
Clemson University
TigerPrints

All Dissertations Dissertations

12-2010

A Framework for Virtual Device Driver
Development and Virtual Device-Based
Performance Modeling
Zachary Jones
Clemson University, zach@zacharyjones.us

Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations

Part of the Computer Sciences Commons

This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by
an authorized administrator of TigerPrints. For more information, please contact kokeefe@clemson.edu.

Recommended Citation
Jones, Zachary, "A Framework for Virtual Device Driver Development and Virtual Device-Based Performance Modeling" (2010). All
Dissertations. 637.
https://tigerprints.clemson.edu/all_dissertations/637

https://tigerprints.clemson.edu?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
https://tigerprints.clemson.edu/all_dissertations/637?utm_source=tigerprints.clemson.edu%2Fall_dissertations%2F637&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:kokeefe@clemson.edu

A Framework for Virtual Device Driver Development

and Virtual Device-Based Performance Modeling

A Dissertation

Presented to

the Graduate School of

Clemson University

In Partial Fulfillment

of the Requirements for the Degree

Doctor of Philosophy

Computer Science

by

Zachary Harrison Jones

December 2010

Accepted by:

Robert M. Geist, III, Committee Chair

James M. Westall

Brian C. Dean

Harold C. Grossman

Abstract

Operating system virtualization tools such as VMWare, XEN, and Linux KVM export only

minimally capable SVGA graphics adapters. This paper describes the design and implementation

of system that virtualizes high-performance graphics cards of arbitrary design to support the con-

struction of authentic device drivers. Drivers written for the virtual cards can be used verbatim,

without special function calls or kernel modifications, as drivers for real cards, should real cards of

the same design exist. While this allows for arbitrary design, it is not able to model performance

characteristics. We describe a new kernel system that allows for arbitrarily changing the perfor-

mance of a device. These virtual performance throttles (VPTs) use the framework provided by the

virtual device architecture and a simple linear service model a physical drive to simulate the relative

performance characteristics of the physical disk. The applications of the system include instruction

in device driver and disk scheduler design, allowing device driver design to proceed in parallel with

new hardware development, and for relative performance measurements without needing access to

the physical device being modeled.

ii

Dedication

This work is dedicated to my family: my parents, my brother, my grandmothers, and many

others. Their love, encouragement, belief, and patience inspired and enabled me to see this work

through to completion.

iii

Acknowledgments

This work was supported in part by two IBM Faculty Awards, by an IBM Ph.D. Fellowship,

and by the U.S. National Science Foundation under Award 0722313. I would like to acknowledge

the people listed below; this research effort would not be possible without their efforts:

1. Robert Geist, my advisor and James Westall. They are tremendously brilliant individuals who

I am deeply indebted to for providing challenging and rewarding research.

2. My committee, for their guidance and insight and for providing such a rewarding time in

graduate school.

3. The technical and administrative staff at the School of Computing, for all of the work they

did on my behalf.

4. William Pressly and Jay Steele, for all of the assistance and fellowship they provided.

iv

Table of Contents

Title Page . i

Abstract . ii

Dedication . iii

Acknowledgments . iv

List of Tables . vi

List of Figures . vii

List of Listings . viii

1 Introduction . 1

1.1 Organization of this Document . 3

2 Background . 5

2.1 Virtualization . 5
2.2 Kernel Modules and Character Devices. 7
2.3 Kernel Probes . 8
2.4 Disk Scheduling . 9

3 Virtual PCI Framework . 13

3.1 Virtual Architecture. 13
3.2 Rendering Performance. 18
3.3 Student Performance. 19

4 Virtual Performance Throttles . 21

4.1 Modeling a Disk Drive . 21
4.2 Virtual Performance Throttles . 22
4.3 VPT Implementation . 24
4.4 Case Study . 28

5 Virtual Operating Systems Lab . 36

5.1 The Virtual Lab . 36
5.2 Timing . 40
5.3 Performance . 41
5.4 Virtual Device Generation Utility . 42

6 Conclusions . 45

References . 48

v

List of Tables

2.1 Sub-optimal performance of the greedy algorithm. 10

3.1 Rendering Performance Comparison . 19

4.1 Performance on O DIRECT workload. 33
4.2 Performance on non-O DIRECT workload. 34

5.1 Runtime in seconds of CFD code for various configurations 42

vi

List of Figures

3.1 Virtual Architecture. 14
3.2 Rendering Samples . 18
3.3 Student Evaluation of Price of the Zach1 . 20

4.1 Seek Time of Virtual Machine Disk . 23
4.2 Stochastic sector to sector costs . 29
4.3 Comparison of Sector to Sector Costs of Physical and Virtual Disks 30
4.4 Distribution of Response Times of O DIRECT Workload 33
4.5 Distribution of Response Times of non-O DIRECT Workload 34

5.1 Layout of device registers in memory. 44
5.2 Bitfield layout of a register. 44

vii

List of Listings

4.1 ON/OFF execution by each of 50 concurrent processes 31
5.1 Creating a Disk Image . 37
5.2 Installing CentOS 5 on a Virtual SCSI Disk . 37
5.3 Launching a VM with a SCSI Hard Disk . 37
5.4 Creating Clone Images . 38
5.5 go blue Script . 38
5.6 start lab vm Script . 39
5.7 Using X11 Forwarding to access VM monitor. 40
5.8 Launching a program pinned to the virtual CPUs 0 and 5 41
5.9 Launching a VM pinned to 2 cores with shared L2 cache 42

viii

Chapter 1

Introduction

In this dissertation, we provide solutions to problems in operating system virtualization that

have been motivated by major projects in Computer Science 822 (CPSC 822) at Clemson University.

Computer Science 822, Operating System Design: A Case Study, has been offered as an advanced,

graduate course in operating systems at Clemson University since 1985. The hardware platform and

the operating system have changed through the years (currently Linux 2.6.30 on Intel hardware), but

the structure and the principal thrust have remained the same. It is a walk-through of the source of a

UNIX derivative in which the students modify schedulers to improve performance, build new kernels

with additional system call capabilities, and write device drivers for real devices. Students have

found the course extremely valuable in advancing their understanding of system software design,

and as a result, their opportunities for employment in the systems industry.

Nevertheless, the total impact of the course, in terms of the number of students served, has

been limited by available resources. Students who have completed the course have always been in

high demand by the systems industry, but total student production (course throughput) at Clemson

University has been severely limited by the available budget. Students writing system-level code

frequently crash their systems, often with disk-corrupting failures, and thus the course has always

required both dedicated hardware and the laboratory space in which to house it, which collectively

represents a relatively large expense for a single course.

1

The recent, hardware-enabled move to system virtualization, typified by VMWare, XEN,

and Linux KVM, offers great potential to expand course impact. A large number of virtual ma-

chines can be hosted on a relatively small number of physical machines, and repairing a crashed

virtual machine requires only a simple file copy, rather than a complete re-install of the operat-

ing system. Many course components, e.g., new kernel builds and scheduler experiments, could

be directly handled by any of the virtualization tools. Nevertheless, two key course projects have

remained out of reach of such tools. One project is building a device driver for a high-performance

graphics card. Most graphics cards have proprietary interfaces, and their manufacturers supply only

binary drivers. Unlike disks with standard IDE, SATA, or SCSI interfaces, or CPUs with standard

instruction sets (e.g. Intel x86), there is no industry standard interface for graphics cards beyond

that of the minimally capable SVGA, which is exactly what the virtualization tools export. Even if

specific, high-performance graphics cards were recognized and exported by the virtualization tools,

implementation would be limited to platforms with those cards. Effective platform expansion re-

quires the availability of a virtual, high-performance card architecture that can be exported from a

heterogeneous collection of generic PCs or server blades.

In designing such an architecture, we have identified four design goals. First, the virtual

architecture must support drivers that require sophisticated, system-level components, in particular,

scheduling, memory mapping, DMA, and interrupt handling. Second, driver design for this virtual

architecture should require no specialized function calls to ensure that driver design is authentic. The

same Linux kernel functions used to access the real hardware, e.g., pci register driver(), should be

used, verbatim, to access the virtual hardware. Third, no modifications to the standard Linux kernel

are allowed. Functionality must be encapsulated in drop-in kernel modules, the standard tool for

dynamic kernel extensions and most device drivers. Finally, the system must be easily reconfigurable,

so that different (virtual) card architectures can be quickly designed and implemented.

Design and implementation are complete, and details are described herein. With the vir-

tual device architecture, we have removed the principal roadblock to including the device driver

development project in a course supported entirely by virtual systems. We also note that the vir-

tual architecture allows concurrent development of new hardware designs and supporting system

software. Device drivers can be ready when the first device arrives from fabrication.

The second key, motivating project from CPSC 822 is writing a disk scheduler of a new

design. CPU speeds have increased by orders of magnitude over last 10 years, but disk speeds

2

are essentially unchanged. Thus, disks have become common performance bottlenecks and any

improvement in access times, say through scheduling, can offer substantial benefits. Disk scheduler

development can be carried out easily on a virtual machine, but the goal of any new scheduler

is improved performance. Measuring the performance of virtual disks in a way that would allow

prediction of the performance of real disks is a difficult problem due to the layers of abstraction

between the virtual disk and physical disk. In a virtual machine, the virtual disk may actually reside

on a Network-Attached Storage (NAS) system across multiple disks. Thus, the access speed to the

virtual disk will never match that of a targeted real device. Our goal is to provide a kernel module

that will accept a minimal description of a targeted, real disk drive and then intercept and modulate

the performance of the system virtual drive to match. We introduce Virtual Performance Throttles

(VPTs), a method to use kernel modules to achieve this design without kernel modification. As we

will see in Chapter 4, a simple model of any physical disk can be created and used in configuring the

VPT. We extend the virtual device architecture to alter the performance of the disk request path in

the kernel. This design, in effect, incorporates an entire operating system as a simulation tool.

Finally, we describe the deployment of virtual CPSC 822, where lab machines are no longer

physical machines in a dedicated lab but are virtual machines residing in an IBM BladeCenter cluster

and the hard drives are stored on a NetApp FAS960c Network Attached Server accessed over NFS.

1.1 Organization of this Document

In the next chapter we briefly describe related work in virtualization of both operating

systems and access to hardware-accelerated graphics. We also include background on Linux kernel

modules, character devices and kernel probes, the principal tools used in our implementation. We

end the chapter with an introduction to disk scheduling. In Section 3.1, we provide an overview of

the virtual architecture of our system that allows driver development for virtual graphics cards. It is

composed of three interacting code modules: one at the user level and two at the kernel level. Sections

3.2 and 3.3 describe two very different performance evaluations of our system: the former evaluates

the rendering performance of a virtual graphics card, and the latter evaluates the performance of

a class of graduate students who were given the task of writing drivers for a virtual graphics card.

In Sections 4.1, 4.2, and 4.3, we discuss the modeling of a physical disk and implementation of

the model in a VPT. In Section 4.4 we present a case study and discuss results that compares the

3

performance of a VPT modeled drive to a targeted physical drive under a variety of scheduling

algorithms. In Chapter 5, we provide an overview of the lab environment deployed for the current

virtual Computer Science 822 class, discuss several challenges encountered and their solutions, and

introduce a utility to aid in creating new virtual PCI devices. Conclusions follow in Chapter 6.

4

Chapter 2

Background

2.1 Virtualization

System virtualization has been of interest to the computing community since at least the

mid-1960s, when IBM developed the CP/CMS (Control Program/Conversational Monitor System

or Cambridge Monitor System) for the IBM 360/67 [8]. In this original design, a low-level software

system called a hypervisor or virtual machine monitor sits between the hardware and multiple guest

operating systems, each of which runs unmodified. The hypervisor handles scheduling and memory

management. Privileged instructions, those that trap if executed in user mode, are simulated by the

hypervisor’s trap handlers when executed by a guest OS.

Aspects of the architecture of the host machine affect the difficulty of constructing a secure

and efficient hypervisor. These elements are described from a somewhat formal perspective by

Popek and Goldberg [23]. They characterize as sensitive those instructions that may modify or

read resource configuration data. They show that an architecture is most readily virtualized if the

sensitive instructions are a subset of the privileged instructions.

In the x86 architecture, a relatively large collection of instructions are sensitive but not

privileged. Therefore, a guest OS running at privilege level 3 may execute one of them without

generating a trap that would allow the hypervisor to virtualize the effect of the instruction. A

detailed analysis of the challenges presented by these instructions is presented by Robin and Irvine

[25]. For completeness, we include two such examples here:

5

1. Because reading x86 system configuration registers is not privileged, a guest OS may read and

store the contents of the CS (code segment) register, which contains the privilege level. Upon

inspection of the saved value, the guest OS could see that the kernel is actually executing at

privilege level 3, instead of the expected level 0, and incorrectly infer that a catastrophic failure

has occurred. Similarly, the Linux kernel function do signal() tests the saved CS register of the

caller and takes different paths based on its value. An unmodified guest Linux would always

see the same value and then sometimes take the incorrect path.

2. When the processor is executing at privilege level 0, POPF (pop flags) can modify both the

I/O privilege level and the interrupt enable flag. However, when executed by a guest OS at

privilege level 3, changes to the I/O privilege level and the interrupt enable flag are simply

suppressed. When this occurs, the guest OS and hypervisor may have inconsistent views of

whether or not interrupts can be delivered to the virtual machine.

The designers of VMWare provided the first solution to this trapping problem by using a

binary translation of guest OS code [31]. In another approach, Xen [2] provided an open-source

virtualization of the x86 using paravirtualization, in which the hypervisor provides a virtual machine

interface that is similar to the hardware interface but avoids the instructions whose virtualization

would be problematic. Because those instructions are avoided, each guest OS must then be modified

to run on the virtual machine interface.

Much of the difficulty of virtualizing the x86 architecture was removed with the 2005 and

2006 extensions to the architecture, the Intel VT-x and AMD-V. The extensions include a “guest”

operating mode, which carries all the privilege levels of the normal operating mode, except that

system software can request that certain instructions be trapped. The hardware state switch to/from

guest mode includes control registers, segment registers, and instruction pointer. Exit from guest

mode includes the cause of the exit, which informs the hypervisor how to proceed. These extensions

have allowed the development of a full virtualization Xen, in which the guest operating systems

can run unmodified, and the Kernel-based Virtual Machine (KVM) [18], which uses a standard

Linux kernel as hypervisor. The KVM-supported kernel includes a character device, (/dev/kvm)

whose ioctl() calls can create new virtual machines, allocate virtual machine memory, read and

write virtual CPU registers, and inject interrupts to and run virtual CPUs.

6

Nevertheless, VMWare, Xen, and KVM are inadequate for a project in graphics card driver

design because they export only basic, SVGA graphics cards to the guest systems. With Workstation

6.5 and newer, VMWare does support hardware-accelerated graphics in Windows XP guests, but this

is virtualization at the graphics API level, not the card level. With the lack of standardization and

proprietary interfaces for GPUs, virtualization at the graphics API level, rather than the architecture

level, has become the focus area of rapid development. The VMGL system [20] allows hardware

accelerated OpenGL applications to run inside virtual machines provided by any of VMWare, Xen,

or KVM, and it works with ATI, Intel, or NVIDIA cards. VMGL uses the machine’s loopback

interface and a transport based on WireGL [17]. It is similar in spirit to Virtual GL [29], which

allows low-cost, remote visualization by rendering on highly accelerated servers and then, through a

suitable transport, pushing pixels to less capable clients. Both systems probably trace their origins

to Stegmaier et al [27].

Thus, although we can access the performance of a high-speed graphics card within virtual

machines, we cannot, through available tools, access the architecture of such a card, which is the

goal of device driver development.

2.2 Kernel Modules and Character Devices.

Both the Virtual Architecture, described in Chapter 3, and the Virtual Performance Throttle

described in Chapter 4, make extensive use of the Linux kernel module facility. Kernel modules are

collections of functions that can be dynamically loaded to extend the capabilities of a running base

kernel. Two of the functions in the collection are identified as special: the module init() function is

executed when the module is dynamically loaded and the module exit() function is executed when

it is removed. Modules can export their functionality to the running base kernel (or other modules)

via an EXPORT SYMBOL() macro.

The structure of the collection of functions that comprise the module is otherwise arbitrary,

but in practice the most common design is probably one that structures the module as a collection

of file operations on a special type of file, called a character device. Character devices are created

by the mknod command, which takes a target name and a target device number as arguments. The

device number usually corresponds to the device identifier that is on-board a physical controller or

7

card, but it need not, as character devices can be entirely logical constructs. The file operations

that operate on character devices have fixed signatures (specified in the kernel include file, fs.h)

and are invoked by corresponding system calls from the user level, but their implementation is at

the discretion of the module designer. The most commonly implemented file operations are open,

release, mmap, and ioctl. The ioctl() call is particularly useful, in that one of its arguments is a

command identifier, which can be used in a module switch() statement to provide a wide variety of

capabilities.

The module init() function typically connects the module’s file operations to the character

device structure (struct cdev) via the kernel’s cdev init() function and connects the character device

number to this same structure with cdev add(). It can then invoke a scan of the PCI bus in search of

a physical card with the target device number by a call to pci register driver(). On success, the scan

will provide an address from which key controller or card information, e.g. physical base addresses,

memory sizes, and IRQ lines can be read and stored in the module’s structures.

2.3 Kernel Probes

The kernel probe or kprobe utility was designed to facilitate kernel debugging [22]. It first

appeared in Linux kernel 2.6.9 and is fully supported in i386, x86 64, IA64, and Power architectures.

This utility has evolved over time and now allows for multiple probes to be attached to the same

point in the kernel, multiple probes per CPU, and multiple instances of the of the same probe

running on different CPUs.

All kprobes have the same basic operation. A kprobe structure is initialized, usually by a

kernel module, to identify a target (kernel) instruction and specify pre-handler and post-handler

functions. When the kprobe is registered, it copies the target instruction and replaces it with a

breakpoint. When the breakpoint is hit, the pre-handler is executed, then the copied instruction is

executed in single step mode, then the post-handler is executed. Finally, a return resumes execution

after the breakpoint. There are two variations of the kprobe supplied with Linux: the jprobe and the

kretprobe.

The jprobe or jump probe is intended for probing function calls, rather than arbitrary kernel

instructions. Conceptually, it is a kprobe with a two-stage pre-handler and an empty post-handler.

On registration, it copies the first instruction of the registered function and replaces that with the

8

breakpoint. When this breakpoint is hit, the first-stage pre-handler, which is fixed, is invoked. It

copies both registers and stack, in addition to loading the saved instruction pointer with the address

of the supplied, second-stage pre-handler. The second-stage pre-handler then sees the same register

values and stack as the original function.

The kernel return probe or kretprobe is intended for probing the return value of a function

call. A kretprobe is attached to a function at its entry point and when this function is called,

the probe point is immediately hit. A special pre-handler saves the return address of the caller

and replaces it with the address of kretprobe trampoline(). When the function reaches the return,

kretprobe trampoline() hands control over to the kretprobe handler supplied by the user and sets its

return address to the original caller.

While most functions can be probed in the kernel, there are two exceptions: inline functions

and functions declared with the kprobes qualifier. Inline functions are inserted into the body of

caller function at compile time. Thus, they are not present in the compiled version of the kernel and

the kprobe utility is unable to find them. The kprobes qualifier instructs the compiler to place a

function in a location in memory where the kprobe utility is forbidden from attaching probes. This

forbidden area is where most of the kprobe utility itself and certain other functions, which the kernel

developers have decided would be hazardous to probe, all reside.

Although the kprobe, jprobe, and kretprobe utilities are quite useful and flexible, none is

adequate for the fundamental task required by the design of our virtual architecture, namely, dynamic

replacement of an entire kernel function with a custom version. Thus we have designed a new type

of probe, the intercept probe, which accomplishes this task. It we will be described in Section 3.1.2.

2.4 Disk Scheduling

Scheduling algorithms that re-order pending requests for disks have been studied for at least

four decades. Such scheduling algorithms represent a particularly attractive area for investigation

in that the algorithms are not constrained to be work-conserving. A scheduling algorithm is work-

conserving if: 1) individual customer service demands are no affected by scheduling order and 2) the

server is not idle when there is work pending.

For all such scheduling algorithms, which are most common withing operating systems, it

can be shown that the mean of the product of service time and wait time, E [SW], is constant [19].

9

algorithm mean service mean response
greedy 82, 120, 200, 20 79.0 131.5
optimal 120, 82, 20, 200 75.0 124.5

Table 2.1: Sub-optimal performance of the greedy algorithm.

This is a severe limitation on the performance (service time, wait time, response time, throughput)

is improved for one class of customers, another class will suffer. Since disk scheduling algorithms

are not constrained to be work-conserving, the severe limitation does not apply, and performance

improvement through scheduling can be wide-spread and dramatic.

Further, it is easy to dismiss naive (but commonly held) beliefs about such scheduling,

in particular, that a greedy or shortest-access-time-first algorithm will deliver performance that is

optimal with respect to any common performance measure, such as mean service time or mean

response time. Consider a hypothetical system in which requests are identified by their starting

blocks and service time between blocks is equal to distance. Suppose the read/write head is on

block 100 and requests in queue are for blocks 20, 82, 120, and 200. The greedy schedule and the

differing, optimal schedule are shown in Table 2.1.

Disk scheduling algorithms are well-known to be analytically intractable with respect to

estimating response time moments. Early successes in this area, due to Coffman and Hofri [6] and

Coffman and Gilbert [5] were restricted to highly idealized, polling servers, in which the read/write

head sweeps back and forth across all the cylinders, without regard to the extent of the requests

that are actually queued.

Almost all knowledge of the performance of real schedulers is derived from simulation and

measurement studies. Geist and Daniel described UNIX system measurements of the performance

of a collection of “mixture” algorithms that blended scanning and greedy behavior [12]. Geist,

Reynolds, and Pittard [13] measured the performance of such mixture algorithms under UNIX

System V and observed that the choice of scheduler dramatically affected the arrival process as

seen at the drive. Worthington, Ganger, and Patt [32] showed, in simulation, that scheduling with

full knowledge of disk subsystem timing delays, including rotational delays and on-board cache

operations, could offer major performance improvements. They also concluded that knowledge of

the on-board cache operation was far more important than an accurate mapping of logical block

to physical sector. We will contend, in the case study of Chapter 4, that the on-board cache has

relatively little effect on scheduler performance for most workloads.

10

More recently, Pratt and Heger [24] provided a comparison of the four schedulers distributed

with Linux 2.6 kernels. Prior to 2.6, Linux used a uni-directional or circular scan (CSCAN), in which

requests are served in ascending order of logical block number until none remains, whereupon the

read/write head sweeps back down to the lowest-numbered pending request. With recognition that

the best scheduler is likely workload-dependent, Linux authors changed the 2.6 kernel to allow single-

file, modular, drop-in schedulers that could be dynamically switched. Four schedulers were provided.

The default is the completely fair queuing (cfq) algorithm, which has origins in network scheduling.

Each process has its own logical queue, and requests at the front of each queue are batched, sorted

and served. The deadline scheduler was designed to limit response time variance. Each request sits

in two queues, one sorted by CSCAN order, one FIFO, and each has a deadline. The CSCAN order

is used, unless a deadline would be violated, and then FIFO is used. As with many algorithms, reads

are separated from and given priority over writes because the requesting read process has usually

suspended to await I/O completion, and so there are actually four (logical) queues. The anticipatory

scheduler is no longer supported, and the noop scheduler is essentially FIFO, which delivers poor

performance on almost all workloads, and thus these two will not be discussed.

A fundamental departure from greedy algorithms, scanning algorithms, and O(N) mix-

tures thereof was offered by Geist and Ross [11]. They observed that, over the preceding decades,

CPU speeds had increased by several orders of magnitude while disk speeds remained essentially

unchanged. They suggested that O(N2) algorithms might be competitive and offered a statically

optimal solution that was based on Bellman’s Dynamic Programming [4], in which a table of size

O(N2) containing optimal completion sequences was constructed. Although their algorithm was

shown to deliver excellent performance in tests on a real system, there were two easily-identifiable

problems. It ignored the dynamics of the arrival process, and it ignored the effects of any on-board

disk cache.

Motivated by the (now-defunct) anticipatory scheduler, Geist, Steele, and Westall [15] par-

tially addressed the issue of arrival dynamics. Although at first glance counter-intuitive, it is often

beneficial for disk schedulers with a non-empty queue of pending requests to do nothing at all. The

process that issued the most recently serviced request is often likely to issue another request for

a nearby sector, and that request could be served with almost no additional effort. They added a

so-called busdriver delay, to mimic the actions of a bus driver who would wait at a stop for additional

riders, to the table-based, dynamic programming algorithm of Geist and Ross, and showed that it

11

delivered excellent performance, superior to any of the four schedulers distributed with Linux 2.6,

for a fairly generic, web file-server workload designed by Barford and Crovella [1].

12

Chapter 3

Virtual PCI Framework

3.1 Virtual Architecture.

We now describe the architecture which supports a sophisticated virtual graphics card that

is available withing the Linux kernel for driver development. The virtual card delivers real graphics

output, and yet its deign can be changed quickly and easily. The Virtual Architecture comprises

three interacting code modules, shown in Figure 3.1, to replace the standard graphics cards: the

Virtual Console Daemon, the Virtual GPU, and the Virtual PCI Bus.

3.1.1 Virtual Console Daemon

The Virtual Console Daemon (VCD) is a user-level process that simply reads the virtual

device registers, which are located in kernel memory that is part of the Virtual Graphical Processing

Unit (VGPU), and updates the display accordingly. The read operation could be executed via a

standard system call (ioctl() on the VGPU device), but it is faster to memory map the virtual device

registers of the VGPU back to the user space of the VCD and read them directly in user space. To

avoid busy-waiting on virtual register updates, the VCD will suspend on a kernel wait queue if it

detects no register changes since its last read. It simulates entry to and exit from graphics mode by

starting and stopping an XWindows server. An X server serves this purpose well as it can easily be

configured to run without borders or icons, which gives the appearance of an “empty” underlying

framebuffer. Graphics primitives are generated by the VCD using a combination of OpenGL and

13

Figure 3.1: Virtual Architecture.

XDraw commands. Thus, although the VCD must incorporate a simulator of the target virtual

architecture, it is a functional-level simulator, not a command-level interpreter.

If the VCD detects changes to the DMA registers, located in the kernel memory component

of the VGPU, it is responsible for simulating the DMA transfer by reading buffers of (graphics)

commands from the device driver and executing them. When a buffer has drained, the VCD (through

ioctl() must initiate the sequence for the VGPU to generate an interrupt to the device driver, if the

driver has enabled DMA-completion interrupts on the VGPU. With the exception of the direct reads

of the memory-mapped virtual registers, the VCD communicates with the VGPU through ioctl()

calls.

14

3.1.2 Virtual PCI Bus

A long term goal for the project is to allow multiple, simultaneously enabled, virtual PCI

devices, and so we have elected to gather common functionality into a single module, the Virtual

PCI Bus (VPCIB), with which lightweight, device-specific kernel modules may then register and

share in its exported functions. The VPCIB is a Linux kernel module which actually contains most

of the functionality, including the intercept probes. Functions exported from VPCIB and executed

by VGPU include suspending the VCD on a kernel wait queue, write protecting the page of virtual

registers, and generating an interrupt when the VCD makes a buffer completion ioctl() call.

With careful use of the pre-handler and post-handler, an entire kernel function can be

replaced dynamically with an alternative version. For this task, we modified the jprobe utility to

create an intercept probe (iprobe). The first-stage pre-handler is identical to that of the jprobe.

It copies the state of the registers and stack of the process context, which was interrupted by the

breakpoint and then loads the saved instruction pointer register with the address of the second-

stage handler. Our iprobe second-stage pre-handler decides whether or not to replace the original

function. If it decides to do so, it makes a backup copy of the saved (function entry) instruction and

then overwrites the saved instruction with a no-op. As is standard with a jprobe, the second-stage

pre-handler then executes jprobe return(), which traps again to restore the original register values

and stack. The saved instruction (which now could be a no-op) is then executed in single step

mode. Next the post-handler runs. On a conventional jprobe, this is empty, but on the iprobe, the

post-handler checks to see if replacement was called for by the second-stage pre-handler. If this

is the case, the single-stepped instruction was a no-op. The registers and stack necessarily match

those of the original function call. We simply load the instruction pointer with the address of the

replacement function, restore the saved instruction from the backup copy (overwrite the no-op), and

return. With this method, we can intercept and dynamically replace any kernel function of our

choice.

It is possible to have two calls to the same probed function, one that we should intercept and

the other that we should ignore. This can lead to an interesting race condition on multiprocessor

(SMP) systems which, in worst case, could result in a kernel panic. Recall, the second-stage pre-

handler might or might not replace the saved instruction with a no-op instruction. The swap of

instructions introduces a small time window in which the first call could affect the second. For

15

instance, suppose the first call is one that installs a replacement of the original kernel function and

the second does not. The second call could run through the probe with the no-op instruction still

in place from the first call. It would then miss that first instruction of the target function, which

it should execute. This can be avoided by acquiring a spinlock in the second-stage pre-handler and

releasing it in the post-handler.

We use the iprobe to intercept several functions. We intercept pci register driver(), which

device drivers use to scan the PCI bus. Another function we intercept is dma alloc consistent(),

which a driver would call to allocate its own DMA buffers. We intercept this only to capture the

buffer addresses, which the VCD will ultimately need to read and execute buffer contents. We also

intercept remap pfn range(). A driver may choose to memory map some or all of its device register

space back to the user application’s address space. We need to detect writes to the page of virtual

device registers, and if this page has been memory mapped to user address space, writes can come

from both user virtual addresses and kernel virtual addresses.

The reason we need to detect writes is simply for the VCD wake up mechanism. As noted

earlier, when the VCD detects no virtual device register change, it suspends itself through an ioctl()

call to the VGPU that places it on a kernel wait queue. Within the call, prior to the suspension,

it write-protects the page of virtual device registers. The next direct write to the page, either by

the driver or by the user application (under memory mapping) generates a page fault. We intercept

do page fault() to test whether the faulting address is, via user page table or kernel page table,

within the page of virtual registers. If so, we wake the VCD, make the page writable again, and

return, which allows the write to complete.

3.1.3 Virtual GPU

The VGPU is another Linux kernel module. On initialization, it allocates a kernel page to

hold the virtual device registers. On a real PCI device, the device registers would normally appear

at some high physical address found during a driver scan of the PCI bus. The driver would then

use ioremap() to map this register bank to kernel virtual space for driver use. The VGPU must also

register itself with the VPCIB. It passes along information, such as the device IRQ, device IDs, and

register locations, needed by the VPCIB to communicate with device drivers. The VGPU is not an

active device until it receives communication from the VCD via the ioctl() call.

Another race condition can occur in the time when the VCD initiated call to VGPU writes

16

protects the virtual device register space and goes to sleep. After the register space becomes write-

protected, a page fault can occur, which hands control over to the do page fault() iprobe. When

this situation occurs, the iprobe will always unprotect the virtual device register space, issue a

command to wake-up the VGPU and exit, before the VPGU resumes execution. In this instance,

the iprobe runs as do page fault() and therefore cannot be interrupted by normal kernel execution.

Once the VGPU resumes on the CPU, it will proceed to go to sleep and as a result be in a state

where it will never be awakened. The potential system failure can be avoided with two changes.

First, we place the critical sections of code, the protect/unprotect, inside of spinlocks. Since we

cannot go to sleep while holding a spinlock, our second addition is to use a conditional sleep call,

wait event interruptible(). With this call, the VGPU will only go to sleep when the flag is cleared

and only wake up when the flag is set. The wake up flag is cleared in the VGPU critical section,

executed by a call from the VCD, before releasing the spinlock. The wake up flag is set in the

do page fault() handler critical section. This prevents the potential system failure associated with

this race condition from occurring.

Generating an interrupt in the VGPU is relatively straightforward. On the Intel architecture,

the operating system communicates with the Advanced Programmable Interrupt Controller to map

hardware interrupt requests (IRQs) into the Interrupt Descriptor Table (IDT). Therefore, we can

use the int n instruction with n ≥ 32 or n ≥ 48 on 32-bit and 64-bit systems respectively to invoke

the handler registered for IRQ n− 32 or n− 48. Thus we can supply the driver with an IRQ of our

choice during the intercepted pci register driver() command and then have the VGPU simulate that

interrupt with the int instruction whenever the VCD detects an end of buffer.

Again, an interesting race condition arises on a multiprocessor (SMP) system. The interrupt

handler in the driver may be updating the DMA registers in the page of virtual registers at the same

time the VCD is scanning the virtual registers looking for changes. When the VCD is processing

DMA commands with interrupts enabled, it will notify the VGPU to invoke a sleep after a buffer has

finished processing. If the VGPU invokes a sleep before the device driver interrupt handler completes,

it may not be awakened. There is a two-fold solution for this. We attach a jprobe to request irq()

that is called when a device driver registers an IRQ handler. In the second-stage pre-handler we

register a kretprobe on the driver’s interrupt handler that was passed in to the request irq() call.

This probe will then execute when the handler is finished and will wake up the VGPU.

17

triangles of height 20 pixels triangles of height 100 pixels

Figure 3.2: Rendering Samples

3.2 Rendering Performance.

The rendering performance of the virtual architecture cannot possibly match that commonly

seen from executing directly on hardware GPUs. As noted earlier, the goal of the virtual graphics

card project is not to achieve high-speed rendering but rather to provide a completely portable

platform for driver design and development. The only issues are whether the penalty is so great that

it precludes effective system use and, if not, whether the virtual architecture’s rendering performance

scales properly with task difficulty.

We conducted a series of tests comparing the rendering performance of a somewhat dated,

but 3D hardware-accelerated graphics card, the 3DLabs Permedia 2v, for which the hardware refer-

ence manual and programmer’s reference manual are available online [28], with a virtual version of

the same card, both installed on a Dell Optiplex GX520 with a 2.8GHz Intel Pentium D CPU and

1GB main memory. running a Linux 2.6.26 kernel.

At the user application level, the tests used the card’s DMA capability to render 1 million

smooth-shaded triangles as quickly as possible where the only variable was triangle size. This

rendering test did not make use of all of the registers on the real Permedia 2v card, and so the

virtual version could use a reduced register set. The driver for the real card and the driver for the

virtual card were thus identical, except for register count, register names, and static values used in

register initialization. Screen captures during rendering are shown in Figure 3.2.

18

Run times were measured from the user application level using the standard Pentium cycle

counter capture, asm(“RDTSC”). Results are shown in Table 3.1. The triangle size is the height

Triangle Real Virtual Slowdown
Size sec. sec. Multiplier
20 3.876 136.0 35.17
40 10.71 227.7 21.26
60 20.76 340.4 16.39
80 24.23 476.7 13.93
100 51.03 632.5 12.39

Table 3.1: Rendering Performance Comparison

measured in pixels from the so-called dominant edge, that with maximum y range, to the oppo-

site vertex. We see that the relative performance of the virtual card improves rather rapidly as

a greater share of the task effort is shifted toward actual rendering and away from DMA buffer

handling, page-fault interception, instruction decoding/interpreting, and interrupt injection. Even

the longest rendering time for the virtual architecture, 632.5 seconds, or 1,581 triangles/sec., was

judged adequate for driver design purposes.

3.3 Student Performance.

We tested the feasibility of using the virtual architecture for driver design and implementa-

tion in CPSC 822 during the first four weeks of Spring semester of 2009. Class lectures during the

period focused on Linux kernel modules and principles of driver design. Much of the information can

be found in Corbet et al [7]. Student teams composed of 4 graduate students were given hardware

reference manuals and programmer reference manuals for the virtual card described in the previous

section. The manuals detailed both the capabilities that the driver was to deliver and the interface

it was to provide to the application layer. Teams were assigned to specific machines on which we

had installed the virtual architecture. They were not told that the card was virtual.

All of the teams delivered an operational driver on time. This was somewhat unusual,

compared to the collective performance of teams working on real hardware in previous semesters. In

most previous semesters, at least one team had serious driver faults. We tentatively ascribe this to

19

the fact that the virtual hardware is more tolerant of timing errors caused by less than careful saving

and restoring of VGA text mode registers. Circumventing these errors is often a time-consuming

challenge for students.

Nevertheless, none of the students’ drivers was SMP-safe, and this was disappointing. The

most common problem was a race condition between the interrupt handler and the driver ioctl()

code that handled command buffer queuing. Failure to adjust the use of spinlocks to account for

the possibility of a rapid succession of multiple buffer completion interrupts could cause a graphics

subsystem deadlock. Although this problem is somewhat subtle and rarely occurs during normal

operation, in previous semesters at least one team was able to recognize it and handle it.

As a final experiment, we wanted to determine, indirectly, whether the students realized

that the graphics card was virtual. We added an extra credit question to the in-class exam that was

given in the week following the project deadline. We asked them to estimate the best online price

for that model of graphics card for which they had just built a driver. One student clearly realized

the card was virtual and answered, “$0”. The others gave estimates ranging from $100 to $1,000,

with an average above $200. Figure 3.3 gives a distribution of the students answers.

0

1

2

3

4

5

6

7

$1000 $500 $200 $100 $0

Figure 3.3: Student Evaluation of Price of the Zach1

20

Chapter 4

Virtual Performance Throttles

4.1 Modeling a Disk Drive

The second key project for CPSC 822 is writing a disk scheduler of a new design. The

goal of any new disk scheduler design is increased performance under a targeted class of workloads.

Scheduler design and implementation can be carried out easily on a virtual machine. However,

measuring the performance of scheduling algorithms on virtual disks in a way that would allow

prediction of their performance on real disks continues to be a difficult and important problem. The

cause for this lies in abstraction: when a virtual machine requests a block from the virtual disk, the

emulator running the virtual machine translates the block request to a location in the virtual disk

image (a file) and requests the block from that file. In the case of CPSC 822, the QEMU [3] emulator,

which utilizes KVM for accelerated performance, is used. Additionally fro CPSC 822, the virtual

disk image files are located on an NFS exported NAS device, and so the virtual machine incurs

additional overhead for the request to travel across the network to the NAS device and through the

request path on that device to the particular physical disk(s) where the block resides. Of course the

disk blocks and even the entire virtual disk may be cached in the main memory of the NAS device.

A possible solution is to use the physical disk option in QEMU. The physical disk option

limits the number of virtual machines per server supported, based on the number of physical drives

available. Otherwise, again, data corruption would occur when multiple virtual machines write to

the same drive. Another solution is to implement a complete disk emulator within the OS or QEMU.

Following the design goals from the introduction, we now provide an extremely light-weight emulator

21

facility as a module extension to the Linux kernel, thereby allowing the solution to be portable and

minimizing requirements. In this approach we can leverage the tools, particularly the new intercept

probes, in the existing framework for development.

4.2 Virtual Performance Throttles

We start by specifying a linear service time model for the physical drive. Linear models are

an approximation, but as seen in our case study, the approximation is quite accurate. The expected

completion time (T) of a request is one-half the time to complete a revolution (R) plus the product

of the maximum seek time (S) and the seek distance x, expressed as a fraction of the maximum seek

distance (D). Thus

Tr =
R

2
+ S · x

D

Although we expect the linear model of service times for a real disk to be a close fit to the

observed service times for the targeted real disk, any linear model of service times for a virtual disk

may exhibit wide disparity from the observed service times on the virtual disk. Service times on

the virtual disk may exhibit significant non-linearities due to non-linear mappings between virtual

logical blocks and physical blocks. Further, as noted earlier, with a large, enterprise-class NAS

device that contains gigabytes of RAM, it is possible for an entire virtual machine disk to be cached

into memory, resulting in constant access time for all virtual logical blocks. Figure 4.1 shows sample

average seek times on a virtual disk when it is not cached and the same virtual disk when it is cached

on our NAS device. It should be noted that hosting virtual machine disks on Solid State Drives will

exhibit similar performance characteristics as the cached virtual machine.

The idea of the virtual performance throttle (VPT) is to insert an iprobe into the SCSI

path of the virtual system to force virtual service times to be proportional to the real ones, with

an identifiable constant of proportionality. For a given virtual seek distance, xv, with a maximum

Dv and a target performance scale, k, we would like the virtual machine to see a service time of

k (R/2 + S (xv/Dv)) = k ·Tr, but it will instead see a different time, Tv. To get the target completion

time k · Tr, we use a jprobe to delay the request by an amount, k · Tr − Tv.

Selecting an appropriate value of k is difficult. If k is too small k · Tr − Tv is negative,

which means we have missed the targeted completion time and this can affect the accuracy of our

performance estimates. If k is too large, the total time required to estimate disk performance may

22

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40

A
cc

es
s

tim
e

in
 m

s

Distance in millions of sectors

 Non-cached

 0

 2

 4

 6

 8

 10

 0 5 10 15 20 25 30 35 40

A
cc

es
s

tim
e

in
 m

s

Distance in millions of sectors

 Cached

Figure 4.1: Seek Time of Virtual Machine Disk

become excessive. Further, as showing in Figure 4.1, dynamic changes in virtual disk performance,

which can be caused by caching, server load, or network congestion, can be dramatic, which can

require dynamic changes to k. Thus, we need a self-scaling system.

The VPT constrains the flow of disk requests being served in the kernel based on the target

linear model and the current value of k. The VPT uses two probes in the generic SCSI driver: a

jprobe in the down path to record when requests leave for the virtual disk and an iprobe in the

up path to intercept and delay completed requests on return from the virtual disk. The jprobe, in

addition, calculates the target completion time of the request utilizing the seek distance between

the current and last request. This information is the used by the iprobe to determine how long

the request should be delayed after completion but before returning to the requesting process. The

iprobe places the request on a queue. The queue is checked periodically with a timer. Once the

target completion time has past, the request is injected back into the SCSI Generic path.

Since the service time of the virtual disk is subject to change, it is possible that a request

will arrive to the iprobe queue after its target completion time. This informs the VPT that the scale

factor, k, is too small for the observed performance and must be increased. Similarly, if the VPT has

a large queue of requests awaiting re-insertion into the SCSI path, we know that the target virtual

performance is less (target service times longer) than the observed virtual performance, and so the

VPT needs to decrease k. This gives us a feedback mechanism to compensate for variations in the

virtual disk performance. While the VPT is dynamically adjusting the scaling factor, it is important

to report the value of k in order to scale results properly to the physical disk being modeled.

To this point, the only input required for a VPT is a linear model of service time. Neverthe-

23

less, most disks have on-board caches. Although we contend that the effect of such caches is minimal

for most workloads, for some workloads the effect can be dramatic. If we wish to capture on-board

cache effects in our performance predictions, we must augment the service time model to include a

shadow cache. We model the cache with just three parameters: the number of segments, sectors per

segment, and pre-fetch size. We assume the cache is fully associative with FIFO replacement.

4.3 VPT Implementation

In order to emulate the target drive, we have to delay disk requests completing on the

(virtual) drive attached to our test virtual machine. In order to calculate the expected completion

time, we must track the distance the disk head will travel between sectors, the time of service

initiation, and if we are modeling cache effects, predict if the requests would be in the cache. The

virtual SCSI drive exported by KVM/QEMU has a Symbios Logic 53C8XX controller. We attach a

jprobe on sym53c8xx queue command() to capture information about requests headed down the disk

path and we attach an iprobe on scsi done(). The jprobe location was chosen because it is after the

request leaves the disk scheduler but before the general scsi interface sends the request down to the

disk. Note the virtual machine devices are different from the target devices. Therefore, we want to

abstract away any characteristics of the virtual machine device or device drivers that might interfere

with the model. The iprobe location was chosen because it is the last call before the block layer

receives the completed request. Further, the iprobe, by design, must replace an existing function and

scsi done() is a one line function that calls blk complete request(). This makes it an ideal target for

interception. We also use two queues in our implementation: the “gone-to-disk” and “wait” queues.

Their uses will be described below.

Our jprobe examines each request to calculate the expected completion time, based on the

linear model of the target disk, a specified scale factor (k), the seek distance between the previous

and present requests, and the cache model, if such is in use. To implement VPTs in a kernel

modules, without modifying the kernel source, we are not able to modify the struct request to hold

any VPT data. Therefore, we use the “gone-to-disk” queue to place the information about the

request, including the expected completion time, the system time when the request should return

to the application.

The expected completion time, is calculated using the linear seek model multiplied by the

24

current scaling factor, k. The seek distance in the model is the number of sectors between the

current request and the previous request, dv, divided by the total number of sectors on the virtual

disk, Dv. If both queues are currently empty (meaning the virtual disk is not processing requests),

the expected completion time is added to the current system time to form the expected return

time for this request. Otherwise, at least one queue contains elements, and we add the expected

completion time to expected return time of the newest element in the queues to form the expected

return time for this request. Once the expected return time is calculated and the entry added to

the “gone-to-disk” queue, the jprobe returns and normal system execution resumes.

After the disk services the request, the completion interrupt handler will send the request

back to the application. In the call path of the interrupt handler, the request will be passed to

scsi done() and the iprobe will assume control. Our iprobe attaches to a function that is inside the

interrupt handler, and therefore we want to minimize the computational time this step takes. We

remove the request entry from the “gone-to-disk” queue and check the expected return time. If this

time is in the future, δ = k ·Tr−Tv > 0, we add the disk request to the “wait” queue. If the expected

arrival time is in the past, δ < 0, we send the request to blk complete request(). Afterwards, the

iprobe returns back to the caller. It is important to highlight, that in the usual case, when we place

a request on the “wait” queue, we have removed this request from the normal call path.

In order to eventually remove the request for the “wait” queue, we use a high-resolution

kernel timer, that periodically checks for requests with expected delivery times that have recently

been passed by the system time. We removes these requests from the queue and send them to

blk complete request(). At this point, the requests have been inserted back into the normal call

path.

The standard Linux kernel timer accuracy is constrained to the kernel jiffies counter resolu-

tion. (In most systems today this is 1000Hz.) A kernel timer does not provide enough resolution for

accurate modeling of a disk unless the scale factor is unreasonably large. The hrtimer infrastructure

[16] was introduced into the Linux kernel to take advantage of High Precision Event Timers, which

first appeared in PC chipsets in 2005 and offers counter resolution in excess of 10 MHz.

Note that with the removal and delayed insertion of the requests, we delay the requests

to match a linear model specified for a target physical disk. This effectively slows down the disk

performance without any changes to the hardware, drivers, or stock kernel.

25

4.3.1 Concurrency Issues

Two concurrency issues must be addressed to ensure proper delivery of all requests in order:

concurrent access to the queues and handling of multiple, stacked disk interrupts. The former,

concurrent access to the queues, is addressed by using interrupt disabling spinlocks in the code

segments not inside an interrupt handler.

The more interesting challenge is handling multiple interrupts that may be triggered while

the disk interrupt handler is running. On an SMP system with the Intel APIC, the APIC may

trigger multiple interrupts on multiple processors. Further, an interrupt handler running on one

processor may be interrupted by another interrupt handler, resulting in stacked interrupts. The

kernel interrupt processing allows only one handler per interrupt line IRQ to be running on the

entire system at any time.

Because we attach an iprobe, the interrupt handler path for the disk request is interrupted

with an exception (the normal triggering of a kprobe), thus temporarily changing the context. This

is something that by design does not occur in a normal Linux kernel. Fortunately, the kernel relies

on set flags per interrupt to determine if a handler is active. Therefore, when the handler path

transitions from the hardware IRQ context to the kprobe context, the kernel is still able to identify

that the handler for that particular interrupt line is running. Thus, we are ensured all requests are

delivered correctly.

4.3.2 Dynamic Scaling

The iprobe attached to scsi done() provides the ideal place to add dynamic scaling infras-

tructures. Whenever we send the request to blk complete request() and bypass the “wait” queue, the

request arrived after the expected return time (δ > 0). This indicates that the scaling factor is too

low, and we should increase it. Nevertheless, we should also consider the possibility that the extra

delay was due to a temporary change in the underlying host infrastructure. Thus, we keep track of

the number of late requests in the last 1000 requests. When more than 1% of the requests arrive

late, we increase the scaling factor. This also provides the ability to decrease the scaling factor,

if the underlying host infrastructure has allowed for faster service times. If less than 0.1% of the

requests miss the expected delivery time then we decrease the scaling factor.

26

In addition to ioctl(), the Linux kernel provides the sysfs /sys directory for communication

with the kernel through file I/O. Our VPT kernel module registers with the sysfs infrastructure to

provide user level access to tune the scaling parameters. We provide the ability to read and set the

current scaling factor, k. Due to the changes in virtual disk performance that can occur, it is possible

that the scaling factor could change during performance measurements. We provide two facilities

to deal with this: the ability to disable dynamic scaling and the ability to report the percentage of

requests with missed delivery times. Before doing any performance measurements, we run warm-up

workloads to allow for the VPT to stabilize the scaling factor. After the scaling factor is stabilized,

we can disable the dynamic scaling. By having the VPT report the percentage of missed requests,

we can determine the accuracy of the performance measurements.

4.3.3 Cache Model

The final piece to the VPT implementation is the shadow cache model. High performance

disks typically utilize an on-bard cache with pre-fetching to increase performance. Cache reads have

no seek time, just the time needed to retrieve the data from the cache. The implementation of

the shadow cache model resides in the jprobe. Recall, that we calculate the expected delivery time

on the down path of the request; the code on the up path is solely responsible for delivery of the

requests. To the jprobe, we add the simplified cache model, describe in Section 4.4.2.

We keep an array of cache segments, equal in length to the number of cache segments in the

target real disk. Each index of the array represents a cache line and stores the range of the sectors on

the disk that should reside in the target disk’s cache. Before we calculate the expected completion

time, we check to see if this request should be in the cache of the target disk model. If the request

resides entirely in the disk cache, we set the expected completion time to 250 microseconds, instead

of using the linear model calculation. The cache model is not changed. If the read request was not

in the cache, we use linear model calculation and update the cache model. We add the request to

array of cache segments, overwrite the cache segment with the oldest inserted (not accessed) data.

For requests where the data is larger than a single cache line, we followed the cache model described

in Section 4.4.2 and assume wrap-around with over-write within the segment.

27

4.4 Case Study

To test the viability of our Virtual Performance Throttle, we use it to predict the perfor-

mance of a collection of disk scheduling algorithms, one of which is new. We compare the perfor-

mance of each algorithm as measured on a virtual machine employing a VPT with its performance

as measured on a real machine.

4.4.1 CATS

The cache-aware table scheduler (CATS) is a new disk scheduling algorithm first reported

in [10]. It is a modified version the table-building bus driver (TBBD) algorithm suggest by Geist,

Steele, and Westall [15]. The essential features are these:

1. It uses an O(n2) dynamic programming algorithm to compute a statically optimal completion

sequence for the current list of n requests and then server the first segment in the list.

2. It uses a busdriver delay. That is upon request completion, it will delay for a few milliseconds

to see if the requesting process will send another request for a nearby location.

3. It includes the simplified shadow cache, which is modeled by the number of segments, sectors

per segment, and pre-fetch size. If any pending request is predicted to be a cache hit, it

preempts the optimal order and is scheduled immediately.

Details may be found in [10].

4.4.2 Platform

The real test platform used in our study was a Linux (2.6.30) system with two, Intel Xeon

2.80GHz processors, 1 GB main memory, a Western Digital IDE system drive and two external

Seagate Cheetah 15K.4 SCSI drives, each with its own Adaptec 39320A Ultra320 SCSI controller.

Tests were restricted to a single Cheetah drive. The disk is a model ST373454 with 4 recording

surfaces and a formatted capacity of 73.4 GBytes. It rotates at 15,000 rpm yielding a rotation time

of 4 ms. The disk has 50,864 tracks per recording surface and was formatted at 512 bytes per sector.

To approximate the linear service time at the macroscopic level, we disabled the on-board

cache, opened /dev/sda using the O DIRECT mode, which forces a by-pass of the main memory

page buffer cache, and read 100,000 randomly selected pages across the entire disk. The time

28

required to read each page and the distance in sectors from the previously read page were captured.

We sorted this data in order of increasing distance and plotted distance versus time. The result was

a reasonably linear band of noise approximately 4 ms in width. The data was then smoothed using

a filter that replaced each point with the average of the (up to) 1001 points centered at the point in

question. The filtered data and the least squares approximation to it are plotted in Figure 4.2. The

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140

A
cc

es
s

tim
e

in
 m

s

Distance in millions of sectors

 Observed
Least Square Fit

Figure 4.2: Stochastic sector to sector costs

linear model, obtained from the sampling, is Tr = 4.25 + 5.25(dr/DR).

The Cheetah manual [26] indicates that 7,077KB is available for caching, which yields 221

512-byte sectors per segment. We assumed that a single span of requested sectors, plus the pre-

fetch, would be cached in each segment. Single request spans larger than 157 sectors (221-64) were

rare in our workloads, but for those cases we assumed a wrap-around with over-write within the

segment. To determine the access time when a request is in the cache, we examined the service

time distribution of a large collection of single-sector requests, independent of any trace, and found

a prominent initial spike at 250 microseconds.

The KVM-based virtual machine was hosted on an IBM 8853AC1 dual-Xeon blade. It was

configured with a 73GB virtual SCSI disk, for which the available emulator was an LSI Logic /

Symbios Logic 53c895. The virtual disk image was stored on a NetApp FAS960c and accessed via

NFS. We used the sampling process used on the target physical disk on the VPT-enabled virtual

disk to obtain a sector to sector cost. Figure 4.3 shows the comparison of the physical and virtual

sampling. The two samplings are close to one another, and the virtual sampling is nearly identical

29

to the least square fit of the physical sampling. The linear model for the VPT disk sampled, with k

set to 10, is Tv ≈ 42.5 + 52.5(dv/Dv) = 10 · Tr.

 0

 2

 4

 6

 8

 10

 0 20 40 60 80 100 120 140

A
cc

es
s

tim
e

in
 m

s

Distance in millions of sectors

 Physical
 Virtual

Figure 4.3: Comparison of Sector to Sector Costs of Physical and Virtual Disks

4.4.3 Workload

We compared the performance of our cache-aware, table-scheduling (CATS) algorithm with

Linux schedulers cfq and deadline on both real and virtual platforms. For the virtual machines, once

the scale factor was established, by self-scaling on a preliminary workload, it was fixed for each of

the CATS, cfq, and deadline schedulers. The delay timing parameters for the schedulers are tunable

through the sysfs interface with the exception of one parameter in cfq. We could avoid recompiling

the kernel for CATS and deadline. We choose to recompile the kernel for cfq, since ignoring any

tuning parameter would reduce the accuracy of the measurements.

We used two workloads in this study. Both were similar, at the process level, to that used

by Geist, Steele, and Westall [15], which was based on the approach used by Barford and Crovella [1]

in building their Scalable URL Reference Generator (SURGE) tool. Each of 50 processes executed

an ON/OFF infinite request loop, shown in pseudo-code in Figure 4.1.

30

forever {
generate a file count, n, from Pareto(α1, k1);
repeat(n times) {

select filename using Zipf(N);
while(file not read) {

read page from file ;
generate t from Pareto(α2, k2);
sleep t milliseconds;

}
}

}
Listing 4.1: ON/OFF execution by each of 50 concurrent processes

The Pareto(α,k) distribution is a heavy-tailed distribution often encountered in network

modeling. The distribution function is

FX(x) =











1− (k/x)α x ≥ k

0 elsewhere
(4.1)

The discrete Zipf distribution is given by

p(i) = k/(i+ 1), i = 0, 1, ..., N (4.2)

where k is a normalizing factor, specifically, the reciprocal of the N + 1st harmonic number. A

continuous approximation,

FX(x) =
log(x+ 1)

log(N + 2)
0 ≤ x ≤ N + 1 (4.3)

suffices for our study.

File count parameters were taken directly from the Barford and Crovella study, (α1, k1) =

(2.43,1.00). The shape parameter of the sleep interval, α2 = 1.50, was also taken from this study,

but we used a different scale parameter, k2 = 2.0, because our sleep interval was milliseconds per

block rather than seconds per file.

Both the virtual SCSI drive and the Cheetah drive were loaded with 1 million files in a

two-level directory hierarchy where file sizes were randomly selected from a mixture distribution

also suggested by Barford and Crovella. This mixture distribution is lognormal(9.357,1.318) below

31

133 KB and Pareto(1.1,133K) above, where the lognormal(µ,σ) distribution function is given by:

FY (y) =

∫ y

0

e−
(loget−µ)2

2σ2 /(tσ
√
2π)dt y > 0 (4.4)

To induce reasonable fragmentation, we erased a half million files, selected at random, and then

added back a half million files with different, randomly selected sizes. Due to the relatively small

capacity of these drives, we chose to truncate at 100 MB any files that would have exceeded that

size.

For each algorithm, for each test run, we captured the arrival times, service initiation times,

and service completion times of 50,000 requests. We captured these time stamps by directly instru-

menting the kernel outside of the schedulers, and, during each test run, we stored the time stamps

to a static kernel array. The time stamp data was extracted from the kernel array after the test run

by using a custom system call.

The two workloads were identical at the process level but decidedly different at the drive

level. For the first, each file was opened with mode flag O DIRECT. This forced the associated I/O

to by-pass the main memory page buffer cache. The second workload differed from the first only in

that the O DIRECT flag was not used. The page buffer cache, a standard feature of UNIX-derivative

operating systems, is dynamic and can grow to become quite large. For tests described here, 65MB

was often observed.

Finally, although the Cheetah drive supports tagged command queuing (TCQ), we disabled

it for all tests. We found that, for all schedulers, allowing re-scheduling by the drive hardware

decreased performance. We would have thought this to be an anomaly, but we have observed the

same result for other SCSI drives on other Linux systems.

4.4.4 Results

The results for the first workload, using O DIRECT, are shown in Table 4.1. We see that the

virtual system uniformly predicted higher mean service, higher mean response, and lower through-

put than was found from measurements of the real system. Nevertheless, on all three measures,

the predicted performance rank of the three algorithms was correct: CATS performs better than

deadline, which performs better than the Linux default, cfq. Thus algorithm selection could be made

solely on the basis of the virtual system predictions.

32

real virtual (k=8)
algorithm cats deadline cfq cats deadline cfq

mean service (ms) 1.96 2.71 1.39 2.58 3.24 2.36
variance service 8.51 9.76 5.85 9.03 8.23 7.78

mean response (ms) 37.35 59.87 124.70 53.79 78.27 117.13
variance response 6961.50 561.15 839270.49 16641.07 633.28 28651.71

throughput (sectors/ms) 8.19 6.08 2.19 6.15 5.06 3.38

Table 4.1: Performance on O DIRECT workload.

Also, although response time moments show considerable differences between real and vir-

tual, overall response time distributions for real and virtual systems are reasonably close to one

another as seen in Figure 4.4.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Response Time in ms

CATS(r)
CATS(v)

deadline(r)
deadline(v)

cfq(r)
cfq(v)

Figure 4.4: Distribution of Response Times of O DIRECT Workload

We also gauged the effectiveness of the shadow cache in predicting real cache hits by placing

record markers within the captured time stamp trace of the CATS scheduler on all records that

were predicted by the shadow cache to be hits. We then processed the CATS trace and marked any

record with service time below 250 microseconds as an actual hit. We found that the shadow cache

correctly predicted 97% of the 31,949 actual hits observed.

When I/O is staged through the main memory page buffer cache (the second workload),

the results are decidedly different, as shown in Table 4.2. Again the virtual system uniformly

overestimated mean service time and mean response time and underestimated throughput, but again

33

real virtual (k=8)
algorithm cats deadline cfq cats deadline cfq

mean service (ms) 6.53 7.41 7.80 7.15 7.60 8.57
variance service 11.13 8.80 17.62 6.22 6.05 10.30

mean response (ms) 114.91 121.87 179.17 189.45 198.33 258.75
variance response 8080.16 3296.87 35349.39 19292.52 6839.66 65796.33

throughput (sectors/ms) 12.00 12.04 9.08 11.44 11.68 8.82

Table 4.2: Performance on non-O DIRECT workload.

it correctly predicted the performance rank of all three algorithms on all three measures. Again,

overall response time distributions for real and virtual systems are reasonably close to one another,

though not as close as the distribution of the O DIRECT workload, as seen in Figure 4.5.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

Response Time in ms

CATS(r)
CATS(v)

deadline(r)
deadline(v)

cfq(r)
cfq(v)

Figure 4.5: Distribution of Response Times of non-O DIRECT Workload

The error in estimation obtained from the virtual system can be attributed to two factors.

First, recall that for requests that are serviced from the cache model, we adjust the expected comple-

tion time to 250 microseconds, as this is the maximum access time we observed for cache hits from

the sampling. However, the mean access time all of the cache hit requests in the sampling is half of

the maximum access time, 125 microseconds, with a variance of 0.002. The error in the results could

be reduced by lowering cache hit access time. Reducing the expected completion time for cache hits,

unfortunately, requires the scale factor, k to be increased to bring the expected completion times up

to the service times of the virtual disk.

34

The VPT also incurs overhead in the virtual system and the expected completion time

is only measured up to when the request arrives at scsi done(), not when it is returned to the

application. On an idle system, this extra work incurs negligible extra service time. On a heavily

used system (such as our virtual machine running the workload), this overhead can impact service

times as much as 2ms (unscaled). This overhead also impacts cache hit requests, since their access

times are much smaller than cache miss requests. As the scaling factor is increased, the impact of

the overhead diminishes and the error is reduced. Accounting for the overhead in the VPT module

is possible, but it also requires the scale factor to be increased. To minimize the error (improve

absolute accuracy in performance predictions) requires a larger scale factor and consequentially,

slower performance runs.

35

Chapter 5

Virtual Operating Systems Lab

5.1 The Virtual Lab

With the virtual architecture in place, we are now able to deploy a KVM-based, virtual PC

lab in which the virtual PCs export the entire systems-level interface required for CPSC 822. As a

result, the third offering of Virtual CPSC 822 is underway as of this writing. The virtual PC lab is

hosted on only 6 IBM 8853AC1 dual-Xeon blades in a 42-blade eServer BladeCenter.

Of course, KVM alone does not allow for emulation. It must be used in conjunction with a

user-space program, QEMU [3]. Other tools such as libvirt [21] and the Virtual Machine Manager

[30] allow for easy creation, deployment and management of virtual machines, but we chose not to

use these. We have found that custom scripts give us the control that we need while still providing

the students with a simple interface through which to access their virtual machines.

5.1.1 Creating and Maintaining VMs

Creating a KVM virtual machine first starts with creating a virtual hard disk. Listing 5.1

shows the QEMU command for creating a virtual, 30GB hard disk. The -f option specifies the file

format. For our virtual lab, we chose to use the qcow2 format. One benefit of this format is the

minimal footprint it leaves on the physical drive. It will only use space on the physical drive for

those bytes actually allocated in the virtual disk.

Next, the empty virtual disk must be loaded with a base operating system, in this case

36

CentOS 5, 64-bit. The command is shown in Listing 5.2.

qemu−img create −f qcow2 822master.img 30G

Listing 5.1: Creating a Disk Image

qemu−system−x86 64 −drive file=822master.img,if=scsi,bus=0,unit=0
−cdrom CentOS 64−5.iso
−boot d −m 4096

Listing 5.2: Installing CentOS 5 on a Virtual SCSI Disk

Note that the drive type is specified as SCSI, not the default IDE, because CPSC 822

includes a full traversal and detailed examination of the SCSI read path. A minor drawback to

this particular installation command is that the automatic re-boot afterward fails, but the system

is easily re-booted thereafter as shown in Listing 5.3.

qemu−system−x86 64 −drive file=822master.img,if=scsi,bus=0,unit=0,boot=on

Listing 5.3: Launching a VM with a SCSI Hard Disk

The BladeCenter, on which the virtual machines are located, is isolated from the main

campus network via a gateway machine accessible through SSH. Each two-person team of students

is given a lab account that is unique to the BladeCenter. Accounts are synchronized among blades

with NIS (Network Information Service). Home directories are shared across all blades by NFS

(Network File System) from a NAS (network-attached storage) device.

A virtual machine image is placed in each team’s home directory. Rather than a full image,

we use a clone image. The qcow2 image format allows for multiple clone images to use a common

base master image. When a virtual machine using a clone image reads an original file, it reads from

the master image. When a virtual machine writes a file, the copy-on-write is executed and the new

contents are written to clone image. After the copy-on-write, only the clone image is accessed when

either a read or write is executed on the modified file. The command to create a clone image from

a base master image is shown in Listing 5.4.

For 26 students in pairs we still require a minimum of 13 virtual machines, each with a

full CentOS 5 installed. The full installation occupies approximately 6 GB, much of which remains

read-only throughout the semester, and thus the use of the clones saves approximately 72 GB per

set of virtual machines.

37

qemu−img create −b 822master.img −f qcow2 822lab.img

Listing 5.4: Creating Clone Images

Nevertheless, in our lab environment, saving space comes at the cost of performance. When

all 13 virtual machines are actively accessing the virtual disks, the master/clone images become a

point of contention and hence performance degradation. We measured the time required to build a

full Linux 2.6.30 kernel on a clean source tree in two environments: 6 virtual machines with stand-

alone hard drives and 6 virtual machines sharing one master hard drive. The build time on the

cloned hard drives took approximately 45 minutes, but the build on the stand alone hard drives

took approximately 35 minutes, a 22% reduction. To balance performance and storage, we decided

to use only 2 clones per master image. This configuration still saves 36 GB and yields acceptable

performance.

5.1.2 Using the Virtual Machines

All students must first access the gateway before proceeding to a KVM-enabled blade.

Teams access a KVM-enabled blade by the go blue script (example in Listing 5.5) that is placed

in their home directories. Each script will SSH to a predetermined blade to provide some (static)

load-balancing across available blades. Each team has a password-less SSH key, and so they do not

need to re-enter their passwords when executing go blue. Teams could manually execute an SSH

command to access other blades in the BladeCenter, and we do not explicitly prevent this, but it

could be prevented by using the netgroups feature of NIS.

#!/bin/bash
ssh −Y blue30

Listing 5.5: go blue Script

To simplify launching virtual machines and to protect the students from themselves, we

provided the script start lab vm shown in Listing 5.6. The script checks for a lock file to prevent

multiple virtual machines from launching with the same primary virtual drive. Having multiple

virtual machines writing to a single virtual drive (a file) will result in data corruption and a system

crash.

38

#!/bin/bash

if test −f $HOME/kvm/.hd lock; then
echo ‘‘Oops...HD already in use !’’
exit 1

fi

touch $HOME/kvm/.hd lock
/usr/local/kvm/bin/qemu−system−x86 64 −m 512 \\

−drive file =$HOME/kvm/822lab.img,if=scsi,bus=0,unit=0,boot=on \\
−drive file =/home3/822lt00/kvm/usr local.img,if=scsi,bus=0,unit=1

rm $HOME/kvm/.hd lock
echo ‘‘VM Powered Off.’’

Listing 5.6: start lab vm Script

All virtual lab machines mount a second drive (usr local.img). This drive is shared among

all virtual lab machines. Throughout the course, the virtual lab machines need to be upgraded to

enable new lab exercises and major course projects. Launching each individual virtual machine and

making the changes would be a slow, tedious, and error-prone process. With a common shared

drive, changes only need to be made once. Unlike the primary drive, this image file has read-only

permissions. There will never be any writes to the virtual drive, and therefore it is safe for all lab

machines to mount this drive concurrently. However, the virtual lab machines cannot be running

when usr local.img is updated. To prevent teams from launching their virtual machines during these

maintenance periods, we use additional lock files in the team directories.

With this configuration, the virtual monitor is displayed on the student’s local machine

after being forwarded through an SSH X11 Tunnel. An alternative to this approach is to launch

the virtual machine as a daemon and direct the monitor through a VNC server. While this is the

default method used by Virtual Machine Manager, it is cumbersome to use in the virtual CPSC

822 lab. Since there is a gateway separating our BladeCenter from the network, the VNC ports are

not easily accessible. As with any operating system development, the virtual operating system will

crash often, and running the virtual machine as a daemon complicates the process of restarting and

power cycling.

While the SSH X11 Tunnel option is easy for students to use, it is CPU intensive, and this

can create a significant performance bottleneck on our 3.2 GHz, Pentium 4 (with Hyper-Threading)

39

gateway machine. Each tunnel requires packets to be copied back and forth between kernel and user

space and requires packets to be decrypted and encrypted. An alternative to SSH X11 Tunnels is to

use X11 Forwarding. X11 Forwarding does not use encryption, and the packets traveling through

the gateway machine are handled solely in kernel space. An example command sequence to use X11

Forwarding is given in Listing 5.7.

$ xhost +
$ ssh <gateway machine>
$./go blue
$ export DISPLAY=<ip of local machine>:0
$./start lab vm

Listing 5.7: Using X11 Forwarding to access VM monitor.

Six virtual machines using X11 Tunneling will maximize CPU usage (64.5% user, 31.4%

system, 4.1% idle) on the gateway machine. Six virtual machines using X11 Forwarding will use

only 32% of the CPU (0.1% user, 29.7% system, 70.2% idle) on the gateway machine.

5.2 Timing

A critical component of the course is accurately measuring subsystem response time and

throughput, such as measuring the performance of disk I/O under various scheduling algorithms.

With the 2.6.18 kernel provided in CentOS 5, the default clock source is based on the jiffies counter

and a programmable interrupt timer (PIT). Under heavy load, this clock source is inaccurate. When

performing a full kernel build (make bzImage, make modules, make modules install, make install) on

a clean kernel source tree, one can easily find the system time in the virtual machine to be skewed

by over 60 seconds forward or backward from the host system time. Clock skews into the future

confuse the make system, and this can yield incomplete builds. Thus, in order for a kernel build

to work properly, the build directory must be cleaned before the next build attempt. This can be

an expensive operation, and it negates the benefits of incremental compilation and linking. With

both forward and backward clock skewing, timing measurements will be inaccurate, resulting in all

time-related performance measurements being unreliable.

The cause of the skew is that when the system is under heavy load, some PIT interrupts will

be missed, and the hypervisor will attempt to re-inject the interrupts. The re-injections can cause

the clock to skew either forward or backward. QEMU supports the option -no-kvm-pit-reinjection,

40

which will disable reinjection of the interrupts into the virtual machine. Launching QEMU with

this option will guarantee that the clock will not skew forward, and this prevents incomplete builds

resulting from a confused make system, but it still allows the clock to skew backward.

A paravirtualized clock was introduced into the mainline 2.6.26 Linux kernel for use with

KVM-based virtual machines to solve clock skewing in both directions. When this option is compiled

into the kernel (CONFIG PARAVIRT CLOCK=y) and is running inside a KVM virtual machine,

the OS will receive the TSC information from the hypervisor when updating the system time. We

find that with the paravirtualized clock, the system time in the virtual machine is always within

milliseconds of the system time on the host machine. This may not be accurate enough for networking

performance measurements. Nevertheless, for disk scheduling performance measurements and using

the make system, it suffices.

5.3 Performance

A standard issue in virtualization of any system is the resulting performance penalty. While

KVM utilizes the native virtualization features of Intel VT and AMD-V, it still relies on QEMU

for providing the interface to the virtual system, and this may introduce a significant performance

penalty. In estimating the penalty, it is important to realize that a host system may migrate virtual

machines among different cores on the system. The Linux utility taskset allows a user to set (or

change) a process’s CPU affinity or pin that process to one or multiple virtual CPUs. An example

invocation of taskset is shown in Listing 5.8. The command arguments are a bitfield to specify target

CPUs and the process to launch, along with its parameters.

taskset 0x11 ./ light8 ii9 .ex.perked > out.lit

Listing 5.8: Launching a program pinned to the virtual CPUs 0 and 5

Since a virtual machine is actually a process on the host, it can pinned to a group of CPUs in

the same manner as any other process. The dual-Xeon blades on which we are deploying the virtual

machines are based on the Core 2 Quad architecture. In this processor architecture, a pair of cores

shares an L2 cache, and there is no L3 cache. In our testing, we chose to pin each virtual machine

to a pair of cores, as this prevents a migration that involves moving across physical processors or

moving across L2 caches. Listing 5.9 shows a virtual machine configuration with 1 CPU pinned to

41

the first pair of cores on the blade.

taskset 0x3 qemu−system−x86 64 −drive file=822kvm.img,if=scsi,bus=0,unit=0,boot=on

Listing 5.9: Launching a VM pinned to 2 cores with shared L2 cache

For tests on the real machine, we pinned the workload process to the first pair of cores on

the blade. For tests on the virtual machine, we pinned the VM process as in Listing 5.9. Since our

principal interest was the computational penalty from KVM, rather than the I/O penalty from the

combined effects of KVM and QEMU, our test workload was a compute-intensive application taken

from three-dimensional computational fluid dynamics (CFD) [14]. Table 5.1 shows the results of

running the CFD code on the real and virtual machines. We see a performance penalty of 2.71%

(without CPU affinity) and 0.05% (with CPU affinity) for running the CFD code inside a virtual

machine.

On the Metal In the VM
Unpinned 1634.56 1678.88
Pinned 1651.86 1652.68

Table 5.1: Runtime in seconds of CFD code for various configurations

5.4 Virtual Device Generation Utility

A time consuming and tedious part of the maintenance of the Virtual CPSC 822 lab is the

creation of new graphic cards and documentation every semester. The instructor who uses problems

from a previous semester is guaranteed to receive a solution from a previous semester! Design a new

(virtual) graphics card is a tedious process. Default register values must be recalculated and register

values, names and locations must be changed in several locations.

To reduce these difficulties, we provide a browser-based graphical user interface for config-

uring a Virtual PCI graphics card. Figures 5.1 and 5.2 show two dialogs of the user interface. The

GUI provides the user (course instructor) the capabilities to:

• Changed general device properties. (Card Name, Author, PCI IDs, IRQ Number)

• Change register locations (layout in memory) with a drag ’n’ drop interface.

• Change register bitfield layouts with a drag ’n’ drop interface.

42

• Edit register names.

• Create, save, and load card specifications.

• Generate documentation and source code for the loaded card specification.

There are two motivating factors that led us to build the utility as a web application:

deployment and rapid prototyping. Since the application is web based, it allows us to work on

card specifications on any Internet-connected machine without having to install the utility and its

dependencies. Further, card specifications are stored on the remote server, removing the need to keep

track of where the card specification files are located. It integrates version control at no cost. The

user interface was created with HTML, CSS, Javascript and the JQuery and JQuery UI javascript

libraries. The libraries allow for simplified, yet flexible, browser side scripting and UI creation. For

instance, the libraries provide utilities to easily create the interfaces, interactively move and swap

registers, and interactively rearrange the bitfields of a particular register. Therefore, it required

minimal coding to achieve the results.

The back-end generation of source code and documentation relies on two components: the

card specification and a template of virtual card and documentation. After designing several virtual

graphics cards, we were able to identify common areas of the source code and documentation that

remained the same, and also areas that always changed. From this knowledge were able to create

a template version of the virtual card with the known variables marked for replacement. With the

template in hand, we simply use the card specification as a way to replace the marked variables with

the specified values. Each offering of Virtual CPSC 822 has used a different virtual graphics card.

43

Figure 5.1: Layout of device registers in memory.

Figure 5.2: Bitfield layout of a register.

44

Chapter 6

Conclusions

We have provided the design and implementation of a virtual architecture that allows

system-level, functional emulation of high-performance graphics cards for the purposes of driver

design and development. We have tested this architecture on a class of graduate students who were

given the task of writing a driver and most did not even realize that the card was virtual. Rendering

performance through the virtual card was not strong, but acceptable for the purposes of instruction

and development.

We conclude that we have met design goals for the virtual card project, with one exception:

the goal of implementing this architecture with zero changes to the standard Linux kernel was

missed, by a single word. In the 2.6.26 and newer kernels, do page fault() is declared with the

kprobes qualifier, which precludes the use of kprobes to intercept this function. The concern is an

infinite recursion, should the kprobe handler page fault. Our handler writes only to a page table,

which will not fault, and so we simply remove the declaration and intercept as planned. Nevertheless,

this (removal) is a one-word kernel modification. It is worth noting, that a carefully crafted kernel

module could replicate the kprobe and jprobe functions responsible for installing new kprobes into

the system minus the check for the kprobes qualifier. While this would achieve our goal of a zero

modifications to the kernel, this code is difficult to maintain and not worth pursuing for a virtual

lab environment.

We believe that this system can have significant impact on the process of driver design.

Driver design, development and testing could proceed in parallel with new hardware development,

thus reducing time to market for new PCI products.

45

We have also developed Virtual Performance Throttles (VPTs) to perform performance

measurements on virtual hardware with relative performance to physical hardware. Our VPTs

provide a method for predicting the performance of algorithms on real machines using a model

based only their measured performance on virtual machines. By using a dynamically loaded kernel

iprobe and jprobe, our VPT can adjust low-level virtual device timings to match that of a simple

model derived from the real device. As a case study, we predicted the performance of three disk

scheduling algorithms, one of which is new.

Although the virtual system was seen to uniformly underestimate performance, it correctly

predicted the relative performance of the three algorithms as measured on a real system under

two workloads. It it fair to charge that we are simply using a virtual machine running Linux

as an elaborate simulator. This is a fair claim, but this simulator provides all the nuances of a

real operating system and yet requires only minimal coding effort. A low-level model of device

performance and the drop-in iprobe and jprobe are all that is required.

We believe that VPTs have potentially broad application to measuring of real systems using

only virtual systems and simple models. VPTs can be used to obtain relative performance mea-

surements of devices while designing algorithms. Only when testing required absolute performance

measurements, would the real systems be used. Thus, saving resources and allowing better resource

allocation of the real systems.

Further, we believe that both tools also have great application in academic instruction. The

Virtual PCI Framework allows students to design device drivers for high performance graphics card

and the Virtual Performance Throttles allow students to design and test new disk schedulers on a

high-end SCSI drives without the need for dedicated resources or the physical devices. Therefore,

we are underway in using a virtual lab for CPSC 822. The virtual environment we have built allows

for larger enrollment, better resource utilization, less administration, and discourages students from

seeking alternative methods to complete assignments.

The virtual lab is KVM-based, hosted on only 6 dual-Xeon blades, and provides the exper-

imental platforms for many graduate students. Some relatively simple, custom shell scripts manage

resource allocation and provide good performance, even under relatively heavy loads. Most of the

difficulties that arise in having students work at the systems level on virtual machines have been

overcome.

46

Current development is proceeding with the goal to extend the reach of virtualization. We

are exploring virtualizing CUDA-capable NVIDIA graphics cards. The goal is to present to a user

of a physical or virtual machine a single CUDA/OpenCL capable graphics card that, hidden to the

user, is either a portion of a physical card or a combination of multiple graphics cards. This will

allow us to extend the benefit of the virtual lab to other courses and potentially as a way to increase

the availability of CUDA devices by virtually partitioning devices, for research.

47

References

[1] Paul Barford and Mark Crovella. Generating representative web workloads for network and
server performance evaluation. SIGMETRICS Perform. Eval. Rev., 26(1):151–160, 1998.

[2] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauery, I. Pratt, and
A. Warfield. Xen and the art of virtualization. In Proc. 19th ACM Symp. on Operating System
Principles, pages 164–177, Bolton Landing, New York, October 2003.

[3] Fabrice Bellard. Qemu, a fast and portable dynamic translator. In ATEC ’05: Proceedings of
the annual conference on USENIX Annual Technical Conference, pages 41–41, Berkeley, CA,
USA, 2005. USENIX Association.

[4] R.E. Bellman. Dynamic Programming. Dover Publications, Incorporated, 2003.

[5] E. G. Coffman and E. N. Gilbert. Polling and greedy servers on a line. Queueing Systems,
2:115–145, 1987. 10.1007/BF01158396.

[6] E G Coffman and M Hofri. On the expected performance of scanning disks. SIAM Journal on
Computing, (11), 1982.

[7] J. Corbet, A. Rubini, and G. Kroah-Hartman. Linux Device Drivers. O’Reilly Media, Inc.,
Sebastopol, CA, 3rd edition, February 2005.

[8] R. Creasy. The origin of the VM/370 time-sharing system. IBM Journal of Research & Devel-
opment, 25(5):483–490, September 1981.

[9] R. Geist, Z. H. Jones, and J. Westall. Virtualizing high-performance graphics cards for driver
design and development. In Proc. 19th Annual Int. Conf. of the IBM Centers for Advanced
Studies (CASCON 2009), Toronto, Ontario, Canada, November 2009.

[10] R. Geist, Z. H. Jones, and J. Westall. Predicting performance with virtual machines. In
Performance Evaluation of Computer and Communication Systems: Milestones and Future
Challenges (PERFORM 2010), Vienna, Austria, October 2010.

[11] R. Geist and R. Ross. Disk scheduling revisited: Can o(n2) algorithms compete? In ACM-SE
35: Proceedings of the 35th annual Southeast regional conference, pages 51–56, Murfreesboro,
TN, USA, 1997. ACM.

[12] Robert Geist and Stephen Daniel. A continuum of disk scheduling algorithms. ACM Transac-
tions on Computer Systems, (5), 1987.

[13] Robert Geist, Robert Reynolds, and Eve Pittard. Disk scheduling in system v. In SIGMETRICS
’87: Proceedings of the 1987 ACM SIGMETRICS conference on Measurement and modeling of
computer systems, pages 59–68, New York, NY, USA, 1987. ACM.

48

[14] Robert Geist, Jay Steele, and James Westall. Convective clouds. In Natural Phenomena 2007
(Proc. of the Eurographics Workshop on Natural Phenomena), pages 23–30, 83, back cover,
Prague, Czech Repubilc, 2007.

[15] Robert Geist, Jay E. Steele, and James Westall. Enhancing web server performance through
the use of a drop-in, statically optimal disk scheduler. In Int. CMG Conference, pages 697–706.
Computer Measurement Group, 2005.

[16] Thomas Gleixner and Douglas Niehaus. Hrtimers and Beyond: Transforming the Linux Time
Subsystems. In Proceedings of the Linux Symposium, Ottawa, Canada, volume 1, pages 333–346,
2006.

[17] G. Humphreys, M. Eldridge, I. Buck, G. Stoll, M. Everett, and P. Hanrahan. Wiregl: A scalable
graphics system for clusters. In Proc. ACM SIGGRAPH 2001, pages 129–140, August 2001.

[18] A. Kivity, Y. Kamay, D. Laor, U. Lublin, and A. Liguori. kvm: the Linux virtual machine
monitor. In Proceedings of the Linux Symposium, pages 225–230, Ottawa, Ontario, Canada,
July 2007.

[19] H. Kobayashi. Modeling and Analysis. An Introdution to System Performance Evaluation
Methodology. Addison-Wesley, 1978.

[20] H. Lagar-Cavilla, N. Tolia, M. Satyanarayanan, and E. de Lara. VMM-independent graphics
acceleration. In Proc. ACM Conf. on Virtual Execution Environments, pages 33–43, San Diego,
California, June 1315 2007.

[21] libvirt. libvirt: The Virtualization API. http://www.libvirt.org/, 2009.

[22] A. Mavinakayanahalli, P. Panchamukhi, J. Keniston, A Keshavamurthy, and M. Hiramatsu.
Probing the guts of Kprobes. In Proceedings of the Linux Symposium Volume Two, pages
101–116, Ottawa, Ontario, Canada, July 2006.

[23] Gerald J. Popek and Robert P. Goldberg. Formal requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421, 1974.

[24] Stephen Pratt and Dominique Heger. Workload dependent performance evaluation of the linux
2.6 i/o schedulers. In In Proceedings of the Linux Symposium, volume 2. Ottawa Linux Sympo-
sium, 2004.

[25] John Scott Robin and Cynthia E. Irvine. Analysis of the Intel R©Pentium’sTMability to support
a secure virtual machine monitor. In SSYM’00: Proceedings of the 9th conference on USENIX
Security Symposium, pages 10–10, Berkeley, CA, USA, 2000. USENIX Association.

[26] Seagate Technology LLC, Scotts Valley, CA, USA. Product Manual Cheetah 15K.4 SCSI, rev.
d edition, 2005.

[27] S. Stegmaier, M. Magalln, and T. Ertl. A generic solution for hardware-accelerated remote visu-
alization. In Proc. of the Joint EUROGRAPHICS - IEEE TCVG Symposium on Visualization,
pages 87–94, Barcelona, Spain, 2002.

[28] Texas Instruments. TVP4020 Permedia 2. http://ftp.netbsd.org/pub/NetBSD/misc/
cegger/hw manuals/3dlabs/, Aug. 1997.

[29] The virtual GL project. http://www.virtualgl.org/.

[30] VMM. Virtual Machine Manager. http://virt-manager.et.redhat.com/, 2009.

49

http://www.libvirt.org/
http://virt-manager.et.redhat.com/

[31] VMWare, Inc. Understanding full virtualization, paravirtualization, and hardware assist.
http://www.vmware.com/files/pdf/VMware paravirtualization.pdf, 2007.

[32] Bruce L. Worthington, Gregory R. Ganger, and Yale N. Patt. Scheduling algorithms for modern
disk drives. In SIGMETRICS ’94: Proceedings of the 1994 ACM SIGMETRICS conference on
Measurement and modeling of computer systems, pages 241–251, New York, NY, USA, 1994.
ACM.

50

	Clemson University
	TigerPrints
	12-2010

	A Framework for Virtual Device Driver Development and Virtual Device-Based Performance Modeling
	Zachary Jones
	Recommended Citation

	Title Page
	Abstract
	Dedication
	Acknowledgments
	List of Tables
	List of Figures
	List of Listings
	Introduction
	Organization of this Document

	Background
	Virtualization
	Kernel Modules and Character Devices.
	Kernel Probes
	Disk Scheduling

	Virtual PCI Framework
	Virtual Architecture.
	Rendering Performance.
	Student Performance.

	Virtual Performance Throttles
	Modeling a Disk Drive
	Virtual Performance Throttles
	VPT Implementation
	Case Study

	Virtual Operating Systems Lab
	The Virtual Lab
	Timing
	Performance
	Virtual Device Generation Utility

	Conclusions
	References

