest mol wt portion of the asphaltenes. These results also 

tell us that supercritical extraction performed with carbon dioxide does not give high 

extraction yields and only extracts the lower mol wt species in a heavy fossil fuel. 

Limitations of the Previous Supercritical Extraction Studies 

One important aspect missing from the above-mentioned supercritical 

fractionation work was the use of a reliable characterization method to monitor the 

effects of a given separation process, particularly on a more fundamental level. This 
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limitation somewhat hampered the ability of previous workers to monitor the 

effectiveness of their extraction work. Fortunately, with the advent of MALDI mass 

spectrometry and the development of reliable sample preparation techniques [21, 52-53], 

our group has developed the ability to monitor the MWD of the fractions obtained by 

supercritical extraction with a reasonable degree of accuracy. This ability has been a 

significant help to our work, as we seek to fractionate petroleum pitches in controlled 

manner. This MALDI characterization development is discussed in the latter part of this 

dissertation. 

Supercritical Fractionation of Petroleum Pitches: Brief Review of the  

Research Work Conducted at Clemson University 

After this brief review of the application of supercritical fractionation to heavy 

petroleum fractionation, now is the time to go over the efforts that have been carried out 

in Clemson under Dr. Thies’s supervision. As Cervo [42] has already given such a review 

in his thesis introduction, this is only a brief overview. 

At Clemson University, Thies and co-workers have been investigating the 

characterization and fractionation of heavy fossil fuels for more than 20 years, with an 

emphasis on petroleum pitches. Phase equilibrium measurements for pitches in 

supercritical toluene were the focus of early work, with characterization of the pitches in 

each phase also being of interest [54-56]. In subsequent years, studies of the effect of 

single-stage supercritical extraction operating parameters on bulk pitch properties, such 

as softening point and percent mesophase, were made [57]. Zhuang et al. [58] then 
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investigated near critical liquid-liquid extraction for the fractionation and characterization 

of the heavier portion of petroleum pitch. However, the process was time consuming 

relative to the amounts of pitch produced. Furthermore, even though significant efforts 

were made to characterize the heavy pitch fraction using both hydrogenation and high-

temperature size exclusion chromatography (SEC), the results were disappointingly 

inconclusive. Similar to the experiences of other research groups, the lack of an effective 

characterization process for the pitches meant that it was difficult to quantify the 

effectiveness of a given separation process.  

With no effective means of characterizing pitches being available, pitch research 

by the Thies group came to a virtual standstill until Edwards’ [21] development of 

MALDI as a technique for the simple and rapid mol wt analysis of pitches and pitch 

fractions. Key to this development was the discovery that 7,7,8,8-

tetracyanoquinodimethane (TCNQ) was a highly effective matrix for ionization of high 

mol wt PAHs. 

The first packed, multistage column setup in the Thies group, which was operated 

in semi-batch mode, was developed by Fail [59]. Edwards [33,60-61] then significantly 

improve upon this original setup, building a unit capable of being operated both in the 

continuous and semi-batch mode. Both of these operation modes are shown in Figs 1.2 

and 1.3, respectively. For the first time, the group was able to determine the MWD 

distribution of the pitch fractions obtained during a given separation process.  
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Figure 1.2 Continuous, multi-stage Dense Gas Extraction (DGE) unit designed and 

constructed by Edwards and Thies [33,60-61].  

Source: Adapted from Edwards, W.F.; Thies, M.C. Carbon 2006, 44, 243-252. 

Copyright 2006 Elsevier. 
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Figure 1.3 Semi-batch, multi-stage Dense Gas Extraction (DGE) unit designed and 

constructed by Edwards and Thies [33,60-61].  

Source: Adapted from Edwards, W.F.; Thies, M.C. Carbon 2006, 44, 243-252. 

Copyright 2006 Elsevier. 
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Cervo was the first researcher in the Thies group to comprehensively investigate 

the potential and limitations of dense-gas/supercritical fractionation of petroleum pitches. 

In his initial work [34], the effect of pressure and temperature on oligomeric composition 

and product yield were investigated. MALDI mass spectrum characterization performed 

on the separated fractions showed that the MWD of bottom products could be altered by 

manipulating the operating pressure by as little as 5 bar. Two-column continuous 

fractionation was then developed [24,35] (see Fig. 1.4), in an attempt to produce high-

purity dimer and trimer fractions. In particular, the overhead fraction from the first 

column was fed to the second column, for isolation of dimer or trimer oligomer. Cervo 

was able to produce high-purity monomer (by one-column continuous fractionation) and 

dimer oligomers (by two-column continuous fractionation process) with the mol wt 

ranges of the products being about 202-380 Da and 380-650 Da, respectively. During the 

Journal of Supercritical Fluids’ review process for the article submitted on this work, one 

of the reviewers lauded this work, stating that the experimental apparatus and the work 

described in this publication as one of the finest engineering works reported in the heavy 

petroleum fractionation literature.  

In contrast to Cervo’s work, the focus of the experiments performed in this thesis 

was not on continuous fractionation via DGE, but on semi-batch operation. The reason 

for using this operation mode, and the motivation behind the work, are discussed in the 

second chapter of this dissertation. 
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Figure 1.4 Two-column, continuous, multi-stage Dense Gas Extraction (DGE) unit 

designed and constructed by Cervo and Thies [24, 35].  

Source: Adapted from Cervo, E.G.; Thies, M.C. J. Supercrit. Fluids 2010, 51, 345-

352. Copyright 2010 Elsevier. 
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2. Analytical Characterization of Petroleum Macromolecules 

As Burgess [43] has provided a good literature review on the analytical 

characterization of petroleum and coal tar pitches in his dissertation, this section will 

provide just a brief overview of the characterization of petroleum pitches and other types 

of petroleum macromolecules.  

One of the first studies on the characterization of petroleum pitches was 

performed by Dickinson [62]. A-240 petroleum pitch was separated into three fractions 

using conventional solvent extraction, and the resultant fractions were then analyzed by 

the best analytical characterization techniques of that time, including vapor pressure 

osmometry (VPO), 
1
H NMR, 

13
C NMR, and elemental analysis. With the application of 

several analytical characterization techniques mentioned above, Dickinson was able to 

identify the presence of alkyl groups attached to the PAH backbone structures. These 

structures are shown in Fig. 1.5.When this information was combined, Dickinson was 

able to propose average molecular structures for each fraction. Even though this was 

high-quality work for its time, it also emphasized to us the importance of fractionating 

samples like A-240 into narrow mol wt cuts before carrying out structural 

characterization. Work done by Dickinson is particularly included in this brief review to 

emphasize the necessity of high-purity, narrow MWD fractions for the successful 

structural characterization of complex petroleum-derived mixtures, such as, petroleum 

pitches. 



22 
 

Since Dickinson’s work, other research groups have applied a number of 

characterization techniques to obtain information such as molecular weight distribution 

and the constituent structures present in petroleum and coal-tar pitches. The advantages 

and disadvantages/limitations of the various analytical techniques used for these studies 

are nicely tabulated by Burgess in his thesis introduction [43]. In particular, Burgess has 

discussed the advantages and limitations of various regular and advanced characterization 

techniques such as elemental analysis, size exclusion chromatography (SEC), vapor 

pressure osmometry (VPO), IR and UV/Vis spectroscopy, 
1
H and 

13
C NMR 

spectroscopy, and MALDI mass spectrometry. As discussed by Burgess and as observed 

in the literature [18, 37], techniques such as GPC and VPO were found to be limited due 

to the solubility issues of the petroleum macromolecules. 
1
H and 

13
C NMR spectroscopy 

were also found to be limited with the sample solubility [20,62].  While techniques such 

as elemental analysis and FT-IR spectroscopy can be applied to the solid state samples, 

the information obtained from these techniques is not sufficient enough to identify the 

constituent structures present in petroleum and coal-tar pitches. While elemental analysis 

provides useful information about the aromaticity of the sample by providing the 

molecular C/H ratio, it cannot give any other information about the sample. Similarly, 

while FT-IR can provide useful structural information about the samples by identifying 

various structural groups, it alone cannot provide information about the constituent 

structures. Moreover, both elemental analysis and FT-IR analysis are average methods 

and hence cannot provide information about the individual structures.  
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Figure 1.5 Average molecular structures of A-240 petroleum pitch, as proposed by 

Dickinson [62]. Structures reproduced with permission. 

Source: Reprinted from Dickinson, E.M. Fuel 1985, 64, 704. Copyright 1985 Elsevier. 
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Mass spectrometry techniques, such as gas chromatography/mass spectrometry 

(GC/MS), were also applied for the direct measurement of the mol wt of constituent 

species. GC/MS based characterization was found to be limited due to the lower volatility 

of the constituent petroleum macromolecules [20,62] and hence cannot be applied to 

species with mol wt 400 Da and above. With advent of MALDI mass spectrometry [37-

38], a new method for the macromolecular characterization became available to 

petroleum/fuel/carbon scientists. MALDI mass spectrometry addressed the limitations of 

GC/MS and other mass spectrometry techniques (e.g., electron ionization (EI) and 

chemical ionization (CI) mass spectrometry) by its soft ionization mechanism. In the 

earlier stages of its development, MALDI was also limited by the solubility of the 

sample.  With the development of the solvent-free sample preparation methods [48,49] 

this limitation was addressed and since then MALDI has been routinely used for the 

characterization of insoluble macromolecules.  

Edwards and Thies applied MALDI mass spectrometry, for the first time, to 

petroleum pitch characterization [21]. In this pioneering work, they initially studied 

various matrices (e.g., dithranol, a-cyano-4-hydroxycinnamic acid, and TCNQ) as well as 

various matrix-to-analyte ratios and identified best matrix (i.e., TCNQ) and matrix-to-

analyte ratio (i.e., 20:1). Reproducible and highly resolved mass spectra were obtained 

for insoluble petroleum pitches by the application of solvent-free sample preparation 

method. This successful development of solvent-free characterization method gave our 

research group the tools necessary to develop the ability to monitor the DGE 

fractionation process. 
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Structural Characterization of Petroleum Pitches  

at Clemson University: Preliminary Work 

Cristadoro et al. [41] used narrow fractions produced by DGE fractionation (i.e., 

79% and 98% pure monomer, and 89% and 97% pure dimer), and characterized them 

using several characterization techniques (i.e., MALDI, MALDI-PSD, 
1
H-NMR, UV/Vis, 

and FTIR) to propose predominant, “non-average” polycyclic aromatic hydrocarbon 

(PAH) structures present in the monomer fraction of petroleum pitches. The presence and 

types of alkyl groups attached to the PAH backbones was also identified in this work. 

They also found out that the predominant dimer species present in pitches are basically 

condensation products, obtained by the reaction of two monomer molecules, 

accompanied by the loss of 4-6 hydrogen atoms. This work is included as CHAPTER 5 

of this thesis. 

Even though Cristadoro et al. [41] proposed the non-average PAH backbone 

structures present in monomer fraction, these structures were not unambiguously 

identified. All the PAH backbone structures that were proposed were based on the 

molecular weight of the species (obtained via MALDI) and the UV/Vis spectra of the 

possible/probable PAH backbones. “Screening” of the most probable PAH backbones 

was performed by comparing the UV/Vis spectra of these possible PAHs with the 

UV/Vis spectrum of the 97% monomer rich pitch fraction. In other words, all the 

proposed PAH backbones were, more or less, educated guesses. Even though this was a 

good start for the preliminary studies, this approach was not good enough to identify all 
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the possible PAH backbones present in the monomer rich fraction. Also, it was not 

possible to identify which isomer structure is predominantly present by using the above 

mentioned screening method. As the subsequent work has shown [23], authors had 

missed several prominent PAH backbones that are present in the petroleum pitch 

monomer (such as pyrene, triphenylene, benzo[a]pyrene, and benzo[ghi]perylene). 

Structural Characterization of Petroleum Pitches at Clemson University:   

Two-step, Sequential Fractionation and HPLC/PDA Characterization 

This structural characterization work was then taken to the next level by Burgess. 

Burgess was the first to unambiguously identify actual, “non-average” structures present 

in the monomer fraction of petroleum pitch [23]. First, a “two-step sequential 

fractionation” technique, comprised of fractionation of petroleum pitches by DGE 

separation, followed by high-temperature, preparative scale gel permeation 

chromatography (Prep-GPC) fractionation, was applied to produce monomer samples 

with very narrow MWDs. These narrow samples were fractionated using HPLC to 

separate individual species, which were then characterized using PDA detector. All the 

PAH backbones were unambiguously identified by comparing the UV/Vis spectrum of 

the HPLC eluent with the standard spectra available in the literature. The key factor for 

this successful structural identification was the isolation of individual species from the 

complex petroleum mixture.  

After identifying the predominant monomers, Burgess used this information and 

proposed the predominant structures present in dimer, trimer, and tetramer [22]. In the 
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previous publication [41], authors had identified that the predominant dimer species 

present in pitches are basically condensation products, obtained by the reaction of two 

monomer molecules with the loss of 4-6 hydrogen atoms. However, at the time of this 

study, the arrangement of bonds between the monomer units was not identified. Whether 

oligomerization process occurs via a condensation reaction, with the loss of four 

hydrogens, results into dimer and heavier species with a nonalternant, 5-membered PAH 

ring or an alternant, 6-membered PAH ring structures was unknown during the initial 

studies. To obtain this information, Burgess initially fractionated pure oligomer cuts of 

petroleum pitch by using two-step, sequential fractionation method. These fractions were 

then characterized using analytical techniques, such as MALDI, MALDI PSD, and 

UV/Vis spectroscopy. UV–Vis spectra of the pure oligomeric fractions indicated the 

presence of nonalternant, 5-membered PAH structures. Burgess also conducted the FTIR 

analysis and compared the results obtained for monomer, dimer, trimer, and tetramer 

fractions. Burgess observed significant aryl content present in all the oligomeric fractions 

of M-50 pitch. Based on these observations, Burgess concluded that formation of heavier 

species does not occur by significant rearrangement of monomeric species and the 

heavier oligomers are not highly condensed structures but are relatively open structures. 

This study by Burgess represents the first time that actual molecular structures have been 

proposed for the major species comprising petroleum pitch-derived mesophase.   
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3. MALDI Mass Spectrometry of Macromolecules (Biomolecules, Polymers, Petroleum 

Samples) and the Role of Sample Preparation Techniques 

Matrix Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry 

(MALDI-TOF-MS, or MALDI) is a mass spectrometry technique that was 

simultaneously developed by Hillenkamp and Karas [37] and Tanaka et al. [38] in the 

late 1980s. Even though the technique was originally developed for the analysis of bio-

molecules, it was also quickly adapted by the polymer chemistry community.  

Before the advent of soft ionization techniques such as MALDI and Electrospray 

Ionization (ESI) mass spectrometry (MS) [63], various other techniques, such as GPC, 

vapor pressure osmometry (VPO), intrinsic viscosity, had to be used for the mol wt 

analysis of polymeric materials [64]. The limitations of GPC include its poor resolution 

and the need for calibration standards. Thus the MWD information obtained by GPC is 

indirectly obtained, unlike the MS techniques. Polymeric systems, for which calibration 

standards are not readily available, errors up to 30 % have been observed in GPC-based 

calculations [65].  

For determining mol wt, the method of VPO has its own set of problems. 

Calibration standards are not required and analyte mol wt and accurate mol wt 

information can be obtained. However, the method is extremely time consuming, and one 

obtains only the number average molecular weight of a given fraction – a single number 

devoid of any MWD information. Therefore this method cannot be used to discriminate 
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between a narrow MWD and broad MWD nor between the unimodal and bimodal 

distributions [64]. 

Various MS techniques such as electron ionization (EI), Chemical Ionization (CI), 

and gas chromatography/mass spectrometry (GC/MS) were used on macromolecules 

before the advent of MALDI, but only with very limited success (i.e., analyses were 

carried out primarily on low mol wt polymers or the precursors for polymers and other 

macromolecules). With the introduction MALDI and ESI in late 1980s [37,38,63], the 

limitation faced by traditional MS techniques were to a large extent overcome, and for 

the first time polymeric macromolecules were successfully ionized and transferred into 

gas phase without thermal degradation or excessive fragmentation. These developments 

opened a new era in the MS analysis of polymeric materials, which is evident from the 

pace at which the number of polymer-based abstracts has grown over the years at the 

annual conferences of the American Society for Mass Spectrometry (ASMS) [66]. 

Working Principle of MALDI Mass Spectrometry 

As the name suggests, the key component of MALDI is the matrix, which 

facilitates process of analyte molecule ionization. For a typical MALDI analysis, a dilute 

analyte solution is mixed with a solution containing the matrix at a concentration 100-

1000 times higher than that of the analyte. A small amount O ( L) of the solution mixture 

is then applied onto the MALDI target. After evaporation of the solvent, the resultant 

analyte-matrix crystals are irradiated by a pulsed nitrogen laser at a wavelength of 337 

nm. Even though our understanding of desorption/ionization mechanism for the analyte 
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molecules that follows after laser irradiation is incomplete, the most widely accepted 

model consists of a two-step ionization process. Referring to Fig. 1.6, the matrix initially 

strongly absorbs the irradiated laser energy, and in the first step matrix ions are generated 

with the formation of the expanding gas plume. During this process of matrix ionization 

and gas plume formation, intact neutral analyte molecules are desorbed from the surface. 

Step II, the secondary ionization process (i.e., the formation of analyte ions), takes place 

in the expanding gas plume through charge-transfer reactions between matrix ions and 

neutral analyte molecules [67-68]. MALDI-generated ions are generally singly charged 

ions [68]. These ions are detected by time-of-flight (TOF) mass analyzer. In TOF MS, all 

analyte ions are accelerated by an electric field of known strength to the same kinetic 

energy as they exit the ion source. As all the ions possess same kinetic energy, lighter 

ions travel faster than the heavier ions. These ions then travel though the field-free flight 

tube in which they are separated based on their velocities. These ions finally get detected 

by a micro-channel plate detector.  
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Figure 1.6. Two-step ionization process observed in MALDI-MS [67]  

Source: Adapted from L. Li. Ed. MALDI Mass Spectrometry for Synthetic Polymer 

Analysis. John Willey & Sons Inc: Hoboken, NJ, 2010. Copyright 2010 John Willey 

& Sons. 
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MALDI Sample Preparation 

The analysis of a given sample by MALDI can be broken into four basic steps: (1) 

sample preparation; (2) analyte desorption; (3) analyte ionization; and (4) mass analysis. 

As one of the objectives of this research work was to investigate the effect of sample 

preparation methods on the reproducibility of the petroleum pitch analysis, here we will 

focus our discussion on the sample preparation step. 

For MALDI sample preparation itself, the two key steps are: (1) mixing of the 

analyte and matrix and (2) deposition of the resultant mixture on a MALDI target plate. 

The traditional and most widely used technique for mixing the analyte and matrix is to 

dissolve them together, in some cases along with an ionizing salt, in a solvent or solvent 

mixture. 
 
This sample preparation method is called solvent-based sample preparation 

method. Some research groups also developed a solvent-free sample preparation method 

to address the shortcomings of the solvent-based method. This method is discussed in the 

latter part of this introduction. In solvent-based sample preparation method, after the 

solution (containing mixture of an analyte and a matrix) is spotted onto the target plate 

and the solvent evaporates, the resultant matrix-analyte deposit should ideally be 

homogeneous. This homogeneity means that every single analyte molecule should be 

surrounded by matrix molecules. While acceptable qualitative results can be achieved 

even with poor sample homogeneities, good sample homogeneity at the molecular level 

is a must for quantitative analysis. Both matrix-analyte mixing and matrix-analyte sample 

deposition steps play role in the resultant sample homogeneity. Effective analyte-matrix 
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mixing requires selection of best matrix, best ionizing agent (if necessary), and best 

solvent (if the solvent-based sample preparation method is applied) for the given analyte 

system.  

MALDI Sample Preparation: Matrix, Ionizing Salt, and Solvent 

Two important factors that need to be considered for effective sample preparation 

are matrix selection and cationizing agent selection. For some analytes such as 

polyethylene glycol (PEG) (e.g., PEG 1000), a similar mass spectrum is obtained 

independent of the choice of the matrix or cationizing agent [69]. Unfortunately, most 

analytes are not as straightforward to analyze as PEG 1000 is and require a thorough, 

rigorous approach for selecting the matrix and cationizing agent. Owens and Hanton [69] 

have discussed this selection process in detail in their book chapter. This discussion is 

very useful for any MALDI practitioner.  

Hanton and Owens [70] also conducted a separate study to investigate the effect 

of the matrix on the MALDI analysis of polystyrene sample. A polystyrene sample (PS 

2900) was analyzed using MALDI as well as Secondary Ion Mass Spectrometry (SIMS) 

with dithranol and dihydroxy benzoic acid (DHB) serving as matrices. They observed 

that dithranol works as a better matrix for the PS 2900 sample. SIMS analysis was 

performed, on the samples analyzed by MALDI, to determine the extent of analyte 

dispersion into the matrix. As SIMS technique analyzes the first few atomic layers of the 

sample spotted on the target [70], if the analyte spectrum is observed by the SIMS, it 

indicates that the analyte molecules are located on the surface of the spotted sample. 
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Authors used the intense analyte signals in the SIMS analysis as an indicator of poor 

dispersion of the analyte sample into the matrix.  SIMS analysis of the PS 2900 sample 

showed poor analyte response, and hence indicated better dispersion of the analyte in the 

dithranol matrix. Authors concluded that the better analyte dispersion was the key reason 

behind the better performance of dithranol matrix.  Some other studies that studied the 

effect of matrix on the quality of the analyte MALDI spectra can be found elsewhere [71-

75].  

Selection of ionizing agent (i.e., the salt) also plays significant role in the success 

of the MALDI characterization. Study conducted by Xiong on the analyte system, 

comprised of equimolar mixture of PEG and polytetramethylene glycol (PTMEG), 

compared the effect of lithium and potassium salts on the quality of the MALDI spectra 

[69,76]. While the sample which had lithium salt showed PTMEG, sample with 

potassium salt led to the observation of the PEG. This kind of results can lead to 

erroneous calculations of MWDs of the unknown polymeric systems. This study clearly 

emphasizes the need for selecting best possible ionizing agent for the given analyte 

system. 

Another factor that affects quality of the MALDI mass spectra is the selection of 

solvent (in case of solvent-based sample preparation). Cohen and Chait [77] conducted a 

study to investigate effect of the solvent on the MALDI characterization of biomolecules. 

In their work,   different solvents (with different pH values) were used to analyze a 
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peptide mixture with the same matrix, HCCA. The different solvents resulted in different 

mass spectra. 

MALDI Sample Preparation: Role of Sample Deposition 

Researchers have observed that not only the mixing step but also the effective 

deposition of the matrix/analyte mixture solution on the MALDI target plate plays an 

important role in the resultant homogeneity of the sample (and thus the quality of the 

MALDI spectrum). As a result, researchers have developed various sample deposition 

methods. The dried droplet deposition method is the oldest of the sample deposition 

methods, as it was used by Karas and Hillenkamp in the first paper to report on MALDI 

[37]. With this method, the analyte solution (prepared by dissolving the proteins in 

solvent water) is mixed with the matrix solution (prepared by dissolving the matrix in the 

same solvent). A drop of the mixture solution is then spotted onto the MALDI target plate 

and air-dried.  

Vorm et al. [78] developed a technique that they call thin-layered deposition, in 

which the analyte and matrix handling are decoupled. Matrix is first dissolved in a highly 

volatile solvent (such as acetone) and spotted onto the MALDI target plate. This highly 

volatile solvent evaporates rapidly, forming a thin layer of the matrix on the MALDI 

target. Vorm et al. reported the formation of a dense, flat, thin layer comprised of very 

small matrix crystals. The analyte solution drop was then spotted on the already spotted 

matrix film. They reported better homogeneities and better sensitivities than conventional 

dried droplet method by using this sample preparation method.    
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Őnnerfjord and co-workers [79] introduced the “seed-layer” sample preparation 

method for obtaining homogeneous sample surfaces for the automated MALDI analysis 

of proteins and peptides. With their method, initially the matrix solution is spotted on the 

target plate. A solution of the analyte and matrix is then deposited onto this same spot. As 

with the method of Vorm et al. described above, this method also requires volatile 

solvents (such as acetonitrile) for the sample preparation. Note that with the “seed-layer” 

method, a matrix-analyte solution is spotted onto the initial matrix layer – vs. just the 

analyte solution with the method of Vorm et al. Őnnerfjord et al. postulated that with 

their method, they were able to embed the analyte molecules with the matrix molecules 

more effectively. The “seed-layer” method was reported to produce samples with better 

surface homogeneity and better spot-to-spot reproducibility, when compared with the 

conventional dried droplet method. Unfortunately, authors did not report any comparison 

with the method of Vorm et al. 

Owen and co-workers [80] developed an electrospray sample preparation method 

for the MALDI analysis of biomolecules. The small droplets formed during the 

electrospray process were found to improve the homogeneity of the sample surface 

prepared. Samples prepared by this method were compared with samples prepared via 

conventional dried-drop method. Better “spot-to-spot” and “shot-to-shot” 

reproducibilities were observed, indicating the better homogeneity of the samples 

obtained by this method. 
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Limitations of the Solvent-based Sample Preparation Methods 

Even though the developments described above in the area of sample preparation 

and deposition have improved sample homogeneities, a common requirement that they all 

have is the necessity of the analyte and matrix to be soluble in common (and preferably  

volatile) solvents. Thus, these sample preparation methods are generally referred to as 

“solvent-based” sample preparation methods. However, these methods are limited in that 

they cannot be used for compounds that have low solubilities or are completely insoluble 

in traditional solvents. Selected material, including intractable polymers [81-82], heavy 

fossil fuels [21], organometallic and coordination compounds [83], and large polycyclic 

aromatic hydrocarbons [22,52] can exhibit partial or even complete insolubility in various 

traditional solvents, and thus cannot be studied using solvent-based sample preparation 

methods. For complex mixtures, such as a polymer that consists of several oligomers or 

petroleum macromolecules such as our petroleum pitches, the sample constituents 

possess different solubilities in the solvent. As a result, MALDI analysis of such samples 

using solvent-based sample preparation methods can lead to erroneous results. For 

example, insoluble species get excluded in the sample preparation method and hence do 

not show up in the resultant MALDI spectra [81,84]. Mass discrimination effects, that is, 

underestimation of the heavier oligomers present in a given sample, have also been 

reported in the literature when solvent-based methods were applied [85]. 

Researchers have also reported poor sample homogeneities (which lead to poor 

reproducibility) for the solvent-based samples analyzed by MALDI [81]. For samples 
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with wide MWD, such as polymers, differences in the solubility of various constituents 

can lead to inhomogeneous distribution of sample constituents during the solvent 

evaporation step. This inhomogeneous distribution of the constituents is believed to be 

the reason behind poor reproducibilities. Very recently Weidner and co-workers [86] 

investigated this localization (i.e., inhomogeneous distribution) of polymeric composition 

in samples prepared for (MALDI) analysis, using the MALDI imaging mass 

spectrometry. In this method, the mass spectrometer records the spatial distribution of 

molecular species based on their mol wts. As this data can be used to determine how 

species A (e.g., analyte) is spatially distributed with respect to species B (e.g., matrix), 

this information can be used to determine the homogeneity of the resultant sample. In 

their work, polymer samples (polybutyleneglycol (PBG)–polypropyleneglycol (PPG) 

copolymer) were prepared using conventional, dried-droplet solvent-based method. The 

analysis performed with the acetone as a solvent showed the uniform distribution of the 

analyte sample over the spotted sample area. However, when methanol was used as a 

solvent, a poor distribution was obtained, with the analyte being concentrated at the 

periphery of the spotted sample. Clearly, such a segregation effect between the matrix 

and analyte is an indication of a non-homogeneous sample. The authors reported that 

segregation and poor homogeneity were observed not only with the matrix and analyte, 

but also within the analyte system too. A significant degree of segregation was observed 

even between the various oligomers of the same polymer. Based on these observations, 

the authors suggested the use of better sample preparation methods in order to insure the 

sample homogeneity. 
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Solvent-free Sample Preparation Methods for MALDI Characterization 

To overcome this limitation, several groups have initiated “solvent-free” sample 

preparation methods. The development of solvent-free sample preparation methods has 

significantly contributed to the successful characterization of samples that were difficult 

to analyze (not only by MALDI but also by many other characterization techniques) 

because of their solubility limitations.  

Skelton et al. [82] analyzed polyamides, intractable polymers that are insoluble in 

most common solvents, using a solvent-free sample preparation method analogous to 

how one makes a crystalline KBr pellet for the FTIR analysis. That is, polymer samples 

were first ground to make a fine powder using a mortar and a pestle; this sample powder 

was then mixed with the matrix and pellets of the mixture were formed using a hydraulic 

press. The resultant thin, flat pellets were then placed onto the MALDI with two-sided 

tape and analyzed. Good signal response (i.e., high signal-to-noise ratio) and 

reproducibility were reported by the authors. As discussed by Wyatt and co-workers [83], 

this sample preparation method is not a robust method. In their study, Wyatt and co-

workers noticed that the pressed disks were extremely fragile and very difficult to handle 

during the MALDI sample preparation. 

Another group that has invested efforts in the development of solvent-free sample 

preparation methods is the group from Max Planck Institute of Polymer Research. For 

example, Profs. Müllen, Räder, and co-workers developed the “ball mill” method of 

solvent-free sample preparation [52]. Giant polycyclic aromatic hydrocarbons (PAHs) 
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were mixed with the solid matrix using a ball mill. Use of non-solvent (such as water, in 

case of PAHs) was applied for the deposition of the matrix/analyte powder mixture in 

order to minimize the risk of contamination of the ion source. This work was quite 

significant, as it showed that the solubility of the analyte or matrix was no longer a 

limiting factor in MALDI analysis. 

On the basis of their success with the solvent-free sample preparation and MALDI 

analysis of giant PAHs, Müllen and co-workers then analyzed several polymeric 

materials and compared the results with the conventional, dried-droplet method. In 

particular, Trimpin et al. analyzed polystyrene and poly(methyl methacrylate) samples in 

the mass range of 2 to 100 kDa [87]. Better reproducibility and a reduction in the mass 

discrimination effects were reported. In later studies with the polymer 

polydimethylsiloxane (PDMS), the group reported that the sample of broad MWD (mass 

range from 1000 to 28,000 Da) gave mass spectra with a high shot-to-shot 

reproducibility. A solvent-based method, on the other hand, failed to generate a mass 

spectrum for the same sample in the same mass range [81].  

Another group that has successfully developed solvent-free sample preparation 

methods is Hanton and co-workers. Hanton and Parees [53] developed the method called 

“vortex mixing” method for mixing the matrix and analyte samples. They used a small 

glass vial, added the solid matrix and analyte samples and two small metal balls to the 

vial, and mixed them using a vortex mixer. Samples prepared over the mixing time of 30-

60 seconds showed results compared to the results obtained with other, more time-
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consuming solvent-free sample preparation methods (e.g., mortar and pestle). The authors 

claimed that their method was better than the mortar-and-pestle method, as it was found 

to be quicker, and applicable to even liquid and soft or waxy analytes. In subsequent 

work, Hanton and co-workers [88] investigated the effect of the time required to prepare 

good-quality MALDI samples using a vortex mixer. A study conducted with poly(methyl 

methacrylate) concluded that a sample can be prepared in as little as 5-10 seconds 

without compromising the quality of the MALDI spectrum. 

Hanton et al. also investigated the morphology of samples prepared by their 

vortex mixing method [89]. They showed that a size reduction of matrix particles from O 

(10-100 μm) to O (100 nm) results in remarkably homogeneous sample morphologies 

that lead to high-quality MALDI spectra. Jaskolla and co-workers [90] also found a 

similar effect of particle size on the quality of MALDI spectra. They observed that a 

reduction in particle size of the matrix CHCA from O (10 μm) to O (0.15 μm) increased 

both the ion intensities and the number of analytes detected in a mixture of peptides 

ranging in mol wt from 1000 to 2000 Da. 

This brief overview in the field of sample preparation development gives the 

reader an idea of the importance of sample preparation on the effectiveness of MALDI 

analysis. A comprehensive understanding of this previous work and collaboration with 

Prof. Hans Joachim Räder at the Max Planck Institute for Polymer Research helped us to 

develop the sample preparation method best suited for our petroleum pitch. As one of the 

main objectives of this research was to develop the quantitative analysis method (which 
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is briefly discussed in the next section) for our pitches using MALDI mass spectrometry, 

an understanding of the role of sample preparation was essential. 

4. Quantitative Analysis of Oligomeric and Polymeric Materials  

using MALDI Mass Spectrometry 

In analytical chemistry, once the question of “What is there?” is answered, the 

next question that follows it is “How much is there?” [69]. Since the successful 

development of MALDI as a characterization technique for the qualitative analysis of 

macromolecules, many researchers have subsequently investigated the potential of 

MALDI as a tool for quantitative analysis. For the case of polymeric materials, accurate 

calculation of the mol wt and MWD are obviously important. However, their accurate 

calculation requires the accurate measurement of the amounts of oligomers present. 

Relating the MALDI response of a given oligomer to the mass present in a given sample 

is still an analytical challenge due to two major factors. Poor sample homogeneity, and 

the accompanying poor reproducibility of results, is one of them. Reproducible results are 

one of the most important pre-requisites for any quantitative analysis. Thus, researchers 

have invested a lot of time to develop sample preparation techniques that would result in 

increased sample homogeneity and reproducibility. The second major factor limiting our 

ability to develop quantitative analysis tools for polymeric systems is that for each 

polymer or oligomer of interest, a source of narrow mol wt fractions that can serve as 

calibration standards are needed.  
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This subsection provides the review of the research work that was directed to 

develop MALDI as a reliable quantitative analysis tool for macromolecular analysis. 

Two quantitative methods have been used by MALDI researchers: (1) the internal 

standard method and (2) the standard addition method. In the more commonly used 

internal standard method, a chemical compound that has similar chemical properties (and 

similar desorption/ionization behavior in MALDI) is used as a standard. Samples are 

prepared by mixing this internal standard with the analyte sample in various molar ratios. 

The mixtures are then analyzed by MALDI, and the ratio of the MALDI responses for the 

analyte and internal standard is plotted against the ratio of the concentration of the 

analyte and internal standard. This relationship is then used to calculate the concentration 

of the analyte in an unknown sample. 

Chen and co-workers [91] were one of the first to investigate the quantitative 

analysis of biopolymers by MALDI mass spectrometry. They first investigated MALDI 

as a tool for absolute quantitative measurement (absolute quantitative measurement 

means that no standard is used for the analysis). The quantity of analyte present in the 

mixture of interest was increased in steps, and the MALDI response for the analyte of 

interest was plotted against the quantity of the analyte. Unfortunately, no relationship 

could be established between the MALDI response and the analyte quantity, and the 

authors concluded that poor sample homogeneity and inconsistent substrate surface were 

responsible. They then showed the applicability of the internal standard method as a 

quantitative analysis tool for the same analyte system, and also demonstrated the 
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importance of selecting an appropriate internal standard. In particular, although an 

internal standard with chemical properties similar to the analyte resulted in a good linear 

relationship, the use of an internal standard that did not possess similar chemical 

properties gave a poor quantitative relationship. 

Several other studies that used the internal standard method for quantitative 

analysis are discussed elsewhere [92-94]. Boyd [95] has summarized the list of criteria 

that can be used to identify the best internal standard for a given analyte system. The 

most important of these are given below. First, the internal standard response should not 

interfere with any of the analyte system constituent responses, and must be well-resolved 

from them. Furthermore, the internal standard should (1) possess chemical properties 

similar to the analyte, (2) be chemically stable under all the analyte concentration 

conditions, and (3) not be present in the starting analyte system. Unfortunately, the first 

criterion given above makes application of internal standard method difficult if not 

impossible if the analyte mixture is comprised of large number of components covering a 

wide range of molecular weights, that is, for polydisperse systems.  

For polydisperse systems such as ours, the second method investigated by 

MALDI researchers for quantitative analysis, that is the method of standard addition, is 

more appropriate. This method involves the addition of known amounts of a given 

standard to a sample of interest that already contains an unknown amount of the standard. 

The basic principle of standard addition involves measuring the response of the standard 

component against the change in the mass of the standard. Clearly, standard addition is 
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most useful when the signal response changes linearly with the change in the analyte 

quantity. Note that with the standard addition method, the quantity of standard changes 

while the analyte quantity is kept constant. With the internal standard method, it is more 

typical to hold the quantity of internal standard constant and to change the quantity of the 

analyte. 

Nelson and co-workers [96] were the one of the first research groups to study 

quantitative MALDI analysis using the standard addition method. In their work, they 

studied several polypeptide mixtures prepared in their lab. Initially, a set of binary 

mixtures of horse heart cytochrome c and myoglobin was studied. All mixtures had a 

similar quantity of the myoglobin, but the quantity of the cytochrome c was changed. 

When the response (i.e., the intensity of cytochrome c/intensity of myoglobin) was 

plotted against the cytochrome c concentration in the mixture, a linear relationship was 

obtained over a concentration range covering one order of magnitude. When a similar 

analysis was performed with a set of ternary mixtures (comprised of bovine insulin, 

ERDD, and ERDF), it was observed that the presence of the third component did not 

affect the linear response between the normalized standard intensity (intensity of 

insulin/intensity of ERDD) and the standard concentration.  

Räder and co-workers [97] applied the standard addition method to the 

quantitative analysis of fullerenes and PAH mixtures. To our knowledge, this was the 

first time that a solvent-free sample preparation method was applied to MALDI-based 

quantitative analysis. In this work, they used two sets of binary mixtures, and investigated 
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the possibility of using one of the components as an internal standard, and the other as a 

standard for the method of standard addition. In the first set of study, they investigated 

the binary mixture of giant PAHs: hexakis(dodecyl)hexabenzocoronene (HBC-C12) and 

hexakis(dodecyl)hexaphenylbenzene (HPB-C12). The first compound is the product and 

the second is the precursor for a cyclodehydrogenation reaction. In this study, HPB-C12 

was used as an internal standard and its amount was kept constant in all binary mixtures 

studied. The amount of HBC-C12, on the other hand, was varied to prepare mixtures with 

different compositions. Both solvent-based and solvent free sample preparation methods 

were applied for the analysis. Both methods resulted in a linear relationship between the 

analyte response and its quantity in the mixture. The difference between the amount of 

HBC-C12 in the unknown sample, calculated by MALDI-based quantitative analysis, and 

the true amount was found to be less than 4 mass %. This difference was 7.5 mass % for 

the solvent-based method.  

In the second study by Räder and co-workers, binary mixtures of fullerenes (C60 

and C70) were analyzed, and a good quantitative relationship was established by 

applying the method of standard addition. MALDI-based quantitative results were also 

found to be consistent with the HPLC-based quantitative analysis of the similar fullerene 

mixtures.  

Apart from the two studies presented above, another just-published paper 

investigated the application of the standard addition method, combined with internal 

standard method, to the quantitative analysis of polymeric materials. This work, 
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conducted by Owens and co-workers [98], discusses the use of a narrow mol wt polymer 

standard of polyethylene glycol (PEG) as a standard for the standard addition method, in 

order to determine the amount of PEG polymer present in polyethylene oxide (PEO)-

based surfactants. PEO-based surfactants were spiked with the known quantities of the 

PEG standard to prepare the analyte samples with known composition. MALDI-based 

standard addition method was then applied (with PEG sample acting as a standard) to 

calculate the amount of PEG present in the starting samples. MALDI-derived quantitative 

analysis results were found to be in excellent agreement with the actual quantities. 

Results were verified with traditional chromatographic separation (HPLC), and were 

found to be in agreement. This study, to our knowledge, presents the first successful 

application of the standard addition method to polymeric materials.  

The Quantitative analysis performed during the course of this PhD project was 

based on the standard addition method as discussed by Räder and co-workers [97] and 

Owens and co-workers [98]. As the work done by Owens and co-workers showed, the 

standard addition method requires a good standard in order to obtain good results with 

quantitative analysis. This requirement was one of the driving forces behind the semi-

batch DGE fractionation work that the author of this dissertation performed to produce 

narrow MWD oligomers.  

Dissertation Outline 

The three main objectives of this research work were to (1) investigate the semi-

batch DGE technique for isolating pure petroleum pitch oligomers, (2) develop a reliable 
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quantitative analysis method to monitor the oligomeric composition of the pitch fractions 

obtained via DGE processes, and (3) identify the actual, “non-average” structures present 

in the petroleum pitches and catalytically polymerized pyrene pitches.  

As fractionation of petroleum pitches into oligomeric samples with narrow MWD 

was a requirement for successful quantitative analysis and structural characterization, 

initial efforts were directed to produce high purity oligomeric standards. To conduct these 

fractionation experiments, a semi-batch dense-gas extraction apparatus was initially 

constructed by the author of this dissertation.   

After the construction of a semi-batch DGE experimental unit, separation of 

petroleum pitch was carried out to produce high-purity oligomeric samples (i.e., 

monomer, dimer, and trimer). MALDI mass spectrometry was used to perform the quick, 

simultaneous molecular weight distribution (MWD) analysis of the overhead fractions 

separated using the semi-batch DGE process. This information was used to fine-tune the 

operating parameters of the DGE process. Chapter 2 discusses how the operating 

parameters (i.e., pressure and collection time) were manipulated in order to produce 

100% pure monomer and 100% pure dimer fractions, as well as a 90% pure trimer 

fraction. Work discussed in Chapter 2 has been submitted for a publication to Energy and 

Fuels journal in 2011. 

Chapters 3 and 4 then discuss the work that was carried out to develop a reliable 

quantitative analysis method for petroleum pitches. As successful quantitative analysis 

requires samples with good homogeneity (which would give good reproducibility), first 
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the effect of various sample preparation methods on the sample homogeneity was 

investigated. Interrelationships between sample preparation, analyte mol wt distribution, 

and MALDI response for a well-defined system were investigated. This work is 

discussed in Chapter 3. Work discussed in Chapter 3 has been published in Rapid 

Communications in Mass Spectrometry journal in 2011. [Rapid Commun. Mass 

Spectrom. 2011, 25 (19), 2799-2808] 

After identifying the best sample preparation method, quantitative analysis was 

performed with the standard addition method. High purity dimer and trimer fractions, 

produced via semi-batch DGE and/or preparative scale gel permeation chromatography 

(prep-GPC), were used as standards and the amount of dimer/trimer present in the 

unknown sample was quantified. These results show the application of MALDI as a 

quantitative analysis technique for samples with wide MWDs, such as our petroleum 

pitches. This quantitative analysis work is discussed in Chapter 4. Work discussed in 

Chapter 4 has been submitted for a publication to Rapid Communications in Mass 

Spectrometry journal in 2011.  

Chapter 5 discusses the efforts of the author in the area of the structural 

characterization of petroleum pitch constituents, which was initiated by the Thies 

research group in late 2001. This work proposes actual, “non-average” structures for the 

monomer and dimer species present in petroleum pitch. Several analytical techniques, 

including, MALDI, MALDI-Post Source Decay (PSD), UV/Vis, FTIR, and 
1
H-NMR 

served as input into the proposed molecular structures. Even though this work proposed, 
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for the first time, non-average structures for petroleum pitches, it did have some flaws.  

These flaws are discussed in the brief discussion which has been added to the end of this 

chapter. Subsequent work by Burgess discovered and corrected these flaws [22-23], and 

the correct predominant molecular structures in petroleum pitches were identified. Work 

discussed in Chapter 5 has been published in Carbon journal in 2009. [Carbon 2009, 47 

(10), 2358-2370]. Readers should take a note that the work discussed in Chapter 5 was a 

collaborative project and not an individual project by the dissertation author. 

Chapter 6 discusses the application of the above analytical characterization 

methods, developed by Burgess and Thies [22-23] for petroleum pitches, to the structural 

characterization of synthetic pitches. In particular, catalytically polymerized pyrene 

pitches were characterized. Similar to the work discussed by Burgess and Thies, this 

characterization was also conducted after initial fractionation of these pyrene pitches 

using our semi-batch DGE. 

Lastly, in Chapter 7, the conclusions of this dissertation and recommendations for 

future work are made.  
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CHAPTER TWO 

ISOLATING PETROLEUM PITCH OLIGOMERS VIA SEMICONTINUOUS 

SUPERCRITICAL EXTRACTION 

Abstract 

Dense-gas/supercritical extraction (DGE/SCE) was used for the fractionation of a 

representative petroleum pitch, M-50, into its oligomeric constituents using toluene as the 

extractive solvent. A small pilot-scale, packed column was operated in the 

semicontinuous mode under a linear positive temperature gradient of 380 to 330 °C from 

the top to the bottom of the column and over a pressure range of 15 to 75 bar. This DGE 

column was used for produce high-purity monomer, dimer, and trimer fractions of M-50 

suitable for use as molecular standards for petroleum pitches and for polycyclic aromatic 

hydrocarbon (PAH) oligomers. During the experimental runs, Matrix Assisted Laser 

Desorption/Ionization (MALDI) mass spectrometry (MS) was used to monitor the 

progress of the separation by performing rapid analyses of the molecular weight (mol wt) 

distributions (MWDs) of the overhead fractions being collected. These real-time analyses 

provided us with the ability to fine-tune in-situ the operating conditions according to the 

separation desired. The separation of petroleum pitches and other heavy fossil fuels into 

narrow mol wt fractions by semicontinuous DGE has proven to be an invaluable first step 

in the isolation and structural characterization of the individual species present in these 

multicomponent, poorly defined systems. Furthermore, these molecular standards are also 

suitable for quantitative analysis. 
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Introduction 

Petroleum pitches are generally produced by the thermal polymerization of heavy 

liquid refinery by-products such as aromatic decant oil, which is a by-product of the fluid 

catalytic cracking (FCC) of the heavy gas fraction of crude oil. These pitches consist of 

an oligomeric mixture of alkylated polycyclic aromatic hydrocarbons (PAHs) and possess 

relatively broad molecular weight distributions (MWDs), ranging from approximately 

200 up to about 1000 Da [1,2]. The mass spectrum of a representative petroleum pitch, 

M-50, as obtained by Matrix Assisted Laser Desorption/Ionization (MALDI) mass 

spectrometry (MS), is shown in Fig. 2.1(a). Molecular structures of some of the 

predominant species present in M-50 have been recently reported by our group [3,4]; 

examples of typical monomer, dimer and trimer species that have been identified are 

shown in Fig. 2.1(b). 

Commercially available petroleum pitches, (e.g., Marathon M-50, Koppers KP-

100) are isotropic with melting points of ~120°C. When properly processed, they can 

serve as precursors for advanced carbon materials such as cathodes for Lithium ion 

batteries [5], high thermal conductivity carbon fibers [6], and composites [7]. As the final 

properties of pitch-based carbon materials are dependent on the bulk properties of the 

precursor pitch (e.g., mesophase content, melting point, viscosity, etc.), the fractionation 

of the parent pitches by molecular weight (mol wt) is desirable as it can introduce 

significant changes in these bulk properties [8,9]. Such an approach has the potential for 

producing modified precursor pitches (i.e, the resulting products from the fractionation 
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process) with optimized oligomeric distributions (and, as a result, bulk properties) for a 

specific end-product application.  

Despite what might be considered as a promising scenario for the future, our 

current knowledge of the role that the constituent structures and the MWD play on the 

bulk properties is still primarily qualitative. Consequently, characterization of the pitch 

precursor at the molecular level is still needed if we are to reduce processing costs and 

enhance final carbon-product quality by the optimization of the precursor’s oligomeric 

distribution. For such molecular characterization work [3,4], being able to produce 

narrow mol wt cuts of the pitch is essential. Furthermore, for quantitative analysis work 

on pitches the ability to produce via fractionation narrow mol wt cuts that can be used as 

molecular standards is also highly desirable [10,11].  

To this end, our research group has developed a dense-gas/supercritical extraction 

(DGE/SCE) technique for the fractionation of petroleum pitch into cuts of controlled 

MWD. Two modes of operation, continuous, and semicontinuous (also called semibatch), 

have been reported in the literature [12-14]. Previous work by our group has focused on 

producing petroleum pitch fractions in the bulk quantities necessary for producing into 

carbon fibers (i.e., on the order of several hundred grams); thus, a greater emphasis was 

given to continuous DGE processes [12-14].  On the other hand, although the 

semicontinuous DGE (s-DGE) apparatus and its operating procedure was previously 

introduced by Edwards and Thies [12], the use of this technique to produce pitch 

oligomers with narrow MWDs has not heretofore been discussed. The goal of this study,  
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Figure 2.1.  (a) MALDI mass spectrum of an industrial-grade petroleum pitch, M-

50. (b) Examples of representative molecular structures for the alkylated PAH 

oligomers present in M-50 are also shown (reproduced with permission from 

Kulkarni et al.
16

 )  

Source: Adapted from Kulkarni, S.U.; Räder, H.J.; Thies, M.C. Rapid. Commun. 

Mass Spec. 2011, 25, 2799. Copyright 2011 John Wiley and Sons. 
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then, was to investigate the application of s-DGE for producing narrow MWD fractions 

of petroleum pitch in quantities sufficient for analytical characterization work and for 

quantitative analyses.  

Experimental 

Materials 

An isotropic petroleum pitch, M-50 (CAS: 68187-58-6), with a reported softening 

point ranging from 104-124 °C, was obtained from Marathon Petroleum Company LLC 

(OH, USA). The MALDI mass spectrum of M-50 pitch shown in Fig. 2.1(a) clearly 

illustrates the oligomeric nature of this pitch. This oligomeric distribution has recently 

been definitely identified as follows: monomer (which is in large part aromatic decant oil, 

the starting material for producing petroleum pitches [3,15]) 202-390 Da; dimer 390-645 

Da; trimer 645-890 Da; and tetramer 890-1120 Da.  

M-50 was the material charged to the s-DGE apparatus for the production of 

monomer standards (high-purity monomer fractions). However, for the generation of 

oligomeric standards neat M-50 pitch was not used as the charge to the s-DGE unit. 

Instead, a partial fractionation of the M-50 was carried out beforehand using a continuous 

DGE setup in order to concentrate the oligomers of interest. Thus, for the production of 

dimer standards, the charge to our s-DGE column was an 88% dimer cut (see Fig. 2.2(a) 

that had itself been isolated from M-50 pitch by Cervo and Thies [14] using a continuous, 

two-column DGE process. (Unless otherwise noted, the purities of the pitch fractions 

reported in this article are defined based on the area percent encompassed by a given  
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Figure 2.2. MALDI mass spectra of (a) an 88% dimer cut (previously referred to as 

“Dimer-Rich A” [14]) used as the starting material for producing dimer standards; 

(b) a dimer standard (100% dimer) generated by s-DGE (see Table 2.3, Fraction 4). 

Unless otherwise noted, all % are MALDI area %, which is approximately equal to 

mol %. 
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Figure 2.3. MALDI mass spectra of (a) a 40% trimer cut used as starting material for 

producing trimer standards; (b) a trimer standard (88% trimer) generated by s-DGE 

(see Table 2.4, Fraction 8). 
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oligomer under the normalized mass spectrum.) For the trimer standards, the charge to 

the s-DGE apparatus was a pitch cut consisting of 40% trimer (see Fig. 2.3(a) produced 

by a one-column, continuous DGE process; details of that operation can be found 

elsewhere [16]. 

HPLC grade Toluene (99.8% purity, CAS 108-88-3), obtained from Fisher 

Scientific (PA, USA), was used as the extractive solvent. 7,7,8,8-

tetracyanoquinodimethane (TCNQ; 98% min. purity, from TCI America (OR, USA), 

CAS 1518-16-7) was used as the matrix for MALDI analysis [2,17]. 

Experimental Apparatus and Procedure 

A schematic of the DGE unit used for the s-DGE operation is shown in Fig. 2.4. 

The apparatus consists of a 1.8-cm i.d., 2.0-m high column, with an actual packing height 

of 1.5 m; its temperature and pressure ratings are 400 °C and 200 bar respectively. As the 

details of the design, construction, and process control (pressure and temperature) of this 

apparatus are given elsewhere [12,13], only the operating procedure is discussed here. 

For a given experimental run, the detachable bottom manifold (with a volume of ~ 

80 cm
3
) is disconnected from the rest of the column and charged with the sample to be 

fractionated (i.e., M-50 or a fraction obtained thereof). The quantity of the charged 

material typically ranges from 2-20 grams. Once the bottom manifold is connected back 

to the s-DGE apparatus, nitrogen is purged through the solvent line and the column 

overnight. On the day of the experiment, the column is heated to the desired 

temperatures, which normally takes around 2 hours. In particular, a positive temperature 
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gradient of 330/350/380 °C is established along the height of the column: the bottom 

manifold and the bottom section of the column packing are set to 330 °C, the middle 

section to 350 °C, and the top third to 380 °C (each section comprises around 1/3 of the 

column height). During this heat up process, nitrogen is purged through the column in 

order to ensure that no sample oxidation takes place. 

Once the set temperatures are reached in all column sections, the nitrogen purge is 

stopped and the solvent flow is initiated. The dense-gas solvent, (toluene for this set of 

experiments), is preheated to 330 °C before entering the column and flows through the 

petroleum pitch charge in the bottom manifold upon entry. Depending on the solvent 

power or density (which is a function of the operating temperature and pressure), the 

dense-gas solvent selectively extracts pitch species according to their mol wt. The 

extracted pitch fractions are collected as top products.  

The density of toluene in the vicinity of our operating temperature and pressures 

is shown in Fig. 2.5 [18] and indicates how the operating pressure and temperature can be 

adjusted to manipulate the dense-gas solvent density (and hence its extractive power). For 

example, note in Fig. 2.5 how for a given operating pressure (e.g., 60 bar) the density of 

toluene (critical temperature and pressure = 320 °C and 41 bar) decreases significantly as 

the temperature is increased from 327 to 387 °C. Thus if the column is operated with a 

positive temperature gradient, the solvent power of the solvent decreases as one moves up 

the column.  
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Figure 2.4.  Semicontinuous DGE apparatus for producing the monomer, dimer, and 

trimer standards. The “cartoon” spectra shown are based on the actual MALDI 

spectra for the 40% trimer cut that was used as a starting material (Fig. 2.3 (a)), and 

for the trimer standard obtained as the top product (Fig. 2.3(b)).  
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Figure 2.5. Density of the toluene at three representative temperatures (327, 347, 

and 387 
o
C) over the range of operating pressures used in the s-DGE. The data used 

to generate this graph are from Goodwin [18].
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How such a temperature gradient can improve both product selectivity (i.e., 

improved separation between oligomers) and purity can be explained in terms of column 

operation as follows: when the dense-gas solvent enters the column, it has a high density 

(and thus a high solvent power) at the lower temperatures (i.e., 330 °C), in the bottom of 

the column. Thus, a relatively large portion of the feed pitch is extracted and dissolved in 

the liquid-like dense-gas solvent. However, as the solvent flows up the column, its 

solvent power continuously decreases with the increase in temperature (first to 350 °C 

and then to 380 °C). This reduction in solvent power results in the precipitation of the 

heavier pitch species that were initially extracted, leading to the formation of a reflux 

flow down the column that increases the purity of the species collected out the top. 

Liquid reflux of a portion of the top product back down the column is also enhanced by 

the use of a heated reflux finger (T = 380 °C) located above the top manifold. Cervo
16

 has 

shown how such a temperature gradient leads to improved selectivity, even as good 

product yields are obtained. Co-solvent (low mol wt species, such as, monomer and 

dimer, act as a co-solvent) has also been found to play a role in the resultant selective 

extraction of the pitch oligomers in the DGE process [13]. 

Product Collection and Solvent Removal 

After exiting the pressure-regulating valve, the overhead fractions (i.e., top 

products) are finally collected in sample collection jars, and are continuously cooled 

down by a cool-water refrigeration system. To completely remove the solvent, the 

collected overhead fractions (i.e., top products) were subsequently dried in a Fisher 
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Scientific 285A Isotemp oven overnight. The oven temperature was set to 140 °C, and 

nitrogen at 5 scfh (i.e., 0.14 m
3
/h) was purged through the oven during sample drying to 

ensure the complete removal of solvent. 

MALDI Mass Spectrometry Analysis 

The progress of the s-DGE fractionation process was monitored by analyzing the 

MWDs of the collected fractions using MALDI mass spectrometry. A Bruker Daltonics 

Autoflex MALDI-TOF mass spectrometer equipped with a 337 nm nitrogen laser was 

used for the MALDI analyses. The instrument was operated in the reflectron mode.  The 

monomeric and oligomeric ions generated during the ionization step (using a positive ion 

mode) were detected with a micro-channel plate detector after a pulsed ion-extraction 

(PIE) delay time of 90 ns. The target plate (denoted by ion source 1, or IS1 in the MALDI 

software) was set to 19.0 kV, while ion source 2 (IS2) was set to 16.6 kV. Voltages for 

the lens and reflector were set to 9.40 kV and 20 kV, respectively. Laser powers ranging 

from 20 to 35% of a maximum 110 μJ were used for the analyses. A fullerite mixture 

(Sigma-Aldrich, CAS 131159-39-2) was used to calibrate the MALDI instrument before 

performing the analyses. All MALDI spectra were generated with 200 laser shots.  

Real-time monitoring of the s-DGE fractionation process required a quick, “on-

the-spot” analysis of the samples, which were in the form of solutions. Thus, solvent-

based sample preparation [10] (vs. the slower, solvent-free method [10]) was used for 

MALDI analyses. MALDI mass spectra were used to guide the adjustment of operating 

conditions (i.e., operating pressure and collection time), as required. Finally, collected 
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samples were dried after the experiment and were again analyzed by MALDI using the 

more reliable solvent-free sample preparation method.  

Results and Discussion 

Producing the Monomer Standards 

The monomer fraction of M-50 pitch is, by and large, the unreacted portion of the 

decant oil used to produce petroleum pitches by thermal polymerization [3,15]; in other 

words, it is the starting material for petroleum pitch. Therefore, structural characterization 

of the constituents of this monomer fraction helps us determine the types of structures 

that serve as building blocks for the oligomers. Producing a monomer standard from M-

50 pitch suitable for structural characterization was, therefore, the first objective of this 

work. 

Mortar-ground M-50 was used as the starting material for the production of 

monomer standards. For a typical experiment, 5-15 grams of M-50 pitch previously 

ground in a mortar and pestle were placed inside the bottom manifold. Two operating 

parameters, the pressure and the solvent flow rate, were manipulated while maintaining 

the positive temperature profile described earlier. For all of the monomer runs described 

below, one, initial (overhead) fraction was collected for a 40-60 min time interval, and 

about 20% of the initial pitch charge was collected during this interval. 

The effect of pressure was investigated while keeping the solvent flow rate 

constant at 600 g/h. The results presented in Table 2.1 indicate a decrease in monomer 
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purity with increasing operating pressure.  As seen in Fig. 2.5, increasing the DGE 

operating pressure increases the dense-gas solvent density and thus its extraction power 

[19], resulting in a higher concentration of dimer oligomers being extracted with 

increasing pressure. The reader can obtain a general appreciation of the effect of pressure 

on the separation, by noting how the density of toluene at 330 °C and 29 bar (75.5 kg/m
3
) 

is 2.3 times higher than the density at 330 °C and 15 bar (32.3 kg/m
3
). 

The effect of the solvent flow rate on the selectivity of the process for recovering 

monomer was investigated by using three different solvent flow rates, all while keeping 

the operating pressure and column temperature gradient constant. As seen in Table 2.2, 

higher solvent flow rates resulted in the extraction of additional dimer species, lowering 

monomer purities at the higher flow rates. Such behavior is consistent with traditional 

stripping-column behavior, where the stripping factor Si of a component i in the feed 

often serves as a design parameter for a given separation: (Si = V*Ki/L), where (V) and 

(L) are the vapor and liquid molar flow rates and Ki is the K-value of the component. Si 

serves as a useful design parameter in the design of stripping columns, with increasing Si 

giving a higher extraction of component i in a properly designed column. Note that the 

stripping factor is directly proportional to the stripping agent (V) flow rate. In our case, 

the increase in solvent flow rate had the effect of increasing the amount of dimer 

oligomers extracted. Gonzalez-Olmos and Iglesias [20] reported similar behavior during 

the stripping of fuel oxygenates (MTBE and ETBE) from the aqueous liquid phase to air 

phase by semicontinuous air stripping. 
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Table 2.1.  Effect of operating pressure on the purity of the monomer fraction produced 

by s-DGE. The solvent flow rate was 600 g/h and the column temperature gradient of 

330-350-380 °C from bottom to top was kept constant for this and all other experiments 

performed in this study. 

 

a
  : Number average molecular weight 

b
 Polydispersity Index 

Table 2.2. Effect of solvent flow rate on the purity of the monomer fraction produced by 

s-DGE. The operating pressure was 15 bar.  

 

Solvent Flow Rate  

g/h 

Overhead Fraction
 

 

Monomer 

 

Dimer 

 

PDI
 

260 289 99.3 0.6 1.013 

600 296 97.3 2.7 1.015 

780 303 94 6 1.021 

 
 

 

 

Operating 

Pressure (bar) 

Overhead Fraction
a 

  

Monomer 

 

Dimer 

 

PDI
b 

15 296 97.3 2.7 1.015 

21 304 91 9 1.024 

29 317 88 11 1.062 
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The above investigations of pressure and solvent flow rate illustrate the 

importance of proper s-DGE operation, as the researcher attempts to strike the proper 

balance between the high selectivities (generally favored by lower pressures) and high 

yields (favored by higher pressure and solvent flow rates). For monomer recovery, it is 

relatively easy to obtain both high purities and good yields simultaneously. But as we 

will see later, such is not the case with oligomers. Based on the fractionation observed in 

these preliminary experiments, a solvent flow rate of 260 g/h and an operating pressure of 

15 bar were selected to obtain a high-purity monomer standard (99.3 monomer MALDI-

area %) in good yield. The MALDI spectrum of this monomer standard is shown in Fig. 

2.6.  

Generation of Dimer Standards 

Recent work by Cervo et al. [16] has determined that the mass content of 

monomer in M-50 pitch is around 50%. Given that complete extraction of monomer 

needs to be performed before extracting the dimer species, using M-50 as a starting 

material for the generation of dimer standard leads increased experimental times and 

lower yields. Thus, to minimize the duration of the experimental runs and also to 

investigate the ability of the s-DGE process to fractionate materials other than M-50, an 

alternative starting material was selected for producing a (high-purity) dimer standard. In 

particular, an M-50-derived fraction consisting of 88 % dimer was used. This pitch 

fraction (88% dimer cut) was produced from M-50 pitch via continuous DGE by Cervo 

and Thies [14]. As shown in Fig. 2.2(a), most of the impurities present in this fraction  
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Figure 2.6. MALDI spectrum of a 99.3% monomer standard obtained via s-DGE at 

a pressure of 15 bar and a solvent flow rate of 260 g/h (see Table 2.2). Petroleum 

pitch M-50 was charged as the starting material for these experiments.  
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consist of heavy oligomers, but small amounts of monomer are also observed. 2 grams of 

the starting material were charged into the bottom manifold, and fractionated at the same 

positive temperature gradient previously described. A solvent flow rate of 600 g/h of 

toluene was used for these experiments. Results for the s-DGE runs for generating a 

dimer standard are given in Table 2.3. 

The s-DGE extraction setup was initially set to 29 bar and then operated at this 

pressure for ~ 80 min in order to first remove all monomer impurities. The pressure was 

then increased to 42 bar, raising the solvent density from 72 kg/m
3
 to 166 kg/m

3
 at 330 

°C. A pressure of 42 bar was found to be adequate for the extraction of dimer oligomers; 

however, the first fraction (i.e., Fraction 3, see Table 2.3) collected at this pressure was 

not pure enough to be used as a standard, as it contained about 6% monomer. Dimer 

standard (100% dimer), such is shown in Fig. 2.2 (b), was obtained for fraction 4 and all 

the subsequent fractions at 42 bar. 100% dimer cuts began to be obtained about 3 hours 

after the solvent flow had been initiated. 

Generation of dimer standard was also carried out with M-50 pitch as the starting 

material. Although the dimer fractions of equivalent purity (i.e., 100%) could be 

obtained, experiment were about 2 times as long and the dimer yields were about 60-70% 

lower for a given fraction. 
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Table 2.3. Selected fractions from the s-DGE experiment for generation of a dimer 

standard. A solvent flow rate of 600 g/h was used for these experiments. 

 

Fraction 

No.a  

Pressure 

(bar) 

Overhead  

Fraction 

 

Collection 

 Time  

(min) 

Yieldb 

wt %  

Monomer 

 

Dimer 

 

PDId 

Feed  

(88% dimer) 

 515   2 88 1.044 

1 29 403 40 3.3 38 62 1.018 

3 42 451 40 18.6 6 94 1.009 

4 42 473 40 8.9 0 100 1.006 
 

a
 Selected fractions are shown for illustrative purposes. 

b 
Yield is defined as percentage of feed recovered in a given fraction 
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Generation of Trimer Standards 

Similar to the s-DGE of dimer standards, trimer standards can be obtained by 

using either M-50 pitch or a trimer-enriched fraction as a starting material. As M-50 pitch 

is comprised of less than 25 wt% trimer [16], we decided to use an M-50-derived fraction 

enriched in trimer as a charge to our s-DGE run. Such a fraction had been produced 

earlier by Cervo and Thies [16] and had a trimer content of 40%, with the remainder 

being comprised predominantly of heavier oligomers (see Fig. 2.3 (a)). 

For the generation of trimer standards, about 5 grams of the 40% trimer fraction 

were charged into the bottom manifold and fractionated under the same positive 

temperature gradient previously described. The initial extraction was of the low mol wt 

(i.e., dimer) impurities, starting at 50 bar for 160 min, and then increasing the pressure to 

66 (for 80 min) and 68 bar (for 40 min) (see Table 2.4). Such a step-wise fractionation 

technique was chosen in an effort to remove all dimer impurities, while at the same time 

trying to minimize the amount of trimer oligomers being extracted (and thus “lost”) 

during the impurity-removal step. Gradually increasing the pressure, as shown in Table 

2.4, was found to be the most efficient way of achieving a reasonable balance between 

good selectivities (i.e., good separation between the dimer and trimer) and acceptable 

yields. Selectivities were monitored by immediately analyzing the collected sample 

solutions via MALDI, and yields were monitored by visual observation. That is, when the 

collected solution became almost clean in color, the pressure was increased, until the 

sample once again had achieved strong color (typically orange) again. 
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Table 2.4. Selected fractions from the s-DGE experiment for generation of a trimer 

standard. A solvent flow rate of 600 g/h was used for these experiments.  

 

Fraction 

No.a  

Pressure 

(bar) 

Overhead 

 Fraction 

 

Collection 

Time  

(min) 

Yield Dimer 

 

Trimer 

 

Tetramer 

 

PDI 

Feed (40 

% trimer) 

 940   0 40 42 1.033 

1 50 473 40 1.2 88 0 0 1.031 

3 50 530 40 0.8 95 3 0 1.015 

5 66 667 40 2.9 39 61 0 1.018 

7 68 714 40 N/A 18 80 2 1.014 

8 75 732 40 1.5 7 88 3 1.023 
 

a
 Selected fractions are shown for illustrative purposes. 
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As shown in Table 2.4, sample purities high enough to serve as trimer standards 

(i.e., 88%) were obtained at a pressure of 75 bar. The MALDI spectrum of this trimer 

standard is shown in Fig. 2.3 (b). 

Conclusions 

This paper has demonstrated how semicontinuous dense-gas extraction (s-DGE) 

can be used to produce oligomeric cuts of high purity from petroleum pitches of broad 

MWD. Because the operating temperatures and pressures required to achieve the desired 

purity of a given oligomer via s-DGE can only be determined empirically, our ability to 

monitor in real time the MWD of the cuts being produced via MALDI mass spectrometry 

has enabled us to immediately adjust operating conditions in order to achieve the desired 

product purities.  

Oligomeric cuts generated by s-DGE can be produced at a purity sufficient to 

serve as molecular standards for quantitative analysis work.
10-11

 In addition, these cuts are 

narrow enough in mol wt and thus contain individual species in high enough 

concentrations such that the cuts serve as excellent feed materials for methods such as 

high pressure liquid chromatography (HPLC) and size exclusion chromatography (SEC), 

which can then be used to isolate individual species, contained in complex, poorly 

defined, multicomponent systems [3,4,21].
 

Supercritical fractionation of heavy fossil fuels has been an active area of research 

in the petroleum community, as this technique has been shown to be capable of cutting 

deep into the MWD of heavy petroleum products such as bitumen, vacuum residua, and 
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heavy oils [22-25]. The ease of operation, the low requirements of starting material, and 

the ability to produce fractions of relatively narrow MWDs using s-DGE process makes it 

an excellent tool for enhancing our understanding of the structural chemistry of heavy 

feedstocks.     
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CHAPTER THREE 

THE EFFECTS OF MOLECULAR WEIGHT DISTRIBUTION AND SAMPLE 

PREPARATION ON MALDI MASS SPECTROMETRY ANALYSIS OF 

PETROLEUM MACROMOLECULES 

Abstract 

To date there have been no systematic, quantitative investigations of the effect of 

sample preparation on MALDI mass spectrometry response for polydisperse systems.  To 

this end, the interrelationships between sample preparation, analyte molecular weight 

distribution (MWD) and solubility, and signal response were investigated for mixtures of 

alkylated polycyclic aromatic hydrocarbon (PAH) oligomers, the constituents of 

petroleum pitch that serve as precursors for advanced carbon materials.  These PAH 

oligomers served as a useful analyte system for study, as their solvent solubilities 

decrease significantly with each increasing oligomeric unit.  Molecular weight standards 

consisting of relatively pure dimer and trimer cuts of the starting M-50 petroleum pitch 

were produced using a dense-gas/supercritical extraction (DGE/SCE) technique and were 

then used to produce oligomeric mixtures of well-defined composition for study.  Both 

traditional, solvent-based and newer, solvent-free sample preparation methods were 

evaluated, and their effects on both homogeneity and signal response were determined.  

While solvent-free sample preparation methods produced homogeneous samples and 

reproducible results regardless of the MWD of the analyte, solvent-based samples that 

contained more than one oligomeric cut produced non-homogeneous samples and poor 
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reproducibilities.  The differing solubilities of dimer, trimer, and tetramer oligomers in a 

given solvent (e.g., CS2 or toluene) were found to be the cause of the nonhomogeneities 

observed in solvent-based sample preparation.  A quantitative analysis study performed 

with dimer/trimer mixtures over a wide range of compositions via solvent-free sample 

preparation indicates that linear, reproducible calibration curves can be generated and 

used to calculate the molecular composition of unknown dimer/trimer mixtures with 

confidence.   
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Introduction 

Matrix-assisted, laser desorption/ionization time-of-flight mass spectrometry 

(MALDI) is a soft ionization method that was first introduced in 1988 by Karas and 

Hillenkamp [1] and Tanaka et al. [2] Since then, MALDI has become an important and 

successful analytical technique for the analysis of a wide variety of nonvolatile materials, 

ranging from biomolecules [3] to organometallics [4] to polymers [5]. The process of 

sample preparation, whereby the analyte is integrated with the solid matrix phase, is an 

important aspect of MALDI analysis, and different preparation methods have been 

developed by several research groups [1,6-8]. These sample preparation methods all 

involve two key steps: (1) mixing of the analyte and matrix and (2) deposition of the 

resultant mixture on a MALDI target plate. The traditional technique for mixing the 

analyte and matrix is to dissolve them together, in some cases along with an ionizing salt, 

in a solvent or solvent mixture.
 
After the solution is spotted on the target plate and the 

solvent evaporates, the resultant matrix-analyte deposit should ideally be homogeneous.  

Unfortunately, this so-called “solvent-based” sample preparation method is 

limited in that it cannot be used for compounds that have low solubilities in traditional 

solvents, including, for example, insoluble polymers [9,10], heavy fossil fuels[11], 

organometallic and coordination compounds[4], and large polycyclic aromatic 

hydrocarbons [12,13]. In addition, a matrix must also be used that is soluble in the same 

or compatible solvents. Furthermore, for the analysis of a mixture of compounds that 

differ in solubility (e.g., due to polydispersity), solvent-based sample preparation can lead 
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to erroneous or incomplete MALDI spectra (e.g., a species that exists fails to be detected) 

[10,14].  

To address these limitations, several groups have investigated solvent-free sample 

preparation methods and have obtained improved MALDI spectra, apparently because of 

the higher homogeneity of the matrix/analyte mixture vs. solvent-based methods. For 

example, Trimpin et al. [10] showed that solvent-free sample preparation for an industrial 

grade polydimethylsiloxane (PDMS) with a broad molecular weight (mol wt) distribution 

of 1000 – 28,000 Da resulted in mass spectra with a high shot-to-shot reproducibility. In 

contrast, when a solvent-based method was applied to this same PDMS sample, a mass 

spectrum could not be acquired.
 
Hanton and Parees [15] found that application of a 

solvent-free method to a polystyrene sample             gave higher signal intensity, 

improved signal-to-noise, and a flatter baseline than solvent-based methods. Weidner and 

co-workers [16] performed Imaging MALDI MS to investigate the localization of 

polymeric composition in samples prepared by solvent-based sample preparation method. 

In this study, sample segregation was observed not only between the matrix and analyte 

but also within the molecular weight distribution (MWD) of the analyte sample. Similar 

segregation behavior was reported by Ens and co-workers in their Imaging MALDI MS 

investigation of protein samples [17].
 
As the above examples illustrate, there has been 

some exploration of the effect of sample preparation on the quality of MALDI response 

for polydisperse systems, but to date there have been no systematic, quantitative 

investigations.  
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The goal of this research, then, was to investigate the interrelationships between 

sample preparation, analyte mol wt distribution, and MALDI response for a well-defined 

system. The systems of interest in this work were mixtures of alkylated polycyclic 

aromatic hydrocarbon (PAHs) oligomers.
 

Such oligomers are the constituents of 

petroleum pitches [12,18], commercially available materials that serve as precursors for a 

wide variety of carbon artifacts such as high thermal conductivity carbon fibers, activated 

carbon fibers, and carbon-carbon composites [19-21]. Quantitative knowledge of the mol 

wt distribution of these pitches is of interest because of its effect on both pitch and final 

carbon-product properties [20,22-23]. The ability of our research group to separate these 

oligomeric materials into fractions of controlled mol wt distribution via our 

supercritical/dense-gas extraction (DGE) technique [24-26] made this study possible.
 
In 

addition to investigating issues related to the quality of MALDI spectra, preliminary 

results on MALDI as a tool for the quantitative analysis of alkylated PAH oligomers are 

also reported.  

Experimental 

Materials 

An isotropic petroleum pitch, M-50 (CAS: 68187-58-6), was obtained from 

Marathon Petroleum Company LLC(OH, USA). The MALDI mass spectrum for M-50, 

obtained by use of the solvent-free sample preparation method described below, is shown 

in Fig. 3.1 and illustrates the oligomeric nature of these materials. The oligomeric mol wt 

regions are classified as follows: monomer (which is in large part the starting decant oil, a 
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byproduct of the catalytic cracking of the heavy gas oil fraction of crude oil [18])
 
202-

388, dimer 388-645, trimer 645-890, and tetramer 890-1120 [12]. 

Toluene (HPLC grade, 99.8% purity, CAS 108-88-3) was used as the dense-gas 

solvent for the generation of the dimer and trimer standards (see below) via dense-gas 

extraction. 1,2,4-trichlorobenzene (HPLC grade, 99% purity, CAS 120-82-1), carbon 

disulfide (99% purity, CAS 75-15-0), and toluene were used as solvents for solvent-based 

sample preparation. Toluene and carbon disulfide (CS2) were obtained from Fisher 

Scientific (PA, USA) and 1,2,4-trichlorobenzene (TCB) was obtained from VWR 

International (PA, USA). 7,7,8,8-tetracyanoquinodimethane (TCNQ; 98% min. purity, 

from TCI America (OR, USA), CAS 1518-16-7) was used as the matrix for MALDI 

analysis [8,10]. With their extended aromatic π-bonding, these alkylated PAH oligomers 

did not require any added salts for ionization. 
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Figure 3.1. (a) MALDI mass spectrum of M-50 petroleum pitch. (b) Examples of 

representative molecular structures for the alkylated PAH oligomers that comprise 

pitch are also shown [12]. 
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Generation of Dimer and Trimer Standards via DGE 

Our DGE fractionation technique, see Fig. 3.2, was used to individually isolate 

from the starting M-50 pitch two oligomers to serve as standards: a 100% dimer cut and 

an 89% trimer cut (Fig. 3.3). These stated “purities” are based on the area % of the 

MALDI signals lying within the oligomeric mol wt ranges given in Fig. 3.1. The 

development of DGE as a fractionation technique, and the DGE apparatuses used in this 

work, are described elsewhere [24-26];
 
here, only the specific DGE operating conditions 

required to produce the fractions of interest are described.  

As shown in Fig. 3.2, our DGE apparatus was used in the semi-batch mode in this 

work. At the beginning of a given experiment, 2 g of the desired pitch charge was placed 

in the stillpot, located at the bottom of the column. For the generation of both dimer and 

trimer cuts, the column was operated with a positive temperature gradient, such that the 

bottom third of column packing was maintained at 330 °C, the middle third at 350 °C, 

and the top third at 380 °C. The dense-gas solvent toluene was then delivered at a flow 

rate of 600 g/h through the charged sample, extracting the desired oligomeric species at 

the selected operating conditions. To collect the 100% dimer standard, the DGE column 

was initially operated at 29 bar for 80 min in order to first remove the monomer. The 

pressure was then increased to 45 bar, and 250-300 mg of the desired dimer standard was 

collected over the next 80 minutes as extracted top product.  
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Figure 3.2. Semi-batch DGE apparatus for producing the dimer and trimer 

standards used in this work. The “cartoon” spectra shown are based on the actual 

MALDI spectra for the pitch charge and the trimer standard.  
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Figure 3.3. (a) 100% dimer cut and (b) 89% trimer cut that served as standards in 

this work and were isolated via DGE. 
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For the trimer standard, first the dimer was removed at 55 bar for 2 h and then at 

70 bar for 20 min. The desired trimer standard was then collected as extracted top product 

at 75 bar for 2-2.5 h. Two trimer runs were made in order to collect 150 mg of standard.  

In each of the DGE experiments described above, a different pitch charge to the 

column was used. For the 100% dimer standard, the charge to our semi-batch DGE setup 

was an 80+ % dimer fraction, which itself was produced by Cervo and Thies [25]
 
 using a 

two-column, continuous DGE setup, with M-50 pitch serving as the feed.
 
Cervo and 

Thies call this charge “Dimer-rich A”. For the trimer standard, the pitch charge to our 

DGE setup was a 40+ % trimer fraction, produced by continuous, 1-column DGE, using a 

330-350-380 °C positive temperature gradient and a solvent-to-pitch ratio of 5:1under 

rectifying conditions. Here again, M-50 pitch served as the feed to that setup.     

MALDI Sample Preparation 

For the sample preparation techniques described below, the analyte consisted of 

M-50 pitch, the dimer and trimer standards described above, or a binary mixture of these 

two standards. 

Solvent-free Sample Preparation 

Analyte – matrix mixing: For solvent-free sample preparation, mixing of the 

analyte and matrix was performed using one of two techniques: (1) a ball mill [13] or (2) 

a mortar and pestle [9]. For the ball mill, 5-15 mg of the analyte and 100-300 mg of the 

matrix TCNQ were weighed separately and transferred into a grinding mill (Thermo 
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Electron Corp., model Wig-L-Bug). A matrix-to-analyte mass ratio of 20:1 was always 

used [11]. The analyte and matrix were then mixed together for 5 min. For the mortar and 

pestle, 10 mg of analyte sample and 200 mg of TCNQ were weighed separately and 

transferred into the mortar. The analyte and matrix were then ground together using the 

pestle for ~ 5 min until a fine powder of the analyte/matrix mixture was obtained. 

Sample deposition: The analyte/matrix mixture was deposited onto the MALDI 

target surface using one of the following two methods: (1) water spotting [27] or (2) 

smearing with a spatula. With water spotting, 100-200 L of de-ionized water is added to 

the analyte/matrix mixture powder obtained above. A thin film of the mixture is then 

formed on the surface of a large water droplet, as the mixture is insoluble in water. A 

portion of this film and water was then spotted onto the MALDI target plate using a 

spatula. Most of the water was then removed from under the film using a micro-capillary, 

and the sample film was allowed to dry completely under ambient conditions. With 

smearing, a few milligrams of the analyte/matrix mixture were transferred onto the 

MALDI target, and the sample was smeared against the MALDI target surface by 

applying gentle pressure with a small spatula. The MALDI target was then firmly tapped 

to knock off any part of the sample that was only loosely attached to the metal surface. 

What was left on the target surface was a thin layer of analyte/matrix mixture. This final 

step (i.e.; the target tapping) was necessary to avoid the possibility of cross-

contamination while simultaneously analyzing several samples on a given target. 
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Solvent-based Sample Preparation 

Toluene, TCB, and CS2 were each used as solvents for the solvent-based sample 

preparation method. Known quantities of analyte samples were dissolved in the above-

mentioned solvents, and the solutions were mixed vigorously using a vortex mixer 

(typical concentrations used in this work ranged from 0.15 to 1.0 mg/mL). About 1 μL of 

the solution was then applied to the surface of a dried matrix film that had already been 

spotted on the MALDI target using the water-spotting method described above. The 

resultant samples were then allowed to completely dry before MALDI analysis.  

This solvent-based sample preparation method is similar to the thin-layered 

sample deposition method described by Vorm et al. [6] However, instead of using a 

highly volatile solvent to deposit a thin matrix film on the MALDI target surface; we 

deposited the thin matrix film using the water-spotting method described above. 

Furthermore, instead of using the MALDI matrix as received, we first used the ball mill 

to produce a fine matrix powder before water-spotting. Hanton and co-workers [28] have 

shown that a size reduction of matrix particles from 10-100 μm to 100 nm gives 

remarkably smooth and homogeneous sample morphologies that lead to high-quality 

MALDI spectra.  

MALDI-TOF-MS 

A Bruker Daltonics (MA, USA) Autoflex MALDI-TOF mass spectrometer 

equipped with 337 nm nitrogen laser was used for the MALDI analyses. The instrument 

was operated in the positive reflectron mode, and the ions generated were detected with a 
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micro-channel plate detector after a pulsed ion-extraction delay time of 90 ns. The target 

plate was set to 19.0 kV, while ion source 2 was set to 16.6 kV. The lens and reflector 

were set to 9.40 kV and 20 kV, respectively. Laser powers ranging from 25 to 35% of 

maximum (110 μJ) were used for the analyses. A Fullerite mixture (Sigma-Aldrich (MO, 

USA), CAS 131159-39-2) was used to calibrate the MALDI instrument before 

performing the analyses. All MALDI spectra were generated with 200 laser shots. For all 

comparisons in the “Results and Discussion” session, the samples to be compared were 

analyzed at the same time to avoid the day-to-day variation typically observed in MALDI 

analyses. 

To facilitate the interpretation and comparison of several MALDI spectra in a 

single figure, many of the spectra shown in this study were (1) normalized such that the 

total area under a given spectrum summed to one and (2) smoothed using an exponential 

smoothing function [29].  

Scanning Electron Microscopy (SEM) Imaging 

SEM experiments were conducted to compare the morphologies of MALDI 

samples prepared by the two different kinds of solvent-free sample preparation that were 

employed. A Hitachi S3400 SEM instrument (Hitachi High Technologies America, Inc., 

CA, USA) was used for the analysis.  
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Results and Discussion 

Solvent-free vs. Solvent-based Sample Preparation for a Petroleum Pitch  

with a Broad Molecular Weight Distribution 

Solvent-free Sample Analysis 

Four different solvent-free sample preparation protocols were applied to the 

parent M-50 pitch with its broad molecular weight distribution (MWD) (Fig. 3.1) by 

considering all combinations of analyte-matrix mixing and sample deposition, as 

described above under “MALDI Sample Preparation”: (1) Analyte–matrix solvent-free 

mixing with ball mill + sample deposition using water-spotting; (2) analyte–matrix 

solvent-free mixing with ball mill + sample deposition using spatula-smearing; (3) 

analyte–matrix solvent-free mixing with mortar and pestle + sample deposition using 

water-spotting; and (4) analyte–matrix solvent-free mixing using mortar and pestle + 

sample deposition using spatula-smearing. For all of the above protocols, the matrix-to-

analyte mass ratio was kept constant at 20:1.  

Comparison of the spectra obtained with these four solvent-free sample 

preparation protocols indicate little difference between the two sample deposition 

methods (i.e., water-spotting vs. spatula smearing). However, as shown in Fig. 3.4, the 

intensity response for the dimer and trimer species was much stronger when the ball 

method was used instead of mortar and pestle. 
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Figure 3.4. MALDI mass spectra for M-50 petroleum pitch as obtained by solvent-

free mixing using (a) Protocol 1: ball mill + water-spotting and (b) Protocol 3: 

mortar & pestle + water-spotting. Both spectra were obtained at the same MALDI 

parameters, including laser power and the number of laser shots. Monomer 

response of each method was approximately the same and was truncated at 5000 

Intensity units to focus on the dimer and trimer responses. 
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To help us explain this behavior, M-50 pitch samples prepared with the two 

solvent-free mixing methods were observed via scanning electron microscopy (SEM). As 

shown in Fig. 3.5, particle sizes obtained with the ball mill were much smaller – on 

average 1/3 to 1/5 the size – than those obtained by mortar and pestle. Also shown is how 

the use of mortar and pestle resulted in a broader particle size distribution, with some 

particles having dimensions as large as 100 μm. We therefore conclude that the use of a 

ball mill for analyte-matrix mixing brings us closer to the desired situation of ideal (i.e., 

homogeneous) mixing, with each analyte molecule completely surrounded by matrix 

molecules. 

Other researchers have observed similar particle-size effects on the quality of the 

MALDI response. Jaskolla and co-workers [30] found that a reduction in particle size of 

the matrix CHCA from 10 μm to 0.15 μm increased both the ion intensities and the 

number of analytes detected in a mixture of peptides ranging in mol wt from 1000 to 

2000. Analogous to our work, the effect was more pronounced for the higher mol wt 

analytes. Hanton and co-workers [28] also found that the quality and reproducibility of 

MALDI spectra improved when highly homogeneous samples were produced using a 

vortex method. 
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Figure 3.5. SEM images obtained for M-50/matrix mixtures prepared by (a) ball 

mill and (b) mortar & pestle method.  
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Based on the above results, we therefore selected Protocol 1, that is, mixing with 

a ball mill and sample deposition via water-spotting, as the method of solvent-free sample 

preparation for the rest of the work described in this paper. Even though both water-

spotting and spatula-smearing methods were found to generate similar-quality spectra, 

water-spotting was preferred over spatula-smearing.  In particular, we found water 

spotting more convenient, particularly when analyzing large number of samples, and 

more effective for avoiding the possibility of sample cross-contamination.       

Solvent-based Sample Analysis 

For solvent-based sample preparation, three solvents were employed: carbon 

disulfide, toluene, and TCB. Representative results obtained with these sample 

preparation methods are shown in Fig. 3.6, along with those obtained using solvent-free 

sample preparation (i.e., Protocol 1). Table 3.1 lists number average mol wts      , 

weight average mol wts      , z-average mol wts      , and polydispersity indices 

(PDIs) as calculated from the MALDI spectra obtained for each of the different methods 

of sample preparation. Although both Fig. 3.6 and Table 3.1 indicate that the use of 

carbon disulfide or toluene (vs. TCB or no solvent at all) resulted in a higher-intensity 

response for the heavier (i.e., trimer and tetramer) species, unfortunately these samples 

also exhibited significantly poorer reproducibilities.   

Such differences in both intensity of response and reproducibility can be 

explained in terms of the different degree of sample homogeneity that occur when 

different solvents are used for sample preparation of an oligomeric mixture whose 
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components exhibit significantly different solubilities, as in the case for our alkylated 

PAH oligomers. From thermodynamics [31], we know that for a homologous group of 

species the solubility decreases as the melting point increases. Thus, the higher-melting 

trimer (mp ~ 300 °C [26]) and tetramer (mp ~ 400+ °C [26]) species will precipitate out 

of solution first upon evaporation when the weaker solvents CS2 and toluene are used. 

The fact that these species precipitate first should ensure that they are well-dispersed in 

the solid, matrix-phase environment. For the later-precipitating monomer and dimer 

species, on the other hand, such dispersion is less important for their response, as they are 

more easily ionized and desorbed by the laser/matrix system. Such a precipitation 

“scenario” thus favors higher-intensity responses for the higher mol wt species – but the 

segregation that occurs also favors less-reproducible results in the resultant, 

nonhomogeneous mixtures. 

For the strong solvent TCB, the scenario is quite different: the solubility of all 

oligomeric species in TCB is high enough such that they stay dissolved and in solution 

for a longer period of time. The precipitation process thus occurs more or less 

simultaneously for all the dissolved species, significant species segregation does not have 

time to occur, and the MALDI response is more reproducible. For solvent-free sample 

preparation, the best homogeneity (and sample reproducibility) is obtained as long as 

particle sizes are kept small enough (through the use of a device such as a ball mill).  
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Figure 3.6. Normalized and smoothed MALDI mass spectra for M-50 petroleum 

pitch obtained with both solvent-free and solvent-based sample preparation 

methods. For all solvent-based spectra, the concentration of analyte in the solution 

was 1 mg/mL.  
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Table 3.1. MWDs for M-50 Petroleum Pitch, obtained by MALDI using both solvent-

free and solvent-based sample preparation methods 

 

MWD 

 Index
 a
 

Sample Preparation Method 

Solvent-free 

Protocol 1  

Solvent-based  

CS2 

Solvent-based 

Toluene 

Solvent-based 

TCB 

                                    

                               

                                

                                                    

a
 MWD indices were calculated based on the assumption that MALDI response is 

proportional to the mole fraction of the species. 

 

b
 Reported uncertainties are for one std dev, obtained from three duplicate measurements. 
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In summary, the above results indicate the use of solvent-free sample preparation 

when reproducibility is a priority (e.g., for a polydisperse mixture), but they also indicate 

that a solvent-based method with a volatile solvent may be preferred if the focus of an 

investigation is on the presence of higher mol wt species. These observations also 

emphasize the fact that solvent selection can be an important factor in solvent-based 

sample preparation, as discussed in the literature [32].  

Solvent-free vs. Solvent-based Sample Preparation for a Narrow  

Molecular Weight Dimer Cut of Petroleum Pitch 

As illustrated above, significant differences arise between the MALDI spectra 

obtained by solvent-based vs. solvent-free sample preparation when a broad MWD of 

alkylated PAH oligomers is analyzed. This brings to mind the question: as cuts of 

narrower MWD are produced from M-50 pitch via our DGE fractionation process, is 

there a point at which these differences in MALDI response become negligible? To help 

us address this issue, the 100% dimer cut isolated by DGE (i.e., the standard shown in 

Fig. 3.3(a)) was analyzed using both sample preparation methods. Protocol 1 (ball mill + 

water-spotting) was used as the solvent-free sample preparation method. Solvent-based 

sample preparations were performed using carbon disulfide as the solvent, with four 

different analyte concentrations being evaluated (i.e., 0.15 mg/mL, 0.2 mg/mL, 0.4 

mg/mL, and 1.0 mg/mL). Spot-to-spot reproducibility was evaluated by spotting the 

target with three identical spots for a given sample method (see Figs. 3.7(a) and 3.7(b)), 

and shot-to-shot reproducibility was evaluated by comparing MALDI spectra obtained at 
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the perimeter with those from the center of a given target spot (see Figs. 3.7(c) and 

3.7(d)). 

Good spot-to-spot (as seen in Fig. 3.7(a)) and shot-to-shot (as seen in Fig. 3.7(c)) 

reproducibilities were observed for the dimer samples prepared by applying the solvent-

free method, indicating good homogeneity in the resultant samples. Such results were 

expected: if solvent-free sample preparation gives good homogeneity for an analyte with 

a broad MWD (such as M-50 pitch), then one would also expect good homogeneity and 

correspondingly reproducible results for a narrow mol wt portion of that analyte.  

Results for solvent-based sample preparation of the dimer standard, however, 

were more interesting. Unlike the M-50 sample, which showed poor reproducibilities for 

solvent-based analysis, the dimer standard showed good spot-to-spot and shot-to-shot 

reproducibilities (Figs. 3.7(b) and 3.7(d)). Clearly, then, MWD can play a key role in the 

results that are obtained when solvent-based analysis is used. In the case of M-50 pitch, 

the dimer, trimer, and tetramer constituents each possess significantly different 

solubilities (particularly in weaker solvents such as CS2), leading to nonhomogeneities in 

the resultant samples. But for the case of a sample with a relatively narrow MWD such as 

our dimer standard, all the constituents possess similar solubilities in the given solvent. 

Thus, the analyte precipitation process described earlier occurs more or less 

simultaneously for all dissolved species, leading to good sample homogeneity and 

reproducibile results.  
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Figure 3.7. Normalized and smoothed MALDI mass spectra for petroleum pitch 

dimer fraction. “Spot-to-spot” reproducibility for (a) solvent-free sample 

preparation method and (b) solvent-based (with CS2) sample preparation method.  

“Shot-to-shot” reproducibility for (c) solvent-free sample preparation method and 

(d) solvent-based (with CS2) sample preparation method. As all the spectra given in 

Fig. 3.7 overlap, it is difficult to differentiate among them, indicating highly 

reproducible results. 
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We also compared solvent-based sample preparation at four different 

concentrations of the dimer standard: 0.15 mg/mL, 0.2 mg/mL, 0.4 mg/mL, and 1.0 

mg/mL. Table 3.2 lists number average mol wts      , weight average mol wts      , z-

average mol wts      , and polydispersity indices (PDIs) obtained with both solvent-free 

sample preparation (Protocol 1) and solvent-based sample preparation with CS2 at four 

different concentrations. Spectra obtained with solvent-free sample preparation and for 

selected concentrations of the dimer standard in CS2 are given in Fig. 3.8. Table 3.2 

indicates essentially no difference between the values obtained, whether comparing 

solvent-free vs. solvent-based sample preparation, or the effect of solvent concentration. 

Clearly, good homogeneity was obtained in all cases (as indicated by the low standard 

deviation numbers). Furthermore, Fig. 3.8 demonstrates the fact that, if the analyte 

mixture consists of constituents with comparable solubilities in the given solvent, high-

quality, reproducible spectra can be achieved with solvent-based sample preparation. 
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Table 3.2. MWDs for dimer fraction obtained by MALDI using solvent-free and solvent-

based sample preparation methods 

 

MWD 

Index
a 

Sample Preparation Method 

Solvent-free 

Protocol 1 

CS2  

(1 mg/mL) 

CS2  

(0.4 mg/mL) 

CS2  

(0.2 mg/mL) 

CS2  

(0.15 mg/mL) 

                                                  

                                             

                                             

                                                               

a
 MWD indices were calculated based on the assumption that the MALDI response is 

proportional to the mole fraction of the species. 

b
 Reported uncertainties are for one std dev, obtained from three duplicate measurements. 
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Figure 3.8. MALDI mass spectra for the dimer standard: (a) Solvent-free sample 

preparation Protocol 1; (b) CS2-based sample preparation with 1 mg/mL dimer; (c) 

CS2-based sample preparation with 0.15 mg/mL dimer. The spectra for CS2-based 

samples with dimer concentrations of 0.4 mg/mL and 0.2 mg/mL (not shown) were 

similar to those shown above. 
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Solvent-free vs. Solvent-based Sample Preparation for Well-defined, Oligomeric 

Mixtures of Petroleum Pitch: Implications for Quantitative Analysis 

Quantitative analysis via MALDI mass spectrometry is one of the active areas of 

research in the field of polymer characterization [33-34]. One of the requirements for the 

quantitative analysis of oligomeric or polymeric materials is, of course, a source of 

narrow mol wt fractions that can serve as calibration standards. As was discussed earlier, 

our DGE apparatus was used to isolate from M-50 pitch both dimer and trimer cuts (see 

Fig. 3.3) for use as calibration standards. For our quantitative analysis study, these 

standards were mixed together in various known proportions using both the solvent-free 

(Protocol 1) and the solvent-based (CS2) sample preparation methods. In the case of 

solvent-free sample preparation, known quantities of the dimer and trimer standards were 

mixed together (see Table 3) with TCNQ matrix as previously described under “MALDI 

sample preparation”. The resultant mixture was then spotted onto the target plate using 

our water-spotting method. For solvent-based sample preparation, the same quantities of 

dimer and trimer standards shown in Table 3.3 were added to 10 mL of CS2, so that the 

analyte concentration was approximately 1.0 mg/mL in all cases. The solution was mixed 

rigorously using a vortex mixer, and about 1 μL of the solution was then applied to the 

surface of a water-spotted, dried matrix film and allowed to dry before analysis.  

As dimer/trimer mixtures possess MWDs that lie between the two cases that we 

have studied thus far (i.e., M-50 pitch with a broad MWD and a dimer cut with a narrow 

MWD), we first wanted to investigate the effect of sample preparation on the 
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reproducibility of our results. Fig. 3.9 gives MALDI mass spectra for Mixture 3.3 in 

Table 3, using both sample preparation methods. (All mixtures in Table 3.3 were studied; 

Mixture 3 is shown as a representative example.) Figs. 3.9(a) and 3.9(b) show that 

solvent-free sample preparation gives good spot-to-spot and shot-to-shot 

reproducibilities, an indication of the highly homogeneous nature of the samples. 

Solvent-based sample preparation, on the other hand, gave poor spot-to-spot and shot-to-

shot reproducibilities (see Figs. 3.9(c) and 3.9(d)), indicating non-homogeneity. Thus, for 

the case of alkylated PAH oligomers, even adjacent oligomers possess differences in the 

solubilities that are sufficient to introduce non-homogeneities. Clearly, one of the 

essential requirements for any kind of quantitative analysis study with MALDI is good 

sample homogeneity, which will result in good sample reproducibility. Thus, the poor 

reproducibilities observed herein for solvent-based binary mixtures indicate the 

unsuitability of this sample preparation technique for any kind of quantitative analysis 

study. 
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Figure 3.9. Normalized MALDI mass spectra for a dimer/trimer mixture (i.e., 

Mixture 3 shown in Table 3.3): (a) “spot-to-spot” reproducibility and (b) “shot-to-

shot” reproducibility for the solvent-free sample preparation method; (c) “spot-to-

spot” reproducibility and (d) “shot-to-shot” reproducibility for the solvent-based 

(with CS2) sample preparation method. All spectra shown in Figs (a) and (b) 

overlap, so it is difficult to differentiate among them. 
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After investigating the effect of sample preparation on the quality and 

reproducibility of MALDI spectra for the 5 dimer/trimer mixtures given in Table 3.3, 

these mixtures were also used for our quantitative analysis study. Fig. 3.10 shows the 

normalized, smoothed MALDI spectra for these mixtures, along with the spectra for the 

dimer and trimer standards as obtained by solvent-free sample preparation. Clearly, the 

MALDI response for the constituent oligomers follows a well-behaved trend, with dimer 

peak area decreasing and trimer peak area increasing in a manner consistent with the 

concentrations given in Table 3. In contrast, with solvent-based sample preparation, no 

well-behaved trends were observed and results were not reproducible. (for example, the 

55 wt% dimer mixture could sometime exceed the 71 wt% dimer mixture in dimer peak 

height.) 
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Table 3.3. Mixtures of our dimer and trimer standards (see Fig. 3.3) that were used for 

the quantitative analysis study. 

Mixture 

Dimer standard 

wt (mg) 

Trimer standard 

wt (mg) 

Dimer standard 

wt % 

Mixture 1 9.62 3.86 71 

Mixture 2 4.80 3.87 55 

Mixture 3 4.78 7.73 38 

Mixture 4 2.40 7.53 24 

Mixture 5 1.22 7.75 14 
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The MALDI area fraction for the oligomer of interest (either dimer or trimer; 

obtained from Fig. 3.10) is plotted vs. the mole fraction of that oligomer in Figs. 3.11(a) 

and (b) for both solvent-free (Protocol 1) and solvent-based (with CS2) sample 

preparations, respectively. Mole fractions for each of the mixtures of interest (see Table 

3) were calculated as follows: (1) MALDI area fraction of dimer or trimer was assumed 

to be equal to mole fraction for both the dimer and trimer standards; (2)     was 

calculated for each of the two standards (i.e.; 485 and 762 for the dimer and trimer 

standards); (3) the moles of each standard present in each mixture in Table 2.3 were 

calculated (e.g., 4.78 mg dimer/485 mg/mmol = 0.00986 mmol dimer standard). Once the 

moles of dimer and trimer were known, the mole fractions shown in Fig. 3.11 could be 

readily calculated. Note that the presence of tetramer impurity in the trimer standard 

means that the mole fractions plotted in Fig. 3.11 do not add up to one. In any case, we 

emphasize here that Fig. 2.11 is a plot of “pure” dimer or trimer area fractions vs. “pure” 

dimer or trimer mole fraction, per the mol wt ranges defined in Fig. 3.1.  
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Figure 3.10. Normalized, smoothed MALDI spectra for the dimer and trimer 

standards, and for five dimer/trimer mixtures (see Table 3).  
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Figure 3.11. (a) Calibration curve for determining the composition of dimer and 

trimer standard mixtures of PAH oligomers analyzed by MALDI mass 

spectrometry, as developed using solvent-free sample preparation (Protocol 1). The 

numbers shown in the figure correspond to the mixtures given in Table 3 and Fig. 

10. The asymptotic dotted lines at the high and low area fractions are estimates 

only. (b) Solvent-based sample preparation cannot be used for quantitative analysis 

work because of poor sample reproducibility, caused by poor sample homogeneity. 
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Fig. 3.11(a) gives us an excellent correlation between oligomer area fraction vs. 

mole fraction over the applicable range. Note that the standard deviation of triplicate 

spots (with all spots analyzed at same time) is such that the error bars are within the data 

symbol. The calibration curves can readily be used to predict mole fractions for samples 

of unknown composition. Thus, for example, a sample exhibiting a spectra of 60 area % 

dimer, 35 area % trimer, and 5 area % tetramer would contain 47.1 mol % dimer, 46.7% 

trimer, with 6.2 mole % tetramer being obtained by differences. Mass fractions could 

then be obtained by reversing the procedure for calculating mole fractions described in 

the preceding paragraph. Of course additional mixtures would need to be made up in 

order to obtain a more accurate picture of the behavior that occurs at low and high mole 

fractions, as the area fraction asymptotically approaches 0/1.0. (The dotted lines are only 

to guide the eye.) Finally, the unreliable results obtained in Fig. 3.11(b) with solvent-

based sample preparation emphasize the point that quantitative analysis via MALDI can 

only be achieved when special attention is given to obtaining highly homogeneous 

samples. 

Conclusions 

The ability of our laboratory to isolate the oligomeric constituents of petroleum 

pitch into mol wt standards has enabled us to carry out a quantitative study of the 

interrelationships between sample preparation, analyte mol wt distribution, and signal 

response in MALDI mass spectrometry.  Because the melting points of the alkylated 

PAH oligomers that comprise petroleum pitch increase rapidly with the addition of each 
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additional oligomeric unit (mp monomer/dimer/trimer/tetramer = 40/200/300/400+ °C, 

respectively [26]), the solubility of these oligomers also decreases significantly with 

increasing oligomeric unit [31].  Thus, this class of materials served as a useful, and 

particularly sensitive, model for studying the effect of factors such as solubility, 

homogeneity, and oligomeric composition on MALDI performance.   

Solvent-based sample preparation methods, which are particularly convenient for 

MALDI work because of their simplicity and speed, should be used with caution for 

oligomeric and polymeric systems where significant solubility differences between 

oligomers exist in the sample to be analyzed.  These solubility differences mean that the 

analytes precipitate out of solution at significantly different rates, producing 

inhomogeneous samples for MALDI analysis.  Nevertheless, we have found in our 

laboratory that this precipitation effect can also be used to advantage for qualitative work, 

as the response of higher mol wt oligomers is enhanced as they precipitate out first in the 

matrix-rich environment (albeit in a nonreproducible manner).   

Solvent-free sample preparation methods, on the other hand, are capable of 

producing highly homogeneous mixtures that, as a consequence, can generate highly 

reproducible results, regardless of the MWD (i.e., narrow or broad) of the sample of 

interest.  For example, the mol wt averages of M-50 pitch, with its broad MWD, are 

reproducible to within single digits when a ball mill is used for sample/matrix 

homogenization and water-spotting is used for target spotting.  Furthermore, we can now 

generate highly reproducible, linear calibration curves from dimer and trimer standards, 
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and use them to determine the molecular composition of unknown dimer- and trimer-rich 

pitch mixtures with confidence.  Additional work with mol wt standards and solvent-free 

sample preparation will be required in order to determine the full extent to which MALDI 

can be used for quantitative analysis.   
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CHAPTER FOUR 

QUANTITATIVE ANALYSIS OF POLYDISPERSE SYSTEMS VIA SOLVENT-

FREE MALDI-TOF MASS SPECTROMETRY 

Abstract 

Quantitative analysis of partially soluble and insoluble polydisperse materials is 

challenging due to the lack of both appropriate standards and reliable analytical 

techniques. To this end, matrix-assisted laser desorption/ionization mass spectrometry 

(MALDI-MS) incorporating a solvent-free sample preparation technique was investigated 

for the quantitative analysis of partially soluble, polydisperse, polycyclic aromatic 

hydrocarbon (PAH) oligomers.  Molecular weight standards consisting of narrow 

molecular weight dimer and trimer oligomers of the starting M-50 petroleum pitch were 

produced using both dense-gas/supercritical extraction (DGE/SCE) and preparative-scale, 

gel permeation chromatography (GPC).  The validity of a MALDI-based, quantitative 

analysis technique using solvent-free sample preparation was first demonstrated by 

applying the method of standard addition to a pitch of known composition.  The standard 

addition method was then applied to the quantitative analysis of two insoluble petroleum 

pitch fractions of unknown oligomeric compositions, with both the dimer and trimer 

compositions of these fractions being accurately determined. To our knowledge, this 

study represents the first successful MALDI application of solvent-free quantitative 

analysis to insoluble, polydisperse materials. 
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Introduction 

Petroleum pitches are produced by the thermal polymerization and/or vacuum 

distillation of selected by-products from petroleum refineries. They consist of oligomeric 

mixtures of alkylated polycyclic aromatic hydrocarbons (PAHs) and possess a broad 

molecular weight distribution (MWD), ranging from approximately 200 to over 1000 (see 

Fig. 4.1(a)) [1,2].  Recent analytical characterization work from our group [3,4] has 

determined molecular structures for many of the species present in petroleum pitches 

(e.g., see Fig. 4.1(b)). 

These pitches can serve as precursors for a wide variety of carbon products, 

including carbon electrodes [5], high thermal conductivity carbon fibers [6], and carbon-

based composites [7]. Control of the MWD of pitches is desirable, as it can induce 

significant changes in their bulk properties and performance characteristics [8].  

However, current knowledge of the MWD of petroleum pitches is essentially only 

qualitative, because of the lack of reliable quantitative analysis techniques for these 

systems of petroleum macromolecules. 

Even though matrix-assisted, laser desorption/ionization time-of-flight mass 

spectrometry (MALDI) is used on a routine basis for qualitative analysis (e.g., structural 

identification, repeat units and end-group identification in polymer blends) [9,10], its 

application to quantitative analysis has been far less successful.  Challenges in the use of 

MALDI for quantitative analysis have been discussed by various groups in the literature 

[11-13].
 
Both reliable sample preparation methods that produce samples of good  
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Figure 4.1. (a) MALDI mass spectrum of M-50 petroleum pitch. (b) Examples of 

representative molecular structures for the alkylated PAH oligomers that comprise 

pitch are also shown. Adapted from Kulkarni et al. 
[25]  
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homogeneity and the availability of suitable molecular standards are two essential pre-

requisites for successful quantitative analysis. 

Despite the challenges, there have been some successful applications of MALDI 

for quantitative analysis.  However, the majority of these studies have focused on bio-

molecules [14-19]. Nevertheless, a few studies have reported on the quantitative analysis 

of polymeric, polydisperse materials [20-24], and several of these are discussed below.  

Chen and co-workers [20] were one of the first groups to attempt the quantitative analysis 

of biopolymers using MALDI mass spectrometry. They demonstrated the importance of a 

proper internal standard for successful quantitative analysis.  Gardella and co-workers 

[21] performed quantitative analysis using binary mixtures of two polydimethylsiloxane 

(PDMS) standards.  Chen and co-workers [22] applied the internal standard method 

successfully, for the first time, to synthetic polymers.  Recently, Owens and co-workers 

[24] combined the internal standard and standard addition methods and demonstrated the 

successful application of MALDI to the quantitative analysis of polyethylene glycol 

(PEG).  Finally, we note here that all of the quantitative analysis MALDI studies of 

polydisperse systems described above involved solvent-based sample preparation 

methods.  To our knowledge, no quantitative analysis methods based on solvent-free 

sample preparation have been reported for polydisperse materials.  Solvent-free sample 

preparation is required in order to obtain consistent results for the analysis of partially 

soluble or insoluble polymeric materials [25-27].   
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The goal of this research, then, was to demonstrate the successful application of 

MALDI-based quantitative analysis to insoluble, polydisperse mixtures of petroleum 

macromolecules (i.e., petroleum pitches) via solvent-free sample preparation.  The ability 

of our research group to separate oligomeric materials into cuts of controlled MWD via 

our supercritical/dense-gas extraction (DGE) technique [8,28,29] enabled us to produce 

pitch fractions of narrow MWD.  These fractions then served as standards, with 

quantitative analysis being performed via the method of standard addition. 

Experimental 

Materials 

An isotropic petroleum pitch, M-50 (CAS: 68187-58-6), was obtained from 

Marathon Petroleum Company LLC (OH, USA). The MALDI mass spectrum for M-50 

pitch is shown in Fig. 1(a) and illustrates the oligomeric nature of this material. Based on 

our previous characterization work [3,30], these oligomeric peaks can be classified as 

follows: monomer 202-388, dimer 388-645, trimer 645-890, and tetramer 890-1120.  

Dimer and trimer standards (Fig. 4.2), along with the various fractions used in this 

investigation (Fig. 4.3), were obtained by DGE fractionation of the M-50 pitch. 

Generation of these fractions is discussed below. 

7,7,8,8-tetracyanoquinodimethane (TCNQ; 98% min. purity, from TCI America 

(OR, USA), CAS 1518-16-7) was used as the matrix for MALDI analysis [2,31]. With 

their extended aromatic π-bonding, the PAH oligomers are ionized by photo-ionization 

and hence did not require the use of any ionization salts. De-ionized water (obtained from 
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Fisher Scientific, PA, USA) was used as a non-solvent for the MALDI sample 

preparation. 

Generation of Standards and Fractions 

The dimer and trimer standards, along with the various petroleum pitch fractions 

used in this work, were generated using dense-gas/supercritical extraction (DGE) with 

pilot-scale, packed columns. The development of DGE as a fractionation technique, and 

the DGE apparatuses used in this work, are described elsewhere [8,28,29]; here, only 

information about the specific DGE experiments used to produce the fractions of interest 

is given.  

Dimer standard (Fig. 4.2(a)) and “Fraction 1” (Fig. 4.3(a)) were obtained using 

our semi-batch, DGE setup.
[28]

 To produce dimer standard, the charge to our semi-batch 

DGE column was an 80+ % dimer fraction, which itself had been isolated from a M-50 

pitch feed (Fig. 1(a)) by Cervo and Thies [29]
 
using a two-column, continuous DGE 

arrangement. “Fraction 2” and “Fraction 3” (Figs. 4.3(b) and 4.3(c)) were obtained by 

Cervo and Thies using one-column, continuous DGE [8], again with M-50 pitch serving 

as the feed. Fraction 1 (Fig. 4.3(a)) was obtained by semi-batch DGE, using Fraction 3 as 

the starting material.  
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Figure 4.2. MALDI mass spectra for (a) dimer and (b) trimer standards. The dimer 

standard was produced via semi-batch DGE fractionation; the trimer standard was 

produced via DGE fractionation of petroleum pitch followed by prep-scale GPC.  
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Figure 4.3. MALDI mass spectra for (a) “Fraction 1”, (b) “Fraction 2”, and (c) 

“Fraction 3”.  All of these fractions were produced using our DGE apparatuses, as 

described in the text. 
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The trimer standard (Fig. 4.2(b)) used in this study was produced by a two-step, 

sequential fractionation method, as discussed by Burgess and Thies [3]: semi-batch DGE 

followed by preparative-scale, gel permeation chromatography (GPC).   

MALDI Sample Preparation 

Based on our recent investigation [25], which indicated that better homogeneity 

was obtained for MALDI samples prepared by solvent-free sample preparation, all 

samples investigated in this study were prepared by the same, solvent-free method. In any 

case, we note here that the fractions studied in this work (i.e., Fractions 1-3) were not 

completely soluble even in aggressive solvents such as 1,2,4-trichlorobenzene, obviating 

the use of a solvent-based method.  For a typical MALDI analysis, 10-15 mg of the 

analyte and 200-300 mg of the matrix TCNQ were weighed separately and transferred 

into a grinding ball mill (Thermo Electron Corp. (MA, USA), model Wig-L-Bug).  In all 

cases, the analyte consisted of “binary” mixtures of Fraction 1, 2, or 3 (Figs. 4.3(a-c)), or 

of Spiked Fraction 1 (see below), combined in various proportions with either dimer or 

trimer standard (Figs. 4.2(a-b)).  The analyte and matrix were then simultaneously mixed 

together for 5 min using the ball mill.  Based on our previous studies [2,25], a matrix-to-

analyte mass ratio of 20:1 was always used. 

In the case of the synthesis of “Spiked Fraction 1”, 194.2 mg of Fraction 1 was 

mixed together for 5 min with 17.8 mg of dimer standard, using the ball mill.  

Approximately 10 mg of this mixture then served as a “fraction” to be combined with 
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dimer standard in order to create 10-15 mg of “analyte”, which was prepared for MALDI 

analysis in the manner described above. 

The analyte/matrix mixture was deposited onto the MALDI target surface using a 

water-spotting method as follows [25,32].
 
100-200 L of de-ionized water (which acts as 

a non-solvent) was added to the analyte/matrix mixture powder obtained above. A thin 

film of the analyte/matrix mixture then formed on the surface of a large water droplet. A 

portion of this film and water was then spotted onto the MALDI target plate using a 

spatula. A 20 L microcapillary was used to remove most of the water from under the 

film, and the sample film was then allowed to dry completely under ambient conditions.  

MALDI-TOF-MS 

A Bruker Daltonics (MA, USA) Autoflex MALDI-TOF mass spectrometer, 

equipped with 337 nm nitrogen laser, was used for the MALDI analyses. The instrument 

was operated in the positive ion, reflectron mode. The target plate was set to 19.0 kV, 

while ion source 2 was set to 16.6 kV. The lens and reflector were set to 9.40 kV and 20 

kV, respectively. Ions generated after laser bombardment were accelerated using pulsed-

ion extraction after a time delay of 90 ns and were detected with a micro-channel plate. 

Laser powers ranging from 25 to 38% of the maximum 110 μJ were used for the 

analyses. MALDI calibration was carried out using a fullerite mixture (Sigma-Aldrich 

(MO, USA), CAS 131159-39-2) before performing the analysis [33]. All MALDI spectra 

were generated with 200 laser shots. Data were acquired using Bruker Autoflex software. 
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For a given study, all samples were analyzed at the same time to avoid the day-to-day 

variation typically observed in MALDI analyses. 

To facilitate the interpretation and comparison of several MALDI spectra within a 

single figure, selected spectra were (1) normalized such that the total area under a given 

spectrum summed to one and (2) smoothed using an exponential smoothing function 

[34].  

Results and Discussion 

Validation of Standard Addition Method by Using a Standard of Known Concentration 

Our approach for quantitative analysis was to use the standard addition method, in 

which a standard is added to the sample of interest such that the concentration of the 

standard is increased by a known amount. The relationship established between the 

change in signal response of the standard to the change in its concentration is then used to 

calculate the concentration of the standard in the starting sample [35]. 

Our first study was performed in order to determine whether or not MALDI could 

be used for the quantitative analysis of our systems of interest. To this end, the method of 

standard addition was applied to a sample containing a known quantity of standard.  Such 

a sample was prepared by spiking Fraction 1 (Fig. 4.3(a)) with 8.4 wt % of dimer 

standard (Fig. 4.2(a)), using the ball mill as described above. This mixture was called 

Spiked Fraction 1 (SF1). The standard addition method was then applied to 

independently quantify the amount of dimer that had been added to SF1. In particular, as 
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shown in Table 4.1, dimer standard was added in increasing amounts to SF1 in order to 

prepare five “binary” mixtures. These mixtures were then prepared and analyzed as 

described above.  Sample reproducibility was assessed through the use of four replicate 

target spots per sample.  

Fig. 4.4 shows the normalized, smoothed MALDI spectra for these binary 

mixtures, along with the spectra for the dimer standard and for the starting SF1, as 

obtained using our solvent-free sample preparation method.  Clearly, the MALDI 

response for the constituent oligomers follows a well-behaved trend, with the response of 

the dimer standard increasing in a manner consistent with the concentrations given in 

Table 4.1. In Fig. 4.5, the MALDI area fraction of dimer is plotted vs. the mass fraction 

of added dimer standard. Each data point shown is the average of four replicate target 

spots mentioned above.  The resultant linear standard addition relationship was then used 

to obtain an X-intercept value of 8.2 wt % dimer in SF1 – a number in good agreement 

with the known value of 8.4 wt %. These results demonstrate that MALDI can indeed be 

used for the quantitative analysis of mixture of alkylated PAH oligomers. Furthermore, to 

our knowledge, this study represents the first successful application of solvent-free, 

MALDI-based quantitative analysis to a polydisperse system.  
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Figure 4.4. Normalized and smoothed MALDI spectra of “SF1”, of the 5 “binary” 

mixtures of SF1 and added dimer standard, and of the dimer standard itself. 
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Table 4.1: Composition of the five “binary” mixtures prepared for application of the 

standard addition method to sample SF1.   

Sample 

Dimer standard 

wt (mg) 

SF1 

wt (mg) 

Added Dimer standard 

wt % of total 

SF1 0.00 10.0 0 

Mixture 1 0.62 10.0 5.8 

Mixture 2 1.10 10.1 9.8 

Mixture 3 1.63 10.0 14.0 

Mixture 4 2.04 10.0 16.9 

Mixture 5 2.57 10.0 20.4 
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Figure 4.5. Standard addition curve obtained for the quantitative analysis of sample 

SF1. Each data point is the average of four replicate target spots, and the error bar is 

for one standard deviation.   
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Standard Addition Method for the Quantitative Analysis of an  

Oligomer of Unknown Composition 

Determination of Dimer Composition 

After establishing above the validity of MALDI for the quantitative analysis of an 

insoluble, polydisperse system, standard addition was applied to the quantitative analysis 

of Fractions 2 and 3 (see Figs. 4.3(b) and 4.3(c)), two petroleum pitch fractions of 

unknown oligomeric composition.  The same dimer standard (Fig. 4.2(a)) and solvent-

free sample preparation method was used as described above.  Analogous to the study 

performed with SF1, 5 binary mixtures were prepared for the standard addition method 

analysis of both Fractions 2 and 3.  The quantities of analyte and dimer standard used to 

prepare these binary mixtures are tabulated in Table 4.2 and Table 4.3, and the 

normalized, smoothed MALDI spectra for these mixtures are shown in Figs. 4.6 and 4.7. 

As before, the MALDI response for the addition of dimer standard was found to follow a 

well-behaved trend, with the response of the standard increasing in a manner consistent 

with its concentration. 

As shown in Fig. 4.8, the method of standard addition was then applied by 

plotting the MALDI area fraction for the dimer vs. the wt % of the added dimer standard.  

Each data point shown is the average of four replicate target spots, and linear 

relationships of good quality were obtained for the quantitative analysis of both Fraction 

2 (R
2
 = 0.99) and Fraction 3 (R

2
 = 0.98). X-intercept values yielded an original dimer 

content of 15.1 wt % in Fraction 2 and 12.6 wt % in Fraction 3. 
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Table 4.2. Mixtures of dimer standard (see Fig. 2(a)) and “Fraction 2” (see Fig. 3(b)) 

used for the quantitative analysis study.   

Sample 

Dimer standard 

wt (mg) 

Fraction 2 

wt (mg) 

Added Dimer standard 

wt % of total 

Fraction 2 0.00 10.01 0 

Mixture 1 0.27 10.00 2.6 

Mixture 2 0.62 10.02 5.8 

Mixture 3 1.02 10.03 9.2 

Mixture 4 1.51 10.00 13.1 

Mixture 5 2.07 10.00 17.1 

 

Table 4.3. Mixtures of dimer standard (see Fig. 2(a)) and “Fraction 3” (see Fig. 3(c)) 

used for the quantitative analysis study.   

Sample 

Dimer standard 

wt (mg) 

Fraction 3 

wt (mg) 

Added Dimer standard 

wt % of total 

Fraction 3 0.00 10.00 0 

Mixture 1 0.59 10.01 5.6 

Mixture 2 1.29 10.00 11.4 

Mixture 3 1.94 10.01 16.2 

Mixture 4 2.41 10.01 19.4 

Mixture 5 3.02 10.02 23.2 
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Figure 4.6. Normalized and smoothed MALDI spectra of “Fraction 2”, 5 binary 

mixtures of “Fraction 2” and dimer standard, and the dimer standard. The five 

binary mixtures were prepared by mixing dimer standard with the “Fraction 2” 

sample (see Table 4.2). 
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Figure 4.7. Normalized and smoothed MALDI spectra of “Fraction 3”, 5 

binary mixtures of “Fraction 3” and dimer standard, and the dimer standard. 

The five binary mixtures were prepared by mixing dimer standard with the 

“Fraction 3” sample (see Table 4.3). 
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Figure 4.8. Standard addition curves obtained for the quantitative analysis of 

Fractions 2 and 3. Each data point is the average of four replicate target spots, and 

the error bar is for one standard deviation.   
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Determination of Trimer Composition 

As Fractions 2 and 3 are both comprised of dimer, trimer, and tetramer, analogous 

steps to those described above would need to be performed in order to quantify their 

trimer and tetramer concentrations. Thus, high-purity trimer and tetramer standards 

would be required.  

To this end, the method of standard addition was used to determine the amount of 

trimer present in Fraction 2 (Fig. 4.3(b)). Similar to the studies described above with 

dimer standard, 5 binary mixtures were prepared, with varying amounts of trimer 

standard (Fig. 4.2(b)) being added to Fraction 2 (see Table 4.4). Normalized, smoothed 

MALDI spectra for these mixtures, along with the spectra for the trimer standard and 

Fraction 2, are shown in Fig. 4.9. As before, the MALDI response for the addition of 

trimer standard was found to follow a well-behaved trend, with the response of the 

standard increasing in a manner consistent with the concentrations given in Table 4.4. 

The standard addition plot for determining the amount of trimer originally present 

in Fraction 2 is given as Fig. 4.10, with the X-intercept giving a value of 59.3 wt % trimer 

as being originally present in Fraction 2.  

As stated earlier, the trimer standard was produced by the combination of DGE 

followed by prep-scale GPC, so only a few milligrams of standard were available for the 

study described herein. The larger quantities of trimer and tetramer standards required for 

a more comprehensive quantitative analysis of the oligomeric composition of petroleum 

pitch fractions would need to be produced via a larger-scale technique, such as DGE 
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fractionation alone. However, the purities currently attainable with this technique are 

inadequate to serve as standards. Owens and co-workers [24] have shown how poor 

standards can lead to erroneous results in MALDI quantitative analysis. Thus, current 

research in our laboratory is directed towards improving the purities of higher-oligomer 

cuts obtained via DGE. 
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Table 4.4. Mixtures of trimer standard (see Fig. 2(b)) and “Fraction 2” (see Fig. 3(b)) 

used for the quantitative analysis study.   

Sample 

Trimer standard 

wt (mg) 

Fraction 2 

wt (mg) 

Added Trimer standard 

wt % of total 

Fraction 2 0.00 5.01 0 

Mixture 1 0.30 5.00 5.7 

Mixture 2 0.67 5.00 11.8 

Mixture 3 0.99 5.01 16.5 

Mixture 4 1.53 5.00 23.4 

Mixture 5 1.97 5.01 28.2 
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Figure 4.9. Normalized and smoothed MALDI spectra of “Fraction 2”, 5 binary 

mixtures of “Fraction 2” and trimer standard, and the trimer standard. The five 

binary mixtures were prepared by mixing trimer standard with the “Fraction 2” 

sample (see Table 4.4). 



        mcth 

153 
 

 

 

 

 

 

Figure 4.10. Standard addition curves obtained for the quantitative analysis of 

Fraction 2. Each data point is the average of three replicate target spots, and the 

error bar is for one standard deviation.   
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Conclusions 

This study has demonstrated the potential of MALDI as a quantitative analysis 

tool and represents the first successful application of solvent-free, quantitative analysis to 

polydisperse materials.  Furthermore, the unusually large melting point (and solubility) 

differences that exist between our oligomers (melting points of approximately 40, 200, 

300, and 400+ °C for monomer through tetramer, respectively
[8]

) provided us with a 

particularly rigorous test of our quantitative analysis technique.  The ability of MALDI as 

a reliable quantitative analysis tool was first demonstrated by analyzing a sample spiked 

with a known amount of dimer standard.  The standard addition method was then used to 

determine the dimer and trimer compositions of petroleum pitch fractions of unknown 

oligomeric composition.  Being able to obtain this kind of information is essential for 

developing a quantitative relationship between the oligomeric compositions of petroleum 

pitches and their effect on end-product (e.g., carbon fibers) properties.  
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CHAPTER FIVE 

STRUCTURAL CHARACTRIZATION OF THE OLIGOMERIC  

CONSTITUENTS OF PETROLEUM PITCHES  

Abstract 

The separation of petroleum pitch into its oligomeric fractions via dense-gas 

extraction (DGE), followed by the application of both new and conventional analytical 

techniques to those fractions, has given us unique capabilities for identifying the specific 

molecular structures that exist in petroleum pitches.  Specifically, pitch fractions 

containing 98% monomer or 97% dimer were isolated by DGE and characterized using 

MALDI, MALDI-PSD, and FD mass spectrometry (MS); and 
1
H-NMR, UV-vis, and FT-

IR spectroscopy.  Results indicate that the 98% monomer pitch fraction is approximately 

Gaussian with respect to molecular weight, with the dominant species being methylated 

derivatives of the polycyclic aromatic hydrocarbons (PAH) benzofluorene (216.4 m/z), 

chrysene, (228.3 m/z), benzofluoranthene (252.3 m/z), and their isomers.  The 

distribution of methyl substituents per molecule is also approximately Gaussian, with a 

maximum at 2.  The molecular weight distribution of the 97% dimer pitch fraction is also 

approximately Gaussian, and the most prevalent species (m/z = 454.6, 468.7, and 482.8) 

are consistent with condensation reactions of the most common monomer species with an 

accompanying loss of 4-6 hydrogens.  As mesophase pitches that contain up to 25% 

dimer were previously identified, herein are proposed specific molecular structures that 

are significant constituents in mesophase pitch. 
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Introduction 

Petroleum pitches are produced by the thermal polymerization of aromatic decant 

oil, a by-product of the fluid catalytic cracking (FCC) of the heavy gas oil fraction of 

crude oil, and are generally regarded to consist of oligomers of alkylated polycyclic 

aromatic hydrocarbons (PAHs), with the overall molecular weight (mol wt) ranging from 

approximately 200 to 2000 [1-2].  Such pitches can serve as raw materials for a wide 

range of carbon products, including carbon electrodes, carbon fibers for fuel cell 

substrates, high thermal conductivity carbon fibers, and the matrix phase of carbon–

carbon composites [3-5].  Researchers have long recognized that mol wt and structure 

play a role in the suitability of a given pitch for a particular application [1, 3, 5-6], but to 

date this understanding is primarily qualitative because of an inability to isolate and 

properly characterize the constituents of pitch. 

A significant barrier to increased fundamental understanding of pitches has been 

the difficulty in separating them into narrow mol wt fractions that are more easily 

characterized and can serve as molecular calibration standards.  The conventional 

technique for analytical-scale pitch separation, gel permeation chromatography (GPC), 

suffers from a number of disadvantages, including poor peak resolution and the 

incomplete solubility of higher mol wt pitches in even aggressive mobile-phase solvents 

[7-8].  Thies and co-workers [9-10] have recently developed a technique, known as 

dense-gas extraction (DGE), for separating pitches into fractions of relatively narrow mol 

wt.  Such fractions can serve as standards for additional characterization work; in 

addition, we are investigating their large-scale production via DGE as “designer” pitches 
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whose molecular compositions are tailored for a given, final carbon product application 

[11].  In this work, we report on the use of DGE to fractionate a commercially available 

petroleum pitch, M-50 pitch (Marathon Petroleum Company LLC), into its oligomeric 

constituents.  Monomer-rich and dimer-rich cuts of the parent M-50 pitch were 

subsequently characterized in terms of both mol wt distribution and structure by a wide 

variety of analytical techniques, including field desorption mass spectrometry (FD-MS) 

and matrix-assisted, laser desorption/ionization, time-of-flight (MALDI-TOF) mass 

spectrometry, as well as 
1
H-NMR, FT-IR, and UV-vis spectroscopy.  Taken together, this 

information was used to identify specific molecular structures that comprise petroleum 

pitches. 

A unique feature of this study, in comparison to previous work, is the 

fractionation of petroleum pitch into its constituent oligomers.  Only in recent years have 

researchers [11-12] developed the ability to monitor the molecular weight distribution 

(MWD) of a given pitch separation process via MALDI.  Thus, DGE conditions were 

manipulated until monomer- and dimer-rich cuts of the desired purity were obtained. 

One of the earliest studies on the fractionation and characterization of petroleum 

pitches was by Dickinson [13].  Fractions of Ashland A-240 pitch were produced by 

conventional solvent extraction and analyzed by NMR spectroscopy and vapor pressure 

osmometry (VPO).  This information was used in conjunction with elemental analysis to 

propose average molecular structures for each isolated fraction.  However, the MWD of 

these fractions was not determined.  Kershaw and Black [14] performed work similar to 

that of Dickinson on both petroleum and coal-tar pitches; Electron Ionization (EI) MS 
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was also applied to CCl4- and cyclohexane-soluble fractions of coal-tar pitch.  

Hutchenson et al. [15] used single-stage supercritical extraction with toluene at 400 °C 

and pressures from 46 to 76 bar to separate Ashland A-240 pitch (a similar product to M-

50) into light and heavy cuts.  An average molecular structure was proposed for each 

fraction.  However, GPC results indicated that all fractions obtained were relatively broad 

in mol wt, with monomer and dimer species being present in all samples in significant 

amounts.  Kandiyoti and co-workers, one of the leading groups in the analytical 

characterization of heavy fossil fuels, have recently published a comprehensive review 

paper [16].  However, their work is focused on the characterization of coal-tar pitches and 

asphaltenes, neither of which exhibit the oligomeric nature of petroleum pitches. 

Experimental 

Materials 

The feed pitch to the DGE process was an isotropic pitch, M-50, which was 

obtained from Marathon Petroleum Company LLC.  The mass spectrum of M-50, as 

obtained by MALDI, is shown in Fig. 5.1.  The oligomeric nature of the pitch is obvious.  

Of course, the oligomers themselves are not pure, as the starting “monomer” for the pitch 

(i.e., the aromatic decant oil), is itself a polydisperse material.  What we have labeled 

“monomer” has a mol wt range of 210-388, roughly centered about a maximum of 280; 

“dimer” 388-645, centered about 470; trimer 645-890, centered about 730; and tetramer 

890-1120, centered about 990.  As described in the Results and Discussion section, four 

fractions of M-50 pitch were isolated by DGE and then subjected to analysis:  fractions 

containing 79 and 98% monomer, and fractions consisting of 89 and 97% dimer.  The 
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stated purities were based on MALDI analysis, assuming that species intensity is 

proportional to species mole number [12, 17]. 

Both toluene (HPLC grade, 99.8% purity, CAS 108-88-3) and methanol (HPLC 

grade, 99.9% purity, CAS 67-56-1) were obtained from Fisher Scientific and were used 

as dense-gas solvents without further purification. 
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Figure 5.1. MALDI mass spectrum of M-50 petroleum pitch. 
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Dense-gas Extraction Apparatus and Procedure 

Because DGE is reported in detail elsewhere [10, 12], only a brief description is 

given here.  The two monomer-rich pitch fractions (PFs) were produced by continuous 

DGE (see Fig. 5.2); the two dimer-rich PFs by semi-batch DGE (Fig. 5.3). 

The continuous DGE unit consists of a packed column with a height of 1.5 m of 

packing and an inner diameter of 1.8 cm.  For a typical experiment, molten M-50 pitch is 

fed to the top of the column at ~120 g/h via a single-screw extruder, and a liquid 

chromatography pump is used to deliver the dense-gas solvent at ~600 g/h to the bottom 

of the column.  The dense-gas solvent flows up the column, the pitch feed flows down the 

column, and selected fractions of the feed pitch are extracted into the solvent phase.  As 

would be expected, higher operating pressures increase the density of the solvent and 

increase the average mol wt of the overhead extract.  However, column operating 

temperature has been found to exhibit more complex behavior, with the establishment of 

a positive temperature gradient from the bottom to the top of the column yielding the best 

product purities [11].  A liquid-level detector at the bottom of the column operates based 

on the difference in electrical resistivity between the top and bottom phases and ensures 

complete separation between the solvent-rich top phase and pitch-rich bottom phase.  

Steady-state operation is typically reached within an hour, and an experimental run takes 

6-12 h, depending on how much pitch fraction is to be produced.  
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Figure 5.2. DGE apparatus for continuous fractionation of pitches. 
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Figure 5.3. DGE apparatus for semi-batch fractionation of pitches. 
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For a semi-batch run (see Fig. 5.3), ~15 g of the M-50 feed pitch is charged to a 

stillpot in the bottom of a packed column similar to that described above.  Continuous 

flow of the dense-gas solvent is then initiated.  The solvent flows through the pitch 

charge, extracts a portion of the pitch depending on the operating (column) temperature 

and pressure, flows up the column, and removes the extracted pitch fraction out as top 

product.  As with continuous DGE, a positive temperature gradient is established along 

the length of the column to enhance product purity.  Liquid reflux of a portion of the 

product back down the column, which is created by use of a heated reflux finger, is also 

used to enhance overhead product purity.   

Analytical Characterization of Pitch Fractions Isolated by DGE 

Pitch fractions isolated by the DGE experiments described above were subjected 

to a wide range of analytical characterization techniques, as described below.  Field 

desorption–mass spectrometry (FD-MS) analyses were performed using a Fisons 

Instruments VG ZAB2_SE_FPD Sectorfield mass spectrometer.  CH2Cl2 (Fisher 

Scientific, HPLC grade, CAS 75-09-2) was used as the solvent for all analyzed pitch 

fractions, and a drop of the resulting solution was placed on the emitter of the mass 

spectrometer.  Ions were produced by field desorption of the analytes by employing an 

extraction potential of 8 kV.  Calibration was carried out before each measurement by 

using acetone (Fluka, 99.5%, CAS 67-64-1). 

1
H-NMR analyses were performed with a Bruker 700 MHz NMR Spectrometer 

Avance instrument.  Five mg of a given pitch fraction were dissolved in deuterated 1,2-

dichlorobenzene-d4 (Deutero GmbH, 99%, CAS 2199-69-1), and measurements were 
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carried out at 80°C.  This above-ambient temperature was used to improve resolution and 

to ensure that all fractions were completely soluble in the NMR solvent.  

UV-vis analyses were carried out with a Perkin Elmer Lambda 9 instrument, with 

all pitch fractions being dissolved in 1,2,4 trichlorobenzene (Sigma-Aldrich, 99%, CAS 

120-82-1).  FT-IR analyses of the monomer-rich PFs were performed on the bulk analyte 

with a Nicolet 730 spectrometer. 

Elemental analysis was performed with a PerkinElmer CHNS/O Model 2400 

Series II elemental analyzer. 

MALDI and Post-source Decay 

For MALDI analyses, samples were analyzed using a Bruker Daltonics Autoflex 

MALDI-TOF mass spectrometer equipped with 337 nm nitrogen laser.  The reflectron 

mode was used for this study.  The target plate was positively charged and set to 19.0 kV; 

the secondary ion source to 16.5 kV, the lens to 9.40 kV, and the reflector to 20 kV.  Ions 

generated after laser bombardment were accelerated using pulsed-ion extraction after a 

time delay of 90 ns.  Other important parameters used during analyses included: a 

detector gain of 4.0, a resolution of 2.0, and a mol wt suppression up to 210.  MALDI 

calibration was carried out using a fullerite mixture (Sigma-Aldrich, CAS 131159-39-2) 

before the analysis.  Laser powers ranging from 20 to 26% of maximum were used for 

the MALDI analysis of M-50 petroleum pitch and its fractions, with 200 laser shots being 

used to generate the spectra shown herein.  MALDI m/z were accurate to within ±0.1 Da.   

Both solid-state and solvent-based sample preparation methods were used to 

prepare samples for MALDI analysis.  Based on previous studies from our groups [2, 18], 
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7,7,8,8-tetracyanoquinodimethane (TCNQ; 98% min. from TCI America, CAS 1518-16-

7) was used as the matrix.  For the solid-state analysis of M-50 pitch, the pitch and 

TCNQ were mixed using a grinding mill (Thermo Electron Corp., model Wig-L-Bug).  

The sample was then transferred to the MALDI target-plate cell using our water-spotting 

method [2].  For the solvent-based sample preparation of monomer-rich and dimer-rich 

fractions, a fine powder of TCNQ was prepared using a grinding mill.  A thin film of this 

matrix powder was then transferred to the MALDI target via water-spotting.  Each pitch 

fraction was then dissolved in carbon disulfide (Fisher Scientific; 99.9% min purity, CAS 

75-15-0) at a concentration of 0.02 w/v %, and a drop of the prepared solution was placed 

on the film of TCNQ and allowed to dry before analysis. 

Post-source decay (PSD) analyses were performed with the MALDI instrument 

described above, operating in the reflectron mode and with the Bradbury-Nielsen ion gate 

activated.  Solvent-based sample preparation was used as described above, with 1,2,4 

trichlorobenzene (VWR, GPC grade; 99% min. purity, CAS 120-82-1) being used to 

dissolve the samples at a w/v % of 0.1.  The ion gate was programmed to pass parent 

species ions of specified mol wt to within ±5 Da, as well as all fragment ions associated 

with the parent species.  The target plate was positively charged and set to 19.0 kV, the 

secondary ion source to 16.8 kV, and the lens to 7.6 kV.  Reflector voltage was initially 

set to 20 kV and then progressively reduced to analyze fragment ions of decreasing mol 

wt.  The pulsed ion extraction delay was set to 90 ns, the resolution to 1.0, and 300 laser 

shots were used to generate all spectra.  The laser power ranged from 26 to 33%, with 

higher laser power than that employed in conventional MALDI being required to increase 
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the fragmentation of a given pitch species.  The detector gain employed ranged from 6 to 

16, with higher gains required to achieve an adequate detector response for smaller ion 

fragments.  Fragmentation spectra via PSD are less accurate than conventional MALDI, 

that is, to within ±0.25 Da.       

Results and Discussion 

Dense-gas Extraction 

Results of the DGE experiments are summarized in Tables 5.1-5.3.  In Table 5.1, 

operating conditions and results are shown for two experiments with continuous DGE 

(Fig. 5.2), in which monomer-rich overhead PFs were obtained.  Methanol, with a critical 

temperature (Tc) and pressure (Pc) of 239.5 °C and 81.0 bar, was used as the dense-gas 

solvent for the first fractionation; toluene (Tc = 318.6 °C, Pc = 41.1 bar) was used for the 

second.  In both cases, a positive temperature gradient was established across the DGE 

column, with the bottom at 330, the middle at 350, and the top at 380 °C.  The exiting 

flow rate of the top phase was ~15g/h on a solvent-free basis, with the solvent-rich top 

phase containing 2.7-2.8 wt % pitch.  MALDI spectra for the 98% monomer and 79% 

monomer pitch fractions (PFs) are shown in Fig. 5.4; clearly, methanol is more selective 

for monomer than toluene. 

Experimental details for the two semi-batch runs (Fig. 5.3) are given in Tables 5.2 

and 5.3.  In both cases, toluene was used as the dense-gas solvent, the solvent feed flow 

rate was 600 g/h, the same positive temperature gradient was used as for the continuous 

DGE runs described above, and the reflux finger was maintained at 380 °C.  Operating 

pressures, collection times, and the amount of pitch collected as overhead product on a 
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solvent-free basis are shown for selected pitch fractions, with the last fractions having the 

desired dimer purity.  MALDI spectra for the 89 and 97% dimer PFs are shown as Fig. 

5.5.  Comparing Tables 5.2 and 5.3, we see that the key to obtaining the 97% dimer PF 

was to simply extend the run time of the 89% dimer experiment until the desired higher 

purity was achieved. 
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Table 5.1. Continuous DGE experiments for collection of monomer-rich overhead pitch 

fraction. 

 

Dense-Gas Pitch  Solvent Pressure  Overhead     

Solvent Feed (g/h)  Feed(g/h) (bar) Pitch (g/h)   % Monomer 

Methanol 120 540 36 15.0 287 98 

Toluene 120 600 42 15.5 331 79 

 

Table 5.2. Semi-Batch DGE experiment for collection of 89% dimer overhead pitch 

fraction. 

Fraction Pressure  Collection   Dry Mass     

No. 
b
 (bar) Time (min) (g)   % Dimer 

M-50 Pitch
a
 - - 16.05 536 45 

2 29 60 0.85 361 11 

4 36 60 0.69 375 37 

7 42 30 0.33 437 73 

10 46 30 0.31 458 89 

 

a
 Feed to semi-batch DGE column. 

b
 Selected fractions are shown for illustrative purposes. 
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Table 5.3. Semi-batch DGE experiment for collection of 97% dimer overhead pitch 

fraction. 

Fraction Pressure  Collection   Dry Mass     

No. 
b
 (bar) Time (min) (g)   % Dimer 

M-50 Pitch
a
   15.76 536 45 

1 29 60 2.99 328 17 

4 36 60 0.90 392 33 

7 42 30 0.55 442 62 

11 46 30 0.32 490 90 

13 46 40 0.15 495 97 

17 49 40 0.10 514 97 

 

a
 Feed to semi-batch DGE column. 

b
 Selected fractions are shown for illustrative purposes. 
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Figure 5.4. MALDI mass spectra of (a) 98% monomer and (b) 79% monomer 

fractions isolated from M-50 pitch.  
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Figure 5.5. MALDI mass spectra of (a) 97% dimer and (b) 89% dimer fractions 

isolated from M-50 pitch.  
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Analytical and structural characterization of the monomer-rich fractions 

The results from a variety of analytical methods were collectively used to develop a 

series of likely compounds that are present in monomer and dimer PFs.  These efforts 

first used the results from mass spectral experiments to arrive at a likely composition for 

a given species.  The MALDI-PSD fragmentation pattern in conjunction with proton 

NMR data helped to establish the presence, nature, and location of any alkyl side groups 

on the aromatic ring structures.  Finally, UV-vis and FTIR data were used to eliminate 

certain isomers whose absorption characteristics do not match the observed spectra.  

UV-vis 

All PAH structures proposed in this investigation for the monomer-rich PF of M-

50 pitch were selected, from among other possible isomers, by considering their UV-vis 

absorption spectra and comparing with the absorption spectra for the 79 and 98% 

monomer PFs.  As shown in Fig. 5.6, species present in the 98% monomer PF absorb 

strongly between 300 and 360 nm and weakly at higher wavelengths.  Further, mass 

spectral data (discussed later) indicate that a component of the 98% monomer PF leads to 

an MS signal with an m/z of 216.4. A known PAH with this molecular weight is 

benzofluorene, but there are several isomers of this compound.  Therefore, UV-vis 

absorption data was used to predict which isomers are present within the pitch sample.  

For example, it is known that benzo[b]fluorene exhibits absorption behavior similar to 

that of the pitch sample [19]; thus, it is likely that it is a significant constituent in the 98% 

pure monomer.  On the other hand, the PAH molecule benzo[a]pyrene absorbs strongly 

from 350 to 410 nm [19], and thus, would not be expected to be a major constituent in the 
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98% monomer PF.  The monomer fraction of 79% purity absorbs light at higher 

wavelengths (red shift) in comparison to the 98% monomer PF.  This is probably due to 

the presence of species with a larger polycyclic system, evidence that is consistent with 

the broader signal distribution of this monomer fraction in the FD mass spectrum (see 

below).  Additional information on the use of UV-vis to assist in the selection of the most 

likely PAH structures is given in the subsequent discussions below. 
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Figure 5.6. UV-Vis spectra for the 79% (black) and 98% (gray) monomer fractions, 

and for the 97% dimer fraction (dotted line) of M-50 pitch. 
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Proton NMR Spectroscopy 

1
H-NMR analyses of the 98% monomer PF is given in Fig. 5.7.  The protons with 

NMR chemical shifts between 2.76 and 2.43 ppm are related to the presence of -CH2-R 

(R = alkyl or H) groups attached to the aromatic rings, whereas the species with chemical 

shifts between 8.85 and 7.30 ppm are attributable to protons directly bonded to aromatic 

carbons.  The ratio between aliphatic hydrogens in the position relative to the aromatic 

rings vs. aromatic protons was evaluated via integration of the corresponding NMR 

signals and found to be 1/1.33.  The strong signals at 7.20 and 6.94 ppm arise from the o-

dichlorobenzene solvent and at 1.20 ppm from trace amounts of water.  The presence of 

alkyl substituents with propyl or longer chains is recognized by the peaks between 0.94 

and 0.88 ppm, which are related to aliphatic protons (φ-CH2-CH2-CH2-) in the ß position 

with respect to an aryl-aliphatic group, and by the signals between 1.26 and 1.40 ppm, 

which are related to aliphatic protons (φ-CH2-CH2-) in the α position with respect to a 

aryl-aliphatic group.  They are, however, relatively rare when compared to the number of 

methyl groups directly connected to the aromatic core (related to the signal between 2.76 

and 2.43 ppm).  From the NMR spectrum, the ratio CH3-CH2-φ/CH3-φ is calculated to be 

1/15.  The peak at 3.96 ppm is related to the presence of sp
3
 hybridization that bridges 

two aromatic rings, evidence of the presence of a methylene bridge between two aromatic 

rings.  
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Figure 5.7. 
1
H-NMR of the 98% monomer fraction of M-50 pitch. 
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FT-IR Spectroscopy 

The FT-IR absorption spectrum for the 98% monomer PF is shown in Fig. 5.8.  

The band A at 3046-3014 cm
-1

 of weak intensity is related to aromatic C-H stretching.  

The bands at 2961, 2915, and 2856 cm
-1

 of the group B can be related to stretching of the 

methylic C-H and provides evidence for the presence of saturated sp
3 

carbon atoms.  The 

group C bands at 1598 and 1438 cm-1 are caused by stretching of the C=C atoms of the 

aromatic ring, the group D bands are related to the aryl C-H in-plane bending, and the 

group E bands are related to out-of-plane bending of aryl C-H groups.   

Note that group E consists of three bands.  For PAHs, these bands can be related 

to the number of neighboring hydrogen atoms present on aromatic rings [20].  Taking as 

a model system methyl-substituted benzo[b]fluorene (see Fig. 5.9), the FT-IR spectrum 

will show three absorption bands:  one for the isolated hydrogen on Ring 1, one for the 

two neighboring H atoms on Ring 1, and one for the two hydrogen atoms on Ring 2.  

However, only two bands would be present for -substituted benzo[b]fluorene.  Thus, the 

presence of three absorption bands provides evidence that alkylation of the PAH aromatic 

backbone in the monomer-rich fraction occurs preferentially at the ß position. 
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Figure 5.8. FT-IR spectrum for the 98% monomer PF.  The spectrum for the 79% 

monomer PF is very similar to that shown above.   
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Figure 5.9. FT-IR spectra for the monomer-rich PF indicates that methyl substitution 

of the PAHs preferentially occurs at the β position. 
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FD, MALDI, and MALDI-PSD Mass Spectrometry 

FD-MS spectra for the 98% and 79% monomer PFs are shown in Figs. 5.10(a) 

and (b).  FD-MS was used in addition to MALDI, as the matrix (i.e., TCNQ) signal at 

204 m/z could have interfered with the signals for low mol wt pitch species.  However, 

this did not turn out to be the case, as spectra obtained by the two different MS 

techniques were, in fact, found to be essentially identical.  Our analysis of the monomer-

rich PFs, based on information obtained from FD, MALDI, and MALDI-PSD mass 

spectrometry, is summarized in Table 5.4. 

The lowest-mass signal present in the FD spectrum (Figs. 5.10(a) and (b), blue 

rectangle) of the monomer PF at m/z 216.4 is due to the presence of the PAH 

benzofluorene (mol wt = 216.3) and its isomers, such as benzo[b]fluorene (see Fig. 

5.11a).  The NMR spectra in Fig. 5.7 indicates that benzo[c]fluorene is also equally 

probable, but not benzo[a]fluorene.  Rectangular blue marks delineate a signal 

distribution that starts at 216.4, has a repeating unit of 14 Da, and extends to 300.8 Da.  

This distribution provides strong evidence for the presence of alkyl groups anchored to 

the base aromatic structure of benzofluorene (see Table 5.4 and Fig. 5.11 (b)). 

The fragmentation behavior via MALDI-PSD of the “blue rectangle” signal 

distribution described above is given in Fig. 5.12.  The spectra at m/z = 216.3 (Fig. 

5.12(a)) is consistent with the benzofluorene structure in two ways:  (1) No significant 

fragments are observed, which is consistent with mass spectra for the fluorenes [21], and 

(2) the low-intensity peak at 202.5 m/z is consistent with the loss of the methylene group 

from benzofluorene.  Fragmentation patterns are shown in Figs. 5.12(b-e) for the “blue 
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rectangle” signal distribution that includes species with an m/z = 230.4, 244.3, 258.4, and 

272.5.  In every case, a de-methylated ion (i.e., ~15 Da less than the parent ion) of 

appreciable magnitude is present.  Furthermore, the stability of the de-methylated 

benzofluorene ion is consistent with the mass spectrum for the methylfluorenes, which 

also have a highly stable de-methylated ion [21].  For the species at 272.5 (Fig. 12e), a 

de-ethylated ion at 243.6 is observed at less than one-tenth the intensity of the de-

methylated ion at 257.3.  Loss of a methyl group from an ethyl (vs. a methyl) substituent 

is also possible for the species with m/z of 244.3 and 258.4, but is unlikely based on the 

relatively rare occurrence of ethyl groups in our monomer-rich PFs, as indicated by 
1
H-

NMR.  PSD could not be applied to the higher mol wts in the benzofluorene series 

because of the difficulty in isolating the species of interest from nearby signals of 

comparable intensity.   
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Figure 5.10. FD mass spectra of pitch fractions with purities of (a) 98 and (b) 

79% monomer. 

 

a 

b 
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Table 5.4. Molecular weights and degree of alkylation of species present in the 

monomer-rich fraction of M-50 pitch as determined by FD-MS and MALDI-PSD-MS. 

 Blue 

rectangles 

Yellow 

rings 

Orange 

dots 

Green 

triangles
 a 

Alkyl substituents 

m/z 216.4 228.3 252.3 278.3 0 

m/z 230.3 242.4 266.5 292.2 CH3 

m/z 244.5
 b 

256.5
 b 

280.5
 b
 306.3

 b 
2 x CH3 

m/z 258.4 270.5 294.5
 

320.3 3 x CH3  

 

m/z 272.6
 c 

284.4 308.6 334.5 4 x CH3 or (CH2CH3 + 2 x 

CH3)  

m/z 286.7
 c 

298.6 322.7  5 x CH3 or different combinations of 

methyl, ethyl groups. 

m/z 300.8
 c 

   6 x CH3 or different combinations of 

methyl, ethyl groups. 

 

a 
This PAH series was not observed in appreciable amounts in the 98% monomer PF. 

b
 The most prevalent species in each PAH distribution. (all contained two methyl 

substituents) 

c
 These signals were not prevalent in the 79% monomer PF. 
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In Fig. 5.10, another PAH and its alkylated homologs are shown by the signal 

distribution labeled with yellow rings and begin with an m/z of 228.3, with this signal 

being due to the presence of chrysene and related isomers (Figs. 11c-d).  UV-vis of the 

monomer fraction eliminates the linear naphthacene as a significant species having an 

m/z of 228.3.  As was the case for benzofluorene, the distribution has a repeating unit of 

14 Da, indicating the addition of alkyl groups up to an m/z of 298.6 (see Table 5.4).  

Once again, the most prevalent structure has the equivalent of two methyl groups (m/z = 

256.5). 

PSD was not carried out on the species at 228.3, 242.4, or 284.4 Da because of 

the difficulty in isolating these signals from those nearby.  As for the benzofluorene 

series described above, fragmentation spectra for the species at 256.2 and 270.2 m/z (see 

Figs. 13a-b) indicate the predominance of methyl substituents.  A signal for de-ethylated 

ions is observed only for the higher mol wt species, here for m/z = 298.5, see Fig. 

5.13(c).  A signal (albeit a very low intensity one) for loss of yet another methyl group is 

also observed at an m/z of 254.7. 
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Figure 5.11. PAH structures present in the 98% monomer PF:  (a) 

Benzo[b]fluorene (m/z = 216.4) and (b) its most common alkylated homolog 

(m/z = 244.5).  PAH structures for the m/z = 228.3 series include (c) chrysene, 

(d) benz[a]anthracene, and their alkylated homologs; and for the 252.3 series 

include (e) benzo[e]pyrene, (f) benz[e]acephenanthrylene, and their alkylated 

homologs.  Isomers of dibenzofluorene (g), and alkylated homologs thereof, 

may also be present.  For the 278.3 series, the PAH structures present would 

include (h) benzo[c]chrysene, (i) pentaphene, their isomers, and alkylated 

homologs thereof.  
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Figure 5.12. PSD results for the series of PAHs beginning at benzofluorene 

(m/z = 216.3):  (a) base aromatic structure; (b-d) one to three methyl 

substituents, respectively; (e) limited ethyl substituents are also present. 
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Figure 5.13. PSD results for the series of PAHs beginning with chrysene and 

benz[a]anthracene (m/z = 228.3):  (a-b) two and three methyl substituents, 

respectively; (c) limited ethyl substituents are also likely to be present. 

 



192 

 

The next series of PAHs begins with the signal at 252.4 m/z (Fig. 5.10, orange 

dots) and includes 5-ringed compounds, such as the isomers of benzofluoranthene and 

also benzo[e]pyrene (Figs. 5.11(e-f)), with the UV-vis spectra of the above compounds 

being consistent with that observed for the pitch fractions.  As with the previous two 

series of PAH compounds, a distribution of signals differing from one another by 

multiples of 14 is observed.  PSD results for m/z = 266.5 (see Fig. 5.14(b)) show no de-

methylation peaks, but this is not surprising, as mass spectra for methylated fluoranthene 

and pyrene show essentially no tendency for loss of a single methyl ion [22,23].  On the 

other hand, for all species with an m/z above 266.5, including 280.4, 294.3, and 308.5 

(Figs. 14c-e, respectively), the loss of methyl ions was observed, and for the 308.5 m/z 

species, a signal for a de-ethylated ion is also present.  Another PAH series that cannot be 

ruled out would be isomers of dibenzofluorene, with the base aromatic having an m/z = 

266.5 (see Fig. 5.11(g)).  

All PAH series discussed up to now were prominent in pitch fractions that 

contained either 79% or 98% monomer.  However, the PAH series beginning with the 

species having an m/z of 278.3 (green triangles, Fig. 5.10(b)) is essentially absent in the 

pitch fraction containing 98% monomer, demonstrating how DGE operating conditions 

can be used to control the composition of pitch fractions.  Typical 5-ring PAHs that 

would be expected in the 278.3 series are given as Figs. 5.11(h,i).  As shown in Table 5.4, 

the alkylated homologs of the 278.3 series extend up to 334.5 m/z, which would result 

from the addition of 4 methyl (less likely would be an ethyl and 2 methyl) groups.  Signal 

intensities for species in the 278.3 series were not strong enough to carry out PSD, so we 
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were not able to confirm that all multiples of 14 in the series, are, in fact, the result of 

alkylation.  Nevertheless, this was the case for the other three PAH series that were 

studied, so one would expect the trend to continue.   

Analytical and Structural Characterization of the  

Dimer-rich Fractions 

The MALDI mass spectrum for the 97% dimer PF is given in Fig. 5.15.  FD-MS 

was also applied to this pitch fraction, and the resulting spectrum (not shown) was found 

to be very similar to what was obtained via MALDI.   

The molecular structures of the most prevalent dimer species in the 97% dimer PF 

were predicted by assuming condensation reactions, with the accompanying loss of 

hydrogen atoms, between the most prevalent monomer species in the 98% monomer PF 

(see Fig. 10).  Results of this exercise are given in Table 5.5, with examples of the 

resultant dimer structures given in Fig. 5.16.  Comparison of these results with the 

MALDI-MS spectrum in Fig. 5.15 for the dimer PF reveals several interesting points:  (1) 

Condensation reactions, with the elimination of 4-6 hydrogen atoms, were successful in 

predicting the origin of the most prevalent dimer species.  (2) The geometry of the 

monomer “reactants” is such that the formation of dimers from the loss of larger amounts 

of hydrogen (e.g., 8-10 atoms) would be unlikely.  Consistent with this observation is the 

fact that assuming the loss of larger amounts of hydrogen from condensation of the most 

prevalent monomer species did not produce the major dimer species observed in the 

spectrum.  (3)  The benzofluorene (m/z = 216.3) monomer seems to have participated in 

the formation of dimer more than can be explained by its concentration in Fig. 10a.  
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Another possible explanation is that the distribution of monomeric species in the pitch is 

no longer similar to what it was in the pitch precursor because of the different reactivities 

of the various monomeric species; thus, the benzofluorene may have been more prevalent 

in the original monomeric starting material.  (4)  Referring to the structures in Fig. 16, the 

most prevalent dimer species formed are not highly condensed, but in fact are relatively 

open structures.  There would have to be a greater loss of H atoms than what is observed 

for a higher degree of condensation to occur.   

UV-vis of the 97% dimer PF (Fig. 5.6) also supports the existence of relatively 

open PAH structures.  A massive presence of extended aromatic structures in the dimer-

rich vs. the monomer-rich PFs would drastically shift the absorption of visible light to 

higher wavelengths [24].  However, the “red shift”, although observable, is relatively 

small.  
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Figure 5.14. PSD results for the series of PAHs beginning with isomers of 

benzofluoranthene and with benzo[e]pyrene (m/z = 252.4):  (a) base aromatic 

structure; (b-d) one to three methyl substituents, respectively; (e) limited ethyl 

substituents may also be present. 
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Figure 5.15. MALDI mass spectrum for the 97% dimer PF. 
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Table 5.5. Prominent peaks observed in MALDI mass spectrum for the 97% dimer PF 

(Fig. 5.15) can be explained by condensation of prominent peaks in MALDI of the 98% 

monomer PF (Fig. 5.10). 

        

Monomer Monomer  Hydrogen Dimer 

Reactant 1 Reactant 2 Atom Loss Product 

(m/z) (m/z)   (m/z) 

216.4 216.4 4 428.6 

216.4 230.3 4 442.6 

216.4 244.5 6 454.6 

228.3 230.3 4 454.6 

216.4 244.5 4 456.7 

230.3 244.5 6 468.7 

228.3 242.4 2 468.7 

244.5 244.5 6 482.8 

230.3 256.5 4 482.8 

216.4 280.5 4 492.8 

244.5 256.5 4 496.8 

256.5 256.5 6 506.8 

244.5 280.5 4 520.9 
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c d

b

Figure 5.16. Proposed PAH structures for the major constituents in the 97% dimer 

PF, see Table 5.5. 
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Conclusions 

The characterization of petroleum pitches on a molecular level has long been a 

difficult task, but the separation of the pitch into its oligomeric fractions via dense-gas 

extraction (DGE), followed by the application of both new and conventional 

spectrometric and spectroscopic techniques to those fractions, has given us new 

capabilities for identifying the specific molecular structures in petroleum pitches.  The 

monomer-rich fraction is approximately Gaussian with respect to mol wt and is 

dominated by species that are built upon a relatively small number of well-defined, PAH 

backbone structures.  Methyl, and to a very limited extent ethyl groups decorate these 

backbones in an approximately Gaussian distribution, with dimethyl-substituted PAH 

molecules being the most common molecular makeup.  The overall mol wt distribution of 

the dimer fraction is also approximately Gaussian, and the most prevalent species are 

consistent with combination of the most common monomer species via condensation, 

with the accompanying loss of 4-6 hydrogens.  In previous work [11], we have shown 

that mesophase pitches which contain up to 25 mol % dimer can be produced by 

fractionation of M-50 pitch via DGE.  Thus, to our knowledge this study represents the 

first time that researchers have proposed specific, “nonaverage” molecular structures that 

are significant constituents in mesophase pitch. 
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Additional Discussion 

Work discussed in Chapter 5 was a collaborative project. Petroleum pitch 

fractionation via DGE and MALDI and MALDI-PSD characterization part was 

performed at Clemson. Remaining analytical characterization work (i.e., FDMS, FTIR, 

UV-vis, and 
1
H-NMR) was done at Max Planck Institute for Polymer Research, Mainz, 

Germany by the collaborators. DGE fractionation via continuous DGE apparatus was 

performed by Dr. Eduardo Cervo and MALDI-PSD analysis was performed by Dr. Ward 

Burgess. S-DGE fractionation of petroleum pitches was performed by the thesis author. 

Author also performed the MALDI mass spectrometry analysis for all the DGE-derived 

fractions. Author also contributed in the determination of dimeric structures present in 

petroleum pitches by identifying that most of the predominant dimeric species form by 

the condensation reaction of predominant monomer species, with the accompanying loss 

of 4-6 hydrogen atoms. 

Work discussed in the Chapter 5 was our research group’s first attempt to perform 

structural characterization of the petroleum pitches. Key findings of this research project 

were: (1) Fractionation of petroleum pitches into samples with narrow molecular weight 

distribution (MWD) is necessary to perform the structural identification of the pitch 

constituents; (2) monomer pitch fraction is approximately Gaussian with respect to 

molecular weight, with the dominant species being dimethylated derivatives of the 

polycyclic aromatic hydrocarbons (PAHs); (3) predominant species present in the dimer 

fraction are formed by the condensation reaction between monomer species with the 
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accompanying loss of 4-6 hydrogens; (4) the most prevalent dimer species formed are not 

highly condensed, but in fact are relatively open structures (this observation was later 

confirmed by Burgess and Thies in the subsequent publication [1]). 

Even though in this work, we proposed, for the first time, the specific, “non-

average” molecular structures that are significant constituents of the petroleum pitches 

(monomer and dimer species of the petroleum pitches), in the subsequent research work 

we identified several flaws of this research work. At this point, it is necessary to discuss 

these drawbacks and how we overcame them in our subsequent research work [1,2]. 

Even though we had proposed the PAH backbone structures present in monomer, 

these structures were not unambiguously identified. All the PAH backbone structures that 

were proposed were based on the molecular weight of the species and the UV-vis spectra 

of the “possible” PAH backbones. “Screening” of the most probable PAH backbones was 

performed by comparing the UV-vis spectra of these possible PAHs with the UV-vis 

spectrum of the 97% monomer rich pitch fraction (PF). In other word, proposed 

structures were not unambiguously identified and were educated guesses. Even though 

this was a good start for the preliminary studies, this approach was not good enough to 

identify all the possible PAH backbones present in the monomer rich PF unambiguously. 

Also, it was not possible to identify which isomer structure is predominantly present by 

using the above mentioned “screening criterion”.  As the subsequent work has shown, we 

missed several prominent PAH backbones that are present in the petroleum pitch 

monomer (such as pyrene, triphenylene, benzo[a]pyrene, and benzo[ghi]perylene).  
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Burgess et al. [2] have shown how the “two-step, sequential fractionation” that 

involved dense-gas extraction (DGE) followed by a high-temperature size exclusion 

chromatography (SEC) (also known as gel permeation chromatography (GPC)), and the 

subsequent analysis using high performance liquid chromatography/ photo diode array 

detector (HPLC/PDA) can be used to unambiguously identify the prominent monomeric 

structures present in petroleum pitches. “Two-step, sequential fractionation” (vs. just one-

step DGE separation used in the Chapter 5) method was used to produce the petroleum 

pitch fractions that consist of 3-5 species (in contrast to hundreds of species present in the 

97% monomer rich PF) (See Figure 5A). These narrow samples were fractionated using 

HPLC to separate individual species, which were then characterized using PDA detector. 

All the PAH backbones were unambiguously identified by comparing the UV-vis 

spectrum of the HPLC eluent with the standard spectrum available in the literature. The 

key factor for this successful structural identification was the isolation of individual 

species from the complex petroleum mixture. HPLC/PDA analysis not only separated and 

identified the PAH isomers unambiguously but it also determined the prominent isomers 

present in monomeric species. It also identified the presence of alkylated PAH structures 

(along with the use of MALDI mass spectrometry analysis). 
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Figure 5A. MALDI mass spectra for (a) monomer fraction obtained from semi-batch 

DGE and (b) monomer fraction obtained from “two-step sequential fractionation” 

procedure [2]. GPC fraction figure is reproduced with the permission from the 

publisher. 

Source: Reprinted from Burgess, W.A.; Pittman, J.J.; Marcus, R.K.; Thies, M.C. 

Energy Fuels 2010, 24 (8), 4301–4311. 
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Another drawback of research work discussed in Chapter 5 was that all the dimer 

structures proposed in this chapter were shown to be formed by condensation reaction 

between monomeric species, with the formation of six-memberd ring between them. 

Even though the later work [1] confirmed the condensation reactions and loss of 4 

hydrogen atoms during the dimer formation, detailed UV-vis analysis of the narrow 

dimer fractions indicated that the dimer structures present in the petroleum pitch are 

formed by the condensation reaction between two monomer structures with the formation 

of a nonalternant, 5-membered ring between them (As shown in Figure B). 

With the application of two-step, sequential fractionation approach Burgess also 

separated high purity trimer and tetramer samples. These heavier oligomers were 

characterized using MALDI, UV-vis and FTIR analysis. UV-vis analysis concluded the 

presence of nonalternant, 5-membered rings in the heavier oligomers. Burgess also 

conducted the FTIR analysis and compared the results obtained for monomer, dimer, 

trimer, and tetramer fractions. He observed significant aryl content present in all the 

oligomeric fractions of M-50 pitch. Based on these observations, Burgess concluded that 

formation of heavier species does not occur by significant rearrangement of monomeric 

species and the heavier oligomers are not highly condensed structures but are relatively 

open structures. This study by Burgess represents the first time that actual molecular 

structures have been proposed for the major species comprising petroleum pitch-derived 

mesophase.   
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As these later studies from our research group [1,2] discuss more thorough and 

systematic approach for an “unambiguous” structural identification of complex mixtures 

such as petroleum pitches, reader is advised to use the information discussed in chapter 5 

just as a “preliminary approach” for structural characterization of similar analyte systems, 

and should refer the subsequent work by Burgess [1,2] for more systematic analysis. 
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Figure 5B. Example of one of the proposed dimer structures based on the UV-vis 

analysis of the dimer fractions obtained via “two-step, sequential fractionation” 

method [1]. This figure is reproduced with the permission from the publisher. 

Source: Reprinted from Burgess, W.A.; Thies, M.C. Carbon 2011, 49, 636. Copyright 

2011 John Wiley and Sons. 
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CHAPTER SIX 

STRUCTURAL CHARACTERIZATION OF CATALYTICALLY  

POLYMERIZED PYRENE PITCHES 

Abstract 

Analytical characterization of catalytically polymerized pyrene pitches was 

performed in order to determine the molecular structures of its constituents. Pyrene 

pitches of broad molecular weight (mol wt) distribution (MWD) were first fractionated 

into narrow mol wt cuts using semicontinuous dense-gas/supercritical extraction 

(DGE/SCE). Analytical characterization of these fractions was then conducted using gas 

chromatography/mass spectrometry (GC/MS), reversed-phase high-performance liquid 

chromatography with photodiode array detection (HPLC/PDA), and matrix-assisted laser 

desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) to 

unambiguously identify the monomeric and dimeric species present in the pyrene pitches. 

Structural characterization of monomer species indicated the presence of alkylated 

pyrenes, albeit in small quantities. Dimer species were found to consist of two monomer 

units joined by a 6-membered alternant ring, in contrast to the 5-membered, nonalternant 

ring present pitches formed via heat-soaking.  
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Introduction 

Carbonaceous pitches can be used as precursors for a variety of high performance 

carbon materials including cathodes for lithium ion batteries [1], high thermal 

conductivity carbon fibers [2], and carbon-based composites [3]. These pitches can be 

produced from various resources, such as coal tar, aromatic decant oil, and pure 

polycyclic aromatic hydrocarbons (PAHs) using either thermal [4-5] or catalytic 

polymerization [6-9] processes. A brief history of the preparation of pitch as a precursor 

for advanced carbon materials is also given by Mochida and co-workers [10]. Mochida 

and co-workers [10] reported that the catalytic process was more favorable for its 

selectivity and efficiency during the polymerization of PAHs. Thermal polymerization 

processes, on the other hand, were found to be limited by the necessity of high operating 

pressures. 

Thies and co-workers [11,12], have developed a combination of separation and 

advanced characterization techniques for the characterization of petroleum pitches on the 

molecular level. In brief, the pitches are first fractionated into narrow molecular weight 

(mol wt) cuts via dense-gas (supercritical) extraction (DGE/SCE) [13-15]. These cuts are 

further fractionated via size exclusion chromatography (SEC) (also called gel permeation 

chromatography (GPC)), and the subsequent SEC/GPC fractions are then structurally 

characterized on a molecular level by a wide range of both conventional and advanced 

analytical characterization techniques, including UV-Vis spectroscopy, matrix assisted 

laser desorption/ionization mass spectrometry (MALDI MS) and MALDI fragmentation 
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analysis, and high performance liquid chromatography photo diode array detector 

(HPLC/PDA). These studies have, for the first time, provided researchers with the 

detailed molecular information on the structures present in thermally polymerized 

petroleum pitches. Such information should help us develop a better understanding of the 

structure-property relationships for these materials and for the advanced carbon materials 

that are subsequently produced there from. 

In this study, the structural characterization of carbonaceous pitches on a 

molecular level was extended to catalytically polymerized pyrene pitch. In an analogous 

manner to our previous work with thermally polymerized petroleum pitches [11,12], the 

pitch was first fractionated via dense-gas/supercritical extraction (DGE/SCE). These 

resultant fractions were then characterized using both conventional and advanced 

analytical characterization techniques. 

Experimental 

Materials 

Pyrene pitch was generated from the catalytic polymerization of pure pyrene for 1 

hour at 363 °C, using aluminum chloride (AlCl3) as the catalyst. The reaction time was 

kept low so that the entire range of oligomers in the pitch would be present. The MALDI 

mass spectrum for this pyrene pitch is shown in Fig. 6.1.  

Toluene (HPLC grade, 99.8% purity, CAS 108-88-3) was used as the dense-gas 

solvent for the dense-gas fractionation of the pyrene pitch into its constituent oligomers. 
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1,2,4-trichlorobenzene (TCB; HPLC grade, 99% purity, CAS 120-82-1), acetonitrile 

(ACN; HPLC grade, 99.99% purity, CAS 75-05-8), dichloromethane (DCM; HPLC 

grade, 99.8% purity, CAS 75-09-2), and water (HPLC grade, CAS 7732-18-5) were used 

as solvents for the HPLC work. The toluene was obtained from Fisher Scientific and the 

other solvents from VWR International. 7,7,8,8-tetracyanoquinodimethane (TCNQ; 98% 

min. purity, from TCI America, CAS 1518-16-7) was used as the matrix for MALDI 

analysis. Because pyrene has extended aromatic π-bonding, the pitch samples ionized by 

photo-ionization and hence did not require any added salts for ionization. 
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Figure 6.1. MALDI mass spectrum for pyrene pitch. The oligomeric nature of the 

pitch is clearly observed. 
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Fractionation of Pyrene Pitch via DGE 

Our DGE fractionation technique [13-15] was used to fractionate the original 

pyrene pitch into narrow mol wt fractions. In their work, Burgess et al. [11,12] 

demonstrated how the fractionation of oligomeric pitches into narrow mol wt cuts makes 

possible the molecular structure identification of individual pitch species.  

A schematic of the apparatus used for the DGE operation is shown in Fig. 6.2. 

The apparatus consists of a 1.8-cm i.d., 2.0-m high column, with an actual packing height 

of 1.5 m; its temperature and pressure ratings are 400 °C and 200 bar respectively. As the 

details of this apparatus (i.e., design, construction, and pressure and temperature control) 

are given elsewhere [14], only the operating procedure is discussed here. 

As shown in Fig. 6.2, our DGE column was used in the semicontinuous (s-DGE) 

mode in this work. At the beginning of a given experiment, ~ 5 g of the pyrene pitch 

charge was placed into the bottom manifold, located at the bottom of the column. Column 

was operated isothermally, with the temperature across the column maintained at 330 °C, 

and the dense-gas solvent toluene was delivered at a flow rate of 600 g/h through the 

charged sample, extracting the desired oligomeric species as the top product at the 

selected operating conditions. Approximately 300 mg of monomer fraction (see Fig. 6.3) 

was extracted by operating the column at 29 bar for 40 minutes as a top product (see 

Table 6.1). In a separate experiment, dimer fraction (see Fig. 6.4) was collected by first 

operating the column at 29 bar for about 100 minutes in order to remove all of the 

monomer species as top product. Then the pressure was increased to 42 bar and the dimer 
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constituents were extracted as top product. Approximately 40 mg of dimer were collected 

over a 2-h period (see Table 6.2). Fractionation yields for the monomer were monitored 

by visual observation. That is, when the collected solution became almost clean in color, 

the pressure was increased, until the sample once again had achieved strong color 

(typically orange for dimer species) again. 
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Table 6.1. Semicontinuous DGE experiment for collection of pyrene monomer overhead 

pitch fraction. A dense-gas solvent toluene was delivered at a flow rate of 600 g/h. 

Fraction Pressure  Collection   Dry Mass 

No.  (bar) Time (min) (g) 

Pyrene Pitch
a
 - - 5.00 

1 29 40 0.30 

 

a
 Feed to semicontinuous DGE column. 

Table 6.2. Semicontinuous DGE experiment for collection of pyrene dimer overhead 

pitch fraction. A dense-gas solvent toluene was delivered at a flow rate of 600 g/h. 

Fraction Pressure  Collection   Dry Mass 

No. (bar) Time (min) (g) 

Pyrene Pitch
a
 - - 5.00 

1-3
b 

29 100 0.71 

4-6
c 

42 120 0.04 

 

a
 Feed to semicontinuous DGE column. 

b
 Fractions 1, 2, and 3 (collected at 29 bar) were dried together 

c 
Fractions 4, 5, and 6 (collected at 42 bar) were dried together 
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Figure 6.2. Semicontinuous DGE (s-DGE) apparatus used for isolating the 

monomer and dimer species present in pyrene pitch.  
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Figure 6.3. MALDI mass spectrum for a monomer fraction of pyrene pitch 

obtained via s-DGE at a column temperature and pressure of 330 °C and 29 bar. 

This fraction was subsequently used as the feed to an HPLC/UV-vis 

spectrophotometer. (Note that peak observed at m/z = 204 is for the MALDI matrix 

TCNQ).  
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Figure 6.4. MALDI mass spectrum for a dimer fraction of pyrene pitch obtained via 

s-DGE at a column temperature and pressure of 330 °C and 42 bar. This fraction was 

subsequently used as the feed to an HPLC/UV-vis spectrophotometer.  
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MALDI-TOF-MS 

The Bruker Daltonics Autoflex MALDI-TOF mass spectrometer equipped with 

337 nm nitrogen laser was used for the MALDI analyses and was operated in reflectron 

mode in order to give the best resolution. A pulsed ion-extraction delay (PIE) time of 90 

ns was used in the positive ion mode. Analyte ions were detected with a micro-channel 

plate detector. The target plate was set to 19.0 kV, while ion source 2 was set to 16.6 kV. 

The lens and reflector were set to 9.40 kV and 20 kV, respectively. A fullerite mixture 

(Sigma-Aldrich, CAS 131159-39-2) was used to calibrate the MALDI instrument before 

performing the analyses. Laser powers ranging from 27 to 40% of maximum (i.e., 110 

μJ) were used for the analyses. In an earlier Thies and co-workers [16] had demonstrated 

that the sample preparation method did not have an effect on the quality of the spectrum 

if the analyte consisted of species of similar solubility encompassing a narrow MWD. 

Such was the case for pyrene pitch fractions generated via DGE or fractionated via 

HPLC. Thus, the more rapid solvent-based sample preparation method was used for the 

MALDI analysis of most samples. Furthermore, the HPLC-derived fractions were so 

dilute in concentrations, that the application of solvent-free sample preparation would 

have been impractical anyway.  

MALDI Post Source Decay (PSD) Analysis 

The Bruker Daltonics Autoflex MALDI mass spectrometer described above was 

also used for the post-source decay (PSD) analysis. PSD was used to identify the PAH 

backbones as well as alkylated PAHs present in the pyrene pitch. This analysis was 
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performed with the Bradbury-Nielsen ion gate activated, which allows passage of only 

selected ions and their fragments towards the detector. Details of the operating 

parameters that were used in the PSD analysis are described elsewhere [11,12,17].
 

Solvent-based sample preparation method was used for all the samples that were 

analyzed by PSD.   

HPLC/UV-vis Analysis 

HPLC/UV-vis analysis was performed to unambiguously identify the isomers 

present in pyrene pitch. Analysis of the pyrene monomer fraction (Fig 6.3) was 

performed by dissolving the sample in dimethylsulfoxide (DMSO, CAS: 67-68-5) at 0.1 

and 0.5 mg/mL concentrations. (DMSO is compatible with the solvents used in the 

solvent gradient program for monomer fraction analysis). Dimer fraction analysis was 

performed by dissolving the sample in a 1:1 (by volume) mixture of DCM and TCB at 

0.17 and 0.5 mg/mL concentrations. For all HPLC runs, a 20 μL injection loop was used. 

Based on previous, successful work for the analysis of PAHs [18-21], reversed-

phase HPLC with a non-polar stationary phase was selected for the analysis. In particular, 

a C18 reversed-phase column (250 mm length; 4.6 mm i.d.; particle size 4 μm) 

manufactured by Restek Corporation (Pinnacle II PAH, product no. 9219475) was used.  

A Waters 600E multisolvent delivery system (Waters Corporation) was used to run the 

gradient solvent elution program. The HPLC eluent was then passed through a Z-flow 

cell (Ocean Optics, model no. FIA-Z-SMA-PEEK-LENSED, 10 mm pathlength). This Z-

flow cell was connected to the UV-vis spectrophotometer (SI Photonics SI 400 series 
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spectrophotometer), which recorded the absorbance of the eluents flowing through the 

flow cell at the rate of 1 scan/second. The following solvent gradient program was used 

for the monomer fraction: (1) 60/40 (v/v) water/ACN to 100% ACN from 0 to 40 min; 

(2) 100% ACN to 100% DCM from 40 to 80 minutes; 4) 100% DCM from 80 to 90 min. 

For the analysis of the dimer fraction, a different solvent-gradient program was used. (1) 

100% DCM from 0 to 15 minutes; (2) 100% DCM to 100%TCB from 15 to 45 minutes; 

(3) 100% TCB from 45 to 75 minutes. While a 1 ml/min overall solvent flow rate was 

used for the monomer fraction, the overall solvent flow rate for the dimer fraction was 

0.5 ml/min. Samples eluted from the HPLC were collected in the sample vials after 

passing through the Z-flow cell. 

GC/MS Analysis 

The pyrene monomer fraction (Fig. 6.3) was also analyzed via gas 

chromatography/mass spectrometry (GC/MS) using a Hewlett-Packard HP 6890 gas 

chromatograph coupled with an HP 5973 quadrupole mass detector, installed with an HP-

5 column (0.25 mm i.d.  30 m, coated with 0.25 μm thick film of (5%-Phenyl)-

methylpolysiloxane) purchased from Agilent Technologies. Helium was used as a carrier 

gas. The following temperature program was used: (1) 110 
o
C from 0 to 5 min; (2) 110 

o
C 

to 250 
o
C at 10 

o
C/min from 5 to 19 minutes; (3) 250 

o
C from 19 to 24 minutes. The 

higher mol wt dimer fraction could not be analyzed by GC/MS. 
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Results and Discussion 

Structural Characterization of Monomeric Species 

MALDI and MALDI/PSD Characterization 

The Monomer fraction of the pyrene pitch (see Fig. 6.3) shows three prominent 

peaks for pitch species. With the pyrene pitch being prepared by the polymerization of 

pyrene, clearly, the peak observed at 202 is due to pyrene (mol wt 202.3 Da). Two other 

prominent peaks are present at 14 Da and 28 Da above the signal for pyrene. In our 

previous work with industrial-grade petroleum pitches [11,12,17], a similar pattern was 

observed, with the 14- Da increments being identified as various degrees of alkylation to 

the polycyclic aromatic hydrocarbon (PAH) backbone. Thus, it was somewhat surprising, 

to see a similar pattern in a sample, where the starting material for the pitch was pure 

pyrene. 

The peaks at 216 and 230 Da were further analyzed using the PSD technique to 

obtain more information by fragmentation analysis. As shown in Fig. 6.5(a), essentially 

no fragmentation pattern was observed for the species at 216 Da, such a behavior has 

been previously shown [11,22,23] to be characteristic of both an unsubstituted PAH 

molecule and a PAH molecule substituted with a single methyl group. PSD analysis 

performed for the species at 230 Da, on the other hand (see Fig 6.5(b)), showed a 

prominent fragmentation peak at an m/z of 15 less than the parent peak. PSD mass 

spectra for PAH backbones containing two or more methyl groups are known to exhibit a 

strong fragmentation peak at m/z at 15 less than the parent species [11,12,22,23]. Taken 
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together, then, PSD analysis result at 216 and 230 Da indicate that the species present at 

216 and 230 Da are methylated and dimethylated pyrene.  
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Figure 6.5. MALDI PSD mass spectra for monomeric species with mol wt of (a) 

216 Da and (b) 230 Da. 
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HPLC/PDA Characterization 

HPLC/Uv-vis analysis of the monomer fraction of pyrene pitch was performed at 

two different concentrations: 0.1 mg/mL and 0.5 mg/mL. As the pyrene molecule has 

strong characteristic absorption at 333.5 nm wavelength, the chromatogram was recorded 

at this wavelength. Even though a strong signal was observed for pyrene at a 

concentration of 0.1 mg/mL, no other peaks were observed. As we wanted to identify the 

species at 216 and 230 Da, a higher concentration (i.e., 0.5 mg/mL) was injected for the 

next run; the results are given in Fig 6.6 and show three new peaks in addition to the 

large one (Peak A, elution time 34.83 min). Comparison of the UV-vis spectrum for the 

species eluting at 34.83 min with the spectrum for pyrene prepared in pure ACN indicate 

close agreement between the two spectra (see Fig. 6.7(a)). UV-vis spectra were also 

recorded for the species eluted in between 40 and 43 minutes (see Figs. 6.7(b-d)). Note 

that there are all similar to that of pyrene, albeit with a slight bathochromic shift, as 

would be expected for an alkylpyrene [11,18]. Comparison of the UV/Vis spectra for the 

species present in peaks B (two species, named as B1 (elution time of 40.25 min) and B2 

(elution time of 40.50 min), were co-eluted), C (elution time of 41.83 min), and D 

(elution time of 42.92 min) in Fig. 6.6 to the reference spectra of Friedel and Orchin [24] 

established that peak B2 is 1-methylpyrene, peak C is 4-methylpyrene and peak D is 4-

ethylpyrene (see Figs. 6A, 6B, and 6C in the supplemental section for spectral 

comparison). Based on the spectral matches from Figs. 6A-6C, we can also conclude the 

presence of 2-methylpyrene (for Peak C) and 2,7-dimethylpyrene (For Peak D). 

Furthermore, MALDI analysis was performed on the eluent fractions collected at given 
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elution times. As these HPLC eluent fractions were very dilute (concentrations in the 

order of micrograms), the following solvent-based sample preparation procedure was 

followed. First, a fine powder of the TCNQ matrix was prepared using a ball mill 

(Thermo Electron Corp., Wig-L-Bug model). A thin film of TCNQ powder was then 

spotted onto the MALDI target using water spotting [16]. This matrix film was allowed 

to dry before spotting a drop (2-5 μL) of HPLC eluent fraction on it. The sample was 

again dried under ambient conditions and then analyzed using MALDI. MALDI mass 

spectrometry analysis of the eluent fractions collected at given elution times give mol wts 

consistent with the identification established by UV-vis. 
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Figure 6.6. HPLC chromatograph for pyrene monomer fraction dissolved in 

DMSO at 0.5mg/mL concentration. Zoomed part of the chromatogram (from 37 to 

45 min) is also shown in the figure. 



231 
 

 

 

 

Figure 6.7. UV/Vis spectral comparison between the Pyrene standard (in ACN) and 

species eluted during the HPLC separation of pyrene monomer fraction. 

Source: UV-vis spectra for 1-methylpyrene, 4-methylpyrene, and 4-ethylpyrene were 

adapted from R.A. Friedel, M. Orchin. Ultraviolet Spectra of Aromatic Compounds; 

John Wiley and Sons: New York, 1951. Copyright 1951 John Wiley and Sons. 
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GC/MS Characterization 

In addition to MALDI and HPLC/UV-vis, GC/MS analysis was also performed 

on pyrene monomer fraction that had been isolated via s-DGE (e.g., see Fig. 6.3). 

Samples of the monomer fraction dissolved in TCB were injected into the GC/MS system 

and analyzed for alkylpyrenes. The chromatogram obtained from this analysis, is shown 

in Fig. 6.8. As with the HPLC chromatogram (Fig. 6.6), pyrene gives a large peak, and 

several low-intensity peaks are also observed at higher elution times (here between 17 

and 20 min, see inset). Analysis of those low-intensity species indicated the presence of 

three methylpyrene isomers and two dimethylpyrene isomers, a result consistent with the 

more precise HPLC/UV-vis results. We also note here that the weak intensity response 

for the alkylpyrenes, whether analyzed by HPLC/UV-vis or by GC/MS, indicates that 

they are present in the pyrene pitch in small concentrations (about 10 to 15 %). The 

higher signal response of alkylated vs. non alkylated PAH is typical in MALDI and has 

been reported by our group previously [25, 26]. 

In summary, our comprehensive structural characterization study of monomer 

fraction of pyrene pitch un-equivocally indicates that although the dominant monomer is 

pure pyrene, both methyl- and dimethyl pyrene species are also present in near trivial 

quantities.  
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Figure 6.8. GC/MS Chromatogram for the pyrene pitch monomer fraction isolated 

via s-DGE. 
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Structural Characterization of Dimeric Species 

MALDI and MALDI/PSD Characterization 

Pyrene pitch was fractionated using s-DGE to produce a dimer fraction (see Fig. 

6.4). Similar to the monomeric species, the dimer species (i.e., species located between 

400 and 430 Da) also showed pattern characteristic of alkylation, with prominent peaks 

14 Da apart from each other. The strongest peak was observed at 400 Da, indicating that 

the formation of pyrene dimer takes place via a condensation reaction between two 

pyrene molecules, with the loss of four hydrogen atoms. Based on the structural 

information previously obtained for the monomeric species, we can conclude that the 

species present at 414 Da and 428 Da are alkylated pyrene dimers. We remind the reader 

that the alkylated PAH species are much more easily ionized than their nonalkylated 

counterparts; we estimate their concentration to be ~ 10 to 15 mol % of the total dimer 

species.   

Peaks were also observed at 326 Da and 340 Da. MALDI/PSD analysis of these 

peaks gave no fragmentation patterns, indicating that these molecules are exclusively 

polycyclic aromatic in nature, and that the peak at 340 Da is probably the alkylated 

version of the PAH structure present at 326 Da. As shown, in Fig. 6.4, a couple of peaks 

were also observed at 490 and 504 Da. As they are not visible in Fig 6.1, they are 

probably due to the free radical condensation reaction between the toluene and pyrene, 

which might have occurred during the s-DGE fractionation experiment. MALDI/PSD 

analysis of the species observed at 490 and 504 Da confirmed the occurrence of such 
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condensation reaction, as the fragmentation analysis indicated the loss of benzene for 

both of them. The possible structure of this free radical condensation between toluene and 

pyrene dimer is shown in the additional discussion. MALDI/PSD spectra for species 

present at 490 Da is also included in the additional discussion. 

HPLC/UV-vis Characterization  

HPLC/UV-vis analysis of the dimer fraction of pyrene pitch was performed at a 

concentration of 0.5 mg/mL, with a 50/50 (v/v) mixture of DCM and TCB being used to 

prepare the feed solution. The HPLC chromatogram for the dimer-rich pyrene fraction is 

shown in Fig. 6.9. Three wavelengths (445 nm, 495 nm, and 520 nm) were investigated 

during the HPLC run. The 445 nm wavelength was monitored, as two possible isomers 

suggested by Fetzer [20] with mol wts of 326 Da absorb at this wavelength. The 495 nm 

and 520 nm wavelengths were also monitored as those are characteristic wavelengths at 

which the two possible dimer isomers absorb. (As no absorbance was seen at 520 nm, no 

chromatogram is shown.) As shown in Fig. 6.9, the chromatogram recorded at 445 nm 

and 495 nm showed peaks at 9.33 and 33.83 min (denoted E and F, respectively.)  

MALDI analysis (see Fig. 6.10 (a)) of the eluent corresponding to Peak E (elution 

time of 9.33 min) showed the presence of species at 326 Da and 340 Da. Also observed 

were the “additional” species at 490 and 504 Da. The full UV-vis spectrum for Peak E is 

shown in Fig. 6.11, along with spectra for two possible isomers: dibenzo[cd,lm]perylene 

(also called as peropyrene) and naphtho[8,1,2-bcd]perylene. The weak absorbance 

observed at ~ 495 nm is probably due to the species at 490 Da and 504 Da. The strong 
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UV-vis spectral match confirms the presence of peropyrene isomer, and the essentially 

complete absence of the other possible isomer.  

Similar analysis was performed on the eluent corresponding to Peak F. MALDI 

analysis (see Fig. 6.10 (b)) confirmed the presence of the 400 Da species as the dominant 

species present in this eluent and also shows impurity at 576 Da (recall that MALDI 

exaggerates the alkylated species by a factor of 5-10). The UV-vis spectrum for Peak F is 

shown in Figure 6.12 along with spectra for two possible dimer isomers: 1.14, 7.8-

dibenzoperopyrene (indicated as Isomer I in Fig. 6.13) and 1.14, 10.11-

dibenzoperopyrene (indicated as Isomer II in Fig. 6.13). The UV-vis spectrum for Peak F 

closely matches the UV-vis spectrum of 1.14, 7.8-dibenzoperopyrene. The small (~ 4-5 

nm) bathochromic shift observed for the HPLC eluent is due to different solvents: our 

dimer was prepared in a DCM/TCB mixture, while the standard spectrum was recorded 

in pure TCB solvent. (Such a bathochromic shift was confirmed by performing UV-vis on 

a pure pyrene standard in both TCB and DCM solvents.) Clearly, the other possible 

pyrene dimer is either totally absent or present at very small concentrations in the pyrene 

pitch. We also note that the UV-vis spectrum for Peak F did not show strong absorbance 

in the 300-400 nm range, a region where non-alternant PAHs (i.e., those containing at 

least one five-membered ring, e.g., 2.3-o-phenylenepyrene [27]) typically exhibit their 

strongest absorption. Thus, we can state without equivocation that the  pyrene dimer 

formed by the catalytic polymerization process is a 6-membered, alternant PAH structure.  
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Although MALDI analysis of both Peaks E and F (see Figs. 6.10 (a-b)) showed 

presence of alkylated species, we could not discover their presence in the UV-vis 

spectrum, that is, in terms of bathochromic shifts, such as was observed in the pyrene 

monomer fraction. We thus conclude that these species must be co-eluting with the 

respective PAH backbone species. Recall that both HPLC/UV-vis and GC/MS 

characterization of the monomer fraction of pyrene pitch have indicated that the 

alkylpyrenes are present at small concentrations. One would expect, then, a similar trend 

for the dimer fraction.  
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Figure 6.9. HPLC chromatograms for dimer fraction of pyrene pitch at 

wavelengths of (-) 445 and (-) 495 nm, and the structures identified by MALDI 

combined with full spectrum UV-vis analysis. (Reader is advised to refer electronic 

version for the colored figure.) 



239 
 

 

 

Figure 6.10. MALDI mass spectra for (a) HPLC eluent corresponding to Peak E 

(see Fig. 6.9) and (b) HPLC eluent corresponding to Peak F (see Fig. 6.9) 
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Figure 6.11. UV-vis analysis of HPLC eluent corresponding to peak E (dashed 

line) in 50/50 DCM/TCB and spectral comparison with dibenzo[cd,lm]perylene / 

peropyrene (solid black line) in ethanol [27] and naphtho[8,1,2-bcd]perylene (solid 

gray line) in dioxane [27].  
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Figure 6.12. UV-vis analysis of HPLC eluent corresponding to peak F (dashed line) 

in 50/50 DCM/TCB and spectral comparison with 1.14, 7.8-dibenzoperopyrene  

(solid black line) and 1.14, 10.11-dibenzoperopyrene (solid gray line). 
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Conclusions 

Advanced separation and analytical characterization techniques were used to 

determine the molecular structures of the constituent species present in the monomer and 

dimer fractions of a pyrene pitch produced by catalytically polymerization. Even though 

the starting material for the polymerization was pure pyrene, alkylated pyrene and pyrene 

dimers were found to be present, albeit at low concentrations. The pyrene dimer isomer 

1.14, 7.8-dibenzoperopyrene was predominant isomer, with the other possible dimer 

isomer not even being detectable. In addition, no structures with 5-membered ring 

between monomer units could be detected. This is in dramatic contrast to our experience 

[12] with both Anthracene and petroleum pitches formed via thermal polymerization, 

where 5-membered connecting rings are predominant method of polymerization. Finally 

we note the value of s-DGE in carrying out the characterization techniques. Because the 

monomer and dimer species have quite different properties, such as solubility and 

ionizability, the isolation and concentration of each of these fractions via s-DGE greatly 

facilitated this study.  
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Additional Discussion 

UV-vis Spectral Matches for Alkylpyrene Isomer Identification 

 HPLC eluents observed in Fig 6.6 were characterized using UV-vis 

spectrophotometer. Possible isomers corresponding to the eluent peaks A, B, C, and D 

were identified by the spectral comparison of the eluent with possible isomers. Eluent A 

was easily identified as pyrene. Isomers corresponding to the other eluent peaks (i.e., B, 

C, and D) were identified based on the best spectral match. These comparisons are shown 

in Figs. 6A, 6B, and 6C. 
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Figure 6A. UV-vis spectral comparison between the alkylpyrene isomers and species 

eluted (see Fig 6.6, Peak B) during the HPLC separation of pyrene monomer fraction. 

Eluent species was identified as 1-methylpyrene. 

Source: UV-vis spectra for 1-methylpyrene, 2-methylpyrene, and 4-methylpyrne were 

adapted from R.A. Friedel, M. Orchin. Ultraviolet Spectra of Aromatic Compounds; 

John Wiley and Sons: New York, 1951. Copyright 1951 John Wiley and Sons. 
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Figure 6B. UV-vis spectral comparison between the alkylpyrene isomers and species 

eluted (see Fig 6.6, Peak C) during the HPLC separation of pyrene monomer fraction. 

Eluent species was identified as 4-methylpyrene. 2-methylpyrene might also be 

present, as its spectrum does not differ significantly from 4-methylpyrene’s spectrum. 

Source: UV-vis spectra for 1-methylpyrene, 2-methylpyrene, and 4-methylpyrne were 

adapted from R.A. Friedel, M. Orchin. Ultraviolet Spectra of Aromatic Compounds; 

John Wiley and Sons: New York, 1951. Copyright 1951 John Wiley and Sons. 
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Figure 6C. UV/Vis spectral comparison between the alkylpyrene isomers and species 

eluted (see Fig 6.6, Peak D) during the HPLC separation of pyrene monomer fraction. 

Eluent species was identified as 4-ethylpyrene. 2-methylpyrene might also be present, 

as its spectrum does not differ significantly from 4-ethylpyrene’s spectrum. 

Source: UV-vis spectra for 4-ethylpyrene and 2,7-dimethylpyrne were adapted from 

R.A. Friedel, M. Orchin. Ultraviolet Spectra of Aromatic Compounds; John Wiley and 

Sons: New York, 1951. Copyright 1951 John Wiley and Sons. 
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MALDI PSD Analysis of Species Present at 490 Da in Figs. 6.4 and 6.10 (a) 

As discussed in the main text of this chapter, peaks were observed at 490 and 504 

Da in the MALDI spectra of pyrene dimer fraction (see Fig. 6.4) and the Peak E eluent 

(see Fig. 6.10 (a)). As they are not visible in Fig 6.1, they are probably due to the free 

radical condensation reaction between the toluene and pyrene, which might have 

occurred during the s-DGE fractionation experiment. MALDI/PSD analysis was 

performed to determine the species present at this mol wts. MALDI/PSD spectrum for a 

species present at 490 Da is shown in Fig. 6D. 

PSD analysis performed for the species at 490 Da (see Fig. 6D), showed a 

prominent fragmentation peak at an m/z of 76 Da less than the parent peak. From the 

previous work and literature, we know that the PAH backbone and methylated PAH 

backbone do not show any fragmentation. Also the PAH backbone with two or more 

methyl groups attached to it shows a fragmentation peak at an m/z of 15 Da less than the 

parent peak. Based on this information it was confirmed that the species at 490 Da is not 

bare or alkylated PAH backbone. As the s-DGE experiment for dimer fractionation was 

conducted at 330 
o
C with toluene as a dense-gas solvent, there is a possibility of free 

radical condensation reaction between the toluene and pyrene that can lead to formation 

of such product. Based on the PSD analysis and s-DGE operating condition information, 

the probable structure was proposed. This free radical condensation product is also shown 

in Fig. 6D. Similar PSD spectrum was observed for the species present at 504 Da. 
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Figure 6D. MALDI PSD mass spectra for species with mol wt of 490 Da observed 

in Fig. 6.4. Probable structure for the free-radical condensation reaction between 

toluene (dense-gas solvent) and pyrene dimer is also shown.  
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Solvent Peak Observed in Fig 6.9 

Chromatogram recorded at 445 nm showed two peaks: “Solvent Peak” and “Peak 

E”. It also showed weaker absorbance at “Peak F”. Chromatogram recorded at 495 nm 

showed absorbance at all the three peaks with “Peak F” showing the highest absorbance. 

As “Solvent Peak” was also observed when just the solvent was introduced into the 

HPLC (during the “blank run”, not shown), and as the complete UV/Vis spectrum 

recorded at Solvent Peak did not show any recognizable UV-vis pattern, it was concluded 

that the Solvent Peak is originated due to the elution of the solvent. 

Bathochromic Shift Observed for the Species Present at Peak F (Fig. 6.12) 

The UV-vis spectrum for Peak F closely matches the UV-vis spectrum of 1.14, 

7.8-dibenzoperopyrene (see Fig. 6.12). The small (~ 4-5 nm) bathochromic shift observed 

for the HPLC eluent is due to different solvents: our dimer was prepared in a DCM/TCB 

mixture, while the standard spectrum was recorded in pure TCB solvent. (Such a 

bathochromic shift was confirmed by performing UV-vis on a pure pyrene standard in 

both TCB and DCM solvents. DCM solvent showed a bathochromic shift of ~ - 4-5 nm 

when compared to the UV/Vis absorbance of sample in pure TCB.  
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CHAPTER SEVEN 

CONCLUSIONS AND RECOMMENDATIONS 

Conclusions 

Three main objectives of this research work were to (1) investigate the 

semicontinuous dense-gas extraction (s-DGE) technique [1,2] for isolating both 

petroleum and polycyclic aromatic hydrocarbon (PAH) pitch oligomers, (2) develop a 

reliable quantitative analysis method to monitor the oligomeric composition of pitch 

fractions with broad molecular weight distribution (MWD), and (3) identify the actual, 

“non-average” structures present in both petroleum pitches and catalytically polymerized 

pyrene pitches.  

Initial studies were directed towards the fractionation of petroleum pitches to 

produce narrow molecular weight (mol wt), oligomeric standards. The s-DGE technique 

was applied to conduct these studies. As the samples were needed only for analytical 

characterization work, the amount of material required was in the range of a couple 

hundred milligrams. Because of its ease of operation and the ease of manipulating the 

operating conditions in order to fractionate the desired samples, s-DGE was preferred 

over the operation of DGE in continuous mode. At the beginning of this research project, 

a new s-DGE setup was constructed in our lab.  

As discussed in Chapter 2, this s-DGE apparatus was used to generate 100% (on 

the basis of Matrix Assisted Laser Desorption/Ionization time-of-flight Mass 

Spectrometry (MALDI-TOF-MS) spectrum area %) monomer and dimer oligomers of the 
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petroleum pitches. An 88% trimer fraction was also produced using this apparatus, with 

the major impurities being dimer and tetramer. The desired fractionation was achieved by 

manipulating operating parameters (i.e., operating pressure and temperature, and dense-

gas solvent flow rates). The use of pre-fractionated, concentrated pitch cut (via 

continuous or two-column continuous DGE) samples as the starting material instead of 

neat M-50 petroleum pitch enabled us to generate high-purity dimer and trimer oligomers 

in significantly less experimental time. Because the operating parameters required to 

achieve the desired purity of a given oligomer via s-DGE could only be determined 

empirically, our ability to monitor in real time the MWD of the cuts being produced via 

MALDI mass spectrometry has enabled us to fine-tune operating conditions during a 

given run in order to achieve the desired product purities [3].  

After we were able to produce narrow mol wt, oligomeric standards via s-DGE, 

our efforts were directed towards developing a reliable method of quantitative analysis 

for pitches and their oligomers by means of MALDI-TOF-MS. As successful quantitative 

analysis via MALDI requires samples with good homogeneity [4] (in order to give good 

reproducibility), first the effect of sample preparation methods on sample homogeneity 

was studied. In this work, the interrelationships between sample preparation, analyte 

MWD, and MALDI response for a well-defined system were investigated. This work is 

discussed in Chapter 3.  

It was observed that samples with MWDs narrower enough to consist of just two 

oligomers (i.e., dimer and trimer) introduced non homogeneities in solvent-based samples 
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prepared for MALDI analysis. We propose that the differences are due to significant 

solubility differences that can exist between even adjacent “mers”. Solvent-free sample 

preparation, on the other hand, resulted in good homogeneities (and hence better 

reproducibilities). As many of the petroleum pitch fractions were not completely soluble 

in even aggressive solvents, solvent-free sample preparation was the preferred method for 

MALDI analysis in any case. 

Thus, the work in Chapter 3, which emphasized the importance of good sample 

preparation and homogeneous samples for reproducible sample analysis, laid the 

groundwork for the quantitative analysis work in Chapter 4. Based on these encouraging, 

preliminary results, true quantitative analysis work was then performed using standard 

addition method. High-purity dimer and trimer fractions, produced by s-DGE and/or 

preparative-scale size exclusion chromatography (SEC), were used as standards, and the 

amount of dimer/trimer present in an unknown sample was quantified. These results 

showed the application of MALDI as a quantitative analysis technique for samples of 

broad MWD, and in particular were the first successful application of MALDI-based 

quantitative analysis using a solvent-free sample preparation method to insoluble, 

polydisperse mixtures of macromolecules (i.e., petroleum pitches) [5]. 

The second part of this PhD, beginning with Chapter 5, was directed towards the 

structural characterization of the dominant species present petroleum pitches, as well as 

pitches produced synthetically from pure PAH starting materials. Petroleum pitch 

fractions, isolated using either continuous or semicontinuous DGE operation, were 
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investigated using battery of analytical characterization techniques such as MALDI, 

MALDI-PSD (i.e., fragmentation analysis), UV-vis, FT-IR, and 
1
H-NMR. This work was 

conducted in collaboration with Räder and Müllen [6] from the Max Planck Institute for 

Polymer Research and presented, for the first time, “non-average” structures present in 

petroleum pitches. Possible polycyclic aromatic hydrocarbon (PAH) backbone structures 

were proposed based on both the molecular weight (via MALDI) and the UV-vis 

response of a monomer-rich fraction isolated via DGE. Presence of alkyl groups 

(predominantly methyl) attached to the PAH backbone structures was also independently 

demonstrated by several analytical techniques. The most prevalent dimer species were 

found to be consistent with combination of the most common monomer species via a 

free-radical condensation reaction, with the accompanying loss of 4–6 hydrogens. Even 

though this work did present, for the first time actual, non-average structures for the 

species present in petroleum pitches, the work did have some flaws: (1) The PAH 

backbone structures present in the monomer were not unambiguously identified and, as 

the subsequent work showed, a few of the prominent structures were overlooked or 

misidentified. In particular, the inability to apply UV-vis spectroscopy to a particular, 

isolated pitch species meant we also could not identify species unambiguously. These 

flaws were addressed and corrected in the subsequent work of Burgess and Thies [7,8]. 

In Chapter 6, separation and analytical characterization methods developed by 

Burgess and Thies [7,8] for petroleum pitches were applied to the structural 

characterization of pitches produced from pure PAHs. In particular, catalytically 

polymerized pyrene pitches were characterized using the analytical characterization 
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methods of MALDI, MALDI-PSD, HPLC/UV-vis, and GC/MS. Analogous to the work 

of Burgess and Thies [7,8], a critical prelude to this characterization work was 

fractionation of these pyrene pitches into their respective oligomeric cuts using s-DGE. In 

addition to the obvious result that most monomer consisted of pure pyrene, more 

surprising results, such as the presence of alkylpyrene and of a “one-and-a-half” oligomer 

(i.e., peropyrene), were obtained. The level of detail that could be obtained by our 

methods was demonstrated when the predominant isomers of peropyrene and of pyrene 

dimer were identified by analysis of a s-DGE dimer fraction via HPLC followed by UV-

vis.  

The structural characterization work discussed in both Chapters 5 and 6 

emphasized the importance of fractionating of complex mixtures such as petroleum 

pitches and PAH-derived pitches before sophisticated analytical techniques can be 

successfully applied. For example, in case of M-50 petroleum pitch, there are thousands 

of species present in the starting material. Such a sample cannot be effectively analyzed 

by analytical techniques, such as HPLC, for unambiguous structural identification 

because the concentration of a certain species present in a broad MWD mixture is very 

low and hence difficult to identify. Fractionation of M-50 using s-DGE (which reduces 

the number of species present in the sample from thousands to hundreds) followed by 

size exclusion chromatography (which reduces the number of species present in the 

sample of interest to 5-10) results into samples with small number of species in higher 

concentration. This pre-fractionation then allows the HPLC to effectively separate these 

narrow mol wt samples to unambiguous identification of constituent species.  Similarly, 
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in case of pyrene pitches, structural characterization of alkylpyrenes (which are present at 

low concentrations in the parent pitch) was made possible by pre-fractionation of pyrene 

pitch via s-DGE. Thus, our ability to fractionate these petroleum and synthetic pitches 

(via DGE and SEC) was a key factor in the successful structural characterization of these 

complex mixtures.  

Recommendations 

Semicontinuous Dense-gas Extraction (s-DGE) Column 

As our group is highly dependent on the DGE fractionation work, it is essential to 

make sure that the s-DGE apparatus is working properly all the time. Regular 

maintenance is highly recommended to avoid the problems that can basically take the 

research to a standstill. Regular pressure tests, packing changes, column cleaning, and 

replacement of the heating tapes that heat the inlet and outlet lines are some of the 

essential things-to-do that fall into the category of regular maintenance. Cartridge heaters 

located in the aluminum claddings for the bottom manifold/stillpot typically need to be 

replaced pretty much after every 1.5-2 years. Addition of the check valve in the solvent 

feed line just before it enters the column has helped us to eliminate the backflow of 

pitch/solvent mixture into the line that used to occur in the past in the case of power 

outages, causing plugging in the solvent feed line when the pitch would cool down and 

solidify. Thus, it is recommended to make sure that the check valve is operating properly 

on a quarterly basis.  
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Bruker Autoflex MALDI Mass Spectrometer 

In his dissertation recommendations, E.G. Cervo [9] stated that “it is no 

exaggeration to say that when the MALDI doesn’t work, our group panics”. It is an  

expensive instrument and replacement of even small parts can cost thousands of dollars. 

For these reasons, it is extremely important to “know” the instrument inside and out. 

Such knowledge can save tens of thousands of dollars when troubleshooting and part 

replacements can be done “in-house” instead of through a visit to Clemson by a Bruker 

technician. Listed below are some of the common problems/concerns that can arise: 

If the operator encounters the error that says that the instrument is not reaching 

the set vacuum, it means that you have to change the vacuum pump oil. The procedure to 

change the vacuum pump oil is posted on the side wall of the instrument and can also be 

found in Appendix E of the dissertation of W.A. Burgess [10]. Keeping an eye on the 

laser power/laser energy is something that should be made a habit. Such a constant 

monitoring gives the operator an idea about the aging of the laser. The bruker service 

staff is exceptionally good in troubleshooting instrument problems, and many problems 

can be solved by talking to them on the telephone. They also have remote access tool, 

that can be used to check out our instrument. This tool is useful for figuring out problems. 

So if you have a problem and cannot figure what is going wrong,even after talking to all 

group members, call Bruker. The contact number is posted on the printer sitting next to 

the MALDI-dedicated computer.  
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DGE Fractionation Using Solvent Mixtures 

During the course of this research work, the author never tried mixture of solvents 

as dense-gas solvents for the fractionation of pitches. Pyrene pitches possess significantly 

higher solubilities in NMP than in toluene (at 80 
o
C), which is currently used as the DGE 

solvent in the vast majority of our work.  Hence, it would be interesting to see whether 

better fractionation (particularly in the case of pyrene pitch) could be achieved by using 

NMP as a co-solvent with toluene under dense-gas conditions. As the author was able to 

fractionate relatively narrow monomer and dimer fractions of pyrene using toluene as a 

solvent, use of this solvent mixture fractionation studies should be directed towards the 

fractionation of trimer and heavier oligomers.  

Process Simulation for DGE Fractionation 

One of the drawbacks of the s-DGE fractionation work reported in this 

dissertation is the absence use of an essentially empirical approach by the author in his 

work. Some work on the use of HYSYS for process simulation and on the calculation of 

number of stages has been reported by W.F. Edwards and E.G. Cervo [9,11]. This 

information should be taken as the starting point for work on the development of a 

reliable process simulation for the DGE process. The use of less complicated starting 

materials (such as pyrene pitches) could initially be implemented before later shifting the 

focus to more complex starting materials (such as petroleum pitches). 
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Two-step, Sequential Fractionation of Pyrene Trimer 

For the pyrene monomer and dimer characterization (discussed in Chapter 6), the 

fractionation of pyrene pitches via s-DGE alone provided sufficient initial separation, as 

the fractions were further separated during the HPLC analysis. However, for the 

separation of higher mol wt pyrene oligomers, an alternative approach will be necessary. 

In particular, the author recommends application of our two-step, sequential fractionation 

technique (i.e., s-DGE followed by high-temperature SEC) to produce high-purity trimer. 

Based on our difficulty with pyrene dimer, we do not expect to be able to fractionate 

pyrene trimer by HPLC. Thus, s-DGE + high temperature GPC is probably our best 

chance of isolating species in preparation for UV-vis analysis. The UV-vis analysis of 

such a high-purity trimer can be used to identify the structures (5-membered, 

nonalternant vs. 6-membered, alternant) present in the trimer species. This information, 

along with the structural information of unambiguously identified monomer and dimer 

isomers, can help us understand the structures present in heavier oligomers that form 

mesophase. 

Quantitative Analysis of Petroleum Pitches 

Quantitative analysis of the oligomeric constituents of petroleum pitches by 

MALDI mass spectrometry is the author’s unique contribution to the research group’s 

efforts towards developing a fundamental understanding of the molecular composition of 

petroleum pitches, and the impact of this composition on the final carbon-product 

properties. MALDI characterization work to develop reliable quantitative analysis 
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methods for polydisperse systems is still in its early stages, and there is a huge scope for 

improvement/development in this research area. Development of better sample 

preparation methods (which would give better homogeneity and reproducibility) and 

application of advanced separation techniques to produce better quantitative analysis 

standards would certainly enhance the reliability of MALDI-based quantitative methods. 

Mass discrimination effects observed in MALDI analysis of the polydisperse systems 

(irrespective of the sample preparation method) need to be understood to determine the 

potential and limitations of MALDI-based quantitative studies. For example, effect of the 

mol wt of quantitative standard (dimer vs. trimer or tetramer) on the accuracy of MALDI 

analysis needs to be understood to extend the quantitative analysis to polydisperse 

systems with different average mol wts and polydispersities. Specific, relatively short-

term recommendations in the area of quantitative analysis of petroleum pitches by 

MALDI are given below. 

In Chapter 4, the successful application of the standard addition method for the 

quantitative analysis of petroleum pitches was presented. In the case of dimer analysis, a 

“known unknown” sample was prepared by starting with a dimer-free pitch fraction, 

spiking this fraction with a known amount of dimer, and then analyzing the resultant 

sample by the method of standard addition in order to determine by calculation how 

much dimer had been originally added to the sample. spiking the pitch fraction with a 

known amount of the dimer standard in it. This technique thus provided a check on the 

method of standard addition as applied to MALDI-based quantitative analysis. Because 

of the lack of trimer standard, a similar analysis could not be performed on the trimer 
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fraction present in petroleum pitch. As observed by the author during this work, 

generation of high-purity trimer is not as easy as dimer separation. Lack of fundamental 

understanding of the process (e.g., number of theoretical stages available for s-DGE 

separation) is one of the probable reasons due to which author could not figure out the 

optimal operating conditions (such as, pressure, temperature profile, and sample 

collection time) to produce high-purity trimer with high yields. This limitation again 

underlines the necessity of developing the fundamental understanding of the DGE 

process. This is the reason author has recommended process simulation work for DGE 

fractionation.   

It is recommended to perform similar quantitative study with the trimer standard 

in the future quantitative studies, after developing the ability to produce high-purity 

trimer standards. It is also recommended to prepare more number of samples with known 

quantities of both dimer and trimer standards. Quantitative analysis of these known 

samples will give us an idea about the accuracy of MALDI-based quantitative analysis. 

Quantitative Analysis of Pyrene Pitches 

Similar quantitative studies to those described above can also be performed with 

pyrene pitches. Recovery and isolation of pyrene monomer species from any pyrene pitch 

can be done using toluene as the dense-gas solvent. Once this monomer is removed from 

the sample, this “monomer-less” fraction can be mixed with known quantities of pure 

monomer (which is collected as an overhead fraction in the s-DGE experiment), and 

these samples with known quantities of monomer can then be analyzed via MALDI mass 
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spectrometry. MALDI results of these samples with known monomer can then be 

compared with the starting pyrene pitch to determine the monomer quantity in the 

starting pyrene pitch. If necessary, these experiments can also be performed without a 

matrix (which makes the analytical technique simply Laser Desorption/Ionization mass 

spectrometry), or with another matrix in order to avoid interference from TCNQ, which 

has mol wt (204 Da) close to that of pyrene (202 Da). The above quantitative information 

can be cross-checked to some extent by performing mass balance calculations, although 

the mass balance across the s-DGE is not always very accurate as some portion of the 

charged sample stays inside the column, when applied to pyrene pitches that have been 

polymerized for different times, such quantitative analysis work can be used to help us 

elucidate the understanding kinetics behind the catalytic polymerization process used to 

produce pyrene pitches.   

In MALDI analysis, every analyte system is different and need different optimum 

set of conditions (i.e., matrix, matrix/analyte ratio etc.). Thus, the another 

recommendation that the experimentalist makes sure that he/she has optimized operating 

conditions before performing any quantitative analysis work. Finding proper matrix and 

optimizing the matrix-to-analyte ratio should always be done before investing significant 

time on the quantitative analysis of pyrene samples. Other MALDI instrument parameters 

that need to be optimized are pulsed extraction delay, laser power, and ion source 

voltages. 
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Structural Characterization of Petroleum Pitches/ 

Heavy Carbonaceous Macromolecules 

Because of its relevance to our petroleum pitch characterization work, the author 

has consistently followed the literature from the heavy petroleum characterization field. 

In the past 4-5 years there has been increased interest in the field of petroleum 

characterization, as indicated by the increase in the number of publications in this area 

[6]. These developments are driven by the global shift to heavier petroleum resources, 

which for many years were considered too difficult to process. Advances in mass 

spectrometry, chromatography, and the “hyphenated” analytical techniques have led to an 

increased understanding of these complex, macromolecular mixtures on the molecular 

level. A very good review of the current developments in the field of heavy petroleum 

characterization has been recently published by Rodgers and co-workers [12] and should 

be read by any student working in the Thies group in the area of carbonaceous pitches. 

In particular, the work that is being done at National High Magnetic Field 

Laboratory (NHMFL, Tallahassee, FL) under the supervision of Dr. Allan Marshala is 

worth following. Dr. Marshal’s group has been involved in the characterization of heavy 

petroleum produced using Fourier transform ion cyclotron resonance mass spectrometry 

(FT-ICR MS) [13]. The group uses the ultra-high resolution (which gives them an ability 

to differentiate between molecules that differ by only about .0005 Dalton) provided by 

the FT-ICR to characterize the heavy petroleum samples. This high-resolution mass 

spectrometry technique gives them the ability to identify the molecular formula 
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assignment accurately. It would be really interesting to analyze our pitch samples using 

FT-ICR and compare the results with characterization work performed at Clemson [7,8]. 

In addition, identification of less prominent species and the species containing hetero-

atoms (such as, Na and S) would be facilitated by obtaining the accurate molecular 

formula assignment. Author highly recommends an effort to establish a collaborative 

project with Dr. Marshal’s group, if possible. Another option would be to send the 

samples (e.g., 100% monomer fraction) from our lab to NHMFL, get them characterized 

using the FT-ICR MS, and pay the sample charges.  

Miscellaneous Recommendations/Suggestions 

While attending several conferences (particularly Fall and Spring National 

Meetings & Expositions of the American Chemical Society and the American Society for 

Mass Spectrometry’s Conference on Mass Spectrometry and Allied Topics), the author 

observed that the work that we have been doing at Clemson can be extended beyond 

petroleum pitches and carbonaceous materials. The expertise that our research group has 

developed with the dense-gas/supercritical extraction (DGE/SCE) and analytical 

characterization of heavy petroleum macromolecules can certainly be extended to 

unconventional energy resources and feedstock such as heavy oils, oil sands, and 

bitumen. With the inevitable global shift to heavier petroleum resources, a collaborative 

project in this area (e.g., with petroleum companies) would provide yet another 

opportunity for the Clemson group to contribute to the scientific community’s 
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understanding of the molecular structure and composition of macromolecular fossil fuel 

systems. 
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APPENDIX A 

MALDI CALIBRATION PROCEDURE 

This section contains the procedure to calibrate the BRUKER AUTOFLEX 

MALDI-TOF mass spectrometer. This calibration should be performed regularly. The 

calibration procedure calibrates the instrument response (i.e., molecular weight detection) 

against a standard mixture consisting of compounds with known molecular weights (i.e., 

fullerene C60/C70 mixture in our work). 

 

Note: All the screen pictures from the FlexControl software in this chapter are reprinted 

with the permission of Bruker Daltonics (see Permissions, page 353). 
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Calibration Procedure 

1. As the MALDI AUTOFLEX is on all the time, you do not need to start it. To access 

the MALDI, you need to „sign in‟ to the computer connected to the instrument. 

2. Once you log in, click on the „flex control‟ icon on the desktop. 

3. The computer will ask you to enter a valid „user name‟ and „password‟ for the 

system. However, you do not need to enter a „user name‟ or „password‟. Default 

user name will appear. Just click „OK‟ tab. 

4. You will be asked to open the „flexcontrol method‟. You can select the method from 

the previously saved methods. Typically, you select the most recent method (as that is 

the method that you or your colleagues have saved during the most recent calibration 

procedure). 

5. Now the MALDI interactive screen will appear. 

6. Make sure that the „Sample‟ box is green and displays „OUT‟. Also make sure that 

„System‟ box is green and displays „READY‟. Click on the arrow button (see Fig. 

A1). 

7. The target loading assembly will open. Load the target (with the calibration standard 

mixture (fullerene C60/C70 mixture) deposited on it) and click on the arrow button 

again. Make sure the target is placed in a position with spot “A1” is in the correct 

position, as marked on the target tray. Note the spot numbers where the sample has 

been placed before loading the target. This loading procedure takes 2-3 minutes. 

During this time, the „Sample‟ and the „System‟ boxes will be yellow and will 

display the current status of the instrument. Wait untill they turn back to green. Now 
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the „Sample‟ box will be green and will display „IN‟, and the „System‟ box will turn 

green and display „READY‟. Now the instrument is ready for calibration. 

8.  Click on the „Calibration‟ tab. 

9. A Scroll-down menu will appear for the „Reference List‟ tab. Select 

„UserDefinedReferenceList‟. As we use C60/C70 fullerite mixture as a calibration 

standard, put C60 (and C70) and 720.66000 (and 840.77000) in the boxes and click 

on „Add‟ (see Fig. A2). 

10. Once you add these reference compound names and their respective molecular 

weights, click on the „Sample Carrier‟ tab. Select the spot where the calibration 

standard has been spotted. Select the laser power by moving the laser power bar up or 

down, and then click on „Start‟ (generally, we start with laser power 25). If the signal 

intensities are weak, increase the laser power. You will get a spectrum similar to the 

one shown in Fig. A2. As the standard mixture has just two main components, you 

will see two sharp peaks at ~ 720 Da and ~ 840 Da. 

MALDI Characterization Procedure 

1. For the routine MALDI analysis, user initially has to perform Steps 1 to 7 as 

discussed in „Calibration Procedure‟. 

2. Click on the „Sample Carrier‟ tab. Select the desired target spot by clicking on it. 

3. Click on the „Laser Power Adjustment Bar‟ (see Fig. A1) to adjust the laser power. 

4. Click on „Start‟ tab located just below the sample image window. 

5. MALDI spectrum will appear on the screen. Save the spectrum by clicking on „Save 

As‟ tab located just below the sample image window. Save the sample name and 
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other information (such as matrix used, matrix/analyte ratio, laser power, sample 

preparation method, etc.). 

6. Select the folder and save the spectrum. 

 

 

 

 

 

 

 



275 
 

 

 

 

Figure A1. MALDI Autoflex screen shot showing the tabs that are used during the 

instrument calibration procedure. 
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Figure A2. MALDI Autoflex screen shot showing the sub-tabs that are used during 

the instrument calibration procedure. These sub-tabs are seen when the 

„Calibration‟ tab is clicked. 
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11. After obtaining the spectrum, click on the „Calibration‟ tab. 

12. Click on the first line of the „Reference List‟ box. For our system, it is the line that 

starts with C60. A red line will appear on the spectrum at the expected m/z for the 

standard (see Fig. A3). 

13. Select this standard on the spectrum by left-clicking the arrow to the left side of the 

red line. This red line will turn green (see Fig. A4). 

14. Repeat steps 12 and 13 for the second line of the „Reference List‟ box (i.e., for the 

second calibration standard C70). 

15. Click on the „Accept Fit Result‟ box. 

16. Now the instrument is calibrated and ready to use. You can either start analyzing your 

samples at the same time, or you can analyze them using this calibration method 

afterwards. 

17. While closing the program, the instrument will ask you if you want to save the current 

method. Select „Yes‟. Name the new method and click „Save‟.  
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Figure A3. MALDI Autoflex screen shot, as seen after collecting the spectrum and 

selecting the „Calibration‟ tab (after completing Step 12). 
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Figure A4. Calibration procedure with C60/C70 mixture. 
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APPENDIX B 

MALDI SAMPLE PREPARATION PROCEDURE 

This section contains the procedure to prepare samples for the MALDI analysis of 

petroleum pitches and fractions obtained thereof. There are two main sample preparation 

methods that have been used in this work: (1) Solvent-based and (2) Solvent-free sample 

preparation. 

Solvent-based Sample Preparation Method 

Traditional solvent-based sample preparation involves preparation of the matrix 

and analyte solutions using the same solvent or miscible solvents. These solutions are 

then mixed together, and the resultant drop of solution is spotted on the MALDI target. 

This drop is then allowed to dry under atmospheric conditions under the hood. The 

solvent-based sample preparation used in this work was different from the one described 

above. Instead, we used a sample preparation method that is similar to the „thin-layered 

sample deposition method‟ [1] described by Vorm et al. In brief, a
 
thin film of dry 

MALDI matrix was initially spotted onto the MALDI target plate. Next, the sample (i.e., 

petroleum pitch or petroleum pitch fractions) dissolved in the solvent (toluene, 1,2,4-

trichlorobenzene, or carbon disulfide) was then spotted on the already spotted MALDI 

matrix. The detailed sample preparation is described below: 

1. Take the MALDI matrix: 7,7,8,8-tetracyanoquinodimethane (TCNQ; 98% min. 

purity, from TCI America, CAS 1518-16-7).  
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2. Take approximately 200 mg of TCNQ and charge it to the stainless steel vial that is 

used for the ball mill (Thermo Electron Corp., model Wig-L-Bug). Then put the mini 

stainless steel ball into the vial. Put the stainless steel cap on the vial.  

3. As the ball mixing includes vigorous mechanical mixing, to avoid spillage of the 

sample charged into the vial, the stainless steel cap of the vial is tightly sealed by 

applying adhesive tape around the cap (see Fig. B1). 
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Figure B1. Parts of the ball mill vial 
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4. Run the ball mill (see Fig. B2) for 5 minutes.  

5. Remove the adhesive tape, and remove the fine matrix powder using the spatula. 

6. Transfer this matrix powder into the petri dish (Fisher Scientific, part no: 351007).  

7. Add de-ionized water into the petri dish. As water is a non-solvent for TCNQ, a thin 

powder of TCNQ forms a thin layer on the water surface. 

8. Scrape this layer from the petri dish using a spatula and transfer it onto the MALDI 

target (see Figs. B3 and B4). 

 

 

 

 

 

 

 

 

 

 

 



284 
 

 

 

 

 

 

 

 

 

Figure B2. Ball mill assembly. 
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Figure B3. Addition of de-ionized water (Step 1) and scraping the matrix film (Step 

2). 
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Figure B4. Spotting the sample onto the MALDI target. 
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9. Now take the micro-capillary, and remove the excess water on the target by touching 

the micro-capillary to the surface of the spotted sample. The micro-capillary removes 

most of the non-solvent water, and what remains on the target is a very thin film of 

the TCNQ matrix (see Fig. B5). 

10. Just to make sure that the spotted matrix film is completely dry, leave the target plate 

under the hood for couple of hours. 

11. Now, make the solution of the petroleum pitch or the fraction obtained thereof. 

Solvents that dissolve the pitch or the portion of the petroleum pitch are toluene, 

1,2,4-trichlorobenezene (TCB), and carbon disulfide. If the sample is in solid form, 

then dissolve the sample in one of the above-mentioned solvents. Sometimes, samples 

are already in solution (e.g., GPC-derived samples are in TCB, while DGE-derived 

samples are in toluene). This sample solution is then spotted on the dried matrix film 

(which was prepared above via steps 1 to 10) using the micro-capillary. The sample is 

then again allowed to dry under the hood for couple of hours. 

Note: In step 11, make sure not to put too much of the solution on the dried matrix film. 

If too much solution is applied, there are chances that the solution will spread out. When 

you are analyzing several samples at a time, this might lead to cross-contamination of the 

samples. MALDI is a very sensitive instrument, and does not need too much of an 

analyte for detection. Best results (i.e., no solution spreading) were obtained when 

approximately 2-5μL of sample solution was applied on the dried matrix film. 
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Figure B5. Removal of excess water from the spotted sample using micro-capillary. 



289 
 

Solvent-free Sample Preparation Method 

Solvent-free sample preparation methods were introduced by various research 

groups [2,3] to address the issues observed in traditional solvent-based sample 

preparation methods, such as sample preparation for non-soluble samples. In solvent-free 

sample preparation, the matrix and analyte are mixed together using mechanical mixing 

(such as mortar and pestle or a ball mill) as follows:   

1. Take approximately 100-300 mg of TCNQ matrix and charge it to the stainless steel 

vial that is used for the mini-ball mill (Thermo Electron Corp., model Wig-L-Bug). 

2. Weigh the analyte sample (petroleum pitch or the fraction obtained thereof) and 

transfer the sample to the same vial. In general, use a 20:1 matrix-to-analyte mass 

ratio for this sample preparation method.  

3. Perform steps 3 to 10, as discussed in the “solvent-based sample preparation method”. 

4. Samples are ready to be analyzed using MALDI mass spectrometry. 
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APPENDIX C 

SEMI-BATCH DENSE GAS EXTRACTION (S-DGE)  

OPERATING PROCEDURE 

Even though we have the capabilities to perform supercritical/dense-gas 

extraction (DGE) technique by three different ways, namely, continuous, two-column 

continuous, and semi-batch operation, in this research work semi-batch DGE operation 

was used predominantly. As the objective of this research work was to perform structural 

characterization and quantitative analysis of petroleum macromolecules, the focus of the 

DGE experiments herein was to produce petroleum pitch fractions of narrow molecular 

weight distribution (MWD) that could be used as standards. S-DGE experiments require 

starting material quantities only in the range of 2-5 grams, while hundreds of grams of 

feed material are necessary to perform continuous experiments. This gave us a lot of 

flexibility with S-DGE experiments and enabled us to obtain pitch fractions with a range 

of MWDs. This appendix discusses the operating procedure for running our in-house S-

DGE unit (see Figs. C1 and C2), which was built in the starting phases of this research 

project. 
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Figure C1. Dense-gas extraction experimental set-up. 
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Figure C2. a) Semi-batch dense-gas extraction experimental set-up, b) zoomed 

picture of bottom manifold covered with black insulation, and c)  zoomed 

picture of bottom  manifold without insulation. 

Note: White cloth that is seen in this figure is also an insulation cloth (without 

a black paint on it).  
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Day 1: Disconnecting Bottom Manifold, Feed Charge, & Nitrogen Purge 

1. Remove the insulation cladding from the bottom manifold assembly of the S-DGE 

column (see Fig C2b). 

2. Remove the band heater connected to the aluminum cladding that covers the bottom 

manifold (see Fig C2c). 

3. Disconnect the electrical connections (wires) connected to the cartridge heaters that 

are connected to the aluminum cladding. 

4. Remove the aluminum cladding.  You need to use screw driver (or similar object) to 

loosen the aluminum cladding from the bottom manifold(see Fig C2c). 

5. Disconnect the solvent line from the bottom manifold (see Fig C2c). 

6. Disconnect the pressure transducer from the bottom manifold. 

7. Disconnect the temperature controller input line (electrical connection) from the 

thermocouple that is connected to the bottom manifold. Do not disconnect the 

thermocouple.  

8. Now the bottom manifold is ready to be disconnected from the rest of the column. 

Remove the bottom manifold using 1 ¾” and 1 3/8” wrenches. 

9. Take the bottom manifold, put it in the vise, and remove the bottom fitting from it. 

10. Clean the manifold using the high-pressure, in-house air. You can also use metal 

brass brushes to clean inside of the manifold. If the column is still not clean, use 

solvents (either toluene or 1,2,4-trichlorobenzene (TCB)) to clean the manifold. 

(Note: If you need to use the solvent for the cleaning, first try toluene and see if it 

works. Only in the case when toluene cannot clean the manifold, use TCB. The only 
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reason for this suggestion is to save money, as TCB is more expensive. Also try to 

use waste TCB that is generated from our GPC experiments.)  

11. Clean the bottom fitting (High Pressure Equipment AF4-LM4 adapter, which was 

removed in step 9) using toluene/TCB. This fitting actually holds the petroleum 

pitch/petroleum pitch fraction charged. The end of this fitting, which is connected to 

the solvent line, has a circular slit (of ¼‟ diameter). For the experiment we fit in a 

Micromeritics sintered disc (Part # 004/27041/00) into this slit. The function of this 

disc is to provide the platform/base for the charged pitch material and to distribute the 

incoming solvent up through the disc and thus through the charged material evenly. 

While cleaning, take out this sintered disc from this fitting. You need to use a very 

small Allen wrench or screwdriver and hammer to take out the sintered disc. After 

removing the sintered disc, take the bottom fitting and immerse it in a solvent 

(toluene/TCB) taken into the small beaker. Sonicate it for 20 minutes in the sonicator.  

After sonication, make sure that the fitting is thoroughly clean. If it is not completely 

clean, sonicate it further. Once the sonication is finished, take out the fitting and dry 

it.  

12. Take a new sintered disc (for every experiment it is highly recommended to use a 

new sintered disc) and fit into the circular slit of the bottom fitting. 

13. Apply high-temperature anti-seize on the threads of the connector that connects the 

bottom fitting to the bottom manifold. Connect the bottom fitting to the bottom 

manifold. 
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14. Hold the bottom manifold in a straight upward position on the vise. Take a funnel and 

put it on the open end of the bottom manifold.  

15. Weigh a desired amount of petroleum pitch/fraction on a balance and transfer the 

sample into the bottom manifold through the funnel.  (Note: If the sample is not in a 

powder form, first grind the sample into powder form before transferring it into the 

bottom manifold.) 

16. Connect the bottom manifold to the S-DGE column. Apply high-temperature anti-

seize on all the sides of the bottom manifold in order to easy removal of aluminum 

cladding after the experiment. Also apply the anti-seize on threads of all the fittings. 

17. Connect the pressure transducer. 

18. Connect the solvent line to the bottom fitting. 

19. Generally the aluminum cladding does not fit to the manifold at room temperature. If 

that is the case, first heat the aluminum cladding using a hot-air blower gun to expand 

the aluminum cladding. Fit the aluminum cladding to the manifold. 

20. Connect the electrical connections for the cartridge heaters that are fixed into the 

aluminum cladding.  

21. Connect the temperature controller wire to the thermocouple. 

22. Put the band heater around the aluminum cladding. 

23. Cover the entire bottom manifold assembly with the insulation cladding. 

24. Fill the spaces/gaps left after the insulation cladding with high-temperature wool 

insulation. 
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25. Open the in-house nitrogen valve and let the nitrogen flow through the solvent line 

(See Fig. C3). Open valves V1-N2, V6, V7, V8, V9, V10, and V12; the other valves 

should be completely closed. Make sure the nitrogen is flowing through the column 

by immersing the column outlet tubing into a water-filled container and checking for 

bubbles. 

26. Allow the nitrogen to flow through the column overnight. This ensures sure that the 

column atmosphere is free from oxygen. This step is essential to avoid the oxidation 

of the petroleum pitch/fraction while performing high-temperature DGE experiments. 
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Figure C3. S-DGE experimental set-up (Process Flow Diagram).   

V7: Valve to Column 2 

V8: Valve to Column 2 

V-9: Lab-View Pressure Controller Valve 

V-10: Sample Collection Auxiliary Valve 

V-11: Sample Collection Valve to Jar 2 

V-12: Sample Collection Valve to Jar 1 

V1-N2: Nitrogen Valve 

V2-S1: Solvent 1 Valve 

V3-N2: Nitrogen Valve 

V4-S2: Solvent 2 Valve 

V5: Valve to Column 1 

V6: Valve to Column 2 
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Day 2: S-DGE Fractionation Experiment 

27. Before starting the S-DGE, make sure to fill the water coolant container with an 

ice/water mixture. This container is located next to the Column 2. (See Fig. C1, 

coolant assembly.) 

28. Start the coolant instrument (Thermo Scientific, Neslab RTE-7 Refrigerated Bath 

Circulator) to bring down the car-coolant temperature. (We use the car coolant to cool 

down the water/ice mixture, and the water/ice mixture is used to cool down the S-

DGE samples. The reason for not directly using car coolant to cool down the S-DGE 

samples is the cost of the car coolant. Another reason is the visibility. Unlike water, 

samples collected in the „sample collection assembly‟ jar cannot be seen with the use 

of green-colored car coolant.) 

29. Start the DGE computer. 

30. Turn on the switch named “Power Strip”. 

31. Select the Labview>Open VI>DGE Control>Col-2 Semibatch Pressure Cont. VI>OK 

32. Turn on the “Enable” and “Power” switches that are located at the left side panel of 

the Labview computer. 

33. Turn the main power source on. 

34. Turn the DGE2 power source on. 

35. Turn the auxiliary solvent-preheater (Glas-Col Minitrol Heater, which is located just 

behind the column) on and set it on 4-5 setting by rotating the dial. 
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36. Turn the auxiliary heater on (Glas-Col Minitrol Heater, which heats the line coming 

out of the column and goes to the sample collection assembly) and set it on 4-5 

setting by rotating the dial. 

37. Now set the temperature set points for the column. S-DGE column has been divided 

into 7 temperature zones. Zone 2 is the reflux finger located at the top end of the S-

DGE column. Zone 7 is the solvent line that comes out of the solvent preheater and 

connects to the bottom manifold. Zones 1, 3, 4, 5, and 6 are named after the five 

column manifold sections starting from top to the bottom (see Fig. C4). 

38. Set the temperatures according the requirement of the experiment. We use Omega 7-

zone temperature controller (CN1501TC) for the temperature control (see the 

CN1501TC manual to understand the functioning of the controller). Most of the 

experiments performed in this work were operated at positive temperature gradient 

conditions (~ top 1/3
rd

 portion at 380 
o
C, ~ middle 1/3

rd
 portion at 350 

o
C, and ~ 

bottom 1/3
rd

 at 330 
o 

C). To operate at this positive temperature gradient, set the zones 

1, 2, and 3 at 380 
o
C; zone 4 at 350 

o
C; and zones 5, 6, and 7 at 330 

o
C. 

39. As some of the heaters take more time to heat up than others, to avoid the heating the 

pitch sample for a longer time, the timing to turn on the different temperature zones 

has been adjusted. The reader should take note that this timing is purely based on the 

observation of the current heating patterns, and could change with any change in the 

heaters. For the current set-up, start zones 1, 3, 4, 5, and 7 at the same time. Start zone 

6 when zone 1 temperature reaches 260 
o 

C. Turn on zone 2 when all the other zones 

reach their respective set temperatures.  
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Figure C4. Temperature zones in the semi-batch DGE experimental set-up. 
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40. When all the temperature zones reach their set temperatures, close the top valve 

(Valve V-9), and fit the pressure controller servo motor handle to the valve. Close the 

valve V-11 and leave the valves V-10 and V-12 open. 

41. Set the operating pressure in the Labview, and switch the pressure controller option 

from manual to automatic (default setting is always manual). 

42. Stop the nitrogen flow (by closing the valve V1-N2), and immediately start the 

solvent flow (by opening the valve V2-S1). Set the solvent flow rate using Waters 

HPLC pump. Other valves that are already open (i.e., V6, V7, V8, V-10, and V-12) 

and closed (i.e., V5, V3-N2, V4-S2, V-9, and V-11) should be left as they are.  

43. As the solvent starts to flow through the column, the column pressure will start to 

build up. As soon as the solvent reaches the set pressure, the pressure controller will 

start working. Adjust the PI controller parameters depending on the observed pressure 

fluctuations. (This step needs some trial and error; default settings are Kc =1.5, Ti = 

0.5. For lower pressures generally(e.g., 200 to 800 psi) these default values work 

well. For higher pressures (800 to 1200 psi) better control was achieved with Kc =1.0, 

Ti = 0.8-1.0). Set the alarm in the Labview, which notifies the experimentalist if the 

column pressure goes up or down by the set value. This set value was 6 psi for all the 

experiments that were performed during this work (see Fig. C5). 
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Figure C5. Labview pressure control mode screen-shot on 

the DGE PC.  



304 
 

44. As soon as the column pressure reaches the set pressure and the pressure controller 

starts working, start the stopwatch. Collect samples for the set time interval (note 

about selecting the time interval is included at the end of this appendix). Change the 

jars after this set time interval. Once the pressure reaches the set pressure and 

pressure controller starts controlling valve V-9, close valve V-10 by about 70%. This 

valve is an auxiliary valve which was added for safety. If Labview pressure controller 

looses control of valve V-9, opening valve V-9 completely, V-10 makes sure that the 

pressure inside the column does not drop rapidly and also minimizes the solvent loss 

to the atmosphere. 

45. Changing the jars: While changing the jars after the set time interval, use the sample 

collection assembly that is specifically designed to avoid the loss of solvent/sample 

vapors coming out of the column at high temperatures. Before changing the jar, open 

valve V-11 and close valve V-12. This will direct the solvent/sample to the 

“transition” jar (i.e., Jar 2). Then remove the actual collection jar, and replace it with 

the new sample collection jar (i.e., Jar 1). Then close valve V-11 and open the valve 

V-12. Try to do this as quickly as possible because we do not want to waste too much 

of our sample going into the “transition” jar. 

DAY 2: S-DGE Experiment Shutdown 

46. After collecting the fractions at the set pressure and temperature for the designed time 

interval, start the shutdown procedure. 

47. Using step 45 from the previous section, change the last sample collection jar and 

replace it with a new jar. This is called the “last fraction” jar. 
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48. Reduce the solvent flow rate to 1 ml/min (the flow rate used during the experiment 

ranges from 10 to 18 ml/min, note on the selection of solvent flow rate is included at 

the end of this appendix). 

49. In the Labview, reduce the set pressure in steps of 25 psig. If the pressure is 

reduced from the set pressure (which ranges from 400 to 1500 psig) to atmospheric in 

a single step, a huge amount of solvent vapors will exit the column in a short time 

period. This large amount of vapor, coming out of the column, can create enough 

pressure to burst the collection jar and could lead to serious injury to the 

operator. By reducing the pressure in steps of 25 psig, we ensure that the column 

pressure is reduced in a controlled fashion. (For this reason, the operator also should 

always wear safety glasses or even goggles during the run.) 

50. Once the column pressure reaches ~ 50 psig, switch the pressure controller settings 

from automatic to manual.  

51. Disconnect the pressure controller servo motor handle that is connected to the top 

valve. Now manually open valves V-9 and V-10 completely. Pressure will go down 

to atmospheric pressure. 

52. Stop the solvent flow rate using the touch-screen located on the HPLC pump 

instrument. Turn off the HPLC pump by turning of the ON/OFF switch. 

53. Close valve V2-S1. Start the nitrogen flow by opening valve V1-N2.  

54. Turn off all the heating zones (see the Omega CN1501TC manual to learn the 

procedure). Also turn off the two auxiliary heaters (i.e., solvent preheater and top-
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valve heater) by rotating the dial to zero. Turn off the DGE 2 power source as well as 

main power source. 

55. Leave the coolant (water) running through the sample collection water bath for 

another hour or so, as hot vapors keep coming out from the column for a while. After 

one hour, turn off the coolant assembly. 

56. Turn off the pressure controller switches: “Enable” and “Power” located on the side-

panel of the DGE PC desk. 

57. Turn off the “Power Strip” switch (located on the front-panel of the DGE PC desk), 

Labview program, and the computer. 

Day 3: S-DGE Bottom Fraction Collection and Column Cleaning 

58. Repeat steps 1 to 9 that are mentioned in the “Day 1” section of the procedure. 

59. Collect the sample left in the bottom fitting and bottom manifold by scraping the 

sample using the spatula. 

60. Repeat the steps 10 to 26 (from “Day 1”) to get ready for the next experiment. 

Maintenance for the S-DGE Column 

1. Please refer the appendix A from the thesis written by Dr. William Edwards [1] for 

the information regarding the parts used to build the semi-batch DGE instrument.  

2. Please refer the appendix B from the thesis written by Dr. Eduardo Cervo [2] for the 

„pressure testing‟ (Section 1) and „packing change‟ (Section 3) procedures. 

Procedures used for the S-DGE were the same as the ones used by Dr. Cervo for 

continuous and 2-column continuous DGE.  
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Note: Author thank Dr. Cervo for developing the „Eduardo‟s muscle-wrench trick‟ 

that helped to make the „packing change‟ procedure easier. 

Conditions for the Fractionation of High Purity Pitch Oligomers 

In this PhD work, semicontinuous mode of dense-gas extraction was used to 

produce high-purity petroleum and pyrene pitch oligomers. The operating parameters 

(e.g., pressure) were fine-tuned to obtain a desired fractionation. This parameter fine-

tuning was based on an empirical approach. Several experiments had to be performed to 

understand the effect of operating parameters and to achieve the desired separation. 

Operating parameters and the procedure used to produce high-purity oligomeric fractions 

are briefly discussed below. This information would serve as a starting point for the 

future experiments. 

Petroleum Pitch Monomer Fraction 

1. Charged material/amount charged: M-50 petroleum pitch / 5 grams  

2. Operation temperature: positive temperature gradient (330 °C (bottom)-350 °C 

(middle)-380 °C (top)) 

3. Solvent/solvent flow rate: toluene / 260 g/h 

4. Operating pressure: 15 bar 

Petroleum Pitch Dimer Fraction 

1. Charged material/amount charged: high-purity dimer fraction, as discussed in Chapter 

2/ 2 grams  

2. Operation temperature: positive temperature gradient (330 °C (bottom)-350 °C 

(middle)-380 °C (top)) 
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3. Solvent/solvent flow rate: toluene / 600 g/h (higher flow rates can also be used at 

lower pressure to expedite the extraction of low mol wt impurities) 

4. Operating pressure:  

a. Initial fractionation should be conducted at 29 bar for ~ 80-120 min to 

remove most of the monomer impurities 

b. Pressure should then be increased to 42 bar, and start collecting the 

samples at the interval of 20-40 min. First fraction might contain some 

monomer impurities. High-purity dimer can be obtained from second 

fraction at 42 bar. 

Petroleum Pitch Trimer Fraction 

1. Charged material/amount charged: (high-purity trimer fraction, as discussed in 

Chapter 2)/ 5 grams  

2. Operation temperature: positive temperature gradient (330 °C (bottom)-350 °C 

(middle)-380 °C (top)) 

3. Solvent/solvent flow rate: toluene / 600 g/h (higher flow rates can also be used at 

lower pressure to expedite the extraction of low mol wt impurities) 

4. Operating pressure:  

a. Initial fractionation should be conducted at 50-60 bar for ~ 80-120 min to 

remove most of the monomer and dimer impurities 

b. Pressure should then be increased in small increments (2-3 bar) and the 

separation should be monitored (using MALDI). Please refer the operating 

pressure conditions described by Kulkarni et al. [3] 
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Pyrene Pitch Monomer and Dimer Fractions 

1. Charged material/amount charged: 1-Hr pyrene pitch/ 5 grams  

2. Operation temperature: 330 °C isothermal (operator should take a note that positive 

temperature gradient would probably give a better separation and should be tried first) 

3. Solvent/solvent flow rate: toluene / 600 g/h 

4. Operating pressure: 

a. Operate the column at 29 bar for 40 minutes to collect a monomer fraction 

b. Continue the extraction at 29 bar for another 80-120 minute to make sure 

the complete extraction of monomer 

c. Increase the operating pressure to 42 bar to collect dimer fraction of 

pyrene pitch. 

Practical Hints for Getting Desired Fractions 

Sample Collection Time 

Sample collection time for the desired DGE fractionation can be decided by 

performing a real-time MALDI analysis and by the visual observation (as discussed in 

Chapter 2). For example, if the desired fraction is high-purity dimer, initially the sample 

has to be fractionated at lower operating pressure (i.e., 29 bar) to remove monomer 

species. While the real-time MALDI analysis gives the idea about the species that are 

being extracted (in this case, that is monomer), the visual observation (i.e., the color of 

the collected fraction) tells whether the solvent is fractionating the species or has reached 

the point at which extraction is no longer in progress. When the solvent stops extracting 

the species (because there are no low mol wt species left for the solvent to extract), the 
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collected fraction becomes pale, and then colorless. By keeping an eye on this fraction 

color, operator can decide when to raise the pressure (in this case, to 42 bar) and start 

extracting the dimer species.  

Solvent Flow Rate 

As discussed in the Chapter 2, solvent flow rate has effect on the quality of the 

separation. Increase in the solvent flow rate increase the extraction of the species and 

their yield and can be used to reduce the experimental time. Again, this selection depends 

on the objective of the given experiment. Let‟s discuss the dimer fractionation example 

again. For the high-purity dimer extraction, experimentalist first has to remove all the 

monomer present in the starting material. By selecting a suitable low operating pressure, 

and high solvent flow rates the monomer extraction process can be expedited. Operator 

need to make sure though that the operating pressure is fine-tuned to extract only 

monomer species. As increase in the solvent-flow rate increases the stripping factor of all 

the constituents, increase in the solvent-flow rate with poor selection of operating 

pressure could result into extraction of dimer species along with the monomer species. 

Real-time MALDI and results obtained in the previous experiments can be used to fine-

tune the operating pressure. 
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APPENDIX D 

HPLC/UV-vis INSTRUMENT ASSEMBLY 

The HPLC/PDA instrument that was used for the structural characterization work 

described in the “Structural Characterization of Catalytically Polimerized Pyrene Pitches” 

chapter (Chapter 6) was built in our lab by assembling a HPLC multisolvent delivery 

system, a flow cell, and a UV-vis spectrophotometer. Description of each of these three 

main parts of the HPLC/UV-vis assembly is given below: 

HPLC Multisolvent Delivery System (From Dr. Sun‟s Lab) 

A Waters 600E multisolvent delivery system was used to set the solvent gradient 

program and to deliver the solvent or mixture of solvents. This system is borrowed from 

Dr. Ya-Ping Sun‟s laboratory (Dept. of Chemistry, Clemson University). This 

multisolvent delivery system can handle up to four solvents. Four solvent containers are 

located in the solvent reservoir tray. The HPLC solvent delivery system is connected to 

the helium cylinder. This He is used as a sparge gas. Be sure to keep the He pressure in 

the range of 50 to 150 psi (as instructed in the instrument manual).  The procedure for the 

maintenance, troubleshooting, and solvent-gradient programming is well-explained in the 

“Waters 600E multisolvent delivery system” manual. This manual (electronic pdf file) 

can be found in the “HPLC PDA MANUAL” folder on the desktop of “HPLC 

Computer”. This solvent delivery system is connected to the four different solvent 

reservoirs arranged in the “solvent reservoir tray”. The four solvent lines are named as A, 

B, C, and D. Flow rates, mixing ratios, and gradients for solvents flowing through these 
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solvent lines are controlled by the 600E multisolvent delivery system. Helium sparging 

flow rates are also controlled by the HPLC system. 

This HPLC system is equipped with the Rheodyne 7725i manual injector. A 20 

μL Stainless Steel injection loop is connected to the Rheodyne 7725i injector. A Thermo 

Scientific 250 μL, flat-tip syringe is used to inject the sample solution into the HPLC 

system. 

Flow Cell for UV/VIS Measurement (Dr. Thies‟s Lab) 

The eluent coming out of the HPLC column is passed through the flow cell. This 

“FIA-Z-SMA PEEK-Lensed Flow Cell” flow cell is purchased from Ocean Optics. (This 

flow cell is our part.) This Z flow cell is a 10 mm flow cell that includes two collimating 

lenses and SMA adapters. The flow cell is made up of PEEK material. Optical cables that 

are connected to the UV/Vis spectrophotometer on one end are connected to this flow cell 

through the SMA adaptors.  PEEK 1/16
th

 tubing was used to connect the HPLC column 

to the flow cell. Special collapsible ferrules are used for the leak-free fittings. This tube 

and ferrules are provided by the Ocean Optics along with the flow cell. Spare ferrules are 

stored in the drawer underneath the HPLC/PDA assembly. 

UV-vis Spectrophotometer (Dr. Thies‟s Lab) 

CCD Array UV-vis spectrophotometer is obtained from SI Photonics. Model of 

this spectrophotometer is: 400 Series UV/Vis Spectrophotometer. (This 

spectrophotometer is our instrument.)Procedure for the maintenance, troubleshooting, 

and operation is very well explained in the hard-cover manual, located underneath the 

HPLC/PDA assembly. As HPLC/PDA assembly requires the spectrophotometer to be run 



314 
 

at continuous operation mode, spectrophotometer is run in “Timed Acquisition” mode. 

Procedure for this “Timed Acquisition” is explained in the detail in the pdf file titled 

“Timed Acquisition Procedure”. This file is stored in the “HPLC PDA MANUAL” folder 

which is located on the desktop of the HPLC computer.  

Miscellaneous 

Helium Gas 

Helium cylinder that is connected to the HPLC multi-solvent delivery system is 

obtained from National Welders. This helium cylinder is regular purity, compressed He 

grade cylinder.  

Note: At the beginning of HPLC characterization, author had spent a lot of time to 

figure out the best method to degas the HPLC solvents. After spending about a month on 

various degassing methods, author found out that He degassing is the most effective 

method for degassing. As poorly degassed solvents can lead to solvent flow rate 

discrepancies, operator is advised to properly follow the degassing procedure discussed in 

the next appendix.    

HPLC Columns 

Type of the HPLC column used for the analysis depends on the kind of analyte 

system that you are working with. For the HPLC analysis that has been discussed in this 

work, where polycyclic aromatic hydrocarbons were investigated, Pinnacle II PAH 4 μm 

250*4.6mm columns were used. These columns can be obtained from Restek 

Corporation (Catalog # 9219475). The regeneration procedure for these columns is 

discussed in the separate appendix.  
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APPENDIX E 

HPLC/PDA OPERATING PROCEDURE 

This section contains the procedure to operate the HPLC/PDA instrument. 

HPLC/PDA instrument that we have been using in our laboratory is in-house, self-

assembled instrument consisting of a HPLC pump, a continuous flow-cell for UV/Vis 

measurement, and a UV/Vis Spectrophotometer. Due to this reason, this instrument does 

not have various “state-of-the-art” controls that can control the operation of HPLC and 

UV/Vis detector in synchronized manner. Due to this limitation, it is necessary for the 

operator to know how to run these instruments simultaneously to make it work 

effectively.   

 

 

 

Note: All the screen pictures from the SI400 software (used for UV/Vis 

Spectrophotometer) in this chapter are reprinted with the permission of SI Photonics. (see 

Permissions, page 354) 
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Procedure 

Before performing the actual HPLC run, there are several other things that need to 

be performed. These things include solvent de-gassing, flushing the solvent lines, 

checking the solvent flow rates, starting the UV/Vis spectrophotometer etc. To perform 

the experiment effectively, and in a timely manner, it is necessary to optimize the 

operating procedure. This operating procedure, discussed below, is designed in such a 

manner that the pre-HPLC run preparation will be performed in a best possible timely 

manner.  

HPLC Multisolvent Delivery System 

1. Fill all the solvent reservoirs (A, B, C, and D) with the respective solvents. Make sure 

that all the solvents are HPLC-grade. It is better to arrange the solvents such that the 

immediate two solvents are miscible. For example, having Water as solvent A, 

Acetonitrile (ACN) as B and Dichloromethane (DCM) as C is a better arrangement 

than Water as Solvent A and DCM as solvent B. This makes solvent gradient 

programming easier and less confusing. 

2. Insert the respective solvent tubes. Each reservoir has two tubes. One tube delivers 

the solvent, while the other carries the helium (during the de-gassing procedure). 

3. Close all the solvent reservoirs with the caps. End of each of the tube inserted into the 

solvent reservoir is connected to the micro filters. They make sure that no particulate 

matter enters into the HPLC system.  
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4. Start the Waters 600E multisolvent delivery system using the front panel ON/OFF 

switch.  

5. Open the Helium cylinder valve, and adjust the pressure to 100 psi using the pressure 

regulator. Enable the sparging system using the front panel “Set Up” button. Press 1 

to enable and press 0 disable the sparging.   

6. After enabling the sparging system, press the “Direct” button. 

7. Using “Up” and “Down” arrows go to the space next to SPARGE. Type 100 and 

press “Enter”. This will set up the sparge flow rate of 100 mL/min. You will see the 

bubbles coming through the sparge line of the solvent reservoirs. More detailed 

information about how to set up the sparge system is given in the “Chapter 3:  

Preparing the System” in the HPLC operating manual. 

 

Note: Even though the manual suggests using 100 mL/min flow rate for 15 minutes, 

in all the experiments that I had performed, I used 100 mL/min flow rate for 

approximately 2 hours. With less time, I had seen some discrepancies in the solvent 

flow rates. To avoid this, I used 2 hours of de-gassing. Operator should make a 

decision on the de-gassing time depending on the kind of consistency he/she gets with 

the solvent flow rates. 

8. As soon as you start the de-gassing procedure, the next thing that you should start is 

UV/Vis spectrophotometer. As the lamps (Deuterium and Tungsten) take 

approximately 1.5 to 2 hours to reach the steady state, it is wise to start the 
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spectrophotometer well in advance. This makes sure that when the de-gassing is done, 

and solvents are ready to be pumped, the UV/Vis is also ready. 

UV/Vis Spectrophotometer 

9. Turn on the ON/OFF switch located at the backside of the UV/Vis unit. 

10. Then open the SI Photonics software (loaded on the HPLC computer) that 

communicates with the spectrophotometer. Go to Start > Programs > SI 400 > SI 400. 

11. Software will ask you if you would like to initialize the spectrophotometer. Click on 

“OK”. 

12. Next, software will ask you if you want to turn on the UV light. Click on “OK”. This 

will turn on the UV light. 

13. According to manual, spectrophotometer warm-up time is approximately 1 hour. This 

is the minimum time required for the temperature of all optical elements to 

equilibrate. In our lab, we generally keep the instrument on for at least 2 hours before 

performing the experiments.  

Note: As both step 8 and step 13 take 2 hours, it is advisable to do these two separate 

things simultaneously. This way we can optimize the experiment preparation time. 

HPLC Multisolvent Delivery System 

14. After two hours, change the sparge gas flow rate from 100 mL/min to 30 mL/min. 

Leave this sparge flow rate for the rest of the experiment. 

15. Next step is to flush all the solvent lines with the solvent. This step is necessary to 

flush out any air bubbles trapped in the solvent lines. 
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16. To flush all the solvent lines and prime the HPLC pump, follow the instructions given 

in the HPLC MANUAL (which is located in the HPLC folder on the HPLC 

computer). This procedure is very well explained, step by step, in the “Chapter 3:  

Preparing the System” (section 3.2.2). While doing this step, the reference valve is 

rotated from right to left. This isolates the column from the flow path, and the eluent 

gets diverted. Select the solvents that you will be using during the actual experiment, 

one by one (in the correct order), and prime the pump. 

17. After flushing all the solvent lines and priming the pump, check the flow rates of all 

the solvents. Sometimes, if the solvents are not enough sparged and de-gassed, you 

see the discrepancies in the flow rates. If this is the case, change the sparge flow rate 

back to 100 mL/min and let the solvents get sparged for some more time. If the 

solvent flow rates are good, then you can move to the next step.  

18. Now connect the HPLC column to the line connected to the Rheodyne injector. Make 

sure to connect the column in proper direction (which is shown on the column). 

19. Connect the outlet of the HPLC column to the inlet of the UV/Vis Z flow cell (which 

is discussed in the HPLC/PDA Instrument appendix). Connect the other end of the Z 

flow cell to the eluent collector. 

20. Select starting solvent (which can be a pure solvent or a mixture of solvents), and 

solvent flow rate. Start the solvent flow. Check the backpressure that is displayed on 

the HPLC display screen. Generally, you do not want to go above 3000-3500 psi limit 

(Check with the column manufacturer for the maximum pressure). Select the solvent 

flow rates accordingly. 
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UV/Vis Spectrophotometer 

21. By this time, the spectrophotometer is warmed up and ready to use. 

22. To cross check whether the spectrophotometer is ready or not, you can check the 

intensity levels of the UV/Vis sources (Deuterium and Tungsten lamps). To do that, 

go to the “Operate” and “Configure”. Click on adjust D2 lamp. You will see the 

lamp intensity bar. Generally this bar is in the range of 2000-4000 Intensity units. 

Similarly, Tungsten lamp shows the intensity in the range of 2000-4000 Intensity 

units. If the intensity is very low, then either the spectrophotometer is not warmed up 

for enough time (which should not be the case after the warm up time of ~ 2 to 2.5 

hours) or the lamps need intensity adjustment. Information about how to adjust the 

lamp intensities can be found in “400 Series Spectrophotometer User‟s Manual”. 

(Refer Chapter 14: Lamp Adjustments). 

23. Now to record the UV/Vis spectra, user needs to activate the “Timed Acquisition” 

mode. To activate this mode, go to “Operate” and click on “Timed Acquisition”.  

24. Please refer “Timed Acquisition Procedure.pdf” file stored in the HPLC MANUAL 

folder. This folder is located on the desktop of the HPLC computer.  

25. Initially when the starting solvent is flowing through the system, user needs to track 

the baseline. This can be done by selecting the “Discrete Wavelength” option in the 

“Timed Acquisition” mode. Go to the “Setup” option. Select couple of wavelengths, 

and select the scan rate, as well as the total number of acquisitions (User selects this 

number based on the time for which he/she wants to track the baseline).  
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26. Before starting to record the UV/Vis spectra, instrument will ask to perform the 

blank. As the starting solvent is already flowing through the column at this time, user 

can just use this solvent for the blank. Click on the “Blank” option. Spectra for the 

solvent flowing through the column will get recorded as blank. Then click on the 

“Start”. This will start recording the UV/Vis intensities at the selected discrete 

wavelengths.  

HPLC Multisolvent Delivery System & UV/Vis Spectrophotometer 

27. Flow the solvent through the column till the baseline gets flat. Generally this takes 4-

5 column volumes of solvent (Which is ~ 70-80 mL for Pinnacle PAH II column). 

Once the baseline gets flat, HPLC columns basically becomes ready for the run. (see 

Fig. E1) 
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Figure E1. Baseline for the HPLC run. This step indicates whether the 

HPLC column has got equilibrated or not. 
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28. Disconnect the HPLC column from the system, once the baseline gets steady. 

Connect the Rheodyne outlet directly to the inlet of UV/Vis Z flow cell. This 

assembly is used for “No Column Injection”. No column injection procedure is 

carried out to decide the concentration of the starting solution that will be injected 

into the HPLC/PDA system. 

29. Prepare the analyte solution that you want to analyze using HPLC/PDA system. (For 

the longer column life, it is advisable not to use concentrations higher than 1mg/mL). 

30. Now in the SI400 software, go to the “Timed Acquisition” > “Setup”. Select the 

wavelengths at which the sample constituents absorb strongly (e.g.; if you are 

analyzing pyrene sample, you can select 333.5 nm wavelength. As this is one of the 

characteristic wavelengths at which Pyrene absorbs strongly, it is very useful to track 

pyrene elution). Select the number of acquisitions. (Generally, for no column 

injection, 150 to 180 acquisitions at the scan rate of 1 scan/second are enough) Click 

“Ok”. Click “Start”. Exactly at the same time, start the stop watch. Exactly after 10 

seconds, start the sample injection procedure (Step 31). This step takes approximately 

5-8 seconds.  

31. Use the flat tip, 250 µL syringe to inject the sample into the Rheodyne injector. For 

more details about how to inject the sample using Rheodyne system, please refer 

“Chapter 3:  Preparing the System” (section 3.3.1) from the HPLC manual. 

32. The HPLC/PDA system will record the “No column injection chromatogram” for 

the HPLC eluent (see Fig. E2). 
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Figure E2. UV/Vis chromatogram for 4 discrete wavelengths (selected by the user) 

for an analyte sample. Y axis is absorbance units, while X axis is elution time (in min). 
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33. If the UV/Vis intensities are too high (Above 2 absorbance units, intensities are not 

proportional to the concentrations and the interpretation of the UV/Vis spectra is less 

reliable). Again this is operator‟s decision. Sometimes, when you have a mixture of 

several compounds, if all the species absorb at one particular wavelength, the total 

absorbance might be higher than 2 Intensity units during the “No column injection”. 

When the same mixture is fractionated and analyzed through HPLC/PDA, this 

intensity response goes down significantly, as individual species elute from the HPLC 

column. To identify these eluents, their UV response needs to be strong enough to 

differentiate it from the baseline noise. Sometimes operator needs to take this 

decision regarding the concentration of the starting solution after doing a trial run or 

two, particularly when the analyte sample is unknown. 

34. After recording the “No column injection chromatogram” and after deciding the 

analyte concentration for the HPLC/PDA run connect back the HPLC column. 

35. Now it is the time to prepare the solvent gradient program. Details of how to generate 

a solvent gradient program are explained in the HPLC MANUAL. Please refer 

“Chapter 4: Programming a Run” (section 4.1). Once the gradient program is 

designed for the given HPLC run, save the program table. 

36. To start the solvent gradient program, press the “Operate Method” tab on the HPLC 

front panel. Then type the table number in which you have saved the solvent gradient 

program. Press the “Operate Method” tab one more time. HPLC pump will start 

delivering the starting solvent/solvent mixture from the designed solvent gradient 

program. 
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37. It is advisable to use the same solvent/solvent mixture that is used as a starting 

solvent/solvent mixture in the solvent gradient program for the purpose of 

equilibrating the column and getting the flat baseline (as discussed in the step 27). If 

this is not the case, operator again needs to run the starting solvent for significant 

amount of time through the HPLC column to get the flat baseline.  

38. In any case, after step 36, track the baseline for another 10 minutes or so by recording 

the chromatogram at selected wavelength. This step gives an idea about whether the 

column is ready to use. 

39. At this stage, we are ready to inject the sample through the HPLC column. Before 

doing the HPLC run, operator needs to perform “blank run”, with the set solvent 

gradient program. Chromatogram obtained in this blank run is then subtracted from 

the sample chromatogram to get the real sample chromatogram. The solvent that is 

used for the preparation of the analyte solution is used for the blank run.  

40. Set up the timed acquisition mode for the UV/Vis spectrophotometer and start 

recording the chromatogram. Operator should take a note that while we select 150-

180 acquisitions for the no column injection; number of acquisition for the “blank 

run” as well as for the actual HPLC run is in the range of 3600 to 7200, depending on 

the solvent gradient program. Start collecting the sample spectra. After 10 seconds, 

inject the sample (which is just a solvent/solvent mixture) into the system. (just 

similar to the procedure described in steps 30 and 31).  
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41. As soon as you inject the sample by moving the Rheodyne injector handle from 

“Load” to “Inject” position, press “Start Run” tab on the HPLC. Record the HPLC 

chromatogram for the blank run (see Fig. E3). 
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Figure E3. HPLC Chromatogram for the “blank run”. Changes in the intensities as 

well as various peaks and patterns observed are due to the change in the solvent during 

the solvent gradient program. 
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42. Once the “blank run” is over, it is time to inject the actual sample through the HPLC 

system. 

43. Repeat the steps 36 to 41 for the actual analyte sample. Make sure to have the sample 

collection vials ready to collect the eluent. Generally, as the solvent gradient program 

runs for 1.5 to 2 hours, it is not practical to collect the eluent coming out of the 

column throughout the experiment. Operator can keep an eye on the UV/Vis 

chromatogram and collect the eluent only when the chromatogram detects the analyte 

species by showing detectable absorbance peaks. These collected eluent fractions can 

be subsequently used for the other analytical characterization methods (such as 

MALDI mass spectrometry). See Fig. E4. 
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Figure E4. HPLC Chromatogram for the “analyte run”. Just by comparing this 

chromatogram with the chromatogram shown in Fig. E3, you can clearly see that the two 

species have got eluted in this HPLC run; one at 9.5 min and other at 34 minute. 
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44. Step 43 gives us the chromatogram at selected discrete wavelengths for the analyte 

solution. Chromatogram for the analyte system can subsequently be obtained by 

subtracting the “blank run” chromatogram from the analyte solution chromatogram. 

Procedure to save the chromatogram in Excel format is given in the manual. (File > 

Save As > Save As Excel) 

45. The “Discrete Wavelength” option that we have used so far (Step 25) for the UV/Vis 

spectrophotometer‟s “Timed Acquisition” mode is good to give us an idea about 

when the sample elutes from the HPLC column. One drawback of SI400 software (as 

compared to many state-of-the-art softwares available in the market) is that it can 

save the data either in the “discrete” or “full spectrum” wavelength format, and it 

cannot store both “discrete” and “full spectrum” formats for the given sample in one 

single run. So, at the end of step 43, even though we know when the sample elutes 

from the column, we do not have the full UV spectrum for that sample at this time. 

46. To collect the full UV/Spectra of the analyte sample constituents, second run is 

necessary to perform. This run is repetition of the analyte run described in the step 43. 

The only difference is that the “timed acquisition” mode is set up at “full spectrum”. 

One limit of the “full spectrum” mode is that it cannot record more than 1000 spectra 

in one run. So, for this run, the sample is injected in the HPLC system without 

starting the UV/Vis spectrophotometer “Timed Acquisition” mode. This mode is 

started only in the time range when the samples elute (this time range is obtained 

from the previously performed “discrete wavelength” run). See Fig. E5. 
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47. These full spectra can also be saved in the Excel format using the same procedure that 

is used to store the discrete wavelength chromatograms. (File > Save As > Save As 

Excel) 

48. Similar run (Step 46) has to be performed with the blank (just solvent). Spectrum 

obtained with this “full spectrum” mode is then subtracted from the spectrum 

obtained for the analyte in step 47. This step is necessary to obtain good quality 

UV/Vis spectra. 
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Figure E5. HPLC/PDA UV/Vis spectrum obtained for the eluent that came out from 

the HPLC column at 34 minute. 
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Shutdown Procedure 

49. Once this run is over, shut down the UV/Vis spectrophotometer SI400 software 

program. (File > Exit) 

50. Turn of the ON/OFF switch located at the backside of the Spectrophotometer unit. 

51. Go to the “Direct” mode in the “Waters 600E Multisolvent Delivery” system by 

pushing the “Direct” tab twice. 

52. Flush the HPLC column with the solvent/solvent mixture that is recommended by the 

manufacturer for the storage. Flush 3-5 times column volume of this recommended 

solvent/solvent mixture through the column. 

53. Disconnect the column from the Rheodyne connection and Z cell connection. Close 

both ends of the column with the plugs and store it properly.  

54. Stop the sparge gas flow rate by entering “0” in the space provided next to SPARGE. 

55. Stop the solvent flow by pushing “Stop Flow” tab.  

56. Turn off the ON/OFF switch, located at the right hand bottom corner of the HPLC 

system front panel. 

57. Close the Helium cylinder valve, and open the regulator valve. 
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APPENDIX F 

HPLC COLUMN REGENERATION PROCEDURE 

This section contains the procedure to regenerate the HPLC columns that are 

being used for the structural characterization work in our lab. Over the period, these 

columns lose their efficiency (which results into peak broadnening and poor isomer 

separation). This lost efficiency can be regained by performing the HPLC column 

regeneration. Recommended procedure for the reversed-phase HPLC columns (which are 

being used in our lab), provided by Restek Corporation, is given below (with some small 

modifications).  

 

Note: All the solvents used in this procedure are HPLC grade solvent.  
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Procedure 

1. Disconnect the HPLC column from the HPLC system. 

2. Reconnect the column with flow through the column in reverse direction (back flush). 

3. Flush the column with 25 mL of water at 0.5 mL/min flow rate. 

4. Flush the column with 25 mL of isopropanol at 0.5 mL/min flow rate. 

5. Flush the column with 25 mL of dichloromethane at 0.5 mL/min flow rate. 

6. Flush the column with 25 mL of hexane at 0.5 mL/min flow rate. 

7. Flush the column with 25 mL of dichloromethane at 0.5 mL/min flow rate. 

8. Flush the column with 25 mL of isopropanol at 0.5 mL/min flow rate. 

9. Reconnect the column with solvent flowing through it in proper direction. 

10. Flush the column with the mobile phase (such as 60:40 (v/v) water:acetonitrile) 

11. Equilibrate the column with the mobile phase (this is monitored by recording the 

UV/Vis baseline by spectrophotometer).  

12. Run the standard sample and see the elution behavior to see if the column efficiency 

is restored. 

Note: for the “Step 11”, user needs to start the UV/Vis spectrophotometer beforehand. As 

generally spectrophotometer in our lab takes ~ 2 hours to heat the Deuterium and 

tungsten lamps (UV source), to optimize the timing of this procedure, it is advisable to 

start the SI Photonics spectrophotometer after finishing the “Step 6”. 
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APPENDIX G 

CALCULATION OF MOLE FRACTIONS OF DIMER & TRIMER  

FOR THE QUANTITATIVE ANALYSIS WORK 

This appendix discusses the procedure to calculate the mole fractions of the 

oligomers present in the oligomeric mixtures, prepared in our lab by mixing known 

quantities of the DGE-derived standards with narrow molecular weight distribution 

(MWD). Specifically, this appendix discusses how the mole fractions of dimer and trimer 

were calculated for the quantitative analysis work that is discussed in the “CHAPTER 

TWO: The effects of molecular weight distribution and sample preparation on MALDI 

mass spectrometry analysis of petroleum macromolecules”. Reader is advised to have a 

look at Fig. 2.10 and Fig. 2.11 (a) as well as Table 2.3 discussed in this chapter. 
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Table 1 indicates the results obtained for the dimer standard. Three sample spectra 

were analyzed and averaged to calculate the number average mol wt and the oligomer 

area fractions. Last row (in bold type) is the average of the triplicates. 

Table G1. MALDI area fractions and number average molecular weights for the three 

replicates of the dimer standard. 

 

Similarly the table below indicates number average mol wt and the oligomer area 

fractions for trimer standard. 

Table G2. MALDI area fractions and number average molecular weights for the three 

replicates of the trimer standard. Last row (in bold type) is the average of the triplicates. 
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As you can see from the above two tables, dimer standard is essentially just pure 

dimer, while trimer standard has some considerable impurities. 

Five mixtures were prepared by mixing these two standards in different 

proportion. Quantities of dimer and trimer standard used to prepare these mixtures are 

tabulated below. 

Table G3. Mixtures of our dimer and trimer standards that were used for the quantitative 

analysis study. 

Mixture 

Dimer standard 

wt (mg) 

Trimer standard 

wt (mg) 

Dimer standard 

wt % 

Mixture 1 9.62 3.86 71 

Mixture 2 4.80 3.87 55 

Mixture 3 4.78 7.73 38 

Mixture 4 2.40 7.53 24 

Mixture 5 1.22 7.75 14 

 

All these five mixtures were analyzed using MALDI, and the area fractions were 

calculated for the constituent oligomers. Let‟s just talk about one of these mixtures (e.g., 

Mixture 3) to explain the quantitative analysis calculations. Just like the tables shown for 

the dimer and trimer standard, we also tabulated the area fraction and number average 

molecular weight results from three replicates for each mixture. 
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Table 4. MALDI area fractions and number average molecular weights for the three 

replicates of the Mixture 3. 

Now these area fractions are basically the MALDI responses for Mixture 3. In figure 

3.11 from Chapter 3, these area fractions are plotted on the Y axis. 

Now, we know the quantity of dimer standard and trimer standard used to prepare 

Mixture 3. We also know the number average mol wt of the dimer and trimer standards 

(From Tables 1 and 2). So we calculated the number of moles of dimer and trimer 

standards used for the Mixture 3.  

For example: Dimer std moles = 4.8 mg/ 484.6 = 9.86E-03 m moles 

Similarly, Trimer standard moles = 1.01E-02 m moles 

Now we cannot simply plot these moles (or mole fractions) directly against the 

area fractions for the dimer and trimer shown in Table 4 because the trimer standard is 

not pure trimer (as seen from Table 2). So we need to calculate the total dimer and trimer 

moles that are present in the Mixture 3. To perform these calculations we assume that the 

MALDI response, for the standards, is proportional to the mole fraction of its constituent 

oligomers. What it means is that 1 mole of dimer standard is comprised of 0.999 moles of 

dimer and 0.001 moles of trimer. Similarly, 1 mole of trimer standard is comprised of 
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0.026 moles of dimer, 0.888 moles of trimer, and 0.085 moles of tetramer. So for mixture 

3, total moles of dimer are calculated as: 

0.999*9.86E-03 + 0.026*1.01E-02 = 10.11E-03, and the dimer mole fraction is 

10.11E-03/ (9.86E-03 + 1.01E-02) = 50.6% or 0.506 

Similarly, for trimer: 

Total moles of trimer: 

0.001*9.86E-03 + 0.888*1.01E-02 = 8.98E-03, and the mole fraction is 

8.98E-03/ (9.86E-03 + 1.01E-02) = 45% or 0.45 

These mole fractions are plotted against the area fractions (such as the ones 

shown in Table 3) to generate the calibration curve for the quantitative analysis. 
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APPENDIX H 

PERMISSIONS 
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Permission from Bruker Daltonics 

Sourabh: 

No need for permission to use screen shots.  There is nothing that is proprietary. 

Regards, 

  

Paul   

  

Paul J. Kowalski 

US Applications Manager 

Bruker Daltonics, Inc. 

40 Manning Rd. 

Billerica, MA 01821 

(978) 663-3660 ext 1235 

 

  

Hello Lisa, 

 

Hope you are doing well. I am graduating soon and in the process of writing my PhD 

thesis. I need to put couple of "screen shots" from the MALDI flex control software in 

the MALDI operating procedure appendices. Would you kindly let me know the 

procedure to get permission from Bruker to use these "screen shots"? 

 

Thank you. 

 

Sincerely, 

 

Sourabh 
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Permission from SI Photonics 

Hello Sourabh, 

I am pleased things have worked out well for you.  You have our permission to use the 

images in your manuscript.  One note in the last image, Figure E5.  If you have this file 

saved in software you may want to change the x-axis to only display from 300 nm and 

up.  The information below 300 nm is artifact because either the solvent, glass or 

compounds are not UV transmissive so they tend to obscure the real data being presented 

as someone will inevitably ask “what‟s that”.    This comes up frequently when people 

use plastic cuvettes in the UV range and they always think it is an instrument problem.    

 If you can modify the wavelength range of your spectrum it will make your data look 

that much cleaner and more impressive. 

 If you published any articles, we would be happy to include them on our website for 

others to follow and reference as well. 

Best regards, 

Jeff Prevatt 

S. I. Photonics, Inc. 

520-293-6911 

 

Hi, 

 

My name is Sourabh Kulkarni. I am a graduate student at Clemson University. In my 

research work, I have used SI Photonics UV/Vis spectrophotometer (400 series). 

Currently, I am in the process of writing my PhD thesis and I would like to include the 

operating procedure of the instrument in my thesis appendix. In this operating procedure, 

I would like to include couple of screen shots of the software (that is used to control the 

operation of SI 400 spectrophotometer). I was wondering if there is any procedure that I 

need to follow to get the permission for this. 

 

I am attaching the copy of the document that I would like to include in my thesis. Kindly 

let me know if I need to follow certain procedure to get the permission to do this. 

 

Sincerely, 

 

Sourabh Kulkarni 
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