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Abstract

Composite languages are composed of multiple sub-languages. Examples include the parser

specification languages read by parser generators like Yacc, modern extensible languages with com-

plex layers of domain-specific sub-languages, and even traditional programming languages like C

and C++. In this dissertation, we describe PSLR(1), a new scanner-based LR(1) parser generation

system that automatically eliminates scanner conflicts typically caused by language composition.

The fundamental premise of PSLR(1) is the pseudo-scanner, a scanner that only recognizes tokens

accepted by the current parser state. However, use of the pseudo-scanner raises several unique

challenges, for which we describe a novel set of solutions. One major challenge is that practical

LR(1) parser table generation algorithms merge parser states, sometimes inducing incorrect pseudo-

scanner behavior including new conflicts. Our solution is a new extension of IELR(1), an algorithm

we have previously described for generating minimal LR(1) parser tables. Other contributions of our

work include a robust system for handling the remaining scanner conflicts, a correction for syntax

error handling mechanisms that are also corrupted by parser state merging, and a mechanism to

enable scoping of syntactic declarations in order to further improve the modularity of sub-language

specifications. While the premise of the pseudo-scanner has been described by other researchers

independently, we expect our improvements to distinguish PSLR(1) as a significantly more robust

scanner-based parser generation system for traditional and modern composite languages.
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Chapter 1

Introduction

Grammar-dependent software is omnipresent in software development [21]. For example,

compilers, document processors, browsers, import/export tools, and generative programming tools

are used in software development in all phases. These phases include comprehension, analysis,

maintenance, reverse-engineering, code manipulation, and visualization of the application program

under study. However, construction of these tools relies on the correct recognition of the language

constructs specified by the grammar.

Some aspects of grammar engineering are reasonably well understood. For example, the

study of grammars as definitions of formal languages, including the study of LL, LR, LALR, and SLR

algorithms and the Chomsky hierarchy, form an essential part of most computer science curricula.

Nevertheless, parsing as a disciplined study must be reconsidered from an engineering point of view

[21, 22]. Many parser developers eschew the use of parser generators because it is too difficult to

customize the generated parser or because the generated parser requires considerable modification

to incorporate sufficient power to handle complex grammars such as the C++ and C# grammar.

Thus, industrial strength parser development requires considerable effort, and many approaches to

parser generation are ad hoc [35, 36].

In this dissertation, we address difficulties in the generation of scanner-based LR(1) parsers

for composite languages. Composite languages are composed of multiple sub-languages, each of

which may have a wholly different syntax. For example, the language of the parser specification file

read by the parser generator Yacc is composed of grammar productions and declarations but also

passages of the programming language C [9, 19]. Most traditional programming languages like C or
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C++ also contain minor sub-languages in the form of comments and literal strings [8, 10]. The need

for general techniques for parsing composite languages is growing with the popularity of modern

extensible languages, which may contain complex layers of sub-languages composed arbitrarily for

the requirements of specific domains [12, 13, 18, 40].

1.1 Problem Statement

Traditional scanner-based LR(1) parser generation encounters a serious difficulty for com-

posite languages. Specifically, there are often points in a parse at which the input character sequence

matches token definitions from multiple sub-languages. However, a traditional scanner has no auto-

matic mechanism for determining which sub-languages are currently valid and thus which tokens to

recognize. The result is one or more scanner conflicts that must be manually resolved or eliminated.

Unfortunately, traditional scanner-generator tools like Lex [9, 23] provide only weak or cumbersome

formal mechanisms for handling scanner conflicts, sometimes leading tool users to develop complex

ad-hoc solutions.

1.2 Contributions of the Work

In this dissertation, we describe PSLR(1) (Pseudo-scannerless Minimal LR(1)), a new

scanner-based LR(1) parser generation system that automatically eliminates many of the scanner

conflicts typically caused by language composition. Our PSLR(1) generator reads a unified scanner

and parser specification and then generates a deterministic minimal LR(1) parser with a tightly cou-

pled scanner that we call a pseudo-scanner. Unlike a traditional scanner, whose token recognition

power is limited to an FSA (finite state automaton), a pseudo-scanner’s power is augmented by the

parser’s stack. Specifically, the pseudo-scanner examines the current parser state, which indicates

the syntactic left context of the current point in the parse and thus indicates which sub-languages are

currently valid. By only recognizing tokens accepted by the current parser state, the pseudo-scanner

automatically eliminates conflicts with tokens from other sub-languages.

The premise of the pseudo-scanner has been described independently by several other re-

searchers [20, 27, 40]. As some of them note, use of the pseudo-scanner raises several new challenges.

For example, for many programming languages like C, keywords are reserved words. That is, a scan-
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ner is expected not to mistake a keyword for an identifier even if the keyword is erroneous in the

current syntactic left context. Unlike a traditional scanner, a pseudo-scanner makes this mistake by

default. For some of these challenges, we observe that existing solutions are similar to the solutions

we have devised for PSLR(1). In other cases, we feel that existing solutions are unintuitive for tool

users or have undesirable side-effects, so in this dissertation we describe alternative solutions.

No existing technique that we have reviewed handles the most difficult challenge of the

pseudo-scanner. All existing parser generation systems based on the premise of the pseudo-scanner

that we have found employ LALR(1), a popular LR(1) parser table generation technique that merges

parser states for efficiency. It is well know that merging parser states can render parser tables less

powerful than canonical LR(1) and thus less intuitive to the parser developer [15, 16, 17, 32, 33].

We observe that merging parser states also merges those states’ sets of acceptable tokens and thus

can induce incorrect pseudo-scanner behavior including new conflicts, undermining the pseudo-

scanner’s advantage over traditional scanners. As part of our preliminary work, we described and

implemented IELR(1), a minimal LR(1) parser table generation algorithm that eliminates parser

table inadequacies induced by LR(1) state merging but which does not consider the effect of LR(1)

state merging on a pseudo-scanner [15, 16]. In this dissertation, we describe an IELR(1) extension

to eliminate incorrect behavior induced in the pseudo-scanner as well.

Our work includes many other contributions to the field of parser generation. For example,

there can exist scanner conflicts that cannot be eliminated by the basic behavior of the pseudo-

scanner or by our IELR(1) extension. We describe a robust system for detecting such conflicts,

reporting them, and resolving them according to user declarations. We also describe syntax error

handling mechanisms for PSLR(1). One such mechanism that is relevant to both PSLR(1) and tra-

ditional scanner-based LR(1) is an LR(1) parsing algorithm extension that we call LAC (lookahead

correction), which overcomes syntax error handling problems caused by parser state merging. We

also describe a mechanism that enables scoped declarations, declarations like precedence and asso-

ciativity that are rendered effective only for particular portions of a grammar in order to improve

the modularity of sub-language specifications.

3



1.3 Thesis Statement and Evaluation

We have implemented our PSLR(1) generator as an extension of Bison [2], the GNU imple-

mentation of Yacc. In this dissertation, we refer to our extended Bison as PSLR(1) Bison. Internally,

Bison employs a traditional scanner-based LR(1) parser for analyzing its input parser specifications.

Thus, we initially implemented PSLR(1) Bison to employ traditional scanner-based LR(1) internally

as well. The language of these parser specifications is a challenging composition of multiple sub-

languages especially in the case of PSLR(1) Bison because it unifies scanner and parser specifications.

Thus, PSLR(1) Bison’s internal parser is itself a candidate for PSLR(1).

As part of the evaluation of our work, we have implemented PSLR(1) Bison’s internal parser

a second time using PSLR(1) instead of traditional scanner-based LR(1). We have also implemented

a PSLR(1) version of a traditional scanner-based LR(1) parser for SQL written by John R. Levine

for his text book, flex & bison [24]. For each of these parsers, we collect and compare readability and

maintainability statistics for the PSLR(1) specification versus the traditional scanner-based LR(1)

specification. In addition, we introduce a metric that we call lexical reveals, which measures the

corrections made by PSLR(1)’s IELR(1) extension, and we use this metric to examine four case

studies. The results from all of these studies support our thesis that PSLR(1) is a significantly

more robust parser generation system for composite languages than traditional scanner-based LR(1)

parser generation or the approach of coupling LALR(1) with a pseudo-scanner.

1.4 Dissertation Organization

We organize the remainder of this dissertation as follows. In chapter 2, we provide a more

detailed background on scanner-based LR(1) parser generation and composite languages. In chapters

3 and 4, we describe our PSLR(1) system and our evaluation of its success. In chapter 5, we review

the literature and compare PSLR(1) to several other modern systems for generating parsers for

composite languages. Finally, in chapter 6, we select the most well known and robust of these

systems, scannerless GLR, and analyze its advantages and disadvantages in order to explain how

PSLR(1) is more robust.
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Chapter 2

Background

In this chapter, we explain fundamental concepts on which PSLR(1) is based. In section

2.1, we clarify a few aspects of the notation that we employ. We discuss traditional scanner-based

LR(1) parser generation in section 2.2. In section 2.3, we discuss composite languages in terms of

traditional scanner-based LR(1) parser generation. We summarize in section 2.4.

2.1 Notation

In this paper, we italicize the first occurrence of a formal term that has already been

established by existing literature. We use bold italic to indicate original terminology that this

paper introduces. This distinction should help the reader determine when we are referencing known

concepts and when we are introducing new concepts.

We employ a mathematical notation that we feel communicates our formal models precisely

and succinctly. Most of our notation is standard and should be familiar to the reader. However, we

now disambiguate a few symbols that are not always used consistently in existing literature:

1. The symbol “:” is consistently read “such that.”

2. “{i : c}” is read “the set of all i such that c is true.”

3. “∃i : c” is read “there exists an i such that c is true.”

4. “∀i : c, s” is read “for every i such that c is true, s is true.”

5



Character
Sequence

//_^ ]\XY Z[Scanner�� ���� ��FSA

token sequence

$$

dd

getToken()

_^ ]\XY Z[Parser�� ���� ��PDA

// Parse
Tree

Figure 2.1: Scanner-based Parsing. In scanner-based parsing, a scanner employs a finite state
automaton to convert a character sequence into a token sequence, and a parser employs a pushdown
automaton to convert that token sequence into a parse tree.

(a)
int return INT;
[a-zA-Z]+ return ID;

(b) integer (c) int

Figure 2.2: Scanner Conflict Resolution. (a) In this Lex specification, the regular expressions for
the two tokens overlap. (b) First, the scanner selects the longest matching tokens, leaving only ID
in this case. (c) Second, the scanner selects the first token declared, INT in this case.

5. “∀i ∈ I, s” is read “for every i in I, s is true.”

6. “σ” indicates the same sequence as “σ[1..|σ|]”, but the latter notation explicitly indexes the

range of all elements.

2.2 Scanner-based LR(1) Parser Generation

As illustrated in Figure 2.1, scanner-based parsing splits lexical analysis and syntactic anal-

ysis of an input character sequence into two loosely coupled phases. The lexical analysis is performed

by a scanner, which we discuss in section 2.2.1. The syntactic analysis is performed by a parser,

which we discuss in section 2.2.2. In some contexts, the term parser is also used to refer to the

combination of the scanner and parser, and lexical analysis is considered part of syntactic analysis.

In this paper, we assume deterministic scanners and parsers, so the output either corresponds to a

single parse tree or is a report of a syntax error. We also assume that the parsing technique is from

the LR(1) family as in the case of traditional parser generation tools like Yacc.

2.2.1 Scanners

A scanner generator tool, such as Lex, can be employed to generate a scanner from a formal

scanner specification. This scanner specification consists primarily of a lexical syntax specification,

which defines tokens as regular expressions. The scanner specification also usually contains literal

6



code in a general-purpose programming language like C, some of which is an integral part of the

lexical syntax specification. For example, the scanner specification for Lex in Figure 2.2a defines

two tokens, the keyword int and the identifier. The return statements specify formal C names for

the tokens, INT and ID.

As illustrated in Figure 2.1, the generated scanner employs an FSA (finite state automaton)

to read the input character sequence, match contiguous subsequences against the specified regular

expressions, and produce a token sequence. We introduce the following definitions to facilitate our

discussion of this behavior.

Definition 2.2.1 (Input Character Set)

Throughout this paper, we refer to the input character set as Ξ. That is, the character sequence

read by the scanner is from the set Ξ*. �

Definition 2.2.2 (Lexeme)

Given a character sequence λ ∈ Ξ+ and a token t, then the relation t ∼= λ holds iff λ in its entirety

matches the regular expression for t. λ is then called a lexeme for t. �

Definition 2.2.3 (Prefix)

Given two character sequences ξ ∈ Ξ* and ξ′ ∈ Ξ*, then the relation ξ′ � ξ holds iff ∃% ∈ Ξ* : ξ = ξ′%.

In this case, ξ − ξ′ = %. Also, the relation ξ′ ≺ ξ holds iff ξ′ � ξ, ξ′ 6= ξ, and thus |ξ − ξ′| > 0. �

Definition 2.2.4 (Character Sequence Matches)

Given a character sequence ξ ∈ Ξ* and a set of tokens T , then the set of matches for ξ over T is

the set M (ξ, T ) = {(λ, t) ∈ (Ξ+, T ) : λ � ξ ∧ t ∼= λ}. Notice that, because a lexeme cannot be the

empty string, M (ξ, T ) = ∅ if |ξ| = 0. �

In order to progress through an input character sequence ξ, a scanner must select a single

match (λ, t) from the set M (ξ, T ), and the next match then comes from the set M (ξ − λ, T ). How

to select a single match is the main focus of our work.
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Definition 2.2.5 (Scanner Conflict)

Given a character sequence ξ ∈ Ξ* and a set of tokens T , then a scanner conflict for ξ over T is

any set C ⊆M (ξ, T ) such that |C| > 1. We now identify several types of scanner conflicts:

1. Iff C = M (ξ, T ), then C is the complete scanner conflict for ξ over T .

2. Iff |C| = 2, then C is a pairwise scanner conflict for ξ over T . Let C = {(λ, t), (λ′, t′)}.

There are two types of pairwise scanner conflicts:

(a) An identity conflict occurs when λ = λ′ and thus t 6= t′.

(b) We introduce the term length conflict for the case when λ 6= λ′ regardless of whether

t = t′. We have chosen this term because, by Definition 2.2.4, (λ � ξ) ∧ (λ′ � ξ), and

thus (λ ≺ λ′) ∨ (λ′ ≺ λ), so |λ| 6= |λ′|. For the subtype of length conflict where t = t′, we

introduce the term autolength conflict.

�

The term identity conflict comes from Nawrocki [27]. Nawrocki also defines a subset of length

conflicts that he calls LM-conflicts (longest match conflicts), which we explain in section 5.1. We

dislike Nawrocki’s term in this case as it implies the traditional view that the longest lexeme is

always preferable.

For example, both the keyword’s regular expression and the identifier’s regular expression in

Figure 2.2a can match the first three characters of the character sequence of Figure 2.2b. Thus, the

keyword token has an identity conflict with the identifier token for this character sequence. However,

the identifier’s regular expression can also match any prefix of the character sequence. Thus, the

identifier has length conflicts with the keyword and with itself. The identifier’s length conflicts with

itself are autolength conflicts.

Definition 2.2.6 (Traditional Lexical Precedence)

Given a character sequence ξ ∈ Ξ* and a set of tokens T , then a scanner generated by a traditional

scanner generator like Lex defines a highest precedence match from M (ξ, T ) and thus resolves the

complete scanner conflict for ξ over T using two lexical precedence rules in the following order:

1. The scanner resolves all length conflicts by selecting the lexeme λ : ∃t : (λ, t) ∈ M (ξ, T ) ∧

∀(λ′, t′) ∈ M (ξ, T ), |λ| ≥ |λ′|. λ is said to have precedence over other lexemes that prefix ξ.

8



This rule is usually called longest match or maximal munch.

2. Given the selected λ, if |{t : (λ, t) ∈ M (ξ, T )}| > 1, then the scanner resolves the resulting

identity conflicts by selecting the token t whose matching regular expression is declared earliest

in the scanner specification. t is said to have precedence over other tokens for which λ is a

lexeme.

�

For example, the keyword from Figure 2.2a matches only the first three characters of the character

sequence in Figure 2.2b, but the identifier matches the entire character sequence. Thus, the tradi-

tional scanner selects the entire character sequence as the lexeme and selects the identifier as the

token. Both the keyword and the identifier match the entire character sequence of Figure 2.2c. The

traditional scanner selects the keyword in this case because its regular expression is declared first in

the scanner specification.

2.2.2 LR(1) Parsers

A parser generator tool, such as Yacc, can be employed to generate a parser from a formal

parser specification. In this paper, we assume the parsing technique is from the LR(1) family,

including LALR(1), canonical LR(1), or some form of minimal LR(1). The parser specification

consists primarily of a syntax specification, which contains a context-free grammar and related

declarations like precedence and associativity. The parser specification may also contain semantic

declarations and literal code in a general-purpose programming language like C. We discuss the

various components of a Yacc parser specification in more detail in section 2.3.1. In this section, we

discuss how the parser interacts with the scanner, and we formally model the LR(1) parser tables

generated from the context-free grammar.

Definition 2.2.7 (Context-free Grammar)

A grammar is a tuple G = (V, T, P, S), such that V is a set of nonterminals, T is a set of terminals,

P is a set of productions, and S is the start symbol. The set {V ∪ T} is the set of all the grammar’s

symbols, and S ∈ V . In this paper, we are concerned only with context-free grammars, so ∀p ∈

P,∃` ∈ V : ∃% ∈ {V ∪ T}* : p = (`→ %). �
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(a) vector<list<string>> v;

(b) a >> b;

(c) %token-re ID ([a-zA-Z ][a-zA-Z 0-9]*)
%token-re YYLAYOUT ([\t\n\r ])
%lex-no-tie ’>’ ’>>’
%%
start
: decl ’;’ /*1*/
| expr ’;’ /*2*/
;

decl
: type id /*3*/
;

type
: id ’<’ type ’>’ /*4*/
| ID /*5*/
;

expr
: id ’>>’ id /*6*/
;

id:
ID /*7*/
;

(d) start
R1
~~}}}}}

��>>>>

decl
R3
������

  @@@@@ ’;’

type
R4

zztttttt
������
�� ��===== id

R7��
id

R7 ��

’<’ type

������
�� ��====

R4
''OOOOOOO’>’ ID

ID id

R7 ��

’<’ type

R5��

’>’

ID ID

(e) start
R2
������

��7777

expr
R6
������
�� ��7777 ’;’

id

R7 ��

’>>’ id

R7��
ID ID

Figure 2.3: Template Argument Lists. (a) In C++0x, the character sequence “>>” can close two
template argument lists such that one list is nested within the other. (b) It can also be the bitwise
right shift operator. (c) The PSLR(1) parser for this unified scanner and parser specification accepts
(d) the first example sentence with this parse tree and (e) the second example sentence with this
parse tree.

For example, consider the specification in Figure 2.3c. For now, ignore the declarations

preceding the “%%” as they would not be permitted by a traditional LR(1) parser generator, which

expects the scanner to be generated separately. Instead, consider only the grammar appearing after

the “%%”. All grammar symbols appearing immediately before a “:”, such as start or decl, are

the grammar’s nonterminals. All other grammar symbols, such as ID or ’>>’, are the grammar’s

terminals. Productions are grouped by their LHS’s, and the RHS’s for each LHS are separated with

a “|”. Thus, the LHS of productions 1 and 2 is “start”, the RHS of production 1 is “decl ’;’”,

and the RHS of production 2 is “expr ’;’”. By default, the start symbol is the first LHS, which

is start in our example.

As illustrated in Figure 2.1, the generated parser employs a PDA (pushdown automaton) to

read the token sequence produced by the scanner and, using the tokens as terminals in the specified

grammar, construct a parse tree in a bottom-up fashion. The parse tree derives the token sequence

from the grammar’s start symbol via the grammar productions. For example, the parser for the

grammar in Figure 2.3c constructs the parse tree in Figure 2.3d for the character sequence in Figure
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2.3a as long as the scanner transforms that character sequence into the token sequence formed by

the leaves of the tree. When performed as an action in a bottom-up parser, a production is referred

to as a reduction, abbreviated with an “R” in the figure.

Definition 2.2.8 (Augmented Context-free Grammar)

Given a context-free grammar G = (V, T, P, S), then its augmented grammar is G (G) =

(V ′, T ′, P ′, S′) such that V ′ = V ∪ {S′}, T ′ = T ∪ {#}, P ′ = P ∪ {(S′ → S#)}, S′ /∈ {V ∪ T},

# /∈ {V ∪ T}, and # is the end token, a special token marking the end of any token sequence. �

Given the grammar G from the parser specification, a parser generator like Yacc often

employs G (G) instead of G to make detecting the end of the token sequence easier. Moreover,

scanners generated by Lex return the # token upon reaching the end of the input character sequence.

Thus, the generated parser has successfully parsed and accepted the token sequence as soon as it

performs the reduction (S′ → S#).

The parser’s PDA is encoded in a set of parser tables. For example, the first column of Table

2.1 shows the canonical LR(1) parser tables for the grammar of Figure 2.3c. Each numbered cell

describes an LR(1) parser state. Each row within a state represents an LR(1) item, which consists

of a dotted production, a lookahead set, and an LR(1) action. We now present a formal model for

LR(1) parser tables.

Definition 2.2.9 (LR(1) Item)

Given a context-free grammar G : G (G) = (V ′, T ′, P ′, S′), then an LR(1) item for G is a tuple

m = (p, d,K) such that:

1. ∃` : ∃% : p = (`→ %) ∈ P ′.

2. d is an integer such that 1 ≤ d ≤ |%| + 1 to specify the index before which to insert a dot in

the sequence %. The dot indicates a position in a parse.

3. The tuple (p, d) is the core of m.

4. K is a set of terminals called the lookahead set.

�
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Canonical LR(1) LALR(1)
0. start′ →·start # {} G2 0. start′ →·start # {} G2

start →·decl ’;’ {#} G3 start →·decl ’;’ {#} G3
→·expr ’;’ {#} G5 →·expr ’;’ {#} G5

decl →·type id {’;’} G4 decl →·type id {’;’} G4
expr →·id ’>>’ id {’;’} G6 expr →·id ’>>’ id {’;’} G6
type →·id ’<’ type ’>’ {ID} G6 type →·id ’<’ type ’>’ {ID} G6

→·ID {ID} S1 →·ID {ID} S1
id →·ID {’>>’,’<’} S1 id →·ID {’>>’,’<’} S1

1. type → ID · {ID} R5 1. type → ID · {ID,’>’} R5
id → ID · {’>>’,’<’} R7 id → ID · {’>>’,’<’} R7

2. start′ → start ·# {} S7 2. start′ → start ·# {} S7
3. start → decl ·’;’ {#} S8 3. start → decl ·’;’ {#} S8
4. decl → type ·id {’;’} G10 4. decl → type ·id {’;’} G10

id →·ID {’;’} S9 id →·ID {’;’} S9
5. start → expr ·’;’ {#} S11 5. start → expr ·’;’ {#} S11
6. expr → id ·’>>’ id {’;’} S13 6. expr → id ·’>>’ id {’;’} S13

type → id ·’<’ type ’>’ {ID} S12 type → id ·’<’ type ’>’ {ID} S12
7. start′ → start # · {} Acc 7. start′ → start # · {} Acc
8. start → decl ’;’ · {#} R1 8. start → decl ’;’ · {#} R1
9. id → ID · {’;’} R7 9. id → ID · {’;’} R7

10. decl → type id · {’;’} R3 10. decl → type id · {’;’} R3
11. start → expr ’;’ · {#} R2 11. start → expr ’;’ · {#} R2
12. type → id ’<’ ·type ’>’ {ID} G14 12. type → id ’<’ ·type ’>’ {ID,’>’} G14

→·id ’<’ type ’>’ {’>’} G15 →·id ’<’ type ’>’ {’>’} G15
→·ID {’>’} S18 →·ID {’>’} S1

id →·ID {’<’} S18 id →·ID {’<’} S1
13. expr → id ’>>’ ·id {’;’} G16 13. expr → id ’>>’ ·id {’;’} G16

id →·ID {’;’} S9 id →·ID {’;’} S9
14. type → id ’<’ type ·’>’ {ID} S17 14. type → id ’<’ type ·’>’ {ID,’>’} S17
15. type → id ·’<’ type ’>’ {’>’} S19 15. type → id ·’<’ type ’>’ {’>’} S12
16. expr → id ’>>’ id · {’;’} R6 16. expr → id ’>>’ id · {’;’} R6
17. type → id ’<’ type ’>’ · {ID} R4 17. type → id ’<’ type ’>’ · {ID,’>’} R4
18. type → ID · {’>’} R5

id → ID · {’<’} R7
19. type → id ’<’ ·type ’>’ {’>’} G20

→ ·id ’<’ type ’>’ {’>’} G15
→ ·ID {’>’} S18

id → ·ID {’<’} S18
20. type → id ’<’ type ·’>’ {’>’} S21
21. type → id ’<’ type ’>’ · {’>’} R4

Table 2.1: Parser Tables for Template Argument Lists. These are the canonical LR(1) and LALR(1)
parser tables for the grammar of Figure 2.3c. Differences are shown in bold.

Definition 2.2.10 (LR(1) Action)

Given a context-free grammar G : G (G) = (V ′, T ′, P ′, S′), then an LR(1) action for G is a tuple

(at, ap, as) such that any one of the following is true:

1. at = “S” to indicate a shift action, which removes a token from the input and pushes the

LR(1) state as onto the parser stack. In this case, ap is left undefined. We model LR(1) states

below in Definition 2.2.11 to contain LR(1) actions.

2. at = “G” to indicate a goto action, which removes a nonterminal from the input and pushes
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the LR(1) state as onto the parser stack. Again, ap is left undefined.

3. at = “R” to indicate a reduce action such that ap ∈ P ′ is the production by which to reduce

the parser stack. That is, given that ap = (`→ %), then |%| states are popped from the stack,

and ` is inserted at the front of the input. In this case, as is left undefined.

4. During parser conflict resolution, a may be given other values, but that topic is beyond the

scope of this paper.

�

Definition 2.2.11 (LR(1) State)

Given a context-free grammar G : G (G) = (V ′, T ′, P ′, S′), then we model an LR(1) state sp for G as

a set of LR(1) items augmented with associated LR(1) actions. Thus, ∀m = (p, d,K, a) ∈ sp, given

that p = (`→ %) ∧ a = (at, ap, as), then:

1. (p, d,K) is an LR(1) item for G.

2. ∀m′ = (p′, d′,K ′, a′) ∈ sp : m 6= m′, (p, d) 6= (p′, d′).

3. a is the LR(1) action for G that is associated with (p, d,K) in that, before conflict resolution

is performed on sp, a is determined by m’s core as follows:

(a) Iff d < |%|+ 1, then:

i. %[d] ∈ T ′ ⇔ at = “S”.

ii. %[d] ∈ V ′ ⇔ at = “G”.

iii. %[d] is the input symbol upon which the action should be performed, so the chosen

parser table generation algorithm computes as based on %[d].

(b) Iff d = |%| + 1, then at = “R” ∧ ap = p. K contains the input tokens upon which this

action should be performed.

Given an LR(1) state sp, then the set {(p, d) : ∃(p, d,K, a) ∈ sp} is the core of sp. �

Table 2.2 illustrates how the canonical LR(1) parser tables of Table 2.1 parse the input

token sequence formed by the leaves of the parse tree in Figure 2.3d. The parser stack is initialized

by pushing the start state, state 0, as shown in the first row of the parse. The parser’s next action
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Stack Input Action
0 ID ’<’ ID ’<’ ID ’>’ ’>’ ID ’;’ # S1

0,1 ’<’ ID ’<’ ID ’>’ ’>’ ID ’;’ # R7
0 id ’<’ ID ’<’ ID ’>’ ’>’ ID ’;’ # G6

0,6 ’<’ ID ’<’ ID ’>’ ’>’ ID ’;’ # S12
0,6,12 ID ’<’ ID ’>’ ’>’ ID ’;’ # S18

0,6,12,18 ’<’ ID ’>’ ’>’ ID ’;’ # R7
0,6,12 id ’<’ ID ’>’ ’>’ ID ’;’ # G15

0,6,12,15 ’<’ ID ’>’ ’>’ ID ’;’ # S19
0,6,12,15,19 ID ’>’ ’>’ ID ’;’ # S18

0,6,12,15,19,18 ’>’ ’>’ ID ’;’ # R5
0,6,12,15,19 type ’>’ ’>’ ID ’;’ # G20

0,6,12,15,19,20 ’>’ ’>’ ID ’;’ # S21
0,6,12,15,19,20,21 ’>’ ID ’;’ # R4

0,6,12 type ’>’ ID ’;’ # G14
0,6,12,14 ’>’ ID ’;’ # S17

0,6,12,14,17 ID ’;’ # R4
0 type ID ’;’ # G4

0,4 ID ’;’ # S9
0,4,9 ’;’ # R7

0,4 id ’;’ # G10
0,4,10 ’;’ # R3

0 decl ’;’ # G3
0,3 ’;’ # S8

0,3,8 # R1
0 start # G2

0,2 # S7
0,2,7 R0

Table 2.2: A Template Argument List Parse. This table shows how the canonical LR(1) parser
tables of Table 2.1 parse the input token sequence show in the initial configuration above. A scanner
might return this token sequence for the character sequence in Figure 2.3a, for example.

is always dictated by the state at the top of the stack and the next symbol in the input, ID in this

case. State 0 has an item with its dot before ID, and the item’s action is S1, shift to state 1. Thus,

the parser removes ID from the input and pushes state 1 onto the stack. The dot in the second

item of state 1 is at the end of the RHS of production 7, and the item’s action is thus R7, reduce

by production 7. The item’s lookahead set contains the token ’<’, which is the next symbol in

the input. Thus, the parser pops one state off the parser stack for each RHS symbol of production

7 and inserts the LHS symbol at the front of the input. Such reduce actions construct the edges

of the parse tree. Now state 0 is at the top of the stack again and the next symbol is id. State

0 has an item with its dot before id, and the item’s action is G6, goto state 6. Thus, the parser

removes id from the input and pushes state 6 onto the stack. In this paper, we use the term goto

such that a goto always follows a reduce and thus is always performed upon seeing a nonterminal

in the input. The only exception is that, upon reaching the action R0, the parser terminates with a

success status.
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Definition 2.2.12 (Accepts)

Given the LR(1) parser state sp, then acc(sp) = {t : ∃((` → %), d,K, (at, ap, as)) ∈ sp : (at =

“S” ∧ %[d] = t) ∨ (at = “R” ∧ t ∈ K)}. �

When the parser is in state sp, if the scanner returns a token that is not in the set acc(sp),

the parser reports a syntax error because there is no appropriate parser action on that token. The

scanner and parser always stay in sync, so it would seem the scanner could examine the current

acc(sp) before selecting the next token in order to avoid inducing a syntax error. Unfortunately,

when using traditional scanner-based LR(1) parser generation tools like Lex and Yacc, the only

tool-supported communication between the scanner and parser is the token sequence produced by

the scanner and the parser’s requests for new tokens. Any other desired communication must be

manually coded by the user of the tools. Thus, unless the user manually extends the scanner’s

capabilities, the scanner’s recognition power is limited to regular languages. In the next section,

we further examine this shortcoming of traditional scanner-based LR(1) parsing in the context of

composite languages.

2.3 Composite Languages

Most practical languages are the product of some degree of language composition. In section

2.3.1, we explore one of the most obvious examples, the parser specification languages accepted by

parser generators like Yacc. In section 2.3.2, we present several examples of regular sub-languages

from traditional programming languages like C and C++. In section 2.3.3, we present some less

obvious examples of sub-languages. In section 2.3.4, we discuss the complex form of language

composition employed by modern extensible languages.

2.3.1 Parser Specifications

As depicted in Figure 2.4a, Yacc’s internal parser parses a parser specification, pyacc, written

in the language Lyacc in order to generate the source code, pcode, that is compiled into the specified

parser, pgen. Figure 2.4b presents an example pyacc containing an expression grammar. As this ex-

ample demonstrates, Lyacc is a composite language with several easily distinguishable sub-languages,

passages of which are boxed and labeled in the figure. The primary sub-language is Ldecl, which
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pyacc ∈ Lyacc

��?> =<89 :;Yacc

��
pcode ∈ Lcode

��76 5401 23cc

��
pgen

(a)

Lyacc

1 %token NUM Ldecl

2 %{
3 /* For printf & fprintf. */ Lcode

4 #include <stdio.h>
5 void yyerror (char const *msg);
6 %} Ldecl

7 %left ’|’
8 %left ’&’
9 %left ’+’ ’-’

10 %left ’*’ ’/’ ’%’
11 %union {
12 int num; Lcode

13 } Ldecl

14 %type <num> expr NUM
15 %%
16 start
17 : start expr {printf ("%d\n", $2);} Lact

18 | expr {printf ("%d\n", $1);}
19 ;
20 expr
21 : NUM {$$ = $1; } Lact

22 | expr ’|’ expr {$$ = $1 | $3; }
23 | expr ’&’ expr {$$ = $1 & $3; }
24 | expr ’+’ expr {$$ = $1 + $3; }
25 | expr ’-’ expr {$$ = $1 - $3; }
26 | expr ’*’ expr {$$ = $1 * $3; }
27 | expr ’%’ expr {$$ = $3?($1%$3):$1; }
28 | expr ’/’ expr {
29 if ($3 == 0) {
30 yyerror ("division by zero");
31 YYERROR;
32 }
33 else $$ = $1 / $3;
34 }
35 ; Ldecl

36 /* FIXME: % should probably handle
37 division by 0 as / does. */
38 %%
39 void Lcode

40 yyerror (char const *msg)
41 {
42 fprintf (stderr, "%s\n", msg);
43 }

(b)

/. -,() *+Lyacc

/. -,() *+Ldecl

��

�
�

� /. -,() *+Lact

��
uses

/
/

/

���
�

�

/. -,() *+Lcode

��

�
�
�
�
�
�

(c)

Figure 2.4: Yacc Parser Specification Language. (a) Lyacc is the language of a parser specification,
pyacc, read by Yacc’s internal parser in order to generate the code, pcode, for the specified parser,
pgen. (b) Each passage within this example pyacc is written in the sub-language Ldecl, Lcode, or Lact.
(c) Thus, Lyacc is a composite language.
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consists of grammar productions and other declarations. The other two main sub-languages are

Lcode and Lact. Lcode consists of literal code in the programming language C to be printed verbatim

to pcode. Lact is used for semantic actions and is an extension of Lcode with “$” tokens to refer to

semantic values. These composition relationships are depicted in Figure 2.4c.

The syntax of Ldecl is quite different than the syntax of Lcode and Lact, and Yacc must

parse each sub-language correctly. For example, in Ldecl, the character “:” is a token that follows

the LHS of a grammar production as on lines 17 and 21 of Figure 2.4b. In Lcode or Lact, “:” may

appear in a number of places, such as in the C ternary operator on line 27, but there is no grammar

production syntax in these sub-languages. There are also many notable differences at the lexical

level. For example, in Ldecl, the character sequence “%left” is a single token used to declare left

associativity as on lines 7-10. In Lcode or Lact, “%” is the modulo operator token as on line 27, and

so “%left” would be the modulo operator token followed by an identifier token, “left”. In Ldecl,

the character “|” is a token separating RHS’s of productions that are paired with the same LHS as

on lines 18-28, and so two adjacent occurrences of “|” would be two tokens with an empty RHS in

between. In Lcode or Lact, the character “|” is the bitwise OR operator token as on line 22, and

two adjacent occurrences of “|” would be the single logical OR operator token.

In this section, we assume a Yacc implementation whose internal parser is a traditional

scanner-based LR(1) parser. Thus, it is the scanner’s job to recognize character sequences as tokens

using an FSA without the help of the parser. Because the lexical rules differ in Ldecl, Lcode, and

Lact, the scanner can encounter conflicts when trying to determine which tokens from which of these

sub-languages should be matched for character sequences like “%left”. While the traditional lexical

precedence rules from Definition 2.2.6 might resolve a conflict appropriately for one sub-language,

they cannot be appropriate for all sub-languages because different sub-languages require different

tokens to be selected.

The scanner can completely avoid conflicts among tokens from different sub-languages by

recognizing the boundaries between passages of the sub-languages. To illustrate, consider again the

example pyacc in Figure 2.4b. At the beginning of pyacc on line 1, Yacc’s internal scanner must

start in a state where it recognizes only tokens from Ldecl. Upon recognizing a “%{” token or upon

recognizing a “%union” token followed by a “{” token in Ldecl as on lines 2 and 11, the scanner

must enter a special state where it recognizes only tokens from Lcode. Upon recognizing a “{” token

after a grammar production’s RHS in Ldecl as on lines 17-28, the scanner must enter a special state
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1 <L DECL>{
2 "%token" return PERCENT TOKEN;
3 [a-zA-Z. ][a-zA-Z. 0-9]* yylval = strdup (yytext); return NAME;
4 "%{" BEGIN L CODE; return CODE START;
5 [ \t\r\n] /*Discard whitespace.*/
6 }
7 <L CODE>{
8 "%}" BEGIN L DECL; return CODE END;
9 .|\n yylval = strdup (yytext); return CODE;

10 }

Figure 2.5: Lex Start Conditions. This Lex specification handles some of the transitions between
the Ldecl and Lcode sub-languages of Lyacc as well as a few tokens.

where it recognizes only tokens from Lact. When the scanner later recognizes a matching “%}” or

“}” token, it must reenter the initial Ldecl state. Also, upon recognizing the second occurrence of

the “%%” token in the Ldecl state as on line 38, the scanner must leave the Ldecl state and enter the

Lcode state for the remainder of pyacc.

These Ldecl, Lcode, and Lact states can be implemented as start conditions when using Lex.

A start condition is simply an FSA state to which the scanner transitions by default at the end of

each token to prepare for the beginning of the next token. Thus, the use of start conditions does not

inherently extend the language recognition power of the scanner beyond a pure FSA. For example,

Figure 2.5 shows a Lex specification that handles some of the transitions between Ldecl and Lcode

as well as a few tokens. Consider how the generated scanner would behave for lines 1-2 in Figure

2.4b. The scanner starts in the Ldecl start condition and transitions back to it at the end of the

“%token” and at the end of the “NUM” because the rules for these tokens on lines 2 and 3 in Figure

2.5 do not specify a transition to a different start condition. However, at the end of the “%{” token,

the scanner transitions to the Lcode start condition. As shown on line 4 in Figure 2.5, the Lex user

must explicitly specify such a transition to a different start condition by using the BEGIN macro in

C.

Look at the semantic action for the “/” operator on lines 28-34 in Figure 2.4b. Within

a passage of Lact between a pair of “{” and “}”, Yacc’s internal scanner must balance nested

occurrences of “{” and “}” so that it can determine when to transition back to the Ldecl start

condition. However, it is well known that a language containing nested constructs is not a regular

language, and thus an FSA is not powerful enough to recognize it [11]. In cases like this, the Lex

user often resorts to ad-hoc code that uses a variable to maintain the count of unclosed braces.

The code increments the count for each “{” and decrements the count for each “}”. This code is
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equivalent in power to a stack that pushes for each “{” and pops for each “}”. Use of a stack is so

often appealing in a scanner that Flex [3], the BSD implementation of Lex, provides a start condition

stack, which can also be used for recognizing nested structures. However, like any transition among

start conditions, manipulation of this stack must be explicitly coded in C by the Flex user.

An FSA combined with a stack is a PDA. Thus, when the Lex or Flex user adds code to

emulate, implement, or manipulate a stack, he is really just reimplementing machinery the parser

already possesses. Moreover, regardless of whether the scanner requires a stack because of nested

structures, the scanner often returns tokens like “{”, “}”, “%{”, and “%}” to the parser so that

the parser can track the transitions between sub-languages for the purposes of syntactic analysis as

specified by the grammar. In this case, the contextual information recorded by the scanner’s current

start condition or on the scanner’s stack is duplicated on the parser stack. Unfortunately, when

using traditional scanner and parser generator tools like Lex and Yacc, the scanner has no way to

access the parser’s stack, and so the user must code and maintain the same contextual logic in both

the scanner specification and the parser specification.

2.3.2 Regular Sub-languages

In Figure 2.4b, consider the C-style comments on line 3 and lines 36-37, the single-quoted

character literals on lines 22-28, and the double-quoted string literals on lines 17-18. Lyacc permits

such comments and literals to appear in each of Ldecl, Lcode, and Lact.1 Within a comment or

literal, characters like “%” do not represent the same tokens they do outside the comment or literal.

For example, any occurrence of “%}” or “}” embedded in a comment or literal does not indicate

a transition from the Lcode or Lact start condition back to the Ldecl start condition. Thus, even

though Yacc can treat most characters in Lcode and Lact as inert text to be printed verbatim to

pcode, it must fully parse comments and literals in Lcode and Lact in order not to misinterpret the

characters contained within.

Because the syntax of the comment, character literal, and string literal each is regular, each

can be specified as a single token with a single regular expression within each sub-language of Lyacc.

When using a scanner-generator like Lex, this approach requires that the scanner recognize each

comment and literal as a whole without the possibility of separate actions for individual parts of the

comment or literal. For example, the syntax of the string literal includes a set of escape sequences,
1Yacc does not actually permit string literals to appear within Ldecl, but Bison does.
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such as the “\n” in the "%d\n" shown on line 17 in Figure 2.4b. If the string literal is specified

as a single token with a single regular expression, then "%d\n" must be fully recognized and later

rescanned in order to convert the contained “\n” into a newline. Also, if the closing quotes were

missing on line 17, the scanner would reject the entire string literal with a generic lexical error

message with no acknowledgement that the text is the beginning of a string literal. However, a

user-friendly scanner should instead report different error messages for the missing quotes and for

each invalid escape sequence or other invalid character within the string literal.

The developers of Bison’s internal scanner specification apparently realized that the struc-

ture of the comment, character literal, and string literal each is complex enough to be handled as a

separate sub-language in the scanner. Thus, Bison’s internal scanner specification assigns a unique

start condition to each and breaks up each regular expression into multiple parts with separate

actions. From the viewpoint of a robust scanner then, most traditional programming languages,

such as C or C++, exhibit at least a simple composition of languages because they contain regular

sub-languages like comments and literals. Lex’s start conditions are sufficient to handle these regular

sub-languages without a stack, but adding the associated start conditions further complicates the

scanner specification and worsens maintainability.

2.3.3 Subtle Sub-languages

Ldecl, Lcode, and Lact are clear examples of distinct sub-languages within Lyacc. Because

comments, character literals, and string literals can be expressed with regular expressions, the moti-

vation to classify them as sub-languages was less obvious until we considered them from the viewpoint

of a robust scanner. In this section, we explore examples of sub-languages that are perhaps even

less obvious than these.

Consider extending the Lex specification in Figure 2.5 to handle all transitions between

Ldecl and Lcode. If we ignore the issue of comments and literals, these lexical rules already handle

the code between lines 2 and 6 in Figure 2.4b, where a “%}” cannot appear because it indicates a

transition from Lcode back to Ldecl. However, these lexical rules do not handle the code between

lines 11 and 13. In this case, “}” instead indicates the transition back to Ldecl. In general, “{”

and “}” must be balanced here as in Lact. Moreover, after line 38, the scanner should not treat

any of these character sequences specially because a transition back to Ldecl is not possible. In

other words, from the viewpoint of the scanner, Lcode really consists of three sub-languages whose
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(a)

Lc

Lt (b) %lex-prec ’>’ -< ’>>’ for Lc and Lp

Lp

Y<X<(6>>1)>> x4; (c) %lex-prec ’>>’ -< ’>’ for Lt

(d) template id: template name ’<’ template argument list opt ’>’ ;

(e) primary expression: ’(’ expression ’)’ ;

Figure 2.6: Scoped Declarations. Let Lc be the main C++0x language, let Lt be the template
argument list sub-language, and let Lp be the parenthesized expression sub-sub-language. (a) We
have copied this example sentence from the C++0x proposal for handling right angle brackets [37].
The interpretation of the character sequence “>>” is different in (b) Lc and Lp than in (c) Lt.
(d) In this C++ grammar production, template argument list opt is a start symbol for the
grammar of Lt. (e) In this production, expression is a start symbol for the grammar of Lp.

only distinction is how to handle the tokens that delimit passages of the sub-language. Each such

sub-language requires its own start condition, which further complicates the scanner specification

for Lyacc and worsens maintainability.

Another subtle example of a sub-language appears in the evolving C++0x specification [37].

Figure 2.3a shows an example C++ statement involving templates. It declares the variable v to

be a vector of list’s of string’s. That is, list<string> is the argument of the template

vector, and string is the argument of the nested template list. Intuitively then, the character

sequence “>>” contains two distinct right angle bracket tokens such that the first closes the template

argument list of list and the second closes the template argument list of vector. However, Figure

2.3b shows another example C++ statement where “>>” is a single token, the bitwise right shift

operator. Previous versions of C++ required two consecutive right angle brackets to be separated

by whitespace in order not to be interpreted as the single bitwise right shift operator token, so

Figure 2.3a contains a syntax error in that case. However, C++0x proposes that, within template

argument lists but not elsewhere, “>>” should be interpreted as two tokens regardless of intervening

whitespace.

In this way, the C++0x template argument list requires different lexical rules than other

parts of a C++0x program. From the viewpoint of the scanner then, the C++0x template argument

list is a distinct sub-language. A “<” indicates a transition into this sub-language. Because of nesting,

a scanner must employ a stack in order to recognize which “>” indicates a transition back out.

To complicate matters further, C++0x proposes that nested parentheses and square brackets

appearing in the template argument list sub-language delimit a sub-sub-language where “>>” is once
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again interpreted as a single bitwise right shift operator token. Of course, to recognize the transition

out of this sub-sub-language, the scanner must employ a stack to balance parentheses and square

brackets. Figure 2.6a shows an example sentence copied from the C++0x proposal for handling

right angle brackets [37]. This sentence employs all three layers of sub-languages, passages of which

we have boxed and labeled in the figure. We discuss Figures 2.6b–2.6e in section 3.7.

2.3.4 Extensible Languages

A composite language like those we have discussed so far is often specified along with all of

its sub-languages in a single scanner specification and a single parser specification. However, there

is a modern movement to specify sub-languages in separate modules so that both language experts

and non-experts can more easily compose selected sub-languages into arbitrarily complex layers in

order to generate custom parsers for specific domains. Such languages are often called extensible

languages [12, 13, 18, 40]. For example, Van Wyk and Schwerdfeger embed SQL schemas, SQL

queries, and condition tables into an extensible version of Java [40]. Grim extends C with an AOP

(aspect-oriented programming) notation and embeds C within Java [18]. Bravenboer et al. develop

an extensible specification of AspectJ, which is in turn an AOP extension of Java [12]. Their goal

is to facilitate the specification of new Java language extensions as researchers experiment with

evolving AOP concepts and syntaxes.

Because extensible languages permit a complex and arbitrary style of language composition,

they exacerbate the difficulties that traditional scanner-based LR(1) parser generators already pose

for simpler composite languages. Specifically, the user’s task of manually replicating each newly

developed composite grammar’s sub-language transition logic into a separate scanner specification

erodes the modularity of sub-language specifications and thus impedes the development and mainte-

nance of new composite language specifications. The difficulty of this task may even be preventative

if the user is not a language expert.

2.4 Summary

A composite language is composed of multiple sub-languages. Language composition is

obvious when some sub-languages are already specified independently. For example, the parser

specification language read by a parser generator like Yacc contains grammar productions and dec-
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larations as well as passages of the programming language C. When languages are composed in this

way, sub-language transitions during parsing usually entail corresponding transitions in the lexical

rules. Thus, the scanner must recognize sub-language transitions in order to avoid scanner conflicts

among the various sub-languages. The scanner for a traditional programming language like C or

C++ must sometimes recognize similar transitions in its lexical rules. From the viewpoint of the

scanner then, such languages are also composite languages.

Scanner-generator tools like Lex provide start conditions for implementing sub-language

transitions in the scanner, but the user must specify these transitions explicitly in the scanner

specification. In a parser specification, the user often must specify the same sub-language transitions

implicitly in the grammar. The contextual information recorded by the scanner’s current start

condition at run time is then duplicated on the parser’s stack. Nevertheless, traditional scanner

and parser generators attempt to generate loosely coupled scanners and parsers, so the user must

maintain these tightly coupled scanner and parser specifications separately but consistently. Scanner

and parser specifications would be significantly more maintainable if all sub-language transitions

were instead computed from a grammar by a parser generator and recognized automatically by the

scanner using the parser’s stack. The need to automate sub-language transitions in the scanner in

this way is growing with the popularity of modern extensible languages, which may contain complex

layers of sub-languages composed arbitrarily for the requirements of specific domains.
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Chapter 3

Methodology

In this chapter, we detail the functionality of our PSLR(1) generator and the tightly cou-

pled minimal LR(1) parsers and pseudo-scanners that it constructs. We also describe the lexical

formalisms that we add to the language of Bison parser specifications to form PSLR(1)’s unified spec-

ification language. In section 3.1, we explain how a pseudo-scanner generated from such a PSLR(1)

specification automatically resolves scanner conflicts among tokens from multiple sub-languages. In

section 3.2, we describe a lexical precedence system for resolving remaining scanner conflicts. In

sections 3.3–3.6, we describe mechanisms to address a number of new challenges that are not ex-

hibited by traditional scanners. In section 3.7, we describe a mechanism to permit scoped syntactic

declarations. We summarize in section 3.8.

3.1 Pseudo-scanner

Consider Figure 2.3c on page 10, which presents a PSLR(1) specification for a scanner and

parser that accept the sentences in Figures 2.3a and 2.3b with the parse trees in Figures 2.3d and

2.3e, respectively. The tokens within it are named ’;’, ’<’, ’>’, ’>>’, and ID. The tokens whose

names are quoted are literal character sequences, and so their regular expressions are implicit. For

example, the token ’;’ matches only the semicolon. The token regular expression directive,

denoted %token-re, specifies regular expressions for other tokens. For example, the character

sequences in Figures 2.3a and 2.3b that match the regular expression specified for the token ID

are “vector”, “list”, “string”, “v”, “a”, and “b”. The token YYLAYOUT is special in that it
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specifies characters that the pseudo-scanner should discard as whitespace. We ignore YYLAYOUT for

the remainder of this section and discuss it in detail in section 3.6. We discuss the %lex-no-tie

directive in section 3.3.

In section 2.2.2, we assumed that a scanner would return the proper token sequence for the

character sequence in Figure 2.3a, and we discussed how an LR(1) parser for the grammar of Figure

2.3c would then parse that token sequence. However, a traditional scanner actually encounters a

length conflict upon reaching “>>” in Figure 2.3a as well as in Figure 2.3b. That is, the scanner

could recognize the first “>” as a ’>’ token, or it could recognize the entire “>>” as a ’>>’ token.

For both sentences, the traditional scanner resolves this conflict using longest match by default and

thus selects the ’>>’ token. Consider again the first column of Table 2.1, which shows the canonical

LR(1) parser tables for the grammar of Figure 2.3c. When the parser reaches the “>>” in Figure

2.3b, the parser’s current state, sp, is state 1, and so ’>>’ is in acc(sp) but ’>’ is not. Because

the traditional scanner returns ’>>’, the parser proceeds without error. However, as illustrated in

Table 2.2, when the parser reaches the “>>” in Figure 2.3a, sp is state 18, and so ’>’ is in acc(sp)

but ’>>’ is not. Because the traditional scanner again returns ’>>’, the parser reports a syntax

error even though Figure 2.3c specifies that this sentence is acceptable.

As we explained for C++0x in section 2.3.3, we say that the “>>” appears in a different sub-

language in Figure 2.3a than in Figure 2.3b. With a traditional scanner generator tool like Lex, the

user must manually specify transitions between the sub-languages in order to eliminate the conflict

and select the correct token at the “>>” in each sentence. However, as we just demonstrated for

both sentences, acc(sp) already contains the correct token for the current sub-language at this point

without the conflicting token from the other sub-language. Thus, if the scanner were to recognize

and return only tokens that are in acc(sp), it would detect sub-language transitions automatically

based on syntactic left context as indicated by sp. This exploitation of the parser’s stack is the

simple premise of the pseudo-scanner, which we now formalize.

Definition 3.1.1 (Pseudo-scanner)

Given an LR(1) parser whose state set is Σp, then a scanner behaves as a pseudo-scanner for that

parser iff, ∀ξ ∈ Ξ*,∀sp ∈ Σp : M (ξ, acc(sp)) 6= ∅, when the input character sequence is ξ and the

parser is in state sp, the scanner selects its match from M (ξ, acc(sp)). �

According to Definition 3.1.1, a pseudo-scanner for the canonical LR(1) parser in Table 2.1
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returns a ’>’ token at the “>>” in Figure 2.3a, and it returns a ’>>’ token at the “>>” in Figure

2.3b. In other words, the pseudo-scanner eliminates the traditional scanner’s conflict automatically,

it returns the correct token for both sentences, and the parser proceeds without error.

3.2 Lexical Precedence

In Definition 3.1.1, it is possible that |M (ξ, acc(sp))| > 1. That is, while a pseudo-scanner

helps to eliminate scanner conflicts between tokens from different sub-languages, some scanner con-

flicts may remain. We refer to these remaining scanner conflicts as pseudo-scanner conflicts.

Definition 3.2.1 (Pseudo-scanner Conflict)

Given a character sequence ξ ∈ Ξ* and an LR(1) parser state sp, then a pseudo-scanner conflict

for ξ in sp is a scanner conflict for ξ over acc(sp). �

The cause of a pseudo-scanner conflict is that syntactic left context as tracked on the parser’s

stack is not powerful enough to invalidate some of the sub-languages that have conflicting tokens.

Moreover, the conflict may be induced by an ambiguity within the PSLR(1) specification. In any

case, the user can try to rewrite his PSLR(1) specification to eliminate the conflict, or he can depend

on lexical precedence rules to define a highest precedence match from M (ξ, acc(sp)) and thus resolve

the conflict.

PSLR(1) specifications can employ the lexical precedence directive, denoted %lex-prec,

for explicitly declaring several kinds of lexical precedence rules to resolve pseudo-scanner conflicts

without the need for traditional start conditions or other ad-hoc code. In section 3.2.1, we explain

the guiding principles we followed while developing the %lex-prec directive. In section 3.2.2, we

explain how the %lex-prec directive can be used to declare traditional lexical precedence rules

in accordance with these guiding principles. In section 3.2.3, we describe support for several non-

traditional rules. In sections 3.2.4 and 3.2.5, we discuss unambiguous and ambiguous uses of the

various lexical precedence rules. In section 3.2.6, we describe the pseudo-scanner tables that the

PSLR(1) generator constructs to encode the lexical precedence rules selected by the user. In section

3.2.7, we describe the generator’s algorithm for discovering, resolving, and reporting pseudo-scanner

conflicts in those tables. We summarize in section 3.2.8.
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3.2.1 Guiding Principles

A traditional scanner generator like Lex resolves all scanner conflicts using the lexical prece-

dence rules given in Definition 2.2.6 without warning the user. This approach is dangerous especially

in the face of software evolution. As our example in section 3.1 demonstrates, when a conflict arises

for an unambiguous scanner and parser specification because the scanning and parsing method is not

quite powerful enough to implement that specification, any resolution of that conflict can eliminate

one or more sentences from the language. If, instead, the specification is ambiguous, any resolution

of the conflict can at least eliminate one possible parse tree. Thus, if the user makes a change to an

existing specification and unexpectedly induces a new conflict that the generator resolves quietly,

there may be severe and undesirable changes in behavior without warning, and exhaustive testing

is vital to reveal these changes. This problem is even more dangerous in the case of modern ex-

tensible languages for which sub-languages may be composed and reorganized arbitrarily. Unlike

traditional scanner generators and scanner conflicts, traditional LR(1) parser generators do report

parser conflicts to the user. Our PSLR(1) generator extends the latter practice for pseudo-scanner

conflicts.

Recall the distinction between a complete scanner conflict and a pairwise scanner conflict

from Definition 2.2.5, and recall that a pseudo-scanner conflict is a kind of scanner conflict as

described in Definition 3.2.1. A pseudo-scanner’s behavior is not fully defined unless all complete

pseudo-scanner conflicts are resolved. That is, for every character sequence ξ ∈ Ξ* and for every

LR(1) parser state sp such that |M (ξ, acc(sp))| > 1, the complete pseudo-scanner conflict for ξ in

sp is the set of matches M (ξ, acc(sp)), which must be resolved by defining a highest precedence

match from that set. Lexical precedence rules declared with %lex-prec in a PSLR(1) specification

can define this highest precedence match by resolving pairwise pseudo-scanner conflicts contained

within that complete pseudo-scanner conflict. However, it is not always necessary to resolve all

such pairwise pseudo-scanner conflicts. For example, given some lexeme λ � ξ and given a set of

three unique tokens {t, t′, t′′} ⊆ acc(sp), assume that M (ξ, acc(sp)) = {(λ, t), (λ, t′), (λ, t′′)}. To use

%lex-prec to specify that (λ, t′′) is the highest precedence match, it is sufficient to specify rules

for identity conflicts such that t < t′′ and t′ < t′′ without specifying any relationship between t and

t′. Thus, the complete pseudo-scanner conflict {(λ, t), (λ, t′), (λ, t′′)} is resolved without resolving

the pairwise pseudo-scanner conflict {(λ, t), (λ, t′)}.
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Our PSLR(1) generator reports every complete pseudo-scanner conflict that the user has

not explicitly resolved with %lex-prec. Moreover, once all complete pseudo-scanner conflicts

are resolved, our generator reports any useless lexical precedence rule the user has declared using

%lex-prec. A useless lexical precedence rule is a lexical precedence rule that does not specify any

pairwise pseudo-scanner conflict resolution that is employed in at least one complete pseudo-scanner

conflict resolution. In this way, when a new complete pseudo-scanner conflict arises, rather than

quietly resolving it and producing potentially undesirable behavior, our PSLR(1) generator alerts

the user immediately.

For the same reasons, lexical precedence relations are not implicitly transitive. For example,

if for identity conflicts the user declares that token t has lower precedence than token t′ and declares

that token t′ has lower precedence than token t′′, then the only identity conflicts these rules resolve

are identity conflicts between t and t′ and identity conflicts between t′ and t′′. These rules do not

imply any relationship between t and t′′, for which there might not yet be any identity conflict that

needs to be resolved in order to resolve complete pseudo-scanner conflicts. If such an identity conflict

between t and t′′ does arise and there is no separate rule that resolves it, our generator reports to

the user the complete pseudo-scanner conflicts in which the identity conflict appears.

We make one exception to the above principles. When a token has an unresolved pairwise

pseudo-scanner conflict with itself, our generator resolves the conflict using longest match without

warning the user. For the case of identity conflicts, the justification is simple. By Definition 2.2.5, a

token cannot have an identity conflict with itself. For the case of autolength conflicts, the justification

is threefold. First, by far the most common rule we have found useful in this case is the traditional

rule, longest match. Second, in our experience, autolength conflicts are usually no surprise to the

user. Autolength conflicts are often obvious from a repetition operator appearing in the token’s

regular expression. For example, in Figure 2.2a, the “+” in the identifier’s regular expression is

the source of the identifier’s autolength conflicts. Third, there are often many tokens in a scanner

specification that have autolength conflicts. Declaring lexical precedence rules for all of these tokens

would be uselessly tedious. However, we have found a few cases where a rule of shortest match is

useful for autolength conflicts, so longest match is simply the default rule.
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%token-re ID ([a-zA-Z]+)
%lex-prec ID <∼ ’int’

%token-re OCTAL (0[0-7]+)
%lex-prec OCTAL -∼ ’0’

%token-re NUM ([0-9])
%lex-prec NUM <- ’0’

(a) (b) (c)

Figure 3.1: Traditional Lexical Precedence Rules. (a) Traditional rules involving token precedence
and longest match can be specified together in a PSLR(1) specification. However, when only (b)
length conflicts or (c) identity conflicts need to be resolved, then only the corresponding component
of the %lex-prec operator should be specified.

Definition 3.2.2 (Default Lexical Autolength Precedence)

Given any two matches (λ, t) and (λ′, t) for the same character sequence such that |λ| < |λ′| and

such that no lexical autolength precedence rule is declared for t, the relative precedence of these

matches is (λ, t) < (λ′, t). �

3.2.2 Traditional Rules

Consider again the Lex specification in Figure 2.2a. As we explained in section 2.2.1, the

identifier has both an identity conflict and length conflicts with the keyword, and the identifier has

autolength conflicts. We can rewrite the specification from Figure 2.2a as a PSLR(1) specification

while specifying a traditional scanner’s resolution of these conflicts. The new specification appears in

Figure 3.1a. The “<∼” is an example of a %lex-prec operator. The first character in a %lex-prec

operator always specifies how identity conflicts between the operands should be resolved, and the

second character always specifies how length conflicts between the operands should be resolved.

In this case, the “<” specifies that identity conflicts between the identifier and keyword should be

resolved by selecting the keyword. The “∼” specifies that length conflicts between them should

be resolved using longest match. However, if there exists no parser state that accepts both the

identifier and the keyword, then these scanner conflicts are not pseudo-scanner conflicts according

to Definition 3.2.1, and so there exists no complete pseudo-scanner conflict that these rules help to

resolve. In that case, our PSLR(1) generator reports that both rules specified by this %lex-prec

declaration are useless. Our generator quietly resolves the identifier’s autolength conflicts using

longest match.

The specification in Figure 3.1b contains two tokens, ’0’ and OCTAL. It assumes that no

identity conflict between those tokens needs to be resolved, and it specifies that length conflicts

between them should be resolved using longest match. The order of operands for “-∼” is irrelevant.
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Assume there exists a parser state, sp, that accepts both tokens and no other tokens. Thus, there

exists a complete pseudo-scanner conflict that this rule helps to resolve so that the rule is useful.

As this specification evolves, a user might naively change the “+” in the OCTAL token’s regular

expression to a “*”, creating an identity conflict with the ’0’ token. A traditional scanner generator

would quietly resolve the new conflict based on the order in which the tokens happen to be declared,

and so the generated scanner would then match the OCTAL token instead of the ’0’ token for

the single character “0”. Our PSLR(1) generator instead reports that there is now a complete

pseudo-scanner conflict for “0” in sp that is unresolved.

The specification in Figure 3.1c contains two tokens, ’0’ and NUM. It specifies that an

identity conflict between those tokens should be resolved by selecting the ’0’ token, and it assumes

that no length conflict between them needs to be resolved. Assume there exists a parser state, sp,

that accepts both tokens and no other tokens. Thus, there exists a complete pseudo-scanner conflict

that this rule helps to resolve so that the rule is useful. As this specification evolves, a user might

naively append a “+” to the NUM token’s regular expression, creating length conflicts. A traditional

scanner generator would quietly resolve all the new conflicts using longest match. Our PSLR(1)

generator does the same for the NUM token’s autolength conflicts. However, it reports that there are

now unresolved complete pseudo-scanner conflicts involving the NUM and ’0’ tokens in sp.

We now define the %lex-prec operators from this section formally.

Definition 3.2.3 (Traditional Lexical Precedence Operators)

Given any two matches (λ, t) and (λ′, t′) for the same character sequence, the lexical precedence

operators “<∼”, “<-”, and “-∼” can specify the relative precedence of those matches as follows:

1. (t<∼ t′)⇔ (t<-t′) ∧ (t-∼ t′).

2. (t<-t′)⇒ (t 6= t′).

3. (t<-t′) ∧ (λ = λ′)⇒ (λ, t) < (λ′, t′).

4. (t-∼ t′) ∧ (|λ| < |λ′|)⇒ (λ, t) < (λ′, t′).

5. (t-∼ t′) ∧ (|λ′| < |λ|)⇒ (λ′, t′) < (λ, t).

Notice that (t-∼ t′)⇔ (t′-∼ t). �
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%token-re WORD ([a-zA-Z](-?[a-zA-Z])*)
%token-re NON (non-)
%lex-prec WORD -< NON
%%
word

: WORD {$$ = new_word ($1); }
| NON WORD {$$ = new_negated_word ($2);}
;

%token-re WORD ([a-zA-Z](-?[a-zA-Z])*)
%token-re NON (non-?)
%lex-prec WORD << NON
%%
word
: WORD {$$ = new_word ($1); }
| NON WORD {$$ = new_negated_word ($2);}
;

(a) (b)

%token-re COM_START ("/*"([ˆ*]|\*+[ˆ*/])*\**)
%token-re COM ({COM_START}"*/")
%lex-prec COM_START -< COM // or -∼

%token-re COM_START ("/*"(.|\n)*)
%token-re COM ({COM_START}"*/")
%lex-prec COM -s COM
%lex-prec COM_START << COM

(c) (d)

Figure 3.2: Non-traditional Lexical Precedence Rules. (a) PSLR(1) supports declarations for re-
solving length conflicts by assigning precedence to tokens. (b) When there are identity conflicts as
well, they must be resolved using the same precedence relationship. (c) When autolength conflicts
are resolved using the rule of longest match, the syntax of C’s multiline comment is difficult to
express as a regular expression, but (d) the rule of shortest match makes it easier.

3.2.3 Non-traditional Rules

So far in this section, we have resolved all length conflicts using longest match. In other

words, we have always assigned precedence to the longest lexeme. In contrast, we have always

resolved identity conflicts by assigning precedence to tokens instead, and there are cases where it

is useful to do the same for length conflicts. For example, consider the PSLR(1) specification in

Figure 3.2a. According to this specification, the WORD token matches any series of letters such

that any consecutive pair of letters may be separated by a single hyphen. The NON token matches

only the character sequence “non-”. There is no identity conflict between the WORD token and

the NON token, but there are length conflicts between them. If these length conflicts were re-

solved using longest match, the first grammar production would match a character sequence like

“non-euclidean” in its entirety. However, this specification says that these length conflicts should

instead be resolved by selecting the NON token. Thus, the pseudo-scanner splits a character sequence

like “non-euclidean” into two tokens, which are matched by the second grammar production.

Because the grammar does not accept the NON token alone, it is a syntax error if the character

sequence “non-” appears alone.

The specification in Figure 3.2b revises the specification in Figure 3.2a so that the pseudo-
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scanner also extracts the prefix “non” and thus splits a character sequence like “nonacid” into

two tokens, which are matched by the second grammar production. Notice that this change creates

an identity conflict between the WORD and NON tokens, and we resolve it by selecting the NON token

just as we do for length conflicts. By requiring the user to add an explicit lexical precedence rule

for the new identity conflict rather than resolving it implicitly, the PSLR(1) generator motivates

the user to consider the consequences of the new conflict and its resolution. Specifically, WORD and

thus the first grammar production no longer match the character sequence “non”, so it is now also

a syntax error if the character sequence “non” appears alone.

The specification in Figure 3.2c defines the COM token for C’s multiline comment, and it

defines the COM_START token for such a comment that is not properly closed. Because the regular

expression of COM starts with exactly the regular expression of COM_START, the regular expression

of COM_START is referenced as “{COM_START}” to avoid repetition. Of course, there are length

conflicts between these two tokens. Resolving them with longest match is equivalent to giving COM

higher precedence because, for any given input character sequence, any match for COM is always

longer than any match for COM_START.

Figure 3.2c’s regular expressions are surprisingly complex given the simplicity of C’s mul-

tiline comment syntax, and those regular expressions become even worse for any similar syntactic

structure whose closing character sequence is longer than “*/”. In contrast, the regular expressions

appearing in Figure 3.2d are simple, and the closing character sequence can easily be extended.

However, in the latter case, COM has autolength conflicts. If those autolength conflicts were resolved

using the default rule of longest match, then COM would incorrectly match the following character

sequence up to the last “*/”:

/*com*/ str = "*/";

Instead, this specification explicitly resolves autolength conflicts for COM using the %lex-prec

operator “-s”, which specifies the rule of shortest match, also called minimal munch. Thus, COM

matches only up until the first “*/”, as desired. For the autolength conflicts of COM_START,

the specification accepts the default rule of longest match because shortest match would cause it to

always match exactly “/*” and nothing else. All conflicts between COM and COM_START are resolved

by giving COM higher precedence regardless of which token has the shortest or longest match. For

this reason, COM_START is guaranteed not to match beyond the first “*/” either.
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We now formally define the %lex-prec operators from this section as well as the operator

“<s”.

Definition 3.2.4 (Non-traditional Lexical Precedence Operators)

Given any two matches (λ, t) and (λ′, t′) for the same character sequence, the lexical precedence

operators “<<”, “-<”, “<s”, and “-s” can specify the relative precedence of those matches as

follows:

1. (t<<t′)⇔ (t<-t′) ∧ (t-<t′).

2. (t-<t′)⇒ (t 6= t′).

3. (t-<t′) ∧ (λ 6= λ′)⇒ (λ, t) < (λ′, t′).

4. (t<st′)⇔ (t<-t′) ∧ (t-st′).

5. (t-st′) ∧ (|λ| < |λ′|)⇒ (λ′, t′) < (λ, t).

6. (t-st′) ∧ (|λ′| < |λ|)⇒ (λ, t) < (λ′, t′).

Notice that (t-st′)⇔ (t′-st). �

We have introduced our non-traditional lexical precedence operators in order to further

minimize the ad-hoc coding required in scanner specifications. The full power of these operators

becomes more apparent in section 3.6, where we introduce a mechanism to handle whitespace and

comments, and in section 3.7, where we introduce scoped declarations.

3.2.4 Ambiguities

As we demonstrated in the previous sections, the lexical precedence rules for a given PSLR(1)

specification consist of (1) all rules the user specifies in %lex-prec declarations and (2) the rule of

longest match for autolength conflicts that are not resolved by the user’s %lex-prec declarations.

In this section, we introduce a formal model to reveal ambiguity in the way the user can interpret

these rules.
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Definition 3.2.5 (Lexical Precedence Function)

Any set of lexical precedence rules R defines a lexical precedence function, ∆, such that, given

any set of matches M for some character sequence, then:

1. Iff there exists some m ∈ M such that ∀m′ ∈ M : m 6= m′,m′ < m according to R, then

∆(M) = m.

2. Iff there exists no such m, then ∆(M) = undefined.

�

Definition 3.2.6 (Set Ordering)

Given a sequence σ and a set S, then σ is an ordering of S iff |σ| = |S| and ∀s ∈ S, s ∈ σ. �

Definition 3.2.7 (Sequential Lexical Precedence Function)

Any lexical precedence function ∆ defines a sequential lexical precedence function, F , such

that, given any sequence of matches µ for some character sequence, there exists a sequence ρ : |ρ| =

|µ| ∧ ρ[1] = µ[1] ∧ ρ[|ρ|] = F (µ) ∧ ∀i : 1 < i ≤ |ρ|, ρ[i] = ∆({ρ[i− 1], µ[i]}). �

We have introduced the concept of a sequential lexical precedence function to model how

we assume that users will intuitively interpret lexical precedence rules. For example, let’s say the

user has written the specification in Figure 3.1a and wishes to determine what match the pseudo-

scanner should select for the character sequence “integer” when the parser is in a state that

accepts exactly the tokens ID and ’int’. To do so, the user must compare all matches from

M (“integer”, {ID,’int’}) using the lexical precedence rules from his specification in order to

determine the highest precedence match. To perform all these comparisons, we assume that the user

will arbitrarily choose a particular ordering of the matches, µ, and then simply compare the matches

sequentially so that he can finish in linear time. The result of such a sequential comparison is

F (µ) such that F is the sequential lexical precedence function defined by the specification’s lexical

precedence rules. However, there are many possible orderings of the matches to choose from. The

user might, for example, choose the ordering µ shown in Table 3.1a. According to Definition 3.2.7,

F computes each element in ρ in order by applying the specification’s lexical precedence function,

∆, to the previous element in ρ and the current element in µ. In other words, the current element in
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µ rule ρ
1 (“i”,ID) (“i”,ID)
2 (“in”,ID) ID -∼ ID (“in”,ID)
3 (“int”,ID) ID -∼ ID (“int”,ID)
4 (“int”,’int’) ID <- ’int’ (“int”,’int’)
5 (“inte”,ID) ID -∼ ’int’ (“inte”,ID)
6 (“integ”,ID) ID -∼ ID (“integ”,ID)
7 (“intege”,ID) ID -∼ ID (“intege”,ID)
8 (“integer”,ID) ID -∼ ID (“integer”,ID)

µ′ rule ρ
1 (“i”,ID) (“i”,ID)
2 (“in”,ID) ID -∼ ID (“in”,ID)
3 (“int”,ID) ID -∼ ID (“int”,ID)
4 (“inte”,ID) ID -∼ ID (“inte”,ID)
5 (“integ”,ID) ID -∼ ID (“integ”,ID)
6 (“intege”,ID) ID -∼ ID (“intege”,ID)
7 (“integer”,ID) ID -∼ ID (“integer”,ID)
8 (“int”,’int’) ID -∼ ’int’ (“integer”,ID)

(a) (b)

Table 3.1: Unambiguous Sequential Lexical Precedence Function. For the specification in Figure
3.1a and the character sequence “integer”, the order in which matches are compared does not
affect the highest precedence match.

ρ is the highest precedence match found so far. The highest precedence match found after iterating

the entire sequence is then the last element of ρ, which is F (µ) = (“integer”,ID).

Because F can be applied to any ordering of M (“integer”, {ID,’int’}), it is worthwhile

to explore how different orderings affect the highest precedence match. For example, we adjust µ

slightly to produce µ′ shown in Table 3.1b. Notice that F (µ) = F (µ′). Moreover, for any other

sequence µ′′ that is an ordering of M (“integer”, {ID,’int’}), F (µ) = F (µ′′) also. In this case,

we say that F is unambiguous for M (“integer”, {ID,’int’}).

Definition 3.2.8 (Ambiguous vs Unambiguous)

Given a set of matches M for some character sequence, then a sequential lexical precedence function

F is ambiguous for M iff there exists a pair of sequences µ and µ′ such that each of µ and µ′ is an

ordering of M , F (µ) and F (µ′) are defined, and F (µ) 6= F (µ′). Otherwise, F is unambiguous

for M . �

If we could guarantee in general that the sequential lexical precedence functions defined by

PSLR(1) specifications are always unambiguous for all complete pseudo-scanner conflicts, then the

user could compare matches in linear time in any order he wished as he considered the effect of his

lexical precedence declarations. Because the user wouldn’t have to consider alternate orderings, the

task of writing, modifying, and understanding PSLR(1) specifications would be simplified.

The traditional lexical precedence rules from Definition 2.2.6 always define unambiguous

sequential lexical precedence functions. However, the precedence rules specified using %lex-prec

operators sometimes do not. We have identified three properties of the %lex-prec operators that

cause this difference:
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%token-re A (a)
%token-re B (a)
%token-re C (a)
%lex-prec A <- B
%lex-prec B <- C
%lex-prec C <- A
%%
start: A | B | C ;

µ rule ρ
1 (“a”,A) (“a”,A)
2 (“a”,B) A <- B (“a”,B)
3 (“a”,C) B <- C (“a”,C)

µ′ rule ρ
1 (“a”,C) (“a”,C)
2 (“a”,B) B <- C (“a”,C)
3 (“a”,A) C <- A (“a”,A)

(“a”,A)
>

��
(“a”,B)

<

99(“a”,C)

>
ee

(a) (b) (c)

Figure 3.3: Intransitive Lexical Precedence. (a) Specifying an intransitive lexical precedence relation
can define ambiguous sequential lexical precedence functions. (b) For the start state of the parser and
the character sequence “a”, the order in which matches are compared affects the highest precedence
match. (c) The trouble is that a cycle exists in the precedence relation over the matches.

%token-re A (a)
%token-re B (ab)
%token-re C (abc)
%lex-prec A -∼ B
%lex-prec B -∼ C
%lex-prec C -< A
%%
start: A | B | C ;

µ rule ρ
1 (“a”,A) (“a”,A)
2 (“ab”,B) A -∼ B (“ab”,B)
3 (“abc”,C) B -∼ C (“abc”,C)

µ′ rule ρ
1 (“abc”,C) (“abc”,C)
2 (“ab”,B) B -∼ C (“abc”,C)
3 (“a”,A) C -< A (“a”,A)

(“a”,A)
>

��
(“ab”,B)

<

88(“abc”,C)

>
ff

(a) (b) (c)

Figure 3.4: Token Precedence Mixed with Lexeme Precedence. (a) Mixing precedence of tokens
with precedence of lexemes for resolving length conflicts can define ambiguous sequential lexical
precedence functions. (b) For the start state of the parser and the character sequence “abc”, the
order in which matches are compared affects the highest precedence match. (c) The trouble is that
a cycle exists in the precedence relation over the matches.

%token-re A (a|abc)
%token-re B (ab)
%lex-prec A -s B
%%
start: A | B ;

µ rule ρ
1 (“a”,A) (“a”,A)
2 (“ab”,B) A -s B (“a”,A)
3 (“abc”,A) A -∼ A (“abc”,A)

µ′ rule ρ
1 (“abc”,A) (“abc”,A)
2 (“ab”,B) A -s B (“ab”,B)
3 (“a”,A) A -s B (“a”,A)

(“a”,A)
<

��
(“ab”,B)

<
88

(“abc”,A)

>

ff

(a) (b) (c)

Figure 3.5: Shortest Match Mixed with Longest Match. (a) Mixing the rule of shortest match
with the rule of longest match (implicit for autolength conflicts in this case) can define ambiguous
sequential lexical precedence functions. (b) For the start state of the parser and the character
sequence “abc”, the order in which matches are compared affects the highest precedence match. (c)
The trouble is that a cycle exists in the precedence relation over the matches.
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1. The %lex-prec operators do not require lexical precedence relations to be transitive.

2. The %lex-prec operators permit precedence of tokens to be mixed with precedence of lexemes

for resolving length conflicts.

3. The %lex-prec operators permit the rule of shortest match to be mixed with the rule of

longest match for resolving length conflicts.

For example, Figures 3.3a, 3.4a, and 3.5a present PSLR(1) specifications revealing the first, second,

and third property, respectively. In each example, the start state of the parser accepts all tokens

from the specification. Each of Figures 3.3b, 3.4b, and 3.5b shows two orderings of the matches for

an example character sequence while the parser is in the start state such that the highest precedence

match differs for the two orderings. Each of Figures 3.3c, 3.4c, and 3.5c reveals a cycle that exists

in the precedence relation over those matches. Because of the third property of the %lex-prec

operators, we can also create such a cycle by changing the “<<” operator to “<s” or “<∼” in Figure

3.2d. In general, such a cycle is the cause of an ambiguous sequential lexical precedence function.

As we explained in section 3.2.1, to fully define the pseudo-scanner’s behavior, it is not always

necessary that a PSLR(1) specification’s lexical precedence rules resolve all pairwise pseudo-scanner

conflicts. In that case, for some match orderings, it is possible for ∆ and thus F to return undefined.

To determine a highest precedence match in spite of this result, we assume that the user will simply

alter the match ordering so that F does not return undefined. For example, let the conflict C

be the set of matches {m,m′,m′′,m′′′} and let the only precedence relationships defined for those

matches be m < m′′, m′′ < m′, m′ < m′′′, and m′′′ < m. If the user first tries the match ordering

µ = (m,m′,m′′,m′′′), then he immediately encounters an undefined result for ∆({m,m′}). We

assume that the user will simply look for the first match with whichm does have a relationship, he will

find m′′, and then he will continue his comparisons from there. Thus, he converts the ordering µ to

the ordering µ′ = (m,m′′,m′,m′′′), for which no undefined result is encountered, and F (µ′) = m′′′.

However, given the ordering µ′′ = (m′′′,m,m′′,m′), then F (µ′′) = m′, so F is actually ambiguous

for C, and C is unresolved. Thus, even when there are unresolved pairwise pseudo-scanner conflicts,

it is still sometimes possible to compare matches sequentially, and ambiguity can still result.

In some cases, F returns undefined for every ordering of a set of matches. For example, let

the conflict C be the set of matches {m,m′,m′′} and let the only precedence relationships defined

for those matches be m < m′ and m < m′′. For every possible ordering µ of C, F (µ) = undefined.
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In this case, F is not ambiguous for C according to Definition 3.2.8 even though C is unresolved.

The reason we don’t include this case in our definition of an ambiguous sequential lexical precedence

function is that, when the user compares matches sequentially in this case, he can never derive a

highest precedence match, and so he will never be led to the erroneous conclusion that C is resolved.

The ambiguities permitted by the %lex-prec operators must be addressed in order for the

operators’ meaning to be defined in all cases. One solution would be to design an algorithm that

selects a single ordering of any set of matches and thus quietly resolves all such ambiguities in order

to compute the highest precedence match in linear time. However, this solution would burden the

user with discovering these ambiguities and understanding their implicit resolution. Instead, we have

designed an algorithm, which we describe in section 3.2.7, that can detect and report to the user

whether a PSLR(1) specification defines an ambiguous sequential lexical precedence function for any

complete pseudo-scanner conflict. However, the algorithm does not distinguish between ambiguous

sequential lexical precedence functions and other unresolved conflicts. Instead, it actually reports

any complete pseudo-scanner conflict for which the lexical precedence rules do not define a highest

precedence match uniquely. In other words, our algorithm employs the lexical precedence function,

∆, from Definition 3.2.5 rather than sequential lexical precedence function, F , from Definition 3.2.7

for resolving complete pseudo-scanner conflicts.

Definition 3.2.9 (Resolved Scanner Conflict)

Given the lexical precedence function ∆ defined by a set of lexical precedence rules R and given a

scanner conflict C, then C is resolved by R iff ∆(C) 6= undefined. �

As long as our generator reports that all complete pseudo-scanner conflicts are resolved and thus

guarantees that the sequential lexical precedence function defined by the PSLR(1) specification is

unambiguous for all such conflicts, then the user can select any ordering of the matches in such

a conflict and compare them sequentially to correctly determine the highest precedence match in

linear time.

3.2.5 Self-consistency

As we demonstrated in the previous section, %lex-prec operators can be combined in

a PSLR(1) specification in such a way that ambiguous sequential lexical precedence functions are

defined. However, for most of our %lex-prec operators, a single use of one of the operators alone
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can never do so. We say that each such operator is always self-consistent.

Definition 3.2.10 (Self-consistent vs Self-contradictory)

Given:

1. A lexical precedence operator �.

2. A character sequence ξ ∈ Ξ*.

3. A pair of tokens t and t′.

Let R be the following set of lexical precedence rules:

1. t� t′.

2. The default rule of longest match for autolength conflicts.

The operator � is self-consistent for ξ over {t, t′} iff the sequential lexical precedence function
that is defined by R is unambiguous for M (ξ, {t, t′}). Otherwise, � is self-contradictory for ξ
over {t, t′}. Iff � is self-consistent for every possible ξ and {t, t′} described in the above given, then
we say � is always self-consistent. �

Theorem 3.2.11 (Self-consistent Lexical Precedence Operators)

The following lexical precedence operators are always self-consistent:

1. “<∼”

2. “<-”

3. “-∼”

4. “<<”

5. “-<”

6. “-s” when the operands are the same token.

�

Theorem 3.2.11 is straightforward to prove informally. We refer to the sequential lexical

precedence function defined by the set of lexical precedence rules R as F . First, consider the case

where � is “<∼”. We can be sure that the lexeme for the highest precedence match computed by

F is the longest lexeme regardless of the ordering of matches because the rule of longest match

resolves all length conflicts. If both t and t′ match the longest lexeme, then the token for the highest

precedence match computed by F is t′ regardless of the ordering of matches because t′ is chosen

for all identity conflicts. If only one of the tokens matches the longest lexeme, then that token is

the token for the highest precedence match computed by F regardless of the ordering of matches.
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Second, consider the case where � is “<<”. If there is any match for t′, then the longest match for

t′ is the highest precedence match computed by F regardless of the ordering of matches because

t′ is chosen in any pairwise conflict between t and t′. If there is no match for t′, then the longest

match for t is the highest precedence match computed by F regardless of the ordering of matches.

Third, consider the case where � is “<-”, “-∼”, or “-<”. Each of these operators is exactly the

same as either “<∼” or “<<” except that either identity or length conflicts are left unresolved. In

general, the only effect that resolving less pairwise conflicts can have on F for some ordering of

matches is to cause F to return an undefined result, and an undefined result does not create an

ambiguity according to Definition 3.2.8. Finally, consider the case where � is “-s” and t = t′. For

the highest precedence match computed by F , there is only one possible token, and the lexeme is

the shortest lexeme regardless of the ordering of matches. Thus, in all cases for all of these operators,

the ordering of matches does not affect the highest precedence match computed by F , and so the

operators are always self-consistent.

Consider again the example in Figure 3.5 in terms of Definition 3.2.10. That is, � is “-s”,

ξ is “abc”, t is A, t′ is B, and all pairwise scanner conflicts for “abc” over {A,B} are resolved by

A -s B plus the default rule of longest match for autolength conflicts. As demonstrated in Figure

3.5b, the sequential lexical precedence function that is defined by A -s B plus the default rule of

longest match for autolength conflicts is ambiguous for M (“abc”, {A,B}), so the operator “-s” is

not always self-consistent. If we replace “-s” with “<s”, we have an example demonstrating that

the operator “<s” is not always self-consistent either. To make the latter example more realistic,

we can create identity conflicts by changing the regular expression for B to “a|ab”. In general,

the trouble is that a shortest match rule for length conflicts between different tokens sometimes

contradicts the default longest match rule for either token’s autolength conflicts.

Consider again the specification in Figure 3.2b. Recall that, when the input character se-

quence consists only of “non”, the pseudo-scanner returns the token NON alone, which the grammar

does not accept. It may be tempting to reverse the precedence for just the identity conflict between

the tokens WORD and NON so that the pseudo-scanner instead returns the token WORD, which is ac-

cepted by the first grammar production. Thus, the %lex-prec operator “<<” would be replaced by

“><” in the specification. However, consider what match the sequential lexical precedence function,

F , then computes for the character sequence “nonacid”. Using µ from Table 3.2a as the ordering

of matches, the highest precedence match computed by F is (“non”,NON). Thus, the prefix “non”
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(a)

µ rule ρ
1 (“n”,WORD) (“n”,WORD)
2 (“no”,WORD) WORD -∼ WORD (“no”,WORD)
3 (“non”,WORD) WORD -∼ WORD (“non”,WORD)
4 (“nona”,WORD) WORD -∼ WORD (“nona”,WORD)
5 (“nonac”,WORD) WORD -∼ WORD (“nonac”,WORD)
6 (“nonaci”,WORD) WORD -∼ WORD (“nonaci”,WORD)
7 (“nonacid”,WORD) WORD -∼ WORD (“nonacid”,WORD)
8 (“non”,NON) WORD -< NON (“non”,NON)

(b)

µ′ rule ρ
1 (“n”,WORD) (“n”,WORD)
2 (“no”,WORD) WORD -∼ WORD (“no”,WORD)
3 (“non”,WORD) WORD -∼ WORD (“non”,WORD)
4 (“non”,NON) WORD >- NON (“non”,WORD)
5 (“nona”,WORD) WORD -∼ WORD (“nona”,WORD)
6 (“nonac”,WORD) WORD -∼ WORD (“nonac”,WORD)
7 (“nonaci”,WORD) WORD -∼ WORD (“nonaci”,WORD)
8 (“nonacid”,WORD) WORD -∼ WORD (“nonacid”,WORD)

Table 3.2: Opposing Lexical Precedence. If we replace the “<<” operator with “><” in the specifi-
cation in Figure 3.2b, then, for the character sequence “nonacid”, the ordering of matches affects
the highest precedence match computed by the sequential lexical precedence function.

is extracted as we expected in section 3.2.3. However, using µ′ from Table 3.2b as the ordering

of matches, the highest precedence match computed by F is (“nonacid”,WORD). By Definition

3.2.10 then, the “><” operator is self-contradictory for “nonacid” over {WORD,NON}. In general

when “><” is self-contradictory, the highest precedence match computed by F depends on whether

the last pair of matches compared between the two tokens is a length conflict, as in Table 3.2a, or

an identity conflict, as in Table 3.2b. In this way, the opposing precedence within the operator is

the cause of its self-contradictory nature.

Even though “><” may seem like an obvious extension of the other %lex-prec operators

we have implemented, we have concluded that, because of its self-contradictory nature and because

we have found no practical use for it, it is not worth the confusion it would likely cause the user.

For the same reasons, we had originally planned in general not to implement any lexical precedence

operator that is not always self-consistent. However, after realizing that, as demonstrated by Figures

3.2c and 3.2d, the operator “-s” can be quite useful for autolength conflicts, for which it is always

self-consistent according to Theorem 3.2.11, we decided to permit the operators “-s” and “<s” for

length conflicts between different tokens, for which they are not always self-consistent. It will be

interesting to see whether the always self-consistent property proves to be the litmus test for the

usefulness of a lexical precedence operator.
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3.2.6 Pseudo-scanner Tables

In this section, we describe the pseudo-scanner tables that our PSLR(1) generator constructs

to encode the lexical behavior defined by the user’s PSLR(1) specification. Let G be the context-free

grammar from the specification such that G (G) = (V ′, T ′, P ′, S′), and let R be the set of lexical

precedence rules from the specification. Let Σp be the set of LR(1) parser states for G, and let sp0

be the index of the start state within Σp. If not all complete pseudo-scanner conflicts are resolved by

R, then our generator reports an error and does not bother to construct the pseudo-scanner tables,

so this section’s definitions assume that all complete pseudo-scanner conflicts are resolved.

The first set of tables our PSLR(1) generator constructs for the pseudo-scanner encodes a

single deterministic FSA that matches all tokens in T ′ against the regular expressions defined by

the user’s PSLR(1) specification. Let Σs be that FSA’s set of states, and let ss0 be the index of the

start state within Σs. To facilitate our explanations, we employ δ as a function that can examine the

transitions recorded in any FSA state. That is, ∀ss : 1 ≤ ss ≤ |Σs|,∀s′s : 1 ≤ s′s ≤ |Σs|,∀c ∈ Ξ, the

statement δ(Σs[ss], c) = Σs[s′s] holds iff there is a transition from state Σs[ss] on c to state Σs[s′s].

Iff either (1) there is no transition from Σs[ss] on c or (2) the destination of that transition is the

error state, then the statement @δ(Σs[ss], c) holds.

Σs is nearly appropriate as the FSA for a traditional scanner with only one start condition

that recognizes all tokens in T ′. Algorithms to construct such an FSA are well known and involve

converting the regular expressions for all tokens in T ′ to a single non-deterministic FSA and then

converting the non-deterministic FSA to a deterministic FSA [11]. The only difference is that our

generator does not encode the resolution of identity conflicts in Σs. That is, our generator maintains

a set of accepted tokens per accepting state rather than always reducing the set to the token declared

earliest in the scanner specification. For example, assume the user’s PSLR(1) specification is the

specification from Figure 3.1a. If δ∗(Σs[ss0],“int”) = Σs[ss], then Σs[ss] is an accepting state

for both the ID token and the ’int’ token. Thus, the identity conflict between ID and ’int’

remains. Our generator also does not encode the resolution of length conflicts in Σs, but neither

does a traditional scanner generator. Continuing our example, if δ(Σs[ss],“s”) = Σs[s′s], then Σs[s′s]

accepts the ID token. When the traditional scanner reaches Σs[s′s], it forgets that Σs[ss] is an

accepting state because it always resolves length conflicts using longest match, but the pseudo-

scanner might decide that a match represented by Σs[ss] has higher precedence than the match
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represented by Σs[s′s]. Also as in a traditional scanner, Σs does not encode the basic pseudo-scanner

behavior defined in Definition 3.1.1. That is, regardless of which tokens are accepted by the current

parser state, Σs[ss] accepts ID and ’int’, and Σs[s′s] accepts ID.

Definition 3.2.12 (Accepts for Scanner)

Given the LR(1) parser state sp and the scanner FSA state ss, we extend Definition 2.2.12 to overload

acc as follows:

1. acc(ss) is the set of tokens accepted by ss.

2. acc(sp, ss) = acc(sp) ∩ acc(ss).

�

Rather than encoding conflict resolution and the basic pseudo-scanner behavior directly in

Σs, our generator encodes them in separate tables, which we now define. Because these tables encode

which tokens should be accepted by which states in Σs, our generator discards the sets of accepted

tokens in Σs after constructing these tables.

Definition 3.2.13 (state to accepting state)

∀ss : 1 ≤ ss ≤ |Σs|, state to accepting state[ss] is either:

1. Undefined iff acc(Σs[ss]) = ∅.

2. The index that Σs[ss] would have in a Σ′s that is formed by copying Σs and then, ∀s′s : 1 ≤

s′s ≤ |Σs| ∧ acc(Σs[s′s]) = ∅, removing Σs[s′s].

�

The purpose of state to accepting state is to reduce the size of tables like scanner accepts, which

we now define.

Definition 3.2.14 (scanner accepts)

∀sp : 1 ≤ sp ≤ |Σp|,∀ss : 1 ≤ ss ≤ |Σs|, when the parser is in state Σp[sp] and the pseudo-scanner is

in state Σs[ss]:

1. If the pseudo-scanner should not recognize a match for any token, then either:
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(a) state to accepting state[ss] = undefined.

(b) scanner accepts[sp][state to accepting state[ss]] = undefined.

2. Otherwise, scanner accepts[sp][state to accepting state[ss]] is the token for which the pseudo-

scanner should recognize a match.

�

scanner accepts resolves all pseudo-scanner identity conflicts by selecting a single token per

Σs accepting state, which corresponds to a column in scanner accepts. However, because of the basic

pseudo-scanner behavior, it does so per parser state, which corresponds to a row in scanner accepts.

Sometimes an accepting state in Σs does not need an accepted token to be specified for a particular

parser state either because no token is accepted by both it and the parser state or because there

is always a shorter match that has higher precedence. In these cases, scanner accepts leaves the

accepted token undefined.

Definition 3.2.15 (length precedences)

∀t ∈ T ′,∀t′ ∈ T ′, length precedences[t][t′] = true iff (t-<t′) ∈ R ∨ (t-∼ t′) ∈ R. �

While scanning the input, the pseudo-scanner uses length precedences to determine how the

user has specified that length conflicts be resolved. In other words, length precedences[t][t′] = true

iff matches for t have lower precedence than longer matches for t′ according to R. If R has no rule

for lexical length precedence between t and t′, then either there are no complete pseudo-scanner

conflicts whose resolution requires the resolution of those length conflicts, or our generator reports

an error. In either case, the value of length precedences[t][t′] is irrelevant.

Definition 3.2.15 is the first place we have formally modeled R as a set, so we now clarify a

couple of points about the contents of R. By Definition 3.2.3, (t-∼ t′)⇔ (t′-∼ t). Thus, we assume

that (t-∼ t′) ∈ R ⇔ (t′-∼ t) ∈ R. Likewise, by Definition 3.2.4, (t-st′) ⇔ (t′-st), so we also

assume that (t-st′) ∈ R ⇔ (t′-st) ∈ R. The first point affects Definition 3.2.15, and both points

affect definitions in the next section.

Given the above tables, the pseudo-scanner algorithm is straight-forward. Let ξ be the

portion of the input character sequence that has not yet been tokenized. We call the pseudo-scanner

function pseudo scan. The parser passes the index of the current parser state as an argument to
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pseudo scan, and pseudo scan either returns the token it selects from all the tokens that match ξ,

returns undefined if no token matches ξ, or returns # if ξ is empty.

Definition 3.2.16 (pseudo scan(sp))

1 if (|ξ| = 0) do:
2 return #.
3 let ibest = 1.
4 let tbest = undefined.
5 let ss = ss0.
6 for (let i = 1; i ≤ |ξ| ∧ ∃δ(Σs[ss], ξ[i]); i = i+ 1) do:
7 let s′s : Σs[s′s] = δ(Σs[ss], ξ[i]).
8 set ss = s′s.
9 let sa = state to accepting state[ss].

10 if (sa 6= undefined) do:
11 let t = scanner accepts[sp][sa].
12 if (t 6= undefined ∧ (tbest = undefined ∨ length precedences[tbest][t])) do:
13 set ibest = i+ 1.
14 set tbest = t.
15 set ξ = ξ[ibest..|ξ|].
16 return tbest. �

As we discussed earlier, algorithms to construct Σs are well know. Converting our definitions

of the state to accepting states and length precedences tables to algorithms that construct those

tables is straight-forward. Thus, we do not describe such algorithms in this paper. However, our

algorithm to construct scanner accepts is more complex, and we describe it in the next section. Later

in this chapter, we revise our definitions of scanner accepts, length precedences, and pseudo scan

to implement features such as error handling.

3.2.7 Resolver Algorithm

Discovering, resolving, and reporting parser conflicts in LR(1) parser tables is relatively

straight-forward because there is a finite number of states, a finite number of actions that can

conflict per state, and thus a finite number of conflicts. For a traditional scanner, the number of

states is finite also, but scanner length conflicts span multiple states across state transitions, and

transition loops can exist. Thus, the number of complete scanner conflicts and the number of matches

per complete scanner conflict can be infinite. Nevertheless, the traditional lexical precedence rules

are straight-forward to implement because all complete scanner conflicts are resolved by resolving

every pairwise scanner conflict in isolation as described in the previous section. Moreover, because
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all scanner conflicts are resolved implicitly, the scanner generator never reports any of them.

For PSLR(1), the number of complete pseudo-scanner conflicts and the number of matches

per complete pseudo-scanner conflict can be infinite for the same reasons as for complete scanner

conflicts for a traditional scanner, but it is not sufficient to resolve pairwise pseudo-scanner conflicts

in isolation. Instead, because of the complexity of PSLR(1)’s lexical precedence rules, the PSLR(1)

generator must examine a complete pseudo-scanner conflict as a whole to determine if and how it is

resolved, and the generator must report it to the user if it is unresolved. The only way to devise an

algorithm that terminates but still manages to handle every one of the potentially infinite number

of complete pseudo-scanner conflicts is to divide those conflicts into a finite number of categories

such that all conflicts in a category can be discovered, resolved, and reported in the same manner.

Our primary mechanism for categorizing complete pseudo-scanner conflicts is the scanner conflict

profile.

Definition 3.2.17 (Scanner Conflict Profile)

Given:

1. A set of lexical precedence rules R.

2. A set of tokens T .

3. A character sequence ξ ∈ Ξ*.

let ξs = ξ[1..|ξ| − 1], which is the empty string if |ξ| = 1. The scanner conflict profile for ξ over

T in the context of R is then the tuple (Ts, ts, T`) such that:

1. Ts = {t : ∃λ : (λ, t) ∈ M (ξs, T )}, which might be ∅. Thus, we say that Ts is the set of all

tokens matching the shorter lexemes.

2. Either:

(a) ∃ms ∈ M (ξs, T ) : ∀m ∈ M (ξs, T ) : m 6= ms,m < ms according to R. In this case,

ts is such that ∃λs : ms = (λs, ts). Thus, we say that ts is the token with the highest

precedence match for the shorter lexemes.

(b) ts = undefined iff no such ms exists.

3. T` = {t : (ξ, t) ∈ M (ξ, T )}, which might be ∅. Thus, we say that T` is the set of all tokens

matching the longest lexeme.
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�

Definition 3.2.17 only makes sense for a complete scanner conflict because it considers all

matches for a character sequence, ξ, over a set of tokens, T . However, there is no restriction on T ,

so a scanner conflict profile can be computed for any complete scanner conflict including a complete

pseudo-scanner conflict. Our PSLR(1) generator is only concerned with complete pseudo-scanner

conflicts, and it examines each parser state in isolation, so T is always the set of tokens accepted by

a particular parser state. As a result, |T | is finite, the number of possible sets Ts ⊆ T is finite, the

number of possible tokens ts ∈ Ts is finite, and the number of possible sets T` ⊆ T is finite. Thus,

the number of possible combinations for Ts, ts, and T` to form a scanner conflict profile (Ts, ts, T`)

must be finite. That is, for any given PSLR(1) specification, scanner conflict profiles divide complete

pseudo-scanner conflicts into a finite number of categories as desired.

We now explore whether every complete pseudo-scanner conflict with the same profile can

be discovered, resolved, and reported in the same manner. The resolution of conflicts is the key to

discovering and reporting them, so we consider resolution first.

Observation 3.2.18 (Resolution for Scanner Conflict Profile)

Given a scanner conflict profile (Ts, ts, T`) in the context of the set of lexical precedence rules R,

then:

1. If ts 6= undefined and if, ∀t ∈ T`, (t-<ts) ∈ R∨(t-sts) ∈ R, then the highest precedence match

according to R is the same as the highest precedence match when the last character is removed

from the input character sequence. In Definition 3.2.17, this match is called ms. Its token is

ts.

2. Otherwise, if ∃t` ∈ T` : (∀t ∈ T` : t 6= t`, (t<-t`) ∈ R) ∧ (∀t ∈ Ts, (t-<t`) ∈ R ∨ (t-∼ t`) ∈ R),

then ∃λ` : (λ`, t`) is the highest precedence match. λ` is always the entire input character

sequence.

3. Otherwise, the conflict is unresolved.

�

The justification for Observation 3.2.18’s algorithm is straight-forward. As in Definition

3.2.17, let ξ be the input character sequence, and let T be the set of tokens such that the complete
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scanner conflict is M (ξ, T ). In both cases where the algorithm claims the conflict is resolved, the

algorithm defines the highest precedence match as the match m ∈M (ξ, T ) : ∀m′ ∈M (ξ, T ) : m 6=

m′,m′ < m according to R. The algorithm claims the conflict is unresolved iff there is no such m.

Thus, by Definitions 3.2.9 and 3.2.5, the algorithm correctly resolves complete scanner conflicts.

By resolving conflicts based on their profiles, Observation 3.2.18’s algorithm immediately

yields a strategy for reporting unresolved conflicts. That is, the algorithm reveals that the profile

for a conflict contains enough information to determine whether the PSLR(1) specification’s lexical

precedence rules, R, resolve the conflict. Thus, to describe all deficiencies in R to the user so that

he can then adjust R to resolve any remaining unresolved conflicts, we assert that it is sufficient

for the PSLR(1) generator to report one unresolved conflict per profile. With this strategy, the

generator’s conflict report for a PSLR(1) specification with an infinite number of conflicts can remain

comprehensive and yet finite.

Observation 3.2.18 is only a vague outline of how to resolve conflicts. There are several

points we must address in order to develop it into a concrete algorithm. First, Observation 3.2.18’s

algorithm does not provide an obvious way to actually discover conflicts so that the generator can

even consider resolving and reporting them. Second, even though a conflict’s profile is enough to

determine whether the conflict is resolved, which token belongs to the highest precedence match,

and how to select the lexeme for the highest precedence match, the profile alone is not enough

information to compute the actual lexeme for the highest precedence match. We must also know

the input character sequence, ξ. Third, the algorithm is recursive. That is, in order to select the

highest precedence match for ξ, we need to know the highest precedence match for the character

sequence ξs = ξ[1..|ξ| − 1]. The derivation of a conflict’s profile from the conflict is recursive in the

same manner because Ts and ts from Definition 3.2.17 are computed from ξs. To address all of these

points, it seems that we need to examine every possible ξ for which there are matches while making

sure to examine every prefix of a ξ before examining ξ. However, there are an infinite number of

possible values for ξ, so we must divide them into a finite number of categories.

Every ξ for which there are matches corresponds to some state transition path from Σs[ss0]

through Σs, but the same is not true for every ξ for which there are no matches. Thus, examining

all such paths rather than all possible character sequences would avoid some character sequences

for which there are no matches and thus no conflicts. A depth-first iteration of the states would

examine all such paths while visiting prefixes of any ξ before ξ so that the algorithm can exploit the
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recursive nature of Observation 3.2.18 and Definition 3.2.17. Moreover, this iteration would visit

every accepting state in Σs so that, as we discussed in the previous section, the algorithm could

construct scanner accepts. However, the number of paths and the lengths of paths through Σs can

still be infinite because of transition loops. We must divide this infinite number of paths into a finite

number of categories, and we must choose a finite path for each category.

Our PSLR(1) generator’s resolution algorithm for complete pseudo-scanner conflicts achieves

the above goals by maintaining a scanner conflict profile map, profile map, during its depth-first

iteration through the states of Σs. Each key in profile map is a profile, and each value is the set

of indices for the Σs states at which the corresponding profile has already been encountered. We

model profile map as an associative array. When it is cleared, the value for each possible key

becomes ∅. We also assume the existence of a report conflict function for reporting one complete

pseudo-scanner conflict to the user.

Definition 3.2.19 (compute scanner accepts)

1 for (let sp = 1; sp ≤ |Σp|; sp = sp + 1) do:
2 for (let ss = 1; ss ≤ |Σs|; ss = ss + 1) do:
3 let sa = state to accepting state[ss].
4 if (sa 6= undefined) do:
5 set scanner accepts[sp][sa] = undefined.
6 for (let sp = 1; sp ≤ |Σp|; sp = sp + 1) do:
7 clear profile map.
8 resolve(sp, ss0, ∅,undefined). �

Definition 3.2.20 (resolve(sp, ss, Ts, ts))

1 for (let i = 1; i ≤ |Ξ|; i = i+ 1) do:
2 if (∃δ(Σs[ss],Ξ[i])) do:
3 let s′s : Σs[s′s] = δ(Σs[ss],Ξ[i]).
4 let T` = acc(Σp[sp],Σs[s′s]).
5 let entry = profile map[(Ts, ts, T`)].
6 if (s′s 6∈ entry) do:
7 let t` = undefined.
8 if (T` = ∅ ∨ (ts 6= undefined ∧ ∀t ∈ T`, (t-<ts) ∈ R ∨ (t-sts) ∈ R)) do:
9 set t` = ts.

10 else do:
11 set t` : (t` ∈ T`) ∧ (∀t ∈ T` : t 6= t`, (t<-t`) ∈ R)
12 ∧(∀t ∈ Ts, (t-<t`) ∈ R ∨ (t-∼ t`) ∈ R).
13 if (t` 6= undefined) do:
14 set scanner accepts[sp][state to accepting state[s′s]] = t`.
15 else if (entry = ∅) do:
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16 report conflict(sp, s
′
s, Ts, ts, T`).

17 set profile map[(Ts, ts, T`)] = entry ∪ {s′s}.
18 resolve(sp, s

′
s, {Ts ∪ T`}, t`). �

The compute scanner accepts function in Definition 3.2.19 initializes scanner accepts and,

for each parser state, invokes the recursive resolve function to initiate the depth-first iteration

starting at Σs[ss0] through Σs. The resolve function in Definition 3.2.20 implements that depth-

first recursion, applies Observation 3.2.18 in order to resolve complete pseudo-scanner conflicts,

computes scanner accepts based on that resolution, and reports conflicts that are not resolved. On

line 14 in Definition 3.2.20, notice that, when a new token is stored in scanner accepts, the cell in

which to store it is selected uniquely for each combination of sp and s′s. T` is also computed entirely

from sp and s′s, and the new token to be stored is always the token with the highest lexical identity

precedence in T`. In other words, there is one possible token for each cell in scanner accepts, and

once that token is stored, it is never changed. The main importance of this observation is that we

do not have to worry that recording the resolution of one conflict can alter the recorded resolution

of another conflict.

Throughout the depth-first iteration, profile map has two purposes. The first purpose is

achieved on line 6 in Definition 3.2.20, where profile map is used to determine if, for the current

parser state, the current pseudo-scanner state in the depth-first iteration has been visited previously

with the same conflict profile. If so, then the iteration does not recurse any deeper. The justification

is that, because the parser state, pseudo-scanner state, and profile are the same, the conflict resolu-

tion result would be the same, the arguments to the nested resolve invocation would be the same,

and so all actions the algorithm would perform by continuing into the recursion have already been

initiated. Moreover, the actions that were initiated last time the algorithm visited this parser state,

pseudo-scanner state, and profile might not yet have completed when the current resolve invocation

was encountered. That is, the last resolve invocation for this parser state, pseudo-scanner state,

and profile might still be on the call stack. In that case, ending the recursion here helps to avoid an

infinite loop. In general, we can be sure our algorithm always terminates because there are only a

finite number of combinations of profiles and states. In this way, we achieve our goal of dividing a

potentially infinite number of complete pseudo-scanner conflicts into a finite number of categories.

That is, for each parser state, conflicts are categorized by profile plus the last pseudo-scanner state

visited when the conflict is discovered.
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The second purpose of profile map is to enable us to report one unresolved conflict per

profile. The condition on line 15 achieves this purpose. However, the algorithm actually reduces the

conflict report further. The T` = ∅ condition on line 8 guarantees no conflict is reported when there

are no matches for the full character sequence being examined. The justification is simply that the

complete conflict has no more matches than the complete conflict for the character sequence with one

less character, which the algorithm just examined in the predecessor pseudo-scanner state. Thus,

there is no new conflict to report. Thus, the only reason to bother storing a profile in profile map

when T` = ∅ is to avoid repeating the recursion the next time this parser state, pseudo-scanner state,

and profile are visited.

3.2.8 Summary

The basic behavior of a pseudo-scanner automatically eliminates many of the scanner con-

flicts among tokens from different sub-languages. Our PSLR(1) generator supports a lexical prece-

dence directive to resolve remaining scanner conflicts in a careful, explicit, and declarative manner

in order to further avoid the start conditions, other ad-hoc coding, and implicit conflict resolution

of a traditional scanner generator like Lex. These features make our lexical precedence directive

an important part of our unified scanner and parser specification language. As such, the directive

will facilitate the modularization and arbitrary composition of sub-languages for the sake of modern

extensible languages. However, as part of this effort, we have permitted lexical precedence rules that

are more flexible but more complex than traditional lexical precedence rules. Determining which

rules are useful enough in practice to be worth the complexity of the user’s task of comprehending

them is part of our ongoing exploration of practical applications of PSLR(1). Nevertheless, for any

combination of these rules that the user specifies, we have devised an algorithm with which our

PSLR(1) generator discovers the potentially infinite number of remaining scanner conflicts, resolves

as many as possible according to the user’s specified rules, and produces a comprehensive but finite

report of unresolved conflicts in order to aid the user in further developing his PSLR(1) specification.

3.3 Lexical Ties

A pseudo-scanner, as specified in Definition 3.1.1, always selects a syntactically acceptable

match based on left context. However, for some languages, the correct match is not always a
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(a) struct int; (d) %token-re ID ([a-zA-Z ][a-zA-Z 0-9]*)
%symbol-set keywords

(b) do {} whiles; ’struct’ ’int’ ’do’
’while’ ’void’

(c) void *i = &&j; %lex-tie ID keywords
%lex-prec ID <∼ keywords
%lex-tie ’&’ ’&&’
%lex-prec ’&’ -∼ ’&&’

Figure 3.6: Lexical Ties. By default, a pseudo-scanner always returns a syntactically acceptable
token even though it may not be the correct token. In C, for example, (a) a keyword like int may be
mistaken for an identifier, (b) a keyword like while may be broken off of an identifier like whiles
or off of a similar keyword, and (c) an operator like & may be broken off of another operator like
&&. (d) To avoid this problem, tokens that should not be confused but that match similar lexemes
should be declared as lexically tied.

syntactically acceptable match. For example, in a language like C, all keywords are reserved words.

Thus, even though keywords and identifiers match similar lexemes, a scanner for C should never

mistake a keyword for an identifier, and it should always select the longest matching keyword or

identifier even if the selected match is a syntax error in the current context. Figure 3.6 shows a few

cases where a pseudo-scanner for C would thus make the wrong choice. For the character sequence

“int” in Figure 3.6a, the match (“int”,ID) is syntactically acceptable based on left context, but

the correct match, (“int”,’int’), is not. For the character sequence “whiles” in Figure 3.6b,

the match (“while”,’while’) is syntactically acceptable based on left context, leaving the trailing

“s” for a subsequent scanner invocation, but the correct match, (“whiles”,ID), is not. Operators

with similar lexemes can cause the same trouble as identifiers and keywords. For example, for the

character sequence “&&” in Figure 3.6c, the match (“&”,’&’) is syntactically acceptable based on

left context, leaving the trailing “&” for a subsequent scanner invocation, but the correct match,

(“&&”,’&&’), is not.1

In contrast, a scanner generated by a traditional scanner-generator tool like Lex usually

handles the above examples correctly. When the user does not employ start conditions, the scanner

always recognizes all tokens regardless of the current parser state. Thus, the scanner never ignores

the correct keyword, identifier, or operator match simply because it is not syntactically acceptable.

When the user does employ start conditions, he must ensure that every start condition that recognizes

any keyword or identifier also recognizes every other keyword and identifier regardless of where they

are syntactically acceptable. When the scanner is in such a start condition, it then never ignores
1We assume ISO C99 without the label address operator extension supported by compilers like GCC.
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the correct keyword or identifier match. When the scanner is in a start condition that accepts no

keyword or identifier but a keyword or identifier appears in the input, a syntax error is guaranteed to

be detected as expected. Likewise, the user must ensure that similar operators are always recognized

by the same start conditions.

For a pseudo-scanner then, groups of tokens like keywords and identifiers or similar oper-

ators must somehow be tied together so that the scanner always recognizes all tokens from such a

group where it recognizes any of them. However, requiring users to study sub-language transitions

or, worse, parser tables in order to ensure that tokens are properly tied together worsens the com-

plexity of developing and maintaining a PSLR(1) specification. Instead, a PSLR(1) specification

can employ the lexical tie directive, denoted %lex-tie, to specify groups of tokens that the

generator should automatically tie together in the pseudo-scanner. To make the declarations a little

more succinct and maintainable, a PSLR(1) specification can also employ a symbol set directive,

denoted %symbol-set.

For example, Figure 3.6d declares all of the keywords from the examples in Figures 3.6a,

3.6b, and 3.6c to be in a symbol set bearing the user-supplied name keywords. It then declares

all keywords and the identifier to be lexically tied. Next, it declares traditional lexical precedence

rules for conflicts between the identifier and any keyword, giving higher precedence to the keyword

in the case of identity conflicts. Finally, in a separate group, it declares two similar operators, ’&’

and ’&&’, to be lexically tied, and it declares the traditional longest match rule for the length

conflict between them. Thus, because a match for the identifier token is syntactically acceptable at

the “int” in Figure 3.6a, the pseudo-scanner behaves as if a match for the ’int’ token is as well.

The highest precedence match is then (“int”,’int’). Similarly, because a match for the ’while’

token is syntactically acceptable at the “whiles” in Figure 3.6b, the pseudo-scanner behaves as if

a match for the identifier token is as well. The highest precedence match is then (“whiles”,ID).

Finally, because a match for the ’&’ token is syntactically acceptable at the “&&” in Figure 3.6c,

the pseudo-scanner behaves as if a match for the ’&&’ token is as well. The highest precedence

match is then (“&&”,’&&’). In every case, the pseudo-scanner returns the highest precedence match

to the parser, which reports the expected syntax error.

Formally, lexical tie declarations modify the definition of acc from Definition 2.2.12 as fol-

lows.
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Definition 3.3.1 (Lexical Ties)

Given the token t and the set T of all tokens to which t is lexically tied, then ties(t) = {t} ∪ T . �

Definition 3.3.2 (Accepts with Lexical Ties)

Given the LR(1) parser state sp, then acc(sp) = {t : ∃((` → %), d,K, (at, ap, as)) ∈ sp : (at =

“S” ∧ %[d] ∈ ties(t)) ∨ (at = “R” ∧K ∩ ties(t) 6= ∅)}. �

This change to acc affects the basic definition of pseudo-scanner behavior from Definition

3.1.1, the definition of pseudo-scanner conflicts from Definition 3.2.1, and conflict resolution as

performed by the resolve function from Definition 3.2.20 to construct the scanner accepts table.

That is, the purpose of declaring lexical ties is to expand sets of matches, possibly creating new

pseudo-scanner conflicts. Thus, %lex-prec declarations like those appearing in Figure 3.6d might

not be necessary until the associated tokens are declared to be lexically tied.

There are a few important subtleties for lexical ties that need to be clarified. First, the lexical

tie relation for any PSLR(1) specification is implicitly reflexive. For example, given a token T, the

declaration “%lex-tie T T” is redundant because, in Definition 3.3.1, ties(t) always contains t.

Second, the lexical tie relation for any PSLR(1) specification is implicitly symmetric. That is, the

order of operands for %lex-tie is irrelevant. For example, given the tokens A and B, our PSLR(1)

generator interprets the declaration “%lex-tie A B” to mean that the pseudo-scanner should

recognize A in all syntactic contexts in which B is recognized and that the pseudo-scanner should

recognize B in all syntactic contexts in which A is recognized. Reversing this statement to reflect the

opposite order of operands in the declaration “%lex-tie B A” does not change its meaning. Third,

the lexical tie relation for any PSLR(1) specification is implicitly transitive. Thus, in Definition 3.3.1,

ties(t) includes all tokens to which t is explicitly declared to be lexically tied, but ties(t) also includes

all tokens to which those tokens are lexically tied, and so on. While transitivity for the lexical tie

relation might seem inconsistent with our decision that the lexical precedence relation should not

be implicitly transitive, transitivity is actually an unavoidable consequence of the intuitive meaning

of lexical ties. Continuing our example for the A and B tokens and given the token C, our generator

interprets the declaration “%lex-tie B C” to mean that the pseudo-scanner should recognize B

in all syntactic contexts in which C is recognized and that the pseudo-scanner should recognize C in

all syntactic contexts in which B is recognized. However, given both declarations, the only way to

recognize C in all contexts in which B is recognized is to recognize C in all contexts in which A is
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recognized, and the only way to recognize A in all contexts in which B is recognized is to recognize

A in all contexts in which C is recognized. Thus, A and C are lexically tied implicitly.

There are also a few subtleties when lexical ties and symbol sets are combined. Given

the symbol set set and the token T, then “%lex-tie set T” or the equivalent “%lex-tie T

set” lexically ties T to every token t in set iff there is pairwise scanner conflict between T and

t. Given the symbol sets set-a and set-b, then “%lex-tie set-a set-b” or the equivalent

“%lex-tie set-b set-a” lexically ties every token t in set-a to every token t′ in set-b iff

there is pairwise scanner conflict between t and t′. For example, if punctuators is a symbol

set containing all punctuators from a language, then “%lex-tie punctuators punctuators”

ensures that punctuators like ’+’ and ’++’ are lexically tied while it has no effect on punctuators

like ’.’ and ’/’. Our justification for requiring conflicts is that, given the transitivity of lexical

ties, avoiding unnecessary lexical ties can potentially avoid the creation of a large set of unnecessary

pseudo-scanner conflicts. However, that requirement is relaxed when both operands are tokens. For

example, given the tokens A and B, “%lex-tie A B” lexically ties A and B regardless of whether

A and B have any pairwise scanner conflict. We are not yet sure that there is ever a practical reason

to lexically tie tokens that do not conflict, but we permit this possibility in case it proves useful as

we continue to explore practical applications of PSLR(1).

Any pair of tokens that have a scanner conflict is a candidate for lexical tying if one of those

tokens appears without the other in any parser state’s set of acceptable tokens.

Definition 3.3.3 (Lexical Tie Candidates)

Given any two different tokens t and t′ and an LR(1) parser whose state set is Σp, then (t, t′) is a

lexical tie candidate for that parser iff ∃ξ ∈ Ξ* : ∃λ : ∃λ′ : {(λ, t), (λ′, t′)} ⊆ M (ξ, {t, t′}) and

∃sp ∈ Σp : (t ∈ acc(sp)) 6= (t′ ∈ acc(sp)). �

Our PSLR(1) generator reports all lexical tie candidates to aid the user in developing a

correct PSLR(1) specification. The user can disable this report for a pair of tokens that should

not be lexically tied by using the %lex-no-tie directive. For example, the PSLR(1) specification

in Figure 2.3c declares “%lex-no-tie ’>’ ’>>’” to specify that, when the character sequence

“>>” is encountered in a syntactic context where only ’>’ is acceptable, it is indeed the intention

of the specification author that the pseudo-scanner should select the match (“>”,’>’) and ignore

the possibility of (“>>”,’>>’). It is not possible to override the transitivity of lexical ties using
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%lex-no-tie. That is, if the A and B tokens are lexically tied and the B and C tokens are lexically

tied, it is nonsensical to declare that A and C should not be lexically tied. As for %lex-tie, the

order of operands of %lex-no-tie is irrelevant. That is, like the lexical tie relation, the lexical

no-tie relation is implicitly symmetric. However, unlike the lexical tie relation, the lexical no-tie

relation is not implicitly reflexive or transitive.

For some PSLR(1) specifications, the lexical tie candidate report might prove to require

more work from the user than it is worth. For example, if a language contains no reserved keywords,

constantly reassuring the PSLR(1) generator that basic pseudo-scanner behavior is indeed preferred

might become tedious for the user. However, our PSLR(1) generator supports yyall as a built-in

symbol set that contains all symbols. Thus, the user can suppress the lexical tie candidate report

entirely by declaring “%lex-no-tie yyall yyall”. More specific declarations always override

more generic declarations. Thus, if the user decides that keywords should be reserved but doesn’t

want a report of all other lexical tie candidates, he can override “%lex-no-tie yyall yyall”

for the ID token and the keywords symbol set by also declaring “%lex-tie ID keywords”.

As future work, we are considering extending our PSLR(1) generator with asymmetric

lexical ties to improve support for languages, such as PL/I, that have non-reserved keywords,

and for languages, such as SQL, that have both non-reserved and reserved keywords. For example,

assume the user declares the rule of longest match for all length conflicts, and assume he declares

that all keywords have higher lexical identity precedence than ID. Assume the user has declared

the symbol set non-reserved containing all non-reserved keywords including ’for’. The user

could then declare “%lex-tie ID -> non-reserved” as an asymmetric lexical tie indicating

that the pseudo-scanner should recognize the ID token in all syntactic contexts in which non-

reserved keywords are recognized. This would ensure that the pseudo-scanner selects the match

(“foreach”,ID) instead of (“for”,’for’) for a variable name like “foreach” when ’for’ is

acceptable in the current syntactic context but ID is not. However, the reverse asymmetric lexical

tie is not declared. Thus, in a syntactic context where ID is acceptable but ’for’ is not, the pseudo-

scanner would select the match (“for”,ID) instead of (“for”,’for’) for the character sequence

“for” as desired. Asymmetric lexical ties would be combined with symmetric lexical ties to form

a reflexive and transitive relation. Thus, if ’foreach’ is actually a reserved keyword and there

is also a symmetric lexical tie between ID and a symbol set containing reserved keywords, then

the pseudo-scanner would select the match (“foreach”,’foreach’) for the character sequence
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“foreach” in any syntactic context where ID, ’for’, or ’foreach’ is acceptable.

There is one final caveat about lexical ties, whether symmetric or asymmetric. Before

lexical ties expand acc(sp), there might exist some token t ∈ acc(sp) such that every match for

t has lower lexical precedence than some match for some other token in acc(sp) either before or

after lexical ties expand acc(sp). Thus, due to lexical precedence and possibly lexical ties, t might

not actually be acceptable in the syntactic contexts represented by sp even though the grammar

implies it should be. So far, there is nothing problematic about this scenario as it reflects the user’s

PSLR(1) specification. However, our PSLR(1) generator evaluates lexical ties to adjust acc(sp)

before discovering, resolving, and reporting complete pseudo-scanner conflicts. Thus, the generated

pseudo-scanner recognizes every token t′ ∈ ties(t) in every syntactic context represented by sp even

though t itself is not recognized in any of those contexts. This result seems contrary to the concept

of a lexical tie. That is, if t is not recognized in a syntactic context, then why is t′ added to that

context? Solving this problem appears to be a chicken-and-egg problem: lexical ties are an input

to conflict resolution, so there seems to be no obvious way to allow conflict resolution to affect

the computation of lexical ties. Instead of trying to change this behavior, we take the approach

of documenting it. If the user does not want this behavior, he must rewrite his grammar not to

permit t to appear in syntactic contexts where his lexical precedence rules and lexical ties make t

unacceptable.

3.4 Minimal LR(1)

Practical LR(1) parser table generation algorithms merge canonical LR(1) parser states.

The most popular such algorithm is LALR(1). In section 3.4.1, we discuss the reasons why state

merging is often desired, and we discuss the loss of language recognition power that it can cause

relative to canonical LR(1). In section 3.4.2, we summarize our IELR(1) algorithm, which is a

minimal LR(1) algorithm in that it achieves the best of both canonical LR(1) and LALR(1) for

traditional parsers. However, IELR(1) does not address problems that state merging causes for the

behavior of a pseudo-scanner. Thus, in section 3.4.3, we present an IELR(1) extension that we have

implemented as part of our PSLR(1) generator to handle those problems as well. We summarize in

section 3.4.4.

57



3.4.1 LALR(1) Versus Canonical LR(1)

Consider again the PSLR(1) specification in Figure 2.3c. Recall that the PSLR(1) parser

and pseudo-scanner it specifies accept the sentences in Figures 2.3a and 2.3b with the parse trees

in Figures 2.3d and 2.3e, respectively. In section 3.1, we showed that the scanner conflict between

the ’>’ and ’>>’ tokens at the character sequence “>>” in both sentences is not a pseudo-scanner

conflict when the parser employs canonical LR(1) parser tables. Examining the canonical LR(1)

parser tables, shown in the first column of Table 2.1, it is easy to see why. When the parser reaches

the “>>” in Figure 2.3b, the parser’s current state, sp, is state 1, and so ’>>’ is in acc(sp) but ’>’

is not. When the parser reaches the “>>” in Figure 2.3a, sp is state 18, and so ’>’ is in acc(sp) but

’>>’ is not. The pseudo-scanner always selects the token from acc(sp).

Now consider what happens when the parser employs LALR(1) parser tables instead. The

LALR(1) algorithm merges canonical LR(1) states 1 and 18 to form LALR(1) state 1, shown in

the second column of Table 2.1. As a result, at the “>>” in both of our example sentences, sp is

LALR(1) state 1, acc(sp) contains both the ’>’ and ’>>’ tokens, and so there is now a pseudo-

scanner conflict. In general, by merging canonical LR(1) parser states, the LALR(1) algorithm

sometimes merges the left contexts that distinguish between sub-languages. When this happens, the

parser can lose the power to determine which token from which sub-language it should accept. The

result is sometimes a new pseudo-scanner conflict as in our example. It is also possible that existing

pseudo-scanner conflicts from different left contexts may merge in such a way that, for some left

contexts, the lexical precedence rules select a different match than they did before the merge.

The effect that parser state merging has on a pseudo-scanner is similar to a well-known effect

it has on the parser itself. That is, because of the merging of left contexts, the parser sometimes

loses the power to determine the correct parser action on a given lookahead token [15, 16, 17, 28, 29,

30, 32, 33]. The result may be the creation of a new parser conflict or the merging of existing parser

conflicts such that precedence rules now select a different action for some left contexts than they did

before the merge. We have previously introduced the term LR(1)-relative inadequacies to refer to

all such changes in the parser’s behavior [15, 16]. We now introduce the term PSLR(1)-relative

inadequacies to refer collectively to such changes in the parser’s behavior and the pseudo-scanner’s

behavior. That is, given a set of parser tables, if the pseudo-scanner and parser do not accept exactly

the same set of sentences each with the same parse tree as they would with canonical LR(1) parser
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tables, then the given set of parser tables is inadequate for PSLR(1).

Our choice of canonical LR(1) as the standard against which to compare other parser tables is

not arbitrary. LR parsing is “the most general [deterministic]2 shift-reduce parsing method known”,

and canonical LR(1) is the most general technique for generating LR(1) parser tables [11]. As a result,

when the user of our PSLR(1) generator considers the general behavior of deterministic shift-reduce

parsing with one token of lookahead but without the complexity of any further parsing restriction, the

behavior he should expect from the generated parser and pseudo-scanner is the behavior produced

by canonical LR(1) parser tables. In contrast, in order to understand the behavior produced by

parser tables with PSLR(1)-relative inadequacies, the user must consider not only the behavior

of deterministic shift-reduce parsing but also the complex details of parser state construction and

merging. In this way, eliminating all PSLR(1)-relative inadequacies provides the user with a simpler

model of how the parser and pseudo-scanner should behave and thus facilitates the development and

maintenance of a correct PSLR(1) specification.

Unfortunately, canonical LR(1) parser tables tend to be an order of magnitude larger than

LALR(1) parser tables for practical languages [11]. There are at least two effects. First, canonical

LR(1) parser tables at one time were considered to require “too much space and time to be useful in

practice” [11]. However, the validity of this statement is fading with the increasing memory capacity

and processing power of modern computers. Second, the extra states often contain unnecessary

duplicates of conflicts, and so the difficulty of debugging conflicts can increase an order of magnitude

as well [16].

3.4.2 IELR(1)

As part of our preliminary work, we described and implemented IELR(1) [15, 16]. IELR(1)

is a minimal LR(1) parser table generation algorithm because it generates parser tables that are

nearly the size of LALR(1) parser tables but with the full language recognition power of canonical

LR(1) when the parser is not coupled with a pseudo-scanner. It does so by computing the source of

each LR(1)-relative inadequacy in the LALR(1) parser tables and then splitting states to eliminate it.

Thus, at any point in the parse of a syntactically acceptable sentence, an IELR(1) parser performs the

same parser action as a canonical LR(1) parser does and thus constructs the same parse tree. Other

2GLR (Generalized LR) does not employ backtracking but is more general than LR [34]. Thus, we replace the
word “nonbacktracking” in this quote with the word “deterministic”, which excludes both backtracking and GLR.
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Grammar Version |T | |V | |T ∪ V | |P |
Gawk Gawk 3.1.0 61 45 106 163
Gpic Groff 1.18.1 138 45 183 247

C GCC 4.0.4 92 208 300 573
Java GCC 4.2.1 109 164 273 516
C++ ISO 2003 117 184 301 481

Table 3.3: IELR(1) Case Studies. These counts measure the size of each case study’s grammar
G = (V, T, P, S), such that V is the set of nonterminals, T is the set of terminals or tokens, P
is the set of productions, and S is the start symbol. These counts include the productions and
nonterminals that Bison generates implicitly for mid-rule actions.

minimal LR(1) algorithms we have found handle at most LR(1) grammars [28, 29, 30]. However,

IELR(1) also correctly handles non-LR(1) grammars coupled with a specification for resolving parser

conflicts.

We implemented IELR(1) as an extension of Bison, and we also parameterized IELR(1) to

generate full canonical LR(1) parser tables. IELR(1) and canonical LR(1) are scheduled to appear

in Bison 2.5. Bison has always implemented LALR(1). Table 3.3 characterizes grammars from a

series of case studies that we have previously presented in order to compare LALR(1), IELR(1),

and canonical LR(1) using Bison [15, 16]. We now summarize these case studies and their results to

demonstrate the success of IELR(1).

The first four case studies are mature parser specifications from widely used software appli-

cations that employ LALR(1) parser generators. Gawk (GNU AWK), a text-based data processing

language, was first written in 1986 but is based on the original AWK, which was written in 1977

and is standardized in SUSv3 (the Single UNIX Specification, Version 3) [9, 4]. Groff (GNU Troff)

is a document formatting system for UNIX that includes Gpic (GNU Pic), a Groff preprocessor

for specifying diagrams. Groff was first released in 1990 and is based on Troff which has existed

since the early 1970’s [14, 6]. We copied our C and Java parser specifications from GCC (the GNU

Compiler Collection), which is a widely used collection of compilers developed by the GNU Project

[5].

The latest version of the C++ programming language is C++ 2003. Annex A of the C++

2003 specification presents a formal C++ grammar [8]. As our final case study, we formatted this

grammar as a Bison parser specification file except that, for section A.2, Lexical conventions, we

(1) replaced the integer literal, character literal, floating literal, and string literal nonterminals
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Grammar States S/R R/R
LA IE Canon LA IE Canon LA IE Canon

Gawk 320 329 2359 65 65-0 265-200 0 0-0 0-0
no prec/assoc 320 320 2467 410 410-0 3209-2799 0 0-0 0-0

Gpic 423 428 4834 0 0-0 0-0 0 0-0 0-0
no prec/assoc 426 426 4871 803 803-0 7576-6773 8 8-0 24-16

C 933 933 4108 13 13-0 29-16 0 0-0 0-0
no prec/assoc 933 933 4108 329 329-0 3731-3402 0 0-0 0-0

Java 792 792 6161 0 0-0 0-0 62 62-0 660-598
C++ 822 836 9849 407 410-3 2871-2464 135 169-34 3130-2995

Table 3.4: IELR(1) Parser Tables. In this table, we describe the parser tables that the Bison
LALR(1) implementation, our IELR(1) implementation, and our canonical LR(1) implementation
generate for our case studies. We report the number of states and the number of parser conflicts
left unresolved by the user. For canonical LR(1) and IELR(1), we show adjustments to account for
such unresolved parser conflicts that are perfectly duplicated among states with identical cores.

with tokens, and (2) removed all productions that only those nonterminals depend upon.

Table 3.4 describes the parser tables that the Bison LALR(1) implementation, our IELR(1)

implementation, and our canonical LR(1) implementation generate for each of our case studies.

Because some of our case studies include precedence and associativity declarations that resolve

most of their parser conflicts, we also describe their parser tables when generated without these

declarations in order to better demonstrate the complexity of the parser specification analysis. For

example, the “no prec/assoc” row beneath the “Gpic” row reveals that the LALR(1) and IELR(1)

algorithms must actually examine 803 S/R conflicts even though all parser conflicts are ultimately

resolved by user declarations.

When IELR(1) or canonical LR(1) splits an LALR(1) state, conflicts in the LALR(1) state

might be perfectly duplicated among some of the new states. Bison counts the conflict separately for

each such duplicate, but the multiple count is a misleading representation of complexity because the

same precedence and associativity declarations would resolve all duplicates. Therefore, from each

IELR(1) or canonical LR(1) unresolved conflict count in Table 3.4, we subtract all but one copy of

each unresolved conflict that is perfectly duplicated among states with identical cores.

Table 3.5 describes the parser actions that are corrected in the parser tables by switching

from LALR(1) to IELR(1) or to canonical LR(1). We were surprised to discover that mature parser

specifications from widely used software products employing LALR(1) parser generators should suffer

from any incorrect parser actions that result from the misuse of the LALR(1) algorithm. The Gawk

61



Grammar Actions States Tokens
IE Canon IE Canon IE Canon

Gawk 9-0 90-81 3-0 30-27 3 3
Gpic 2-0 16-14 1-0 8-7 2 2

C 0-0 0-0 0-0 0-0 0 0
Java 0-0 0-0 0-0 0-0 0 0
C++ 4-0 37-33 4-0 37-33 2 2

Table 3.5: IELR(1) Action Corrections. For each of our case studies, this table reports the number
of parser actions that are corrected by switching from LALR(1) to IELR(1) or to canonical LR(1),
the number of parser states containing corrected parser actions, and the number of unique tokens
in the grammar on which there are corrected parser actions. We also show adjustments to account
for action corrections that are perfectly duplicated among states with identical cores.

and Gpic case studies provide strong evidence that such incorrect actions do occur in real-world

parsers. Such actions are unintuitive and thus may impede the development of a correct parser.

Our canonical LR(1) experiments led to an interesting insight. As had been observed pre-

viously in the literature, canonical LR(1) parser tables tend to be an order of magnitude larger

than LALR(1) parser tables for practical LR(1) parser specifications [11]. The state counts in Table

3.4 are consistent with this observation. However, because of the increased splitting of states in

canonical LR(1) relative to IELR(1), the number of conflicts that are perfectly duplicated and the

number of action corrections usually increases an order of magnitude. Thus, the difficulty of in-

vestigating conflicts while developing a parser specification increases an order of magnitude as well.

Interestingly, for all of our case studies, every new conflict is a perfect duplicate, so the adjusted

conflict counts are the same as for IELR(1).

The IELR(1) algorithm consists of 6 phases, which we outline here. We have previously

described the algorithm in full detail [16].

• Phase 0: LALR(1). This phase computes LALR(1) parser tables, which fully merge all LR(1)

parser states with identical cores and thus contain some form of every possible LR(1)-relative

inadequacy that can exist after any possible combination of such merges.

• Phase 1: Compute Auxiliary Tables. From the LALR(1) parser tables, this phase computes a

number of additional tables employed by later phases.

• Phase 2: Compute Annotations. This phase identifies each parser conflict in the LALR(1)

parser tables, traces each conflict back through all predecessor states that contribute to the
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conflict, and adds annotations to the visited states to record the nature of the states’ contri-

butions.

• Phase 3: Split States. This phase effectively splits the LALR(1) states to eliminate all LR(1)-

relative inadequacies. However, the algorithm actually recomputes all parser states in a manner

similar to phase 0. The main difference is that, when considering whether to merge parser

states, it employs a stricter state compatibility test based on the LALR(1) states’ annotations

from phase 2.

• Phase 4: Compute Reduction Lookaheads. This phase recomputes the reduction lookahead

sets throughout the recomputed parser states.

• Phase 5: Resolve Remaining Conflicts. This phase resolves all remaining parser conflicts by

eliminating parser actions with the lowest precedence.

3.4.3 IELR(1) Extension for PSLR(1)

As shown in Table 2.1, the LALR(1) parser tables for the PSLR(1) specification in Figure

2.3c have no parser conflicts and thus no LR(1)-relative inadequacies. For this reason, the LALR(1)

parser tables are also IELR(1) parser tables. However, as we explained in section 3.4.1, these tables

do contain other PSLR(1)-relative inadequacies. Thus, our IELR(1) algorithm in its original form is

not always adequate for PSLR(1). In this section, we explain how we extend IELR(1) to eliminate

all PSLR(1)-relative inadequacies.

Because state merging is the cause of all PSLR(1)-relative inadequacies including LR(1)-

relative inadequacies, much of our original IELR(1) algorithm can be reused for PSLR(1). We extend

IELR(1) for PSLR(1) in two steps. First, we extend IELR(1) phase 2 to annotate parser states based

on their contributions to pseudo-scanner conflicts. Second, we extend IELR(1) phase 3 by adjusting

its state compatibility test to consider these extended annotations. This state compatibility test

extension dictates the form of the annotations for phase 2, so we focus our discussion on phase 3.

Our extension to the state compatibility test of IELR(1) phase 3 must determine whether

two states sp and s′p can be merged without introducing a PSLR(1)-relative inadequacy. The exten-

sion does not need to consider PSLR(1)-relative inadequacies that are LR(1)-relative inadequacies

because the latter are already considered by IELR(1)’s existing state compatibility test.
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Definition 3.4.1 (State Compatibility Test)

Given a set of lexical precedence rules R, which defines a lexical precedence function ∆, and given

two LR(1) parser states sp and s′p, then PSLR(1)’s extension to the IELR(1) state compatibility

test considers sp and s′p to be compatible in the context of R iff, ∀ξ ∈ Ξ*, either:

1. M (ξ, acc(sp)) = ∅ ∨M (ξ, acc(s′p)) = ∅.

2. ∆(M (ξ, acc(sp))) = ∆(M (ξ, acc(s′p))) = ∆(M (ξ, acc(sp) ∪ acc(s′p))).

�

Point 1 in Definition 3.4.1 checks for the case when pseudo-scanner conflicts for ξ are ir-

relevant in the syntactic contexts represented by either sp or s′p. The concept of irrelevant pseudo-

scanner conflicts resembles the concept of irrelevant parser conflicts in the original IELR(1) state

compatibility test [16]. For example, if M (ξ, acc(sp)) = ∅, then we say that pseudo-scanner conflicts

for ξ are irrelevant in the syntactic contexts represented by sp. In other words, in the syntactic

contexts represented by sp, there are no acceptable tokens that match ξ, and so any match selected

for ξ would correctly be detected as a syntax error by the parser. Thus, even though merging sp

and s′p causes the selected match to become ∆(M (ξ, acc(s′p))), the pseudo-scanner’s behavior is still

correct.

When pseudo-scanner conflicts for ξ are relevant in the syntactic contexts represented by sp

and in the syntactic contexts represented by s′p, point 2 in Definition 3.4.1 checks that merging sp

and s′p does not change the highest precedence match for ξ in any of those syntactic contexts. To

determine what the highest precedence match becomes, the third segment of the equality in point 2

evaluates ∆ for the merged state. However, we prove that it is actually redundant to evaluate ∆ for

the merged state. In the terminology of our original IELR(1) algorithm, this means that a lexical

precedence function for a PSLR(1) specification is always merge-stable [16].

Theorem 3.4.2 (Merge-stable Lexical Precedence Function)

Given a lexical precedence function ∆, given two LR(1) parser states sp and s′p, and given a character

sequence ξ ∈ Ξ*, then the following two conditions are equivalent:

1. ∆(M (ξ, acc(sp))) = ∆(M (ξ, acc(s′p))).

2. ∆(M (ξ, acc(sp))) = ∆(M (ξ, acc(s′p))) = ∆(M (ξ, acc(sp) ∪ acc(s′p))).
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�

Proof (Theorem 3.4.2)

If point 1 in Theorem 3.4.2 is false, then point 2 in Theorem 3.4.2 is trivially false because it includes

point 1. For the rest of this proof then, we only need to prove that, when point 1 is true, point 2

is also true. For brevity, let M = M (ξ, acc(sp)), and let M ′ = M (ξ, acc(s′p)). Thus, by Definition

2.2.4, M (ξ, acc(sp)∪ acc(s′p)) = M ∪M ′. Let m = ∆(M), and thus m = ∆(M ′) because we assume

point 1 is true. Our goal then is to prove that m = ∆(M ∪M ′) so that point 2 is true:

1. Consider the case where m = undefined. That is, by Definition 3.2.5, there exists no match

in M that has higher precedence than all other matches in M , and the same is true for M ′.

Because neither M nor M ′ has a highest precedence match, then neither does M ∪M ′, so

∆(M ∪M ′) = undefined = m.

2. Consider the case where m 6= undefined. That is, by Definition 3.2.5, m has higher precedence

than all other matches in M and all other matches in M ′, so m has higher precedence than all

other matches in M ∪M ′. Moreover, by Definition 3.2.5, m ∈M and m ∈M ′, so m ∈M ∪M ′.

Thus, m = ∆(M ∪M ′).

�

In section 3.2.4, we considered whether it would be reasonable to use the sequential lexical

precedence function, F , defined by ∆ in place of ∆ so that the highest precedence match could be

computed in linear time. However, Theorem 3.4.2 would not necessarily be valid if we did so. The

trouble would be that, if F were ambiguous, the highest precedence match for sp, for s′p, and for the

merged state would depend on how the match ordering would be chosen in each case. Fortunately,

∆ returns undefined when F is ambiguous, and our generator reports an unresolved conflict, so we

can use Theorem 3.4.2 to simplify our state compatibility test.

Definition 3.4.3 (State Compatibility Test, simplified)

Given a set of lexical precedence rules R, which defines a lexical precedence function ∆, and given

two LR(1) parser states sp and s′p, then PSLR(1)’s extension to the IELR(1) state compatibility

test considers sp and s′p to be compatible in the context of R iff, ∀ξ ∈ Ξ*, either:

1. M (ξ, acc(sp)) = ∅ ∨M (ξ, acc(s′p)) = ∅.
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2. ∆(M (ξ, acc(sp))) = ∆(M (ξ, acc(s′p))).

�

Regardless of whether we use Definition 3.4.1 or 3.4.3, we have not yet considered whether

the state compatibility test actually makes sense when the complete pseudo-scanner conflict for ξ

is unresolved in either sp or s′p. Without loss of generality, we only examine the case where it is

unresolved in sp. That is, ∆(M (ξ, acc(sp))) = undefined. There are two subcases to consider. First,

if ∆(M (ξ, acc(s′p))) 6= undefined, then ∆(M (ξ, acc(sp))) 6= ∆(M (ξ, acc(s′p))), so sp and s′p are not

merged. This makes sense because merging sp with s′p would have one of two effects: (1) a match

from the syntactic contexts represented by s′p would become the highest precedence match in the

syntactic contexts represented by sp and thus suppress the conflict report for the latter syntactic

contexts, or (2) the complete pseudo-scanner conflict in the syntactic contexts represented by s′p

would become unresolved even though the user’s lexical precedence rules were sufficient to resolve

it. Either effect is undesirable, so refusing to merge the states is the correct decision.

The second subcase is when ∆(M (ξ, acc(s′p))) = undefined. Thus, ∆(M (ξ, acc(sp))) =

∆(M (ξ, acc(s′p))), so sp and s′p are merged. Unfortunately, this means the generator is forced to

report a merged version of the unresolved complete pseudo-scanner conflict instead of reporting only

the matches that are actually present in each syntactic context. To avoid this problem, we could

choose instead to never merge sp and s′p in this subcase as long as sp 6= s′p. However, if the user has

just written the first draft of his PSLR(1) specification and has not yet resolved any conflicts because

he wants to read the generator’s conflict report first, then states with pseudo-scanner conflicts would

only be merged with identical states. Thus, the generated parser tables could be as large as canonical

LR(1) parser tables. As we explained earlier in this paper, canonical LR(1) parser tables can severely

complicate the process of debugging conflicts because the number of parser states can increase by an

order of magnitude. Thus, our approach is simply to document that unresolved complete pseudo-

scanner conflicts from multiple syntactic contexts are sometimes merged in the conflict report. A

similar problem can occur for parser conflicts that are left unresolved by the user but happen to have

the same default resolution, so this is not a new phenomenon. If the user believes that canonical

LR(1) parser tables can aid in the debugging of parser and pseudo-scanner conflicts in these cases,

our PSLR(1) generator accepts an option to switch the parser table generation algorithm from

IELR(1) to canonical LR(1).
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The conflict resolution algorithm presented in section 3.2.7 might be too time-consuming to

perform before every merge that must be considered during IELR(1) phase 3. Thus, our PSLR(1)

generator does not implement the state compatibility test exactly as written in Definition 3.4.1 or

Definition 3.4.3. We observe that, if R selects the same highest precedence match for every pairwise

pseudo-scanner conflict in sp as in s′p, then it is guaranteed to select the same highest precedence

match for every complete pseudo-scanner conflict in sp as in s′p because any complete scanner

conflict is a collection of pairwise scanner conflicts according to Definition 2.2.5. Thus, phase 3

applies our state compatibility test from Definition 3.4.3 to pairwise pseudo-scanner conflicts instead

of complete pseudo-scanner conflicts. This shift to the pairwise level improves the performance

of phase 3 because, instead of using our algorithm from 3.2.7 to analyze the exact combination

of tokens present in each parser state encountered during phase 3, our generator can iterate the

pseudo-scanner’s FSA once before IELR(1) begins and summarize how all possible pairwise scanner

conflicts for each pair of tokens are resolved. It is important to understand that we shift to the

pairwise level in this manner only for the sake of parser table construction. Afterwards, complete

pseudo-scanner conflicts are fully discovered, resolved, and reported for the resulting parser tables

using our algorithm from section 3.2.7.

Because not all pairwise pseudo-scanner conflicts need to be resolved in order to resolve all

complete pseudo-scanner conflicts, our state compatibility test is more strict than necessary, and

unnecessary state splitting can occur as a result. As we discuss in section 4, this effect does not

prove to be problematic for our case studies. Part of the reason is our decision, discussed earlier

in this section, that unresolved pseudo-scanner conflicts should not prevent state merging. That

is, when all complete pseudo-scanner conflicts are resolved, then pairwise pseudo-scanner conflicts

that remain unresolved do not cause unnecessary state splitting. Of course, when we discussed this

decision earlier, we discussed it at the level of complete pseudo-scanner conflicts rather than at the

level of pairwise pseudo-scanner conflicts, and we said that complete pseudo-scanner conflicts might

be merged in the conflict report as a result. This conflict report problem still exists after our shift

to the pairwise level because, when all pairwise pseudo-scanner conflicts remain unresolved, then

complete pseudo-scanner conflicts remain unresolved. Fortunately, after our shift to the pairwise

level, that problem is lessened when just a few of the associated pairwise pseudo-scanner conflicts

are resolved differently in sp than in s′p.
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3.4.4 Summary

In this section, we have discussed the trade-offs between the LALR(1) and canonical LR(1)

parser table generation algorithms. We have also explained how our IELR(1) algorithm is a minimal

LR(1) algorithm in that it achieves the best of both canonical LR(1) and LALR(1) for traditional

parsers. Finally, we presented an IELR(1) extension required by PSLR(1) parsers and their pseudo-

scanners.

3.5 Syntax Error Handling

There are three tasks for handling syntax errors, and all are ultimately performed by the

PSLR(1) parser: detecting, reporting, and recovering. However, before the parser can perform

these three tasks, the pseudo-scanner must first select some match to return to the parser upon

encountering the syntax error. This match has an important influence on the way in which the

parser performs its three tasks, so the pseudo-scanner needs to make a reasonable selection. First, the

match should be syntactically unacceptable so that the parser can detect the syntax error. Second,

the match should be a reasonable guess at interpreting the erroneous input character sequence

so that the parser can construct a reasonable syntax error message to report to the user of the

parser. Third, if the parser implements a syntax error recovery mechanism, such a reasonable guess

also improves the parser’s chances of recovering from the syntax error and correctly parsing the

remaining input. Finally, in cases where there is no obvious way to make a reasonable guess, it is

still helpful to document some deterministic algorithm to select a match so that the author of a

PSLR(1) specification can more easily develop formal test suites for his generated PSLR(1) parsers

and pseudo-scanners. In section 3.5.1, we discuss the pseudo-scanner’s mechanisms for selecting a

match upon encountering a syntax error. In section 3.5.2, we discuss the parser’s mechanisms for

detecting and reporting a syntax error. The choice of a syntax error recovery mechanism for the

parser is orthogonal to the choice between PSLR(1) and traditional scanner-based LR(1), so it is

beyond the scope of this paper. We summarize in section 3.5.3.

3.5.1 Pseudo-scanner

The basic pseudo-scanner behavior defined in Definition 3.1.1 dictates that, for the character

sequence ξ and the parser state sp, the pseudo-scanner always selects a match from M (ξ, acc(sp)).
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This definition seems to imply that the pseudo-scanner only selects matches that are syntactically

acceptable. In that case, it would be impossible for there to be a syntax error unless M (ξ, acc(sp)) =

∅. However, as we explained in section 3.4, LR(1) state merging sometimes adds to acc(sp) tokens

that are not always syntactically acceptable when the parser is in state sp. Also, as we explained

in section 3.3, the user can declare lexical ties, which can add other syntactically unacceptable

tokens to acc(sp). Thus, the PSLR(1) parser and pseudo-scanner must have syntax error handling

mechanisms for the case when M (ξ, acc(sp)) = ∅ and for the case when M (ξ, acc(sp)) 6= ∅.

If M (ξ, acc(sp)) 6= ∅ when a syntax error is encountered, then the pseudo-scanner is

not aware of the syntax error. In this case, the pseudo-scanner always selects a match (λ, t) ∈

M (ξ, acc(sp)) just as it would if there were no syntax error. If t is lexically tied to some token

that is syntactically acceptable, then the pseudo-scanner’s selection of the match (λ, t) is not merely

a reasonable guess. It is an exact selection according to the PSLR(1) specification’s lexical ties

and lexical precedence rules. If, instead, t is not lexically tied to some token that is syntactically

acceptable, then the reason for t’s appearance in acc(sp) must be LR(1) state merging. In this case,

the pseudo-scanner’s selection of the match (λ, t) is a reasonable guess because state merging means

that there exists some similar syntactic context in which (λ, t) is acceptable.

If M (ξ, acc(sp)) = ∅, then the pseudo-scanner is aware of the syntax error and must expand

its search to tokens outside of acc(sp) in order to find a match. In this case, given the PSLR(1)

specification’s grammar G : G (G) = (V ′, T ′, P ′, S′), then the pseudo-scanner tries to select a match

from M (ξ, T ′). To support this mechanism, our PSLR(1) generator extends our scanner accepts

table from Definition 3.2.14 with a fallback row. Our generator computes the fallback row in

nearly the same way it computes a row for an actual parser state. That is, it uses the functions

compute scanner accepts and resolve from Definitions 3.2.19 and 3.2.20 with two small modifica-

tions. First, in place of acc(sp), it uses T ′. Second, even though it attempts to resolve all complete

scanner conflicts using the lexical precedence rules specified in the PSLR(1) specification, there may

exist complete scanner conflicts that are not complete pseudo-scanner conflicts and thus are not

resolved by these lexical precedence rules. In this case, the generator falls back on traditional lexical

precedence rules. Of course, the pseudo-scanner’s behavior must reflect this choice while scanning

the input, so the generator also modifies the length precedences table from Definition 3.2.15 to

specify the rule of longest match for all length conflicts that are left unresolved by the PSLR(1)

specification. Finally, the pseudo scan function from Definition 3.2.16 is extended to check for
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matches in the fallback row of scanner accepts until it finds a match in the current parser state’s

row. If it never finds a match in the current parser state’s row, it returns the best match from the

fallback row.

It is also possible that both M (ξ, acc(sp)) = ∅ and M (ξ, T ′) = ∅. That is, there might exist

no match in the current parser state’s row or the fallback row in scanner accepts. In this case, the

pseudo-scanner returns a special token that matches only the lexeme ξ[1]. Such a token is often

called a character token. The next time the parser requests a token, the pseudo-scanner looks for a

match for ξ − ξ[1]. In other words, the pseudo-scanner returns one character at a time until it can

match a token in acc(sp) or T ′.

3.5.2 Parser

In every case in which a syntax error is encountered, the pseudo-scanner mechanisms we

discussed in the previous section select a match for the input character sequence. The selected match

cannot be syntactically acceptable because, in the case of a syntax error, there exists no syntacti-

cally acceptable match for the input character sequence. Because the match is not syntactically

acceptable, the parser is guaranteed to detect the syntax error after it receives the match from the

pseudo-scanner. The parser then reports the syntax error and lists the tokens for which there are

acceptable matches in the current syntactic context.

Unfortunately, the parser can sometimes experience delayed syntax error detection and can

report an incorrect list of accepted tokens. There are three causes: LR(1) state merging, default

reductions, and explicit error actions in the parser. In this section, we explain these problems in

detail, and we explain how we fix them. The problems and our fix are relevant for both PSLR(1)

parsers and traditional scanner-based LR(1) parsers, and so they are actually orthogonal to our

PSLR(1) work. Nevertheless, we have chosen to fix the problems as part of our PSLR(1) work

because we feel that they are too severe to be ignored in any type of parser generation system.

LR(1) state merging, default reductions, and explicit parser error actions all have a common

effect that leads to delayed syntax error detection and incorrect accepted token lists: they cause

parser states to accept tokens that are not actually syntactically acceptable. As we discussed in

section 3.4, LR(1) state merging does so by merging lookahead sets from different syntactic contexts.

Default reductions are a parser table optimization that removes the largest lookahead set from each

parser state. The reduction with which a removed lookahead set was associated becomes the default
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reduction in that parser state. That is, when the parser is in such a state and encounters a token

that has no parser action in that state, the parser must perform the default reduction in case that

token might have been a member of the removed lookahead set. Thus, all tokens become acceptable

according to that parser state.

Explicit parser error actions are the way in which S/R parser conflicts are resolved if the con-

flicted token is declared to be non-associative. In Yacc and Bison, non-associative tokens are declared

with the directive %nonassoc. The trouble is that parser tables are constructed before conflict res-

olution, and so there may still exist reduction lookahead sets that contain the non-associative token

in parser states other than the conflicted parser state. Removing the non-associative token from

those lookahead sets might not be possible without splitting the containing states because those

states might have some syntactic contexts in which the S/R conflict for the non-associative token

would never be encountered.

Regardless of the reason why a syntactically unacceptable token is acceptable according to

the current parser state, when the parser encounters such a token, the parser performs reductions

until it finally reaches a state that either has an explicit error action for the token or has no explicit

action for the token and no default reduction. In other words, the parser’s detection of the syntax

error is delayed as erroneous reductions and associated semantic actions are performed. Moreover,

the state the parser has reached when it finally detects the syntax error is not the original parser state

in which the token was encountered, so it might not accept the same tokens as the original parser

state. Of course, due to the three causes we have been discussing, the original parser state might not

accept exactly the tokens that are actually syntactically acceptable anyway. Thus, whether delayed

detection happens or not, the list of tokens the parser reports based on the current state might

be incorrect. It might contain syntactically unacceptable tokens, and it might omit syntactically

acceptable tokens.

It might seem that lexical ties can cause the parser state to accept syntactically unaccept-

able tokens because lexical ties add tokens to acc(sp). However, our PSLR(1) generator does not

compute parser actions for lexically tied tokens. Lexical ties only affect (1) the scanner accepts

table constructed for the pseudo-scanner and (2) the state compatibility test of PSLR(1)’s IELR(1)

extension because this extension must consider pseudo-scanner conflict resolution.

As we explained in section 3.4, canonical LR(1) never merges states with different lookahead

sets. Though the default reduction optimization can be applied to any set of LR(1) parser tables,
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it is not considered part of canonical LR(1). However, explicit parser error actions like those set

by %nonassoc do cause parser states to accept syntactically unacceptable tokens in the case of

canonical LR(1). Thus, for non-LR(1) grammars with S/R conflicts resolved by %nonassoc, even

canonical LR(1) is not immune to the problems of delayed syntax error detection and incorrect

accepted token lists in syntax error reports.

We call our solution to these problems LAC (lookahead correction). LAC is a straight-

forward extension to the LR(1) parsing algorithm as follows. Whenever the parser requires a new

token from the scanner so that it can determine what parser action to perform, we say that token is

the lookahead, and we say the current parser stack represents the initial context of that lookahead.

Upon receiving this lookahead from the scanner, the parser immediately performs an exploratory

parse to see if the returned token is syntactically acceptable. During this exploratory parse, any

reductions of the parser stack are performed on a temporary copy of the parser stack so that the

initial context of the lookahead is not lost. Moreover, this exploratory parse is entirely syntactic

in that the user’s semantic actions are not performed because the effect of those actions during

an erroneous parse might be undesirable. If the exploratory parse reaches a shift action, then the

lookahead is syntactically acceptable, so the parser discards the temporary stack and resumes a full

parse on the permanent stack. If the exploratory parse reaches a syntax error instead, then the

parser discards the temporary stack and reports the syntax error. To build the list of syntactically

accepted tokens for the syntax error, the parser performs exploratory parses for every token in the

grammar. For each of these exploratory parses, the permanent stack, which still represents the

initial context of the token, is copied to a temporary stack.

Because LAC requires many parse actions to be performed twice, it can have a performance

penalty. However, not all parse actions must be performed twice. If a state has only one action

and that action is a default reduction, then the parser does not need a lookahead. Thus, during

a contiguous series of shift actions and such reduce actions, the parser never has to initiate an

exploratory parse. Moreover, the most time-consuming tasks in a parse are often the file I/O, the

lexical analysis performed by the scanner, and the user’s semantic actions, but none of these are

performed during the exploratory parse. In our experience, the performance penalty of LAC has

proven insignificant for practical grammars.

As we explained in section 3.4, for traditional LR(1) parsing, IELR(1) is guaranteed to

perform exactly the same parse actions as canonical LR(1) for any syntactically acceptable input.
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For PSLR(1) parsing, we need to add PSLR(1)’s IELR(1) extension for this guarantee to hold. For

traditional LR(1) parsing or PSLR(1) parsing, when we also add LAC, IELR(1) is guaranteed to

perform exactly the same parse actions as canonical LR(1) for any input. If there are explicit error

actions due to %nonassoc, then this guarantee only holds if LAC is added to canonical LR(1) as

well.

3.5.3 Summary

There are three tasks for handling syntax errors, and all are ultimately performed by the

PSLR(1) parser: detecting, reporting, and recovering. The pseudo-scanner’s selection of a match

to return to the parser upon encountering a syntax error has an important influence on the way in

which the parser performs its three tasks. In this section, we have discussed the pseudo-scanner’s

mechanisms for selecting this match, and we have discussed the parser’s mechanisms for detecting

and reporting a syntax error. We also explained how LR(1) state merging, default reductions, and

explicit parser error actions cause delayed syntax error detection and incorrect accepted token lists

in syntax error messages. We then described LAC, an LR(1) parsing algorithm extension that we

devised to fix these problems.

3.6 Whitespace and Comments

Grammars for programming languages like C and C++ usually do not specify the acceptable

locations for whitespace and comments. The trouble is that the grammar symbols for whitespace

and comments would have to be inserted between nearly every pair of tokens in the grammar,

severely impairing the grammar’s readability and maintainability. Thus, for traditional scanner-

based parsing, whitespace and comments are usually processed entirely in the scanner, and the

scanner does not return tokens for them to the parser.

In Figure 2.3c, we introduced the YYLAYOUT token as our solution for whitespace. In general,

our PSLR(1) generator identifies any token whose name starts with or is equal to “YYLAYOUT” as a

layout token. The generated pseudo-scanner handles layout tokens in the same way a traditional

scanner handles whitespace and comments. That is, the pseudo-scanner recognizes layout tokens in

all parser states but discards them rather than returning them to the parser. Thus, layout tokens

require that the definition of acc from Definition 3.3.2 be modified to add all layout tokens to
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acc(sp) for every parser state sp. Moreover, layout tokens require that the pseudo scan function

from Definition 3.2.16 be modified so that, after recognizing a layout token, pseudo scan immediately

restarts itself in order scan for a subsequent token to return to the parser.

As for lexical ties, the modifications to acc required by layout tokens can produce new

pseudo-scanner conflicts that must be resolved with %lex-prec. For example, within C’s literal

string, layout tokens should not be recognized. Thus, if a user chooses to specify the syntax of

C’s literal string using a grammar rather than a single regular expression, he must use the lexical

precedence operators “<<”, “-<”, and “<-” to declare lower precedence for layout tokens than for

the conflicting tokens within that grammar. If the user needs to specify different lexical precedence

rules for whitespace and for each of the various kinds of comments, he can take advantage of the

ability to specify multiple layout tokens. For example, as we discussed in section 3.2.3, the regular

expression for C’s multiline comment benefits from the rule of shortest match, but the rule of longest

match might be desirable for other layout tokens, such as the single-line comment.

PSLR(1)’s IELR(1) extension can be optimized for layout tokens by identifying any match

for a layout token as an always contribution in a pairwise pseudo-scanner conflict. That is, because

every layout token appears in acc(sp) for every parser state sp, no amount of state splitting can

remove a layout token from a syntactic context. Thus, it is useless for IELR(1) phase 2 to create

annotations for pairwise pseudo-scanner conflicts in which a layout token’s match has higher lexical

precedence. In other words, the highest precedence match in this case is considered split-stable. We

introduced the concepts of always contributions, useless annotations, and split-stability as part of

our original IELR(1) algorithm [16].

For a non-layout token, PSLR(1) specifications can employ the token action directive,

denoted %token-action, to declare a semantic action that the pseudo-scanner should perform

upon matching the non-layout token. That token action can construct the semantic value to be

returned along with the non-layout token to the parser. For example, in a code transformer, the

semantic value might simply contain the lexeme matched for the non-layout token. Token actions are

useless for constructing semantic values for layout tokens because layout tokens are never returned to

the parser because they are not syntactically acceptable according to the grammar. However, some

applications, such as code transformers, need to preserve the text of whitespace and comments.

Thus, we further extend pseudo scan so that it accumulates lexemes from all contiguous layout

tokens and then makes the accumulated layout text accessible in the token action for the following
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non-layout token. The accumulated lexemes for the layout tokens appearing after the final token

from the input are made accessible in the token action for the end token, #. Thus, for any non-

layout token t, the user can write a token action that attaches the text for the preceding whitespace

and comments as a property on the semantic value of t, which is returned to the parser. To avoid

writing individual token actions for every non-layout token in the grammar, a PSLR(1) specification

can employ a form of %token-action that specifies a single token action for all tokens declared

to have semantic values of a common type. As future work, we are also considering providing a

mechanism so that the accumulated value for layout tokens is not limited to lexemes. The user

would be able to specify a token action to construct a semantic value of any type for a layout token,

that value would then be made accessible in the token action for the next layout token, and so on

until the token action for a non-layout token would be reached.

We foresee one significant limitation of layout tokens, and we outline a solution that we plan

to implement as part of our future work. The problem is that the syntax of whitespace and comments

may not always be regular, especially if comments are required to follow a strict documentation

standard. Sometimes, even if the syntax is regular, it might simply be more convenient to specify

the syntax with a context-free grammar. One possible solution is to allow the user to declare

layout nonterminals that our PSLR(1) generator would insert implicitly between every pair of tokens

throughout the grammar. However, because parser tables would be generated from this cluttered

grammar, this approach would make parser conflicts difficult to debug.

Instead, we are planning to add a lexical directive, denoted %lex, to declare a nonterminal

to be a lexical nonterminal. For each lexical nonterminal, our generator would construct a lexical

parser that sits between the main parser and the pseudo-scanner. The lexical parser’s job would be

to parse the grammar for the lexical nonterminal and to return the lexical nonterminal as a token to

the main parser. For any production for which the lexical nonterminal is the LHS, the RHS would

be required to start and end with a token. These tokens would become the lexical nonterminal’s

start tokens and end tokens. So that start tokens would always indicate the start of lexical

nonterminals, no start token would be allowed to appear anywhere in the main grammar. So that

end tokens would always indicate the end of lexical nonterminals, a lexical nonterminal’s end tokens

would not be allowed to appear anywhere else within that lexical nonterminal’s grammar. For any

main parser state sp that accepts a lexical nonterminal, acc(sp) would be extended with that lexical

nonterminal’s start tokens in the eyes of the pseudo-scanner. Whenever the pseudo-scanner would
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recognize a start token of a lexical nonterminal, the main parser would become inactive and the

corresponding lexical parser would become active. When the pseudo-scanner would recognize an

end token of the lexical nonterminal, the lexical parser would treat it as # and would return the

lexical nonterminal as a token to the main parser, which would then become active. Any lexical

nonterminal named like a layout token would be treated similar to the way layout tokens are currently

treated. That is, the pseudo-scanner would recognize the lexical nonterminal’s start tokens in any

main parser state, and the lexical parser would discard the lexical nonterminal without returning

it to the main parser. Thus, whitespace and comments would no longer be constrained to regular

syntax.

Lexical nonterminals and lexical parsers would be useful for more than just whitespace and

comments. For example, as discussed in section 2.3.1, the syntax for a block of C code embedded in

a Yacc parser specification is not regular because of nested braces. Thus, the C block syntax needs

to be specified with a grammar. However, when the parser encounters a C block’s opening brace

in a context where a C block is not syntactically acceptable, the parser then rejects the C block’s

opening brace, reports a syntax error for just the opening brace, and initiates syntax error recovery

starting inside the C block. Specifying the C block syntax with a lexical nonterminal would allow an

open brace to be treated as a start token. That start token could then become a fallback token so

that the C block’s lexical parser would have a chance to parse the C block in full before returning it

to the main parser, which would then report it as a syntax error and initiate syntax error recovery

after the C block.

We also plan to permit a hierarchy of lexical nonterminals and lexical parsers in case a

token in a lexical nonterminal’s grammar needs to be expressed in context-free form as well. During

parsing, a stack would have to be maintained to record the current nesting of lexical parsers. The

main parser would always be at the bottom of the stack. One interesting area of research would

be to figure out how to extend modern syntax error recovery mechanisms to handle a stack of

lexical parsers. It would likely involve popping the stack of lexical parsers whenever the syntax error

recovery mechanism pops the start token for the corresponding lexical nonterminal.
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3.7 Scoped Declarations

In our discussion of extensible languages in section 2.3.4, we mentioned the modern move-

ment to specify sub-languages in separate modules in order to facilitate their composition into

custom languages for specific domains. However, the lexical declarations we have discussed so far

and the declarations supported by traditional parser generators like Yacc erode modularity because

the effects of these declarations are global in scope. For example, if one sub-language’s PSLR(1)

specification declares traditional lexical precedence rules for conflicts between a particular pair of

tokens, then the generator uses traditional lexical precedence rules to resolve conflicts between that

pair of tokens in every sub-language. Any declaration of non-traditional lexical precedence rules

for conflicts between those tokens appearing in another sub-language’s PSLR(1) specification would

then create a contradiction, and our PSLR(1) generator would report an error. In this section, we

discuss two solutions to this problem that we plan to implement as part of our future work.

One solution to the scoping problem is to ensure that symbols from different sub-language

specifications always have different names even if those symbols are otherwise identical. This so-

lution could be automated if the user were able to declare different namespace names for different

sub-languages. For example, assume two different sub-language specifications use the same token

’&’, but the namespace for one sub-language is foo, and the namespace for the other is bar. While

composing the sub-languages’ specifications into the composite language specification, our PSLR(1)

generator could automatically rename ’&’ to foo.’&’ throughout the first sub-language’s specifi-

cation and to bar.’&’ throughout the second’s. Thus, every declaration in the computed composite

language specification would be effectively scoped to the sub-language to whose namespace the dec-

laration’s operands belonged.

While the namespace solution might be reasonable in some cases, there are a couple of

potential problems. First, it would duplicate sub-language grammar symbols, even those for which

there are no contradictions among the sub-languages. This duplication would unnecessarily expand

the size of composite grammars and thus the parser tables, impairing efficiency and complicating the

task of debugging. Second, in the case of subtle sub-languages, scoped declarations might be needed

in places where the proper partitioning of the grammar symbols into namespaces is not obvious.

The template argument list example from C++0x, which we described in section 2.3.3,

is an example of a subtle sub-language where a namespace partitioning is not obvious. Consider

77



again the example C++0x sentence in Figure 2.6a. Recall that the sub-languages Lc and Lp require

that the ’>>’ token have lexical precedence over the ’>’ token as expected according to the

traditional rule of longest match. However, the sub-language Lt requires the reverse precedence

so that nested template argument lists can be terminated without inserting unexpected whitespace

into “>>”. Figures 2.6b and 2.6c show the contradictory %lex-prec declarations that are thus

required for these sub-languages. To avoid the contradiction, each declaration must be scoped to

its own sub-language. However, the grammars of Lt and Lp reuse major portions of the grammar

of Lc in a mutually recursive manner, and the tokens ’>’ and ’>>’ appear throughout all of the

sub-languages’ grammars. Thus, it is not obvious how the C++ grammar’s symbols should be

partitioned into namespaces.

Another possible solution for the scoping problem requires the user to identify the start

symbols for the sub-languages’ grammars. These start symbols are specific occurrences of nonter-

minals in the RHS’s of grammar productions, and each sub-language may have more than one start

symbol. In the case of C++, identifying the start symbols is more straightforward than partition-

ing the grammar symbols into namespaces. For example, in the production shown in Figure 2.6d,

the symbol template argument list opt is a start symbol for Lt. In the production shown in

Figure 2.6e, expression is a start symbol for Lp.

To implement scoped declarations based on sub-language grammar start symbols, our

PSLR(1) generator would recursively record the scope of each item in each parser state based on

the nonterminal from which the item was derived. For some items in some parser states, multiple

scopes would be recorded because left context is not always powerful enough to determine a single

derivation in bottom-up parsers. A parser state would have a scope conflict if contradictory dec-

larations applied because of the presence of multiple scopes. As for pseudo-scanner conflicts and

parser conflicts, some scope conflicts could result from the merging of parser states. To eliminate

such scope conflicts, we could extend the LALR(1) parser table construction in IELR(1) phase 0

so that it would not merge states whose items are from different scopes. However, merging states

whose items are from different scopes would not always produce a scope conflict because there might

not happen to be any contradictory declarations that apply, so this approach might result in parser

tables that are larger than necessary. If that proves to be problematic in practice, we could instead

extend IELR(1) to detect scope conflicts that result from the merging of parser states and then

to eliminate these conflicts by splitting states. Because the canonical LR(1) algorithm does not
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track scopes and merges states that are identical in all other ways, either the LALR(1) extension

or IELR(1) extension could split even canonical LR(1) states, potentially producing more powerful

tables than canonical LR(1).

Notice how we combined the “-<” lexical precedence operator with scoping in our C++

example. While the declaration in Figure 2.6b is equivalent to the traditional rule of longest match,

the declaration in Figure 2.6c has no traditional equivalent. Its purpose in our example is to prevent

the ’>>’ token from being recognized within Lt except within Lp. In non-composite languages, it

would be schizophrenic to include a token in a grammar and then add a declaration that prevents its

recognition entirely. However, in this case, the grammar of Lt, where ’>>’ must not be recognized,

reuses portions of the grammar of Lc, where ’>>’ must be recognized. We predict that one of

the greatest powers of our non-traditional lexical precedence operators is to disable tokens in favor

of other tokens with similar lexemes for the sake of sub-grammar reuse among different syntactic

contexts.

Upon a syntax error, a pseudo-scanner could employ either grammar symbol namespaces

or sub-language start symbols as a means to indicate the scope from which to select a match to

return to the parser. That is, multiple fallback rows could be added to the scanner accepts table,

one per scope. When the pseudo-scanner is unable to select a match for a token from the current

parser state’s row, it normally looks in the fallback row that includes all tokens from the composite

grammar. However, it could instead look for matches using the current scope’s fallback row. Thus,

the selected match might be more appropriate for the current sub-language, and so the parser might

produce a more intuitive syntax error message and initiate a more successful syntax error recovery.

3.8 Summary

In this chapter, we have explained the design and implementation of our PSLR(1) generator

tool, which generates a pseudo-scanner and a minimal LR(1) parser from a unified scanner and

parser specification called a PSLR(1) specification. Unlike a traditional scanner, a pseudo-scanner

examines the current parser state to determine what tokens are acceptable in the current syntactic

left context, thus automating the tracking of sub-language transitions in a composite language. While

this behavior automatically eliminates many of the scanner conflicts among tokens from different

sub-languages, PSLR(1) specifications can employ a lexical precedence directive with which the user
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can resolve the remaining scanner conflicts more carefully and declaratively than with a traditional

scanner generator like Lex. PSLR(1) specifications can also employ a directive to declare that tokens,

such as keywords and identifiers, are lexically tied and so should never be confused with one another

regardless of where each is syntactically acceptable. We have explained how the generated pseudo-

scanner selects a match to return to the parser when there are no syntactically acceptable tokens.

We have introduced LAC, an LR(1) parsing algorithm extension that eliminates delayed syntax

error detection and incorrect accepted token lists in syntax error messages for a PSLR(1) parser or

traditional LR(1) parser that employs parser state merging, default reductions, or error actions for

resolving S/R conflicts. We have described an extension to our original minimal LR(1) algorithm,

IELR(1), to eliminate other incorrect PSLR(1) behavior induced by parser state merging. Finally,

we have described mechanisms for handling the specification of whitespace and comments and the

scoping of declarations to specific sub-languages. In this way, our PSLR(1) generator permits the

user to specify the lexical and syntactic analysis of composite languages in a more careful, declarative,

and modular fashion without the need to specify the start conditions and other ad-hoc code required

by traditional scanner generators.
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Chapter 4

Studies and Evaluation

In order to evaluate the benefits of PSLR(1), we examine four case studies. In section 4.1,

we describe our first case study, PSLR(1) Bison’s own internal parser. In section 4.2, we describe

our second case study, an SQL parser written by John R. Levine for his text book, flex & bison. In

section 4.3, we describe our third case study, ISO C99, which we choose as a representative of the

C family of languages. In section 4.4, we describe our final case study, the template argument list

specification from Figure 2.3c. In section 4.5, we present the results we have collected from our case

studies.

4.1 PSLR(1) Bison

We have implemented our PSLR(1) generator as an extension of Bison. In this paper, we

refer to our extended Bison as PSLR(1) Bison. Internally, Bison employs a traditional scanner-based

LR(1) parser for analyzing its input parser specifications. Thus, we initially implemented PSLR(1)

Bison to employ traditional scanner-based LR(1) internally as well. In both cases, the internal

scanner is generated by Flex, and the internal parser is generated by Bison itself.

The language of Bison parser specifications is a challenging composition of multiple sub-

languages as we described for Yacc in section 2.3.1. Because PSLR(1) Bison accepts a unified

scanner and parser specification, PSLR(1) Bison must recognize regular expressions as yet another

sub-language. Thus, both Bison’s and PSLR(1) Bison’s internal parsers are themselves candidates

for PSLR(1).

81



For our first case study, we have implemented PSLR(1) Bison’s internal parser a second

time using PSLR(1) instead of traditional scanner-based LR(1). We then collected and compared

readability and maintainability statistics for the two versions. We describe the results in section 4.5.

To ensure that our comparisons between the two versions of PSLR(1) Bison’s internal parser

are meaningful, it is vital to verify that the versions exhibit equivalent behavior. The Bison distri-

bution contains a robust test suite with 240 test groups as of the latest release, Bison 2.4.1. The test

suite for Bison 2.5, which is still under development, currently has 289 test groups. As we developed

PSLR(1) Bison with a traditional scanner-based LR(1) parser internally, we extended the latter test

suite to a total of 381 test groups in order to verify the ability to parse a user’s PSLR(1) specifi-

cation and to generate a correct PSLR(1) parser. After converting PSLR(1) Bison to use PSLR(1)

to generate its own internal parser, we then re-ran this extended test suite in order to verify that

equivalent behavior had been fully retained.

Based on the extended test suite, the PSLR(1) version of PSLR(1) Bison’s internal parser

successfully emulates the traditional scanner-based LR(1) version in almost all cases. All differences

in behavior are related to syntax error handling. First, the PSLR(1) version employs sub-grammars

involving many tokens in order to recognize some elements of the lexical syntax that the traditional

scanner-based LR(1) version recognizes with single tokens. Thus, some of the behavioral differences

are simply the names of the unexpected or expected tokens that the parsers report in syntax error

messages. Second, the traditional scanner-based LR(1) version depends entirely on ad-hoc C code to

handle syntax errors at the lexical level. In the PSLR(1) version, all levels of the syntax benefit from

the same automated syntax error handling mechanisms, which we described in section 3.5, so syntax

error reporting and recovery are generally more uniform. Nevertheless, both versions of the parser

detect the same initial syntax error for every input parser specification in the test suite. Moreover,

none of the behavioral differences detected by the test suite are evidence of incorrect behavior for

either version.

4.2 Levine SQL

In his text, flex & bison, John R. Levine develops Flex and Bison specifications for translating

a subset of SQL (Structured Query Language) into RPN (Reverse Polish Notation) [24]. In this

paper, we refer to that subset of SQL as Levine SQL. As Levine explains in his text, he has made
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his Flex and Bison specifications available online [25]. We downloaded our copy in January 2010.

The download actually contains three versions of those specifications. The most robust version that

does not employ GLR (Generalized LR) is contained in the Flex specification file sql/lpmysql.l

and Bison specification file sql/lpmysql.y.

For our second case study, we used sql/lpmysql.l and sql/lpmysql.y as a basis to

develop a traditional scanner-based LR(1) parser for Levine SQL. We then converted those specifi-

cations to PSLR(1). As for our first case study, we collected and compared readability and main-

tainability statistics for the traditional scanner-based LR(1) version versus the PSLR(1) version,

and we describe the results in section 4.5.

The only differences between Levine’s original specifications and the traditional scanner-

based LR(1) parser that we employ in this case study are a few corrections that we found necessary to

permit reasonable comparisons with our PSLR(1) version of the parser. First, in sql/lpmysql.l,

the action for the scanner’s COUNT token invokes Flex’s unput function before accessing the Flex

variable yytext. According to Flex’s documentation, unput by default corrupts the contents of

yytext, so yytext must be copied before invoking unput. Indeed, we found that this bug some-

times corrupts the diagnostics printed by a semantic value destructor defined in sql/lpmysql.y.

Second, in sql/lpmysql.l, the action for newline does not correctly update yylloc, which is the

global variable in which the parser’s lookahead location is stored. As a result, the parser sometimes

reports syntax errors at locations that do not exist in the input SQL. Third, both sql/lpmysql.l

and sql/lpmysql.y contain a few superficial problems for the strict compiler settings we use. For

example, there’s an unused variable, a missing prototype, a missing standard include, and a use of

the library function strdup, which is not defined by ISO C99.

As for our first case study, it is vital to verify that the traditional scanner-based LR(1)

version and the PSLR(1) version of the parser exhibit equivalent behavior in order to ensure that

our comparisons between the two versions are meaningful. Unlike our first case study, there is no

existing test suite for the traditional scanner-based LR(1) version. Instead, we downloaded a copy of

the SQL Test Suite, Version 6.0, from the website of NIST (U.S. National Institute of Standards and

Technology) [7]. To form our Levine SQL test suite, we extracted from that download the 379 files

whose names match the pattern sql/*.sql, each of which contains a series of SQL statements and

SQL comments. We then wrote a script that compares the output of the traditional scanner-based

LR(1) version and the PSLR(1) version of the Levine SQL parser for each of these files. That is, we
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used the traditional scanner-based LR(1) version as a test oracle for the PSLR(1) version.

Because Levine SQL is only a subset of SQL, both versions of the parser report syntax

errors for many of the SQL statements in our test suite. However, Bison’s error recovery mechanism

enables the parsers to continue parsing the remaining statements in each file so that the output from

the parsers can be compared for those statements as well. For our entire Levine SQL test suite,

both versions of the Levine SQL parser successfully parse 3675 SQL statements, report 11671 syntax

errors, and produce identical output, which includes RPN translations and syntax error messages.

4.3 ISO C99

As we discuss in section 4.5, one of the goals of our first two case studies is to explore

the effect of PSLR(1)’s IELR(1) extension. In our third case study, we explore the effect of that

extension for the syntax that is common among the C family of languages, which includes C, C++,

and Java. We ignore the newest complexities in the C family, such as the evolving C++0x template

sub-language issue described in section 2.3.3.

Without the newest complexities, the C family syntax is unique among our case studies

in that it is designed relatively well for traditional scanner-based LR(1). Specifically, unlike the

language of PSLR(1) Bison parser specifications, sub-languages from the point of view of the scanner

are usually just comments and literals, which are regular sub-languages. Unlike Levine SQL, all

keywords are reserved words, and so their lexemes are recognized as keywords in all syntactic contexts

except in comments and literals, where most characters are recognized as generic text. These

differences mean that sub-languages in the C family syntax are less likely to share sub-grammars

and, if they do share sub-grammars, they are less likely to require different tokenizations of the same

character sequences when recognizing those sub-grammars. As a result, sub-languages are less likely

to have parser states with common cores such that, once those states are merged by LALR(1), the

pseudo-scanner can no longer adequately distinguish the sub-languages. Thus, by examining the C

family syntax, the goal of this case study is to explore whether PSLR(1)’s IELR(1) extension splits

parser states when there is no need to do so.

Rather than examining all languages from the C family individually, we choose ISO C99 as

the most straight-forward representative. Thus, for our third case study, we converted the lexical

grammar and the phrase structure grammar from Annex A of the ISO C99 standard into a PSLR(1)
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specification [10]. However, unlike our first two case studies, we have not attempted to develop this

PSLR(1) specification into a fully functional application. We have developed it only far enough to

demonstrate the effects of PSLR(1)’s IELR(1) extension. We assert that the resulting specification

represents a realistic stage of development that any PSLR(1) user might encounter while developing

an ISO C99 parser, and so it is important to show that unnecessary state splitting and the conflict

duplication that can result are avoided in order to facilitate further development. In the remainder

of this section, we support our assertion by detailing the steps we took to convert the ISO C99

grammars to PSLR(1).

Our first step in the conversion was to reproduce in PSLR(1) form a faithful copy of the

ISO C99 lexical grammar and phrase structure grammar. The only elements of these grammars that

we omitted were the keyword Imaginary, which is never used in the phrase structure grammar,

and the preprocessor, which is typically handled by a separate parser. Other than those omissions,

we copied the phrase structure grammar as our PSLR(1) grammar, and we defined tokens for the

keywords listed in section A.1.2 of the standard, for the punctuators listed in section A.1.7, and

for the remaining symbols that the lexical grammar defines and that the phrase structure grammar

uses: identifier, constant, string-literal, and enumeration-constant. We defined named regular

expressions for all other symbols from the lexical grammar. Finally, we defined layout tokens for

whitespace, multiline comments, and single-line comments based on section 6.4 of the standard. For

the resulting specification, PSLR(1) Bison reported many lexical tie candidates and pseudo-scanner

conflicts. Because the way in which such errors are resolved can have a significant influence on the

behavior of PSLR(1)’s IELR(1) extension, the purpose of the remaining conversion steps was to find

a reasonable way to resolve those errors.

Our second step in the conversion to PSLR(1) was to simplify the task of resolving the

lexical tie candidates and pseudo-scanner conflicts by eliminating the token enumeration-constant.

The ISO standard’s lexical grammar defines the syntax of enumeration-constant as exactly the

syntax of the token identifier, and the occurrences of enumeration-constant in the phrase structure

grammar are in syntactic contexts where identifier can never appear. Thus, we were able to

simplify our PSLR(1) specification without affecting the C99 syntax by merely substituting these

occurrences of enumeration-constant with identifier. Also, the syntax of the token constant

explicitly includes the syntax of enumeration-constant and thus of identifier, but, according to

the phrase structure grammar, identifier can be recognized in every syntactic context in which
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constant can be recognized. This creates a syntactic ambiguity that must be resolved via semantics.

Thus, without affecting the C99 syntax, we removed enumeration-constant from the definition

of constant, and we assumed that semantic actions would later be added to perform a symbol

table lookup to recognize when an identifier should be treated semantically as a constant in these

syntactic contexts. However, actually implementing semantics is beyond the scope of this case study.

Together, the above modifications left enumeration-constant completely unused, so we re-

moved its definition from the specification. Interestingly, enumeration-constant is the only symbol

that occurs in a production RHS in the ISO standard’s phrase structure grammar, that never occurs

as a production LHS in the phrase structure grammar, that is defined by the lexical grammar, but

that is not listed as a token in section A.1. That is, the ISO standard uses enumeration-constant

not as a real token but as an alias for identifier in certain syntactic contexts. As described

above, our second step in the conversion to PSLR(1) simply eliminated this aliasing. By doing

so, it also eliminated the need to resolve many redundant errors. That is, before the second step,

PSLR(1) Bison reported many of the same lexical tie candidates and pseudo-scanner conflicts for

enumeration-constant as for identifier. After the second step, it only reported them for identifier.

Our final step in converting the ISO C99 grammars to PSLR(1) was to resolve all remaining

pseudo-scanner conflicts and lexical tie candidates by adding a set of lexical declarations. For

conciseness, we declared symbol sets for keywords and punctuators. We lexically tied all pairs of

conflicting punctuators. The punctuator ’.’ conflicts with constant, and identifier conflicts with

constant, string-literal, and all keywords, so we lexically tied all of those tokens. The punctuator

’/’ conflicts with the layout tokens for multiline and single-line comments, so we lexically tied them

as well. Using the rule of longest match, we resolved all length conflicts among all tokens mentioned

in this paragraph. Finally, we resolved the identity conflict between identifier and every keyword

by giving the keyword higher precedence.

4.4 Template Argument Lists

Our final case study is the PSLR(1) specification from Figure 2.3c. We refer to the language

defined by this specification as the Template Argument Lists language. The purpose of this case

study is to evaluate the success of PSLR(1)’s IELR(1) extension in overcoming the PSLR(1)-relative

inadequacy that we described in section 3.4.
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4.5 Results

In this section, we present the results of our cases studies. In the tables in this section,

we identify each case study by the language it examines: PSLR(1) Bison, Levine SQL, ISO C99,

or Template Argument Lists. As explained in the previous sections, all of our case studies involve

PSLR(1) parsers, but only our first two case studies compare their PSLR(1) parsers with equivalent

traditional scanner-based LR(1) parsers. For conciseness, we frequently abbreviate the phrase “tra-

ditional scanner-based LR(1)” as merely “traditional”. In section 4.5.1, we examine the grammars

and parser tables for our case studies, and we discuss the parser table changes made by PSLR(1)’s

IELR(1) extension. In section 4.5.2, we assess the readability and maintainability of the traditional

specifications versus the PSLR(1) specifications.

4.5.1 Grammars and Parser Tables

Table 4.1 measures the sizes of the traditional and PSLR(1) grammars for each of our case

studies. The PSLR(1) grammar for PSLR(1) Bison’s internal parser is larger than its traditional

grammar because many of the tokens from the traditional scanner specification do not have a regular

syntax, and so we converted those tokens to nonterminals and defined them in context-free form in

the PSLR(1) grammar. The grammars for Levine SQL are the largest among our case studies, but

the lexical syntax is so simple that no new nonterminals are required for PSLR(1). Interestingly, the

PSLR(1) grammar for Levine SQL has three less productions than the traditional grammar. The

reason is that those three productions depend on tokens that the traditional parser specification

defines but that the traditional scanner specification does not define. While Flex and Bison do

not communicate in order to detect such inconsistencies between traditional scanner and parser

specifications, PSLR(1) Bison reports errors for tokens that appear in the grammar but that have

not been assigned a regular expression. Thus, we were forced to remove the useless productions

from the PSLR(1) grammar. PSLR(1)’s ability to enforce such strictness is one advantage of its

unification of the scanner and parser specification formalisms.

In Table 4.2, we count the parser states and parser conflicts for the traditional and PSLR(1)

specifications for each of our case studies. As expected based on the grammar sizes, converting

the traditional specification to the PSLR(1) specification without extending IELR(1) for PSLR(1)

increases the size of the parser tables for PSLR(1) Bison’s internal parser, but it slightly decreases
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Language Specification |T | |V | |T ∪ V | |P |

PSLR(1) Bison Traditional 71 35 106 122
PSLR(1) 117 115 232 294

Levine SQL Traditional 252 73 325 303
PSLR(1) 277 73 350 300

ISO C99 PSLR(1) 90 86 176 235
Tmplt. Arg. Lists PSLR(1) 6 5 11 7

Table 4.1: Grammar Sizes. These counts measure the size of each case study’s grammar G =
(V, T, P, S), such that V is the set of nonterminals, T is the set of terminals or tokens, P is the set
of productions, and S is the start symbol. These counts include the productions and nonterminals
that Bison generates implicitly for mid-rule actions.

Traditional Specification with IELR(1)

Language States S/R R/R
PSLR(1) Bison 187 0-0 0-0
no prec/assoc 187 0-0 0-0
Levine SQL 626 0-0 0-0

no prec/assoc 626 480-0 0-0

PSLR(1) Specification

Language States S/R R/R
IE PS Canon IE PS Canon IE PS Canon

PSLR(1) Bison 383 383 1356 0-0 0-0 0-0 0-0 0-0 0-0
no prec/assoc 383 383 1356 2-0 2-0 2-0 0-0 0-0 0-0
Levine SQL 610 663 8009 0-0 0-0 0-0 0-0 0-0 0-0

no prec/assoc 610 663 8009 480-0 960-480 21600-21120 0-0 0-0 0-0
ISO C99 391 391 1773 10-0 10-0 17-7 10-0 10-0 12-2

Tmplt. Arg. Lists 18 19 22 0-0 0-0 0-0 0-0 0-0 0-0

Table 4.2: Parser Tables. In the first table, we describe the parser tables that IELR(1) generates
for the traditional specifications for our first two case studies. In the second table, we describe the
parser tables that IELR(1), IELR(1) with its extension for PSLR(1), and canonical LR(1) generate
for the PSLR(1) specifications for all our case studies. We report the number of states and the
number of parser conflicts left unresolved by the user. We also show adjustments to account for such
unresolved parser conflicts that are perfectly duplicated among states with identical cores.

Language Reveals States Tokens
PSLR(1) Bison 0 0 0

Levine SQL 25 25 1
ISO C99 0 0 0

Tmplt. Arg. Lists 1 1 1

Table 4.3: Lexical Reveals. For each of our case studies, this table reports the number of lexical
reveals caused by extending IELR(1) for PSLR(1), the number of parser states containing lexical
reveals, and the number of unique tokens for which there are lexical reveals.
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the size of the parser tables for Levine SQL. Because some of our case studies include precedence and

associativity declarations that resolve their parser conflicts, we also describe their parser tables when

generated without these declarations in order to better represent the complexity of the specification.

For example, in the table for traditional specifications, the “no prec/assoc” row beneath the “Levine

SQL” row reveals that 480 S/R conflicts are resolved by the user.

For PSLR(1) specifications, Table 4.2 also compares the parser tables generated by IELR(1),

by IELR(1) with its extension for PSLR(1), and by canonical LR(1). Only Levine SQL and Template

Argument Lists experience state splitting when adding PSLR(1)’s IELR(1) extension. For Template

Argument Lists, the IELR(1) tables are identical to the LALR(1) parser tables, which are shown in

the second column of Table 2.1, and canonical LR(1) requires 4 more states, as shown in the first

column of Table 2.1. However, PSLR(1)’s IELR(1) extension requires only 1 additional state, which

is equivalent to canonical LR(1) state 18. For Levine SQL, when PSLR(1)’s IELR(1) extension

splits states and duplicates conflicts as a result, the number of states increases by a factor of 1.09,

and the number of S/R conflicts increases by a factor of 2. However, when canonical LR(1) is used

instead of the extended IELR(1), the number of states increases by a factor of 13, and the number

of S/R conflicts increases by a factor of 45. Thus, our previous conclusion comparing IELR(1) and

canonical LR(1) continues to hold when IELR(1) is extended for PSLR(1): canonical LR(1) can

severely worsen the developer’s burden of investigating parser conflicts in order to resolve them [16].

Table 4.3 describes the benefit of PSLR(1)’s IELR(1) extension for each of our case studies.

As discussed above, PSLR(1)’s IELR(1) extension does not split any states for PSLR(1) Bison’s

internal parser or for ISO C99, so these case studies show no benefit. The lack of benefit for

ISO C99 comes as no surprise given the reasons we discussed in section 4.3. The reasons that

PSLR(1) Bison’s internal parser does not benefit are less obvious but are similar. Stated simply,

in the PSLR(1) specification language, among sub-languages that share sub-grammars, character

sequences tend to be tokenized in the same manner when recognizing those sub-grammars, so there

is little chance that LALR(1) state merging can create PSLR(1)-relative inadequacies. While neither

the PSLR(1) Bison nor the ISO C99 case study proves that, in general, PSLR(1)’s IELR(1) extension

avoids state splitting for cases when state splitting would offer no benefit, they do provide evidence

of its ability to recognize such cases.

As expected based on the state splitting shown in Table 4.2, Levine SQL and Template

Argument Lists do benefit from PSLR(1)’s IELR(1) extension. In order to measure the benefit, we
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define the concept of a lexical reveal, and in Table 4.3 we count the lexical reveals. For example,

for Template Argument Lists, we can see the sole lexical reveal by examining the parser tables

in Table 2.1. For LALR(1) state 1, assuming the rule of longest match, the match (“>”,’>’) is

never recognized for the input character sequence “>>” because the match (“>>”,’>>’) has higher

precedence. However, PSLR(1)’s IELR(1) extension splits LALR(1) state 1 into canonical LR(1)

states 1 and 18, so, from the perspective of the viable prefixes of canonical LR(1) state 18, the match

(“>”,’>’) is revealed because the token ’>>’ is no longer accepted. Because a token can match

an infinite number of lexemes, some parser tables can experience an infinite number of revealed

matches, so we define the number of lexical reveals as the number of tokens for which at least one

match is revealed instead of as the number of revealed matches.

If matches are revealed for the same token in more than one parser state after state splitting,

we count the lexical reveals once per state because each state represents a different set of viable

prefixes. For example, for Levine SQL, PSLR(1)’s IELR(1) extension reveals matches for only one

token. However, those matches are revealed for that token in 25 different parser states after state

splitting, so we count 25 lexical reveals. To explain the source of these lexical reveals, we start by

examining the traditional scanner and parser. In the grammar, the tokens BETWEEN and AND each

appear in only one production, and it is the same production:

expr: expr BETWEEN expr AND expr %prec BETWEEN

The token AND matches the lexeme “AND”, but the sub-grammar for the nonterminal expr contains

the token ANDOP, which can also match the lexeme “AND”. While the parser is recognizing the

sub-grammar of expr, the scanner must have some way to decide whether to recognize “AND” as

AND or as ANDOP. The traditional scanner’s solution is to enter a new start condition after the token

BETWEEN and to leave that start condition upon reaching AND. While in that start condition, it

recognizes “AND” as AND. Outside of that start condition, it recognizes “AND” as ANDOP. Thus, from

the point of view of the scanner, BETWEEN and AND delimit a sub-language. PSLR(1)’s equivalent

solution is (1) to depend on the basic behavior of the pseudo-scanner to avoid recognizing AND

anywhere except in the BETWEEN sub-language because that’s the only place AND is syntactically

acceptable and (2) to declare AND with higher lexical identity precedence than ANDOP. However,

because the sub-grammar for expr is shared by the main sub-language and the BETWEEN sub-

language, some parser states with common cores are shared as well. When those parser states and
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thus their lookahead sets are merged, the two sub-languages become indistinguishable, and so the

match (“AND”,ANDOP) becomes hidden by (“AND”,AND) in all uses of expr including 25 different

syntactic contexts within the main sub-language. PSLR(1)’s IELR(1) extension splits states so that

the pseudo-scanner can distinguish between the sub-languages and reveal the match for ANDOP in

those 25 syntactic contexts.

4.5.2 Readability and Maintainability

Tables 4.4, 4.5, and 4.6 present our readability and maintainability statistics for the tradi-

tional versus PSLR(1) specifications of our first two case studies. The first column in the tables of

Table 4.4 identifies the specification examined by each row. Each of the remaining columns presents

a different assessment of the size of the specifications. For example, the second column simply

counts the number of lines of code, but the third column counts characters instead. We explain the

meaning of each size assessment in detail later in this section. For every size assessment, the first

two rows of each table give the sizes for the traditional parser and scanner specifications. Except

in the last column, the traditional scanner specification sizes for PSLR(1) Bison’s internal parser

include two header files written in C that we were able to discard when converting to PSLR(1).

No files generated by Flex, Bison, or PSLR(1) Bison are included in any of the sizes for any of the

specifications because those files are not maintained directly by the specification developer.

The third row gives the size for the unified PSLR(1) specification. The goal of PSLR(1) is

to simplify the specification of the scanner, so we wish to compare the traditional scanner specifi-

cation with the scanner portion of the unified PSLR(1) specification. However, when converting to

PSLR(1), the merging of scanner and parser specifications does not leave exact boundaries between

these specifications. Fortunately for our analysis, for both case studies, there were only a few changes

to the code from the traditional parser specifications when converting to PSLR(1). Thus, the fourth

row estimates the size of the PSLR(1) scanner specification by subtracting the size of the traditional

parser specification from the size of the unified PSLR(1) specification. In each of the first four rows,

we also show the C content of each specification. Thus, the fourth row estimates the C content in

the PSLR(1) scanner specification by subtracting the size of the C code in the traditional parser

specification from the size of the C code in the unified PSLR(1) specification and then dividing by

the estimate of the total size of the PSLR(1) scanner specification. The fifth row presents the ratio

of the estimated PSLR(1) scanner specification size to the traditional scanner specification size, and

91



PSLR(1) Bison

Specification Lines Chars Norm. Chars
Norm. Chars

(No External C)
Traditional Parser 836, 45% C 23276, 61% C 16190, 61% C 13514, 54% C

Traditional Scanner 1382, 65% C 39483, 71% C 21234, 83% C 14682, 76% C
PSLR(1) Scanner & Parser 1503, 44% C 46610, 56% C 32424, 55% C 26143, 44% C

PSLR(1) Scanner 667, 43% C 23334, 50% C 16234, 48% C 12629, 33% C
Scanner Ratio 48% 59% 76% 86%

Scanner C Ratio 31% 41% 44% 37%

Levine SQL

Specification Lines Chars Norm. Chars
Norm. Chars

(No External C)
Traditional Parser 1005, 13% C 27812, 39% C 24060, 41% C 22187, 36% C

Traditional Scanner 368, 7.6% C 10302, 58% C 9001, 60% C 8672, 59% C
PSLR(1) Scanner & Parser 1259, 13% C 36347, 33% C 28599, 39% C 26512, 34% C

PSLR(1) Scanner 254, 15% C 8535, 16% C 4539, 27% C 4325, 23% C
Scanner Ratio 69% 83% 50% 50%

Scanner C Ratio 140% 22% 23% 20%

Table 4.4: Specification Sizes. For our first two case studies, these tables show specification sizes
and C content. To estimate the PSLR(1) scanner, we subtract sizes for the traditional parser from
the unified PSLR(1) parser and scanner. The ratios in the last two rows show the PSLR(1) scanner
divided by the traditional scanner. To normalize character counts, we removed all comments, and
then we reduced contiguous whitespace to a single space. External C is C code that is not embedded
in action declarations and that could have been moved to an external C library or include.

the final row presents the same ratio for the size of the C code.

We include line counts in our results because line counts are the most common first assess-

ment of size that software engineers tend to make. However, this assessment can be very unrealistic.

The first problem we address is that line counts are too dependent on the number of characters that

the developer of each specification tended to write per line. The line counts for the C code extracted

from these specifications are impacted especially severely by this problem because passages of C

code are often contained between braces within a single line. When those passages are concatenated

together to compute the full size of the C code, no newline is seen until a passage of C code that

contains multiple lines is encountered, so lines of C code tend to be very long. Of course, we could

have appended a newline after the last passage of C code from each line, but this would have pro-

duced the opposite problem of extremely short lines of C code. A better assessment of code size

that avoids this problem is simply a count of characters as presented in the third column of each
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table in Table 4.4. In some cases, this makes a dramatic difference in the numbers. For example,

the scanner C ratio for Levine SQL falls from the unrealistic 140% to the realistic 22%.

A simple character count is still not the most realistic assessment of code size. Like line

counts, it is too dependent on code formatting and on the amount of comments the developer of

each specification tended to write. Thus, for our next assessment of code size, we normalized our

character counts in two steps. First, we removed all Flex, Bison, PSLR(1) Bison, and C comments

from the specifications. Second, a single whitespace character can be syntactically significant in the

specifications, but there is no syntactic difference between multiple contiguous whitespace characters

and a single whitespace character except in literals. Thus, we reduced all passages of contiguous

whitespace not appearing in literals to a single whitespace character. The fourth column of each

table in Table 4.4 presents the resulting sizes.

For our final assessment of specification sizes, we consider that a developer’s choice of when

to place C code in a specification file and when to place C code in an external include or library is

sometimes arbitrary. For example, the specifications for PSLR(1) Bison’s internal parser are a small

portion of the total volume of code in PSLR(1) Bison, and much of the additional code is used as

a library by those specifications. However, some of the C code placed within those specifications

could have just as easily been placed in an external include or library so that it would not dilute our

measurements. We use the term external C to refer to all C code that is placed or could have been

placed in an external file and that thus does not appear in any kind of scanner or parser action. For

the last column of each table in Table 4.4, we ignore all external C. In this way, the last column

focuses on the C code that is inherently mixed within the scanner and parser formalisms and that

thus can complicate the task of comprehending the language specified by those formalisms.

For producing a realistic assessment of specification sizes, there are merits to counting

normalized characters both with and without external C. Keeping external C has the advantage of

detecting changes in the amount of external C when converting to PSLR(1), but external C that

does not change dilutes the ratios. Fortunately, the difference between these assessments is not large

for our case studies. For PSLR(1) Bison’s internal parser, converting from traditional to PSLR(1)

reduces the total size of the scanner specification by nearly one fourth of its size when external C code

is included in the assessment. For Levine SQL, the total size of the scanner specification is reduced

by half under either assessment. More interestingly, for both case studies, we have clearly achieved

our goal of reducing the need to write ad-hoc code in a general-purpose programming language
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like C by converting that code to formalisms like grammars, regular expressions, and precedence

declarations, all of which are tailored for specifying scanners, parsers, or, more generally, languages.

For PSLR(1) Bison, the C code in actions embedded within such language formalisms was reduced

to 37% of its original size, and for Levine SQL it was reduced to 20% of its original size.

So far, we have assessed the maintainability and readability of traditional versus PSLR(1)

specifications by comparing only total code size and amount of C code. However, we consider that

a reduction in C code to 20% of the original size is pointless if that C code’s complexity increases

dramatically. Thus, in Table 4.5, we assess the complexity of the C code in the actions embedded in

the specifications. We do not consider external C code because only its interface need be understood

when attempting to understand the language or semantics being specified.

To assess the complexity of C code in the embedded actions, Table 4.5 counts the non-linear

control structures, variables, and conditions that code contains. By non-linear, we mean we don’t

count control structures appearing in idioms with linear control flow, such as:

#define FUNCTION \
do { \

/* function body */ \
} while (0)

The first column in each table in Table 4.5 identifies the specification examined by each row. The

second column shows that no specification contains a goto statement. For the traditional scanner

specifications, the third column counts start conditions, which we assert are analogous to goto labels

while invocations of Flex’s BEGIN macro, which specifies start condition transitions, are analogous

to gotos. The fourth and fifth columns count global variables and variables local to the scanner

function, yylex. In both cases, we count variables defined by the user, but we do not count

variables whose definitions are generated automatically. In the sixth column, we count for, while,

and do-while loops. In the seventh column, we count each if, else if, and else. However, we

also count the ternary operator as an if and an else. All switch statements in the specifications

happen to have a simple structure that could easily have been rewritten as a single chain of if,

else if, and else. Thus, we count any group of case labels associated with a single block of

code as either an if or else if. We count the default label as an else.

In the final column of each table in Table 4.5, we count the number of conditions appearing

in control structures in embedded C code. For example, the following if contains two conditions,

A and B:
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PSLR(1) Bison

Specification Gotos
Start

Conds.

Global
User
Vars.

yylex
User
Vars.

Loops
if,

else if,
else

conds.

Traditional Parser 0 – 6 – 8 8 17
Traditional Scanner 0 21 10 8 0 48 40

PSLR(1) Scanner & Parser 0 – 9 – 8 23 32
PSLR(1) Scanner 0 – 3 – 0 15 15

Scanner Ratio nan 0% 30% 0% nan 31% 38%

Levine SQL

Specification Gotos
Start

Conds.

Global
User
Vars.

yylex
User
Vars.

Loops
if,

else if,
else

conds.

Traditional Parser 0 – 0 – 0 21 20
Traditional Scanner 0 3 2 0 0 1 1

PSLR(1) Scanner & Parser 0 – 0 – 0 21 20
PSLR(1) Scanner 0 – 0 – 0 0 0

Scanner Ratio nan 0% 0% nan nan 0% 0%

Table 4.5: Complexity Counts. These tables count non-linear control structures and variables not
appearing in external C (as defined for Table 4.4). Similar to McCabe’s cyclomatic complexity, the
last column counts conditions appearing in those control structures.

PSLR(1) Bison

Specification Gotos
Start

Conds.

Global
User
Vars.

yylex
User
Vars.

Loops
if,

else if,
else

conds.

Traditional Parser 0 – 0.444 – 0.592 0.592 1.26
Traditional Scanner 0 1.43 0.681 0.545 0 3.27 2.72

PSLR(1) Scanner & Parser 0 – 0.344 – 0.306 0.880 1.22
PSLR(1) Scanner 0 – 0.238 – 0 1.19 1.19

Scanner Ratio nan 0% 35% 0% nan 36% 44%

Levine SQL

Specification Gotos
Start

Conds.

Global
User
Vars.

yylex
User
Vars.

Loops
if,

else if,
else

conds.

Traditional Parser 0 – 0 – 0 .947 0.901
Traditional Scanner 0 0.346 0.231 0 0 0.115 0.115

PSLR(1) Scanner & Parser 0 – 0 – 0 0.792 0.754
PSLR(1) Scanner 0 – 0 – 0 0 0

Scanner Ratio nan 0% 0% nan nan 0% 0%

Table 4.6: Complexity Frequences. These tables give the ratio of the control structure, variable, and
condition counts from Table 4.5 to the character counts from the last column of Table 4.4.
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if (A && B) { /*code*/ }

Counting conditions in this manner is a first step in computing McCabe’s widely used measure

of cyclomatic complexity [26]. The only other step is to add 1 to the condition count. However,

McCabe’s measure is only appropriate for assessing control flow throughout a single cohesive passage

of code. Instead, we are measuring the cumulative complexity of separate passages of C code

that we have extracted from various locations in a larger specification. That is, we don’t wish

to include language formalisms like grammars, regular expressions, and precedence declarations,

which define control flow among those passages of C code, because our assumption is that such

language formalisms are inherently less complex to comprehend in the specification of a language

than passages of a general-purpose programming language like C. Thus, we simply count conditions

from passages of C embedded throughout each specification, and we observe that those conditions

are the embedded C’s contributions to the cyclomatic complexity of the full specification.

Table 4.6 repeats the counts from Table 4.5 but it divides them by the specification sizes

we presented in the last column of Table 4.4. That is, rather than examining the total number

of control structures and conditions as in Table 4.5, Table 4.6 examines the frequency with which

they appear in the portion of the specifications that are not external C. In both Tables 4.5 and

4.6, the final row of each table gives the ratio of each count or frequency for the PSLR(1) scanner

specification to that of the traditional scanner specification. Regardless of whether we examine

counts or frequencies, the PSLR(1) scanner specification for PSLR(1) Bison’s internal parser exhibits

a significant drop relative to the traditional scanner specification for every assessment of embedded

C complexity that we include in our tables. For Levine SQL, the traditional scanner specification’s

counts and frequencies are relatively small already, and the PSLR(1) scanner specification’s counts

and frequencies are all zero. Thus, instead of finding evidence that the complexity of the embedded

C was forced to increase in order to permit the significant reduction in the size of the embedded

C when switching from traditional scanner-based LR(1) to PSLR(1), we found evidence that the

complexity of the embedded C actually reduced significantly as well.
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Chapter 5

Related Work

Although terminology and implementations vary, several other researchers have indepen-

dently discovered the basic premise of what we call a pseudo-scanner. The earliest description we

have found is a 1991 publication by Nawrocki, which we discuss in section 5.1. In section 5.2, we

discuss an unpublished paper from Keynes, which is the only paper we have reviewed that acknowl-

edges that LR(1) state merging can induce incorrect pseudo-scanner behavior. The most recent

publication is from 2007 from Van Wyk and Schwerdfeger, and we discuss it in section 5.3. In

section 5.4, we discuss scannerless GLR, a popular nondeterministic alternative to PSLR(1) that

abandons the scanner altogether in order to parse composite languages.

5.1 Nawrocki

The earliest mention of the premise of the pseudo-scanner we have found is a 1991 publication

by Nawrocki [27]. Nawrocki categorizes scanner conflicts and explains how the current parser state

can sometimes be examined to resolve them automatically. However, he does not address the

resulting problems with tokens that should be lexically tied as we discussed in section 3.3. He assumes

an LALR(1) parser, but he does not mention that LR(1) state merging can induce incorrect pseudo-

scanner behavior as we explained in section 3.4. He demonstrates his techniques with examples from

Modula-2 and Ada, but he does not discuss the usefulness of his techniques for composite languages

in general.

Nawrocki defines two types of scanner conflicts, which are similar to the two types of pairwise
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scanner conflicts we defined in Definition 2.2.5. His definition for an identity conflict, which he calls

an I-conflict, is equivalent to ours. His definition for an LM-conflict (longest match conflict) is

similar to our definition for a length conflict. We now state Nawrocki’s definition for an LM-conflict

formally in terms of our scanner conflict model.

Definition 5.1.1 (LM-conflict)

As an extension of Definition 2.2.5, if the pair (λ, t) and (λ′, t′) is an LM-conflict for ξ over T ,

then |λ| 6= |λ′|. Thus, an LM-conflict is a type of length conflict. Without loss of generality, we

assume that |λ| > |λ′|. Nawrocki denotes such an LM-conflict as t � t′. Unlike a length conflict, an

LM-conflict requires that ∃(λ′′, t′′) ∈ (Ξ+, T ) : (t′′ ∼= λ′′) ∧ (λ′ · λ′′[1] � λ). In other words, a length

conflict is an LM-conflict iff the shorter lexeme is followed by one lexically acceptable character. �

We assert that a length conflict for which the pair (λ′′, t′′) from Definition 5.1.1 does not exist should

not be handled differently than any other length conflict, but Nawrocki excludes this case from his

definitions without justification and does not explain how it should be handled.

Nawrocki’s first technique for resolving scanner conflicts is LC (left context). LC resolves an

LM-conflict in a manner similar to the way the basic behavior of a pseudo-scanner resolves a length

conflict. That is, given the current parser state sp and the remaining input character sequence ξ,

sp indicates the syntactic left context of ξ. If only one of the tokens t and t′ is in acc(sp), then LC

resolves t � t′ for sp by rejecting the unacceptable token. If both t and t′ are in acc(sp), then LC

fails to resolve t � t′ for sp.

Nawrocki’s second technique for resolving scanner conflicts is ELC (extended left context).

For the LM-conflict t � t′ with conflicting matches (λ, t) and (λ′, t′), ELC is like LC in that it

rejects whichever of t or t′ is not acceptable according to the syntactic left context. However, ELC is

more powerful than LC because ELC also rejects t′ if it is not acceptable according to one character

of syntactic right context. That is, if there does not exist any token that meets the conditions

for t′′ given in Definition 5.1.1 and that is also syntactically acceptable after t′, then ELC rejects

t′. Nawrocki does not explain how to handle the case where ELC cannot resolve t � t′ because

LC fails while such a t′′ does exist. In contrast, our PSLR(1) generator usually employs the rule

of longest match and thus rejects t′ when LC fails regardless of the existence of such a t′′. That

is, our generator’s effective resolution of t � t′ disagrees with ELC’s resolution only in two cases:

(1) where ELC’s resolution is indeterminate and thus useless, and (2) where the user has specified
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non-traditional lexical precedence rather than longest match.

Nawrocki does not explain how to resolve identity conflicts. We assume he intends to

employ LC as our pseudo-scanner does. Like the rule of longest match, ELC is not defined for

identity conflicts because both matches in an identity conflict are of the same length.

In this section, we have explained a generalized version of Nawrocki’s scanner conflict reso-

lution techniques in order facilitate the comparison with our PSLR(1) generator. Given the token t

and the set of all parser states Σp, Nawrocki defines LC(t) = {sp ∈ Σp : t ∈ acc(sp)}. For any pair of

tokens t and t′, we have stated that the LC technique resolves each occurrence of the conflict t � t′

in favour of t′ if the current parser state is a member of LC(t′) but not of LC(t). However, according

to Nawrocki’s exact description, only membership in LC(t′) need be tested. Thus, Nawrocki actually

requires that LC(t)∩LC(t′) = ∅. In other words, Nawrocki requires that LC be able to resolve t � t′

for every possible syntactic left context in order to resolve it for any of them. Our generalization

removes this restriction. Nawrocki imposes a similarly unnecessary but more cryptic restriction for

ELC.

5.2 Keynes

The only paper we have reviewed that acknowledges that LR(1) state merging can induce

new conflicts in the pseudo-scanner is a paper by Keynes [20]. Unfortunately, Keynes’ paper appears

to be unpublished. Our analysis is based on a copy that we downloaded in September 2008 from

the URL mentioned in our bibliography. The front page bears the date November 2, 2007.

Keynes cites Nawrocki’s definitions of identity conflicts and LM-conflicts. He then reformu-

lates those definitions more clearly in terms of transitions in the scanner’s FSA, but he maintains

the limitation that we noted in Nawrocki’s LM-conflict definition relative to our length conflict def-

inition. Keynes also presents an interesting algorithm for resolving scanner conflicts by modifying

actions in the scanner at the time of scanner and parser generation. In order to compare his approach

with ours, we now extend our formal model to express Keynes’ algorithm.

Definition 5.2.1 (Accepts Extended)

Given the LR(1) parser state sp, the scanner state ss, and the character c ∈ Ξ, we extend Definitions

2.2.12 and 3.2.12 to further overload acc as follows:
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1. acc(ss, c) = {t : ∃s′s : ∃ρ ∈ Ξ+ : ρ[1] = c ∧ δ∗(ss, ρ) = s′s ∧ t ∈ acc(s′s)}.

2. acc(sp, ss, c) = acc(sp) ∩ acc(ss, c).

�

Definition 5.2.2 (Accepts-2)

The model for LR(2) parser states is different than the model for LR(1) parser states in that each

item in a lookahead set is a sequence of two tokens instead of a single token. Given the LR(2) parser

state sp, the scanner state ss, the scanner’s start state ss0, and the character c ∈ Ξ, we extend

Definitions 2.2.12, 3.2.12, and 5.2.1 to overload acc further for the LR(2) case:

1. acc(sp) = {t : ∃((` → %), d,K, (at, ap, as)) ∈ sp : (at = “S” ∧ %[d] = t) ∨ (at = “R” ∧ ∃t′ :

(t, t′) ∈ K)}

2. acc(sp, ss) = acc(sp) ∩ acc(ss) as for LR(1).

3. acc(sp, ss, c) = acc(sp) ∩ acc(ss, c) as for LR(1).

4. acc2(sp) = {(t, t′) : ∃((`→ %), d,K, (at, ap, as)) ∈ sp : (at = “S”∧%[d] = t∧t′ ∈ acc(as))∨(at =

“R” ∧ (t, t′) ∈ K)}.

5. acc2(sp, ss, ss0, c) = acc2(sp) ∩ {(t, t′) : t ∈ acc(ss) ∧ t′ ∈ acc(ss0, c)}.

�

Definition 5.2.3 (Keynes Scanner Conflict Resolution)

Given the set of parser states Σp and the set of scanner states Σs with start state ss0, then, for

every combination (sp, ss, c) ∈ (Σp,Σs,Ξ), Keynes records a separate action on c in ss as follows:

1. If acc(sp, ss) = ∅, then transition on c.

2. If |acc(sp, ss)| = 1 and acc(sp, ss, c) = ∅, then accept acc(sp, ss)[1] on c.

3. If |acc(sp, ss)| > 1 and acc(sp, ss, c) = ∅, then there’s an unresolvable identity conflict. (Keynes

actually specifies an accept action in this case but does not specify which token to accept.)

4. If acc(sp, ss) 6= ∅, acc(sp, ss, c) 6= ∅, and acc2(sp, ss, ss0, c) = ∅, then transition on c.
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5. If acc(sp, ss) 6= ∅, acc(sp, ss, c) 6= ∅, and acc2(sp, ss, ss0, c) 6= ∅, then there’s a potential LM-

conflict that is unresolvable.

�

Keynes’ algorithm from Definition 5.2.3 almost exhibits the basic pseudo-scanner behavior

we described in Definition 3.1.1. That is, if every match that is accepted by the current scanner state

is not accepted by the current parser state, rule 1 specifies that such matches be ignored and that

the transition to the next scanner state be taken in search of a longer match. Otherwise, if every

longer match that might be accepted by some later scanner state is not accepted by the current

parser state, rules 2 and 3 specify that one of the current matches be accepted instead and that the

next scanner transition not be taken. When both current matches and longer matches are possible,

rules 4 and 5 employ a technique similar to Nawrocki’s ELC. Like Nawrocki’s ELC technique, rules

4 and 5 disagree with longest match only when they are indeterminate and thus useless. Other than

rule 4, Keynes’ algorithm does not attempt to resolve pseudo-scanner conflicts. In order for Keynes’

algorithm to fully support basic pseudo-scanner behavior, rules 3 and 5 would need to select some

specific match whose token appears in acc(sp), thus resolving pseudo-scanner conflicts instead of

simply identifying them.

Another problem with Keynes’ algorithm is that it sometimes falsely detects LM-conflicts.

The trouble is that the set acc(sp, ss, c) is capable of identifying only the possibility of a longer match

and thus only the possibility of an LM-conflict based on the next character. It does not examine the

remaining character sequence to be sure a longer match and LM-conflict are actually present. To

overcome this problem, the run-time scanning algorithm could implement the rule of longest match

as follows. The scanner would record the most recently seen scanner state at which it identified a

potential LM-conflict. If the scanner later encountered an error action before finding a longer match,

it would return to the last recorded state as the final accepting state and rewind the input character

sequence accordingly. In this way, the scanner would accept the shorter match when there is no

actual longer match. Keynes suggests that, when his algorithm fails to resolve scanner conflicts,

the scanner could fall back to Lex conflict resolution rules, so such a longest match implementation

might indeed be his intention. However, implementing the rule of longest match renders rules 4 and

5 from Definition 5.2.3 useless. Fortunately, eliminating rules 4 and 5 would be beneficial because of

their use of acc2, which requires LR(2) computation (specifically, he uses LALR(2)), which he notes
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is “one of the slower parts of the system” [20].

Because scanner transitions might need to be modified differently for each parser state, there

must be some means to store the numerous FSA’s that result. Keynes proposes two possibilities.

First, the generator can construct the original FSA plus an auxiliary table that records, per parser

state, what changes must be made to the FSA. Second, the multiple FSA’s can be constructed and

merged into a single FSA with multiple start states. Our PSLR(1) generator constructs the scanner

FSA plus the scanner accepts table, so it most resembles Keynes’ first proposal.

Unlike Nawrocki, Keynes’ algorithm does handle length conflicts that are not LM-conflicts.

Specifically, when ss from Definition 5.2.3 is a state that accepts the shorter lexeme in such a conflict,

then acc(ss0, c) = ∅ by Definition 5.1.1, thus acc2(sp, ss, ss0, c) = ∅ by Definition 5.2.2, and so rule

4 in Definition 5.2.3 chooses the transition action on c. Also, Keynes does not impose Nawrocki’s

restriction that a scanner conflict between a pair of tokens must be resolvable for every parser state

in order for it to be resolvable for any parser state.

Keynes discusses how the pseudo-scanner should behave when it cannot match any token

acceptable by the current parser state. He defines two main approaches. An exclusive scanner

returns an error instead of a specific token. As Keynes notes, an exclusive scanner is not appropriate

for a parser whose error recovery strategy involves discarding syntactically unacceptable tokens as

they are returned by the scanner. Moreover, error messages are usually more succinct and thus

meaningful after erroneous character sequences have been tokenized. In contrast, when an inclusive

scanner cannot match any token acceptable by the current parser state, it then attempts to select

a token without regard to the current parser state. This approach avoids the difficulties of the

exclusive scanner, but there is still no guarantee that it chooses the best possible token for error

recovery. In section 3.5, we explained the fallback row of our scanner accepts table, which enables

our pseudo-scanners to behave like Keynes’ inclusive scanner.

Keynes’ paper is the only work we have reviewed that acknowledges that LR(1) state merging

can induce incorrect behavior in the pseudo-scanner. In his terminology, the scanner cannot always

determine the left context from the current parser state because LR(1) state merging can lose left

context. Keynes also states that “these problem states fortunately seem to be relatively rare in

practice” [20], but he offers no citation or statistical evidence to support this statement. As we

described in section 4.5.1, the results from our Levine SQL case study suggest that this statement

is not accurate. He suggests that a full LR(1) parser could be employed instead of LALR(1), but
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he cites the work of Spector who proposes a minimal LR(1) algorithm [33]. As we explained in

section 3.4, minimal LR(1) algorithms like IELR(1) and Spector’s are designed to avoid merging

parser states when doing so would induce incorrect parser behavior. In order to avoid incorrect

pseudo-scanner behavior as well, such an algorithm requires an extension like our IELR(1) extension

for PSLR(1), but Keynes does not mention this requirement.

Keynes’s techniques appear to be based mainly on Nawrocki’s work. Like Nawrocki, Keynes

does not discuss the usefulness of his techniques for composite languages in general. Unlike Nawrocki,

he does discuss the value of a unified scanner and parser specification. Keynes also briefly addresses

issues relative to traditional scanner-based parsing, such as how to specify whitespace and how to

distinguish between keywords and identifiers.

5.3 Van Wyk and Schwerdfeger

A 2007 paper from Van Wyk and Schwerdfeger is the most recent publication we have found

that discusses the premise of the pseudo-scanner, which they refer to as a context-aware scanner

[40]. Instead of discussing the usefulness of the pseudo-scanner for composite languages in general as

we do, they focus on its usefulness specifically for extensible languages. However, because extensible

languages are one of the most complex forms of composite languages, the set of issues that they

address is similar to the set of issues we have addressed in this dissertation. Many of our solutions

are similar as well. In this section, rather than enumerating the similarities, we discuss the solutions

from their paper that have interesting differences from ours.

Unlike the other papers we have reviewed, Van Wyk and Schwerdfeger describe an explicit

lexical precedence declaration for resolving pseudo-scanner identity conflicts. Specifically, t � t′

specifies that any match for t has higher precedence than a match with the same lexeme for t′. For

reasons similar to those we gave in section 3.2.1, the lexical precedence relation specified by “�” is

not implicitly transitive. However, unlike our scanning algorithm, their scanning algorithm always

employs the rule of longest match to resolve pseudo-scanner length conflicts, for which they discuss

no other resolution mechanism. In this way, their “�” operator merges the functionality of the “<-”

and “<∼” operators from our %lex-prec directive, and “-∼” is implicit for pseudo-scanner length

conflicts between other pairs of tokens. Thus, unlike our PSLR(1) generator, their generator does

not warn the user when new pseudo-scanner length conflicts arise.
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The “�” operator also merges lexical precedence with lexical tying. That is, in addition

to a lexical precedence relationship, t � t′ declares t and t′ to be lexically tied, and Van Wyk

and Schwerdfeger do not provide any declarative means to specify lexical precedence or lexical ties

separately. The need to declare lexical ties separately is revealed by Van Wyk and Schwerdfeger’s

example of the keywords ’for’ and ’foreach’. These keywords should be declared lexically

tied so that, in a context in which only the keyword ’for’ is syntactically acceptable, the pseudo-

scanner selects the keyword ’foreach’ for the input character sequence “foreach” instead of

selecting the keyword ’for’ and leaving the trailing “each” to be recognized as an identifier by the

subsequent pseudo-scanner invocation. However, the “�” operator is not appropriate because there

is no identity conflict between ’for’ and ’foreach’. Van Wyk and Schwerdfeger’s unfortunate

solution here is that the user rewrite the grammar to specify that whitespace is required immediately

following any occurrence of ’for’ that precedes an identifier. We observe that a distinct lexical tie

declaration using our %lex-tie directive would be simpler, clearer, and more maintainable.

For some pairs of tokens, combining lexical precedence and lexical tying is not a problem.

As we explained in section 3.3, lexical precedence and symmetric lexical ties are needed for reserved

keywords and identifiers. However, “�” can only declare asymmetric lexical ties. For example, if the

user declares ’while’ � ID, then ’while’ is lexically tied to every occurrence of ID that appears

in a parser state accept set, but ID is not lexically tied to occurrences of ’while’. Thus, in the

example C statement in Figure 3.6b, which we discussed in section 3.3, the pseudo-scanner would

not recognize the character sequence “whiles” as an ID token because only the ’while’ token

is syntactically acceptable here. Instead, it would recognize “while” as a ’while’ token, leaving

the trailing “s” for a subsequent pseudo-scanner invocation. If the C grammar were to accept an

ID token following a ’while’ token, the pseudo-scanner would then recognize the trailing “s” as

the ID token instead of reporting the expected syntax error. The “�” operator’s behavior in this

example would obviously not be correct even if ’while’ were a non-reserved keyword, for which

asymmetric lexical tying is usually appropriate as we discussed in section 3.3. The trouble is that

the lexical tie declared by “�” is the reverse of what is needed for non-reserved keywords given

the lexical precedence relationship declared by “�”. We assume that Van Wyk and Schwerdfeger’s

solution in these examples would be the same as in their ’for’ versus ’foreach’ example. That

is, the user must rewrite the grammar to specify that whitespace is required immediately following

each occurrence of ’while’ that precedes ID. Again, we observe that our %lex-tie directive is
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simpler, clearer, and more maintainable.

For any set of tokens with pseudo-scanner identity conflicts for which “�” is not appropriate,

Van Wyk and Schwerdfeger allow the user to provide a disambiguation function. In contrast to the

declarative nature of the “�” operator, this disambiguation function can contain arbitrary user code,

and so it usually cannot be evaluated until run time. As a result, generation-time pseudo-scanner

FSA optimizations that might make use of declarative pseudo-scanner conflict resolution mechanisms

like “�” would not always be possible.

Van Wyk and Schwerdfeger describe two scenarios in which disambiguation functions prove

useful. First, the user can write a disambiguation function that always returns a specific token and

thus performs exactly the task of the “�” operator but without the implicit lexical tie. Again,

we prefer that this scenario be handled declaratively as permitted by our %lex-prec directive.

Second, a disambiguation function can resolve a conflict using semantics. For example, it can look

up an identifier in a symbol table in order to determine whether the pseudo-scanner should return

a variable name token or a type name token.

Unfortunately, Van Wyk and Schwerdfeger’s disambiguation functions can sometimes pro-

duce confusing behavior. The token returned by a disambiguation function might have been re-

quested as a lookahead by the parser. After the parser receives the token, the parser might perform

a series of reduce actions and their associated semantic actions before finally shifting the token.

Those semantic actions might alter semantic properties, such as symbol table scope, and thus change

which token the disambiguation function should have returned. Moreover, as the reduce actions are

performed, the current parser state might change, thus the set of conflicting tokens might change,

and thus which disambiguation function should have been invoked might change. To address this

problem, after every such reduce action, Van Wyk and Schwerdfeger’s pseudo-scanner rescans the

input text and invokes whatever disambiguation function then looks appropriate. In other words,

their pseudo-scanner relies on potentially incorrect interpretations of the input text to select the

series of reduce actions that then alter those interpretations. Van Wyk and Schwerdfeger provide

no proof that this approach results in the selection of the correct token.

We observe that a less confusing way to employ semantics to resolve conflicts is provided by

the Anagram parser generator [1], which is also mentioned by Keynes [20]. For example, instead of

declaring separate identifier tokens for variable names and type names, the user can declare a single

generic identifier token, a variable name nonterminal, and a type name nonterminal. Each of the two
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nonterminals appears on the LHS of a production whose RHS contains only the generic identifier

token. In any context where both a variable name and a type name are acceptable, the parser

encounters a conflict between the two productions immediately after shifting the generic identifier

token. The key to Anagram’s solution is that the user can provide a disambiguation function that

resolves this parser conflict instead of the corresponding pseudo-scanner conflict from Van Wyk and

Schwerdfeger’s approach. The advantage is that the generic identifier token remains the lookahead

throughout the series of reduce actions before the parser shifts it. Thus, the identifier must be

interpreted as a variable name or type name only after the series of reduce actions is finished and

thus after semantic properties like symbol table scope are finalized. As part of our future work, we

are considering extending our PSLR(1) generator to support Anagram’s solution.

Van Wyk and Schwerdfeger employ LALR(1) and overlook the trouble that LR(1) state

merging can cause. Moreover, they specifically make the claim that, once a scanner returns a

lookahead token that is acceptable by the current parser state, the following series of parser reduce

actions on that token cannot push a parser state that does not accept that token. They use this

claim to reach the conclusion that the input need not be rescanned after every reduce action except

when disambiguation functions must be employed. Their claim is actually true for canonical LR(1)

parser tables. However, because of the merging of LR(1) states and sets of acceptable tokens, their

claim cannot be guaranteed for LALR(1) parser tables even when the grammar is LALR(1). Also,

LR(1) state merging can cause the selection of an incorrect disambiguation function because it can

add invalid tokens to a pseudo-scanner conflict. In section 3.4, we described PSLR(1)’s IELR(1)

extension, which guarantees that LR(1) state merging never causes the pseudo-scanner to select an

incorrect token.

One other interesting aspect of Van Wyk and Schwerdfeger’s paper is that they optimize

the pseudo-scanner by using functions like our acc function in a manner similar to the way Keynes

does. Most interestingly, they compute acc(sp, ss, c) to avoid useless scanner transitions. However,

they do not use this function to compute a separate pseudo-scanner FSA for each parser state

at generation time as Keynes does. Instead, for every scanner state ss, they compute a function

poss(ss) = acc(ss) ∪ {t : ∃c ∈ Ξ : t ∈ acc(ss, c)} at generation time. Notice that, given any pair

of scanner states ss and s′s and character c such that δ(ss, c) = s′s, then acc(ss, c) = poss(s′s)

by Definition 5.2.1. Thus, at run time, their pseudo-scanner follows the transition on the next

input character c from the current scanner state ss to discover the next scanner state s′s and then
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compute the intersection acc(sp) ∩ poss(s′s), which is equal to acc(sp, ss, c) by Definition 5.2.1.

If acc(sp, ss, c) = ∅, their pseudo-scanner does not bother to scan further. Along with Keynes’

approach, we are considering extending our PSLR(1) implementation with this approach as part

of our future work. If poss requires significant storage when computed for every scanner state,

we might try Keynes’ approach of evaluating acc(sp, ss, c) only at each scanner state ss for which

acc(sp, ss) 6= ∅, as we showed in Definition 5.2.3.

5.4 Scannerless GLR

The key issue addressed by the premise of the pseudo-scanner is that different sub-languages

within a composite language often require different scanner specifications. While a pseudo-scanner

handles this issue by automatically communicating with the parser as we explained in section 3.1,

a traditional scanner generator requires the user to manually specify start conditions for the sub-

languages as we explained in section 2.3. However, there exists another common solution that

does not require a pseudo-scanner or start conditions. That is, the user can extract from the

scanner specification all parts of the lexical syntax that are specific to only a proper subset of the

sub-languages and then express those parts in the sub-languages’ grammars instead. Thus, token

definitions in the scanner specification are reduced to simple building blocks of lexical syntax that

are generic enough to be shared by all the sub-languages’ grammars. In the extreme case where

the sub-languages have no common lexical syntax, every token must be reduced to only a single

character. The composite grammar is then called a character-level grammar.

For character-level grammars, the scanner’s functionality is reduced to merely buffering the

input character sequence. Thus, the scanner’s functionality can easily be incorporated into the

parser. Salomon and Cormack introduced the term scannerless parsing to identify this architecture

[31]. However, rather than viewing character-level grammars and scannerless parsers as an extreme

case of a common approach to handling language composition, Salomon and Cormack instead em-

ploy them as the basis for unified scanner and parser specifications that completely eliminate the

complexity of scanner and parser communication.

Consider a scannerless LR(1) parser, p, and a scanner-based LR(1) parser, p′, for the same

language. Because every token in p is reduced to only a single character, the tokens that trigger

different parser actions in any parser state in p easily become indistinguishable. As a result, p

107



usually has significantly more conflicts than p′. One naive approach to solving this problem is to

generate LR(k) parser tables for p where k is the length of the longest lexeme from the tokens in

p′. This approach would allow p to see at least as far ahead in the input character stream as p′

when attempting to choose a parser action. However, for many tokens like identifiers, the length of

lexemes is usually unbounded and thus would require k = ∞. Unfortunately, LR(∞) parser tables

would require infinite storage.

Visser combines scannerless parsing with GLR (Generalized LR) [38, 39], which was first

described by Tomita [34]. A GLR parser usually employs parser tables from the LR(1) family.

However, upon encountering a conflict in those parser tables during a parse, the GLR parser branches

and explores all possible parses to which the conflicting parser actions lead. For this reason, GLR

is called a non-deterministic parsing algorithm. An incorrect parser action leads to a syntax error,

which kills the corresponding parsing branch. If all parsing branches die, the GLR parser reports

a syntax error. In this way, a GLR parser is able to look as far into the input character stream

as necessary to determine which parser action, if any, leads to a syntactically correct parse. This

effective LR(∞) behavior solves the unbounded lookahead problem for scannerless parsing.

If multiple parsing branches survive in a GLR parser, then the grammar is ambiguous.

That is, while a deterministic LR parser can only compute one parse tree for a given input, a GLR

parser handles ambiguous grammars by computing all possible parse trees, each of which might

represent a different semantic interpretation of the input. Visser employs this ability of GLR in

order to implement reject productions. For example, if a keyword is a reserved word and thus

should never be mistaken for an identifier, the user can write a production for the identifier that

rejects the keyword’s lexeme. When the keyword’s lexeme appears in the input, the GLR parser

must branch to recognize all possible interpretations, potentially resulting in multiple parse trees.

The reject production specifies that the parse tree that represents the lexeme’s interpretation as

an identifier be pruned. If the interpretation of the lexeme as the keyword is not possible in the

current parsing context, then no parse trees remain, and the parser reports a syntax error. Notice

that reject productions are similar to Van Wyk and Schwerdfeger’s “�” operator, which combines

asymmetric lexical tying with lexical precedence for identity conflicts. That is, in any context in

which the identifier is syntactically acceptable, the keyword has precedence even if the keyword is

not syntactically acceptable.

In section 5.2, we described a common and simple implementation of the rule of longest
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match for resolving scanner length conflicts. Our pseudo scan function from Definition 3.2.16 also

implements the rule of longest match. For a scannerless parser, an implementation of the rule of

longest match is not as obvious. Visser’s solution is follow restrictions. For example, the user

can declare that an identifier or keyword should never be followed immediately by a letter. Thus,

in Figure 3.6b, which we described in section 3.3, the parser cannot then recognize the character

sequence “whiles” as the keyword ’while’ followed by a trailing “s”. Moreover, if the identifier

were syntactically acceptable here, the parser could only recognize the complete “whiles” as the

identifier. Because the identifier is not actually syntactically acceptable, the parser reports a syntax

error as expected. Recall that, in order for the rule of longest match in a pseudo-scanner to be

useful for this example, a token like the identifier must be lexically tied to the ’while’ keyword

so that the pseudo-scanner selects the longest matching lexeme, “whiles”, even though it is not

syntactically acceptable in this context. Thus, a follow restriction is similar to combining asymmetric

lexical tying with the rule of longest match. However, for a token with a complex regular expression,

the correct regular expression for the follow restriction is not always straightforward.

In this section, we have summarized Visser’s scannerless GLR system and compared some

of its mechanisms with our PSLR(1) mechanisms. Because of the popularity of Visser’s system,

we conclude our dissertation in section 6 with a high-level comparison of the two systems’ relative

advantages.
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Chapter 6

Merits of the Work

In chapter 5, we compared PSLR(1) with several other parser generator systems that employ

a pseudo-scanner, and we explained how PSLR(1) overcomes those systems’ shortcomings. We also

compared PSLR(1) to Visser’s popular scannerless GLR system, which employs non-deterministic

parsing in order to abandon the scanner altogether. Because of the wide recognition of scannerless

GLR as a robust system for parsing composite languages, we conclude our dissertation by explaining

how PSLR(1) achieves Visser’s original goals for scannerless GLR even though PSLR(1) does not

require the complexity of non-deterministic parsing.

In section 2.1 of Visser’s original scannerless GLR paper, he provides a list of advantages

of scannerless GLR parsing over traditional scanner-based LR parsing [38]. This list originally

inspired us to conceive of the pseudo-scanner as a deterministic alternative. In other words, we

intend for (pseudo-scanner)-based LR(1) parsing to be pseudo-(scannerless), and we abbreviate this

as PSLR(1). We now explain how our PSLR(1) system addresses each such advantage:

1. “No Scanner.” Unlike scannerless GLR, PSLR(1) does require scanner generation and thus

does not eliminate the “complicated interface between scanner and parser” [38]. Instead,

PSLR(1) automates this interface by generating the type of scanner that we call a pseudo-

scanner.

2. “Integrated Uniform Grammar Formalism.” Our PSLR(1) generator accepts an integrated

scanner and parser specification. As a result, if a token outgrows its regular syntax, then the

user can more easily convert it into a nonterminal so that its syntax can be specified via a
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context-free grammar instead, and vice-versa. Moreover, an integrated specification is easier to

divide into modules, one per sub-language. However, our lexical and syntactic formalisms are

not as uniform as in Visser’s system. For example, for nonterminals, we have not implemented

any equivalent of lexical precedence rules like longest match. It is not clear to us that such

lexical declarations would actually prove useful for the kinds of constructs that are usually

expressed using a context-free grammar given that traditional parser generators also do not

permit any equivalent of these declarations in the grammars they accept. We expect that it

will prove sufficient to apply these lexical declarations and other syntactic declarations to the

tokens within a nonterminal’s grammar instead.

3. “Disambiguation by Context.” In describing scannerless GLR, Visser says that “lexical analysis

is guided by context-free analysis. If a token does not make sense at some position, it will not

even be considered” [38]. This advantage is precisely the purpose of the basic behavior of the

pseudo-scanner, which we described in section 3.1.

4. “Conservation of Lexical Structure.” At run time, it is often useful to construct a representa-

tion similar to a parse tree for the lexical structure of the input so that the lexical structure

can be further analyzed in later phases of the application. Specifying this construction using

context-free grammar productions and associated semantic actions is often easier than using a

traditional scanner specification. Thus, even if a token’s syntax is regular, the user may find it

useful to convert the token into a nonterminal. Unfortunately, as Visser points out, whitespace

and comments specified using a mechanism like PSLR(1)’s layout tokens would then be per-

mitted within the token’s syntax. However, in section 3.6, we explained how lexical precedence

declarations can be used to prevent the recognition of layout tokens in such syntactic contexts.

Moreover, in section 3.7, we discussed a mechanism by which the user can declaratively scope

directives to specific nonterminals’ grammars, and this mechanism could be used to restrict

the scope of layout tokens.

5. “Conservation of Layout.” In section 3.6, we explained how some parsing applications require

whitespace and comments not to be discarded, and we explained PSLR(1)’s mechanism for

attaching whitespace and comments to other tokens so that they can be returned to the parser.

6. “Expressive Lexical Syntax.” Visser is here referring to the ability to express tokens, whites-

pace, and comments using a context-free grammar. Again, tokens including layout tokens can
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be converted to nonterminals or lexical nonterminals, which we discussed in section 3.6.

Visser alludes to the obvious disadvantages of his system relative to traditional scanner-

based LR as follows:

Since ambiguity of a context-free grammar is undecidable (Floyd, 1962), it is also un-

decidable whether a conflict is due to an ambiguity or to a lack of lookahead. Because

complete character level grammars frequently need arbitrary length lookahead, methods

to solve conflicts in the table will not always succeed. [38]

In other words, it is the user’s responsibility to determine whether each conflict in the parser tables

produced from the user’s grammar is due to insufficient lookahead or to an ambiguity. If the user

overlooks an ambiguity, a GLR parser can unexpectedly produce multiple parse trees at run time.

As Van Wyk and Schwerdfeger state, “for building extensible languages we prefer a guarantee of

determinism since languages may be composed at the direction of the programmer, not a language

expert who can resolve syntactic or lexical ambiguities” [40]. The task of debugging parser tables

is already especially difficult because of the character-level grammars required by the scannerless

architecture. The character-level grammars expand the number of conflicts and the number of parser

states, which are polluted with the extra symbols and productions needed to define the lexical

syntax. In this way, the separation of concerns permitted by scanner-based parsing is completely

lost. Because PSLR(1) employs a scanner and does not employ GLR, it does not suffer from these

disadvantages.

The application domain of our PSLR(1) system is the deterministic parsing of composite

languages. Outside of this domain, our PSLR(1) system lacks some of the features of Visser’s

scannerless GLR system. Specifically, we have not proposed to provide the full capabilities of follow

restrictions and GLR, which enables unbounded lookahead, the discovery all possible parse trees

in the case of ambiguous grammars, and reject productions. However, there is no aspect of our

PSLR(1) system that would prevent the incorporation of these mechanisms. If we were to extend our

PSLR(1) generator to provide these mechanisms, the user could employ them only for the portions

of the grammar that require them. Other portions of the grammar would still retain PSLR(1)’s

advantages over scannerless GLR. For this reason, when scannerless GLR features are required, we

predict that users can more easily develop parsers using a hybrid of PSLR(1) and scannerless GLR

rather than using scannerless GLR or PSLR(1) alone.
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In summary, PSLR(1) is a more robust system for generating deterministic parsers for com-

posite languages than either traditional scanner-based LR(1) parser generation, existing pseudo-

scanner-based parser generation systems, or scannerless GLR. To achieve this result, PSLR(1) em-

ploys novel techniques that combine the most useful aspects of all of these systems and that overcome

each of their shortcomings.
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