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ABSTRACT 

 

Catalytic synthesis of ethanol and other higher alcohols from CO hydrogenation 

has been a subject of significant research since the 1980s.  The focus of this research is to 

establish a better fundamental insight into heterogeneous catalysis for CO hydrogenation 

reactions, in an attempt to design the best catalysts for ethanol synthesis.  

It has been reported widely that promoted Rh-based catalysts can exhibit high 

selectivity to C2+ oxygenates during CO hydrogenation. The doubly promoted Rh-La-

V/SiO2 catalysts exhibited higher activity and selectivity for ethanol and other C2+ 

oxygenates than singly promoted catalysts. The better performance appears to be due to a 

synergistic promoting effect of the combined La and V additions through intimate contact 

with Rh.  

 The kinetic study carried out in this study shows that, in general, increasing H2 

pressure resulted in increased activities while increasing CO partial pressure had an 

opposite effect.  Langmuir-Hinshelwood rate expressions for the formation of methane 

and of ethanol were derived and compared to the experimentally derived power law 

parameters.  It was found that the addition of different promoters appeared to result in 

different rate limiting steps.  

Strong metal-oxide interactions (SMOI) of Rh and vanadium oxide (as a promoter) 

supported on SiO2 was studied.  It was found by SSITKA (steady-state isotopic transient 

kinetic analysis) that the concentration of surface reaction intermediates decreased on 

Rh/V/SiO2 as the reduction temperature increased, but the activities of the reaction sites 
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increased.  The results suggest that Rh being covered by VOx species is probably the 

main reason for the decreased overall activity induced by high reduction temperature, but 

more active sites appear to be formed probably at the Rh-VOx interface.  

The mechanism of C1 and C2 hydrocarbon and oxygenate formation during CO 

hydrogenation on Rh/SiO2 was for the first time investigated in detail using multiproduct 

SSITKA.  Based on SSITKA results, methanol and CH4 appeared to be produced on 

different active sites.  It is possible that C2 products share at least one intermediate with 

CH4, but not with methanol.  Moreover, C2 hydrocarbons are not likely to be formed from 

adsorbed acetaldehyde.  
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CHAPTER ONE 

INTRODUCTION 

 

Ethanol, due to its low cost and low pollution emission in use, is a useful octane 

enhancer and may be a viable gasoline alternative and a solution to the energy crisis in 

the future.  In order to meet the requirements of the domestic energy security and 

economic development, ethanol production in United States have been increasing 

significantly in recent years.  However, more than 90% ethanol in United States is made 

through corn fermentation process, which is not energy efficient or environmentally 

friendly.  Contrary to the enzyme process in fermentation, ethanol production from 

synthesis gas has better potential for large scale production with lower cost and higher 

energy efficiency.  

Catalytic hydrogenation of carbon monoxide is one of the direct routes for 

converting synthesis gas to useful chemical compounds such as hydrocarbons and 

oxygenates.  After nearly one hundred year of development, Fischer-Tropsch (FT) 

synthesis has been widely employed in hydrocarbon production from synthesis gas.  

Research efforts in FT synthesis have been aimed towards designing both active and 

selective catalysts.  The process is unique in the field of heterogeneous catalysis in that 

the emphasis is not on producing a single desired product but rather avoiding several 

undesirable by-products.   

Cobalt- and iron-based catalysts are employed most often in FT synthesis to 

produce hydrocarbons because of this relatively low costs and high activities.  For cobalt-
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based catalysts, the principal function of the support is to disperse cobalt and to produce 

stable cobalt metal particles after catalyst reduction and activation.  Promoters are also 

added to improve catalyst activation, catalyst deactivation and hydrocarbon selectivity.  

Similar to cobalt-based catalysts, it is also meaningful to add promoters to iron-based 

catalysts in order to minimize methane, olefin and oxygenate selectivities.  Thus, specific 

supports and promoters are preferred for FT synthesis when high per pass conversion, 

longer life-times, and higher selectivities to paraffinic products are needed.   

It has been already found that Rh is the best catalyst to produce ethanol from CO 

hydrogenation.  However, there are still numerous challenges using this catalyst such as 

low conversion, low ethanol selectivity and high cost of the catalysts.   

The aim of this research was focused on modification of Rh-based catalysts for 

selective ethanol synthesis from synthesis gas.  Based on the results of previous research, 

a number of promoters and supports were investigated in this research and it was found 

out that silica is the best support for Rh for high selectivity to ethanol and high metal 

dispersion.  La and V were found to be effective promoters for boosting catalyst activity 

3 times and adding both of them together resulted in an even greater increase in activity.  

The kinetics of CO hydrogenation has been studied in a wide range of reaction 

temperatures and partial pressures to clarify the discrepancies regarding the reaction 

mechanism.  Different promoters have been elaborately evaluated and their promoting 

effects have been investigated at the site level by the application of SSITKA (Steady 

State Isotopic Transient Analysis).  
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CHAPTER TWO 

BACKGROUND 

 

Due to the energy crisis during an era of ever-growing energy consumption, 

meeting the energy demand in a way that minimizes environmental disruption is one of 

the central problems of the 21st century.  Ethanol, as a major fuel additive and alternative 

fuel, has attracted increasing attention in recent years.  Since corn ethanol results in net 

energy loss, considerable emphasis has been gra ethanol synthesis from synthesis gas.  

 

2.1 Reasons for Ethanol 

 

Ethanol, with the formula C2H5OH and molecular weight of 46.07, is a clear and 

colorless liquid with a boiling point of 78.5ºC and a density (at 20ºC) of 0.789 g/mL. 

There is nothing new with regard to the production of ethanol.  Worldwide, the earliest 

example of ethanol synthesis, which referred to wine making, occurred between 7000 and 

9000 years ago [1]. 

Production and demand for ethanol in the U.S. soared to new heights in recent 

years. According to data released by the Energy Information Administration (EIA) and 

the Renewable Fuels Association (RFA), production of ethanol in 2009 reached 10.7 

billion gallons, an average of 945,000 barrels per day (b/d) or 29.3 million gallons per 

day.  That is an increase of 16.3 percent compared to 2008. Likewise, demand for ethanol 
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has also increased.  Demand for ethanol, also calculated by the RFA, reached 10.9 billion 

gallons, an average of 963,000 b/d.  That is a surge of 14 percent over 2008 and two 

times more than that of 2004 [2]. 

Thus, even though it is known to all that the energy content of ethanol is lower 

than that of gasoline, the ethanol demand and production increased significantly recent 

years.  There are several factors expediting this trend.  

Firstly, an alternative energy source, ethanol is helpful in satisfying the increasing 

energy needs in society development.  Nowadays, we are totally dependent on an 

abundant and uninterrupted supply of energy for living and working.  It was reported that 

the increasing quality of life is clearly associated with increasing per capita electricity 

consumption [3].  Without energy, advanced economies cannot sustain their standard of 

living, developing and emerging economies will never attain the growth and quality of 

life to which we aspire cannot even be realized.  Thus, looking for different kinds of 

energy is essential in maintaining the high speed of economic development. 

Secondly, ethanol is an effective method to guarantee the security of the energy 

supply.  By 1905, ethanol was emerging as the fuel of choice for automobiles among 

engineers and drivers, opinion being heavily swayed by fears about oil scarcity and rising 

gasoline prices.  In the United States, there is an increasing dependence on imported 

energy to meet personal, transportation, and industrial needs.  According to United States 

Department of Energy, the U.S. dependency on imported oil increased significantly over 

the past 60 years.  The results of its statistical study are shown in Figure 2.1.  Moreover, 

record oil and gas prices in 2009 underscore the need for energy independence by 
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eliminating that volatility in the market caused by instability and conflict in oil-producing 

parts of the world.  As a domestic, renewable source of energy, ethanol can reduce the 

dependence on foreign oil and increase the United States' ability to control its own 

security and economic future by increasing the availability of domestic fuel supplies.  For 

example, in 2006, the production and use of ethanol in the U.S. reduced oil imports by 

170 million barrels, saving $11 billion from being sent to foreign and often hostile 

countries [4]. 

 

 

Figure 2.1 Imported Crude Oil as a Percent of US Consumption [1]. 

 

However, there are not only the energy, security, and economic benefits.  The use 

of ethanol is also attractive for environmental sustainability.  Since adding oxygen to fuel 

results in more complete fuel combustion thus reduces harmful tailpipe emissions.  The 

35% oxygen content in ethanol molecules makes it one of the best tools we have to fight 
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air pollution from vehicles.  Ethanol is also added to replace the use of toxic gasoline 

components such as benzene, a carcinogen.  Ethanol is attractive to industry for its unique 

characteristics such as being non-toxic, water soluble and quickly biodegradable. 

Currently, ethanol blends commercially available are the 10% (E10) and 85% 

(E85) versions.  The 2004 Volumetric Ethanol Excise Tax Credit made E85 eligible for a 

51 cent/gallon tax break.  There are various states (Pennsylvania, Main, Minnesota, and 

Kansas) that levy lower taxes on E85 to compensate for the lower mileage with this fuel.  

The 2005 Energy Policy Act established tax credits for the installation of a clean-fuel 

infrastructure, and state income tax credits for installing E85 fueling equipment have 

been introduced.  Since 1995, flexible-fuel vehicles capable of using E85 have appeared.  

According to the RFA statistics study, usage of ethanol blends is highest in California - 

46% of the total United States consumption [2].  

 

2.2 Ethanol Production 

 

2.2.1 Enzyme/Fermentation 

Current fuel ethanol production in the United States comes almost exclusively 

from traditional grain fermentation processes using corn, although sorghum, wheat and 

barley have made small contributions.  Corn ethanol production developed from wet 

milling of corn; data compiled in the mid-1990s indicates that more than 70% of the large 

ethanol facilities then used wet milling [5]. 
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Wet mills process corn by a series of steeping, wet-grinding and fractionation 

steps which result in starch, oil, protein, fiber, corn gluten meal and corn gluten feed.  

Ethanol can be produced through fermentation of starch.  The outline of corn wet milling 

and ethanol production is shown in Figure 2.2. 

Together with the possibility of collecting CO2 from the fermentation step as a 

salable commodity, the multiplicity of products gave wet milling flexibility in times of 

variable input and output prices, although requiring a higher initial capital investment.  

Unlike Brazilian sucrose-based ethanol, corn-based ethanol has been technology-driven, 

especially in the field of enzymes and improved yeast strains with high ethanol tolerance 

and may be capable of yielding relatively high amounts of ethanol in batch fermentations.   

However, despite the advantages of high selectivity and domestically available 

resources, these processes are also characterized by low reaction rate, difficult product 

separation, and, especially, energetically inefficiency - there is nearly 70% more energy 

required to produce ethanol than the energy actually in ethanol.  Moreover, it has been 

reported that in order to replace 10% of the gasoline consumption, corn ethanol would 

need to be produced on 12% of the total United States cropland.  On the other hand, 

offsetting 10% CO2 emissions from gasoline consumption would require a fourfold 

higher production of corn ethanol; that is from 48% of the total United States cropland 

[5].  Thus, even though ethanol provides a solution to the energy crisis, corn ethanol 

cannot be relied on. 
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Figure 2.2 Outline of corn wet milling and ethanol production [5]. 

 

2.2.2. Via Synthesis Gas 

Synthesis gas, also named syngas, is a mixture of various concentrations of 

carbon monoxide and hydrogen.  It can be derived from natural gas, coal or biomass.  

This ethanol synthesis process from synthesis gas consists of three basic steps: first is 
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syngas production, second is the conversion of syngas to ethanol over a catalyst, and the 

last step is distillation to produce high purity ethanol.  Unlike current fermentation 

processes, ethanol can be produced from syngas derived from a wide variety of sources 

including natural gas, coal bed methane, landfill gas and biomass.   

Table 2.1 compared the costs of enzyme/fermentation and gasification/synthesis 

processes.  The $2.33/gallon capital cost and $0.78/gallon production cost are based on 

estimates by Plant Process Equipment Inc, Houston, TX, (PPE’s) using landfill gas and a 

plant with small scale 80 TPD capacity [6]: 

 

Table 2.1 Cost Comparison [6] 

 Enzyme/Fermentation Gasification/Synthesis 

Theoretical yield 114 gal/ton 230 gal/ton 

Actual yield 70 gal/ton  114 gal/ton  

Approx. capital 

cost/gallon/year 

$4.45 (IEA 2002 est.) $2.33 (PPE est.) 

Approximate cost/gallon $1.44 (IEA 2002 est.) $0.78(PPE est.) 

 

Since the cost of gasification is lower and the energy efficiency is higher than for 

the enzyme process, there is greater economy in ethanol production from the synthesis 

gas than from corn.  It also has with more potential for large scale production.  Moreover, 

this process could also create far greater green house gas reductions and carbon credits 

than the fermentation process. 
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2.2.3 Synthesis Gas Production for Ethanol Synthesis 

 The technology used to prepare synthesis gas used for CO hydrogenation can be 

separated into two main categories - reforming and gasification.  The reforming process 

produces synthesis gas from gaseous or light liquid feedstock, while the gasification 

process produces synthesis gas from solid or heavy liquid feed stocks. 

 The most common feed used to produce synthesis gas for CO hydrogenation is 

coal, which is rich in carbon.  This is because coal is the world’s most abundant fossil 

fuel resource.  To make a synthesis gas suitable for ethanol synthesis, coal needs to be 

gasified with steam and oxygen.  There are several types of coal gasification technology 

that may be considered.  In this study, the synthesis gas produced by Conoco-Philips’ 

EGAS technology from coal is used as the basis for further conversion to ethanol.  This 

technology has been commercially demonstrated, thus, the coal gasification and gas 

cleanup are elements of the process but were not investigated in this study. 

 

2.3 Fischer-Tropsch Technology 

 

2.3.1 Orientation 

Fischer-Tropsch (FT) technology can be defined as the means used to convert 

synthesis gas containing hydrogen and carbon monoxide to hydrocarbon products.  

Discovered early in the last century along with many bulk chemical technologies, its 

development has been primarily due to the efficient use of coal, economical security and 
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military constraint in the first half of the century.  After the Second World War, the 

research on FT synthesis was mostly driven by energy independence concerns while the 

world economy was mostly orientated to oil consumption.  Several commercial scale 

plants have been built and some are currently in use.  Because of the similarity to the 

catalytic conversion from synthesis gas to ethanol, understanding the well-developed FT 

technology is the first step for catalyst design in ethanol synthesis.   

The FT reaction is carried out at 473-623 K and involves monometallic or 

bimetallic catalysts.  Depending on catalyst, reactor and reaction conditions, FT synthesis 

can produce a wide range of hydrocarbons: light hydrocarbons, gasoline, diesel fuel and 

wax [7].  The Fischer-Tropsch process can be carried out at low temperatures (LTFT) to 

produce a syncrude with a large fraction of heavy, waxy hydrocarbons or it can be carried 

out at high temperatures (HTFT) to produce a light syncrude and olefins.  The products 

by HTFT can be refined to environmentally friendly gasoline and diesel, solvents and 

olefins while by LTFT, the primary products can be refined to special waxes or if 

hydrocracked and/or isomerized, to produce excellent diesel, base stock for lube oils and 

a naphtha that is an ideal feedstock for cracking to light olefins.  Moreover, selectivities 

are considered essential in the design of the FT section of a gas conversion plant.  For a 

plant focusing on the production of middle distillates, the C5+ hydrocarbon selectivities 

should be as high as possible.  If olefins or waxes are co-produced, then their selectivities 

should be optimized simultaneously. 

Catalysts are the vital part in any FT process.  Iron and cobalt catalysts are two 

different kinds of catalysts that have been employed widely in FT technology.  Cobalt 
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catalysts are typically used in (natural) gas-to-liquids (GTL) technology, and suitable for 

converting H2-rich, natural gas-derived synthesis gas since they have low intrinsic water 

gas shift (WGS) activity.  On the other hand, iron catalysts are often used for converting 

coal-derived, CO-rich synthesis gas due to the fact that their high WGS activities adjust 

the H2/CO ratio upward.  However, for both kinds of catalysts, catalyst development 

remains an area of ongoing research and there is still room for further improvement. 

 

2.3.2 Cobalt Catalysts 

Usually cobalt catalysts are prepared by depositing cobalt on an oxide support, 

such as silica, alumina, titania or zinc oxide or a combination of these materials.  There 

are significant and multiple roles the support plays in the design and catalytic 

performance of cobalt catalysts.  The activity of supported cobalt catalysts for FT 

synthesis depends on the number of active sites on the surface of crystalline cobalt metal 

which is determined by the cobalt particle size, dispersion, loading, and degree of 

reduction [8].  The support can modify the catalytic activity and product selectivity by 

affecting strong metal-oxide interaction (SMOI), reducibility and dispersion of cobalt 

species to enhance the formation of desired cobalt species.  Thus, the structure and 

chemical properties of the support are essential to supported cobalt catalysts in FT 

synthesis.  For instance, in an investigation of silica-supported cobalt catalysts, Kababji et 

al. [9] concluded that the support surface area affects SMOI leading to the formation of 

cobalt silicate, which is considered inactive for FT synthesis.  Moreover, it was also 

suggested that the properties of silica supports affect the product distribution with small 
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pore diameters (< 6 nm) increasing the rate of methane formation.  On the other hand, it 

was concluded by Zhang et al. [10] that the addition of solvents during the preparation of 

FT synthesis catalysts can also influence the supported cobalt catalysts significantly.  

According to their study, using ethanol as solvent for the cobalt precursor promoted 

dispersion of the supported cobalt and a relatively higher reduction degree, resulting in 

high activity and stability of this catalyst.  Meanwhile, adding acetic acid in the reaction 

also modified the catalyst surface and affected the FT reaction. 

SMOI effects between cobalt and the support have been seen even high loadings 

of cobalt, i.e., higher than 20% by weight cobalt [11].  Moreover, it has been reported that 

at low loadings, cobalt clusters are more sensitive to support-influenced deactivation 

processes [12].  Thus, promoters are added in supported cobalt catalysts to enhance 

subsequent reduction that produced cobalt metal on the catalyst surface.   

Ru and Pt are often employed as promoters, and it was found out by different 

research groups [13, 14] that they only act as a reduction promoter for cobalt in FT 

synthesis.  It was proposed that Re leads to higher cobalt dispersion by preventing 

agglomeration of CoOx particles during calcination treatment and oxidative regenerations 

[15, 16].  However, it was also suggested that noble metals can only be added in small 

amounts because higher noble metal/cobalt ratios may result in increased oxygenate 

selectivity [17].  In order to avoid the use of expensive noble metals, Jacobs et al. [18] 

studied the promoting effects of Group 11 metals (Cu, Ag, Au) to cobalt catalysts for FT 

synthesis.  It was found out that Ag and Au improved the surface cobalt metal active site 

densities. Cu facilitated cobalt reduction but the increased fraction of reduced cobalt did 
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not translate in improved active site densities.  It is possible that a fraction of Cu covers 

the surfaces of cobalt particles and results in a decrease in CO hydrogenation and an 

increase in light product selectivity.  Thus, use of effective promoters is essential in 

cobalt catalyst design and both the type and loading of the promoters should be optimized 

for FT synthesis. 

 

2.3.3 Iron Catalysts 

 Compared to cobalt-based catalysts, iron-based catalysts lead to more olefinic 

products and to lower methane selectivity over a wide range of temperatures and H2/CO 

ratios derived from coal or biomass.  Thus, iron-based catalysts provide an attractive 

complement to cobalt-based catalysts for FT synthesis even though cobalt catalysts are 

usually more active than iron-based catalysts at lower temperatures (470-490 K). 

Similar to cobalt catalysts, the choice and level of promoters are also important in 

producing an iron-based catalyst with a low selectivity to methane and a high selectivity 

to heavy hydrocarbon products with the desired olefin and oxygenate content in the 

products.  It has been discovered that iron catalysts promoted by some transition metal 

oxides like MnO, TiO2 and V2O5 show unusually high selectivity for low alkenes and 

suppress methane formation [19-21].  On the other hand, it was also found out that some 

rare earth oxides like La2O3 and CeO2 can be added to iron catalysts to promote catalytic 

activity, while methane selectivity decreases and light olefin selectivity increases [22].  

By studying the promoting effects of Cu, Ru and K, Li et al. [23] discovered that the 

presence of Cu or Ru led to the nucleation of reduced iron species (Fe3O4, FeCx), which 
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resulted in higher steady-state FT synthesis rates than for unpromoted catalysts and a 

larger number of CO binding sites on steady state catalysts, without changing the product 

selectivity.  Interestingly, Soled et al. [24] found out that adding both K and Cu to Fe-Zn 

results in a higher reaction rate than when adding only Cu or K. 

 

2.4 Catalyst Design for Ethanol Synthesis 

 

2.4.1 CO Hydrogenation Mechanism 

CO hydrogenation produces paraffins, olefins, and oxygenated products such as 

alcohols, aldehydes, ketones, acids, and esters.  Extensive efforts have been focused on 

catalyst screening and mechanistic studies, aimed at developing highly selective catalysts 

for achieving a specific product distribution.  By summarizing the results published 

before, Chuang et al. [25] linked together all the possible pathways of the mechanism in a 

network as shown in Figure 2.3. 
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Figure 2.3 CO hydrogenation network [25]. 

 

The reaction on catalysts begins with CO dissociative adsorption and 

hydrogenation or hydrogen assisted adsorption and splitting to produce CHx species, 

which then undergo  

(i) hydrogenation to produce CH4,  

(ii) chain growth with another CHx to produce C2 hydrocarbons,  

(iii)CO insertion to produce C2 oxygenates. Methane and hydrocarbons are formed by 

the hydrogenation of (CHx) species, suggesting that ethanol formation is favored 

by a catalyst that selectively promotes the CO dissociation and insertion reaction 

instead of the hydrogenation of the CHx surface species.   
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2.4.2 Criteria for Catalyst Design 

 A number of criteria are required to be met before a catalyst can be selected for 

the ethanol production.  The non-chemical requirements include the morphology, the 

mechanical strength and the cost of the catalyst.  The three most important chemical 

requirements are: 

(i) Activity. 

(ii) Selectivity - the extent to which it produces the desired product rather than any 

others, in our research, the selectivity to ethanol is a crucial point. 

(iii) Stability - how long it can be used before it becomes deactivated by poisons. 

There are several factors influencing catalyst behaviors.  First of all, the 

composition of the catalyst is especially important.  On one hand, most active materials 

are not mechanically or thermally stable and the cost is always high.  Thus, in order to 

achieve the optimal dispersion for the active component and stabilization against 

sintering, the support is need consisting of an ultra hard and chemically nonreactive 

material with a high melting point and a large surface area, such as SiO2, TiO2, Al2O3, 

carbon, etc.  Promoters are also added to improve activity, selectivity, or useful lifetime 

of the catalyst.  Second, the preparation methods, including the impregnation sequence 

and the calcination temperature have been shown to affect catalyst behavior.  Third, the 

catalyst activity can be changed by the variation of the pretreatment and reaction 

conditions though the reasons for the influence is still in the discussion. 

 

2.4.3 Rh-based Catalysts 
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Rh catalysts have been found so far to be the most selective catalysts for the 

synthesis of higher alcohols, especially in the production of ethanol [24-27]. The activity 

and selectivity of C2+ oxygenate synthesis of Rh catalysts has been attributed to the 

unique carbon monoxide adsorption behavior on Rh [26, 27].   

Moreover, both the CO dissociation and insertion abilities of Rh can be adjusted 

by varying the additive and support compositions, which influence the catalyst in 

different ways.  For example, Zn and Fe tend to block surface sites, which decreases CO 

adsorption; Mn, Ti and Zr enhance both the CO insertion and CO dissociation by 

interaction with the reactant molecules and reaction intermediates; the catalyst states can 

be modified by an electronic effect of additives such as alkali promoters, which increase 

the adsorption energy of the CO and as a result, decrease CO hydrogenation significantly.  

Figure 2.4 shows the effects of different supports and promoters on the supported Rh 

catalysts. 
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Figure 2.4 Support and promoter effects on C2 oxygenate synthesis on the supported Rh 
catalysts.    M   indicates the promoter (i.e., Mn, Fe, Ag, etc.) which enhances the rate of 
the specific step;    M    denotes the support which promotes the formation of the specific 
product (e.g., ZnO promotes the formation of methanol) [25]. 

 

Gajardo et al. [28] found that the selectivity for ethanol decreased in the order: 

Rh/La2O3>Rh/TiO2>Rh/SiO2>Rh/Al2O3. The variation of alcohol selectivity has been 

attributed to the electron withdrawing/donating capability of an acidic/basic support, 

morphology of the metal, and effect of support on the reducibility of the metal.  

 Not only the composition, the preparation method, the calcination and reduction 

temperature influence the catalysts behavior significantly. For example, it was found that 

the lanthana particles are not formed in the La2O3/SiO2 system, contrary to La2O3/Al2O3 

system [29].  Instead, amorphous and embedded particles of a mixed silicate phase were 

observed, and this amorphous silicate phase was found to be soluble in acid media, which 

has significant influence to the catalysts by sequential preparation.  Nevertheless, the 

exact mechanisms of these effects are still largely unknown.  
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2.5 Research Objective 

 

The objective of this research was to develop a catalytic process for the selective 

conversion of coal-derived synthesis gas to ethanol.  The process is shown in Figure 2.6.  

 

Figure 2.5 Conversion of coal to ethanol. 
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 CHAPTER THREE 

CO HYDROGENATION ON LANTHANA AND VANADIA DOUBLY PROMOTED 
Rh/SiO2 CATALYSTS  

 

[As published in Journal of Catalysis, 262, (2009), 119-126] 

 

3.1 Introduction 

 

Catalytic synthesis of ethanol and other higher alcohols from CO hydrogenation 

has been a subject of significant research since the 1980s. Higher alcohols synthesized 

from syngas derived from natural gas, coal, or biomass can be used as additives to 

gasoline or as an easily transportable source of hydrogen. Ethanol is especially desirable 

to produce selectively. Such produced ethanol would not only decrease the demand for 

imported crude oil but could also have a positive environmental impact [1].  

Rh-based catalysts have been shown to have high activity for the synthesis of C2+ 

oxygenates due to the unique carbon monoxide adsorption behavior on Rh [2-6]. 

Extensive research efforts have been devoted to study the influence of supports and 

additives including La2O3 [2-6], SiO2 [4, 5, 7-10], TiO2 [3, 8-16], Al2O3 [8, 9, 11], ZrO2 [2, 

11, 17], CeO2 [8, 11], MgO [8, 18], V2O3 [18-21], alkali metals [21-25], Fe [26], Mn [27-

34], Ag [35] and Mo [36] on the catalytic activity of Rh for CO hydrogenation. SiO2 has 

been frequently used as a support since most Rh-based catalysts supported on SiO2 have 

shown moderate activity and good selectivity towards C2 oxygenates during CO 

hydrogenation [37].  
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It is widely accepted that CO dissociation and hydrogenation to produce CHx 

species is likely the first step for the synthesis of C2+ oxygenates from syngas on Rh-

based catalysts. The CHx species then undergoes three possible different reactions. One is 

to form C2 oxygenates by CO insertion, the second is to produce CH4 by  hydrogenation, 

and the third is to undergo chain growth with another CHx to produce C2+ hydrocarbons 

[37]. Many studies have suggested that C-O bond dissociation is the rate-limiting step for 

CO hydrogenation [16, 38], although it remains unclear whether C-O bond cleavage 

occurs through direct breaking of this bond in an adsorbed CO species or by a process 

involving hydrogen. In order to optimize the activity and selectivity of a catalyst for 

ethanol formation, the catalyst should have the ability to adsorb CO nondissociatively, to 

dissociate CO, to hydrogenate moderately, and to insert CO into a Rh-CHx bond. A 

simple supported Rh catalyst does not seem to meet all these requirements optimally. 

Typical Rh catalysts for ethanol synthesis from syngas in recent studies all contain 

multiple components, such as Rh-Li-Mn-Fe [39] and Rh-Zr-Ir [40].   

Lanthana and other rare earth oxides have been studied by many researchers for 

enhancing oxygenates synthesis from syngas and have shown interesting 

promotion/support effects on Rh for better ethanol formation [5, 17, 41-48]. However, 

their promotion mechanism remains unclear—it’s unknown whether lanthana and other 

rare earth oxides enhance the formation of C2-oxygenates by affecting the dispersion of 

Rh [44, 49], by facilitating CO dissociation or insertion [46, 47], or by stabilizing 

reaction intermediates [17]. The same is true for vanadia promoted Rh/SiO2 [20, 50-55]. 

While Kip and co-workers suggested that V enhances reactivity and selectivity towards 
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ethanol by enhancing CO dissociation [55], other researchers have proposed that the 

function of V is to boost hydrogenation [53, 54, 56]. 

The objective of this study was to investigate the promoting mechanism of La and 

V, and more importantly, to explore the combined promotion effect of these two elements 

for CO hydrogenation on Rh/SiO2. In this study, a series of La and/or V oxide promoted 

Rh/SiO2 catalysts were prepared and characterized by TEM, CO chemisorption and FT-

IR. Their catalytic activities were determined for CO hydrogenation in a fixed-bed 

reactor at 230°C and 1.8 atm.     

 

3.2 Experimental 

 

3.2.1 Catalyst preparation 

Rh(NO3)3 hydrate (Rh ~36 wt%, Fluka), La(NO3)3·6H2O (99.99%, Aldrich), 

NH4V2O3 (99.5%, Alfa Aesar), and silica gel (99.95%, Alfa Aesar) were used in catalyst 

preparations. Silica gel was first ground and sieved to 30-50 mesh, washed using boiled 

distilled water for 3 times, and then calcined in air at 500oC for 4 hours before being used 

as a support (BET surface area after pretreatment was 251±2 m2/g). Catalysts were 

prepared by sequential or co-impregnation to incipient wetness of silica gel with an 

aqueous solution of Rh(NO3)3 hydrate and aqueous solutions of precursors of the 

promoters (1 g silica gel / 2 ml solution), followed by drying at 90oC for 4 h, and then at 

120oC overnight before being calcined in air at 500oC for 4 hours.  
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For the catalysts referred to as Rh/M/SiO2 (M = La or V promoter), silica gel was 

first impregnated with the aqueous solution containing the nitrate of the promoter and 

then calcined in static air at 500oC for 4 h, followed by impregnation of the Rh(NO3)3 

aqueous solution and calcination at 500oC for 4 h. Rh-M/SiO2 represents a catalyst 

prepared by co-impregnation. Numbers in parentheses following the symbol for an 

element indicate the weight percent of that element based on the weight of the silica gel 

support. In the text, a singly promoted catalyst refers to a catalyst containing Rh and one 

promoter and a doubly promoted catalyst refers to one containing Rh and two promoters. 

Table 3.1 gives details about the catalyst compositions and preparations. The sequential 

impregnation method was chosen for V-containing catalysts in order to be consistent with 

the literature for comparison purposes [29, 54, 57]. For lanthana promoted Rh catalysts 

supported on silica, it has been reported that the sequence of impregnation has an effect 

on catalytic behavior [46]. Thus, for this study co-impregnation of the La additive with 

Rh was adopted since it is believed that well dispersed Rh particles form without being 

fully covered by La2O3 when that method is used [47]. 
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Table 3.1 Preparation conditions and compositions of Rh-based catalystsa. 

Nomenclature Composition 
(wt %)b

molar ratio of 
promoter/Rh 

Metal loading 
method 

Rh(1.5)/SiO2 1.5  impregnation 
Rh(1.5)-La(2.6) /SiO2 1.5, 2.6 La/Rh = 1.3 co-impregnation 

Rh(1.5)/V(1.5) SiO2 1.5, 1.5 V/Rh = 2 sequential 
impregnation 

Rh(1.5)-La(2.6)/V(0.7)/ SiO2 1.5, 2.6, 0.7 La/Rh = 1.3 
V/Rh=1 

co-sequential 
impregnationc

Rh(1.5)-La(2.6)/V(1.5)/ SiO2 1.5, 2.6, 1.5 La/Rh = 1.3 
V/Rh=2 

co-sequential 
impregnation 

Rh(1.5)-La(2.6)/V(2.2)/ SiO2 1.5, 2.6, 2.2 La/Rh = 1.3 
V/Rh=3 

co-sequential 
impregnation 

Rh(1.5)-La(2.6)/V(3.7)/ SiO2 1.5, 2.6, 3.7 La/Rh = 1.3 
V/Rh=5 

co-sequential 
impregnation 

Rh(1.5)-La(0.5)/V(3.7)/ SiO2 1.5, 0.5, 3.7 La/Rh = 0.3 
V/Rh=5 

co-sequential 
impregnation 

Rh(1.5)-La(4)/V(1.5)/ SiO2 1.5, 2.6, 1.5 La/Rh = 2 
V/Rh=2 

co-sequential 
impregnation 

Rh(1.5)-La(6)/V(1.5)/ SiO2 1.5, 6, 1.5 La/Rh = 3 
V/Rh=2 

co-sequential 
impregnation 

a All catalysts were calcined at 500°C after each impregnation step. 
b wt% relative to the initial weight of the support material. 
c First impregnation with an NH4V2O3 solution, followed by calcination at 500°C; then 

co-impregnation with a Rh and La solution, followed again by calcination at 500°C. 
 

3.2.2 Catalyst characterization  

  BET surface area was obtained using N2 adsorption at -196oC in a Micromeritics 

ASAP 2020. Prior to N2 adsorption, the catalyst samples were degassed under a vacuum 

of 10-3 mm Hg for 4 h at 150oC.  

High resolution field emission microscopy images were obtained using a Hitachi 

9500 electron microscope with 300 kv high magnification. A Scintag XDS 2000 θ/θ 

powder X-ray diffractometer (XRD) equipped with Cu Kα1/Kα2 (λ = 1.540592 Å and 

1.544390 Å, respectively) radiation was employed for the collection of X-ray diffraction 

patterns with a step size of 0.03°.  
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The number of exposed rhodium surface atoms was determined by CO 

chemisorption using a Micromeritics ASAP 2010C. Catalyst samples of approximately 

0.2 g were first evacuated at 110oC for 30 min before being reduced at 500oC in a 

hydrogen flow for 30 minutes, and then evacuated at 10-6 mm Hg and 500oC for 120 min. 

After cooling under vacuum to 35oC, the adsorption isotherm was recorded. The amount 

of chemisorbed CO was obtained by extrapolating the total adsorption isotherm to zero 

pressure, and the metal dispersion (Rhs/RhTot) was calculated subsequently assuming 

CO/Rhs=1.

CO adsorption was also studied using a Nicolet 6700 FTIR spectrometer equipped 

with a DRIFT (diffuse reflectance infrared Fourier transform) cell with CaF2 windows. 

The cell, whose windows were cooled by circulating water, could collect spectra over the 

temperature range 25-500oC at atmospheric pressure. For a typical measurement, about 

0.05 g sample was ground and placed in the sample holder. Prior to exposure to CO, the 

sample was reduced in situ at 500oC in a flow of H2 (20 mL/min) for 30 min and then 

purged with He (48 mL/min) at this temperature for 30 min. After cooling down to the 

desired temperature in the He flow, a background spectrum was taken. Then, 4 v/v % 

CO/He (total 50 mL/min) was introduced into the cell and the infrared spectra were taken 

at 4 cm-1 resolution and consisted of 128 interferograms to obtain a satisfactory signal-to-

noise ratio.  

 

3.2.3 Reaction 
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CO hydrogenation was performed in a fixed-bed differential reactor (316 stainless 

steel) with length ~300 mm and internal diameter ~5 mm.  The catalyst (0.3 g) was 

diluted with inert α-alumina (3 g) to avoid channeling and hot spots.  The catalyst and 

inert were loaded between quartz wool plugs and placed in the middle of the reactor with 

a thermocouple close to the catalyst bed.  Prior to reaction, the catalyst was heated to 

500oC (heating rate ~6oC /min) and reduced with hydrogen (flow rate = 30 mL/min) for 1 

h.  The catalyst was then cooled down to 230°C and the reaction started as gas flow was 

switched to a H2-CO mixture (molar ratio of H2/CO = 2, total flow rate = 45 mL/min) at 

1.8 atm total pressure.  A total pressure of 1.8 atm was used since this study is part of a 

more extended investigation using a variety of techniques including using SSITKA 

(steady-state isotopic transient kinetic analysis [58]) and equivalent reaction conditions 

are required for comparison of all the data. This pressure would not necessarily be the 

optimum for obtaining the maximum selectivity to oxygenates.  Flow rates were 

controlled using Brooks 5840E series mass flow controllers and kept at a total flow rate 

of 45 mL/min. The products, including hydrocarbons and oxygenates, were analyzed on-

line by an FID (flame ionization detector) in a gas chromatograph (Varian 3380 series) 

with a Restek RT-QPLOT column of I.D 0.53 mm and length 30 m. Carbon monoxide 

and other inorganic gases were analyzed by a TCD (thermal conductivity detector) after 

separation with a Restek HayeSep® Q column of I.D. 3.18 mm and length 1.83 m. The 

identification and calibration of gas products were accomplished using standard gases 

[alkanes (C1-C7), alkenes (C2-C7), and oxygenates (methanol, ethanol, 1-propanol, 1-

butanol, acetaldehyde, and acetone)] as well as liquid samples (oxygenates). For all 
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measurements, the CO conversion was kept below 10%. The selectivity of a particular 

product was calculated based on carbon efficiency using the formula niCi /∑ niCi, where 

ni and Ci are the carbon number and molar concentration of the ith product, respectively.  

Arrhenius plots of the rates of CO conversion gave apparent activation energies of 

25-27 kcal/mol for all the types of promoted catalysts; indicating no heat or mass 

transport limitations on the rate of reaction measurements.  

 

3.3 Results and Discussion 

 

3.3.1 Morphology of Rh-based catalysts 

As-prepared Rh-based catalysts were small dark brownish granules of 30-50 mesh. 

The BET surface areas of all the Rh-based catalysts were measured to be ca. 250 m2/g. 

No significant difference was observed in the surface areas for the catalysts prepared 

using different preparation methods, probably due to the fact that the concentrations of 

Rh and promoters were relatively low in all the catalysts prepared in this study.  

X-ray diffraction (XRD) patterns (not shown) of these calcined or 500oC reduced 

catalysts showed no crystalline phases, indicating that Rh, lanthana and vanadia were all 

highly dispersed. The XRD results were confirmed by TEM as shown in Fig. 3.1. The 

high resolution images of Rh(1.5)/SiO2 [Fig. 3.1(a)] show evenly dispersed Rh clusters 

with particle sizes around 3 nm. However, for the La and V promoted catalyst Rh(1.5)-

La(2.6)/V(1.5)/SiO2, no clear image of Rh clusters could be identified, only some 

irregular-shaped patches in the range of 3-20 nm were distinguishable from the support, 
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as shown in Fig. 3.1(b). The singly promoted catalysts, Rh(1.5)-La(2.6)/SiO2 and 

Rh(1.5)/V(1.5)/SiO2, exhibited similar TEM images (not shown) as that of Rh(1.5)-

La(2.6)/V(1.5)/SiO2.  

 

3.3.2 CO Chemisorption  

Table 3.2 summarizes the results obtained from the volumetric CO chemisorption. 

La addition to Rh increases CO adsorption, which is in good agreement with the results 

reported by Bernal and Blanco [45]. On the contrary, the addition of V resulted in a 

decrease in both total and irreversible CO chemisorption, which is also consistent with 

the literature [57]. For the doubly promoted catalysts (La + V), the presence of V clearly 

diminished the CO chemisorption and especially the irreversible amount. It would appear, 

based on a comparison of the CO chemisorption results with these from TEM, that metal 

dispersion based on CO chemisorption for the V-promoted catalysts is probably under 

estimated.  
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Figure 3.1 TEM micrographs of (a) Rh(1.5)/SiO2 and (b)  Rh(1.5)-a(2.6)/V(1.5)/SiO2.
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Table 3.2 CO Chemisorption on the reduced Rh-based catalysts. 
 

CO-chemisorbeda 
(µmol/g cat.) Catalyst 

Total Irrev. 

Metal Dispersion 

(%)b

Rh(1.5)/SiO2 48.1 42.9 37.2 

Rh(1.5)-La(2.6)/SiO2 83.2 76.5 65.4 

Rh(1.5)/V(1.5)/SiO2 29.6 6.9 22.9 

Rh(1.5)-La(2.6)/V(1.5)/SiO2 13.3 2.0 10.3 

a Error = ±5% of the value measured. 
b Based on total CO chemisorbed and an assumption of CO/Rhs=1. 

 

3.3.3 FTIR study 

  Infrared spectroscopy provides an alternate and powerful tool to study the 

interaction of CO with catalysts. Four representative Rh catalysts in this study were 

chosen for IR study – the bench mark non-promoted Rh(1.5)/SiO2, 2 singly promoted 

catalysts Rh(1.5)-La(2.6)/SiO2 and Rh(1.5)/V(1.5)/SiO2, and a doubly promoted catalyst 

Rh(1.5)-La(2.6)/V(1.5)/SiO2. A series of spectra acquired for these catalysts (after 

reduction at 500oC and desorption of H2 followed by contact with CO at room 

temperature or 230oC, respectively for 30 minutes) is given in Fig. 3.2. In all the spectra, 

the bands centered around 2180 and 2125 cm-1 can be attributed to gaseous CO [59]. The 

IR spectrum of Rh(1.5)/SiO2 interacting with CO at room temperature [Fig. 3.2(a)] 

exhibited a strong band at 2072 cm-1, which can be attributed to linear adsorbed CO 

[CO(l)]; a doublet at 2092 and 2026 cm-1, which can be assigned to the symmetric and 

asymmetric carbonyl stretching frequencies of gem-dicarbonyl Rh(I)(CO)2; and a weak 
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broad peak at 1865 cm-1, which is assigned to bridge-bonded CO [CO(b)] [60]. The 

formation of the dicarbonyl species could be an indication of highly dispersed Rh since it 

is widely accepted that the dicarbonyl species can only be formed on highly dispersed 

rhodium [61, 62]. The IR spectrum of CO adsorbed on the lanthana promoted catalyst 

looks identical to that of CO adsorbed on the non-promoted catalyst except that the peak 

of the bridge bonded CO shifted to a lower frequency, which is consistent with the 

literature and may be related to a tilted CO adsorption mode [CO(t)] [43]. The IR-spectra 

taken after exposing Rh(1.5)/V(1.5)/SiO2 and Rh(1.5)-La(2.6)/V(1.5)/SiO2 to CO [Fig. 

3.2(c) and 3.2(d)] showed much lower intensities of CO(l) band and no CO(b) was 

observed. The suppression of CO absorption by the addition of vanadia to Rh/SiO2 

catalysts has previously been reported by several research groups [53, 57] and is also in 

agreement with the quantitative CO chemisorption results reported here. Two features 

related to CO adsorption on the doubly promoted Rh(1.5)-La(2.6)/V(1.5)/SiO2 at room 

temperature are worthy noting here: first, as shown in Figure 3.2(d), the gem-dicarbonyl 

Rh(I)(CO)2 dominates the IR spectrum; second, though the overall intensities of the 

adsorbed CO bands are lower than those of non-promoted and the lanthana promoted 

Rh/SiO2, they are significantly greater than those of the vanadia promoted Rh/SiO2. 

These features indicated high dispersion of Rh and moderate CO adsorption strength of 

the doubly promoted catalyst at room temperature.   

For IR spectra recorded at the reaction temperature of 230oC, the relative intensity 

of the dicarbonyl species decreased compared to the spectra recorded at room 

temperature for all the catalysts. The attenuation of the dicarbonyl species is likely due to 
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the reduction of RhI(CO)2 to form CO2 and Rhx
0(CO) species at high temperatures [63, 

64]. For the non-promoted Rh(1.5)/SiO2 and the lanthana promoted Rh(1.5)-La(2.6)/SiO2, 

the intensities of the bridge-bonded CO(b) or CO(t) increased. However, at this 

temperature, there was still no CO(b) evident in the IR spectra for the V-containing 

catalysts. With regards to the adsorbed CO, that on Rh(1.5)-La(2.6)/SiO2 had the highest 

intensity. Results may be attributed to the fact that lathana can interact directly with CO 

[43]. However, in the present study, exposing 2.6 wt% La2O3 supported on SiO2 to CO 

did not produce any significant IR bands for adsorbed CO species at room temperature or 

230oC, suggesting that new sites available for CO adsorption might be at the Rh-LaOx 

interface/surface. The IR spectrum of the vanadia promoted Rh catalyst, 

Rh(1.5)/V(1.5)/SiO2, at 230oC exhibited similar features to the spectrum recorded at 

room temperature except that the peaks were even weaker when compared to the other 

catalysts, indicating a likely stronger suppression of CO adsorption at higher temperature. 

One possible explanation is that at higher temperature, more Rh might be covered with 

vanadia. As shown in Figure 3.2(d), the IR spectrum taken at 230oC of the doubly 

promoted catalyst exhibited weak gem-dicarbonyl Rh(I)(CO)2 species besides CO(l) with 

moderate intensity, suggesting that high dispersion of Rh and moderate CO adsorption 

strength were conserved at high temperature for this catalyst. A more detailed discussion 

related to the IR study will be reported elsewhere [65]. 
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Figure 3.2 The infrared spectra of chemisorbed CO at room temperature and at 230 oC on 
(a) Rh(1.5)/SiO2; (b) Rh(1.5)-La(2.6)/SiO2; (c) Rh(1.5)/V(1.5)/SiO2; (d) Rh(1.5)-
La(2.6)/V(1.5)/SiO2 after exposing the reduced catalysts to 4 v/v % CO/He (total 50 
mL/min) for 30 minutes. 
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3.3.4 Catalytic activities 

Table 3.3 compares the catalytic activities of the non-promoted and La and/or V 

promoted Rh/SiO2 catalysts for CO hydrogenation at 230oC. Negligible amounts of CO2 

were formed for all the catalysts under the reaction conditions used in this study, thus, all 

the reaction rates and selectivities were calculated without including CO2. The results 

presented here confirm that both La and V affect the catalytic activity of Rh/SiO2 for CO 

hydrogenation [41, 55]. It can be seen that all the promoted catalysts exhibited higher CO 

conversion rates than that of the non-promoted one. For the singly La promoted catalyst 

Rh(1.5)-La(2.6)/SiO2, the selectivity towards the formation of ethanol was enhanced 

while the selectivity towards acetaldehyde decreased a little compared to non-promoted 

Rh/SiO2. Methanol selectivity was also increased somewhat, but methane selectivity was 

less. Hydrocarbons still made up the majority of the total products although somewhat 

less than for the non-promoted catalyst. The higher total reactivity and higher C2 

oxygenate selectivity indicate that La may enhance both CO dissociation (assuming that 

C-O bond dissociation is the rate-limiting step for CO hydrogenation [16, 38]) and 

insertion by increasing CO adsorption and affecting CO interaction with the catalyst at 

the reaction temperature, as suggested by the IR study.  

Compared to the La promoted catalyst, the V promoted Rh catalyst showed 

significant suppression of the formation of methane, an undesired low-value product, but 

the selectivity for ethanol was lower than that for the La promoted Rh/SiO2 catalyst. The 

formation of higher hydrocarbon dominated with a selectivity of 66.8%. It has been 

proposed by Luo et al [56, 66] that vanadium ions of lower valence have a good capacity 
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for hydrogen storage, enhancing the hydrogenation ability. However, Kip et al. [57] 

studied ethylene-addition and found no significant difference in the amount of ethane 

formed on non-promoted and V2O3 promoted Rh/SiO2, leading to a suggestion that the 

low activity of Rh/SiO2 cannot be due simply to low hydrogenation activity. Judging from 

the low selectivity of CH4 and the high fraction of olefins in the products in our study 

using Rh(1.5)/V(1.5)/SiO2, our results indicate it is also unlikely that vanadium oxide 

boosts hydrogenation for the formation of hydrocarbons. On the other hand, the shift in 

selectivity from acetaldehyde to ethanol does suggest an increase in the hydrogenation 

function of the catalyst. This seeming contradiction may be due to different 

hydrogenation pathways for the formation of paraffins from olefins and alcohols from 

aldehydes. Based on the results of our CO chemisorption and IR studies, the addition of 

vanadium oxide suppresses CO adsorption, which may lead to increased H coverage on 

the Rh surface. It is possible that this also happens at reaction temperature and influences 

product selectivity. As suggested by Beutel et al. [53], it is more likely that increased 

capacity of hydrogen storage may assist CO dissociation by forming COH species easier 

first on the V promoted Rh catalyst, leading to increased formation of longer chain 

hydrocarbons and oxygenates. Certainly, if there were increased H coverage, it did not 

appear to have a positive effect on CH4 synthesis. 
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Table 3.3: Catalytic activities of Rh-based catalysts a, b. 

SS Selectivity (%)c

Catalyst 
SS* Rate 

(µmol/g/s) CH4 C2+HCd MeOH Acetaldehyde EtOH
Other 
C2+ 

oxy.e

C2
=/C2 C3

=/C3
f

Rh(1.5)/SiO2 0.03        48.1 28.7 1.2 6.5 15.6 - 1.8 12.0

Rh(1.5)-La(2.6)/SiO2 0.09        35.3 32.0 3.2 5.8 23.6 - 1.2 3.3

Rh(1.5)/V(1.5)/SiO2 0.09        12.5 66.8 5.0 2.1 12.5 1.3 4.8 10.3

Rh(1.5)-La(2.6)/V(1.5)/SiO2 0.29        16.2 50.8 1.8 5.4 20.8 4.9 3.3 12.1

a Catalyst: 0.3 g; Inert: α-alumina 3 g; Pretreatment: 500°C in H2; Reaction conditions: T = 230°C, P = 1.8 atm, flow rate = 45 
mL/min (H2/CO =2); Data taken at 15 h TOS after steady state reached. 
b Error = ±5% of all the values measured except for Rh(1.5)/SiO2 which was ±10% due to low activity. 
c Carbon selectivity = niCi / ∑niCi. 
d Hydrocarbons with 2 or more carbons. 
e Oxygenates with 2 or more carbons, not indicating acetaldehyde and ethanol. 
f Cn

=/Cn is the ratio of Cn olefin selectivity to Cn paraffin selectivity (n = 2, 3). 
* Steady-state. 
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As shown in Table 3.3, compared to Rh/SiO2 promoted only by La or by V, the 

doubly promoted catalyst Rh(1.5)-La(2.6)/V(1.5)/SiO2 combined the positive promoting 

effects of both La and V, resulting in the highest CO hydrogenation rate (about 9 times 

higher than Rh/SiO2), high ethanol and other C2+ oxygenates selectivities, and low 

selectivities for methane and methanol. These results may be related to the intimate 

contact of Rh with both V and La, resulting in modified CO and H2 adsorption as 

suggested by CO chemisorption and IR studies, which leads to faster CO dissociation, 

insertion and hydrogenation.  

Table 3.4 presents the effects on CO hydrogenation of La/Rh and V/Rh ratios in 

the doubly promoted Rh/SiO2 catalysts. It can be concluded that a V/Rh ratio ranging 

from 1-5 had little impact on the total activity for CO hydrogenation. However, as V/Rh 

changed from 1 to 2, both total oxygenate and ethanol selectivities increased while those 

for acetaldehyde and methane decreased. This suggests that the main effect of V was to 

enhance chain growth, probably by accelerating CO dissociation and hydrogenation. 

When the La/Rh ratio was increased from 0.3 to 3, methane selectivity appeared to 

increase while the activity shows a peak at 1.3. La appears to affect V-Rh effects but 

excess La shows negative results. Since varying the La/Rh and V/Rh ratios showed 

different effects, it is safe to conclude that the better performance of the doubly promoted 

(La+V) catalyst is not because of a simple additive effect but rather a synergistic one. Use 

of just more of each promoter by itself is not able to produce the enhanced catalytic 

performance. 



SS Selectivity (%)c

Catalyst 
La/Rh 
Molar 
Ratio 

V/Rh 
Molar 
Ratio 

SS Rate 
(µmol/g/s) CH4 C2+HCd   MeOH Acetaldehyde EtOH

Other 
C2+ 
oxy.e 

Rh(1.5)-
La(2.6)/V(0.75)/SiO2

1.3         1 0.27 19.1 50.3 1.9 9.3 16.7 1.3

Rh(1.5)-
La(2.6)/V(1.5)/SiO2

1.3         2 0.29 16.2 50.8 1.8 5.4 20.8 4.9

Rh(1.5)-
La(2.6)/V(2.2)/SiO2

1.3         3 0.32 14.0 53.2 2.8 5.5 20.5 4.0

Rh(1.5)-
La(2.6)/V(3.7)/SiO2

1.3         5 0.29 14.8 52.2 2.7 5.2 21.1 4.0

Rh(1.5)-
La(0.5)/V(1.5)/SiO2

0.3         2 0.17 10.5 60.6 4.6 3.8 17.8 2.8

Rh(1.5)-La(4)/V(1.5)/SiO2 2         2 0.19 16.6 47.3 2.3 8.9 22.2 2.7
Rh(1.5)-La(6)/V(1.5)/SiO2 3         2 0.17 21.8 42.4 1.4 11.5 18.3 4.6

a Catalyst: 0.3 g; Inert : α-alumina 3 g; Pretreatment 500 °C; Reaction conditions: T = 230 °C, P = 1.8 atm, flow rate = 45 
cc/min (H2/CO =2); data taken at 15 h after steady state reached.  

Table 3.4 Effect of V/Rh and La/Rh ratio on catalytic activities of doubly promoted Rh catalysts a, b. 
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b Error = ±5% of the value measured. 
c Carbon selectivity = niCi / ∑niCi 
d Hydrocarbons with 2 or more carbons 
e Oxygenates with 2 or more carbons, not including acetaldehyde or ethanol. 

 

 



Figure 3.3 shows the time-on-stream (TOS) behavior of CO conversion on 

Rh(1.5)/SiO2, the singly promoted catalysts Rh(1.5)-La(2.6)/SiO2 and 

Rh(1.5)/V(1.5)/SiO2, and one of the doubly promoted catalysts Rh(1.5)-

La(2.6)/V(1.5)/SiO2. The activity of the non-promoted Rh(1.5)/SiO2 was relatively 

constant while the activities of Rh(1.5)-La(2.6)/SiO2 and Rh(1.5)-La(2.6)/V(1.5)/SiO2 

decreased slightly during the first eight hours and then remained steady. In contrast, the 

CO hydrogenation activity on Rh(1.5)/V(1.5)/SiO2 exhibited an induction period lasting 

for 8 hours before a steady-state was reached. Not many previous studies have been 

reported regarding the activation and deactivation behaviors of Rh-based catalysts for CO 

hydrogenation. Several research groups have observed performance versus TOS for non-

promoted and promoted Rh/SiO2 catalysts [55, 67-69]. It has been suggested that 

deactivation during the initial stages of reaction may be due to the inhibiting effect of CO 

since strongly adsorbed CO on Rh sites may be less likely to be hydrogenated [68, 69]. 

The re-structuring of the Rh surface during the reaction may also be a cause for the 

deactivation.  
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Figure 3.3 CO conversion rate vs TOS for Rh(1.5)/SiO2, Rh(1.5)-La(2.6)/SiO2 and 
Rh(1.5)-La(2.6)/V(1.5)/SiO2, 
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Figure 3.4 compares the selectivities during CO hydrogenation with TOS on these 

four catalysts. While not all the selectivities changed much with TOS, there were still 

several interesting results. The selectivity for acetaldehyde for the non-promoted and La 

promoted catalysts showed an opposite trend from ethanol. This is consistent with what 

Chuang et al. [37] proposed, namely that the ethanol selectivity improves by suppressing 

acetaldehyde production through hydrogenation since acetaldehyde is an intermediate to 

ethanol. However, no such trend was seen for the V-promoted and doubly promoted 

catalysts. Finally, the selectivities for Rh(1.5)-La(2.6)-V(1.5)/SiO2 did not change with 

TOS as much as the singly promoted catalysts Rh(1.5)-La(2.6)/SiO2 and 

Rh(1.5)/V(1.5)/SiO2, providing additional evidence for a synergistic effect of La and V. 
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(a) Rh(1.5)/SiO2                                            
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(b) Rh(1.5)-La(2.6)/SiO2 
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(c) Rh(1.5)/V(1.5)/SiO2    
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 (d) Rh(1.5)-La(2.6)/V(1.5)/SiO2
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Figure 3.4 Product selectivities vs. TOS for (a) Rh(1.5)/SiO2, (b) Rh(1.5)-La(2.6)/SiO2, 
(c) Rh(1.5)-V(1.5)/SiO2 and (d) Rh(1.5)-La(2.6)/V(1.5)/SiO2. 
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3.4 Conclusions 

 

A series of La and/or V promoted Rh/SiO2 catalysts was prepared using the 

incipient wetness impregnation method. Powder X-ray diffraction and TEM results 

suggested that that Rh, lanthana and vanadia were all highly dispersed in the promoted 

Rh/SiO2 catalysts, with no Rh particles distinguishable in TEM images. CO 

chemisorption and FT-IR studies indicated significantly different CO adsorption 

behaviors of the different catalysts. V promotion decreased CO adsorption while La 

promotion showed the opposite effect. Compared to the singly promoted catalysts Rh-

La/SiO2 and Rh/V/SiO2, the doubly promoted Rh-La/V/SiO2 catalysts exhibited higher 

activity and better selectivity towards ethanol formation. The catalytic performance of the 

Rh-La/V/SiO2 catalyst was not affected significantly by increasing the V content beyond 

V/Rh=2; however, La promotion greater than La/Rh=2 resulted in less desirable catalytic 

properties. The high performance of the Rh-La/V/SiO2 catalysts appears to be due to a 

synergistic promoting effect of lanthana and vanadia, modifying both chemisorption and 

catalytic properties.  
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CHAPTER FOUR 

La, V, AND Fe PROMOTION OF Rh/SiO2 FOR CO HYDROGENATION: 
DETAILED ANALYSIS OF KINETICS AND MECHANISM 

 

[As published in Journal of Catalysis, 268, (2009), 142-149] 

 

4.1 Introduction 

 

The hydrogenation of CO to form hydrocarbon and oxygenated products has been 

investigated by a host of researchers since the 1920s, but it was not until the 1980s that 

the ability of Rh-based catalysts to selectively produce C2 oxygenates was pursued [1-4].  

It has been suggested that the high performance of Rh-based catalysts for the formation 

of ethanol and other C2+ oxygenates is due to the unique carbon monoxide adsorption 

behavior on Rh surfaces [1, 2].  Since ethanol is a major fuel additive, a promising fuel 

alternative and a means to store hydrogen in a liquid form for use in hydrogen fuel cells, 

Rh catalyzed CO hydrogenation has attracted much attention in the last thirty years.  

Extensive research efforts have been devoted to study the influence of promoters on Rh-

based catalyst characteristics and much detailed information can be found in several 

recent reviews [2-4]. 

In our previous studies [5-7], the effects of La, V and Fe promotion of Rh/SiO2 

for CO hydrogenation have been investigated.  It was found that the addition of La, V or 

Fe all increased the activity of Rh/SiO2 to different extents, and the selectivites varied 

substantially with the addition of the different promoter(s).  For instance, the addition of 
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La resulted in a higher selectivity to ethanol, whereas the addition of V suppressed the 

formation of methane [6].  The addition of Fe, on the other hand, decreased the formation 

of higher hydrocarbons [7].  It was also determined that the combination of two or three 

different promoters resulted in significantly different catalytic activities.  The La-V 

doubly promoted Rh/SiO2 catalyst exhibited the highest activity and a moderate 

selectivity towards ethanol and other C2+ oxygenates [5].  On the other hand, the La-V-Fe 

triply promoted Rh/SiO2 catalyst showed the highest selectivity for ethanol for the 

reaction conditions utilized and a moderate activity [7].  It was also found that the 

addition of La enhanced CO chemisorption while V and Fe partially suppressed CO 

adsorption [7].  The addition of V or Fe also modified the H2-TPD characteristics of 

Rh/SiO2.  It was proposed that the good performance of the multiply promoted catalyst 

was due to a synergistic promoting effect of the combined addition of different promoters 

through intimate contact with Rh.   

The purpose of this study was to further probe the promoting mechanisms of these 

additives by investigating the effects of partial pressure of H2 (in the range of 0.4-2.4 atm) 

and CO (in the range of 0.1-0.8 atm) on CO hydrogenation on the Rh-based catalysts.  

Moreover, the kinetic analysis was extended to determine the effects of different 

promoters on the mechanistic pathway for the formation of products.  Methane formation 

was one focus for the mechanic pathway study in this investigation for the following 

reasons: (i) CO hydrogenation consists of a complex net of reaction pathways to form 

hydrocarbons and oxygenates.  To derive a complete mechanism including the formation 

of every possible product is out of the scope of this study since our primary interest was 
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to examine the promoting effect of different promoters.  A study focused on CH4, an 

important but undesirable product but with fewer required steps in the CO hydrogenation 

network, is more tractable.  (ii) Even though the CO hydrogenation network is 

complicated, it has been generally accepted that the first step in the synthesis of 

hydrocarbons and possibly C2+ oxygenates is the formation of CHx (x = 0 – 3) species, 

which has also been suggested by many researchers to be the rate-limiting step on 

different catalysts [2, 8-12].  Thus, a mechanistic study of CH4 (formed the 

hydrogenation of the CHx species) should shed some light on the effects of promoters of 

interest on the formation of C2+ oxygenates (formed mainly perhaps insertion of CO into 

a metal-CHx bond) and higher hydrocarbons (formed by mainly CHx chain growth).   

Because of the high value and versatile applications of ethanol compared to hydrocarbon 

products, the formation mechanism for ethanol was also studied in this research, being 

likely somewhat related to that for the formation of methane. 

 

4.2 Experimental 

 

4.2.1 Catalyst preparation 

Catalysts were prepared by sequential or co-impregnation as described in detail in 

our earlier study [5].  Rh(NO3)3 hydrate (Rh ~36 wt%, Fluka), La(NO3)3·6H2O (99.99%, 

Aldrich) NH4VO3 (99.5%, Alfa Aesar) and Fe(NO3)3·9H2O (98.0%, Alfa Aesar) were 

used as purchased. Silica gel (99.95%, Alfa Aesar) was first ground and sieved to 30-50 

mesh, washed with boiled distilled water for 3 times, followed by calcination in air at 500 
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oC for 4 h before being used as a support (BET surface area after pretreatment was 250±2 

m2/g).  An aqueous solution of Rh(NO3)3 hydrate and/or precursors of the promoters (2 

ml solution/1 g silica gel) was added dropwise to the silica gel until incipient wetness.  

The aqueous solution of NH4VO3 was prepared at elevated temperature (~80oC) because 

of its low solubility at room temperature prior to mixing with other solutions; all the other 

aqueous solutions were prepared at room temperature.  The catalyst precursor was dried 

at 90oC for 4 h and then at 120oC overnight before being calcined in air at 500oC for 4 h. 

 

4.2.2 Reaction 

CO hydrogenation was conducted in a fixed-bed differential reactor (316 stainless 

steel) with length ~300 mm and internal diameter ~5 mm.  A catalyst (0.3g) and an inert 

(α-Al2O3, 3g) were loaded between quartz wool plugs, placed in the middle of the reactor 

with a thermocouple close to the catalyst bed.  Ultrahigh-purity H2 and CO (99.999%, 

National Welders) used in this work were purified by molecular sieve traps (Alltech) to 

remove H2O, and CO was further purified using a CO purifier (Swagelok) to remove CO2 

and carbonyls.  Prior to reaction, the catalyst was reduced in-situ in hydrogen (flow rate = 

30 mL/min, heating rate = 5oC/min), holding at 500oC for 1 h.  The catalyst was then 

cooled down to the reaction temperature and the reaction started as gas flow was 

switched to H2/CO (H2 flow rate = 30 mL/min, CO flow rate = 15 mL/min) for the initial 

reaction study.  Brooks 5840E series mass flow controllers were used to control flow 

rates.  The kinetics study was carried out after reaction steady state reached (in less than 

15 hr).  In all cases, conversion was below 5% in order to assure differential conditions.  
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Runs were repeated to determine repeatability and error (in Table 1 and 2).  The apparent 

activation energies of CO conversion and different product formations were given by 

Arrhenius plots over the temperature range from 210 to 270oC.  In order to derive the 

apparent order of CO in the power rate law, H2 partial pressure was kept at 1.2 atm (H2 

flow rate = 30 mL/min) and CO partial pressure varied from 0.1 to 0.8 atm.  For example, 

for a CO partial pressure of 0.8 atm, the CO flow rate was set to 20 mL/min while H2 

flow rate was remained at 30 mL/min, and the total pressure was adjusted to 2.0 atm.  For 

the apparent order of H2, CO partial pressure was kept at 0.6 atm (CO flow rate = 15 

mL/min) and H2 partial pressure varied from 0.4 to 2.4 atm.  We also carried out another 

series of experiments using He as a diluting agent for CO or H2 to keep total pressure 

constant at 1.8 atm.  The almost identical kinetic results (within 10% experimental error) 

obtained this way with what was obtained over a wider total pressure range indicated the 

validity of the kinetic study carried out by varying total pressure and the flow rate of one 

reactant but keeping the partial pressure and the flow rate of the other reactant constant.  

Due to the limitation of the experimental setup (e.g. the range of the CO MFC was much 

smaller than the H2 MFC), more reliable data points were able to be obtained by varying 

total pressure instead of using a diluting agent, results reported in this paper were based 

on the data obtained by varying total pressure. The reaction rate did not change by 

varying space velocities or particle sizes, suggesting no existence of external and internal 

mass transfer, respectively.  The activation energies of CO hydrogenation from Arrhenius 

plots was found to be ca. 25 kcal/mol, the expected value, and confirmed the absence of 

heat or mass transport limitations on the rate of reaction measurements.   
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The products, including hydrocarbons and oxygenates, were analyzed on-line by 

an FID (flame ionization detector) in a gas chromatograph (Varian 3380 series) with a 

Restek RT-QPLOT column.  CO and other inorganic gases were analyzed by a TCD 

(thermal conductivity detector) after separation with a Restek HayeSep® Q column. The 

analysis details can be found in our previous paper [5].  The selectivity of a particular 

product was calculated based on carbon efficiency using the formula niCi /∑ niCi, where 

ni and Ci are the carbon number and molar concentration of the ith product, respectively.  

 

4.3 Results 

 

4.3.1 Catalytic activities of Rh-based catalysts for CO hydrogenation 

 Table 4.1 shows preparation sequence, composition, atomic ratio of promoter/Rh, 

steady-state rate, and selectivities for different products of the catalysts at 230°C and a 

flow rate of 45 mL/min (H2/CO=2), which are consistent with our previous studies [5-7].  

All the reaction rates and selectivities were calculated without including CO2 since 

negligible amounts below GC detection of CO2 were formed for all the catalysts under 

the reaction conditions used in this study. Addition of promoters modified both rate and 

selectivities.  La, V and Fe all enhanced activity and La and Fe boosted ethanol 

selectivity, while V suppressed methane selectivity.  The La and V doubly promoted 

catalyst showed the highest activity.  The triply promoted catalyst RhLaFeV was the best 

catalyst for ethanol (EtOH) formation at these reaction conditions because of the high 

activity and ethanol selectivity.  
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Table 4.1 Composition and Catalytic activities of SiO2-supported Rh-based catalysts. 

Selectivity (%) bNomenclature 

   

Composition (wt %) and 
impregnation sequence a

molar ratio of
promoter/Rh 

 SS* Rate b 
(µmol/g/s) 

CH4 C2+HCd MeOH Acetal-
dehyde 

EtOH Other C2+ 
oxy e  

Rh     Rh(1.5) 0.03 48.1 28.7 1.2 6.5 15.6 -

RhLa Rh(1.5)-La(2.6) La/Rh = 1.3 0.07 38.8 27.4 4.1 8.3 21.5 0.1 

RhV Rh(1.5)/V(1.5) V/Rh = 2 0.09 12.6 64.1 6.0 1.5 13.6 1.5 

RhFe         Rh(1.5)-Fe(0.8) Fe/Rh = 1 0.11 55.3 13.7 9.5 2.2 19.4 -

RhLaV Rh(1.5)-La(2.6)/V(1.5) La/Rh = 1.3 

V/Rh = 2 

0.23  15.8 51.2 2.7 6.1 22.3 1.8

RhLaFeV Rh(1.5)-Fe(0.8)-La(2.6)/V(1.5) La/Rh = 1.33  V/Rh = 

2  Fe/Rh = 1 

0.21  19.4 33.6 5.6 3.5 34.4 3.5

* Steady state.  SS rate = µmol CO conversed/gcat.*s. 
a For the catalysts referred to as Rh/M (M = La , V or Fe promoter), silica gel was first impregnated with the aqueous solution 
containing the precursor of M and then impregnated by Rh(NO3)3 aqueous solution and calcination at 500oC for 4 h.  On the 
other hand, Rh-M refers to a catalyst prepared by co-impregnation.  Numbers in parentheses following the symbol for an 
element indicate the weight percent of that element based on the weight of the silica gel support. 
b Catalyst: 0.3 g; Inert : α-alumina 3 g; Pretreatment 500 °C; Reaction conditions: T = 230 °C, P = 1.8 atm, flow rate = 
45mL/min (H2/CO =2), data taken at 15 h after steady state reached; Experimental error: ±5%. 
c Molar selectivity = niCi / ∑niCi. 
d Hydrocarbons with 2 or more carbons. 
e Other oxygenates besides acetaldehyde and ethanol with 2 or more carbons. 
 



4.3.2 Influence of the partial pressure 

The variations in steady-state reaction rate selectivities to CH4, C2Hn, C3Hn and 

EtOH obtained using the Rh-based catalysts at different H2 or CO partial pressures are 

shown in Fig. 4.1 and 4.2.  Methanol and acetaldehyde are not included here because the 

selectivities were too low to study the trends.   

As presented in Fig. 4.1 (a), when H2 partial pressure was increased from 0.4 to 

2.4 atm with the partial pressure of CO held at 0.6 atm, the steady-state rate rose steadily 

for all the catalysts.  The CO conversion rate on the doubly promoted RhLaV catalyst 

increased nearly 5 times, more significantly than all the other catalysts.  However, with 

the addition of Fe as the third promoter, this increase was somewhat lower.  In Fig. 4.1(b), 

compared to the non-promoted catalyst Rh for which the selectivity for CH4 increased 

significantly with H2 partial pressure; addition of any of the promoters caused a lower 

increase.  It is obvious that V-containing catalysts exhibit much lower CH4 selectivity 

compared to other catalysts even at higher H2 partial pressure.  The catalysts with by far 

the lowest CH4 selectivities were RhV<RhLaV<RhLaFeV.  Both C2Hn and C3Hn 

selectivities decreased with increasing H2 partial pressure, with the promoters 

significantly affecting the absolute C2Hn and C3Hn selectivities as shown in Fig. 4.1(c) 

and 4.1(d).  As shown in Fig. 4.1(e), the selectivity for EtOH increased somewhat with 

increasing H2 partial pressure, except for the Fe singly promoted catalyst.  For that 

catalyst, EtOH selectivity actually decreased a little with increasing H2 partial pressure. 
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Figure 4.1 The effect of H2 partial pressure on (a) CO conversion rate, (b) selectivity to 
CH4, (c) selectivity to C2Hn, (d) selectivity to C3Hn, (e) selectivity to EtOH at 230 °C. 
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Figure 4.2 The effect of CO partial pressure on (a) CO conversion rate, (b) selectivity to 
CH4, (c) selectivity to C2Hn, (d) selectivity to C3Hn, (e) selectivity to EtOH at 230 °C. 
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 Fig 4.2 presents the steady-state rate and selectivities for CH4, C2Hn, C3Hn and 

EtOH with the CO partial pressure varying from 0.1 to 0.8 atm and H2 partial pressure 

held at 1.2 atm.  In Fig. 4.2(a), it can be seen that the total CO conversion rate was only 

slightly affected by increasing CO partial pressure for all the catalysts except the La-V 

doubly promoted catalyst.  The selectivity to CH4 decreased with CO partial pressure for 

all the catalysts, as shown in Fig. 4.2(b).  Different from the effect of PH2, the CO partial 

pressure did not affect C2Hn selectivities for any significant degree as shown in Fig. 

4.2(c).  In Fig. 4.2(d), it can be seen that, while the C3Hn selectivity for the nonpromoted 

Rh catalyst significantly increased with increasing CO partial pressure, those for all the 

promoted catalysts did not. The selectivity for EtOH increased somewhat with increasing 

CO partial pressure for the nonpromoted, Fe, and LaFeV promoted catalysts as shown in 

Fig. 4.2(e).  The other catalysts showed only small increases.  

 

4.3.3 Power-law expression 

The power-law rate parameters in the form of 
2

/aE RT x y
H COr Ae P P−= for the synthesis 

of CH4, C2Hn, C3Hn, EtOH and total CO conversion are summarized in Tables 4.2 and 4.3.  

Since the formations of different products from CO hydrogenation follow somewhat 

different pathways, it is more meaningful to examine the power-law rate parameters for 

each individual product rather than the rate parameters for the overall reaction of CO.  

The low standard deviations for the activation energy and reaction order measurements 

along with their correlation coefficients (>0.97) indicate that these parameters represent 

the data well.  Results in the literature for kinetic parameters of CO hydrogenation on Rh 
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catalysts vary significantly due to differences in pressure, temperature and conversion [10, 

13, 14].   

As can be seen in Table 4.2, the x and y values varied for the different promoters, 

with all the results between -0.2 to 1.4 for the reaction order of H2 and between -0.8 to 

0.6 for that of CO.  Our results in Table 4.3 for activation energies are consistent with the 

published data [13, 14].  It can be seen that, in general, the activation energies were 

higher for the La promoted catalysts but lower for the Fe promoted ones compared to the 

nonpromoted catalyst.  Thus, based on the results shown in Table 4.2 and 4.3, it is quite 

obvious that the effects of the addition of different promoters were quite different.  

 



Table 4.2 Reaction orders a, b, c, d for the synthesis of CH4, C2Hn, C3Hn, EtOH and total CO conversion at 230°C 

CO Conversion CH4 Formation C2Hn Formation C3Hn Formation EtOH Formation

Catalysts x          y x y x y x y x y

Rh           0.55 -0.26 1.03 -0.67 0.61 -0.35 0.07 0.11 1.02 -0.13

RhLa           0.65 -0.49 0.97 -0.79 0.47 -0.41 0.15 -0.22 0.93 -0.54

RhFe           0.58 0.03 0.69 -0.11 0.11 0.35 -0.14 0.53 0.51 0.30

RhV           0.84 -0.31 1.35 -0.71 0.88 -0.41 0.61 -0.26 1.09 -0.22

RhLaV           0.88 -0.65 1.37 -0.74 0.8 -0.4 0.65 -0.32 1.17 -0.45

RhLaFeV         0.75 -0.21 1.10 -0.55 0.49 -0.25 0.32 -0.16 0.94 -0.16

a Catalyst: 0.3 g; inert: α-alumina 3 g; pretreatment: 500°C in H2; data taken at 15 h TOS after steady state reached. 
b The rate parameters for each catalyst are determined by fitting a power-law rate expression of the form 2

/aE RT x y
H COr Ae P P−=  

c Error = ±10% for all the values measured.  
d To determine x, PCO=0.6 atm was used and PH2 was varied from 0.4 to 2.4 atm; to determine y, PH2=1.2 atm was used and 

PCO was varied from 0.46 to 0.8 atm. 
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 Catalysts CO Conversion CH4 Formation C2Hn Formation C3Hn Formation EtOH Formation 

Rh      25.6 29.2 29.6 24.3 18.3

RhLa      27.4 31.6 30.2 30 24.2

RhFe      21.5 23.9 22.6 23 15.7

RhV      26.9 30.9 28.5 28.5 17.6

RhLaV      27.4 30.5 28.4 29.5 21.3

RhLaFeV      25.3 28.2 27.6 27.4 21.5

a Catalyst: 0.3 g; Inert: α-alumina 3 g; Pretreatment: 500°C in H2; Data taken at 15 h TOS after steady state reached. 
b At constant flow rate = 45 mL/min (H2/CO =2), P = 1.8 atm, the activation energy for each catalyst is determined by 

ln ln aEr A
RT

= −  while temperature varied from 210 to 270°C. 

Table 4.3 Activation energy a, b, c, d for the synthesis of CH4, C2Hn, C3Hn, EtOH and total CO conversion 
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c Error = ±10% for all the values measured.  
d The unit of activation energy is kcal/mol. 
 



 

4.4 Discussion 

 

4.4.1 Effects of promoters on kinetics 

It is widely accepted that H2 and CO adsorption on a catalyst surface are two key 

factors in the CO hydrogenation process.  In Fig. 4.1(b), (c) and (d), the selectivity for 

CH4 increases slightly and the selectivities for higher hydrocarbons decrease with 

increasing H2 partial pressure.  This is understandable because the increased hydrogen 

coverage on a Rh-based catalyst surface would definitely increase the hydrogenation of 

CHx species, leading to more methane.  On the other hand, increased H2 partial pressure 

may also decrease CO adsorption and dissociation, resulting in less chain growth.  It can 

be seen in Fig. 4.1(e) that EtOH showed a different trend from C2Hn or C3Hn on all the 

catalysts, indicating that the formation of ethanol involves a different pathway compared 

to the formation of higher hydrocarbons.  On a catalyst surface, an increase in CO 

adsorption may result in a decrease in H2 adsorption, as a result of which CH4 selectivity 

would decrease.  Thus, as seen in Fig. 4.2 (b), increasing CO partial pressure resulted in a 

decrease in CH4 selectivity for all catalysts.  There was also an increase in EtOH 

selectivity for all the catalysts (Fig. 4.2 (e)). 

As evidenced by IR, chemisorption and CO-TPD [7, 15-18], CO adsorption is 

enhanced by La addition, especially when small amounts of La are added.  As a result, 

adding La increases the activity compared to non-promoted Rh/SiO2 as seen in Figs. 4.1 

(a) and 4.2 (a).  In Table 4.2, the reaction orders of CO for La promoted catalysts were 
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more negative compared to those for the non-promoted catalyst, almost certainly due to 

the promotion of CO adsorption by La addition as found in our previous work [5], 

leading to a greater decrease in reaction rate with increasing partial pressure of CO.  

However, judging from the fact that the hydrogen reaction orders for all the products on 

RhLa did not change much compared to those for Rh, the main function of the addition of 

La appears not to be an enhancement of hydrogenation as suggested by Borer and Prins 

[18].  In what seems contradictory, La addition increases the activity of Rh/SiO2 by 

increasing CO adsorption but this also causes the rate to have a higher negative order in 

CO partial pressure. 

Addition of V also increased the activity as shown in Fig. 4.1(a) and 4.2(a).  This 

is understandable because, even though CO adsorption is partially suppressed by V 

addition [5], the activity of adsorbed CO may actually increase at the catalytic surface [6].  

There are also some interesting differences in the orders of reaction between RhLa and 

RhV.  Contrary to the case for RhLa, hydrogen reaction orders for all species on RhV 

were larger than those on Rh while that for CO was almost the same, showing higher 

dependency on hydrogen.  This result is consistent with the TPD results from our 

previous study, which showed reduced H2 desorption around the reaction temperature 

with the addition of V [7].  Several research groups have proposed that the addition of V 

boosts hydrogenation [19-22].  The seeming discrepancy between these results and the 

ones here may be due to one or more of the following reasons: (i) the conditions for 

catalyst preparation and pretreatment are different, and it is well know that these 

conditions strongly affect the interactions between V and Rh [23-25] leading to different 
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catalytic behavior; (ii) even if V boosts H2 desorption at higher temperature as claimed by 

some researchers [19], it is questionable whether these strongly bonded H atoms would 

be available for the reaction under normal reaction conditions.   

The activity of RhLaFeV did not change as much as RhLaV with H2 partial 

pressure in Fig. 4.1(a).  The sharper decrease in C2Hn selectivity with increasing H2 

partial pressure observed on Fe promoted catalysts in Fig. 4.1(c) may be due to an 

improved hydrogenation ability which leads to more methanol and methane.  Burch and 

Petch [26] have suggested that Fe may act as a reservoir for spillover H2 on the surface of 

Rh catalysts.  Also, since the presence of Fe increases the availability of hydrogen (or the 

efficiency with which hydrogen is utilized) and at the same time suppresses CO 

adsorption [7], the dependence on CO partial pressure for RhFe is different from RhLa or 

RhV as shown in Fig. 4.2(a) and in Table 4.2.  In addition, the enhanced hydrogen 

adsorption could interfere with CO adsorption, which might account for the hindering 

effect on EtOH selectivity with increasing H2 partial pressure for RhFe, as shown in Fig. 

4.1(e).   

 

4.4.2 Mechanistic study  

(i) Methane formation 

 The mechanism for the formation of methane will now be addressed, which may 

shed some light on how the different promoters affect CO hydrogenation.  However, even 

for methane formation, there are disagreements in the literature about whether C-O bond 

cleavage occurs in CO hydrogenation via direct dissociation (carbide models [8, 9, 11, 
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27-31]) or via a hydrogen-assisted process [10, 12, 32-43].  There has been an increasing 

focus more recently on the hydrogen-assisted mechanism because several authors have 

provided strong evidence supporting this mechanism, especially for Rh-based catalysts 

[10, 32-39, 41-43]. Based on isotopic analysis comparing hydrogen to deuterium, Mori et 

al. [41, 43] suggested that the rate-limiting step for CO hydrogenation is the dissociation 

of HnCO, where n=1, 2 or 3.  Based on BOC-MP calculations, Shustorovich and Bell [42]  

supported the hypothesis that the dissociation of HnCO is more favorable than the direct 

dissociation of CO on Pd and Pt.  Later, Bell and co-workers suggested that both CO and 

CO2 hydrogenation go through hydrogen assisted dissociation to form methane on Rh [10, 

39].   

By comparing various proposed mechanism with the power-law parameters in 

Table 4.2, most could be ruled out with the exception of that of Bell and co-workers.  

Because of its similarity that mechanism but with more detail regarding hydrogen-

assisted CO dissociation for gas methane formation, the model of Holmen and co-

workers [34] was chosen to describe the mechanism for CO hydrogenation under our 

reaction conditions, even though it was originally written for CO hydrogenation on Co.  

As shown in Fig. 4.3, the sequence begins with the adsorption of CO and dissociation of 

H2.  Then the adsorbed CO is hydrogenated to produce CHxO species, which 

subsequently dissociate to form adsorbed CH3 and O species.   

In order to determine the rate-limiting steps for the methane formation for our 

promoted Rh catalysts, a Langmuir-Hinshelwood approach was used with the mechanism 

given in Fig. 4.3 to derive rate expressions for different possible rate-limiting steps, 
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which can be compared with power-law parameters to verify the mechanism and to better 

understand the effects of the promoters on the reaction.  In Fig. 4.3, Step (7), (8) and (9) 

are believed to go to equilibrium too quickly to be considered as rate-limiting steps [34].  

Since adsorbed CO occupies most of the surface sites on Rh [44, 45] and CO conversion 

is very low (<5%), the intermediates to produce other products should not occupy a 

significant part of the active sites and therefore are left out of the adsorption term (the 

denominator) of the derived rate expressions.   

 

                                                                                                 (1)     2
1 H S

         (2) 

         (3) 

         (4) 

         (5) 

         (6) 

             (7) 

                 (8)

        (9) 

2
H S+ ←⎯→ −

CO S CO S+ ←⎯→ −

2 3CH O S H S CH O S S− + − ←⎯→ − +

3 3CH O S S CH S O S− + ←⎯→ − + −

O S H S HO S S− + − ←⎯→ − +

CO S H S CHO S S− + ←⎯→ − +

2CHO S H S CH O S S− + ←⎯→ − +

2 2HO S H S H O S− + − ←⎯→ +

3 4 2CH S H S CH S− + ←⎯→ +

−

−

−

Figure 4.3 Proposed mechanism for CH4 formation. 
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 The rate expressions derived assuming one of the steps from Steps (1)-(6) in Fig. 

4.3 as the rate-limiting step are shown in Table 4.4, where ki is the kinetic parameter.  Ki 

is an equilibrium constant for the ith step in Fig. 4.3.  The concentration of vacant active 

sites [S] is determined from a balance of the total concentration of the active sites [S0] 

which is assumed to be constant.  [S0] is equal to [S] plus the sum of all sites occupied by 

reactants and products.  In Table 4.4, the ranges of possible reaction orders x and y in an 

equivalent power law rate expression based on the derived mechanistic rate expression 

are given assuming that step to be rate-limiting.  Comparing the ranges of possible 

reaction orders with the experimental power-law results for CH4 formation in Table 4.2, 

Step 1, 2 or 3 as the rate limiting step cannot fit the experimental data because all the 

apparent orders for H2 for the different catalysts were larger than 0.5.  For Rh and RhLa, 

the apparent order for H2 partial pressure was approximately equal to 1 (Table 2).  It is 

generally agreed that the H2 desorption activation energy is relatively low and most of the 

active sites are occupied by CO on Rh and RhLa [9, 27, 33-35].  Thus, the H2 terms in the 

denominator are reported to be statistically insignificant and can be neglected in the 

mechanistic rate expression.  As a result, Step (4) (resulting H2 exponent ~1) is more 

likely to be the rate limiting step than either Step (5) or (6) (resulting H2 exponent ~1.5).   

For the Fe singly promoted Rh/SiO2 catalyst, it is to be expected that x (0.7 as 

shown in Table 4.2) is a little bit different from the La promoted or nonpromoted 

catalysts because the concentration of hydrogen on the surface should no longer be 

ignored since the addition of Fe leads to a significant suppression of CO adsorption, 

although CO adsorption still occupies most of the active sites on surface as a result of 
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weakening H2 adsorption as determined by Egawa et al. using HREELS and TPD 

methods [46].  Since Steps (1), (2), and (3) have already been ruled out for all the 

catalysts, the rate-limiting step should be Step (4), (5) or (6).  Also, it is not practical to 

compare these three possibilities as for RhLa or Rh because H2 terms in the denominator 

can no longer be ignored compared to CO terms. 

The H2 power law parameters for CH4 formation are much larger than 1.0 for 

RhV (1.35) and RhLaV (1.37), thus, the rate limiting step for these two catalysts may be 

either Step (5) or (6).  This is suggested by other data since the V addition hinders CO 

adsorption but increases desorption/reactivity of adsorbed CO species [6], which, thus, 

may result in a change in the rate-limiting step.  However, for RhLaFeV, step 4 could 

also be the rate limiting step even though x=1.1 and is only slightly >1.  Thus, x=1.1 can 

be considered to be within experimental and Langmuir-Hinshelwood error of x=1.0. 

It is difficult to distinguish different possible rate expressions or figure out the 

values of the equilibrium constants by our present work due to the complexity of the 

mechanism and the assumptions required using the Langmuir-Hinshelwood approach. 

Nevertheless, a sound conclusion can be drawn here is that the addition of different 

promoters resulted in different rate limiting steps, which can be ascribed to the modified 

CO/H2 adsorption, reactivity of adsorbed species on Rh/SiO2 promoted by different 

promoters.  

 

 



 

Table 4.4: Rate-limiting step assumed and the resulted rate expression in various possibilities for CH4 formation 

Possible rate-limiting 
step for CH4 from Fig. 3 Rate Expressions x a y a 

1 [ ]
2

1/ 2
1 0

21
H

CO

k S P
K P⎡ ⎤+⎣ ⎦

 0.5 -1<y<0

2 
[ ]

2

2 0
1/ 2

11 ( )
CO

H

k S P
K P⎡ ⎤+⎣ ⎦

 -0.5<x<0 1 

3 [ ]
2

2

2 1/ 2
3 2 1 0

21/ 2
1 21 ( )

H CO

H CO

k K K S P P

K P K P⎡ ⎤+ +⎣ ⎦
 -0.5<x< 0.5 -1<y<1

4 [ ]
2

2 2

22
4 3 2 1 0

21/ 2 1/ 2
1 2 3 2 11 ( )

H CO

H CO H CO

k K K K S P P

K P K P K K K P P⎡ ⎤+ + +⎣ ⎦
 0<x<1 -1<y<1

5 [ ]
2

2 2 2

23 3/ 2
5 4 3 2 1 0

21/ 2 1/ 2 2
1 2 3 2 1 4 3 2 11 ( )

H CO

H CO H CO H CO

k K K K K S P P

K P K P K K K P P K K K K P P⎡ ⎤+ + + +⎣ ⎦
0.5<x<1.5 -1<y<1

6 
[ ]

2

2 2 2

2

23 3/ 2
6 5 4 3 2 1 0

21/ 2 1/ 2 2
1 2 3 2 1 4 3 2 1

3 3/ 2
5 4 3 2 1

1 ( )
H CO

H CO H CO H CO

H CO

k K K K K K S P P

K P K P K K K P P K K K K P P

K K K K K P P

⎡ ⎤+ + + + +
⎢ ⎥
⎢ ⎥⎣ ⎦

-1.5<x<1.5 -1<y<1

 
 

a x, y would be the orders of reaction of H2 and CO in the equivalent power-law rate expression 
2

/aE RT x y
H COr Ae P P−=  
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Table 4.5: Rate-limiting step assumed and the resulted rate expression in various possibilities for EtOH formation 

Possible rate‐limiting step for 
EtOH from Fig. 4 

Rate Expression  x a y a

9` 
[ ]

2 2

2 2

2 2 2

22 2 2 7 1 7 / 2 2
10 9 8 6 5 4 3 2 1 0

21/ 2 1/ 2 2
1 2 3 2 1 4 3 2 1

3 3/ 2 5 5/ 2
5 4 3 2 1 9 8 6 5 4 3 2 1

1 ( )
H O H CO

H CO H CO H CO

H CO H CO H O

k K K K K K K K K S P P P

K P K P K K K P P K K K K P P

K K K K K P P K K K K K K K K P P P

−

⎡ ⎤+ + + +
⎢ ⎥

+⎢ ⎥⎣ ⎦

2
+ ‐1.5<x<3.5  0<y<2 

10` 

[ ]

[ ]

2 2

2 2

2 2 2

2 2

22 2 2 8 1 4 2
11 10 9 8 6 5 4 3 2 1 0

1/ 2 1/ 2 2
1 2 3 2 1 4 3 2 1

3 3/ 2 5 5 / 2
5 4 3 2 1 9 8 6 5 4 3 2 1

22 2 2 7 1 7 / 2 2
10 9 8 6 5 4 3 2 1 0

1 ( )

H O H CO

H CO H CO H CO

H CO H CO H O

H O H CO

k K K K K K K K K K S P P P

K P K P K K K P P K K K K P P

K K K K K P P K K K K K K K K P P P

K K K K K K K K K S P P P

−

−

⎡ ⎤+ + + + +
⎢ ⎥
⎢ ⎥+ +
⎢ ⎥
⎢ ⎥⎣ ⎦

2

2

 ‐3<x<4 ‐2<y< 2 

a x, y would be the orders of reaction of H2 and CO in the equivalent power‐law rate expression 
2

/aE RT x y
H COr Ae P P−=  

  



(ii) Ethanol formation 

     Since ethanol synthesis is one of the key issues of CO hydrogenation, extensive efforts 

have been focused on the mechanism of ethanol formation.  However, since the insertion 

step may occur through different reaction routes-insertion of CHxO into a metal-CHx 

bond (x=0, 1, 2 or 3), there are few detailed results in the literature regarding the ethanol 

synthesis mechanism on Rh.  A scheme, however, is proposed in Fig. 4.4 based on 

methane formation mechanism.  Moreover, this mechanism of ethanol formation is 

similar to the mechanism Holmen and co-workers [34] proposed for Co catalysts by 

comparing the activation energies for possible insertion steps by microkinetic modeling.   

                                                                                                   

        

        

          

          

     

              

               

   

 

Figure 4.4  Proposed mechanism for EtOH formation. 

2
1 H S
2

H S+ ←⎯→ −

CO S CO S⎯→ −

2 3CH O S H S CH O S S− + − ←⎯→ − +

3 3CH O S S CH S O S− + ←⎯→ − + −

O S H S HO S S− + − ←⎯→ − +

CO S H S CHO S S←⎯→ − +

2CHO S H S CH O S S←⎯→ − +

2 2HO S H S H O S− + − ←⎯→ +

3 2 3 2CH S CH O S CH CH O S S− + − ←⎯→ − +

3 2 3 2 2CH CH O S H S CH CH OH S− + − ←⎯→ +

(1) 

(2) + ←

− + −

− + −

(3) 

(4) 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 
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In Table 4.2, it can be seen that the even though the reaction order for H2 partial 

pressure did not change much between methane and ethanol formation, the reaction order 

for CO partial pressure changed significantly.  Thus, it can be concluded that there are 

different rate-limiting steps for ethanol and methane formation.  Since (1) the rate 

expressions for rate limiting step of steps (1)-(6) were already evaluated in determining 

the rate limiting step for methane formation and (2) since the rate limiting step for 

ethanol and methane appear to be different, it is unlikely that adsorption of CO or H2 

(step (1) and (2)) or the synthesis of CH3 species (step (3) – (6)) provide the rate limiting 

step for ethanol.  Thus, most likely, the rate-limiting step for ethanol formation is step (9`) 

or (10`); steps (7) and (8) being earlier ruled out as for fast.  Table 4.5 shows these two 

possibilities and the ranges of apparent reaction orders x and y based on the derived 

Langmuir-Hinshelwood mechanistic rate expressions.  Since most of the reaction orders 

for CO partial pressure are negative in Table 4.2, the rate limiting step in ethanol 

formation mechanism should be Step (10`) for all the catalysts except perhaps RhFe.  

However, it is difficult to distinguish between Step (9`) and (10`) for RhFe because the 

reaction order for CO partial pressure on RhFe is higher than others (around 0.30). 

 

4.5 Conclusions 

 

A series of Rh-based catalysts with single or combined promoters among La, V 

and Fe were prepared by sequential or co-impregnation method.  A kinetics study of CO 
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hydrogenation on these catalysts was conducted to understand the mechanism and the 

role of promoters.    

All the catalysts except RhFe and RhLaFeV showed the same trends in CO 

conversion and selectivities to different products with increasing CO or H2 partial 

pressure.  The influence of partial pressure to activity is more obvious for RhLaV than 

other catalysts, which appears to due to a synergistic promoting effect of La and V.  For 

the Fe promoted catalysts, the CO conversion rate increases with CO partial pressure, 

which may because Fe serves like a reservoir to hydrogen on the catalyst surface.     

The parameters obtained from power law were used to fit the rate expressions 

derived based on different limiting steps to understand the reaction mechanism and the 

effects of different promoters.  The fact that coefficient x is positive and the coefficient y 

is negative indicates promotion by hydrogen and inhibition by carbon monoxide.  By 

comparing the power law parameters with the Langmuir-Hinshelwood rate expression, 

is more likely to be the rate limiting step for the 

methane formation on Rh and RhLa.  The rate limiting step for the methane formation on 

RhV and RhLaV is 

2CHO S H S CH O S− + − ←⎯→ +

2 3CH O S H S CH O S S− + − ←⎯→ − +  or 

.  For ethanol synthesis, 

 is the possible rate limiting step for all the 

catalysts except RhFe.  However, it is unclear that whether 

 or  is 

the rate limiting step for ethanol synthesis on RhFe.  

3 3CH O S S CH S O S− + ←⎯→ − + −

2 5 2 5 2C H O S H S C H OH S− + − ←⎯→ +

3 2 2 5CH S CH O S C H O S S− + − ←⎯→ − + 2 5 2 5 2C H O S H S C H OH S− + − ←⎯→ +
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CHAPTER FIVE 

THE EFFECT OF STRONG METAL-OXIDE INTERACTIONS IN PROMOTED 
RH/SIO2 ON CO HYDROGENATION: ANALYSIS AT THE SITE LEVEL USING 

SSITKA 

 

5.1 Introduction 

 

In order to decrease the demand for crude oil and lessen the environmental impact, 

Rh-based catalysts have been extensively studied in the CO hydrogenation reaction 

because their high selectivity towards ethanol [1-6].  There have been many discussions 

on the influences of supports and promoters for the synthesis of ethanol and other 

alcohols from CO hydrogenation.  However, in recent literature, silica supports are more 

favorable than others for ethanol production by increasing Rh dispersion and the 

concentration of Rh+ on catalyst surface, which might be helpful for oxygenate formation 

[7, 8].  V is an important promoter for ethanol production on Rh/SiO2 [9-15].  In our 

previous studies [16-18], it was found that the addition of V increased activity three times 

more than non promoted Rh/SiO2, and also suppressed methane formation significantly 

[18].  Many factors including both reaction and pretreatment conditions have been shown 

to influence the activity and selectivities of V promoted Rh/SiO2.  There is little 

agreement in discussions about how V modifies catalyst behavior of Rh/SiO2. While Kip 

and co-workers suggested that V enhances reactivity and selectivity towards ethanol by 

enhancing CO dissociation [15], other researchers have proposed that the function of V is 

to boost hydrogenation [13, 14, 19, 20].  It was also found that V suppressed CO 
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adsorption [16] and also modified the H2-TPD characteristics of Rh/SiO2 [18].  It was 

suggested in our earlier IR study that the higher catalytic activity of the V singly-

promoted Rh/SiO2 catalyst may be ascribed to an increased desorption rate/reactivity of 

the adsorbed CO species since the addition of V appeared to reduce the total number of 

reaction sites [16].   

It was found that the activity and selectivity of the catalysts with group 8 metals 

supported on transition metal oxides, is strongly dependent on the pretreatment 

conditions [21-23].  In 1978, Tauster and coworkers first proposed that strong metal-

support interactions were a reason for this behavior [21, 23].  After that, there are 

numerous studies regarding the influence of the strong metal-oxide interaction (SMOI) 

effect [8, 24-46]. Usually, catalytic activities and CO or H2 adsorption are more or less 

suppressed by SMOI effect.  However, the interpretations regarding the reasons for the 

SMOI effect are much less agreeable.  Several theories have been proposed to explain 

SMOI including formation of alloys [23, 25, 27, 34, 40], the electronic influence of the 

promoter or support oxide [8, 24, 28, 41] and a covering of the metal particles by the 

promoter or support oxide after reduction at high temperature [13, 15, 30, 33, 42-45, 47, 

48].   

SMOI effect has been found on Rh/SiO2 promoted by group 8 transition metal 

oxides since the end of 1980s but less widely studied compared to other transition metals 

[13, 14, 49-53].  For V promoted Rh/SiO2, Kip et al [15, 54] found that Rh helped V 

reduction while V hampered Rh reduction by TPR experiments, which is consistent with 

our previous results [18], indicating an intimate contact between Rh and V.  With FTIR 
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spectroscopy, Beutel et al  [13] also found SMOI effect on V promoted Rh/SiO2.  

Moreover, both high temperature reduction and high temperature calcination were proved 

to induce SMOI effects leading to a partial coverage of the Rh metal surface by V oxide.  

By studying CO2 reforming of methane over V promoted Rh/SiO2, Sigl et al. [55] 

suggested a formation of a partial VOx overlayer on Rh surface when calcination 

temperature was higher than 500 °C.  It was proposed that new sites were created at Rh-

VOx interfacial region that are considered to be relatively active for CO2 reforming.  

Steady-state isotopic transient kinetic analysis (SSITKA) is a powerful tool to 

analyze surface reaction. It may be the most accurate kinetic technique for characterizing 

surface reaction parameters under reaction conditions [56].  However, there is few 

detailed SSITKA study on V promoted Rh-based catalysts for CO hydrogenation.  It was 

reported by Koerts and Santen [20] that vanadium promotion decreased the desorption 

rate of ethanol, enhanced the hydrogenation rate to ethanol, and increased the surface 

concentration of oxygenated intermediates in isotopic labeling experiments.  However, a 

long delay in ethanol production was also mentioned in their paper, which is contradict to 

what Burch and Petch [57] found in their transient experiments for non-promoted and Fe, 

Li, Mn-promoted Rh/SiO2 by switching CO/H2 to hydrogen or helium.  

The focus of this study is to investigate the modification of Rh/SiO2 by V on the 

active sites for CO hydrogenation for a better understanding of SMOI of Rh and VOx.  In 

this work, non-promoted and V promoted Rh/SiO2 were prepared by the impregnation 

method and their catalytic activities were tested for CO hydrogenation at 230 °C and 1.8 

atm, after being reduced at different temperatures.  The SMOI effects on the V promoted 
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catalysts were further examined by H2 chemisorption and SSITKA.  Even though H2 

chemisorption was carried out at room temperature and SSITKA was under methanation 

conditions to simplify the mass spectrometry (MS) analysis, it is valuable to shed some 

light on the change of the surface status by SMOI effects.   

 

5.2 Experimental 

 

5.2.1 Catalyst preparation 

Since the catalysts used in this study were the same as those used in our studies 

reported earlier, a detailed description of catalyst preparation can be referred to our 

earlier paper [16].  As support, silica gel (99.95%, Alfa Aesar) was used, obtained by first 

grounding and sieving to 30-50 mesh, washing with boiled distilled water for 3 times, and 

subsequent calcination in air at 500oC for 4 h.  This resulted in SiO2 with a high surface 

area (BET surface area after pretreatment was 250±2 m2/g).  The catalysts were calcined 

at 500oC to remove nitrogen.  It was reported by Beutel et al. that the SMOI effects could 

be induced when Tcal is higher than 973K [13].  Thus, a 500oC calcination was also 

designed to eliminate the influence of calcination temperature.  Rh(NO3)3 hydrate (Rh 

~36 wt%, Fluka) and NH4VO3 (99.5%, Alfa Aesar) were used as purchased.  Catalysts 

were prepared by incipient wetting this support with an aqueous solution of Rh(NO3)3 

hydrate or NH4VO3 (2 mL solution/1 g silica gel), subsequently drying at 90oC for 4 h 

and then at 120oC overnight.  To remove nitrogenous residues from the precursors, the 

catalysts were calcined in air at 500oC for 4 h.  Rh weight content was always around 
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1.5% and V was 1.5% if added.  The notation of Rh/SiO2 will be used for silica supported 

Rh catalyst, while Rh/V/SiO2 will represent silica supported Rh catalyst promoted with V 

by sequential impregnation.  

 

5.2.2 H2 chemisorption  

The number of exposed rhodium surface atoms was determined by H2 

chemisorption using a Micromeritics ASAP 2010C. Catalyst samples of approximately 

0.2 g were first evacuated at 110oC for 30 min before being reduced at certain 

temperature in a hydrogen flow for 30 minutes, and then evacuated at 10-6 mm Hg and 

reduction temperature for 120 min. After cooling under vacuum to 35oC, the adsorption 

isotherm was recorded. The amount of chemisorbed H2 was obtained by extrapolating the 

total adsorption isotherm to zero pressure, and the metal dispersion was calculated 

subsequently assuming H/Rhs=1. 

 

5.2.3 Reaction  

CO hydrogenation was carried out in a fixed-bed differential reactor (316 

stainless steel) with length ~300 mm and internal diameter ~5 mm.  0.3g catalyst and 3g 

inert were loaded between quartz wool plugs and placed in the middle of the reactor with 

a thermocouple close to the catalyst bed.  In this work, molecular sieve traps (Alltech) 

were used to remove H2O and CO, and a CO purifier (Swagelok) was applied to remove 

CO2 and carbonyls.  Prior to reaction, the catalyst was reduced in-situ with hydrogen 

(flow rate = 30 mL/min) at a specific reduction temperature for 1 h.  According to our 
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study, the activity of Rh/SiO2 reduced at 700°C dropped significantly compared to that 

reduced at 600°C, which probably indicated a pronouncing sintering.  Thus, the effect of 

reduction temperature was studied only in the range of 300-600°C of in this work.  Also, 

a same temperature ramping rate of 5°C/min was used for both of the catalysts.  After 

reduction, the catalyst was then cooled down to reaction temperature and reaction started 

as gas flow was switched to H2/CO (H2 flow rate = 30 mL/min, CO flow rate = 15 

mL/min) for initial reaction study.  Brooks 5840E series mass flow controllers were used 

to control flow rates.  The activation energies of CO hydrogenation between 210 and 

280oC from Arrhenius plots was found out to be around 25 kcal/mol, which indicated that 

the reaction was under kinetic control.  

The reaction products, including C1-C7 hydrocarbons and oxygenates, were 

separated chromatographically using a Restek RT-QPLOT column (30m, 0.53mm ID) 

and detected by an FID (flame ionization detector) in a gas chromatograph (Varian 3800 

series).  CO and other inorganic gases were analyzed by a TCD (thermal conductivity 

detector) after separation with a Restek HayeSep® Q column. The analysis details can be 

found in our previous paper [16].  The selectivity of a particular product was calculated 

as Si=niCi /∑ niCi, where ni and Ci are the carbon number and molar concentration of the 

ith product, respectively.  The activity is expressed as A=µmol CO/gcat.*s, where 

numerator denotes the amount of CO converted into products. 

 

5.2.4 SSITKA  
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Isotopic analysis was carried out in a steady state isotopic transient kinetic 

analysis (SSITKA) system as described elsewhere [58].  Figure 5.1 shows the reaction 

system setup for SSITKA.  Isotopic transient measurements were carried out by 

switching from two feed streams with same flow rate but containing different isotopic 

labeling of reactant species (12CO (5%Ar) vs 13CO) after reactions reached steady state.  

The effluent gas was analyzed on-line by GC as described for the standard reaction and a 

Pfeiffer mass spectrometer (MS) with a high speed acquisition system. Back-pressure 

regulators on both reactant streams were used to maintain the same pressure on both feed 

stream, thus, switching of the feed streams could result in minimum disturbing of 

reaction conditions.  The gas lines used in the system were designed to be as short as 

possible to minimize gas holdup in the system.  Moreover, the 5% Ar in 12CO flow is 

used as an inert tracer to determine the holdup time.  The reaction conditions were the 

same as the standard reaction except the temperature and flow rates.  For SSITKA, 

reaction temperature was switched to 280 oC and the H2 flow rate was 20 times as high as 

CO flow rate (total flow rate = 60 mL/min, H2: He: CO=20: 19: 1) to maximize methane 

production.  
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Figure 5.1 The reaction system set up for SSITKA at methanation condition.  

 

5.3 Results 

 

5.3.1 H2 Chemisorption  
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Table 5.1: Determination of accessible surface Rh dispersion and H2 chemisorbed a. 

H2-chemisorbed (µmol/gcat.) Metal Dispersion (%) 
Catalyst Reduction Temperature 

(°C) Total Irrev. Total Irrev. 

600 31.1 15.0 48.1 23.1 Rh/SiO2
300 31.7 13.2 49.0 20.4 
600 0.25 - 0.39 - 

500 0.35 - 0.54 - 

400 0.57 0.17 0.88 0.26 
Rh/V/SiO2

300 1.18 0.19 1.83 0.29 
a Catalyst: 0.2 g.  Metal dispersion is based on total H2 chemisorbed and an assumption of 
H/Rhs=1.  Experimental error: ±10%. 

 

Table 5.1 shows the influence of reduction temperature on H2 chemisorption at 35 

°C.  The amounts of total H2 chemisorbed and irreversible H2 chemisorbed are both 

provided.  The metal dispersion was calculated by assuming an adsorbed H atom to 

surface Rh atom stoichiometry of 1:1.  It is widely accepted that the concentration of 

accessible surface Rh atoms is determined more accurate by H2 adsorption than CO 

adsorption, because the stoichiometry of CO chemisorption is uncertain-CO can adsorb 

simultaneously as a gem-dicarbonyl, a linear carbonyl and a bridge carbonyl [5, 17].  

However, even this H2 chemisorption technique is not without its difficulties and 

uncertainties.  The chemisorption cannot present the reaction condition since it was taken 

at room temperature to avoid the spillover of H2 to support at high temperature.  But still, 

it can shed some light on how SMOI effects influence the catalyst behaviors.  As can be 

seen in Table 5.1, the reduction temperature did not influence the H2 chemisorption 

results on Rh/SiO2, indicating no sintering effect under reduction temperature 300-600 °C.  
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For Rh/V/SiO2, , the amount of H2 chemisorption was decreased significantly by the 

addition of V, which is similar to CO chemisorption [16].  It is probably due to a covering 

of Rh particle by V on catalyst surface.  It is also obvious that the amount of H2 

adsorption increased with decreasing reduction temperature, suggesting that the 

interaction of VOx with Rh become more significant with higher reduction temperature.  

It is probably because a partial VOx overlayer on the Rh surface was formed by SMOI 

effects [55].  At higher reduction temperature, this overlayer results in lower 

chemisorption by reducing the amount of accessible Rh atoms.  However, since the 

catalysts cannot be seen through TEM because of the relatively low loading of Rh, there 

is also possibility that the growth of Rh particle size with increasing reduction 

temperature may also result in the decrease of H2 chemisorption.  The reason to rule out 

this possibility will be discussed in the following SSITKA section.    

 

5.3.2 Reaction study 

Table 5.2 shows the catalytic activities and selectivities of Rh/SiO2 and 

Rh/V/SiO2 reduced at different temperatures.  For Rh/SiO2, when reduction temperature 

increased from 300 to 600 °C, activities were similar within experimental error, which 

excludes the possibility of sintering an the reduction temperature increased.  With 

respects to the selectivities, molar ratios of olefin to paraffin for C2 or C3 hydrocarbons 

were also almost the same.  This suggests reduction temperature did not influence the 

hydrogenation ability of Rh/SiO2.  The oxygenate selectivities were essentially 

independent of the reduction temperature.  Interestingly, there was less C2+ hydrocarbon 
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production while more methane produced as Rh/SiO2 reduced at higher reduction 

temperature.  In recent years, the interaction between Rh and SiO2 was also reported to 

influence the catalyst activity [59, 60].  Hayashi et al. [60] proposed that this interaction 

caused the existence of Rhδ+ and thus, modified the selectivities.  In our work, the SMOI 

effects between Rh and SiO2 probably changed the properties of the active sites with 

reduction temperature increasing from 300 to 600°C.  As a result, activity was consistent 

but C2+ hydrocarbon was more likely to form than methane when reduced at higher 

temperature.  However, the effect of reduction temperature on V promoted catalyst for 

CO hydrogenation is significantly different from that on Rh/SiO2.  The activity decreased 

dramatically with the increasing reduction temperature.  The SMOI effects to product 

distribution is also changed in V promoted catalyst which exhibits a tendency of 

decreasing methane and constant C2+ hydrocarbons with higher reduction temperature.  

The production of methanol increased while the selectivities of all the other oxygenates 

were not affected much by increasing reduction temperature.  It is possible that methane 

and methanol are formed by the same kind of intermediates on the surface, thus, the 

increase of methanol formation is in coincidence with a decrease of methane production.  

In our previous paper [61], mechanism of CO hydrogenation on Rh-based catalyst were 

discussed based on literature review and kinetic study.  It was believed that on Rh-based 

catalysts, methane was formed by hydrogen first interact with adsorbed CO to form 

CHxO species, and then split to CHx species to be further hydrogenated to methane.  

SMOI effects between V and Rh may hinder the ability of active sites to split CHxO 

species to CHx species, as a result, more CHxO species form methanol by direct 
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hydrogenation.  SMOI effects did not correlate with hydrogenation ability of Rh/V/SiO2 

for other C2+ hydrocarbon because the molar ratios of olefin to paraffin for C2 or C3 were 

almost constant with different reduction temperature.  Our findings that activity was 

suppressed by SMOI effects are in agreement with those of Hayek group [26]. They 

investigated the catalytic activity of Rh/VOx and observed that activity decreased steadily 

when reduction temperature increased from 200 to 600 °C. It may be due to V covering 

free metal surface area, which forms a partial VOx overlayer on the Rh surface and as a 

result decreases the amount of active sites [14, 55].  Also, it could in part due to the 

formation of stable bulk alloy phases [26].  Rupprechter et al. suggested that in the most 

active state the structure of the Rh particles should be highly disordered, and with higher 

temperature reduction the particles were more likely to exhibit rounded profiles [62]. 
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Table 5.2: Catalytic activities of Rh/SiO2 and Rh/V/SiO2 reduced at different temperatures a

Selectivity (%) b

Catalyst 
Reduction 

Temperature 
(°C) 

SS Rate * 
(µmol/gcat/s

) CH4 C2+HC c MeOH Acetaldehyde EtOH
Other C2+ 

oxy d
C2=/C2 e C3=/C3 e

300         0.03 34.3 46.4 - 4.1 15.2 2.0 2.6

400         0.03 35.2 43.7 - 3.3 17.9 - 1.8 2.7

500        0.03 48.1 28.7 1.2 6.5 15.6 - 1.9 2.6
Rh(1.5)/SiO2

600         0.04 55.4 19.6 - 4.9 20.1 - 1.8 2.5

300          0.63 20.0 58.0 2.6 3.9 14.2 1.3 2.6 11.7

400          0.45 18.2 56.9 2.9 4.0 16.5 1.4 3.1 12.1

500          0.10 12.4 60.5 6.5 3.1 15.8 1.7 3.2 10.1
Rh(1.5)/V(1.5)/SiO2

600          0.05 11.4 59.5 11.7 2.1 15.4 - 3.3 8.4

* Steady state. 
a Catalyst: 0.3 g, Inert : α-alumina 3 g; reaction at 230 °C; P = 1.8 atm, flow rate = 45mL/min (H2/CO =2), data taken at 15 h 
after steady state reached. Experimental error: ±10%. 
b Molar selectivity = niCi / ∑niCi. 
c Hydrocarbons with 2 or more carbons. 
d Other oxygenates with 2 or more carbons. 
e Molar ratio of Cn olefin / Cn paraffin. 
 



5.3.3 SSITKA Study  

Table 5.3: The effect of reduction temperature on surface kinetic parameters for 
Rh/V/SiO2  a

Reduction 
Temperature (°C) 

Rate 
(µmol/gcat

/s) 

CH4 
selectivi
ty (%) 

τCO (s)
TOFCO

(s-1) b
NCO 

(µmol/gcat
) c

τCH4 
(s) 

TOFCH

4 (s-1) b
NCH4 

(µmol/gcat
) c

300 0.048 90.2  4.98 0.20 9.04 5.77  0.17  0.25  

400 0.039 93.6 3.90 0.26 7.11 4.50 0.22 0.17 

500 0.029 84.8 2.42 0.41 4.42 2.69 0.37 0.07 

600 0.022 79.1 0.62 1.61 1.13 0.63 1.59 0.01 

a Catalyst: 0.3 g, Inert : α-alumina 3 g; reaction at 280 °C; P = 1.8 atm, flow rate = 60 
mL/min (H2: He: CO=20: 19: 1). Experimental error: ±10%. 
b TOFi = 1/ τi. 
c Ni =Rate * Selectivityi % * τi. 
 

The SSITKA experiments show that there is a significant difference in overall 

activity and active surface intermediates (N) with different reduction temperature for 

Rh/V/SiO2.  The results are summarized in Table 5.3.  The experiments have been carried 

out under methanation e.g. higher temperature than those of standard reaction conditions 

and a large excess of H2. The purpose of the increase in the temperature and H2 partial 

pressure was to obtain CH4 as the primary product in order to simplify the mass 

spectrometric (MS) analysis.  In our study on Rh/V/SiO2, the selectivity to methane 

varies between 80% and 95%.  Even though the SSITKA results were carried out at 

methanation conditions, it is a valuable tool to understand how SMOI effects modify 

catalyst surface and provide a theory to explain the reason for SMOI effects.  An example 

of a normalized transient of 12CH4 comparing to Ar obtained by switching from 12CO to 
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13CO is given in Figure 5.2.  The difference in area under normalized transit curves of a 

particular species and the inert tracer (Ar) gives the average surface residence time (τi).  

Turnover frequency (TOF) can be related to average surface residence time by TOF = 1/τi.  

The concentration of active surface intermediates (Ni) can be calculated by Ni = Ratei * τi 

[56]. 
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Figure 5.2 Typical normalized transit response of 12 CH4 and Ar for Rh/V/SiO2. 

 

Table 5.3 shows that same as reaction study, even in methanation reaction 

condition, the activity decreased when reduction temperature increased.  The higher 
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reduction temperature also leaded to shorter residence time and higher turnover 

frequency.  It is obvious that the linear decrease in activity was accompanied by a similar 

decrease in the surface concentration of active intermediates leads to methane (NCH4 in 

Table 5.3).  The surface concentration of reversibly adsorbed CO (NCO) (i.e., CO that 

adsorbed and desorbed on surface) in Table 5.3 also decreased with reduction 

temperature, which suggests that the significantly declines in activity was not due to 

carbon deposition on the active sites.  Consistent with chemisorption results, it proves 

that SMOI effects can reduce the concentration of active sites by modifying catalyst 

surface.  In our previous IR paper [17], it was reported that different from other 

promoters, the addition of V suppressed CO adsorption, but significantly enhanced the 

mobility and/or reactivity of these adsorbed CO species judging from the CO(l) depleting 

rate in a He or H2/He flow on the V singly-promoted catalyst.  This is probably due to the 

SMOI effects on the catalyst surface.  The SSITKA results in Table 5.2 also suggest that, 

with the increasing of SMOI effects at higher reduction temperature, both residence time 

and concentration of intermediates decrease.  The increase in turn over frequencies with 

increasing reduction temperature indicates that properties of active sites changed, instead 

of just simple particle size growing due to sintering, which explained that the real reason 

for our chemisorption results.  Instead, there may be new sites created at the interfacial 

region of Rh and VOx by SMOI effects, and the activity of these sites for CO 

hydrogenation would be relatively high.   

 

5.4 Conclusions 

96 
 



 

 This study explored SMOI effects induced by high temperature reduction for 

Rh/V/SiO2.  Compared to Rh/SiO2, the SMOI effects showed significant influence to CO 

hydrogenation reaction on Rh/V/SiO2.  By SSITKA, the surface kinetic parameters were 

determined to understand the surface modification of catalyst surface by SMOI effects. 

It was suggested that the activity of Rh/SiO2 did not change when reduction 

temperature increased from 300 to 600 °C, indicating there is no sintering effect.  H2 

chemisorption indicated that H2 adsorption at room temperature decreased with 

increasing reduction temperature for Rh/V/SiO2, suggesting that the concentration of 

active sites on the catalyst surface was reduced.  In reaction study, most of the product 

distribution on Rh/SiO2 was held constant with rising reduction temperature except the 

hydrocarbon chain growth was somewhat improved.  For Rh/V/SiO2, the activity 

decreased when reduction temperature increased because of SMOI effects. Also, more 

CHx or CHxO (x = 1, 2 or 3) species on the surface were oxygenated to methanol instead 

of going through hydrogenation process to produce methane.  However, C2+ oxygenate 

and C2+ hydrocarbon selectivities were not influenced by SMOI effects.  As indicated by 

SSITKA, the residence time were decreased by SMOI effects which were induced by 

high reduction temperature.  By determining the concentration of surface intermediates 

for Rh/V/SiO2 with different reduction temperature pretreatment with SSITKA, it was 

found out that SMOI effects decreased the concentration of active intermediates, which 

correlate directly with activity.  
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CHAPTER SIX 

RELATIONSHIPS BETWEEN OXYGENATE AND HYDROCARBON FORMATION 
DURING CO HYDROGENATION ON Rh/SiO2: USE OF MULTIPRODUCT SSITKA 

 

6.1 Introduction 

 

Ethanol (EtOH) synthesized from syngas derived from natural gas [1], coal [2] or 

biomass [3] can be used as an additive to gasoline or as an easily transportable and 

storable source of hydrogen. Compared to gasoline alone, the use of ethanol with 

gasoline offers several advantages such less pollution and more efficient combustion due 

to its chemical properties.  The incentive for incorporating ethanol in liquid fuels also lies 

in the general acceptance of new gasoline regulations with more restrictions.  

Accordingly, much recent research and development in syngas conversion has dealt with 

ethanol synthesis.  

Rh-based catalysts have been found to be the most efficient catalysts for the 

synthesis of C2+ oxygenates due to the unique carbon monoxide adsorption behavior on 

Rh [4-7].  Understanding the mechanism of CO hydrogenation is essential for better 

catalyst design that could lead to commercialization of a selective ethanol synthesis 

process.  Even though Fischer-Tropsch synthesis (FTS) has been widely studied since 

1923 [8], there is still controversy in the literature about the mechanism for CO 

hydrogenation due to its complexity.  For instance, one controversy is whether C-O bond 
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cleavage occurs during CO hydrogenation via direct dissociation (carbide mechanism) [9-

15] or via a hydrogen-assisted process [16-32].  Recently, Choi and Liu [32] focused on 

EtOH synthesis from CO and H2 on Rh (111) using density functional theory (DFT) and 

found that the optimal reaction pathway for the formation of methanol (MeOH) goes 

through H insertion into adsorbed –CO species, while the formation of CH4 favors H 

assisted CO dissociation through the bond rupture of -CH3O species into –CH3 and –O.  

However, to the contrary, in another recent work, Mei et al. [33] still preferred the 

carbide model to explain using a DFT approach the mechanism for CO hydrogenation on 

a quasi-(111) surface facet on a 1 nm in diameter Rh50 cluster.  

Steady-state isotopic transient kinetic analysis (SSITKA) is a powerful tool to 

evaluate concentration of intermediates, site activity, site heterogeneity and surface 

reaction mechanism [34].  This technique was developed first by Biloen [35], Bennett 

[36], and Happel [37] in late 1970s and early 1980s.  SSITKA involves a switch from an 

unlabeled reactant to an isotopically labeled one at steady state of the reaction, the 

detection of the resulting isotopic transients in the products by mass spectroscopy (MS), 

and an analysis of these transients to determine surface reaction kinetic parameters.  

Because of its wide applicability and relatively low cost, SSITKA has now been used by 

a significant number of researchers.  For CO hydrogenation, SSITKA has been employed 

to better probe the surface reaction parameters on various catalysts including are based on 

Fe [38-42], Pd [43-46], Co [40, 41, 47-49], Ni [50, 51], Ru [52-54] and Rh [55-63].  

However, for Rh-based catalysts, there are few detailed studies reported on different 

product formation at the site level.   
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The objective of this study was to better understand the mechanism of formation 

of different products on Rh/SiO2 at the site level by the application of SSITKA.  For this 

study, 1.5 wt% Rh/SiO2 was prepared and used as the catalyst for two reasons: 

(i) Low amounts of Rh (i.e., 1.5 wt%) supported on SiO2 produce highly dispersed 

Rh that is representative of the Rh clusters used in theoretical modeling work; 

(ii) Rh-based catalysts supported on SiO2 have shown reasonable selectivities for both 

hydrocarbons and oxygenates during CO hydrogenation [64-66].     

 

6.2 Experimental 

 

6.2.1 Catalyst preparation 

Since the Rh/SiO2 catalyst used in this study was the same as that used in a 

previous study, a detailed description of  catalyst preparation can be found in an earlier 

paper [67].  Silica gel (99.95%, Alfa Aesar) was first grounded and sieved to 30-50 mesh, 

washed with boiled distilled water for 3 times, and subsequently calcined in air at 500 oC 

for 4 h before being used as the support.  Rh(NO3)3 hydrate (Rh ~36 wt%, Fluka) was 

used as purchased.  An aqueous solution of Rh(NO3)3 hydrate was added dropwise to the 

silica gel until incipient wetness.  The catalyst precursor was dried at 90oC for 4 h and 

then at 120oC overnight before being calcined in air at 500oC for 4 h to remove 
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nitrogenous residues from the precursors.  Rh content was kept at 1.5 wt% based on the 

support weight.   

 

6.2.2 CO hydrogenation 

The reaction system setup is shown in Figure 6.1.  CO hydrogenation was carried 

out in a fixed-bed differential reactor (316 stainless steel) with length ~300 mm and 

internal diameter ~5 mm.  Catalyst and inert (α-Al2O3) were mixed and loaded between 

quartz wool plugs placed in the middle of the reactor with a thermocouple close to the 

catalyst bed.   

Molecular sieve traps (Alltech) were used to remove H2O, and a CO purifier 

(Swagelok) was applied to the flow from the CO cylinder to remove CO2 and any 

carbonyls.  A Varian 3380 GC equipped with an FID (flame ionization detector) and a 

TCD (thermal conductivity detector) was used to analyze the reaction rate and product 

distribution.   A Restek RT-QPLOT column (30m, 0.53mm ID) connecting with the FID 

was capable of separating C1-C7 hydrocarbons and oxygenates, while another Restek 

packed column (80/100, 6ft) connecting with the TCD was used to separate CO and other 

inorganic gases.   

Prior to reaction, the catalyst was reduced at 500°C (ramped to temperature at 

5°C/min) under 30 mL/min hydrogen for 1 h.  After reduction, the reaction was carried 

out at 250°C and a pressure of 1.8 atm.  The total flow rate of the reaction mixture was 
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kept constant at 30 mL/min with 9 mL/min of 95% CO + 5% Ar, 18 mL/min of H2 and 3 

mL/min of He to obtain a H2:CO ratio of 2:1, which is favorable for EtOH production 

[68].  The reaction conversion was always kept at less than 5% to avoid mass or heat 

transfer effects.  Even though the selectivities for oxygenates, especially for EtOH may 

not be as great as those at more optimum conditions (e.g., lower reaction temperature), 

these reaction conditions were chosen to maximize yields of C1-C2 products, especially 

the C2 oxygenates, so that they could be detected by MS.  The apparent activation energy 

(25-28 kcal/mol) and the good linearity of Arrhenius Plots indicated that there were no 

mass or heat transfer limitations under the reaction conditions used.   
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Figure 6.1 The system setup for multiproduct SSITKA.  
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6.2.3 SSITKA 

An isotopic switch was carried out after reaction steady-state was reached (after 

15 hours).  A switch between 95% 12CO + 5% Ar and 13CO was made using a Valco 2-

position valve with an electric actuator without disturbing any other reaction conditions.  

The 5% Ar in the 12CO flow was used as an inert tracer to determine the gas phase holdup 

time.  Two back pressure regulators in the system were used to minimize pressure 

disturbance while switching.  A Valco 34-port valve was employed to collect 16 samples 

during the 10 minute period of the isotopic transients after switching.  The collected 

effluent samples were injected separately into another Restek RT-QPLOT column in the 

GC with 30 mL/min H2 as the carrier gas.  The products were separated by the column 

and then fed into a hydrogenolysis/hydrogenation reactor (containing 5 g of 5% Pt/Al2O3) 

with the source of H2 being the carrier gas.  This reactor was maintained at 400°C in 

order to convert hydrocarbons and oxygenates totally to methane.  The resulting product 

CH4 was subsequently fed into an MS (Pfeiffer Vacuum) for analysis.  The MS was 

equipped with a high speed data-acquisition system interfaced to a computer using 

Balzers Quadstar 422 v 6.0 software.  The isotopic concentration measured by the MS 

was able to be used with the time for the collection of each sample in the 34-port valve 

and the identity of the compound separated by the GC sent to the hydrogenolysis reactor 

to construct the isotopic transients for the various products.  An example of the 

normalized transients for 12C in CH4, C2Hn, MeOH, AcH and EtOH obtained by 
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switching from 12CO to 13CO is given in Figure 6.2.  It would be meaningful to study 

C2H4 and C2H6 separately, but in our SSITKA study, C2H6 was the predominant C2 

hydrocarbon formed (> 90% based on GC analysis).  Thus, the amount of C2H4 was too 

small for isotopic tracing analysis.   

Surface kinetic parameters, including the average surface residence times and 

surface concentrations of intermediates for CH4, C2Hn, MeOH, AcH and EtOH were 

determined from the isotopic transient curves using SSITKA data analysis software.  The 

difference in area under the normalized transient curves of a particular species (i) and the 

inert tracer (Ar) gives the average surface reaction residence time (τi).  The concentration 

of active surface intermediates for a particular product can be calculated by Ni =Ratei * τi 

[34, 69].  
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Figure 6.2 Typical normalized transient responses for 12C in CH4, C2Hn, MeOH, AcH, 
EtOH, and for Ar during reaction on Rh/SiO2. 

 

 

6.3 Results 

 

 Table 6.1 shows the surface kinetic parameters for different products on varying 

amounts of the Rh/SiO2 catalyst.  The % CO conversions were all under differential 
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conditions (< 5%) and the selectivities for different products were constant regardless of 

the amount of catalyst being used.  However, the average surface reaction residence times 

of MeOH and AcH (acetaldehyde) changed with the amount of the catalyst being used, 

while the residence times for all the other products were not affected.  This was due to the 

ease of readsorption of these products and the resulting chromatographic effect [45].  To 

clarify, Figure 6.3 shows how the average surface reaction residence times for MeOH and 

AcH change with the amount of Rh/SiO2 catalyst used in our study.  When the catalyst 

amount changed from 0.2 to 1.0 g, the average surface reaction residence times for 

MeOH and AcH formation increased linearly, from 2.7 to 4.2 s and from 2.6 to 4.0 s, 

respectively.  Thus, contrary for other products, readsorption of MeOH and AcH on 

Rh/SiO2 could not be ignored and had to be addressed before the surface reaction 

residence times could be evaluated.  This was accomplished by extrapolating the 

residence times determined for different amounts of catalyst to 0 g of catalyst, i.e., an 

infinitely thin bed [46].  By extrapolating the trend line to 0 g catalyst, the surface 

residence times for MeOH and AcH formation on the surface were determined to both be 

approximately 2.3 s.   
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Table 6.1: The surface reaction kinetic parameters for CO hydrogenation on the 
nonpromoted Rh/SiO2 catalyst. a 

0.2 g Rh/SiO2 i

Product h
Rate b

(µmol of 
C/g/s) 

%HC 
Selectivity c τi d (s) TOFITK, i

 e

(s-1) 

Ni
 f

(µmol of 
C/g) 

CH4  0.076 64.0 2.7 0.37 0.20 
C2Hn g 0.011 9.7 14.9 0.07 0.17 
MeOH  0.001 0.5 2.7 0.37 0.00 
AcH  0.005 4.2 2.6 0.38 0.01 
EtOH  0.006 5.1 10.3 0.10 0.06 

0.6 g Rh/SiO2 j

Product h
Rate b

(µmol of 
C/g/s) 

%HC 
Selectivity c τi d (s) TOFITK, i

 e

(s-1) 

Ni
 f

(µmol of 
C/g) 

CH4  0.069 64.0 2.8 0.35 0.20 
C2Hn g 0.011 9.8 14.8 0.07 0.16 
MeOH  0.001 0.5 3.6 0.28 0.00 
AcH  0.005 4.7 3.6 0.28 0.02 
EtOH  0.005 5.0 10.3 0.10 0.06 

1.0 g Rh/SiO2 k

Product h
Rate b

(µmol of 
C/g/s) 

%HC 
Selectivity c τi d (s) TOFITK, i

 e

(s-1) 

Ni
 f

(µmol of 
C/g) 

CH4  0.073 70.0 3.1 0.32 0.22 
C2Hn g 0.009 8.9 13.6 0.07 0.13 
MeOH  0.001 0.6 4.2 0.24 0.00 
AcH  0.003 3.2 4.0 0.25 0.01 
EtOH  0.005 4.5 10.6 0.09 0.05 

a Reaction was carried out at 250 °C; P = 1.8 atm, flow rate = 30 mL/min (H2:He:CO = 6:1:3).  The 
measurements reported were done after 15 h of reaction when steady state was reached.   
b Steady-state rate.  
c Molar selectivity = niCi / ∑niCi. 
d Surface residence time of intermediates. 
e TOFITK, i = 1/ τi.   
f Ni =Ratei * τi. 
g Hydrocarbons with 2 carbons.  
h Experimental errors of all the results for CH4 and C2Hn are ±5%; experimental errors of all the results for 
MeOH and AcH are ±12%; Experimental errors of all the results for EtOH are ±8%. 
i 0.2 g catalyst was used with 2.8 g α-Al2O3 dilution. 
j 0.6 g catalyst was used with 2.4 g α-Al2O3 dilution.  
k 1.0 g catalyst was used with 2 g α-Al2O3 dilution. 
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Figure 6.3 The change of surface residence times for MeOH and AcH formation with 
different amounts of   Rh/SiO2 catalyst.   

 

With respect to the surface reaction residence time for each individual product, 

the residence time for C2Hn was the longest among all the C1-C2 hydrocarbon and 

oxygenate products.  The surface reaction residence time for MeOH was somewhat 

shorter than that for CH4 but the selectivity to CH4 was more than 100 times than that for 

MeOH.  The concentration of intermediates for EtOH was larger than that for AcH, but 

the turnover frequency (TOFITK) of sites based on SSITKA (TOFITK,i = 1/ τi) for AcH 

formation was higher than that for EtOH formation.  It is interesting to note that the 
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residence time for MeOH was about the same as AcH while the selectivity for AcH was 

around an order of magnitude greater than that for MeOH.   

 

6.4 Discussion 

 

6.4.1 Relationship between selectivity and surface reaction residence time  

One advantage of SSITKA is that it can provide the surface reaction residence 

time and the concentration of active intermediates on the surface without having to know 

the details of the reaction mechanism.  However, with these parameters, a proposed 

mechanism should be able to be after disproved or substantiated.  Before analysis and 

discussion of the detailed mechanism of CO hydrogenation on Rh/SiO2 based on the 

SSITKA, it is useful to present some basic definitions and parameter relationships.   

In terms of measured rate of reaction, 

Ri = 1
i

i

N
τ

 

where Ri represents the reaction rate to produce the specific product i and Ni represents 

the amount of active intermediates (in terms of carbon atoms) on the surface that leads to 

product i [69].  In the case of SSITKA of CO hydrogenation, these parameters can be 

determined for any reactant or product molecules containing carbon (since carbon is 

isotopically traced).  Ni is closely related to the number of active sites on the catalyst 
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surface at any time used for product i formation [69].  Residence time of a product, τi (the 

average surface reaction residence time to form i), is equal to the sum of all the reaction 

residence times for the intermediates leading to that particular product i.   

 If two products share any intermediates (and hence also the same type of sites), 

the ratio between their selectivities (Si) should be related to the inverse of the τi’s.  For 

example, if  

τ1 > τ2, 

then it must be that  

N1 < N2

due to the probability that more active intermediates will form product 2 due to its faster 

formation rate (smaller τi) than will form product 1.  Thus, since both N1 < N2 and (1/τ1) 

< (1/τ2), 

(1/τ1) ×N1 < (1/τ2) ×N2. 

And, by definition,  

R1 < R2. 

Thus, 

S1 < S2. 
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So, in summary, if two products share any carbon-containing intermediates, if τ1 > τ2, 

then S1 < S2.  If not, they do not share any intermediates in their many formation routes, 

unless somehow secondary reaction could decrease the amount of product 2 detected.  

 

6.4.2 Relationship between CH4 and MeOH formation. 

 

(g)

(g)

CO (g) + H2 (g) CH3O

CH3OH

CH3 CH4

CH3OH

  

Figure 6.4 Recently proposed pathways of MeOH and CH4 formation during CO 

hydrogenation (based on reference [18, 32]).     

Comparing our results with the mechanism shown in Figure 6.4, which is 

essentially that used by Choi and Liu [32] and Holmen’s group [18], the following points 

can be made: 

a) According to this mechanism, if the surface reaction residence time for CH4 is 

larger than that for MeOH, the selectivity to MeOH should be larger than CH4 since 

they are formed on the same type of site and share at least some intermediates in their 
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formation.  However, in our results for Rh/SiO2, the selectivity to CH4 was nearly 120 

times larger than that for MeOH, but the surface reaction residence time for CH4 was 

slightly longer than that for MeOH (2.7 vs. 2.3 s).   

b) The –CH3OH or/and –CH3 species on the surface may also take part in other 

product formations.  For instance, if there is a large amount of –CH3 species that also 

take part in C2+ hydrocarbon or oxygenate formation, then the selectivity to CH4 

should be even lower than expected.  However, this is not the case since SCH4 is more 

than 100 times larger than SMeOH.  It was proposed by Takeuchi at al. [69] that EtOH 

could be formed from MeOH homologation in CO hydrogenation, which could 

explain low MeOH selectivity and the high selectivity ratio.  But there was no 

dimethyl ether detected in the system to prove the further reaction of MeOH (MeOH 

homologation or condensation/coupling) on the surface.   

c) If the formation routes of MeOH and CH4 share at least one common intermediate 

on the same kind of active sites, it is impossible to explain based on SSITKA data the 

big difference between selectivities to MeOH and to CH4 with no such difference 

between their formation residence times.   

 Thus, even though the reaction mechanism on Rh(111) and other metals has been 

proposed based on theoretical calculation, the modeling work assumed that the same 

reaction sites were used to produce CH4 and MeOH.  If there were only one kind of 

reaction sites on Rh/SiO2, all carbon-containing products would share at least one 

common intermediate, adsorbed CO.  This appears not to be true for CH4 and MeOH 

formation on Rh/SiO2.  Thus, it is probable that there is more than one kind of sites on the 
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catalyst surface.  The SSITKA results suggest that most of the active sites for MeOH and 

CH4 formation are different and indicate that there are many more sites producing CH4 

than sites producing MeOH.  As shown in Table 6.1, the number of intermediates (Ni) on 

the Rh/SiO2 catalyst used for CH4 formation was around 20 mol/g cat while for MeOH 

it was less than 0.01 mol/g cat.   Thus, the selectivity to CH4 was much larger than that 

for MeOH even through the intrinsic rates of formation (inverse residence times) were 

similar. 

 In short, the assumption of a single type of site would appear to be the most 

fundamental cause for the failure of the mechanism shown in Figure 6.4 to apply to CO 

hydrogenation on supported Rh or possibly Rh clusters with different crystalline faces, as 

gleamed from for the formation of CH4 and MeOH.  Different from perhaps Rh(111), it is 

reasonable that there would be more than one kind of Rh sites on the Rh/SiO2 catalyst 

surface.  As a matter of fact, while Yates et al. [71] detected only one single hydrogen 

desorption peak for Rh(111) with TPD, in our previous study [72] two hydrogen 

desorption peaks were detected for Rh/SiO2, which is similar to the results of Bertucco 

and Bennett [73] results for a 10% Rh/SiO2 catalyst.  It is well known that besides 

increasing the dispersion of Rh, a support may interact with Rh due to SMOI, affecting 

the morphology of the Rh clusters, the oxidation state and stability of reaction 

intermediates [64, 73-78].  Thus, it may be reasonable that Rh/SiO2 would show different 

behavior from Rh(111) in CO hydrogenation.  However, Choi and Liu [32] had no 

experimental selectivity data for comparison when they did their modeling work on 

Rh(111).   
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 We, thus, cannot rule out that CH4 and MeOH may be able to be made on the 

same sites on Rh(111).  Our conclusions are based and applied only to the system we 

studied, Rh/SiO2.  However, our results do serve as a caution to using the assumption that 

CH4 and MeOH share intermediates, no matter how attractive such a possibility is, for 

heterogeneous catalyst surfaces.   

 

6.4.3 Relationship between the formation of C2 products and C1 products 

 Due to the complexity in the chain growth step, there are few detailed studies in 

the literature regarding the mechanism of C2 product synthesis, especially for C2 

oxygenates.   

 Table 6.1 shows that the selectivity to MeOH was significantly lower than that for 

any of the C2 products (AcH, EtOH or C2Hn) and that the surface reaction residence time 

for MeOH formation was much shorter.  If MeOH and any C2 products (hydrocarbons 

and oxygenates) shared an intermediate (–CHxO), C2 product selectivity should have 

been lower than that for MeOH since all of the C2 products had longer surface reaction 

residence times than MeOH.  Thus, it is unlikely for any of the C2 products to have 

shared an intermediate with MeOH on Rh/SiO2. 

 On the other hand, the selectivity to CH4 was higher than that for any of the C2 

products and the surface reaction residence time for CH4 was shorter.  Thus, the 
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possibility that all C2 products share intermediates on the same active sites with CH4 is 

possible and cannot be excluded.   

 

6.4.4 Relationship of AcH and C2Hn formation  

 It is interesting to note that, the surface reaction residence time for C2Hn synthesis 

was longer than that for any other C1-C2 product while the selectivity for C2Hn was not 

the lowest, which suggests that the mechanism for C2Hn synthesis is perhaps more 

complex than the mechanisms for the other products discussed earlier.  Figure 6.5 shows 

two popular mechanisms recently proposed for C2Hn formation.  One is related to AcH 

formation as an integral part to forming C2 hydrocarbons [18], as shown in possibility 

6.5(a); the other one has AcH and C2Hn sharing a common –CHx intermediate, with 

different chain growth steps to produce AcH or C2Hn, as shown in possibility 6.5(b) [33]. 

Following the same logical reasoning applied earlier, possibility 6.5(a) is not valid 

for Rh/SiO2 because τC2Hn was significant longer than τAcH (14.4 vs. 4.1 s) but SC2Hn was 

larger than SAcH (9.5 vs. 4.1%).  Possibility 6.5(b) is more likely to be true on Rh/SiO2.  

The fact that SAcH was lower than expected could be explained by the further reaction of 

the intermediates to form other products (e.g., –C2HxO may be an intermediates for both 

AcH, EtOH and C3HxO formation).  However, there have been few studies on the 

mechanism of C2+ hydrocarbon and oxygenate synthesis on Rh-based catalysts so far, and 

the SSITKA results are not sufficient yet to elucidate the mechanism further. 
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Figure 6.5 Recently proposed pathways of AcH and C2 hydrocarbon formation during CO hydrogenation: (a) from reference 

[18], (b) from reference [33]. 
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Figure 6.6 Recently proposed pathways of AcH and EtOH formation during CO hydrogenation: (a) from reference [33], (b) 

from reference [32],(c) from reference [18]. 
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6.4.5 Relationship of EtOH and AcH formation  

There has been disagreement as to the relationship between AcH and EtOH 

formation in the literature [6, 18, 32, 33, 60, 70, 79-82].  The SSITKA results obtained in 

this work, however, can be used to provide more insight regarding the mechanism for the 

formation of EtOH and AcH.  

Figure 6.6(a) and (b) show two of the most popular and recently published routes 

for AcH and EtOH formation during CO hydrogenation.  One possibility, 6.6(a), as 

proposed by Storsaeter et al. [18] and Mei et al. [33], is that some AcH formed on the 

surface desorbs, while the rest goes through two-step hydrogenation to form EtOH; and 

the other possibility, 6.6(b), as proposed by Choi and Liu [32], is more complex with 

EtOH and AcH sharing the same intermediates through -COCH3, which is then 

hydrogenated to –CHOCH3 and –HOCCH3, precursors for AcH and EtOH, respectively.   

If possibility 6.6(a) is true, it requires 2 hydrogenation steps to produce EtOH from AcH.  

This should result in a higher selectivity to AcH since τAcH is shorter than τEtOH (τAcH ≈ 

2.3 s, τEtOH ≈ 10.4 s) - but this is contradictory to our reaction results since SAcH ≈ SEtOH.  

It might be expected that EtOH could also be produced during the readsorption of AcH, 

but this does not appear to be the case since τEtOH did not vary with the amount of the 

catalyst used, within experimental error.  This would have happened if readsorption and 

subsequent reaction played a significant role in the formation of EtOH.   

Similarly, using the same reasoning, possibility 6.6(b) would appear not to be 

valid for our system either.  With certain intermediates shared by both AcH and EtOH, 

123 
 



the expected selectivity to AcH should have been larger than that for EtOH because τAcH 

< τEtOH.  Thus, both possibilities 6.6(a) and 6.6(b) can be ruled out with the same 

reasoning.   

However, as is shown in Figure 6.6(c), if adsorbed AcH could further react to 

form other products, it would be reasonable that the selectivity for AcH was lower than 

expected, even close to the selectivity for EtOH.  However, based on the detailed study of 

this possibility in Section 6.4.4, this is also unlikely to happen on Rh/SiO2.  

Thus, none of the popular mechanisms presented recently can explain our 

SSITKA results for the formation of EtOH and AcH.  Although the secondary reaction of 

AcH to form EtOH by hydrogenation cannot be excluded since it is well known that 

hydrogenation of AcH can be carried out under mild conditions [81], under our reaction 

conditions, the secondary reaction of AcH to form EtOH on the same active Rh sites does 

not appear to be a dominant pathway for EtOH formation.  Thus, it is highly likely that 

the mechanism for AcH and EtOH formation is much more complex than expected and 

cannot be resolved based on our results here.   

 

6.5 Conclusions 

 

 In this study, the mechanistic pathways for different product formations in CO 

hydrogenation on Rh/SiO2 were for the first time studied at the site level using 
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multicomponent SSITKA.  Different from other products, it was found that neither 

MeOH nor AcH readsorption could be neglected on Rh/SiO2 and had to be accounted for.  

It appears likely that, for Rh/SiO2, MeOH and CH4 are produced on different kinds of 

sites.  Moreover, the number of sites producing CH4 on such a catalyst surface is more 

than 100 times larger than those producing MeOH.  It is also unlikely that MeOH shares 

any intermediates with C2 products (hydrocarbons and oxygenates).  By comparing 

different currently proposed possibilities for AcH and EtOH formation, it is concluded 

that the actual mechanism for the formation of these products is complicated and needs 

further investigation.  
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CHAPTER SEVEN 

SUMMARY 

 

 

Ethanol, due to its low cost and low pollution emission in use, may be a viable 

gasoline alternative and a solution to the energy crisis in the future.  Rh-based catalysts 

are known for their unique ability to catalyze ethanol synthesis from CO hydrogenation.  

Thus, there has been increasing interests in experimental and theoretical studies related to 

CO hydrogenation on Rh-based catalysts. 

A study of the combined promoting effect of La and V oxides for ethanol 

formation during CO hydrogenation on silica-supported Rh catalysts was conducted.  

Non-promoted and La and/or V oxide promoted Rh/SiO2 catalysts were prepared by 

sequential or co-impregnation methods and characterized by TEM, CO chemisorption 

and FT-IR.  Their catalytic properties for CO hydrogenation were investigated using a 

differential fixed bed reactor at 230°C and 1.8 atm. It was found that, compared to non-

promoted Rh/SiO2, the singly promoted catalysts, Rh-La/SiO2 and Rh-V/SiO2, showed 

improved reactivity (3x) and better ethanol selectivities. However, the doubly promoted 

Rh-La-V/SiO2 catalysts showed even higher activity (9x) and selectivity for ethanol and 

other C2+ oxygenates, with the selectivity of total C2+ oxygenates > 30% at these low 

pressure reaction conditions. The better performance of the Rh-La-V/SiO2 catalysts 

appears to be due to a synergistic promoting effect of the combined La and V additions 
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through intimate contact with Rh.  Use of just more of each promoter by itself was not 

able to produce the enhanced catalytic performance. 

It has been reported widely that for Rh-based catalysts, promoters play an 

important role in catalyst activity and selectivities.  Thus, the effects of the addition of La, 

V and/or Fe promoters on the kinetics of formation of various products were determined 

and the mechanistic pathways delineated using a Langmuir-Hinshelwood approach.  It 

was found that, increasing H2 pressure resulted in increased activities while increasing 

CO partial pressure had an opposite effect.  However, the specific influence of H2 or CO 

partial pressure on the activity and selectivities differed greatly with different promoters.  

There was a more significant change in activity of the La-V doubly promoted Rh catalyst 

with H2 or CO partial pressure than for other catalysts, which may be due to a synergistic 

effect between La and V.  The Fe singly promoted catalyst showed different trends in 

both rate and selectivity from other catalysts, suggesting a different promoting 

mechanism than La or V.  Based on the fact that hydrogen-assisted CO dissociation has 

been reported to best describe the mechanism for Rh catalysts, Langmuir-Hinshelwood 

rate expressions for the formation of methane and of ethanol were derived and compared 

to the experimentally derived power law parameters.  It was found that the addition of 

different promoters appeared to result in different rate limiting steps.  

It has been suggested that the behavior of group VШ metal catalysts supported on 

transition metal oxides can be significantly affected by pretreatment conditions due to 

strong metal-oxide interactions.  However, the origins for the SMOI effect are still in 

133 
 



debate.  In this research, SMOI of Rh and vanadium oxide (as a promoter) supported on 

SiO2 was studied at the site level for the first time, which provided an insight into the 

modification of surface properties after high temperature reduction.  H2 chemisorption, 

Fischer-Tropsch synthesis (FTS), and SSITKA were used to probe the SMOI effects.    

The catalytic properties of the catalysts for CO hydrogenation were investigated using a 

differential fixed bed reactor at 230°C and 1.8 atm, while for SSITKA, the reaction 

temperature was raised to 280°C and an excess of H2 is used to maximize methane 

production.  The addition of V to Rh/SiO2 was found to suppress H2 chemisorption, and 

high reduction temperature further decreased H2 chemisorption on Rh/V/SiO2 but had 

little effect on Rh/SiO2.  As reduction temperature increased, the activity for CO 

hydrogenation on Rh/SiO2 remained essentially unchanged, but the activity of Rh/V/SiO2 

decreased significantly.  It was found by SSITKA that the concentration of surface 

reaction intermediates decreased on Rh/V/SiO2 as the reduction temperature increased, 

but the activities of the reaction sites increased.  The results suggest that the decrease of 

amount of active sites due to the coverage of Rh by VOx species is probably the main 

reason for the decreased overall activity induced by high reduction temperature.  

Surprisingly, new sites with higher activity appear to be formed probably at the Rh-VOx 

interface.  

Moreover, in this study, the mechanism of C1 and C2 hydrocarbon and oxygenate 

formation during CO hydrogenation on Rh/SiO2 was for the first time investigated in 

detail using multiproduct SSITKA.  This was also the first effort to explore at the site 

level the relationship between similar products [e.g., EtOH vs. AcH] on Rh/SiO2.  During 
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CO hydrogenation at 250°C and 1.8 atm, the selectivity to CH4 was higher than any other 

product but the surface reaction residence time for CH4 formation was not the shortest 

among all the products. The surface reaction residence time for C2 hydrocarbons was 

longer than that for any other product (C1-C2).  Even though the selectivities to AcH and 

EtOH were similiar, their surface reaction residence times differed significantly. Based 

on the SSITKA results, MeOH and CH4 appear to be produced on completely different 

active sites.  Moreover, C2 hydrocarbons do not appear to be formed from adsorbed AcH.  

It is likely, however, that all C2 products share at least one intermediate with CH4, but 

none with MeOH.  Several recently proposed pathways for EtOH and AcH formation are 

presented and compared to our results.  The secondary reaction of AcH to form EtOH on 

the same sites does not appear to be a dominant pathway for EtOH formation.  However, 

the precise mechanism for EtOH formation still needs further investigation. 
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APPENDIX A 
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(c) Rh(1.5)-La(2.6)/SiO2
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(e) Rh(1.5)-La(2.6)/V(1.5)/SiO2

1/T (K-1)
0.00185 0.00190 0.00195 0.00200 0.00205 0.00210

Ln
(r

at
e)

-5

-4

-3

-2

-1

0
CO Conversion
CH4 Formation
C2Hn Formation
C3Hn Formation
EtOH Formation

 

(d) Rh(1.5)/V(1.5)/SiO2
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(f) Rh(1.5)-Fe(0.8)-La(2.6)/V(1.5)/SiO2
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Figure A.1 Arrhenius plots for (a) Rh(1.5)/SiO2, (b) Rh(1.5)-Fe(0.8)/SiO2, (c) Rh(1.5)-
La(2.6)/SiO2, (d) Rh(1.5)/V(1.5)/SiO2, (e) Rh(1.5)-La(2.6)/V(1.5)/SiO2, and (f) Rh(1.5)-Fe(0.8)-
La(2.6)/V(1.5)/SiO2. 
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APPENDIX B 

SSITKA results for different product formation on promoted Rh catalysts 
 

Table B.1 The surface reaction kinetic parameters for different products on the Fe 
promoted Rh catalysts. a 
 

Rh(1.5)-Fe(0.8)/SiO2

Product h Rate b 
(µmol of C/g/s) 

%HC 
Selectivity c τi 

d (s) TOFITK, i
 e 

(s-1) 
Ni

 f 
( mol of C/g)  

CH4 0.155 67.6 2.6 0.38 0.41 

C2Hn g 0.017 7.2 12.7 0.08 0.21 

MeOH 0.013 5.6 5.6 0.18 0.07 

AcH 0.005 2.3 8.1 0.12 0.04 

EtOH 0.027 11.9 8.4 0.12 0.23 

Rh(1.5)-Fe(0.8)-La(2.6)/V(1.5)/SiO2

Product h Rate b 

(µmol of C/g/s) 
%HC 

Selectivity τi 
d (s) TOFITK, i

 e 
(s-1) 

Ni
 f 

( mol of C/g)  
CH4  0.189 32.7 1.2 0.85 0.22 

C2Hn g 0.141 15.9 22.5 0.04 3.18 

MeOH  0.019 3.2 5.5 0.18 0.10 

AcH  0.034 5.9 6.2 0.16 0.21 

EtOH  0.141 24.3 9.2 0.11 1.29 
a 0.6 g catalyst was diluted by 2.4 g α-Al2O3. Reaction was carried out at 250 °C; P = 1.8 
atm, flow rate = 30 mL/min (H2:He:CO = 6:1:3).  The analysis was done 15 h after 
reaction began and steady state was reached.   
b Steady-state rate.  
c Molar selectivity = niCi / ∑niCi. 
d Residence time. 
e TOFITK, i = 1/ τi.   
f Ni =Ratei * τi. 
g Hydrocarbons with 2 carbons.  
h Experimental errors of all the results for CH4 and C2Hn are ±5%; experimental errors of 
all the results for MeOH and AcH are ±12%; Experimental errors of all the results for 
EtOH are ±8%. 
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Table B.2 The surface reaction kinetic parameters for different products on the La and/or 
V promoted Rh catalysts. a 

Rh(1.5)-La(2.6)/SiO2

Product h Rate b 
(µmol of C/g/s) 

%HC 
Selectivity τi d (s) TOFITK, i

 e 
(s-1) 

Ni
 f 

(µmol of C/g) 
CH4  0.170 53.1 4.4 0.23 0.75 

C2Hn g 0.024 7.4 19.3 0.05 0.46 

MeOH  0.006 1.8 5.1 0.20 0.03 

AcH  0.011 3.4 4.9 0.21 0.05 

EtOH  0.044 13.7 8.2 0.12 0.36 

Rh(1.5)/V(1.5)/SiO2

Product h Rate b 
(µmol of C/g/s) 

%HC 
Selectivity τi d (s) TOFITK, i

 e 
(s-1) 

Ni
 f 

(µmol of C/g) 
CH4  0.063 18.2 1.8 0.55 0.12 

C2Hn g 0.087 25.1 19.1 0.05 1.66 

MeOH  0.006 1.7 6.1 0.16 0.04 

AcH  0.008 2.4 4.2 0.24 0.04 

EtOH  0.032 9.3 8.6 0.12 0.27 

Rh(1.5)-La(2.6)/V(1.5)/SiO2

Product h Rate b 
(µmol of C/g/s) 

%HC 
Selectivity τi d (s) TOFITK, i

 e 
(s-1) 

Ni
 f 

(µmol of C/g) 
CH4  0.351 26.8 3.2 0.31 1.13 

C2Hn g 0.182 13.9 19.1 0.05 3.47 

MeOH  0.011 0.9 6.1 0.16 0.07 

AcH  0.072 5.5 5.7 0.17 0.41 

EtOH  0.169 12.9 8.8 0.11 1.49 
a 0.6 g catalyst was diluted by 2.4 g α-Al2O3. Reaction was carried out at 250 °C; P = 1.8 atm, 
flow rate = 30 mL/min (H2:He:CO = 6:1:3).  The analysis was done 15 h after reaction began and 
steady state was reached.   
b Steady-state rate.  
c Molar selectivity = niCi / ∑niCi. 
d Residence time. 
e TOFITK, i = 1/ τi.   
f Ni =Ratei * τi. 
g Hydrocarbons with 2 carbons.  
h Experimental errors of all the results for CH4 and C2Hn are ±5%; experimental errors of all the 
results for MeOH and AcH are ±12%; Experimental errors of all the results for EtOH are ±8%. 
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