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ABSTRACT 

 

 

Since the introduction of semiconductors in the second half of the 20
th

 century, 

advancements in electronics and technology have been tremendous. In particular, the 

rapid development of silicon-based computer chip technology and miniaturization of 

electronic components has been tremendous. Since silicon-based materials have a limit in 

terms of size, scientists proposed that individual molecules could behave as single 

electronic components for high degree of miniaturization.
  

Given that the molecules of interest must have dimensions on the nanometer 

scale, be able to bind to the electrode surface and have electron donor-acceptor 

properties, C60 fullerene has been a prime candidate for these studies. It has also been 

found that a covalent bond between a C60 derivative and the surface of a metal substrate 

enhances the electron tunneling conductance upon accepting electrons, demonstrating the 

importance of the design and regioselective synthesis of C60 fullerene derivatives. 

However, regiochemical control is very challenging given its high symmetry.  

The work presented here explores the synthesis, characterization and 

electrochemical properties of pentakis-, hexakis- and heptakis-adducts of C60 and some of 

its Fe-complexes under a regio-controlled protection-deprotection protocol. Derivatives 

were synthesized using two known reactions: cyclopropanation and 1,3-dipolar 

cycloaddition reactions, better known as: as the Bingel-Hirsch and Prato reactions, 

respectively.  

 



 iii 

This approach allowed us to introduce the addends in specific positions over the 

sphere. For example, two pyrrolidine groups were bonded in a trans-1 relationship with 

respect to each other. These adducts were characterized by means of 
1
H, 

13
C, and 2D-

NMR, UV-vis, MALDI-TOF MS and ESI-MS. Their electrochemical properties were 

analyzed by Cyclic Voltammetry (CV) and Differential Pulse Voltammetry (DPV) 

experiments.  
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CHAPTER ONE 

 

IINNTTRROODDUUCCTTIIOONN  

 

Molecular-based electronic devices  

 

Miniaturization of electronic components has been an essential and challenging 

task since the development of the vacuum tube, from the transistor to the current 

integrated circuits (see Figure 1.1).[1] The first transistor, a point-contact transistor that 

consisted of a slab of germanium in contact with three gold wires, was invented in 1947 

by John Bardeen and Walter Brattain at Bell Labs. Shortly after, in 1948, William 

Shockley developed the bipolar junction transistor (BJ), which controlled current flow 

through alternating layers of p-type (positive charge or holes as the majority carrier) and 

n-type (negative charge or electrons as the majority carrier) germanium. It was not until 

1954 that silicon based transistors were introduced in BJ at Texas Instruments and it was 

used in the development of the first integrated circuit in 1958 by physics Nobel Prize 

winner Jack Kilby at Texas Instruments. Later on in 1961, BJs were replaced by field-

effect transistors (FETs). FETs are commonly used for weak-signal amplification by 

controlling the migration of electrons or holes into conduction channels between a source 

and drain electrode.[2]  

Despite the reduction in size of electronic components (including wires, resistors, 

capacitors, and transistors) over the last five decades, integrated silicon-based circuits can 

be produced with a resolution greater than 100 nm,[1] but these materials are facing 

natural limits that prevent them from following Moore’s law[3] (which states that chip 
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densities would double every 2 years) because of their size constraints on the nanometer 

scale.[2]   
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Single
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Figure 1.1. Miniaturization of amplification devices used in electronic circuits over the 

last century. [1] 

 

 

Molecular electronics (technology using single molecules) is a promising 

approach to overcome this limitation since it would be low cost, flexible and yield small 

weight and low power devices.[4] For instance, an organic field-effect transistor (OFET) 

consists of an organic semiconductor, a dielectric layer and at least three conducting 

electrodes (Figure 1.2). Two of them, the source and drain, are in contact with the 

semiconductor and they inject or extract charge carriers from it. If the Fermi level of the 

source/drain metal is close to the band gap (HOMO-LUMO) level of the organic 

semiconductor; the third electrode could be separated from the semiconductor by a 
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dielectric layer. A voltage is applied between the source and the gate to modify the 

resistance of the semiconductor, which amplifies or switches the electric signal.[4] 

Complex physical setups are currently available to investigate the correlation 

between the structural features and electronic transport properties of single molecules or 

clusters of molecules sandwiched between metal or semiconductor electrodes. These 

methods include mechanically controlled break junctions (MCBs),[5-8] scanning probe 

microscope (SPM) based molecular junctions,[9-11] crossed wire junctions[12-13] and 

others.[13-14] A nanopore, crossed-wire junction, and nanowire junction contain a few 

hundred to a thousand molecules. On the other hand, MCBs and SPM have a small lateral 

junction area and can access a small number of molecules, down to a single molecule. An 

SPM system has advantages over a mechanical break-junction system because it can 

image the surface morphology and at the same time study properties and the 

measurements can be done in various environments including an electrolyte solution with 

controlled potentials of the probe and substrate against a reference electrode.[9-11]  

Tao and co-workers[11] were the first to measure the conductance of a single 

molecule using scanning tunnelling microscopy (STM) break junctions. This was 

achieved by moving the STM tip in and out of contact with a gold substrate in a solution 

containing 4,4’-bipyridine (BPY) repeatedly forming thousands of gold-molecule-gold 

junctions at different gate potentials  (Vgate) (Figure 1.3).[11] 
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The measurement of this system recorded a current between the electrodes due to 

an applied voltage Vgate, with a conductance g defined as:[15] 

g(V) = ∂I(V)/ ∂V 

I (current) and V (sample voltage), in units of the quantum conductance G0 = 2e
2
/h = 

(12.9 kΩ)
-1

 (where e and h are the electron charge and Planck’s constant, 

respectively).[11] 

Figures 1.3A-B show the stepwise decrease in the conductance during the initial 

stage of pulling the STM tip out of contact with the substrate, with each step being an 

integer multiple of the conductance quantum G0. After breaking the gold nanowire 

contact, the BPY molecules are able to form stable molecular junctions with conductance 

peaks at 1 X, 2 X, and 3 X 0.01 G0 corresponding to one, two, and three molecules, 

respectively, in the junctions (Figures 1.3C-D). This SPM break-junction method is a 

feasible way to assess the conductance of single molecules.[11] 

 

 

Figure 1.2. Schematic illustration of OFET configurations. [4] 
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  Suitable organic compounds for molecular electronic require optimal charge 

carrier ability,[16] air stability and high mobility (μ).[4] There are many proposed 

examples of OFETs based on quantum effects such as single molecules, carbon 

nanotubes, and quantum dots or nanoparticles. For example, Park and co-workers studied 

the Coulomb blockade and the Kondo effect of a single-molecule transistor using a Co 

ion complexed to polypyridyl ligands and attached to insulating tethers of different 

lengths (Figure 1.4A). The Co ion acts as an island whose charge state (2+ or 3+) can be 

controlled using the Vgate.[17] Coulomb blockade is the increased resistance at small 

Vgate, a consequence of the transference of one electron onto the metal that blocks the 

flow of electrons due to electrostatic repulsion.[2] This switching behavior was observed 

for the Co complex with longer linkers and weaker coupling, proving that the device 

functioned as an OFET (Figure 1.4B).[17] The shorter linker with stronger coupling 

showed a peak with logarithmic temperature dependence and magnetic-field splitting, 

indicating a Kondo-assisted tunneling. The Kondo effect is the formation of a bound state 

between a local spin on an island and the electrical resistivity in the electrodes, which 

enhances the conductance at low biases and changes with temperature.[17]   
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Figure 1.3. (A) Conductance of a gold contact formed between a gold STM tip and a 

gold substrate decreases in quantum steps at multiples of G0 (2e
2
/h) as the tip is pulled 

away from the substrate. (B) A corresponding conductance histogram constructed from 

1000 conductance curves. (C) When the contact shown in (A) is completely broken, 

corresponding to the collapse of the last quantum step, a new series of conductance steps 

appears if molecules such as 4,4-bipyridine are present in the solution. (D) A 

conductance histogram obtained from 1000 measurements as shown in (C) shows peaks 

near 1 x, 2 x, and 3 x 0.01 G0 that are ascribed to one, two, and three molecules in the 

gap, respectively. (E) and (F) in the absence of molecules, no steps or peaks are observed 

within the same conductance range. [11] 
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Figure 1.4 (A) Structure of Cobalt complexes. (B) I –V curves of a [Co(tpy-(CH2)5-

SH)2]
2+

. Single-electron transistor at different gate voltage (Vgate) from 20.4 V (red) to 

21.0 V (black) with ΔVgate ≈ -0.15 V. Upper inset, a topographic atomic force microscope 

image of the electrodes with a gap (scale bar, 100 nm). Lower inset, a schematic diagram 

of the device. [17] 

 

Viologen, a dialkyl pyridinium with two terminal sulfur anchor groups at the end 

of the alkyl chains, is a redox-active molecule that was studied by Schiffrin and co-

workers using STM, Figure 1.5. The molecule was self-assembled on a gold surface and 

gold nanoclusters were placed on top of the sulfur functionalized molecules. The STM tip 

was positioned on top of a nanoparticle to measure the tunnelling current, while the redox 

state of the viologen subunits in the linking molecules was controlled electrochemically 

without affecting the bias between the STM and the substrate. Increased conductivity was 

observed for the reduced viologen linkers (V
•+

) compared to their dicationic state (V
2+

) 

by these measurements.[18] 

 

A 
B 
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Figure 1.5. Viologen derivative (n = 6) diagram in an electrochemical scanning 

tunnelling microscopy (STM) setup. [18] 

 

 

Dekker and co-workers found OFETs based properties using a carbon nanotube at 

room temperature. The electronic characteristics of the device were measured by 

sweeping the bias between the two electrodes at various applied Vgate.[19] Later, Rao and 

co-wokers demonstrated electrical switching behavior in a Y-junction multiwalled 

carbon-nanotube (Y-MWNT) system doped with a nanoparticle which was grown by a 

modified chemical vapor deposition (CVD) process.[20] The modulation of the current 

from an on- to an off-state between of the source–drain channel in one branch was 

achieved by applying a voltage to the third terminal presumably mediated by defects and 

the topology of the junction. An advantage of this approach over conventional OFETs is 

that the current is only switched between two outputs rather than completely turned 

on/off, which leads to higher speed and efficiency of operation.[20] Multiwalled Y-
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junctions are difficult to use as transistors with a high gain and high frequency 

modulation at room temperature. Therefore, Choi and co-workers[21] studied the 

electrical properties of the branches and stem of pseudo Y-junction single wall nanotube 

Y-SWNTs (i.e., metallic or semiconducting) and found ambipolar characteristics for the 

Y-MWNTs at room temperature (Figure 1.6). 

Even though it has been proved that single molecules can behave as transistors 

with two[17] and three[20-21] legs, the performance of OFETs not only relies on their 

nature but also on the electrodes and gate dielectrics, and eventually on other factors such 

as device architecture and deposition methods, among others.[22] When a molecule is 

coupled to macroscopic electrodes, three important problems arise: 1) how to fabricate 

electrodes with a controllable gap size adequate for the molecule size of interest; 2) 

arranging the molecules of interest between the electrodes with precise location and 

orientation control; and 3) achieving robust contacts between the molecules and the 

electrodes.[22] C60 promises to be an excellent candidate to solve the last two problems 

because of its rich electrochemical properties and 3D structure. In the following section 

the work that has been done in molecular electronics using C60 will be discussed. 
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Figure 1.6. The device schematic for a pseudo Y-junction transistor. Rather than using a 

back gate (or top gate) electrode, the metallic branch of the Y-SWNTs is used as the gate 

electrode. [21] 

 

C60 as a single molecule transistor 

Since the molecules of interest for OFETs applications must have dimensions on 

the nanometer scale as well as electron donor-acceptor properties and degenerate highest-

occupied (HOMO) and lowest-unoccupied molecular orbital (LUMO) manifolds, C60 is 

excellently suited for these studies.[23] Additional key features of C60 is that its 

ruggedness and elasticity permits multiple cycles of operation,[24] and its eight 

reasonably accessible redox states [1+ to 6-] provide the possibility of more states than 

simply on and off.[25] In addition, C60 can handle electron currents of up to several 

nanoamperes using SPM techniques.[26] The conductance of C60 has been studied in an 

electromechanical amplifier design by Joachim and et al.,[26] in which a single C60 

molecule was deposited on clean Cu (111) and it was distorted by the STM tip when a 

signal (Vin) was applied to the piezoelectric tube (Figure 1.7). The conductance of the 

junction was increased by two orders of magnitude. This phenomenon was attributed to 

the shift and broadening of the HOMO-LUMO band gap upon distortion, which leads to 
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a greater conductance through the molecule.[26] Later, Wang and co-workers[27] 

reported an ab initio model of the charge transfer, electron conduction and molecular 

switching of the physically distorted C60 molecular electromechanical amplifier. Charge 

transfer from the electrodes to the molecular region was found to play a crucial role in 

aligning the LUMO orbital of the C60 to the Fermi level of the electrodes. This alignment 

induced a device conductance of 2.2G0. The end result is that a gate potential can inhibit 

charge transfer, thereby producing a field-effect molecular current switch.[27] 

 

Off On

A. B.

  

Figure 1.7. (A) Circuit diagram of a single-molecule electromechanical amplifier based 

on the interaction of an STM tip with a C60 molecule. (B) Schematic representation of the 

off/on states of the electromechanical amplifier. [26] 

 

 

Another electromechanical amplifier based on C60 was reported by Park and et 

al.[28] This single-molecule transistor works by inducing nanomechanical quantized 

oscillations of C60 between two gold electrodes with a frequency near 1.2 THz (Figure 
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1.8). The conduction mechanism involves a coupling between the centre-of-mass motion 

of the C60 molecules and single-electron hopping according to the transport 

measurements. In other words, the single-C60 transistor behaves as a high-frequency 

nanomechanical oscillator by single-electron-tunnelling which can excite and probe the 

motion of the cage.[28] 

 

 

Figure 1.8 Diagram of the centre-of-mass oscillation of C60. When an electron jumps on 

to C60
n-

, the attractive interaction between the additional electron and its image charge on 

gold pulls the C60 ion closer to the gold surface by a distance δ. This electrostatic 

interaction results in the mechanical motion of C60.[28] 

 

Kubozono and co-workers[29] reported an OFETs of a thin film of C60 using Eu 

electrodes with a μ= 0.5 cm
2 

V
-1

 s
-1

. This high μ value was obtained because the electrons 

could be smoothly injected into the thin film of C60, since its LUMO (ELUMO = -3.6 eV) 

was lower than the Fermi level (EF = -2.5 eV) of Eu. Consequently, the control of the 

electronic structure near the interface between the metal electrodes and the organic 

semiconductor is crucial for the performance control of the organic device.[29] Later, 
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Kubozono and co-workers[30] fabricated C60 OFET devices with Au electrodes modified 

by various types of 1-alkanethiols and studied the electronic structure produced by the 

contact thin films of C60 and the electrodes. Large carrier-injection barriers were 

observed for the C60 OFET devices with the Au electrodes modified by 1-alkanethiols 

with long alkyl chains.[30] 

MCB junctions (Figure 1.9A) were also used to study of the C60 derivative (4-

bis(fullero[c]pyrrolidin-1-yl)benzene, BDC60) (low-bias conductance and junction 

stabilities), which possesses fullerenes that acts a the contact groups (Figure 1.9B).[31] 

The linear and rigid BDAC60-capped molecule led to a lower spread in the low-bias 

conductance compared to thiols because the fullerenes provide larger junction stabilities 

and minimize fluctuations. In addition, junctions of fullerene-anchored benzenes 

exhibited an increased stretching length before breaking.[31] 

 

A. B.

 

Figure 1.9. (A) Schematic of a mechanically controllable break junction. (B) Molecular 

structures of the benzene derivatives studied. [31] 
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Other C60 derivatives have also been used to build OFETs. Morita and 

Lindsay[32] reported the first example of a bis-adduct of C60 acting as single-molecule 

transistors. They demonstrated a two-step switching process of the C60 derivatives in an 

STM break junction in water and in dimethylformamide (DMF) (Figure 1.10). The bis-

adducts, trans-2 and trans-3, pyrrolidine rings with amino-terminated linkers exhibited 

enhanced electron tunneling conductance upon accepting electrons, with the dianion 

being the highest conductor and the neutral species the lowest. These observations clearly 

demonstrate that the electron tunneling through the junction is significantly enhanced 

upon the reductions of the C60 moiety.[32]  

 

 

Figure 1.10 Representative current-time curves in the STM break-junction measurement 

on trans-2-C60 in a 0.1 M TBAPF6 DMF solution at a tip bias of +0.1 V. [32] 
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Two main problems of this approach are: 1) even though it was evident that the 

C60 derivatives were immobilized on the gold surface, the gold surface-amino group 

interactions are rather weak. It is well known that C60 fullerene can be self-assembled on 

gold with an energy of 30-60 kcal:mol
-1

 (vide infra) which is similar to the Au-S bond 

strength;[33] 2) another shortcoming of this report is that the amino linker is a saturated 

chain that can not promote direct electron coupling of the substrate with the cage. The use 

of a specific covalent binding between a functional group and a metal surface is 

preferred, such as SH-Au, but the functional group should be electronically coupled with 

the fullerene. For example, N-(p-pyridyl)-3,4-fulleropyrrolidine (Figure 1.11), with a zinc 

porphyrin complexed to the pyridyl nitrogen shows efficient photoinduced charge 

transfer between the porphyrin and the C60.[34]  

 

  

 

Figure 1.11. X-Ray structure of a complex of N-pyridyl pyrrolidino C60 fullerene and 

ZnTPP. [34] 
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The work reported here addresses the design, syntheses and characterization of 

C60 derivatives that could be good candidates in molecular electronic applications. For 

the construction of a fullerene-based molecular junction, we suggest anchoring the C60 

sphere via two or three linkers with pyrrolidine addends, since these linkers exhibit good 

electronic coupling with the cage, thus enabling tunneling through the two electrodes.  

Also, the linker must have functional groups that can selectively self-assemble on 

different metals in order to form an addressable transistor. The functional groups selected 

here fulfill these requirements since pyridyl groups are known to self-assemble on Au (6-

10 kcal:mol
-1

), Pd or Pt,[35] while terpyridyl groups are known to form stable complexes 

with Ru(II), Co(II), Fe(II) and Os(II).[36] SCN groups can interact with Cu(II), Ag, Pt 

and Au but it cleaves upon self-assembly on Au, thus releasing CN to result in an 

identical bond as that formed by thiol groups on Au.[37]  

We targeted bis-adducts of C60 that are expected to self-assemble on break 

junctions to create OFETs that can be gated by potential control in a solvent:electrolyte 

medium (Figure 1.12A). Also, tris-adducts were designed that can self-assemble through 

three different leads to form addressable OFETs, where one of the linkers can be used to 

gate the response, without the need for an intervening electrolyte solution (Figure 1.12B). 

These would be three terminal single molecule transistors such as the Y-SWNTs 

previously mentioned.[21]  If the compounds reported here can be made to self-assemble 

as planned, they would constitute the smallest three terminal molecular OFETs known 

with the advantage that the core fullerene could exist in multiple redox states thus 

yielding more flexibility than a simple “on-off” switch. 
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A.

B.

 

Figure 1.12. A) two terminal single molecule transistors, OFET. B) Three terminal single 

molecule transistors. 
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Regiochemistry of C60 Addition Reactions 

Since Krätschmer, Huffman, and co-workers discovered a bulk fullerene 

preparation method in 1990,[38] C60 reactivity has been studied worldwide. C60 fullerene 

has low regioselectivity and poor stereocontrol because its framework has 30 equivalent 

reactive double bonds in [6,6] ring junctions, which makes regio-selective chemical 

modification a real challenge.[39] After the formation of the mono-adduct, successive 

additions of one, two, and three symmetrical addends yield 8, 46, and 262 possible 

regioisomers, respectively. Additionally, the isolation of pure bis-adduct isomers is 

challenging because bis- and tris-adducts co-elute chromatographically due to their 

similar polarities.[40] After the eight regioisomers of (ethoxycarbonyl)methylene-C60 

bisadducts were isolated and characterized, a general nomenclature for positional 

relationships of the two addends was established (Figure 1.13a),[41] which divided the 

C60 core into two hemispheres. If the two addends are in the same hemisphere they are in 

a cis relationship with respect to each other and if the two addends are in opposite 

hemispheres they are in a trans relationship with respect to each other. Finally, if the two 

addends are positioned on the equator belt they are equatorial (e) to each other (Figure 

1.13b).[41] This nomenclature has been adopted by people in the field and it will be used 

through out this work. 
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Figure 1.13 (A) Hirsch nomenclature for the eight regioisomers (yellow) for C60 bis-

adducts with respect to the first addend (blue). (B) Schematic representation of the Hirsch 

nomenclature. [41] 

 

Among the different reactions possible on C60, we were interested on three types 

of cycloadditions: [2+1] cyclopropanations (known as the Bingel-Hirsch reaction),[42] 

[3+2] 1,3-dipolar cycloadditions (known as the Prato reaction),[43] and [4+2] Diels-

Alder reactions.[44] The addition-elimination Bingel-Hirsch reaction was reported in 

1994, where the deprotonation of an α-halomalonate 1.1 (Scheme 1.1) leads to a 

nucleophilic anion which attacks the fullerene core (1.2, Scheme 1.1), followed by an 

intramolecular displacement of the halide by cyclization with the anionic center formed 

in the core (Scheme 1.1).[41] The most favorable positions for nucleophilic addition are 

the equatorial and trans-3 positions (Figure 1.13a).[45] The cyclopropane ring is unstable 

under reduction conditions and it can undergo retro-cyclopropanations (known as retro-

Bingel reaction) and isomerization under reduction conditions.[46]  
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In 1993, Prato and co-workers first reported the 1,3-dipolar cycloaddition of 

azomethine ylides to C60,
 

which yields a pyrrolidine ring addend (Scheme 1.2). 

Azomethine ylides are reactive intermediates that can be generated in several ways, 

although the decarboxylation of imminium salts derived from condensation of α-amino 

acids with aldehydes or ketones, is the easiest and most commonly followed 

procedure.[43] In 1996, Wilson and co-workers found that 1,3-dipolar cycloadditions to 

C60 are less chemoselective than cyclopropanations.[47]
 
 Diels-Alder reactions are an 

effective reaction because fullerenes are excellent dienophiles, they can react with 

different dienes such as anthracene, furan and cyclopentadiene. This reaction is 

controlled by the properties of the dienes and can proceed at room temperature, at reflux 

or under microwave conditions.[48] 

 

Scheme 1.1. Addition-elimination mechanism of Bingel-Hirsch reaction. [41] 

 

Unusual regiochemical addition patterns have been prepared using ingenious 

schemes, most notable are the “tether-directed remote functionalization” method 

introduced by Diederich et al.,[49] and the “orthogonal transposition” method by Kräutler 

et al.[50] The “tether-directed remote multifunctionalization” approach was used for the 
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regiospecific formation of bis- and tris-adducts of C60. The fullerene is functionalized by 

a cyclopropanation as a covalent template and it is followed by a [4+2] cycloaddition, 

where the regioselectivity depends on the length, geometry and rigidity of the tether. In 

some examples equatorial,
 
cis-2,[51] trans-2[52] or trans-1,[53] structures could be 

obtained almost exclusively.  An extension of this approach is the efficient synthesis of 

hexakis-C60-adducts by stepwise “mer-3+3” done by Rubin and co-workers. After the 

protection of trans-1 positions by Dies-Alder reactions with a functionalized tether, two 

pairs of addend (A2 and B2) groups were attached in the four bonds of the equatorial belt. 

The tether was removed and finally the last pair of groups (C2) were added, resulting in 

topologies similar to those of octahedral transition metal complexes.[54] Also in 2006, 

Rubin and co-workers reported the regioselective cyclopropanation of C60 at the [trans-4, 

trans-4, trans-4] positions. Initially, the cis-1 bis-adduct position was temporarily 

blocked by a tethered 1,3-diene, followed by cyclopropanation at these three bonds for 

which the LUMO orbital coefficients were activated by the blockage. Finally, the tether 

was removed thermally.[55]  

 

Scheme 1.2. 1,3-dipolar reaction or Prato reaction on C60. [43] 
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The crux of the “orthogonal transposition” approach involves a protection-

deprotection scheme in order to prepare an equatorially protected C60 compound 

containing four addends which leave the antipodal hemispheres of the fullerene available 

for further reaction.[50] C60 was protected with two thermally labile anthracene groups in 

the trans-1 position followed by symmetric addition of four malonate groups to the 

equatorial belt of C60. The anthracene moieties were then removed via a thermal retro-

Diels-Alder reaction (Scheme 1.3).[50]  

 

 

 

Scheme 1.3.  Synthesis of e,e,e,e-tetra-(ethoxycarbonyl)methylene-C60 1.11. [50] 

 

We reported a “protection-deprotection” strategy derived from Kräutler’s 

“orthogonal transposition” approach for the regioselective synthesis of hexakis-adducts 

of C60 [56] with two types of addends (cyclopropane and pyrrolidine rings) (Figure 1.14). 

Based on results obtained in that report,[56] further studies to develop this strategy for 

the regioselective synthesis of pentakis-, hexakis-, and heptakis-adducts of C60 were 

designed, and the results are presented in the present work as follows: Chapter II will 
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discuss the design and synthesis of these pentakis-, hexakis-, and heptakis-adducts of C60. 

Chapter III will discuss the electrolytic retro-cyclopropanation of these derivatives by 

controlled potential electrolysis (CPE). Chapter IV will discuss the role of hexakis-adduct 

derivatives in supramolecular chemistry for potential applications on molecular 

electronics. Finally, Chapter VI will propose future directions of this research. Chapter V 

is an independent study of the electrochemical properties of supramolecular structures: 

phthalocyanines and porphyrins derivatives. 

  

1.12 1.13
 

Figure 1.14. Structures of hexakis-adducts of C60. [56] 
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CHAPTER TWO 

 

DDEESSIIGGNN  AANNDD  SSYYNNTTHHEESSIISS  OOFF  NNEEWW  PPYYRRRROOLLIIDDIINNOO  CC6600  DDEERRIIVVAATTIIVVEESS  

 

 

Choosing the most appropriate addend   

 

It was previously discussed that if the C60 cage is anchored by two and three 

pyrrolidine addends, these could become the smallest single molecule transistors. The 

pyrrolidine addends must fulfill two requirements: 1)  they should have functional groups 

that can selectively self-assemble to different metals, for example pyridyl (Py) to Pd or 

Pt,[1] terpyridyl (Tpy) to Ru(II) and Fe(II),[2] thiolphenyl(PhSH) and thiocyanatephenyl 

(PhSCN) to Au;[3] 2) the functional group should be bonded through the N of the 

pyrrolidine (Pyrr) ring in order to have effective electronic coupling between the 

functional groups and the cage. Hence, only one type of glycine is needed: 

 

X−NH−CH2−COOH        (X = Tpy, Py, PhSCN, SH-Ph) 

  

Tpy-,[4] Py-,[5] and SH-Ph-,[6] glycines have been reported. However, the 

synthesis of the SH-Ph-glycine 2.5 was not possible using the reported procedure[6] 

(Scheme 2.1), probably due to the chemical reactivity of the SH group. The low yield of 

2.4 (10%) was a problem; thus, different XCH2CO2Et (where X= I, Br) and several 

solvents (e.g. triethylamine, dioxane and ethanol:water) were tried. The yield was 

increased from 10% to 30%. The last chemical step (2.4 → 2.5) was not reproducible 

even with different reaction conditions. Nevertheless, compound 2.6 was obtained in 

reasonable yields and used in the 1,3-dipolar cycloaddition reaction with C60. Mono-, bis, 

tris-additions and the loss of the protecting group (-CBz, Scheme 2.1) were detected by 
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means of matrix-assisted laser desorption ionization time-of-flight (MALDI-TOF) mass 

spectrometry. The cleavage of the CBz group during the reaction is a disadvantage 

because other products could be generated.[7] CH3SPh-glycine was also pursued, it was 

synthesized with an overall yield of 20% using the same conditions from 2.2 to 2.6. 

Mono, bis and tris additions were achieved on C60 by 1,3-dipolar cycloaddition reactions 

but the presence of oxidation products (S=O) was detected by means of MALDI-TOF 

MS. This indicated the oxidation of sulfur during the cycloaddition reaction. Sulfur 

oxides are not able to self-assemble on gold surfaces, thus this glycine was not suitable 

for the project.[8] 

 

Scheme 2.1. Synthesis of the SH-Ph-glycine. 
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 PhSCN-glycine was also synthesized (Scheme 2.2). As far as we know, this 

compound has not been reported. The effective and convenient conditions used to prepare 

PhSMe were used for this thio-glycine. The addends formed by this glycine are less polar 

than the previously reported ones, making its purification and characterization easier. 

Another advantage of the SCN group is its ability to self-assemble on Au by S-CN bond 

cleavage to form the thiolate bond (S-Au) and –Au(CN)2
-
.[9]  

 

Scheme 2.2. Synthesis of the PhSCN-glycine. 

 

Regioselective addition of N-(4-Thiocyanatophenyl)pyrrolidine addends to C60 

Our design of the bis- (2.12 and 2.13) and tris-adducts (2.14 and 2.15) of C60 

(Figure 2.1) with different addends based on their potential applications in molecular 

electronics presents a synthetic challenge. This was addressed by a “protection-
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deprotection” strategy[4] derived from Kräutler’s “orthogonal transposition”[10] 

approach, which was discussed in Chapter I. The (e,e,e,e-tetra-

(ethoxycarbonyl)methylene-C60[10] adduct 2.16) template was reacted with PhSCN-

glycine and paraformaldehyde for 30 minutes to give pentakis-adducts (2.17 and 2.18) 

and hexakis-adducts (2.19 and 2.20) in a single step (Scheme 2.3).[11] Six different 

fractions were recovered by column chromatography using CH2Cl2 (DCM) as eluant, the 

first two fractions corresponding to the pentakis-adducts, the subsequent three fractions to 

hexakis-adducts and the last one to heptakis-adducts as assessed by means of MALDI-

TOF mass spectrometry.  

It is worth mentioning that the ethyl malonate groups in 2.16 separate the two 

hemispheres each of which has two types of double bonds, defined as symmetrical and 

unsymmetrical bonds, of the fullerene sphere available for reactions to occur (Figure 2.2). 

Each hemisphere has a total of five non-hindered double bonds available for 

cycloaddition reactions, one unique, called symmetrical, and four equivalents ones, called 

unsymmetrical, (Figure 2.2).  Therefore, two regiosomers were expected for the pentakis-

adducts, one corresponding addition on the symmetric bond and one corresponding 

addition in one of the four equivalent unsymmetric bonds. If the addition reaction 

occurred statistically the product ratio should be 1:4 in favor of the unsymmetrical 

product 2.18 vs 2.17.[11] Since the observed ratio was 1:1, the reaction at the symmetric 

double bond is favored four-fold, probably due to steric hindrance of the malonates 

around the unsymmetric bonds and also to electronic effects.[12-13] The symmetrical 
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double bond (Figure 2.2) will be favored due to its equatorial position with respect to all 

cyclopropane rings by electronic factors.[12-13] 

2.12 2.13 2.14 2.15

2.11

 

Figure 2.1 Structures of compounds 2.12, 2.13, 2.14 and 2.15. 

 

 

Symmetrical

bond

Unsymmetrical

bonds

Hemisphere

900

 

Figure 2.2 Symmetrical and unsymmetrical bonds of compound 2.16. 
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a)

2.17

2.20

2.18

2.19 2.21

2.16

+ + ++

 

Scheme 2.3 Synthesis of fullerene derivatives with phenylthiocyanate groups.  

a) PhSCN-glycine, HCHO, o-DCB, Ar, 175 °C, 10 min.[11] 
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The symmetries of the pentakis-adducts 2.17 and 2.18 were determined by NMR 

spectroscopy as follows: Figure 2.3a shows the 
1
H NMR spectrum of 2.17 with three sets 

of triplets for CH3 protons of the malonate groups, with integration ratios of 1:1:2, 

between δ = 1.40 – 1.30. The signals of the methylene protons from the malonate groups 

overlapped with those of the protons from the pyrrolidine ring in two multiplets between 

δ = 4.46 – 4.30 with an integration ratio of 1:4, respectively. Two doublets integrating for 

two protons each were observed for the four aromatic protons.  

Figure 2.3b shows the 
13

C NMR spectrum of 2.17 with three signals for carbonyl 

groups and three for methyl groups of the malonate addends indicating that two malonate 

groups were in different chemical environments and two were equivalent.[11] Twelve 

sp
2
-C signals of the fullerene cage were observed between δ = 154 – 117. Seven sp

3
-C 

signals were also observed between δ = 69.85 – 61.40, three of them assigned to the sp
3
-

fullerene carbon atoms: one was from the two sp
3
-fullerene carbon atoms of the 

pyrrolidine ring, and the other two were from the two different sp
3
-fullerene carbon 

atoms of the four cyclopropane rings. The remaining four sp
3
-C signals left in this region 

were assigned to methylene groups: one signal was assigned to the methylene carbon 

atoms of the pyrrolidine ring and three were assigned to the methylene carbon atoms of 

the four malonate groups. C2v symmetry was determined for compound 2.17 based upon 

NMR analysis.[11]
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Figure 2.3 (A) 
1
H NMR spectrum of symmetric pentakis-adduct 2.17 and expanded parts 

from 4.5 ppm to 4.2 ppm (left inset) and 1.5 ppm to 1.2 ppm (right inset); (B) 
13

C NMR 

spectrum of symmetric pentakis-adduct 2.17. (500 MHz, CDCl3).[11] 

 

Figure 2.4A shows the 
1
H NMR spectrum of 2.18 with the expected lower 

symmetry relative to 2.17. The aromatic proton signals were shifted downfield when 

compared to those of 2.17. Seven triplets were observed between δ = 1.52 – 1.31 due to 
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eight different methyl groups (one triplet had twice the intensity of the others) and 

multiplets for the methylene protons indicate NMR non-equivalency.[11] Figure 2.4 B 

shows the 
13

C NMR spectrum of 2.18 with 49 sp
2
-C signals from the fullerene cage 

appearing between δ = 151 – 111, 7 signals for carbonyl groups and seven for methyl 

groups corresponding to the malonate addends. Nine signals between δ = 72.22  –  62.00 

were assigned to the sp
3
-C atoms of the fullerene cage, whereas seven signals were 

assigned to fullerene carbon atoms of the cyclopropane rings, and two were assigned to 

fullerene carbon atoms of the pyrrolidine ring. Finally, nine signals were assigned to the 

methylene moieties of the malonate groups. C1 symmetry was assigned to compound 2.18 

based upon NMR analysis.[11] 

The next three fractions of hexakis-adducts (a, b, and c), with a mass ratio of 

1:2.2:1.3, were purified by preparative TLC on silica gel using DCM as eluant. The plate 

was dried multiple times and new eluant used until a satisfactory separation was obtained. 

Then each fraction was removed from the plate and the derivatives were extracted from 

the silica gel with DCM. Fraction a (1
st
 fraction eluted) was identified as hexakis-adduct 

2.19 by means of NMR spectroscopy and MALDI-TOF. The 
1
H NMR spectrum of 

hexakis-adduct 2.19 (Figure 2.5, A) exhibited two triplets at δ = 1.35 – 1.32 and 1.28 –

1.25 with a corresponding integration ratio of 1:1. They were assigned to the two 

different methyl groups from the malonate groups. Two quartets at δ = 4.35 – 4.30 and 

4.30 – 4.26 integrating for eight protons each were assigned to the two sets of methylene 

moieties in the malonate groups. A sharp peak at δ = 4.59 was assigned to the eight 

equivalent pyrrolidine protons and two doublets integrating for four protons each to the 
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aromatic protons.[11] The 
13

C NMR spectrum of 2.19 showed two peaks for carbonyl 

groups, two peaks for methyl groups, and six sp
2
-C peaks for the fullerene cage. Finally, 

four signals between δ =66.87 – 61.00 for the sp
3
-C atoms of the fullerene cage and 

methylene groups were observed. The NMR spectrum of 2.19 indicated D2h symmetry 

because all of the addends are located at the pseudooctahedral positions on the 

fullerene.[11]  
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Figure 2.4 (A) 
1
H NMR spectrum of unsymmetric pentakis-adduct 2.18 and expanded 

parts from 4.8 ppm to 4.2 ppm (left inset) and 1.6 ppm to 1.2 ppm (right inset); (B) 
13

C 

NMR spectrum of unsymmetric pentakis-adduct 2.18. (500 MHz, CDCl3). [11] 
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The structures of the other two hexakis-adducts from fractions b and c were 

difficult to assign by NMR spectroscopy because of their structural complexity and lack 

of symmetry. Hence, their structures were elucidated by analyzing the regiochemistry of 

compounds 2.17 and 2.18 and designing an alternate synthetic route, discussed below.  

Analysis of compound 2.17: the hemisphere that has the pyrrolidine addend is 

hindered enough to prevent another azomethine attack. Consequently, further reactions 

can occur only on the unhindered hemisphere where there are 5 possible addition sites 

(Figure 2.6A). Addition to the symmetric double bond will lead to hexakis-adduct 2.19 

and addition to one of the four unsymmetric double bonds leads to hexakis-adduct 

2.20.[11,14] 

Analysis of compound 2.18: in this case the addend is on one of the four 

unsymmetric double bonds, which allows the next addition to be on either of the two 

hemispheres. This addition could lead up to 7 regioisomers where hexakis-adduct 2.20 is 

one possibility (Figure 2.6B). 

After the analysis of compounds of 2.17 and 2.18, we proceeded to treat them 

with the PhSCN-glycine separately in order to identify compounds 2.20 and 2.21. The 

reaction between 2.17, PhSCN-glycine, and paraformaldehyde during 15 min (Scheme 

2.4) formed two hexakis-adducts and one heptakis-adduct, which were isolated by 

preparative TLC using DCM as eluant. The first two fractions were identified as hexakis-

adducts 2.19 and 2.20, respectively by means of NMR spectroscopy and TLC Rf. Not 

surprisingly, 2.19 and 2.20 were obtained in a ratio of 1:2.4 instead of the expected 1:4 

ratio (see Figure 2.6A). The 
1
H NMR spectrum of hexakis-adduct 2.20 (Figure 2.5, B) 
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exhibited a multiplet from δ = 1.34 - 1.26 corresponding to 24 protons, which were 

assigned to the methyl groups from the malonate groups. Two multiplets at δ = 4.64 - 

4.51 and 4.47 - 4.21 ppm integrating for 20 and 4 protons respectively, were assigned to 

the methylene groups in the malonates and on the pyrrolidine ring. Two sets of doublets 

were observed for each ring and two of them overlapped and corresponded to four 

protons. The other doublets correspond to two protons each, for a total of four different 

aromatic protons.[11] The controlled synthesis of the hexakis-adducts 2.19 and 2.20 by 

using 2.17 as the starting material confirmed the hypothesis (Figure 2.6A) that an 

addition in the same hemisphere at the first addend was not feasible and does not occur. 

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

a.

b.

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0.0 ppm

c.

A.

B.

C.

 

Figure 2.5. 
1
H NMR spectrum of (A) compound 2.19, (B) compound 2.20, and (C) 

compound 2.21. (500 MHz, CDCl3). [11] 
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Hemisphere B

Hemisphere A

Hemisphere B

Hemisphere A

BA  

Figure 2.6. (A) Schematic representation of two possible isomers for a second addition to 

compound 2.17 (mono symmetric-adduct). (B) Schematic representation of seven 

possible isomers for a second addition to compound 2.18 (mono unsymmetric-adduct). 

Yellow bonds represent possible addition sites and blue triangles represent adducts 

position. 

 

The reaction between 2.18, PhSCN-glycine, and paraformaldehyde (Scheme 2.5) 

was stopped after 10 min when heptakis-adducts were observed by TLC. The hexakis-

adducts 2.20 and 2.21 were identified in the first two fractions at a mass ratio of 1:1.4, 

respectively. The NMR spectra and the Rf value of fraction c are consistent with those of 

2.21. 7 regioisomers were expected for this reaction (Figure 2.6 B), therefore 2.21 should 

be a mixture of regioisomers, which was verified by HLPC using toluene as the mobile 

phase on a Buckyprep column (Figure 2.7). Seven peaks were observed, the retention 

time of one of them matching that of 2.20. Of the seven isomers, two of them had an area 

three times larger than that of the other five products.[11] No further purification of 

“compound” 2.20 was pursued. Based on the time of reaction and presence of heptakis-
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adducts in these two reaction schemes (2.2 and 2.3) it was concluded that compound 2.18 

is more reactive than compound 2.17. 

 

a)

2.17

2.202.19

+

 

Scheme 2.4 Synthesis of [N-(4-thiocyanatophenyl)pyrrolidino]fullerene derivatives 2.19 

and 2.20. a) = PhSCN-glycine, HCHO, o-DCB, Ar, 175 °C, 10 min.[11] 

 

 

 

a)

2.20

2.18

2.21

+

 

Scheme 2.5 Synthesis of [N-(4-thiocyanatophenyl)pyrrolidino]fullerene derivatives 2.19 

and 2.20. a) = PhSCN-glycine, HCHO, o-DCB, Ar, 175 °C, 15 min.[11] 
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Figure 2.7. HLPC spectrum of compound 2.21, toluene as eluent and Buckyprep column. 

 

Up to this point we had been able to add one and two addends to compound 2.16, 

where the hexakis-adducts 2.19 and 2.20 are the precursors for 2.12 and 2.13 (Figure 2.1). 

The next step was to pursue the synthesis of compounds 2.14 and 2.15 using compound 

2.20 as the starting material. According to the previous results, the addition of a new 

group should not occur on the same six-membered ring that already has a group attached. 

This leads to the possibility of just the two regioisomers indicated in the Figure 2.8.  

Two heptakis-adducts were purified by preparative TLC with DCM as eluant after 

30 min of reaction of compound 2.20 with PhSCN-glycine and paraformaldehyde 

(Scheme 2.6). Figure 2.9A shows the 
1
H NMR spectrum of heptakis-1, two doublets are 

observed in the aromatic region which integrated for two protons each, and two “triplets” 
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corresponding to four protons each (which were two overlapped doublets) for a total of 

six different aromatic protons. The 
1
H NMR spectrum of heptakis-2 shows similar 

chemical shifts and multiplicities to those of heptakis-1 (Figure 2.9B), which makes their 

assignment really challenging. Hence, in an attempt to determine which heptakis-adducts 

(2.22 or 2.23, Scheme 2.6) are the heptakis-1 and -2, HMBC (heteronuclear multiple 

bond correlation) experiments were performed. 

 

Hemisphere B

Hemisphere A

Hemisphere B

Hemisphere A

 

Figure 2.8. Schematic representation of two possible isomers for a third addition to 

compound 2.20. Yellow bonds represent possible addition sites and blue rings represent 

adduct positions. 
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We were expecting differences between the heptakis-1 and -2 in the correlations 

between the pyrrolidine protons, the sp
2
-hybridized carbon of the pyrrolidine ring and the 

sp
3
 carbon atom of the fullerene. However, the two isomers did not show significant 

correlation differences. Although the identity of the two regioisomers cannot be 

established at this point, if the polarity of the molecules is considered, 2.22 should be less 

polar than 2.23, since the third addend is opposite to the addends on 2.20 (Figure 9). 

Therefore, heptakis-1 was tentatively assigned to 2.22 and heptakis-2 to 2.23.[11] 
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Figure 2.9. 
1
H NMR spectrum of (A) compound heptakis-1 and (B) compound heptakis-

2 (500 MHz, CDCl3).[11] 
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a)

2.20

+

2.22 2.23
 

Scheme 2.6. Synthesis of heptakis-adducts 2.22 and 2.23. a) = PhSCN-glycine, HCHO, 

o-DCB, Ar, 175 °C, 30 min.[11] 

 

 The principal conclusions of this study were: 1) A reactivity trend of 2.20> 2.18> 

2.17>>> 2.19, with 2.20 being the most reactive; 2) The addition of a new group seems to 

be disfavored on the same six-membered ring that already has a group attached; and 3) 

The maximum number of groups that could be added to 2.16 was four (two groups per 

hemisphere).  

 

Regioselective addition of two different pyrrolidine addends to C60 

  With this examination of the regiochemistry of additions to 2.16, and in order to 

pursue the plan of using these fullerene compounds in potential applications such as in 

molecular electronics, the next step was to synthesize compounds with different 

functionalities to create a library. Any reaction between 2.16 and a glycine forms two 

isomers: symmetrical and unsymmetrical isomers (Figure 2.2), thus pentakis-adducts 

2.24[4]
 
and 2.25[15] were synthesized (Figure 2.10). These pentakis-adducts 2.17,

 
2.24

 

and 2.25 were used as precursors of hexakis-adducts (Figure 2.11) with different Pyrr 
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addends. Before beginning this discussion it is important to mention that the addition of 

the Tpy-Pyrr adducts occurred on the symmetric and unsymmetric double bonds (Figure 

2.2) as well. This behavior was not observed previously[4] due to the small amount of 

material used at that time. A mixture of 1 mol of 2.16, 20 mols of paraformaldehyde and 

5 mols of Tpy-glycine was refluxed in 1,2-dichlorobenzene (o-DCB) under argon for 6 h. 

The reaction crude was filtered to remove the unreacted Tpy-glycine and purified by 

column chromatography on silica gel using 1–2% v/v MeOH/DCM as eluant. The 

fractions obtained corresponded: unsymmetrical pentakis-adduct, symmetrical pentakis-

adduct 2.24 and hexakis-adducts including 2.30, in that elution order.  

 

2.24 2.25  

Figure 2.10. Structure of compounds 2.24 and 2.25. 

  

Figure 2.11 displays the library of C60 derivatives achieved by our approach. The 

reactivity difference of each glycine produced different yields and reaction times. All The 

reactions were carried out at reflux under an atmosphere of argon and o-DCB as solvent:  
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 Hexakis-adducts 2.26 (8%) and 2.34 (35%) were obtained from the reaction 

between 0.023 mmol of 2.17, 0.23 mmol paraformaldehyde and 0.046 mmol Py-glycine 

after 13 hours.  

 Hexakis-adducts 2.29 (16%) and 2.33 (10%) were prepared by the reaction 

between 0.020 mmol of 2.17, 0.2 mmol paraformaldehyde and 0.040 mmol TPy-glycine 

after 4 hours.  

 Hexakis-adducts 2.27 (26%) and 2.32 (21%) were obtained after 3 hours of 

reaction between 0.062 mmol of 2.24, 2.48 mmol paraformaldehyde and 1.24 mmol Py-

glycine.  

 Hexakis-adducts 2.28 (8%) and 2.33 (4%) were obtained after 4 hours of 

reaction of 0.18 mmol of 2.24, 1.8 mmol paraformaldehyde and 0.9 mmol PhSCN-

glycine at 175 °C. 

Table 2.1 summarizes the different combinations of hexakis-adducts of fullerenes 

synthesized under this strategy and their respectively yields. The reactivity trend of the 

glycines was as follows:  PhSCN-glycine > Tpy-glycine > Py-glycine, PhSCN-glycine 

being the most reactive. The corresponding trend of the yields was: Tpy-glycine > Py-

glycine > PhSCN-glycine, Tpy-glycine being the glycine that produces the highest yields. 

Also, the pentakis-adduct 2.24 is more reactive than the pentakis-adduct 2.17. 

At this point we had achieved the synthesis of hexakis-adducts with two different 

or equal Pyrr addends (Figure 2.11), these C60 fullerene derivatives can be the precursors 

of the trans-1 2.12 and trans-2 2.13 compounds (Figure 2.1) which are some of the 

candidates for molecular electronics applications. 
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2.26 2.27 2.28

2.29 2.30 2.31

2.32 2.33 2.34
 

Figure 2.11. Library of C60 derivatives. 
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Table 2.1. Percentage yield of the 1,3-dipolar reaction between 2.16, 2.17, 2.24 and 

PhSCN-, Tpy-, Py-glycines 

C60 

derivatives

Glycines

PhSCN Tpy Py

2.16
2.17 (6.2%)

2.18 (6.3%)

2.24 (35%)

Unsym (22%)

2.25 (29%) 

Unsym (21%)

2.17
2.19 (2.2%)

2.20 (4.6%)

2.29 (16%)

2.33 (10%)

2.26 (8%)

2.34 (35%)

2.24
2.28 (8%)

2.33 (4%)

2.30(40%)

Trans-2-p (20%)

2.27 (26%)

2.32 (21%)

 

 

Regioselective addition of three different pyrrolidine addends to C60 

The information acquired up to this point allowed us to pursue the synthesis of 

2.14 and 2.15. One special feature of these compounds is the possibility to self-assemble 

on different metal surfaces. One of the main problems in molecular electronics is that the 

molecules must be arranged between the electrodes with precise location and orientation 

control, which can be overcome via directed self-assembly.[16] The synthesis of 

heptakis-adducts such as 2.22 and 2.23 (Scheme 2.6) with the same or different addends 

are the perfect precursors of tris-adducts 2.14 and 2.15. We discussed in the previous 

sections that the addition of a Pyrr addend to 2.20 will generate only two isomers, 2.22 

and 2.23 (Scheme 2.6), because two addends cannot be bonded on the same six 

membered ring. Also, we reported a library of hexakis-adducts with different or equal 

Pyrr addends (Figure 2.11) that can be used the same way as 2.20  to synthesize different 
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heptakis-adducts. For instance, 0.0151 mmol of the hexakis-adduct 2.35 reacted with 

0.302 mmol of Py-glycine and 0.91 mmol of paraformaldehyde during 9 hours at reflux 

in o-DCB to produce the heptakis-adducts 2.36 and 2.37 (Scheme 2.7). The assignment 

of the structures for compounds 2.36 and 2.37 was based on their polarity, the same as 

proposed to assign compounds 2.22 and 2.23. Figure 2.12 shows the 
1
H NMR spectrum 

of compounds 2.36 and 2.37. Broad signals are observed for the methylenes of the Pyrr 

rings and malonate groups between δ = 4.74 – 4.12. The aromatic region displays two 

sets of dd at δ = 8.39 – 8.34 and 6.82 – 6.73 for 2.36 and broad signals at δ = 8.39 and 

6.84 for 2.37. 

 

 

a)
+

2.36 2.372.35
 

Scheme 2.7. Synthesis of compounds 2.36 and 2.37. a) Py-glycine, 

paraformaldehyde, o-DCB, reflux, Ar, 9 h. 
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Figure 2.12 
1
H NMR spectrum of: a) 2.36 and b) 2.37. (500 MHz, CDCl3). 

 

Heptakis-adducts 2.38 and 2.39 were synthesized from hexakis-adducts 2.27 and 

2.28, respectively. Compound 2.27 (0.0017mmol) reacted with PhSCN-glycine (0.0034 

mmol) and paraformaldehyde (0.017 mmol) during 24 hours at reflux in 1 mL of o-DCB. 

After the reaction was cooled, the solvent was dryed with a N2 stream to form a red paste, 
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and then it was purified using a preparative reverse TLC phase (C18) and DCM:methanol 

96:4 as mobile phase.  

 

2.27 2.28

+

2.38 2.39

a) (b

 

Scheme 2.8. Synthesis of compounds 2.38 and 2.39. a) PhSCN-glycine, 

paraformaldehyde, o-DCB, reflux, Ar, 24 h; b) Py-glycine, paraformaldehyde, o-DCB, 

reflux, Ar, 13 h. 

 

Compound 2.28 (0.006mmol) was reacted with Py-glycine (0.024 mmol) and 

paraformaldehyde (0.12 mmol) during 13 hours at reflux conditions in 1 mL of o-DCB. 

The crude reaction was purified using a preparative reverse phase TLC (C18) and 

DCM:methanol 96:4 as mobile phase. The isolation of 2.38 and 2.39 by prep-TLC was 

easier because the starting material (2.28) is less polar than 2.27. Yields were not 

calculated due to the small amounts obtained (Scheme 2.8). 

We were able to synthesize heptakis-adducts with the same type of Pyrr addends, 

[SCN-Ph-Pyrr (2.22 and 2.23) and Py-Pyrr (2.36 and 2.37)] and three different Pyrr 

addends [Tpy-Pyrr, PhSCN-Pyrr and Py-Pyrr (2.38 and 2.39)]. 
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Synthesis  of N-(4-Thiocyanatophenyl)pyrrolidino-Sc3N@C80 

The high reactivity of the PhSCN-glycine with C60 and the easier purification and 

characterization of their derivatives encouraged us to try to add this group to the 

endohedral fullerene Sc3N@C80. Endohedral metallofullerenes (EMFs) are fullerenes 

hosting metals, metal clusters, or small molecules inside.[17] For example, the Sc3N 

cluster is encapsulated in a cage of 80 carbon atoms and the cage exhibits two possible 

symmetries, Ih and D5h.[17] Organic functionalization of endohedral fullerenes is 

necessary to build novel organo-fullerene materials for a variety of future applications 

such as high-relaxivity contrast agents for magnetic resonance imaging,[18] molecular 

electronics and electron donor/acceptor systems.[19] Their reactivity and regioselectivity 

are influenced by the encapsulated cluster, metal species, carbon cage size, and 

symmetry.[13] Therefore the amount of functionalized EMFs reported is lower when 

compared to results with C60.  

A mixture of Ih- and D5h- Sc3N@C80 (2 mg, 0.0018 mmol) was heated up at reflux 

in ODCB (5 mL) with PhSCN-glycine (7.5 mg, 0.0036 mmol) and paraformaldehyde 

(3.15 mg, 0.104 mmol) (Scheme 2.9) and after 30 min a product was identified by TLC. 

The crude was purified by column chromatography on silica gel. The starting material 

was removed by first using CS2 as eluant, and then three fractions were obtained with a 

solution of CS2:toluene (ratio was increased progressively) as eluant. Mono-, bis- and 

tris-addition products were found in fractions one, two and three by means of MALDI-

TOF, respectively. 
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Scheme 2.9. Synthesis of compound 2.41.  

 

Figure 2.13 shows the MALDI-TOF spectrum of the mono-(Ih- and D5h-)-PhSCN-

pyrrolidine-Sc3N@C80 adducts 2.41, where the peaks m/z = 1286 and 1109 correspond to 

the mono adduct and to Sc3N@C80, respectively. Full characterization of these mono-

adducts was not pursued due to the small amount of material obtained. 
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Figure 2.13 MALDI-TOF spectrum of compound 2.40. 
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Conclusions 

Herein we described the regioselective synthesis and characterization of hexakis- 

and heptakis-C60 adducts that are potentially useful candidates for molecular electronic 

applications. The synthesis was achieved by using a selective protection/deprotection 

strategy shown in Figure 2.14. It begins with the synthesis of the starting template, C60-

tetramalonate 2.16, followed by the reaction with a glycine [Tpy-, Py-, or PhSCN-] and 

aldehyde to form the Pyrr ring by 1,3-dipolar cycloaddition reactions (Figure 2.14, step 

a). In this step, two regioisomers are obtained, one symmetrical and one unsymmetrical. 

Each regioisomer can react with the same glycine or a second one to form different 

hexakis-adduct regioisomers (Figure 2.14, steps b-d). After full characterization and 

purification a third glycine can be introduced in the system to obtain heptakis-adducts 

(Figure 2.14, step e). 

The 1,3-cyclopropanation reaction reactivity trend observed was: trans-2 

precursor hexakis-adduct > unsymmetric-pentakis-adduct> symmetric-pentakis-

adduct>>> two heptakis-adduct ≈ trans-1 precursor hexakis-adduct, with the trans-2 

precursor hexakis-adduct being the most reactive.  

The addition of a new group seems to be disfavored on the same six-membered 

ring that already has a group attached, and the maximum number of groups that could be 

added to 2.16 was four. 
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Figure 2.14. Schematic representation of the synthesis of hexakis- and heptakis-adducts 

of C60. 
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Experimental Section 

General: Reagents were purchased from commercial suppliers and used without 

further purification. Compounds 2.16,[10] terpyridyl glycine[4] and pyridylglycine[5] 

were synthesized as described in the literature procedures. NMR spectra were recorded 

on a Bruker AC 500 MHz spectrometer. Mass spectroscopy was recorded with an Omni 

Flex MALDI-TOF spectrometer. HPLC was performed using a COSMOSIL® 

Buckyprep-M Packed Column, 10.0mm I.D.×250mm. 

Synthesis of phenylthiocyanate glycine: A mixture 4-aminophenyl 

thiocyanate[20] (3.0 g, 19.97 mmol) and ethylbromoacetate (1.10 mL, 9.99 mmol) in 

anhydrous 1,4-dioxane (6 mL) was heated to reflux for 1 hour. After the solution cooled, 

10 mL water was added and the mixture was extracted with chloroform. The organic 

layer was removed and washed twice with saturated NaHCO3, then with brine, dried with 

MgSO4, then concentrated. The resulting product was purified by column 

chromatography on silica gel, chloroform:acetone 9:1 as eluant, to give ethyl N-(4-

thiocyano)phenylglycinate (4.0 g, 60%). 
1
H NMR (500 MHz, CDCl3, 25 °C): δ = 7.41 

(m, 2H, ArH), 6.60 (m, 2H, ArH), 4.64 (b, 1H, NH), 4.26 (q, 
3
JH,H = 7.1 Hz, 2H, -

COCH2-), 3.90 (d, 2H, -CH2CO-), 1.32 (t, 
3
JH,H = 7.1 Hz, 3H, -CH3). 

13
C NMR (500 

MHz, CDCl3, 25 °C): δ =  170.30 (C=O), 148.81, 134.58, 114.05, 112.28, 109.21, 61.69, 

45.19, 14.19. MALDI-MS: m/z 237 (MH
+
).   

Ethyl N-(4-thiocyano)phenylglycinate (2.5 g, 10.6 mmol) was dissolved in 11 mL 

of 5M HCl/dioxane[21] and heated to reflux for 15 min under Ar. After the solution was 

cooled, the phenylthiocyanate glycine precipitated, was filtered and washed with dioxane 
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to give a white solid. (2.8 g, 76%) 
1
H NMR (500 MHz, DMSO, 25 °C): of N-(4-

thiocyano)phenylglycine: δ = 12.65 (b, 1H, CO2H), 7.39 (m, 2H, ArH), 6.66 (m, 2H, 

ArH), 3.86 (s, 2H, -CH2-), 3.50 (b, 1H, NH). 
13
C NMR (DMSO, 500 MHz): δ 172.5 

(C=O), 151.0, 135.1, 114.0, 113.0, 106.3, 44.55. MALDI-MS: m/z 209 (MH
+
).  

Pentakis-adducts 2.17, 2.18 and Hexakis-adducts 2.19 and 2.20: The mixture 

of 2.16 (1 g, 0.74 mmol), N-(4-thiocyano)phenylglycine (385 mg, 1.85 mmol), and 

paraformaldehyde (111 mg, 3.7 mmol) in 1,2-dichlorobenzene (300 mL) was heated to 

175   C under Ar for 30 min.  The crude reaction was cooled and evaporated with N2.  

Separation of the 2.16 (200 mg, material recovered), 2.17 (71 mg, 6.3 %), 2.18 (70 mg, 

6.2%), 2.19 (24.4 mg, 2.2%), and 2.20 (51.9 mg, 4.6%) was achieved by column 

chromatography on silica gel respectively, using dichloromethane as eluant. Better 

purification of 2.19 and 2.20 was achieved via preparative TLC on silica gel using 

dichloromethane as eluant.  

2.17: 
1
H NMR (500 MHz, CDCl3, 25 °C): δ = 7.50 (d, 

3
JH,H = 8.9 Hz, 2H, ArH), 

6.93 (d, 
3
JH,H = 8.9 Hz, 2H, ArH), 4.45-4.41 (q, 4H, -CH2-), 4.36-4.31 (m, 16H, -CH2-), 

1.40-1.30 (m, 24H, -CH3). 
13

C NMR (500 MHz, CDCl3, 25 °C): δ = 163.83, 163.73, 

163.64, 153.64, 152.36, 149.41, 147.17, 146.14, 145.98, 145.47, 145.30, 144.26, 143.41, 

143.15, 142.29, 138.58, 138.20, 133.83, 117.01, 111.80, 69.85, 69.11, 68.22, 67.75, 

62.98, 62.94, 61.40, 45.39, 44.88, 14.17, 14.09 and 14.06. UV-vis: λmax (nm) 291, 309, 

339, 476, 545. MS (MALDI): m/z: 1527 [M
+
 - 1], 1369, 1352.  

2.18: 
1
H NMR (500 MHz, CDCl3, 25 °C): δ = 7.53 (d, 

3
JH,H = 8.9 Hz, 2H, ArH), 

7.02 (d, 
3
JH,H = 8.9 Hz, 2H, ArH), 4.71-4.27 (m, 20H, -CH2-), 1.52-1.31 (8t, 24H, -CH3). 
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13
C NMR (500 MHz, CDCl3, 25 °C): δ = 164.21, 164.11, 163.86, 163.70, 163.65, 163.15, 

150.88, 149.45, 149.28, 149.00, 148.66, 148.34, 147.74, 147.44, 147.07, 147.02, 146.95, 

146.08, 145.78, 145.47, 145.13, 144.42, 144.30, 144.23, 144.15, 143.78, 143.47, 143.32, 

143.27, 142.99, 142.82, 142.74, 142.52, 142.34, 142.11, 141.95, 141.90, 141.74, 141.61, 

141.30, 141.11, 140.99, 140.87, 140.79, 140.45, 140.33, 140.25, 140.07, 138.69, 138.64, 

138.34, 138.19, 135.18, 133.89, 131.81, 130.60, 125.81, 116.98, 111.86, 111.51, 72.22, 

70.77, 70.50, 69.17, 69.05, 68.71, 66.34, 66.07, 65.08, 63.27, 63.13, 63.05, 63.03, 62.98, 

62.78, 62.65, 62.39, 62.00,  46.33, 43.94, 43.31, 41.37, 14.29, 14.25, 14.20, 14.18, 14.11, 

14.09 and 14.08. UV-vis: λmax (nm) 271, 330, 548. MS (MALDI): m/z: 1528 [M
+
], 1369, 

1352. 

Hexakis-adducts 2.19 and 2.20: A solution of 2.17 (20 mg, 0.013 mmol), N-(4-

thiocyano)phenylglycine (14 mg, 0.065 mmol), and paraformaldehyde (4 mg, 0.130 

mmol) in 1,2-dichlorobenzene (2 mL) was heated at 175   C under Ar for 15 min.  The 

reaction was cooled and evaporated.  Separation of 2.17 (6 mg, material recovered), 2.19 

(2 mg, 9%) and 2.20 (5 mg, 22%) was achieved by preparative TLC on silica gel, using 

dichloromethane as eluant.  

2.19: 
1
H NMR (500 MHz, CDCl3, 25 °C): δ = 7.54 (d, 

3
JH,H = 9.0 Hz, 4H, ArH), 

7.04 (d, 
3
JH,H = 9.0 Hz, 4H, ArH), 4.59 (s, 8H, NCH2-), 4.35-4.30 (q, 

3
JH,H = 7.1 Hz, 8H, -

CH2-), 4.30-4.26 (q, 
3
JH,H = 7.1 Hz, 8H, -CH2-), 1.35-1.32 (t, 

3
JH,H = 7.1 Hz, 12H, -CH3), 

1.28-1.25 (t, 
3
JH,H = 7.1 Hz, 12H, -CH3). 

13
C NMR (500 MHz, CDCl3, 25 °C): δ = 163.87, 

163.83, 152.34, 149.45, 146.11, 145.79, 145.53, 145.40, 143.88, 143.66, 143.47, 141.62, 

141.13, 140.99, 140.33, 139.72, 133.89, 117.19, 111.82, 70.83, 69.38, 69.08, 66.87, 
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66.11, 62.85, 61.99, 61.12, 46.11, 45.44, 45.38, 44.71, 14.27, 14.06. UV-vis: λmax (nm) 

275, 332, 546. MS (MALDI): m/z: 1704 [M
+
], 1669, 1596, 1511, 1352.  

2.20: 
1
H NMR (500 MHz, CDCl3, 25 °C): δ = 7.55 (d, 

3
JH,H = 9.0 Hz, 2H, ArH), 

7.52 (d, 
3
JH,H = 9.0 Hz, 2H, ArH), 7.06 (d, 

3
JH,H = 8.8 Hz, 2H, ArH), 6.98 (d, 

3
JH,H = 8.9 

Hz, 2H, ArH), 4.64-4.51 (m, 4H, -CH2-), 4.47-4.21 (m, 20H, -CH2-), 1.34-1.26 (m, 24H, 

-CH3). 
13

C NMR (500 MHz, CDCl3, 25 °C): δ = 164.00, 163.95, 163.86, 163.83, 163.50, 

163.20, 163.03, 153.84, 153.17, 152.06, 151.60, 151.13, 149.45, 149.32, 148.66, 147.80, 

146.92, 146.66, 146.61, 146.51, 146.42, 146.29, 146.21, 145.99, 145.90, 145.79, 145.71, 

145.51, 145.33, 145.25, 144.37, 144.12, 143.50, 143.18, 143.00, 142.48, 142.39, 142.34, 

142.25, 142.04, 141.85, 141.43, 141.32, 140.94, 140.68, 139.71, 138.82, 138.53, 136.75, 

136.68, 136.59, 136.18, 136.12, 133.93, 133.88, 130.27, 125.23, 117.09, 117.02, 111.89, 

111.75, 111.52, 70.55, 70.37, 70.20, 69.15, 68.89, 67.86, 67.74, 67.56, 67.37, 66.99, 

64.84, 63.76, 62.98, 62.92, 62.89, 62.84, 62.80, 62.75, 62.56, 62.52, 61.85, 61.57, 61.50, 

61.34, 45.55, 43.77, 43.46, 42.03, 14.14, 14.09, 14.06, 14.04. UV-vis: λmax (nm) 286, 

482, 525. MS (MALDI): m/z: 1706 [M
+ 

+ 2], 1671, 1553 [M
+
 - PhSCN group], 1354 [M

+
 

- 2PhSCN group]. 

Heptakis-adducts 2.22 and 2.23: A solution of 2.20 (11 mg, 0.064 mmol), N-(4-

thiocyano)phenylglycine (19 mg, 0.093 mmol), and paraformaldehyde (6 mg, 0.190 

mmol) in 1,2-dichlorobenzene (1 mL) was heated at 175   C under Ar for 30 min.  The 

reaction was cooled and evaporated.  Separation of 2.20 (4.7 mg, material recovered), 

2.22 (2.2 mg, 18%) and 2.23 (1.7 mg, 14%) was achieved by preparative TLC on silica 

gel, using dichloromethane as eluant.  
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2.22: 
1
H NMR (500 MHz, CDCl3, 25 °C): δ = 7.55 (m, 4H, ArH), 7.48 (d, 

3
JH,H = 

8.1 Hz, 2H, ArH), 7.05 (m, 4H, ArH), 6.93 (d, 
3
JH,H = 8.1 Hz, 2H, ArH), 4.65-4.10 (m, 

28H, -CH2-), 1.42-1.05 (m, 24H, -CH3). UV-vis: λmax (nm) 274, 520. MS (MALDI): m/z: 

1881 [M
+
+1], 1723, 1705 [M

+
 - PhSCN group], 1547, 1529 [M

+
 - 2PhSCN group], 1371.  

2.23: 
1
H NMR (500 MHz, CDCl3, 25 °C): δ = 7.54 (m, 4H, ArH), 7.48 (d, 

3
JH,H = 

8.8 Hz, 2H, ArH), 7.03 (m, 4H, ArH), 6.93 (d, 
3
JH,H = 8.8 Hz, 2H, ArH), 4.64-4.10 (m, 

28H, -CH2-), 1.37-1.15 (m, 24H, -CH3). UV-vis: λmax (nm) 287, 497, 529. MS (MALDI): 

m/z: 1880 [M
+
], 1722, 1704 [M

+
 - PhSCN group], 1546, 1529 [M

+
 - 2PhSCN group], 

1367. 

Mono-Terpyridylpyrrolidine-C60-tetra(diethyl)malonate symmetric 2.24 and 

unsymmetric adducts: A mixture of 2.16 (1 g, 0.74 mmol), paraformaldehyde (222.0 

mg, 7.4 mmol), and terpyridyl glycine (620 mg, 2.0 mmol) was heated to reflux in 1,2-

dichlorobenzene (120 mL) under argon for 6 h. The crude product was filtered to remove 

the unreacted tpy-glycine, and purified by column chromatography (silica gel). 1–2% 

MeOH/CH2Cl2 eluted adducts 2.16 (300 mg recovered), unsymmetrical isomer (220 mg, 

22%) and 2.24 (340 mg, 35%) as a pink-brown solid and orange solid, respectively.  

Unsymmetric mono-Terpyridylpyrrolidine-C60-tetra(diethyl)malonate 

isomer: 
1
H NMR (500 MHz, CDCl3) δ: 8.75-8.65 (m, 4H), 8.09 (s, 1H), 8.02 (s, 1H), 

7.85 (m, 2H), 7.36 (m, 2H), 4.68-4.32 (b m, 20H), 1.51-1.29 (m, 24H).  UV-vis: λmax 

(nm) 235, 281, 473, 545. MALDI-TOF MS: 1626 [M
+
 + 1], 1554, 1483. 

2.24: 
1
H NMR (500 MHz, CDCl3) δ: 8.71 (b, 2H), 8.66 (b, 2H), 8.00 (s, 2H), 7.89 

(b, 2H), 7.35 (b, 2H), 4.70-4.58 (2b, 4H), 4.46-4.27 (3q, 20H), 1.42-1.25 (8t, 24H). 
13

C 
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NMR (500 MHz, CDCl3) δ: 163.82, 163.57, 152.28, 148.86, 147.16, 146.21, 145.96, 

145.44, 145.33, 144.25, 143.48, 143.09, 142.28, 138.67, 138.18, 121.50, 106.95, 70.58, 

69.86, 69.15, 68.16, 67.78, 62.99, 62.92, 60.12, 45.39, 14.17, 14.08 and 14.06. UV-vis: 

λmax (nm) 220, 237, 281, 477, 544.  MALDI-TOF MS:  1626 [M
+
 + 1], 1554, 1483. 

Mono-pyridylpyrrolidine-C60-tetra(diethyl)malonate symmetrical 2.25 and 

unsymmetrical isomers: A mixture of 2.16 (1.6 g, 1.2 mmol), (4-pyridyl)glycine (2.7g, 

18 mmol), and paraformaldehyde (1.8g, 6.0 mmol) in 1,2-dichlorobenzene (400 mL) was 

heated to reflux under Ar for 3 hours.  The resulting mixture was cooled and the solvent 

evaporated.  The crude reaction product was purified by column chromatography (silica 

gel) using 1% MeOH in CH2Cl2 as eluant.  After unreacted C60-tetramalonate (1.0 g 

recovered) was isolated the polarity was increased to 3% MeOH, which eluted 

unsymmetrical adducts (140 mg, 21%) and 2.25 (190 mg, 29%).  

Unsymmetric mono-pyridylpyrrolidine-C60-tetra(diethyl)malonate isomer: 

1
H NMR (500 MHz, CDCl3) δ: 8.38 (d, 2H), 6.82 (d, 2H), 4.77-4.32 (m, 20H), 1.52-1.31 

(m, 24H). 
13

C NMR (500 MHz, CDCl3) δ: 164.18, 164.10, 163.85, 163.84, 163.67, 

163.64, 163.14, 152.48, 150.67, 150.24, 149.46, 149.03, 148.68, 148.38, 147.73, 147.45, 

147.04, 146.96, 146.07, 145.65, 145.47, 147.17, 144.43, 144.30, 144.28, 144.24, 144.10, 

143.79, 143.60, 143.48, 143.31, 143.27, 143.02, 142.82, 142.74, 142.41, 142.38, 142.14, 

141.95, 141.89, 141.74, 141.57, 141.26, 141.14, 141.02, 140.88, 140.81, 140,45, 140.37, 

140.26, 140.08, 138.66, 138.52, 138.31, 138.18, 131.75, 130.50, 135.13, 125.74, 109.90, 

72.23, 70.78, 70.51, 69.18, 69.06, 68.66, 66.33, 66.05, 64.91, 63.28, 63.14, 63.07, 62.99, 

62.80, 62.22, 61.26, 60.61, 46.35, 43.95, 43.33, 41.39, 14.28, 14.25, 14.20, 14.18, 14.11, 
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14.09 and 13.86.  UV-vis: λmax (nm) 236, 245, 329, 506, 549. MALDI-TOF MS:  1474 

[M
+
 + 1].  

2.25: 
1
H NMR (500 MHz, CDCl3) δ: 8.36 (d, 2H), 6.73 (d, 2H), 4.46-4.39 (m, 

8H), 4.38-4.28 (m, 12H), 1.41-1.29 (3t, 24H). 
13

C NMR (500 MHz, CDCl3) δ: 163.91, 

163.78, 163.70, 153.61, 152.35, 147.10, 146.20, 146.01, 145.59, 145.40, 144.34, 143.28, 

143.08, 142.42, 138.69, 138.28, 69.94, 69.20, 68.16, 67.84, 63.33, 63.04, 62.85, 59.96, 

45.48, 31.67, 14.16 and 14.14.  UV-vis: λmax (nm) 218, 245, 276, 312, 476, 544. MALDI-

TOF MS: 1474 [M
+
 + 1]   

trans-1 bis-pyridylpyrrolidine-C60-tetra(diethyl)malonate adduct 2.31: 

 A solution of 2.25 (0.0634g, 0.043 mmol), (4-pyridyl)glycine (0.130g, 0.861 

mmol), and paraformaldehyde (0.026g, 0.861 mmol) in 1,2-dichlorobenzene (40 mL) was 

heated to reflux under Ar for 4 hours.  More pyridyl glycine and paraformaldehyde were 

added in the same amounts as above every 4 hours until all the mono-adduct was 

consumed as detected by TLC (5% MeOH: CH2Cl2).  When the reaction was complete, 

the mixture was cooled and the solvent evaporated.  The crude was purified by column 

chromatography on silica gel using first 3% MeOH in CH2Cl2 as eluant to remove any 

remaining mono-adduct. Then the polarity was increased to 5% MeOH and the bis-

adducts were isolated.  This material was purified via preparative TLC by running the 

plate with 4% MeOH in CH2Cl2, drying, running the plate again with 5% MeOH, drying, 

and finally running with 6% MeOH.  The resulting band had a yellow head and orange 

tail. The two fractions were eluted with 5% MeOH: CH2Cl2
 
on silica and the orange 

fraction was reapplied to a new preparative TLC plate, and subjected to the same 
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chromatography until no more yellow was eluting on the plate.  The solvent was 

evaporated to give pure trans-1 bisadduct (0.006g) as a yellow solid.  

2.31: 
1
H NMR (500 MHz, CDCl3) δ: 8.40 (br d, 4H), 6.84 (br d, 4H), 4.66 (s, 

8H), 4.33 (q, 8H), 4.27 (q, 8H), 1.33 (t, 12H), 1.26 (t, 12H). 
13

C NMR (500 MHz, CDCl3) 

δ: 163.86, 163.44, 152.65, 152.27, 150.35, 146.13, 145.35, 143.58, 140.43, 140.33, 

139.74, 110.00, 70.85, 66.88, 66.01, 62.86, 59.58, 46.13, 44.73, 14.13. MALDI-TOF MS: 

1594 [M
+
 + 1] 

trans-1 bis-terpyridylpyrrolidine-C60-tetra(diethyl)malonate adduct 2.30: 

 A solution of 2.24 (0.167g, 0.103 mmol), (4-terpyridyl)glycine (0.316g, 1.03 

mmol), and paraformaldehyde (0.062g, 2.01 mmol) in 1,2-dichlorobenzene (40 mL) was 

heated to reflux under Ar for 2.5 hours. When the reaction was complete, the mixture was 

cooled and the solvent evaporated.  Addition of CH2Cl2 (3 mL) removed starting material 

and other products leaving behind compound 2.30 (0.017g, 8%) as a yellow solid. It was 

filtered, rinsed with diethyl ether and dried.   

2.30: 
1
H NMR (500 MHz, CDCl3) δ: 8.73 (dd, 4H), 8.69 (d, 4H), 8.11 (s, 4H), 7.87 (t, 

4H), 7.35 (d, 4H), 4.90 (s, 8H), 4.39 (q, 8H), 4.27 (q, 8H), 1.38 (t, 12H), 1.25 (t, 12H). 

13
C NMR (500 MHz, CDCl3) δ:  163.81, 163.53, 156.49, 156.23, 154.55, 153.02, 152.42, 

148.97, 146.12, 145.46, 143.60, 143.49, 140.31, 139.76, 136.79, 70.85, 66.92, 66.20, 

66.05, 62.81, 62.76, 59.86, 46.08, 44.80, 14.17, 14.03. MALDI-TOF MS:  1900 [M
+
], 

1828, 1756. 

Hexakis-adducts 2.34 and 2.26: A solution of 2.17 (35 mg, 0.023 mmol), pyridyl 

glycine (7 mg, 0.046 mmol), and paraformaldehyde (7 mg, 0.23 mmol) in 1,2-
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dichlorobenzene (15 mL) was heated to reflux under Ar for 13 hours. The resulting 

mixture was cooled and dried. Using a silica gel preparative TLC the separation of 3 

fractions using CH2Cl2:MeOH 2% as eluant was obtained. Adduct 2.17 (16 mg 

recovered), adduct 2.34 (fraction 2, 7 mg, 35%) and adduct 2.26 (fraction 3, 1.5 mg, 8%), 

were thus isolated.  

2.34: 
1
H NMR (500 MHz, CDCl3) δ: 8.40 (d, 2H), 7.54 (d, 2H), 7.05 (dd, 2H), 

6.83 (d, 2H), 4.66 (s, 4H), 4.59 (s, 4H), 4.38-4.31 (m, 8H), 4.30-4.24 (q, 8H),  1.37-1.27 

(m, 24H). MALDI-TOF MS:  1650 [M
+
 + 1].  

2.26: 
1
H NMR (500 MHz, CDCl3) δ: 8. 38 (dd, 2H), 7.54 (d, 2H), 7.05 (dd, 2H), 

6.91 (d, 1H), 6.83 (d, 1H),  4.67-4.52 (m, 8H), 4.39-4.22 (m, 16H),  1.37-1.27 (m, 24H). 

MALDI-TOF MS:  1650 [M
+
 + 1].  

Hexakis-adducts 2.33 and 2.29:  A solution of 2.17 (30 mg, 0.020 mmol), 

terpyridyl glycine (12.3 mg, 0.040 mmol), and paraformaldehyde (6 mg, 0.2 mmol) in 

1,2-dichlorobenzene (8 mL) was heated to reflux under Ar for 4 hours. The resulting 

mixture was cooled and evaporated.  Separation of compounds 2.17 (fraction 1, 9 mg 

recovered), 2.33 (fraction 2, 4 mg, 16%), and 2.29 (fraction 3, 2.5 mg, 10%) was 

achieved via reverse phase preparative TLC using CH2Cl2:MeOH 1% as eluant.  

2.33: 
1
H NMR (500 MHz, CDCl3) δ: 8.74 (b, 2H), 8.69 (d, 2H), 8.11 (s, 2H), 7.90 (b, 

2H), 7.54 (d, 1H), 7.53 (d, 1H), 7.37 (b, 2H), 7.04 (d, 1H), 7.00 (dd, 1H), 4.93 (b, 4H), 

4.60 (s, 4H), 4.41- 4.36 (q, 4H), 4.35-4.32 (q, 4H), 4.31-4.25 (q, 8H), 1.40-1.33 (m, 12H), 

1.29-1.25 (t, 12H). 
13

C NMR (500 MHz, CDCl3) δ: 163.98, 163.72, 163.49, 152.32, 

149.49, 148.91, 146.18, 146.07, 145.48, 145.37, 143.65, 143.61, 140.34, 140.30, 139.79, 
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139.70, 133.90, 117.18, 107.09, 70.86, 70.82, 70.58, 66.90, 66.11, 66.03, 62.89, 62.81, 

61.13, 59.81, 46.10, 44.77, 14.17, 14.09 and 14.03.  MALDI-TOF MS: 1803 [M
+
 + 1], 

1732, 1661. 

 2.29: 
1
H NMR (500 MHz, CDCl3) δ: 8.73 (d, 2H), 8.69 (d, 2H), 8.11 (s, 2H), 7.88 (dd, 

2H), 7.53 (d, 1H), 7.35 (b, 2H), 7.05 (d, 1H), 6.98 (d, 2H), 5.01- 4.50 (m, 8H), 4.45-4.22 

(m, 16H),  1.40-1.23 (m, 24). MALDI-TOF MS: 1803 [M
+
 + 1] 

Hexakis-adducts 2.32 and 2.27: A solution of 2.24 (100 mg, 0.062 mmol), N-pyridyl 

glycine (188 mg, 1.24 mmol), and paraformaldehyde (74 mg, 2.48 mmol) in 1,2-

dichlorobenzene (30 mL) was heated to reflux under Ar for 3 hours. The resulting 

mixture was cooled and evaporated.  Separation of the compounds 2.24 (orange, fraction 

1, 47 mg recovered), 2.32 (orange, fraction 3, 12 mg), and 2.27 (yellow, fraction 4, 15 

mg) was achieved via reverse phase preparative TLC using CH2Cl2:MeOH 3% as eluant.  

2.32: 
1
H NMR (500 MHz, CDCl3) δ: 8.72 (dd, 2H), 8.68 (d, 2H), 8.39 (d, 2H-Py), 8.10 

(s, 2H), 7.87 (t, 2H), 7.34 (d, 2H), 6.83 (d, 2H-Py), 4.89 (s, 4H-Py), 4.66 (s, 4H), 4.38 (q, 

4H), 4.34 (q, 4H), 4,28 (q, 8H), 1.36 (m, 12H), 1.28 (t, 12H). 
13

C NMR (500 MHz, 

CDCl3) δ:  163.99, 163.69, 163.49, 156.46, 156.25, 154.52, 152.66, 152.49, 152.22, 

150.45, 148.96, 146.22, 146.03, 145.43, 145.38, 143.62, 143.57, 140.32, 139.78, 139.71, 

136.81, 70.87, 70.82, 66.90, 66.06, 66.00, 62.87, 62.81, 59.82, 59.61, 46.10, 44.77, 14.16, 

14.09, 14.03. MALDI-TOF MS:  1747 [M
+
 + 1], 1676, 1605. 

2.27: 
1
H NMR (500 MHz, CDCl3) δ: 8.66 (m, 4H), 8.37 (d, 2H-Py), 8.10 (s, 1H), 8.09 

(s, 1H), 7.88 (m, 2H), 7.35 (m, 2H), 6.91 (dd, 2H-Py), 4.91-4.71 (m, 8H), 4.70-4.24 (m, 

16H), 1.40-1.34 (m, 24H). 
13

C NMR (500 MHz, CDCl3) δ:  163.96, 163.86, 163.61, 
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163.45, 156.43, 156.23, 154.45, 152.60, 151.69, 148.94, 146.48, 146.37, 146.16, 145.95, 

145.76, 145.36, 143.62, 143.49, 143.03, 142.30, 142.20, 141.97, 140.36, 140.31, 140.21, 

139.79, 139.86, 70.89, 70.57, 66.94, 66.08, 65.57, 62.99, 62.91, 62.87, 62.71, 62.61, 

60.98, 60.28, 59.77, 59.32, 44.81, 14.16, 14.09, 14.03. MALDI-TOF MS:  1747 [M
+
 + 1], 

1676, 1605. 

Heptakis-adducts 2.36 and 2.37: A solution of 2.35 (24 mg, 0.0151 mmol), N-pyridyl 

glycine (46 mg, 0.302 mmol), and paraformaldehyde (27 mg, 0.91 mmol) in 1,2-

dichlorobenzene (5 mL) was heated to reflux under Ar for 9 hours. The resulting mixture 

was cooled and evaporated.  Compounds 2.36 and 2.37 were purified using a preparative 

TLC using CH2Cl2:MeOH 5% as eluant.  

2.36: 
1
H NMR (500 MHz, CDCl3) δ: 8.39 (dd, 8H), 6.77 (m, 4H), 4.65-4.10 (m, 28H), 

1.30-1.40 (m, 24H, overlapped with grease peak). MALDI-TOF MS:  1712 [M
+
] 

2.37: 
1
H NMR (500 MHz, CDCl3) δ: 8.40 (dd, 8H), 6.84 (m, 4H), 4.73-4.07 (m, 28H), 

1.30-1.40 (m, 24H, overlapped with grease peak). MALDI-TOF MS:  1712 [M
+
] 
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CHAPTER THREE 

 

EELLEECCTTRROOLLYYTTIICC  RREETTRROO--CCYYCCLLOOPPRROOPPAANNAATTIIOONN  OOFF  PPYYRRRROOLLIIDDIINNOO--CC6600  

AADDDDUUCCTTSS  

 

  

 

The Bingel-Hirsch[1] reaction (cyclopropanation reaction) is a versatile reaction 

that has been used to synthesize a wide range of fullerene derivatives such as donor-

acceptor systems,[2] dendrimers,[3] and supramolecules,[4] among others. Even though 

these methano-fullerene derivatives are stable in air, and under high thermal and 

oxidative conditions, they can be removed efficiently under reduction conditions 

(chemically[5-6] and electrochemically[7]). The retro-cyclopropanation of 

methanofullerenes upon reductive potential by controlled potential electrolysis (CPE) 

was previously reported.[7a] The retro-Bingel reaction of the 

(alkoxycarbonyl)methanofullerenes of C60, C70, C76 and ent-C76 at the second reduction 

potential upon CPE recovered the parent fullerenes in 75-82%, 70% and 5-9% yield, 

respectively, after the addition of four electrons per molecule.[8]  

An important process during the course of retro-cyclopropanation reactions by 

CPE is the electrochemically induced isomerization of the addends by migration on the 

C60 fullerene surface, known as the “walk on the sphere”.[9] For instance, a pure cis-2-

bis-malonate-adduct was transformed to the e (57%), trans-3 (31%), trans-4 (8%) and 

cis-3 (4%) isomers after it was subjected to CPE with a charge transfer of one electron 

per molecule.[9] During the “walk on the sphere” of bis-adducts the major isomers 

formed were always the trans-2 derivative (40-50%), followed by e- (25%) isomer. Their 

predominance was explained in terms of their inherently higher stability. Another 
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surprising result was the formation of the trans-1-bis-adduct with 10% yield,[9] which 

had been isolated only in 0.8-2% yield from the chemical reaction.[10]  

This chapter will discuss the synthesis of trans-1- and trans-2-adducts from the 

hexakis-adducts reported in Chapter II via CPE, which involves the removal of the four 

(ethoxycarbonyl)methylene groups. All experiments were carried out using a homemade 

cell described elsewhere [11] at room temperature. The CPE was performed on each 

sample under high vacuum in CH2Cl2 with 0.1M TBAF6P as the supporting electrolyte. 

To determine the potential to be applied, the cyclic voltammograms (CVs) of each 

compound was recorded at the beginning of each experiment. After electrolysis, the 

solutions were exhaustively re-oxidized at 0 V before purification and product analysis.  

 

Controlled potential electrolysis of N-(4-Thiocyanatophenyl)pyrrolidine-C60 

derivates 

The CPE of 3 mg of compound 3.1 (Figure 3.1) was performed at -1.6 V vs a Ag 

wire pseudo reference electrode separated from the solution using a Vycor tip. Figure 

3.2A (black solid line) shows the CV of 3.1 before the CPE, exhibiting two reversible 

fullerene-based reductions at -1.03 and -1.42 V. After approximately 6 electrons per 

molecule were transferred, the CV (Figure 3.2A, red solid line) displayed three reversible 

redox waves, corresponding to the typical redox behavior of pristine C60 (-0.84, -1.24 and 

-1.62 V). C60 was obtained in 80% yield (1 mg) after re-oxidation and purification. This 

(previously reported) control experiment agreed results[12-13] indicative of efficient 

removal of the four cyclopropane addends by this method.  
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3.1 3.2 3.3

 

Figure 3.1 Structures of compounds 3.1, 3.2 and 3.3. 

 

The CPE of 1.2 mg of compound 3.2 (Scheme 3.1) was carried out at -1.7 V as a 

second control experiment. After the addition of 5 e
-
 per molecule the electrolysis was 

stopped. Following re-oxidation the crude reaction was purified by column 

chromatography using CS2 as eluant. Three fractions were recovered (3
rd

 fraction was 

3.2) and pure C60 was not found in any of them, which was expected because the Pyrr are 

stable under reductive conditions.[14] In fact, Pyrr addends can be removed only under 

chemical[15] or electrochemically oxidative[16] conditions. 
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Figure 3.2 Cyclic voltammograms (CV) of compound 3.1 before (−) and after (−) 

electrolysis. Supporting electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V s
-1

. 

 

The MALDI-TOF MS of fraction 1 (Figure 3.3) showed the molecular ion peak 

for N-(4-Thiolphenyl)pyrrolidine-C60 (PhSH-Pyrr-C60), 3.4, and the disulfide (C60-Pyrr-

PhS−SPh-Pyrr-C60), which indicated that the SCN group can be reduced to SH under 

CPE.[17] This result was expected based on the work of Hawley and co-workers.[17] 

They studied the effect of the thiocyanate substituent in the decomposition of 

nitroaromatic compounds by electrolysis. They reported that the electrochemical 

reduction of p-nitrophenyl thiocyanate 3.5 (Scheme 3.2) formed the anion radical 3.5a in 

a one electron process, which was unstable and decomposes slowly with loss of cyanide 

ion to form the radical, 3.5c. The neutral radical was immediately reduced (chemically or 

electrochemically) to give 3.5d. If the electrochemical reduction of 3.5 was carried out at 
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the second reduction potential the dianion 3.5b was formed, which decomposed rapidly 

to 3.5d and the cyanide ion. The neutral radicals react by numerous pathways including 

dimerization, hydrogen atom abstraction and coupling with an anion to form a new more 

stable anion radical.[17] 

3.2 3.2 3.4

+ C60-Pyrr-PhS-SPh-Pyrr-C60

+ 5e-/ -CN-

CPE

+

 

Scheme 3.1 Electrolysis of compound 3.2. 
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Figure 3.3 MALDI-TOF MS spectrum of the products after CPE of 3.2: A) fraction one 

and B) fraction three. 
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Scheme 3.2. Mechanism of the electrolysis of p-nitrophenyl thiocyanate 3.5. [17]. 

 

Finally, the CPE of 3.3 was performed to obtain the trans-1-bis-N-(4-

Thiocyanatophenyl) pyrrolidine-C60 derivative. Figure 3.4 shows the CVs of 3.3 before 

(black solid line) and after (red solid line) electrolysis. A one-electron irreversible 

process at -1.34 V vs Ag wire was observed before the CPE. This unstable behavior upon 

reduction indicates that this hexakis-adduct is not useful for applications in electronic 

devices because it will decompose upon electron transfer in the system. The CPE of 3.5 

mg of 3.3 was carried out at -1.70 V and stopped after 9 electrons per molecule had been 

transferred. At this point, the CV (red solid line, Figure 3.4) exhibited three reversible 

reduction waves at -0.83, -1.04 and -1.20 V indicating that the cyclopropane groups were 

removed. But, to our surprise C60 was recovered in a 67% yield without the presence of 
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the desired trans-1 product after purification (Scheme 3.3). The CPE was repeated at 

lower potential (-1.1 V) and the starting material 3.3 was recovered. This is the first 

example of removal of a Pyrr ring under reductive conditions. Even though the 

mechanism of this process is not understood, it was clear that the presence of the 

cyclopropane rings, CN
-
 and S

-
 or S

•
 played an important role on the removal of the Pyrr 

rings. We know that the mechanism of the retro-Bingel reaction by means of CPE 

involves the heterolytic opening of the cyclopropane ring, leading to charge formation 

either in the fullerene core or in the addend.[18] This ring-opened species probably reacts 

with the species CN
-
 and S

-
 or S

•-
 generating the pyrrolidine ring removal.  

Although we did not obtain the desired product, this finding can open new 

avenues for the synthesis of new fullerene derivatives.  
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Figure 3.4 Cyclic voltammograms (CV) of compound 3.3 before (−) and after (−) 

electrolysis. Supporting electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V s
-1

. 
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Scheme 3.3. CPE of compound 3.3: a) addition of 9 electrons at -1.7 V; b) addition of 9 

electrons at -1.1 V. 

 

Controlled potential electrolysis of Pyridyl-pyrrolidine-C60 derivates  

The next compounds to be analyzed were 3.7 and 3.8 (Figure 3.5). CPE of the 

control compound 3.7 was carried out at -1.7 V and stopped after 7 electrons were 

transferred. An evident change was observed in the CV of 3.7 after (red solid line, Figure 

3.6A) the CPE, from an initial two irreversible peaks (-1.43 and -1.69 V vs Ag wire) to 

two reversible peaks (-1.22 and -1.49 V vs Ag wire). The reaction crude was 

characterized by means of MALDI-TOF after re-oxidation at 0 V, and the spectrum 

showed the molecular ion peak for the species with three (m/z = 1156, Figure 3.6B) and 

four cyclopropane addends removed (m/z = 840, Figure 3.6B). C60 was not detected, 

indicating the stability of the pyridyl pyrrolidine addend under reductive contidions. 
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3.7

3.8 3.9
 

Figure 3.5. Structures compounds 3.7, 3.8 and 3.9. 
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Figure 3.6 A) Cyclic voltammograms (CV) of compound 3.7 before (−) and after (−) 

electrolysis. Supporting electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V.s
-1

. B) 

MALDI-TOF spectrum of the reaction crude after CPE of 3.7: m/z: 1156 (without 3 

malonate groups) and 840 (without 4 malonate groups). 
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Figure 3.7 (black solid line) shows the CV of compound 3.8 before CPE, which 

exhibits irreversible electrochemistry under reductive conditions. The hexakis-adduct 3.8 

was subjected to CPE and after discharging the equivalent of 6 electrons per molecule, 

the electrolysis was stopped. At that point the CV (red solid line, Figure 3.7) clearly 

showed the appearance of two reversible reductive processes at -1.10 and -1.44 V vs Ag 

wire. Three products were detected in the reaction crude by MALDI-TOF corresponding 

to the removal of: two (3.10), three (3.11) and four malonate (3.12) groups, respectively 

(Scheme 3.4).[19]  
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Figure 3.7 A) Cyclic voltammograms (CV) of compound 3.8 before (−) and after (−) 

electrolysis. Supporting electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V.s
-1

. B) 

MALDI-TOF spectrum of the reaction crude after CPE of 3.8: m/z: 1277 (without 2 

malonate groups); 1119 (without 3 malonate groups) and 960 (without 4 malonate 

groups). 
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The tetrakis-adduct 3.10 was isolated (18% yield) and fully characterized as a 

single isomer with a remarkable (e,e,e,e)-D2h- symmetry by means of NMR spectroscopy, 

mass spectrometry, UV-Vis and electrochemistry. The 
1
H-NMR (Figure 3.8A) of 

compound 3.10 displayed one triplet for the –CH3 protons at 1.39 ppm (integrating for 12 

protons), one quartet for the methylene protons from of the malonate groups (integrating 

for 8 protons at 4.51 ppm), one singlet for the 8 methylene protons of the pyrrolidine 

rings at 5.18 ppm; and two doublets for the eight aromatic protons (7.06 and 8.51 ppm, 

respectively, 4 protons each).  

Figure 3.8B shows the 
13

C-NMR spectrum of 3.10, one signal for the two 

carbonyls (δ = 164.30), one for the methyls (δ = 14.21) and one for the methylenes (δ = 

66.87 ppm) of the two malonate groups, one peak for the methylenes (δ = 63.21) and 

three (δ = 110.34, 150.67 and 152.39) for the aromatic carbon atoms of the pyrrolidine 

rings and two sp
3
-C peaks (δ = 60.25 and 69.36) for the fullerene cage indicating that 

they are magnetically equivalent. Finally, seven signals between δ =141.18 - 152.39 for 

the sp
2
-C atoms of the fullerene cage were observed. The NMR spectra of 3.10 indicated 

D2h symmetry, in other words all of the addends are located on the equator of the 

fullerene.[19] 
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3.8 3.10 3.11 3.12

+ +
CPE at -1.9V

+ 6 e-

 

Scheme 3.4 Reduction of compound 3.8 under electrochemical conditions. 

 

 

This unusual tetrakis-adduct 3.10 with a never reported and unique (e,e,e,e) 

architecture with two Pyrr groups (trans-1 to each other) and two cyclopropane rings 

(also trans-1 to each other) could have potential applications in molecular electronics 

because it exhibits reversible chemical and electrochemical behavior upon reduction 

conditions (Figure 3.9). The CV of compound 3.10 shows two one electron reversible 

reduction processes at -0.76 and - 1.15 V vs Fc/Fc+ (Fc= ferrocene) (Figure 3.9).[19]  

On the other hand, the unexpected exclusive formation of this highly symmetric 

isomer of compound 3.10 led us to investigate its stability and isomeric preference upon 

electrochemically induced isomerization (“walk-on-the-sphere” process). The CPE of 

compound 3.10 at the first reduction potential was performed in CH2Cl2 at room 

temperature, and it did not result in any isomerization or other changes.[19] 
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Figure 3.8 A) 
1
H-NMR spectrum of (e,e,e,e)-tetrakis-adducts 3.10; B) 

13
C-NMR 

spectrum of (e,e,e,e)-tetrakis-adducts 3.10. (500 MHz, CDCl3). 
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Figure 3.9. Cyclic voltammogram of (e,e,e,e)-tetrakis-[60]-fullerene adduct 3.10. 

Supporting electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V s
-1

. 

 

The formation of only one isomer out of the two possible (e,e,e,e)-D2h-

[60]fullerene derivatives (3.10’ and 3.10’’, Figure 3.10) from the CPE of compound 3.8 

is currently not understood. Furthermore, we are currently not even able to identify which 

of these isomers was obtained since spectroscopic methods are unable to differentiate 

them. X-ray structural analysis may be the only way to elucidate which isomer is 

preferentially formed.[19] Based on simple steric arguments 3.10’’ would seem to be 

slightly preference but proof will only be obtained from a diffraction structure. 
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3.10’ 3.10’’
 

Figure 3.10. Possible isomers of compound 3.10 based on the observed NMR symmetry. 

 

Single molecule conductance was performed on 3.10 by Xiulan Li from Professor 

Tao’s group in Arizona State University. The description of the conductivity 

measurement by the STM break junction method[20] was given in section the 

“Molecular-based electronic devices” section, Chapter I. 

Compound 3.10 was initially self-assembled on a gold substrate and this was 

loaded onto the STM setup (Figure 3.11A). The STM tip was then approached close to 

the analyte monolayer (Figure 3.11B) immersed in mesitylene and then the tip was pulled 

away from the surface. Mesitylene was chosen as a solvent because it minimizes the 

leakage current between the STM tip and the Au electrodes. 
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Figure 3.11. A) STM setup of compound 3.10; B) STM image of Au (111) substrate 

modified with molecules of compound 3.10. 

 

Figure 3.12A shows the conductance histogram measured for compound 3.10 and 

the conductance value was found to be 0.4 G0, which is very close to the value of 0.7 G0 

measured for C60. The conductance of compound 3.10 was expected to be lower than that 

of pure C60 because of the presence of the addends. A possible interpretation is that the 

compound is resting on the surface directly through the fullerene core with the addends 

extended so that the conductance reflects only the value through the fullerene and not 

through the addends as desired. Use of SH-Pyrr groups instead of pyridyls-Pyrr could 

help establish the surface orientation of these compounds, along with other techniques, 

such as reflection absorption infrared spectroscopy (RAIRS). Nevertheless, this 

preliminary data shows has promising results for fullerene-based single molecular 

transistors. 
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A. B.

 

Figure 3.12. A) Conductance histogram of compound 3.10 in mesitylene, 1000nA/V 

preamplifer, the histogram was built by 982 curves from 1042 individual measurements  

using auto selection program Ebias= 20 mV. B) Conductance histogram of pure C60 in 

mesitylene, 1000nA/V preamplifer, the histogram was built by 1048 curves from 1140 

individual measurements using auto selection program Ebias= 97 mV. 

 

 Finally, the CPE of 7 mg of compound 3.9 was performed at -1.8 V and it was 

stopped after 6 electrons were transferred. Figure 3.13A shows the CVs of 3.9 before 

(black solid line) and after (red solid line) electrolysis. One electron irreversible process 

at -1.62 V was observed in the CV before the CPE and two one electron reversible 

processes at -0.95 and -1.27 V were observed after the CPE. A brown solid was 

suspended in the solution reaction after re-oxidation at 0 V, which was separated using a 

centrifuge and washed several times with CH2Cl2. This solid was identified as trans-2-

bispyridyl-pyrrolidine-C60 (2 mg, 50%) derivative 3.13 by means of MALDI-TOF MS 

(Figure 3.13B).  
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Figure 3.13 A) Cyclic voltammograms (CV) of compound 3.9 before (−) and after (−) 

electrolysis. Supporting electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V s
-1

. B) 

MALDI-TOF spectrum of compound 3.13: m/z: 960. 
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Conclusions 

In this chapter, the reductive controlled potential electrolysis of seven different 

C60 derivatives was discussed. The SCN phenyl pyrrolidine derivatives lost their addends 

upon CPE, the first examples of pyrrolidine removal by reductive electrolysis. For the 

derivatives with pyridyl-Pyrr addends, the CPE of an hexakis-adduct of C60 generated a 

unique and unusual (e,e,e,e) derivative containing two different addends in relative trans-

1 arrangements over the C60 core. This compound is highly symmetric and exhibits 

electrochemically and chemically reversible behavior, thus potentially useful in 

molecular electronic applications. The preliminary conductance data of the (e,e,e,e) 

derivative showed promising results for fullerene based break junctions. Finally, the 

trans-2-bispyridyl-pyrrolidine-C60 derivative was successfully obtained from the 

electrolysis of a hexakis-adduct of C60 by CPE. 
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Experimental Section 

General: Reagents were purchased from commercial suppliers and used without 

further purification. The syntheses of compounds 3.1[14] and 3.3[14] were discussed in 

Chapter II. Syntheses of compounds 3.7,[21] 3.8 and 3.9[13, 22] were performed using 

the same methodology as that used for 3.1[14] and 3.3[14] and they were reported by our 

group previously. NMR spectra were recorded on a Bruker AC 500 MHz spectrometer. 

Mass spectroscopy was recorded with an Omni Flex MALDI-TOF spectrometer.  

Electrochemical measurements: All electrochemical measurements were 

performed in dry CH2Cl2 (degassed with argon) with 0.1 M TBAPF6 as the supporting 

electrolyte using a BASi Electrochemical Workstation. The tetrabutylammonium 

hexafluorophosphate (TBAPF6, Fluka, 99%) was recrystallized two times from ethanol 

and dried under vacuum for 24 hours prior to use.  Cyclic voltammetry (CV) was 

performed under an argon atmosphere at room temperature at a scan rate of 100 mV s
-1

 

and pulse rate of 0.05 s with increments of 4 mV and an amplitude of 50 mV. A standard 

three-electrode setup was used consisting of a glassy carbon working electrode (Cypress, 

1.0 mm), a platinum wire auxiliary electrode (Aldrich, 1.0 mm) and a non-aqueous 

reference electrode Ag/AgNO3 (calibrated externally versus the ferrocene/ferricenium 

(Fc+/Fc) redox couple). The half-wave potential, E1/2, was determined as (Epa + Epc)/2, 

where Epa and Epc are the anodic and cathodic peak potentials from the CV.  

Bulk electrolysis was performed using a homemade electrochemical cell. A 2–7 

mg sample of fullerene derivatives 3.1, 3.2, 3.3, 3.7, 3.8, 3.9 or 3.10 was used for each 

experiment. The cell was degassed and pumped to a pressure of 10
-6

 torr. Dry CH2Cl2 (18 
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mL), which had also been degassed and pumped to the same pressure in the presence of 

calcium hydride, was vapor-transferred directly into the cell. Prior to CPE, cyclic 

voltammetry was performed by using a glassy carbon electrode (1 mm) to obtain the 

reduction potential versus a Ag wire pseudoreference electrode. The latter was separated 

from the bulk solution by a Vycor tip. CPE at 293 K was performed on a Pt-mesh (100 

mesh, 6.5 cm
2
) working electrode. After reductive electrolysis, the solution was 

reoxidized at 0 V. Compound 3.9 (1 mg, 0.0010 mmol, 18%) was purified by prep-

Alumina TLC using CH2Cl2/MeOH 2% as eluant: 
1
H NMR (CDCl3, 500 MHz) δ 1.48-

1.45 (t, 12H), 4.54-4.50 (q, 8H), 5.14 (s, 8H), 7.06 (d, 4H), 8.51 (d, 4H); 
13

C NMR 

(CDCl3, 125 MHz) δ 14.21 (CH3), 46.00, 60.25 (C), 63.21 (CH2), 66.87 (CH2), 69.36 (C), 

110.34 (Py), 141.18 (C), 141.45 (C), 141.82 (C), 141.91 (C), 145.54 (C), 146.48 (C), 

150.67 (Py), 152.39 (C), 152.83 (Py), 164.30 (CO); UVvis (CH2Cl2): 277, 288, 326 and 

478 nm; MS (MALDI): m/z: 1277 [M+45 ]. Hexakis-adduct 3.9:   
1
H NMR (500 MHz, 

CDCl3) δ: 8.40 (br d, 4H), 6.84 (br d, 2H), 6.78 (br d, 2H), 4.68-4.50 (m, 8H), 4.37-4.25 

(m, 16H), 1.38-1.29 (m, 24H). 
13

C NMR (500 MHz, CDCl3) δ: 163.96, 163.86, 163.48, 

163.18, 153.65, 153.05, 152.70, 152.56, 152.19, 151.91, 151.46, 151.01, 150.17, 148.67, 

147, 85, 146.98, 146.58, 146.30, 146.21, 145.95, 145.69, 145.54, 145.38, 145.26, 144.36, 

144.11, 143.41, 143.09, 142.92, 142.50, 142.35, 142.12, 141.83, 141.50, 141.29, 140.89, 

140.67, 140.27, 139.70, 138.84, 138.08, 136.77, 136.60, 136.18, 136.05, 130.20, 125.15, 

70.39, 70.22, 69.10, 68.91, 67.63, 67.57, 67.25, 66.98, 66.84, 66.01, 63.58, 63.01, 62.92, 

62.93, 62.85, 62.60, 61.16, 61.09, 60.43, 60.03, 59.96, 59.60, 45.53, 43.76, 43.49, 42.04, 

14.13, 14.09, 14.04. MALDI-TOF MS: 1594 [M
+
 + 1] 
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CHAPTER FOUR 

 

CCOOMMPPLLEEXXEESS  ((FFee
IIII

  aanndd  RRuu
IIII

))  OOFF  TTEERRPPYYRRIIDDYYLL--YYRRRROOLLIIDDIINNOO--CC6600  

DDEERRIIVVAATTIIVVEESS  

 

 

In the previous Chapters we introduced a versatile strategy to synthesize a library 

of C60 derivatives, featuring cyclopropane and pyrrolidine ring addend on the surface of 

the cage. The cyclopropane addends acted as protecting groups in order to synthesize 

these compounds, and the pyrrolidine addends gave special characteristics to each 

derivative.[1] For example, the pyridyl (Py) group can self-assemble on Au, Pd, or Pt,[2] 

while the terpyridyl (Tpy) group is known to form stable complexes with Ru(II), Co(II), 

Fe(II), and Os(II)[3] and the SCN group can self-assemble on Au.[4] We also proposed 

their potential use in molecular electronics as single molecule transistors after removal of 

the cyclopropane addends. These derivatives are also appealing as building blocks in self-

assembled systems because of their three dimensional architecture and ability to form 

stable complexes. The study of these complexes also support our predictions that they 

could behave as coordination driven single molecule transistors by surface-controlled 

self-assembly on solid supports.[5] 

The self-assembly of molecules which mimic systems in nature has been the focus 

of many research groups.[6] This process is driven by the properties and information 

stored in their units, which can be designed using different functional groups.[7] External 

factors also play an important role in the assembly of the units such as concentrations, 

stoichiometries of the components and presence of foreign species.[8]  
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 Different types of interactions are the glue in self-assembled systems such as 

electrostatic interactions, hydrogen bonds, Van der Waals interactions, π-π interactions, 

charge-transfer interactions and hydrophobic binding.[6b] We are interested on metal 

coordination driven self assembly due to the nature of some of the addends in the C60 

derivatives (e.g. Py-Pyrr and Tpy-Pyrr). Metal-ligand bonds (10-30 kcal/mol) are not as 

strong as covalent bonds (90-140 kcal/mol) but stronger than electrostatic and π-π 

stacking interactions.[3] Coordination chemistry provides a useful tool for the elucidation 

of the self-assembly process itself.[9] Several beautiful examples have been reported 

using metal-directed synthesis in the last two decades such as “self-sorting systems” or 

helicates, knots, rotaxanes and catenanes.[6b] 

 In this Chapter, we will introduce the formation of complexes based on the 

fullerene derivatives reported in Chapter II. Their characterization will be discussed by 

means of NMR spectroscopy, electrospray ionization mass spectrometry (ESI MS), 

MALDI-TOF MS and electrochemistry. 

 

Metal coordination of the pentakis-C60 adduct bearing a single Tpy group with 

Fe(II), Ru(II), Os(II) and Co(II) 

We studied the coordination of Fe (II), Ru (II), Os (II), and Co (II) with the 

pentakis-adduct 4.1 in order to probe the self-assembly of the C60 derivatives by metal-

directed synthesis, as follows (Scheme 4.1): 

Fe (II) complex 4.2a: 0.012 mmol of 4.1 and 0.006 mmol of FeCl2.4H2O were 

mixed in 5 mL CH2Cl2:methanol 3:2 under argon at room temperature. The initial orange 
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solution turned purple instantly. The reaction was stirred for 24 hours and protected from 

light, then 5 mL of 0.1 M KPF6 in methanol was added. A purple solid was formed and 

separated using the centrifuge. One product (90% yield) was produced and subjected to 

full characterization. 

Ru (II) complex 4.2b: A solution of 0.012 mmol of 4.1 and 0.006 mmol of 

RuCl2(Me2SO)4[10] on 5 mL CH2Cl2:methanol 3:2 was refluxed under argon during 24 

hours, then 5 mL of 0.1 M KPF6 in methanol was added. An orange solid was formed and 

separated using the centrifuge. This solid was purified by preparative thin layer 

chromatography (prep-TLC) with CH2Cl2:methanol 92:8 as eluent. Four fractions were 

isolated and the product 4.2b (18% yield) was found in the second fraction. 

Os (II) complex 4.2c: 0.012 mmol of 4.1 was mixed with 0.006 mmol of 

NH4OsCl6  in 5 mL CH2Cl2:methanol 3:2 and refluxed under argon during 24 hours, then 

5 mL of 0.1 M KPF6 in methanol was added. A brown solid was formed and separated 

using the centrifuge. This solid was purified by prep-TLC with CH2Cl2:methanol 97:3 as 

eluent. Two fractions were isolated and first one being the expected product. 

Co (II) complex 4.2d:  A solution of 0.012 mmol of 4.1 and 0.006 mmol of 

CoCl2.xH2O in 5 mL CH2Cl2:methanol 3:2 was refluxed under argon during 24 hours, 

then 5 mL of 0.1 M KPF6 in methanol was added. An orange solid was formed and 

separated using the centrifuge. This solid was purified by prep-TLC with 

CH2Cl2:methanol 97:3 as eluent. Three fractions were obtained.  
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= FeCl2.4H2O, RuCl2(Me2SO)4, NH4OsCl6 or CoCl2.xH2O 

4.1 4.2a-d

+2

.(PF6)2

CH2Cl2:MeOH 3:2

KPF6

 

Scheme 4.1. Metal coordination of 4.1 with Fe (II) 4.2a, Ru (II) 4.2b, Os (II) 4.2c and Co 

(II) 4.2d. 

 

Figure 4.1 shows the 
1
H-NMR spectra of compounds 4.1 and 4.2a. Protons H5 

and H6 shift downfield from δ = 8.0 and 4.65 to δ = 8.12 and 5.05, respectively. Protons 

H1-4 were shifted upfield from δ = 8.68, 8.63, 7.85 and 7.35 to δ = 7.28, 8.29, 7.75 and 

7.17, respectively. This behavior was expected due to Fe
2+

 coordination with the N’s of 

the terpyridyl group, which shields the protons H1-4 upfield. The 
1
H-NMR spectrum of 

compound 4.2a exhibits high symmetry; only five signals were observed in the aromatic 

region that corresponded to 20 protons indicating that the two Tpy ligands are equivalent. 

This suggested that the Fe (II) complex has a D2d symmetry (Tpy-Pyrr addends are in an 

orthogonal near-plane respect to the Fe).[11] 
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Figure 4.1 
1
H-NMR spectra of: (A) compound 4.1 and (B) compound 4.2a. (500 MHz 

and CDCl3). 

 

Figure 4.2 shows the ESI MS spectra of compound 4.2a and the corresponding 

simulation, confirming the structure of the complex. Figure 4.3 shows the 
1
H NMR 

spectra of compounds 4.1 and 4.2b. Complex 4.2b shows that the aromatic protons shift 

upfield, the pyrrolidine protons (H6) are not equivalent and shifted downfield from δ = 

4.65 to δ = 4.79 and 4.97. This was attributed to the coordination of the Tpy-Pyrr groups 

with the metal ion Ru (II). The number of total signals was double relative to 4.1; for 

example, eight signals for aromatic protons were observed. This indicates a different 

NMR environment for the two 4.1 units on complex 4.2b and that the symmetry of 

complex was not D2d as 4.2a. 
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A.

B.

 

Figure 4.2. ESI MS spectra of: (A) compound 4.2a and (B) simulation of compound 

4.2a. 
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Figure 4.3. 
1
H-NMR spectra of: (A) compound 4.1 and (B) compound 4.2b. (500 MHz 

and CDCl3). 
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The electrochemical behavior of complexes 4.2a and 4.2b was studied by means 

of cyclic voltammetry (CV) and Osteryoung Square Wave Voltammetry (OSWV) in a 3-

electrode cell, using CH2Cl2 as solvent and TBAPF6 as electrolyte. The CV of complex 

4.2a exhibited two one electron irreversible reduction processes (-1.57 and -1.93 V vs 

Fc/Fc
+1

) and a one electron reversible oxidation process (0.35 V vs Fc/Fc
+1

), Figure 4.4A. 

This reversible oxidation process is assigned to the Fe
2+

/Fe
3+ 

couple. The CV of complex 

4.2b only showed two one electron irreversible reduction processes (-1.62 and -2.06 V vs 

Fc/Fc
+1

), Figure 4.4B. The redox couple Ru
2+

/Ru
3+

 was not observed in this potential 

window. 

 Figure 4.5 shows the OSWV reduction scan of tetrakis-

(ethoxycarbonyl)methano-C60 derivative (Curve A), compound 4.1 (Curve B), complex 

4.2b (Curve C) and complex 4.2a (Curve D), respectively. The two peaks at -1.21 and -

1.57 V vs Fc/Fc
+1

 in Curve A are fullerene based, therefore the peak at -1.56 V vs Fc/Fc
+1

 

in Curve B is attributed to the Tpy ligand and the peaks at -1.41 and -1.77 V vs Fc/Fc
+1

 

are fullerene based. The 20 mV cathodic shift of the peaks of Curve B with respect to 

Curve A is a typical for the addition of a new group on the sphere,[12] because it 

increases the LUMO energy level thus making it more difficult to reduce.[13] Curve C 

exhibits two fullerene based peaks at -1.62 and -2.06 V vs Fc/Fc
+1

 and no electrochemical 

response of the Tpy, which must mean that it was cathodically  shifted out side of the 

potential window. Finally, Curve D shows two fullerene based peaks at -1.57 and -1.93 V 

vs Fc/Fc
+1

 and one peak at -2.20 V vs Fc/Fc
+1

 associated with the Tpy ligand. The peak of 
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the Tpy group was shifted by 64 mV compared to Curve B. Hence, the Ru(II) metal ion 

has a stronger effect on the Tpy groups compared to Fe(II). 
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Figure 4.4. (A) Cyclic voltammogram (CV) of compound 4.2a and (B) CV of compound 

4.2b. Supporting electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V s
-1

. 
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Figure 4.5. Osteryoung Square Wave Voltammetry (OSWV) in dichloromethane 

containing TBAPF6 (0.1 M) for: (A) tetrakis-(ethoxycarbonyl)methano-C60 derivative; 

(B) compound 4.1; (C) complex 4.2b and (D) complex 4.2a. Parameters: Step E 4 mV,  

S.W. amplitude 25 mV, S.W. frequency 15 Hz and quiet time 2 sec. 

 

Compounds 4.2c and 4.2d were not isolated and characterized. Our purpose was 

to find the best metal to react with the derivatives, therefore the results from 4.2a and 

4.2b were satisfactory enough to proceed to investigate larger systems, and these are 

discussed in the next section.  

 



105 

 

Fe(II) complexes of the hexakis-C60 adducts bearing Tpy and Py groups  

Since Fe (II) worked best, the hexakis-adducts 4.3 (Scheme 4.3) and 4.4 (Scheme 

4.4) were coordinated with Fe (II).  

Fe (II) complex 4.3a: 0.0046 mmol of 4.3 and 0.0023 mmol of FeCl2.4H2O were 

mixed in 5 mL CH2Cl2:methanol 3:2 under argon at room temperature. The initial orange 

solution turned purple instantly. The reaction was stirred for 24 hours and protected from 

light, then 5 mL of 0.1 M KPF6 in methanol was added. A purple solid was formed and 

separated using a centrifuge. Only one product (92%) was produced and fully 

characterized. 

Fe (II) complex 4.4a: 0.0057 mmol of 4.4 was mixed with 0.0029 mmol of 

FeCl2.4H2O in 5 mL CH2Cl2:methanol 3:2 under argon at room temperature for 24 hours. 

The initial orange solution turned purple instantly. Then 5 mL of 0.1 M KPF6 in methanol 

was added. A purple solid was formed and separated using the centrifuge. Only one 

product (90%) was formed and fully characterized. 

4.3

1. FeCl2.4H2O

CHCl2/MeOH (3:2)

Ar, 24 h, r.t.

2. KPF6/ MeOH

+2

.(PF6)2

4.3a
 

Scheme 4.2 Synthesis of Fe (II)- complex 4.3a. 
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4.4

1. FeCl2.4H2O

CHCl2/MeOH (3:2)

Ar, 24 h, r.t.

2. KPF6/ MeOH

+2

.(PF6)2

4.4a
 

Scheme 4.3 Synthesis of Fe (II) complex 4.4a. 
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Figure 4.6. 
1
H-NMR spectra of: (A) compound 4.3 (500 MHz and CDCl3) and (B) 

compound 4.3a (500 MHz and Acetone-d6). 
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Figure 4.6 shows the 
1
H-NMR spectra of compound 4.3 and complex 4.3a. The 

D2h symmetry of compound 4.3 was assigned by NMR spectroscopy. The 
1
H-NMR 

spectrum (Figure 4.6A) displays three sets of triplets for CH3 protons and three sets of 

quartets for -CH2- protons of the malonate groups (with integration ratios of 6:6:12) 

between δ = 1.24 - 1.39 and δ = 4.25 - 4.40, respectively. One singlet for the methylene 

protons of the pyrrolidine ring of the Py-Pyrr addend and one singlet for the methylene 

protons of the pyrrolidine ring of the Tpy-Pyrr addend were observed at δ = 4.66 and 

4.89, respectively. The aromatic region shows seven signals, two doublets for the pyridyl 

protons (δ = 6.83 and 8.40, respectively), four multiplets and one singlet corresponding to 

the terpyridyl protons (δ = 7.34, 7.87, 8.68, 8.72 and 8.09, respectively).  

Even though the 
1
H-NMR spectrum of 4.3a (Figure 4.6B) was obtained in a 

different deuterated solvent than that used with 4.3 due to different solubilities, they were 

compared.  The signals of the protons from the CH3 and -CH2- of the malonate groups 

appeared as multiplets between δ = 1.23 - 1.40 (integration 48) and δ = 4.32 - 4.47 

(integration 32), respectively. The singlets at δ = 5.34 and 5.52 were assigned to the 

methylene protons of the pyrrolidine ring of the Py-Pyrr and Tpy-Pyrr addends, 

respectively. The seven signals of the aromatic region were assigned: two broad signals 

for the pyridyl protons (δ = 7.73 and 8.58, respectively) and five broad signals for the 

terpyridyl protons (δ = 7.29, 7.57, 8.02, 8.58 and 9.13, respectively). The same high 

symmetry and number of signals observed for 4.3 were observed for 4.3a, indicating the 

same symmetry.  
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Figure 4.7. 
1
H-NMR spectra of: (A) compound 4.4 (500 MHz and CDCl3) and (B) 

compound 4.4a (500 MHz and Acetone-d6). 

 

Complex 4.4a was characterized by means of 
1
H-NMR spectroscopy (Figure 4.7B) and 

compared with compound 4.4 (Figure 4.7A) even though they were analyzed in different 

deuterated solvents due to different solubilities. The 
1
H-NMR spectrum of compound 4.4 

shows two multiplets between δ = 1.24 - 1.38 and δ = 4.26 - 4.35 assigned to the methyl 

and methylene protons of the malonate groups, respectively. Two multiplets between δ = 

4.73 - 4.78 and δ = 4.87 - 4.90 corresponding to the methylene protons of the pyrrolidine 

ring of the Py-Pyrr addend and the Tpy-Pyrr addends were observed, respectively. The 

aromatic region illustrates nine signals, three multiplets and two singlet signals 
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corresponding to the terpyridyl protons (δ = 7.34, 7.87, 8.66, 8.70, 8.04 and 8.10, 

respectively).  

The signals from the 
1
H-NMR spectrum of 4.4a (Figure 4.7B) were broader, but 

they retain the same symmetry, which was expected for the coordination of 4.4 with 

Fe(II). It shows two multiplets between δ = 1.27 - 1.36 and δ = 4.32 - 4.42 assigned to the 

methyl and methylene protons from the malonate groups, respectively. Multiplet signals 

between δ = 5.05 to 5.67 were assigned to the methylene protons of the pyrrolidine ring 

of the Py-Pyrr and Tpy-Pyrr addends. Ten signals were displayed in the aromatic region, 

four doublets for the pyridyl protons (δ = 7.70, 7.74, 8.60 and 8.65, respectively) and six 

broad signals for the terpyridyl protons (δ = 7.27, 7.56, 8.00, 8.86, 9.10 and 9.13, 

respectively).  

Finally, the molecular weight of complex 4.4a was confirmed by MALDI-TOF 

MS (Figure 4.8). The electrochemistry of the complexes 4.4a was also studied and will 

be discussed in the next section. 
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Figure 4.8. MALDI-TOF MS spectrum of complex 4.4a. 

 

Controlled potential electrolysis of complexes 4.2a and 4.4a 

In Chapter III, we introduced the controlled potential electrolysis (CPE) process 

as a useful tool to remove the malonate addends. So, we explored the electrochemical 

behavior of complexes 4.2a and 4.4a upon electrolysis. All experiments were carried out 

using a homemade cell, previously described, under high vacuum with 0.1M TBAPF6 as 

the supporting electrolyte.[14]  

Electrolysis of complex 4.2a: It was already mentioned that 4.2a exhibits two 

one-electron irreversible reduction processes (Figure 4.19A) and a one-electron reversible 

oxidation process. The complex has eight malonate groups, therefore it was expected to 

require 16 electrons to remove all the addends. Electrolysis of 5 mg of 4.2a was carried 

out in a solution of 0.1 M TBAPF6 in CH2Cl2 under vacuum and the CV showed two 
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reversible processes after 10 electrons had been discharged through the solution at -1.7 V 

(Figure 4.9B). The addition of 10 electrons per molecule probably removes ~ 5 addends 

and leads to a compound exhibiting a reversible electrochemistry. After 16 electrons per 

molecule had been discharged at -1.85 V the CV still showed reversible reduction 

processes (Figure 4.9C). The mono-terpyridylpyrrolidino-C60 derivative (Figure 4.10) 

was identified from the crude reaction by means of MALDI-TOF MS spectrometry 

(Figure 4.10), after performing an exhaustive re-oxidation at 0 V. 

These results clearly indicate that electrolysis removed the eight malonate groups 

of the complex but somehow also the ion metal Fe (II) was lost during the electrolytic 

process to form mono-terpyridylpyrrolidino-C60 derivative (Figure 4.10). 

 

Electrolysis of complex 4.4a: The CV of complex 4.4a exhibited two one electron 

irreversible processes at -1.50 and -1.84 V and a one electron reversible process assigned 

to the couple Fe
2+

/Fe
3+

at 0.66 V, Figure 4.11. Electrolysis was conducted at different 

potentials (-1.80, -1.90 and -2.0 V, respectively), but the retro-cyclopropanation did not 

proceed under these conditions. 
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Figure 4.9. Electrolysis of compound 4.2a: (A) Cyclic voltammogram (CV) of 

compound 4.2a before electrolysis; (B) CV of 4.2a after the discharge of 10 electrons and 

(C) CV of 4.2a after the discharge of 16 electrons. Supporting electrolyte: 0.1 M TBAPF6 

in CH2Cl2, Scan rate: 0.1 V s
-1

.  
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Figure 4.10. MALDI-TOF spectrum of the crude reaction of the electrolysis of 4.2a.  
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Figure 4.11. Cyclic voltammograms (CV) of complex 4.4a under vacuum. Supporting 

electrolyte: 0.1 M TBAPF6 in CH2Cl2, Scan rate: 0.1 V s
-1

. 

 

In order to increase the potential window, the CPE was performed in ACN at -1.9 

V. The electrolysis was stopped after the addition of 12 electrons per molecule and re-

oxidized at 0 V. Figure 4.13 shows the CV recorded immediately after CPE. It shows the 

reversible processes indicative of to cyclopropane addend removal and the trans-2-

pyridylpyrrolidino-terpyridylpyrrolidino-C60 derivative was detected in the crude reaction 

by MALDI-TOF MS (m/z= 1114, Figure 4.13). The peaks at m/z = 995 and 720 were 

assigned to mono-terpyridylpyrrolidino-C60 derivative and C60, respectively. 



115 

 

0.0 -0.5 -1.0 -1.5 -2.0 -2.5

-0.6

-0.4

-0.2

0.0

0.2

0.4

0.6

0.8

C
u
rr

e
n
t 


A

Potential (V) vs Ag wire  

Figure 4.12. Electrolysis of compound 4.4a: Cyclic voltammogram of compound 4.4a 

after the discharge of 12 electrons per molecule. Supporting electrolyte: 0.1 M TBAPF6 

in CH3CN, Scan rate: 0.1 V s
-1

.  
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Figure 4.13. MALDI-TOF spectrum of the crude reaction of the electrolysis of 4.4a.  
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It can be concluded that the CPE of the complexes 4.2a and 4.4a led to successful 

removal of the cyclopropane addends and the loss of the Fe (II). Hence, it can be used as 

an alternative route for the synthesis of the bis- and tris-adducts proposed in Chapter I.  
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Conclusions 

Chapter IV described the formation of metal complexes of some of the C60 

derivatives with a Tpy-Pyrr addend from the compound library describe in Chapter II. 

The metals Fe (II) and Ru (II) were used for the metal-directed self assembly process 

being Fe (II) metal the most suitable. Fe(II)-C60 derivative complexes with a D2d 

symmetry (Tpy-Pyrr addends were in an orthogonal near-plane respect to the Fe) were 

obtained in high yields (>90%) and full characterized.  

Also, they were stable at room temperature, air, light and oxidative conditions but 

unstable under reductive conditions. Removal of the cyclopropane addends and loss of 

the Fe (II) ion metal was achieved upon reduction conditions using CPE.  
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CHAPTER FIVE 

 

EELLEECCTTRROOCCHHEEMMIICCAALL  PPRROOPPEERRTTIIEESS  OOFF  SSUUPPRRAAMMOOLLEECCUULLEESS::  

PPHHTTHHAALLOOCCYYAANNIINNEE  AANNDD  PPOORRPPHHYYRRIINN  DDEERRIIVVAATTIIVVEESS  

 

 

In this Chapter, the electrochemical behavior of some phthalocyanines and 

porphyrins derivatives under electroreductive and oxidative conditions are discussed in 

detail, as well as the experimental techniques used to conduct these studies. 

Phthalocyanine compounds were provided by Fernando Fernandez-Lazaro at Universidad 

Miguel Hernández de Elche, Spain and porphyrin compounds were provided by David 

Schuster group at New York University, New York City, USA.  

Electrochemistry of silicon phthalocyanine azobenzene derivatives 

Phthalocyanines (Pc) are planar aromatic macrocycles that have been used as 

building blocks for the preparation of a wide variety of materials with outstanding 

electronic and optical properties, ranging from nonlinear optical applications to 

photoconductors.[1] These properties depend on the type of central atom and/or the 

substituents present. For example, silicon-phthalocyanine (SiPcs) derivatives have been 

shown to possess antitumor activity under photodynamic conditions.[2] The SiPcs are 

also of great interest because of the possibility of axial substitution that enhances their 

solubility.[3] For instance, azobenzene-SiPc-azobenzene (Azo-SiPc-Azo) is a 

photoswitchable derivative, where the axially coordinated azoarene forms an on-off (E-Z 

states) fluorescence signal that can help to modulate the emission properties of Azo-SiPc-

Azo.[3] In this section, we report the effect of different axial substituents on the 

electrochemical properties of SiPc (Figure 5.1). Compounds 5.1 – 5.5 and 5.1’ – 5.5’ 
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were received in pure form from the research group of Professor Fernando Fernandez-

Lazaro at Universidad Miguel Hernández de Elche, Spain.  

5.1

5.2

5.3

5.4

5.5

5.1’

5.2’

5.3’

5.4’

5.5’

 
Figure 5.1. Azobenzene-phthalocyanine-azobenzene compounds (5.1-5.5) and their 

respective azobenzene compound reference (5.1’-5.5’). 
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Figure 5.2 shows the CV of: (A) azo-SiPc-azo compounds (5.1-5.5) and (B) 

azoarene reference compounds (5.1’-5.5’). Each azo-SiPc-azo shows two reversible one-

electron reduction processes coming from the Pc and at least two irreversible reduction 

peaks above -1.7 V vs Fc/Fc
+
 that correspond to reduction processes of the azoarene 

group. This is the typical electrochemical behavior of these macrocycles compounds: two 

reversible one-electron reduction processes and generally one reversible one-electron 

oxidation process.[4]  
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Figure 5.2. Cyclic voltammograms (CV) in THF containing TBAPF6 (0.1 M) for: 

(A) Azo-SiPc-Azo compounds 5.1-5.5; (B) Azobenzene reference compounds 5.1’-5.5’. 

Sweep rate was 100 mV s
-1

. 
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The electrochemical potentials are summarized in Table 5.1. Comparing the third 

reduction potential of azo-SiPc-azo with of its azoarene groups 5.1’-5.5’ the following 

can be concluded: Compounds 5.1, 5.3 and 5.4 had a cathodic shift about 10 mV and 

compounds 5.2 and 5.5 had a cathodic shift about 30 mV. This indicated that the azo-

SiPc-azo is more difficult to reduce than the azoarene group, which is likely due to 

charge transfer between the donors (SiPc) and the acceptor (azobenzenes addends). 

 

Table 5.1. Electrochemical potentials E/V vs Fc/Fc
+
 measured in THF containing (0.1 M) 

as supporting electrolyte. 

Compound
Reduction Potentials (V)

Oxidation 

Potentials 

(V)

E1 E2 E3 E4 E5 E6 E1

5.1 -1.02a -1.51a -2.31b -2.54b -2.97b -- --

5.1’ -- -- -2.12b -2.51b -2.66b
-- --

5.2 -1.05 a -1.53 a -2.31b -2.60b -- -- 0.83b

5.2’ -- -1.37b -2.04b -2.47b --
-- 0.71b

5.3 -1.03 a -1.50 a -2.16b -2.46b -2.56b -2.73 a
--

5.3’ -- -- -2.04b -2.54b

-- -- --

5.4 -1.04 a -1.51 a -1.99b -2.17b -2.35b -2.58b 0.78b

5.4’ -- -- -1.88b -2.17b
-- -2.47b 0.73b

5.5 -1.05 a -1.53 a -2.27b -2.63b -2.85b -- 0.73 a

5.5’ -- -1.79b -2.01b -2.45b -- -- --
 

    a
 Denotes E1/2 potentials. Range 60-92 mV of anodic-to-cathodic peak separation. 

    b
 Denotes a peak potential for an electrochemically irreversible wave.  
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As seen from the CV illustrated in Figure 5.2, the oxidation process was not 

measured because the potential was close to the end of the available solvent potential 

window. Therefore, all the experiments were carried out in dichloromethane in order to 

find the first oxidation peak and thus measure the HOMO-LUMO energy gap of each 

azo-SiPc-azo compound.  Figure 5.3 shows the OSWV for compounds 5.1-5.5 and 5.1’-

5.5’ obtained in dichloromethane. The same cathodic shift of the third reduction potential 

in the range of 20–55 mV was observed for the azo-SiPc-azo 5.1-5.5 compounds. Their 

electrochemical potentials and HOMO-LUMO energy gaps are summarized in Table 5.2. 

Figure 5.4 represents the two energy gaps of each azo-SiPc-azo compound as 

follows: (a) difference between 1
st
 oxidation potential and 1

st
 reduction potential of each 

azo-SiPc-azo compound and (b) difference between 1
st
 oxidation potential and 3

rd
 

reduction potential (the 3
rd

 process is assigned to the reduction of the azobenzene ligand) 

of each azo-SiPc-azo compound.  

Each azo-SiPc-azo compound has a similar HOMO-LUMO
b
 gap in the range 1.67 

- 1.70 V vs Fc/Fc
+
 (Figure 5.4, curve a, Table 5.2 HOMO-LUMO

b
). In the case of 

HOMO-LUMO
c
 compounds 5.1, 5.2, 5.3 and 5.5 have similar energy gaps in the range 

2.83 - 2.90 V vs Fc/Fc
+
, but for compound 5.4 the energy gap is smaller 2.67 V (Figure 

5.4, curve b, Table 5.2 HOMO-LUMO
c
). This effect was expected base on the difference 

in electron donating ability between I and the other substituent.  
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Figure 5.3. Osteryoung square wave voltammetry (OSWV) in dichloromethane 

containing TBAPF6 (0.1 M) for: (A) Azo-SiPc-Azo compounds 5.1-5.5; (B) Azobenzene 

reference compounds 5.1’-5.5’.  Parameters: Step E 4 mV,  S.W. amplitude 25 mV, S.W. 

frequency 15 Hz and quiet time 2 sec. 
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Table 5.2. Electrochemical potentials E/V vs Fc/Fc
+
 measured in dichloromethane 

containing TBAPF6 (0.1 M) as supporting electrolyte. 

Compound

Reduction Potentials (V) Oxidation 

Potentials

HOMO

LUMOc

HOMO

LUMOd

E1 E2 E3 E4 E5 E1 E2
ΔE (V) ΔE (V)

5.1 -1.07a -1.50 a -2.22b -- -- 0.62 a -- 1.69 2.84

5.1’ -- -- -1.67b -- -- -- --

5.2 -1.04 a -1.49 a -2.26b -- -- 0.63 a 1.04b 1.67 2.89

5.2’ -- -1.58b -1.89b -- -- 0.72b
--

5.3 -1.06 a -1.49 a -2.20b -- -- 0.63 a 1.21b 1.69 2.83

5.3’ -- -- -1.89b -- -- -- --

5.4 -1.06 a -1.47 a -2.03b -

2.12b

-

2.26b
0.64b 1.70 2.67

5.4’ -- -- -1.83b -- -- -- --

5.5 -1.05 a -1.49 a -2.27b -- -- 0.63 a 1.68 2.90

5.5’ -- -- -1.84b -- -- -- --
 

    a
 Denote E1/2 potentials. Range 60-92 mV of anodic-to-cathodic peak separation. 

    b
 Denotes a peak potential for an electrochemically irreversible wave.  

    c
 HOMO-LUMO: ∆E = Eoxi-1st – Ered-1st   

    d
 HOMO-LUMO: ∆E = Eoxi-1st – Ered-3rd 

 

CCoonncclluussiioonn:: The azo-SiPc-azo compounds exhibit cathodic shifts of more than 10 mV for 

the 3
rd

 reduction process. This third reduction is assigned to the first reduction process of 

the azobenzene group. Thus these dyads compounds are harder to reduce than the 

reference compound due to charge transfer between the donor (phthalocyanine) and the 

acceptor (azobenzenes). The HOMO-LUMO
c
 of the phthalocyanine compounds is not 

affected by the azobenzene substituents and the HOMO-LUMO
d
 of the phthalocyanine 

compounds does not exhibit any special behavior or trend.  
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Figure 5.4. Electrochemically measured HOMO and LUMO energy levels of each 

Azobenzene-SiPc-Azobenzene 5.1-5.5: curve a: HOMO from 1
st
 reduction potential, 

curve b: HOMO from 3
rd

 reduction potential and curve c: LUMO from 1
st
 oxidation 

potential. 
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Electrochemistry of Triazole-Linked Porphyrin-Fullerene Dyads  

Electron-transfer (ET) processes and long-lived charge separated states (CS) of 

Porphyrin-fullerene dyads have been studied because of implications of in optoelectronic 

applications. C60 is a good electron acceptor and the porphyrin compounds are good 

electron donors,[5] so one of the principal targets has been the synthesis of different 

bridges that can act as efficient and unsymmetric electronic coupling agents between the 

donor-acceptor groups. Therefore, characteristics such as the length conjugation and 

angle of the bridge have been modified and reported.[6] Here we report the 

electrochemical study of a series of triazole-linked porphyrin-fullerene dyads (Figure 5.5) 

and their triazole bridge units (Figure 5.6) by means of CV and differential pulse 

voltammetry (DPV).  

Figure 5.7a shows the CVs of porphyrin compounds 5.6’, 5.8’, 5.10 and Figure 

5.7b shows the CVs of 5.7’, 5.9’ and 5.11, bridge units. Except for 5.8’ each CV shows 

two reversible one-electron oxidation processes, one reversible one-electron reduction 

process and one irreversible one-electron reduction process, similar to previously 

reported results.[7] 5.8’ is an exception and exhibits one reversible and two irreversible 

one-electron reduction processes.   
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Figure 5.5 Triazole-linked porphyrin-fullerene dyads 5.6-5.9. 
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Figure 5.6. Porphyrin dyads 5.6’-5.9’ and 5.10-5.11. 
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From the CV (Figure 5.7) as well as from the DPV (Figure 5.8) of 5.6’ and 5.8’, it 

can be seen that the first reduction and oxidation potentials are shifted anodically by 20-

100 mV compared to 5.10. Thus, they are easier to reduce and harder to oxidize relative 

to the parent compound, 5.10. This was attributed to the stronger electron-withdrawing 

effect of the triazole group.[8] In the case of the 5.7’ and 5.9’, an anodic shift is observed 

when compared to 5.11 for the first reduction potential (20 mV) and a cathodic shift for 

the first oxidation potential (20 mV). This last effect could be attributed to the meta 

connection of the triazole group, which makes it easier to reduce and to oxidize.  
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Figure 5.7. Cyclic voltammograms (CV) in CH2Cl2 containing TBAPF6 (0.1 M) for: (A) 

5.6’-triazole, 5.8’-triazole, 5.10 compounds and (B) 5.7’-triazole, 5.9’-triazole and 5.11 

reference compounds. Sweep rate was 100 mV s
-1

. 
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Figure 5.8. Differential pulse voltammetry (DPV) in CH2Cl2 containing TBAPF6 (0.1 M) 

for: (A) 5.6’-triazole, 5.8’-triazole, 5.10 compounds and (B) 5.7’-triazole, 5.9’-triazole 

and 5.11 reference compounds.Sweep rate was 100 mV s
-1

. 

 

Figure 5.9A shows the CV of 5.6, 5.7, 5.8, and 5.9. These compounds show two 

oxidation and at least four reduction processes. The first oxidation peak is attributed to 

the triazole group (5.6’-5.9’), which was shifted cathodically (30, 10, 40 and 20 mV for 

compounds 5.7, 5.9, 5.6 and 5.8, respectively). The first and the second reductions 

correspond to the fulleropyrrolidine unit, while the third appears to be centered on the 

porphyrin, based on the values obtained for the reference compounds (5.6’-5.9’, Figure 

5.10). The first reduction peak of the dyads 5.6, 5.8, 5.9 and 5.7, is shifted cathodically 

(60, 30, 50 and 90 mV, respectively) compared to the first reduction potential (-1.07 V) 

of N-methyl-2-pyridylfulleropyrrolidine (5.12, Figure 5.11), reported previously.[8] 

The third reduction peak of 5.7, 5.9, 5.6 and 5.8 shift cathodically (50, 30, 100 

and 10 mV, respectively) with respect to the corresponding reference triazole porphyrin 

compound (5.7’, 5.9’, 5.6’ and 5.8’, respectively). This indicates that the dyads 5.6-5.9 
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are harder to reduce compared to the triazole reference compounds 5.6’-5.9’ and 5.12, 

which is a result of the charge transfer between the donors (porphyrin) and the acceptor 

(fullerene moiety). The two extra reduction peaks in the DPV of 5.6 (Figure 5.9b) are not 

currently assigned. They may result from contamination with pristine C60.  

 

A. B.
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5.9
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Figure 5.9. (A) Cyclic voltammograms (CV) in CH2Cl2 containing TBAPF6 (0.1 M) for 

5.6, 5.8, 5.9, and 5.7; (B) Differential pulse voltammetry (DPV) in CH2Cl2 containing 

TBAPF6 (0.1 M) for 5.6, 5.8, 5.9, and 5.7. Sweep rate was 100 mV s
-1

. 
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Figure 5.10. (A) Differential pulse voltammetry (DPV) in CH2Cl2 containing TBAPF6 

(0.1 M) for 5.10, 5.6’, 5.6, 5.8’ and 5.8; (B) Differential pulse voltammetry (DPV) in 

CH2Cl2 containing TBAPF6 (0.1 M) for 5.11, 5.7’, 5.7, 5.9’ and 5.9. 

 

 

Figure 5.11. (A) N-methyl-2-pyridylfulleropyrrolidine (2-NMFP).[8] (B) Azobenzene-

linked porphyrin-fullerene dyad.[9] 
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Table 5.3 reports all the electrochemical potentials of these series of dyads and 

their respective reference compounds. Two energy gaps are calculated for each dyad: a) 

HOMO-LUMO
c
 difference between the 1

st
 oxidation potential and the 1

st
 reduction 

potential of the dyads 5.6-5.9 and b) HOMO-LUMO
d
 difference between the 1

st
 

oxidation potential and the 3
rd

 reduction potential (the 3
rd

 process is assigned to the 

reduction of the porphyrin ligand) of the dyads 5.6-5.9. Every dyad has a similar HOMO-

LUMO
c
 and HOMO-LUMO

d
 gap (139-143 mV) and (215-218 mV), respectively. Also, 

the HOMO-LUMO
c,d

 gaps were similar to that of compound 5.13 (Figure 5.11) as 

previously reported.[9] No strong influence is observed due to the presence of the triazole 

group. 

 

CCoonncclluussiioonn:: The CV and DPV of the dyads 5.6-5.9 closely correspond to the sum of the 

independent electrochemical features of the fullerene and porphyrin moieties. Their third 

reduction potential was assigned to the first reduction process of the triazole porphyrin 

compounds 5.6’-5.9’, which showed cathodic shifts of more than 10 mV. This cathodic 

shift can be assigned to the electronic coupling between the fullerene and the porphyrin. 

The HOMO-LUMO gap of the dyads does not show any unusual behavior or trend.  
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Table 5.3. Electrochemical potentials E/V vs Fc/Fc
+
 measured in dichloromethane 

containing TBAPF6 (0.1 M) as supporting electrolyte. 

Compound

Reduction Potentials (V) Oxidation 

Potentials 

(V)

HOMO

LUMOc

ΔE (V)

HOMO

LUMOd

ΔE (V)
E1 E2 E3 E4 E5 E6 E7 E1 E2

5.6 -1.02b -1.13a -1.54b -1.67b -1.87a -2.01b -- 0.30 a 0.70 a 1.43 2.17

5.8 -- -1.10a -1.49a -1.67b -1.86b -2.01b -- 0.29 a 0.68 a 1.39 2.15

5.7 -- -1.16 a -1.54a -- -1.89b -2.05b -- 0.27 a 0.67 a 1.43 2.16

5.9 -- -1.12a -1.49a -- -1.89b -2.02b -- 0.29 a 0.69 a 1.41 2.18

5.6’ -- -- -- -- -1.77a -2.13b -- 0.34a 0.69a 2.11 --

5.8’ -- -- -- -- -1.85a -2.09b -2.24b 0.31a 0.67a 2.16 --

5.10 -- -- -- -- -1.87a -- -2.22b 0.29a 0.69a 2.16 --

5.7’ -- -- -- -- -1.84a -2.10b -- 0.30a 0.67a 2.14 --

5.9’ -- -- -- -- -1.86a -2.10b -- 0.30a 0.65a 2.16 --

5.11 -- -- -- -- -1.86a -- -2.22b 0.32a 0.68a 2.18 --

5.12e -- -1.07a -1.45 a -- -1.98 a -- -- -- -- -- --

5.13 -- -1.07a -1.45 a -- -1.82 a -1.99b -- 0.34 a 0.69 a 1.41 2.16

 
     a

 Denote E1/2 potentials. Range 60-92 mV of anodic-to-cathodic peak separation. 
    b

 Denotes a peak potential for an electrochemically irreversible wave.  

  
 c
 HOMO-LUMO: ∆E = Eoxi-1st – Ered-1st   

    d
 HOMO-LUMO: ∆E = Eoxi-1st – Ered-3rd 

     e
 N-methyl-2-pyridylfulleropyrrolidine[7] 
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Experimental Section  

The electrochemical studies of compounds 5.1-5.10 and 5.1’-5.9’ were performed 

in oxygen-free anhydrous dichloromethane (DCM, Sigma-Aldrich, anhydrous, 99.8%) 

and distilled tetrahydrofuran (THF, Sigma-Aldrich, anhydrous, 99.9%). 

Tetrabutylammonium hexafluorophosphate (TBAPF6, Fluka, 99%) was added as a 

supporting electrolyte. It was recrystallized two times from ethanol and was dried under 

vacuum for 24 hours prior to use.  The CV, OSWV, and DPV experiments were 

performed with either a Model CHI440A (CH Instruments Electrochemical Workstation) 

or potentiostat/galvanostat BAS100B (Bioanalytical Systems Inc.) 

(potentiostat/galvanostat). A standard three-electrode configuration was used with a 

glassy carbon working electrode (Cypress, 1.0 mm), a platinum wire as the auxiliary 

electrode (Aldrich, 1.0 mm) and a non-aqueous reference electrode (Ag/Ag
+
). The redox 

couple Fc/Fc
+
 was used as internal standard. The experiments were performed at room 

temperature and protected from light. The half-wave potential, E1/2, was determined as 

(Epa + Epc)/2, where Epa and Epc are the anodic and cathodic peak potentials from the CV. 

Additionally, E1/2, was checked by DPV experiments using the equation: Emax(DPV) = E1/2 

–(ΔE/2), where ΔE is the pulse amplitude (50 mV).[10]  
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